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ABSTRACT

A time-sequence consists of a set of time-stamps, each of which records the arrival
time of an event. Time-sequence data can generally be classified into two types. One is
from experiments that monitor subjects in a continuous fashion; and thereby the exact
timestamps of all occurrences of the events are fully observable. These data are usually
referred to as recurrent event data. On the other hand, we have the so-called panel
count data, in which only the numbers of occurrences of the events between subsequent
observation times. In real-world problems arising in areas such as social science, health
care and crime prevention, time-sequence modeling is extremely useful since it can help
us in predicting future events and understanding the reasons behind them.

A common approach to time-sequence modeling is to assume a time-sequence is gen-
erated by a temporal point process. Cox processes are widely used in the models of
temporal point processes. A Cox process is defined via a stochastic intensity function.
The stochastic process to generate the intensity function is usually chosen to be a Gaus-
sian process (GP) and the model using a GP is called a Gaussian-process-modulated
Poisson process (GP3) model. For the recurrent event data, GP3 models have been
studied extensively. Among all approaches which try to solve the inference problem, the
variational inference method provides a computationally efficient estimate of the intensity
function and does not require a careful discretization of the underlying space.

In order to retain the scalability and computation efficiency of the variational inference
approach and model the uncertainty of the intensity function when we only observe panel
count data, we present the first Bayesian inference framework for panel count data.
We assume that all time-sequences in the data set share the same intensity function,
which is generated by a GP3 model. The method of conducting computationally efficient
variational inference is presented. We derive a tractable lower bound to alleviate the
problem of the intractable evidence lower bound inherent in the variational inference
framework. Our model, the Gaussian-process-modulated Poisson process for panel count
data (GP4C), outperforms a non-Bayesian method in terms of the test likelihood and
achieves comparable results in computation time.

For multiple time-sequences, it is often cumbersome to assume all time-sequences
share the same intensity function since we may overlook the variety for different time-
sequences. A key idea to model the heterogeneity is to cluster the data into groups while
allowing the groups to remain linked to share the latent functions. Several models have
been proposed on the basis of this simple idea, e.g., the convolution process, nonnegative
matrix factorization (NMF), and latent Poisson process allocation (LPPA). These models
employ latent factors to share statistical strengths and combine these functions to model
the correlations within and among time-sequences. Among these models, LPPA is a
powerful approach because it uses latent functions obtained from a GP, which is a flexible
prior for a random function. However, a limitation of LPPA is that the number of latent
functions needs to be set beforehand. If the chosen number is much larger than the
actual number of latent functions required to explain the data, LPPA will still use all
the latent functions and over-fit on the training data set.

To automatically infer the number of basis functions for multiple time-sequences,
we present the Bayesian nonparametric Poisson process allocation (BaNPPA), a latent-
function model for time-sequences. We model the intensity of each sequence as an infinite
mixture of latent functions, each of which is obtained using a function drawn from a
GP. We show that a technical challenge for the inference of such mixture models is
the un-identifiability of the weights of the latent functions. We propose to cope with
the issue by regulating the volume of each latent function within a variational inference
algorithm. Our algorithm is computationally efficient and scales well to large data sets.
We demonstrate the usefulness of our proposed model through experiments on both
synthetic and real-world data sets.

In summary, we proposed two computationally efficient variational Bayesian inference
algorithms for time-sequence modeling. In the first algorithm GP4C, we quantified the
average arrival rate for multiple time-sequences and provided the additional uncertainty,
which helps illustrate the difficulty of the prediction. For the second algorithm BaNPPA,
we automatically inferred the number of basis functions to model the variety for multiple



time-sequences, which could provide insights into the understanding of social networks
and human activities.
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Chapter 1

Introduction

The Internet age has made it possible to collect a huge amount of temporal
data available in the form of time-sequences. Each time-sequence consists of
time-stamps which record the arrival times of events, e.g., postings of tweets on
Twitter or announcements of life events on Facebook. In real-world problems
arising in areas such as social science [32], health care [57] and crime prevention
[59], time-sequence modeling is extremely useful since it can help us in predicting
future events and understanding the reasons behind them. This thesis is devoted
to the application of the variational inference method, one branch of the Bayesian
inference methods in machine learning, on modeling the time-sequence data.

1.1 Machine Learning

Machine learning is a natural outgrowth in the intersection of computer science
and statistics, which seeks to answer the following questions [67]:

“How can we build computer systems that automatically improve with expe-
rience, and what are the fundamental laws that govern all learning processes?”

While statistics primarily discusses how to collect, store, analyze and present
the data mathematically [62] and computer science has mainly focused on how
to manually program computers, machine learning considers both what compu-
tational structures and algorithms can be utilized for computationally-efficient
statistical analysis and how to let the computers learn by themselves [67].

1.1.1 Machine Learning and Human Learning

When talking about machine learning, one may wonder what the difference be-
tween human learning and machine learning is and whether it is really necessary
to teach machines to learn.

There are two distinctive features about the human learning from machine
learning [64]. First of all, the human learning process is incredibly slow. Gener-
ally speaking, it takes a human being nearly thirty years to learn to become a
systematist (a specialist in taxonomy) from a baby in the cradle. On the other
hand, machine learning models can be trained much more efficiently provided
with sufficient resources. Recently, researchers from Sony have trained a popular
machine learning model (the ResNet-50 neural network model) on ImageNet, a
1,000-class image classification data set, in 224 seconds and achieved an accuracy
of 75.03% [65]. Secondly, the learning process of the human can not be copied.
Each human being has to struggle to learn by himself/herself and repeat the
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same learning process from generation to generation. In contrast, once you have
a debugged machine learning program, it can be easily copied as many times as
you want and can be transplanted from one computer to another with almost no
effort.

Therefore, it is desirable to develop machine learning programs to avoid the
inefficiencies of human being. Needless to say, robots and advanced automation
aided by machine learning have eased the burden on human beings who are
required to work in tedious assembly lines or dangerous coal mines. Moreover,
the development of machine learning can potentially speed up the human learning
process. For example, machine learning techniques were utilized in designing
effective instructional systems which aim at providing personalized interactions
to an individual learner [37].

We should also notice that there is a rather unsettling open question on
whether machine will replace human beings completely in the future. Over the
past decades, we have witnessed the superiority of machines over human experts
in more and more domains. Taking the game as an example, machine learning
programs beat human champions in the game of chess in 1997 [14] and Go in
2016 [87]. For a thorough discussion about the influence of machine learning on
the employment rate, the readers are referred to Rifkin [79] and the references
thereafter.

1.1.2 Types of Machine Learning

Depending on the differences in the problem settings, common machine learning
algorithms can usually be classified into the three main categories: supervised
learning, unsupervised learning and reinforcement learning [70].

• Supervised learning : The goal is to learn a mapping from inputs to outputs
given a data set containing input and output pairs. The training data set
is usually presented in the following form:

{(x1, y1), . . . , (xN , yN )},

where N is the number of training examples, {xi} are inputs called features
or covariates and {yi} are the outputs or labels given by a human expert.
When each y is a categorical variable from a given finite set, e.g., y =
{1, 2, . . . , C}, the problem is usually known as classification. When y is
a real number, the problem is called regression [71]. Supervised learning
plays an important role in applications such as face recognition and object
detection.

• Unsupervised learning : The goal here is to find “interesting or meaningful”
patterns from only the input data in the following form:

{x1, . . . , xN}.

This type of learning is also referred to as knowledge discovery. Unlike su-
pervised learning, we are not provided with the desired output and therefore
there is no obvious error metric to use. However, unsupervised learning is
argued to be more applicable than supervised learning since the human ex-
pert is not required in this scenario [70]. Typical examples of unsupervised
learning are clustering and latent factor analysis [71].
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• Reinforcement learning : The task is concerned with learning how to act
or behave in an unknown environment so as to maximize the cumulative
rewards [93]. The learning algorithm is presented with occasional reward or
punishment signals. Reinforcement learning has been successfully applied
to various problems, such as automatic driving and robot control. More
recently, a reinforcement learning algorithm, AlphaGo, has defeat a world
champion in the game of Go [87].

The studies of this thesis fall into the category of unsupervised learning as we
are mainly concerned with discovering meaningful patterns from the unlabeled
time-sequence data.

1.2 Bayesian Statistics

Bayesian statistics is a theory in statistics on the basis of the Bayesian interpreta-
tion of probability in which probability represents the degree of belief in an event
and the belief can change as new information is gathered 1. In this section, we will
briefly discuss the difference between Bayesian statistics and frequentist statis-
tics, the most widely-applied statistics in machine learning and then introduce
two inference methods in Bayesian statistics.

1.2.1 Bayesian Statistics and Frequentist Statistics

There has been a debate among statisticians for nearly a century over the issue
of whether the Bayesian or frequentist paradigm is superior. The debate is still
ongoing, since these two paradigms do not share the same philosophical and
pedagogical foundation. However, methodologically there is an agreement that
both approaches contribute to the statistical practice to a great extent and each
is indispensable for full development of the other approach [5].

Let D and x be the data and the parameter. We now briefly discuss some of
the basic assumptions in Bayeisan and frequentist statistics.

• In Bayesian statistics [13], D is viewed as fixed after the data generation
process and x is treated as a random variable. According to Bayes’ theorem,
we have the posterior probability of x:

P (x|D) =
P (D|x)P (x)

P (D)
, (1.1)

where P (x) is the prior representing the initial degree of belief about the
variable and P (x|D) is the posterior representing the degree of belief after
seeing the data set D. The uncertainty of the parameter can be directly
obtained by computing the posterior distribution P (x|D).

• In frequentist statistics, the parameter x is viewed as fixed and the data D
are still treated as random after the data generation process. This setting
is opposite to Bayesian statistics [70]. An estimate of the parameter x is
conducted by applying an estimator δ to the data:

x̂ = δ(D).

There is no automatic way of deriving an optimal estimator δ and we are
free to choose any estimator δ as we want. The uncertainty about the

1https://deepai.org/machine-learning-glossary-and-terms/bayesian-statistics
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parameter estimate x̂ can be measured by calculating the sampling dis-
tribution of the estimator. The sampling distribution can be obtained by
sampling many different data sets from the true model. The bootstrap
[26] is one commonly-used Monte Carlo technique which can approximate
the sampling distribution. The posterior distribution in Bayesian statistics
and the sampling distribution by the bootstrap in frequentist statistics are
quite similar [30]. However, the bootstrap is not that direct since we need
to sample the data set multiple times [70].

1.2.2 Variational Inference and Markov Chain Monte Carlo Inference

One fundamental problem in the modern statistics is approximating the proba-
bility densities which are difficult to compute [12]. This problem arises naturally
in Bayesian inference. Bayesian inference [13] is a method of Bayesian statistical
inference where Bayes’ theorem is utilized to update the posterior probability of
a hypothesis as more evidence or data become available. More specifically, in
Equation (1.1) the posterior probability P (x|D) sometimes can not be analyti-
cally computed and has to be approximated.

Variational Bayesian inference [48] is one method to approximate the posterior
probability in a Bayesian model. One alternative and competitive strategy of this
task is Markov Chain Monte Carlo (MCMC) inference.

• MCMC inference [80, 63]: The basic idea in MCMC inference is to construct
a Markov chain on the state space whose stationary distribution is the target
posterior distribution P (x|D). That is, the random walk generated by the
Markov chain visits any possible state x with the frequency proportional to
P (x|D). This inference method can provide asymptotically exact samples
of the target posterior probability [80]. However, the computation cost of
MCMC inference is rather intensive since there might be a large amount of
rejected samples if the proposal distribution is not chosen properly and a
short mixing time is usually hard to obtain [33].

• Variational inference [48]: The basic idea in the variational inference is to
pick an approximation distribution q(x) from some tractable distribution
family and to try to make this approximation as close as possible to the true
posterior distribution P (x|D) [70]. Then the inference problem is reduced to
an optimization problem. The variational inference method does not have
the theoretical guarantee as the MCMC inference and there is possibly a
model bias since the tractable distribution family may not contain the true
posterior distribution. However, variational inference enjoys a much faster
convergence rate than MCMC inference and can be easily adapted to very
large data sets [44].

Our studies in this thesis fall into the category of variational inference in
Bayesian statistics. The reason is that we would like to obtain a direct and
computationally-efficient estimate of the uncertainty of the underlying parame-
ters. We should note that the studies of time-sequence data with MCMC inference
or in the frequentist paradigm are equally intriguing and worth further research
effort.

1.3 Time-Sequence Data

A time-sequence consists of a set of time-stamps, each of which records the arrival
time of an event. Time-sequence data can generally be classified into two types:
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the recurrent event data and the panel count data [91]. In this section, we briefly
introduce these two types of data which we are going to study in this thesis.

1.3.1 Recurrent Event Data

The first type of time-sequence data arise from experiments that monitor subjects
in a continuous fashion; and thereby the exact timestamps of all occurrences of
the events are fully observable. These data are usually referred to as recurrent
event data [15].

As a preliminary example of the recurrent event data, we introduce the coal-
mining disaster data set [46]. This data set records the time intervals between
successive coal-mining explosions involving 10 or more men killed from 1851 to
1962 in Britain. The entire data set is shown in Table 1.1. We notice that it is
difficult to examine the arrival rate of events by directly looking at the numbers
in Table 1.1.

Table 1.1: Coal-mining disaster data set. This data set records the time
intervals in days between successive explosions in mines, from 15th March 1851
to 22 March 1962. The numbers in the table are listed column-wisely.

157 65 53 93 127 176 22 1205 1643 312
123 186 17 24 218 55 61 644 54 536
2 23 538 91 2 93 78 467 326 145
124 92 187 143 0 59 99 871 1312 75
12 197 34 16 378 315 326 48 348 364
4 431 101 27 36 59 275 123 745 37
10 16 41 144 15 61 54 456 217 19
216 154 139 45 31 1 217 498 120 156
80 95 42 6 215 13 113 49 275 47
12 25 1 208 11 189 32 131 20 129
33 19 250 29 137 345 388 182 66 1630
66 78 80 112 4 20 151 255 292 29
232 202 3 43 15 81 361 194 4 217
826 36 324 193 72 286 312 224 368 7
40 110 56 134 96 114 354 566 307 18
12 276 31 420 124 108 307 462 336 1358
29 16 96 95 50 188 275 228 19 2366
190 88 70 125 120 233 78 806 329 952
97 225 41 34 203 28 17 517 330 632

One popular approach to modeling and visualizing the variation of the arrival
rate of events is via the intensity function in the inhomogeneous Poisson process
[52, 15]. In this thesis, we restrict ourselves to the recurrent event data in which
the arrival rate of events varies smoothly over time. For point processes which
allow “spiky” patterns and the arrival rate can be non-smooth functions, the
readers are referred to the Hawkes processes [39].

The traditional point-estimate approach to modeling the smoothly-varying
intensity function is based on the smoothing kernels [18]. Diggle [18] proposed
to utilize Rosenblatt’s density kernel estimate [81] on the intensity estimation
problem and to optimize the bandwidth of the kernel function via the empirical

5



Ripley’s function. The local likelihood method [103, 9, 43] can be seen as the
generalization of the kernel intensity estimate [18]. When using a zero-order
polynomial approximation in the local likelihood, the estimate is reduced to the
kernel smoothing estimate. However, when using a higher-order approximation,
we can only obtain the estimate of the intensity value at a given time. More
recently, Flaxman et al. [28] exploited the properties of the reproducing Hilbert
space to estimate the intensity function within the empirical risk minimization
framework.

Another branch of the intensity estimation methods is the Bayesian estimate.
Within the Bayesian framework, the prior of the intensity function is constructed
by passing a random function drawn from a Gaussian process, through a proper
transformation. This type of inhomogeneous Poisson processes is also known as
Gaussian-process modulated Poisson processes [60]. However, the Bayesian infer-
ence of the intensity function is intractable since we need to integrate an infinite
dimensional random function over the domain of the intensity function [2]. Var-
ious approximation methods have been proposed to perform the tractable infer-
ence, including the MCMC sampling [2, 84], the Laplace approximation method
[98] and the variational inference method [60, 47, 22].

A closely-related research direction circumvented the intractable inference
problem by introducing a computational grid [20] to discretize the domain of
the intensity function [68, 66, 29].

1.3.2 Panel Count Data

The second type of time-sequence data is due to the lack of supervision over
the recurrent events and only the numbers of the events between subsequent
observation times are recorded. This type of data is commonly referred to as
panel count data [91]. For example, it is sometimes too expensive for a patient to
pay for the continuous follow-up observation in the hospital after the treatment.
He/She is then allowed to go home after a certain treatment and is required to go
back to the hospital and report the symptoms. Therefore, only the numbers of
symptoms between subsequent visits are recorded, such as the number of vomits
or new tumors.

An illustrative example to show the difference between the recurrent event
data and the panel count data is given in Figure 1.1. In the example shown in
Figure 1.1, the patient vomited three times after the treatment. In the recurrent
event data, we have access to the exact time-stamp when the patient vomited
and the time-stamps are 60 minutes (1 hour), 121 minutes (2 hours 1 minutes)
and 190 minutes (3 hours and 10 minutes). However, in the case of panel count
data, the exact time-stamps of the vomits are no longer available. The patient
visited the hospital twice after the treatment and only the numbers of vomits
between subsequent visits are recorded.

Several maximum likelihood point-estimates have been proposed on the basis
of the likelihood of the panel count data or its variants. Wellner and Zhang [100]
proposed the nonparametric maximum likelihood estimator (NPMLE), assuming
that the underlying intensity function is a positive piece-wise constant function.
Based on NPMLE, Zhang and Jamshidian [105] added an additional Gamma-
distributed random variable to the intensity function to model the individual
effect among multiple time-sequences. Similar to the recurrent event data, the
local likelihood method has also been exploited by Betensky et al. [9] and Fan
et al. [25].
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Figure 1.1: The time-sequence of the vomits after the treatment. (a) Recurrent
event data. The exact time-stamps of three times of vomits can be obtained. (b)
Panel count data. The patient reported that in two intervals he/she vomited
once and twice respectively.

1.4 Contributions

This thesis is devoted to the application of the variational inference method, one
branch of the Bayesian inference methods in machine learning, on modeling the
time-sequence data. The contributions in this thesis are mainly on Chapters 3
and 4. We briefly introduce the contributions below.

1.4.1 Chapter 3: Variational Inference for Panel Count Data with
Gaussian Processes

Time-sequence data can be generally divided into the recurrent event data and
panel count data [91]. This chapter focuses on modeling multiple time-sequences
in the form of panel counts. The technical contributions of this chapter are
three-fold.

1. In the first place it undertakes to construct a variational inference procedure
for the Gaussian-process-modulated Poisson process model for panel count
data (GP4C).

2. To carry out a variational inference in this setting, we derive a simple
and tractable lower bound of the intractable evidence lower bound and
demonstrate through empirical evidence that with this lower bound, GP4C
outperforms a non-Bayesian method.

3. To model the diversity among multiple time-sequences, we proposed the
Gaussian-process-modulated Poisson process model for panel count data
with individual weight (GP4CW) model. Experiments show that this model
further improves the performance of test likelihood.

Generally speaking, this chapter presents two useful Bayesian time-sequence
modeling methods, GP4C and GP4CW. These models serve as an alternative
to the current mainstream point-estimates for the machine learning researchers
and practitioners who are interested in modeling and understanding panel count
data.
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1.4.2 Chapter 4: Bayesian Nonparametric Poisson Process Allocation

This chapter focuses modeling the diversity of time-sequence data. We choose
recurrent event data rather than panel count data because we could easily have
access to massive recurrent event data. The technical contributions of this chapter
are two-fold.

1. In the first place, we present a scalable and accurate Bayesian nonparamet-
ric approach for time-sequence modeling, that is, Bayesian Nonparametric
Poisson Process Allocation (BaNPPA).

2. We propose a computationally efficient variational inference algorithm for
BaNPPA and solve the un-identifiability issue by adding a constraint within
the inference algorithm to regulate the volume of each latent function.

Generally speaking, this chapter presents the challenges and possible solutions
when applying Bayesian nonparametric techniques on multiple time-sequences.
This discussion might provide insights on future Bayesian nonparametric re-
searches. For medical practitioners, BaNPPA can automatically identify different
patterns of symptoms and help develop individual treatments for each patient.

1.5 Organization

The thesis consists of five chapters and an illustrative flow chart is shown in
Figure 1.2. In this section, we will introduce the organization of each chapter.

In Chapter 2, we give the preliminaries of this thesis. The general notations as
well as the notations on the time-sequence data are listed in Section 2.1. In Sec-
tion 2.2, we introduce some of the basic concepts related to stochastic processes.
Several stochastic processes, including temporal point processes, Gaussian pro-
cesses and stick-breaking processes are briefly discussed in Section 2.3, 2.4 and
2.5, respectively. We review the intensity estimation for the recurrent event data
in Section 2.6 and the intensity estimation for the panel count data in Section
2.7.

In Chapter 3, we present the first Bayesian inference framework for Gaussian
process-modulated Poisson processes when the temporal data appear in the form
of panel counts. In Section 3.1 and 3.2, we introduce and discuss the background
of this research. In Section 3.3, we provide the variational inference framework
for panel count data with Gaussian processes. We also briefly discuss how to
model the diversity among multiple time-sequences with the GP4CW model in
Section 3.4. The experiments on GP4C and GP4CW are shown in Section 3.5.
Section 3.6 contains the supplementary materials for the proof of one lemma in
the Section 3.3.

In Chapter 4, we focus on how to model the diversity among multiple time-
sequences with latent functions. As a beginning, we study the case of recurrent
event data. In Section 4.1 and 4.2, we introduce and discuss the problem of factor
analysis for time-sequence data. In Section 4.3, we provide the BaNPPA model.
Then the variational inference for the BaNPPA model can be found in Section
4.4. Experiments of the BaNPPA model is then shown in Section 4.5. Section 4.6
contains the supplementary materials for the derivations related to the evidence
lower bound (ELBO).

Finally in Chapter 5, we conclude this thesis and present several directions
for future work.
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Figure 1.2: Structure of the thesis. The contributions in this thesis are mainly
on Chapters 3 and 4.
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Chapter 2

Preliminaries and Previous Work

In this chapter, we will introduce the notations used in this thesis. A brief
introduction of several stochastic processes, mainly on temporal point processes,
Gaussian processes and stick-breaking processes, will also be provided. Finally
we will review the previous studies in the intensity estimation for both recurrent
event data and panel count data.

2.1 Notations

In this section, we will introduce the general notations used in this thesis as well
as the notations for the time-sequence data.

2.1.1 General Notations

We denote a random variable with an uppercase letter, such as X, Y , or Z.
A scalar or an experimental observation of a random variable is denoted with
a lowercase letter x, y, or z. We denote the distribution of a discrete random
variable or the probability of an event with P (·) and the probability density
function of a continuous random variable as p(·). We denote a vector with a
lowercase letter in bold, such as x or y and a matrix with an uppercase letter
in bold, such as X or Y . y − x means that the scalar x is subtracted from all
elements in the vector y.

2.1.2 Notations on the Time-Sequence Data

Throughout this thesis, we denote the set of time-sequence data from K ∈ N+

independent subjects as D = {dk}Kk=1. dk is the time-sequence data which we
collected from the kth subject. Each subject will generate a sequence of events
in an observation window X (k) ⊂ R. Since each subject will join and drop out
from the experiment at different time-stamps, X (k) are not necessarily the same.

In the recurrent event data, the time-stamp of each event is a scalar and is
fully observable. We denote the number of events observed from the kth subject
as Nk ∈ N+. The time-sequence data from the kth subject can be represented as
follows:

dk
∆
=

{
x
(k)
j ∈ X (k)

}Nk

j=1
. (2.1)

In the panel count data, we do not know the exact time-stamp for each event

and the kth subject is assessed inNk ∈ N+ intervals {X (k)
i }Nk

i=1, and these intervals
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satisfy the following condition:

X (k)
i

∩
X (k)
j = ∅, i ̸= j,

Nk∪
i=1

X (k)
i = X (k).

For the kth subject, we have access to each interval X (k)
i and the number of

events observed in this interval m
(k)
i = |{x(k)j ∈ X (k)

i }|. The panel count data
from each subject can be represented as follows:

dk
∆
=

{
(X (k)

i ,m
(k)
i )

}Nk

i=1
. (2.2)

2.2 Basic Concepts of Stochastic Processes

We briefly review the concepts of the probability space, the random variable and
the stochastic process. For more rigorous discussions, the readers are referred
to Durrett [23], Stark and Woods [90] and Gallager [31]. These basic concepts
are essential in understanding concrete examples of stochastic processes in the
following sections.

Definition 2.2.1. A probability space (Ω,F , P ) is a triple of the sample space
Ω, the σ-field F and the probability measure P .

The sample space Ω defines the possible outcomes in the experiment. The
σ-field F is a non-empty collection of the subsets of Ω and satisfies the following
properties:

• Ω ∈ F .

• If A ∈ F , then Ω \A ∈ F .

• For a countable collection of the subsets {Ai ∈ F}∞i=1, then

∞∪
i=1

Ai ∈ F .

These properties indicate that F contains the universal set Ω, is closed under
the complementation and is closed under the countable union. Each element in
the σ-field is called an event and the σ-field defines the collection of events we
are interested in from the sample space Ω. The probability measure P is defined
on the σ-field F to measure the probability of each event. More specifically,
the probability measure is a function P : F → R which satisfies the following
properties:

• P (Ω) = 1.

• P (A) ≥ 0, ∀A ∈ F .

• For a countable collection of the disjoint subsets {Ai ∈ F}∞i=1, Ai ∩ Aj =
∅, ∀i ̸= j,

P
( ∞∪

i=1

Ai

)
=

∞∑
i=1

P (Ai).
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These properties guarantee that a probability measure is normalized, non-
negative and countably additive.

Next we use the experiment of tossing a fair coin as an example to ex-
plain the concepts of the probability space. The possible outcome when toss-
ing a fair coin forms the sample space Ω = {HEAD,TAIL}. One σ-field F is
{∅, {HEAD}, {TAIL}, {HEAD,TAIL}}. Here the empty set ∅ represents the sit-
uation when the outcome is neither head nor tail and the subset {HEAD,TAIL}
represents the situation when the outcome is either head or tail. Since the coin
is fair, we can then assign a probability to all events in F with the probability
measure P .

P (∅) = 0, P ({HEAD}) = P ({TAIL}) = 1/2,

P ({HEAD,TAIL}) = P ({HEAD}) + P ({TAIL}) = 1.

Based on the concepts of the probability space, we are ready to define the
random variable and the stochastic process.

Definition 2.2.2. A random variable X is a function X : Ω → A, where Ω is
the sample space and A is a measurable space. Usually A is the space of real
numbers, i.e., A = R. The mapping satisfies the property that for every subset
S ∈ A, the set {ω|X(ω) ∈ S} is an event in the σ-field F .

When we perform the function mapping X : Ω → A, the σ-field B in the
original probability space is also mapped to a new σ-field, BA. The mapping
property ensures that the output of a random variable will inherit its own prob-
ability measure [36]. For example, we can define the probability measure PX on
the σ-field BA.

PX(B)
∆
= P (X−1(B)) = P ({ω|X(ω) ∈ B}), ∀B ∈ BA. (2.3)

We can show that PX is a probability measure from the elementary set theory
and the space (A,BA, PX) is a probability space.

As an example of the random variable, we re-consider the experiment of toss-
ing a coin. We can define the following random variable X based on the outcome
ω ∈ Ω = {HEAD,TAIL}. X is also called a Bernoulli random variable.

X(ω) =

{
1 if ω = HEAD,

0 if ω = TAIL.

In this case, A = {1, 0}.

Definition 2.2.3. A stochastic process is an infinite set of random variables
defined on the same probability space (Ω,F , P ).

A discrete stochastic process is denoted with {Xi}i∈I with I indicating a
countable index set, while a continuous stochastic process is usually denoted as
a function X(t), where t is a point in the continuous space T . Note that each
random variable X(t) is a function of the experiment outcome w ∈ Ω.

2.3 Dirichlet Processes and Stick-breaking Processes

We discuss the concept of a Dirichlet process, which is introduced by Ferguson
[27], as the first useful tool from the arsenal of stochastic processes. A Dirichlet
process can be used to automatically determine the number of components in a
mixture model such as the Gaussian mixture model [71]. It has been widely used
in the document modeling [99] and the factor analysis [94].
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2.3.1 Definition of a Dirichlet Process

Following the routine used in Orbanz and Teh [73], we first define the Dirac
measure and then define the Dirichlet process through the stick-breaking process.

Definition 2.3.1. Let Ω be the sample space and F be a σ-field on Ω. A Dirac
measure δϕ is the probability measure which satisfies the property ∀A ∈ F ,

δϕ(A) =

{
1 if ϕ ∈ A,

0 if ϕ /∈ A.

The Dirac measure assigns the mass 1 to the single point ϕ in the sample
space and is used as the basic element (atom) in the Dirichlet process.

Definition 2.3.2. If α > 0 and if G is a probability measure on a sample space
of models Ω, the random discrete probability measure Θ which is generated by

Vk ∼ Beta(1, α), k = 1, 2, . . . ,∞, (2.4)

Yk = Vk

k−1∏
i=1

(1− Vi), k = 1, 2, . . . ,∞, (2.5)

Φk ∼ G, Θ =
∞∑
k=1

YkδΦk
,

is called a Dirichlet process (DP) with the base measure G and the concentration
parameter α. We denote a sample from a DP as Θ ∼ DP(α,G). The sampling
procedure for the random variables {Yk}∞k=1 is called a stick-breaking process.

The name “stick-breaking” comes from the construction procedure. We can
imagine that we originally have a stick with length 1 and at each step we repeat-
edly break off a portion Vk of the remaining stick. Each piece has a length of Yk.
Finally we obtain a set of pieces {Yk}∞k=1. The sum of the first K pieces can be
computed as follows:

K∑
k=1

Yk =

K∑
k=1

Vk

k−1∏
j=1

(1− Vj) = 1−
K∏
k=1

(1− Vk).

As K → ∞, the expected sum of the all the pieces yields

lim
K→∞

E
[ K∑
k=1

Yk

]
= 1− lim

K→∞

K∏
k=1

E(1− Vk) = 1− lim
K→∞

( α

1 + α

)K
= 1.

Two examples of the stick-breaking process with different hyper-parameters
α are shown in Figure 2.1.

An interesting property [27] is that the length of the pieces are ordered in the
way that on average a piece with a smaller index k will have a larger length Yk
than a piece with a larger index. More formally, this property is given by the
following theorem. This property can alleviate the identifiability issue [71] in the
mixture models.

Theorem 2.3.1 (Ferguson [27]). For an experimental outcome from a stick-
breaking process described in Equations (2.4) and (2.5), the following inequality
holds.

E[Yi] > E[Yj ], ∀i > j.
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Figure 2.1: The illustration of the lengths of the first 10 pieces {Yi}10i=1 from two
stick-breaking processes. (Left) A stick-breaking process with the concentration
parameter α = 1. (Right) A stick-breaking process with the concentration pa-
rameter α = 8. Notice that the process does not end within 10 steps and the sum
of the first 10 pieces is smaller than 1.

Proof. Since {Vi} are identical independent beta-distributed random variables,
we can obtain the expectation of Yk.

E[Yk] = E
[ ∞∑
k=1

Vk

k−1∏
i=1

(1− Vi)
]
= E[Vk]

k−1∏
i=1

E[1− Vi] =
1

1 + α

( α

1 + α

)k−1
.

This expectation will decrease with the increase of the index k.

2.3.2 Variational Inference with a Dirichlet Process

To perform the inference for the probabilistic models with a Dirichlet process,
different approaches including the Markov Chain Monte Carlo (MCMC) sampling
with the Chinese restaurant process [10] and the variational inference approach
[11] have been proposed.

Next we discuss the variational inference method with a truncated stick-
breaking representation [11] below. In the variational inference framework, the
variational distribution q({Vk}) that we use to approximate the stick-breaking
process in Equations (2.4) and (2.5) is defined as follows:

q(Vk) =

{
Beta(τk1, τk2) if k < K,

δ1 if k = K.

Yk = Vk

k−1∏
i=1

(1− Vi), k = 1, 2, . . . ,K.

τk1, τk2 are two positive real numbers. The variational distribution is a trun-
cation of the original Dirichlet process and the value K as the maximum number
of components which can be used by the model. Also notice that the original
Dirichlet process prior is not truncated, and the truncation is designed for the
feasible inference [11].

Let τk1 = 1 and τk2 = α and the maximum number of components be K = 10.
We illustrate two random draws from the truncation procedure with two different
settings of the parameter α in Figure 2.2. We can notice that the sum of the 10
pieces is exactly 1.
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Figure 2.2: The illustration of the lengths of the pieces {Yi}10i=1 from two truncated
stick-breaking procedure with the maximum number of components K = 10.
(Left) The concentration parameter α = 1. (Right) The concentration parameter
α = 8.

2.3.3 An Example: Dirichlet Process Gaussian Mixture Model

As a concrete example, we briefly review the variational inference method for the
Dirichlet process Gaussian mixture model (DPGMM) [11, 92, 35]. In a DPGMM,
the data points are assumed to be generated from an infinite mixture of Gaussian
distributions with unknown parameters. The DPGMM provides a solution to
jointly infer the number of Gaussian distributions and their parameters.

We consider the simple case where we have a data set X = {x1, . . . ,xN}
with each data point xi ∈ R2. Let N (µ,Λ−1) be a Gaussian distribution with
the mean vector µ and the precision matrix Λ. Let NW(µ0, λ,W , ρ) be the
normal-Wishart distribution [71] with the parameters {µ0, λ,W , ρ}.

NW(µ,Λ;µ0, λ,W , ρ) ∝|Λ|
1
2 exp

(
− 1

2
(µ− µ0)

⊤λΛ(µ− µ0)
)

× |Λ|
ρ−3
2 exp

(
− 1

2
tr(W−1Λ)

)
.

The generative process in a DPGMM is given in Algorithm 1.

Algorithm 1: The generative process of the DPGMM.

Input : The hyper-parameters {α,µ0, λ,W , ρ} and the data set size N .
Output: A data set {xn}Nn=1.

1 for each component k = 1, 2, . . . ,∞ do
2 Sample Vk ∼ Beta(1, α) and obtain the observation vk.

3 Caluclate yk = vk
∏k−1

i=1 (1− vi).
4 Sample (µk,Λk) ∼ NW(µ0, λ,W , ρ).

5 end
6 Set y = [y1, . . . , y∞].
7 for each data point n = 1, . . . , N do
8 Sample cn ∼ Multinomial(y).
9 Sample xn ∼ N (µcn ,Λ

−1
cn ).

10 end

Based on Algorithm 1, the joint distribution of the data and the hidden vari-
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ables is

p({vk}∞k=1, {µ}∞k=1, {Λ}∞k=1, {cn}Nn=1, {x}Nn=1)

=
∞∏
k=1

Beta(vk; 1, α)
∞∏
k=1

NW(µk,Λk;µ0, λ,W , ρ)
N∏

n=1

∞∏
k=1

y
I(cn=k)
k

×
N∏

n=1

N (xn;µcn ,Λ
−1
cn ).

Algorithm 2: The variational inference of the DPGMM.

Input : The hyper-parameters {α,µ0, λ,W , ρ} and the data set {xn}Nn=1.
Output: The parameters in the variational distribution {τ1, τ2,Φ, B}.

1 Initialize {τ1, τ2,Φ, B}.
2 while not converge do
3 for each data point n = 1, . . . , N and each component k = 1, . . . , T do
4 Update βnk.

βnk ∝ exp
(
Eq[ln vk] +

k−1∑
j=1

Eq[ln(1− vj)] + Eq lnN (xn|µk,Λ
−1
k )

)
.

(2.6)
5 end
6 for each component k = 1, . . . ,K do

7 Calculate x̄ =
(∑N

n=1 βnkxn

)
/
∑N

n=1 βnk and β̂ =
∑N

n=1 βnk.

8 Update the parameters for this component.

τk1 = 1 +
N∑

n=1

βnk, τk2 = α+
N∑

n=1

K∑
j=k+1

βnj ,

λ̃k = λ+
N∑

n=1

βnk, ρ̃k = ρ+
N∑

n=1

βnk,

µ̃k0 =
λµ0 +

∑N
n=1 βnkxn

λ+ β̂
,

W̃−1
k = W−1 +

λβ̂

λ+ β̂
(µ− x̄)(µ− x̄)⊤ +

N∑
n=1

βnk(x− x̄)(x− x̄)⊤.

9 end

10 end

The variational distribution with the truncation level K is chosen as follows:

q({vk}Kk=1, {µ}Kk=1, {Λ}Kk=1, {cn}Nn=1)

=q(vK)
K−1∏
k=1

Beta(vk; τk1, τk2)
K∏
k=1

NW(µk,Λk; µ̃k0, λ̃k, W̃k, ρ̃k)
N∏

n=1

K∏
k=1

β
I(cn=k)
nk ,

where q(vK) = δ1 and I(cn = k) is an indicator function with the property

I(cn = k) =

{
1 if cn = k,

0 if cn ̸= k.
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Figure 2.3: An illustration of the variational inference for the DPGMM. Data
points are two-dimensional, i.e., x = [x1, x2] ∈ R2. (Left) One generated data set
with 6 components. (Right). The result from DPGMM with the truncation level
K = 50 identifies 5 clusters.

In the framework of the variational inference, we optimize the variational
distribution by maximizing the evidence lower bound of the data likelihood.

ln p({x}Nn=1) ≥ Eq

[
ln p({vk}∞k=1, {µ}∞k=1, {Λ}∞k=1, {cn}Nn=1, {x}Nn=1)

]
− Eq[ln q({vk}Kk=1, {µ}Kk=1, {Λ}Kk=1, {cn}Nn=1)]. (2.7)

Let τ1 = {τk1}K−1
k=1 , τ2 = {τk2}K−1

k=1 , Φ = {µ̃k0, λ̃k, W̃k, ρ̃k}Kk=1 and B =
{βnk}. The parameters to be optimized in the rightmost side of Equation (2.7)
are {τ1, τ2,Φ, B}. Since the normal-Wishart distribution is conjugate to the data
likelihood, we can obtain the following updating rule [11] in Algorithm 2. Let
Ψ(·) be the digamma function. In Equation (2.6), the three expectations can be
analytically computed as follows:

Eq[ln vk] = Ψ(τk1)−Ψ(τk1 + τk2),

Eq[ln(1− vj)] = Ψ(τj2)−Ψ(τj1 + τj2),

Eq lnN (xn|µk,Λ
−1
k ) =

1

2

(
Ψ
( ρ̃
2

)
+Ψ

( ρ̃− 1

2

))
+

1

2
ln |W̃k| −

1

λ̃k

− ρ̃k
2
(µk0 − xn)

⊤W̃k(µk0 − xn).

An illustration of one sampling data set and the variational inference result
of the data set are provided in Figure 2.3. We can observe that even with a large
K = 50, the variational inference algorithm can still identify a small number of
clusters.

2.4 Gaussian Processes

A Gaussian process can be used as a prior for an unknown function and is applied
widely in Bayesian non-linear nonparametric regression and classification [77].
The definition of a Gaussian process is given as follows.

Definition 2.4.1. A Gaussian process is a collection of random variables, any
finite of which follows a joint Gaussian distribution.
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In Definition 2.2.3, a stochastic process is a set of random variables and for
a Gaussian process, the set is the input space X ⊂ RD, with D indicating the
number of the inputs. A Gaussian process is specified by the mean function and
the covariance function. We denote the mean function m(x) and the covariance
function κ(x,x′) of a real-valued process f(x),x ∈ X as follows:

m(x) = E[f(x)],
κ(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))].

We denote a function f drawn from a Gaussian process with the mean function
m(x) and the covariance function κ(x,x′) as follows:

f ∼ GP(m(x), κ(x,x′)).

For any set of points {x1, . . . ,xN} with each xi ∈ X , we denote the input

matrix as X
∆
= [x1, . . . ,xN ] ∈ RD×N . According to Definition 2.4.1, we have

a joint Gaussian distribution for the output vector f
∆
= [f(x1), . . . , f(xN )]⊤ ∈

RN×1.
f ∼ N (m,KXX), (2.8)

where the mean vector m
∆
= [m(x1), . . . ,m(xN )]⊤ ∈ RN×1 and the covariance

matrix KXX can be computed as follows:

KXX
∆
=

κ(x1,x1) . . . κ(x1,xN )
...

. . .
...

κ(xN ,x1) . . . κ(xN ,xN )

 . (2.9)

A covariance matrix of this kind is also named a Gram matrix in the kernel
methods [70]. For the covariance function, we use the automatic relevance deter-
mination (ARD) kernel in the following discussion. Let xj be the j-th element of
the vector x.

κARD(x,x
′) = c exp

(
− 1

2

D∑
j=1

bj(xj − x′j)
2
)
, bj ≥ 0. (2.10)

The hyper-parameters in the ARD kernel are {c, b}. This kernel is also known
as the squared exponential (SE) kernel.

2.4.1 Gaussian Processes for Regression

In a regression task, we are given a data set consisting of input-response tuples
D = {(xi, yi)}Ni=1 with each xi ∈ X ⊂ RD and each yi ∈ Y ⊂ R is a real number.
We denote y = {yi}Ni=1. Our task is to learn a mapping f : X → Y.

In the standard Gaussian Process regression method [102], we place a Gaus-
sian process prior on the function f and f ∼ GP(m(x), κ(x,x′)) and the mean
function m(x) is usually chosen to be a constant m(x) = m0. We place a Gaus-
sian noise model for the observed data tuple (x, y) and p(y|f ;x, σ) = N (f(x), σ2)
where N (·) is a normal distribution. Assuming the noises are added indepen-
dently to the function values {f(xi)} conditioned on the latent function f , the
joint likelihood is computed as follows:

p(f ,y) = p(f)p(y|f) = p(f)

N∏
i=1

p(yi|f(xi)).
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The marginal likelihood p(y) is can be computed below.

p(y) =

∫
p(y|f)p(f)df

=

∫ [ N∏
i=1

1√
2πσ2

exp
(
− (yi − f(xi))

2

2σ2

)]
× 1

(2π)N/2|KXX |1/2
exp

(
− 1

2
(f −m0)

⊤K−1
XX(f −m0)

)
df

=N
(
y
∣∣∣m0,KXX + σ2I

)
,

where we denote m0 ∈ RN as a vector with all elements equal to m0. The
learning in the Gaussian process regression method is conducted by maximizing

the marginal likelihood p(y) = N (y
∣∣∣m0,KXX +σ2I) with respect to the hyper-

parameters in the covariance function (such as the hyper-paramters {c, b} in the
ARD covariance function), m0 in the mean function and the noise level σ.

To predict the value of the function at an arbitrary point x∗ in the Gaussian
process regression, we will examine the posterior process when we have the data
likelihood p(y|f ;x, σ) = N (f(x), σ2).

Theorem 2.4.1 (Rasmussen [77]). Assuming that the prior is a Gaussian process
f ∼ GP(m(x), κ(x,x′))) and the data likelihood is p(y) =

∏N
i=1N (0, σ2), the

posterior of this Gaussian process is still a Gaussian process GP(m̂(x), κ̂(x,x′))),
with the mean function m̂(x) and the covariance function κ̂(x,x′) given by the
following equations.

m̂(x) = m0 + κ(x,X)(KXX + σ2I)−1(y −m0),

κ̂(x,x′) = κ(x,x′)− κ(x,X)(KXX + σ2I)−1κ(X,x′).

Proof. According to Definition 2.4.1, the joint distribution of an observed data
matrix X and any un-observed data matrix X∗ is Gaussian-distributed.[

f
f∗

]
= N

([
m0

m∗
0

]
,

[
KXX KXX∗

KX∗X KX∗X∗

])
.

After observing the output y, the joint distribution of y and f∗ can be derived
by integrating out f in p(y,f ,f∗) and the result is:[

y
f∗

]
= N

([
m0

m∗
0

]
,

[
KXX + σ2I KXX∗

KX∗X KX∗X∗

])
.

The posterior distribution of any un-observed data p(f∗|y,X,x∗) can be
calculated from the joint distribution and the result is given as follows:

p(f∗|y;X,X∗) = N (m̂(X∗), K̂X∗X∗). (2.11)

If we take the observed data into concern, the joint distribution is as follows: y
f
f∗

 = N
(m0

m0

m∗
0

 ,
KXX + σ2I KXX KXX∗

KXX KXX KXX∗

KX∗X KX∗X KX∗X∗

)
.

Similarly, when there are a part of the observed data in the joint distribution,
the result is still the same. From Definition 2.4.1, we conclude that the posterior
process is still a Gaussian process.
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Figure 2.4: The illustration of the prior distribution and the posterior distribution
of the Gaussian process in a regression task. A 95% credible interval is also
provided for both the prior and the posterior distribution. We also plot three
sampled random functions for both the prior and the posterior distribution.

An illustration of the prior distribution and the posterior distribution after
we observer several data tuples are shown in Figure 2.4. We notice that the
uncertainty about the shape of the function is reduced after observing the data
tuples.

Given the above theorem, the prediction of the function value at an arbitrary
point x∗ is given by a Gaussian distribution since according Definition 2.4.1, the
function value at any given point is a Gaussian distributed random variable.

f(x∗) ∼ N (m̂(x), κ̂(x∗,x∗)). (2.12)

During the training of the Gaussian process regression, the bottleneck of the
computational complexity 1 lies in the inversion of the covariance matrix KXX+
σI and is O(N3) [88]. Once we obtain the inversion of the covariance matrix,
the computational complexity for one test point is O(N) for computing the mean
value m̂(x∗) and O(N2) for computing the variance κ̂(x∗,x∗).

2.4.2 Sparse Gaussian Processes for Regression

In order to reduce the computational complexity in the standard Gaussian process
regression, various methods have been proposed. One approach [88, 86] is to
modify the prior of the Gaussian process with pseudo inputs and then learn the
hyper-parameters by maximizing the marginal likelihood with the modified prior.
However, the number and the positions of the pseudo inputs in these methods are
additional hyper-parameters in the marginal likelihood to be optimized. It can
lead to over-fitting in the experiments [96]. Another line of researches [96, 40]
utilizes the framework of the variational inference and selects the pseudo inputs
and the hyper-parameters by maximizing a lower bound of the exact marginal
likelihood.

In the sparse Gaussian process method (sGP)[96], a set of pseudo inputs X̄ =
{x̄m}Mm=1,M < N and their corresponding function values f̄ = {f(x̄m)}Mm=1 are
considered. The name “pseudo input” indicates that the function values at these
points are not directly observed.

The first intuition is that we can augment the joint distribution p(y,f) with
the additional function values f̄ without changing the marginal distribution of

1To the best of our knowledge, the current state of the art for the inversion of a matrix is
O(N2.3728639) [54].
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p(y,f). The distribution of the function values of the pseudo inputs p(f̄ ; X̄) and
the conditional distribution p(f |f̄ ;X) are defined as follows:

p̂(f |f̄ ;X) = N (f ;m0 +KXX̄K−1
X̄X̄

(f̄ −m0),KXX −KXX̄K−1
X̄X̄

KX̄X),

p̂(f̄ ; X̄) = N (f̄ ;m0,KX̄X̄).

Theorem 2.4.2 (Snelson and Ghahramani [88]). The marginal distribution
p̂(y,f) equals the marginal distribution constructed by a Gaussian process prior.

p(y,f) =

∫
p(y|f)p̂(f |f̄ ;X)p̂(f̄ ; X̄)df̄ .

Proof. We can marginalize the distribution p̂(f , f̄) to obtain the marginal dis-
tribution of p̂(f). Let A = KXX̄K−1

X̄X̄
, B = KXX − KXX̄K−1

X̄X̄
KX̄X and

C = KX̄X̄ .

p̂(f) =

∫
p̂(f |f̄ ;X)p̂(f̄ ; X̄)df̄

∝
∫

exp
(
− 1

2
(f̄ −m0)

⊤C−1(f̄ −m0)−
1

2
(f −Af̄)⊤B−1(f −Af̄)

)
df̄ .

(2.13)

This indicates that p̂(f) is also a Gaussian distribution and we can directly
compute the mean vector and the covariance matrix.

E[f ] = Ep̂(f̄)[Ep̂(f |f̄)(f)] = Ep̂(f̄)[m0 +A(f̄ −m0)] = m0

Var[f ]
∆
= E[(f − E[f ])(f − E[f ])⊤] = E[ff⊤] = Ep̂(f̄)[Ep̂(f |f̄)(ff

⊤)]

= Ep̂(f̄)[B +Af̄f̄⊤AT ] = B +ACA⊤

= KXX −KXX̄K−1
X̄X̄

KX̄X +KXX̄K−1
X̄X̄

KX̄X̄K−1
X̄X̄

KX̄X = KXX .

Since p̂(f) = N (f ;m0,KXX) = p(f), the joint distribution p̂(y,f) is the
same as the joint distribution with the original Gaussian process prior.

Within the framework of the variational inference, the variational distribution
q(f , f̄) is chosen as follows:

q(f , f̄) = q(f |f̄)q(f̄) = p(f |f̄ ;X)N (f̄ ;µ,Σ).

Then we can derive a lower bound of the marginal likelihood with the aid of
q(f , f̄). We call the lower bound the evidence lower bound (ELBO). Let θ denote
all hyper-parameters including the hyper-parameters in the covariance function
and the positions of the pseudo inputs. The ELBO can be derived as follows:

ln p(y) = ln

∫∫
p(y,f , f̄ ;X, X̄)dfdf̄

= ln

∫∫ (
q(f , f̄)

p(y,f , f̄ ;X, X̄)

q(f , f̄)

)
dfdf̄

≥
∫∫

q(f , f̄) ln
p(y,f , f̄ ;X, X̄)

q(f , f̄)
dfdf̄ (Jensen’s inequality.)

=

∫∫
q(f , f̄) ln

p(y|f)p(f |f̄ ;X)p(f̄ ; X̄)

p(f |f̄ ;X)q(f̄)
dfdf̄

= Eq(f)[ln p(y|f)] + Eq(f̄)

[
ln
p(f̄ ; X̄)

q(f̄)

]
∆
= LELBO(µ,Σ; θ). (2.14)
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For the regression task, the optimal variational distribution to maximize
LELBO can be calculated analytically by the following theorem. A more detailed
derivation can be found in Titsias [96].

Theorem 2.4.3 (Titsias [96]). Assuming that the prior is a sparse Gaussian
process and the data likelihood is p(y) =

∏N
i=1N (0, σ2), the optimal variational

distribution q∗(f̄) to maximize the ELBO is a Gaussian distribution q∗(f̄) =
N (f̄ ;µ∗,Σ∗), where

µ∗ = KX̄X̄

(
KX̄X̄ +

1

σ2
KX̄XKXX̄

)−1( 1

σ2
KX̄Xy +m0

)
,

Σ∗ = KX̄X̄

(
KX̄X̄ +

1

σ2
KX̄XKXX̄

)−1
KX̄X̄ .

Proof. We can write LELBO as a function of q(f̄).

LELBO(q(f̄)) =

∫
p(f |f̄)q(f̄) ln p(y|f)dfdf̄ +

∫
q(f̄) ln

p(f̄)

q(f̄)
df̄ .

Taking the gradient with respect to the function q(f̄), we could obtain the
optimal distribution q∗(f̄).

q∗(f̄) ∝ p(f̄) exp
(∫

p(f |f̄) ln p(y|f)df
)
. (2.15)

In this equation, the integral in the exponential term can be computed as
follows:∫

p(f |f̄) ln p(y|f)df

= ln[N (y;KXX̄K−1
X̄X̄

f̄ , σ2I)]− 1

2σ2
tr(KXX −KXX̄K−1

X̄X̄
KX̄X) (2.16)

Let Q = KXX̄K−1
X̄X̄

. Then the optimal distribution q∗(f̄) is

q∗(f̄) ∝ p(f̄)N (y;Qf̄ , σ2I)

= exp
(
− 1

2
(f̄ −m0)K

−1
X̄X̄

(f̄ −m0)−
1

2σ2
(Qf̄ − y)⊤(Qf̄ − y)

)
.

We can recognize that this is also a Gaussian distribution with the mean
vector µ∗ and the covariance matrix Σ∗.

Inserting the optimal variational distribution q∗(f̄) back into LELBO(µ,Σ; θ),
we obtain the final objective function L∗

ELBO.

L∗
ELBO = Eq∗(f̄)[Ep(f |f̄)[ln p(y|f)]] + Eq∗(f̄)

[
ln
p(f̄ ; X̄)

q∗(f̄)

]
= ln

[ ∫
p(f̄) exp

(∫
p(f |f̄) ln p(y|f)df

)
df̄

]
= ln

[
Ep(f̄)N (y;Qf̄ , σ2I)

]
− 1

2σ2
tr(KXX −KXX̄K−1

X̄X̄
KX̄X)

(Equation (2.16))

= lnN (y;Qm0, QK−1
X̄X̄

Q⊤ + σ2I)− 1

2σ2
tr(KXX −KXX̄K−1

X̄X̄
KX̄X).

The training of the hyper-parameters is conducted by maximizing L∗
ELBO with

respect to the hyper-parameters θ.
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For the computational complexity of using a sparse Gaussian process for the
regression task, sinceM < N the computational complexity when performing the
inversion of the matrix is reduced to O(M3) while the computational complexity
is O(N3) in the standard Gaussian process regression. The bottleneck now lies in
the matrix-matrix multiplication KXX̄K−1

X̄X̄
and this operation costs O(NM2).

The final computational complexity is O(NM2).

2.4.3 Sparse Gaussian Processes for Non-conjugate Models

The closed-form solution of q(f̄) for the regression task relies on the form of
the data likelihood, which is a Gaussian distribution and is conjugate to the GP
prior. However, in other tasks, such as the classification [49, 50] or the intensity
estimation [60], the data likelihood is no longer conjugate to the Gaussian process
prior and the exact inference is no longer available.

When we are using a non-conjugate data likelihood, however, the ELBO
LELBO in Equation (2.14) is still applicable.

LELBO(µ,Σ;θ)
∆
= Eq(f(x))[ln p(y|f(x))] + Eq(f̄)

[
ln
p(f̄ ; X̄)

q(f̄)

]
, (2.17)

q(f̄) = N (f̄ ;µ,Σ).

The first part in LELBO depends on the form of the data likelihood. For
example, in the binary classification task [49], each yi ∈ {0, 1} and we assume
the data likelihood p(yi = 1|f(xi)) = 1/(1+exp(−f(xi))). The first term can be
decomposed into the sum of N terms by the independence assumption.

Eq(f(x))[ln p(y|f(x))] =
N∑
i=1

Eq(f(x))[ln p(yi|f(xi))] =

N∑
i=1

Eq(f(xi))[ln p(yi|f ;xi)].

The last equation comes from the fact that the marginal of a Gaussian distri-
bution is still a Gaussian distribution. The variational distribution q(f(x)) can
be computed similarly to Equation (2.13) and the posterior q(f(x)) is a Gaussian
process GP(m̄(x), κ̄(x,x′)).

m̄(x) = m0 + κxX̄K−1
X̄X̄

(µ−m0),

κ̄(x,x′) = κxx′ − κxX̄K−1
X̄X̄

κ⊤
x′X̄ + κxX̄K−1

X̄X̄
ΣK−1

X̄X̄
κx′X̄ .

The second part in LELBO is the negative Kullback-Leibler divergence between
two Gaussian distributions.

Eq(f̄)

[
ln
p(f̄ ; X̄)

q(f̄)

]
= −KL(q(f̄)||p(f̄ ; X̄))

= −KL(N (f̄ ;µ,Σ)||N (f̄ ;0,KX̄X̄))

=
1

2
ln

|Σ|
|KX̄X̄ |

+
1

2
Eq(f̄)

[
(f̄ − µ)⊤Σ−1(f̄ − µ)− (f̄ −m0)

⊤K−1
X̄X̄

(f̄ −m0)
]

=
1

2
ln

|Σ|
|KX̄X̄ |

+
M

2
− 1

2
tr
(
K−1

X̄X̄
(Σ+ (µ−m0)(µ−m0)

⊤
)
. (2.18)

The training process when we have a non-conjugate data likelihood can be
conducted by two different approaches. In the first approach, we use the grid-
search [51] or the Bayesian optimization [89] to choose the hyper-parameters θ.
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When the hyper-parameters θ are all fixed, we solve the following optimization
problem.

(µ∗,Σ∗) = argmax
µ,Σ

LELBO(µ,Σ;θ).

The second approach is the variational Bayesian expectation-maximization
(VB-EM) framework [7] which is given in Algorithm 3. This can be seen as an
algorithm to alternately maximize LELBO(µ,Σ;θ) with respect to µ,Σ and θ.
We use the expectation-maximization since some parameters in the variational
distribution can have a closed-form update. Although we avoid the grid-search
in the training process, we may suffer from the bias since the optimal hyper-
parameters should be found by maximizing the marginal likelihood. However, in
each M-step we are maximizing the ELBO and ELBO is an inexact lower bound
of the marginal data likelihood [97].

Algorithm 3: The VB-EM framework for the sparse Gaussian process with
a non-conjugate model.

Input : The training data set D.
Output: An estimation of the parameters µ,Σ in the variational

distribution q(f̄) and the hyper-parameters θ.
1 Initialize k = 0, x(k) = Inf.

2 Initialize the parameters µ(k),Σ(k) and the hyper-parameters θ(k).
3 while True do
4 k = k + 1.

5 E-step: Update µ(k),Σ(k) to increase LELBO(µ,Σ;θ(k−1)).

6 M-step: Update θ(k) to increase LELBO(µ
(k),Σ(k);θ).

7 Calculate the current x(k) = LELBO(µ
(k),Σ(k);θ(k)).

8 if |x(k) − x(k−1)| < 10−6|x(k)| then
9 Break.

10 end

11 end

2.5 Temporal Point Processes

A temporal point pattern [78] is ubiquitous in everyday life. Let us assume that
you arrive at a bus stop and begin to examine the arrival time of the bus. The
arrival time of a specific bus has a pattern, for instance, arriving almost every
15 minutes and may be subject to the delay on the road. This is a temporal
point pattern. Some other examples are the occurrence time of vomit symptoms
when a patient suffers from the nausea and the occurrence time of the earthquake
occurs in Japan.

2.5.1 Three Views of a Temporal Point Process

A temporal point process, or an arrival process [31] can be specified by three
different views, which are the arrival time-stamps of events, the inter-arrival time
of two consecutive events and the number of events before a given time. Hereafter,
we use the name event to indicate the occurrence of an incidence and it is different
from the event in the probability space. First we give the definition of a temporal
point process based on the arrival times of events {Xi}.
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Definition 2.5.1. A temporal point process is a sequence of random variables
{Xi}∞i=1 with the following property:

0 < Xi < Xj , ∀i < j.

Notice that this is a very informal definition and a more formal one can be
found in Daley and Vere-Jones [16] and Kingman [52]. A temporal point process
will start at the time 0 and due to the increasing constraint on the random
variables, multiple events will not occur simultaneously. If we would like to
study the phenomenon of multiple arrivals at the same time, we could associate
an additional random variable to each arrival time to model the number of the
arrivals Daley and Vere-Jones [16].

The second way to specify a temporal point process is by the sequence of ran-
dom variables {Zi} which represent the inter-arrival times of any two consecutive
events by the following equation:

Z1 = X1, Zi = Xi −Xi−1, i ≥ 1. (2.19)

The third way to specify a temporal point process is by a counting process
N(t), t ∈ R>0. A counting process is a right-continuous function defined by the
following equation:

N(t) = #{Xi ∈ (0, t]}, t ∈ R>0.

Here # denotes the number of elements in the set and R>0 is the space of
all positive real numbers. N(0) is usually defined to be 0 which indicates that
there is no event when the experiment starts. Finally, we can define the intensity
function by the counting process.

Definition 2.5.2. The intensity function λ(t) is defined as the limit of the rate
of events at a given time.

λ(t)
∆
= lim

∆t→0+
E
[N(t+∆t)−N(t)

∆t

∣∣∣Ht

]
. (2.20)

Here Ht
∆
= {Xi ∈ (0, t)} is the history of the events before time t.

These three different views are closely related and we could obtain the other
two views from any single view. We illustrate the relationship among these three
views in Figure 2.5.

2.5.2 Homogeneous Poisson Processes

A Poisson process [52, 31] is a special case of the temporal point process and is
also widely used in the various disciplines. Since there are three different views
of a temporal point process, we can define a Poisson process in three different
ways. Here we use the definition from the view of inter-arrival random variables.

Definition 2.5.3. Let λ be a positive real number. A homogeneous Poisson
process is a temporal point process in which the inter-arrival random variables
{Zi} are i.i.d. exponential random variables with the parameter λ, that is

p(Zi = z;λ) = λ exp(−λz), λ, z ≥ 0. (2.21)

Based on Definition 2.5.3, we can study the distribution of the arrival time
Xi and the counting process N(t). First we introduce the following lemma.
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Figure 2.5: The illustration of the three views of a temporal point process. A
realization of the arrival times {Xi} are marked with blue points in the horizontal
axis. A realization of the inter-arrival times {Zi} are marked with the lengths of
the double arrows. A realization of the counting process is shown by the right-
continuous function with a black point indicating that the function takes the
corresponding value.

Lemma 2.5.1. Let {Zi} be i.i.d. exponential-distributed random variables in
Equation (2.21). Then Xk =

∑k
i=1 Zj and Zk+1 are independent random vari-

ables.

Proof. First we use the law of total probability on the joint distribution.

P (Xk = a, Zk+1 = b)

=

∫
z1+···+zk=a

P (Z1 = z1, . . . , Zk = zk, Zk+1 = b)dz1 · · · dzk.

Since {Zi} are independent random variables, we have the decomposition.

P (Xk = a, Zk+1 = b)

=
(∫

z1+···+zk=a
P (Z1 = z1, . . . , Zk = zk)dz1 . . . dzk

)
P (Zk+1 = b)

=P (Xk = a)P (Zk+1 = b).

This lemma indicates that for a homogeneous Poisson process, the previous
arrival time will not affect the arrival of the next point. The distributions of Xi

and N(t) are given by the following two theorems.

Theorem 2.5.1 (Gallager [31]). Let {Zi} be i.i.d. exponential random variables
in Equation (2.21). The distribution of Xi =

∑i
j=1 Zj is an Erlang distribution.

P (Xi = x;λ) =
λixi−1 exp(−λx)

(i− 1)!
, x ∈ R>0. (2.22)

Proof. We use the mathematical induction method to prove this. For i = 1,

P (X1 = Z1 = x) = λ exp(−λx).
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Since the exponential distribution is the Erlang distribution when i = 1, the
proposition holds true. Next assuming that the theorem is true when i = k, since
Xk+1 = Xk + Zk+1, we have

P (Xk+1 = x) =

∫ x

0
P (Xk = s, Zk = x− s)ds (The law of total probability)

=

∫ x

0
P (Xk = s)P (Zk = x− s)ds (Lemma 2.5.1)

=

∫ x

0

λksk−1 exp(−λs)
(k − 1)!

λ exp(−λ(x− s))ds

=
λk+1 exp(−λx)

(k − 1)!

∫ x

0
sk−1ds

=
λk+1 exp(−λx)

(k − 1)!

xk

k
=
λk+1xk exp(−λx)

k!
.

This means that the theorem holds true when i = k+ 1 and according to the
mathematical induction method, the theorem is proved.

Theorem 2.5.2 (Gallager [31]). Let {Zi} be i.i.d. exponential random variables
in Equation (2.21) and Xi =

∑i
j=1 Zj. The distribution of each random variable

N(t) = #{Xi, Xi ∈ (0, t]}, t ∈ R>0 is a Poisson distribution.

P (N(t) = n;λ) =
λntn exp(−λt)

n!
, n ∈ N+. (2.23)

Proof. We can represent the event {N(t) = n} with Xn and Zn+1 using the law
of total probability and then calculate the probability.

P (N(t) = n) =

∫ t

0
P (Xn = s, Zn+1 > t− s)ds (The law of total probability)

=

∫ t

0

∫ ∞

t−s
P (Xn = s)P (Zn+1 = r)drds (Lemma 2.5.1)

=

∫ t

0

λnsn−1 exp(−λs)
(n− 1)!

exp(−λ(t− s))ds (Theorem 2.5.1)

=
λn exp(−λt)
(n− 1)!

∫ t

0
sn−1ds =

λntn exp(−λt)
n!

.

Utilizing the distribution of N(t), we can calculate the intensity function λ(t)
of a homogeneous Poisson process. First we review the memoryless property of
the exponential distribution.

Lemma 2.5.2 (Memoryless). Let Zi be an exponential-distributed random vari-
able in Equation (2.21). Then

P (Zi > t+ s|Zi > t) = P (Zi > s). (2.24)

Proof.

P (Zi > t+ s|Zi > t) =
P (Zi > t+ s, Zi > t)

P (Zi > t)

=
exp(−λ(t+ s))

exp(−λ(t))
= exp(−λs) = P (Zi > s).
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One metaphor for this lemma is given as follows. Let us assume that the
arrival time of a bus follows a Poisson process. This lemma tells us that if a
person has waited at a bus stop for one hour, this one hour will not change the
expected time he/she has to wait till the bus comes.

Corollary 2.5.1. Let {Zi} be i.i.d. exponential random variables in Equation
(2.21). Xi =

∑i
j=1 Zj and N(t) = #{Xi, Xi ∈ (0, t]}, t ∈ R>0.

P (N(t+ s)−N(s) = n|N(s) = m) = P (N(t) = n), n ∈ N+. (2.25)

Proof. Let us consider the arrival time of the first event after time s,

P (Xm+1 > r + s|N(s) = m) = P (Zm+1 > r + s− u|N(s) = m,Xm = u)

= P (Zm+1 > r + s− u|Zm+1 > s− u,Xm = u)

= P (Zm+1 > r). (Lemma 2.5.2)

This implies that the distribution of the first event after time s is still the
exponential distribution in Equation (2.21). Reusing Lemma 2.5.2, we may con-
clude that the all events after time s follows the same pattern as if the process
started from 0.

Corollary 2.5.2. The intensity function of a homogeneous Poisson process is a
constant function λ(t) ≡ λ.

Proof. First we recall the distribution of N(t+∆t)−N(t) from Lemma 2.5.1 as
follows:

P (N(t+∆t)−N(t) = n) =
(λ∆t)n exp(−λ∆t)

n!
.

Then the intensity function can be computed according to Equation (2.20).

λ(t)
∆
= lim

∆t→0+
E
[N(t+∆t)−N(t)

∆t

∣∣∣Ht

]
= lim

∆t→0+

∞∑
n=0

n
(λ∆t)n exp(−λ∆t)

n!∆t
= lim

∆t→0+

exp(−λ∆t)
∆t

( ∞∑
n=0

n
an

n!

)∣∣∣
a=λ∆t

= lim
∆t→0+

exp(−λ∆t)
∆t

exp(λ∆t)λ∆t = λ,

where we used the sum
∑∞

n=0 na
n/n! = a exp(a).

2.5.3 Inhomogeneous Poisson Processes

As we can see from the intensity function, homogeneous Poisson processes are
restrictive when we are trying to describe the complicated time-sequences in the
real-world. One way to generalize the concept of homogeneous Poisson processes
is to allow the intensity function to be an arbitrary function. The resulting
process is called an inhomogeneous Poisson process [31]. We define the inhomo-
geneous Poisson process with inter-arrival times to compare this concept with the
homogeneous Poisson process.

Definition 2.5.4. Let µ : R>0 → R≥0 be a non-negative function. An inhomo-
geneous Poisson process is a temporal point process with the inter-arrival random
variables {Zi}. The distribution of each random variable Zi is given as follow:

P (Zi = z|Xi−1 = xi−1;µ) = µ(xi−1 + z) exp
(
−

∫ xi−1+z

xi−1

µ(a)da
)
, (2.26)

where Xi =
∑i

j=1 Zi, X0 = 0 and an observation of {Xi} is {xi}.
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The cumulative distribution function for Zi can be computed with integration.

P (Zi ≤ z|Xi−1 = xi−1;µ) = 1− exp
(
−

∫ xi−1+z

xi−1

µ(a)da
)
. (2.27)

Later we will prove that the intensity function of an inhomogeneous Poisson
process is exactly µ(t). For the time being, we call the function µ(t) the intensity
function. First we derive the data likelihood when observing the points {xi}ni=1

from an inhomogeneous Poisson process on the observation window (0, T ].

Theorem 2.5.3 (Gallager [31]). Let {Zi} be inter-arrival random variables for
an inhomogeneous Poisson process with the intensity function µ(t). Let Xi =∑i

j=1 Zj. The probability for the event {0 < X1 = x1 < · · · < Xn = xn ≤
T, xn+1 > T} is

P (0 < X1 = x1 < · · · < Xn = xn ≤ T, xn+1 > T ) = exp
(
−
∫ T

0
µ(a)da

) n∏
i=1

µ(xi).

(2.28)

Proof. Since in Equation (2.26), Xi = Zi +Xi−1, we have

P (Zi = z|Xi−1 = xi−1;µ) = P (Xi = z + xi−1|Xi−1 = xi−1;µ).

The probability can be computed as follows.

P (0 < X1 = x1 < · · · < Xn = xn ≤ T, xn+1 > T )

=P (X1 = x1)P (Xn+1 > T |Xn = xn)
n∏

i=2

P (Xi = xi|Xi−1 = xi−1)

=P (Z1 = x1)P (Zn+1 > T − xn|Xn = xn)
n∏

i=2

P (Zi = xi − xi−1|Xi−1 = xi−1)

= exp
(
−

∫ T

0
µ(a)da

) n∏
i=1

µ(xi).

The distribution of N(t) in a homogeneous Poisson process is a Poisson dis-
tribution. Similarly, the distribution of N(t) is also a Poisson distribution and
we can prove this with Theorem 2.5.3.

Corollary 2.5.3. Let {Zi} be inter-arrival random variables for an inhomoge-
neous Poisson process with the intensity function µ(t). Xi =

∑i
j=1 Zj. The

distribution of N(t) = #{Xi, Xi ∈ (0, t]}, t ∈ R>0 is a Poisson distribution.

P (N(t) = n;µ) =
1

n!

(∫ t

0
µ(a)da

)n
exp

(
−

∫ t

0
µ(a)da

)
, n ∈ N+. (2.29)

Proof. We can compute the probability directly with integration.

P (N(t) = n;µ)

=

∫
0<x1<···<xn≤t

P (X1 = x1, . . . , Xn = xn, Xn+1 > t)dx1 · · · dxn

(The law of total probability.)

= exp
(
−

∫ t

0
µ(a)da

)∫
0<x1<···<xn≤t

n∏
i=1

µ(xi)dx1 · · · dxn (Theorem 2.5.3)

=
1

n!

(∫ t

0
µ(a)da

)n
exp

(
−

∫ t

0
µ(a)da

)
.
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In the last step, we use the integral result which can be obtained from a
straightforward computation.∫

0<x1<···<xk+1≤t

n∏
i=1

µ(xi)dx1 · · · dxn =
1

n!

(∫ t

0
µ(a)da

)n
(2.30)

Before calculating the intensity function in an inhomogeneous Poisson pro-
cess, we first examine the distribution of the number of events in an arbitrary
observation window (s, s+ t].

Corollary 2.5.4. Let {Zi} be random variables with distributions described in
Equation (2.26) and Xi =

∑i
j=1 Zj. Let N(t) = #{Xi, Xi ∈ (0, t]}, t ∈ R>0. The

distribution of N(t+ s)−N(s) is also a Poisson distribution.

P (N(t+ s)−N(s) = n;µ) =
1

n!

(∫ t+s

s
µ(a)da

)n
exp

(
−

∫ t+s

s
µ(a)da

)
, n ∈ N+.

Proof. Notice that Equation (2.26) is not an exponential distribution now. This
implies that the memoryless property does not hold for an inhomogeneous Poisson
process. However, we can still compute the probability.

P (Zi > a+ b|Zi > a,Xi−1 = xi−1;µ) =
P (Zi > a+ b, Zi > a|Xi−1 = xi−1;µ)

P (Zi > a|Xi−1 = xi−1;µ)

= exp
(
−

∫ a+b

a
µ(u)du

)
. (2.31)

We will examine the distribution of the first event. Let N(s) = m and then
the probability that next event Xm+1 occurs is:

P (Xm+1 > r + s|N(s) = m,Xm+1 > s) = exp
(
−

∫ s+r

s
µ(u)du

)
.

Notice that the distribution does not depend on the information when Xm

occurs and what N(s) is. Reusing Equation (2.26), we can obtain the distribution
of N(t+ s)−N(s).

P (N(t+s)−N(s) = n;µ) = P (s ≤ Zm+1 < · · · < Zm+n ≤ t+s, Zm+n+1 > t+s).

The remaining computation is similar to that in Corollary 2.5.3.

Based on Corollary 2.5.4, we can obtain the intensity function of the inhomo-
geneous Poisson process from the definition.

Corollary 2.5.5. The intensity function of an inhomogeneous Poisson process
is λ(t) = µ(t).

Proof. Using Corollary 2.5.4, the distribution of the number of events N(t+∆t)−
N(t) is a Poisson-distributed random variable and

E[N(t+∆t)−N(t)] =

∫ t+∆t

t
µ(a)da.

The intensity function can be computed from Equation (2.20).

λ(t)
∆
= lim

∆t→0+
E
[N(t+∆t)−N(t)

∆t

∣∣∣Ht

]
= lim

∆t→0+

1

∆t

∫ t+∆t

t
µ(a)da = µ(t).
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2.5.4 Sampling Algorithms for Poisson Processes

The simulation of a homogeneous Poisson process can be obtained directly from
Definition 2.5.3. The basic idea is to sample each random variable Zi indepen-
dently. The sampling algorithm [83] is given in Algorithm 4.

Algorithm 4: The sampling algorithm for a homogeneous Poisson process.

Input : The hyper-parameter λ and a time window (0, T ].
Output: A sequence of arrival times {xi}.

1 Initialize k = 1, x0 = 0.
2 while True do
3 Sample w ∼ Uniform[0, 1].
4 Set z = −(lnw)/λ.
5 if xk−1 + z < T then
6 Set xk = xk−1 + z. Set k = k + 1.
7 else
8 Return {xi}ki=1.
9 end

10 end

In Algorithm 4, the inverse sampling [82] is used in Steps 3 and 4 to sample an
exponential-distributed random variable Z. The inverse sampling can be verified
by the following equation:

P (Z ≤ z) = P (− ln(W ) ≤ λz) = P (W ≥ exp(−λz)) = 1− exp(−λz).

For an inhomogeneous Poisson process, the thinning algorithm [55, 72] can
be used to sample the arrival times {xi}. The sampling algorithm is provided in
Algorithm 5.

Algorithm 5: The thinning algorithm for sampling an inhomogeneous Pois-
son process.

Input : The intensity function λ(t) and a time window (0, T ].
Output: A sequence of arrival times {xk}.

1 Initialize k = 1, t = 0.

2 Compute λ̂ = maxs∈[0,T ] λ(s).

3 while True do
4 Sample two random variables W,V ∼ Uniform[0, 1].

5 Set z = −(lnw)/λ̂.
6 if t+ z < T then

7 if vλ̂ < λ(t+ z) then
8 Set xk = t+ z. Set k = k + 1.
9 else

10 Reject z.
11 end
12 Set t = t+ z.

13 else
14 Return {xi}ki=1.
15 end

16 end
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Figure 2.6: The illustration of the sampling process of the thinning algorithm.
The intensity function is given in the top figure along with the accepted and
rejected points, which are denoted with “◦” and “×” respectively. The vertical
coordinate of each point corresponds to vλ̂. Only points below the intensity
function are accepted. The final sampled sequence is given in the bottom figure.

An illustration of one sampling algorithm is given in Figure 2.6. Each point
in the figure is denoted with “◦” or “×”. The vertical coordinate of each point
corresponds to vλ̂ in Algorithm 5. We can notice that the accepted points fall
below the curve of the intensity function and the rejected points fall above the
curve.

To prove that using Algorithm 5 we indeed sample an inhomogeneous Poisson
process with the intensity function λ(t), first we examine the distribution of the
random variable X1, which represents the arrival time of the first event.

Theorem 2.5.4 (Lewis and Shedler [55]). The distribution of the arrival time
of the first event is as follows:

P (X1 = x1) = λ(x1) exp
(
−

∫ x1

0
λ(a)da

)
, x1 ≥ 0.

Proof. Before accepting the first event, there may be multiple rejections in Step
10. Let the rejected times be {ri} and r0 = 0. The probability that the arrival
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time of the first event is accepted after k rejections {ri}ki=1 is as follows:

P (X1 = x1, {ri}ki=1 is rejected)

=

∫
0<r1<···<rk<x1

k∏
i=1

[
λ̂ exp(−λ̂(ri − ri−1))

(
1− λ(ri)

λ̂

)]
(r0 = 0)

× λ̂ exp(−λ̂(x1 − rk))
λ(x1)

λ̂
dr1 · · · drk

=λ(x1) exp(−λ̂x1)
∫
0<r1<···<rk<x1

k∏
i=1

[
λ̂
(
1− λ(ri)

λ̂

)]
dr1 · · · drk

=λ(x1) exp(−λ̂x1)

( ∫ x1

0 λ̂
(
1− λ(a)

λ̂

)
da

)k

k!
. (Equation (2.30))

The probability of {X1 = x1} can be represented by the law of total proba-
bility.

P (X1 = x1) =
∞∑
k=0

P (X1 = x1, {ri}ki=1 is rejected)

= λ(x1) exp(−λ̂x1)
∞∑
k=0

( ∫ x1

0 λ̂
(
1− λ(a)

λ̂

)
da

)k

k!

= λ(x1) exp(−λ̂x1) exp
(∫ x1

0
λ̂
(
1− λ(a)

λ̂

)
da

)
= λ(x1) exp

(
−

∫ x1

0
λ(a)da

)
.

After accepting the first sample, the thinning algorithm restarts. We can con-
clude that the following events will obey the same pattern described in Equation
(2.26) in a similar way. This implies that the sample we obtain from the thinning
algorithm is truly a realization of the inhomogeneous Poisson process with the
intensity function λ(t).

2.6 The Intensity Estimation for Recurrent Event Data

In this section, we briefly review the previous studies on the estimation of the
intensity function from the time-sequence data. The first assumption we make is
that the time-sequence is drawn from an inhomogeneous Poisson process.

2.6.1 Estimation of the Mean Intensity Function

When having a data set of time-sequences from K subjects D = {dk}Kk=1 on
Xk = [0, T ], we can assign an independent intensity function to each of the
subjects {λk(x)}Kk=1 and estimate each intensity function separately. However,
this is not efficient since the memory cost of this approach is O(K). Moreover,
the performance of the estimate for the time-sequence with very few arrival times
will be very poor.

The most naive way to reduce the memory cost and share the statistical
strength is to assume that all time-sequences are generated by the same inho-
mogeneous Poisson process with intensity λ(x). Based on this assumption, the
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logarithm of the data likelihood can be computed using Theorem 2.5.3.

ln p(D|λ(x)) = ln

K∏
k=1

p(dk|λ(x))

=

K∑
k=1

Nk∑
j=1

lnλ(x
(k)
j ) +K

(
−

∫ T

0
λ(x)dx

)
. (2.32)

Based on the logarithm of the likelihood in Equation (2.32), we can prove the
following theorem.

Theorem 2.6.1 (Cook and Lawless [15]). When all observations are the same
Xk = X ,∀k = 1, . . . ,K, the estimate λ̂(x) which we obtain by maximizing Equa-
tion (2.32) is an unbiased estimator of the mean of all intensity functions {λk(x)}.

E[λ̂(x)] =
1

K

K∑
k=1

λk(x). (2.33)

Proof. Let the counting processes be {Nk(x)}Kk=1. Correspondingly, we have the
number of events in [s, s + ds) which we denote as {dNk(x)}Kk=1 [15]. Using the
definition of the intensity function, we have

E[dNk(x)] = λk(x)dx.

The logarithm of the likelihood can be rewritten as

ln p(D|λ(x)) =
K∑
k=1

Nk∑
j=1

lnλ(x
(k)
j ) +K

(
−

∫
X
λ(x)dx

)

=
K∑
k=1

∫
X
lnλ(x)dNk(x)−K

∫
X
λ(x)dx.

Taking the derivative with respect to λ(x) and setting it to zero, we obtain
that

λ̂(x)dx =
1

K

K∑
k=1

dNk(x).

The expectation of the estimate λ̂ found by maximizing this data likelihood
is

E[λ̂(x)dx] = E
( 1

K

K∑
k=1

dNk(x)
)
=

1

K

K∑
k=1

λk(x)dx.

To ease our notations, we review the estimation method of the intensity func-
tion assuming that we only have a single time sequence K = 1 in Sections 2.6.2
and 2.6.3. We can also use these methods to estimate the mean intensity func-
tion. However, only estimating the mean of the intensity functions fails to model
the diversity among K time-sequences. We will review the studies on how to
model the diversity among K time-sequences in Section 2.6.4.
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2.6.2 Point Estimates of the Intensity Function

Previous studies on the point estimates for the intensity functions assume that
the true intensity function is fixed before the sampling process. Here we introduce
the kernel smoothing method [18] and the local likelihood method [103, 9, 43].

For the time-sequence in the recurrent event data, we first consider the situ-
ation where the number of subjects K = 1 and the data d = {xj ∈ X}Nj=1.

Kernel Smoothing Method

The estimate by the kernel smoothing method [18] is given by the following
equation.

λ̂(x) =

N∑
i=1

κh(x− xj) =
1

h

N∑
i=1

κ
(x− xj

h

)
, h > 0, x ∈ X ,

where h is a positive number termed the bandwidth in the transformed kernel
function κh(x). The kernel function κ(·) satisfies the following property:

κ(x) ≥ 0,

∫ ∞

−∞
κ(x)dx = 1,

∫ ∞

−∞
xκ(x)dx = 0,

∫ ∞

−∞
x2κ(x)dx <∞.

The bias of this estimate can be computed by the following equation [81].

E[λ̂(y)]− λ(y) = E
[ N∑

i=1

1

h
κ
(y − xj

h

)]
− λ(y)

= E
[1
h

∫ ∞

−∞
κ
(y − x

h

)
dN(x)

]
− λ(y) (N(x) is a counting process)

=
1

h

∫ ∞

−∞
κ
(y − x

h

)
λ(x)dx− λ(y) =

∫ ∞

−∞
κ(x)(λ(y − hx)− λ(y))dx

=

∫ ∞

−∞
κ(x)

(
− λ′(y)hx+

λ′′(y)

2
(hx)2 + o(h2)

)
dx = o(h).

In the last equation, we use the Taylor expansion of λ(x) at y.

λ(y − hx) = λ(y)− λ′(y)hx+
λ′′(y)

2
(hx)2 + o(h2).

This indicates the bias of the estimate approximates 0 as the bandwidth
h → 0. Since the arrival times outside the window X = [0, T ] are not observed,
the end-correction is usually added to the kernel smoothing estimate [18].

λ̂(x) =

∑N
i=1 κh(x− xj)∫ T
0 κh(x− t)dt

. (2.34)

In Diggle [18], when using the uniform kernel function κ(x) = 1/2,−1 ≤
x ≤ 1, the bandwidth is chosen to minimize the expected minimum squared error
(MSE) E[(λ̂(x)−λ(x))2]. However, when a general kernel is used, MSE can not be
easily computed. In the baseline experiment by Lloyd et al. [60], the bandwidth
h is chosen by maximizing the leave-one-out training objective.

h∗ = argmax
h

N∑
i=1

ln

N∑
j ̸=i=1

1

h
κ
(xi − xj

h

)
.
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Local Likelihood Method

In the local likelihood method [103], the objective function to be maximized is
the local likelihood function L(λ̂;x). λ̂ is the estimate intensity function λ̂.

L(λ̂;x) ∆
=

N∑
i=1

κh(xi − x) ln λ̂(xi)−
∫ T

0
κh(t− x)λ̂(t)dt. (2.35)

To explain why maximizing Equation (2.35) is a good idea [43], note that as
the number of observed events N grows, L(λ̂;x) converges in probability

L(λ̂;x) →
∫ T

0
κh(t− x) ln λ̂(t)λ(t)dt−

∫ T

0
κh(t− x)λ̂(t)dt

=

∫ T

0
κh(t− x)

[
λ(t) ln λ̂(t)− λ̂(t)

]
dt.

This is equivalent to minimizing the Kullback-Leibler divergence∫ T

0
κh(t− x)

[
λ(t) ln

λ(t)

λ̂(t)
− (λ(t)− λ̂(t))

]
dt,

where the kernel function is used to smooth the divergence.
The local likelihood method begins with the local polynomial approximation

at x with parameters {αj}pj=0. The exponential transformation is used to ensure
the non-negativity.

ln λ̂(s) ≈
p∑

j=0

αj(s− x)j , |x− s| ≤ h. (2.36)

Inserting Equation (2.36) back to Equation (2.35), we can obtain the training
objective L({αj}pj=0;x).

L({αj}pj=0;x)
∆
=

N∑
i=1

κh(xi − x)

p∑
j=0

αj(xi − x)j

−
∫ T

0
κh(t− x) exp

( p∑
j=0

αj(s− x)j
)
dt. (2.37)

The optimal values {α∗
j}

p
j=0 can be learned by maximizing this training ob-

jective. Based on Equation (2.36), the value the intensity function λ̂(s) at x is
exp(α∗

0). Taking the derivative of L({αj}pj=0;x) with respect to α0 and setting
the derivative to be zero, we have

λ̂(x) ≡ exp(α∗
0) =

∑N
i=1 κh(xi − x)∫ T

0 κh(t− x) exp
(∑p

j=1 α
∗
j (t− x)j

)
dt
.

When p = 0, the local likelihood estimate λ̂(x) recovers the kernel smoothing
estimate with the end-correction in Equation (2.34). When p ≥ 1, the local like-
lihood method is given in Algorithm 6. The bandwidth h in the local likelihood
method can be found by the cross-validation.

36



Algorithm 6: The local likelihood method.

Input : The bandwidth h, the time window (0, T ], the time sequence d
and the positions to be estimated z = {zi}.

Output: The estimation of the intensity function at the given positions
{λ̂(zi)}.

1 Initialize k = 1, x0 = 0.
2 for each zi ∈ z do
3 Construct the local likelihood L({αj}pj=0; zi) in Equation (2.37).

4 Maximize L({αj}pj=0; zi) to obtain the optimal {α∗
j}

p
j=0.

5 Set λ̂(zi) = exp(α∗
0).

6 end

2.6.3 Variance Inference of the Intensity Function

From the Bayesian point of view, the underlying intensity function is no longer
fixed before the sampling process. Instead it has a distribution. In this case, the
inhomogeneous Poisson process is called a Cox process.

Definition 2.6.1. A Cox process is an inhomogeneous Poisson process whose
intensity function is drawn from a stochastic process.

The stochastic process is usually chosen to be a Gaussian process, since one
can sample an arbitrary function from a Gaussian process. However, as the
function f(x) sampled from a Gaussian process is not necessarily guaranteed to be
non-negative, a transformation has to be applied to the f(x). The transformation
is chosen to be a sigmoid function in Adams et al. [2].

λ(x) =
λ∗

1 + exp(−f(x))
, f(x) ∼ GP(m(x), κ(x, x′)), λ∗ ≥ 0,

where λ∗ is a non-negative real number and it determines the upper bound of
the intensity function. An MCMC algorithm is used to sample the function f(x)
based on observed time-sequence d. In Lloyd et al. [60], the transformation is
chosen to be a squared function λ(x) = f2(x) and the reason behind this choice
is that this form admits a tractable and efficient variational inference framework.
Next we introduce this variational inference framework based on the descriptions
provided in Lloyd et al. [60].

Given the time-sequence data d = {xj ∈ X}Nj=1, we add a set of pseudo inputs

X̄ = {x̄m}Mm=1,M < N and their corresponding function values f̄ = {f(x̄m)}Mm=1

as in Section 2.4.2. The generative process for the time-sequence data d is given
in Algorithm 7.

In Algorithm 7, κxx
∆
= κ(x, x) ,κxX̄

∆
= κ(x, X̄) and we denote the inhomoge-

neous Poisson process sampling algorithm given in Algorithm 5 as IPP(·). The
construction of the prior p(f(x), f̄) is different from the sparse Gaussian process
representation in Section 2.4.2 since the the conditional probability is the same.
When m0 = 0, f(x) may change its sign several times and it might restrict the
optimization process [47].

The variational distribution is as follows:

q(f(x), f̄) = p(f(x)|f̄)N (f̄ ;µ,Σ).
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Algorithm 7: The generative process for the time-sequence data.

Input : The mean value m0 ≥ 0, the covariance function κ(x, x′) and a
time window (0, T ]

Output: The time-sequence data d
1 Sample the vector f̄ ∼ N (m0,KX̄X̄).
2 Compute the function f(x).

f(x) ∼ GP(κxX̄K−1
X̄X̄

f̄ , κxx − κxX̄K−1
X̄X̄

κ⊤
xX̄). (2.38)

3 Compute the intensity function λ(x) = f2(x).
4 Sample d ∼ IPP(λ(x)) on the time window (0, T ].

The marginal distribution q(f(x)) is a Gaussian process GP(m̄(x), κ̄(x, x′)).

m̄(x) = κxX̄K−1
X̄X̄

µ,

κ̄(x, x′) = κxx′ − κxX̄K−1
X̄X̄

κ⊤
x′X̄ + κxX̄K−1

X̄X̄
ΣK−1

X̄X̄
κ⊤
x′X̄ .

The training objective in the variational inference framework can be obtained
from Equation (2.14), since the data likelihood p(d|f(x)) is not conjugate to the
Gaussian process prior.

LELBO(µ,Σ;θ)
∆
= Eq(f(x))[ln p(d|f(x))] + Eq(f̄)

[
ln
p(f̄ ; X̄)

q(f̄)

]
.

In LELBO, the second term is the same as Equation (2.18). Utilizing the data
likelihood p(d|f(x)) from Theorem 2.5.3, we give the computation for the first
term.

Eq(f(x))[ln p(d|f(x))] = Eq(f(x))

[ N∑
i=1

lnλ(xi)−
∫ T

0
λ(x)dx

]
. (2.39)

Next we calculate the two expectations Eq(f(x))

∫ T
0 λ(x)dx and Eq(f(x)) lnλ(xi)

separately.

The Expectation Eq(f(x))

∫ T
0 λ(x)dx

The expectation of the integral can be computed directly.

Eq(f(x))

∫ T

0
λ(x)dx =

∫ T

0
Eq(f(x))[f

2(x)]dx

=

∫ T

0

(
E2
q(f(x))[f(x)] + Varq(f(x))[f(x)]

)
dx =

∫ T

0

(
m̄(x)2 + κ̄(x, x)

)
dx

=

∫ T

0

(
κxx − κxX̄K−1

X̄X̄
κ⊤
xX̄ + κxX̄K−1

X̄X̄
(Σ+ µµ⊤)K−1

X̄X̄
κxX̄

)
dx

=

∫ T

0

(
κxxdx− tr(K−1

X̄X̄
Φ) + tr

(
K−1

X̄X̄
ΦK−1

X̄X̄
(µµT +Σ)

)
dx,

where Φ ∈ RM×M
>0 and Φij

∆
=

∫ T
0 κ(x̄i, z)κ(z, x̄j)dz. When we assume the kernel

function is the ARD kernel in Equation (2.10), the integral can be analytically
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computed.∫ T

0
κxxdx = cT,

Φij
∆
=

∫ T

0
κ(x̄i, z)κ(z, x̄j)dz

= −c
2
√
πb

2
exp

(
− (x̄i − x̄j)

2

4b

)[
erf

((x̄i + x̄j − 2T )

2
√
b

)
− erf

( x̄i + x̄j

2
√
b

)]
.

The Expectation Eq(f(x)) lnλ(xi)

We explain the derivation in details since this part is not provided in Lloyd et al.
[60]. The marginal distribution q(f(xi)) is also a Gaussian distribution N (µ̂i, σ̂

2
i )

with the mean and the variance given as follows:

µ̂i = κxiX̄
,

σ̂2i = κxixi − κxiX̄
K−1

X̄X̄
κ⊤
xiX̄

+ κxiX̄
K−1

X̄X̄
ΣK−1

X̄X̄
κ⊤
xiX̄

.

The expectation can be computed by the following integral.

Eq(f(xi)) lnλ(x) =

∫ ∞

−∞
N (x; µ̂i, σ̂

2
i ) lnx

2dx. (2.40)

We show through the following lemma that the expectation can be analytically
computed.

Lemma 2.6.1. Let a normal-distributed random variable Y ∼ N (µ, σ2) and
φ = (µ/σ)2. Then

EY [lnY
2] = ln(2σ2) +

∞∑
j=0

(φ/2)j exp(−φ/2)
j!

ψ(j + 1/2), (2.41)

where ψ(·) is the digamma function.

Proof. Let Ỹ = Y/σ, then the expectation can be calculated as

EY [lnY
2] =

∫ ∞

−∞
ln y2

1√
2πσ

exp
(
− (y − µ)2

2σ2

)
dy

=

∫ ∞

−∞
(ln ỹ2 + lnσ2)

σ√
2πσ

exp
(
− (ỹσ − µ)2

2σ2

)
dỹ (Y = Ȳ σ)

= lnσ2 +

∫ ∞

−∞
ln ỹ2

1√
2π

exp
(
− (ỹ − µ/σ)2

2

)
dỹ. (2.42)

The second part has the form of EȲ [ln Ȳ
2], where Ȳ ∼ N (µ/σ, 1) . Let

W = Ȳ 2 and W follows a standard non-central chi-squared distribution with
parameter φ = (µ/σ)2 [24]. The distribution of W is given as follows:

p(w) =
e−

w+φ
2

√
2w

∞∑
j=0

(wφ/4)j

j!Γ(j + 1/2)
. (2.43)
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The expectation of lnW then is

EW [lnW ] =

∫ ∞

0
lnw

e−
w+φ

2

√
2w

∞∑
j=0

(wφ/4)j

j!Γ(j + 1/2)
dw

=

∞∑
j=0

(φ/4)je−φ/2

√
2j!Γ(j + 1/2)

∫ ∞

0
e−w/2wj−1/2 lnwdw

=

∞∑
j=0

(φ/2)je−φ/2

j!
(ln 2 + ψ(j + 1/2)). (2.44)

The digamma function is defined as the integral [1].

ψ(z)
∆
=

Γ′(z)

Γ(z)
=

1

Γ(z)

∫ ∞

0
e−xxz−1 lnxdx.

Substituting Equation (2.44) back yields the answer.

To perform a practical computation, we use the property of a digamma func-
tion. Let γ be the Euler-Mascheroni constant and γ ≈ 0.57721.

ψ
(
i+

1

2

)
= −γ − 2 ln 2 +

n∑
i=1

2

2i− 1
, i ∈ N+.

The expectation can be further transformed to the following form.

EY [lnY
2] = −γ + ln

(σ2
2

)
+

∞∑
j=0

(φ/2)j exp(−φ/2)
j!

j∑
k=1

2

2k − 1
. (2.45)

We can prove the following lemma to calculate the last complicated term.

Lemma 2.6.2. Let g(z) denote the sum

g(z)
∆
= exp(−z)

∞∑
j=0

zj

j!

j∑
k=1

1

k − 1/2
.

Let M(a, b, z) denote the Kummer function of the first kind [1].

M(a, b, z)
∆
=

∞∑
n=0

a(n)zn

b(n)n!
,

where a(0) = 1, a(n) = a(a+ 1) · · · (a+ n− 1). Then

g(z) = −∂M(a, b,−z)
∂a

∣∣∣
a=0,b=0.5

, z ≥ 0. (2.46)

Proof. First we calculate the derivative of g(z) with respect to z.

g′(z) = exp(−z)
∞∑
j=0

zj

j!(j + 1/2)
= 2 exp(−z)M(0.5, 1.5, z)

= 2M(1, 1.5,−z) = 2
∞∑
j=0

(−z)j

1.5(j)
,
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Figure 2.7: An illustration of the function g(z) and g′(z).

where we use the following property of the Kummer function e−zM(a, b, z) =
M(b − a, b,−z). Integrating both the left-most and the right-most sides, we
obtain that

g(z) =

∫ z

0
g′(s)ds+ g(0) = −2z

∞∑
j=0

(−z)j

(j + 1)(1.5)j
. (2.47)

Using the following property from Ancarani and Gasaneo [3] for the derivative
of the Kummer function of the first kind, we finish our proof.

∂M(a, b, z)

∂a

∣∣∣
a=0

=
z

b

∞∑
n=0

1(n)1(n)zn

2(n)(1 + b)(n)n!
=
z

b

∞∑
n=0

zn

(n+ 1)(1 + b)(n)
.

Combining Equation (2.45) and Lemma 2.6.2, We obtain the following the-
orem for the computation of the expectation EY [lnY

2] of a normal-distributed
random variable Y .

Theorem 2.6.2. Let a normal-distributed random variable Y ∼ N (µ, σ2) and
φ = (µ/σ)2, then

EY [lnY
2] = −γ + ln

(σ2
2

)
− ∂M(a, b,−φ/2)

∂a

∣∣∣
a=0,b=0.5

, (2.48)

where M(a, b, z) is the Kummer function of the first kind.

Remark 1. This theorem is not explicitly stated in Lloyd et al. [60]. We piece
together the information from the previous studies [60, 56, 3].

Since the operation of calculating g(z) is very often, we use a multi-resolution
lookup table to store the value of g(z) and its derivative with respect to z. An
illustration of the function g(z) and g′(z) is given in Figure 2.7.

g(z) = −∂M(a, b,−z)
∂a

|a=0,b=0.5

= − lim
∆→0+

M(∆, 0.5,−z)−M(0, 0.5,−z)
∆

= lim
∆→0+

1−M(∆, 0.5,−z)
∆

,

g′(z) = 2M(1, 1.5,−z).
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Figure 2.8: The illustration of the comparison the kernel smoothing and the
variational inference method. (Left top) The inferred intensity function by the
kernel smoothing, the variational inference and the true intensity function. (Left
bottom) The data set used to perform the inference. (Right) The box plot of the
MISE for the kernel smoothing and the variational inference method. We repeat
the sampling and the inference process for 30 times.

For small z, its valueM(a, b, z) can be obtained from a R mathematic toolbox
[104]. When |z| → ∞, the computation is really slow and we use the following
property [1] to approximate M(a, b, z).

M(a, b, z) ≈ Γ(b)
(ezza−b

Γ(a)
+

(−z)−a

Γ(b− a)

)
, |z| → ∞.

Up to now, all terms in LELBO can be analytically computed and the pa-
rameters to be optimized are {µ,Σ, c, b}, where µ,Σ are the parameters in the
variational distribution and {c, b} are the hyper-parameters of the ARD kernel
function in Equation (2.10). We use the VB-EM framework in Algorithm 3 to
optimize the parameters.

A comparison of the kernel smoothing estimate and the variational inference
estimate are given in Figure 2.8. We calculate the integrated squared error (ISE).
For the variational inference method, we use the mean function as λ̂(x).

ISE(λ̂, λ) =

∫ T

0
(λ(x)− λ̂(x))2dx.

Lloyd et al. [60] also show through synthetic experiments that the variational
inference estimate can outperform the kernel smoothing estimate in terms of
prediction accuracy.

2.6.4 Latent Poisson Process Allocation

In order to model the diversity among K subjects when the time-sequence data
are in the form of recurrent events, Lloyd et al. [61] proposed the latent Poisson
process allocation (LPPA) model. In LPPA, a set of L basis functions is used
and the kth time-sequence is assumed to be generated by a Cox process with an
intensity function λk(x). The entire generative process is given by Algorithm 8.
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Algorithm 8: The generative process for LPPA.

Input : The number of latent function L, the number of the
time-sequences K, the mixture weights {θkl}, the mean value
m0, the covariance functions in L Gaussian processes {κl} and a
time window (0, T ].

Output: The time-sequence data D = {dk}Kk=1.
1 for each basis function l = 1, . . . , L do
2 Sample fl ∼ GP(m0(x), κl(x, x

′)).
3 end
4 for each subject k = 1, . . . ,K do
5 Calculate the intensity function.

λk(x) =

L∑
l=1

θklf
2
l (x), θkl ≥ 0. (2.49)

6 Sample dk ∼ IPP(λk(x)) on the time window (0, T ].

7 end

In Algorithm 8, fl(t) is a function drawn from a Gaussian process prior, θkl is
its weight, and L is the number of latent functions. To ensure the non-negativity
of λk, fl are squared and weights θkl are required to be non-negative.

Similar to the sparse Gaussian process in Section 2.4.2, a set of pseudo inputs
X̄ = {x̄m}Mm=1,M < N and their corresponding function values for each basis
function f̄l = {fl(x̄m)}Mm=1, l = 1, . . . , L are added. The joint likelihood is given
as follows:

p(D, {fl(x)}Ll=1, {f̄l}Ll=1) =

K∏
k=1

p(dk|{fl(x)}Ll=1; θkl)

L∏
l=1

p(fl(x)|f̄l)p(f̄l; X̄),

where the two distributions p(f̄l; X̄) and p(fl(x)|f̄l) are defined below:

p(f̄l; X̄) = N (f̄l;m0,Kl,X̄X̄), m0 > 0,

fl(x) ∼ GP(κl,xX̄K−1
l,X̄X̄

f̄ , κl,xx − κl,xX̄K−1
l,X̄X̄

κ⊤
l,xX̄).

In LPPA, the variational distribution q({fl(x)}Ll=1, {f̄l}Ll=1) is chosen as

q({fl(x)}Ll=1, {f̄l}Ll=1) =

L∏
l=1

p(fl(x)|f̄l)q(f̄l)

=
L∏
l=1

p(fl(x)|f̄l)N (f̄l;µl,Σl).

The marginal distribution for q(fl(x)) is a Gaussian process with the mean
function m̄l(x) and the covariance function κ̄l(x, x

′)).

m̄l(x) = κl,xX̄K−1
l,X̄X̄

µl,

κ̄l(x, x
′) = κl,xx′ − κl,xX̄K−1

l,X̄X̄
κ⊤
l,x′X̄ + κl,xX̄K−1

l,X̄X̄
ΣK−1

l,X̄X̄
κ⊤
l,x′X̄ .

Given the joint data likelihood and the variational distribution, the ELBO
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can be derived as follows:

lnp(D; {θkl}) = ln

∫
p(D, {fl(x)}Ll=1, {f̄l}Ll=1; {θkl})df1 · · · dfLdf̄1 · · · df̄L

≥ Eq({fl(x)}Ll=1,{f̄l}Ll=1)

[
ln
p(D, {fl(x)}Ll=1, {f̄l}Ll=1; {θkl})

q({fl(x)}Ll=1, {f̄l}Ll=1)

]
=

K∏
k=1

Eq({fl(x)}Ll=1)

[
ln p(dk|{fl(x)}Ll=1; θkl)

]
+

L∑
l=1

Eq(f̄l)

[
ln
p(f̄l; X̄)

q(f̄l)

]
. (2.50)

The second term is the sum of K negative Kullback-Leibler divergence be-
tween two Gaussian distributions, each of which can be computed similar as
Equation (2.18).

Eq(f̄l)

[
ln
p(f̄l; X̄)

q(f̄l)

]
=

1

2
ln

|Σk|
|Kl,X̄X̄ |

+
M

2
−1

2
tr
(
K−1

l,X̄X̄
(Σl+(µl−m0)(µl−m0)

⊤
)
.

The first term, however, is not tractable. To derive a tractable lower bound
of the intractable ELBO, we first prove the following lemma from Paisley [74].
In Lloyd et al. [61], a different derivation is used and the result is the same.

Lemma 2.6.3. Let {Xk}Kk=1 be a set of positive random variables, then

E ln
( K∑

k=1

Xk

)
≥ ln

( K∑
k=1

exp(E logXk)
)
. (2.51)

Proof. The function ln(·) is concave. Using an auxiliary probability vector,
(p1, . . . , pK), where pk > 0 and

∑K
k=1 pk = 1, it follows from Jensen’s inequality

that

E ln
( K∑

k=1

Xk

)
= E ln

( K∑
k=1

pk
Xk

pk

)
≥

K∑
k=1

pkE ln
(Xk

pk

)
(2.52)

Taking derivatives with respect to each element in {pk} and setting each
derivative to zero, we have

pk =
exp(E lnXk)∑K
v=1 exp(E lnXv)

(2.53)

Inserting this back, we obtain the desired bound.

Using this lemma, each term Eq

[
ln p(dk|{fl(x)}Ll=1; θkl)

]
can now be lower

bounded by the following theorem.

Theorem 2.6.3 (Lloyd et al. [61]). A lower bound for the first term in Equation
(2.50) is given by the following equation.

Eq

[
ln p(dk|{fl(x)}Ll=1; θkl)

]
≥

Nk∑
j=1

ln

L∑
l=1

(
θkl + exp

(
Eq[ln f

2
l (x

(k)
j )]

))
−

∫ T

0

L∑
l=1

θklEq[f
2
l (x)]dx. (2.54)
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Proof. Using the data likelihood in Theorem 2.5.3, we obtain the data likelihood
for each term.

Eq

[
ln p(dk|{fl(x)}Ll=1; θkl)

]
=

Nk∑
j=1

Eq[lnλk(x
(k)
j )]−

∫ T

0
Eqλk(x)dx

=

Nk∑
j=1

Eq[ln
( L∑

l=1

θklf
2
l (x

(k)
j )

)
]−

∫ T

0
Eqλk(x)dx (Equation (2.49))

≥
Nk∑
j=1

ln

L∑
l=1

exp
(
Eq[ln θklf

2
l (x

(k)
j )]

)
−

∫ T

0
Eqλk(x)dx (Lemma 2.6.3)

=

Nk∑
j=1

ln

L∑
l=1

(
θkl + exp

(
Eq[ln f

2
l (x

(k)
j )]

))
−

∫ T

0
Eq

L∑
l=1

θklf
2
l (x)dx.

In Equation (2.54), the two terms Eq[ln f
2
l (x

(k)
j )] and

∫ T
0 Eq[f

2
l (x)]dx can be

computed analytically by the Kummer function of the first kind and the Φ matrix
respectively in Section 2.6.3. Up to now, we derive a lower bound of the ELBO
in Equation (2.50) and each term in the lower bound can now be analytically
computed.

The parameters to be optimized are {{µl}, {Σl}, {θkl}, {cl, bl}}, where {µl},
{Σl} are the parameters in the variational distribution, {θkl} are the mixture
weights and {cl, bl} are the hyper-parameters in the ARD kernel of Equation
(2.10). In Lloyd et al. [61], the joint optimization on all parameters was used.
However, we find it more helpful to use the VB-EM framework in Algorithm 3
since the learning rates for all parameters are not the same and this phenomenon
is also reported in the on-line Gaussian process regression task [41]. Optimizing
the parameters separately helps speed up the tuning process.

2.7 The Intensity Estimation for Panel Count Data

Traditional estimates for the panel count data are point estimates and the un-
derlying assumption is that the intensity function is fixed before the sampling
process. In this section, we briefly review the local expectation-maximization
(LocalEM) method in Betensky et al. [9], Fan et al. [25].

For the ease of notations, we first consider the situation where we only have

one subject K = 1 and the panel count data is d
∆
= {(Xi,mi)}Ni=1. The training

objective of the LocalEM method can be derived from the local likelihood method
[9]. If we have the exact time-stamp xi, the local likelihood function is given in
Equation (2.35). However, in the panel count data, the exact arrival time for
each event xi is not revealed and Betensky et al. [9] integrate the uncertainty in
the arrival time xi in the local likelihood function L(λ̂;x).

L(λ̂;x) =
N∑
i=1

miEt

[
κh(t− x) ln λ̂(t)

∣∣∣t ∈ Xi

]
−

∫ T

0
κh(t− x)λ̂(t)dt

=

N∑
i=1

mi

∫
Xi

κh(t− x)
λ̂(t)∫

Xi
λ̂(s)ds

ln λ̂(t)dt−
∫ T

0
κh(t− x)λ̂(t)dt.
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Using the local polynomial approximation in Equation (2.36), we have the
approximation of L(λ̂;x) and we denote it by L({αj}pj=0;x).

L({αj}pj=0;x)
∆
=

N∑
i=1

miEt

[
κh(t− x)

p∑
j=0

αj(t− x)j
∣∣∣t ∈ Xi

]
−

∫ T

0
κh(t− x) exp

( p∑
j=0

αj(s− x)j
)
dt. (2.55)

Taking the derivative of L({αj}pj=0;x) with respect to α0 and setting it to
zero, we obtain the relationship between the optimal values {α∗

j}
p
j=0.

λ̂(x) = exp(α∗
0) =

∑N
i=1miEt

[
κh(t− x)

∣∣∣t ∈ Xi

]
∫ T
0 κh(t− x) exp

(∑p
j=1 α

∗
j (s− x)j

)
dt

Next we discuss the zero-order approximation (p = 0) and the high-order
approximation (p ≥ 1) separately.

2.7.1 Zero-Order Approximation

When the zero-order approximation is used, that is p = 0, the estimate λ̂ is
reduced to the following equation:

λ̂(x) = exp(α∗
0) =

∑N
i=1mi

∫
Xi
κh(t− x) λ̂(t)∫

Xi
λ̂(s)ds

dt∫ T
0 κh(t− x)dt

(2.56)

λ̂(x) appears on both sides of the equation and on the right side, the values
λ̂(x), x ∈ X are required. To reduce the computational complexity, Fan et al. [25]
approximate the estimate of the intensity function λ̂(x), x ∈ X by a piece-wise
constant function.

λ̂(x) ≈ 1

||Qj ||

∫
Qj

λ̂(u)du =
Λj

||Qj ||
, x ∈ Qj ,

where Λj
∆
=

∫
Qj
λ̂(u)du and {Qj}Jj=1 is a finer partition of the original window X

from {Xi}Ni=1.

Qk

∩
Qj = ∅, k ̸= j,

∪
{j|Qj∩Xi ̸=∅}

Qj = Xi.

Let I ∈ [0, 1]N×J be an indicator matrix and

Iij =

{
1 if Xi

∩
Qj ̸= ∅,

0 if Xi
∩
Qj = ∅.

The zero-order estimate in Equation (2.56) can then be approximated with
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Algorithm 9: The LocalEM estimate with the zero-order approximation.

Input : The bandwidth h, the time window (0, T ], the panel count data
d.

Output: The estimation of the intensity function λ̂(x).
1 Set r = 0.

2 Initialize {Λ(0)
j }.

3 while {Λ(r)
j }Jj=1 do not converge do

4 Update {Λ(r+1)
l } using Equation (2.58).

5 r = r + 1.

6 end

7 Compute λ̂(x) using Equation (2.57).

this piecewise constant function.

λ̂(x) =

N∑
i=1

mi

∫
Xi

κh(t− x)∫ T
0 κh(s− x)ds

λ̂(t)∫
Xi
λ̂(s)ds

dt

=

N∑
i=1

mi

J∑
j=1

∫
Qj

κh(t− x)∫ T
0 κh(s− x)ds

λ̂(t)∫
Xi
λ̂(s)ds

dt

≈
N∑
i=1

mi

J∑
j=1

∫
Qj

κh(t− x)∫ T
0 κh(s− x)ds

IijΛj

||Qj ||
∑J

k=1 IikΛk

dt. (2.57)

To obtain the optimal values {Λ∗
j}Jj=1, Fan et al. [25] first integrate the left-

most side and the rightmost sides of Equation (2.57) on Ql.

Λl =

∫
Ql

λ̂(x)dx ≈
∫
Ql

N∑
i=1

mi

J∑
j=1

∫
Qj

κh(t− x)∫ T
0 κh(s− x)ds

IijΛj

||Qj ||
∑J

k=1 IikΛk

dtdx

=
J∑

j=1

(∫
Ql

∫
Qj

κh(t− x)

||Qj ||
∫ T
0 κh(s− x)ds

dtdx
)( N∑

i=1

mi
IijΛj∑J
k=1 IikΛk

)
.

Then the optimal values {Λ∗
j}Jj=1 can then be found by iteratively updating

{Λ(r)
j }Jj=1, r ∈ N+.

Λ
(r+1)
l ≈

J∑
j=1

(∫
Ql

∫
Qj

κh(t− x)

||Qj ||
∫ T
0 κh(s− x)ds

dtdx
)( N∑

i=1

mi

IijΛ
(r)
j∑J

k=1 IikΛ
(r)
k

)
.

(2.58)
When using the zero-order approximation, the LocalEM method reduces to

iteratively updating {Λ(r)
j }Jj=1 and the algorithm is given in Algorithm 9. We

notice that if we use the zero-order approximation, we can obtain an estimate of
the whole intensity function λ(x).

The bottleneck of the computation complexity lies in the calculation of the
integral

∫
Ql

∫
Qj
κh(t − x)dtdx for all l, j = 1, . . . , J and consequently the com-

putation complexity scales as O(J2). Since {Qj} is a finer partition of X , the
computation complexity is O(N2A2) with A and N indicating the finer partition
level and the total number of intervals.
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Algorithm 10: The LocalEM estimate with the high-order approximation.

Input : The bandwidth h, the time window (0, T ], the panel count data
d and the positions to be estimated z = {zi}.

Output: The estimation of the intensity function at the given positions
{λ̂(zi)}.

1 for Each zi ∈ z do

2 Initialize {α(0)
j }pj=0, {Λ

(0)
j }Jj=1.

3 Calculate L(α, {Λ(0)
j }Jj=1; zi).

4 Set r = 1.

5 while L(α, {Λ(0)
j }Jj=1; zi) does not converge do

6 E-step: Update {Λ(r)
l }Jj=1 using Equation (2.60) till convergence.

7 M-step: Update {α(r)
j }pj=0 by

α(r) = argmax
α

L(α, {Λ(r)
j }Jj=1; zi).

r = r + 1.
8 end

9 Compute λ̂(zi) = exp(α
(r−1)
0 ).

10 end

2.7.2 High-Order Approximation

When the high-order approximation (p ≥ 1) is used, the estimate can also be
approximated with a piece-wise constant function.

λ̂(x) = exp(α∗
0) =

∑N
i=1miEt

[
κh(t− x)

∣∣∣t ∈ Xi

]
∫ T
0 κh(t− x) exp

(∑p
j=1 α

∗
j (s− x)j

)
dt

≈
N∑
i=1

mi

J∑
j=1

∫
Qj

κh(t− x)

Ψ(x; {α∗
j}

p
j=1)

IijΛj

||Qj ||
∑J

k=1 IikΛk

dt, (2.59)

where Ψ(x; {αj}pj=1) is defined as follows:

Ψ(x; {αj}pj=1)
∆
=

∫ T

0
κh(t− x) exp

( p∑
j=1

αj(s− x)j
)
dt.

This leads to the LocalEM algorithm to jointly update {αj}pj=0 and {Λj}Jj=1.

In the rth expectation step (E-step), the estimations of {Λj}Jj=1 are obtained by
the following Equation.

Λ
(r)
l ≈

J∑
j=1

(∫
Ql

∫
Qj

κh(t− x)

||Qj ||Ψ(x; {α(r−1)
j }pj=1)

dtdx
)( N∑

i=1

mi

IijΛ
(r−1)
j∑J

k=1 IikΛ
(r−1)
k

)
.

(2.60)
In the rth maximization step (M-step), the values {αj}pj=0 are obtained by
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maximizing the local likelihood function.

L({αj}pj=0;x) =

N∑
i=1

miEt

[
κh(t− x)

p∑
j=0

αj(t− x)j
∣∣∣t ∈ Xi

]
−

∫ T

0
κh(t− x) exp

( p∑
j=0

αj(s− x)j
)
dt

≈
N∑
i=1

mi

J∑
j=1

∫
Qj

κh(t− x)

p∑
l=0

αl(t− x)l
IijΛj

||Qj ||
∑J

k=1 IikΛk

dt

−
∫ T

0
κh(t− x) exp

( p∑
j=0

αj(s− x)j
)
dt. (2.61)

We denote the rightmost side of the equation as L(α, {Λj}Jj=1;x).

Since the estimate λ̂(x) now depends on the optimal values {{α∗
j}

p
j=0} and

the latter depends on the position of the evaluating position x, we can no longer
obtain an estimate of the entire intensity function. The algorithm for jointly
optimizing the {αj}pj=0 and {Λj}Jj=1 is concluded in Algorithm 10.
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Chapter 3

Panel Count Data: Variational Inference

with Gaussian Processes

In this chapter, we present the first Bayesian inference framework for Gaussian
process-modulated Poisson processes when the temporal data appear in the form
of panel counts.

3.1 Introduction

Characteristics of panel count data. A common characteristic of the panel
count data is that we only have the numbers of occurrences between subsequent
observation times. In particular, the exact occurrence times of the events are
unknown. Hence, panel counts are non-negative integers and they represent the
number of occurrences of events within a fixed period. Classical examples often
arise in the clinical trials [95] where patients are required to go back to the hospital
after a certain treatment and only the numbers of symptoms between subsequent
visits are recorded, such as the number of vomits or new tumors. Figure 3.1 gives
an example of panel count data.

Objective of this study. The purpose of this chapter is to present the vari-
ational Bayesian inference on Gaussian-process-modulated Poisson processes
(GP3) that permits panel data observations.

There have been extensive studies on GP3 models and various inference al-
gorithms are introduced for recurrent event data when timestamps of the events
are fully observable, e.g., Monte Carlo sampling [19, 2], Laplace approximation
[29] and variational inference [60]. Among these approaches, the variational in-
ference method [60] provides a computationally efficient estimate of the intensity
function and does not require a careful discretization of the underlying space. A
brief review of the variational inference approach is provided in Section 2.6.3.

To the best of our knowledge, however, there has not been any study carried
out on the variational inference of the GP3 model when the data come in the form
of panel counts. Our ultimate goal is to infer the underlying intensity function
in the panel count data.

Related statistical works. Based on the maximum likelihood criterion, sev-
eral non-parametric estimators have been proposed to infer the underlying inten-
sity function [91], e.g., a non-parametric maximum pseudo-likelihood estimator
(NPMPLE) [100], a non-parametric maximum pseudo-likelihood estimator with
gamma frailty (NPMPLGF) [105] and the local Expectation-Maximization (Lo-
calEM) estimator [25]. Unlike NPMPLE and NPMPLGF, which only estimate
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Figure 3.1: Bladder Cancer Data Set. This figure illustrates the panel count
data from the patients. For the kth subject (or the kth patient), his/her obser-
vation window X (k) is divided into disjoint intervals. The ith interval is denoted

as X (k)
i . For example, patient No. 4 (k = 4) has an observation window which

is divided into 8 disjoint intervals, i.e.,
∪8

i=1X
(4)
i = X (4) and Xi ∩ Xj = ∅ for

i ̸= j. Patients may drop out from the study at any time and therefore their
observation windows are different. An interval is shown by a rectangle. We use
different colors to indicate the different numbers of new bladder tumors observed
in this interval. Note that we only have access to the number of events in each
interval.

the cumulative intensity function at a set of points, LocalEM provides a smooth
estimate of the underlying intensity function due to the use of an exponential
quadratic kernel [25]. A review of the LocalEM algorithm is given in Section 2.7.

Besides the computational cost in selecting the bandwidth of the exponential
quadratic kernel, the estimators obtained by the LocalEM algorithm and other
similar algorithms are point-estimates in the sense that the estimated intensity
function is a point in the functional space. These point-estimates fail to capture
the uncertainty in the data set. We show an example of the estimated intensity
function by LocalEM in Figure 3.2. The uncertainty of the intensity function
helps us understand the difficulty of the prediction at a given time.

3.2 Background

Before presenting the model, we first derive the likelihood of the panel count
data and then briefly review the Gaussian process modulated Poisson processes.
A more detailed review can be found in Section 2.6.3.

3.2.1 Likelihood of Panel Count Data

In the recurrent event data, one approach to modeling the events {x(k)j ∈ X}
from each subject is to use the inhomogeneous Poisson processes (IPP) [52] and
assume that there is a fixed underlying intensity function λ(x) : X → R+. Given

51



0 10 20 30 40 50
Time (Week)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

In
te

ns
ity

GP4C
LocalEM

Figure 3.2: Bladder Cancer Data Set. Inferred intensity function by the
LocalEM and GP4C methods. For GP4C, a 75% credible interval is given by
dotted lines. Our estimator GP4C provides the additional uncertainty in the
estimated intensity function compared with LocalEM. See Section 3.5 for details.

the intensity function λ(x), the likelihood for the observed events is given by
Theorem 2.5.3.

p({x(k)j }|λ(x)) = exp
(
−

∫
X
λ(x)dx

)∏
j

λ(x
(k)
j ).

To derive the likelihood of the panel count data D, we use two important
properties of an IPP [52]. The first property is provided in Corollary 2.5.3.

Given the intensity function λ(x), the probability that we observe m
(k)
i events in

the interval X (k)
i is given as follows:

p(m
(k)
i |λ(x);X (k)

i ) =
r
m

(k)
i

ik

m
(k)
i !

exp(−rik), (3.1)

where rik
∆
=

∫
X (k)

i

λ(x)dx is the rate parameter of the Poisson distribution. Here-

after, we omit the dependency on X (k)
i for simplicity. However, the likelihood

depends on the intervals. Even for the same sequence, after censored with dif-
ferent intervals, the likelihood of the sequence will vary. See Section 3.5.2 for a
brief discussion.

The second property is that on two disjoint intervals X (k)
i and X (k)

j , the
numbers of events on these intervals are independent random variables.

p(m
(k)
j ,m

(k)
i |λ(x)) = p(m

(k)
j |λ(x))p(m(k)

i |λ(x)), X (k)
i

∩
X (k)
j = ∅. (3.2)

Based on these two properties, the likelihood of the panel count data D can
be derived. We assume that all subjects share the same intensity function λ(x).
Using this assumption, we can obtain an estimation of the mean intensity function
as is demonstrated in Theorem 2.6.1. Since K subjects are independent of each
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other and for the kth subject, the Nk intervals {X (k)
i }Nk

i=1 are disjoint, we obtain
the following likelihood:

p(D|λ(x)) =
K∏
k=1

p(dk|λ(x)) =
K∏
k=1

Nk∏
i=1

p(m
(k)
i |λ(x)). (3.3)

Several maximum likelihood estimators have been proposed on the basis of
this likelihood or its variants, e.g., NPMPLE [100, 101], NPMPLGF [105] and
the LocalEM estimator [25]. An estimate from LocalEM using the zero-order
approximation1 on the data set in Figure 3.1 is given in Figure 3.2. As we
discussed, these estimators fail to model the uncertainty in the intensity function.

3.2.2 GP3 Model

In order to model the uncertainty of the intensity function λ(x) via a kernel, the
traditional approach is to use the Cox process [52]. A Cox process is defined
via a stochastic intensity function λ(x). The stochastic process to generate the
intensity function is usually chosen to be a Gaussian process (GP) [2] and the
model using a GP is called a GP3 model.

For the recurrent event data, GP3 models have been studied extensively [2,
38, 60]. The following model is an example of GP3 models [60],

λ(x) = f2(x), f ∼ GP(g(x), κ(x, x′)), (3.4)

where GP(g(x), κ(x, x′)) denotes the Gaussian process with mean function g(x)
and covariance function κ(x, x′). The function f(x) drawn from a GP prior is
squared to ensure the non-negativity of the intensity function. The GP3 model in
Equation (3.4) admits a complete variational inference framework. Moreover, this
intensity model can be enhanced with an independent variable for each subject
or a mixture structure [61] to flexibly model the heterogeneity of the intensity
functions across several subjects.

3.3 Variational Inference Framework

In this section, we explain the GP4C model. We derive a simple and tractable
lower bound of the intractable evidence lower bound and then introduce a heuris-
tic method to analyze the error of the lower bound.

3.3.1 Model

In order to retain the scalability and efficiency of the variational inference ap-
proach [60] and add the uncertainty on the intensity function when we only
observe the panel count data, we use the GP3 model defined in Equation (3.4)
as the underlying intensity model.

The joint distribution p(D, f) can be obtained by combining the likelihood
model in Equation (3.3) and the intensity model in Equation (3.4).

p(D, f) =
[ K∏
k=1

p(dk|λ(x))
]
p(f ; g, κ). (3.5)

We call this model the GP-modulated Poisson Process model for Panel
Count data (GP4C).

1Note that we did not compare the result with the higher-order approximation since using
the higher-order approximation, we can not obtain an estimate of the entire intensity function.
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3.3.2 Variational Inference

We use the GP construction in Section 2.6.3 to reduce the computational com-

plexity with the set of pseudo inputs X̄ = {x̄m}Mm=1 on X [60]. Let f̄
∆
=

[f(x̄1), . . . , f(x̄M )]⊤. The joint model with additional pseudo inputs is

p(D, f, f̄) = p(D|f)p(f |f̄)p(f̄).

The variational distribution is defined as follows:

q(f, f̄) = p(f |f̄)q(f̄), (3.6)

where q(f̄) = N (f̄ ;µ,Σ) and N (f̄ ;µ,Σ) denotes a normal distribution with
mean µ and covariance matrix Σ. The evidence lower bound (ELBO) L can be
obtained by using Jensen’s inequality.

ln p(D) ≥
∫∫

q(f, f̄) ln
p(D, f, f̄)
q(f, f̄)

dfdf̄

=
K∑
k=1

Nk∑
i=1

(
m

(k)
i Eq

[
ln

∫
X (k)

i

f2(x)dx
]
− ln(m

(k)
i !)

)
−

K∑
k=1

Eq

[ ∫
X (k)

f2(x)dx
]
+ Eq

[
ln
p(f̄)

q(f̄)

]
∆
= L. (3.7)

In ELBO, when assuming that the covariance function κ(x, x′) is the auto-
matic relevance determination (ARD) function in Equation (2.10), the second
term in the ELBO can be analytically calculated [60] and we copy the result
from Section 2.6.3.

∫
X (k)

E2
q(f(x))[f(x)]dx = tr(K−1

X̄X̄
ΦK−1

X̄X̄
µµ⊤),∫

X (k)

Varq(f(x))[f(x)]dx = c|X (k)| − tr(K−1
X̄X̄

Φ) + tr(K−1
X̄X̄

ΦK−1
X̄X̄

Σ),

Eq

[ ∫
X (k)

f2(x)dx
]
=

∫
X (k)

(
E2
q(f(x))[f(x)] + Varq(f(x))[f(x)]

)
dx

= c|X (k)| − tr(K−1
X̄X̄

Φ) + tr(K−1
X̄X̄

ΦK−1
X̄X̄

(µµ⊤ +Σ)),

(3.8)

where Φ is an R×R matrix related to the pseudo inputs with its (i, j)-th entry
equal to

∫
X (k) κ(x̄i, x)κ(x, x̄j)dx and KX̄X̄ is the covariance matrix computed at

the pseudo inputs. However, the ELBO L is still intractable, since we can not

analytically compute the expected integral Eq

[
ln

∫
X (k)

i

f2(x)dx
]
in the first term.

3.3.3 A Tractable Lower Bound

We tackle the intractable expectation by deriving a tractable lower bound. In
Lemma 2.6.1, we have shown that if Y ∼ N (µ, σ2) and φ = (µ/σ)2, then

EY [lnY
2] = ln(2σ2) +

∞∑
j=0

(φ/2)j exp(−φ/2)
j!

ψ(j + 1/2). (3.9)

Let

gm(y)
∆
=

∞∑
j=0

yj exp(−y)
j!

ψ(j +m). (3.10)
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We have EY [lnY
2] = ln(2σ2) + g0.5(φ/2). The function gm(y), where y is a

positive real number and m is a positive integer, has been studied in the analysis
of mobile and wireless communication systems [69]. For m = 1/2, g0.5(φ/2) can
be computed using the Kummer function of the first kind in Section 2.6.3, which
is stored in a precomputed multi-resolution look-up table.

g0.5(φ/2) = −∂M(a, 1/2,−φ/2)
∂a

∣∣∣
a=0

− 2 ln 2− γ, (3.11)

where γ is Euler’s constant and γ ≈ 0.5772. However, to the best of our knowl-
edge, it is still not clear how to calculate the integral of the function g0.5(φ/2)
when the parameter φ comes from a GP. To derive a tractable lower bound of
the intractable expectation, we introduce the following theorem to give a lower
bound of the function gm(y) and the proof is deferred to Section 3.6.

Theorem 3.3.1. Let Y ∼ N (µ, σ2) and ξ be a constant which does not depend
on µ and σ.

EY [lnY
2] ≥ ln(µ2 + bσ2) + ξ, ∀b ∈ [0, 1]. (3.12)

Based on Theorem 3.3.1, we propose the following corollary which introduces
a lower bound for the intractable expectation in the ELBO.

Corollary 3.3.1. Let f be a GP as defined in Equation (3.4). For b ∈ [0, 1], the
following bound holds:

Eq

[
ln

∫
X (k)

i

f2(x)dx
]
≥ ln

(∫
X (k)

i

(
E2
qf(x) + bVarqf(x)

)
dx

)
+ ξ, (3.13)

where the variational distribution q is given in Equation (3.6).

Proof. We first use Jensen’s inequality on the logarithm function and then inter-
change the order of integration and expectation.

Eq

[
ln

∫
X (k)

i

f2(x)dx
]
= Eq

[
ln

∫
X (k)

i

p̃(x)
f2(x)

p̃(x)
dx

]
≥

∫
X (k)

i

p̃(x)Eq

[
ln
f2(x)

p̃(x)

]
dx,

(3.14)

where p̃(x) is a probability distribution on X (k)
i . Furthermore, maximizing this

lower bound with respect to p̃(x) yields the optimal distribution:

p̃opt(x) ∝ exp
(
Eq ln f

2(x)
)
. (3.15)

We remark that this result is analogous to that of the discrete version presented
in Paisley [74]. Substituting Equation (3.15) into the right-hand side of Equation
(3.14) yields

Eq

[
ln

∫
X (k)

i

f2(x)dx
]
≥ ln

(∫
X (k)

i

eEq ln f2(x)dx
)

≥ ln
(∫

X (k)
i

eln(E
2
qf(x)+bVarqf(x))+ξdx

)
(Theorem 3.3.1)

= ln
(∫

X (k)
i

(
E2
qf(x) + bVarqf(x)

)
dx

)
+ ξ, (3.16)

where we have invoked Theorem 3.3.1 in the penultimate line whilst defining
y := f(x).
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It should be emphasized that we are making no further assumptions on the
dimensionality of x in the proof of Corollary 3.3.1. Hence we may augment the
dimensionality of x in Corollary 3.3.1 such that it can also be applied to problems
in spatial point processes. In summary, the ELBO in Equation (3.7) inherits an
analytical bound. We present the following:

Theorem 3.3.2. A tractable lower bound of the ELBO L in the GP4C model is
given as follows:

L ≥ L̃ ∆
= −

K∑
k=1

Eq

[ ∫
X (k)

f2(x)dx
]
+ Eq

[
ln
p(f̄)

q(f̄)

]

+
K∑
k=1

Nk∑
i=1

m
(k)
i ln

(∫
X (k)

i

(
E2
qf(x) + bVarqf(x)

)
dx

)

−
K∑
k=1

Nk∑
i=1

(
−m

(k)
i ξ + ln(m

(k)
i !)

)
. (3.17)

Proof. The theorem can be obtained by applying Corollary 3.3.1 on the ELBO
L in Equation (3.7).

The derivations of E2
qf(x) and Varqf(x) in the second line of Equation (3.17)

follow similar derivations in Equation (3.8). The third line in L̃ is a constant
and thus can be omitted when maximizing the lower bound. In the lower bound,
{µ,Σ} and θ = {c, b} are the variational parameters and hyper-parameters in the
covariance function of a GP, respectively. We use the variational Expectation-
Maximization (vEM) algorithm [17] in Algorithm 3 to update the variational
parameters and the hyper-parameters iteratively on the modified ELBO L̃.

3.3.4 The Value of Parameter b

A natural question is, how do we select the parameter b in Corollary 3.3.1?
Recall that two inequalities were used in the proof. It is cumbersome to evaluate

Inequality (3.14) since it is an integral over X (k)
i . We first examine the influence

of Theorem 3.3.1.
Let the difference between the lower bound and the true value in Theorem

3.3.1 be h(φ; b).

h(φ; b)
∆
= ln(µ2 + bσ2) + ξ − EY [lnY

2]

= ln(µ2 + bσ2) + ξ −
(
ln(2σ2)− ∂M(a, 1/2,−φ/2)

∂a

∣∣∣
a=0

− 2 ln 2− γ
)

= ln(φ2 + b) + ξ′ +
∂M(a, 1/2,−φ/2)

∂a

∣∣∣
a=0

,

where ξ′ = ξ + ln 2 + γ. Let φ(x)
∆
= E2

q [f(x)]/Varq[f(x)]. In Equation (3.16)
where we invoke Theorem 3.3.1, the difference ferror between the two sides of the
inequality is

ferror
∆
= ln

(∫
X (k)

i

eEq ln f2(x)dx
)
− ln

(∫
X (k)

i

eln(E
2
qf(x)+bVarqf(x))+ξdx

)
= ln

(∫
X (k)

i

eEq ln f2(x)dx
)
− ln

(∫
X (k)

i

eEq ln f2(x)e−h(φ(x);b)dx
)
.
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Figure 3.3: Influences of b in Lemma 2. (Left) The true value of G(φ) =
g0.5(φ/2) + 2 ln 2 + γ by a look-up table and two simple lower bounds ln(φ + 1)
and ln(φ+0.3). The curve ln(φ+0.3) correlates with the curve of the true value
better. (Right). The heuristic error f̂error when varying the choices of b and the
best b is shown with a red circle.

Since the two functions eEq ln f2(x) and e−h(φ(x);b) are both non-negative and

continuous for x ∈ X (k)
i , by the mean value theorem there exists xc ∈ X (k)

i such
that

ln
(∫

X (k)
i

eEq ln f2(x)e−h(φ(x);b)dx
)
= ln

(∫
X (k)

i

eEq ln f2(x)dx
)
− h(φ(xc); b).

Consequently, the error is ferror = h(φ(xc); b), xc ∈ X (k)
i . However, it is

difficult to obtain the value of xc or an upper bound on the error ferror.
In Paisley et al. [75], a more correlated lower bound of the ELBO serves as

a better control variate in reducing the variance of a stochastic gradient. The
correlation can be measured by the variance of the error. Inspired by this study,
we use a heuristic approach to examine different choices of b. More specifically,
for each choice of b, we calculate the following heuristic error.

f̂error
∆
=

1

|Φ|
∑
φ∈Φ

(h(φ; b)− h̄)2, h̄ =
1

|Φ|
∑
φ∈Φ

h(φ; b).

The set Φ consists of 5000 logarithmically spaced points between 10−6 and
106. We calculate f̂error on a vector of 50 evenly spaced choices of b between 0
and 1. The result is shown in Figure 3.3. We see that the optimal choice of b
is 0.3061 and this indicates that the choice of b might not be close to 0 or 1. In
the actual situation, this optimal value of b depends on the range of φ in the
data and the influence of Inequality (3.14), we evaluate several choices of b on
synthetic data sets in Section 3.5.

3.3.5 Computational Complexity

Let each interval in temporal point processes be X (k)
i = [x

(k)
ai , x

(k)
bi ] with two

end points x
(k)
ai and x

(k)
bi . Two intervals are different if at least one end point

is different. We denote the number of different intervals in the data set as N
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and the number of pseudo inputs as M . For each interval, the computation
complexity of GP4C is O(M3) which is determined by the inverse of the matrix
calculation when evaluating Varqf(x) in Equation (3.17). The computational
complexity during one iteration of the vEM algorithm is O(NM3) since in our
implementation, we calculate the integral of all N different intervals.

We analyze the computational complexity of the LocalEM [25] algorithm for

comparison. In LocalEM, {x(k)ai } and {x(k)bi } are first merged into a single ordered
set X where duplicated values are removed. We denote the size of the merged set
X as N̄ and generally N̄ ≤ N . Then the Gaussian quadratic rule with M̄ points is
used to calculate the integral of the intensity function between subsequent values
in the set X and the computational complexity during one iteration is O(N̄2M̄2).

If the size of the merged set N̄ is significantly smaller than N , LocalEM may
be computationally more efficient than GP4C. However, if N̄ ≈ N , LocalEM may
suffer from the term N̄2 in the computational complexity. We provide additional
experiments on the influence of the number N̄ in Section 3.5.

3.4 GP4C With Individual Weight

In this section, we briefly discuss how to model the diversity from multiple time-
sequences. Then we will show how to use the VB-EM framework in Algorithm 3
to optimize the additional parameters.

3.4.1 Model

It is practical to assume that the kth subject has an individual weight parameter
υk multiplied to the basic intensity function, because in traditional panel count
data sets, each subject is a patient whose personal information, such as age,
is not the same and the count data from each patient may vary greatly. Such
a modification is called the unobservable independent random effects in Cook
and Lawless [15]. In the simplest case, we consider the following model for the
underlying intensity function:

λk(x) = υkf
2(x), f ∼ GP(g(x), κ(x, x′)), k = 1, . . . ,K, (3.18)

where υk ∈ R>0 is a deterministic and positive real number. The likelihood is as
follows.

p(D, f) =
[ K∏
k=1

p(dk|λ(x); υk)
]
p(f ; g, κ). (3.19)

We call this model the GP4C with individual Weight (GP4CW) model. We
can further generalize this model by assuming that the intensity function of the
kth subject is a linear combination of basis intensity functions as in LPPA [61]
and the mixture weights are also deterministic.

3.4.2 Variational Inference

The derivation of the lower bound in the GP4CW model is almost the same as
the procedure in GP4C. Similarly to Theorem 3.3.2, we can obtain the following
lower bound for the GP4CW model and the proof is omitted.

Theorem 3.4.1. A tractable lower bound of the ELBO L in the GP4CW model
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is given as follows:

L ≥L̃ ∆
= −

K∑
k=1

υkEq

[ ∫
X (k)

f2(x)dx
]
+ Eq

[
ln
p(f̄)

q(f̄)

]

+

K∑
k=1

Nk∑
i=1

m
(k)
i ln

(∫
X (k)

i

(
E2
qf(x) + bVarqf(x)

)
dx

)
+

K∑
k=1

Nk∑
i=1

m
(k)
i ln υk

−
K∑
k=1

Nk∑
i=1

(
−m

(k)
i ξ + ln(m

(k)
i !)

)
. (3.20)

Note that we have an additional set of hyper-parameters {υk}Kk=1. A point
estimate of υk can be found by taking the derivative of L̃ and setting it to zero.
The result is given as follows:

υk = max
{
ϵ,

∑Nk
i=1m

(k)
i∫

X (k) Eq[f2(x)]dx

}
, (3.21)

where ϵ = 10−6 is a small number to guarantee the positiveness of υk. The
learning algorithm is given in Algorithm 11.

Algorithm 11: The learning algorithm for GP4CW.

Input : The training data set D = {dk}Kk=1,K ∈ N+.
Output: An estimation of the parameters µ,Σ in the variational

distribution q(f̄) and the hyper-parameters θ = {c, b,υ}.
1 Initialize t = 0, L̃(t) = Inf.

2 Initialize the parameters µ(t),Σ(t) and the hyper-parameters θ(t).
3 while True do
4 t = t+ 1.

5 Update µ(t),Σ(t) to increase L̃(µ,Σ;θ(t−1)).

6 Update c(t), b(t) to increase L̃(µ(t),Σ(t); c, b,υ(t−1)).
7 for each k = 1, . . . ,K do

8 Evaluate υ
(t)
k in Equation (3.21).

9 end

10 Calculate the current L̃(t) = L̃(µ(t),Σ(t);θ(t)).

11 if |L̃(t) − L̃(t−1)| < 10−6|L̃(t)| then
12 Break.
13 end

14 end

3.5 Experiment

We evaluate our proposed GP4C model and compare it with the benchmark meth-
ods on both synthetic and real-world data sets. The algorithms are programmed
in Matlab R2015b and run on an Intel Xeon E5-2667 CPU with a memory of
64GB. Our code is available at github.com/Dinghy/GP4C.

3.5.1 Experiment Settings

For each data set D, we randomly partition the subjects into training and testing
sets, which we denote as Dtrain and Dtest, respectively. We repeat each setting
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for S = 40 times. In the sth trial, the training and testing sets are denoted as

D(s)
train and D(s)

test.

Benchmark

Two benchmark algorithms are used.

a) GP3 [60]. This benchmark reflects the performance that can be obtained if
we obtain the recurrent event data set where we have the exact timestamps.

b) LocalEM [25]. Both LocalEM and GP4C are nonparametric estimators
based on the maximum likelihood criterion. To fairly compare the compu-
tation time, we implemented the LocalEM algorithm in MATLAB based on
the R code provided in Fan et al. [25]. This method produces a smooth es-
timate of the intensity function due to the use of an exponential quadratic
kernel. We use a 5-fold cross-validation on the training set to select the
bandwidth of the exponential quadratic kernel.

Evaluation Metric

We evaluate the performance of the algorithms in terms of three metrics.

a) The integrated squared error (ISE). In synthetic data sets, we have the
ground truth of the intensity function λtrue and the integrated squared

error can be calculated using our estimated intensity function λ
(s)
est during

the sth trial. To measure the bias of each estimator, we calculate the mean
of the integrated squared error as follows:

ISE(s)
∆
=

∫
X
(λ

(s)
est(x)− λtrue(x))

2dx. (3.22)

For GP4C, to measure its bias, we omit the variance of the estimator and

use the expectation of the intensity function Eq(s) [f
2(x)] as λ

(s)
est(x).

b) Test log likelihood Ltest. During the sth trial, the logarithm of the test
likelihood can be written as follows:

Ltest(s)
∆
= ln

∫
p(D(s)

test|f)p(f |D
(s)
train)df. (3.23)

For LocalEM, since this estimator provides a point-estimate and we directly
use the estimated function f (s) to calculate Ltest(s). For GP4C and GP3,
we need to sample the function f (s) from the variational distribution. Recall
that during the sth trial, the test likelihood is

Ltest(s)
∆
= ln

∫
p(D(s)

test|f)p(f |D
(s)
train)df

≈ ln
1

U

U∑
u=1

p(D(s)
test|f (s,u)) (3.24)

= ln
U∑

u=1

exp
(
ln p(D(s)

test|f (s,u))
)
− lnU

= ln
U∑

u=1

exp
(Ktest∑

k=1

Nk∑
i=1

(
m

(k)
i ln r

(s,u)
ik − ln(m

(k)
i !)

)
−

Ktest∑
k=1

∫
X (k)

(
f (s,u)(x)

)2
dx

)
− lnU. (3.25)
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In the above derivation, we use

f (s,u) ∼ N (µ(s),Σ(s)),

r
(s,u)
ik =

∫
X (k)

i

(
f (s,u)(x)

)2
dx.

We can calculate the test likelihood for each subject similarly. In Equation
(3.24), we draw U = 50 samples of the function f (s,u) from the variational
distribution q(s)(f) on a vector of 3001 evenly-spaced points on X and we
approximate points at an arbitrary position on X with the linear interpola-
tion. The log-exp-sum trick is used to calculate the Ltest(s). We calculate all

integrals in p(D(s)
test|f) using Simpson’s rule with 501 evenly-spaced points.

In Equation (3.25), the term
∑

k

∑
i ln(m

(k)
i !) can be extracted out and

treated as a constant.

c) Computation time T . We record the training time measured in seconds
for each setting. For GP3 and GP4C, we record the computation time of
the training process. For LocalEM, it includes the time of 5-fold cross-
validation on the training set to select the bandwidth of the exponential
quadratic kernel and the time of a training process over the whole training
set.

Optimization Settings

For GP3 and GP4C, following Lian et al. [57], we use the re-parametrization
trick Σ = LL⊤ by Cholesky decomposition and add positivity constraints to the
diagonal elements in L. Due to this constraint on L, we use the limited-memory
projected quasi-Newton algorithm [85] to optimize the variational parameters
{µ,L}. We add a jitter term ϵI where ϵ = 10−6 to the covariance matrix KX̄X̄

to avoid numerical instability [96].

3.5.2 Synthetic Data Sets

We test three synthetic data sets which we denote as the Synthetic A, B and C
data sets, respectively.

On the Synthetic A data set, the intensity function is a square wave function
h1(x) as follows. See Figure 3.4 for an illustration of h1(x).

h1(x) =

{
7 if mod

([
x
10

]
, 2
)
= 0,

2 otherwise.

On the Synthetic B and C data sets, the underlying intensity functions are
drawn according to Equation (3.4). We first draw a function from a GP on a
vector of 3001 evenly-spaced points in X = [0, T ], where T = 60. We approximate
the value of the function at an arbitrary position with linear interpolation. The
function is then squared to guarantee the positiveness of the intensity function.
See Figure 3.6 for an illustration.

During the sth trial, we first generate a recurrent event data set with 100
subjects on the same observation window X (k) = X . Then we generate the cor-
responding panel count data set D(s) by censoring each subject with 10 intervals.
We generate the censored intervals by a draw from a Dirichlet distribution w(k) ∼
Dir(θ) and θ is a 10-dimensional vector with all elements equal to 1. The ith
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Table 3.1: Synthetic data sets. Mean and standard deviation of statistics
about different choices of b over 40 runs. GP3 uses the recurrent event data while
LocalEM and GP4C use the panel count data. For GP4C, b = 0.3 and b = 0
perform better than b = 1 in terms of ISE and Ltest.

Method ISE Ltest T [s]

(Synthetic A)
GP3 29.5±1.0 -1366.5±17.4 16±4
GP4C(1) 41.8±6.2 -3236.9±542.3 25±5
GP4C(0) 40.8±3.3 -1378.1±16.9 19±4
GP4C(0.3) 40.2±3.2 -1377.8±17.5 20±3
LocalEM 44.6±3.1 -1383.5±17.0 33±2

(Synthetic B)
GP3 0.5±0.2 -783.1±20.7 8±1
GP4C(1) 1.9±2.1 -1005.8±81.5 55±44
GP4C(0) 2.7±0.8 -794.5±20.1 17±3
GP4C(0.3) 2.4±0.7 -794.2±20.2 17±4
LocalEM 3.5±0.7 -800.3±19.6 33±2

(Synthetic C)
GP3 1.2±0.4 -864.1±14.9 8±3
GP4C(1) 2.3±1.5 -1194.6±100.5 52±53
GP4C(0) 2.1±0.6 -871.2±15.9 17±2
GP4C(0.3) 2.0±0.7 -872.0±15.7 18±3
LocalEM 5.2±1.1 -882.7±16.5 34±2

interval of the kth subject can be computed as X (k)
i = [

∑i−1
j=1w

(k)
j T,

∑i
j=1w

(k)
j T ].

We randomly partition D(s) into two parts, where 50 subjects are used for training
and 50 for testing.

Different choices of the hyper-parameter b

On all three synthetic data sets, we test three different choices of b in {0, 0.3, 1}.
We choose the number of pseudo inputs to be 30. We calculate the ISE and
Ltest and the results are provided in Table 3.1. We see that b = 0, 0.3 generally
outperform b = 1 on these simple synthetic data sets. However, the difference
between b = 0 and b = 0.3 is not significant. The reason is that Inequality (3.14)
and the range of φ on X are also relevant to the actual performance of different
b, as we discussed in Section 3.3.4.

To investigate the reason behind the bad performance of Ltest when b = 1,
we plot the best result in terms of ISE during 40 trials in Figure 3.4. We see
that GP4C (b = 1) over-estimates the variance of the intensity function and the
over-estimated variance leads to the poor performance in Ltest. We fix b = 0.3
during the remaining experiments for simplicity.

Number of the pseudo inputs

We vary the number of pseudo inputs in GP3 and GP4C since this number
determines the accuracy of approximation in a sparse GP. We expect that for
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Figure 3.4: Synthetic A Data Set. The estimated intensity functions from
GP4C (b = 1) and GP4C (b = 0.3) are shown with 75% credible intervals. True
intensity function h1(x) is given for comparison. We see that GP4C (b = 1)
over-estimates the variance of the intensity function.
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Figure 3.5: Synthetic A Data Set. The estimated intensity functions from
GP3 and GP4C (b = 0.3) are shown with 75% credible intervals. True intensity
function h1(x) is given for comparison. We see that the variance of the GP3 and
GP4 (b = 0.3) are comparable.

GP-based methods the test likelihood will be relatively stable when increasing
the number of pseudo inputs according to previous studies on sparse GPs [96].

The result for the Synthetic A data set is given in Figures 3.7. In Figure
3.7, we see that for GP3 and GP4C, ISE and Ltest stay relatively stable with
the increase of the number of pseudo inputs. The computation time of GP3 and
GP4C will grow with the increase of the number of pseudo inputs.

In both Table 3.1 and Figure 3.7, we see that GP4C outperforms LocalEM
on these three datasets. However, we also notice that there is still a gap between
GP3 and GP4C in terms of Ltest and ISE in Table 3.1. Two reasons may account
for this fact. The first one is that the data are provided in the form of panel
counts rather than exact timestamps. The second reason is that we use a lower
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Figure 3.6: Synthetic B & C Data Sets. An illustration of the underlying
intensity functions and inferred intensity functions by the LocalEM and GP4C
methods. The underlying intensity function is drawn from a Gaussian process.
For GP4C, a 75% credible interval is given by dotted lines.

bound of the true ELBO to perform the variational inference, which may lead to
a bias. This bias can be alleviated with the stochastic variational inference [75],
where our lower bound can serve as a control variate. We leave this as a future
study.

The Dependence of the Likelihood on the Number of Intervals

The likelihood of the panel count data for the kth subject depends on the disjoint

intervals {X (k)
i }Nk

i=1, where
∪

X (k)
i = X (k). One phenomenon is that as the number

of disjoint intervals Nk increases, the likelihood tends to decrease. This is because
as we use finer disjoint intervals, we are less uncertain about the position of the
time-stamps.

We conduct an experiment to show this phenomenon. First we draw a time-
sequence from the intensity function λ(t) = 5 on X = [0, 60] and then censor
the time-sequence using N disjoint intervals. We vary the number of disjoint
intervals N and calculate the likelihood of the generated panel count data set.
The result is given in Figure 3.10. We see that the logarithm of the likelihood
decreases with the increase of the number of intervals.

The Dependence of the Computation Complexity on the Size N̄

The computational complexity of LocalEM during one iteration is O(N̄2M̄2)
while for GP4C it is O(NM3), where N and N̄ denote the number of different
intervals in the data set and the size of the merged set X. We conduct an
experiment to show the influence of the size N̄ .

We generate U = 70 subjects from the same intensity function λ(t) = h1(t),
which is the same as Synthetic A data set. We generate the corresponding panel
count data set by censoring each subject with 10 intervals. Then we vary the
number of N̄ by rounding each end point to the next smaller integer with the
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Figure 3.7: Synthetic Data Set. Comparison of performance of GP3, GP4C
and LocalEM in terms of Ltest, ISE and T when varying the number of pseudo
inputs for sparse GPs. For the test likelihood, ISE and the computation time,
the median, the 0.25 and 0.75 quantiles of the statistics in 40 experiments are
shown with error bars or shaded area. For GP3 and GP4C, ISE and Ltest stay
relatively stable with the increase of the number of pseudo inputs.
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Figure 3.8: Synthetic Data Set. Comparison of performance of GP3, GP4C
and LocalEM in terms of Ltest, ISE and T when varying the ratio of training
subjects and the test set is the same. For ISE and the computation time, the
0.25 and 0.75 quantiles of the statistics in 40 experiments are shown with error
bars. All methods benefit from the increase of the number of training subjects.
The computation time of GP3 and GP4C grow linearly with the increase of the
number of training subjects.

probability p0. As p0 get larger, more end points are rounded and the value of
N̄ decreases. The experiment result is given in Figure 3.9.

From the left plot of Figure 3.9, we see that the number N̄ decreases linearly
with the probability p0. In the right plot, we notice that the computational time
of LocalEM increases much faster when we have fewer duplicated points. We can
conclude that when the number of duplicates is large, LocalEM is less efficient
than GP4C.

Ratio of the Training Objects

We vary the number of training subjects by adjusting the ratio relative to full
training subjects. We expect all methods will benefit from the increase of the
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Figure 3.9: Synthetic A Data Set. Comparison of the computation time of
GP4C and LocalEM algorithms when varying the number of duplicated points
in the panel count data set. LocalEM algorithm achieves a worse computation
time as the probability p0 gets smaller.

training subjects.
The result for the Synthetic A data set is given in Figure 3.8. We see that

all three methods benefit from the increase of the number of training subjects.
The computation time of GP3 and GP4C grow linearly with the increase of the
number of training subjects but LocalEM grows more rapidly.

3.5.3 Real World Data Sets

Sun and Zhao [91] provided three panel count data sets. Some statistics can be
found in Table 3.2. A brief description about the these data sets can be found
below.

a) Nausea data set. This data set contains the visiting times from 113
patients during 52 weeks. The panel count data were obtained by recording
the reported count of vomits from each patient between two subsequent
visits. Patients were divided into two groups, which are the treatment
group (65 patients) and the placebo group (48 patients). We denote the
two groups as the Nausea A (Na-A) and B (Na-B) sets.

b) Bladder cancer data set. This data set arises from a bladder cancer
study conducted by the Veterans Administration Cooperative Urological
Research Group. It records the counts of new tumors that occurred between
subsequent visits from 85 patients during 53 weeks, who were divided into
the placebo group (47 patients) and the treatment group (38 patients). We
denote the two groups as the Bladder A (Bl-A) and B (Bl-B) sets.

c) Skin cancer data set. This data set was recorded during a skin can-
cer experiment conducted by the University of Wisconsin Comprehensive
Cancer Center and the numbers of new skin cancers of two different types
between two subsequent visits from 290 patients were recorded during five
years. The visiting time was recorded in the form of days since the first
visit and we divided the days by 30. Patients were divided into treatment

66



1 2 3 4 5 6 7 8 9 10
The number of the intervals N

-30

-25

-20

-15

-10

-5

Lo
ga

rit
hm

 o
f t

he
 li

ke
lih

oo
d

Figure 3.10: The logarithm of the likelihood of the same time-sequence when
varying the number of disjoint intervals. As more disjoint intervals are used,
the logarithm of the likelihood decreases. Even for the same number of disjoint
intervals, the logarithm of the likelihood has a large variance.

Table 3.2: Statistics about the three data sets, where K, X , N̄ and N denote the
number of subjects in each data set, the underlying continuous space, the number

of different end points and the number of different intervals X (k)
i , respectively.

Data Set X K N̄ N

Na-A [0, 55] 65 45 109
Na-B [0, 55] 48 38 84

Bl-A [0, 53] 38 52 176
Bl-B [0, 53] 47 52 201

Sk-A & Sk-B [0, 61.57] 143 751 816
Sk-C & Sk-D [0, 62.63] 147 808 887

and placebo groups. We denote the four groups from two types of cancer as
the Skin A (Sk-A), Skin B (Sk-B), Skin C (Sk-C) and Skin D (Sk-D) sets.

Experiment Results Using GP4C

We use 18 pseudo inputs for all real world experiments. In each trial, we randomly

split each data set into two parts, which are D(s)
train (50%) and D(s)

test (50%). On
these three data sets, since the original data are in the form of panel counts,
GP3 is not tested. We compare GP4C with LocalEM in terms of Ltest and the
computation time T .
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Figure 3.11: Bladder A Data Set. An illustration of the panel count data in the
test set (Left) and the test likelihood from GP4C and LocalEM of each subject
(Right). GP4C mainly outperforms LocalEM on two subjects whose numbers of
newly-occurred cancers are large (No. 12 and 15).

The results are given in Table 3.3. The standard deviation of the likelihood is
large since the likelihood depends on the censored intervals of the subjects, which
vary greatly in different train/test split. We conduct an experiment to reduce the
standard deviation in the end of this section. In Table 3.3, LocalEM performs
better on the Nausea and Bladder data sets in terms of the computation time T .
GP4C outperforms LocalEM in terms of test likelihood Ltest in all data sets.

To see the difference between GP4C and LocalEM, we show the result of
inferred intensities by two algorithms during one trial on the Bladder A data
set in Figure 3.2. We see that GP4C provides the additional uncertainty which
helps improve Ltest compared with LocalEM. Since the Bladder A set is small,
we plot the panel count data in the training set in Figure 3.1. The test set
and the test likelihood of all its subjects are given in Figure 3.11. From the
test likelihood of each subject, we see that GP4C outperforms LocalEM on two
subjects whose counts of newly-occurred tumors are large (No. 12 and No. 15).
The count 8 never occurs in the training set and a point-estimate will fail to
model this uncertainty while a GP-modulated method will take the uncertainty
into consideration.

Another observation about this data set is that there is a heterogeneity across
all subjects. The traditional approach to modeling heterogeneity is to add an
additional variable on the intensity function for each subject [15]. We have briefly
discussed how to add this change to GP4C in Section 3.4.

Experiment Results Using GP4CW

On the three real world data sets, we implement the GP4CW model and the
experiment settings are the same as GP4C. The test likelihood Ltest and the
computation time T are given in Table 3.4. We also plot the test likelihood of each
subject and the inferred intensity function from GP4CW on the Bladder A data
set in Figures 3.12 and 3.13, respectively. We can notice that GP4CW provides
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Table 3.3: Mean and standard deviation of the test likelihood (Ltest) and the
computation time T measured in seconds on the three panel count data sets
over 40 runs. LocalEM performs better on the Nausea and Bladder data sets in
terms of computation time. In all data sets, GP4C performs better on the test
likelihood and outperforms LocalEM on computation time in the Skin data sets.

Data Set METHOD Ltest T [s]

Na-A LocalEM -492.1±306.1 1±0
GP4C -484.9±201.8 10±10

Na-B LocalEM -473.2±212.2 1±0
GP4C -411.0±184.3 10±7

Bl-A LocalEM -201.8±46.9 1±0
GP4C -182.2±47.3 25±9

Bl-B LocalEM -313.1±54.2 1±0
GP4C -310.4±54.9 26±21

Sk-A LocalEM -259.1±27.3 39±3
GP4C -258.7±26.7 33±6

Sk-B LocalEM -198.1±47.1 39±3
GP4C -191.2±42.5 24±4

Sk-C LocalEM -358.0±35.8 47±4
GP4C -355.7±36.0 21±12

Sk-D LocalEM -200.9±31.9 46±3
GP4C -198.9±30.6 27±4

more accurate test likelihood on the patient No. 12 and No. 15. However,
since GP4CW utilizes the unobservable independent random effects assumption,
GP4CW can not provide an estimate of the mean intensity function as GP4C.

Experiment Results on Reducing the Standard Deviation on the Real
World Data Set

In each trial, we randomly split the whole data set into two halves Dtrain and
Dtest, one for training and the other for testing. However, as is discussed in
Figure 3.10, if the subjects in Dtest do not share the same time window Xk and

the same set of disjoint censoring intervals, the test likelihood L(1)
test will vary

greatly from subject to subject.
To reduce the large standard deviation caused by different random splits, we

perform another round of training for each split, we train on Dtest and calculate

the test likelihood on the Dtrain. The test likelihood is denoted as L(2)
test. This

can be viewed as adding an additional reverse split. The final test likelihood is

L(1)
test + L(2)

test. The result is given in the fourth column of Table 3.4.
We see that the variances of the test likelihood in the fourth column are

reduced comparing to results in the third column.
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Figure 3.12: Bladder A Data Set. An illustration of the panel count data in
the test set (Left) and the test likelihood from GP4CW and LocalEM of each
subject (Right). GP4CW mainly outperforms LocalEM on two subjects whose
numbers of newly-occurred cancers are large (No. 12 and 15).

3.6 Proof of Theorem 3.3.1

In this section, we will prove Theorem 3.3.1. Let us recall that

gm(x) =
∞∑
j=0

xj exp(−x)
j!

ψ(j +m). (3.26)

The derivative of gm(x) with respect to x is

g′m(x) =
∞∑
j=0

(jxj−1 − xj) exp(−x)
j!

ψ(j +m)

=
∞∑
j=0

xj exp(−x)
j!

(ψ(j +m+ 1)− ψ(j +m))

=

∞∑
j=0

xj exp(−x)
j!

1

j +m
, (3.27)

where we use the property of the digamma function [1].

ψ(z + 1)− ψ(z) =
1

z
, z > 0.

To prove Theorem 3.3.1, we first present one important lemma.

Lemma 3.6.1. For m = 1
2 , the following inequality holds.

g′m(x) ≥

{
1

x+m if x ≥ 1.5,
1

x+m + g′m(1.5)− 1
m if 0 ≤ x ≤ 1.5.
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Figure 3.13: Bladder Cancer Data Set. Inferred intensity function by the
LocalEM and GP4CW methods. For GP4CW, a 75% credible interval is given
by dotted lines.

Proof. Let h(x) = 1
x+0.5 . We first examine the gradient of g′0.5(x) and h(x).

g′′0.5(x) =

∞∑
j=0

xj exp(−x)
j!

( 1

j + 0.5 + 1
− 1

j + 0.5

)
= −

∞∑
j=0

xj exp(−x)
j!

1

(j + 0.5 + 1)(j + 0.5)
< 0,

h′(x) = − 1

(x+ 0.5)2
< 0.

Therefore g′0.5(x) and h(x) are strictly decreasing. Next we examine the cross-
ing points of g′0.5(x) and h(x). One crossing point of g′0.5(x) and h(x) is x = 0,
since

g′0.5(0) =
1

0.5
= h(0).

Using a property of the Kummer function of the first kind [1], we have

g′0.5(x) = 2M(1, 1.5,−z) =
∫ 1

0

exp(−ux)√
1− u

du

≥
∫ 1

0
exp(−ux)du =

1− e−x

x
.

Since ex > 1 + 2x, x ≥ 1.5, we can show

g′0.5(x)− h(x) ≥ 1− e−x

x
− h(x) =

0.5e−x(−2x+ ex − 1)

x(x+ 0.5)
> 0, x ≥ 1.5.

For x ∈ [0, 1.5], we have

g′0.5(x)− h(x) ≥ min
x∈[0,1.5]

[
g′0.5(x)− h(x)

]
≥ min

x∈[0,1.5]
g′0.5(x)− max

x∈[0,1.5]
h(x)

= g′0.5(1.5)−
1

0.5
.
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Table 3.4: Mean and standard deviations of the test likelihood (Ltest) and the
computation time (T ) on the three panel count data sets for GP4C, GP4CW and
LocalEM over 40 runs. GP4CW outperforms GP4C and LocalEM in terms of the

test likelihood. Mean and standard deviations of the test likelihood (L(1)
test+L(2)

test)
after performing another round of training to reduce the variance caused by
random split are provided in the fourth column.

Data Set METHOD Ltest L(1)
test + L(2)

test T [s]

Na-A LocalEM -492.1±306.1 -1272.7±288.6 1±0
GP4C -484.9±201.8 -1205.5±157.1 10±10
GP4CW -179.2±81.3 -417.8±72.5 8±9

Na-B LocalEM -473.2±212.2 -957.2±116.1 1±0
GP4C -411.0±184.3 -844.0±85.5 10±7
GP4CW -152.7±60.6 -307.1±34.2 16±13

Bl-A LocalEM -201.8±46.9 -421.4±44.3 1±0
GP4C -182.2±47.3 -378.6±17.9 25±9
GP4CW -95.5±29.0 -206.3±5.2 29±12

Bl-B LocalEM -313.1±54.2 -684.7±54.4 1±0
GP4C -310.4±54.9 -664.1±19.2 26±21
GP4CW -212.4±50.1 -461.4±19.3 36±23

Sk-A LocalEM -259.1±27.3 -519.8±6.2 39±3
GP4C -258.7±26.7 -519.1±2.7 33±6
GP4CW -183.0±21.6 -366.4±1.5 35±8

Sk-B LocalEM -198.1±47.1 -392.5±28.5 39±3
GP4C -191.2±42.5 -375.8±4.2 24±4
GP4CW -105.7±19.7 -210.9±2.8 27±5

Sk-C LocalEM -358.0±35.8 -733.6±11.4 47±4
GP4C -355.7±36.0 -728.4±6.3 21±12
GP4CW -243.6±26.9 -498.2±2.3 19±11

Sk-D LocalEM -200.9±31.9 -404.2±14.8 46±3
GP4C -198.9±30.6 -400.2±6.8 27±4
GP4CW -118.9±14.3 -241.5±1.9 31±4

Remark 2. Lemma 3.6.1 is similar to the results in Moser [69]. Moser [69]
proved that the following inequality holds when m ∈ N+.

g′m(x) ≥ 1

x+m
, x ≥ 0. (3.28)

However, we discover that a claim used in their proof is wrong. Namely,
Moser [69] claimed that “two strictly convex and strictly decreasing functions can
intersect at most twice”. A counter-example is shown below.

f1(x) = x2 − sin(x), f2(x) = x2 − sin(2x)

4
, x ≤ −1

2
.
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We can verify that

f ′1(x) = 2x− cos(x) < 0, f ′2(x) = 2x− cos(2x)

2
< 0

f ′′1 (x) = 2 + sin(x) > 0, f ′′2 (x) = 2 + sin(2x) > 0.

Therefore, f1(x) and f2(x) are strictly decreasing and convex. However, the
two curves intersect at x = −πk, k ∈ N+. We conjecture that the conclusion in
Equation (3.28) is still correct.

Based on Lemma 3.6.1, we can show the following corollary.

Corollary 3.6.1. The following inequality holds:

gm(x) ≥ ln(x+m) + ξ,m =
1

2
,

where ξ = 3
2

(
g′m(1.5)− 1

m

)
− ln(m) + gm(0).

Proof. In Lemma 3.6.1,

g′m(x) ≥

{
1

x+m if x ≥ 1.5,
1

x+m + g′m(1.5)− 1
m if 0 ≤ x ≤ 1.5.

Integrating g′m(x) from 0 to ∞ yields∫ ∞

0
g′m(x)dx =

∫ 1.5

0
g′m(x)dx+

∫ ∞

1.5
g′m(x)dx

≥
∫ 1.5

0

(
g′m(1.5)− 1

m

)
dx+

∫ ∞

0
h(x)dx

=
3

2

(
g′m(1.5)− 1

m

)
+ ln(x+m)− ln(m).

Therefore we have

gm(x) ≥ ln(x+m) +
3

2

(
g′m(1.5)− 1

m

)
− ln(m) + gm(0) = ln(x+m) + ξ. (3.29)

Finally, we can prove Theorem 3.3.1. Invoking Corollary 3.6.1, it is obvious
that the inequality holds true for b = 1,

EY [lnY
2] = ln(2σ2) + g0.5

( µ2

2σ2

)
≥ ln(2σ2) + ln

( µ2

2σ2
+

1

2

)
+ ξ

= ln(µ2 + σ2) + ξ. (3.30)

This implies that the inequality holds true for all values of b ∈ [0, 1].
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Chapter 4

Recurrent Event Data: Bayesian

Nonparametric Poisson Process Allocation

In this chapter, we study how to model the diversity among multiple time-
sequences. As the beginning, the time-sequence appears in the form of recur-
rent events. We present the Bayesian nonparametric Poisson process allocation
(BaNPPA), a latent-function model for time-sequences, which automatically in-
fers the number of latent functions.

4.1 Introduction

When modeling a collection of time-sequences, a key idea is to cluster the data
into groups while allowing the groups to remain linked so as to share statistical
strengths among them [94]. Several models have been proposed on the basis of
this simple idea, e.g., the convolution process [38], nonnegative matrix factor-
ization (NMF) [66], and latent Poisson process allocation (LPPA) [61]. These
models employ latent factors to share statistical strengths and combine these
functions to model the correlations within and among time-sequences.

Among these models, LPPA is a powerful approach because it uses latent
functions obtained from a Gaussian process (GP). Such continuous latent func-
tions are able to flexibly model complex structures in the data, and do not require
a careful discretization such as that used in NMF.

However, a limitation of LPPA is that the number of latent functions needs to
be set beforehand. If the chosen number is much larger than the actual number
of latent functions required to explain the data, LPPA will still use all the latent
functions. There is no mechanism in LPPA to prevent this “spread” of allocation,
which creates a problem when our goal is to understand the reasons behind the
events observed in the data. For example, this might make it difficult to explain
the retweet patterns in Twitter where a sudden avalanche of retweets is quite
common [32]. For such cases, LPPA will simply use all its latent functions to
explain these spiky patterns.

In theory, the above problem can be solved by using Bayesian nonparametric
(BNP) methods [42] which can automatically determine the number of relevant
latent functions. However, as we show in this chapter, a direct application of
existing BNP methods to LPPA is challenging. An obvious issue is that such
an application typically requires the use of Markov Chain Monte Carlo (MCMC)
algorithms which are slow to converge for large data sets. A more essential and
technically intricate issue is that a naive application of BNP methods to LPPA
suffers from an unidentifiability issue because the GP-modulated latent functions
are not normalized. Unidentifiability is bad news when our focus is to understand
the reasons behind the events.
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Figure 4.1: This figure illustrates that, even when a large number of latent func-
tions are provided, BaNPPA automatically selects only a few to explain the data,
while LPPA uses them all. The bottom plots show the weights of the latent func-
tions for the Microblog dataset, where we see that BaNPPA assigns zero weights
to many latent functions, while LPPA assigns every latent function to at least
a few time-sequences. The top plots show a score which measures the average
responsibility of the latent functions. See Section 4.5 for details.

In this chapter, we propose a new model to solve these problems. Our model,
which we call the Bayesian nonparametric Poisson process allocation (BaNPPA)
model, enables automatic inference of the number of latent functions while re-
taining the accuracy, interpretability, and scalability of LPPA. Unlike hierarchical
models [94] which promote sharing through a common base measure, latent func-
tions in our model are shared across all time-sequences due to the size-biased
ordering which promotes sharing by penalizing latent functions that belong to
higher indices [34, 76]. The size-biased ordering restricts the use of all latent
functions. Figure 4.1 illustrates this on a real data set.

We propose a computationally efficient variational inference algorithm for
BaNPPA and solve the unidentifiability issue by adding a constraint within the
inference algorithm to regulate the volume of each latent function. Overall, we
present a scalable and accurate Bayesian nonparameteric approach for time-
sequence modeling. Figure 4.2 shows an example of the results obtained with
BaNPPA on a real-world dataset.
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Figure 4.2: Illustrations of intensity functions obtained with BaNPPA on the
Microblog dataset. Each plot shows a time-sequence (with small bars at the
bottom) and the corresponding estimated intensity function (with solid lines).
The top and bottom plots are for tweets posted during active and inactive hours
of the day, respectively.

4.2 Time-Sequence Modeling and Its Challenges

Our goal is to develop a flexible model for time-sequences. We consider time-
sequence that contains a set of time-stamps which record the occurrence of events.
In this chapter, we study the recurrent event data and the data set D = {dk}Kk=1.
Each subject will generate a sequence of events in an observation window X (k) ⊂
R. We assume that all observation windows are the same X (k) = X .

In the recurrent event data, the time-stamp of each event is a scalar and is
fully observable. The time-sequence data from the kth subject can be represented
as follows:

dk
∆
=

{
x
(k)
j ∈ X

}Nk

j=1
. (4.1)

A common approach to model such time-sequences is to use the temporal
Cox process [2, 60] which uses a stochastic intensity function λ(t) : R+ → R+ to
model the arrival times [52]. Given the intensity function λ(t) and the observation
window X , the likelihood of the sequence dk is given by Theorem 2.5.3.

P(dk|λk(x)) = exp
(
−

∫
X
λk(s)ds

) Nk∏
j=1

λk(x
(k)
j ). (4.2)

In LPPA, to model multiple time-sequences, the kth time-sequence is assumed
to be generated by a temporal Cox process with an intensity function λk(x) which
is modeled as follows:

λk(x) =

L∑
l=1

θklf
2
l (t), θkl ≥ 0, (4.3)
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where fl(x) is a function drawn from a GP prior, θkl is its weight, and L is the
number of basis latent functions. To ensure the non-negativity of λk(x), fl(x) are
squared and weights θkl are required to be non-negative. A more detailed review
of the LPPA model is given in Section 2.6.4.

LPPA is a powerful approach which also enables scalable inference. Due to
the GP prior, LPPA is capable of generating intensity functions with complex
shapes. Scalable inference is made possible by using a set of pseudo inputs [96].
The overall computational complexity is O(LNM2), where N is the total number
of events in D and M is the number of pseudo inputs.

One issue with LPPA is that L needs to be set beforehand. This not only
increases the computation cost, but also creates a serious interpretability issue
which is undesirable when our goal is to understand the reasons behind the data.
Specifically, when the number of latent functions is much larger than what it
needs to be, LPPA uses all of them, making it difficult to interpret the results.
We give empirical evidence in support of this claim and correct this behavior by
using a BNP method.

Unfortunately, a direct application of the existing BNP methods increases
the computation cost and limits the flexibility of the model. The problem lies in
the strict requirement that the latent functions needs to be a normalized density
function, i.e., a function with a volume1 equal to 1. For example, previous studies,
such as Kottas [53], Ihler and Smyth [45], model the intensity functions with the
following Dirichlet process mixture model,

λk(x) = sk

∞∑
l=1

θklf̃(t;ψl), (4.4)

where f̃ are normalized density functions with parameters ψl and the weights
θkl are non-negative and sum to one

∑∞
l=1 θkl = 1 (sk > 0 is the rate parameter

that models the number of events N(X )). Since the function f̃ needs to be
normalized, the choices are limited to well-known density function which may not
be very flexible to model complex time-sequences, e.g., Kottas [53] used the beta
distribution and Ihler and Smyth [45] used the truncated Gaussian distribution.

In addition, such models require MCMC sampling algorithms which usually
converge slowly on large data sets. To the best of our knowledge, it is still unclear
how to build a nonparametric prior for such normalized density functions while
enabling scalable inference, e.g., via variational methods.

We propose a nonparameteric model, called the Bayesian nonparameteric
Poisson process allocation (BaNPPA), which avoids the need to explicitly specify
the number of latent functions while retaining the flexibility and scalability of
the LPPA model. Our method combines the models shown in Equation (4.3) and
(4.4). We show that this direct combination has an unidentifiability issue, and
we fix the issue within a variational-inference algorithm. Our approach therefore
combines the strengths of the LPPA and BNP models while keeping their best
features.

4.3 Bayesian Nonparametric Poisson Process Allocation

As discussed earlier, we need to set the number of latent functions beforehand
for LPPA. We fix this issue by proposing a new model called BaNPPA that
combines the non-parametric model of Equation (4.4) with the LPPA model
shown in Equation (2.49).

1The volume of a function f(t), t ∈ X is defined as the integral
∫
X f(t)dt.
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Specifically, we let f̃ in Equation (4.4) to be equal to f2l (t), as follows:

λk(x) = sk

∞∑
l=1

θklf
2
l (x), where sk, θkl > 0,

∞∑
l=1

θkl = 1. (4.5)

Similar to LPPA, we draw functions fl(x) from a Gaussian process. We draw
the weights θkl using a stick-breaking process, and use a Gamma distribution
prior for the scalar rate parameter sk. The final generative model of BaNPPA is
shown in Algorithm 12.

Algorithm 12: The generative process for BaNPPA.

Input : The number of the time-sequences K, the hyper-parameters in
the gamma distribution {a0, b0}, the stick-breaking process prior
α, the mean value m0, the covariance functions in L Gaussian
processes {κl} and a time window X = (0, T ].

Output: The time-sequence data D = {dk}Kk=1.
1 for each basis function l = 1, . . . ,∞ do
2 Sample fl ∼ GP(m0(x), κl(x, x

′)).
3 end
4 for each subject k = 1, . . . ,K do
5 Sample θ′kl ∼ Beta(1, α).

6 Calculate the mixture weight θkl = θ′kl
∏l−1

j=1(1− θ′kj).

7 Sample sk ∼ Gamma(a0, b0).
8 Calculate the intensity function.

λk(x) = sk

∞∑
l=1

θklf
2
l (t). (4.6)

9 Sample dk ∼ IPP(λk(x)) on the time window (0, T ].

10 end

IPP(·) is the thinning algorithm for an inhomogeneous Poisson process and
is given in Algorithm 5. In the model, we denote a beta distribution with shape
parameters a and b by Beta(a, b) and a gamma distribution with shape parameter
a and rate parameter b by Gamma(a, b).

The above model automatically determines the number of latent functions
due to the size-biased ordering [76] obtained by using the stick-breaking process.

Both the latent functions {f2l (x)} and the weights {θkl} use the same set of
indices l = 1, . . . ,∞. This implies that when generating the kth time-sequence,
the latent function at a lower index l is more likely to be assigned a larger weight
θkl. This encourages the model to use some latent functions more than the others.

Unfortunately, the above model is unidentifiable. This is because, unlike the
nonparametric model of Equation (4.4), the latent functions {f2l } are unnormal-
ized, and therefore many combinations of sk, {θkl} and {fl} might give us the
same model. For example, the following transformation gives the same intensity
function for any ϵk > 0:

sk ϵ̄k,

{
θklϵl
ϵ̄k

}
,

{
fl√
ϵl

}
,

where ϵ̄k :=
∑∞

l=1 θklϵl. We can check this by substituting the triplet in Equation
(4.5). Since the volume of each fl is not regulated, we can move the “mass”
around between the components of the model.
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This type of unidentifiability is problematic when our goal is to understand
the reasons behind the patterns in the data. In our experiments, we observe
that this leads to a shrinkage of the latent functions which affects interpretability
as well as the quality of the estimated hyperparameters. In Section 4.4.2, we
propose a way to fix this issue by adding a constraint on the volume of the latent
function.

There is also another common identifiability problem in such mixture mod-
els. Lloyd et al. [61] claimed that LPPA is unidentifiable and non-unique since
there may be multiple decompositions that are well supported by the data. In
BaNPPA, due to the ordering constraints imposed by size-biased ordering, this
unidentifiability issue is reduced.

We also need to guarantee that the expected intensity function at any time
E[λk(x)] is finite. This can be achieved by fixing the GP hyperparameters. For
example, assuming an automatic relevance determination (ARD) covariance func-
tions in Equation (2.10), we can fix the hyperparameters g and cl, which ensures
that the mean and variance of each latent function fl are finite. In that case, the
value of E[λk(x)] is bounded due to the following relation:

E[λk(x)] = E

[
sk

∞∑
l=1

θklf
2
l (x)

]
≤ E[sk]max

l
E[f2l (x)]

=
a0
b0

max
l

(
E2[fl(t)] + Var[fl(t)]

)
. (4.7)

4.4 Inference

In this section, we first describe the general variational inference framework and
provide a solution to the identifiability issue in Section 4.4.2. A derivation of the
evidence lower bound (ELBO) and its derivatives are provided in Section 4.6.

4.4.1 Variational Inference

Denote s
∆
= {sk}, Θ

∆
= {θ′kl} and f

∆
= {fl}. Let H be the set of hyperparam-

eters of the GP covariance function. The joint distribution of BaNPPA can be
expressed as

p(D,Θ, s, f) =

K∏
k=1

p(dk|f, θ′
k, sk)

K∏
k=1

∞∏
l=1

p(θ′kl;α)

×
K∏
k=1

p(sk; a0, b0)
∞∏
l=1

p(fl;m0,H).

We approximate the posterior distribution over Θ and f , while computing a
point estimate of s. We follow Blei et al. [11] to truncate the number of latent
functions to L which we select to be larger than the expected number of latent
functions used by the data.

For the GP part, we use the same set of pseudo inputs {x̄m}Mm=1, M < N
for each fk to reduce the number of variational parameters [61]. Denote f̄l to be
the vector [fl(x̄1), . . . , fl(x̄M )]⊤, Kl,X̄X̄ to be a covariance matrix whose i, j’th

entry is equal to κl(x̄i, x̄j), and m0 ∈ RM to be a vector all of whose elements
are equal to m0. We choose the following forms for the variational distributions
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of θ′kl and f̄l:

q(θ′kl) =

{
Beta(τkl,0, τkl,1) if l < L,

δ1 if l = 1.

q(f̄l) = N (µl,Σl), l = 1, . . . , L.

q(sk) = δηk , k = 1, . . . ,K.

δx is a Dirac measure in Definition 2.3.1, and µl and Σl are the mean and
covariance of a Gaussian distribution. Following Lian et al. [57], we use the
re-parametrization Σl = LlL

⊤
l by Cholesky decomposition and add positivity

constraints to the diagonal elements in Lk during the optimization procedure.
Using the approximation of Titsias [96] and a mean-field assumption over Θ,

we can use the following final variational distribution:

q(f , {f̄l}Ll=1,Θ)
∆
=

L∏
l=1

p(fl|f̄l)q(f̄l)
K∏
k=1

L∏
l=1

q(θ′kl)

K∏
k=1

q(sk).

Denoting τ
∆
= {(τkl,0, τkl,1)} and L

∆
= {Ll}, we get the following set of varia-

tional parameters and hyperparameters to be optimized:

Φ = {τ , {µ}Ll=1, {Ll}Ll=1,H, a0, b0, α, s}.

4.4.2 An Alleviation Solution to the Identifiability Problem

So far, the framework seems very traditional. However, as we mentioned in
Section 4.3, this model has an additional identifiability problem which might
make interpretability difficult. In this section, we propose a solution to alleviate
this issue.

A straightforward option is to directly impose a constraint on the volume of
the latent functions

∫
X f

2
l (x)dx, where fl is drawn from the posterior process

p(fl|D). However this is intractable. In order to obtain a tractable constraint,
we could instead impose a constraint on the following expectation:∫∫

X
p(fl|D)f2l (s)dsdfl = A, l = 1, . . . , L, (4.8)

where A is a positive constant. Within the variational inference framework, we
use the variational distribution q(fl) to approximate the posterior p(fl|D), and
add the following constraint to each latent function:∫∫

X
q(fl)f

2
l (s)dsdfl = A, l = 1, . . . , L. (4.9)

The above constraint can be easily computed unlike the volume constraint
on the function fl. In our experiments, we set A = N/K where N is the total
number of events in the data and K is the number of time-sequences in D.

4.4.3 Optimization with Equality Constraints

Given the equality constraints in Equation (4.9), the optimization process can be
formulated as follows, where we denote the ELBO as L1(Φ):

max
Φ

L1(Φ) s.t. hl(Φ) = 0, l = 1, . . . , L, (4.10)

hl(Φ) =

∫
X
Eq[f

2
l (s)]ds−A.

80



Problem (4.10) is an optimization problem with equality constraints and we
use the augmented Lagrangian method [8] to transform Problem (4.10) into a
series of related optimization problems indexed by i:

max
Φ

L1(Φ)−
L∑
l=1

(
wilhl(Φ) +

1

2
vilh

2
l (Φ)

)
, (4.11)

where {wil} is a bounded sequence and {vil} is a non-negative monotonically-
increasing sequence with respect to i. We denote this objective Lvi

(Φ,wi). For
each optimization problem in Equation (4.11), Lvi

(Φ,wi) is still upper bounded.

Theorem 4.4.1. Each optimization problem is upper bounded.

Lvi
(Φ,wi) ≤ ln p(D) +

L∑
l=1

w2
il

2vil
, i ∈ N+.

Proof. L1(q) can be easily bounded by variational inference framework

L1(q) ≤ ln p(D)

Let hil =
∫
X Eq[f

2
l (s)]ds−A, and then we have

L∑
l=1

wil

(∫
X
Eq[f

2
l (s)]ds−A

)
+

L∑
l=1

vil
2

(∫
X
Eq[f

2
l (s)]ds−A

)2

=

L∑
l=1

(wilhil +
vil
2
h2il) ≥

L∑
l=1

w2
il

2vil

Combining these two parts finishes the proof.

Thus if we use coordinate ascent with respect to Φ, the algorithm is guaranteed
to arrive at a local maximum. To set vil and wil, we follow the suggestions from
Bertsekas [8], and set vi+1,l = 4vil and wi+1,l = wil + vilhl(Φi). We initialize
v1l = 4, w1l = 1, ∀l.

4.4.4 Computational Complexity

Optimization problems shown in Equation (4.11) are not significantly more ex-
pensive than the original optimization problem. Although in Equation (4.11),
we have to optimize additional parameters, the bottleneck is still the matrix-
matrix multiplication in the evaluation of q(fl). For one iteration of the training
procedure, the computational complexity is O(LNM2) , which is the same as
LPPA.

One might expect that the total computational complexity of our algorithm is
worse than LPPA because we have to solve a sequence of problems. We find that
“warm starts” are very effective in improving the convergence of our algorithm
[8]. Namely, we reuse the final value Φi−1 of the previous optimization as the
starting value for the i’th round and terminate the training process when the
relative change in the likelihood is small. In our experiments, we observed that
the convergence of BaNPPA is rather fast and comparable to LPPA.
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Table 4.1: Data sets used for the experiments. Here, D is the number of time-
sequences, Ntrain and Ntest are the total number of events in the training and test
set respectively, and X is the time window.

Data set D Ntrain Ntest X

Synthetic A 200 6,304 6,010 [0,60]
Synthetic B 250 8,074 8,110 [0,80]
Microblog 500 44,628 44,352 [3,15]
Citation 600 106,113 106,340 [0,20]

4.5 Experiments

In this section, We evaluate our proposed BaNPPAmodel and compare it with the
benchmark methods on both synthetic and real-world data sets. The algorithms
are programmed in Matlab R2015b and run on an Intel Xeon E5-2667 CPU with
a memory of 64GB. The code to reproduce our experiments can be found at
github.com/Dinghy/BaNPPA.

4.5.1 Experiment Settings

First we show the settings for all experiments in the following experiments.

Benchmark

We compare our proposed BaNPPA model with two other models.

1. LPPA. We re-implement the LPPA model based on the descriptions in
Lloyd et al. [61].

2. BaNPPA-NC. To measure the effect of adding the constraint shown in
Equation (4.9), we also compare to a variant of BaNPPA which does not
contain any constraints. We call it BaNPPA with No Constraints, i.e.,
BaNPPA-NC.

Data Sets

We test the three methods on two synthetic and two real-world data sets. Table
4.1 summarizes the overall statistics and we give detailed information below.

• Synthetic A. We sample 200 time-sequences from a mixture of 4 latent
functions f̃(x;ψl) shown in the top plot of Figure 4.3. The intensity function
for the kth time-sequence is generated as follows:

sk ∼ Gamma(2, 3),

θk ∼ Dir(1.2, 1, 0.8, 0.6),

f̃(x;ψl) ∝ exp
(
− (x− 15 + 10l)2

10

)
+ exp

(
− (x− 55 + 10l)2

10

)
,

λk(x) = sk

4∑
k=1

θklf̃(x;ψl), x ∈ [0, 60].
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Figure 4.3: Latent functions used to create synthetic data set A and B are shown
in the top and bottom plots, respectively. In both the data sets, there are two
latent functions with two modes while the rest have only one mode. Different
colors indicate different latent functions.

Here Dir(·) denotes the Dirichlet distribution. Each f̃(t;ψl) is either a
Gaussian distribution or a mixture of two Gaussian distributions normalized
by its integral.

• Synthetic B. This data set is similar to Synthetic A but there are 6 latent
functions shown in the bottom plot of Figure 4.3. The intensity function
for the kth time-sequence is generated as follows:

sk ∼ Gamma(2, 3),

θk ∼ Dir(1.2, 1, 0.8, 0.6, 0.5, 0.5),

f̃(x;ψl) ∝ exp
(
− (x− 15 + 10l)2

10

)
+ exp

(
− (x− 75 + 10l)2

10

)
,

λk(x) = sk

6∑
l=1

f̃(x;ψl), x ∈ [0, 60].

Each f̃(t;ψl) is either a Gaussian distribution or a mixture of two Gaussian
distributions normalized by its integral.

• Microblog data set. This data set contains 500 tweets and all retweets
of each tweet from 7 tweet-posters on Sina micro-blog platform obtained
through the official API2. Two examples are shown in Figure 4.2. Through
time-sequence modeling, we can try to understand the retweet patterns. For
example, one reason could be that the tweets posted at an inactive hour
(late at night) will regain the attention from the followers several hours later
next morning [21, 32]. BaNPPA could help us understand such reasons as
illustrated in Figure 4.2.

• Citation data set. This data set contains the Microsoft academic graph
until February 5th, 2016 obtained from the KDDcup 2016 3. The original

2http://open.weibo.com/wiki/Oauth/en
3https://kddcup2016.azurewebsites.net/
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Figure 4.4: Citation data set. Top: A paper which slowly gets citation and
becomes popular many years later. Bottom: A paper which quickly gets citation
after being published. Smooth lines are the mean intensity function inferred from
LPPA and BaNPPA. Small bars is the time of each citation. The x-axis indicates
the time in year after publication.

data set contains 126,909,021 papers and we use a subset of it. Time-
sequence modeling can be used to understand the patterns of citations,
e.g., some papers quickly get citations while some others get it slowly.

Evaluation Metrics

We evaluate the methods using the test likelihood and visualize the result of the
mixture weights by NER and UNER.

• Test Likelihood. To measure the predictive performance, we follow Lloyd
et al. [60] and use the following approximation to the test likelihood which
we denote by

Ltest(Dtest,Θ, s)
∆
=

K∑
k=1

Nk
test∑

n=1

ln
(
sk

L∑
l=1

θkl exp
(
Eq(ln f

2
l (x

(k)
n ))

))
−

K∑
k=1

sk

L∑
l=1

θkl

∫
X
Eq[f

2
l (s)]ds. (4.12)

This is a lower bound to the test likelihood ln p(Dtest|Dtrain) and a higher
value means a better approximation of the test likelihood. For LPPA,
the allocation parameters θkl are the point-estimated weights and the rate
parameter sk = 1. For BaNPPA and BaNPPA-NC, we report averaged
value over q(θk). We can compute a similar approximation Ltrain on the
training data. A detailed derivation can be found in Section 4.6.3.

• NER and UNER. To visualize the responsibility of each latent function
in the model, we first define the normalized allocation matrix Θ̂ ∈ RD×K

+
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whose (d, k)’th entry is equal to,

θ̂kl =
Eq[θkl

∫
X f

2
l (s)ds]∑L

m=1 Eq[θkm
∫
X f

2
m(s)ds]

. (4.13)

The normalization in the above matrix tries to remove the unidentifiability
introduced due to the unconstrained volume of the latent functions in LPPA
and BaNPPA-NC. Based on Θ̂, we can compute a normalized score that can
measure the responsibility of each latent function. We define the normalized
expected responsibility (NER)

υ̂l =
1

K

K∑
k=1

θ̂kl, l = 1, . . . , L.

A larger NER indicates that the corresponding latent function is more often
occupied by the model. Another measure is the unnormalized expected
responsibility (UNER)

υl =
1

K

K∑
k=1

Eq[θkl], l = 1, . . . , L,

which omits the contribution of the volume of f2l (x).

Optimization Settings

Our goal is to measure the improvements obtained with the automatic inference
of L using BaNPPA. To do so, we fix L to 14 for BaNPPA and BaNPPA-NC,
and compare them to LPPA with a range of values for L. We expect BaNPPA
to give a comparable performance to the best setting of L in LPPA.

We use a random initialization for the allocation matrix Θ and τ . We use
18, 24, 30 and 30 pseudo inputs for the four data sets, respectively. We follow
the common practice and add a jitter term εI to the covariance matrix Kl,X̄X̄

to avoid numerical instability [4]. For hyper-parameters a0 and b0 in the gamma
distribution, we use the counts of events {Nk

train}Kk=1 to initialize (a0, b0).
To maintain the positivity constraints on L and τ , we use the limited-memory

projected quasi-Newton algorithm [85]. For BaNPPA, we stop the training pro-
cess when the relative change between Lvi

(Φi,wi) and Lvi+1
(Φi+1,wi+1) is less

than 10−3. For other methods, we terminate the training process when the rela-
tive change in ELBO is less than 10−3.

4.5.2 Experiment Results

We conduct experiments for two different methods of setting the hyper-parameter
α. In the first method, we learn α within a VB-EM framework (initialize α = 1,
see details in Section 4.6). In the second method, we do not learn α rather fix it
to one of the value in the set {1.1, 2, 4, 6, 8}. In both methods, all experiments
were repeated five times.
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Figure 4.5: BaNPPA gives the best test-likelihoods (higher is better) and per-
forms comparably to the best setting of L for LPPA. For BaNPPA and BaNPPA-
NC, we use a fixed value of L = 14. Error bars and shaded areas show the 95%
confidence intervals.

Results When Optimizing the Hyper-parameter α

Figure 4.5 shows the comparison of the test-likelihoods when optimizing α. The
test likelihood of LPPA drops when increasing the number of latent functions
L. As desired, BaNPPA achieves comparable results to the best setting of L in
LPPA. BaNPPA-NC also performs well but slightly worse than BaNPPA.

The comparison of the train likelihood Ltrain when we optimize the hyper-
parameter α is given in Figure 4.6. We can notice that for LPPA, the train
likelihood keeps increasing when we increase L. This is also a sign of over-fitting.

The comparison of the final optimized α is given in Figure 4.7. We notice that
for BaNPPA model, it can achieve a relatively smaller α. However, for BaNPPA-
NC model, since there are no regulations on the volume of the intensity functions,
the optimized α learned from the mixture weights θkl might be inaccurate.

We plot the change of the training likelihood in one trial in Figure 4.8. For
the total computational complexity, both BaNPPA-NC and BaNPPA take more
computation time but are still comparable to LPPA. Two reasons account for
this fact. One is that there are more parameters to be optimized in BaNPPA and
BaNPPA-NC and the other is that BaNPPA potentially has an infinite number
of problems to be solved. In Figure 4.8, we can notice that the training likelihood
for BaNPPA and the training likelihood for BaNPPA-NC stabilize rather quickly.
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Figure 4.6: The comparison of the train likelihood for three algorithms. For
LPPA, we change the number of latent functions L. For BaNPPA and BaNPPA-
NC, we fix L = 14 and optimize the hyper-parameter α using the VB-EM frame-
work. Error bars and shaded area represent the 95% confidence intervals.

Results When Fixing the Hyper-parameter α

Figure 4.9 shows the comparison of the test-likelihoods when α is fixed. In Fig-
ure 4.9, when increasing α, the performance of BaNPPA stays relatively stable
and comparable to the best setting of LPPA. The performance of BaNPPA-NC
however degrades with increasing α for all data sets. This shows that the volume
constraint in BaNPPA improves the performance.

Visualization of the Allocation Matrix

For the Synthetic A data set, we further plot the NER scores (averaged over the
five trials for L = 14) in the top plot in Figure 4.10. We see that, under LPPA,
all latent functions have nonzero NER, while for BaNPPA only a small number
of latent functions have high NER score.

In the bottom plot in Figure 4.10, we show the top four latent functions sorted
according to the NER scores. For these plots, we used the best runs shown in
Figure 4.5. We see that LPPA does not recover the true latent functions, while
BaNPPA gives very similar results to the truth.

To visualize the responsibilities further, we plot the NER score and the nor-
malized allocation matrix Θ̂ for the Mircoblog dataset in Figure 4.1. We show
results for LPPA and BaNPPA. We choose runs that obtained the best test-
likelihood in Figure 4.5, and visualize 100 time-sequences sampled randomly.

We see that as expected LPPA uses all latent functions to explain the data,
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Figure 4.7: The comparison of the optimized α for four data sets (L=14) when
optimizing the hyper-parameter α. BaNPPA achieves a smaller value of α com-
paring to BaNPPA-NC.

while BaNPPA assigns almost zero weights to latent functions with higher indices.
This further confirms that, even when a large number of latent functions are given,
BaNPPA automatically selects only a few to explain the data, while LPPA might
overfit.

Finally, we further explore the impact of the volume constraint of Equation
(4.9) in BaNPPA. We compare BaNPPA and BaNPPA-NC on the Synthetic B
data set in Figure 4.11. We use results for L = 14 and α = 8.

In the top plot, we see that BaNPPA and BaNPPA-NC both give similar
UNER scores, yet as shown in the bottom plot, BaNPPA-NC does not recover
the true latent functions. This result can be explained by looking at the expected
volume Eq[

∫
X f

2
l (x)dx] shown in the middle plot. For BaNPPA, the volumes of

all latent functions are equal, while, for BaNPPA-NC, the latent functions with
higher UNER scores are assigned higher volume which eventually also get higher
weights. This imbalance in the weights for some functions makes the results of
BaNPPA-NC and BaNPPA different from each other. This result clearly shows
that the volume constraint in BaNPPA plays an important role to recover the
true latent functions which is important for interpretability.

Synthetic Data Sets with a Relatively Large L

Overall, BaNPPA-NC performs similarly to BaNPPA when the latent structure
is simple but becomes less favorable when the structure gets complicated. To
further demonstrate this, we add three more synthetic data set with a larger L.
The details of the three data sets are given as follows:

1. Synthetic C. We sample 200 time-sequences from a mixture of 6 latent
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Figure 4.8: The comparison of the training likelihood versus time for four data
sets (L=14) when optimizing the hyper-parameter α. The result of one trial is
shown.

functions f̃(x;ψl). The intensity function for the kth time-sequence is gen-
erated as follows:

sk ∼ Gamma(2, 3),

θk ∼ Dir(0.8, 0.4, 0.2, 0.2, 0.2, 0.2),

f̃(x;ψl) = exp(−(x− 15 + 10l)2/10), l = 1, . . . , 6,

λk(x) = sk

6∑
l=1

θklf̃(x;ψl), x ∈ [0, 60].

2. Synthetic D. We sample 200 time-sequences from a mixture of 8 latent
functions f̃(x;ψl). The intensity function for the kth time-sequence is gen-
erated as follows:

sk ∼ Gamma(2, 3),

θd ∼ Dir(0.8, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1, 0.1),

f̃(x;ψl) = exp(−(x− 15 + 10l)2/10), l = 1, . . . , 8,

λk(x) = sk

8∑
l=1

θklf̃(x;ψl), x ∈ [0, 60].

3. Synthetic E.We sample 200 time-sequences from a mixture of 10 latent
functions f̃(x;ψl). The intensity function for the kth time-sequence is gen-
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Figure 4.9: For a variety of hyperparameter values, BaNPPA gives the best
performance which is also comparable to the best performance of LPPA and
much better than LPPA with L = 14. Performance of BaNPPA-NC degrades
with increasing α while performance of BaNPPA is relatively stable.

erated as follows:

sk ∼ Gamma(2, 3),

θk ∼ Dir(0.8, 0.6, 0.4, 0.4, 0.4, 0.2, 0.2, 0.2, 0.1, 0.1)

f̃(x;ψl) = exp(−(x− 15 + 10l)2/10), l = 1, . . . , 10,

λk(x) = sk

10∑
l=1

θklf̃(x;ψl), x ∈ [0, 60].

In the experiment, we fix the hyper-parameter a0 and b0. We also fix the length-
scale hyper-parameters in all κl to be 4.3081 (Close to half of the span of f̃(x;ψl)).
This means we only optimize the mixture weights and the variational distribution
q(µ,Σ) for Gaussian processes.

We vary the hyper-parameter α = [1.1, 2, 3, 4, 5]. The result is given in Figure
4.12. We can see that BaNPPA-NC tends to over-shrink the components even
when α = 5 and gets a worse result.

4.6 Derivations Related to the ELBO

In this section, we give the details of the calculation of the ELBO as well as its
derivatives with respect to all parameters in the framework. A derivation of the
test likelihood used in the experiment will also be provided.
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Figure 4.10: This figure shows that BaNPPA can reliably identify true latent
functions for the Synthetic A data set. The top plot shows the NER scores
for BaNPPA and LPPA for L = 14 where we see that, under LPPA, all latent
functions have nonzero NER, while, under BaNPPA, only a handful of them have
significant NER scores. The bottom plot shows the top four latent functions
(sorted according to NER) obtained for both the methods along with the true
latent functions. We see that BaNPPA recovers functions very similar to the true
functions.

4.6.1 Derivation of the ELBO

Using Jensen’s inequality, we bound the marginal log likelihood of the observed
sequence ln p(D). Recall that the variational distribution is

q(s,f , {f̄l}Ll=1,Θ)
∆
=

∞∏
l=1

p(fl|f̄l)q(f̄l)
K∏
k=1

∞∏
l=1

q(θ′kl)

K∏
k=1

q(sk).

Hereafter we omit hyper-parameters a0, b0, α,H in ln p(D; a0, b0, α,H) for
simplicity.

ln p(D) = ln
[ ∫ ( K∏

k=1

p(dk|θk, sk,f)p(sk)p(θ′k)
) ∞∏

l=1

p(fl|f̄l)p(f̄l)dθ′
kdf

]
≥

K∑
k=1

Eq ln p(dk|θk, sk,f)

+

K∑
k=1

L−1∑
l=1

Eq ln
p(θ′kl)

q(θ′kl)
+

K∑
k=1

Eq ln
p(sk)

q(sk)
+

L∑
l=1

Eq ln
p(f̄l)

q(f̄l)

∆
= L0(q).

Using Lemma 2.6.3, we could further bound the first term to allow for a
practical variational inference. This result is the same as the one obtained by
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Figure 4.11: This figures shows that the volume constraint in BaNPPA is crucial
to discover the true latent functions. Both BaNPPA and BaNPPA-NC obtain
similar UNER score (top plot), yet the top latent functions obtained with the two
methods are different (bottom plot). The imbalance in the volumes for BaNPPA-
NC (middle plot) is the reason behind this difference. See the text for details.
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Figure 4.12: The comparison of the test likelihood for three additional data sets
(L=14) when fixing the hyper-parameter α = [1.1, 2, 4, 6, 8]. Error bars and
shaded area represent the 95% confidence intervals.

following the methodology in LPPA [61].

Eq ln p(dk|θk, sk,f)

=

Nk∑
n=1

(
ln ηk + Eq ln

L∑
l=1

exp(ln θkl + ln f2l (x
(k)
n ))

)
− ηk

∫
X
Eq

L∑
l=1

θklf
2
k (s)ds

≥
Nk∑
n=1

(
ln ηk + ln

L∑
l=1

exp(Eq ln θkl + Eq ln f
2
l (x

(k)
n ))

)
− ηk

∫
X
Eq

L∑
l=1

θklf
2
k (s)ds.

(4.14)

Using Equation (4.14), we implicitly collapse the indicator variables and ob-
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tain a lower bound of ELBO:

L1(q)
∆
=

K∑
k=1

Nk∑
n=1

(
ln ηk + ln

L∑
l=1

exp(Eq ln θkl + Eq ln f
2
l (x

(k)
n ))

)
−

K∑
k=1

L∑
l=1

ηk

∫
X
Eqθklf

2
l (s)ds

+

K∑
k=1

L−1∑
l=1

Eq ln
p(θ′kl)

q(θ′kl)
+

K∑
k=1

Eq ln
p(sk)

q(sk)
+

L∑
l=1

Eq ln
p(f̄l)

q(f̄l)
. (4.15)

Now the posterior of the function fl is a Gaussian process GP(ul(x), Bl(x, x
′)),

where

uk(x) = κl,xX̄K−1
l,X̄X̄

µk,

Bk(x, x
′) = κl,xx′ − κl,xX̄K−1

l,X̄X̄
κl,X̄x′ + κl,xX̄K−1

l,X̄X̄
ΣlK

−1
l,X̄X̄

κl,X̄x′ .

And the expectation parts in Equation (4.15) can be computed as:

Eq ln p(θ
′
kl) = lnα+ (α− 1)Eq[ln(1− θ′kl)],

Eq ln q(θ
′
kl) = ln

Γ(τkl,0 + τkl,1)

Γ(τkl,0)Γ(τkl,1)

+ (τkl,1 − 1)Eq[ln(1− θ′kl)] + (τkl,0 − 1)Eq[ln θ
′
kl],

Eq[ln(1− θ′kl)] = ψ(τkl,1)− ψ(τkl,0 + τkl,1),

Eq[ln(θ
′
kl)] = ψ(τkl,0)− ψ(τkl,0 + τkl,1),

Eq ln p(sk) = a0 ln b0 − ln Γ(a0) + (a0 − 1) ln ηk − b0ηk,

Eq ln
p(f̄l)

q(f̄l)
=

1

2
ln

|Σl|
|Kl,X̄X̄ |

+
m

2
− 1

2
tr
(
K−1

l,X̄X̄
(Σl + (µk − g)(µk − g)⊤)

)
,

Eq[ln f
2
l (x

(k)
n )] = g

( ul(x
(k)
n )2

2Bl(x
(k)
n , x

(k)
n )

)
− γ + ln

(Bl(x
(k)
n , x

(k)
n )

2

)
,∫

X
Eq[f

2
l (s)]ds = c|X | − tr(K−1

l,X̄X̄
Ψl) + tr(K−1

l,X̄X̄
ΨlK

−1
l,X̄X̄

(Σl + µlµ
⊤
l )).

g(x), x ≤ 0 is calculated by a precomputed multi-resolution look-up table. γ
is Euler’s constant and Ψl ∈ RM×M . A detailed description can be found in
Section 2.6.3 and 2.6.4.

After adding augmented Lagrangian penalty function, the modified evidence
lower bound is:

Lvi
(Φ,wi)

∆
= L1(q)−

L∑
l=1

wil

(∫
X
Eq[f

2
l (s)]ds−A

)
−

L∑
l=1

vil
2

(∫
X
Eq[f

2
l (s)]ds−A

)2
. (4.16)

4.6.2 The Variational Bayesian Expectation-Maximization Algorithm

Based on the modified evidence lower bound in Equation (4.16), we could de-
rive the parameter learning method. In the E-step, we update the parameters
{τ , {µ}Ll=1, {Ll}Ll=1, s} and in the M-step, we update {H, a0, b0, α}.
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Rate q(sk; ηk)

We list the term related to ηk in Equation (4.16) first.

Lηk
∆
= Nk ln ηk − ηk

∫
X

L∑
l=1

Eq

(
θklf

2
l (s)

)
ds− ηkb0 + (a0 − 1) ln ηk.

There is a closed form update for ηk

ηk =
Nk + a0 − 1

b0 +
∫
X
∑L

l=1 Eq

(
θklf

2
l (s)

)
ds
.

Mixture Weights q(θ′kl; τkl,0, τkl,1)

We list the term related to these parameters in Equation (4.16) first.

Lτkl
∆
=

Nk∑
n=1

[
ln

L∑
l=1

exp
(
Eq[ln θkl] + Eq[ln f

2
l (x

(k)
n )]

)]
− ηk

∫
X
Eq

L∑
l=1

θklf
2
l (s)ds

+
(
ln

Γ(τkl,0)Γ(τkl,1)

Γ(τkl,0 + τkl,1)
− (τkl,0 − 1)Eq ln θ

′
kl + (α− τkl,1)Eq ln(1− θ′kl)

)
.

Let

Lknl
∆
= exp

(
Eq[ln θkl] + Eq[ln f

2
l (x

(k)
n )]

)
= exp

(
ψ(τkl,0) +

l−1∑
j=1

ψ(τkj,1)−
l∑

j=1

ψ(τkj,0 + τkj,1) + Eq[ln f
2
l (x

(k)
n )]

)
,

Vl
∆
=

∫
X
Eqf

2
l (s)ds.

There is no closed form update for these variables, we use coordinate ascent
method.

∂Lτkl

∂τkl,0
=− ηk

(
Vk
∂E[θkl]
∂τkl,0

+

L∑
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∂E[θkj ]
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)
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+
(
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∑L
v=l Lknv∑L
v=1 Lknv

)
ψ′(τkl,0 + τkl,1),

∂Lτkl

∂τkl,1
=− ηk

(
Vk
∂E[θkl]
∂τkl,1

+

L∑
j=l+1

Vl
∂E[θkj ]
∂τkl,1

)

−
(
τkl,1 − α−

Nk∑
n=1

∑K
v=l+1 Lknv∑L
v=1 Lknv

)
ψ′(τkl,1)

+
(
τkl,0 − 1 + τkl,1 − α−

Nk∑
n=1

∑L
v=l Lknv∑L
v=1 Lknv

)
ψ′(τkl,0 + τkl,1).
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The derivatives can be computed by

∂E[θkl]
∂τkl,0

=
τkl,1

(τkl,0 + τkl,1)2

l−1∏
j=1

τkj,1
τkj,0 + τkj,1

,

∂E[θkl]
∂τkl,1

= −
τkl,0

(τkl,0 + τkl,1)2

l−1∏
j=1

τkj,1
τkj,0 + τkj,1

,

∂E[θkj ]
∂τkl,0

= −
τkj,0

τkj,0 + τkj,1

τkl,1
(τkl,0 + τkl,1)2

j−1∏
v=1,v ̸=l

τkv,1
τkv,0 + τkv,1

, j > l

∂E[θkj ]
∂τkl,1

=
τkj,0

τkj,0 + τkj,1

τkl,0
(τkl,0 + τkl,1)2

j−1∏
v=1,v ̸=l

τkv,1
τkv,0 + τkv,1

, j > l.

Pseudo Inputs q(f̄l;Σl,µl)

Let φl = {Σl,µl}. We list the term related to these parameters in Equation
(4.16) first.

Lφl
=

K∑
k=1

Nk∑
n=1

ln
( L∑

l=1

Lknl

)
−

K∑
k=1

L∑
l=1

ηkEq[θkl]Vl − wil(Vl −A)− vil
2
(Vl −A)2

+
[1
2
ln |Σl| −

1

2
tr
(
K−1

l,X̄X̄
(Σl + (µl − g)(µl − g)⊤)

)]
.

Taking derivatives with respect to Σl,µl, we obtain

∂Lφl

∂µl
=

K∑
k=1

( Nk∑
n=1

1∑L
v=1 Lknv

∂Lknl

∂µl

)
−

(
wil + vil(Vk −A) +

K∑
k=1

ηkEq[θkl]
) ∂Vl
∂µl

−K−1
l,X̄X̄

(µl − g),

∂Lφl

∂Σl
=

K∑
k=1

( Nk∑
n=1

1∑L
v=1 Lknv

∂Lknl

∂Σl

)
−

(
wil + vil(Vk −A) +

K∑
k=1

ηkEq[θkl]
) ∂Vl
∂Σl

+
1

2
Σ−1

l − 1

2
K−1

l,X̄X̄
,

Let ul,kn
∆
= ul(x

(k)
n ), Bl,kn

∆
= Bl(x

(k)
n , x

(k)
n ) and eln

∆
= K−1

l,X̄X̄
κ
l,X̄x

(k)
n

∈ RM×1.

The four gradients can be computed by

∂Lknl

∂µl
=

(
g′
( u2l,kn
2Bl,kn

) ul,kn
Bl,kn

)
eln,

∂Vl
∂µl

= 2K−1
l,X̄X̄

ΨlK
−1
l,X̄X̄

µl,

∂Lknl

∂Σl
=

(
− g′

( u2l,kn
2Bl,kn

) u2l,kn
2B2

l,kn

+
1

Bl,kn

)
elne

⊤
ln,

∂Vl
∂Σl

= K−1
l,X̄X̄

ΨlK
−1
l,X̄X̄

.

Finally, since we are using the parametrization Σl = LlL
⊤
l , we have

∂Vl
∂Ll

= 2
∂Vl
∂Σl

Ll,
∂Lknl

∂Ll
= 2

∂Lknl

∂Σl
Ll.
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Hyper-parameter in the GP

Let ςl denote the hyper-parameters in the prior for the lth latent function. We
list the term related to these parameters in Equation (4.16) first.

Lςl =

K∑
k=1

Nk∑
n=1

ln
( L∑

l=1

Lknl

)
−

K∑
k=1

L∑
l=1

ηkEq[θkl]Vl − wil(Vl −A)− vil
2
(Vl −A)2

+
[
− 1

2
ln |Kl,X̄X̄ | − 1

2
tr
(
K−1

l,X̄X̄
(Σl + (µl − g)(µl − g)⊤)

)]
.

Taking derivatives with respect to ςl, we obtain

∂Lςl

∂ςl
=

K∑
k=1

( Nk∑
n=1

1∑L
v=1 Lknv

∂Lknl

∂ςl

)
−
(
wil + vil(Vk −A) +

K∑
k=1

ηkEq[θkl]
)∂Vl
∂ςl

− 1

2
tr
(
K−1

l,X̄X̄

∂Kl,X̄X̄

∂ςl

)
+

1

2
tr
(
K−1

l,X̄X̄

∂Kl,X̄X̄

∂ςl
K−1

l,X̄X̄
(Σl + (µl − g)(µl − g)⊤)

)
.

The two gradients can be computed by

∂Lknl

∂ςl
=

(
g′
( u2l,kn
2Bl,kn

) ul,kn
Bl,kn

)
µ⊤
l

∂eln
∂ςl

+ 2
(
− g′

( u2l,kn
2Bl,kn

) u2l,kn
2B2

l,kn

+
1

Bl,kn

)
tr
(
Σl
∂eln
∂ςl

e⊤ln

)
,

∂Vl
∂ςl

= tr
(
K−1

l,X̄X̄
ΨlK

−1
l,X̄X̄

∂Kl,X̄X̄

∂ςl
−K−1

l,X̄X̄

∂Ψl

∂ςl

)
+ tr

(
K−1

l,X̄X̄
(µlµ

⊤
l +Σl)K

−1
l,X̄X̄

(∂Ψl

∂ςl
− 2

∂Kl,X̄X̄

∂ςl
K−1

l,X̄X̄
Ψl

))
.

Beta distribution prior α

We list the term related to α in Equation (4.16) first.

Lα
∆
= K(L− 1) lnα+ (α− 1)

K∑
k=1

L−1∑
l=1

(ψ(τkl,1)− ψ(τkl,0 + τkl,1)).

Then we have a closed form update for α.

α =
K(L− 1)∑K

k=1

∑L−1
l=1

(
ψ(τkl,1 + τkl,0)− ψ(τkl,1)

) . (4.17)

Gamma distribution prior a0, b0

We list the term related to a0, b0 in Equation (4.16) first.

La0,b0 = −
K∑
k=1

(
a0 ln b0 − ln Γ(a0)− ηkb0 + (a0 − 1) ln ηk

)
.

Then we have

∂La0,b0

∂a0
= −K ln b0 +Kψ(a0)−

K∑
k=1

ln ηk, b0 =
Ka0∑K
k=1 ηk

.
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4.6.3 Derivation of the Lower Bound of the Test Likelihood

In LPPA, the allocation matrix Θ is treated as hyper-parameters and all the
parameters are {µ,Σ,H,Θ}. Let Φ = {H,Θ}. In variational inference we use
the variational distribution q(f ; Φ) to approximate the posterior p(f |Dtrain; Φ).
The test likelihood can be lower-bounded as follows.

ln p(Dtest|Dtrain; Φ) = ln

∫
p(Dtest|f ; Φ)p(f |Dtrain; Φ)df

≈ ln

∫
p(Dtest|f ; Φ)q(f ; Φ)df

≥
∫
q(f ; Φ) ln

p(Dtest|f ; Φ)q(f ; Φ)
q(f ; Φ)

df = Eq ln p(Dtest|f ; Φ)

≥
K∑
k=1

Ntest
k∑

n=1

ln

L∑
l=1

θkl exp
[
Eq(ln f

2
l (x

(k)
n ))

]
−

K∑
k=1

L∑
l=1

θkl

∫
X
Eq[f

2
l (s)]ds

∆
= Ltest.

(4.18)

In BaNPPA, all the parameters to be optimized are {η, τ ,µ,Σ,H, a0, b0, α}.
Let Φ = {H, a0, b0, α}. However, if we follow the same deduction as LPPA, we
will not arrive at a fair comparison since the inequality in Equation (4.18) is
different in principle for LPPA and BaNPPA, and therefore, we draw V samples
from variational distribution q(s,Θ; a0, b0, α) for Θ and then follow the lower
bound in Equation (4.18).

Eq ln p(Dtest|s,Θ,f ; Φ)

=

∫
q(s,Θ,f ; Φ) ln p(Dtest|s,Θ,f ; Φ)dsdΘdf

≈ 1

V

V∑
v=1

∫
q(f ;H) ln p(Dtest|s,Θv,f ;H)df

≥ 1

V

V∑
v=1

K∑
k=1

(Ntest
k∑

n=1

ln
(
sk

L∑
l=1

θv,kle
Eq(ln f2

l (x
(k)
n ))

)
− sk

L∑
l=1

θv,kl

∫
X
Eq[f

2
l (s)]ds

)
.

(4.19)
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Chapter 5

Conclusion and Future Work

In this chapter, we conclude the thesis and present several possible directions for
future research.

5.1 Discussion and Conclusion

Time-sequence data can generally be divided into two categories: recurrent event
data and panel count data [91]. The thesis was devoted to addressing several
technical problems in the variational inference when we have panel count data or
recurrent event data.

In Chapter 3, we presented the first framework for GP-modulated Poisson
processes when data appear in the form of panel counts. To simplify the problem,
we make the assumption that all time-sequences share the same intensity function.
Thanks to this assumption, we can obtain an estimate of the average intensity
function. We derived a tractable lower bound for the intractable evidence lower
bound when modeling the panel count data using the GP-modulated intensity
function. Our model, the Gaussian-process-modulated Poisson process for panel
count data (GP4C), outperforms a non-Bayesian method using the maximum
likelihood criterion in terms of the test likelihood and achieves comparable results
in terms of computation time. Generally speaking, GP4C serves as an alternative
to the current mainstream point-estimates for the machine learning researchers
and practitioners who are interested in modeling and understanding panel count
data.

In Chapter 3, we made an assumption that in the data set, all time-sequences
share the same underlying intensity function. However, this assumption prevents
us from inferring the diversity among multiple time-sequences. As the starting
point to study the diversity among multiple time-sequences, we incorporated an
additional variable for each time-sequence to model the diversity. In the scenario
of the clinical trial, this variable can be interpreted as the level of severity in each
patient. We name this model the GP4C model with individual weight (GP4CW).
We showed through experiments that GP4CW outperforms the GP4C model in
terms of the test likelihood. For medical practitioners, GP4C can estimate the
average rate of events while GP4CW can provide an estimate of the severity of
each patient.

In Chapter 4, we further generalize the assumptions in GP4C and GP4CW.
Instead of using only one latent function, we assume that there exists a set of la-
tent functions and the intensity function of each time-sequence can be obtained by
linearly combining all the latent functions. We proposed Bayesian nonparamet-
ric Poisson process allocation (BaNPPA), to automatically infer the number of
latent functions. We combined Bayesian nonparametric methods with the exist-
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ing latent Poisson process allocation (LPPA) method and showed that this naive
combination might result in over-shrinkage of the latent functions. We solved
this problem by imposing a volume constraint within the variational Bayesian in-
ference framework. We demonstrated that the proposed model outperforms the
LPPA model and the integral constraints we imposed on the objective function
help the inference of the underlying latent functions. For medical practition-
ers, BaNPPA can automatically identify different patterns of symptoms and help
develop individual treatments for each patient.

5.2 Future Work

In this section, we present several possible directions for future research.

5.2.1 Two-Sample Test

In Chapter 3, we estimate the mean intensity function for both the treatment
and the placebo group. A natural question is that whether the mean intensity
functions of the two groups are significantly different.

Let the mean intensity functions for the treatment group and the placebo
group be λ1(x) and λ0(x) respectively. Cook and Lawless [15] and [58] made the
following proportional mean function assumption:

λ1(x) = exp(β)λ0(x).

A score test for the real number β was then conducted by utilizing a point-
estimate of the mean intensity function λ0(x) [15, 58]. The null hypothesis H0

and the alternative hypothesis H1 are given as follows.

H0 : β = 0,

H1 : β ̸= 0.

When we can not reject the null hypothesis β = 0, the mean intensity func-
tions for both groups are the same, that is, λ0(x) = λ1(x). This implies that the
treatment is not effective.

With the inference methods in Lloyd et al. [60] and Chapter 3, we can obtain
a Bayesian estimate of the mean intensity function. However, we can not directly
use the point-estimate tools in Cook and Lawless [15]. It would be interesting to
investigate the benefits we could obtain from the Bayesian estimate in the task of
hypothesis test. For example, we can assume that the mean intensity functions
for both groups are generated by the following model.

λ1(x) = (f(x) + g(x))2,

λ0(x) = f2(x),

f(x) ∼ GP(m(x), κf (x, x
′)),

g(x) ∼ GP(m(x), κg(x, x
′)).

Note that since a linear combination of two Gaussian processes is a Gaussian
process [77], f(x) + g(x) still follows a Gaussian process. After we obtain the
Bayesian estimate of the function g(x), a test can be performed by examining
whether g(x) = 0 using the hypothesis test method in Benavoli and Mangili [6].

99



5.2.2 Analysis of the Error in Corollary 3.3.1

In Chapter 3, we did not give an upper bound of the error in Corollary 3.3.1.
The actual error in Corollary 3.3.1 is

gerror =Eq

[
ln

∫
X (k)

i

f2(x)dx
]
− ln

(∫
X (k)

i

eln(E
2
qf(x)+bVarqf(x))+ξdx

)
=
(
Eq

[
ln

∫
X (k)

i

f2(x)dx
]
− ln

(∫
X (k)

i

eEq ln f2(x)dx
))

+
(
ln

(∫
X (k)

i

eEq ln f2(x)dx
)
− ln

(∫
X (k)

i

eln(E
2
qf(x)+bVarqf(x))+ξdx

))
=Eq

[
ln

∫
X (k)

i

f2(x)dx
]
− ln

(∫
X (k)

i

eEq ln f2(x)dx
)

︸ ︷︷ ︸
g0

+h(φ(xc); b),

where h(φ; b) is defined in Section 3.3.4 and xc ∈ X (k)
i . We used a heuristic

method to estimate the error of h(φ(xc); b) in Section 3.3.4.
For the first part g0 of the error gerror, to the best of our knowledge, the

analysis of the error has not been studied before. The derivation of the inequality
can be found in Paisley [74] and this inequality has also been used implicitly in
the previous study [61]. We illustrate the bias after applying this inequality by
the following simple toy experiment.

Y1 = X2
1 , Y2 = X2

2 , X1 ∼ N (2, 1), X2 ∼ N (2, 4),

where N (·) is the normal distribution. Using Lemma 2.6.3, we can arrive at the
following inequality:

Lleft
∆
= Ep(Y1:2) ln

(
wY1 + (1− w)Y2

)
≥ ln

(
w exp(E lnY1) + (1− w) exp(E lnY2)

)
∆
= Lright, w ∈ [0, 1]. (5.1)

The experiment is to maximize both sides with respect to w in Inequality 5.1.
We vary the value of w and calculate Lright and Lleft. The result is given in Figure
5.1. We see that the for the right-most Lright the optimal value of w is w = 1
while for Lleft the optimal value is between 0 and 1. With this toy experiment,
we confirm that after applying the inequality an additional bias is added to the
maximization result.

An intuitive explanation for the bias is that the logarithm function will punish
values which are closer to zero harder. Since Y2 has a large variance, there will
be a large proportion of samples near zero. This makes the corresponding E lnY2
smaller and less favorable.

In this direction, an analysis of the error g0 would help understand the accu-
racy of our Bayesian estimate.

5.2.3 Poisson Process Allocation for Panel Count Data

The combination of the panel count data model in Chapter 3 with the Poisson
process allocation model in Chapter 4 would be an interesting topic. Taking
the clinical experiment as an example, in Figure 3.1 we notice that the diversity
among patients can not be easily neglected and a careful study of the reactions
from different patients would help doctors make a specific plan for each patient.
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Figure 5.1: Bias in the inference with lower bound. Left: The histogram of Y1
and Y2 when sampling both variables 105 times. Right: Lleft (Blue) versus Lright

(Red) and the round marker indicates the maximum of the curve.

In this direction, we can combine the generative process of LPPA [61] with the
panel count data model. We name this model the Poisson process allocation for
panel count data (PPA-PCD). The generative process for the PPA-PCD model is
given in Algorithm 13. In PPA-PCD, we are provided with additional censoring

intervals {X (k)
i }, k = 1, . . . ,K. Another difference between PPA-PCD and LPPA

is that we need to add an additional censoring step after we sample the recurrent
event data for each subject since the exact time-stamps in the panel count data
are not revealed to the observer.

A challenge in this direction is that a large data set of read-world panel count
data from patients may not be easily accessible since it is related to the privacy
of the patients.

5.2.4 Pattern Mining From Multiple Time-Sequences

In Chapter 4, we present the BaNPPA model to automatically infer the number
of latent functions for multiple time-sequences. Although BaNPPA can model
the multiple time-sequences well in terms of the test likelihood, we observe that
in the experiment that it is difficult to gain insights from the latent functions of
the inference results from BaNPPA.

We plot the inference results of the latent functions in the Microblog data set
in Figure 5.2. A description of the Microblog data set can be found in Section
4.5. In Figure 5.2, we notice that each latent function contains only one peak.
However, a more meaningful pattern may contain multiple peaks [45] since there
might be some triggering mechanisms in multiple peaks. Thus we may find it
more interesting to investigate whether there is a group of time-sequences sharing
the same multiple-peak pattern. A careful examination of the information from
this group may help us understand the mechanism in the generative process
better.
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Algorithm 13: The generative process for the PPA-PCD model.

Input : The number of latent function L, the number of the
time-sequences K, the mixture weights {θkl}, the mean value
m0, the covariance functions in L Gaussian processes {κl} and

the observation intervals {X (k)
i }, k = 1, . . . ,K.

Output: The time-sequence data D = {dk}Kk=1.
1 for each basis function l = 1, . . . , L do
2 Sample fl ∼ GP(m0(x), κl(x, x

′)).
3 end
4 for each subject k = 1, . . . ,K do
5 Calculate the intensity function.

λk(x) =

L∑
l=1

θklf
2
l (x), θkl ≥ 0.

6 Sample dk ∼ IPP(λk(x)) on the time window X (k) = ∪iX (k)
i .

7 for each observation interval i = 1, . . . , Nk do

8 Censoring the recurrent events dk with X (k)
i .

9

m
(k)
i = #{x|x ∈ X (k)

i , x ∈ dk}.

10 end

11 Set dk = {(m(k)
i ,X (k)

i )}Nk
i=1.

12 end
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Figure 5.2: Latent functions in the Poisson process allocation of the Microblog
data set. (Left column) First five latent functions from LPPA with L = 14.
(Right column) First five latent functions from BaNPPA.
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