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Abstract 

 

Proteins serve various functions in living cells. In order to understand 

the functions of proteins, like when, where, with what, how and why they 

operate, protein structures can help us to gain deeper insight about them. The 

number of known protein sequences is increasing rapidly, through the 

widespread use of next-generation sequencing, but the number of known protein 

structures is only gradually increasing, because of the difficulty of conducting 

experiments. Because of this situation, the use of computational methods to 

understand proteins is becoming ever more important. 

Many proteins are known to function as complexes. Therefore, 

predicting quaternary structure is useful for understanding their functions. In the 

first chapter of this thesis, we present the details of our prediction methods for 

protein quaternary structure, our prediction results and the retrospective 

analysis of our prediction method through the 12th community wide experiment 

on the critical assessment of techniques for protein structure prediction. We used 

a template-based modeling method to predict quaternary structures and 

assessed the validity of this method.  

In the second chapter, we present the parallelized multiple sequence 

alignment software, MAFFT-MPI, which we developed, and the results of an 

efficiency analysis of this software. We also present the results of an accuracy 

analysis of multiple sequence alignments produced by this software using the 

prediction of the secondary structure of proteins and the contact prediction of 

proteins. We demonstrate that we could achieve the highest accuracy among 

existing methods within a practical timeframe. Furthermore, we reveal that there 

is no decrease in the accuracy of multiple sequence alignments themselves 

produced by this software even though the number of sequences increases. 

In the third chapter, we present a method for comparing ligand-binding 

pockets in proteins. In this method, one pocket is represented by one reduced 

vector. Using our novel representation, the similarity between ligand-binding 

pockets can be performed efficiently by merely calculating the inner product of 

about 200-dimensional vectors. The novel method exhibits higher performance 
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in detection of similar binding pockets than metrics currently used in existing 

alignment-free methods and an accurate alignment-dependent method. We also 

investigated the effects of modifications in the expansion and revision of edge 

classes for improving the ability to detect similar binding pockets, using two 

datasets. The computational times required for calculating the similarity of 

randomly selected pocket pairs suggests that this novel method can identify 

similarities faster than the other currently-used methods. Our novel method is 

expected to be useful for the large-scale comparison of binding pockets to infer 

the ligands and functions of proteins. 
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Chapter 1  

 

The methods for quaternary structure prediction and verification of 

their effects 

 

1.1 Introduction 

Many proteins are known to function as complexes. Obtaining 

information about a quaternary structure, so-called biological assemblies formed 

using a protein in a living cell, is useful to estimate its function. The biological 

importance of protein assemblies is greatest, although protein complex structure 

prediction is still a demanding task when complex structures consisting of close 

homologous proteins are unavailable (Negroni et al., 2014). One reason for this 

difficulty is that quaternary structures are often not conserved during evolution 

(Venkatakrishnan et al., 2010). For instance, regarding homo-oligomers, different 

quaternary structures are likely to be strongly associated with their specific 

functions (Hashimoto et al., 2011). However, recently, the amount of information 

related to the three-dimensional structure of the protein complex increases. 

Therefore, Template-Based Modeling (TBM), which has been used mainly for 

predicting the three-dimensional (3D) structures of protein monomers, is 

increasingly useful for predicting the 3D structures of the protein complexes 

(Szilagyi and Zhang, 2014). 

Based on a TBM approach using our profile-profile alignment method, 

we participated in the 12th Community Wide Experiment on the Critical 

Assessment of Techniques for Protein Structure Prediction (CASP12). During 

CASP experiment period, participants are provided amino acid sequences and 

predict their protein structures. These predicted structures are compared with 

the actual structure which is determined experimentally. Through this 

experiment, methods for predicting protein structure are assessed in a blinded 

manner, which means none of the participants know the actual structure when 

making their predictions. 

The Assembly category is an assessment category in CASP12. CASP12 
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held the first full-fledged Assembly category in CASP history. Along with the 

popularization of experimental methods which can reveal protein complex 

structures, like cryo-EM, the importance of predicting complex structures is 

increasingly being recognized even though a complex structure comprises 

monomer structures which are also unknow. We achieved 1st place among 25 

groups participated in this category. There are other assessment categories, such 

as the Contact Prediction category assess methods that predict three-dimensional 

contacts in protein structure and the Refinement category that assesses how well 

methods can refine a provided starting structure. The targets in the Assembly 

category consist of amino acid sequences derived from diverse protein complexes 

in terms of the number and form of their constituents. The prediction difficulty 

of target complexes varies a great deal depending on the availability of templates. 

Consequently, difficulties of three types, that is, EASY, MEDIUM, and HARD, 

are applied to the set of target complexes. According to the assessors’ definition, 

there are quaternary structure template(s) for EASY targets, and are partial 

template(s) or template(s) with no sequence similarity for MEDIUM targets, but 

no adequate template exists for HARD targets. 

The most fundamentally important step of TBM is the stage of template 

protein identification, for which various methods have been developed. In recent 

years, the profile-profile alignment method has been recognized as the most 

powerful method for template identification and for obtaining alignments 

between target and template proteins. We also developed our own profile-profile 

alignment method, FORTE (Tomii and Akiyama, 2004), and applied it to 

predictions of past CASP (Tomii et al., 2005) and CAPRI (Lensink et al., 2016) 

experiments, and of the TOM complex (Shiota et al., 2015), which is the 

translocase of the outer mitochondrial membrane. 

We have upgraded the method to construct profiles and have improved 

PSI-BLAST for use in profile construction. For CASP12, we used the revised 

PSI-BLAST (Altschul et al., 1997), called PSI-BLASTexB (Oda et al., 2017), 

DELTA-BLAST (Boratyn et al., 2012), and HHblits (Remmert et al., 2012) to 

construct profiles of both targets and templates. In brief, PSI-BLASTexB is a 

revised implementation of PSI-BLAST based on the BLAST+ 2.3.0 package. We 

revised the source code of PSI-BLAST to obtain better PSSM(s) because the 
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original PSI-BLAST was able to produce irregular scores for a gap-rich region. 

Using these enhanced profiles, profile-profile alignments were 

performed using FORTE. Results showed that these enable us to find templates 

in almost all possible cases. Nevertheless, we recognized the necessity of 

developing a model selection method that offers higher accuracy. To some degree, 

finding templates of a protein complex is useful even for MEDIUM and HARD 

assembly prediction. Herein, we present the experimental procedure and results 

of our group: FONT (Group #480). In addition, we describe retrospective 

analyses of our approach for the Quaternary Structure Prediction category of 

CASP12. 

 

 

1.2 Materials and methods 

We predicted and constructed protein complexes for multimeric targets 

in CASP12 based on profile-profile alignment results. A schematic of our 

prediction procedure is presented in Figure 1-1. First, we applied template 

detection and alignment sampling using FORTE, our profile-profile alignment 

algorithm, with the scoring scheme based on the correlation coefficient between 

two profile columns (Tomii and Akiyama, 2004). It has been used for past CASP 

and Critical Assessment of PRedicted Interactions (CAPRI) experiments.  

To identify appropriate templates and to obtain alignments between a 

query sequence and a template sequence, we conducted a series of profile-profile 

alignments that use sequence profiles of several forms by combining three sets of 

template libraries, five sequence-retrieval methods, position-specific matrices of 

two types, and scoring schemes of two types as described below. We developed 

the methods presented in Table 1-1 during the prediction season of CASP12. 

Consequently, some methods have been used only for a part of the set of CASP12 

targets. For a retrospective analysis for the capability of template identification, 

we performed all possible types of profile-profile alignments using a partial 

sequence, corresponding to a domain that we assumed with results of the initial 

alignments, of a target protein. 
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Figure 1-1 Schematic showing our prediction procedure. 
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Table 1-1 Summary of methods used for profile construction 

Abbreviations Query Library Profile construction  

(DB, # iterations) 

PSI_PSSM ○ (ii) (TM-align only for library +) 

PSI-BLASTexB (nr, 5) 

DB_PSSM ○ (i) DELTA-BLAST (CDD, 1) 

SSM-PSI_PSSM ○(*) (i) SSEARCH (nr) + MAFFT  

+ PSI-BLASTexB (nr, 1) 

HH-PSI_PSSM ○ N/A HHblits (up20, 3)  

+ PSI-BLASTexB (nr, 1) 

PSI_PSRP ○ (ii) (TM‐align only for library +) 

PSI-BLASTexB (nr, 5) 

DB_PSRP ○ (i) DELTA-BLAST (CDD, 1) 

SSM-PSI_PSRP N/A (i) SSEARCH (nr) + MAFFT  

+ PSI-BLASTexB (nr, 1) 

HH-PSI_PSRP ○ (i) HHblits (up20, 3)  

+ PSI-BLASTexB (nr, 1) 

HH_PSRP ○ (iii) HHblits (up20, 3) 

 

The “Profile construction” column shows the methods (, databases, and number of 

iterations of search methods in parentheses) used in profile construction. “nr” and 

“CDD” respectively stand for the NCBI nr and conserved domain database. “up20” 

stands for HH-suite's uniprot20 database. In the “Abbreviations” column, PSI = PSI-

BLASTexB, DB = DELTA-BLAST, SSM = SSEARCH + MAFFT, HH = HHblits, 

PSSM = position specific scoring matrix, PSRP = position specific residue's probability 

(see the text). In the “Query” column “○” denotes the procedure used in profile 

construction for query proteins. (*) SSM-PSI_PSSM was not used for constructing query 

profiles during the CASP12 experiments. Numbers (see 1.2.2 Template libraries) in the 

“Library” column represent the types of template libraries. 
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1.2.1 Sequence retrieval and profile construction 

To construct profiles for both a query protein and a template protein, 

we applied five methods as described below (A to E) by combining several tools 

for sequence retrieval and for construction of multiple alignment. Then we 

constructed using PSI-BLASTexB and used position-specific matrices of two 

types: position-specific scoring matrix (PSSM) and position-specific residue 

probability (PSRP), as profiles. 

 

A: SSEARCH + PSI-BLASTexB 

In this method, first, we used SSEARCH (36.3.8d) (Pearson, 1996), which 

is an implementation of the Smith–Waterman algorithm, to obtain similar protein 

sequences with a novel sensitive matrix we have developed, MIQS (Yamada and 

Tomii, 2014). We optimized gap penalties against the NCBI’s NRAA database 

downloaded from NCBI-FTP site (ftp://ftp.ncbi.nlm.nih.gov/blast/db/) on 

5/12/2016. Then, we constructed a multiple sequence alignment (MSA) using the 

MAFFT (v7.245) (Katoh and Standley, 2013) automatic selection of alignment 

strategy using MIQS with the sequences collected in the prior step. When too 

many (more than 45,000) similar sequences were found in the database, we used 

CD-HIT (Li and Godzik, 2006; Fu et al., 2012) with the threshold of 95% sequence 

identity and with a reduced number of sequences in an MSA. 

Then, to construct a profile, we conducted a PSI-BLASTexB search 

against the NCBI’s NRAA database using the constructed MSA as a seed MSA 

with no iteration. For the implementation of PSI-BLASTexB, we have improved 

the search sensitivity of PSI-BLAST through reduction of the effects of narrow-

width blocks on the sequence weight calculation by considering a minimum 

block width (MBW), as described in our earlier report (Oda et al., 2017). We set 

MBW as 13 in the implementation. Although this method was used only for 

proteins in the template libraries during the CASP12 experiment, we also used 

this method for query sequences (= target domains of CASP12) to test and 

compare our strategies applied for this study. We used PSSMs and weighted 

observed residue frequencies at each position as PSRPs, calculated using 

PSI-BLASTexB, as profiles. 
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B: DELTA-BLAST 

We conducted a DELTA-BLAST search with one iteration against the 

NCBI’s Conserved Domain Database (CDD) downloaded from NCBI-FTP site 

(ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/) at 5/6/2016 to construct a profile because 

the DELTA-BLAST performance often saturates by the first iteration. We used 

PSSMs produced by DELTA-BLAST as profiles for both target and template 

proteins. We used this procedure, designated as DELTA-FORTE, for the CAPRI 

round 30 experiment (Lensink et al., 2016). 

We also produced and used weighted observed residue frequencies at 

each position as profiles for both target and template proteins. Because DELTA-

BLAST does not output weighted residue frequencies at each position, as PSI-

BLAST does, we calculated the weighted frequencies of an MSA based on the 

result of DELTA-BLAST. The result of DELTA-BLAST includes pairwise 

alignments between a query sequence and a representative sequence of domains 

in the database. We produced an MSA by merging MSAs in CDD of detected 

domains with the simple pile-up strategy (i.e., MSAs of detected domains are 

merged using only columns aligned with residues in a query sequence) 

according to pairwise alignments between a query sequence and a representative 

sequence of detected domains. When the number of sequences in the merged 

MSA was 6,000 of more, CD-HIT was used to reduce the number of sequences in 

the MSA by removing redundancy with the threshold of 90% sequence identity. 

When the number of sequences remained 6,000 and more later in the procedure, 

CD-HIT was used again with the threshold of 80% sequence identity. 

As a PSRP, we calculated the weighted frequencies of the merged MSA 

using position-specific sequence weights. The sequence weights are computed 

using the procedure proposed by Henikoff and Henikoff (Henikoff and Henikoff, 

1991), although we did not use blocks covering whole alignments but used blocks 

covering amino acids less than 11aa distant from the positions of interest. Gaps 

were regarded as the 21st amino acids. 

 

C: HHblits + PSI-BLASTexB 

For this method, we first performed an HHblits (2.0.15) search to find 

similar protein sequences and to obtain an MSA using them, against its uniprot20 
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database (uniprot20_2016_02) downloaded from the HH-suite site 

(http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/) 

with the default setting, except for option “-n 3”. In cases for which we found 

6,000 and more similar sequences, we used CD-HIT with the threshold of 90% 

sequence identity with reduction of the number of sequences in the MSA. 

Then, to construct a profile, we performed a PSI-BLASTexB search 

against the NCBI’s NRAA database using the constructed MSA as a seed MSA 

with no iteration, as described above. We used this method to obtain profiles for 

both target and template proteins. As PSRPs, we used both PSSMs and weighted 

observed residue frequencies at each position, calculated using PSI-BLASTexB. 

 

D: PSI-BLASTexB 

To construct a profile only for target proteins, we also performed a PSI-

BLASTexB search against the NCBI’s NRAA database with (up to) five iterations. 

As PSRPs, we used profiles of two types, PSSMs and weighted observed residue 

frequencies at each position, calculated using PSI-BLASTexB. 

 

E: HHblits 

To obtain weighted residue frequencies for each residue type at each 

position as PSRPs, we also conducted an HHblits search against the uniprot20 

database with three iterations, or until convergence in fewer than three iterations. 

The weighted frequencies were calculated in the manner described for method B 

based on the MSA produced by HHblits, as described for method C. We prepared 

PSRPs for target proteins and the template library (iii) (see Table 1). 

 

1.2.2 Template libraries 

We prepared three datasets as our template libraries for calculating 

profile-profile alignments. 

(i) We extracted a representative set of protein chains from PDB (Berman 

et al., 2000) using CD-HIT (v4.6.3-2015-0515) with the threshold of 98% sequence 

identity. We used the 47,522 protein chains obtained on 5/10/2016 as template 

sequences. Those sequences were used for constructing profile libraries using 

three (A, B, and C) out of five sequence retrieval methods. 
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In addition to this template library based on protein chains, we also 

used the following two libraries to exploit protein domain information. 

(ii) We generated a representative set of protein domains, removed 

redundancy by clustering domains with sequence identity of 40% using CD-HIT, 

based on the domain definition provided by the PDB. In all, we had 46,194 

protein domains. The domain definition originates from the updated definition 

by SCOP (Murzin et al., 1995) or protein domain parser (PDP) (Alexandrov and 

Shindyalov, 2003). We retrieved domain boundary information from the RCSB 

PDB and generated domain structures using BioJava (Prlic et al., 2012). To 

develop reliable profiles, we performed all-against-all structure comparison of 

46,194 protein domains, found structurally similar pairs of protein domains, and 

obtained their pairwise alignments. We applied two criteria for defining similar 

pairs: (1) P values of FatCat (Ye and Godzik, 2003) allowing 0 twists as .001 or 

fewer, and (2) TM-score of TM-align (Zhang and Skolnick, 2005) that is 0.4 or 

higher. Pairwise alignments of protein domains satisfying these conditions were 

calculated using TM-align. Then, using PSI-BLASTexB with NCBI's NRAA (D in 

the previous section), they were compiled as a seed multiple sequence alignment 

(MSA) for constructing a profile of each protein domain. Here, the MSAs were 

obtained by stacking pairwise alignments of structurally similar 

proteins/domains produced by TM-align. 

(iii) We also prepared a representative set of protein domains and 

removed the redundancy by clustering domains with sequence identity of 98% 

using CD-HIT, based on the domain definition provided by SCOP. We 

constructed the profile library for these protein domains using HHblits with its 

uniprot20 database (E in the previous section). 

 

1.2.3 Scoring schemes of profile-profile alignment 

We used FORTE, our profile-profile alignment algorithm, and used 

scoring schemes of two types for profile-profile alignments in this study. One is 

the original scoring scheme of FORTE, based on the correlation coefficient 

between two profile columns to be compared. The other is the modified scoring 

scheme using sigmoid transformation of the original one as 



10 

 

𝑠𝑖𝑗
′ =

(𝑢 − 𝑙)

1 + exp (−𝛼(𝑐𝑖𝑗 − 𝑡 − 𝑚𝑖 − 𝑚𝑗))
+ 𝑙 (1-1) 

where 𝑠𝑖𝑗
′  stands for the modified similarity score for profile columns 𝑖 and 𝑗 

to be compared, 𝑐𝑖𝑗 signifies the correlation coefficient for profile columns 𝑖 

and 𝑗, corresponding to the original similarity score, 𝑢 and 𝑙 respectively 

denote upper and lower bound to normalize scores, ranging from −1 to 1, and 

α (for steepness) and 𝑡 are constants for defining the sigmoid function shape. 

Here, 𝑖 represents an arbitrary position of the target profile; 𝑗 denotes the 

position of the template profile. 𝑚𝑖 and 𝑚𝑗 respectively represent the mean 

values of correlation coefficients of columns 𝑖 (for all 𝑗) and 𝑗 (for all 𝑖). 

We used this modified score to adjust the abnormally high correlation 

coefficients in some positions (= columns) because of the poor profile values 

such as those presented in our study of PSI-BLASTexB. The modified scoring 

scheme was used for 20 combinations of profile-profile alignments (four 

methods for query profiles and five methods for library profiles, see Figure 1-2). 

In both cases, the Z-scores of alignments were calculated using alignment scores 

and log-length correction, which is the same as that used by the original 

FORTE. 

 

1.2.4 3D-model construction, evaluation, and selection 

Based on alignments with templates and their Z-scores obtained using 

the methods described above, we built 3D-models of the target protein complexes 

using MODELLER (Webb and Sali, 2016) and Molecular Operating Environment 

(MOE) (Chemical Computing Group ULC, 2017) in a case. We constructed 3D-

models based on the higher-ranked templates, according to their Z-scores. As 

templates, we used higher-ranked proteins, in our libraries, registered in the 

oligomeric states in the PDB. Otherwise, we used close homologues (not in our 

libraries), which are registered in the oligomeric states in the PDB, of the proteins 

as templates because we used nonredundant set of proteins as libraries. 

Moreover, we constructed 10 3D-models based on an alignment 

calculated using profile-profile alignments, and sorted the models in terms of the 

structural quality scores calculated using the Verify3D (Bowie et al., 1991; Lüthy 

et al., 1992) and dDFIRE (Yang and Zhou, 2008a, 2008b) programs. In the model 
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selection step, the constructed models which show low-quality scores of 

Verify3D were removed. Subsequently, we selected 3D-models with the 

following criteria: (1) Prioritize templates with higher Z-scores, (2) Ranked 

templates based on results obtained using quality assessment methods. These 

procedures are executed mostly on an individual subunit basis. Then, to predict 

three-dimensional protein complex models, we observed oligomeric states of top 

candidates sorted by their structural quality scores to predict three-dimensional 

protein complex models. 

Many cases showed a similar arrangement of oligomeric states among 

top candidates for each target. We had no clue about oligomeric states for T0913. 

Therefore, we constructed protein complex models based on an individual 

subunit model using M-ZDOCK (Pierce et al., 2005). We usually submitted the 

model(s) with the highest score(s), but the orders of the submitting models were 

chosen by human intervention in some cases. 

 

1.2.5 Retrospective analysis of template identification 

To verify and compare the performance of profile-profile alignment 

algorithms used for this study, we conducted a retrospective analysis for the 

capability of template identification. For this analysis, we defined a template with 

an LGA (Zemla, 2003) value of 0.4 or more for a target domain as a “correct” one. 

This threshold is not so rigorous, but it has been used empirically (Lensink et al., 

2016). 

Here, for simplicity and clarity, we used sequences of 44 protein 

domains (see Appendix Figure A1), based on the CASP assessor definition, of 

multimeric targets in CASP12 as queries to ascertain whether a “correct” hit is 

obtained. The 44 domains used here had structurally similar domain(s), in terms 

of an LGA value of 0.4 or more, in the PDB before the expiration date of the 

targets. We regarded these 44 domains as those which were predictable using a 

TBM approach. Therefore, in this analysis, we did not include domains such as 

T0897-D1, which had no domain(s) with an LGA value of 0.4 or more in the PDB 

before the expiration date, and which were “true” free-modeling targets. 
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1.2.6 Verification of the effects of profile-profile alignment 

results on assembly prediction 

To elucidate the effects of monomer-based prediction results of profile-

profile alignments on assembly prediction, we analyzed similarities between 

target complexes and template ones identified by profile-profile alignments. For 

this analysis, we measured the similarity between a target complex and a 

template one in terms of TM-scores calculated using MM-align (Mukherjee and 

Zhang, 2009), which is an algorithm for structurally aligning multiple-chain 

protein complexes, and observed relations between TM-scores and Z-scores 

calculated using profile-profile alignments. TM-score is normalized using a 

length of the target multimer structure. We specifically examined the top five hits 

from all possible 84 types of profile-profile alignment methods (see below) as 

candidate structures. 

 

 

1.3 Results 

1.3.1 Template identification based on profile-profile alignment 

results 

We conducted a retrospective analysis to verify and compare the 

performance of profile-profile alignment algorithms used for this study. For 

this analysis, we tested all possible 84 (= 8x8+5x4) combinations of template 

libraries, sequence-retrieval methods, types of position-specific matrices, and 

scoring schemes, and surveyed the top five hits according their Z-scores, for 

each combination. We did not regard Z-scores of fewer than four as hits, even if 

they hit within the top five. It is noteworthy that we used only the combinations 

presented in Table 1-1, instead of 84 combinations, during the prediction 

season. 

Figure 1-2 shows the number of target domains for which “correct” 

templates were detected using profile-profile alignments. Although the results 

vary in accordance with the combinations of methods, most combinations 

obtained “correct” hits among the top five hits in >27 (up to 34) cases. Results 

showed that we were able to detect templates with their LGA >= 0.4 for all targets 
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when we consider the top five hits calculated from profile-profile alignments 

used for this study (Appendix Figure A1). This result demonstrates that the 

ability of the set of profile-profile alignments used for this study to search 

templates was sufficiently high for finding templates for these 44 domains, which 

were predictable by TBM, although the domain organization of a target protein 

was not given when a target sequence was released in CASP. It is noteworthy 

that most targets are single-domain targets, and that there are noticeable hits, on 

a domain basis, even for multi-domain targets. Therefore, we can readily 

recognize domains in a multi-domain target for many cases. It is also worth 

noting that the protein sequence and structure datasets used here were those 

before the expiration date of target proteins. 

We can observe characteristics of different combinations of methods 

used for profile-profile alignments, although we realize that this is partly 

attributable to the difference of entries included in template libraries. According 

to the number of cases with “correct” hits among the top five hits, the sequence 

retrieval method C (HHblits + PSI-BLASTexB) for a query sequence is always 

equal or superior to the method E (HHblits) under the original scoring scheme. 

Comparing results obtained using the two types of scoring scheme of FORTE 

reveals a slight difference between the original scoring scheme and the modified 

one. The modified scoring schemes are slightly better than the original one for 

several combinations of methods of profile construction and template libraries. 

However, the original scoring scheme is superior to the modified one for the 

combination of (PDP)PSI-BLASTexB and the template library, according to the 

number of cases with “correct” hits. 

The results in Figure 1-2 reveal that the use of only three combinations 

of profile-profile alignments was sufficient to identify the “correct” templates for 

almost all targets except for one (T0859-D1) of the 44 domains of multimeric 

targets when we consider the top five hits which have Z-score 4.0 or more for 

each combination of profile-profile alignments. The two sets of three 

combinations of profile-profile alignments can cover 43 of the 44 target domains 

(Figure 1-3). It is noteworthy that these two sets contain the same profile 

construction method, namely (PDP)PSI-BLASTexB_PSRP. This might imply the 

importance of including the profile construction method that has been derived 
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from the protein domain sequences. If we use four combinations of profile-profile 

alignments, the eight sets of four combinations can cover all 44 domains (see 

T0929o (= T0859-D1) in Appendix Figure A1). It is also noteworthy that the all 

eight sets of four combinations include (PDP)PSI-BLASTexB_PSRP. 
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Figure 1-2 Numbers of target domains for which “correct” templates were detected. 

Each row corresponds to individual template libraries. Each column represents a type of 

query profile that we used. The modified scoring scheme was used for 20 combinations 

shown in the four rightmost columns. Numbers in cells show the numbers of target 

domains for which “correct” templates were detected among the top five hits by each 

combination. Colors of cells correspond to the numbers of target domains for which 

“correct” templates were detected. Warmer colors represent larger numbers; colder 

colors represent smaller numbers. The bar of the coloring schema is shown on the 

rightmost side. 
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Figure 1-3 Venn diagrams which represents numbers of target domains for which 

“correct” templates were detected under consideration of the top five hits in the 

retrospective analysis to 44 protein domains of multimeric targets in CASP12. 
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1.3.2 Relations between TM-scores and Z-scores 

We analyzed relations between TM-scores calculated using MM-align 

and Z-scores calculated using profile-profile alignment methods to confirm the 

value of monomer-based prediction results obtained using these assembly 

prediction methods. For this analysis, we considered all possible permutations of 

subunit chains within the biological assemblies and also within the asymmetric 

units for template proteins from the PDB, and employed the highest TM-score 

obtained with all permutations using MM-align for each template to demonstrate 

values of top hits as complex templates. 

Figure 1-4, which contains typical examples extracted from Appendix 

Figure A2, presents plots of TM-scores of identified templates with the methods 

versus the highest Z-scores of templates for each target. Although, in total, the 

relations are not simple but rather complicated, the following lessons can be 

learnt. i) A prominent hit with the high Z-score indicates a good template for the 

multimeric form. Some EASY targets such as T0860 and T0889 show this type of 

distribution. Figure 1-4A (T0867) presents a typical example of this trend. Even 

for a MEDIUM target (T0931), this is the case to some extent (Figure 1-4B). In 

these cases, we readily decided to select the “correct” complex templates. 

However, ii) high Z-scores do not always guarantee good templates. This 

exceptional example is T0945, a HARD target, and this is consistent with the 

conventional observation that quaternary structures are often not conserved 

during evolution (Venkatakrishnan et al., 2010). Therefore, we need exoteric 

method(s) or criteria to select adequate templates. In fact, iii) stoichiometry 

information of proteins can help to select “correct” complex templates. For 

instance, we were able to use “correct” complex template for an EASY target 

(T0921-T0922) as shown in Figure 1-4C if we concentrated on the complexes with 

the same stoichiometry as the target, although we failed to select “correct” 

complex template (see 1.3.4 T0868-T0869). In addition, we found that iv) even for 

a prominent hit with the lower Z-scores, we can provide a moderate model based 

on the TBM approach (Figure 1-4D; see 1.3.6 What went wrong). 

It is noteworthy that the TM-scores shown here are for the ideal cases, 

that is, those are values for the “best” target-template alignments. In complex 

modeling, the quality of the alignment influences the prediction result. To 
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illustrate this point, we show the QS-scores (Bertoni et al., 2017) and TM-scores, 

calculated by MM-align, between our first models and the actual complexes of 

targets in Table 1-2. In brief, QS-Score reflects the fraction of correctly modeled 

interface contacts. In terms of QS-scores, for EASY and MEDIUM targets, we 

were able to provide better 3D-models of target assemblies than their baseline, 

which are calculated performances with the QS-Score of top scoring sequence 

template (top HHSearch hit) by the assessor, except for the T0861-T0862-T0870 

assembly and three (T0860, T0889, and T0903-T0904) targets, which we missed 

the opportunity to submit. 

To validate those values, we also show their TM-scores calculated by 

the TM-score (Zhang and Skolnick, 2004), which is also able to compare protein 

complexes. One can note small differences between an “ideal” TM-score and a 

TM-score of our first model for each target, especially for an EASY target. This 

point reflects the accuracy of alignments generated using our profile-profile 

alignment methods. As described above, our assembly prediction was 

underpinned strongly by the monomer-based prediction results of profile-profile 

alignments. Below, we describe what went right and wrong for some examples. 
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Figure 1-4 Plots of TM-scores vs. the highest Z-scores of templates. The horizontal axis 

shows Z-score of an alignment between a target domain sequence and a template 

sequence in PDB. We show the highest Z-score when the same template was identified 

within the top five hits using different profile-profile alignment methods. The vertical 

axis shows TM-scores calculated using MMalign between a target complex and a 

template complex in PDB. The red circle represents a template complex with 

stoichiometry that is the same as that of the target. Each blue square dot corresponds to 

a template structure that has different stoichiometry as the target structure. Green star 

with a rectangle label corresponds to a template structure that we used to construct a 

model in CASP12. Text above each figure shows the multimer target name, target 

stoichiometry, target symmetry, and target difficulty in the first line and the target 

domain name, domain range, domain difficulty classification, target type 

(Human/Server), template used to construct our model in the CASP term, Z-score of the 

template used, and the TM-score of the complex template used. Templates given the 

highest Z-score and the highest TM-score are annotated with a label. The label contains 

a PDB ID and a number, which represents the serial number of biological assembly 

defined in the PDB. We gave 0 for an asymmetric unit. 
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1.3.3 Viral fibre head domains (T0880 and T0888) 

Five target assemblies of viral fibre heads form homo trimers. Among 

them, there were two MEDIUM targets (T0880 and T0888) of fibre head trimers. 

We were able to obtain “correct” complex template(s) for these two Free 

Modeling (FM) targets among the top five hits (see Appendix Figure A1). More 

precisely, we were able to identify appropriate templates easily based on the 

consistent results of many profile-profile alignments for T0880, although our 

Table 1-2 QS-scores and TM-scores of our first models and baseline for EASY and 

MEDIUM targets 

  QS-score  TM-score  

Target ID Difficulty 

category 

FONT 

(1st) 

Baseline MM-align TM-score 

T0861-T0862-T0870 MEDIUM 0.000 0.29 0.469 0.334 

T0867 EASY 0.928 0.70 0.982 0.986 

T0873 MEDIUM 0.548 0.32 0.484 0.492 

T0880 MEDIUM 0.276 0.00 0.590 0.439 

T0881 EASY 0.557 0.34 0.809 0.733 

T0888 MEDIUM 0.422 0.00 0.820 0.713 

T0893 EASY 0.472 0.04 0.419 0.411 

T0906 EASY 0.815 0.73 ‐ ‐ 

T0909 EASY 0.391 0.02 0.764 0.359 

T0917 EASY 0.658 0.10 0.867 0.860 

T0921-T0922 EASY 0.065 0.02 0.655 0.553 

T0931 MEDIUM 0.490 0.39 0.514 0.536 

 

QS-scores of the first models of FONT and baseline QS-scores (A. Lafita, personal 

communication) for EASY and MEDIUM targets are shown. TM-scores, calculated with 

MM-align and TM-score, of our first models are also shown. Three (T0860, T0889, and 

T0903-T0904) targets that we missed the opportunity to submit are not shown. The TM-

score of our first model for T0906 was not calculable because coordinate data of T0906 

were unavailable. 
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monomer model is partly good (GDT_TS = 63.89) for T0880-D1 and not so good 

(GDT_TS = 25.16) for T0880-D2. We used 1QIU, which is ranked 15th on the 

template list at the site of CASP12, as a template for T0880. Consequently, we 

were able to submit the model with the QS-score of 0.276 for T0880o. 

For T0888, we found very few similar sequences when we constructed 

its profiles. At the stage of selecting 3D-models among candidates, we were 

unable to find “correct”  templates because of somewhat vague results of 

profile-profile alignments, which were attributable mainly to the poor contents 

of profiles for T0888. However, we were able to find a significant hit against the 

PDB using jackhmmer (Johnson et al., 2010) and the full-length sequence using 

the full-length sequence of LAdV2 fibre 2 protein from UniProt (Apweiler et al., 

2004). We were able to use 4UE0 as a template. 

We also used the predicted secondary structure of the query sequence 

using PSIPRED to align the target sequence to a template. To obtain better 

alignment(s) between the target and template, we generated 300 alignments 

(Figure 1-5). First, we respectively divided the target and template sequences into 

nine fragments. Each pair of fragments roughly corresponds to a predicted and 

assigned secondary structure element, respectively, in the target and template 

proteins. Then we sampled alignments by shifting fragment pairs randomly, 

maintaining corresponding pairs. We built and evaluated 3D-models based on 

those alignments generated by shifting the fragment pairs. We submitted a 3D-

model with the highest dDFIRE score among models based on 300 alignments. 

We constructed quaternary structure models and then verified them in the same 

way as standard procedure. As a result, we were able to submit the model with 

the QS-score of 0.422 for T0888o. 

 

Figure 1-5 Schematic diagram how we generated alignments for T0888. The predicted 

secondary structure of the query sequence using PSIPRED and the secondary structure 

of the template structure are used to align sequences. We divided into nine fragments 

(two rest fragments were abbreviated in this figure).  
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1.3.4 T0868-T0869 

For the case of T0868-T0869 (CdiA-CT/CdiI-SU1), a HARD target, we 

were able to identify a “correct” template, the 4G6V chain A (4G6VA) (Morse et 

al., 2012), and construct a 3D-model of T0868 (GDT_TS = 53.02) based on the 

results of profile-profile alignments, although we failed to select an appropriate 

template for T0869 using our standard procedure during CASP12. We found, 

however, we could identify the “correct” template among top hits of several 

profile-profile alignment methods (see Appendix Figure A1). 

Although we used a poor model for T0869 (GDT_TS = 17.79), we found 

secondary structure elements similar to the N-terminal regions of both our 

model and the 4G6V chain B (4G6VB), which forms a heterodimer with 4G6VA, 

and hypothesized that the patterns of protein-protein interaction of these 

proteins might be conserved, especially around the N-terminal regions of 

T0869. Then, we constructed the model based on the complex of 4G6V using 

similar secondary structure elements between our T0869 model and 4G6VB. We 

manually superimposed our T0869 model onto 4G6VB based on this similar 

arrangement of secondary structure elements (Figure 1-6). 

In this case, our TBM approach of protein complex was useful even for 

a HARD target of the Assembly category. We were able to submit the model 

with the QS-score of 0.114 for this complex. Indeed, we realized that the rough 

arrangement and orientation of two subunits have been conserved. Moreover, 

we infer from comparison of their structures that proteins constituting a 

heterodimer in 4G6V might be remote homologues of T0868-T0869 (Figure 1-7), 

although the topology of both N- and C-terminal regions is different between 

4G6V and 5J4A (T0868-T0869) (Johnson et al., 2016). 
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Figure 1-6 Comparison of target and predicted structures. The predicted structure (cyan) 

was superimposed onto the target (T0868 (blue) and T0869 (red)) structure (PDB ID: 

5J4A) using UCSF Chimera. Tentative top (right) and side (left) views are shown.  
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1.3.5 Some EASY targets 

QS-scores of our first models about targets: T0881, T0893, T0909 and 

T0917 are shown in Table 1-2. Our models of them are ranked at the 1st, 1st, 1st and 

4th places respectively among the first models of all participating groups. 

However, based on Figure 1-9, it seems that there might still be room for 

improvement by choosing a “better” template structure. Regarding T0881, Figure 

1-9A, we had not chosen 2IUM but instead chose 2VTW. Both have the same 

stoichiometry (A3) as T0881. We speculate that this is because we could not put 

a high enough quality score, calculated using Verify3D and dDFIRE, to overturn 

the slight superiority of 2VTW in Z-score. Regarding T0893, Figure 1-9B,C, 

because we had not cut the query sequence to domains, we missed the 

opportunity to select the template, 2C2A. Regarding T0909, Figure 1-9D, we did 

not choose 3SUC, instead choosing 2X6W. We speculate that this is because we 

could not decide which to submit, based on quality score and 2X6W had slightly 

 

 

Figure 1-7 Comparison of target and template structures. The template structure (PDB 

ID: 4G6V; green) was superimposed onto the target (T0868 (blue) and T0869 (red)) 

structure (PDB ID: 5J4A) using UCSF Chimera. Tentative top (right) and side (left) views 

are shown. RMSD Cα = 3.12 Å >90 amino acids between 4G6VA and 5J4AA. 
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longer alignment length than 3SUC. Then, we tried to overcut the query sequence 

to the domains, but it did not make us choose 3SUC. Regarding T0917, Figure 

1-9E, because only a part of the profile construction methods were used for this 

target in CASP12 experiment period, we missed 1VLJ. 

 

 

Figure 1-8 Plots of TM-scores vs. the highest Z-scores of templates. (about details, see 

the footnote of Figure 1-4) (A) T0881, (B-C) T0893, (D) T0909, (E) T0917. 
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1.3.6 What went wrong 

For the problem of T0921-T0922 (Coh5/Doc5), an EASY target, we 

identified multiple hits with high Z-scores. Among them, 4UYP and 4UYQ had 

mutually similar molecular arrangements, but they also had a complex structure 

with different orientation, which corresponds to a dual binding mode of cohesin-

dockerin interactions, as shown in a recent study (Cameron et al., 2015). We were 

unable to find significant differences of Z-scores or structural quality scores for 

them, although we had 4DH2, which has a similar arrangement and orientation 

of two subunits with 4UYQ among top candidates. Because we submitted a 

complex model based on 4UYP, the orientation of subunits of our first model is 

not correct (QS-score = 0.065), which indicates that room for improvement exists 

in selecting models using some novel method(s) other than Verify3D or dDFIRE. 

However, discerning these two complexes might be difficult because interactions 

at the interfaces are mutually similar as a result of the structural symmetry of 

dockerin. As described above, we should consider stoichiometry information of 

proteins for this target. 

For a few HARD targets such as T0913 and T0945, we obtained 

prominent hits with the high Z-scores. Especially for T0945, we had hits with the 

same stoichiometry (Appendix Figure A2). However, our models are not correct 

(QS-scores = 0.005 for T0913, and 0.000 for T0945). These results might imply that 

quaternary structures are often not conserved during evolution 

(Venkatakrishnan et al., 2010). However, the authors of T0945 assigned a 

monomer as its stoichiometry in PDB (5LEV). We suppose that further analysis 

should be made for this target. 

 

 

1.4 Discussion 

We participated in the first full-fledged Assembly category at CASP12 

using enhanced profile-profile alignments. The target complexes have variety in 

terms of molecular size, symmetry group, and number of subunits in a complex, 

and reflect the entities in the PDB. 

Profile-profile comparison is an effective method for template-based 
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modeling (TBM) because of its power in similarity detection and its alignment 

accuracy. We performed template-based modeling for CASP12 targets using our 

updated and enhanced profile-profile comparison method with new profile 

construction pipelines. Because of an increase in the amount of information 

related to protein amino acid sequences and structures, TBM has become an 

extremely useful approach for protein structure prediction. Apparently, it 

represents a similar situation to that of protein complex structure prediction. As 

described above, we showed that TBM, based on profile-profile alignment 

methods, is useful for predicting protein complexes. For EASY and MEDIUM 

targets, a prominent hit with the high Z-score can indicate a good template, 

though high Z-scores do not always guarantee good templates. However, 

additional information about protein stoichiometry can help to select “correct” 

complex templates. We also acknowledge the necessity of improving the 

methods to identify “correct” complex templates based on the results of profile-

profile alignments, especially for MEDIUM and HARD targets. In addition, we 

demonstrated the capability of finding similar interactions conserved between 

remotely related complexes for the case of T0868-T0869. However, we note that, 

of course, a TBM approach is only applicable to targets that already exist with 

similar structures in the PDB. 

We have performed profile-profile alignments of many types by 

combining three template libraries, several sequence retrieval methods, position 

specific matrices of two types, and two scoring schemes for profile-profile 

comparison of a query profile with profiles in a library. Additionally, we widen 

the targets of retrospective analysis to 82 protein domains out of a total of 96 

protein domains in CASP12. We found that most combinations listed “correct” 

hits among the top five hits in >50 (up to 65) cases (Figure 1-9), and that we were 

able to detect “correct” templates for all targets except one protein, T0918 

(consisting of three domains). The 82 protein domains used here had similar 

protein domains with their LGA >= 0.4 in the PDB before the expiration date. 

Those results revealed that the use of only four combinations of profile-profile 

alignments was sufficient to identify “correct” templates for almost all targets, 

aside from two (T0859 and T0918) out of 82 target domains, when we consider 

the top five hits for each combination of profile-profile alignments (Figure 1-10). 



28 

 

The two similar sets of four combinations of profile-profile alignments can cover 

95% (78 out of 82), that is the highest coverage, of target domains. It is noteworthy 

that these two sets contain almost the same profile-profile alignment methods. 

Only a (slight) difference exists between the two sets of combinations, that is, 

SSM-PSI_PSSM (top) and PSI_PSSM (bottom). These might imply the superiority 

of contained methods compared with the other methods. We realized that 

combining varied but few profile-profile alignments is useful to enhance the 

capability of identifying a “correct” template(s) for a wide variety of targets. For 

instance, consideration of the top 13 hits revealed that the combination of profile-

profile alignments of only three types was sufficient to identify a “correct” 

template(s) for almost any target, except for two (T0859 and T0918) (Figure 1-11). 

These results suggest that the combination of profile-profile alignment methods 

facilitates the ability for detecting appropriate templates, and that not using a 

holistic set of profile-profile alignments, but using a proper set of profile-profile 

alignments instead, is sufficient to find “correct” template(s) in the sense of 

template-based modeling. 
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Figure 1-9 Numbers of target domains for which “correct” templates were detected in the 

retrospective analysis to 82 protein domains out of a total of 96 protein domains in 

CASP12. Each row corresponds to individual template libraries. Each column represents 

a type of query profile that we used. The modified scoring scheme was used for 20 

combinations shown in the four rightmost columns. Numbers in cells show the numbers 

of target domains for which “correct” templates were detected among the top five hits by 

each combination. Colors of cells correspond to the numbers of target domains for which 

“correct” templates were detected. Warmer colors represent larger numbers; colder colors 

represent smaller numbers. The bar of the coloring schema is shown on the rightmost 

side. 
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Figure 1-10 Venn diagrams of numbers of target domains for which “correct” templates 

were detected under consideration of the top five hits in the retrospective analysis to 82 

protein domains out of a total of 96 protein domains in CASP12. 
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Figure 1-11 A Venn diagram which represents numbers of target domains for which 

“correct” templates were detected under consideration of the top 13 hits in the 

retrospective analysis to 82 protein domains out of a total of 96 protein domains in 

CASP12. 
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Chapter 2  

Large-scale parallelization for construction of MSA and 

performance comparison with other methods 

 

2.1 Introduction 

A large number of biological sequences from widely divergent 

organisms are becoming available. Accordingly, the need for multiple alignments 

of large numbers of sequences is increasing for various kinds of sequence 

analysis. The G-INS-1 option of MAFFT was recently reported to have higher 

accuracy than other methods for large multiple sequence alignments (MSAs) in 

independent benchmarks (Le et al., 2017; Yamada et al., 2016). However, this 

method was impractical for actual analyses, requiring large computational 

resources in both space and time to perform all-to-all pairwise alignments by 

dynamic programming (DP) (Needleman and Wunsch, 1970), which are used for 

a guide tree and a scoring function similar to COFFEE (Notredame et al., 1998). 

Here, we introduce a scalable variant, G-large-INS-1, which has 

equivalent accuracy to G-INS-1 and is applicable to 50000 or more sequences. Our 

strategies to reduce computational costs are (i) parallelization across multiple 

machines and/or processor cores using MPI and Pthreads to increase speed and 

(ii) the use of a high-speed shared filesystem, which is becoming common for 

processing big data. An MPI-based parallelization of another high-accuracy MSA 

method, MSAProbs, was recently released (Gonzalez-Dominguez et al., 2016), but 

it cannot be applied to thousands of sequences. The present update of MAFFT is 

designed to satisfy the need for accurately aligning large numbers of sequences 

but is not applicable to long genomic sequences since the length dependence of 

the computational cost is unchanged. The G-large-INS-1 option is available in 

MAFFT versions 7.355 or later and the online service (Katoh et al., 2017). 
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2.2 Materials and methods 

2.2.1 Pairwise alignments 

In both G-INS-1 and G-large-INS-1, all-to-all pairwise alignments are 

computed with DP. In G-INS-1, those alignments are computed by multiple 

processor cores in a single machine using POSIX threads (Pthreads) and stored 

in RAM. In G-large-INS-1, Message Passing Interface (MPI) can be used to 

distribute the tasks to multiple processes on different machines (referred to as 

the MPI version hereafter) and the resulting alignments are stored in temporary 

files on a filesystem shared by the machines. The pairwise alignments are used 

to build a guide tree and for objective score in the subsequent progressive 

alignment step. For this step, in the current implementation, G-large-INS-1 uses 

multiple cores in a single machine to load the temporary files. Variants with 

pairwise local alignments (L-INS-1 and L-large-INS-1) are also available and are 

expected to work better for sequences with long flanking regions with no 

homology. However, we used only MSA problems with global homology in this 

research, and thus the difference in accuracy due to different pairwise alignment 

algorithms (G- or L-) was small here. 

 

2.2.2 Guide tree 

MAFFT uses a guide tree with a UPGMA-like method by default. In this 

method, when merging two clusters, the distance between the new merged 

cluster and another cluster is set to a weighted average of the average distance 

and the minimum distance of sequence pairs between the new merged cluster 

and another cluster, as noted in (Yamada et al., 2016). Instead, G-large-INS-1 uses 

the stepwise addition strategy, which is often used to build an initial tree in 

phylogeny inference programs. There is no guarantee that the distance between 

the merged cluster and another cluster is the minimum or average one. The 

resulting tree also depends highly on input order. 

 

2.2.3 Pthreads version 

For small-scale shared-memory systems with up to approximately 20 

cores, a Pthreads version of G-large-INS-1 (without MPI) is also available. For 
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larger systems with more cores, even with shared memory, the MPI version has 

a higher efficiency for technical reasons. A hybrid mode with both MPI and 

Pthreads is also selectable as necessary. The calculation of these two versions is 

identical, apart from the methods for parallelization. 

 

 

2.3 Results 

2.3.1 Performance comparison with other methods 

Accuracy of G-large-INS-1 was compared with that of conventional G-

INS-1 using different benchmarks, QuanTest (see 2.3.4) (Le et al., 2017) (Figure 

2-1a), HomFam (Sievers et al., 2011), OXFam (Raghava et al., 2003; Yamada et al., 

2016) and ContTest (Fox et al., 2016) (Table 2-1). Both methods ran with different 

input orders and/or minor variations in pairwise alignment and guide tree in 

order to assess instability of accuracy scores (Boyce et al., 2015). In all cases, the 

difference between G-large-INS-1 (red lines in Figure 2-1a) and G-INS-1 (blue 

lines) was small.  

We also confirmed that G-large-INS-1 and G-INS-1 outperformed the 

other methods: MSAProbs-MPI; Clustal Omega; Kalign; MAFFT-FFT-NS-2; and 

Muscle, when the number of sequences is large (200 or more), as expected, based 

on the original QuanTest results, presented in Figure 1 of (Le et al., 2017). Also, 

G-large-INS-1 and G-INS-1 slightly outperformed QuickProbs2, when the 

number of sequences is much larger (1000 or more). 
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Figure 2-1 (a) QuanTest. Accuracy of protein secondary structure prediction based on 

various sizes of MSAs by G-large-INS-1 (red bold lines), G-INS-1 (version 7.245; blue 

bold lines) and other popular methods. We used 1940 (out of 2265) entries so that JPred4 

can be consistently applied to the MSAs by all methods. (b)–(g), Parallelization 

efficiency of all-to-all alignment stage (b, d and f) and progressive stage (c, e and g) 

when applying G-large-INS-1 to LSU rRNA (b, c) sdr (d, e) and zf-CCHH (f, g). Green 

squares and magenta triangles are the computational time on NFS and Lustre 

filesystem, respectively. Lines are the expected time based on the cases using seven 

cores [NFS; green solid lines in (b), (d) and (f)], 35 cores [Lustre; magenta dotted lines in 

(b), (d) and (f)] and single core (c, e and g), assuming a perfect efficiency. The 

calculations with NFS (green) were performed on a heterogeneous cluster system (each 

node has 16–20 cores of Intel Xeon E5-2660 v3 2.6 GHz, E5-2680 2.7 GHz and E5-2670 v2 

2.50 GHz with 64–128GB RAM). The calculations with the Lustre filesystem (magenta) 

were performed on Intel Xeon E5-2695 v4 2.10 GHz 36 cores with 256GB RAM per node 

using Lustre version 2.5.42. 



37 

 

2.3.2 Computational cost 

Large amounts of RAM are required if conventional tools for high-

quality MSAs are applied to a large number of sequences. For example, MAFFT-

L-INS-i and MSAProbs-MPI used at most 9.23GB and 74.8GB for a subset of 1000 

sequences in QuanTest. For a larger subset (4000 sequences), MAFFT-G-INS-1 

and QuickProbs2 (Gudys and Deorowicz, 2017) used at most 26.0 GB and 411 GB 

RAM, respectively. In contrast, G-large-INS-1 used only 5.72GB at most, for the 

subset of 4000 sequences. Memory usage for larger problems (up to ∼90 000 

sequences) is shown in Table 2-1, which suggests that this advantage increases 

with the number of sequences. Note that G-large-INS-1 uses files to save 

temporary data and thus requires a high-speed filesystem when the input 

sequences are very short, as discussed below. 

Parallelization efficiency in three examples is shown in Figure 2-1(b–g), 

separately for two stages: (i) the all-to-all alignment stage (b, d and f) and (ii) the 

progressive alignment stage (c, e and g). 

For LSU rRNA sequences (b, 1521–4102 bases, 1000 sequences randomly 

selected from the SEED alignment in Silva (Gloeckner et al., 2017) and protein 

sequences with usual lengths (d, 21–297 amino acids, 50157 sequences, the ‘sdr’ 

family taken from HomFam), the wall-clock time for the all-to-all alignment stage 

decreased almost linearly with the number of cores used for the calculation. 

However, for a dataset with very short sequences (f, 12–35 amino acids, 88345 

sequences, the ‘zf-CCHH’ family taken from HomFam), the efficiency differs 

depending on filesystem: high in Lustre (shown with magenta triangles) but low 

in NFS (shown with green squares). This difference is due to the balance between 

calculation and disk operations. As noted earlier, a considerable amount of 

temporary data is written in parallel into the filesystem: approximately 218 MB, 

100 GB and 142 GB for LSU rRNA, ‘sdr’ and ‘zf-CCHH’, respectively, in the 

examples shown here. Overhead due to these disk operations is almost negligible 

in the former two cases but not in the latter case, where alignment of ∼23 amino 

acids takes only a short time in comparison with the time to write the temporary 

data to disk using NFS. 

Figure 2-1c, e and g suggest that the wall-clock time of the progressive 

stage varies for each run and does not linearly decrease, but usually this is not a 



38 

 

speed-limiting step. CPU time and wall-clock time for various problems are 

shown in Table 2-1. 
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Table 2-1 Comparison of computational costs (RAM usage, CPU time and wall-clock time) 

and accuracy scores of the G-INS-1 (version 7.291) and G-large-INS-1 options using 

HomFam, OXFam and ContTest 

 

For RAM usage (maximum resident set size; MaxRSS), the maximum and minimum 

values in each subset are shown. In the MPI version, the MaxRSS values of the most 

memory consuming process of the 100 was selected in each problem. CPU time and 

wall-clock time were averaged for each subset. The calculation of the Pthreads version 

was performed on Intel Xeon E7-4870 2.4GHz with 2TB RAM using the Lustre (version 

2.5.41) filesystem. The calculation of the MPI version was performed using 10 machines 

in a heterogeneous cluster system (see the footnote of Figure 2-1), for which calculation 

times are shown in parentheses. The last columns show the ContTest, SP and TC 

benchmark scores with the input order in the data of https://mafft.sb.ecei.tohoku.ac.jp/, 

followed by average score ± sample standard deviation, with 20 (“small” subsets of 

HomFam and OXFam) or 10 (the others) randomized orders, in parentheses. The FastSP 

program was used to compute the SP and TC scores. 
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2.3.3 Guide tree 

 G-large-INS-1 uses the stepwise addition strategy to build a guide tree 

while G-INS-1 uses a guide tree with a UPGMA-like method. Probably as a result 

of this difference, in Figure 2-3, the conventional guide trees (G-INS-1, blue) 

slightly outperformed the trees using the stepwise addition strategy (G-large-

INS-1, red) when the number of sequences is small (from 30 to 100). However, 

for a larger number of sequences (200 or more), little difference was observed. 

This is consistent with an earlier report (Boyce et al., 2014), which found that the 

importance of accurate guide trees decreases with the number of sequences, at 

least when used for protein structural analyses. 

The resulting tree with the stepwise addition strategy depends highly 

on input order. To investigate the instability of alignment accuracy (Boyce et al., 

2015), we performed additional tests with shuffled sequence order, 10–20 times, 

for HomFam and OXFam and ContTest (Table 1-1), which suggest the effect of 

the input order is generally larger in G-large-INS-1 than in G-INS-1. It was 

difficult to repeat QuanTest with shuffled orders, as it took a large amount of 

computational time. Instead, we ran G-large-INS1 with the reverse sequence 

order and G-INS-1 with a non-default guide tree (Figure 2-1a), in order to check 

the instability of benchmark scores to some extent. 

 

2.3.4 Separately estimating alignment accuracy in QuanTest 

QuanTest utilizes secondary structure prediction accuracy (SSPA) to 

measure alignment quality. Figure 2-1a suggests that SSPA increases with the 

number of sequences, but two different factors, alignment accuracy and 

structure-prediction accuracy, are combined in this observation. The alignment 

accuracy was separately estimated by the procedure described in (Le et al., 2017): 

(i) Subalignments of the same set of 200 sequences were extracted from the 

alignments of 500, 1000, 2000 and 4000 sequences. (ii) Secondary structure was 

predicted by JPred4 (Drozdetskiy et al., 2015) for each subalignment (Figure 2-2). 

The difference in SSPA should purely reflect the difference in alignment, because 

the same set of sequences were used in these alignments. It is known (Sievers et 

al., 2013; Le et al., 2017) that the alignment accuracy of approximate methods, 

such as Clustal Omega and MAFFT-FFT-NS-2, decreases with the increase of 
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sequences, shown as black dashed lines in Figure 2-3. By contrast, the alignment 

accuracy of G-INS-1 and G-large-INS-1 (red and blue dashed lines in Figure 2-3) 

does not decrease with the increase of sequences. 
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Figure 2-2 Schematic diagram of QuanTest and the correspondences between the 

procedures and the results in Figure 2-3. The green arrows represent use of full 

alignment (solid line in the result figure). The magenta arrow represents use of sub 

alignments of 200 sequences included in the full alignments (dashed line in the result 

figure).  
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Figure 2-3 Effect of data size on alignment accuracy only (dashed lines) and total 

effect on alignment accuracy and secondary-structure prediction accuracy (solid 

lines) in QuanTest. The same 1940 entries as Figure 2-1 were used. 
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2.4 Discussion 

Until now, it was necessary to use highly approximate methods, such as 

the FFT-NS-2 option of MAFFT or the progressive option of Clustal Omega, in 

order to construct large MSAs. In terms of the MSA itself, the accuracy of these 

methods tends to decrease along with the increase in the number of sequences. 

This was first pointed out by (Sievers et al., 2013) and confirmed by (Le et al., 2017). 

The increase in accuracy observed in Figure 2-1a for more than 200 sequences is 

due to the prediction phase not due to the alignment phase (black dashed lines 

in Figure 2-3). As a result, it was difficult to know how many sequences should 

be included in an MSA. With more sequences, the MSA has richer comparative 

information, but the alignment quality is expected to decrease. The optimal 

balance between these two factors may differ by case. In contrast, the accuracy of 

G-large-INS-1 and G-INS-1 (red and blue dashed lines in Figure 2-3) was robust 

to data size in this test. The number of sequences to include in the MSA can now 

be determined simply based on the computational resources available and the 

requirements for the downstream analysis. 
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Chapter 3  

Development of methods for an effective reduced vector 

representation of ligand-binding pockets of proteins 

 

3.1 Introduction 

Proteins often execute their functions in a cell through interactions with 

their ligands. Interactions between proteins and small molecules are particularly 

important, especially with relation to metabolism, drug discovery, and drug 

repositioning. Consequently, comparing and/or classifying ligand-binding 

pockets of small molecules can facilitate the functional elucidation of proteins. 

For instance, performing classification about known protein structures provides 

insight into the structural features of proteins and advances our understanding 

of functions and structures. With the recent increase of a database of known 

protein structure, the Protein Data Bank (PDB), we have huge amounts of 

structural information for approximately 350,000 known and 6.2 million 

unknown (estimated using a pocket identification program) ligand-binding 

pockets (Ito et al., 2015). Consequently, comprehensive comparison and 

classification of both known and predicted protein ligand-binding pockets 

provide important insights into predicting ligands and drug discovery. For such 

a comprehensive analysis, a fast pocket comparison method is extremely useful. 

Indeed, various approaches have already been proposed (Konc and Janezic, 2014). 

Pocket comparison methods are divisible into two classes, i.e., 

alignment-dependent and alignment-free methods (Gao and Skolnick, 2013a). 

Although alignment-dependent methods for pocket comparison perform 

structural alignment of binding residues, alignment-free methods are 

independent of the structural alignment. Such methods often use descriptors that 

represent binding residues in a pocket. Both methods have been developed to be 

applicable to large-scale comparison of binding pockets. For instance, Gao and 

Skolnick developed a fast alignment-dependent method called APoc (Gao and 

Skolnick, 2013b). They argued that alignment-dependent methods are “generally 

more accurate, albeit slower than alignment-free methods." However, although 
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alignment-free methods are unable to provide information of matched residues, 

they are efficient in terms of computational time. Consequently, these methods 

enable comparison of known binding pockets with numerous predicted ligand-

binding pockets estimated using a pocket detection program. Furthermore, 

alignment-free methods are compatible with analysis of “flexible” binding 

pockets, and are readily applicable to binding pockets comprising multiple 

protein chains. It remains difficult to apply alignment-dependent methods 

directly to such pockets.  

Considering these reasons, we assume that alignment-free methods can 

particularly contribute to protein-ligand interaction prediction and can enable 

the prediction of protein function. Therefore, we developed an alignment-free 

method that enables us to perform exhaustive comparison of both known and 

predicted ligand-binding pockets of 1,000,000 order (Ito et al., 2012), and to 

develop a database called PoSSuM that includes the comparison results. 

However, some possible caveats must be associated with those methods. 

First, these methods have no abundant ability of expression because they cannot 

increase the number of types of labels for counting the occurrence frequency of 

triangles because the occurrence frequency vector becomes sparse and because it 

is difficult to calculate the similarity properly. Second, the error by which the 

similarity between similar triangles is regarded as completely dissimilar occurs 

when a ligand binding pocket is converted into triangles because the similarity 

between triangles is not considered beyond the bin. 

To overcome these difficulties, we defined the similarity among all 

triangle types which is producible under our labeling method, and developed a 

method to represent a ligand binding site with a reduced vector using 

multidimensional scaling (MDS). In other words, the vector representation of a 

ligand binding site is obtained using the linear combination of the occurrence 

frequency of triangles using the coordinates of triangles in a metric space. Using 

this method, one can calculate the similarity between two ligand binding pockets 

merely by calculating the inner product of two reduced vectors. 

We also sought to revise the way of integrating the similarity between 

triangle types to improve the discriminative ability of our method. We 

introduced the new converting matrix 𝑿′ by making the double centered matrix 
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𝑫  nonnegative, as calculated from the similarity matrix 𝑺  between triangle 

types. We confirmed there is a slight increase in the discriminative ability because 

of this change, but we need further analysis to conclude that this performance 

improvement arises from this change only. 

The novel method presented herein exhibits higher performance at the 

detecting similarity between binding pockets than existing alignment-free 

methods. It outperforms the fast sequence order-independent structural 

comparison method, the Alignment of Pockets (APoc) (Gao and Skolnick, 2013b), 

which necessitates solving the optimization problem. We also confirmed, using 

the TOUGH-M1 dataset, that the novel method outperforms SiteEngine 

(Shulman-Peleg et al., 2004), which measures similarity between pockets using 

geometric hashing and matching of triangles of centers of physico-chemical 

properties, and Graph-based Local Structure Alignment (G-LoSA) (Lee and Im, 

2012), which measures similarity between pockets with iterative maximum 

clique search and solving the linear sum assignment problem. The results of this 

study suggest that this novel method is faster than our previous method (Ito et 

al., 2012) and the other methods. 

 

 

3.2 Materials and Methods 

This study was undertaken to enhance our original method (Ito et al., 

2012) for finding similar ligand-binding pockets using all triangles consisting of 

three amino acids in the pockets and similarities between triangle types. The 

entire procedure for converting structural information of a pocket into a reduced 

vector representation using multidimensional scaling (MDS) is the following. 

 

3.2.1 Enumerating possible triangle types 

In this study, each binding pocket is described by an ensemble of all 

triangles consisting of three Cα atoms of amino acids in the pocket, in contrast to 

our previous study which considered a several types of triangle types at a time. 

Each triangle vertex is labeled with one amino acid of 20 types. We treated 

modified residues such as selenomethionine as naturally occurring amino acids 
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(e.g. methionine). Regarding the triangle edges, first of all, we used the same 

definition as that presented in our previous report. We considered only triangles 

with edges, i.e. Cα-Cα distances of residue pairs, within 13.6 Å. Moreover, we 

classified edges into five classes at 2.2 Å intervals and labeled them Roman 

numerals (I, II, III, IV, and V) (hereinafter designated as ‘5 edge’). Secondly, we 

extended Cα-Cα distances to be considered, ranging from 1.0 Å to 15.8 Å, and 

added a class of edges. Edges were classified into 6 classes at intervals of 2.2 Å. 

We labeled them Roman numerals (I, II, III, IV, V, and VI) in ascending order 

(hereinafter ‘6 edge interval set α’). Lastly, we also investigated the effects of 

revising the interval distances which affect the classes of edges. We modified the 

intervals of 6 edge classes from 2.2 Å each to 1.0, 4.0, 6.36, 8.72, 11.08, 13.44, and 

15.8 Å (hereinafter, ‘6 edge interval set β’). 

Superposition of one triangle to another triangle can be done in six ways. 

We regarded triangles as identical if they have the same label, with regard to their 

vertices and edges, considering all six ways of superposition. Given these 

conditions, we listed all possible triangle types. Therefore, we found triangles of 

171,700 types under the condition that the classes of edge labels are 5 labels and 

295,240 types under the 6 labels. 

 

3.2.2 Definition of similarity between two triangle types 

In our novel method, for two triangle types of 𝑝 and 𝑞, we defined the 

similarity 𝑠𝑝𝑞  consisting of two terms, which respectively measure mutual 

physicochemical and geometrical similarity, as the following form:  

𝑠𝑝𝑞 ≡ max [
𝑟(𝑚AD + 𝑚BE + 𝑚CF) + (1 − 𝑟)(−1)(𝑓(AB, DE) + 𝑓(BC, EF) + 𝑓(CA, FD))

: 6 way superposition
] (3-1) 

Here, 𝑚XY represents a physicochemical similarity between two amino acids X  

and Y, defined with an amino acid substitution matrix. For this study, we used 

the PAM50 matrix (Dayhoff and Schwartz, 1978), which is not rounded after a 

decimal point, because we assumed that residues consisting of a ligand-binding 

pocket are conservative for substituting amino acids. Also, the not-rounded 

PAM50 matrix yielded better performance than the rounded (data not shown). 

In addition, A, B, and C respectively denote the vertices of the triangle type 𝑝; 

D, E, and F respectively denote those of triangle type 𝑞. 𝑟 is a weighting factor, 
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ranging from 0 to 1, for physicochemical and geometrical similarity terms in this 

equation. AB, BC, and CA denote the edges of the triangle type 𝑝; DE, EF, and 

FD  denote those of triangle type 𝑞 . The function 𝑓 , which represents the 

geometrical dissimilarity between two edges X and Y, is defined as 

𝑓(edge X, edge Y) ≡ | value of the class for edge X −  value of the class for edge Y |. 

In this definition, the value of a class is given according to the assigned numerals 

for a class. For example, the function 𝑓 gives 4 when edge X belongs to class I 

and edge Y  belongs to class V. Then, 𝑓  is summed up for three edges and 

multiplied by -1 for converting dissimilarity to similarity (see eq.(3-1) ). We 

regarded the maximum value of 𝑠𝑝𝑞 for all possible ways of superposition of 

triangle types considering rotation and reflection as similarity 𝑠𝑝𝑞 for two 

triangle types 𝑝 and 𝑞. 

 

3.2.3 Multidimensional Scaling (MDS) 

To perform MDS, we calculated the similarities for all possible pairs of 

295,240 or 171,700 triangle types based on the similarity definition presented 

above. The number of triangle types is hereinafter designated as 𝑁. We were able 

to obtain a similarity matrix 𝑺 between triangle types as a square matrix of order 

𝑁 . We assumed a model by which the similarity between triangle types 

corresponds to the inner product, and used MDS to obtain the coordinates of each 

triangle type in a high-dimensional space. The procedures used for this study are 

summarized briefly as follows. First centering is performed over the previously 

described similarity matrix 𝑺 to obtain the double centered matrix 𝑫 because 

we want to obtain, eventually, those coordinates which have zero mean. The 

element of the double centered matrix 𝑫 is obtainable as 

𝑫𝑖𝑗 = 𝑺𝑖𝑗 −
1

𝑁
∑ 𝑺𝑖𝑎

𝑁

𝑎=1

−
1

𝑁
∑ 𝑺𝑎𝑗

𝑁

𝑎=1

+
1

𝑁2
∑ ∑ 𝑺𝑎𝑏

𝑁

𝑏=1

𝑁

𝑎=1

. (3-2) 

Then, the eigenvalue decomposition of 𝑫  is performed, thereby yielding 

eigenvalue vector 𝝀  and a matrix of eigenvector 𝒁 . Using 𝝀  and 𝒁 , the 

coordinates of triangle types are then found using the following formula: 

𝑿 = (√𝝀1𝒛1, √𝝀2𝒛2, √𝝀3𝒛3, … , √𝝀𝑙𝒛𝑙). (3-3) 

We used the randomized algorithm (Halko et al., 2011) to compute large-scale 

singular value decomposition for eigenvalue decomposition of 𝑫  because the 
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order of 𝑫 is huge, and because the only necessary eigenvalues are those with a 

large absolute value. We designate this 𝑿 as with negatives (wn). 

 

3.2.4 Introducing the new converting matrix 𝑿′ 

We introduced the new converting matrix 𝑿’  by making the double 

centered matrix 𝑫  nonnegative. First, we calculated 𝑫′  by replacing all 

negative elements of matrix 𝑫 with zeros, as follows; 

𝑫′ = (𝑑′
𝑖𝑗); 𝑑𝑖𝑗

′ = max(0, 𝑑𝑖𝑗) . (3-4) 

Then, we performed eigenvalue decomposition of 𝑫′ in as described in Section 

3.2.3 and obtained 𝑿’. We designate this 𝑿′ as greater than or equal to 0 (gt0). 

 

3.2.5 Convert pockets into reduced vector representations 

We defined 𝒏  as a 𝑁 -dimensional vector based on the occurrence 

frequencies of triangle types at a ligand-binding pocket. All triangles that occur 

in a pocket with edge lengths of 1.0 Å to 13.6 or15.8 Å are classified as one of 𝑁 

triangle types. Using 𝑿 (or 𝑿′) described in the previous section, we found the 

following.  

𝑿T𝒏 = (√𝝀1𝒛1, √𝝀2𝒛2, √𝝀3𝒛3, … , √𝝀𝑙𝒛𝑙)
T

(𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑁)T 

= (𝒙1, 𝒙2, 𝒙3, … , 𝒙𝑁)(𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑁)T 

= (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑙)
T = 𝒘 

In the equations above, 𝑛𝑖 represents the number of the 𝑖-th triangle in the list 

of triangle types. 𝒘 stands for a vector representing a pocket (Figure 3-1). To 

represent a pocket with a reduced vector based on the MDS result, we used the 

lowest number of dimensions that satisfy a certain extent of cumulative 

contribution ratio, which was calculated using positive eigenvalues only. For this 

study, we set the criteria of the cumulative contribution ratio as 0.98. Thus, the 

number of dimensions changes according the change of parameters, which are 𝑟 

in equation (3-1) and the number of the classes of edge labels (Figure 3-2). We 

define similarity between two pockets 𝑖 and 𝑗 as a cosine distance between 𝒘𝑖 

and 𝒘𝑗 . Therefore, the similarity can be found easily by calculating the inner 
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product between normalized 𝒘𝑖  and normalized 𝒘𝑗 . This procedure can be 

regarded as calculation of the weighted arithmetic mean over 𝑿  (or 𝑿′ ) 

weighted by 𝒏. 

 

 

 

Figure 3-1 Schematic diagram of a vector representation of a ligand-binding pocket. 

Structural and amino acid information of a ligand-binding pocket are converted into a 

vector. 
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3.2.6 Datasets 

We examined three datasets for this study. 

i) For Ito138, we used a relatively hard dataset based on our previous 

study (Ito et al., 2012) to optimize the weighting factor 𝑟 in equation (3-1). The 

dataset comprises pocket pairs that share the same types of small molecules in 

proteins with different global structures. This dataset originally comprised 167 

known small molecules such as ATP, NAD, and FAD, binding pockets. 

Nevertheless, we noticed that some binding pockets are inadequate because of 

the small numbers (< 5) of triangles derived from their binding pockets. For that 

reason, we used 138 binding pockets (Appendix Table A1) among the 167 binding 

pockets to calculate the optimized 𝑟 for our novel method. Then we compared 

 

Figure 3-2 Relation between the value of weighting factor 𝑟 and the number of 

dimensions. The X axis shows 𝑟, and the Y axis shows the dimensions used to represent 

a binding pocket. 
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the method with existing ones. We designate this dataset as Ito138. 

ii) Regarding APocS3, we applied the Subject and Control dataset used 

in a report about APoc (Gao and Skolnick, 2013b) to evaluate our novel method 

with optimized 𝑟 and to compare the performance of the method to that of APoc. 

This dataset is relatively easy because the Subject dataset comprises pocket pairs 

that share the same or similar types of ligands. While APocS3 originally 

comprised 38,066 pairs each in Subject and Control dataset, nevertheless, we 

noted that some of binding pocket are inadequate because of small number of 

binding residues, based on the default setting of APoc which is that “minimal 

number of pocket residue is 10”. We omitted pocket pairs which could not be 

handled by APoc with default setting, and then confirmed that we reproduced 

the same ROC curves (Fig. 3B in (Gao and Skolnick, 2013b)). For that reason, we 

used 37,956/26,527 pairs for Subject/Control dataset in this study. Coordinate 

files of binding pockets were obtained from the APoc website 

(http://cssb.biology.gatech.edu/APoc). We designate this dataset as APocS3. 

iii) We used APocS3_LIGSITE to compare our novel method with APoc. 

This dataset includes pairs of predicted pockets generated by LIGSITE (Huang 

and Schroeder, 2006) based on the pocket pairs in APocS3. In comparison with 

APocS3, pocket pair numbers were reduced to 34,511/17,408 pairs of the 

Subject/Control datasets because the binding residues of some pockets could not 

be predicted correctly. 

iv) We used TOUGH-M1 to compare our novel method with APoc, 

SiteEngine (Shulman-Peleg et al., 2005) , and G-LoSA (Lee and Im, 2017). This 

dataset was presented in a study (Govindaraj and Brylinski, 2018). This dataset 

includes pairs of predicted pockets generated by Fpocket 2.0 (Le Guilloux et al., 

2009). This dataset is composed of 505,116/ 556,810 pairs of 

Subject(Positive)/Control(Negative) datasets. 

 

3.2.7 Performance analysis 

For the Ito138 dataset, we performed all-against-all 9,453 (= (
138

2
) ) 

comparisons. In this dataset, a positive example was defined if a pocket pair 

shares the same ligand; otherwise a pair was regarded as a negative example. 
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Regarding APocS3/APocS3_LIGSITE/TOUGH-M1, for example APocS3, 

we performed comparisons of the 64,483 (= 37,956 + 26,527) binding pocket pairs 

defined in are earlier report about APoc for the Subject and Control datasets. 

When a pocket pair with the same/similar ligand gives a similarity score higher 

than a threshold value, it was regarded as a true positive (TP). Otherwise it was 

regarded as a false negative (FN). However, if a pair with ligands that are not the 

same/similar gives a similarity score that is less than the threshold value, then it 

was classified as a true negative (TN). Otherwise, it was classified a false positive 

(FP). A true positive rate (TPR) is calculated using TP/(TP+FN). A false positive 

rate (FPR) is given as FP/(FP+TN). The receiver operating characteristic (ROC) 

curve is used to present results. ROC is a curve based on a true positive rate 

against a false positive rate at various thresholds. The area under the ROC curve 

(AUC) is used to evaluate and compare performances. 

 

 

3.3 Results and Discussion 

We investigated the effects of change of the scheme to calculate the 

similarity between pockets with novel the similarity definition. In addition, we 

investigated the effects of modifications in the following three points, i.e., the 

expansion of edge classes, the revision of intervals of edge classes and the 

introduction of new converting matrix “ 𝑿′  . Then we compared our novel 

method with existing methods. 

 

3.3.1 Effects of novel similarity measure scheme between two 

ligand binding pockets 

First, we evaluated the effectiveness of changing the scheme to calculate 

the similarity between two ligand binding pockets. For evaluation, a novel 

method was used with the number of edge classes set as five classes. The method 

of classifying them is the same as that of our previous method. We tested the 

weighting factor in every 0.05 sampling from 0.05 to 0.95 to define the optimized 

value of 𝑟 using the Ito138 dataset. Plots of the weighting factor vs. AUC are 

presented in Figure 3-3a as “5 edge”. According to this result, the best AUC is 



55 

 

obtained with r = 0.15. Therefore, we used this value to evaluate the effectiveness 

of the novel similarity definition. 

Figure 3-3b presents the ROC curves, i.e., plots of TPR vs. FPR for this 

evaluation and shows the novel similarity definition outperforms both FuzCav-

like (Weill and Rognan, 2010) and our previous method, PoSSuM-like, in terms 

of AUC. We identified the main reason behind the superiority of the novel 

definition. 

Figure 3-3c presents actual similarity values for all-against-all 9,453 

pairs as a heat map to compare the novel similarity-based method (shown at the 

lower left) with PoSSuM-like (shown at the upper right). Each square in the graph 

corresponds to one similarity of a pair of pockets. We found that the novel 

method assigns lower similarity to pockets, especially to those which bind to 

HEM or SF4 with pockets which bind to the other ligands. Similarly, the 

discriminate power of GDP binding pockets from other pockets by the novel 

method is slightly better than that of the PoSSuM-like method. 

Next, we evaluated the effectiveness using APocS3. Figure 3-4 presents 

the ROC curves for this evaluation. It shows that the novel similarity definition 

also outperforms APoc. 
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Figure 3-3 Benchmark results with Ito138. (a) Results of our novel methods, including “5 

edge”, “6 edge (with interval set) α”, “6 edge (with interval set) β [wn]” and “6 edge (with 

interval set) β [gt0]”, with various values (0.05–0.95 with the sampling interval of 0.05) of 

the weighting factor 𝑟 are shown. The X axis indicates 𝑟, and the Y axis indicates AUC 

values. (b) ROC curves of our novel methods, FuzCav-like and PoSSuM-like are shown. 

The X axis shows FPR. The Y axis shows TPR. (c) Heat maps to compare the ‘5 edge class’ 

method (lower left) with the PoSSuM-like method (upper right) are shown. The color of 

each square in the map represents a similarity value for a pocket pair. Ligand 

abbreviations placed by axes correspond to the ligand to which a pocket binds. (d) Heat 

maps to compare the ‘6 edge α’ method (lower left) with the ‘5 edge class’ method (upper 

right) are shown. 
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3.3.2 Effects of increasing the number of edge classes 

Next, we increased the number of edge classes from 5 to 6, according to 

the expansion of Cα-Cα distances of residue pairs, ranging from 1.0 Å to 15.8 Å, 

used as the triangle edge. Edges were classified into 6 classes at intervals of 2.2 Å 

(interval set α). The effects of this modification were evaluated using Ito138. 

Figure 3-3a and b show that 6 edge classes outperform 5 edge classes, which 

suggests that addition of edge classes engenders better ability to recognize 

similar binding pockets. 

In Figure 3-3d, as heat maps, we compared individual result obtained 

using the ‘6 edge α’ method (shown in the lower left) with it using the ‘5 edge 

class’ method (shown in the upper right). In this case we also found that 

discrimination of HEM binding pockets and SF4 binding pockets from other 

binding pockets is improved in the ‘6 edge α’ method compared with the ‘5 edge 

class’ method. We suppose that discrimination of HEM binding pockets and SF4 

 

Figure 3-4 Benchmark results with APocS3. ROC curves of our novel methods and APoc 

are shown. 
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binding pockets became better because the maximum value of edge length 

changed to 15.8 Å. The HEM binding pocket is commonly large. The distance 

between some binding residues which face each other through HEM is about 15 

Å.  

We also evaluated the effectiveness of our novel method using an easy 

dataset: APocS3. Figure 3-4 shows that the ‘6 edge α’ method slightly outperforms 

the ‘5 edge class’ method. 

 

3.3.3 Effects of the intervals of class of edge labels 

Next, we examined the procedure used to decide the intervals and 

modified the intervals of 6 edge classes from 2.2 Å each to 1.0, 4.0, 6.36, 8.72, 11.08, 

13.44, and 15.8 Å (interval set β). The setting of every 2.2 Å interval is the same 

as that of our previous method. The first interval was set to 4.8 Å, which distance 

originated from the FuzCav method. However, we investigated the frequency of 

the edge length of triangles taken from all pockets in the Ito138 dataset (Figure 

3-5). In the figure, the green line shows the frequencies of all edge lengths. The 

red line shows the frequency of edge lengths which comprise two adjacent 

residues in a chain. According to this figure, almost all edges shorter than about 

4.0 Å comprise adjacent residues. Thus, we considered it natural to set the first 

interval as 4.0 Å based on the difference of chemical characteristics between 

adjacent residues, or lack thereof. 

The effectiveness of this modification was evaluated using Ito138. Figure 

3-3a and b show that this modification was not so influential, in terms of AUC 

values, to our novel method on Ito138, probably because Ito138 is comprised of 

pockets that are too diverse to be affected by this improvement. On the other 

hand, using APocS3, Figure 3-4 shows that the ‘6 edge β’ method performs better 

than the ‘6 edge α’ method. 
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3.3.4 Effects of introducing the new converting matrix 𝑿′ 

Next, we evaluated the effectiveness of introducing the new converting 

matrix 𝑋′  to calculate the reduced vector representation of a pocket. The 

effectiveness of this modification was evaluated using Ito138. Figure 3-3a and b 

show that gt0 slightly outperforms wn in terms of AUC values. We also evaluated 

the effectiveness of this modification using APocS3. Figure 3-4 shows that gt0 

outperforms wn as assessed by AUC.  

However, we need further analysis to conclude that this performance 

improvement arises from introducing the new converting matrix only. This 

performance improvement may possibly come from the changes of the number 

of dimensions of reduce vector representation of pockets (Figure 3-2). The ‘6 edge 

β gt0’ method using about 200-dimensions, while the ‘6 edge β wn’ method using 

about 140-dimensions. While, of course, changing from wn scheme to gt0 scheme 

cause the changes of the number of dimensions, which means introducing the 

new converting matrix cause the changes, to eliminate the possibility that the 

performance improvement mainly caused by the difference of the numbers of 

dimensions, we need further analysis with fixing the number of dimensions of 

 

Figure 3-5 Distribution of the edge length (Cα-Cα distance) of triangles taken from all 

pockets in Ito138. 
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reduced vector by the‘6 edge β gt0’ method to about 140-dimensions. 

Based on the above results, we compared performances with other 

methods using the ‘6 edge β gt0’method as our novel method. 
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3.3.5 Performance comparison with APocS3_LIGSITE 

We conducted farther analysis using datasets of predicted pockets. First, 

we compared the ‘6 edge β gt0’ method with APoc using the APocS3_LIGSITE 

dataset. Figure 3-6 shows that, in the low-FPR region, APoc showed higher 

performance. However, in the region higher than 20% FPR, the ‘6 edge β gt0’ 

method showed higher performance than that of APoc. Additionally, the AUC 

value of the ‘6 edge β gt0’ method was higher than that of APoc. 

There is a small difference in contents between APocS3_LIGSITE and the 

“APoc dataset” used in the study (Govindaraj and Brylinski, 2018). For example 

APocS3_LIGSITE is composed of 34,511/17,408 pairs of the Subject/Control 

datasets, while the “APoc dataset” is composed of 34,970/20,744 pairs. If we 

compare the AUC values directly, APoc has an AUC of 0.82, G-LoSA has 0.77 and 

SiteEngine has 0.60. We can confirm that our novel method outperforms the other 

methods. 

 

  

 
Figure 3-6 Benchmark results with APocS3_LIGSITE. ROC curves of our novel method 

and APoc are shown. 
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3.3.6 Performance comparison with TOUGH-M1 

Finally, we compared the ‘6 edge β gt0’ method with the other methods 

using the TOUGH-M1 dataset. Figure 3-7 shows that the ‘6 edge β gt0’ method 

performed better than the other methods. (cf. Table 1 and Fig.9 in (Govindaraj 

and Brylinski, 2018)) 

 

 

  

 
Figure 3-7 Benchmark results with TOUGH-M1. ROC curves of our novel method (gt0) , 

SiteEngine, G-LoSA and APoc are shown. 
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3.3.7 Computational time for calculating similarity of randomly 

selected pocket pairs 

Figure 3-8 shows estimated computational time of APoc and our novel 

method. Both X axis and Y axis are shown in logarithmic scale. For comparing 

randomly selected one pair of pockets, while APoc took 0.036 second, our novel 

method took 10−6  second (less than 0.1 second per pocket as preparation 

process). We speculate that we can achieve 6.5 million pockets (350,000 known 

plus 6.2 million estimated pockets) comparison using this novel method in few 

days when we employ a hundred multithreads/processes. 

 

 

 

  

 

Figure 3-8 Estimated computational time of APoc and our novel method. Both X axis and 

Y axis are shown in logarithmic scale. 
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3.3.8 Expedient examples of our method 

We present examples that demonstrate the usefulness of ‘6 edge β gt0’ 

method. First, we show an example from Ito138 dataset. The interferon-inducible 

p47 resistance GTPases from mouse (PDBID: 1TQ4 (Ghosh et al., 2004)) and the 

alpha1,3-fucosyltransferase with GDP from H. pylori (2NZX (Sun et al., 2007)) 

have the same ligand: GDP, though the two proteins possess different global 

structures; P loop containing nucleoside triphosphate hydrolases fold (1TQ4) and 

UDP-Glycosyltransferase/glycogen phosphorylase fold (2NZX). Our novel 

method gave 0.921 as the similarity score for this pocket pair (the higher the 

similarity score, the more likely the pair is composed of pockets to which the 

same/similar ligand bind). It is noteworthy that APoc gave 0.772 as the p value 

for this pair (the lower the p value, the more likely the pair is composed of 

pockets to which the same/similar ligand bind).  

We present two more examples from the APocS3 dataset. The aldehyde 

dehydrogenase from rat (1AD3 (Liu et al., 1997); ALDH-like fold) and the 17-beta-

hydroxysteroid dehydrogenase type 4 from human (1ZBQ; NAD(P)-binding 

Rossmann fold) have the same ligand: NAD. As discussed in the Discussion and 

Conclusion sections in the paper about APoc, this is an example of dissimilar 

pockets with different ligand conformations. APoc assigned this pair of pockets 

a p value of 0.417, even though our novel method produced a similarity score of 

0.896. We regard this fact as demonstrating the effect of usefulness of our 

alignment-free method, which can accommodate the pocket conformation 

change associated with the ligand conformation change. Furthermore, the 

asparagine synthetase from E. coli (12AS (Nakatsu et al., 1998)) and the electron 

transfer flavoprotein from human (1EFV (Roberts et al., 1996)) have the same 

ligand: AMP. Similarly, as discussed in the paper related to APoc, this is an 

example of dissimilar pockets and similar ligand conformations. Whereas APoc 

gave 0.212 as a p value for this pocket pair, our novel method showed a similarity 

score of 0.814. We regard this feature as demonstrating the usefulness of this 

alignment-free method, which can vaguely represent the circumstances related 

to a ligand. 
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3.4 Conclusions 

Based on our previous method, for improving the ability to detect 

similar ligand-binding pockets, we changed similarity measures of pockets. We 

observed the effectiveness of the change of scheme to calculate the similarity 

between pockets with two different datasets, Ito138 and APocS3. We also found 

that the modifications in expansion, revision of edge classes and the introduction 

of new converting matrix “𝑿′  are effective. These results should be considered 

for future development of pocket comparison methods. The method proposed 

herein showed higher detection performance of similar binding pockets than the 

other methods, even if datasets are composed of predicted pockets. Because of its 

succinct representation, our novel method is expected to be useful for large-scale 

comparison of binding pockets to infer ligands and functions of proteins. 

 

  



66 

 

 

  



67 

 

Acknowledgements 

 

I would like to express my sincere gratitude and appreciation to my 

advisor, Dr. Kentaro Tomii, for his continuous help and guidance during the 

period of my Master’s and Doctoral courses. He provided me with a lot of 

valuable feedback, opportunities to express my ideas, and the chance for 

educational development. 

I would also like to show my appreciation to my Ph. D. thesis committee 

members, Professor Koji Tsuda, Professor Asai Kiyoshi, Associate Professor 

Hisanori Kiryu and Professor Akio Kitao. 

I would like to express my sincere appreciation to Mr. Toshiyuki Oda, 

Dr. Yoshinori Fukasawa, Associate Professor Kazunori D. Yamada and Associate 

Professor Kazutaka Katoh for their collaborative efforts towards the studies 

presented in this thesis. 

I would like to thank former and current members of the Tomii 

laboratory: Dr. Kenichiro Imai, Dr. Nozomi Nagano, Dr. Yu Yamamori, Dr. Yuko 

Tsuchiya, Dr. Ikeda Masami, Dr. Kyungtaek Lim, Dr. Jun-ichi Ito, Mr. Hiroyuki 

Fukuda and Ms. Ming Yang, for their suggestions regarding my research. 

I would like to thank the support by Grant-in-Aid for JSPS Research 

Fellow and computational resources provided by the Chimera cluster system at 

CBRC/AIRC-AIST, the NIG supercomputer at ROIS National Institute of 

Genetics, and the Reedbush supercomputer system in the Information 

Technology Center, The University of Tokyo. 



68 

 

  



69 

 

References 

Alexandrov,N. and Shindyalov,I. (2003) PDP: protein domain parser. 

Bioinformatics, 19, 429–430. 

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of 

protein database search programs. Nucleic Acids Res., 25, 3389–3402. 

Apweiler,R. et al. (2004) UniProt: the Universal Protein knowledgebase. Nucleic 

Acids Res., 32, D115–D119. 

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28, 235–242. 

Bertoni,M. et al. (2017) Modeling protein quaternary structure of homo- and 

hetero-oligomers beyond binary interactions by homology. Sci. Rep., 7. 

Boratyn,G.M. et al. (2012) Domain enhanced lookup time accelerated BLAST. 

Biol. Direct, 7. 

Bowie,J.U. et al. (1991) A method to identify protein sequences that fold into a 

known three-dimensional stucture. Science (80-. )., 253, 164–170. 

Boyce,K. et al. (2015) Instability in progressive multiple sequence alignment 

algorithms. Algorithms Mol. Biol., 10. 

Boyce,K. et al. (2014) Simple chained guide trees give high-quality protein 

multiple sequence alignments. Proc. Natl. Acad. Sci., 111, 10556–10561. 

Cameron,K. et al. (2015) Cell-surface Attachment of Bacterial Multienzyme 

Complexes Involves Highly Dynamic Protein-Protein Anchors. J. Biol. 

Chem., 290, 13578–13590. 

Chemical Computing Group ULC (2017) Molecular Operating Environment 

(MOE), 2013.08. 

Dayhoff,M. and Schwartz,R. (1978) A Model of Evolutionary Change in 

Proteins. Atlas protein Seq. Struct., 345–352. 

Drozdetskiy,A. et al. (2015) JPred4: a protein secondary structure prediction 

server. Nucleic Acids Res., 43, W389–W394. 

Fox,G. et al. (2016) Using de novo protein structure predictions to measure the 

quality of very large multiple sequence alignments. Bioinformatics, 32, 814–

820. 

Fu,L. et al. (2012) CD-HIT: accelerated for clustering the next-generation 

sequencing data. Bioinformatics, 28, 3150–3152. 

Gao,M. and Skolnick,J. (2013a) A Comprehensive Survey of Small-Molecule 



70 

 

Binding Pockets in Proteins. Plos Comput. Biol., 9. 

Gao,M. and Skolnick,J. (2013b) APoc: large-scale identification of similar 

protein pockets. Bioinformatics, 29, 597–604. 

Ghosh,A. et al. (2004) Crystal structure of IIGP1: A paradigm for interferon-

inducible p47 resistance GTPases. Mol. Cell, 15, 727–739. 

Gloeckner,F.O. et al. (2017) 25 years of serving the community with ribosomal 

RNA gene reference databases and tools. J. Biotechnol., 261, 169–176. 

Gonzalez-Dominguez,J. et al. (2016) MSAProbs-MPI: parallel multiple sequence 

aligner for distributed-memory systems. Bioinformatics, 32, 3826–3828. 

Govindaraj,R.G. and Brylinski,M. (2018) Comparative assessment of strategies 

to identify similar ligand-binding pockets in proteins. BMC Bioinformatics. 

Gudys,A. and Deorowicz,S. (2017) QuickProbs 2: Towards rapid construction of 

high-quality alignments of large protein families. Sci. Rep., 7. 

Le Guilloux,V. et al. (2009) Fpocket: An open source platform for ligand pocket 

detection. BMC Bioinformatics. 

Halko,N. et al. (2011) Finding Structure with Randomness: Probabilistic 

Algorithms for Constructing Approximate Matrix Decompositions. Siam 

Rev., 53, 217–288. 

Hashimoto,K. et al. (2011) Caught in self-interaction: evolutionary and 

functional mechanisms of protein homooligomerization. Phys. Biol., 8. 

Henikoff,S. and Henikoff,J.G. (1991) Automated assembly of protein blocks for 

database searching. Nucleic Acids Res., 19, 6565–6572. 

Huang,B. and Schroeder,M. (2006) LIGSITE(csc): predicting ligand binding sites 

using the Connolly surface and degree of conservation. Bmc Struct. Biol., 6. 

Ito,J.-I. et al. (2012) PDB-scale analysis of known and putative ligand-binding 

sites with structural sketches. Proteins-Structure Funct. Bioinforma., 80, 747–

763. 

Ito,J.I. et al. (2015) PoSSuM v.2.0: Data update and a new function for 

investigating ligand analogs and target proteins of small-molecule drugs. 

Nucleic Acids Res., 43, D392–D398. 

Johnson,L.S. et al. (2010) Hidden Markov model speed heuristic and iterative 

HMM search procedure. BMC Bioinformatics, 11. 

Johnson,P.M. et al. (2016) Functional Diversity of Cytotoxic tRNase/Immunity 



71 

 

Protein Complexes from Burkholderia pseudomallei. J. Biol. Chem., 291, 

19387–19400. 

Katoh,K. et al. (2017) MAFFT online service: multiple sequence alignment, 

interactive sequence choice and visualization. Brief. Bioinform. 

Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence alignment 

software version 7: Improvements in performance and usability. Mol. Biol. 

Evol., 30, 772–780. 

Konc,J. and Janezic,D. (2014) Binding site comparison for function prediction 

and pharmaceutical discovery. Curr. Opin. Struct. Biol., 25, 34–39. 

Le,Q. et al. (2017) Protein multiple sequence alignment benchmarking through 

secondary structure prediction. Bioinformatics, 33, 1331–1337. 

Lee,H.S. and Im,W. (2017) G-LoSA for prediction of protein-ligand binding sites 

and structures. In, Methods in Molecular Biology. 

Lee,H.S. and Im,W. (2012) Identification of ligand templates using local 

structure alignment for structure-based drug design. J. Chem. Inf. Model., 52, 

2784–2795. 

Lensink,M.F. et al. (2016) Prediction of homoprotein and heteroprotein 

complexes by protein docking and template-based modeling: A CASP-

CAPRI experiment. Proteins-Structure Funct. Bioinforma., 84, 323–348. 

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and comparing 

large sets of protein or nucleotide sequences. Bioinformatics, 22, 1658–1659. 

Liu,Z.J. et al. (1997) The first structure of an aldehyde dehydrogenase reveals 

novel interactions between NAD and the Rossmann fold. Nat. Struct. Biol., 

4, 317–326. 

Lüthy,R. et al. (1992) Assessment of protein models with three-dimensional 

profiles. Nature, 356, 83–85. 

Morse,R.P. et al. (2012) Structural basis of toxicity and immunity in contact-

dependent growth inhibition (CDI) systems. Proc. Natl. Acad. Sci. U. S. A., 

109, 21480–21485. 

Mukherjee,S. and Zhang,Y. (2009) MM-align: a quick algorithm for aligning 

multiple-chain protein complex structures using iterative dynamic 

programming. Nucleic Acids Res., 37. 

Murzin,A.G. et al. (1995) Scop - a Structural Classification of Proteins Database 



72 

 

for the Investigation of Sequences and Structures. J. Mol. Biol., 247, 536–540. 

Nakatsu,T. et al. (1998) Crystal structure of asparagine synthetase reveals a close 

evolutionary relationship to class II aminoacyl-tRNA synthetase. Nat. 

Struct. Biol., 5, 15–19. 

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the 

search for similarities in the amino acid sequence of two proteins. J. Mol. 

Biol., 48, 443–453. 

Negroni,J. et al. (2014) Assessing the Applicability of Template-Based Protein 

Docking in the Twilight Zone. Structure, 22, 1356–1362. 

Notredame,C. et al. (1998) COFFEE: An objective function for multiple sequence 

alignments. Bioinformatics, 14, 407–422. 

Oda,T. et al. (2017) Simple adjustment of the sequence weight algorithm 

remarkably enhances PSI-BLAST performance. BMC Bioinformatics, 18. 

Pearson,W.R. (1996) Effective protein sequence comparison. In, Methods in 

enzymology., pp. 227–258. 

Pierce,B. et al. (2005) M-ZDOCK: a grid-based approach for C-n symmetric 

multimer docking. Bioinformatics, 21, 1472–1478. 

Prlic,A. et al. (2012) BioJava: an open-source framework for bioinformatics in 

2012. Bioinformatics, 28, 2693–2695. 

Raghava,G.P.S. et al. (2003) OXBench: A benchmark for evaluation of protein 

multiple sequence alignment accuracy. BMC Bioinformatics, 4. 

Remmert,M. et al. (2012) HHblits: lightning-fast iterative protein sequence 

searching by HMM-HMM alignment. Nat. Methods, 9, 173–175. 

Roberts,D.L. et al. (1996) Three-dimensional structure of human electron 

transfer flavoprotein to 2.1-A resolution. Proc. Natl. Acad. Sci. U. S. A., 93, 

14355–60. 

Shiota,T. et al. (2015) Molecular architecture of the active mitochondrial protein 

gate. Science (80-. )., 349, 1544–1548. 

Shulman-Peleg,A. et al. (2004) Recognition of functional sites in protein 

structures. J. Mol. Biol., 339, 607–633. 

Shulman-Peleg,A. et al. (2005) SiteEngines: Recognition and comparison of 

binding sites and protein-protein interfaces. Nucleic Acids Res. 

Sievers,F. et al. (2011) Fast, scalable generation of high-quality protein multiple 



73 

 

sequence alignments using Clustal Omega. Mol. Syst. Biol., 7. 

Sievers,F. et al. (2013) Making automated multiple alignments of very large 

numbers of protein sequences. Bioinformatics, 29, 989–995. 

Sun,H.Y. et al. (2007) Structure and mechanism of Helicobacter pylori 

fucosyltransferase: A basis for lipopolysaccharide variation and inhibitor 

design. J. Biol. Chem., 282, 9973–9982. 

Szilagyi,A. and Zhang,Y. (2014) Template-based structure modeling of protein-

protein interactions. Curr. Opin. Struct. Biol., 24, 10–23. 

Tomii,K. et al. (2005) Protein structure prediction using a variety of profile 

libraries and 3D verification. Proteins-Structure Funct. Bioinforma., 61, 114–

121. 

Tomii,K. and Akiyama,Y. (2004) FORTE: a profile-profile comparison tool for 

protein fold recognition. Bioinformatics, 20, 594–595. 

Venkatakrishnan,A.J. et al. (2010) Homomeric protein complexes: evolution and 

assembly. Biochem. Soc. Trans., 38, 879–882. 

Webb,B. and Sali,A. (2016) Comparative protein structure modeling using 

MODELLER. Curr. Protoc. Bioinforma. 

Weill,N. and Rognan,D. (2010) Alignment-Free Ultra-High-Throughput 

Comparison of Druggable Protein-Ligand Binding Sites. J. Chem. Inf. 

Model., 50, 123–135. 

Yamada,K. and Tomii,K. (2014) Revisiting amino acid substitution matrices for 

identifying distantly related proteins. Bioinformatics, 30, 317–325. 

Yamada,K.D. et al. (2016) Application of the MAFFT sequence alignment 

program to large data-reexamination of the usefulness of chained guide 

trees. Bioinformatics, 32, 3246–3251. 

Yang,Y. and Zhou,Y. (2008a) Ab initio folding of terminal segments with 

secondary structures reveals the fine difference between two closely related 

all-atom statistical energy functions. Protein Sci., 17, 1212–1219. 

Yang,Y. and Zhou,Y. (2008b) Specific interactions for ab initio folding of protein 

terminal regions with secondary structures. Proteins-Structure Funct. 

Bioinforma., 72, 793–803. 

Ye,Y. and Godzik,A. (2003) Flexible structure alignment by chaining aligned 

fragment pairs allowing twists. Bioinformatics, 19, II246-II255. 



74 

 

Zemla,A. (2003) LGA: a method for finding 3D similarities in protein structures. 

Nucleic Acids Res., 31, 3370–3374. 

Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment of 

protein structure template quality. Proteins-Structure Funct. Bioinforma., 57, 

702–710. 

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure alignment 

algorithm based on the TM-score. Nucleic Acids Res., 33, 2302–2309. 

 

  



75 

 

Appendices 

 

 

 

 



76 

 

 

 



77 

 

 

 



78 

 

 

 



79 

 

 

 



80 

 

 

Figure A1 Each row corresponds to individual template libraries. Each column represents a 

type of query profile that we used. Values in cells show Z-scores which “correct” templates 

were detected by each combination. 
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Figure A2 Plots of TM-scores vs. the highest Z-scores of templates. The horizontal axis shows 

Z-score of an alignment between a target domain sequence and a template sequence in PDB. 

We show the highest Z-score when the same template was identified within the top five hits 

using different profile-profile alignment methods. The vertical axis shows TM-scores 

calculated using MMalign between a target complex and a template complex in PDB. The 

red circle represents a template complex with stoichiometry that is the same as that of the 

target. Each blue square dot corresponds to a template structure that has different 

stoichiometry as the target structure. Green star with a rectangle label corresponds to a 

template structure that we used to construct a model in CASP12. Text above each figure 

shows the multimer target name, target stoichiometry, target symmetry, and target difficulty 

in the first line and the target domain name, domain range, domain difficulty classification, 

target type (Human/Server), template used to construct our model in the CASP term, Z-score 

of the template used, and the TM-score of the complex template used. Templates given the 

highest Z-score and the highest TM-score are annotated with a label. The label contains a 

PDB ID and a number, which represents the serial number of biological assembly defined in 

the PDB. We gave 0 for an asymmetric unit. 
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Table A1: 138 binding pockets used as Ito138 dataset. 

 

chainID: Chain identifier. 

resSeqNum: Residue sequence number. 

altLoc: Alternate location indicator. 

 

ligand PDBID chainID resSeqNum altLoc 

FAD 3OF4 C 250  

FAD 3NVW B 606  

FAD 2X8H A 1594  

FAD 2GAG B 501  

FAD 1F20 A 1501  

FAD 3GWN A 334  

FAD 1ZR6 A 501  

FAD 3AN1 A 3006  

FAD 1OWL A 485  

FAD 1GPE A 600  

FAD 2YWL A 1001  

FAD 1YOA A 401  

FAD 1O26 A 615  

FAD 2DW4 A 1001  

NAD 1DQS A 400  

NAD 1AD3 A 600  

NAD 3M6I A 501  

NAD 2PH5 A 501  

NAD 1Z45 A 703  

NAD 3C7A A 405  

NAI 3MW9 A 603  

NAD 1OBB A 500  

NAD 1LW7 A 601  

NAP 3NRR A 515 A 

NAP 1PS9 A 703  

NAP 2O7S A 1411  
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NAP 1SUW A 3075  

NAP 2D1C A 1002  

NAP 2AZN A 2001  

ATP 2Q0D A 501  

ATP 1RDQ E 600 B 

ATP 3CIS A 1101  

ATP 1A0I A 1  

ATP 3C5E A 801  

ATP 1KVK A 535  

ATP 3FKQ A 500  

ATP 2OLR A 541  

ATP 1QHH A 700  

ATP 3OPY B 942  

ATP 2A5Y B 551  

ATP 1B76 A 1552  

ATP 1SVM A 800  

ATP 2NPI A 600  

ATP 1HP1 A 606  

ATP 2P09 A 500  

ADP 2IUU A 1723  

ADP 3A1D A 997  

ADP 1F9V A 998  

ADP 3KH5 A 281  

ADP 2WHX A 1619  

ADP 2CVX A 1002  

ADP 2BVC A 501  

ADP 3VIU A 800  

ADP 1X6V B 800  

ADP 1M15 A 400  

ADP 2ZPA A 800  

ADP 1HTW A 560  

ADP 1IHU A 590  

ADP 1IOW A 310  
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ADP 2C9O A 1450  

ADP 2R6F A 1000  

ADP 2HYD A 700  

ADP 1R6B X 780  

GTP 1A8R A 401  

GTP 2FH5 B 301  

GTP 2QV6 A 300  

GTP 1C4K A 999  

GTP 2DY1 A 700  

GDP 3LVR E 737  

GDP 2PHN A 2696  

GDP 2HEK A 401  

GDP 4AC9 A 1469  

GDP 3CB2 A 500  

GDP 2ZEJ A 1  

GDP 2E87 A 400  

GDP 3DM5 A 501  

GDP 1VJJ A 1004  

GDP 1TQ4 A 500  

GDP 2RCN A 600  

GDP 1MKY A 500  

GDP 3D45 A 652  

GDP 2HCJ A 999  

GDP 2NZX A 3001  

GDP 3Q5D A 3850  

GDP 1VJ7 A 998  

GLC 1Y4C A 371  

GLC 1V2B A 1203  

GLC 2MPR A 429  

GLC 2X42 A 1722  

GLC 1AC0 A 617  

GLC 2BVL A 1546  

GLC 1CZA N 918  
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GLC 1EU1 A 2003  

GLC 2F2E B 401  

GLC 2CN3 A 1769  

MAN 1OFL A 507  

MAN 2GUD A 122 A 

MAN 1QMO A 302  

MAN 3AIH A 302  

GAL 3DH4 A 701  

GAL 2G7C A 2  

GAL 2VU9 A 2301  

GAL 1C4Q A 191  

GAL 1J8R A 203  

GAL 1G1T A 602  

GAL 2WNF A 1346  

GAL 3EF2 A 295  

GAL 2WT0 A 1690  

HEM 2KIL A 182  

HEM 1QHU A 500  

HEM 3HX9 A 200  

HEM 3OV0 A 601  

HEM 1FGJ A 547  

HEM 3LF5 A 1 A 

HEM 2CZS A 500  

HEM 1J0P A 1001  

HEM 1DW0 A 113  

HEM 1PL3 A 401  

HEM 3NT1 A 619  

HEM 1FFT A 1001  

HEM 3A15 A 354  

HEM 1V9Y A 1140  

HEM 2FW5 A 803  

HEM 1ASH A 301  

HEM 1IZO A 501  
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SF4 8ACN A 999  

SF4 1SU8 A 637  

SF4 3LZD A 343  

SF4 1OLT A 500  

SF4 2JH3 A 650  

SF4 1HUX A 290  

SF4 1U8V A 491  

SF4 3N5N X 400  

SF4 3A38 A 84  

CA 1OAC A 802  

CA 3BWX A 285  

CA 2QM3 A 350  

CA 1MIO B 492  
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