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ABSTRACT

Although public-key cryptography is a fundamental and extensively used technol-
ogy, its security relies on unproven assumptions much stronger than P ̸= NP. One of
the ultimate goals of complexity theory is to establish secure public-key cryptography;
however, there is a long way to go. Impagliazzo (1995) proposed five possible worlds,
Algorithmica, Heuristica, Pessiland, Minicrypt, Cryptomania, which are consistent with
our current knowledge of complexity theory. These five worlds are classified according to
the truth of the following central open questions: P ̸= NP,DistNP ̸⊆ AvgP, the existence
of a one-way function, and the existence of public-key cryptography. The open prob-
lems are listed in increasing order of the strength of the hypothesis, and the converse

directions are important open problems in complexity theory; that is, True
?⇒ P ̸= NP

?⇒ DistNP ̸⊆ AvgP
?⇒ ∃ one-way functions

?⇒ ∃ public-key cryptography. By establishing
one implication, one possible world is excluded from Impagliazzo’s five worlds. And if
the four implications are proved, it is concluded that our world is Cryptomania, i.e.,
computationally-secure public-key cryptography exists.

There are significant obstacles to resolving these open questions. For example, any

proof showing that P ̸= NP
?⇒ DistNP ̸⊆ AvgP (which corresponds to excluding Heuris-

tica) must be a non-relativizing proof technique, and must overcome the limits of black-
box reductions unless the polynomial-time hierarchy collapses.

In this thesis, we focus on the central problems in complexity theory called Mini-
mum Description Length Problems (MDLPs), and overcome one of the aforementioned
obstacles. Minimum Description Length Problems ask the minimum length of a “pro-
gram” that compresses a given string. One instantiation of minimum description length
problems is called the Minimum Circuit Size Problem (MCSP), which asks for com-
pressing a given string by a truth table of a circuit. Another instantiation is called the
Minimum Time-bounded Kolmogorov Complexity Problem (MINKT or MKTP), which
asks for compressing a given string by an efficient Turing machine. We establish the
equivalence between the worst-case and average-case complexity of an approximation
version of these problems. This is shown by a non-black-box reduction technique, and
under some plausible assumptions, our results overcome the limits of black-box reduc-
tions. Our results can be seen as a new approach towards excluding Heuristica: In order
to establish the equivalence between the worst-case and average-case complexity of NP,
it suffices to prove the NP-hardness of approximation versions of minimum description
length problems.

Next, we present various hardness results of MCSP. We show that MDLPs are hard
under average-case complexity conjectures such as the Planted Clique Conjecture and
Random 3SAT, thereby strengthening evidence that MCSP ̸∈ coNP. We also show
that every auxiliary-input one-way function can be inverted with MCSP oracles, which
improves the SZK (statistical zero knowledge) hardness of MCSP shown by Allender and
Das (2017).

Then, as with the limits of black-box reductions, we show that current reduction
techniques have a certain limit that prevents us from improving the SZK-hardness to NP-
hardness of MCSP: Specifically, we introduce the notion of oracle-independent reductions,
observe that most of the current reductions to MCSP are oracle-independent, and show
that an oracle-independent reduction technique is not likely to be used to establish NP-
hardness of MCSP.

In light of this barrier, we turn our attention to MCSP for restricted circuit classes.
Masek (1979) proved the NP-hardness of MCSP for DNF formulas, that is, the minimum
circuit size problem for depth-2 circuits. It was open for nearly four decades to obtain
NP-hardness of MCSP for any circuit class more expressive than DNF formulas, despite
the fact that the question is recognized as important. We resolve this open question by
establishing NP-hardness of MCSP for DNF ◦ XOR circuits.

We also present several additional results including: Strong evidence against Allen-
der’s conjecture (2012), which roughly states that a computability-theoretic analogue of
MCSP is not NP-hard under polynomial-time nonadaptive reductions; The first natu-
ral NP-intermediate problems supported by weak complexity-theoretic assumptions; Im-
proved connections between hardness of MCSP and circuit lower bounds; Unconditional



circuit lower bounds for MCSP.



論文要旨

今日の情報通信社会の基盤技術として公開鍵暗号系が広く使われているが、その安全性

は P ̸= NPよりもはるかに強い仮定に基づいており未解決である。計算量理論の究極的

な目標のひとつは数学的に証明された公開鍵暗号系を構成することにあるが、計算量理論

には P ̸= NPを始めとして未解決問題が山積している。Impagliazzo (1995)の分類に従う

と、我々の現在の計算量理論の知識と一貫性のある 5つの世界 (Algorithmica, Heuristica,

Pessiland, Minicrypt, Cryptomania) がある。これらは P ̸= NP,DistNP ̸⊆ AvgP 一方向性

関数の存在, 公開鍵暗号の存在の 4つの未解決問題が成立するか否かによって分類されて

おり、どれか一つの世界が真の世界に対応している。これらの未解決問題は仮定の強い順

に並んでおり、その逆を示すことは計算量理論における中心的な未解決問題である。つま

り、True
?⇒ P ̸= NP

?⇒ DistNP ̸⊆ AvgP
?⇒ ∃ 一方向性関数 ?⇒ ∃ 公開鍵暗号。ひとつの

矢印「 ?⇒」を示すことはひとつのありうる世界を除外することに対応し、4つのすべての

矢印を示すことによって安全な公開鍵暗号系の存在を示すことができる。

しかしながらそれら中心的な問題の解決には重大な障壁があることが知られている。例

えば P ̸= NP
?⇒ DistNP ̸⊆ AvgPを解決する（つまり、Heuristicaを除外する）ためには、

相対化する証明技法では示せないし、多項式階層が潰れない限りブラックボックス帰着の

限界を突破する必要がある。

本論文では計算量理論における中心的な問題である最小記述量問題に着目し、その障壁

のひとつを突破する。最小記述量問題とは、与えられた文字列を最小の「プログラム」へと

圧縮したときの長さを問う問題である。プログラムが回路で表現される場合には回路最小

化問題 (Minimum Circuit Size Problem; MCSP) と呼ばれ、プログラムが効率的なチュー

リングマシンで表現される場合には最小時間制限付きコルモゴロフ記述量問題 (MINKTま

たはMKTP) と呼ばれる。これらの近似問題に関して、平均時計算量と最悪時計算量が同

値になることを示す。これはブラックボックスでない帰着手法で証明されており、適切な仮

定の下でブラックボックス帰着を突破している初めての結果である。この結果はHeuristica

を除外するための新しいアプローチとしても見ることができる。すなわち、NPの最悪時・

平均時計算量の同値性を示すためには、近似版最小記述量問題の NP完全性を解決すれば

十分である。

次に、MCSPの様々な困難性を示す。埋め込みクリーク予想やランダム 3SATなどに関

する平均計算量の仮定の下でMCSPやMKTPが計算困難であることを示すことにより、

MCSP ̸∈ coNP であるというさらなる証拠を与える。また、MCSPオラクルの下で補助入

力一方向性関数を破れることを示し、Allenderと Das (2017)によるMCSPの統計的ゼロ

知識証明 (SZK)困難性を改善する。

ブラックボックス帰着の限界と同様に、SZK困難性を NP困難性に改善するためには現

在の証明手法には限界があることを示す。具体的にはオラクル独立帰着という概念を導入

し、ほとんどのMCSPへの帰着手法はオラクル独立であり、そのような手法ではNP完全

性を解決することができないという証拠を示す。

それゆえ、(一般の回路最小化問題ではなく) 制限された回路クラスに関する回路最小化

問題に着目する。Masek (1979)により DNFに対する回路最小化問題は NP完全だと知ら

れていたが、DNFよりも表現能力の高い回路クラスに関する回路最小化問題についての

NP完全性は (重要性が認識されていたにも関わらず) 約 40年間未解決であった。本論文



では DNF ◦ XOR回路最小化問題の NP完全性を解決する。

さらにいくつかの追加の結果を示す。大雑把に言うと「計算可能性版のMCSPが非適応

多項式時間帰着のもとで NP困難ではない」という Allenderの予想 (2012) を否定する証

拠を示す。弱い計算量理論の仮定に基づく初めての自然な NPの中間の問題を構成する。

MCSPと回路下界の関係を改善する。仮定なしでのMCSPに対する回路下界を示す。
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Chapter 1

Introduction

Computational Complexity Theory aims at understanding what computa-
tional problems can or cannot be solved efficiently by an abstract model of com-
putational devices, such as Turing machines or logic circuits. The main focus of
computational complexity is to prove limits of computation. One of the most

central open questions is the P
?
̸= NP problem, which intuitively asks whether

verifying the correctness of a proof efficiently is harder than finding a proof effi-
ciently. Not only mathematically challenging and interesting is to prove such a
nonexistence of an efficient algorithm, it is also the theory that supports modern
cryptography widely used to protect secret information in our daily life.

Public-key cryptography is a fundamental technology that enables us to com-
municate securely without revealing secret information to an eavesdropper. De-
spite the fact that public-key cryptography is widely used, no public-key cryp-
tography is proved to be secure.

For example, one of the most commonly used public-key cryptosystems is
RSA, developed by Rivest, Shamir, and Adleman [RSA78]. The cryptosystem
is based on intractability of integer factorization, and RSA is secure only if one
cannot solve integer factorization efficiently. It should be noted that integer
factorization is a problem in NP∩coNP, and thus there is not so strong complexity-
theoretic evidence supporting why integer factorization should be intractable. In
the breakthrough work of Shor [Sho99], it was shown that a quantum computer
can solve integer factorization in polynomial time; thus RSA is not secure against
quantum computers. Because of Shor’s quantum algorithm, there have been a
lot of work done in order to construct post-quantum cryptography – that is,
cryptography secure even against quantum computers.

Even worse, if P = NP, then essentially all cryptographic primitives can be
broken by a classical computer. This is intuitively because NP is the complexity
class of problems whose Yes instances have a certificate that is efficiently check-
able; in order to build a meaningful cryptographic primitive, it is required that a
legitimate user who has a secret key (i.e., a certificate) must be verified efficiently.
More formally, the existence of a one-way function (OWF) is often considered as a
minimal complexity assumption to build cryptography [IL89]. Roughly speaking,
a one-way function is a function f such that f is easy to compute but no efficient
adversary can invert f on average; it is easy to see that any one-way function can
be inverted with NP oracles. Thus the security of cryptographic primitives must
be based on intractability of some NP problem, and hence proving P ̸= NP is the
first step towards the construction of secure cryptography.

However, there is a huge gap between P ̸= NP and public-key cryptography.
This gap was already discussed in the seminal work of Diffie and Hellman [DH76],
which introduced public-key cryptography. The main problem is that traditional

1



complexity classes such as P and NP measure the performance of an algorithm
with respect to the worst-case input; therefore, the statement P ̸= NP only
tells us that there exists some hard input on which a polynomial-time machine
cannot solve some NP problem; however, it does not tell us how to generate such
a hard input efficiently. In contrast, for the purpose of cryptography, we need
to efficiently generate a secret key randomly so that an adversary cannot find
the secret key in a reasonable amount of time. Thus we need to understand the
average-case complexity of NP: that is, how much time on average does it take
to compute NP problems on efficiently generated random inputs?

1.1 Impagliazzo’s Five Worlds

In the very influential survey on average-case complexity of Impagliazzo
[Imp95], the gap between P ̸= NP, average-case complexity of NP, and the exis-
tence of cryptographic primitives was clearly addressed. He explored five possible
scenarios that are consistent with our current knowledge on complexity theory,
and named each possible world as follows: Algorithmica (where NP is easy on the
worst-case; e.g. P = NP), Heuristica (where NP is hard on the worst-case, but
easy on the average-case; e.g. P ̸= NP and DistNP ⊆ AvgP), Pessiland (where NP
is hard on average, but there is no one-way function), Minicrypt (where a one-
way function exists, but no public-key cryptography exists), and Cryptomania
(public-key cryptography exists). Most of us believe that we live in Cryptomania,
but we do not know the truth yet. The five worlds are classified according to the
four central open questions in complexity theory, and exactly one of the possible
worlds corresponds to our world.

What is known about Impagliazzo’s five worlds? The list of the five worlds
is known to be in “decreasing order” of the power of polynomial-time machines;
that is, ∃ public-key cryptography ⇒ ∃ one-way functions ⇒ DistNP ̸⊆ AvgP
⇒ P ̸= NP. The converse directions of these implications are important open

questions in complexity theory; that is, True
?⇒ P ̸= NP

?⇒ DistNP ̸⊆ AvgP
?⇒

∃ one-way functions
?⇒ ∃ public-key cryptography. By establishing one implica-

tion, one possible world is excluded from Impagliazzo’s five worlds. And if the
four implications are proved, it is concluded that our world is Cryptomania, i.e.,
computationally-secure public-key cryptography exists.

Since all these questions are the central open questions in complexity theory
and cryptography, a lot of work has been done for each open question in order to
understand why current proof techniques are not likely to resolve the questions.
For example, in order to resolve P ̸= NP (or, in other words, to exclude Algo-
rithmica from the possible worlds), it is known that one needs to develop a new
proof technique that overcomes the relativization barrier [BGS75], the algebriza-
tion barrier [AW09], and the natural proof barrier [RR97] simultaneously. It is
known that P ̸= EXP by the time hierarchy theorem [HS65], but such a proof
technique is known to be relativizing, i.e., PA ̸= EXPA for every oracle A. How-
ever, Baker, Gill, and Solovay [BGS75] showed that PA = NPA for some oracle
A (and moreover PB ̸= NPB for some oracle B), and thus a relativizing proof
technique is not enough to resolve P ̸= NP. One of the main non-relativizing
proof techniques in complexity theory, called algebrization, is developed through
the study of interactive proof systems and the PCP theorem [ALM+98], but
it turned out that the proof technique also has a limit as shown by Aaronson
and Wigderson [AW09]. In 1980s, combinatorial approaches for showing limits
of constant depth circuits have been quite successful, culminating in exponen-
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Figure 1.1: Impagliazzo’s Five Worlds and Central Open Questions.

tial circuit size lower bounds for AC0 circuits [H̊as86] and AC0[p] circuits for a
prime p [Raz87, Smo87]. It turned out that such an approach has a limit as well:
Razborov and Rudich [RR97] proposed a natural proof barrier, and showed that
“natural” proof techniques are not likely to prove a lower bound for TC0, i.e, the
class of constant-depth circuits with threshold gates.

Similarly, in order to exclude Heuristica (e.g., P ̸= NP =⇒ DistNP ̸⊆ AvgP),
one needs to develop a new proof technique that overcomes a relativization bar-
rier (as shown by Impagliazzo [Imp11]) and limits of black-box reductions. One
of the most prevailing proof techniques for showing intractability of a problem
in complexity theory is by means of reductions, that is, we compare hardness
of two different computational tasks by reducing one task to another. However,
(black-box) reductions have certain limits and are not likely to be able to ex-
clude Heuristica, as shown by Feigenbaum and Fortnow [FF93] and Bogdanov
and Trevisan [BT06b]. More specifically, any nonadaptive black-box reduction
technique cannot reduce any worst-case problem outside NP/poly∩ coNP/poly to
an average-case problem in NP.

At this point, a natural question is how to tackle the challenging open ques-
tions. The main theme of this thesis is that meta-computational problems asking
for compression of a given string might be a key to overcoming these barriers.
Here “meta-complexity” refers to the complexity of problems that encode ques-
tions about algorithms or computations. Historically, complexity theory was ad-
vanced together with improved understanding of meta-computational problems.
A canonical example of meta-computational problems is the satisfiability problem
(SAT): Given as input a representation of an algorithm A in a certain form such
as 3CNF formulas or Boolean circuits, the task is to decide whether there is an
input on which the algorithm A outputs “Yes”. SAT has had major impacts on
complexity theory: For example, SAT was one of the first problems identified as
an NP-complete problem by Cook and Levin [Coo71, Lev73]; the celebrated PCP
theorem shows inapproximability of SAT [ALM+98]; more recently, a connection
between circuit lower bounds and non-trivial SAT algorithms was established by
Williams [Wil13, Wil14], whose proof technique is an important candidate that
overcomes the natural proof barrier.
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1.2 Minimum Circuit Size Problem (MCSP) and Its Variants

Another meta-computational problem in some sense dual to SAT is the Min-
imum Circuit Size Problem (MCSP): Given the entire truth table of a Boolean
function f : {0, 1}n → {0, 1} and a size parameter s ∈ N, the task is to decide
whether f can be computed by a circuit of size at most s. While SAT asks a
property of a Boolean function succinctly encoded by an algorithm, MCSP asks
whether a Boolean function represented in a lengthy way can be compressed into
a small circuit. It is easy to see that MCSP ∈ NP, but its precise complexity is not
well understood. This is despite the fact that MCSP has attracted researchers
of the Soviet Union as early as 1950s, as surveyed in an informative account
of Trakhtenbrot [Tra84]. It is also reported in [AKRR11] that Levin delayed his
publication of SAT [Lev73] because he hoped to show NP-completeness of MCSP.
Nearly half century going to pass, no one has found an NP-completeness proof,
nor has any strong evidence against NP-completeness of MCSP been found.

Problems of minimizing time-bounded Kolmogorov complexity are often re-
garded as variants of MCSP. MINKT (Minimum Kolmogorov Time-bounded
Complexity [Ko91]) asks the minimum program size to output a given string x
within a given time bound t: specifically, given a string x and integers t, s rep-
resented in unary, it asks whether there is a program of size ≤ s that outputs
x within t steps. Another variant called MKTP [ABK+06b, AHK17] asks for
minimizing s + t, i.e., the program size plus the time it takes to output x by
a random access machine. It was shown by Ko [Ko91] that a relativizing proof
technique is not enough to resolve NP-completeness of MINKT.

Common to these problems is to ask for compression by algorithms: Given a
string x, the task is to check whether x can be compressed into a short description
of an algorithm that outputs x. In short, MCSP is the problem of compressing a
given input by the truth table of a circuit; MINKT and MKTP is the problem of
compressing a given input by an efficient Turing machine. It is often the case that
it is easier to compress a string by a program than a truth table of a circuit; thus
every known hardness result for MCSP works for MKTP and MINKT, but there
are several results for MKTP and MINKT that are not known to hold for MCSP.
We call these problems as Minimum Description Length Problems (MDLPs).

Why do we think that studying MCSP and its variants is valuable? The
reason is that MCSP is arguably one of the central meta-computational problems
in complexity theory. We show in Figure 1.2 that the problem lies in a central
position of Impagliazzo’s five worlds.

The fundamental relationship between MCSP and cryptography was found in
the natural proof framework of Razborov and Rudich [RR97]. Roughly speaking,
a natural property (useful against the general circuit class) is an efficient algorithm
that solves MCSP well on average. It was shown in [RR97] that such an algorithm
is able to break every pseudorandom function generator (PRFG) constructed by
Goldreich, Goldwasser and Micali [GGM86] based on any pseudorandom gener-
ator (PRG). H̊astad, Impagliazzo, Levin and Luby [HILL99] constructed a pseu-
dorandom generator from any one-way function. Combining these constructions,
the relationship can be stated as the implication “∃ one-way functions =⇒ ∃
MCSP ̸∈ BPP”.

Dual to cryptography is learning theory. While cryptography aims at con-
structing an efficiently computable function f that does not reveal any secret,
learning theory aims at learning such a function f by a small circuit. A connec-
tion between MCSP and learning theory was clearly established by Carmosino,
Impagliazzo, Kabanets, and Kolokolova [CIKK16, CIKK17]. They showed that
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Figure 1.2: Impagliazzo’s five worlds, MCSP, and our results. Here we ignore the
details such as P and BPP and MCSP and its approximation version.

learning small circuits under the uniform distribution can be done with ora-
cle access to any natural property (and in particular MCSP), by breaking a
complexity-theoretic pseudorandom generator. In particular, they were able to
establish the first quasi-polynomial-time learning algorithm for AC0[p], because
the circuit lower bound proofs of Razborov [Raz87] and Smolensky [Smo87] yield
a natural property useful against AC0[p] circuits.

Based on the natural proof framework, Kabanets and Cai [KC00] named
the problem as MCSP and reawoke interest in MCSP. Since then many ef-
forts have been made to understand the complexity of MCSP (e.g., [ABK+06b,
AHM+08, AKRR11, AD17, MW17, HP15, HW16, CIKK16, OS17, HS17, AH17,
AGvM+18, IKV18, HOS18, Hir18]). However, it is still a long-standing open
question whether MCSP is NP-hard. The open question is depicted in Figure 1.2

as the implication “NP ̸= P
?⇒ MCSP ̸∈ P.” (Recall that a problem L is NP-hard

under polynomial-time Turing reductions if NP ⊆ PL. We can state it equiva-
lently as NP ̸⊆ PR ⇒ L ̸∈ PR for every oracle R. The unrelativized implication
NP ̸⊆ P ⇒ L ̸∈ P gives rise to the weakest notion of NP-hardness.)

1.3 Overcoming Limits of Black-Box Reductions

The main contribution of this thesis is to prove the first non-black-box worst-
case to average-case reductions: We prove that if MCSP is hard in the worst-
case sense, then its average-case version is also hard (depicted in Figure 1.2 as
“MCSP ̸∈ P =⇒ DistNP ̸⊆ AvgP” informally). More specifically, we show that
if an approximation version GapϵMCSP is not in BPP then DistNP ̸⊆ AvgBPP.
Here GapϵMCSP denotes the problem of approximating the minimum n-variable
circuit size within a factor of 2(1−ϵ)n for a constant ϵ > 0. (While the approxi-
mation factor is huge for MCSP, we obtain a much better approximation in the
case of MINKT.) MDLPs are conjectured to be outside NP/poly∩coNPpoly, and
thus our results overcome the limits of black-box reductions of [FF93, BT06a].

There are few problems in NP that are believed to be intractable and admit
worst-case to average-case reductions. In the seminal work of Ajtai [Ajt96], he
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showed that the shortest vector problem admits worst-case to average-case re-
ductions; however, since the reduction is black-box, the problem is known to be
in NP ∩ coNP [GG00, AR05]. The worst-case to average-case reduction led to a
construction of lattice-based public-key cryptosystems (e.g. [AD97]), and these
are one of candidates for post-quantum cryptography. While our results do not
yield a construction of cryptographic primitives yet, the worst-case to average-
case reduction for MCSP can be regarded as a significant step towards secure
cryptography.

Crucial to our non-black-box reductions is the meta-computational property
of MCSP. To give a better sense, we briefly outline the idea. Usually, we say
that a computational problem A reduces to another problem B via a reduction
R if one can design an efficient algorithm R that solves A, assuming that B is
given as oracle. The correctness of most reduction techniques can be established
no matter how B is complex – such a reduction is called black-box in the sense
that B is regarded as a (potentially inefficient) black-box oracle, and we just care
about the input-output behavior of B. In contrast, in non-black-box reductions,
we must fail to prove the correctness of the reduction when B is an algorithm
that takes, e.g., a super-polynomial time.

How can this happen? The point is that, in our reduction, the problem A is
the meta-computational problem, i.e., (an approximation version of) MCSP. The
proof of the correctness of our reduction goes roughly as follows: We translate
a polynomial-time algorithm B into a polynomial-size circuit B′ by a standard
transformation, and then, using the polynomial-size circuit B′, we try to conclude
that a given truth table can be compressed by a small circuit that incorporates
the circuit B′. If B can be indeed implemented as a polynomial-size circuit, then
we can show that the reduction can compress the input into a small circuit. On
the other hand, if B cannot be implemented by a small circuit, the reduction
might not compress its input any longer, and thus it might fail to solve MCSP.
Thus the meta-computational property of A is indeed the key for overcoming the
limits of black-box reductions.

While our proof techniques are still subject to the relativization barrier, the
non-black-box reductions yield a new approach towards excluding Heuristica: NP-
hardness of GapϵMCSP implies that Heuristica does not exist, i.e., NP ̸⊆ BPP
if and only if DistNP ̸⊆ AvgBPP (cf. Figure 1.2). We thus propose a research
program of understanding Heuristica through the lens of MCSP. This thesis
contributes the research program by significantly improving our understanding of
MCSP and the landscape around Heuristica. Some of our results are summarized
in Figure 1.3.

1.4 Research Lines of MCSP

We proceed to reviewing research lines of MCSP, and highlight several con-
tributions of this thesis.

Hardness of MCSP

Razborov and Rudich [RR97] showed that MCSP can be used to break cryp-
tographic primitives. By inverting one-way functions using MCSP oracles, Al-
lender, Buhrman, Koucký, van Melkebeek, and Ronneburger [ABK+06b] showed
various worst-case hardness results of MCSP. For example, MCSP is hard for
integer factorization and the discrete logarithm problem under randomized re-
ductions. Building on this, Allender and Das [AD17] showed SZK-hardness of
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Figure 1.3: An improved landscape of Algorithmica, Heuristica, and Pessiland.
“A→ B” means that there is no black-box reduction technique showing “A⇒ B”
under reasonable complexity theoretic assumptions. The security of all cryp-
tographic primitives is with respect to an almost-everywhere polynomial-time
randomized adversary. “SZK ̸⊆ BPP =⇒ ∃AIOWF” is due to [Ost91], and
“∃PRG ⇔ ∃OWF” is due to [HILL99].

MCSP (where SZK stands for statistical zero knowledge), which is the current
best worst-case hardness result for MCSP. The SZK-hardness provide strong
evidence for intractability of MCSP with respect to polynomial-time algorithms.
Unfortunately, it does not rule out the possibility that MCSP ∈ NP ∩ coNP be-
cause SZK ⊆ AM ∩ coAM [For89, AH91] and it is popular to conjecture that
AM = NP [KvM02].

In Chapter 3, we present evidence that MCSP ̸∈ coNP by relying on sev-
eral average-case complexity assumptions. For example, we show that MKTP is
Random 3SAT-hard, thereby presenting mild evidence supporting NP-hardness
of MKTP. We also show that every auxiliary-input one-way function (AIOWF)
can be inverted by using MCSP oracles. Here an auxiliary-input one-way func-
tion is a weaker cryptographic primitive than the standard one-way function,
introduced by Ostrovsky and Wigderson [OW93] in the study of zero-knowledge
proofs; for example, Ostrovsky [Ost91] implicitly showed that SZK ̸⊆ BPP im-
plies the existence of auxiliary-input one-way functions. The implication from the
existence of an auxiliary-input one-way function to MCSP ̸∈ BPP (cf. Figure 1.3)
was already implicit in the work of [ABK+06b], but it was not explicitly shown
until the work of Allender and Hirahara [AH17]. As a consequence, it gives a
simple and direct proof of the SZK-hardness of MCSP. Moreover, by combin-
ing non-black-box worst-case to average-case reductions that will be presented
in Chapter 4, we obtain a construction of hitting set generators (HSG) from the
existence of auxiliary-input one-way functions.

Non-Hardness of MCSP

Kabanets and Cai [KC00] explained the reason why it is difficult to prove NP-
hardness of MCSP: They showed that NP-hardness of MCSP cannot be resolved
by using a “natural” reduction technique unless another important open question
is resolved simultaneously. For example, NP-hardness of MCSP under natural
polynomial-time many-one reductions implies that there exists an exponential-
time computable function that requires circuits of super-polynomial size, the
latter of which is an important open question in complexity theory. (Here a
reduction is called natural if the size parameter of the output of the reduction
depends only on the input size.) The basic idea is that MCSP is intimately
related to circuit lower bounds, and thus in order to prove hardness results for
MCSP, we should be able to understand circuit lower bounds well. A lot of work
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has been devoted to pushing this direction further (e.g., [KC00, MW17, AHK17,
HP15, AH17, HW16]).

For example, Murray and Williams [MW17] removed the technical condition
of the naturalness in Kabanets and Cai’s result: NP-hardness of MCSP under
polynomial-time many-one reductions implies ZPP ̸= EXP. We will improve their
results to the case of a polynomial-time Turing reduction, that is, a reduction that
makes an adaptive query to an oracle, and show that NP-hardness of GapϵMCSP
under polynomial-time Turing reductions for every ϵ > 0 implies NEXP ̸⊆ P/poly
in Chapter 7.

More importantly, the line of work does not explain why it is difficult to
prove NP-hardness of MCSP under randomized reductions. It should be noted
that the SZK-hardness of MCSP is proved by using randomized reductions, and
hence one may wonder whether such a proof technique leads us to NP-hardness
of MCSP. We show in Chapter 8 that there are inherent limits on the current
reduction technique: Specifically, we introduce the notion of oracle-independent
reductions that capture almost all current reduction techniques, and show that
oracle-independent reductions are not likely to be able to reduce any problem
outside AM∩ coAM to MCSP. In particular, the SZK-hardness of MCSP is likely
to be the best worst-case hardness result under our current proof techniques.

NP-hardness of MCSP for restricted circuit classes

Given these barriers for proving hardness results for MCSP, we consider
MCSP for a restricted circuit class C. That is, instead of general circuits, we con-
sider the task of finding the minimum size of C-circuits. Masek [Mas79] proved
in 1979 that MCSP for DNF formulas is NP-hard. However, no NP-hardness re-
sult for MCSP for any circuit class more expressive than DNF formulas has been
known for nearly four decades, despite the fact that the question is recognized
as an important open question [AHM+08]. In Chapter 9, we resolve this open
question by proving NP-hardness for DNF ◦ XOR circuits.

Related Work

Wemention in passing several problems related to MCSP: One natural version
of a circuit minimization problem is called the Minimum Equivalent C Expression
Problem: Given a C-circuit C, find the smallest C-circuit D that computes the
same function with C. It is easy to see that (the decision version of) this problem
is in Σp

2 = NPNP. In the case when C = DNF, it was shown to be Σp
2-complete

by Umans [Uma01], and for a constant depth formula, Buchfuhrer and Umans
[BU11] resolved the Σp

2-completeness.
Another variant related to learning theory is the following: Given a sample

of points (x1, · · · , xt) and a function value (f(x1), · · · , f(xt)) for some unknown
partial Boolean function f , the task is to find a smallest circuit C that is con-
sistent with f . A similar question is studied in the literature of learning theory.
For example, Alekhnovich, Braverman, Feldman, Klivans, and Pitassi [ABF+08]
showed that learning DNF formulas by using OR-of-thresholds is NP-hard.

1.5 Organization and Our Contributions

We outline the organization of this thesis and our contributions below.
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Chapter 2 – Preliminaries

We start with introducing notation and the problems we consider throughout
this thesis. Then we review fundamental properties of Kolmogorov complexity
and Kolmogorov randomness. Of particular importance is the interplay between
Kolmogorov-randomness and pseudorandomness: every hitting set generator is
not secure against any dense set of Kolmogorov-random strings. This property
of Kolmogorov complexity plays a crucial role throughout this thesis.

Chapter 3 – Hardness Based on Average-Case Complexity

We investigate the average-case complexity of MDLPs. The main technique
of this chapter is based on the interplay between Kolmogorov complexity and
pseudorandomness. Specifically, we make use of the property of a dense subset of
Kolmogorov-random strings, and show that almost all cryptographic primitives
can be broken with MINKT oracles. In particular, we show that every auxiliary-
input one-way function can be inverted under any MCSP oracle. The result
appeared in [AH17].

We then show that MDLPs are hard under popular conjectures about average-
case complexity such as the Planted Clique Conjecture and Random 3SAT; these
results provide evidence that MDLPs are not likely to be in NP/poly∩coNP/poly.
Most of these results are presented in [HS17], but the result about Planted Clique
is shown here not only for MKTP but also for MCSP.

Chapter 4 – Non-Black-Box Worst-Case to Average-Case Reductions

We present the first non-black-box worst-case to average-case reductions
within NP. It was shown by Bogdanov and Trevisan [BT06b] that any problem
outside NP/poly∩coNP/poly cannot be reduced to an average-case problem within
NP via a (nonadaptive) black-box reduction. Here we show that GapϵMCSP and
GapMINKT are reducible to their average-case versions; since these problems are
conjectured to be outside of NP/poly∩coNP/poly, our results overcome the limits
of black-box reductions unless the conjectures fail. The results of this chapter ap-
peared in [Hir18], and received the Machtey Award for Best Student Papers in the
59th Annual IEEE Symposium on Foundations of Computer Science (FOCS’18).

Chapter 5 – Black-box Reductions to Dense Subsets of Random Strings

While the proofs of Chapter 4 seem to be non-black-box, it might be pos-
sible that there could be an alternative proof that yields a black-box reduc-
tion, and then, combining limits of black-box reductions, we could conclude that
GapϵMCSP ∈ coNP/poly, which would refute several conjectures about average-
case complexity. Thus it is desirable to clarify in what sense our reductions are
non-black-box (instead of just relying on several conjectures). For this purpose,
we continue the line of work showing the limits of black-box reductions, and show
that black-box reductions to any oracle avoiding any hitting set generator can
be simulated in AM ∩ coAM, i.e., without the advice “/poly”. We will discuss
that the reductions of Chapter 4 are inherently non-black-box unconditionally in
a certain formal sense. These results are based on an unpublished manuscript
with Osamu Watanabe.

9



Chapter 6 – Reductions to the Set of Kolmogorov-Random Strings

We consider a computability-theoretic analogue of MCSP: the set RKU
of

(resource-unbounded) Kolmogorov-random strings. It was conjectured by Allen-
der [All12] that nonadaptive deterministic polynomial-time reductions to RKU

exactly characterizes BPP in some sense; his conjecture can be seen as non-NP-
hardness of the computability-theoretic analogue of MCSP under such reducibil-
ity notions (unless NP ⊆ BPP). In this chapter we disprove his conjecture under
the assumption that the exponential-time hierarchy does not collapse to BPEXP.
This chapter is based on an unpublished manuscript of the author.

Chapter 7 – Hardness of MCSP Implies Circuit Lower Bounds

Thanks to the non-black-box reductions of Chapter 4, in order to exclude
Heuristica, it suffices to prove NP-hardness of GapϵMCSP. Unfortunately, we
present several barriers for proving NP-hardness of GapϵMCSP. Here we show
that NP-hardness of MCSP under deterministic reductions implies circuit lower
bounds; thus it is extremely difficult to prove NP-hardness of MCSP under such
reductions. These results first appeared in [HW16], but some of them are im-
proved.

Chapter 8 – Oracle-Independent Reductions

While the results of Chapter 7 explain why a deterministic reduction is not
likely to be used to prove NP-hardness of MCSP, it does not explain why it is dif-
ficult to prove NP-hardness of MCSP via a randomized reduction. Here we argue
this by introducing the new notion of oracle-independent reductions to MCSP.
We say that a reduction to MCSP is oracle-independent if the reduction can be
generalized to MCSPA for every oracle A. We show that most reduction tech-
niques are oracle-independent, and prove that such reduction techniques cannot
reduce any language outside AM ∩ coAM to MCSP. These results appeared in
[HW16].

Chapter 9 – NP-hardness of MCSP for DNF-XOR Circuits

Given the barriers for proving NP-hardness for MCSP, we turn our attention
to MCSP for restricted circuit classes. It was already shown by Masek [Mas79]
in 1979 that it is NP-hard to solve MCSP for DNF formulas. Nearly four decades
later, no NP-hardness result of MCSP for a circuit class more expressive than DNF
formulas was known. In this chapter, we make the first progress by establishing
NP-hardness of MCSP for DNF ◦ XOR circuits. The result appeared in [HOS18].

Chapter 10 – Hardness under Local Reductions

We show that the complexity class DET is reducible to MKTP via a local
reduction such that each output bit of the reduction depends only on a constant
number of input bits. In contrast, a previous result of Murray and Williams
[MW17] showed that there is no reduction from PARITY to MCSP or MKTP
under DTIME(n0.49) reductions. Our results highlight that the nonuniformity is
important for reductions to MKTP. Using similar techniques, we also obtain an
equivalence between hardness of MKTPA and circuit lower bounds for some class
of oracles A, thereby presenting a partial converse to Chapter 7. These results
appeared in [AH17].
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Chapter 11 – Natural NP-Intermediate Problems

A problem in NP is called NP-intermediate if it is neither solvable in P nor
NP-complete. It has been known since the work of Ladner [Lad75] that some
NP-intermediate problem exists under the weakest assumption that P ̸= NP.
However, to the best of our knowledge, no natural NP-intermediate problem
that is supported by a reasonable complexity-theoretic argument was known.
MCSP is also a prominent candidate for “an NP-intermediate status”, in the
sense that there is strong evidence against MCSP ̸∈ P, but we do not know any
NP-hardness proof for MCSP. Motivated by this, we present the first natural NP-
intermediate problems under very weak assumptions such as NP ̸⊆ P/poly or the
existence of auxiliary-input one-way functions. Specifically, approximating the
minimum n-variable circuit size within a factor of 2(1−o(1))n and approximating
the maximum clique of an n-vertex graph within a factor of n1−o(1) are shown to
be NP-intermediate under P/poly-Turing reductions. These results appeared in
[AH17].

Chapter 12 – Unconditional Lower Bounds

It is widely believed that solving MCSP is hard. Indeed, under cryptographic
assumptions, one cannot solve MCSP in polynomial time. However, due to our
poor understanding of unconditional circuit lower bounds, it does not necessarily
mean that we can prove an unconditional lower bound for MCSP. Here we show
several non-trivial circuit lower bounds for MCSP and MKTP. Specifically, we
show that MCSP cannot be solved by a de Morgan formula of size N2−o(1), and
MKTP cannot be solved by AC0[p] circuits on average for any prime p. These
results appeared in [HS17].

Chapter 13 – Conclusions

Finally, we conclude this thesis by highlighting some important open questions
and perspective. We will also discuss several subsequent work.
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Chapter 2

Preliminaries

In this chapter, we review several notations that will be used throughout this
thesis, background on complexity theory, and basic properties of Kolmogorov
complexity. We refer the reader to standard textbooks such as [AB09, LV08,
Vol99, Vad12] for further background.

2.1 Basic Notion

For an integer n ∈ N, let [n] denote {1, · · · , n}. For a string x ∈ {0, 1}n, we
denote by xi ∈ {0, 1} the ith bit of x for every i ∈ [n], and xn+1 is defined as ⊥
(i.e., a special stop symbol). We denote by |x| the length of a string x.

Given two strings x, y ∈ {0, 1}∗, we define the pairing function as ⟨x, y⟩ :=
1|x|0xy. This is one of the most common ways to encode two strings into one
string. We often write (x, y) instead of (⟨x, y⟩) when a detail about how to
encode a pair is not important. We also abbreviate ⟨x, ⟨y, z⟩⟩ as ⟨x, y, z⟩. Note
that | ⟨x, y⟩ | = 2|x|+ |y|+ 1.

We often represent Boolean functions as strings via the truth table mapping.
Given a Boolean function f : {0, 1}n → {0, 1}, the truth table tt(f) of f is defined
as the 2n-bit string f(1n)f(2n) · · · f(2nn) ∈ {0, 1}2n , where in denotes the ith
string of {0, 1}n in the lexicographic order. Conversely, the inverse function of
tt is denoted by fn. We often identify a Boolean function with its truth table.

For a Turing machine M , we denote by M(x) the output of M on input
x ∈ {0, 1}∗.

2.1.1 Distribution

For a distribution D, we indicate by x ∼ D that x is a random sample from
the distribution D. For a finite set A, we indicate by x ∼ A that x is a random
sample chosen from A uniformly at random.

We denote by U := {Un}n∈N the ensemble of the uniform distributions Un on
strings of length n ∈ N.

2.1.2 Time Bounds

For a function t : N → N, we say that t is efficiently computable if t(n) is com-
putable in time polynomial in n, that is, there exists a polynomial-time machine
M such that M(1n) = t(n) for every n ∈ N. We say that t is a polynomial if t is
efficiently computable and there exist constants ϵ and c such that 0 < ϵ < c and
nϵ ≤ t(n) ≤ nc for all sufficiently large n.

12



2.1.3 Circuit and Its Size

A circuit on n variables is a directed acyclic graph such that each internal
node is labelled with AND, OR, or NOT, and a node with in-degree 0 is called
input gates and labelled with x1, x2, · · · , or xn. A circuit C naturally computes a
Boolean function f : {0, 1}n → {0, 1}, and we often identify C with the function
f computed by the circuit C. There are several ways to measure the “size”
of a circuit – the number of gates, wires, or the description length. For each
different size measure, we obtain potentially different MCSPs. For concreteness,
we define the size of a circuit as the number of gates. For a Boolean function
f : {0, 1}n → {0, 1}, let size(f) denote the minimum size of a circuit that computes
f . Abusing notation, for a string x ∈ {0, 1}2n , let size(x) denote the minimum
size of a circuit whose truth table is x.

2.1.4 Languages and Promise Problems

A set L ⊆ {0, 1}∗ of strings is called a language or oracle. We identify L with
its characteristic function L : {0, 1}∗ → {0, 1} such that L(x) = 1 iff x ∈ L for
every x ∈ {0, 1}∗. For an integer n ∈ N, let L=n denote L ∩ {0, 1}n.

A promise problem is a pair (ΠYes,ΠNo) of languages ΠYes,ΠNo ⊆ {0, 1}∗ such
that ΠYes ∩ ΠNo = ∅, where ΠYes and ΠNo are regarded as the set of Yes and
No instances, respectively. If ΠYes = {0, 1}∗ \ΠNo, we identify (ΠYes,ΠNo) with
the language ΠYes ⊆ {0, 1}∗. We say that a language A solves a promise problem
(ΠYes,ΠNo) (or satisfies the promise of (ΠYes,ΠNo)) if ΠYes ⊆ A ⊆ {0, 1}∗\ΠNo.
For a complexity class C such as ZPP and BPP, we denote by Promise-C the
promise version of C.

2.2 Complexity Classes

We refer the reader to [AB09, Vol99] for background and more complete def-
initions of the standard circuit complexity complexity classes such as

NC0 ⊊ AC0 ⊊ AC0[p] ⊊ TC0 ⊆ NC1 ⊆ P/poly,

as well as the standard complexity classes L ⊆ P ⊆ NP ⊆ AM ⊆ PH ⊆ PSPACE ⊆
EXP ⊆ NEXP. E denotes DTIME(2O(n)); EXP denotes DTIME(2n

O(1)
). The no-

tation i.o.SIZE(s(n)) denotes the class of all languages A such that, for infinitely
many lengths n ∈ N, there is a circuit of size at most s(n) accepting the strings in
A=n. Similarly, for an oracle B, i.o.SIZEB(s(n)) denotes the class of all languages
A such that, for infinitely many lengths n, there is a B-oracle circuit (that is,

a circuit that can have oracle gates that answer a query q
?
∈ B) of size at most

s(n) accepting the strings A=n. The counting hierarchy CH [Tor91] consists of

the classes PP,PPPP,PPPPPP
, etc.

2.2.1 Reductions

Let C be either a class of functions or a class of circuits. We say that A ≤C
m B

if there is a function f ∈ C (or f computed by a circuit family in C, respectively)
such that x ∈ A iff f(x) ∈ B. The more powerful notion of Turing reducibility
also plays an important role in this thesis. Here, C is a complexity class that
admits a characterization in terms of Turing machines or circuits, which can be
augmented with an “oracle” mechanism, either by providing a “query tape” or
“oracle gates”. We say that A ≤C

T B (or A ∈ CB if there is an oracle machine in

13



C (or a family of oracle circuits in C) accepting A, when given oracle B. Turing
reductions that are “nonadaptive” – in the sense that the list of queries that are
posed on input x does not depend on the answers provided by the oracle – are
called truth table reductions, nonadaptive reductions, or reductions with parallel
queries. In this case, we write A ≤C

tt B or A ∈ CB
∥ . For example, BPPR

∥ denotes
the class of languages solvable by a randomized polynomial-time nonadaptive
machine with oracle access to R.

2.3 Kolmogorov Complexity

We refer the reader to a text by Li and Vitányi [LV08] for background of Kol-
mogorov complexity. Here we review several variants and important properties
of Kolmogorov complexity.

In order to introduce all the variants of Kolmogorov complexity in a unified
way, we fix some efficient universal random access Turing machine U . That is, U
efficiently simulates every Turing machine which has random access to its input
tape. More specifically, for every random access Turing M , there exists a string
dM ∈ {0, 1}∗ (which encodes a source code of M) such that, on input (dM , x),
U outputs M(x) within time O(t log t) when M outputs x in t steps, for every
x ∈ {0, 1}∗ (cf. [ABK+06b] and the references therein).

The standard (resource-unbounded) Kolmogorov complexity is defined as fol-
lows.

Definition 2.1 (Kolmogorov Complexity). The Kolmogorov complexity of a
string x ∈ {0, 1}∗ is defined as

K(x) := min{ |d| | U(d) = x }.

Kolmogorov complexity defines the notion of randomness of a finite string in
terms of compressibility.

Definition 2.2 (r-random). Let r : N → N be a function, and let Kµ be any
variant of Kolmogorov complexity. We say that a string x is r-random with
respect to Kµ if Kµ(x) ≥ r(|x|).

A fundamental property of Kolmogorov-randomness is that almost all strings
are random:

Fact 2.3 (A uniformly random string is Kolmogorov-random). For any type of
Kolmogorov complexity K, the number of all the strings x ∈ {0, 1}∗ such that
K(x) ≤ k is at most 2k+1.

Proof. Any string x with K(x) ≤ k can be described by some string d of length
k (that is, U(d) = x). Thus the set {x ∈ {0, 1}∗ | K(x) ≤ k } is a subset of
{U(d) | |d| ≤ k }, and this set is of size at most

∑k
i=0 2

i ≤ 2k+1. □

2.3.1 Time-Bounded Kolmogorov Complexity

By restricting the running time of U to a parameter t, we obtain the notion
of time-bounded Kolmogorov complexity.

Definition 2.4 (Time-bounded Kolmogorov complexity). For any string x ∈
{0, 1}∗ and any integer t ∈ N, the Kolmogorov complexity of x within time t is
defined as

Kt(x) := min{ |d| | U(d) = x in t steps }.
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There are several variants of time-bounded Kolmogorov complexity. KT-
complexity was proposed in [All01, ABK+06b] in order to model circuit complex-
ity in terms of time-bounded Kolmogorov complexity: it is known that KT(tt(f))
and the minimum circuit size of f are polynomially-related to each other, by sim-
ulating a circuit by a random access machine and vice versa. The KT-complexity
of a string x is the minimum of |d|+ t, where d is a string describing x in time t.
More formally:

Definition 2.5 (KT-complexity [All01, ABK+06b]). The KT-complexity of x is
defined as

KT(x) := min{ |d|+ t | U(d, i) = xi in t steps for any i ∈ [n+ 1] }.

The fact that the machine U is allowed to have random access to the bits of
the description d makes it easier to implement certain algorithms than using the
hardware formalisms of circuit complexity. This is why there are some results for
MKTP that are not currently known to hold for MCSP.

There is an exponential-time analogue of time-bounded Kolmogorov complex-
ity introduced by Levin [Lev84].

Definition 2.6 (Levin’s Kolmogorov Complexity [Lev84]). The Levin’s Kol-
mogorov complexity Kt(x) of a string x is defined as

Kt(x) := min{ |d|+ log t | U(d) outputs x in time t }.

2.4 Minimum Description Length Problems

2.4.1 MCSP

We now define MCSP formally.

Definition 2.7 (Minimum Circuit Size Problem [KC00]). The Minimum Circuit
Size Problem, abbreviated as MCSP, is defined as follows:

MCSP := { (tt(f), s) ∈ {0, 1}∗ × N | size(f) ≤ s }.

It is also convenient to define a parameterized version of MCSP, i.e., a version
whose size parameter is fixed.

Definition 2.8 (Parameterized Minimum Circuit Size Problem). Let s : N → N
be a function. The Minimum Circuit Size Problem with parameter s, abbreviated
as MKTP[s], is defined as follows:

MCSP[s] := { tt(f) ∈ {0, 1}∗ | size(f) ≤ s(n) for f : {0, 1}n → {0, 1} }.

We also define an approximation version of MCSP.

Definition 2.9 (Approximation version of MCSP). For any function ϵ : N →
[0, 1], the promise problem GapϵMCSP is defined as (ΠYes,ΠNo) such that

ΠYes := { (tt(f), s) | size(f) ≤ s },
ΠNo := { (tt(f), s) | size(f) > 2(1−ϵ(2n))·n · s },

where n denotes the number of variables of f .

When ϵ = 1, GapϵMCSP is equivalent to MCSP.
There is a natural search version associated to the promise problem.
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Definition 2.10 (Search version of GapMCSP). For any function ϵ : N → [0, 1],
the search version of GapϵMCSP is defined as follows: Given as input a function
f : {0, 1}n → {0, 1} represented by its truth table, the task is to output a circuit
C such that C computes f and |C| ≤ 2(1−ϵ(2n))n · size(f).

Fact 2.11 (Decision reduces to search for MCSP). Let ϵ : N → [0, 1] be any
efficiently computable function. If there exists a randomized algorithm solving
the search version of GapϵMCSP, then GapϵMCSP ∈ Promise-RP.

Proof Sketch. Here is an algorithm for the decision version. On input (f, s), run
the search algorithm on input f to obtain some circuit C. Accept if and only if
C computes f and the circuit size of C is at most 2(1−ϵ(2n))·n · s. □

2.4.2 MKTP

A minimum time-bounded Kolmogorov complexity problem closely related to
MCSP is called MKTP.

Definition 2.12 (Minimum Kolmogorov Time-bounded Complexity Problem).
The Minimum Kolmogorov Time-bounded Complexity Problem, abbreviated as
MKTP, is defined as follows:

MKTP := { (x, s) ∈ {0, 1}∗ × N | KT(x) ≤ s }.

Let s : N → N be a function. The parameterized version of MKTP is defined as

MKTP[s] := {x ∈ {0, 1}∗ | KT(x) ≤ s(|x|) }.

Similarly, we will consider an exponential-time analogue of MKTP:

Definition 2.13 (Minimum Kt-Complexity Problem).

MKtP := { (x, s) ∈ {0, 1}∗ × N | Kt(x) ≤ s }.

2.4.3 MINKT

MINKT is a problem asking for the time-bounded Kolmogorov complexity of
x on input x and a time bound t.

Definition 2.14 (Ko [Ko91]). Define

MINKT := { (x, 1t, 1s) | Kt(x) ≤ s }.

We also define an approximation version of MINKT, parameterized by σ and
τ .

Definition 2.15 (An aproximation version of MINKT). Let σ, τ : N × N → N
be any functions such that σ(n, s) ≥ s and τ(n, t) ≥ t for any n, s, t ∈ N.
Gapσ,τMINKT is a promise problem (ΠYes,ΠNo) defined as follows.

ΠYes := { (x, 1t, 1s) | Kt(x) ≤ s },
ΠNo := { (x, 1t, 1s) | Kτ(|x|,t)(x) > σ(|x|, s) }.

When σ(n, s) = s and τ(n, t) = t, the promise problem Gapσ,τMINKT coincides
with MINKT.
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2.4.4 Oracle Versions

There are natural oracle versions for each problem and each version of Kol-
mogorov complexity. For example, for any oracle A, the time-bounded Kol-
mogorov complexity of a string x in time t under oracle A is defined as

KA
t (x) := min{ |d| | UA(d) = x in t steps }.

Then we define an oracle version of MINKT as

MINKTA := { (x, 1t, 1s) | KA
t (x) ≤ s }.

Similarly, for every oracle A, we write oracle versions of MCSP and MKTP by
MCSPA and MKTPA, respectively.

2.5 Hitting Set Generators

A hitting set generator (HSG) is a notion weaker than a pseudorandom gen-
erator (PRG). A survey on pseudorandomness can be found in [Vad12].

Definition 2.16 (dense). Let A be a set, γ ∈ [0, 1], and D be a distribution. We
say that A is γ-dense over D if Prw∼D[w ∈ A] ≥ γ. We abbreviate D when D is
the uniform distribution on {0, 1}n and A ⊆ {0, 1}n.

A hitting set generator is defined as follows.

Definition 2.17 (Hitting set generators). Let γ : N → [0, 1] be a function. Let
G = {Gn : {0, 1}s(n) → {0, 1}t(n)}n∈N be a family of functions. A promise problem
(ΠYes,ΠNo) is said to γ-avoid G over an ensemble of distributions D = {Dn}n∈N
if for all sufficiently large n ∈ N,

• Gn(z) ∈ ΠNo for any z ∈ {0, 1}s(n), and

• Prw∼Dn

[
w ∈ ΠYes

]
≥ γ(n) (i.e., ΠYes is γ(n)-dense over Dn).

By default, we consider the uniform distribution over {0, 1}t(n) as the distribution
Dn. A function family G is called a hitting set generator γ-secure against a
complexity class C if there is no promise problem (ΠYes,ΠNo) ∈ C that γ-avoids
G.

For a hitting set generator, we measure the time complexity with re-
spect to the output length t(n); that is, we say that a family of functions
G := {Gn : {0, 1}s(n) → {0, 1}t(n)}n∈N is efficiently computable if there exists
a polynomial-time algorithm that, on input z ∈ {0, 1}s(n), computes Gn(z) in
time poly(t(n)) for all large n ∈ N.

Natural properties, introduced by Razborov and Rudich [RR97], can be cast as
algorithms avoiding a particular hitting set generator. The hitting set generator
is defined as follows.

Definition 2.18 (Circuit interpreter). Let s : N → N be a function. Let

Gint,s := {Gint,s
ℓ : {0, 1}O(s(ℓ) log s(ℓ)) → {0, 1}2ℓ}ℓ∈N

denote the family of circuit interpreters Gint,s
ℓ with parameter s, defined as follows:

Gint,s
ℓ takes as input a description z ∈ {0, 1}O(s(ℓ) log s(ℓ)) of a circuit Cz of size

at most s(ℓ) on ℓ inputs, and outputs the truth table of the function computed by
Cz.
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Definition 2.19 (Γ-natural property). A promise problem (ΠYes,ΠNo) is called
a natural property useful against SIZE(s(ℓ)) with largeness γ if (ΠYes,ΠNo)
γ-avoids the circuit interpreter Gint,s with parameter s. If, in addition,
(ΠYes,ΠNo) ∈ Promise-Γ for a complexity class Γ such as P, BPP or NP, then
(ΠYes,ΠNo) is called a Γ-natural property.

It is easy to see that there exists a PMCSP-natural property. In fact, it can be
shown that a natural property useful against SIZE(s(n)) is essentially equivalent
to an errorless heuristic algorithm for MCSP[s] (cf. Lemma 4.36).

A natural property can be defined for restricted circuit classes. Razborov and
Rudich [RR97] observed that from almost all circuit lower bound proofs against
a circuit class C, one can naturally extract a P-natural property useful against C.
For example, by inspecting circuit lower bound proofs for showing PARITY ̸∈ AC0

[H̊as86] andMAJORITY ̸∈ AC0[p] [Raz87, Smo87], Razborov and Rudich obtained
P-natural properties useful against AC0 and AC0[p]. On the other hand, there
exists a “pseudorandom function generator” computable in TC0 conjectured to
be secure [NR04] (in our terminology, there exists a hitting set generator Gint

secure against P/poly, where Gint takes a description of TC0 circuits and outputs
the truth table of the function computed by the TC0 circuit); thus there is no
natural property useful against TC0 assuming the security of the pseudorandom
function generator. This explains the natural proof barrier and why no strong
circuit lower bound for TC0 is known.

2.6 Kolmogorov Complexity and Pseudorandomness

There is a fundamental relationship between Kolmogorov complexity and
hitting set generators: Pseudorandomly generated strings are not Kolmogorov-
random. Indeed, take any computable generator G : {0, 1}s → {0, 1}n with s≪ n
that purports to extend a seed z ∈ {0, 1}s to a longer sequence G(z) that looks
random. Then, for every z ∈ {0, 1}s, the output G(z) of the generator G can
be described by using the seed z and the program that computes G, and hence
K(G(z)) ≤ s+O(1); therefore, G(z) is not Kolmogorov-random.

A similar relationship holds for time-bounded Kolmogorov complexity. We
claim that any efficiently computable hitting set generator is not secure against
a polynomial-time algorithm with one-query oracle access to MINKT: For any
efficiently computable hitting set generator G and any seed s, G(s) can be de-
scribed by s and an efficient algorithm in time t, and thus Kt(G(s)) is small.
On the other hand, for a random r ∼ {0, 1}t(n), the simple counting argument
of Fact 2.3 shows that Kt(r) is large with high probability. Thus the set of all
the Kolmogorov-random strings avoids the hitting set generator G. (In fact, the
same argument works for any dense subset of Kolmogorov-random strings.)

We formally state this fact in the next theorem. It will be convenient to ob-
serve that any hitting set generator associated with not only the uniform distribu-
tion but also any distribution with sufficiently large min-entropy can be avoided
by the set of Kolmogorov-random strings. Here recall that for a distribution D,
the min-entropy of D is defined as min{− log Prx∼D[x = x0] | x0 ∈ supp(D) }.

Theorem 2.20 (Pseudorandomness is not Kolmogorov-random). Let G =
{Gn : {0, 1}s(n) → {0, 1}n}n∈N be any family of functions computable in time
t(n), where s : N → N is an efficiently computable function. Let γ : N → [0, 1)
and k : N → [0,∞) be arbitrary functions. Let Π = (ΠYes,ΠNo) be the promise
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problem defined as

ΠNo := {x ∈ {0, 1}∗ | Kt(|x|)(x) ≤ s(|x|) + 3 log |x| },
ΠYes := {x ∈ {0, 1}∗ | K(x) > k(|x|)− 1− log(1/(1− γ(|x|))) }.

Then Π γ-avoids G over any ensemble of distributions D = {Dn}n∈N, where Dn

is a distribution on {0, 1}n with min-entropy k(n).

Proof. Since Gn(z) can be described by its seed z ∈ {0, 1}s(n) and an integer
n ∈ N in time poly(n), we have Kt(Gn(z)) ≤ s(n) + 2 log n + O(1). (Here we
used the fact that a pair of n and z can be encoded as a binary string of length
2 log n + s(n) + O(1).) Therefore, for a sufficiently large n ∈ N, it holds that
Kt(Gn(z)) ≤ s(n) + 2 log n+O(1) ≤ s(n) + 3 log n, and thus Gn(z) ∈ ΠNo.

It remains to claim that ΠYes is γ(n)-dense with respect to Dn, that is,
Prw∼Dn [w ∈ ΠYes] ≥ γ(n). Indeed, for every n ∈ N,

Pr
w∼Dn

[w ̸∈ ΠYes]

≤
∑

w0∈{0,1}n\ΠYes

Pr
w∼Dn

[w = w0]

≤ 2k(n)+log(1−γ(n)) · 2−k(n) = 1− γ(n),

where, in the last inequality, we used the fact that the min-entropy of Dn is at
least k(n), and that |{w0 ∈ {0, 1}∗ | K(w0) ≤ k′ }| ≤ 2k

′+1 (by Fact 2.3). □
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Chapter 3

Hardness Based on Average-Case

Complexity

In this chapter, we show hardness of MDLPs based on average-case com-
plexity. The main technique is based on the fact that MDLPs can be used as
a distinguisher for an efficiently computable pseudorandom generator. In Sec-
tion 3.1, we show that every auxiliary-input one-way function can be inverted by
a randomized polynomial-time algorithm with oracle access to MCSP. In partic-
ular, MCSP is intractable unless every auxiliary-input one-way function can be
inverted. In Section 3.2, we present several hardness results based on popular
conjectures about average-case complexity.

3.1 Auxiliary-Input One-Way Functions and MCSP

In this section, we investigate the relationship between cryptographic primi-
tives and MCSP. In particular, we show that every auxiliary-input one-way func-
tion can be inverted with MCSP oracles. The proof is based on a sequence of con-
structions of cryptographic primitives and security proofs. Here is an overview:
H̊astad, Impagliazzo, Levin and Luby [HILL99] constructed a pseudorandom gen-
erator from any one-way function. Goldreich, Goldwasser and Micali [GGM86]
showed that any pseudorandom generator can be used to construct a pseudo-
random function generator. Razborov and Rudich [RR97] showed that a natural
property can be used to break any pseudorandom function generator. Combining
these results, any auxiliary-input one-way function can be inverted with oracle
access to any natural property (and in particular MCSP).

Roughly speaking, a one-way function (OWF) f is a polynomial-time com-
putable function such that f is hard to invert on average: no efficient al-
gorithm can find x′ ∈ f−1(f(x)) with high probability over a random input
x. An auxiliary-input one-way function (AIOWF) f is a family of functions
f = {fx}x∈{0,1}∗ such that, for every efficient algorithm A, there exists an infinite
index set IA ⊆ {0, 1}∗ such that A fails to invert fx on average for every x ∈ I.

Definition 3.1 (Auxiliary-input function). An auxiliary-input function is a fam-
ily of functions f = {fx : {0, 1}p(|x|) → {0, 1}q(|x|)}x∈{0,1}∗, where p and q are
polynomials. We say that f is polynomial-time computable if there exists a
polynomial-time algorithm A such that A(x, y) = fx(y) for every x ∈ {0, 1}∗ and
y ∈ {0, 1}p(|x|).

Definition 3.2 (Auxiliary-input one-way function (AIOWF)). We say that
a randomized algorithm A inverts an auxiliary-input function f = {fx :
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{0, 1}p(|x|) → {0, 1}q(|x|)} with success probability δ : N → [0, 1] if

Pr
A, y∼{0,1}p(|x|)

[A(x, fx(y)) ∈ f−1
x (fx(y))] ≥ δ(|x|)

for every x ∈ {0, 1}∗, where the probability is taken for y and the internal coin
flips of A.

A randomized algorithm A is said to weakly invert f if A inverts f with success
probability 1/r(n) for some polynomial r(n). Similarly, A is said to strongly
invert f if, for every parameter t > 0, A(-, 1t) inverts f with success probability
1 − 1/t. We say that an auxiliary-input function f is weakly (resp. strongly)
one-way if there is no randomized polynomial-time algorithm A strongly (resp.
weakly) inverts f .

It is possible to construct some strongly one-way function from any weakly
one-way function f by amplifying the hardness of f . We define f ′ as the direct
product of f , that is, f ′(y1, · · · , yt) := (f(y1), · · · , f(yt)) for some appropriately
chosen parameter t. Intuitively, in order to invert f ′, one needs to invert t copies
of f simultaneously, and thus it is much harder to invert f ′ than f . Indeed, it
can be shown that given any oracle weakly inverting f ′, one can strongly invert
f efficiently:

Lemma 3.3 (∃ strong OWF ⇔ ∃ weak OWF; Yao [Yao82]). Let f = {fx :
{0, 1}p(|x|) → {0, 1}q(|x|)} be any polynomial-time computable auxiliary-input
function. Define an auxiliary-input function f ′ as

f ′x,1t(y1, · · · , yt) = (f(y1), · · · , f(yt))

for every (y1, · · · , yt) ∈ ({0, 1}p(|x|))t and t ∈ N. There exists a randomized
polynomial-time oracle machineM such thatMA strongly inverts f for any oracle
A that weakly inverts f ′.

A pseudorandom generator is a function G such that G(z) for a random seed
z and the uniform distribution are indistinguishable by any efficient algorithm:

Definition 3.4 (Distinguisher and pseudorandom generator (PRG)). Let G =
{Gn : {0, 1}s(n) → {0, 1}n} be a family of functions. For a function δ : N → [0, 1],
a randomized algorithm A is called a δ-distinguisher for G if s(n) < n and

| Pr
A, z∼{0,1}s(n)

[A(G(z)) = 1]− Pr
A,w∼{0,1}n

[A(w) = 1]| ≥ δ(n)

for all but finitely many n ∈ N. We often abbreviate δ and simply say that A
distinguishes G (from the uniform distribution) if A is a 1/r(n)-distinguisher for
G for some polynomial r(n).

G is called a pseudorandom generator if there exists no randomized
polynomial-time algorithm that distinguishes G.

We mention that in the context of cryptography, it is more common to define
the security of cryptographic primitives with respect to an algorithm that works
infinitely often; that is, G is called a pseudorandom generator secure against
infinitely often adversaries if there is no randomized polynomial-time algorithm
that distinguishing Gn for infinitely often n. However, for our purpose, it is more
natural to consider a pseudorandom generator secure against almost everywhere
adversaries as in Definition 3.4.
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H̊astad, Impagliazzo, Levin and Luby [HILL99] constructed a pseudorandom
generator GHILL(f) from any one-way function f , thereby establishing the equiv-
alence between the existence of a pseudorandom generator and that of a one-way
function. The proof goes by showing a reduction from weakly inverting a one-way
function to distinguishing a pseudorandom generator. Moreover, the reduction
carries over to the setting of auxiliary-input one-way functions.

Lemma 3.5 (∃OWF⇔∃ PRG; H̊astad, Impagliazzo, Levin and Luby [HILL99]).
Let f be any polynomial-time computable auxiliary-input function. Then,
there exists a polynomial-time computable auxiliary-input function GHILL(f) =

{GHILL(f)
x : {0, 1}p(|x|) → {0, 1}2p(|x|)} satisfying the following: For any polyno-

mial r(n), there exists a randomized polynomial-time oracle machine M such that

MA weakly inverts f for any oracle A such that A(x, -) 1/r(|x|)-distinguishes Gf
x

for every x ∈ {0, 1}∗.

Goldreich, Goldwasser and Micali [GGM86] showed how to construct a pseu-
dorandom function generator (PRFG) from any pseudorandom generator. A
pseudorandom function generator F is a function that takes a seed z and returns
a function Fz such that any randomized polynomial-time oracle algorithm with
oracle access to Fz cannot distinguish Fz from a truly random function when the
seed z is chosen uniformly at random. The truth table of F gives us a pseudoran-
dom generator GGGM such that each bit of GGGM(z) is efficiently computable.
Specifically, for any pseudorandom generator G : {0, 1}n → {0, 1}2n, let G0(z)
be the first n bits of G(z), and let G1(z) be the second n bits of G(z), so that
G(z) = G0(z)G1(z). Let k ∈ N be an arbitrary parameter. Define a function Fz

so that Fz(w) is the first bit of Gw1(Gw2(· · · (Gwk
(z)) · · · )) for every w ∈ {0, 1}k.

Then we define GGGM(z) ∈ {0, 1}2k as the truth table of the function Fz. By a
standard hybrid argument (cf. [RR97]), it can be shown that GGGM is a pseu-
dorandom generator if G is a pseudorandom generator. Moreover, since each
bit of GGGM(z) is polynomial-time computable given z and an index, there ex-
ists a universal constant c such that size(GGGM(z)) ≤ (n + k)c + c. (Here note
that a string GGGM(z) is interpreted as a truth table of a function.) In partic-
ular, for any constant ϵ > 0, we can take a large enough k = O(log n) so that
size(GGGM(z)) ≤ 2ϵk.

Lemma 3.6 (∃ PRFG ⇔ ∃ PRG; Goldreich, Goldwasser and Micali [GGM86];
Razborov and Rudich [RR97]). For any constant ϵ > 0, there exists an efficiently
computable function k : N → N with k(n) = O(log n) satisfying the following: For
any polynomial-time computable auxiliary-input function G = {Gx : {0, 1}p(|x|) →
{0, 1}2p(|x|)}, there exist a polynomial-time computable auxiliary-input function

GGGM = {GGGM
x : {0, 1}p(|x|) → {0, 1}2k(|x|)} and a randomized polynomial-time

oracle machine M such that MA(x, -) distinguishes Gx for every x and every
oracle A that distinguishes GGGM

x . Moreover, size(GGGM
x (z)) ≤ 2ϵ·k(|x|) holds for

every x ∈ {0, 1}∗ and every z ∈ {0, 1}p(|x|).

Combining these ingredients mentioned above, we obtain the following:

Theorem 3.7 (Inverting any AIOWF under a natural property oracle). Let f be
any polynomial-time computable auxiliary-input function. Let c ∈ N and ϵ ∈ [0, 1)
be arbitrary constants. There exists a randomized polynomial-time oracle machine
M satisfying the following: For any natural property R ⊆ {0, 1}∗ useful against
SIZE(2ϵn) with largeness 2−cn, MR strongly inverts f .
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Proof. We construct a candidate auxiliary-input pseudorandom generator G as
follows: First, as in Lemma 3.3, we define f ′ as the direct product of f . Second,
by using Lemma 3.5, we construct a candidate pseudorandom generator GHILL(f ′)

from the candidate one-way function f ′. Finally, by using Lemma 3.6, we con-
struct a candidate pseudorandom function generator G := (GHILL(f ′))GGM from
GHILL(f ′).

We now argue that the natural property R 2−ck(n)-distinguishes G: On one
hand, by Lemma 3.6, we have size(Gx(z)) ≤ 2ϵk(|x|) for every x ∈ {0, 1}∗ and
z ∈ {0, 1}p(|x|); thus Gx(z) ̸∈ R. On the other hand, by the largeness of R, we
have Pr

w∼{0,1}2k(|x|) [w ∈ R] ≥ 2−c·k(|x|). Therefore, we obtain∣∣∣∣∣ Pr
w∼{0,1}2k(|x|)

[w ∈ R] − Pr
z∼{0,1}p(|x|)

[G(z) ∈ R]

∣∣∣∣∣ ≥ 2−c·k(|x|).

By Lemma 3.6, we obtain a randomized polynomial-time algorithm M1 such
that MR

1 distinguishes GHILL(f ′). Using MR
1 as an oracle A in Lemma 3.5, we

obtain a randomized polynomial-time algorithmM2 such thatMR
2 weakly inverts

f ′. Similarly, using MR
2 as an oracle A in Lemma 3.3, we obtain a randomized

polynomial-time algorithm M3 such that MR
3 strongly inverts f . □

Since any MCSP oracle can be used as a natural property, we obtain the
following immediately:

Corollary 3.8. If MCSP ∈ BPP then there exists no auxiliary-input one-way
function.

Ostrovsky and Wigderson [OW93] showed that CZK ̸⊆ BPP implies the exis-
tence of auxiliary-input one-way function, where CZK (⊇ SZK ) denotes the class
of problems with a computational zero knowledge proof system. Similarly, Ostro-
vsky [Ost91] implicitly showed that SZK ̸⊆ BPP implies the existence of auxiliary-
input one-way function. Thus by Corollary 3.8, MCSP is harder than SZK in the
sense that MCSP ∈ BPP implies SZK ⊆ BPP. More precisely, in the context of
MCSP, it was first shown by Allender and Das [AD17] that SZK ⊆ BPPMCSP.
Based on Theorem 3.7, their result follows from the earlier work of Ostrovsky.

Lemma 3.9 (implicit in Ostrovsky [Ost91]; explicitly stated in Vadhan [Vad06]).
For every problem Π in SZK, there exist a polynomial-time computable auxiliary-
input function f and a randomized polynomial-time oracle machine M such that,
for any oracle A strongly inverting f , MA solves Π with high probability.

By Lemma 3.9 and Theorem 3.7, we immediately obtain an alternative proof
of SZK-hardness of MCSP.

Corollary 3.10 (Allender and Das [AD17]). SZK ⊆ BPPMCSP.

This is the best worst-case hardness result for MCSP. We mention that
SZK ⊆ AM ∩ coAM [For89, AH91], and under the standard derandomization
hypothesis [KvM02], we have AM = NP and thus SZK ⊆ NP ∩ coNP; therefore,
the SZK-hardness cannot be regarded as evidence that MCSP ̸∈ coNP.

Open Question 3.11. Provide evidence that MCSP ̸∈ coNP under any worst-
case complexity assumptions.
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We mention that there is a fundamental reason why any approach based on
Theorem 3.7 is not likely to resolve Open Question 3.11: Akavia, Goldreich,
Goldwasser, and Moshkovitz [AGGM06, AGGM10] showed that a randomized
polynomial-time nonadaptive black-box reduction from any worst-case problem
L to inverting any one-way function can be simulated in AM ∩ coAM, and thus
L ∈ AM∩ coAM. In the next section, we will sidestep this issue by starting from
average-case complexity assumptions, and thereby we will present evidence that
MCSP ̸∈ coNP.

3.2 Average-case Complexity and MDLPs

In this section, we establish hardness of MDLPs based on popular hypotheses
on average-case complexity of various problems. Previously, Rudich [Rud97] con-
jectured that there is no NP/poly-natural property useful against P/poly (and,
in particular, that MCSP ̸∈ coNP/poly). His conjecture is based on a pseudo-
random generator constructed by using some average-case hardness of the subset
sum problem [IN96]. Here we investigate hardness of MDLPs based on other
popular conjectures on average-case complexity.

3.2.1 Planted Clique Hardness of MCSP

The planted clique problem is one of well studied average-case complexity
problems. The problem was suggested independently by Jerrum [Jer92] and
Kučera [Kuc95]. Let n be the number of vertices, and k be the size of a planted
clique. The input is a random graph with a planted clique of size k: that is, we
pick an n-vertex Erdős-Rényi random graph G (i.e., a random graph where every
edge is added with probability 1

2 independently), pick the set S of k vertices from
the n vertices uniformly at random, and add the clique supported on S to the
graph G. The task is to find a clique of size k in polynomial time.

A search version of a planted clique conjecture asserts that there is no ran-
domized polynomial-time algorithm that solves the planted clique problem for
any parameter k with 2 log n ≪ k ≪

√
n with high probability (over the choice

of a planted random graph and internal coin flips of the randomized algorithm).
Indeed, despite intense effort (e.g. [Kuc95, AKS98, FK00]), the state-of-the-art
polynomial-time algorithm of Alon, Krivelevich and Sudakov [AKS98] works
only for k = ϵ

√
n for any constant ϵ > 0. Moreover, it is known that several

types of polynomial-time algorithms cannot solve the planted clique problem for
k = n1/2−δ for any constant δ > 0 (cf. [Jer92, BHK+16]).

We now present a reduction from the planted clique problem to MCSP.

Theorem 3.12 (Planted Clique Hardness of MCSP). There is a randomized
polynomial-time oracle machine that, given a parameter 1t, solves the planted
clique problem with oracle access to MCSP with probability at least 1− 1/t.

Proof. Juels and Peinado [JP00] proposed a simple one-way function based on
a variant of the planted clique conjecture: A candidate one-way function fn
is defined as fn(G,S) := (the union of G and the clique supported on S) for a
graph G and a set S of k vertices (For simplicity, we abbreviate it as G ∪ S
below). By Theorem 3.7, there exists a randomized polynomial-time machine
M with an MCSP oracle that can strongly invert f . Note that the distribution
fn(G,S) where G and S are chosen uniformly at random corresponds to the input
distribution of the planted clique problem. Therefore, given a random planted
clique fn(G,S), the algorithm MMCSP(fn(G,S), 1

t) outputs (G′, S′) such that
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G ∪ S = G′ ∪ S′ with probability 1 − 1/t. This means that S′ is a clique of size
k in the graph G.

We note that the argument above ignores the detail that (G,S) may not be ex-
actly encoded as a binary string. (And thus it is not clear how to define a Boolean
function fn.) This can be easily fixed as follows: While it may not be possible to
sample the input distribution of the planted clique problem exactly, for any given
parameter 1t, one can sample a distribution 2−t-close to the input distribution
by using random poly(t, n) bits in polynomial time. (Here the closeness is in the
sense of the statistical distance: we say that two distributions D1,D2 are ϵ-close
if, for every function A : {0, 1}∗ → {0, 1}, it holds that |E[A(D1)−A(D2)]| ≤ ϵ.)
Thus the same argument works with an additional failure probability of 2−t. □

To the best of our knowledge, there is no coNP algorithm that solves the
planted clique problem. Thus Theorem 3.12 can be also seen as some evidence
that MCSP ̸∈ coNP.

3.2.2 Random 3SAT Hardness of MKTP

Random 3SAT is another widely investigated problem in the literature of
average-case complexity. The problem is defined as follows:

Definition 3.13 (Random 3SAT). Let m : N → N be a function. Let DR3SAT =
{DR3SAT

n }n∈N be an ensemble of the following distributions DR3SAT
n of 3CNF for-

mulas: Let n be the number of variables, and m = m(n) be the number of clauses.
The distribution DR3SAT

n samples a random n-variable m-clause 3CNF formula
φ by choosing each clause independently and uniformly at random from all the
possible 23

(
n
3

)
width-3 clauses on n variables. Given a 3CNF formula, the task

of Random 3SAT is to accept every satisfiable formula, and reject most formulas
sampled from DR3SAT

n .

Note that a simple probabilistic argument shows that, for m = ∆n where
∆ is a sufficiently large constant, most formulas are unsatisfiable. Thus it is
trivial to solve Random 3SAT by an algorithm that is allowed to err by simply
rejecting every formula. The definition above does not allow such an algorithm,
by requiring that the algorithm never makes any error on satisfiable formulas.

Feige and Ofek [FO07] presented a deterministic polynomial-time algorithm
that solves Random 3SAT for m > O(n3/2). In the case of a nondeterministic
polynomial-time algorithm, a much better algorithm is known: Feige, Kim and
Ofek [FKO06] showed a coNP algorithm that solves Random 3SAT for m >
O(n7/5). However, it is still far from the case of a linear number of clauses (i.e.,
m = Θ(n)).

Ryan O’Donnell (personal communication; cf. [BGSV16]) conjectured that
there is no coNP algorithm solving Random 3SAT with m = ∆n clauses for a
sufficiently large constant ∆. We will show that, under this conjecture, MINKT ̸∈
coNP and moreover MKTP ̸∈ coNP.

Random 3SAT and a Hitting Set Generator

We observe that any algorithm solving Random 3SAT can be regarded as
avoiding some hitting set generator. Indeed, we can define a hitting set generator
GR3SAT so that the image of GR3SAT contains all the satisfiable formulas.
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Proposition 3.14. There exists an efficiently computable family of functions

GR3SAT = {GR3SAT
n : {0, 1}n+⌈m(n) log(7(n3))⌉ → {0, 1}⌈m(n) log(8(n3))⌉}n∈N

such that the image of GR3SAT
n contains all the satisfiable n-variable m(n)-clause

3CNF formula. (Here we regard the output of GR3SAT
n as an encoding of a 3CNF

formula.)

Proof. Fix any n ∈ N, and fix any satisfiable n-variable m(n)-clause 3CNF
formula φ. Let a ∈ {0, 1}n be some satisfying assignment of φ. We claim
that φ can be described by the assignment a and some auxiliary information

d ∈ {0, 1}⌈m(n) log(7(n3))⌉. (GR3SAT
n (a, d) is defined as the output of a description

procedure below.)
Indeed, given a satisfying assignment a of φ, there are (23 − 1)

(
n
3

)
possible

clauses that are satisfied by a. More specifically, fix any 3 variables of a clause;
then there are 7 ways to negate these variables so that the resulting clause is
satisfied by a. (For example, if the assignment a is {x1 7→ 0, x2 7→ 1, x3 7→ 0},
then x1∨¬x2∨x3 is the unique clause that is not satisfied by a.) Therefore, each
clause of φ can be described with log(7

(
n
3

)
) bits, and hence φ can be described

with some auxiliary information d of length m(n) log(7
(
n
3

)
). □

Theorem 3.15 (Random 3SAT and GR3SAT). Let Π = (ΠYes,ΠNo) be any
promise problem that γ-avoids GR3SAT over the distribution DR3SAT. Then the
complement (ΠNo,ΠYes) of Π solves Random 3SAT: that is, every satisfiable for-
mula is in ΠNo, and a γ(n)-fraction of all formulas is in ΠYes.

Proof. Fix any n ∈ N. By Proposition 3.14, for any satisfiable n-variable formula
φ, there exists a description (d, a) such that GR3SAT

n (d, a) = φ; since Π avoids
GR3SAT, we obtain φ ∈ ΠNo. On the other hand, since Π γ-avoids GR3SAT,
φ ∈ ΠYes holds with probability at least γ(n) over the choice of a random formula
φ ∼ DR3SAT

n . □

Since any efficiently computable hitting set generator can be avoided by using
a MINKT oracle, as a corollary we obtain Random 3SAT-hardness of MINKT
for some m(n) = Θ(n).

Corollary 3.16 (Random 3SAT-hardness of MINKT). Let ∆ be any constant
such that ∆ > 1/ log(8/7) ≈ 5.19. There exists a polynomial-time oracle algo-
rithm that, given oracle access to MINKT, solves Random 3SAT of m(n) clauses
with probability 1− 2−Ω(n) for m(n) = ∆n.

Proof. Recall that, by Theorem 2.20, any hitting set generator can be avoided
by the set of Kolmogorov-random strings. We thus define R := {x ∈ {0, 1}∗ |
Kt(|x|)(x) > n + ⌈m(n) log(7

(
n
3

)
)⌉ + 3 log n }, where t(n) is the time it takes to

compute GR3SAT
n ; note that R is reducible to MINKT via a one-query polynomial-

time reduction. Let γ(n) be some parameter chosen later. Since DR3SAT
n is a

uniform distribution, its min-entropy k(n) is m(n) log(8
(
n
3

)
); hence R satisfies

the promise of Π in Theorem 2.20 if

m(n) log(8

(
n

3

)
)− 1− log(1/(1− γ(n))) ≥ n+ ⌈m(n) log(7

(
n

3

)
)⌉+ 3 log n.

This inequality is satisfied if log(1/(1 − γ(n)) ≤ (∆ log(8/7) − 1)n − O(1) =
Ω(n). Therefore, R γ-avoids GR3SAT as long as γ(n) ≤ 1 − 2−Ω(n). Thus by
Theorem 3.15, R solves Random 3SAT. □
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Hardness of MKTP

With some extra work, the Random 3SAT-hardness of MINKT can be ex-
tended to the case of MKTP. It is also possible to extend it to a “robust” version
of Random 3SAT proposed by Feige [Fei02]: Feige’s hypothesis states that there
is no polynomial-time algorithm that rejects most formulas, and accepts (not only
every satisfiable formula but also) every formula for which all but ϵm clauses are
satisfiable (henceforth, such a formula is called (1− ϵ)-satisfiable).

Hypothesis 3.17 (Feige [Fei02]). For every fixed ϵ > 0 and for a sufficiently
large constant ∆, there is no polynomial-time algorithm that accepts every (1−ϵ)-
satisfiable formula, and rejects most formulas.

Note that the robust version of Random 3SAT is harder than the original
version of Random 3SAT (and the original version corresponds to the case when
ϵ = 0), and is more robust with respect to how to generate a random 3CNF
formula (cf. [Fei02]). Here we show that the robust version can be refuted under
an MKTP oracle.

Theorem 3.18 (Robust Random 3SAT-hardness of MKTP). There exists a
polynomial-time algorithm with oracle access to MKTP that refutes Hypothe-
sis 3.17.

Proof. The main idea is that the hitting set generator GR3SAT of Proposition 3.14
can be modified so that KT(GR3SAT(z)) is small for every seed z, that is, each
bit of GR3SAT(z) is efficiently computable. Moreover, we can modify GR3SAT so
that every (1 − ϵ)-satisfiable formula is in the range of GR3SAT. In other words,
we will show that, for some appropriately chosen threshold θ, KT(φ) ≤ θ for
every (1− ϵ)-satisfiable formula φ, whereas KT(φ′) > θ with high probability for
a random 3CNF formula φ′. Thus our reduction is a many-one reduction that
maps φ to (φ, θ).

Define θ := m log(8
(
n
3

)
) −m/2b for some constant b specified later. We first

claim that KT(φ) > θ with high probability over the choice of a random 3CNF
formula φ. Indeed, the number of formulas φ such that KT(φ) ≤ θ is at most 2θ+1

by a simple counting argument (cf. Fact 2.3). Since a random 3CNF formula φ is
chosen uniformly at random out of the space of cardinality (23

(
n
3

)
)m = 2θ+m/2b,

the probability that KT(φ) ≤ θ is at most 2−m/2b+1.
The rest of the proof is devoted to proving every (1− ϵ)-satisfiable formula is

of low KT-complexity:

Claim 3.19. Let ϵ > 0 be a sufficiently small constant and ∆ be a sufficiently
large constant. Then, for all sufficiently large n and any (1−ϵ)-satisfiable formula
φ on n variables with m = ∆n clauses, we have KT(φ) ≤ θ.

In order to claim that the KT-complexity of φ is small, we need to implement
an efficient procedure that, given an index, outputs the clause of φ specified by
the index, with random access to a description of φ. We will describe φ by using
a (1− ϵ)-satisfying assignment a ∈ {0, 1}n, a subset S ∈

(
[m]
ϵm

)
of the clauses not

satisfied by a, (1 − ϵ)m log(7
(
n
3

)
) bits to describe the clauses satisfied by a, and

ϵm log(8
(
n
3

)
) bits to describe the clauses not satisfied by a.

In order to describe each clause of φ efficiently (i.e. in time polylog(m)), there
are two issues for which we need ideas from succinct data structures. One is an
efficient representation of S. Information theoretically, S can be described in
log

(
m
ϵm

)
≤ ϵm log(em/ϵm) = mϵ log(e/ϵ) bits. However, a näıve representation
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of S may not enable us to answer a query i
?
∈ S efficiently; thus, we need the

following result.

Lemma 3.20 (Brodnik and Munro [BM99]). Let ϵ > 0 be a constant. There
exists an algorithm M such that, for every m ∈ N and every S ∈

(
[m]
ϵm

)
, there

exists a string dS of length log
(
m
ϵm

)
+o(log

(
m
ϵm

)
) such that, given an index i ∈ [m]

and random access to dS, M answers a query i
?
∈ S in time polylog(m).

The other issue is the use of the ceiling function (cf. [Pat08, AGvM+18]). Each
clause satisfied by a can be described by ⌈log(7

(
n
3

)
)⌉ bits, which is not necessarily

sufficiently smaller than log(8
(
n
3

)
) bits. We thus group consecutive b clauses of φ

into one block for some constant b so that each block encodes b clauses by using
at most ⌈b log(7

(
n
3

)
)⌉ bits. (In Proposition 3.14, we grouped all the clauses into

one block and represented these clauses by using ⌈m log(7
(
n
3

)
)⌉ bits; however,

this representation may not enable us to describe each clause efficiently given
random access to the description.) Let b be some universal constant such that
⌈b log(8

(
n
3

)
)⌉ − ⌈b log(7

(
n
3

)
)⌉ ≥ 4 for all large n ∈ N.

Overall, we can describe a (1− ϵ)-satisfiable formula φ by using the following
information: (1) A (1 − ϵ)-satisfying assignment a ∈ {0, 1}n; (2) A string dS of
Lemma 3.20 that represents a subset S ∈

(
[m]
ϵm

)
of the clauses not satisfied by a;

(3) ⌈b log(7
(
n
3

)
)⌉ bits to describe each group of b clauses such that all the clauses

in the block are satisfied by a; (4) ⌈b log(8
(
n
3

)
)⌉ bits to describe each group of b

clauses such that some clause in the block is not satisfied by a. Note that there are
⌈mb ⌉ blocks in total, and there are at most ϵm blocks which contain some clause
not satisfied by a. Given the information, by inspection, one can observe that
each clause of φ can be described in polylog(m) time. Thus the KT-complexity
of φ is at most

n+ log

(
m

ϵm

)
+ o(m) +

(⌈m
b

⌉
− ϵm

)
·
⌈
b log(7

(
n

3

)
)

⌉
+ ϵm ·

⌈
b log(8

(
n

3

)
)

⌉
.

The last two terms can be rewritten as⌈m
b

⌉
·
⌈
b log(8

(
n

3

)
)

⌉
−

(⌈m
b

⌉
− ϵm

)
·
(⌈

b log(8

(
n

3

)
)

⌉
−

⌈
b log(7

(
n

3

)
)

⌉)
≤ m log(8

(
n

3

)
) +

m

b
+ o(m)− m

2b
· 4,

where, in the last inequality, we take ϵ small enough so that ⌈mb ⌉ − ϵm ≥ m
2b .

Overall, we obtain

KT(φ) ≤ n+ log

(
m

ϵm

)
+m log(8

(
n

3

)
)− m

b
+ o(m)

≤ m

∆
+mϵ log(e/ϵ) +m log(8

(
n

3

)
)− m

b
+ o(m)

≤ m log(8

(
n

3

)
)− m

2b
≤ θ,

for a sufficiently small ϵ > 0 and a sufficiently large ∆. □

It should be noted that our proof does not seem to carry over to the case of
MCSP. The gap between the KT-complexity of satisfiable formulas and random
formulas is smaller than o(|φ|), and it is not clear how to construct a small

28



circuit which simulates the random access machine with an additive overhead
smaller than o(|φ|). We leave as an open question to extend Theorem 3.18 (and
Corollary 3.16) to the case of MCSP.

Open Question 3.21. Is MCSP Random 3SAT-hard?

3.2.3 Hardness of MCSP under Alekhnovich’s Hypothesis

While we were not able to prove that MCSP is Random 3SAT-hard, we
can refute a strong hypothesis about average-case complexity proposed by
Alekhnovich [Ale11] under an MCSP oracle. He considered a problem of solving
linear equations under a noise e. Let A be an m × n matrix over GF(2). Let
Dk(A) be the distribution of a random vector Av+e, where v is a uniform sample
from GF(2)n and e ∈ GF(2)n is a uniform sample from the vectors of Hamming
weight k (i.e. the number of ones in e is k). Alekhnovich conjectured that there is
a matrix such that it is infeasible to distinguish Dk(A) from Dk+1(A) efficiently.

Hypothesis 3.22 (Alekhnovich [Ale11, Conjecture 4.5]). For every m(n) =
Θ(n), there exists a family of m(n) × n matrices {An}n∈N such that, for every
function k(n) which satisfies nϵ < k(n) < n1−ϵ for some constant ϵ > 0, for every
efficient algorithm M and every polynomial p(n),

|Pr [M(Dk(An)) = 1]− Pr [M(Dk+1(An)) = 1] | ≤ 1/p(n),

for all sufficiently large n.

Theorem 3.23. There is a polynomial-time algorithm with oracle access to
MCSP that refutes Hypothesis 3.22.

Proof Sketch. Alekhnovich showed that Hypothesis 3.22 implies the existence of
a cryptographic pseudorandom generator ([Ale11, Lemma 4.14]). On the other
hand, by Theorem 3.7, one can invert any auxiliary-input one-way function, and,
in particular, one can distinguish the pseudorandom generator from the uniform
distribution in polynomial time under an MCSP oracle. (Indeed, a pseudorandom
generator G can be distinguished by inverting G and finding a seed of G.) □
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Chapter 4

Non-Black-Box Worst-Case to Average-Case

Reductions

In this chapter, we show that the worst-case and average-case complexity of
MDLPs are equivalent. As shown in Chapter 3, MDLPs are conjectured to be
outside NP∩ coNP (or even NP/poly∩ coNP/poly). On the other hand, there are
significant obstacles to establishing an equivalence between the worst-case and
average-case hardness of NP: Several results suggest that black-box worst-case
to average-case reductions are not likely to be used for reducing any worst-case
problem outside coNP to a distributional NP problem.

The results presented in this chapter overcomes this barrier. We present the
first non-black-box worst-case to average-case reduction from a problem conjec-
tured to be outside coNP to a distributional NP problem. Specifically, we show
that there exists a zero-error randomized polynomial-time algorithm approxi-
mating the minimum time-bounded Kolmogorov complexity Kt(x) within an ad-
ditive error Õ(

√
Kt(x)) if its average-case version admits an errorless heuristic

polynomial-time algorithm. We also show that, GapϵMCSP ∈ BPP if and only if
its average-case version is easy.

Based on our results, we propose a research program towards excluding
Heuristica, i.e., establishing an equivalence between the worst-case and average-
case hardness of NP through the lens of MDLPs.

Organization

This chapter is organized as follows. After reviewing background in Sec-
tion 4.1, we state the main results, proof ideas, and our perspective in Section 4.2.
In Section 4.3, we present the results about MINKT, and then we present the
results about MCSP in Section 4.4.

4.1 Background

4.1.1 Levin’s Average-case Complexity Theory

A traditional complexity class such as P and NP measures the performance of
an algorithm with respect to the worst-case input. However, such a worst-case
input may not be found efficiently, and may never be encountered in practice.
Average-case complexity, pioneered by Levin [Lev86], aims at analyzing the per-
formance of an algorithm with respect to random inputs which can be easily
generated by an efficient algorithm. Here we review basic definitions and results
on average-case complexity. A survey on average-case complexity can be found
in [Imp95, BT06a].
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We consider a distributional problem, which is a pair of a worst-case problem
L and an ensemble of distributions D = {Dm}m∈N, where m means an instance
size and Dm is a distribution on {0, 1}∗. (We do not require that Dm is supported
on {0, 1}m; in other words, an instance of size m may not be encoded as a string
of length m.)

Definition 4.1 (Distributional Problem). A pair (L,D) is called a distributional
problem if L ⊆ {0, 1}∗ and D = {Dm}m∈N, where each Dm is a distribution on
{0, 1}∗.

Throughout this chapter, we always use m to denote an instance size.
What kind of distributions should we consider? The original Levin’s theory

concerns a distribution such that its cumulative probability is computable in
polynomial time. The scope of the average-case complexity was later widened
by Ben-David, Chor, Goldreich, and Luby [BCGL92] to the case of an efficiently
samplable distribution.

Definition 4.2 (Efficiently Samplable). An ensemble of distributions D =
{Dm}m∈N is said to be efficiently samplable if there exists a randomized
polynomial-time machine M such that, on input 1m, M outputs a string x ac-
cording to the distribution Dm for every m ∈ N; that is,

Pr
M
[M(1m) = x0] = Pr

x∼Dm

[x = x0]

for every m ∈ N and every x0 ∈ {0, 1}∗.

Note that this definition captures the fact that it is important to be able to
sample a hard instance efficiently for the purpose of cryptography. In fact, if there
is no complexity bound on the distributions, it can be shown that there exists a
distribution on which the worst-case and average-case complexity of NP coincide
(cf. [LV92]). We thus restrict our attention to efficiently samplable distributions.

Definition 4.3 (Distributional NP). An average-case version of NP is called a
distributional NP (denoted by DistNP), and is defined as follows:

DistNP := { (L,D) | L ∈ NP and D is efficiently samplable }.

The performance of an algorithm for a distributional problem (L,D) is mea-
sured with respect to the average-case behavior of A on input chosen according
to Dm, for each m ∈ N. There are two possible definitions here: One is the
errorless heuristic notion (AvgP), under which an algorithm is not allowed to
make any error (in the sense that the algorithm can output “I don’t know”). It
can be shown that this definition is equivalent to the original notion of Levin
(cf. [Imp95, BT06a]), under which the performance of an algorithm is measured
with respect to the expected running time over a random input. Another is the
heuristic notion (HeurP), under which an algorithm is allowed to make errors.
We use the former notion.

Definition 4.4 (Errorless Heuristic Algorithm). Let L ⊆ {0, 1}∗ be a language,
D = {Dm}m∈N be an ensemble of distributions, and δ : N → [0, 1]. We say that an
algorithm A is an errorless heuristic algorithm for (L,D) with failure probability
δ if

• A(x) outputs either L(x) or the special failure symbol ⊥ for every x ∈
{0, 1}∗, and
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• Prx∼Dm [A(x) = ⊥] ≤ δ(m) for every m.

AvgδP denotes the class of distributional problems (L,D) such that there exists an
errorless heuristic deterministic polynomial-time algorithm for (L,D) with failure
probability δ. Define AvgP :=

∩
c∈N Avgm−cP.

Similarly, for other complexity classes such as BPP and coNP/poly, the corre-
sponding classes of errorless heuristic algorithms (AvgBPP and Avg-coNP/poly,
respectively) can be defined. We defer a formal definition of AvgBPP to Defini-
tion 4.35 of Section 4.4.

An example of distributional NP problems is Random 3SAT. By us-
ing the terminology reviewed in this section, Random 3SAT is formally de-
fined as the distributional problem (3SAT,DR3SAT), where 3SAT := {φ |
φ is a satisfiable 3CNF formula } and DR3SAT is the distribution defined in Def-
inition 3.13 of Subsection 3.2.2.

It is not known whether Random 3SAT is “DistNP-complete”. Still, as in the
case of the traditional NP-completeness theory, there exists some distributional
NP problem complete for DistNP (see, e.g., [Lev86, BCGL92, IL90]). In this
sense, we have a problem that is most difficult to solve within DistNP, but the
question is: How hard is DistNP itself? Note that if NP = P we trivially have
DistNP ⊆ AvgP. The central open question in the average-case complexity theory
is whether the converse direction holds, which would conclude that the average-
case complexity of NP is essentially the same with the worst-case complexity of
NP.

4.1.2 Worst-case to Average-case Reductions

In certain settings, such an equivalence between worst-case complexity and
average-case complexity is known. We review two of them.

For Complexity Classes Beyond the Polynomial-Time Hierarchy

There is a general technique based on error-correcting codes for showing
the equivalence between worst-case complexity and average-case complexity.
We briefly describe the technique below: Take any “locally-decodable” error-
correcting Enc: {0, 1}N → {0, 1}NO(1)

with the following property: There exists
a local decoding procedure that, given any index i ∈ [N ] and random access to a
string y that is close to Enc(x), computes xi. Then, given any worst-case problem
f : {0, 1}n → {0, 1}, by applying the error-correcting code to the truth table of f ,
we can obtain a distributional problem (fn(Enc(tt(f))),U) as hard as the worst-
case problem f : Indeed, for any heuristic algorithmM solving fn(Enc(tt(f))) on
average, tt(M) can be regarded as a string y that is close to Enc(tt(f)), and thus
by combining M with the local decoding procedure, we obtain another efficient
algorithm M ′ that solves f . (The reader is referred to [FF93, BFNW93, STV01]
for more details; a nice exposition can be found in the survey of Vadhan [Vad12]).
The technique can be applied to complexity classes above the polynomial-time hi-
erarchy such as PSPACE and EXP, since there exists an error-correcting code such
that f ∈ PSPACE implies fn(Enc(tt(f))) ∈ PSPACE. Unfortunately, the same
technique cannot be applied to any complexity class within the polynomial-time
hierarchy [Vio05].
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For Problems within NP ∩ coNP

Problems based on lattices admit worst-case to average-case reductions from
some problems in NP ∩ coNP to distributional NP problems. In a seminal paper
of Ajtai [Ajt96], it is shown that an approximation version of the shortest vector
problem of a lattice in Rn admits a worst-case to average-case reduction. The
complexity of approximating the length of a shortest vector depends greatly on
an approximation factor. A worst-case to average-case reduction is known when
an approximation factor is larger than Õ(n) [Mic04, MR07]. Note that Heuristica
does not exist if this approximation problem is NP-hard; however, this is unlikely
because approximating the length of a shortest vector within a factor of O(

√
n) is

in NP ∩ coNP [GG00, AR05]. Some NP-hardness is known for an approximation
factor of nO(1/ log logn) [HR12].

4.1.3 Limits of Worst-Case to Average-Case Reductions within NP

The worst-case to average-case connections mentioned above are all estab-
lished by means of reductions. Namely, in order to show that a distributional
problem (B,D) is at least as hard as a worst-case problem A, we start with
assuming that there is a hypothetical heuristic algorithm B′ that solves B on
average; then we construct an efficient algorithm (a reduction R) that queries
to B′ and solves A. Almost all reduction techniques are “black-box”: that is, a
proof of the correctness of the reduction R does not rely on the efficiency of B′.

It turned out that the power of such a black-box reduction technique is very
limited. A line of work showed significant obstacles to establishing worst-case to
average-case reductions for NP-complete problems (e.g., [FF93, BT06b, Vio05,
AGGM06, BB15] and Chapter 5): Building on the work of Feigenbaum and
Fortnow [FF93], Bogdanov and Trevisan [BT06b] showed that if a language L
reduces to a distributional NP problem via a black-box nonadaptive random-
ized polynomial-time reduction, then L ∈ NP/poly∩ coNP/poly. Here, the advice
“/poly” is mainly used to encode some information about the distributional prob-
lem, and can be removed in some cases such as a reduction to inverting one-way
functions [AGGM06, BB15] or avoiding hitting set generators (cf. Chapter 5).
Therefore, in order to reduce any problem outside NP∩ coNP to a distributional
NP problem, it is likely that a non-black-box reduction technique is needed.1

Gutfreund, Shaltiel and Ta-Shma [GST07] developed a non-black-box tech-
nique to show a worst-case to “average-case” reduction; however, the notion of
“average-case” is different from the usual one. They showed that, under the as-
sumption that P ̸= NP, for every polynomial-time algorithm A trying to compute
SAT, there exists an efficiently samplable distribution DA under which A fails to
compute SAT on average. The hard distribution DA depends on a source code of
A, and hence it is not necessarily true that there exists a fixed distribution under
which SAT is hard on average.

4.2 Overview

The main results of this chapter are the first non-black-box worst-case to
average-case reductions that overcome the limits of black-box reductions. Specif-
ically, we show that approximation versions of MCSP and MINKT are reducible

1 Here we implicitly used a popular conjecture that AM = NP [KvM02]. It should be also
noted that an adaptive black-box reduction could be used to overcome the barriers.
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to their average-case versions. In this section, we state the main results and
explain its importance and proof ideas.

4.2.1 Results about MCSP

In the case of MCSP, we show that the search version of GapϵMCSP is re-
ducible to the distributional NP problem (MCSP[2ϵn],U) for some constant ϵ > 0.
Namely, the distributional problem asks, given as input a random truth table
tt(f) ∼ {0, 1}2n , to decide whether size(f) ≤ 2ϵn or not. In fact, it can be shown
that the existence of an errorless heuristic algorithm for this problem is equivalent
to that of a natural property.

Theorem 4.5. The following are equivalent.

1. GapϵMCSP ∈ Promise-BPP for some ϵ > 0.

2. There exists a randomized polynomial-time algorithm solving the search ver-
sion of GapϵMCSP for some ϵ > 0.

3. (MCSP[2ϵn],U) ∈ AvgBPP for some constant ϵ ∈ (0, 1).

4. There exists a BPP-natural property useful against SIZE(2ϵn).

We note that the approximation factor of GapϵMCSP is 2(1−ϵ)n, which is
only slightly smaller than a trivial approximation factor 2n (indeed, since the
maximum circuit size for n-variable functions is at most 2n, there exists a trivial
polynomial-time algorithm that solves Gap0MCSP unconditionally).

4.2.2 Results about MINKT

While the quality of the approximation for MCSP is quite bad, we are able
to obtain a much better approximation in the case of MINKT. We consider a
problem of deciding whether x is r-nonrandom string with respect to Kt, where
a random instance (x, 1t) of size m ∈ N is chosen by sampling t ∼ [m] and
x ∼ {0, 1}m−t. More formally, we consider a parameterized version of MINKT
such that the threshold of randomness is fixed to r : N → N.

Definition 4.6 (Parameterized MINKT). For a function r : N → N, define

MINKT[r] := { (x, 1t) | Kt(x) < r(|x|) }.

We consider the following distribution on a pair (x, 1t) of a binary string and
a unary string.

Definition 4.7 (Uniform distribution with auxiliary unary input). Define an
ensemble of distributions DKT := {DKT

m }m∈N, where, for each m ∈ N, DKT
m is

defined as the output distribution of the following algorithm: Pick t ∼ [m] and
x ∼ {0, 1}m−t randomly. Output (x, 1t).

By this definition, it is obvious that DKT is efficiently samplable.2 Therefore:

Fact 4.8. (MINKT[r],DKT) ∈ DistNP if r : N → N is efficiently computable.

2 A minor detail is that a randomized machine cannot sample t ∼ [m] exactly when m is not
a power of 2, because a coin flip of a randomized machine is usually defined as a binary string.
However, it is possible to efficiently sample a distribution exponentially close to DKT, and thus
this detail can be safely ignored with an exponentially small error.

34



The main technical result of this chapter is that if there exists a polynomial-
time errorless heuristic algorithm A that solves (MINKT[r],DKT) for r(n) ≈ n,
then one can compress any given string x into an efficient program Mx of almost
shortest length Kt(x) + Õ

(√
Kt(x)

)
for every input (x, 1t) in polynomial time.

The reason why our reduction is non-black-box is that the efficient program Mx

incorporates the heuristic algorithm A. In particular, when A is not an efficient
algorithm, there is no guarantee that the outputMx of the compression algorithm
is an efficient program. We state it more formally:

Theorem 4.9 (Compression Under DistNP ⊆ AvgP). Let r : N → N be any
function such that for some constant c > 0, for all large n ∈ N, n− c

√
n log n ≤

r(n) < n. Assume that (MINKT[r],DKT) ∈ Avg1/6mP. Then, there exists a
zero-error randomized polynomial-time algorithm that, on input (x, 1t), outputs a
program M of size ≤ Kt(x)+O

(
(log |x|)

√
Kt(x)+(log |x|)2

)
such that M outputs

x in poly(|x|, t) steps.
It should be noted that the compression algorithm works for every input

(x, 1t). As a corollary of Theorem 4.9, an approximation version of MINKT
admits a ZPP algorithm under the same assumption:

Corollary 4.10. Under the same assumption with Theorem 4.9, there exists
some σ(n, s) = s+O

(
(log n)

√
s+(log n)2

)
and some polynomial τ(n, t) such that

Gapσ,τMINKT ∈ Promise-ZPP.

We note that the approximation error σ is so small that the Random
3SAT-hardness holds for Gapσ,τMINKT. Indeed, one can easily see that the
proof of Random 3SAT-hardness of MINKT (Corollary 3.16) also works for
Gapσ,τMINKT for any σ such that σ(n, s) ≤ s+ o(s/ log s) + o(n/ log n). More-
over, our proof can be seen as a non-black-box nonadaptive reduction from
Gapσ,τMINKT to (MINKT[r],DKT), and thus our proof cannot be made black-
box unless Gapσ,τMINKT ∈ coNP/poly (and in particular unless Random3SAT ∈
Avg-coNP/poly): indeed, otherwise by the result of Bogdanov and Trevisan
[BT06b], we would obtain Gapσ,τMINKT ∈ coNP/poly.

4.2.3 Perspective: An Approach Towards Excluding Heuristica

We propose a research program towards excluding Heuristica through the lens
of MCSP or MINKT. Note that if NP ≤BPP

T Gapσ,τMINKT then we obtain the
following by Theorem 4.9: If NP ̸⊆ BPP then DistNP ̸⊆ AvgP, which means that
Heuristica does not exist.

Unfortunately, there are still several obstacles we need to overcome in order
for this research program to be completed. Although our proofs overcome the
limits of black-box reductions, our proofs do relativize. And there is a relativiza-
tion barrier for excluding Heuristica: Impagliazzo [Imp11] constructed an oracle
A such that DistNPA ⊆ AvgPA and NPA∩coNPA ̸⊆ PA/poly. Under the same or-
acle, it follows from a relativized version of Theorem 4.9 that Gapσ,τMINKTA is

not NPA-hard under PA/poly-Turing reductions. Thus it requires some nonrela-
tivizing technique to establish NP-hardness of Gapσ,τMINKT even under P/poly-
Turing reductions. (Previously, Ko [Ko91] constructed a relativized world where
MINKT is not NP-hard under P-Turing reductions.)

We also mention that there are a number of results showing that proving NP-
hardness of MCSP is extremely difficult or impossible under reducibility notions
stronger than P/poly-Turing reductions. However, few is known for weaker re-
ducibility notions such as NP∩coNP reductions. We conjecture that the following
is a feasible research question.
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Open Question 4.11. Prove the following (or explain why it is difficult to
resolve): Let σ, τ be arbitrary parameters as in Theorem 4.9. Gapσ,τMINKT is

NP-hard under coNP/poly-Turing reductions. That is, NP ⊆ coNPA/poly for any
oracle A that satisfies the promise of Gapσ,τMINKT.

Note that the choice of reducibility is somewhat subtle: The relativization barrier
applies to P/poly reductions, but it is not known whether a similar barrier applies
to coNP/poly reductions. Ko [Ko91] also speculated that MINKT might be NP-
complete under NP ∩ coNP reductions. We mention that there is nonrelativizing
proof techniques to prove PSPACE-completeness of a space-bounded version of
MINKT under ZPP-Turing reductions and EXP-completeness of an exponential-
time version of MINKT under NP ∩ coNP-Turing reductions (cf. [ABK+06b]).

A positive answer to Open Question 4.11 implies the following: If NP ̸⊆
coNP/poly, then DistNP ̸⊆ AvgP. This will base the hardness of DistNP on a
plausible worst-case assumption of NP, and in particular, an assumption that the
polynomial-time hierarchy does not collapse. Currently, no worst-case hardness
assumption on the polynomial-time hierarchy is known to imply DistNP ̸⊆ AvgP.

4.2.4 Proof Overview

Our starting point is the Nisan-Wigderson generator [NW94]. They presented
a (complexity-theoretic) pseudorandom generator NWf secure against small cir-
cuits, based on any “hard” function f (in the sense that f cannot be approximated
by small circuits, that is, Prx[f(x) = C(x)] ≤ 1

2 + ϵ for some small ϵ > 0 and any
small circuit C).

Its security is proved by the following reduction: Given any statistical test T
that distinguishes the output distribution of NWf from the uniform distribution,
one can construct a small T -oracle circuit CT that approximates f . If T can be
implemented by a small circuit, then this is a contradiction to the assumption that
f is hard; thus the pseudorandom generator is secure. Such a security proof turns
out to be quite fruitful not only for derandomization [KvM02, IW01, TV07], but
also for Trevisan’s extractor [Tre01a], investigating the power of Kolmogorov-
random strings [ABK+06b], and the generic connection between learning and
natural proof [CIKK16].

Our proofs also make use of a security proof. It enables us to transform any
statistical test T for NWf to a small circuit CT that describes a (12+ϵ)-fraction of
the truth table of f . Moreover, as observed in [IW01], such small circuits can be
constructed efficiently. By using a list-decodable error-correcting code Enc, given
any statistical test T for NWEnc(x), one can efficiently find a short description for
x under the oracle T .

We argue that there is a statistical test T for NWEnc(x) under the assumption
that DistNP ⊆ AvgP. Consider the distributional NP problem (MINKT[r],DKT).
A crucial observation is that there are few nonrandom strings (i.e., compressible
by a short program); that is, there are few Yes instances in MINKT[r]. Thus any
errorless heuristic algorithm solving (MINKT[r],DKT) must reject a large fraction
of random strings. This gives rise to a dense subset T ∈ P of random strings,
and it can be shown that T is a statistical test for any hitting set generator.

As a consequence, we obtain an efficient algorithm that, on input x, outputs a
short program d describing x under the oracle T . Since T can be accepted by some
polynomial-time algorithm (that comes from the errorless heuristic algorithm for
(MINKT[r],DKT)), we can describe x by using the description d and a source
code of the algorithm accepting T . This is the crucial part in which our proof is
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non-black-box; we need a source code of the errorless heuristic algorithm in order
to have a short description for x. We then obtain a randomized polynomial-time
search algorithm for Gapσ,τMINKT.

The proof sketch above enables us to find a somewhat short description, but
it is not sufficient to obtain a description of length (1+o(1)) ·Kt(x), nor to obtain
the Random 3SAT-hardness of Gapσ,τMINKT. To optimize the quality of the
approximation, we need to exploit an improvement of the Nisan-Wigderson gen-
erator (and Trevisan’s extractor), given by Raz, Reingold and Vadhan [RRV02].

Finally, the randomized algorithm described above can be made zero-error;
indeed, if DistNP ⊆ AvgZPP, then any randomized algorithm can be made zero-
error (as mentioned in [Imp95] without a proof). This is because a Kolmogorov-
random string w can be found by picking a string uniformly at random, and one
can check whether w is Kolmogorov-random or not by using an errorless heuristic
algorithm for (MINKT[r],DKT); by using w as a source of a hard function and
invoking the hardness versus randomness framework again, we can derandomize
the rest of the randomized computation. (The zero-error algorithm may fail only
if no Kolmogorov-random string is found.)

Interestingly, we invoke the hardness versus randomness framework twice for
completely different purposes. On one hand, to derandomize a randomized com-
putation, it is desirable to minimize the seed length of a pseudorandom generator,
because we need to exhaustively search all the seeds. On the other hand, to obtain
a short description, it is desirable to minimize the output length of a pseudoran-
dom generator (or, in other words, to maximize the seed length); this is because
the efficiency of the security proof is dominated by the output length.

To prove a similar equivalence between worst-case and average-case hardness
of MCSP, there is one difficulty: An error-correcting code Enc may significantly
increase the circuit complexity of f . As a consequence, for a function f that can
be computed by a small circuit, the circuit complexity of the output of NWEnc(f)

is not necessarily small, and thus an errorless heuristic algorithm for MCSP may
not induce a statistical test for NWEnc(f); here, the circuit complexity of a string x
refers to the size of a smallest circuit whose truth table is x. Nevertheless, it is still
possible to amplify the hardness of f while preserving the circuit complexity of f .
Indeed, Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16] established
a generic reduction from approximately learning to natural properties, by using
the fact that a natural property is a statistical test for NWAmp(f), where Amp(f)
denotes a hardness amplified version of f . We observe that their approximately
learning is enough to achieve the approximation factor stated in Theorem 4.5.
Moreover, as observed by Hirahara and Santhanam [HS17], a natural property
is essentially an errorless heuristic algorithm for MCSP. By combining these
results, we obtain a search to average-case reduction for GapMCSP.

4.3 Worst-Case to Average-Case Reduction for MINKT

4.3.1 Preliminaries

We first introduce several notations. To explain a consequence of the secu-
rity proof of the Nisan-Wigderson generator, it is convenient to introduce an
approximation version of Kolmogorov complexity.

Definition 4.12 (Approximation version of Time-bounded Kolmogorov complex-
ity). For functions f, g : {0, 1}ℓ → {0, 1}, define dist(f, g) := Prx∼{0,1}ℓ [f(x) ̸=
g(x)]. For a function f : {0, 1}ℓ → {0, 1}, an integer t ∈ N, and an oracle
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A ⊆ {0, 1}∗, define KA
t,δ(f) as the minimum length of a string d such that UA(d)

outputs tt(g) of length 2ℓ within t steps and dist(f, g) ≤ 1/2− δ.

We next introduce the notation for a certificate for MINKT. Note that since
MINKT ∈ NP, every Yes instance has a certificate whose correctness can be
checked efficiently.

Definition 4.13 (Certificate for MINKT). For an oracle A ⊆ {0, 1}∗, integers
s, t ∈ N, and a string x ∈ {0, 1}∗, a string d ∈ {0, 1}∗ is called a certificate
for KA

t (x) ⪯ s if UA(d) outputs x within t steps and |d| ≤ s. A certificate for
KA

t, δ(x) ⪯ s is defined in a similar way.

In this terminology, for proving Theorem 4.9, on input (x, 1t), we seek a certificate
for

Kt′(x) ⪯ Kt(x) +O
(
(log |x|)

√
Kt(x) + (log |x|)2

)
for some t′ = poly(|x|, t). Note here that “⪯” is just a symbol, and “Kt(x) ⪯ s”
should be interpreted as a tuple (x, 1t, 1s), which is an instance of MINKT.

Theorem 4.9 can be interpreted as solving a search version of Gapσ,τMINKT.
We formally define the search problem associated with Gapσ,τMINKT below.

Definition 4.14. The search version of Gapσ,τMINKT is defined as follows.

• Input: A string x ∈ {0, 1}∗ and an integer t ∈ N represented in unary.

• Output: A certificate for Kt′(x) ⪯ σ(|x|,Kt(x)) for any t′ ≥ τ(|x|, t).

A randomized algorithm A is called a zero-error randomized algorithm solving the
search version of Gapσ,τMINKT if, for every x ∈ {0, 1}∗ and t ∈ N, A(x, 1t) out-
puts a certificate for Kt′(x) ⪯ σ(|x|,Kt(x)) whenever A(x, 1t) ̸= ⊥, and A(x, 1t)
outputs ⊥ with probability at most 1

2 .

We observe that this is indeed “the” search version of Gapσ,τMINKT by
showing that the decision version is easier than its search version:

Fact 4.15 (Decision reduces to search). Let σ, τ : N × N → N be any efficiently
computable and nondecreasing functions. If there exists a zero-error random-
ized polynomial-time algorithm solving the search version of Gapσ,τMINKT, then
Gapσ,τMINKT ∈ Promise-ZPP.

Proof. The main point is that the zero-error randomized search algorithm does
not err in the sense that it outputs an approximately shortest certificate when-
ever it succeeds. Therefore, given a zero-error randomized algorithm M solving
the search version of Gapσ,τMINKT, the following algorithm solves the decision
version: On input (x, 1t, 1s), runM on input (x, 1t). IfM outputs ⊥, then output
⊥ and halt. Otherwise, M outputs some certificate d. Accept iff |d| ≤ σ(|x|, s)
and U(d) outputs x in τ(|x|, t) steps.

We claim the correctness of this algorithm. If (x, 1t, 1s) is a Yes instance of
Gapσ,τMINKT, then we obtain a certificate d for Kt′(x) ⪯ σ(|x|,Kt(x)) where
t′ := τ(|x|, t) unless M outputs ⊥; that is, U(d) outputs x in t′ steps, and
|d| ≤ σ(|x|,Kt(x)) ≤ σ(|x|, s). Thus the algorithm above accepts with probability
at least 1

2 . If (x, 1
t, 1s) is a No instance of Gapσ,τMINKT, then we have Kt′(x) >

σ(|x|, s) for t′ := τ(|x|, t). Thus the algorithm rejects unless M outputs ⊥. □

The following is a simple but crucial lemma in which our proof becomes non-
black-box:
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Lemma 4.16. Let T ∈ P. Then there exists some polynomial p such that
Kt′(x) ≤ KT

t (x) + O(1) for any x ∈ {0, 1}∗ and any t, t′ such that t′ ≥ p(t).
Moreover, given a certificate for KT

t (x) ⪯ s, one can efficiently find a certificate
for Kt′(x) ⪯ s+O(1).

We will use this lemma for an errorless heuristic polynomial-time algorithm ac-
cepting T (in Theorem 4.9). Thus, the output of our non-black-box reduction
will be a certificate for Kt′(x) which incorporates a source code of the errorless
heuristic polynomial-time algorithm.

Proof. Let M0 be a polynomial-time machine that accepts T . Consider the fol-
lowing machine M : On input d ∈ {0, 1}∗, simulate UT (d) using M0; that is, if U
makes a query q to the oracle T , then run M0 on input q and answer the query
q with M0(q). Then M outputs what UT (d) outputs.

Now suppose that UT (d) outputs x in t steps. Then, by the definition, M(d)
outputs x in p0(t) steps for some polynomial p0 (that depends only on the running
time ofM0); thus, U(M,d) outputs x in pU (p0(t)) steps, where pU is the slowdown
of the universal Turing machine. Hence we obtain Kt′(x) ≤ KT

t (x) +O(|M |) for
t′ ≥ p(t) := pU (p0(t)).

To see the “moreover” part, given a certificate d for KT
t (x) ⪯ s, we may simply

output (M,d) as a certificate for Kt′(x) ⪯ s+O(|M |). □

4.3.2 Short Certificate Under a Dense Subset of Random Strings

In this subsection, we present an efficient algorithm that outputs a certificate
for GapMINKT, given an oracle that accepts some dense subset of random strings.
The existence of such an oracle will be justified in the next subsection under the
assumption that DistNP ⊆ AvgP. We introduce the notation for r-random strings.

Definition 4.17 (r-random strings). Let Rt[r] denote the set of all r-random
strings with respect to Kt; that is, Rt[r] := {x ∈ {0, 1}∗ | Kt(x) ≥ r(|x|) }.

In particular, a set A ⊆ {0, 1}m is said to be a δ-dense subset of r-random strings
Rt[r] if A ⊆ Rt[r] and |A| ≥ 2mδ.

The main idea is that a dense subset of random strings gives rise to a statistical
test distinguishing any pseudorandom generator from the uniform distribution.
Indeed, take any efficiently computable function G : {0, 1}d → {0, 1}m where
d ≲ r(m); then any range G(z) of G can be described by its seed z in polynomial
time; hence G(z) is not r-random since Kt(G(z)) ≲ d ≲ r(m); thus a δ-dense
subset T of r-random strings is a statistical test for G with advantage δ, i.e.,∣∣∣Prw∼{0,1}m [w ∈ T ]− Prz∼{0,1}d [G(z) ∈ T ]

∣∣∣ ≥ δ. We will use this fact to break

the Nisan-Wigderson generator.
We proceed to define the Nisan-Wigderson generator NWf . Originally, Nisan

and Wigderson [NW94] defined the notion of design as a family of subsets
S1, . . . Sm such that |Si ∩Sj | is small for every distinct i, j ∈ [m]. As observed by
Raz, Reingold and Vadhan [RRV02], a weaker notion is sufficient for a security
proof of the Nisan-Wigderson generator. Our notion is, however, different from
the weak design defined in [RRV02] due to some technical details.

Definition 4.18. We say that a family S = (S1, . . . , Sm) of subsets of [d] is a
(ℓ, ρ)-design if |Si| = ℓ and

∑i−1
j=1 2

|Si∩Sj | +m− i ≤ ρm for every i ∈ [m].

There is an efficient way to construct such a family with nice parameters.
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Lemma 4.19 (follows from [RRV02, Lemma 15]). For any m, ℓ, d ∈ N such

that d/ℓ ∈ N, there exists a (ℓ, exp(ℓ2/d))-design Sm,ℓ,d = (S1, . . . , Sm) ⊆
([d]
ℓ

)
.

Moreover, the family Sm,ℓ,d can be constructed by a deterministic algorithm in
time poly(m, d).

Proof Sketch. Raz, Reingold and Vadhan [RRV02] showed how to construct,
in time poly(m, d), a family of subsets S1, . . . , Sm ⊆ [d] of size ℓ such that∑i−1

j=1 2
|Si∩Sj | ≤ (1 + ℓ/d)ℓ · (i − 1) ≤ exp(ℓ2/d) · i for every i ∈ [m]. (The fam-

ily is constructed by dividing [d] into ℓ disjoint blocks of size d/ℓ, and, for each
i ∈ [m], choosing one random element out of each block and adding it to Si. The
construction can be derandomized by the method of conditional expectations.)
The same family satisfies the condition that

∑i−1
j=1 2

|Si∩Sj |+m− i ≤ exp(ℓ2/d) ·m
for every i ∈ [m]. □

For a string z ∈ {0, 1}d and a subset S = {i1 < · · · < iℓ} ⊆ [d], we denote by
zS ∈ {0, 1}ℓ the string zi1 · · · ziℓ . To avoid introducing a new variable, we treat
d/ℓ as if it is a variable.

Definition 4.20 (Nisan-Wigderson generator [NW94]). For a function
f : {0, 1}ℓ → {0, 1} and parameters m, ℓ, d/ℓ ∈ N, define the Nisan-Wigderson

generator NWf
m,d : {0, 1}

d → {0, 1}m as NWf
m,d(z) := f(zS1) · · · f(zSm) for every

z ∈ {0, 1}d, where (S1, . . . , Sm) := Sm,ℓ,d.

Nisan and Wigderson [NW94] showed that if f is a hard function (i.e. f

cannot be approximated by small circuits) then NWf
m,d is a pseudorandom gen-

erator secure against small circuits. The security proof of the Nisan-Wigderson
generator transforms any statistical test for NWf

m,d into a small circuit that ap-
proximately describes f . Moreover, as observed in [IW01], such small circuits
can be constructed efficiently. We now make use of these facts to obtain a short
description for f . Our proof is similar to the construction of Trevisan’s extractor
[Tre01a], but we need to argue the efficiency.

Lemma 4.21. There exist some polynomial poly and a randomized polynomial-
time oracle machine satisfying the following specification.

Inputs: A function f : {0, 1}ℓ → {0, 1} represented as its truth table, parameters
m, d/ℓ, δ−1 ∈ N represented in unary, and oracle access to T ⊆ {0, 1}m.

Promise: We assume that the oracle T is a statistical test for NWf
m,d with ad-

vantage δ. That is,∣∣∣∣ Pr
z∼{0,1}d

[
T (NWf

m,d(z)) = 1
]
− Pr

w∼{0,1}m

[
T (w) = 1

]∣∣∣∣ ≥ δ. (4.1)

Output: A certificate for KT
t, δ/2m(f) ⪯ exp(ℓ2/d) ·m + d + O(log(md)), for any

t ≥ poly(m, d, 2ℓ).

Proof. We first prove KT
t, δ/m(f) ≤ exp(ℓ2/d) ·m+ d+O(log(md)). We will then

explain how to obtain a certificate efficiently (with the small loss in the quality
δ/m of the approximation).

The first part is proved by a standard hybrid argument as in [NW94]. Without
loss of generality, we may ignore the absolute value of (4.1); more precisely, let

Tb(w) := T (w)⊕ b for some b ∈ {0, 1} so that Ez,w

[
Tb(NWf

m,d(z))− Tb(w)
]
≥ δ.

For every i ∈ [m], define a hybrid distribution Hi := f(zS1) · · · f(zSi) ·wi+1 · · ·wm
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for z ∼ {0, 1}d and w ∼ {0, 1}m. As H0 and Hm are distributed identi-

cally to w ∼ {0, 1}m and NWf
m,d(z) for z ∼ {0, 1}d, respectively, we have

E [Tb(Hm)− Tb(H0)] ≥ δ. Pick i ∼ [m] uniformly at random. Then we obtain
Ei [Tb(Hi)− Tb(Hi−1)] ≥ δ/m.

We can exploit this advantage to predict the next bit of the PRG (due to Yao
[Yao82]; a nice exposition can be found in [Vad12, Proposition 7.16]). For each
fixed i ∈ [m], c ∈ {0, 1}, w[m]\[i] ∈ {0, 1}m−i, and z[d]\Si

∈ {0, 1}d−ℓ, consider the

following circuit P Tb for predicting f : On input x ∈ {0, 1}ℓ, set zSi := x and
construct z ∈ {0, 1}d. Output Tb(f(zS1) · · · f(zSi−1) · c · wi+1 · · ·wm) ⊕ c ⊕ 1. A
basic idea here is that if c = f(zSi) (= f(x) ) then the input distribution of Tb is
identical to Hi and thus Tb is likely to output 1, in which case we should output
c for predicting f . By a simple calculation, it can be shown that Pr[P Tb(x) =
f(x)] ≥ 1

2+
δ
m , where the probability is taken over all i ∼ [m], c ∼ {0, 1}, w[m]\[i] ∼

{0, 1}m−i, z[d]\Si
∼ {0, 1}d−ℓ, and x ∼ {0, 1}ℓ. In particular, by averaging, there

exists some i, c, w[m]\[i], z[d]\Si
such that Prx∼{0,1}ℓ

[
P Tb(x) = f(x)

]
≥ 1

2 + δ
m .

Therefore, it is sufficient to claim that the circuit P has a small description.
Note that the value of f needed in the computation of P can be hardwired into
the circuit using

∑
j<i 2

|Si∩Sj | bits. Given oracle access to T , we can describe the

(12 +
δ
m)-fraction of the truth table of f by specifying m, ℓ, d, b, c, i, w[m]\[i], z[d]\Si

,
and the hardwired table of the values of f . This procedure takes time roughly
poly(m, d) + poly(2ℓ) (for computing the design and evaluating the entire truth
table of P Tb). The length of the description is at most

∑
j<i 2

|Si∩Sj | + (m −
i) + (d − ℓ) + O(log(md)) ≤ exp(ℓ2/d) · m + d + O(log(md)). Thus we have
KT

t, δ/m(f) ≤ exp(ℓ2/d) ·m+ d+O(log(md)).
To find a certificate efficiently, observe that a random choice of

(c, i, w[m]\[i], z[d]\Si
) is sufficient in order for the argument above to work. That

is, pick c ∼ {0, 1}, i ∼ [m], w[m]\[i] ∼ {0, 1}m−i, and z[d]\Si
∼ {0, 1}d−ℓ. Then

a Markov style argument shows that, with probability at least δ/2m, we obtain
Prx∼{0,1}ℓ

[
P Tb(x) = f(x)

]
≥ 1

2 + δ
2m . By trying each b ∈ {0, 1} and trying the

random choice O(m/δ) times, we can find at least one certificate for KT
t,δ/2m(f)

with high probability. □

We will update Lemma 4.21 by incorporating a list-decodable error-correcting
code, so that we obtain a certificate for KT

t (x) instead of KT
t,δ/2m(f).

Definition 4.22 (List-decodable error-correcting code; cf. [Vad12]). For every
n,m,L ∈ N and ϵ > 0, a function Enc: {0, 1}n → {0, 1}m is called a (L, 12 − ϵ)-
list-decodable error-correcting code if there exists a function Dec: {0, 1}m →
({0, 1}n)L such that, for every x ∈ {0, 1}n and r ∈ {0, 1}m with dist(Enc(x), r) ≤
1
2 − ϵ, we have x ∈ Dec(r). We call Dec a list decoder of Enc.

For our purpose, it is sufficient to use any standard list-decodable code such as
the concatenation of a Reed-Solomon code and an Hadamard code.

Theorem 4.23 (see, e.g., [STV01] and [Vad12, Problem 5.2]). For any n ∈ N
and ϵ > 0, there exists a function Encn,ϵ : {0, 1}n → {0, 1}2ℓ with ℓ = O(log(n/ϵ))
that is a (poly(1/ϵ), 12 − ϵ)-list-decodable error-correcting code. Moreover, Encn,ϵ
and its list decoder Decn,ϵ are computable in time poly(n, 1/ϵ).

In what follows, we implicitly regard a string Encn,ϵ(x) ∈ {0, 1}2ℓ of length 2ℓ as
a function on ℓ-bit inputs.
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Corollary 4.24. KA
t′ (x) ≤ KA

t, ϵ(Encn,ϵ(x)) + O(log(n/ϵ)) for any string x ∈
{0, 1}∗, any oracle A, and any t′ ≥ t + poly(n, 1/ϵ). Moreover, given any x and
any certificate for KA

t, ϵ(Encn,ϵ(x)) ⪯ s, one can find a certificate for KA
t′ (x) ⪯

s+O(log(n/ϵ)) in time t+ poly(n, 1/ϵ) with oracle access to A.

Proof. Consider the following procedure M : Given input d0 ∈ {0, 1}∗ and
n, ϵ−1 ∈ N and index i ∈ N, output the ith string of Decn,ϵ(U

A(d0)). By the
definition, there exists some description d0 of length KA

t, ϵ(Encn,ϵ(x)) such that

UA(d0) outputs some string r within time t and dist(Encn,ϵ(x), r) ≤ 1
2 − ϵ. Thus

there exists an index i ≤ poly(1/ϵ) such that the ith string of Decn,ϵ(r) is equal
to x. Hence, we obtain KA

t′ (x) ≤ |d0|+O(log(ni/ϵ)).
The “moreover” part can be easily seen as follows. Given a target string x

and a description d0, compute Decn,ϵ(U
A(d0)). Let i be the index of x in the list

Decn,ϵ(U
A(d0)). Output a description (M,d0, n, ϵ

−1, i). □

Now we combine Lemma 4.21 and the list-decodable error-correcting code.

Lemma 4.25. There exist some polynomial poly and a randomized polynomial-
time oracle machine satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, parameters m, d/ℓ, δ−1 ∈ N repre-
sented in unary, and oracle access to T ⊆ {0, 1}m.

Promise: Let ϵ := δ/2m, and 2ℓ := |Encn,ϵ(x)|. We assume that T is a statistical

test for NW
Encn,ϵ(x)
m,d with advantage δ. That is,∣∣∣∣ Pr

z∼{0,1}d

[
T (NW

Encn,ϵ(x)
m,d (z)) = 1

]
− Pr

w∼{0,1}m

[
T (w) = 1

]∣∣∣∣ ≥ δ.

Output: A certificate for KT
t (x) ⪯ exp(ℓ2/d) · m + d + O(log(nmd/δ)) for any

t ≥ poly(n,m, d, 1/δ).

Proof. Set f := Encn,ϵ(x) ∈ {0, 1}2ℓ . Then run the algorithm of Lemma 4.21
with inputs f,m, d/ℓ, δ−1 and oracle access to T . The algorithm outputs a
certificate for KT

t0, δ/2m
(Encn,ϵ(x)) ⪯ exp(ℓ2/d) · m + d + O(log(md)), where

t0 = poly(m, d, 2ℓ). By Corollary 4.24, we may efficiently convert this certifi-
cate to a certificate for KT

t (x) ⪯ exp(ℓ2/d) · m + d + O(log(nmd/ϵ)), where
t ≥ t0 + poly(n, 1/ϵ). □

As a consequence of Lemma 4.25, for any x ∈ {0, 1}∗ and parameters with
d≫ ℓ2, we may obtain a certificate of length ≈ exp(ℓ2/d) ·m+d ≈ m+ℓ2m/d+d

given a statistical test for NW
Encn,ϵ(x)
m,d . Setting d := ℓ

√
m, we obtain a certificate

of length ≈ m + O(ℓ
√
m). We now claim that m may be set to ≈ Kt(x), by

showing that the output of the Nisan-Wigderson generator is not random in the
sense of time-bounded Kolmogorov complexity.

Lemma 4.26. There exists some polynomial poly satisfying the following: For
any n, ϵ−1,m, d/ℓ ∈ N, z ∈ {0, 1}d and x ∈ {0, 1}n (where 2ℓ is the output length
of Encn,ϵ), we have

Kt′(NW
Encn,ϵ(x)
m,d (z)) ≤ Kt(x) + d+O(log(nmd/ϵ))

for any t, t′ ∈ N with t′ ≥ t+ poly(n, 1/ϵ,m, d).
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Proof. Roughly speaking, the output of the Nisan-Wigderson generator can be
described by a description d0 of x (which is of length Kt(x)), and a seed z of
length d. More precisely, the following algorithm describes the output of the NW
generator: Inputs consist of parameters n, ϵ−1,m, d/ℓ ∈ N represented in binary,
a seed z ∈ {0, 1}d, and a string d0 ∈ {0, 1}∗. The algorithm operates as follows.

Compute x := U(d0), f := Encn,ϵ(x), and the design Sm,ℓ,d. Output NWf
m,d(z).

It is easy to see that the running time of this algorithm is at most t +
poly(n, 1/ϵ,m, d) ≤ t′, where t denotes the time it takes for U(d0) to out-
put x. The length of the description is at most |d0| + |z| + O(log(nmd/ϵ)) ≤
Kt(x) + d+O(log(nmd/ϵ)). □

We now assume that an oracle T is a δ-dense subset of r-random strings Rt[r].

By Lemma 4.26, T is a distinguisher for NW
Encn,ϵ(x)
m,d if Kt(x)+d ≲ r(m). Thus by

Lemma 4.25 we may find a certificate for KT
t′ (x) ≾ exp(ℓ2/d) · r−1(Kt(x)+d)+d.

A formal statement follows.

Theorem 4.27. Let r : N → N be any function. There exist some polynomial
poly and a randomized polynomial-time oracle machine satisfying the following
specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, parameters t,m, d/ℓ, δ−1 ∈ N
represented in unary, and oracle access to T ⊆ {0, 1}m.

Promise: Let ϵ := δ/2m, and 2ℓ := |Encn,ϵ(x)|. Assume that T is a δ-dense subset
of Rt1 [r] for some t1 ≥ t+poly(n,m, d, 1/δ), and that Kt(x)+d+O(log(nmd/δ)) <
r(m).

Output: A certificate for KT
t2(x) ⪯ exp(ℓ2/d) ·m + d + O(log(nmd/δ)) for any

t2 ≥ poly(n,m, d, 1/δ).

Proof. By Lemma 4.26, we have

Kt1(NW
Encn,ϵ(x)
m,d (z)) ≤ Kt(x) + d+O(log(nmd/δ)) < r(m)

for any z ∈ {0, 1}d and any t1 ≥ t + poly(n,m, d, 1/δ). Therefore, for any

z ∈ {0, 1}d, the output NW
Encn,ϵ(x)
m,d (z) is not r-random with respect to Kt1 ;

in particular, NW
Encn,ϵ(x)
m,d (z) ̸∈ T . On the other hand, Prw∼{0,1}m [w ∈ T ] ≥ δ by

the assumption. Thus T distinguishes NW
Encn,ϵ(x)
m,d from the uniform distribution

with advantage at least δ. By running the algorithm of Lemma 4.25 with input
x,m, d/ℓ, δ−1, and oracle access to T , the algorithm outputs a certificate for

KT
t2(x) ⪯ exp(ℓ2/d) ·m+ d+O(log(nmd/δ))

with high probability, where t2 ≥ poly(n,m, d, 1/δ). □

By Theorem 4.27, for r(m) ≈ m, we can setm ≈ Kt(x)+d; thus, we can find a
certificate of length ≈ exp(ℓ2/d)·(Kt(x)+d)+d ≈ Kt(x)+ℓ

2Kt(x)/d+2d+ℓ2. By
setting d := ℓ

√
Kt(x), we obtain a certificate of length ≈ Kt(x)+O(ℓ

√
Kt(x))+ℓ

2.
(Note here that we do not know a priori the best choice of d as well as Kt(x);
however we can try all choices of d.) In the next corollary, we observe that the
same length can be achieved as long as m−O(

√
m logm) ≤ r(m).
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Corollary 4.28. Let δ−1 ∈ N be any constant. Let r : N → N be any function
such that m−c

√
m logm ≤ r(m), for some constant c, for all large m ∈ N. There

exist some polynomial poly and a randomized polynomial-time oracle machine
satisfying the following specification.

Inputs: A string x ∈ {0, 1}∗ of length n ∈ N, a parameter t ∈ N represented in
unary, and oracle access to T ⊆ {0, 1}∗.

Promise: For all large m ∈ N, we assume that T=m is a δ-dense subset of Rt1 [r]
for some t1 ≥ t+ poly(n).

Output: A certificate for KT
t2(x) ⪯ Kt(x) +O

(
(log n)

√
Kt(x) + (log n)2

)
for any

t2 ≥ poly(n).

Proof. Without loss of generality, we may assume that O(log n) ≤ Kt(x) ≤
n + O(1). Indeed, we may exhaustively search all the descriptions d0 of length
O(log n) and check if U(d0) outputs x within time t; if such a description is found,
we may output d0 as a certificate for Kt(x) ⪯ |d0| = O(log n). Moreover, when
Kt(x) ≥ n + O(1), then we may just output a trivial description for x of length
n+O(1). In what follows, we assume O(log n) ≤ Kt(x) ≤ n+O(1).

Here is the algorithm: For every m ∈ {1, . . . , n + O(1)} and every d/ℓ ∈
{1, . . . , n + O(1)}, run the algorithm of Theorem 4.27 on input x, t,m, d/ℓ, δ−1

and with oracle access to T=m. Output the shortest description found in this
way. (If none is found, output a trivial description for x of length n+O(1).)

We claim that, on some specific choice of (m, d/ℓ), the algorithm of Theo-
rem 4.27 outputs a short description. Let ℓ := log |Encn,δ/2m(x)| = O(log n). We

analyze the two cases depending on whether ℓ ≤
√

Kt(x) or not. Consider the
case when ℓ ≤

√
Kt(x). Let d/ℓ :=

√
Kt(x) and m := Kt(x) + d + O(log n) +

4c
√

Kt(x) logKt(x). Then we have d ≤ Kt(x) and hence m ≤ 4Kt(x). Thus,

r(m) ≥ m− c
√
m logm

≥ m− 2c
√

Kt(x) log 4Kt(x)

> Kt(x) + d+O(log n),

which means the hypothesis of Theorem 4.27 is satisfied; therefore, with high
probability, the algorithm outputs a description d0 for x such that |d0| ≤
exp(ℓ2/d) ·m+ d+O(log n) with high probability. Since ℓ2/d ≤ 1, the length of
the description is

|d0| ≤ (1 + 2ℓ2/d) ·m+ d+O(log n)

≤ (1 + 2ℓ2/d) · (Kt(x) + d) + 3 · (O(log n) + 4c
√

Kt(x) logKt(x)) + d+O(log n)

≤ Kt(x) +O(ℓ
√

Kt(x) + ℓ2).

Next, consider the case when ℓ >
√

Kt(x). In this case, let d/ℓ := ℓ and
m := 4d. Then we have r(m) ≥ m − c

√
m logm ≥ 3d > Kt(x) + d + O(log n),

which confirms the hypothesis of Theorem 4.27. Thus the algorithm outputs a
description for x of length exp(1) ·m+ d+O(log n) = O(ℓ2). □

4.3.3 Accepting a Dense Subset of Random Strings in Heuristica

Now we justify the hypothesis used in the previous subsection. We show that
a dense r-random string can be accepted by some polynomial-time machine if
(MINKT[r],DKT) ∈ AvgP. For any oracle T ⊆ {0, 1}∗ and any t ∈ N, let Tt

44



denote {x ∈ {0, 1}∗ | (x, 1t) ∈ T }. The main idea here is that since there are few
r-nonrandom strings, an errorless heuristic algorithm must succeed on a dense
subset of r-random strings.

Lemma 4.29. Let r : N → N be any function such that r(n) < n for all large
n ∈ N. If (MINKT[r],DKT) ∈ AvgδP for δ(m) := 1/6m, then there exists a
language T ∈ P such that T=n

t is a 1
3 -dense subset of Rt[r], for all large n ∈ N

and every t ∈ N.

Proof. Let M be the errorless heuristic deterministic polynomial-time algorithm
for (MINKT[r],DKT). We define T so that T (x, 1t) := 1 if M(x, 1t) = 0; oth-
erwise T (x, 1t) := 0, for every x ∈ {0, 1}∗ and t ∈ N. By this definition, it is
obvious that T ∈ P.

Fix any t ∈ N. We claim that Tt is a subset of r-random strings Rt[r]. Indeed,
for any x ∈ Tt, we haveM(x, 1t) = 0. SinceM is an errorless heuristic algorithm,
we obtain Kt(x) ≥ r(|x|); thus x ∈ Rt[r].

We now claim that T=n
t is dense, i.e., Prx∼{0,1}n [x ∈ Tt] ≥ 1

3 for all large
n ∈ N. In the next claim, we prove that M solves MINKT[r] on average even if
t is fixed.

Claim 4.30. For all large n ∈ N and any t ∈ N, we have

Pr
x∼{0,1}n

[
M(x, 1t) ̸= MINKT[r](x, 1t)

]
≤ 1

6
.

Indeed, for m := n + t, using the definition of errorless heuristic algorithms,
we obtain

δ(m) ≥ Pr
(x,1s)∼DKT

m

[M(x, 1s) ̸= MINKT[r](x, 1s)]

≥ Pr [|x| = n] · Pr [M(x, 1s) ̸= MINKT[r](x, 1s) | |x| = n]

≥ 1

m
· Pr
x∼{0,1}n

[
M(x, 1t) ̸= MINKT[r](x, 1t)

]
,

where in the last inequality we used the fact that, conditioned on the event
|x| = n, the distribution DKT

m is identically distributed to the distribution (x, 1t)
where x ∼ {0, 1}n. Thus we have Prx∼{0,1}n [M(x, 1t) ̸= MINKT[r](x, 1t)] ≤
m · δ(m) ≤ 1

6 . This completes a proof of Claim 4.30.
We claim that M must output 0 on a large fraction of strings, which implies

that T is dense. Indeed, there are few r-nonrandom strings, soM must succeed on
a large fraction of random strings. More precisely, the number of r-nonrandom

strings of length n is at most
∑r(n)−1

i=0 2i ≤ 2r(n); thus, the probability that
(x, 1t) ∈ MINKT[r] over the choice of x ∼ {0, 1}n is at most 2r(n)−n ≤ 1

2 , for all
large n ∈ N and every t ∈ N. Therefore, we obtain

Pr
x∼{0,1}n

[
x ∈ Tt

]
= Pr

x

[
M(x, 1t) = 0 & MINKT[r](x, 1t) = 0

]
= Pr

x

[
M(x, 1t) = MINKT[r](x, 1t)

]
− Pr

x

[
M(x, 1t) = 1 & MINKT[r](x, 1t) = 1

]
≥

(
1− 1

6

)
− 1

2
=

1

3
.

□
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We will supply Tt to the algorithm of Corollary 4.28; then the algorithm will
output some certificate under the oracle Tt. The next lemma enables us to convert
the certificate to a certificate under the oracle T .

Lemma 4.31. There exists some polynomial poly such that KT
t3(x) ≤ K

Tt1
t2

(x) +
O(log log t1) for any x ∈ {0, 1}∗, any oracle T ⊆ {0, 1}∗ and any t1, t2, t3 ∈ N
such that t1 is a power of 2 and t3 ≥ poly(t1, t2). Moreover, given t1 ∈ N and

a certificate for K
Tt1
t2

(x) ⪯ s, one can efficiently find a certificate for KT
t3(x) ⪯

s+O(log log t1).

Proof. Consider the following algorithm M with oracle access to T : Given input
d0 ∈ {0, 1}∗ and log t1 ∈ N, simulate and output UTt1 (d0). Here, the oracle Tt1 is
simulated as follows: Given query q to Tt1 , convert it into a query (q, 1t1) to T .

If d0 is a certificate for K
Tt1
t2

(x) ⪯ |d0|, then MT (d0, log t1) outputs x in time
poly(t1, t2). Thus (M,d0, log t1) is a certificate for Kt3(x) ⪯ |d0| + O(log log t1).

□

In order to obtain a zero-error randomized algorithm for GapMINKT, we
prove that a Kolmogorov-random string can be used in order to derandomize
randomized algorithms. This can be proved by using the Nisan-Wigderson gen-
erator or the Impagliazzo-Wigderson generator (cf. [NW94, IW97, KvM02]); how-
ever, for our purpose, there is a much simpler construction of a pseudorandom
generator based on Lemma 4.25. (Our construction is similar to the Sudan-
Trevisan-Vadhan pseudorandom generator [STV01].)

Lemma 4.32. For any constant γ > 0, there exist polynomials pt, pn and a
constant c ∈ N satisfying the following: For all large m ∈ N, let t := pt(m), n :=

pn(m), and w ∈ {0, 1}n be a string such that Kt(w) ≥ nγ. Then, NW
Encn,ϵ(w)
m,d is

a pseudorandom generator secure against a circuit of size m, where ϵ := 1/4m
and d := c log(nm); that is,∣∣∣∣ Pr

z∼{0,1}d

[
T (NW

Encn,ϵ(w)
m,d (z)) = 1

]
− Pr

u∼{0,1}m

[
T (u) = 1

]∣∣∣∣ < 1

2
,

for any circuit T of size m.

Proof. Let ℓ := log |Encn,ϵ(w)| = O(log(nm)). Let c be large enough so that

exp(ℓ2/d) ≤ (nm)γ/2 for all large m ∈ N. By Lemma 4.25, if NW
Encn,ϵ(w)
m,d is not a

pseudorandom generator secure against some circuit T of size m, then KT
t (w) ≤

exp(ℓ2/d) ·m+ d+O(log(nm)) ≤ (nm)γ/2 ·m+O(logm) for t := poly(n,m, d).
Since the circuit T can be described by a string of length O(m logm), we obtain
Kt(w) ≤ (nm)γ/2 · m + O(m logm). Thus we have Kt(w) < nγ for some suffi-
ciently large polynomials n := pn(m) and t := pt(m) ≥ poly(n,m, d), which is a
contradiction. □

We arrive at the following search to average-case reduction.

Theorem 4.33 (Restatement of Theorem 4.9). Let r : N → N be any function
such that for some constant c > 0, for all large n ∈ N, n− c

√
n log n ≤ r(n) < n.

Assume that (MINKT[r],DKT) ∈ Avg1/6mP. Then, for some function σ(n, s) =

s+O
(
(log n)

√
s+(log n)2

)
and some polynomial τ , there exists a zero-error ran-

domized polynomial-time algorithm solving the search version of Gapσ,τMINKT.
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Proof. We first present a randomized algorithm that may err. By Lemma 4.29,
there exists a language T in P such that T=n

t is a 1
3 -dense subset of Rt[r] for all

large n ∈ N and every t ∈ N. Applying Corollary 4.28 to Tt1 and δ−1 = 3, we
obtain a randomized polynomial-time oracle machine that, on input x of length

n ∈ N, 1t, and with oracle access to Tt1 , outputs a certificate d0 for K
Tt1
t2

(x) ⪯
σ(n,Kt(x)) with high probability, for t1 ≥ t+poly(n) and t2 ≥ poly(n). On input
(x, 1t), we fix t1 to the minimum integer such that t1 is a power of 2 and t1 ≥
t + poly(n). By Lemma 4.31, we can efficiently transform the certificate d0 into
a certificate d1 for KT

t3(x) ⪯ σ(n,Kt(x)) + O(log log t1), where t3 ≥ poly(t1, t2).
Since T is solvable by a deterministic polynomial-time machine, by Lemma 4.16,
we can efficiently transform the certificate d1 into a certificate d2 for Kt4(x) ⪯
σ(n,Kt(x)) + O(log log t1), where t4 ≥ poly(t3). Thus we obtain a randomized
polynomial-time algorithm that, on input (x, 1t), outputs a certificate d2 for
Kt4(x) ⪯ σ(|x|,Kt(x))+O(log log t1) where t1 = Θ(t+poly(|x|)) and t4 ≥ τ(|x|, t)
for some polynomial τ .

Note that there is an additive term O(log log t1); however, we may assume
without loss of generality that O(log log t1) = O(log n), which can be absorbed
into σ(n,Kt(x)). Indeed, otherwise we have t1 ≥ 2n, and hence t ≥ Ω(2n). In
such a case, we can exhaustively search all the description in time poly(t) = 2O(n),
and we can find the shortest description.

Now we make the randomized algorithm zero-error. Let M denote the ran-
domized algorithm solving the search version of Gapσ,τMINKT. Fix any input
(x, 1t). Let k,m, t′ be some large polynomials in |x| and t that will be chosen
later. Pick w ∼ {0, 1}k uniformly at random, and check if w ∈ T=k

t′ ; note that
w is r-random since T=k

t′ is a subset of Rt′ [r]. Since T=n
t′ is dense, we can find

such an r-random string with high probability; if no r-random string is found,
then output ⊥ and halt (i.e., the zero-error algorithm fails). Using w as a source

of a hard function, we construct the secure pseudorandom generator NW
Enck,ϵ(w)
m,d

given in Lemma 4.32. Since the seed length of the pseudorandom generator
is O(log(km)), we can enumerate all the seeds z in polynomial time; we use

NW
Enck,ϵ(w)
m,d (z) ∈ {0, 1}m as the source of randomness of the randomized algo-

rithmM . Output the shortest description that is found by exhaustively searching
all the seeds.

To prove the correctness, we define some statistical test T . Fix any input
(x, 1t), and let CM be a polynomial-size circuit that takes random bits u and
simulates the randomized algorithm M on input (x, 1t) with random bits u. Let
s := σ(|x|,Kt(x)), t

′′ := τ(|x|, t), and let V be a polynomial-size circuit that
takes a description d0 and accepts iff d0 is a certificate for Kt′′(x) ⪯ s. Define a
statistical test T as T (u) := V (CM (u)). Let m be large enough so that |T | ≤ m
(for every choice of s); define k := pn(m) and t′ := pt(m) where pn and pt are
polynomials in Lemma 4.32. Since M finds a certificate with high probability,
we have Pru∼{0,1}m [T (u) = 1] ≥ 1

2 . Thus by Lemma 4.32, there exists some seed

z ∈ {0, 1}d such that CM (NW
Enck,ϵ(w)
m,d (z)) outputs a certificate for Kt′′(x) ⪯ s,

as desired. □

Corollary 4.34. In the following list, we have 1 ⇒ 2 ⇒ 3 ⇒ 4. Moreover, under
the plausible assumption that Promise-ZPP = Promise-P, we also have 4 ⇒ 2.

1. DistNP ⊆ AvgP.

2. (MINKT[r],DKT) ∈ Avg1/6mP for some r : N → N such that n −
O
(√
n log n

)
≤ r(n) < n for all large n ∈ N.
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3. There exists a zero-error randomized polynomial-time algorithm solving the
search version of Gapσ,τMINKT, for some σ(n, s) = s + O

(
(log n)

√
s +

(log n)2
)
and some polynomial τ(n, t).

4. Gapσ,τMINKT ∈ Promise-ZPP for some σ(n, s) = s + O
(
(log n)

√
s +

(log n)2
)
and some polynomial τ(n, t).

Proof. (1 ⇒ 2) For r(n) := n−1, we have (MINKT[r],DKT) ∈ DistNP ⊆ AvgP ⊆
Avg1/6mP.

(2 ⇒ 3) This is exactly equivalent to Theorem 4.9.
(3 ⇒ 4) This follows from Fact 4.15.
(4 ⇒ 2 if Promise-ZPP = Promise-P) Under the derandomization assumption,

we have Gapσ,τMINKT ∈ Promise-ZPP = Promise-P. Let c be a constant such
that σ(n, s) ≤ s+ c ·

(
(log n)

√
s+ (log n)2

)
for all large n, s ∈ N. We claim that

(MINKT[r],DKT) ∈ AvgδP for r(n) := n− 2c(log n)
√
n and δ(m) := 1/6m.

By the assumption, there exists a deterministic polynomial-time algorithmM
that distinguishes Yes and No instances of Gapσ,τMINKT. Using the algorithm,
we define an errorless heuristic algorithm A solving MINKT[r] as follows: On in-
put (x, 1t), if the input is short, i.e., |x| = O(1), then check if (x, 1t) ∈ MINKT[r]
by an exhaustive search, and output the answer. Otherwise, set s := r(|x|) and
output 0 if M(x, 1t, 1s) rejects; otherwise, output ⊥.

We claim that A is errorless. Since A does not output 1 on inputs of large
length, it suffices to claim that M(x, 1t, 1s) accepts for any (x, 1t) ∈ MINKT[r].
Since Kt(x) < r(|x|) = s, (x, 1t, 1s) is a Yes instance of Gapσ,τMINKT; thus
M(x, 1t, 1s) accepts.

We claim that A succeeds on a large fraction of inputs. Fix any large n ∈ N
and any t ∈ N. For any x ∈ {0, 1}n, A(x, 1t) outputs ⊥ only if (x, 1t, 1r(n)) is not
a No instance of Gapσ,τMINKT. Hence,

Pr
x∼{0,1}n

[
A(x, 1t) = ⊥

]
≤ Pr

x∼{0,1}n

[
Kτ(n,t)(x) ≤ σ(n, r(n))

]
≤ 2−n+σ(n,r(n))+1 ≤ 1

6
,

where the last inequality holds for all large n. Thus, for every m ∈ N, we obtain

Pr
(x,1t)∼DKT

m

[
A(x, 1t) = ⊥

]
= E

n∼[m]

[
Pr

x∼{0,1}n

[
A(x, 1m−n) = ⊥

] ]
≤ 1

6
.

□

4.4 Worst-Case to Average-Case Reduction for MCSP

In this section, we establish a worst-case and average-case equivalence for
approximating a minimum circuit size. We start with the definition of randomized
errorless heuristic algorithms.

Definition 4.35 (Randomized Errorless Heuristics). Let (L,D) be a distribu-
tional problem and δ : N → [0, 1]. A randomized algorithm A is said to be a
randomized errorless heuristic algorithm with failure probability δ for (L,D) if

• PrA
[
A(x) ̸∈ {L(x),⊥}

]
≤ 1

8 for every x ∈ {0, 1}∗, and

• Prx∼Dm

[
PrA[A(x) = ⊥] > 1

8

]
≤ δ(m) for every m ∈ N.
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An input x such that PrA[A(x) = ⊥] > 1
8 is called a hard instance for A.

We say that (L,D) ∈ AvgδBPP if (L,D) admits a randomized polynomial-
time errorless heuristic algorithm with failure probability δ. Define AvgBPP :=∩

c∈N Avgn−cBPP.

Note that there are two types of randomness in this definition. One is the ran-
domness of the BPP algorithm A, and the other is the randomness of the input
x. The error 1

8 that comes from the former can be reduced by the standard
technique of repetition, and hence the choice 1

8 is simply for the convenience.
We observe that an errorless heuristic algorithm for MCSP[s] is essentially

equivalent to BPP-natural properties useful against SIZE(s(n)). The main idea is
that since the number of Yes instances of MCSP[s] is small, an errorless heuristic
algorithm must succeed on a large fraction of No instances of MCSP[s], which
induces a natural property.

Lemma 4.36. Let s : N → N be any function such that s(n) = o(2n/n) for n ∈ N.
Let γ, δ : N → [0, 1] be functions.

1. If there exists a BPP-natural property useful against SIZE(s(n)) with large-
ness γ, then (MCSP[s],U) ∈ AvgδBPP, where δ(2

n) := 1− γ(n) for n ∈ N.

2. If (MCSP[s],U) ∈ AvgδBPP, then there exists a BPP-natural property useful
against SIZE(s(n)) with largeness γ where γ(n) = 1 − δ(2n) − 2−2n−1

for
n ∈ N.

Proof. First part: Let (ΠYes,ΠNo) be a BPP-natural property, and M be a BPP
algorithm solving (ΠYes,ΠNo) (with error ≤ 1

8). Define a randomized algorithm
A as follows: On input f , run M on input f and reject if M accepts, and output
⊥ otherwise. We claim that A is a randomized errorless heuristic algorithm for
(MCSP[s],U).

We first claim that the fraction of hard instances for A is small. Indeed, f
is a hard instance for A only if PrA[A(f) = ⊥] = PrM [M(f) = 0] > 1

8 , which
implies that f ̸∈ ΠYes. Thus the fraction of hard instances f ∈ {0, 1}2n is at
most 1− γ(n).

Next, we claim that, for every input f , A outputs a wrong answer for MCSP[s]
with probability at most 1

8 . Since A never accepts, this happens only ifM accepts
and f ∈ MCSP[s], which implies that f ∈ ΠNo and hence PrA[A(f) = 0] =
PrM [M(f) = 1] ≤ 1

8 .

Second part: Given a randomized errorless heuristic algorithm A for
(MCSP[s],U), define a randomized algorithm M so that M(f) := 0 if A(f) = 1
or A(f) = ⊥; otherwise M(f) := 1. We claim that M accepts some natural
property (ΠYes,ΠNo) with error ≤ 1

4 .
Since A is errorless, for any f ∈ MCSP[s], we have PrM [M(f) = 1] =

PrA[A(f) = 0] ≤ 1
8 ; thus M satisfies the usefulness. To see the largeness,

consider any instance f that is not a hard instance for A. We claim that
PrA[A(f) = MCSP[s](f)] ≥ 3

4 : This is because A outputs ⊥ with probability
at most 1

8 since f is not hard for A, and moreover A outputs a wrong answer
with probability at most 1

8 . Therefore, M accepts f with probability at least 3
4 if

f is not a hard instance for A and f ̸∈ MCSP[s]. The fraction of such instances
f ∈ {0, 1}2n is at least 1 − δ(2n) − s(n)O(s(n)) · 2−2n ≥ γ(n), for all large n ∈ N.

□

We now state the main result of this section.

49



Theorem 4.37. The following are equivalent.

1. GapϵMCSP ∈ Promise-BPP for some ϵ > 0.

2. (MCSP[2ϵn],U) ∈ AvgBPP for some ϵ > 0.

3. (MCSP[2ϵn],U) ∈ AvgδBPP for some constants ϵ, δ ∈ (0, 1).

4. There exists a BPP-natural property useful against SIZE(2ϵn) with largeness
γ, for some ϵ ∈ (0, 1) and γ(n) := 1− 2−2n−1

.

5. There exists a BPP-natural property useful against SIZE(2ϵn) with largeness
γ, for some constants ϵ, γ ∈ (0, 1).

6. There exists a randomized polynomial-time algorithm solving the search ver-
sion of GapϵMCSP, for some ϵ > 0.

Proof. (5 ⇔ 3 and 4 ⇒ 2) This follows from Lemma 4.36.
(2 ⇒ 3) Obvious.
(6 ⇒ 1) This follows from Fact 2.11.
(1 ⇒ 4) Let A be a randomized polynomial-time algorithm solving

GapϵMCSP. Define A′ as the following algorithm: On input f : {0, 1}n → {0, 1},
run A on input (f, s) for s := 2ϵn/2, and accept iff A rejects. We claim
that A′ accepts some natural property useful against SIZE(2ϵn/2). Indeed, if
size(f) ≤ 2ϵn/2, then (f, s) is a Yes instance of GapϵMCSP, and thus A′(f)
rejects with high probability. Hence A′ satisfies the usefulness. On the other
hand, A′ accepts any No instance (f, s) of GapϵMCSP, that is, any (f, s) such
that size(f) > 2(1−ϵ)n · s = 2(1−ϵ/2)n. Since the fraction of functions f such that

size(f) ≤ 2(1−ϵ/2)n is at most 2O(n2(1−ϵ/2)n)−2n ≤ 2−2n/2, A′ satisfies the largeness
of density 1− 2−2n/2.

(5 ⇒ 6) This is the main technical part, which can be proved by using a
generic reduction from learning to natural properties [CIKK16]. We prove this
in the next Theorem 4.38. □

Theorem 4.38. If there exists a BPP-natural property useful against SIZE(2ϵ0n)
with largeness δ0 for some constants ϵ0, δ0 ∈ (0, 1), then there exists a randomized
polynomial-time algorithm solving the search version of Gapϵ1MCSP for some
ϵ1 > 0.

For functions f, g : {0, 1}n → {0, 1} and ϵ ∈ [0, 1], we say that f is ϵ-close to g
if dist(f, g) ≤ ϵ. The following is the main result of [CIKK16], which established
a generic reduction from learning an ϵ-close function to natural properties.

Lemma 4.39 (Carmosino, Impagliazzo, Kabanets, and Kolokolova [CIKK16]).
For every ℓ ≤ n ∈ N, ϵ > 0, there exists a “black-box generator” Gℓ,n,ϵ satisfying
the following.

• Gℓ,n,ϵ maps a function f : {0, 1}n → {0, 1} to a function Gf
ℓ,n,ϵ : {0, 1}

m →
{0, 1}2ℓ for some m ∈ N, and

• size(Gf
ℓ,n,ϵ(z)) ≤ poly(n, 1/ϵ, size(f)) for all z ∈ {0, 1}m, where we regard

Gf
ℓ,n,ϵ(z) as a function on ℓ-bit inputs.
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Moreover, there exists a randomized polynomial-time oracle machine (a “re-
construction algorithm”) satisfying the following specification.

Inputs: Oracle access to a function f : {0, 1}n → {0, 1}, parameters n, ϵ−1, 2ℓ ∈ N
represented in unary, and a circuit D on 2ℓ-bit inputs.

Promise: We assume that D is a statistical test for Gf
ℓ,n,ϵ with advantage δ0. That

is, ∣∣∣∣∣ Pr
z∼{0,1}m

[
D(Gf

ℓ,n,ϵ(z)) = 1
]
− Pr

w∼{0,1}2ℓ

[
D(w) = 1

]∣∣∣∣∣ ≥ δ0,

for some universal constant δ0 > 0.

Output: A circuit C that is ϵ-close to f . (In particular, the size of C is at most
poly(n, ϵ−1, 2ℓ, |D|)).

Proof of Theorem 4.38. Suppose that the truth table of f : {0, 1}n → {0, 1} is
given as input. Let u(ℓ) := 2ϵ0ℓ denote the usefulness parameter, and let s :=
size(f).

First, note that any circuit C that is ϵ-close to f can be converted into a circuit
C ′ computing f exactly such that |C ′| ≤ |C|+ ϵ ·2n ·n+O(1). Indeed, since there
are at most ϵ2n inputs on which f and C disagree, we can define a DNF formula
φ with ϵ2n terms such that φ outputs 1 iff f and C disagree; then we may define
C ′(x) := C(x) ⊕ φ(x) so that C ′(x) = f(x) for every x ∈ {0, 1}n. Therefore,
the output of the reconstruction algorithm of Lemma 4.39 can be converted to a
circuit C ′ computing f exactly such that |C ′| ≤ poly(n, 1/ϵ, 2ℓ, |D|) + ϵ · 2n · n.

We now construct a statistical test for Gf
ℓ,n,ϵ using a BPP-natural property

and Adleman’s trick [Adl78] (for proving BPP ⊆ P/poly). Let (ΠYes,ΠNo) be
a BPP-natural property and M be a BPP algorithm solving (ΠYes,ΠNo). Fix
any ℓ ∈ N. By a standard error reduction for BPP, we may assume without
loss of generality that the error probability of M is at most 2−2L on any inputs
of length L := 2ℓ. Pick a string r of length poly(ℓ) uniformly at random, and
hardwire r into M as the source of internal randomness. Then, by the union
bound, with probability at least 1 − 2−L over the choice of r, M(·; r) computes
some natural property on input length L, i.e.,M(w; r) = 1 iff w ∈ ΠYes, for every
w ∈ (ΠYes ∪ΠNo)

=L. By a standard translation from a machine to a circuit, we
convert M(·; r) to a circuit Dℓ of size poly(ℓ).

We claim that Dℓ is a statistical test for Gf
ℓ,n,ϵ if size(Gf

ℓ,n,ϵ(z)) ≤ u(ℓ) for

every z. Indeed, by the usefulness of natural properties, we have Gf
ℓ,n,ϵ(z) ∈ ΠNo;

thus Dℓ(G
f
ℓ,n,ϵ(z)) = 0. On the other hand, by the largeness of natural properties,

we have |(ΠYes)
=L| ≥ δ02

L, and thus Prw∼{0,1}L [Dℓ(w) = 1] ≥ δ0. Thus Dℓ is a

statistical test for Gf
ℓ,n,ϵ.

Here is an algorithm solving the search version of Gapϵ1MCSP. For every
ℓ ∈ [n] and every ϵ−1 ∈ [2n], run the reconstruction algorithm of Lemma 4.39
with inputs f, n, ℓ, 2ℓ, and Dℓ, and obtain a circuit C approximating f . Convert
C to C ′ computing f exactly as explained above. Output the minimum circuit
C ′ computing f found in this way.

It remains to claim that, for some choice of ℓ, ϵ, the reconstruction algorithm
outputs a small circuit. Let c > 0 be a constant such that Gf

ℓ,n,ϵ(z) ≤ (ns/ϵ)c and

|C ′| ≤ (n2ℓ/ϵ)c + ϵ2nn for all large n, ℓ, ϵ−1. In order for Dℓ to be a statistical

test for Gf
ℓ,n,ϵ, we need (ns/ϵ)c ≤ u(ℓ) = 2ϵ0ℓ; thus we set 2ℓ := (ns/ϵ)c/ϵ0 . To

make |C ′| small, we set ϵ := 2−ϵ1ns where ϵ1 := (c+ c2/ϵ0 + 1)−1. Then we have
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|C ′| ≤ (n/ϵ)c(n2ϵ1n)c
2/ϵ0 + 2(1−ϵ1)nns ≤ nO(1)2(1−ϵ1)ns ≤ 2(1−ϵ1/2)ns for all large

n ∈ N. □

4.5 Open Problems

We conclude this chapter by mentioning several open questions. One obvious
question is whether the approximation error of Gapσ,τMINKT can be improved.

Open Question 4.40. Can the approximation error of Gapσ,τMINKT in The-
orem 4.9 be improved?

Another question is whether a similar small approximation error can be
achieved when we assume AvgZPP algorithms (instead of AvgP) for MINKT. A
naive approach is to have a description that incorporates random bits of AvgZPP
algorithms, but it spoils the quality of the approximation.

Open Question 4.41. What approximation error can be achieved for
Gapσ,τMINKT assuming DistNP ⊆ AvgZPP?

Finally and most importantly, we crucially used the fact that the algorithm
does not make any error. Is it possible to obtain a similar non-black-box worst-
case to average-case reduction for HeurP (i.e., heuristic algorithms that may err)?

Open Question 4.42. Does DistNP ⊆ HeurP imply that Gapσ,τMINKT or
GapϵMCSP is easy?
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Chapter 5

On Black-box Reductions to Dense Subsets

of Random Strings

In Chapter 4, we presented non-black-box reductions from an approximation
version of MDLPs to its average-case version. As mentioned before, there is
a line of work devoted to simulating black-box reductions by AM ∩ coAM. A
natural question is whether a similar technique can be used to show MDLPs
are in NP ∩ coAM (and in particular refute average-case conjectures explored in
Chapter 3.)

Thus in this chapter we investigate black-box reductions to dense subsets of
random strings. As a main result, we show how to simulate randomized non-
adaptive black-box reductions to dense subsets of (exponential-time computable)
random strings by AM ∩ coAM. We also show an upper bound of SNP

2 in the
case of reductions to dense subsets of random strings defined with respect to re-
source unbounded Kolmogorov complexity. These results further strengthen the
evidence that the reductions of Chapter 4 are inherently non-black-box.

5.1 Background: Limits of Black-Box Reductions

A line of work was devoted to understanding why it is difficult to find a prob-
lem in NP whose average-case hardness is based on the worst-case complexity of
an NP-complete problem. Given our poor understanding of unconditional lower
bounds, the most prevailing proof technique in complexity theory for showing
intractability of a problem is by means of reductions. Moreover, almost all re-
duction techniques are black-box in the sense that, given computational problems
A and B, a reduction R solves A given any oracle (i.e. a black-box algorithm) solv-
ing B. The technique of reductions led to the discovery of tons of NP-complete
problems computationally equivalent to each other — in the worst-case sense.
On the other hand, it turned out that the power of black-box reductions is lim-
ited for the purpose of showing intractability of average-case problems based on
worst-case problems.

Building on the work of Feigenbaum and Fortnow [FF93], Bogdanov and Tre-
visan [BT06b] showed that if a worst-case problem L is reducible to some average-
case problem in NP via a nonadaptive black-box randomized polynomial-time
reduction, then L must be in NP/poly∩coNP/poly. This in particular shows that
the hardness of any average-case problem in NP cannot be based on the worst-
case hardness of an NP-complete problem via such a reduction technique (unless
the polynomial-time hierarchy collapses [Yap83]). Akavia, Goldreich, Goldwasser
and Moshkovitz [AGGM06, AGGM10] showed that, in the special case of a non-
adaptive reduction to the task of inverting a one-way function, the upper bound
of [BT06b] can be improved to AM∩coAM, thereby removing the advice “/poly”.
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Bogdanov and Brzuska [BB15] showed that even a general (i.e. adaptive) reduc-
tion to the task of inverting a size-verifiable one-way function cannot be used
for any problem outside AM ∩ coAM. Applebaum, Barak, and Xiao [ABX08]
studied black-box reductions to PAC learning, and observed that the technique
of [AGGM06] can be applied to (some restricted type of) a black-box reduction
to the task of inverting an auxiliary-input one-way function.

The main question addressed in this chapter is whether the technique used
in Chapter 4 is inherently non-black-box or not. As reviewed above, there
are several results and techniques developed in order to simulate black-box re-
ductions by AM ∩ coAM algorithms. Why can’t we combine these techniques
with the (seemingly non-black-box) reductions of Chapter 4 in order to prove
GapϵMCSP ∈ coAM and refute average-case complexity conjectures explored in
Chapter 3 such as Rudich’s conjecture and O’Donnell’s conjecture? Note that
refuting these conjectures would significantly change our common belief about
average-case complexity and the power of nondeterministic algorithms. We em-
phasize that while the proof of Chapter 4 seems to yield only non-black-box
reductions, it does not necessarily mean that there is no alternative proof that
yields a black-box reduction; moreover, the techniques of simulating black-box
reductions could be adapted for the proof of Chapter 4.

For this purpose, we aim at improving our understanding of the limits of black-
box reductions. We summarize a landscape around average-case complexity in
Figure 5.1.

∃ PRG

∃ HSG

NP ⊈ BPP

DistNP ⊈ AvgBPP

DistNP ⊈ HeurBPP ∃ OWF

∃ AIOWF

∃ Gap𝜖MCSP ∉ BPP

⟹

⟸ ⟸

⟸ ⟺

⟹
⟹

⟹

⟹

[BT06]
[AGGM06, BB15]

Chapter 4
Chapter 3

Figure 5.1: Average-case complexity and limits of black-box reductions. “A →
B” means that there is no black-box reduction technique showing “A⇒ B” under
reasonable complexity theoretic assumptions. The security of all cryptographic
primitives is with respect to an almost-everywhere polynomial-time randomized
adversary.

As indicated in Figure 5.1, we note that the reductions of Chapter 4 can be
seen as a reduction to a problem of avoiding a hitting set generator. Indeed,
GapϵMCSP ̸∈ BPP implies the nonexistence of natural properties, which yields

a hitting set generator Gint = {Gint
2n : {0, 1}Õ(2ϵ

′n) → {0, 1}2n}n∈N (i.e., the circuit
interpreter defined in Definition 2.18) for some constant ϵ′ > 0.

We thus continue the study of the limits of black-box reductions to a distin-
guisher for a hitting set generator, initiated by Gutfreund and Vadhan [GV08].
Motivated by questions about whether derandomization is possible under uni-
form assumptions (cf. [IW01, TV07]), they investigated what can be reduced to
any oracle avoiding a hitting set generator in a black-box way. They showed
that any polynomial-time randomized nonadaptive black-box reductions to any
oracle avoiding an exponential-time computable hitting set generator G can be
simulated in BPPNP, which is a trivial upper bound when G is polynomial-time

54



computable.

5.2 Our Results

We significantly improve this upper bound to AM∩coAM, thereby putting the
study of hitting set generators into the landscape of black-box reductions within
NP (cf. Figure 5.1). We also show a uniform upper bound of SNP

2 even if a hitting
set generator G is not computable.

Theorem 5.1. Let G = {Gℓ : {0, 1}s(ℓ) → {0, 1}ℓ}ℓ∈N be any (not necessarily
computable) hitting set generator such that s(ℓ) ≤ (1−Ω(1))ℓ for all large ℓ ∈ N.
Then, ∩

R

BPPR
∥ ⊆ NP/poly ∩ coNP/poly ∩ SNP

2 ,

where the intersection is taken over all oracles R that (1 − 1/poly(ℓ))-avoid G.
Moreover, if Gℓ is computable in 2O(ℓ), then we also have∩

R

BPPR
∥ ⊆ AM ∩ coAM.

Compared to the line of work showing limits of black-box reductions within
NP, a surprising aspect of Theorem 5.1 is that it generalizes to any function
G that may not be computable. Indeed, almost all the previous results [FF93,
BT06b, AGGM06, BB15, ABX08] crucially exploit the fact that a verifier can
check the correctness of a certificate for an NP problem; thus a dishonest prover
can cheat the verifier only for one direction, by not providing a certificate for
a Yes instance. In our situation, a verifier cannot compute G and thus cannot
prevent dishonest provers from cheating in this way. At a high level, our technical
contributions are to overcome this difficulty by combining the ideas of Gutfreund
and Vadhan [GV08] with the techniques developed in [FF93, BT06b].

We remark that Theorem 5.1 improves all the previous results mentioned
before in some sense. Compared to [BT06b], our results show that the advice
“/poly” is not required in order to simulate black-box reductions to any ora-
cle avoiding an exponential-time computable hitting set generator. Compared
to [AGGM06, ABX08], our results “conceptually” improve their results because
the existence of one-way functions imply the existence of hitting set generators;
on the other hand, since the implication goes through the adaptive reduction
of [HILL99], technically speaking, our results are incomparable with their re-
sults. Similarly, our results conceptually improve the result of Chapter 8 (which
concerns oracle-independent reductions), but these are technically incompara-
ble, mainly because the implication goes through the non-black-box reduction of
Chapter 4.

5.2.1 Why are the Reductions of Chapter 4 Non-black-box?

Based on Theorem 5.1, we now argue that the reductions of Chapter 4 are
inherently non-black-box in a certain formal sense: The reason is that the idea of
Chapter 4 can be applied to not only time-bounded Kolmogorov complexity but
also any other types of Kolmogorov complexity, including resource-unbounded
Kolmogorov complexity. Therefore, if this generalized reduction could be made
black-box, then (as outlined below) by Theorem 5.1 we would obtain a finite
algorithm SNP2 that approximates resource-unbounded Kolmogorov complexity,
which is a contradiction.
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To give one specific example, we briefly outline how the reductions of Chap-
ter 4 can be generalized to the case of Levin’s Kt-complexity [Lev84]: Recall that,
for an efficient universal Turing machine U , the Kt-complexity of a string x is
defined as

Kt(x) := min{|d|+ log t | U(d) outputs x within t steps }.

We define a hitting set generator G as G(d, t) := U(d) when U(d) halts within
t steps, which is computable in exponential time. Note that Im(G) contains all
strings with low Kt-complexity. Given an efficient algorithm D that γ-avoids G,
we can approximate Kt(x) by the following algorithm: Fix any input x. Take any
list-decodable code Enc, and let NWEnc(x)(z) denote the Nisan-Wigderson gener-
ator [NW94] instantiated with Enc(x) as the truth table of a hard function, where
z is a seed of the generator. Then check whether the distinguishing probability
|Ez,w[D(NWEnc(x)(z)) − D(w)]| is large or small by sampling, whose outcome
tells us whether Kt(x) is small or large, respectively. Indeed, if the distinguishing
probability is large, then by using the security proof of the Nisan-Wigderson gen-
erator, we obtain a short description (with oracle access to D) for x. Conversely,
if Kt(x) is small, then since D γ-avoids G, the distinguishing probability is at
least γ. Now, if we could make this analysis work for any oracle that γ-avoids
G, then by Theorem 5.1 we would put a problem of approximating Kt(x) in AM,
which is not possible unless EXP = PH. (Note that the minimization problem of
Kt is EXP-complete under NP reductions [ABK+06b].)

5.2.2 Proof Overview

We outline our proof strategy for Theorem 5.1 below. Suppose that we have
some reduction from L to any oracle R that breaks a hitting set generator G. Let
Q denote the query distribution that a reduction makes.

As a warm-up, consider the case when the support supp(Q) of Q is small (i.e.
|supp(Q)∩{0, 1}ℓ| ≪ 2ℓ for any length ℓ ∈ N). In this case, we can define an oracle
R1 so that R1 := {0, 1}∗ \ supp(Q) \ Im(G); this breaks the hitting generator G
becauseR1 is large whereasR1 avoids the image ofG (which violates the definition
of G being a hitting set generator). Therefore, we can simulate the reduction by
simply answering all the queries by saying “No”; hence such a reduction can be
simulated in BPP.

In general, we cannot hope that supp(Q) is small enough. To generalize
the observation above, let us recall the notion of α-heaviness [BT06b]: We say
that a query q is α-heavy (with respect to Q) if the query q is α times more
likely to be sampled under Q than the uniform distribution on {0, 1}|q|; that is,
Prw∼Q[w = q] ≥ α2−|q|. Now we define our new oracle R2 := {0, 1}∗ \ { q ∈
{0, 1}∗ | q : α-heavy } \ Im(G), which can be again shown to break G because the
fraction of α-heavy queries is at most 1/α (≪ 1 ).

The problem now is that it is difficult to simulate the new oracle R2; it

appears that, given a query q, we need to test whether q
?
∈ Im(G), which is not

possible in AM ∩ coAM. However, it turns out that we do not need to test it,
as we explain next: Observe that the size of Im(G) is very small; it is at most
2s(ℓ)

(
≪ 2ℓ

)
. Thus, the probability that a query q is in Im(G) and q is not

α-heavy (i.e. q is rarely queried) is at most α · 2s(ℓ)−ℓ, where ℓ is the length of
q. As a consequence, the reduction cannot “distinguish” the oracle R2 and a
new oracle R3 := {0, 1}∗ \ { q ∈ {0, 1}∗ | q : α-heavy }; hence we can simulate the

reduction if, given a query q, we are able to decide whether q
?
∈ R3 in AM∩coAM.
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This task, however, still appears to be difficult for AM ∩ coAM; indeed, at
this point, Gutfreund and Vadhan [GV08] used the fact that the approximate
counting is possible in BPPNP, and thereby simulated the oracle R3 by BPPNP.

Our main technical contribution is to develop a way of simulating the reduc-
tion to R3. First, note that the lower bound protocol of Goldwasser and Sipser
[GS86] enables us to give an AM certificate for α-heaviness; we can check, given
a query q, whether q is α(1 + ϵ)-heavy or α-light for any small error parameter
ϵ > 0. Thus, we have an AM protocol for {0, 1}∗ \ R3 for every query q (except
for α(1± ϵ)-heavy and light queries).

If, in addition, we had an AM protocol for R3, then we would be done; un-
fortunately, it does not seem possible in general. The upper bound protocol of
Fortnow [For89] does a similar task, but the protocol can be applied only for a
limited purpose: we need to keep the randomness used to generate a query q ∼ Q
from being revealed to the prover. When the number of queries of the reduction
is limited to 1, we may use the upper bound protocol in order to give an AM cer-
tificate for R3; on the other hand, if the reduction makes two queries (q1, q2) ∼ Q,
we cannot simultaneously provide AM certificates of the upper bound protocol
for both of q1 and q2, because the fact that q1 and q2 are sampled together may
reveal some information about the private randomness. To summarize, the upper
bound protocol works only for the marginal distribution of each query, but does
not work for the joint distribution of several queries.

That is, what we can obtain by using the upper bound protocol is informa-
tion about each query. For example, the heavy-sample protocol of Bogdanov
and Trevisan [BT06b] (which combines the lower and upper bound protocol and
sampling) estimates, in AM∩ coAM, the probability that a query q sampled from
Q is α-heavy.

Our idea is to overcome the difficulty above by generalizing the Feigenbaum-
Fortnow protocol [FF93]. Feigenbaum and Fortnow developed an AM ∩ coAM
protocol that simulates a nonadaptive reduction to an NP oracle R, given as
advice the probability that a query is a positive instance of R. We generalize the
protocol in the case when the oracle {0, 1}∗ \ R3 is solvable by AM on average
(which can be done by the lower bound protocol [GS86]), and given as advice
the probability that a query q is in {0, 1}∗ \ R3 (which can be estimated by the
heavy-sample protocol [BT06b]):

Theorem 5.2 (Generalized Feigenbaum-Fortnow Protocol; informal). Suppose
that M is a randomized polynomial-time nonadaptive reduction to oracle R whose
queries are distributed according to Q, and that R is solvable by AM on average
(that is, there exists an AM protocol ΠR such that, with probability 1− 1/poly(n)
over the choice of q ∼ Q, the protocol ΠR computes R on input q). Then, there
exists an AM∩coAM protocol ΠM such that, given a probability p∗ ≈ Prq∼Q[q ∈ R]
as advice, the protocol ΠM simulates the reduction M with probability at least
1− 1/poly(n).

Organization. The rest of this chapter is organized as follows. After review-
ing necessary background in Section 5.3, we show that a reduction only with
short queries can be simulated by Sp2 in Section 5.4. We present the general-
ized Feigenbaum-Fortnow protocol in Section 5.5; then the proof of Theorem 5.1
is completed in Section 5.6 by showing that long queries can be simulated by
AM ∩ coAM.
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5.3 Preliminaries

Interactive Proof Systems

AM is the class of languages L that can be accepted by some polynomial-time
two-round Arthur-Merlin protocol; that is, there exists a polynomial-time Turing
machine V (called an AM verifier) such that

• (Completeness) if x ∈ L then Prr[V (x, y, r) = 1 for some y] ≥ 2
3 , and

• (Soundness) if x ̸∈ L then Prr[V (x, y, r) = 1 for some y] ≤ 1
3 .

For our purpose, it is convenient to use the following characterization of AM ∩
coAM.

Fact 5.3. Let L ⊆ {0, 1}∗. Then L ∈ AM∩coAM if and only if there exists a ran-
domized polynomial-time verifier V of a private-coin constant-round interactive
proof system such that, for any input x ∈ {0, 1}∗,

• (Completeness) there exists a prover P such that V outputs L(x) by com-
municating with P with probability at least 2

3 , and

• (Soundness) for any prover P , V outputs L(x) or ⊥ with P with probability
at least 2

3 .

That is, the verifier outputs a correct answer L(x) when interacting with an
honest prover, and it does not output the wrong answer 1−L(x) for any cheating
prover, with high probability. The fact above follows from the transformation
from public coin protocols to private coin protocols [GS86], and the AM hierarchy
collapses [BM88].

Sp2 (the second level of the symmetric alternation [Can96, RS98]) is the class
of languages L such that a polynomial-time verifier decides acceptance based on
certificates given by two competitive provers. More formally, L ∈ Sp2 if and only
if there exists a polynomial-time verifier V such that ∃y,∀z, L(x) = V (x, y, z)
and ∃z, ∀y, L(x) = V (x, y, z), for every input x ∈ {0, 1}∗. We say that L ∈ SNP

2

if the verifier V is given oracle access to any NP oracles in the definition above.

Circuits

We will use a circuit in order to make it easy to compose several protocols1.
Usually, a circuit takes a string of some fixed length as input and outputs a
string of some fixed length. For our purpose, it is convenient to extend this usual
notion of circuit: By using some encoding, we regard circuits as taking a string
of length at most l for some l ∈ N, and outputting a string (not necessarily
of fixed length). We regard a circuit as computing a function from {0, 1}∗ to
{0, 1}∗ ∪ {“undefined”} such that the function outputs “undefined” on inputs of
length > l.

Nonadaptive Reductions

A polynomial-time nonadaptive reduction is a polynomial-time oracle Turing
machine whose possible queries can be computed without access to an oracle
in polynomial time. For simplicity, we assume without loss of generality that,

1The reader may simply regard a circuit as a Turing machine with an appropriate description
to which one can embed some additional information.
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for all inputs of the same length, the reduction makes the same number m of
queries (by adding dummy queries if necessary). For any oracle R ⊆ {0, 1}∗,
we denote by BPPR

∥ the class of languages from which there exists a randomized
polynomial-time nonadaptive reduction. For a nonadaptive reduction M , we
denote by MR(x) the output of the reduction given an oracle R ⊆ {0, 1}∗ and
input x ∈ {0, 1}∗.

Query Distribution

We can modify a randomized nonadaptive reduction M so that the marginal
distribution of each query ofM is identical; that is, for any query q ∈ {0, 1}∗, the
probability that q is sampled as the ith query of M is the same for all i ∈ [m].
To achieve this, we simply modify M as follows: it generates a permutation
π : [m] → [m] uniformly at random, runs M(x) to make m queries q1, . . . , qm,
asks qπ(i) as the ith query to get an answer ai from an oracle, and resumes the
computation of M(x) to get the decision on x by supplying aπ−1(1), . . . , aπ−1(m)

as oracle answers. It is then easy to see that in the new query machine the ith
query distribution is identical for all i ∈ [m]. By the modification above, we can
take a single query distribution Qx such that each query of M(x) is distributed
according to Qx.

Let Q be a distribution over {0, 1}∗. For a string x ∈ {0, 1}∗, let Q(x) denote
Prq∼Q[q = x]. For any α > 0, a string q ∈ {0, 1}∗ of length ℓ ∈ N is called
α-heavy (with respect to Q) if Q(q) ≥ α2−ℓ; otherwise (i.e., Q(q) < α2−ℓ), it is
called α-light.

We will use a standard concentration inequality:

Lemma 5.4 (Hoeffding’s inequality [Hoe63]). For any independent random vari-
ables X1, . . . , Xn ∈ [0, 1] and any t ≥ 0, we have Pr [|

∑n
i=1(Xi − E[Xi])| ≥ nt] ≤

2 exp(−2nt2).

Black-Box Reductions

There are two possible definitions of black-box reductions to avoiding hitting
set generator. One is to require that there exists a single machine that works for
every γ-avoiding oracle. This is the notion used in [GV08]:

Definition 5.5 (Black-box reduction to γ-avoiding oracles [GV08]). Let G =
{Gℓ : {0, 1}s(ℓ) → {0, 1}ℓ}ℓ∈N be any description interpreter. Let L ⊆ {0, 1}∗ be
a language. A randomized nonadaptive oracle machine M is called a black-box
reduction from L to any γ-avoiding oracle of G if, for any γ-avoiding oracle R
for G and any x ∈ {0, 1}∗, we have

Pr
[
MR(x) = L(x)

]
≥ 2

3
, (5.1)

where the probability is taken over the internal randomness of M .

Another definition is that, for every γ-avoiding oracle R, there exists a non-
adaptive reduction MR to R as used in Theorem 5.1. That is, the order of
the quantifiers is reversed; nonetheless, a diagonalization argument enables us to
establish the equivalence:

Proposition 5.6. Let G be any description interpreter, γ : N → [0, 1) be any
parameter, and L ⊆ {0, 1}∗ be a language. The following are equivalent:
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1. L ∈
∩

R : γ-avoids G

BPPR
∥ .

2. There exists a randomized polynomial-time nonadaptive black-box reduction
from L to any γ-avoiding oracle of G.

Proof. The direction from the second item to the first item is obvious. We prove
below the contrapositive of the other direction.

Suppose that, for any randomized nonadaptive oracle machineM , there exists
some γ-avoiding oracle RM of G such that PrM

[
MR(x) = L(x)

]
< 2

3 for some
x ∈ {0, 1}∗. We claim that there exists some single γ-avoiding oracle R of G such
that L ̸∈ BPPR

∥ .
To this end, let {Me}e∈N be the set of all randomized nonadaptive oracle

machines. We will construct some γ-avoiding oracle Re and input xe (and ℓe ∈ N)
by induction on e ∈ N, so that Me given oracle Re+1 fails to compute L on input
xe; then we will define R :=

∪
e∈NRe. Let us start with R0 := ∅ and ℓ0 := 0.

At stage e ∈ N, we claim that there exists some γ-avoiding oracle R′
e+1 ⊆

{0, 1}∗ and some input xe ∈ {0, 1}∗ such that

• Pr
[
M

R′
e+1

e (xe) = L(xe)
]
< 2

3 , and

• q ∈ Re if and only if q ∈ R′
e+1 for any string q of length < ℓe.

Indeed, for any oracle Q, let Q′ := { q ∈ Q | |q| ≥ ℓe } ∪ { q ∈ Re | |q| < ℓe }.
Consider a randomized nonadaptive oracle machine M ′

e such that M ′Q
e simulates

MQ′
e ; that is, M ′

e is hardwired with the set { q ∈ Re | |q| < ℓe }, and simulates
Me and answer any query q of length < ℓe by using the hardwired information.
By our assumption, there exists some γ-avoiding oracle R̂e+1 of G such that

Pr
[
M

′R̂e+1
e (xe) = L(xe)

]
< 2

3 for some xe ∈ {0, 1}∗; by the definition of M ′
e, we

obtain Pr
[
M

R′
e+1

e (xe) = L(xe)
]
< 2

3 for R′
e+1 := { q ∈ R̂e+1 | |q| ≥ ℓe } ∪ { q ∈

Re | |q| < ℓe }, which is again γ-avoiding G. This completes the proof of the claim
above. Now define ℓe+1 ∈ N as a large enough integer so that ℓe+1 ≥ ℓe and the
machine Me on input xe does not query any string of length ≥ ℓe+1, and define
an oracle Re+1 := { q ∈ R′

e+1 | |q| < ℓe+1 }, which completes the construction of
stage e ∈ N.

Define R :=
∪

e∈NRe, which γ-avoids G by the construction above. By the
choice of (ℓe)e∈N, we have

Pr
[
MR

e (xe) = L(xe)
]
= Pr

[
MRe+1

e (xe) = L(xe)
]
<

2

3
,

for every randomized nonadaptive oracle machine Me. Thus L ̸∈ BPPR
∥ . □

5.4 Simulating Short Queries by Competitive Prover Systems

In this section, we show that a reduction that makes only short queries can
be simulated by Sp2 .

Theorem 5.7 (Sp2 Simulation of Short Queries). Let G = {Gℓ : {0, 1}s(ℓ) →
{0, 1}ℓ}ℓ∈N be any description interpreter and γ : N → [0, 1) be a parameter such
that γ(ℓ) ≤ 1− 2s(ℓ)−ℓ+1 for all large ℓ ∈ N. Suppose that there exists a random-
ized polynomial-time black-box reduction M from a language L to any γ-avoiding
oracle for G such that the length of any query of M is at most O(log n) for every
input of length n. Then L ∈ Sp2.
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Proof. The idea is that two competitive provers send the image Im(G) of G as a
certificate. Given two possible images I0, I1 ⊆ {0, 1}∗, R := {0, 1}∗ \ I0 \ I1 is an
avoiding set for G. Moreover, since |Im(G)| is small, the set R is dense enough.
We then derandomize a BPP computation by using the power of Sp2 .

2 (Recall
that BPP ⊆ Sp2 [Can96, RS98].) Details follow.

Let c log n be an upper bound on the length of queries that M makes. Our
Sp2 algorithm is as follows: Fix any input x of length n. We number the two
competitive provers 0 and 1. The ith prover (i ∈ {0, 1}) sends, for each ℓ ≤ c log n,
a subset Ii,ℓ ⊆ {0, 1}ℓ of size at most 2s(ℓ); an honest prover sets Ii,ℓ := Im(Gℓ).
Define Ii :=

∪
ℓ≤c logn Ii,ℓ. Note that such subsets can be encoded as a string

of polynomial length. Each prover also sends a list of randomness ri1, · · · , rit ∈
{0, 1}m to be used by the reduction M , where t is a parameter chosen later, and
m is the length of a coin flip used byM . The verifier sets R := {0, 1}∗\I0\I1, and
accept if and only if Prj,k∼[t][M

R(x; r0j ⊕ r1k) = 1] > 1
2 , where M

R(x; r) denotes
the output of the reduction when its coin flip is r, and ⊕ denotes the bit-wise
XOR. Note that the running time of the verifier is at most a polynomial in n and
t. Below we establish the correctness of this algorithm for some t = poly(n).

We focus on the case when the 0th prover is honest; thus I0,ℓ := Im(Gℓ)
for each ℓ ≤ c log n. Since |I1,ℓ| ≤ 2s(ℓ), the number of strings of length ℓ in
R(I1) := {0, 1}∗ \ I0 \ I1 is at least 2ℓ−|I0,ℓ|− |I1,ℓ| ≥ 2ℓγ(ℓ) (here we write R(I1)
instead of R to emphasize that R depends on I1); thusR(I1) is a γ-avoiding oracle.
By the definition of the reduction, for every I1 we have Prr∼{0,1}m [M

R(I1)(x; r) =

L(x)] ≥ 2
3 .

We use the notion of cover introduced by Canetti [Can96]: A sequence
r1, · · · , rt ∈ {0, 1}m is called a cover of a subset A ⊆ {0, 1}m if for all r ∈ {0, 1}m,
Prj∼[t][rj⊕r ∈ A] > 1

2 . Define A(I1) := { r ∈ {0, 1}m |MR(I1)(x; r) = L(x) }. We
claim that by a probabilistic argument there exists a sequence r1, · · · , rt ∈ {0, 1}m
that covers A(I1) for every I1: Fix any I1 and r ∈ {0, 1}m. Pick r1, · · · , rt ∼
{0, 1}m. For any j ∈ [t], the probability that rj ⊕ r ∈ A(I1) is at least 2

3 . Thus
by a concentration bound (Lemma 5.4), the probability that at most a 1

2 -fraction
of j ∈ [t] satisfies rj ⊕ r ∈ A(I1) is at most exp(−Ω(t)). By the union bound over
all r, the probability that a sequence r1, · · · rt does not cover A(I1) is at most
2m ·exp(−Ω(t)). By the union bound over all I1, the probability that there exists
some I1 such that A(I1) is not covered by r1, · · · , rt is at most 2n

c+m ·exp(−Ω(t)).
Therefore, for t := Θ(nc + m), there exists a sequence r1, · · · , rt that covers
A(I1) for every I1. The 0th honest prover sends this sequence r1, · · · , rt to the
verifier as r01, · · · , r0t , in which case the verifier outputs L(x) correctly because
Prj,k∼[t][M

R(I1)(x; r0j ⊕ r1k) = L(x)] > 1
2 , for every I1 and every r11, · · · , r1t . □

5.5 Generalized Feigenbaum-Fortnow Protocol

In this section, we present one of the main building blocks of our proof. Our
protocol is inspired by the protocol of Feigenbaum and Fortnow [FF93] (and its
description by Bogdanov and Trevisan [BT06b]) for simulating some type of ran-
domized nonadaptive reductionM to an NP problem R. Suppose that for a given
input x, M makes m nonadaptive queries q1, . . . , qm under a certain distribution
Q. In the Feigenbaum-Fortnow protocol, a verifier asks a prover to give wit-
nesses to all positive instances among them. The prover cannot give a witness
to a negative instance (hence, it cannot cheat the verifier by saying “yes” to a

2Alternatively, we may use the result of Russell and Sundaram [RS98] showing that S2·BP·P =
Sp
2 in a black-box way.
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negative instance) while it may try to cheat the verifier by not giving a witness
to some of the positive instances of q1, . . . , qm. If, however, the verifier knows the
proportion p∗ of positive instances among queries under the distribution Q, then
it may detect wrong negative answers from the prover if the number of positive
answers is much smaller than p∗m. More specifically, the Feigenbaum-Fortnow
protocol runs as follows. It first generates K tuples of m nonadaptive queries
{(qk1, . . . , qkm)}1≤k≤K by running M(x) independently K times. By a concen-
tration inequality, the number of positive instances among all Km queries should

be in the range of m ·
(
p∗K ±O(

√
K)

)
with high probability; thus, if the prover

gives “yes” answers (with witnesses) much smaller than m ·
(
p∗K −O(

√
K)

)
,

then the verifier stops the computation immediately, suspecting that the prover
is not honest. On the other hand, if the number of positive answers to those
queries is close to p∗Km, then the number of positive instances on which the
prover can cheat is at most O(m

√
K), with high probability. We choose K large

enough so that O(m
√
K) ≪ K; then the majority of K tuples are answered

correctly by the oracle, and we can use them to determine the result of MR(x)
by taking the majority vote of the results of M(x) computed by using prover’s
answers to each tuple of queries (qk1, . . . , qkm).3

We generalize the Feigenbaum-Fortnow protocol so that a new protocol is
capable of dealing with a reduction to a distributional AM problem R; that is,
we show that, given any nonadaptive reduction to some AM problem solvable on
average and the proportion p∗ of positive instances as advice, one can simulate
the reduction in AM∩coAM. In our protocol, we use Adleman’s trick (for proving
BPP ⊆ P/poly [Adl78]) to “derandomize” AM oracle so that we obtain a new NP
oracle, and then run the original Feigenbaum-Fortnow protocol. The following is
the specification of the generalized Feigenbaum-Fortnow protocol:

Inputs. A tuple (C, V, δ, p∗) such that:

• A randomized nonadaptive reduction C is given as a probabilistic circuit
such that each query of C is identically distributed to some distribution
Q over {0, 1}∗, and the reduction always makes exactly m queries. (We
assume that an input to a reduction is hardwired into the circuit C; thus
C does not take any input other than random bits.)

• An AM verifier V is given as a circuit.

• An error parameter δ ∈
(
0, 12

)
is given in unary, and a probability p∗ ∈ [0, 1]

is given in binary.

Promise. We assume that there exist some answer a ∈ {0, 1}, some oracle
R ⊆ {0, 1}∗, and some error parameters ϵ0, ϵ1, ϵ2 ∈ [0, 1] satisfying the following:

• PrC [C
R = a] ≥ 1 − ϵ0. (That is, a is supposed to be the answer of the

reduction C to the oracle R.)

• The advice p∗ satisfies |p∗ − Prq∼Q[q ∈ R]| ≤ ϵ1.

3We note that taking the majority is not necessary; instead, it suffices to pick k ∼ [K] and
use the result.
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• The distributional problem (R,Q) is “solvable by AM on average”: that is,
define4

VYes := { q ∈ {0, 1}∗ | Pr
r
[V (q, y, r) = 1 for some y] ≥ 3/4 }, and

VNo := { q ∈ {0, 1}∗ | Pr
r
[V (q, y, r) = 0 for all y] ≥ 3/4 };

then we assume that Prq∼Q[q ∈ VYes ∪ VNo] ≥ 1 − ϵ2 and VYes ⊆ R ⊆
{0, 1}∗ \ VNo.

Protocol.

1. (Preprocess of Verifier: Adleman’s trick) Let s be sufficiently large so that
s > 20|V | and s ≥ 20 log(1/δ) where |V | denotes the circuit size of V . Pick
r1, . . . rs uniformly at random, and share the random bits with the prover.
Define a new circuit W by

W (x, y1, . . . , ys) := majority
i∈[s]

V (x, yi, ri).

In what follows, we call ȳ := (y1, . . . , ys) a certificate for W .

2. (Verifier) Let K := m2(1/δ)2 log(m/δ). Run C independently K times and
obtain queries (qk1, . . . , qkm) for each kth run of C (k ∈ [K]). Send these
queries to the prover.

3. (Prover) For each (k, i) ∈ [K]× [m], send a certificate ȳki for W ; an honest
prover sends, if any, some certificate ȳki such that W (qki, ȳki) = 1.

4. (Verifier) Let a∗ki := W (qki, ȳki) ∈ {0, 1} for each (k, i) ∈ [K]× [m]. Verify
that ∑

1≤k≤K
1≤i≤m

a∗ki ≥ mp∗K − m
(
(ϵ1 + ϵ2)K +

√
K log(m/δ)

)
, (5.2)

and if not, output ⊥ and halt. Otherwise, pick k ∼ [K] uniformly at random
and output the kth run of the reduction of C assuming that the answers
from the oracle are (ak1, . . . , akm).

Theorem 5.8 (Correctness of the Generalized Feigenbaum-Fortnow Protocol).
Suppose that the protocol above is given inputs satisfying the promise listed above.
Then, the protocol satisfies the completeness and soundness for error ϵ := ϵ0 +
2mϵ1 + 3mϵ2 + 3δ, described below:

• (Completeness) There exists a prover such that the verifier outputs a with
probability at least 1− ϵ.

• (Soundness) For any prover, the verifier outputs a or ⊥ with probability at
least 1− ϵ.

We prove this theorem by a sequence of claims below. The following claim
follows from a standard fact about amplification of the success probability of a
randomized machine.

4As a circuit V outputs “undefined” if an input (q, y, r) is too long, the sets VYes, VNo of
strings are finite.
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Claim 5.9 (Amplification and Adleman’s trick). With probability at least 1− δ
over the choice of r1, . . . , rs, the following holds. For any query q ∈ VYes ∪ VNo,

• if q ∈ VYes then W (q, ȳ) = 1 for some certificate ȳ := (y1, . . . , ys), and

• if q ∈ VNo then W (q, ȳ) = 0 for any certificate ȳ := (y1, . . . , ys).

Proof. First, note that |VYes ∪VNo| is at most 2s/20. Indeed, the circuit size of V
is less than s/20, and hence for any input q of length ≥ s/20, V is not defined;
thus q ̸∈ VYes ∪VNo. That is, the length of every query in VYes ∪VNo is less than
s/20.

Fix any q such that q ∈ VYes or q ∈ VNo; in the former case, let aq := 1 and
aq := 0 otherwise. Our claim is that maxȳW (q, ȳ) = aq. For each i ∈ [s], let Xi ∈
{0, 1} be the random variable (over the random choice of r1, . . . , rs) such that
Xi := 1 iff V (q, yi, ri) = 1 for some yi; in other words, Xi := maxyi V (q, yi, ri) ∈
{0, 1}. Observe that

max
ȳ

W (q, ȳ) = max
ȳ

majority
i∈[s]

V (q, yi, ri) = majority
i∈[s]

max
yi

V (q, yi, ri) = majority
i∈[s]

Xi.

By the assumption on V , we have |E[Xi] − aq| ≤ 1
4 for any i ∈ [s]; hence,

majorityi∈[s]Xi ̸= aq implies |1s
∑

i(Xi − E[Xi])| ≥ 1
4 . By Hoeffding’s inequality

(Lemma 5.4),

Pr[max
ȳ
W (q, ȳ) ̸= aq] ≤ Pr

[∣∣∣∣∣
s∑

i=1

(Xi − E[Xi])

∣∣∣∣∣ ≥ s

4

]
≤ 2 exp

(
−2s (1/4)2

)
≤ 2−s/10.

Now, by the union bound over all q ∈ VYes∪VNo, the probability that there exists
some q ∈ VYes∪VNo such that maxȳW (q, ȳ) ̸= aq is at most |VYes∪VNo|·2−s/10 ≤
2−s/20 ≤ δ. □

For each (k, i) ∈ [K] × [m], define aki ∈ {0, 1} as aki := 1 if and only if
W (qki, ȳ) = 1 for some certificate ȳ. The honest prover sends a certificate for
W (if any), and thus aki = a∗ki; on the other hand, when communicating with a
cheating prover, we have only a∗ki ≤ aki. The next claim shows the sum of (aki)
concentrates around its mean.

Claim 5.10 (Concentration). Under the event of Claim 5.9, with probability at
least 1− δ, the following holds:∣∣∣∣∣∣∣∣

∑
1≤k≤K
1≤i≤m

aki −mKp∗

∣∣∣∣∣∣∣∣ ≤ m
(
(ϵ1 + ϵ2)K +

√
K log(m/δ)

)
.

Proof. Fix any i ∈ [m]. By the assumption on C, the queries q1i, . . . , qKi are
independent and identically distributed according to Q; hence, a1i, . . . , aKi ∈
{0, 1} are also independent random variables. The expectation E[aki] of these
random variables is equal to Prq∼Q[W (q, ȳ) = 1 for some ȳ].

We claim that, for any (k, i) ∈ [K]× [m], the expectation E[aki] is equal to p∗
up to additive error ϵ1+ ϵ2. Under the event of Claim 5.9, we have q ∈ VYes =⇒
∃ȳ. W (q, ȳ) = 1 =⇒ q ̸∈ VNo for any q ∈ {0, 1}∗; hence,

Pr[q ∈ VYes] ≤ Pr[∃ȳ. W (q, ȳ) = 1] ≤ Pr[q ̸∈ VNo]. (5.3)
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Similarly, since VYes ⊆ R ⊆ {0, 1}∗ \ VNo, we have

Pr[q ∈ VYes] ≤ Pr[q ∈ R] ≤ Pr[q ̸∈ VNo]. (5.4)

Combining (5.3) and (5.4), we obtain

|Pr[q ∈ R]− E[aki]| ≤ Pr[q ̸∈ VNo]− Pr[q ∈ VYes] ≤ ϵ2.

Therefore, |E[aki]− p∗| ≤ |E[aki]− Pr[q ∈ R]|+ |Pr[q ∈ R]− p∗| ≤ ϵ2 + ϵ1.
By Hoeffding’s inequality (Lemma 5.4), for each i ∈ [m],

Pr

[∣∣∣∣∣
K∑
k=1

(aki − E[aki])

∣∣∣∣∣ ≥ √
K log(m/δ)

]
≤ 2 exp(−2K log(m/δ)/K) ≤ δ/m.

By the union bound over all i ∈ [m], with probability at least 1− δ, we have∣∣∣∣∣
m∑
i=1

K∑
k=1

aki −mKp∗

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑
i=1

K∑
k=1

(aki − E[aki])

∣∣∣∣∣+
∣∣∣∣∣
m∑
i=1

K∑
k=1

(E[aki]− p∗)

∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣∣
K∑
k=1

(aki − E[aki])

∣∣∣∣∣+mK(ϵ1 + ϵ2)

≤ m
√
K log(m/δ) +mK(ϵ1 + ϵ2).

□

Now we are ready to bound the probability of completeness and soundness.
Let E denote any event (which is supposed to be the event that completeness or
soundness does not hold); using Claim 5.9 and 5.10, we will bound the probability
in the following way:

Pr[E] ≤ 2δ + Pr[E ∧ (the event of Claim 5.9 holds)

∧ (the concentration of Claim 5.10 occurs) ].

That is, assuming that the events of Claim 5.9 and 5.10 happens, we will analyze
the probability of completeness and soundness.

Claim 5.11 (Completeness). The verifier outputs a with probability at least 1−ϵ
when interacting with the honest prover.

Proof. The verifier does not output a only if

• the inequality (5.2) does not hold, or

• for a random k ∼ [K], the kth run of C is not correct.

The honest prover sets a∗ki := aki for any (k, i) ∈ [K] × [m]. Thus, under the
assumption that the concentration of Claim 5.10, the inequality (5.2) is satis-
fied; that is, the verifier does not output ⊥, and hence it remains to bound the
probability that, for a random k ∼ [K], the kth run of C is not correct.

The kth run of C is not correct only if the reduction itself makes a mistake,
or there exists some i ∈ [m] such that a∗ki ̸= R(qki) (which happens only if
qki ̸∈ VYes ∪ VNo for the honest prover). The former probability is at most ϵ0,
and the latter is at most mϵ2.

Overall, the verifier outputs a with probability at least 1−2δ−ϵ0−mϵ2 ≥ 1−ϵ.
□
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Claim 5.12 (Soundness). For any cheating prover, the verifier outputs a or ⊥
with probability at least 1− ϵ.

Proof. The verifier outputs the wrong answer 1−a only if for a random k ∼ [K],
the kth run of C is not correct.

Recall that we have a∗ki ≤ aki for any (k, i) ∈ [K] × [m] no matter how a
prover tries to cheat. The main difference between the proof of Claim 5.11 is
that, for a random choice k ∼ [K] of the verifier, a prover may be cheating so
that a∗ki < aki for some i ∈ [m]; as a consequence, the kth run of C is more
likely to be wrong. On the other hand, the number of (k, i) ∈ [K]× [m] such that
a∗ki < aki is small: Indeed, under the event that the verifier does not output ⊥, the
inequality (5.2) holds, and we also have the concentration of Claim 5.10; hence,

we obtain
∑K

k=1

∑m
i=1(aki − a∗ki) ≤ 2m

(
(ϵ1 + ϵ2)K +

√
K log(m/δ)

)
. Thus, the

probability that a∗ki < aki for some i ∈ [m] over the random choice of k ∼ [K] is
at most 2m(ϵ1 + ϵ2) +m

√
log(m/δ)/K ≤ 2m(ϵ1 + ϵ2) + δ.

Overall, the probability that the verifier outputs the wrong answer is at most
(2δ + ϵ0 +mϵ2) + (2m(ϵ1 + ϵ2) + δ) ≤ ϵ. □

Proof of Theorem 5.8. Immediate from Claim 5.11 and 5.12. □

Remark. The generalized Feigenbaum-Fortnow protocol above also works for
any reduction that does not necessarily output a Boolean value (e.g., a reduction
solving a search problem), with a suitable modification on the completeness and
soundness.

5.6 Simulating Long Queries by AM ∩ coAM

Using the generalized Feigenbaum-Fortnow protocol, we prove our main re-
sult:

Theorem 5.13 (Restatement of Theorem 5.1). Let G = {Gℓ : {0, 1}s(ℓ) →
{0, 1}ℓ}ℓ∈N be any (not necessarily computable) description interpreter and
γ : N → [0, 1) be a parameter such that

• there exists a constant ϵ > 0 such that s(ℓ) ≤ (1 − ϵ)ℓ for all large ℓ ∈ N,
and

• there exists a constant c > 0 such that γ(ℓ) ≤ 1− ℓ−c for all large ℓ ∈ N.

Then, ∩
R : γ-avoids G

BPPR
∥ ⊆ NP/poly ∩ coNP/poly ∩ SNP

2 .

Moreover, if G can be computed in 2O(ℓ) time, then we also have∩
R : γ-avoids G

BPPR
∥ ⊆ AM ∩ coAM.

As shown in Section 5.4, reductions that make only short queries can be sim-
ulated in Sp2 . On the other hand, in this section, we show that reductions that
make only long queries can be simulated in AM ∩ coAM. The advice in The-
orem 5.13 is used in order to give the characteristic function of Im(G) for all
strings of length O(log n), under which situation the rest of reductions can be
simulated in AM ∩ coAM ⊆ NP/poly ∩ coNP/poly. If a hitting set generator is
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computable in exponential time, then the advice can be computed in polynomial
time and thus can be removed. Without any advice and without any computa-
tional bound on a hitting set generator, the reduction can be simulated in SNP

2 ,
which is a complexity class that can simulate AM ∩ coAM and Sp2 .

Therefore, the main ingredient of the main theorem is to simulate long queries
in AM ∩ coAM:

Theorem 5.14 (AM Simulation of Long Queries). Let G = {Gℓ : {0, 1}s(ℓ) →
{0, 1}ℓ}ℓ∈N be any description interpreter. Let t, θ, α0 : N → N be efficiently com-
putable functions. Suppose that there exists a randomized t(n)-time nonadaptive
black-box reduction M from a language L to any γ-avoiding oracle for G such
that the length of any query that M makes on input length n is at least θ(n).
Suppose also that, for all large n ∈ N,

• α0(n) ≤ 1
16e3t(n)2

2θ(n)−s(θ(n)), and

• α0(n) ·
(
1− 2s(ℓ)−ℓ − γ(ℓ)

)
≥ 1 for all ℓ ∈ N such that θ(n) ≤ ℓ ≤ t(n).

Then, there exists an AM ∩ coAM protocol running in t(n)O(1) time that decides
L.

We first observe that this is sufficient to prove Theorem 5.13.

Proof of Theorem 5.13 from Theorem 5.14. Take any language L ∈∩
R : γ-avoids G BPPR

∥ . By Proposition 5.6, we have a randomized t(n)-time
nonadaptive black-box reduction M from L to any γ-avoiding oracle for
G, where t(n) = nO(1). By the assumption on the seed length s, we
have ϵℓ ≤ ℓ − s(ℓ) for all large ℓ ∈ N. For any ℓ ∈ N between θ(n) and
t(n), we have 1 − 2s(ℓ)−ℓ − γ(ℓ) ≥ ℓ−c − 2−ϵℓ ≫ ℓ−c/2; hence, by defining

α0(n) := 2t(n)c, we obtain α0(n) ≥
(
1− 2s(ℓ)−ℓ − γ(ℓ)

)−1
for all ℓ between

θ(n) ≤ ℓ ≤ t(n). On the other hand, 2θ(n)−s(θ(n))/t(n)2 ≥ 2ϵθ(n)/t(n)2; thus, for
θ(n) := ((c+ 2 + 1) log t(n))/ϵ, we obtain α0(n) ≪ 2θ(n)−s(θ(n))/16e3t(n)2 for all
large n.

The assumptions about parameters of Theorem 5.14 are thus satisfied for
θ(n) = O(log t(n)). In particular, we can encode the characteristic function of
the set ∪ℓ≤θ(n)Im(Gℓ) as an advice string of length t(n)O(1). Given such an
advice, we can modify the reduction M so that M does not make any query
q of length at most θ(n): Indeed, if the original reduction makes a query q of
length ≤ θ(n), then we modify the reduction so that q is answered according to
whether q ∈ {0, 1}∗ \ Im(G|q|), which can be decided by using the advice. After
this modification, by using Theorem 5.14, M can be simulated in AM ∩ coAM.
We thus obtain L ∈ AM/poly ∩ coAM/poly = NP/poly ∩ coNP/poly.

Moreover, if G is computable in 2O(ℓ), then the advice can be computed in
polynomial time: Indeed, by an exhaustive search, one can compute Im(Gℓ) in
time 2O(s(ℓ)) · 2O(ℓ) = 2O(ℓ) ≤ t(n)O(1) for all ℓ ≤ θ(n).

Finally, we sketch an SNP2 algorithm for deciding L when G is not necessarily
computable and no advice is given: As in Theorem 5.7, each competitive prover
sends a verifier all the strings in Im(G) of length at most θ(n). Let I0, I1 ⊆
{0, 1}∗ be the claimed image of G. Then we modify the reduction M so that
any short query is answered according to {0, 1}∗ \ I0 \ I1. Now by applying
Theorem 5.14, we obtain an AM algorithm deciding L. In particular, there exists
an NP machine V such that Prr[V (x, r) = L(x)] ≥ 2

3 for every input x. This
randomized computation can be derandomized as in Theorem 5.7, by requesting
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each competitive prover to send a sequence of coin flips r1, · · · , rs. Thus we
obtain L ∈ SNP2 . □

In the rest of this section, we show how to simulate long queries by a constant-
round interactive proof system (i.e., a proof of Theorem 5.14). For simplicity,
we focus on the case when t(n) = nO(1). Let M be a randomized t(n)-time
nonadaptive black-box reduction to any γ-avoiding oracle for G. Let x ∈ {0, 1}∗
be an input of length n.

We first modify the reduction so that we can assume useful properties. By
the modifications explained in Section 5.3, we may assume that the number of
queries that M makes is exactly m(n) (≤ t(n) ) on inputs of length n. We may
also assume that each query of M is identically distributed; Let Qx be the query
distribution of M on input x.

As explained in the introduction, one of the keys of our proof is that we can
replace a γ-avoiding oracle for G by an oracle defined based only on the query
distribution Qx. Here we introduce such oracles and justify the replacement. For
any α > 0, define Lα,Hα and Rα by

Lα := { q ∈ {0, 1}∗ | q is α-light with respect to Qx },
Hα := {0, 1}∗ \ Lα = { q ∈ {0, 1}∗ | q is α-heavy with respect to Qx }, and
Rα := Lα \ Im(G).

For large enough α > 0, we can easily show that Rα γ-avoids G.

Claim 5.15. For any γ : N → [0, 1) and α > 0 and for any length ℓ ∈ N, if

γ(ℓ) + 1/α ≤ 1− 2s(ℓ)−ℓ,

then Rα is a γ-avoiding set at length ℓ for G.

Proof. Since Rα ⊆ {0, 1}∗ \ Im(G), it suffices to show that Prw∼{0,1}ℓ [w ̸∈ Rα] ≤
1−γ(ℓ). Note that w ̸∈ Rα if either w ∈ Im(Gℓ) or w is α-heavy. The probability
of the former case is at most 2−ℓ · |Im(Gℓ)| ≤ 2s(ℓ)−ℓ. Similarly, the probability
of the latter case is bounded above by 2−ℓ · |H=ℓ

α |, where H=ℓ
α = { q ∈ {0, 1}ℓ |

q is α-heavy }. On the other hand, we have

|H=ℓ
α | · α2−ℓ ≤

∑
q∈H=ℓ

α

Pr
w∼Qx

[w = q ] = Pr
w∼Qx

[w ∈ H=ℓ
α ] ≤ 1.

Hence, |H=ℓ
α | ≤ 2ℓ/α. Thus,

Pr
w∼{0,1}ℓ

[w ̸∈ Rα] ≤ 2s(ℓ)−ℓ + 1/α ≤ 1− γ(ℓ),

proving that Prw∼{0,1}ℓ [w ∈ Rα] ≥ γ(ℓ). □

Since the reduction M does not make any query q such that |q| ̸∈ [θ(n), t(n)],
Claim 5.15 guarantees that the reduction M works by using Rα on inputs x of
length n if γ(ℓ) + 1/α ≤ 1 − 2s(ℓ)−ℓ for all ℓ ∈ N such that θ(n) ≤ ℓ ≤ t(n). As
this condition is satisfied by our assumptions of Theorem 5.14 for any α ≥ α0(n)
and any input x of length n, we have

Pr
M

[
MRα(x) = L(x)

]
≥ 15

16
. (5.5)

On the other hand, we can show below that M(x) cannot distinguish Rα and
Lα when α is small enough.
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Claim 5.16. For any α > 0 and input x ∈ {0, 1}∗ of length n, and for ϵ :=
α2s(θ(n))−θ(n) ·m(n)t(n),

Pr
M

[
MLα(x) ̸=MRα(x)

]
≤ ϵ. (5.6)

Proof. Recall that Rα = Lα\Im(G). Thus,M(x) may find the difference between
Lα and Rα only if it makes a query in Lα∩ Im(G) in one of its m(n) nonadaptive
queries. This probability is at most m(n) · Prw∼Qx [w ∈ Lα ∩ Im(G)] by a union
bound.

Here we have

Pr
w∼Qx

[w ∈ Lα ∩ Im(G) ] =
∑

q∈Lα∩Im(G)

Pr
w∼Qx

[ q = w ]

≤
∑

q∈supp(Qx)∩Im(G)

α · 2−|q|,

where supp(Qx) is the set of all possible queries asked by M(x). By our assump-
tion on M , we have θ(n) ≤ |q| ≤ t(n) for any q ∈ supp(Qx). Then it follows∑
q∈supp(Qx)∩Im(G)

α · 2−|q| ≤
∑

θ(n)≤ℓ≤t(n)

α · 2−ℓ · |Im(Gℓ)| ≤
∑

θ(n)≤ℓ≤t(n)

α · 2s(ℓ)−ℓ

because |Im(Gℓ)| ≤ 2s(ℓ).
Since we assumed that ℓ− s(ℓ) is nondecreasing for ℓ ∈ N, we have∑

θ(n)≤ℓ≤t(n)

α2s(ℓ)−ℓ ≤ t(n) · α2s(θ(n))−θ(n) = ϵ/m(n).

This bound is sufficient to get the desired error bound. □

By Claim 5.16 and our assumptions on α0(n) of Theorem 5.14, for any α ≤
e3α0(n), we have

Pr
M

[
MLα(x) ̸=MRα(x)

]
≤ 1

16
. (5.7)

From the inequalities (5.5) and (5.7), we immediately obtain the following:

Corollary 5.17. For any input x ∈ {0, 1}∗ of length n and any α ∈
[α0(n), e

3α0(n)],

Pr
M

[
MLα(x) = L(x)

]
≥ 7

8
.

In light of this, our task is now to simulate MLα(x) for some α ∈
[α0(n), e

3α0(n)] (in fact, we will choose the threshold α randomly, as explained
later). To this end, we combine the generalized Feigenbaum-Fortnow protocol,
the lower bound protocol of Goldwasser and Sipser [GS86], and the heavy-sample
protocol of Bogdanov and Trevisan [BT06b]. Here we review the last two pro-
tocols. Since these protocols are explained carefully and in detail in the paper
[BT06b], we simply review their specifications and use them as a black-box tool.

Lower Bound Protocol. Recall that q ̸∈ Lα if and only if q is α-heavy. The
lower bound protocol of Goldwasser and Sipser [GS86] can be used to give an
AM-type witness to any α-heavy instance. It is an AM protocol for showing that
a given set of strings has more than s elements for a given threshold s. The
specification of the lower bound protocol is as follows.
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Inputs. A set of strings is given as a circuit C on {0, 1}m, which specifies the set
as C−1(1) := { r ∈ {0, 1}m | C(r) = 1 }. A threshold s ∈ N such that 0 ≤ s ≤ 2m.
Parameters δ, ϵ ∈ [0, 1] represented in unary.

Promise.

• Yes instances: |C−1(1)| ≥ s.

• No instances: |C−1(1)| ≤ (1− ϵ)s.

Sketch of the Protocol.

1. (Verifier) Send a random hash function h : {0, 1}m → {0, 1}m′
for some

appropriate parameter m′.

2. (Prover) Send a string y ∈ {0, 1}m claiming that y ∈ C−1(1) and h(y) = 0m
′

hold. (Such an y is called an AM-type witness.)

3. (Verifier) Check the correctness of the prover’s claim on the witness y.

Theorem 5.18 (Correctness of the lower bound protocol [GS86]; see [BT06b]
for a proof). The lower bound protocol stated above satisfies the following:

• (Completeness) Given an yes instance, there exists a prover that makes the
verifier accept with probability at least 1− δ.

• (Soundness) Given a no instance, for any prover, the verifier accepts with
probability at most δ.

By using the protocol above, it is easy to construct an AM verifier V that checks
whether a given query q is α-heavy.

Claim 5.19. For any parameter ϵ(n) ≥ 1/poly(n), there exists an AM verifier V
such that, for any input x ∈ {0, 1}∗ of length n and any query q ∈ {0, 1}∗,

1. if q is α-heavy with respect to Qx, then Prh[V (x, q, h, y) = 1 for some y] ≥
3
4 , and

2. if q is (1 − ϵ(n))α-light with respect to Qx, then Prh[V (x, q, h, y) =
1 for some y] ≤ 1

4 .

Proof. Let Qx be the circuit that samples the query distribution Qx; that is, on
input r ∈ {0, 1}m, the circuit Qx(r) outputs q so that Prr∼{0,1}m [Qx(r) = q] =
Prw∼Qx [w = q] for any q ∈ {0, 1}∗. Given a string q ∈ {0, 1}∗ as input, construct
a circuit Cq such that Cq(r) := 1 iff Qx(r) = q, on input r ∈ {0, 1}m. Now use
the lower bound protocol for the circuit Cq, the threshold s := α2−|q|2m, and pa-
rameters δ := 1

4 and ϵ := ϵ(n). The lower bound protocol gives an AM certificate
for the yes instances such that |C−1

q (1)| ≥ s, which is equivalent to saying that

Prr[Qx(r) = q] ≥ α2−|q|, that is, q is α-heavy. On the other hand, if q is (1− ϵ)α-
light, then we have |C−1

q (1)| < (1 − ϵ)s; thus with high probability there is no
AM-type witness by the correctness of the lower bound protocol (Theorem 5.18).

□

Note that there is a gap between yes instances and no instances; that is,
if the probability that q is sampled from Qx is between α and (1 − ϵ)α, then
the behavior of the lower bound protocol is undefined. To circumvent this, we
pick the threshold α randomly in the same way with Bogdanov and Trevisan
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(cf. [BT06b, Claim 3.2]): Consider the following set Aα0,ϵ of thresholds defined
by parameters α0, ϵ > 0, and choose the threshold α uniformly at random from
Aα0,ϵ.

Aα0,ϵ := {α0(1 + 3ϵ)i | 0 ≤ i ≤ 1/ϵ }.

Observe that Aα0,ϵ ⊆ [α0, e
3α0]. Moreover, the following holds.

Lemma 5.20. For every α0 > 0 and 0 < ϵ < 1
3 and any constant c > 0, and for

any distribution Q, with probability at least 1− 1/c over the choice of α ∼ Aα0,ϵ,

Pr
q∼Q

[
Q(q) ∈ ((1− ϵ)α2−|q|, (1 + ϵ)α2−|q|)

]
≤ cϵ. (5.8)

(Recall that Q(q) := Prw∼Q[w = q].)

Proof. For any ϵ ∈
(
0, 13

)
and q ∈ {0, 1}∗, the intervals ((1−ϵ)α2−|q|, (1+ϵ)α2−|q|)

are pairwise disjoint for all α ∈ Aα0,ϵ; hence for any real p ∈ R, the probability
that p ∈ ((1 − ϵ)α2−|q|, (1 + ϵ)α2−|q|) is at most 1/|Aα0,ϵ| ≤ ϵ over the choice of
α ∼ Aα0,ϵ. In particular, we have

E
α∼Aα0,ϵ

[
Pr
q∼Q

[
Q(q) ∈ ((1− ϵ)α2−|q|, (1 + ϵ)α2−|q|)

]]
= E

q∼Q

[
Pr

α∼Aα0,ϵ

[
Q(q) ∈ ((1− ϵ)α2−|q|, (1 + ϵ)α2−|q|)

]]
≤ ϵ.

Therefore, by Markov’s inequality, the probability that
Prq∼Q

[
Q(q) ∈ ((1± ϵ)α2−|q|)

]
≥ cϵ is at most ϵ/(cϵ) = 1/c. □

In our simulation protocol for M , we start with picking α ∼ Aα0,ϵ randomly.
By Lemma 5.20, except for probability 1/O(1), the heaviness of almost all queries
q sampled from Qx is not close to the threshold α. As a consequence, the distribu-
tional problem (Lα,Qx) is solvable by coAM on average; indeed, with probability
at least 1−O(ϵ) over the choice of q ∼ Qx, the lower bound protocol of Claim 5.19
solves Lα.

Heavy-sample Protocol. Next we review the heavy-sample protocol of
Bogdanov and Trevisan [BT06b], which is an AM protocol for estimating
Prq∼Qx [q is α-heavy].

Inputs. A circuit Q which samples a string according to a distribution Q on
{0, 1}∗. A probability p ∈ [0, 1] represented in binary. Parameters c > 0 and
0 < ϵ < 1

3 represented in unary. A threshold α > 0 represented in binary.

Promise.

• Yes instances: Prq∼Q[Q(q) ≥ α2−|q|] = p.

• No instances:
∣∣Prq∼Q[Q(q) ≥ α2−|q|]− p

∣∣ > 16cϵ.

• We assume the condition (5.8). That is,

Pr
q∼Q

[
Q(q) ∈ ((1− ϵ)α2−|q|, (1 + ϵ)α2−|q|)

]
≤ cϵ.

Sketch of the Protocol.

1. (Verifier) Generate random queries q1, . . . , qk from the distribution Q for
some sufficiently large k, and send these queries to the prover.
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2. (Prover) For each query qi, tell the verifier whether qi is α-heavy.

3. (Verifier and Prover) To check the prover’s claim, run the lower bound
protocol of Goldwasser and Sipser [GS86] and the upper bound protocol of
Fortnow [For89] in parallel.

Theorem 5.21 (Correctness of the heavy-sample protocol [BT06b]). The heavy-
sample protocol specified above satisfies following:

• (Completeness) Given any yes instance, there exists a prover that makes
the verifier accept with probability at least 1−O(ϵ).

• (Soundness) Given any no instance, for any prover, the verifier accepts with
probability at most O(ϵ).

Protocol for Simulating MLα(x). Using the protocols reviewed above, we
can now simulate the reduction M to an oracle Lα on input x ∈ {0, 1}∗. Be-
low we explain how to choose the inputs (C, V, δ := 1

100 , p
∗) for the generalized

Feigenbaum-Fortnow protocol.
The generalized Feigenbaum-Fortnow protocol requires an AM protocol for

solving an oracle on average (instead of coAM). By negating answers from the

oracle, we can define a new machine M
X

which simulates the computation of
M{0,1}∗\X for any given oracle X. We thus use the generalized Feigenbaum-

Fortnow protocol for simulating M
Hα

(x) with oracle Hα := {0, 1}∗ \ Lα, which
is the set of α-heavy queries with respect to Qx; more specifically, let C be the
circuit that simulates the reductionM on input x (where the input x is hardwired
into the circuit) and we give the circuit C to the protocol as input.

To solve Hα on average by an AM protocol, we use the lower bound protocol.
That is, we build a circuit Vx that simulates the AM verifier stated in Claim 5.19
on input x and on all the queries q ∈ {0, 1}∗ that M(x) can make. Then we give
the circuit Vx to the protocol as input.

We also need to give as advice a probability p∗ that approximates Prq∼Qx [q ∈
Hα], which can be estimated by using the heavy-sample protocol. We require
the prover to send p∗ first, and then we verify the prover’s claim by running
the heavy-sample protocol; if the test passes, then we give p∗ to the generalized
Feigenbaum-Fortnow protocol as input.

Summarizing the discussion above, our whole simulation algorithm is given
below.

Inputs. A string x ∈ {0, 1}∗ of length n.

Promise. Let α0 := α0(n). Then, for any α ∈ [α0, e
3α0], we assume that

Pr
M
[MLα(x) = L(x)] ≥ 7

8
,

(which is guaranteed by Corollary 5.17).

Protocol.

1. (Preprocess) Set an error parameter ϵ := 1/c0m(n) for a sufficiently large
constant c0 (represented in unary).

2. (Verifier) Pick a threshold α ∼ Aα0,ϵ ⊆ [α0, e
3α0] randomly. Send α to the

prover.
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3. (Prover) Send p∗ ∈ [0, 1] to the verifier. An honest prover sends p∗ :=
Prq∼Qx [q ∈ Hα].

4. (Verifier and Prover) Run the heavy-sample protocol in order to verify that
p∗ ≈ Prq∼Qx [q ∈ Hα] for the distribution Qx and error parameter ϵ and
parameter c := 100; if the test does not pass, output ⊥ and halt.

5. (Verifier and Prover) Build a circuit C simulating M on the hardwired
input x, and a circuit Vx simulates the AM verifier for α-heaviness. Run
the generalized Feigenbaum-Fortnow protocol on input (C, Vx, δ :=

1
100 , p

∗),
and output the result of the protocol.

Now we argue that our simulation protocol is correct:

Claim 5.22. The simulation protocol stated above satisfies the following: for any
x ∈ {0, 1}∗,

• (Completeness) there exists a prover such that the verifier outputs L(x) with
probability at least 3/4, and

• (Soundness) for any prover, the verifier outputs L(x) or ⊥ with probability
at least 3/4.

Proof. Fix any input x ∈ {0, 1}∗. By Lemma 5.20, with probability at least
1 − 1

100 over the choice of α ∼ Aα0,ϵ, the condition (5.8) holds for c := 100 and
Q := Qx; that is,

Pr
q∼Qx

[
Qx(q) ∈ ((1− ϵ)α2−|q|, (1 + ϵ)α2−|q|)

]
≤ 100ϵ.

In what follows, we assume this event happens and analyze the probability of the
completeness and soundness.

Suppose that a prover sends p∗. If the prover is honest then we have p∗ =
Prq∼Qx [q ∈ Hα]. Hence the completeness of the heavy-sample protocol implies
that, with probability at least 1−O(ϵ) ≫ 1− 1

100 , the protocol accepts. On the
other hand, if a cheating prover sends p∗ such that |p∗ − Prq∼Qx [q ∈ Hα]| > 16cϵ,
then with probability at least 0.99 the cheat can be caught by the soundness of
the heavy-sample protocol.

Thus, at the point that the generalized Feigenbaum-Fortnow protocol starts,
for any prover, with probability at least 0.98, we have |p∗ − Prq∼Qx [q ∈ Hα]| ≤
16cϵ and moreover the condition (5.8) holds. Under this event, the promise of
the generalized Feigenbaum-Fortnow protocol is satisfied:

• Define a := L(x), ϵ0 := 1
8 , and R := Hα. Then we have PrC [C

R = a] ≥
1− ϵ0 by the promise of our simulation protocol (Corollary 5.17).

• The advice p∗ satisfies |p∗ − Prq∼Qx [q ∈ R]| ≤ ϵ1 for ϵ1 := 16cϵ.

• By Claim 5.19 and (5.8), we have Prq∼Qx [q ̸∈ VYes∪VNo] ≤ Prq∼Qx [Qx(q) ̸∈
(1± ϵ)α2−|q|] ≤ ϵ2 for ϵ2 := 100ϵ.

Therefore, from the correctness of the generalized Feigenbaum-Fortnow protocol
(Theorem 5.8), our simulation protocol satisfies the completeness and soundness
with probability at least 1− 0.02− (18 +2m(n)ϵ1+3m(n)ϵ2 +3δ) ≥ 3

4 , where the
last inequality holds for some large constant c0. □

This completes the proof of Theorem 5.14.
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Chapter 6

Reductions to the Set of

Kolmogorov-Random Strings

Historically, computability theory precedes complexity theory, the latter of
which is a quantitative version of the former. The fundamental theorem of Tur-
ing [Tur36] shows that the halting problem HALT cannot be solved by a Turing
machine, whereas its analogue in complexity theory, i.e., the P versus NP ques-
tion, is wide open. Studying a computability theoretic analogue of MCSP would
be the first step towards better understanding of MCSP. We thus investigate
what can be reduced to the set of (resource-unbounded) Kolmogorov-random
strings, which can be seen as an analogue of MCSP in computability theory. It
was conjectured by Allender [All12] and others that the computational power of
nonadaptive deterministic polynomial-time reductions to the set of Kolmogorov-
random is exactly characterized by BPP, intuitively because nonadaptive de-
terministic reductions could only make use of Kolmogorov-random strings as a
source of pseudorandomness.

In this chapter, we present strong evidence against this conjecture by showing
that every language in the exponential-time hierarchy is reducible to the set of
Kolmogorov-random strings under PH reductions; in particular, the conjecture is
false unless the exponential-time hierarchy collapses to BPEXP. Moreover, our
reduction cannot be regarded as a black-box reduction to avoiding hitting set
generators (unless the exponential-time hierarchy collapses to the second level),
thereby showing that nonadaptive deterministic efficient reductions can exploit
the power of Kolmogorov-random strings not just as a distinguisher for hitting
set generators.

6.1 Background

As shown in Theorem 2.20, there is a clear relationship between Kolmogorov-
randomness and pseudorandomness: Any string generated by a computable pro-
cess has low Kolmogorov complexity, and thus the set of Kolmogorov-random
strings serves as a distinguisher for any computable hitting set generator;
in particular, Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger
[ABK+06b] proved a curious inclusion that PSPACE ⊆ PRKU for every univer-
sal Turing machine U . Here, KU (x) denotes the Kolmogorov complexity of a
string x defined by the universal Turing machine U , and RKU

denotes the set of
(n/2)-random strings with respect to KU . Similarly, Allender, Buhrman, Koucký
[ABK06a] showed that NEXP ⊆ NPRKU ; Buhrman, Fortnow, Koucký, and Loff

[BFKL10] showed that BPP ⊆ P
RKU
∥ .

Note that since the set of Kolmogorov-random strings is not computable, it
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is absurd to hope that efficiently computable complexity classes could be char-
acterized in terms of efficient reductions to RKU

. Nevertheless, it was shown by
Cai, Downey, Epstein, Lempp, and Miller [CDE+14] that when the intersection
is taken over all prefix universal Turing machines U , any language efficiently
reducible to RKU

is decidable, and moreover Allender, Friedman, and Gasarch
[AFG13] showed that the upper bound is PSPACE:

Theorem 6.1 ([BFKL10, AFG13, CDE+14]). BPP ⊆
∩

U P
RKU
∥ ⊆ PSPACE,

where the intersection is taken over all prefix universal Turing machines.

For some technical reasons, the results of [AFG13, CDE+14] are known to hold
only for prefix universal Turing machines. However, a similar upper bound can
be obtained for usual universal Turing machines by imposing some constraints
on reductions [HK18].

Theorem 6.1 leads us to the following natural question: Is it possible to exactly
characterize the computational power of RKU

under polynomial-time nonadaptive
reductions? Intuitively, any polynomial-time nonadaptive reduction cannot make
any use of the set of Kolmogorov-random strings of length larger than O(log n),
because the Kolmogorov complexity of any query that the reduction can make
on input 0n is at most O(log n). It was argued in [ABFL14] that, intuitively,
short queries to Kolmogorov-random strings could only be used as a source of
pseudorandomness. Allender [All12] thus explicitly conjectured that the lower
bound of Theorem 6.1 is exactly tight, and since then a fair amount of efforts
have been made to verify the conjecture.

Conjecture 6.2 ([BFKL10, All12, ADF+13, ABFL14, HK18]). BPP =∩
U P

RKU
∥ .

Beyond its curiosity, such a characterization might enable us to study the
complexity class BPP of languages efficiently solvable by a randomized computa-
tion by using the techniques of Kolmogorov complexity. Moreover, Conjecture 6.2
is interesting from the viewpoint of the study of MCSP: It is known that, for any
function f : {0, 1}n → {0, 1}, the Kolmogorov complexity KU (tt(f)) and the size
sizeHALT(f) of minimum circuits with oracle access to the halting problem HALT
are polynomially related to each other [ABK+06b]; thus RKU

can be regarded
as a computability theoretic analogue of MCSP. In light of this, Conjecture 6.2
implies non-NP-hardness results about RKU

under nonadaptive polynomial-time
reductions (unless NP ⊆ BPP), and thus studying Conjecture 6.2 would give
us some new insights about non-NP-hardness of MCSP, which has been a focus
of recent work on MCSP (e.g. [MW17, HW16, HP15, AHK17, AH17]). We re-
fer the reader to the survey of Allender [All12, All17] for more background on
Conjecture 6.2.

6.2 Evidence against Allender’s Conjecture

We disprove Conjecture 6.2 under the assumption that the exponential-time
hierarchy does not collapse to BPEXP. Our main new insight is to consider a

sparse language in
∩

U P
RKU
∥ , or in other words, an exponential-time analogue of

Theorem 6.1. We show that every language in the exponential-time hierarchy
EXPH is reducible to RKU

under PH reductions, and thus:

Theorem 6.3. EXPH ⊆
∩

U PHRKU ⊆ EXPSPACE, where the intersection is
taken over all prefix universal Turing machines.
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In particular, by a standard padding argument, it implies that
∩

U P
RKU
∥ ̸=

BPP unless EXPH = BPEXP. (Indeed, if
∩

U P
RKU
∥ = BPP, then a padding

argument implies EXPH ⊆
∩

U PHRKU ⊆
∩

U EXP
RKU
∥ = BPEXP.)

We also show that Theorem 6.3 crucially makes use of the fact that the set
of Kolmogorov-random strings serves not just as a distinguisher for hitting set
generators. Indeed, by using the technique of Chapter 5, the reductions to any
dense subset of Kolmogorov-random strings can be simulated by Sexp2 (and the
simulation is tight under some reducibility notion).

Theorem 6.4 (informal). Fix any universal Turing machine U . Then we have∩
R : γ-avoids U

EXPR≤poly
=

∩
R : γ-avoids U

BPEXPR≤poly
= Sexp2

Here R≤poly means that the length of queries is restricted to be at most a polyno-
mial in the input length.

Theorem 6.4 means that the reduction of Theorem 6.3 cannot be replaced
with a reduction to any dense subset of Kolmogorov-random strings unless EXPH
collapses to Sexp2 . In particular, the intuition that nonadaptive polynomial-time
reductions could exploit RKU

only as a source of pseudorandomness is wrong.

6.2.1 Proof of Theorem 6.3

Now we present the proof of Theorem 6.3. We note that at the core of
Theorem 6.3 is the following reduction from EXPH to RKU

.

Theorem 6.5. EXPH ⊆ PHRKU for any universal Turing machine U .

We observe that Theorem 6.5 is enough to prove the main result.

Proof of Theorem 6.3. The lower bound follows from Theorem 6.5. For the upper

bound, by the results of [CDE+14, AFG13], we have
∩

U P
RKU
∥ ⊆ PSPACE. By

a standard padding argument, we obtain
∩

U EXP
RKU
∥ ⊆ EXPSPACE, from which

the upper bound follows since PHRKU ⊆ EXP
RKU
∥ . □

Now we proceed to a proof of Theorem 6.5. We first observe that, given HALT
as an oracle, one can compute any decidable language with oracle access to HALT
in PHALT.

Lemma 6.6. Let k be any positive constant. Let M be any oracle machine that,
on every input x, halts eventually and makes a query of length at most |x|k. Then
the language decided by M is in PHALT.

Proof Sketch. The proof is essentially the same with [ABK+06b, Theorem 27],
and thus we just sketch a proof. The idea is to decide M in the following two
steps: First, by using a binary search and the oracle access to HALT, one can
decide the number of all the strings in HALT of length at most nk in polynomial
time. Then, given the number of strings in HALT of length at most nk as advice,
the computation of MHALT becomes now computable, and hence it reduces to
HALT. □
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We also recall that the halting problem is reducible to the set of random strings
under P/poly reductions, which was established by exploiting the fact that the
set of random strings can be distinguisher for any computable pseudorandom
generator.

Theorem 6.7 ([ABK+06b]). HALT ∈ PRKU /poly for any universal Turing ma-
chine U .

While the ingredients above are enough to obtain EXP reductions, in order to
obtain PH reductions, we make use of the efficient proof system of PH given by
Kiwi, Lund, Spielman, Russell, and Sundaram [KLS+00]. For simplicity, we state
their results in the case of the number of alternation is 2, but their results hold
for every constant number of alternation. We also state their results in terms of
ΣEXP
2 instead of ΣP

2 .

Theorem 6.8 (Kiwi, Lund, Spielman, Russell, and Sundaram [KLS+00]). For
every language L in ΣEXP

2 , there exists a randomized polynomial-time verifier such
that,

1. for every input x ∈ L, there exists an oracle A such that for any oracle B,
V A,B(x) accepts with probability 1, and

2. for every input x ̸∈ L, for all oracles A, there exists an oracle B, V A,B(x)
accepts with probability at most 1

2 .

We are now ready to present a proof of Theorem 6.5.

Proof of Theorem 6.5. The main idea is that, given oracle access to the set of
random strings, Theorem 6.7 tells us that there is a succinct witness for any
exponential-time computation. We abbreviate RKU

as R in this proof. We only
give a detailed proof for ΣEXP

2 ⊆ PHR, since it is straightforward to extend the
proof.

First, we present a proof that ΣEXP
2 ⊆ EXPR. Let V be an exponential-time

verifier for L ∈ ΣEXP
2 , and c be a constant such that for every input x of length

n, it holds that x ∈ L if and only if there exists a certificate y of length 2n
c
such

that V (x, y, z) accepts for all z of length 2n
c
; V runs in time 2n

O(1)
. We regard

the computation as a game between the first player A and the second player B.
Here is our exponential-time algorithm solving L with oracle access to R: Let

sA(n) and sB(n) be some polynomials specified later. Given input x of length
n, the algorithm accepts if and only if there exists an oracle circuit A of size
sA(n) such that V (x, tt(AR), tt(BR)) accepts for all oracle circuits B of size
sB(n), where tt(AR) denotes the truth table of the function computed by AR;
the algorithm checks this condition by an exhaustive search. Since there are
at most exponentially many circuits of polynomial size, this algorithm runs in
exponential time.

We claim the correctness of the algorithm. Fix any input x ∈ L of length
n. In this case, the correctness readily follows from the fact that there exists
a succinct witness under the oracle R: Indeed, let yx be the lexicographically
minimum certificate for x ∈ L. Since each bit of yx is decidable (in the sense that
the language { (x, i) | the ith bit of yx is 1 } is decidable), by Theorem 6.7, there
exists an oracle circuit A of size sA(n) := poly(n, log |yx|) = poly(n, nc) such that
tt(AR) = yx. Thus our EXPR algorithm accepts no matter how the adversarial
circuit B is chosen.

Now fix any input x ̸∈ L of length n. This case requires a more delicate
argument. Here we need to claim that, for every circuit A of size sA, there exists
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a circuit B that encodes a strategy that beats the strategy of AR. The point is
that, given any circuit A, the lexicographically first strategy against the strategy
of AR is computable with oracle access to HALT. Indeed, let zx,A denote the lexi-
cographically first string such that V (x, tt(AR), z) rejects. Consider the language
L′ := { (x,A, i) | the ith bit of zx,A is 1 }. Since R is reducible to HALT, the lan-
guage L′ is computable with oracle access to HALT. By Lemma 6.6, L′ ∈ PHALT;
thus by Theorem 6.7, we obtain L′ ∈ PR/poly. This means that for every circuit
A there exists a circuit BA of size poly(n, |A|, log |zx,A|) = poly(n, sA(n), n

c) such
that tt(BR

A) = zx,A. Thus our algorithm rejects.
In order to extend the proof above to ΣEXP

2k for every constant k, we modify the
EXPR algorithm so that it checks whether, given input x of length n, ∃ a circuit
C1 of size s1(n), ∀ a circuit C2 of size s2(n), · · · , ∀ a circuit C2k of size s2k(n)
such that a verifier V (x, tt(CR

1 ), · · · , tt(CR
2k)) accepts, where s1(n), · · · , s2k(n)

are some appropriately chosen polynomials.
We now explain how to reduce the complexity of the EXP reduction to

PH. For simplicity, we again focus on a proof of ΣEXP
2 ⊆ PHR. Note that,

in the proof above, the bottleneck of the computation is the evaluation of
V (x, tt(AR), tt(BR)), where V is an exponential-time verifier. We replace V
with the randomized polynomial-time verifier of Theorem 6.8; then we obtain
the following ΣR

2 algorithm: Existentially guess a circuit A of size at most sA(n),
and universally guess a circuit B of size at most sB(n) as well as a coin flip for
V , Then accept if and only if V A,B(x) accepts on the guessed coin flip sequence.

□

6.2.2 Proof of Theorem 6.4

A similar technique gives the exact characterization of Sexp2 in terms of black-
box reductions to a dense subset of Kolmogorov-random strings.

Theorem 6.9 (The formal version of Theorem 6.4). Let s : N → N be a function
such that ℓϵ ≤ s(ℓ) ≤ ℓ − 2 for some constant ϵ > 0 and every large ℓ. Let
γ : N → [0, 12 ] be a function such that γ(ℓ) ≥ 1/ℓc for some constant c > 0 and

every large ℓ. Fix any universal Turing machine U . Let Gℓ : {0, 1}s(ℓ) → {0, 1}ℓ
be a function such that Gℓ(d) = U(d) for every d ∈ {0, 1}s(ℓ) such that |U(d)| = ℓ.
Then we have∩

R : γ-avoids G

EXPR≤poly
=

∩
R : γ-avoids G

BPEXPR≤poly
= Sexp2 .

We start with the upper bound of Sexp2 .

Claim 6.10. ∩
R : γ-avoids G

BPEXPR≤poly ⊆ Sexp2 .

Proof. Let L ∈
∩

R : γ-avoids G BPEXPR≤poly
. We first note that, as in Proposi-

tion 5.6, the order of quantifiers can be swapped; indeed, the proof of Proposi-
tion 5.6 does not rely on any specific property of BPP∥ reductions; hence, the
same proof works for other notions of reduction. Thus, there exists some ran-
domized t(n)-time black-box reduction M from a language L to any γ-avoiding
oracle for G such that the length of any query that M makes on input of length
n is at most log t(n), for some t(n) = 2n

O(1)
. Let L′ := {x01t(n) | x ∈ L } be a

padded version of L. Applying Theorem 5.7 to L′, we obtain L′ ∈ Sp2 , from which
it follows that L ∈ Sexp2 . □
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We now turn to the lower bound, which concludes the proof of Theorem 6.9.

Claim 6.11.
Sexp2 ⊆

∩
R : γ-avoids G

EXPR≤poly
.

Proof. First, observe that Theorem 6.7 can be generalized to any dense subset R
of Kolmogorov-random strings. Indeed, the proof of [ABK+06b] only exploits the
property that the set of Kolmogorov-random strings can be used as a distinguisher
for a computable hitting set generator. Thus we have HALT ∈ PR/poly. In
particular, relative to the oracle R, there exists a succinct witness for Sexp2 .

Let L ∈ Sexp2 and V be an exponential-time verifier associated with L running

in time 2n
k
for some constant k: That is, for every input x of length n,

1. if x ∈ L then ∃y ∈ {0, 1}2n
k

, ∀z ∈ {0, 1}2n
k

, V (x, y, z) = 1, and

2. if x ̸∈ L then ∃z ∈ {0, 1}2n
k

, ∀y ∈ {0, 1}2n
k

, V (x, y, z) = 0.

Our EXPR≤poly
algorithm is as follows: Instead of doubly exponentially many

certificates y, z ∈ {0, 1}2n
k

, we exhaustively search all possible oracle circuits
Y, Z of size at most poly(n) that take nk inputs, check the condition that
∃Y,∀Z, V (x, tt(Y R), tt(ZR)) = 1, and accept if and only if this condition is
satisfied. The correctness follows from the fact that each bit of the lexicographi-
cally first witness can be computed by a polynomial-size circuit with oracle access
to R. □

We mention that the reducibility notion of Theorem 6.9 can be significantly
improved by using some efficient proof system:

Theorem 6.12. For any G and γ satisfying the same condition with Theo-
rem 6.9, we have

EXPNP ⊆
∩

R : γ-avoids G

SR2 ⊆ Sexp2 .

The proof follows from the following two lemmas:

Lemma 6.13 ([Hir15]). For any EXPNP-complete language L, there exists a
selector for L. That is, there exists a randomized polynomial-time oracle machine
S such that, for any input x ∈ {0, 1}∗ and oracles A0, A1 ⊆ {0, 1}∗, if L ∈
{A0, A1} then PrS

[
SA0,A1(x) = L(x)

]
≥ 2

3 .

The next lemma generalizes a lowness property of Sp2 proved by Cai, Chakar-
avarthy, Hemaspaandra, and Ogihara [CCHO05].

Lemma 6.14. Let L be a language with a selector and R be any oracle. If
L ∈ PR/poly then SL2 ⊆ SR2 .

Proof. The idea is as follows: We request two competing prover of SR2 to output
a circuit that computes L relative to R, and then we identify the honest oracle
by using the selector for L.

Suppose that A ∈ SL2 , and M be an SL2 -machine that witnesses A ∈ SL2 : for
any input x ∈ {0, 1}n, we have

∃y, ∀z, ML(x, y, z) = L(x),

∃z, ∀y, ML(x, y, z) = L(x).
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Let c be a large constant so that M runs in time nc. Let S be a selector for L
that runs in time nd, for some constant d.

Now we describe an SR
2 -machine that computes A: We first show how to

compute L, given instance q of length at most nc. We request competing provers
to give oracle circuits CR

0 , C
R
1 that computes L on all inputs of length ≤ ncd.

Then, we run the selector S relative to these circuits. Since the selector makes a
query of length at most ncd, one of these circuit is an honest oracle. Thus, with
high probability, the selector outputs L(q) correctly.

Given input x ∈ {0, 1}n, we request two competing provers to output y, z.
Then compute and output ML(x, y, z), where the queries q to L can be answered
by using the algorithm described above. This algorithm yields an S2 · BP · PR

algorithm, but since BPP is low for S2 [RS98], we obtain A ∈ SR2 . □

Proof of Theorem 6.12. Under any dense subset R of Kolmogorov-random
strings, we have EXPNP ⊆ PR/poly (by Theorem 6.7). Thus by taking any EXPNP-
complete problem L, we obtain EXPNP ⊆ SL2 ⊆ SR2 by combining Lemma 6.13
and 6.14. □

We conclude this chapter by showing that in the case of reductions to the set
of random strings, the Sp2 reductions of Theorem 6.12 can be derandomized to
obtain PNP reductions.

Theorem 6.15. EXPNP ⊆ PNP
RKU .

Proof. By Theorem 6.12, we immediately obtain EXPNP ⊆ S
RKU
2 . By the rela-

tivized version of Cai’s result [Cai07], we have PNP
RKU ⊆ S

RKU
2 ⊆ ZPPNP

RKU ;
thus it remains to derandomize the computation of ZPP under an NPRKU or-
acle. One can find the lexicographically first Kolmogorov-random string by a

PNP
RKU algorithm. By Lemma 6.6 and Theorem 6.7, the circuit complexity rel-

ative to an NPRKU oracle of any Kolmogorov-random string of length n is at
least nΩ(1). Thus by using a Kolmogorov-random string as a hard function of the
Impagliazzo-Wigderson pseudorandom generator [IW97], one can derandomize
the computation of ZPP under an NPRKU oracle. □
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Chapter 7

Hardness of MCSP Implies Circuit Lower

Bounds

So far we have seen that various hardness results of MCSP under average-
case hardness assumptions. A natural question is what prevents us from proving
NP-hardness of MCSP.

In this chapter, we show that MCSP is intimately related to circuit lower
bounds, of which we have a poor understanding. In particular, under determin-
istic reductions, MCSP cannot be shown to be NP-complete unless important
open questions are solved simultaneously.

7.1 Overview

There have been a line of work explaining why it is difficult to establish NP-
hardness of MCSP under deterministic reductions (e.g. [KC00, MW17, AHK17,
HP15]). For example, Murray and Williams [MW17] showed that if MCSP
is NP-hard under polynomial-time many-one reductions, then ZPP ̸= EXP,
thereby showing that NP-hardness of MCSP is at least as hard as proving
ZPP ̸= EXP. However, no previous work was able to obtain a similar conse-
quence for polynomial-time Turing reductions. We extend previous results to
the case of polynomial-time nonadaptive reductions and polynomial-time Turing
reductions.

In fact, we prove several unconditional separations about deterministic
polynomial-time machines with oracle access to MCSP. Specifically, in the case of
nonadaptive reductions, we show that PMCSP

∥ ∩P/poly ̸= EXP; here P∥ denotes the
class of languages reducible to MCSP via a polynomial-time nonadaptive reduc-
tion. In the case of adaptive reductions, we show that PGapϵMCSP∩P/poly ̸= EXP
for some sufficiently small constant ϵ > 0. As a consequence, we show that NP-
hardness (or even ZPP-hardness) of MCSP under nonadaptive deterministic re-
ductions implies EXP ̸= ZPP, the latter of which is a notorious open question in
complexity theory. Moreover, we show that NP-hardness of GapϵMCSP under
adaptive deterministic reductions for all constant ϵ > 0 implies NEXP ̸⊆ P/poly.
These results explain why it is difficult to prove hardness of MCSP under deter-
ministic reductions.

Our idea is based on the firm links between circuit complexity and resource-
bounded Kolmogorov complexity as explored by [ABK+06b, AKRR11]. Specif-
ically, under the assumption that EXP ⊆ P/poly, it is known that circuit com-
plexity and Levin’s Kt-complexity are polynomially related to each other. In this
sense, we can translate any property of (an approximation version of) MKtP into
that of MCSP. On the other hand, one can observe that PMKtP

∥ ⊆ DTIME(22n) ⊊
EXP; this is because the Kt-complexity of any query that a polynomial-time ma-
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chine can make is bounded above by n + O(log n), and thus the Kt-complexity
of such a query can be determined by an exhaustive search in time 2n+O(logn).
Now we can translate this property of MKtP into that of MCSP and obtain
PMCSP

∥ ̸= EXP, assuming that EXP ⊆ P/poly. As a consequence, we obtain
PMCSP

∥ ∩P/poly ̸= EXP unconditionally because otherwise we have EXP ⊆ P/poly.
Now we would like to extend the argument above into the case of polynomial-

time Turing reductions. Unfortunately, we do not know how to prove EXP ̸=
PMKtP (and this is an open problem since [ABK+06b]). Nevertheless, we can
still prove that a promise problem (denoted by GapgMKtP) of approximating
Kt within an additive error ω(log n) is not EXP-hard under polynomial-time
Turing reductions, that is, PGapgMKtP ̸= EXP. We can translate the property
of Kt-complexity into that of MCSP, under the assumption that EXP ⊆ P/poly.
While the quality of approximation becomes worse, we are able to show that
PGapϵMCSP ∩ P/poly ̸= EXP unconditionally.

We will also show that NP-hardness of MCSP implies a strongly exponential
circuit lower bound (or else a fast simulation of nondeterministic machines). In
particular, the result indicates that it is already a challenging open question
to prove NP-hardness of MCSP for depth-3 AC0 circuits, for which no strongly
exponential circuit lower bound is known.

Our proof idea for this is based on the original proof idea of Kabanets and
Cai [KC00], and its later exposition of Hitchcock and Pavan [HP15]: If there is
a many-one reduction R from SAT to MCSP, then by running the reduction R
on an unsatisfiable formula, we obtain a No instance of MCSP, which is a truth
table of high circuit complexity. Thus we should be able to obtain some circuit
lower bound.

7.2 The Case of Nonadaptive Reductions

Our proof is based on the following relationship between Kt-complexity and
circuit complexity:

Lemma 7.1 (Allender, Koucký, Ronneburger and Roy [AKRR11]). EXP ⊆
P/poly if and only if there exists a polynomial p such that size(x) ≤
p(Kt(x), log |x|) for every x ∈ {0, 1}∗.

We will first show PMKtP
∥ ̸= EXP, and then, based on Lemma 7.1, translate

the property of Kt into that of MCSP, assuming EXP ⊆ P/poly.

Proposition 7.2 (folklore). PMKtP
∥ ⊆ DTIME(22n) ⊊ EXP.

Proof. The last “⊊” follows from the time hierarchy theorem [HS65].
Let M be any PMKtP

∥ machine. Given input x ∈ {0, 1}∗ of length n, let Q(x)
be the set of queries (without including size parameter s) that M makes. Since
M is a nonadaptive polynomial-time oracle machine, Q(x) can be computed in
polynomial time. Therefore, any query q ∈ Q(x) can be described by the input
x and an index i ∈ [nO(1)] in polynomial time; hence, Kt(q) ≤ n+O(log n). Let
l(n) denote this upper bound.

Given the fact that Kt(q) ≤ l(n), we can compute Kt(q) by an exhaustive
search in time 2n+O(logn). Specifically, for each d ∈ {0, 1}∗ of length at most l(n),
we run the universal Turing machine U on input d for 2l(n)−|d| steps; this takes
overall 2l(n)nO(1) time. Thus, by answeringM ’s queries by the exhaustive search,
we can compute M ’s output in time 2n+O(logn) ≤ 22n. □
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Under the assumption that EXP ⊆ P/poly, we can translate the property of
MKtP into that of MCSP:

Theorem 7.3. If EXP ⊆ P/poly then PMCSP
∥ ⊆ DTIME(2n

c
) ̸= EXP for some

constant c > 0.

Proof Sketch. By Lemma 7.1, there exists a constant c such that size(x) ≤
(Kt(x) + log |x|)c for all large |x|. Let (q, s) be any query of a PMCSP

∥ machine.
Since Kt(q) is at most n+O(log n), the circuit complexity size(q) of q is bounded
above by (Kt(q)+ log n)c ≤ (2n)c. Thus, the circuit complexity of all the queries
can be computed by an exhaustive search in time 2O(nc) logO(nc). □

This theorem allows us to obtain a nontrivial separation of PMCSP
∥ ∩ P/poly

from EXP:

Corollary 7.4. PMCSP
∥ ∩ P/poly ̸= EXP.

Proof. Assume, by way of contradiction, that PMCSP
∥ ∩ P/poly = EXP. In partic-

ular, EXP ⊆ P/poly. Thus, by Theorem 7.3, we obtain PMCSP
∥ ̸= EXP, which is a

contradiction to the assumption. □

This result exhibits a singular property of MCSP. In particular, reducing
any language L to MCSP via a polynomial-time nonadaptive reduction implies a
separation of PL

∥ ∩ P/poly from EXP.

Corollary 7.5. If L ≤P
∥ MCSP, then PL

∥ ∩ P/poly ̸= EXP.

Proof. The hypothesis implies that PL
∥ ⊆ PMCSP

∥ , and by the previous corollary
it holds that EXP ̸⊆ PMCSP

∥ ∩ P/poly, from which the result follows. □

In particular, if MCSP is ZPP-hard under polynomial-time nonadaptive re-
ductions, then ZPP ̸= EXP. Similarly, if MCSP is NP-hard under the same
reducibility notion, then PNP

∥ ∩ P/poly ̸= EXP.

7.3 The Case of Adaptive Reductions

Now we turn to the case of polynomial-time Turing reductions. We first show
that approximating Kt-complexity within an additive error ω(log n) is not EXP-
complete under polynomial-time Turing reductions. We denote such a promise
problem by GapgMKtP:

Definition 7.6. For a function g : N → N, define a promise problem
GapgMKtP := (ΠYes,ΠNo) by

ΠYes := { (x, s) ∈ {0, 1}∗ × N | Kt(x) ≤ s },
ΠNo := { (x, s) ∈ {0, 1}∗ × N | Kt(x) > s+ g(|x|) }.

Theorem 7.7. For any nondecreasing function g(n) = ω(log n), it holds that
PGapgMKtP ̸= EXP.

We mention that the proof is reminiscent of a simplified proof in [ABK+06b,
Corollary 40] showing that resource-bounded Kolmogorov complexity Kt(-) for a

fixed exponential time t(n) ≥ 2n
2
is not EXP-hard (originally proved by Buhrman

and Mayordomo [BM97]).
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Proof. It is sufficient to prove that every unary language in PGapgMKtP can be
solved in a fixed exponential time. Indeed, by the time hierarchy theorem, there
exists a unary language in EXP that requires time complexity larger than any
fixed exponential time, which implies that PGapgMKtP ̸= EXP.

We first note that Kt(x) ≤ |x| + O(log |x|) for any x ∈ {0, 1}∗, since every
string can be described by itself in polynomial time. Let l(n) be such a (nonde-
creasing) upper bound (i.e. l(n) = n+O(log n)).

Let L ⊆ {0}∗ be an arbitrary unary language in PGapgMKtP, and M be a
polynomial-time machine that witnesses L ∈ PGapgMKtP.

The proof idea is as follows: We would like to simulateM on input 0n without
oracle access to GapgMKtP in time 22n ≪ 2n

O(1)
. To this end, we try to answer

M ’s query q by exhaustively searching up to Kt-complexity l(n). While we cannot
obtain the correct value Kt(q) for a query q such that Kt(q) > l(n), we guess the
value Kt(q) to be l(n). Then, we will argue that each query q can be computed
efficiently and hence Kt(q) is relatively small; therefore, the guessed value of
Kt-complexity gives a good approximation. A formal proof follows.

We define a machine M0 that simulates M on input 0n (without oracle access
to GapgMKtP): On input 0n, M0 simulates M on the same input, and accepts
if and only if M accepts. If the machine M makes a query (q, s) ∈ {0, 1}∗ ×N to
a GapgMKtP oracle, then we perform an exhaustive search up to Kt-complexity
l(n), which allows us to compute σn(q) := min{Kt(q), l(n)}. (Namely, for each
d ∈ {0, 1}∗ of length at most l(n), run the universal Turing machine U on input
d for time 2l(n)−|d|, which takes overall 2l(n)nO(1) time.) We answer “Yes” to the
query q if and only if σn(q) ≤ s. The machine M0 runs in time 2l(n)nO(1) ≤ 22n

(i.e. a fixed exponential time). Hence, it remains to prove that, for each n ∈
N, there exists an oracle A that satisfies the promise of GapgMKtP such that

M0(0
n) =MA(0n), which in particular implies that M0(0

n) = L(0n).
A crucial observation here is that each query that M makes on the computa-

tion path simulated byM0 can be described succinctly in terms of Kt-complexity:
Specifically, fix an input 0n and define the set Qn = {(q1, s1), · · · , (qm, sm)}
of queries that M makes on the computation path simulated by M0, where
m = nO(1) is the number of the queries. Then, the ith query (qi, si) can be
described by n and an index i ∈ [m] in time 2l(n)nO(1). Therefore, it holds that
Kt(qi) ≤ O(log n)+ log 2l(n)nO(1) = l(n)+O(log n). By the assumption, we have
O(log n) ≤ g(n) for all large n; hence, Kt(qi) ≤ l(n) + g(n). This means that the
difference between Kt(qi) and the threshold l(n) up to which we performed an
exhaustive search is at most g(n).

Now, for each n ∈ N, define an oracle A as follows: (q, s) ∈ A if and only if
σn(q) ≤ s for any (q, s) ∈ Qn, and (q, s) ∈ A if and only if Kt(q) ≤ s for any
(q, s) ̸∈ Qn. (Here, σn(q) denotes min{Kt(q), l(n)}.) By this definition, it holds
that MA(0n) = M0(0

n); thus all that remains is to show that A satisfies the
promise of GapgMKtP (which implies that MA(0n) = L(0n)).

Namely, for all (q, s) ∈ Qn, we would like to claim that (q, s) ∈ A holds if
(q, s) is an Yes instance of GapgMKtP (i.e. Kt(q) ≤ s), and that (q, s) ̸∈ A
holds if (q, s) is a No instance of GapgMKtP (i.e. Kt(q) ≥ s+ g(|q|)). Note that
if Kt(q) ≤ l(n) then σn(q) = Kt(q); hence in this case, the claim is obviously
satisfied. In what follows, we may assume that Kt(q) > l(n) (and thus σn(q) =
l(n)). In particular, this implies that n ≤ |q|: indeed, by the definition of l(n), we
have Kt(q) ≤ l(|q|), which implies l(n) < Kt(q) ≤ l(|q|); hence, n ≤ |q| follows.
Therefore, Kt(q) ≤ l(n)+g(n) ≤ l(n)+g(|q|). Now assume that Kt(q) > s+g(|q|)
(i.e. (q, s) is a No instance). This implies that σn(q) = l(n) ≥ Kt(q)−g(|q|) > s,
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and hence (q, s) ̸∈ A as desired. On the other hand, if Kt(q) ≤ s (i.e. (q, s) is an
Yes instance), then we have σn(q) ≤ Kt(q) ≤ s, and hence (q, s) ∈ A. □

Next, assuming that EXP ⊆ P/poly, we translate the property of Kt-
complexity into that of MCSP. However, since these two measures are just
polynomially related, the narrow gap of Kt does not seem to be translated into a
narrow gap of MCSP. We can still prove analogous results for a promise problem
GapkMCSP asking for approximating the logarithm of circuit complexity within
a factor of k. More formally:

Definition 7.8. For a constant k ≥ 1, define a promise problem GapkMCSP :=
(ΠYes,ΠNo) by

ΠYes := { (x, s) ∈ {0, 1}∗ × N | size(x) ≤ s },
ΠNo := { (x, s) ∈ {0, 1}∗ × N | size(x) > sk }.

We note that this problem is harder than GapϵMCSP, and thus our results
will be stronger.

Fact 7.9. For any constants k ∈ N, ϵ > 0 such that kϵ ≤ 1,

GapϵMCSP ≤P
m GapkMCSP.

Proof. Take any input (tt(f), s) where f : {0, 1}n → {0, 1}. Recall that
GapϵMCSP is a promise problem of approximating circuit complexity within
a factor of 2(1−ϵ)n. Therefore, if s ≥ 2ϵn, then we are allowed to answer “Yes”
as an answer to GapϵMCSP because s · 2(1−ϵ)n ≥ 2n. We thus map the input to
a trivial Yes instance (say, (tt(f), 2n)). In the case when s < 2ϵn, we just map
the input to the same input (tt(f), s).

We claim the correctness of the reduction in the case of s < 2ϵn. It is obvious
that an Yes instance of GapϵMCSP is mapped to an Yes instance of GapkMCSP
by the definitions of these promise problems. For any No instance of GapϵMCSP,
we have size(f) > s · 2(1−ϵ)n ≥ s · 2ϵn(k−1) ≥ sk, and hence (tt(f), s) is a No
instance of GapkMCSP. □

Now we apply the same proof idea with Theorem 7.7 to GapkMCSP. In fact,
thanks to the fact that the gap between ΠY and ΠN is wide, we can prove a
stronger consequence:

Theorem 7.10. If EXP ⊆ P/poly, then for any ϵ > 0, there exists a constant k ≥
1 such that PGapkMCSP ⊆ DTIME(2n

ϵ
). In particular, EXP ̸= PGapkMCSP∩P/poly

for some k.

We note that by Fact 7.9, we also have PGap1/kMCSP ⊆ PGapkMCSP ⊆
DTIME(2n

ϵ
).

Proof. The proof idea is exactly the same with that of Theorem 7.7: We first
simulate a PGapkMCSP machine by answering its query T by an exhaustive search
up to circuit complexity l(n) for some l(n). Then, since any query q can be
described succinctly in terms of Kt-complexity, the circuit complexity size(q)
of the query q is also relatively small by Lemma 7.1; hence, the incomplete
exhaustive search gives a somewhat good approximation. While the theorem can
be proved based on Lemma 7.1, we incorporate a proof of Lemma 7.1 and give
an entire proof below for completeness.
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Let us define an EXP-complete language B ⊆ {0, 1}∗ as all the tuples ⟨Q, x, t⟩
such that the Turing machine Q accepts x in time t. Since B ∈ EXP ⊆ P/poly,
there exist some constant k0 ∈ N and some family of circuits {Cm}m∈N of size at
most mk0 that computes B on input length m.

Fix a small constant ϵ > 0. Define k := (k0 + 1)/ϵ. Let L ∈ PGapkMCSP and

M be a polynomial-time oracle machine that witnesses L ∈ PGapkMCSP.
Define l(n) := nϵ. As in the proof of Theorem 7.7, we define a machine M0

that simulates M (without oracle access to GapkMCSP) as follows: M0 takes
input x ∈ {0, 1}∗ of length n, simulates M on input x, and accepts if and only if
M accepts. IfM makes a query (q, s), then answer to the query by an exhaustive
search up to circuit size l(n). (Specifically, compute σx(q) := min{size(q), l(n)}
and answer “Yes” if and only if σx(q) ≤ s.) The machine M0 runs in time
2l(n)nO(1) ≤ 2n

2ϵ
for all large n.

Fix input x ∈ {0, 1}∗ of length n. Let Qx = {(q1, s1), · · · , (qnO(1) , snO(1))} be
the set of all the queries thatM makes on the computation path simulated byM0.
We claim that for each (qi, si) ∈ Qx, the circuit complexity size(qi) is relatively
small: Indeed, each truth table qi in Qx can be computed in time t(n) := 2n

2ϵ
,

by simulating M in the same way with M0. Let Q be the Turing machine that
takes as input x ∈ {0, 1}∗ of length n and indices i, j ∈ [nO(1)], and outputs
qij . By the definition of B, it holds that B(Q, ⟨x, i, j⟩ , t(n)) = Q(x, i, j) = qij .
Also, by the definition of Cm, we have B(Q, ⟨x, i, j⟩ , t(n)) = Cm(Q, ⟨x, i, j⟩ , t(n))
for m = | ⟨Q, ⟨x, i, j⟩ , t(n)⟩ |. Note that m = 4n + O(log n) + log t(n) ≤ 5n
for all large n. Now let us fix x ∈ {0, 1}n and i ∈ [nO(1)]: namely, define
Dx,i(j) = Cm(Q, ⟨x, i, j⟩ , t(n)); then, the truth table of Dx,i coincides with qi.
Therefore,

size(qi) ≤ |Dx,i| ≤ |Cm| ≤ mk0 ≤ (5n)k0 ≤ nkϵ = l(n)k

for all large n. (Here, |Cm| denotes the circuit size of Cm.)
Now we claim that σx(qi) = min{size(qi), l(n)} approximates size(qi) for all

(qi, si) ∈ Qx: specifically, we claim that σx(qi) ≤ size(qi) < σx(qi)
k. If size(qi) ≤

l(n), then σx(qi) = size(qi) and the claim is obvious. Now assume that size(qi) >
l(n), which implies that σx(qi) = l(n). Thus we have σx(qi) = l(n) < size(qi) <
l(n)k = σx(qi)

k.
From the inequalities above, for every x ∈ {0, 1}∗, it is easy to see that

there exists an oracle A such that A satisfies the promise of GapkMCSP and
M0(x) =MA(x) = L(x). □

Corollary 7.11. If NP ≤P
T GapkMCSP for all k ≥ 1, then NEXP ̸⊆ P/poly.

Proof. Assume, for the purpose of contradiction, that NEXP ⊆ P/poly. In partic-

ular, EXP ⊆ P/poly. By Theorem 7.10, we obtain
∩

k≥1 P
GapkMCSP ⊆ SUBEXP.

By the assumption, we have NP ⊆
∩

k≥1 P
GapkMCSP ⊆ SUBEXP. In particular,

CircuitSAT ∈ SUBEXP. It was shown by Williams [Wil13] that CircuitSAT ∈
SUBEXP implies NEXP ̸⊆ P/poly, which is a contradiction. □

Remark. Another interesting consequence of Theorem 7.10 is that if MCSP
itself is reducible to GapkMCSP for all k ≥ 1 via a polynomial-time Turing
reduction, then PMCSP ∩ P/poly ̸= EXP, which we do not know how to prove.
Thus, establishing such “robustness” of MCSP via a polynomial-time Turing
reduction is at least as hard as separating PMCSP ∩ P/poly from EXP.
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7.4 Hardness of MCSP and Stronger Circuit Lower Bounds

In the previous two sections, we have focused on polynomial-size circuits, and
tried to establish the relationship between hardness of MCSP and polynomial-
size circuit lower bounds. However, for restricted class of circuits such as depth-d
AC0 circuits, an exponential lower bound of the form 2Ω(n1/(d−1)) is already known
[H̊as86]. A natural question is whether MCSP for such a restricted circuit class
can be proven to be NP-hard. Here we show that it is unlikely under polynomial-
time reductions, unless either the lower bound is as large as 2Ω(n), or there is a
fast deterministic simulation of NE = NTIME(2O(n)).

Theorem 7.12. If MCSP is NP-hard under polynomial-time Turing reductions,
then either EMCSP ̸⊆ SIZE(2ϵn) for some constant ϵ > 0 or NE ⊆ SUBEE :=∩

ϵ>0DTIME(22
ϵn
).

While we stated it only for general circuit classes, the same results hold for
any reasonable circuit class. In particular, we note that it is an open problem
whether ENP cannot be computed by a depth-3 AC0 circuit of size 2ω(

√
n); thus

proving NP-hardness of MCSP for depth-3 AC0 circuits is already challenging.

Proof. Assuming that NE ̸⊆ SUBEE and NP ⊆ PMCSP, it suffices to show that
EMCSP ̸⊆ SIZE(2Ω(n)). We take a language L ∈ NE \ SUBEE. We define a
padded version of L as L′ := { 1n | n ∈ L }, where n is identified with its binary
representation; thus L′ ∈ NP \ SUBEXP. In particular, there exists a constant
ϵ > 0 such that L′ ∈ NP \ DTIME(2n

ϵ
).

Let M be a polynomial-time oracle machine that witnesses L′ ∈ PMCSP. We
try to simulate M by the following algorithm M0: On input 1n, simulate M , and
if M makes a query (q, s) to MCSP, then we answer the query by exhaustively
searching all the circuits of size at most nϵ/2.

Note that the running time of M0 is at most 2O(nϵ/2 lognϵ/2) ≤ 2n
ϵ
. Since

L′ ̸∈ DTIME(2n
ϵ
), the simulation of M by M0 must fail infinitely often. Let

I ⊆ N denote the infinite set of integers n ∈ N such that M and M0 differ on
input 1n.

We now define a hard language H in EMCSP by the following algorithm: Given
as input binary representations of a tuple (n, i, j) ∈ N3 where i, j ∈ [nO(1)],
simulate MMCSP(1n) and denote by qn,i the ith query that M makes to the
MCSP oracle. Output the jth bit of qn,i.

Note that the input length of the algorithm for H is ℓ := O(log n); thus
the running time nO(1) is exponential in O(log n), and hence the language H is
indeed in EMCSP. Moreover, since the simulation ofM byM0 fails on input 1n for
n ∈ I, there exists some in ∈ [nO(1)] such that size(qn,in) > nϵ/2. Thus H(n, in, -)
requires a circuit of size 2Ω(logn). Therefore, H requires a circuit of size 2Ω(ℓ)

infinitely often. □

7.5 Open Questions

We conclude this chapter by posing two open questions. The results of this
section can be interpreted as “proving NP-hardness of MCSP is at least as difficult
as open problems such as ZPP ̸= EXP.”

Open Question 7.13. Is it possible to show that “MCSP is unlikely to be
NP-complete”? Specifically, show that NP-hardness of MCSP implies something
unlikely to be true.
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Note that the results presented this section only imply something that is
widely believed to be true, but simply we do not know how to prove (e.g. ZPP ̸=
EXP). There are two known results of the form of Open Question 7.14: One is
the result of Murray and Williams [MW17] showing that MCSP is provably not
NP-hard under DTIME(n0.49)-time reductions. We will present another result
in Chapter 8 showing that NP-hardness of MCSP under “oracle-independent”
deterministic reductions implies NP = P.

The other open question is to extend the results of this section to randomized
reductions.

Open Question 7.14. Show that NP-hardness of MCSP under randomized
reductions implies some open question in complexity theory (similar to Theo-
rem 7.12).

Intuitively, all the techniques presented in this section exploit the idea that
NP-hardness of MCSP means that one can efficiently construct a No instance
of MCSP. Under randomized reductions, one cannot make use of such an idea
because a random truth table is a No instance of MCSP with high probabil-
ity. Moreover, as shown in Chapter 3, randomized reductions enable us to show
SZK-hardness of MCSP; in contrast, in the case of deterministic reductions, no
nontrivial reduction is known unconditionally. In this sense, the results pre-
sented in this section highlight that deterministic reductions are insufficient to
argue hardness of MCSP. It thus seems to require a significantly new idea to
resolve Open Question 7.14. It should be also noted that if PSPACE ⊆ P/poly
then MCSP is NP-hard under ZPP-Turing reductions [ABK+06b, IKV18]; thus
if the consequence of Open Question 7.14 were PSPACE ̸⊆ P/poly, we would
immediately obtain PSPACE ̸⊆ P/poly unconditionally.

In the next chapter, we discuss limits of randomized reductions by introducing
the new notion called oracle-independent reductions.
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Chapter 8

Oracle-Independent Reductions

In this chapter, we show fundamental limits of current techniques for showing
hardness of MCSP. Specifically, we observe that almost all reduction techniques
do not rely on any inherent property of MCSP and instead rely on common
properties that MCSPA shares for an arbitrary oracle A. We thus introduce the
notion of oracle-independent reductions to MCSP and then give upper bounds
on classes of languages that reduces to MCSP via such reductions. We say that
a reduction to MCSP is oracle-independent if the reduction can be generalized
to MCSPA for an arbitrary oracle A. In other words, the reduction exploits
only properties common to MCSPA for any oracle A (instead of nonrelativizing
properties of MCSP).

Almost all the known reductions to MCSP are oracle-independent. The main
technique used in Chapter 3 is the construction from a one-way function to a pseu-
dorandom generator: Specifically, since the output of a pseudorandom (function)
generator is efficiently computable, the output regarded as a truth table has sig-
nificantly low circuit complexity, compared to that of a truth table chosen from
a uniform distribution. Thus, MCSP constitutes a statistical test that distin-
guishes a pseudorandom distribution from a uniform distribution, which enables
us to invert a one-way function on average, thanks to [HILL99]. This argument
exploits only the fact that MCSP constitutes a statistical test. It is easy to see
that an oracle version MCSPA can also constitute a statistical test, and hence
such reductions are oracle-independent.

Recently, new types of reductions to MCSP that do not rely on inverting a
one-way function have been developed by Allender, Grochow, van Melkebeek,
Moore, and Morgan [AGvM+18]. Based on new ideas, they showed that a graph
isomorphism problem is reducible to MKTP via a randomized reduction with
zero-sided error. We will see that their reductions are also oracle-independent.

A high-level reason why these reductions are oracle-independent is as follows:
We are prone to rely on the fact that a randomly chosen truth table requires
high circuit complexity, because it is in general difficult to obtain a circuit lower
bound on an explicit function. The fact that many truth tables require high
circuit complexity remains unchanged for any oracle version MCSPA, and hence
a reduction that only exploits this fact (as a circuit lower bound) is inevitably
oracle-independent.

We note that there is a trivial exception for oracle-independent reductions:
the self-reduction that maps an instance of MCSP to itself. Similarly, the non-
black-box reductions of Chapter 4 are not oracle-independent.

89



8.1 Our Results

We provide strong evidence that NP-hardness of MCSP cannot be shown via
such oracle-independent reductions. For deterministic reductions, we prove that
nothing interesting is reducible to MCSP via an oracle-independent reduction:

Theorem 8.1. No language outside P can reduce to MCSP under polynomial-
time Turing oracle-independent reductions. In other words, if a language L
polynomial-time-Turing-reduces to MCSPA for any oracle A, then L ∈ P; it can
be also simply stated as ∩

A

PMCSPA

= P.

In contrast to the results presented in Chapter 7 showing that NP-hardness of
MCSP implies surprising consequences (e.g. ZPP ̸= EXP), we emphasize that
this theorem gives us an inherent limitation of a deterministic oracle-independent
reduction. One implication is that NP-hardness of MCSP cannot be shown via a
deterministic oracle-independent reduction unless P = NP.

We note that this precisely captures the limit of what we can deterministically
reduce to MCSP. Indeed, currently no (nontrivial) deterministic reduction to
MCSP is known at all unconditionally. The theorem suggests one reason behind
this fact: in order to construct a deterministic reduction to MCSP, we need to
use a property of MCSP that cannot be generalized to MCSPA for some A, which
appears very difficult due to our few knowledge about nonrelativizing circuit lower
bounds.

It should be also noted that Theorem 8.1 implies that there exists an oracle A
such that MCSP ̸≤P

T MCSPA unless MCSP ∈ P. At first glance (mainly due to its
notation), it might be counterintuitive that an oracle version MCSPA becomes
“easier” than MCSP. The point is that the oracle A in the notation MCSPA

refers to the fact that a circuit that is minimized has oracle access to A, but this
does not necessarily increase the computational difficulty of minimizing such an
A-oracle circuit.

Indeed, we exploit this fact to prove Theorem 8.1. Roughly speaking, for
any oracle-independent reduction to MCSP, we adversarially choose an oracle A
so that any query that the reduction makes has circuit complexity of O(log n).
Specifically, let T1, . . . , TnO(1) be the truth tables queried by the reduction (on
some computation path); we encode these truth tables into A so that the truth
table of A(i, -) is equal to Ti for any i. For this oracle, the reduction cannot query
any truth table that has high circuit complexity (relative to oracle A) because
the size of the circuit that outputs A(i, x) on input x is O(log n) for any i. We
then simulate the reduction by exhaustively1 search small circuits of size up to
O(log n).

We also prove that even randomized oracle-independent reduction is not suf-
ficient to establish NP-hardness of MCSP:

Theorem 8.2. If a language L is reducible to MCSP via an oracle-independent
randomized reduction with negligible error that makes at most one query, then

1 When the “size” of a circuit refers to the number of its wires, we cannot enumerate all such
circuits in polynomial time since there are O(logn)O(logn) = nO(log logn) possible circuits of size
less than O(logn), which gives only a weak upper bound. We will thus regard the “size” of a
circuit as its description length, and also require that we can encode a truth table into an oracle
efficiently.
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L ∈ AM ∩ coAM. In other words,∩
A

BPPMCSPA[1] ⊆ AM ∩ coAM.

Here, BPPB[1] denotes the class of languages reducible to an oracle B via a
randomized reduction with negligible error that makes at most one query.

In particular,
∩

A BPPMCSPA[1] does not contain NP unless NP ⊆ coAM (and in
particular the polynomial hierarchy collapses [BHZ87]). Therefore, it is impossi-
ble to establish NP-hardness of MCSP via such reductions (unless the polynomial
hierarchy collapses).

8.1.1 Oracle-independent Reductions vs. Relativization

We note that an oracle-independent reduction is different from simple rela-
tivization. In a relativization setting, Ko [Ko91] showed the existence of a rela-
tivized world where MCSP is an NP-intermediate problem: MCSP is neither in
coNP nor is NP-complete under polynomial-time Turing reductions. Specifically,
he constructed an oracle A such that NPA is not contained in PMCSPA, A, thereby
showing a relativized world where MCSP cannot be NP-hard under polynomial-
time Turing reductions. This shows the computational limit of MCSP in a rela-
tivized world.

In contrast, we discuss the computational limit of MCSP in a real world when
MCSP is used by oracle-independent reductions. Technically, by exploiting the
fact that NP-machines have oracle access, Ko [Ko91] constructed an oracle A so

that some NPA-computation would go beyond the class PMCSPA, A. On the other
hand, we construct an oracle A so that PMCSPA

-computation cannot be strong;
in fact, it is essentially the same as P.

Organization

The rest of this chapter is organized as follows. In Section 8.2, we intro-
duce some notation and the definition of circuit complexity. In Section 8.3, we
observe that the known reductions to MCSP are oracle-independent. We prove
Theorem 8.1 and 8.2 in Section 8.4 and 8.5, respectively.

8.2 Preliminaries

It is convenient to introduce the notion of finite oracle for diagonalization
arguments.

Definition 8.3. 1. We say that A0 is a finite oracle if A0 : {0, 1}∗ → {0, 1,⊥}
and A0(x) = ⊥ for all but finitely many strings x ∈ {0, 1}∗, where ⊥ means
“undefined.”

2. For an oracle A ⊆ {0, 1}∗ and a finite oracle A0, we say that A is consistent
with A0 if A(x) = A0(x) for any x ∈ {0, 1}∗ such that A0(x) ̸= ⊥.

3. Similarly, for l ∈ N, we say that A and A0 are consistent up to length l if
it holds that A(x) = 1 if and only if A0(x) = 1 for all strings x ∈ {0, 1}∗ of
length at most l.
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8.2.1 Definition of Circuit Size

For some technical reasons, we regard the description length of a circuit as
its size. Thus we borrow notation of Kolmogorov complexity and write

KI (x) := min{ |d| | I(d) = x }

for every machine I and every string x ∈ {0, 1}∗. Throughout this chapter we
will use a specific interpreter I that is defined below.

We first fix our standard (oracle) circuit interpreter. We assume any standard
way to encode circuits by binary strings. Note that a circuit may be an oracle
circuit that can use oracle gates outputting A(z) for a given input z to the gate
when a circuit is used with oracle A. Let I0 denote a circuit interpreter for this
encoding: that is, for any oracle A and a given description d of an oracle circuit
C, the interpreter IA0 (d) yields the truth table of CA. (Thus, |IA0 (d)| = 2n for
some n and IA0 (d) = CA(1n) · · ·CA(2nn).)

We will use the following facts that the standard circuit interpreter IA0 should
have:

1. IA0 (d) is computable in time polynomial in |d| and |IA0 (d)|, given oracle
access to A.

2. For all but finitely many truth tables T ∈ {0, 1}∗ (where |T | is a power of
2), there exists a circuit description of size less than |T |2: that is, KI0

(T ) <
|T |2.

3. Any oracle circuit C whose description length is at most m cannot query
to an oracle any string of length greater than m. Thus, the output of CA

only depends on the membership in A of strings of length at most m.

We modify the standard circuit interpreter I0 so that we can describe some
type of circuits succinctly. For any n ∈ N and d ∈ {0, 1}∗, let CA

n,d(x) be an oracle
circuit that computes A(x, d) (i.e. A(⟨x, d⟩)) for a given input x ∈ {0, 1}n, by
using a single oracle gate with input ⟨x, d⟩.

Definition 8.4. Define an interpreter IA as follows:

IA(0d) := IA0 (d),

IA(1n, d) := IA0 (C
A
n,d) = A(1n, d)A(2n, d) · · ·A(2nn, d),

for any n ≥ 1 and d ∈ {0, 1}∗. For the other strings d (e.g. d = 1101), leave
IA(d) undefined.

For A = ∅, we write I instead of I∅.

Remark. 1. Recall that ⟨1n, d⟩ = 1n01nd; hence IA is well-defined. Also, the
definition of IA ensures that the description length of a circuit CA

n,d is at
most | ⟨1n, d⟩ | = 2n+ |d|+1, which is exactly equal to the length of a query
⟨in, d⟩ to oracle A.

2. For A = ∅, we have KI (x) = KI0
(x) + 1 for any x ∈ {0, 1}∗ \ {0}∗; hence,

there is essentially no difference between our circuit complexity measure
KI (x) and a standard description length KI0

(x).

3. For a general oracle A, since we assumed that the circuit CA
n,d can be de-

scribed succinctly, we cannot guarantee that minimizing our complexity
measure KIA is computationally equivalent to minimizing standard circuit
complexity. However, all of the previous work (e.g. [Ko91, AHK17]) that
we are aware of holds under our encoding scheme.
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We define the minimum oracle circuit size problem MCSPA by using IA as a
circuit interpreter:

Definition 8.5. The minimum oracle circuit size problem MCSPA relative to an
oracle A ⊆ {0, 1}∗ takes a truth table T ∈ {0, 1}∗ and a size-parameter s ∈ N,
and decides if KIA(T ) ≤ s.

8.3 Why Are the Known Reductions Oracle-independent?

In this section, we argue that the known reductions to MCSP are oracle-
independent. We observe that the existing reductions only exploit (as a circuit
lower bound) the fact that many truth tables require high (unrelativized) cir-
cuit complexity. Indeed, it is easy to observe that, for every oracle A, a set
B := {x ∈ {0, 1}∗ | KIA(x) ≥ |x|1/2 } defines a natural property useful against
SIZE(2Ω(n)). Indeed, by a simple counting argument, most of truth tables are
not in B. Thus any reduction to a natural property can be seen as an oracle-
independent reduction to MCSP (e.g. the reduction from inverting an auxiliary-
input one-way function to a natural property Theorem 3.7).

Next, we show that an oracle-independent one-query reduction to MCSP al-
lows us to convert a randomized algorithm with two-sided error into a randomized
algorithm with zero-sided error. Moreover, the error probability is negligible.

Theorem 8.6 (Kabanets and Cai [KC00]). BPP ⊆
∩

A ZPPMCSPA[1].

Proof Sketch. Pick a truth table T uniformly at random. By making a query
to MCSPA, check if KIA(T ) = nΩ(1). (Note that this also implies that KI (T ) =
nΩ(1).) Now, if we successfully found a truth table T that requires high circuit
complexity, then we can use the pseudorandom generator of Impagliazzo and
Wigderson [IW97] to derandomize a BPP computation. □

Finally, we observe that the reductions of [AGvM+18] are oracle-independent.
They presented a reduction from the rigid graph isomorphism problem to MKTP.
We can capture KT-complexity by our notation by defining a circuit interpreter
IA0 as follows: On input 1t0d, run the universal Turing machine UA,d(i) for each
i ≥ 1 one by one in time at most t. Let n be the minimum i such that UA,d(i)
outputs ⊥. Output the concatenation of UA,d(1), · · · , UA,d(n−1). This definition
ensures that KIA0

(x) = KTA(x)+1, and that KIA(x) ≤ KIA0
(x)+1 = KTA(x)+2.

For this particular interpreter IA, we prove:

Theorem 8.7 ([AGvM+18]). For any oracle A, the rigid graph isomorphism
problem is reducible to MCSPA via a one-query BPP-reduction.

Proof Sketch. We only observe why their reduction still works for MCSPA,
where A denotes an arbitrary oracle A.

Given two graphs (G0, G1), they constructed a string x′ whose length is a
power of 2 and a threshold θ that satisfy the following: If the graphs are iso-
morphic, then KT(x′) ≪ θ with probability 1. If the graphs are rigid and not
isomorphic, then x′ contains information about a uniformly chosen random string
of length at least θ, and hence KT(x′) ≥ KU (x

′) ≫ θ with high probability. (Here,
KU (x

′) denotes the time-unbounded Kolmogorov complexity.)
Now consider an arbitrary oracle A. We claim that the rigid graph isomor-

phism problem reduces to checking if (x′, θ) ∈ MCSPA. Suppose that the graphs
are isomorphic; in this case, we have KIA(x

′) ≤ KTA(x′) + 2 ≤ KT(x′) + 2 ≪ θ.
On the other hand, suppose that the graphs are rigid and not isomorphic. Since
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x′ contains information about a uniformly chosen random string, an information-
theoretic argument shows that KUA(x′) ≫ θ with high probability (even relative
to A). By the universality of U , we have KUA(x′) ≤ KIA(x

′) + O(1). Therefore,
KIA(x

′) ≥ KUA(x′)−O(1) ≫ θ. □
To summarize, on one hand, relativization does not increase circuit complexity

(KIA(x
′) ≤ KI (x

′)); on the other hand, we are prone to rely on the fact that a
uniformly chosen random string requires high circuit complexity, which remains
true for any MCSPA.

We mention that, for a specific oracle A, an efficient reduction to
MCSPA is known. Allender, Buhrman, Koucký, van Melkebeek and Ronneb-

urger [ABK+06b] showed that PSPACE ⊆ ZPPMCSPQBF
. Since their proof relies

on the fact that QBF is PSPACE-complete, the proof cannot be generalized to
a reduction to MCSP; hence, their reduction cannot be regarded as an oracle-
independent reduction to MCSP.

8.4 Limits of Oracle-independent Turing Reductions to MCSP

We show upper bounds for classes of languages that reduce to MCSP in an
oracle-independent manner (i.e. in a way that one does not use a property
of MCSP rather than that of a relativized version MCSPA). For example, we
consider a situation where a language L is reducible to MCSPA for any A via
a polynomial-time Turing reduction; more precisely, for every A, there exists a
polynomial-time Turing reduction from L to MCSPA, i.e. L ∈

∩
A PMCSPA

. That
is, only properties common to MCSPA for any oracle A are used to show that L
is in PMCSPA

. We would like to show that L is relatively easy in such situations.
In fact, we can indeed show that any language L in

∩
A PMCSPA

is in P.

Theorem 8.8 (Restatement of Theorem 8.1). Let L ⊆ {0, 1}∗ be a language such
that for any oracle A, there exists a polynomial-time Turing reduction from L to
MCSPA. Then L is in P. In short,

∩
A PMCSPA

= P.

We will prove this theorem as follows: We will argue that, for each polynomial-
time reductionM , we can adversarially choose an oracle AM so that the reduction
M cannot query any truth table of high circuit complexity (by encoding the truth
tables queried byM into the oracle AM ). However, the assumption of the theorem
states that a reductionM can depend on an oracle A, and hence A cannot depend
on M . We first get around this difficulty by swapping the order of quantifiers:
we reduce our theorem to the following lemma, in which a machine M cannot
depend on A.

Lemma 8.9. Let L ⊆ {0, 1}∗ be a language and A0 be an arbitrary finite oracle.
Suppose that there exists a polynomial-time oracle Turing machine M such that
MMCSPA

(x) = L(x) for any x ∈ {0, 1}∗ and any oracle A consistent with A0.
Then, L ∈ P.

Note that, in this lemma, a single machine M is required to compute L
with respect to every oracle version MCSPA. We will later prove this lemma by
choosing, for each reductionM and input x, an oracle AM,x so that the reduction
M to MCSPAM,x can be simulated in polynomial time. Before its proof, we show
that Lemma 8.9 implies Theorem 8.1 by using a simple diagonalization argument.

Proof of Theorem 8.1 based on Lemma 8.9. We prove the contrapositive: As-
suming L ̸∈ P, the aim is to construct an oracle A such that L ̸∈ PA. Such
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an oracle A =
∪

eBe is constructed in stages. Let all the polynomial-time oracle
Turing machines be {M1,M2, · · · }.

At stage e, we construct a finite oracle Be. At stage 0, set B0(y) := ⊥ for all
y ∈ {0, 1}∗. At stage e ≥ 1, we apply Lemma 8.9 for M = Me and A0 = Be−1:
by the assumption that L ̸∈ P, there exist some string xe and some oracle Be

consistent with Be−1 such that MMCSPBe

e (xe) ̸= L(xe). We may assume that Be

is a finite oracle: indeed, since the computation of MMCSPBe

e on input xe makes
a finite number of queries to MCSPBe , the answers of the queries also depend on
a finite portion of Be. Define an oracle A as the union of all the oracles Be whose
⊥ is replaced by 0.

Since A is consistent with Be, it holds that M
MCSPBe

e (xe) =MMCSPA

e (xe) for

each e ≥ 1. By the definition of xe, we have MMCSPBe

e (xe) ̸= L(xe). Therefore,

MMCSPA

e (xe) ̸= L(xe) holds for any e, and hence L ̸∈ PMCSPA
. □

Now we give a proof of Lemma 8.9. The idea is as follows: For any reduction
M and any input x, we simulate the reduction M by answering M ’s query by
exhaustively searching all the circuits of size at most O(log n). On this specific
computation path ofM , we claim that there exists some oracle AM,x such that the
simulated computation path coincides with the computation path of the reduction
M to MCSPAM,x , thereby showing that the output of the simulation of M is
L(x): Since M is a polynomial-time machine, the number of the queries on the
computation path is at most nO(1). Thus, the index i of the queries can be
described in O(log n) bits, and hence the description length of the oracle circuit
CAM,x(j) := AM,x(j, i) is at most O(log n). By defining AM,x(j, i) := Tij for each
truth table Ti queried by M , any truth table Ti admits a circuit of size at most
O(log n).

Let us turn to a formal proof. Let M be a polynomial-time oracle machine
that computes L given oracle access to MCSPA in time nc for some constant c,
where A denotes an arbitrary oracle consistent with A0. We define a polynomial-
time machine M0 that simulates M without using MCSPA as follows: On input
x ∈ {0, 1}∗ of length n, simulate M on input x, and accept if and only if M
accepts. IfM makes a query (T, s), then we try to compute the circuit complexity
KIA0 (T ) of the truth table T relative to a finite oracle A0, by an exhaustive search
up to size at most 4c log n. (More specifically, we compute the shortest description
d of length at most 4c log n such that IA0(d) = T , where we regard A0 ⊆ {0, 1}∗
as an oracle by replacing ⊥ by 0 in finite oracle A0.) If the circuit complexity
KIA0 (T ) has turned out to be greater than 4c log n, then define s′ := 4c log n;
otherwise define s′ := KIA0 (T ) (≤ 4c log n ). (i.e. s′ := min{4c log n, KIA0 (T )}.)
Answer “Yes” to the query if and only if s′ ≤ s.

It is easy to see that M0 is indeed a polynomial-time machine, since there are
only 2O(logn) circuits of size at most O(log n). (Recall that we regard a circuit
size as a description length.) Thus, it is sufficient to prove the following:

Claim 8.10. For all sufficiently large n and all inputs x of length n, there exists

an oracle AM,x consistent with A0 such that M0(x) =MMCSP
AM,x

(x).

Note that the assumption of Lemma 8.9 implies that MMCSP
AM,x

(x) = L(x).
Thus, the claim implies that M0(x) = L(x) and hence L ∈ P.

Proof of Claim 8.10. Fix n sufficiently large and an input x ∈ {0, 1}n. For i ∈
[nc], let Ti be the truth table in the ith query that M makes on the computation
path simulated by M0 on input x.
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We define an oracle AM,x = A as follows (here, AM,x is abbreviated as A for
notational convenience): For any string q ∈ {0, 1}∗ of length less than 4c log n,
define A(q) = 1 if and only if A0(q) = 1. For strings of length 4c log n, we encode
Ti into oracle A so that the circuit complexity of Ti relative to A is at most
4c log n: Specifically, we would like to define a description di of length (exactly
equal to) 4c log n so that IA(di) = Ti. To this end, let ai := log |Ti| and define
di :=

⟨
1ai , iki

⟩
, where ki ∈ N is defined so that |di| = 2ai + 1 + ki = 4c log n.

Here, iki is well-defined: indeed, we have ai = log |Ti| ≤ c log n, which implies
that ki := 4c log n − 2ai − 1 ≥ c log n, and thus i ≤ 2c logn ≤ 2ki . Now define
A(j

ai
, iki) := Tij for each j ∈ [2ai ]. By the definition of IA, the truth table Ti

can be described succinctly: IA(di) = A(1ai , iki) · · ·A(2
ai

ai , iki) = Ti; thus, the
circuit complexity KIA(Ti) of Ti is at most |di| = 4c log n.

It remains to show that, for each query (Ti, s) that M makes on the compu-
tation path simulated by M0, circuit complexity s′ (= min{4c log n, KIA0 (Ti)} )
calculated by M0 coincides with KIA(Ti); note that this implies that M0(x) =

MMCSPA
(x), because the computation path simulated by M0 coincides with that

ofM relative to MCSPA. In order to see KIA(Ti) = min{4c log n, KIA0 (Ti)}, first
we note that A and A0 are consistent up to length 4c log n − 1; thus, for small
circuits, circuit complexity relative to A remains the same with circuit complexity
relative to A0, because small circuits cannot query long strings of length 4c log n.
Formally, suppose that KIA0 (Ti) < 4c log n (i.e. s′ = KIA0 (Ti)). In this case,
there exists some description d of length less than 4c log n such that IA0(d) = Ti.
Since the circuit described by d cannot make any query of length greater than
|d|, it holds that IA0(d) = IA(d). Thus KIA(Ti) ≤ KIA0 (Ti) < 4c log n. Similarly,
we have KIA0 (Ti) ≤ KIA(Ti), and hence KIA(Ti) = KIA0 (Ti) = s′. Now suppose
that KIA0 (Ti) ≥ 4c log n (i.e. s′ = 4c log n). We claim that KIA(Ti) = 4c log n.
Since we have KIA(Ti) ≤ 4c log n by the definition of A, it is sufficient to show
that KIA(Ti) < 4c log n is not true. Assume, by way of contradiction, that
KIA(Ti) < 4c log n. By the same argument above, it must be the case that
KIA(Ti) ≥ KIA0 (Ti) ≥ 4c log n, which is a contradiction. □

This completes the proof of Lemma 8.9.

Remark. If we regard a size of a circuit as the number of its wires, then the
upper bound P becomes DTIME(nO(log logn)). Specifically, let MCSP′A denotes a
version of MCSPA in which a size of a circuit is measured by the number of its
wires. Then we have

∩
A PMCSP′A ⊆ DTIME(nO(log logn)). This can be proved by

simply changing M0 in the proof above so that M0 exhaustively search all the
circuits of at most O(log n) wires in time O(log n)O(logn) = nO(log logn).

8.5 Limits of Oracle-independent Randomized Reductions to
MCSP

In this section, we discuss the limits of a randomized reduction to MCSP that
can be generalized to a reduction to MCSPA for an arbitrary oracle A. Our focus
is a randomized reduction with negligible two-sided error that can make at most
one query:

Definition 8.11. Let L,B ⊆ {0, 1}∗ be a language and an oracle, respectively.
We say that L reduces to B via a one-query BPP-reduction and write L ∈ BPPB[1]

if there exist polynomial-time machinesM,Q and a negligible function ϵ such that,
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for any x ∈ {0, 1}∗,

Pr
r∈{0,1}|x|O(1)

[M(x, r,B(Q(x, r))) = L(x)] ≥ 1− ϵ(|x|).

Here, we say that a function ϵ is negligible if for all polynomials p, for all
sufficiently large n ∈ N, the function is bounded by the inverse of p: that is,
ϵ(n) < 1

p(n) .

Note that we require the error probability to be negligible. Since the number
of queries is restricted to one, we cannot apply the standard error-reduction
argument; hence, this definition may be stronger than a definition whose error
probability is a constant. We leave as an open problem improving our result to
the case when the error probability is a constant.

We prove that there is no language outside AM ∩ coAM that can reduce to
MCSPA for an arbitrary oracle A via a one-query randomized reduction:

Theorem 8.12 (Restatement of Theorem 8.2). Let L ⊆ {0, 1}∗ be a language
such that for any oracle A, there exists a one-query BPP-reduction from L to
MCSPA. Then L is in AM ∩ coAM. In short,∩

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

As with Theorem 8.1, we first swap the order of quantifiers. However, in order
to swap the order of quantifiers, we need to enumerate all the negligible functions,
which is not countably many; thus, we sidestep this by requiring that the error
probability is an inverse polynomial 1/q in the running time of machines M and
Q. Also, since a one-query BPP-reduction is closed under complement, we only
have to show that the target language is in AM.

Lemma 8.13. There exists some universal polynomial q (specified later) that
satisfies the following: Let L,A0 be a language and a finite oracle, respectively.
Suppose that there exist a polynomial p and Turing machines M,Q such that M
and Q run in time p(n) and

Pr
r∈{0,1}p(n)

[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− 1

q(p(n))

for any x ∈ {0, 1}∗ of length n and any oracle A ⊆ {0, 1}∗ consistent with A0.
Then, we have L ∈ AM.

We prove that Lemma 8.13 implies Theorem 8.2:

Proof of Theorem 8.2 based on Lemma 8.13. We prove the contrapositive: As-

suming L ̸∈ AM, we will construct an oracle A such that L ̸∈ BPPMCSPA[1] by
diagonalization.

Enumerate all the tuples {(Me, Qe, ce)}e≥1, whereMe and Qe are polynomial-
time machines and ce ∈ N. We assume that, for each tuple (Me, Qe, ce), there
exist infinitely many e′ ∈ N such that (Me, Qe, ce) = (Me′ , Qe′ , ce′).

At stage e ≥ 1, we construct a finite oracle Be that fools a one-query BPP
reduction (Me, Qe) that runs in time nce : If Me or Qe does not run in time
nce , then we define Be := Be−1. Otherwise, we can apply the contrapositive
of Lemma 8.13 to Me and Qe: there exist some input xe and some oracle Be

consistent with Be−1 such that Prr[Me(xe, r,MCSPBe(Qe(xe, r))) = L(xe)] <
1 − 1

q(nce ) . We can make Be a finite oracle, since Me depends on only a finite
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portion of Be. This completes stage e. Define A as the union of all the oracles
Be whose ⊥ is replaced by 0.

We claim that L ̸∈ BPPMCSPA[1]. Assume otherwise. Then there exist a
constant c > 1, a negligible function ϵ, and machines M and Q that run in time
nc such that

Pr
r
[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− ϵ(|x|) (8.1)

for all x ∈ {0, 1}∗. Fix a sufficiently large n0 ∈ N such that ϵ(n) < 1
q(nc+1)

for all

n ≥ n0. Let M ′ be the Turing machine2 that, on input x, outputs a hardwired
answer L(x) if |x| ≤ n0, and simulates M otherwise. Note that the running time
of M ′ is at most nc+1.

By the construction above, there exists e ≥ n0 such that (Me, Qe, ce) =
(M ′, Q, c+1). By the definition of xe, we have Prr[M

′(xe, r,MCSPA(Q(xe, r))) =
L(xe)] < 1 − 1

q(|xe|c+1)
. Moreover, since M ′ outputs a correct answer with prob-

ability 1 on input x of length at most n0, it holds that |xe| > n0; thus, we have
ϵ(|xe|) < 1

q(|xe|c+1)
; in addition, the machine M ′ behaves in the same way with

M . Hence, the success probability of (M,Q) on input xe is equal to that of
(M ′, Q) on input xe, which is bounded above by 1− 1

q(|xe|c+1)
< 1− ϵ(|xe|). This

contradicts (8.1). □

Now we outline the proof of Lemma 8.13.
We will first show that we may assume that all the queries that Q makes have

a truth table of a fixed length 2t and a fixed size-parameter s for some t, s ∈ N.
There is no loss of generality in assuming this because there are only polynomially
many possibilities: the number of all the possible lengths of a truth table and
size-parameters is at most nc for some c. Moreover, we may fix how to use the
answer of a query: specifically, for a random choice r, define f : {0, 1} → {0, 1}
(which has 4 possible choices) so that f(b) = M(x, r, b). (For example, f(b) = b
means that M accepts if and only if the query is a positive instance of MCSPA.)

We classify the set of random choices r into Rf,t,s according to these pa-
rameters (f, t, s). If x ∈ L, then there must exist some (f, t, s) such that
f(MCSPA(Q(x, r))) = 1 with high probability over the choice of r ∼ Rf,t,s. On
the other hand, if x ̸∈ L, then any (f, t, s) must satisfy f(MCSPA(Q(x, r))) = 0
with high probability. Therefore, it is sufficient to prove that, for a specific
(f, t, s), there exists an AM protocol that checks if f(MCSPA(Q(x, r))) = 1 with
high probability conditioning on r ∈ Rf,t,s.

Let us assume that f(b) = b for simplicity. Then, it is sufficient to estimate
the probability

Pf,t,s := Pr
r∼Rf,t,s

[f(MCSPA(Q(x, r))) = 1] = Pr
r∼Rf,t,s

[Q(x, r) ∈ MCSPA]

by an AM protocol. If the probability Pf,t,s is close to 1, then the distribution
induced by Q(x, r) concentrates on a limited number of instances: indeed, since
there are at most 2s+1 positive instances in MCSPA for a size-parameter s, the
query Q(x, r) must be one of such instances with probability at least Pf,t,s. Con-
versely, suppose that the query distribution Q(x, r) concentrates on a limited

2 M ′ can be implemented by a Turing machine as follows: Read the first n0 + 1 bits of the
input (if any). If the input length is at most n0, then output the hardwired answer. Otherwise,
move the head of the input tape to the initial position, and continue the computation of M .
This implementation costs at most 2n0 additional steps.
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number of instances {(T1, s), (T2, s), · · · }; we may encode Ti into an oracle A and
force these instances to be positive (i.e. (Ti, s) ∈ MCSPA); as a result, the prob-
ability Pf,t,s is not small (since the instances (Ti, s) are positive). Therefore, the
task reduces to checking whether the query distribution concentrates on a limited
number of instances.

To this end, we will use the heavy samples protocol [BT06b]. We say that an
instance (T, s) is β-heavy if the probability that (T, s) is queried (i.e. (T, s) =
Q(x, r)) is at least β. The heavy-sample protocol of Bogdanov and Trevisan
[BT06b] allows us to estimate the probability that Q(x, r) is β-heavy.

Lemma 8.14 (follows from Theorem 5.21). Let D = {Dn}n∈N be a polynomial-
time samplable distribution. There exist a universal constant c (c = 211 will do)
and an AM ∩ coAM protocol that solves the following promise problem: Given
input 1n and a threshold β ∈ [0, 1], accept if Pry∼Dn [ y is cβ-heavy ] ≥ 3

4 , and
reject if Pry∼Dn [ y is β-heavy ] ≤ 1

4 .

Now we give a formal proof of Lemma 8.13. For the proof, we need to show
an AM protocol deciding whether x ∈ L; we will show the protocol by a sequence
of claims.

We begin with clarifying our setting and introducing some notation. Let p(n)
be a polynomial that is an upper bound of the running time of M and Q. Fix a
sufficiently large n ∈ N and an input x ∈ {0, 1}n.

Let f : {0, 1} → {0, 1} be a function, and t, s ∈ N. We define Rf,t,s ⊆ {0, 1}p(n)
as the set of all the random choices r ∈ {0, 1}p(n) such that M(x, r, b) = f(b) for
all b ∈ {0, 1} and (T, s) = Q(x, r) and |T | = 2t. That is, f specifies how to use the
answer from oracle MCSPA, and t and s specify the length of the truth table and
the size-parameter in the query, respectively. Let X := { (f, t, s) | Rf,t,s ̸= ∅ }.
We may assume, without loss of generality, that s ≤ p(n)2 as otherwise Q(x, r)
is obviously a positive instance; hence, |X| ≤ 22 · log p(n) · p(n)2 ≤ 4p(n)3.

Define Pf,t,s := Prr[f(MCSPA(Q(x, r))) = 1 | r ∈ Rf,t,s] for (f, t, s) ∈ X. Let
us divide the probability that M accepts x by conditioning on r ∈ Rf,t,s:

Pr
r
[M(x, r,MCSPA(Q(x, r)) = 1] =

∑
(f,t,s)∈X

Pr
r
[r ∈ Rf,t,s] · Pf,t,s. (8.2)

Since there are polynomially many choices for (f, t, s), there must be some
(f, t, s) ∈ X that can be used as a “witness” for x ∈ L in our AM protocol.
Specifically, the following claim holds:

Claim 8.15. Let δ(n) :=
√

1/q(p(n)) and δ′(n) := 9p(n)3δ(n).

1. If x ∈ L, then there exists (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ 2δ(n) and
Pf,t,s ≥ 1− δ′(n).

2. If x ̸∈ L, then Pf,t,s ≤ δ(n) for all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥
δ(n).

Proof of Claim 8.15.

1. Suppose that x ∈ L; then, the probability (8.2) is at least 1−δ(n)2. Assume,
by way of contradiction, that Pf,t,s < 1−δ′(n) for all (f, t, s) ∈ X such that
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Pr[r ∈ Rf,t,s] ≥ 2δ(n). Then,

1− δ(n)2

≤
∑

(f,t,s)∈X

Pr
r
[r ∈ Rf,t,s] · Pf,t,s

=
∑

(f,t,s)∈X
Pr[r∈Rf,t,s]≥2δ(n)

Pr
r
[r ∈ Rf,t,s] · Pf,t,s +

∑
(f,t,s)∈X

Pr[r∈Rf,t,s]<2δ(n)

Pr
r
[r ∈ Rf,t,s] · Pf,t,s

≤ 1− δ′(n) + 2|X|δ(n) ≤ 1− 9p(n)3δ(n) + 8p(n)3δ(n) = 1− p(n)3δ(n).

Thus p(n)3 ≤ δ(n) < 1, which is a contradiction.

2. LetX ′ be the set of all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n). Suppose
that x ̸∈ L; then,

δ(n)2 ≥
∑

(f,t,s)∈X

Pr
r
[r ∈ Rf,t,s] · Pf,t,s ≥ δ(n) ·

∑
(f,t,s)∈X′

Pf,t,s,

which clearly implies that Pf,t,s is at most δ(n) for each (f, t, s) ∈ X ′.

□
In our AM protocol, the prover first sends (f, t, s) to the verifier; an hon-

est prover is supposed to send (f, t, s) ∈ X that satisfies the first condition in
Claim 8.15 above. Then, what we need is to show a verifier of an AM protocol
as stated in the following claim.

Claim 8.16. There exists a verifier V of an AM protocol such that, for a given
x ∈ {0, 1}∗ and (f, t, s) ∈ X,

1. if Pr[r ∈ Rf,t,s] ≥ 2δ(n) and Pf,t,s ≥ 1 − δ′(n), then V accepts with high
probability by communicating with some prover, and

2. if Pr[r ∈ Rf,t,s] < δ(n) or Pf,t,s ≤ δ(n), then V rejects with high probability
with any prover.

We explain below how to define this verifier V . Recall that 1/δ(n) = nO(1);
thus, it is easy to distinguish the case when Pr[r ∈ Rf,t,s] ≥ 2δ(n) and the case
when Pr[r ∈ Rf,t,s] < δ(n). The following claim states this formally.

Claim 8.17. There exists a randomized polynomial-time algorithm that, given
x ∈ {0, 1}∗ and (f, t, s) ∈ X,

1. accepts with high probability if Pr[r ∈ Rf,t,s] ≥ 2δ(n), and

2. rejects with high probability if Pr[r ∈ Rf,t,s] < δ(n).

Proof Sketch. Sample r1, · · · , rm ∼ {0, 1}p(n) uniformly at random for m =
O(n/δ(n)2). Accept if and only if the number of i’s such that ri ∈ Rf,t,s is at
least 1.5 · δ(n)m. By applying the Chernoff bound, this algorithm distinguishes
the two cases with probability at least 1− 2−n. □

Therefore in our AM protocol, verifier V first uses this algorithm to check
whether Pr[r ∈ Rf,t,s] ≥ 2δ(n) or Pr[r ∈ Rf,t,s] < δ(n). If Pr[r ∈ Rf,t,s] < δ(n)
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is confirmed by the algorithm, then V can immediately reject (f, t, s) and halt.
Thus, it remains to design a part where V determines whether Pf,t,s ≥ 1 −
δ′(n) or Pf,t,s ≤ δ(n) (≤ δ′(n) ) holds, assuming that Pr[r ∈ Rf,t,s] ≥ δ(n).
Note that this assumption implies that the uniform distribution on Rf,t,s can be
sampled efficiently: indeed, sample r ∼ {0, 1}p(n) until we obtain an element r
such that r ∈ Rf,t,s; this sampling algorithm succeeds within O(1/δ(n)) steps in
expectation.

Now our task is to define an AM protocol determining whether Pf,t,s is close
to 1 or smaller than δ′(n), assuming that the query distribution Q(x, r) where
r ∼ Rf,t,s can be sampled efficiently. Note that Pf,t,s may depend on x and
MCSPA. We will show that the task above can be reduced to checking whether a
certain concentration occurs, by defining A so that heavy queries become positive
instances. Then we will check if such a concentration occurs by the heavy samples
protocol of Lemma 8.14.

In order to reduce Claim 8.16 to the heavy samples protocol, we intro-
duce some notation: Fix (f, t, s) ∈ X. Let us sort all the truth tables
{T1, · · · , T22t} = {0, 1}2t of length 2t in the order of heaviness: namely, let
pi := Prr∼Rf,t,s

[Q(x, r) = (Ti, s)] and p1 ≥ p2 ≥ · · · ≥ p22t . Let p(I) denote∑
i∈I pi for I ⊆ [22

t
]. Define the set of α-heavy indices (with respect to the

distribution induced by Q(x, r) where r ∼ Rf,t,s) as Iα := { i ∈ [22
t
] | pi ≥ α }

for α ≥ 0. Note that p(Iα) = Prr∼Rf,t,s
[Q(x, r) is α-heavy ]. We also define

Pid,t,s := Prr∼Rf,t,s
[Q(x, r) ∈ MCSPA ].

We will show that the condition that Pid,t,s is close to 1 is (almost) character-
ized by the fact that the query distribution is concentrated on { (Ti, s) | i ∈ Iβ },
namely the set of β-heavy instances for some threshold β > 0.

Claim 8.18. There exists an oracle A consistent with A0 up to length 7 log p(n)
that satisfies the following: for any (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n)
and s > 7 log p(n) hold,

1. if Pid,t,s ≥ 1− δ′(n), then p(Icβ) ≥ 1− 3cδ′′(n), and

2. if Pid,t,s ≤ δ′(n), then p(Iβ) ≤ δ′′(n).

Here, we define δ′′(n) := 2 p(n)7 δ′(n) = 18 p(n)10 δ(n) and β := δ′′(n) 2−s, and c
denotes the universal constant in Lemma 8.14.

This claim allows us to apply the heavy samples protocol. Let us complete
the proof of Claim 8.16 before proving Claim 8.18.

Proof of Claim 8.16. As explained above, it is sufficient to show that our verifier
V can check whether Pf,t,s ≥ 1 − δ′(n) or Pf,t,s ≤ δ′(n), assuming that Pr[r ∈
Rf,t,s] ≥ δ(n).

If f ≡ 1 or f ≡ 0, then the task is trivial: in the former case, Pf,t,s = 1 and
hence V may immediately accept; in the latter case, V rejects.

If s ≤ 7 log p(n), then we may decide whether Q(x, r) ∈ MCSPA0 or not by
an exhaustive search in time 2O(s) = nO(1). Since A and A0 are consistent up to
length 7 log p(n), as in the proof of Lemma 8.9, it holds that Q(x, r) ∈ MCSPA0

if and only if Q(x, r) ∈ MCSPA. Therefore, we may estimate Pf,t,s by sampling
r ∼ Rf,t,s and then decide whether Q(x, r) ∈ MCSPA by the exhaustive search.

Otherwise, we have s > 7 log p(n) and hence Claim 8.18 can be applied. Now
suppose that f(b) = b for any b ∈ {0, 1}. In this case, it holds that Pf,t,s = Pid,t,s;
thus Claim 8.18 states that, if Pf,t,s ≥ 1− δ′(n) then p(Icβ) ≥ 1− 3cδ′′(n), and if
Pf,t,s ≤ δ′(n) then p(Iβ) ≤ δ′′(n). Now we may apply the heavy samples protocol
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for the query distribution induced by Q(x, r) where r ∼ Rf,t,s, in order to check
whether p(Icβ) ≥ 1 − 3cδ′′(n) or p(Iβ) ≤ δ′′(n): more specifically, V accepts in
the former case by running the AM protocol of Lemma 8.14.

Similarly, if f(b) = 1−b, then we have Pf,t,s = 1−Pid,t,s. This implies the same
condition except for flipping YES and NO: if Pf,t,s ≥ 1−δ′(n) then p(Iβ) ≤ δ′′(n);
if Pf,t,s ≤ δ′(n) then p(Icβ) ≥ 1−3cδ′′(n). Thus, we may apply the heavy samples
protocol to check whether p(Iβ) ≤ δ′′(n) or p(Icβ) ≥ 1− 3cδ′′(n): specifically, V
accepts in the former case by running the coAM protocol of Lemma 8.14.

Note that we may pick the polynomial q that specifies the error probability
so that 3cδ′′(n) ≤ 1

4 (which allows us to use Lemma 8.14): indeed, if we de-

fine q(n) := O(n22) then we have δ(n) =
√

1/q(p(n)) = O(p(n)−11) and hence
3cδ′′(n) = O(p(n)10 δ(n)) = o(1). □

All that remains is to show Claim 8.18. The intuition is as follows: Suppose
that the probability that a positive instance is queried is large (i.e. Pid,t,s ≥
1− δ′(n)). Since there are at most 2s+1 truth tables that have circuit complexity
at most s, the query distribution must concentrate on such positive instances;
thus p([2s+1]) is also large, which in particular implies that p(Icβ) is large (since
β is in fact chosen so that p(Iβ) is roughly equal to p([2s+1])).

Conversely, suppose that the query distribution concentrates on heavy in-
stances {(T1, s), . . . , (T2k , s)} (i.e. p([2k]) is large) for some k. In this case, we
may encode the heavy truth tables into the oracle A; thereby we can force these
truth tables to be positive instances, which implies that p([2k]) ≤ Pid,t,s; hence
Pid,t,s cannot be small. The details follow:

Proof of Claim 8.18. 1. Suppose that Pid,t,s ≥ 1− δ′(n). Then,

1− δ′(n) ≤ Pr
r∼Rf,t,s

[Q(x, r) ∈ MCSPA]

=
∑

i : (Ti,s)∈MCSPA

pi ≤
2s+1∑
i=1

pi = p([2s+1]),

where in the last inequality we used the fact that there are at most 2s+1

positive instances in MCSPA. Now,

1− δ′(n) ≤ p([2s+1]) = p([2s+1] ∩ Icβ) + p([2s+1] \ Icβ) ≤ p(Icβ) + 2s+1 · cβ,

which implies that p(Icβ) ≥ 1 − 2s+1 · cβ − δ′(n) ≥ 1 − 2cδ′′(n) − δ′(n) ≥
1− 3cδ′′(n).

2. Note that an oracle A can depend on input x, but A must not depend
on a specific (f, t, s). Thus, we define A so that, for all (f, t, s) ∈ X,
the heavy queries {(T1, s), · · · , (T2k , s)} (with respect to the distribution
induced by Q(x, r) where r ∼ Rf,t,s) become positive instances. (Note that
truth tables Ti depend on (f, t, s).) For any string y of length at most
7 log p(n), we define A(y) := 1 if and only if A0(y) = 1, which ensures that
A and A0 are consistent up to length 7 log p(n). For each (f, t, s) ∈ X such
that s > 7 log p(n), define k := s−7 log p(n); for each i ∈ [2k], we would like
to define A so that IA(d) = Ti for some description d of length exactly equal
to s. To this end, define d :=

⟨
1t,

⟨
f, s, iki

⟩⟩
and A(j

t
,
⟨
f, s, iki

⟩
) = Tij for

all j ∈ [2t], where ki is chosen so that |d| = 2t + 2 log s + ki + O(1) = s.
Thus, ki := s − 2t − 2 log s − O(1) ≥ s − 7 log p(n) = k. This ensures that
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iki is well-defined. These imply that KIA(Ti) ≤ s; hence, (Ti, s) ∈ MCSPA

for all i ∈ [2k] and therefore p([2k]) ≤ Pid,t,s.

Now fix (f, t, s) ∈ X such that k = s − 7 log p(n) > 0 and Pid,t,s ≤ δ′(n)
hold. Since k and s are close, it holds that

p([2s+1])

= p({1, · · · , 2k}) + p({2k + 1, · · · , 2 · 2k}) + · · ·+ p({2s+1 − 2k + 1 · · · , 2s+1})
≤ 2s+1/2k · p([2k]) ≤ 2s+1−k · Pid,t,s = 2p(n)7 · Pid,t,s ≤ 2p(n)7 · δ′(n) = δ′′(n).

We claim that this implies p(Iβ) ≤ δ′′(n): Indeed, let j := max Iβ. If
j > 2s, then δ′′(n) ≥ p([2s+1]) ≥ p([2s+1] ∩ Iβ) ≥ β · min{2s+1, j} >
β · 2s = δ′′(n), which is a contradiction. Thus, we have j ≤ 2s, and hence
p(Iβ) ≤ p([2s+1]) ≤ δ′′(n) as desired.

□

This completes the proof of Lemma 8.13.
We conclude this chapter by posing an open question of extending Theo-

rem 8.2 to the case of more-than-1-query reductions.

Open Question 8.19. Show that
∩

A BPPMCSPA[2] ⊆ AM ∩ coAM.
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Chapter 9

NP-hardness of MCSP for DNF-XOR

Circuits

It was already shown by Masek [Mas79] in 1979 that it is NP-hard to solve
MCSP for DNF formulas; here MCSP for DNF formulas is the problem of com-
puting the minimum number of terms in a DNF formula consistent with a given
truth table. In this chapter, we present the first progress about MCSP for such
restricted circuit classes, by establishing an analogous result for the MCSP prob-
lem for depth-3 circuits of the form OR ◦ AND ◦ XOR. Our techniques extend to
an NP-hardness result for MODm gates at the bottom layer under inputs from
(Z/mZ)n.

9.1 Introduction

As shown in Chapter 8, NP-hardness of MCSP is not likely to be resolved by a
mere extension of current techniques, and thus it requires significantly new ideas.
For now, given our inability to prove NP-hardness of MCSP, we should first try
to consider a restricted version of MCSP, and develop more proof techniques
towards resolving NP-hardness of the general MCSP.

9.1.1 MCSP for Restricted Circuit Classes

For a circuit class C, let C-MCSP denote MCSP for C; that is, C-MCSP
asks for computing the minimum size of a C-circuit that computes a given
truth table. Studying C-MCSP for restricted circuit classes C is independently
motivated by algorithmic applications in circuit minimization, learning theory
(cf. [PV88, AHM+08, Fel09, CIKK16]), and cryptography and lower bounds
[RR97, BR17]. It was shown already in 1979 by Masek [Mas79] that DNF-MCSP
is NP-hard. There have been different proofs of this result [Czo99, AHM+08], and
extensions to hardness of approximation [AHM+08, Fel09, KS08]. Nevertheless,
almost four decades after Masek’s result, and despite the significant attention
that the MCSP problem has received, NP-hardness of C-MCSP was not known
for any natural class C of circuits more expressive than DNFs.

As shown in Chapter 3, there is cryptographic evidence that MCSP is in-
tractable; similarly, for a sufficiently expressive class C, some cryptographic ev-
idence is known. For example, constant-depth threshold circuits and constant-
depth Boolean circuits of large enough depth can compute some candidate pseu-
dorandom function generator by a non-trivially small circuit, and thus C-MCSP
for these circuit classes is not in polynomial time under some cryptographic as-
sumptions (cf. [AHM+08]). However, for classes extending DNFs that are not
known to compute pseudorandom functions, no evidence of any sort for hardness
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was known. To quote Allender et al. [AHM+08], “Thus an important open ques-
tion is to resolve the NP-hardness of both learnability results as well as function
minimization results above for classes that are stronger than DNF.”

To summarize the current status of C-MCSP, there are two techniques of
showing intractability of C-MCSP. One is based on cryptography, which shows
an average-case hardness of C-MCSP for a sufficiently expressive class C . An-
other is the result of Masek [Mas79], which shows that a worst-case complexity of
DNF-MCSP is NP-hard. One may wonder whether the complexity of C-MCSP is
monotone increasing with respect to C, and NP-hardness of DNF-MCSP implies
NP-hardness of MCSP. This is indeed true in the case of average-case complex-
ity : a natural property useful against C′ is also a natural property useful against
C for any classes C ⊆ C′. On the other hand, in the case of worst-case com-
plexity, the same is not true: indeed, the limits of oracle-independent reductions
(Theorem 8.1) show that MCSP ̸≤P

T MCSPA for some A unless MCSP ∈ P.

9.1.2 Our Results

The main result of this chapter is the first NP-hardness result for C-MCSP for
a class C of depth-3 circuits, namely the class of (unbounded fan-in) OR ◦AND ◦
MODm circuits, where m is any integer.

Theorem 9.1. For every m ≥ 2, given the truth table of a function f : Zn
m →

{0, 1}, where Zm = Z/mZ = {0, 1, . . . ,m − 1}, it is NP-hard under polynomial-
time deterministic many-one reductions to determine the size of the smallest
OR ◦ AND ◦MODm circuit C that computes f , where circuit size is measured as
the top fan-in of C.

A few comments are in order. First, we elaborate on our computational model
and complexity measure. We work with circuits which have an OR gate at the top,
AND gates at the middle level, and MODm gates at the bottom level. We refer
to such circuits as OR-AND-MOD circuits, or equivalently, DNF-MOD circuits.
Such circuits operate in a natural way on inputs from Zn

m. We allow arbitrary
constants from Zm to feed in to gates at the bottom layer, and insist that inputs
to the middle AND layer are Boolean. In other words, a MODm gate outputs
1 if and only if its corresponding linear equation over Zm is satisfied, and the
computations beyond the first layer are all Boolean. For m = 2, this is precisely
the traditional model of DNF of Parities (cf. [CS16], [Juk06], [Juk12, Section
11.9], [ABG+14]).

The complexity measure we use is the top fan-in of the circuit, i.e., fan-in
to the top OR gate. The main reason we work with this measure is naturalness
and convenience. As argued in [CS16], top fan-in is the preferred measure for
OR-AND-MOD2 circuits because: (i) it measures the number of affine subspaces
required to cover the 1s of the function, and thus has a nice combinatorial mean-
ing; (ii) the number of MOD2 gates feeding in to any middle layer AND gate can
be assumed to be at most n without loss of generality, by using basic linear alge-
bra, and thus the top fan-in approximates the total number of gates to within a
factor of n; and (iii) the size of a DNF is often measured by the number of terms
in it, and analogously it makes sense to measure the size of a DNF of Parities by
the top fan-in of the circuit.

Our results are not however critically dependent on the complexity measure
we use, and admit different extensions. Indeed, we demonstrate the robustness
of our techniques by adapting them to show a hardness result for computing the
number of gates in OR-AND-MODp formulas, where p is prime (Subsection 9.5.2).
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Moreover, we mention that our approach can be modified to show a hardness of
approximation result (Subsection 9.5.3).

9.1.3 Perspective: NP-hardness of MCSP for Other Circuit Classes

From Theorem 7.12, NP-hardness of C-MCSP under polynomial-time Turing
reductions implies 2Ω(n) C-circuit lower bounds for ENP (or otherwise a fast de-
terministic simulation of nondeterministic algorithms follows, which is somewhat
unexpected). In fact, it is easy to observe that our reduction yields a 2Ω(n) lower
bound on the size of DNF-MOD2 circuits for a function in E, by applying our
reduction on a trivial No instance of an NP language. Such strong exponen-
tial lower bounds for explicit functions have long been known for the model we
consider (see e.g. [Gro98]). On the other hand, extending the NP-hardness result
even to slightly different classes such as depth-3 AC0 circuits might be a challenge,
since it is still unknown if ENP requires depth-3 AC0 circuits of size 2Ω(n).

What might be more feasible though is showing NP-hardness of C-MCSP for
other related classes C of circuits, and under weaker kinds of reductions, such
as quasi-polynomial-time reductions or nonuniform reductions. For instance, it
might be possible to extend our techniques to classes such as THR ◦AND ◦MOD
and depth-3 AC0 circuits of small bottom fan-in. In these cases, exponential lower
bounds of the form 2Ω(n) have been obtained (cf. [Gro98], [PSZ00]).

Open Question 9.2. Show that NP-hardness of MCSP for THR ◦ AND ◦MOD
or depth-3 AC0 under polynomial-time Turing reductions.

Regarding weaker reducibility notions, there is a tradeoff between the running
time of a reduction and the circuit lower bound in the barrier of Theorem 7.12;
for example, it is not hard to see that NP-hardness of C-MCSP under quasi-
polynomial-time reductions is related to a 2n

ϵ
circuit lower bound for some con-

stant ϵ > 0. Thus we conjecture that the following is a feasible and interesting
open question, given the fact that 2Ω(n1/(d−1)) lower bounds have long been known
for depth-d AC0 circuits [H̊as86].

Open Question 9.3. Show that NP-hardness of AC0
d-MCSP under quasi-

polynomial-time reductions or nonuniform reductions for some depth d ≥ 3

More broadly, we believe that showing NP-hardness of MCSP for more ex-
pressive classes C is an important direction in better understanding circuit classes
from the perspective of meta-complexity, i.e., complexity questions about com-
putational problems involving circuits and algorithms. There are various criteria
for measuring our understanding of a circuit class, for example, (i) Can we design
non-trivial satisfiability algorithms for circuits in the class? (ii) Can we uncondi-
tionally construct pseudorandom generators secure against circuits in the class?
(iii) Can we learn the class using membership queries under the uniform distri-
bution? (iv) Can we prove lower bounds against proof systems whose lines are
encoded by circuits in the class? We suggest that the NP-hardness of C-MCSP is
another strong indication that we understand a circuit class C well.

9.1.4 Proof Overview

The rest of this chapter is dedicated to the proof of Theorem 9.1, which will
be completed in Section 9.4. Here we provide a high-level description of the
reduction. For simplicity, our exposition mostly focus on the case m = 2. After
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that, we explain the main difficulties in extending the result to general m, and
how these are addressed in our proof.

As mentioned above, Masek [Mas79] was the first to establish the NP-hardness
of DNF minimization, and Theorem 9.1 can be interpreted as an extension of
Masek’s result to the more expressive DNF-MOD circuits. The structure of our
argument follows however a two-step reduction introduced by Gimpel (cf. Allen-
der et al. [AHM+08]), brought to our attention thanks to an alternative proof of
Masek’s result from [AHM+08]. More precisely, their work presents a new proof
of the first stage of Gimpel’s reduction, and provides a self-contained exposition
of the entire argument.

Our NP-hardness proof for DNF-MOD circuits heavily builds on ideas of Gim-
pel and [AHM+08], but the extension to depth-3 requires new ideas and makes
the argument much more involved. Let (DNF◦XOR)-MCSP be the computational
problem described in Theorem 9.1 when m = 2, and let (DNF ◦XOR)-MCSP∗ be
its natural generalization to partial boolean functions. In other words, an input to
(DNF◦XOR)-MCSP∗ encodes the truth table of a function f : {0, 1}n → {0, 1, ∗},
and we are interested in the size of the minimum (DNF◦XOR)-circuit that agrees
with f on f−1({0, 1}). Let r ∈ N be a large enough constant. Our proof re-
duces from the NP-complete problem r-Bounded Set Cover: Given a set system
S ⊆

(
n
≤r

)
that covers [n], determine the minimum number ℓ of sets S1, . . . , Sℓ ∈ S

such that
∪ℓ

i=1 Si = [n]. (We refer to Subsection 9.2.3 for a precise formulation
of these computational problems.)

In a bit more detail, we present a randomized (2-approximate) reduction from
r-Bounded Set Cover to (DNF ◦XOR)-MCSP∗, and a randomized reduction from
(DNF ◦ XOR)-MCSP∗ to (DNF ◦ XOR)-MCSP. These reductions are then effi-
ciently derandomized using an appropriate pseudorandom generator. As opposed
to previous works on the NP-hardness of DNF minimization, our proof crucially
explores the fact that r-Bounded Set Cover is NP-hard even to approximate (by
roughly a ln r-factor), a result from [Fei98, Tre01b] (see Theorem 9.7, Subsec-
tion 9.2.3).

We discuss each reduction in more detail now. Common to both of them
is a convenient characterization of the sets C−1(1) ⊆ {0, 1}n of inputs that can
be accepted by non-trivial AND ◦ XOR circuits C. If m is prime, it is not hard
to show that this is precisely the class of affine subspaces of {0, 1}n. Conse-
quently, for a non-trivial partial function f : {0, 1}n → {0, 1, ∗}, its correspond-
ing DNFXOR(f) complexity is exactly the minimum number t of affine subspaces
A1, . . . , At ⊆ {0, 1}n such that f−1(1) ⊆

∪t
i=1Ai and

∪t
i=1Ai ⊆ f−1({1, ∗}) (see

Subsection 9.2.2). The analysis of our polynomial-time reductions, which will not
be covered in this section, rely on this characterization in fundamental ways.

Step 1. A randomized reduction from r-Bounded Set Cover to (DNF ◦
XOR)-MCSP∗ (Subsection 9.3.1).

Given a set-system S ⊆
(
n
≤r

)
, we define a partial boolean function f : {0, 1}t →

{0, 1, ∗}, where t = O(r log n). This function is probabilistically constructed as
follows. First, we associate to each i ∈ [n] a random vector vi ∈ {0, 1}t. For
S ∈ S, let vS = {vi | i ∈ S}. Then, we let f be 1 on each input vi, 0 on inputs
that are not in the linear span of vS for every S ∈ S, and ∗ elsewhere.

Using this construction, we are able to show by a delicate analysis that if t is
sufficiently large, the following holds with high probability: if S admits a cover
of size K, then DNFXOR(f) ≤ K; moreover, if DNFXOR(f) ≤ K, then S admits a
cover of size ≤ 2K. (We discuss the intuition for this claim in Subsection 9.3.1.)

107



This construction and the hardness of approximation result for r-Bounded Set
Cover imply that (DNF ◦ XOR)-MCSP∗ is NP-hard under many-one randomized
reductions.

Step 2. A randomized reduction from (DNF ◦ XOR)-MCSP∗ to (DNF ◦
XOR)-MCSP (Subsection 9.3.2).

Let f : {0, 1}t → {0, 1, ∗} be an instance of (DNF ◦ XOR)-MCSP∗. We proba-
bilistically construct from f a related total function g : {0, 1}t ×{0, 1}s → {0, 1},
where r = t+ 2 and s = O(r + t). In more detail, we encode for each x ∈ {0, 1}t
its corresponding value f(x) ∈ {0, 1, ∗} as a boolean function gx on a hypercube
{0, 1}s. For an input x such that f(x) ∈ {0, 1}, we let g(x0s) = gx(0

s) = f(x),
where gx(·) = 0 elsewhere. On the other hand, if f(x) = ∗, we pick a ran-
dom linear subspace Lx ⊆ {0, 1}s of dimension r, and we encode f(x) as the
characteristic function of Lx.

Again, a careful argument allows us to establish the following connection
between the partial function f and the total function g: with high probabil-
ity over the choice of the random linear subspaces (Lx)x∈f−1(∗), DNFXOR(g) =
DNFXOR(f) + |f−1(∗)|. (We discuss the intuition for this claim in Subsec-
tion 9.3.2.) Consequently, it follows from this and the previous reduction that
(DNF ◦ XOR)-MCSP is NP-hard under many-one randomized reductions.

Step 3. Efficient derandomization of the reductions (Subsection 9.4.1).

It is possible to prove that the first reduction is always correct provided that
the collection of random vectors vi is nice with respect to the set-system S (Defi-
nition 9.14). Similarly, we can prove that the second reduction is correct whenever
the collection (Lx)x∈f−1(∗) of linear subspaces is scattered (Definition 9.20). It
turns out that both conditions can be checked in polynomial time. This implies
that the previously discussed reductions are in fact zero-error reductions. Conse-
quently, if we can efficiently construct nice vectors and scattered families of linear
subspaces, the reductions can be made deterministic.

In order to achieve this, we use in both cases a subtle derandomization argu-
ment that relies on (polynomial-time computable) ε-biased distributions [NN93].
Recall that such distributions can fool arbitrary linear tests. By a more careful
analysis, it is also known that they fool AND ◦XOR circuits. We do not describe
an AND ◦ XOR circuit to check if a collection of vectors is nice, or to check if
a collection of linear subspaces is scattered. Still, we are able to show that if
ε < 2−s then some scattered collection of linear subspaces is encoded by a string
in the support of an ε-biased distribution, and that the same holds with respect
to a nice collection of vectors if ε < 2−t. In particular, trying all possible seeds of
an ε-biased generator produces the combinatorial and algebraic objects that are
sufficient to derandomize our reductions. (We refer to Subsection 9.4.1 for more
details.)

Overall, combining the (derandomized) reductions and using the hardness of
approximation result for r-Bounded Set Cover mentioned above, it follows that
(DNF ◦ XOR)-MCSP is NP-hard under many-one deterministic polynomial-time
reductions.

The argument for arbitrary m ≥ 2. Let (DNF ◦MODm)-MCSP and (DNF ◦
MODm)-MCSP∗ be the corresponding computational problems with respect to an
arbitrary m ≥ 2. (Recall that the input boolean functions in this case are defined
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over Zn
m.) As we explain next, additional difficulties are present for general m.

An immediate challenge is that it is no longer clear if the analogue character-
ization (via affine subspaces) of the class of subsets of Zn

m accepted by non-trivial
AND ◦ MODm circuits holds, and this is crucially exploited when m = 2. The
main issue is that, while in the latter case the result can be established by ele-
mentary techniques using that Zn

2 is a vector space over Z2, for an arbitrary m
the underlying structure might be just a module. Without a basis, the result is
less clear.

Nevertheless, it is possible to prove that the analogue result for AND◦MODm

circuits hold (cf. Lemma 9.4). The alternative and more general argument relies
on a property of double orthogonal complements in Zn

m (Subsection 9.5.1), and
we refer to Subsection 9.2.2 for more details. Armed with this characterization,
the reductions discussed before can be adapted to arbitrary m. Finding the
right generalization of each definition requires some work, but after that, the
randomized reductions for m = 2 and arbitrary m ≥ 2 can be presented in a
unified and transparent way.

In order to conclude the proof of Theorem 9.1, we need to derandomize the
new reductions. For m = 2, the argument was based on an efficient construction
of ε-biased distributions supported over {0, 1}n, and the fact that such distri-
butions are also able to fool AND ◦ XOR circuits over {0, 1}n. Without going
into further details, we mention that for arbitrary m it is sufficient to use a
pseudorandom generator that fools AND ◦MODm circuits over Zn

m. However, a
generator with near-optimal dependency on n and ε is needed if we are hoping
to obtain a polynomial-time reduction. We were not able to find such a result in
the literature.1

We show in Subsection 9.4.2 that, for every m ≥ 2, there is an efficient pseu-
dorandom generator Gn : {0, 1}O(logn+log 1/ε) → Zn

m that ε-fools AND ◦ MODm

circuits of arbitrary size. Our construction relies on the efficient ε-biased gener-
ators for Zn

m from [AMN98], together with a proof of the following result: If G
is an ε-biased generator against Zn

m, then G (mε)-fools AND ◦ MODm circuits.
Again, we cannot rely on a adaptation of the similar claim for m = 2, which
requires a basis. Our proof proceeds instead by a careful analysis of certain ex-
ponential sums encoding the behaviour of the circuit, and that can be used to
connect the distinguishing probability to the guarantees offered by the ε-biased
generator. We refer to Subsection 9.4.2 for more details.

9.2 Preliminaries

9.2.1 Some notions from group theory

Let m ≥ 2 be a constant. Let Zm := Z/mZ denote the integers modulo m,
where all operations on elements in Zm = ⟨+, {0, 1, . . . ,m − 1}⟩ are taken mod
m. For any integer t ≥ 1, we regard Zt

m as an additive group with component-
wise addition. A non-empty subset H ⊆ Zt

m is called a linear subspace if H is a
subgroup, that is, 0 ∈ H and x + y ∈ H for any x, y ∈ H. A subset A ⊆ Zt

m is
called an affine subspace if A is a coset, that is, there exist a ∈ Zt

m and a linear
subspace H ⊆ Zt

m such that A = H + a := {h+ a | h ∈ H }.
We stress that Zt

m gives rise to a module and not to a vector space when m is
a composite number; however, we borrow some standard notation; for example,

1Existing generators seem to generate bits only, or are restricted to prime modulus, or can
handle larger classes of functions but are not efficient enough for our purposes. We refer to
[GKM15] and the references therein for related results.
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for a scalar c ∈ Zm and a “vector” v ∈ Zt
m, let cv denote the scalar multiplication.

Let ⟨x, y⟩ :=
∑t

i=1 xiyi (∈ Zm ) for any x, y ∈ Zt
m and t ∈ N.

9.2.2 Circuit Size Measure and Its Characterization

For any integer m ≥ 2, an OR ◦ AND ◦ MODm (= DNF ◦MODm ) circuit is
a DNF formula whose terms are AND ◦ MODm circuits. Here, a MODm gate is
a Boolean function such that MODm(x) = 1 if and only if

∑t
i=1 xi mod m = 0

on input x ∈ {0, 1}t. We extend the input {0, 1}t of a MODm gate to the larger
domain Zt

m in a natural way: that is, we regard the bottom MODm gate as a
function MODm : Z∗

m → {0, 1} that outputs 1 if and only if the sum of its input
elements is congruent to 0 mod m. In this way, we can regard a DNF ◦ MODm

circuit as computing a function f : Zt
m → {0, 1}. We allow multiple input wires

and access to constant input bits in the circuit. Note that this allows for more
general equations to be computed by a bottom-layer modular gate.

The size of a circuit is usually defined as the number of gates. However, for
us it is important to define the size of a DNF ◦MODm circuit as the top fan-in
of the circuit, or equivalently, the number of AND ◦ MODm terms. (Note that
the same size measure was used in [CS16] in the case m = 2.) For a function
f : Zt

m → {0, 1}, define DNFMODm(f) as the minimum number of terms of a
DNF ◦MODm circuit computing f , i.e., the fan-in of its OR gate.

An AND ◦ MODm circuit C is said to accept a set X ⊆ Zt
m if x ∈ X ⇔ C

outputs 1 on input x, for every x ∈ Zt
m. There is a nice combinatorial character-

ization of the set of inputs that such circuits can accept.

Lemma 9.4 (Characterization of the power of AND ◦MODm circuits). Let X ⊆
Zt
m be a nonempty set. Then, an AND ◦MODm circuit accepts X if and only if

X is an affine subspace of Zt
m.

This is a standard fact whenm is a prime (cf. [CS16] form = 2), in which case
Zt
m is a vector space. The same characterization holds whenm ≥ 2 is an arbitrary

composite number, as established below. The proof relies on the following fact
about orthogonal complements in the more general context of modules.

Fact 9.5 (Double orthogonal complement). Let H ⊆ Zt
m be a linear subspace,

and let H⊥ := {x ∈ Zt
m |

∑t
i=1 xiyi = 0 for any y ∈ H } be its orthogonal

complement. Then, (H⊥)⊥ = H.

For completeness, we include a proof of this result in Subsection 9.5.1. As-
suming Fact 9.5, we proceed to a proof of Lemma 9.4.

Proof of Lemma 9.4. Let x := (x1, . . . , xt) ∈ Zt
m denote the input to the circuit.

Suppose that an AND ◦ MODm circuit
∧K

k=1Ck accepts X, where each Ck

is a MODm gate. Each MODm gate Ck in the circuit defines a linear equation
over (x1, . . . , xt). That is, there are coefficients a1k, . . . , a

t
k ∈ Zm and an element

bk ∈ Zm such that
∑t

i=1 a
i
kxi = bk if and only if Ck accepts the input x. Therefore,

the circuit
∧K

k=1Ck accepts the intersection of such linear equations over Zm.
Specifically, for a matrix A := (aik)k∈[K],i∈[t] and a vector b := (bk)k∈[K], the circuit
accepts all inputs x ∈ Zt

m such that Ax = b; namely, X = {x ∈ Zt
m | Ax = b }.

Since X is nonempty, we can take some element x0 ∈ X. Now, we can rewrite X
as

X = {x ∈ Zt
m | A(x− x0) = 0 } = { y ∈ Zt

m | Ay = 0 }+ x0,

which is an affine subspace of Zt
m.
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For the converse direction, we use the notion of orthogonal complement. Sup-
pose that X ⊆ Zt

m is an affine subspace. By definition, we can decompose X into
a linear subspace H ⊆ Zt

m and a shift a ∈ Zt
m so that X = H + a.

We first claim that H can be accepted by some AND ◦ MODm circuit. To
prove this, it is sufficient to show the existence of some matrix A ∈ ZK×t

m such
that H = {x ∈ Zt

m | Ax = 0 }. Since H is a linear subspace, by Fact 9.5, for any
x ∈ Zt

m,

x ∈ H if and only if

t∑
i=1

xi · yi = 0 for every y ∈ H⊥.

That is, we can define a matrix A ∈ Z|H⊥|×t
m as (yi)y∈H⊥,i∈[t]. (In other words,

for each y ∈ H⊥, we add a MODm gate that checks if
∑t

i=1 xi · yi = 0, where
each coefficient yi is simulated using multiple input wires.)

To accept X, we just need to shift H by a. Indeed, for a vector b := Aa, we
have X = H + a = {x ∈ Zt

m | Ax = b }; thus we can construct an AND ◦MODm

circuit accepting X by simulating the condition Ax = b. □

As a consequence of Lemma 9.4, for a function f : Zt
m → {0, 1}, the minimum

size of a DNF ◦ MODm circuit computing f equals the minimum number S of
affine subspaces T1, . . . , TS ⊆ Zt

m such that
∪S

i=1 Ti = f−1(1).

9.2.3 Computational Problems

We formulate computational problems as optimization problems for simplic-
ity; however, one can easily see that the problems are equivalent to decision
versions.

The starting point of our NP-hardness results is the set cover problem on
instances where each set has size at most r.

Definition 9.6 (r-Bounded Set Cover Problem). For an integer r ∈ N, the
r-Bounded Set Cover Problem is defined as follows:

• Input. An integer n ∈ N and a collection S ⊆ 2[n] of nonempty subsets of
the universe [n] such that |S| ≤ r for each S ∈ S, and

∪
S∈S S = [n].

• Output. The minimum number ℓ of subsets S1, . . . , Sℓ ∈ S such that∪ℓ
i=1 Si = [n].

For this problem, a tight inapproximability result based on NP-hardness is
known.

Theorem 9.7 (Feige [Fei98], Trevisan [Tre01b]). Let r be a sufficiently large con-
stant. It is NP-hard (under polynomial-time many-one reductions) to approximate
the solution of the r-bounded set cover problem within a factor of ln r−O(ln ln r).
That is, for any language L ∈ NP, there exists a polynomial-time machine that,
on input x, outputs a threshold θ and an instance S of the r-bounded set cover
problem such that if x ∈ L then S has a cover of size at most θ, and if x ̸∈ L
then S does not have a cover of size at most θ · (ln r −O(ln ln r)).

We stress that the inapproximability result is essential for us; we will present
a reduction from a 2-factor approximation of the r-bounded set cover problem to
the minimum DNF ◦MODm circuit minimization problem.
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Definition 9.8 (Minimum Circuit Size Problem for DNF◦MODm). For an integer
m ≥ 2, the Minimum Circuit Size Problem for DNF ◦ MODm, abbreviated as
(DNF ◦MODm)-MCSP, is defined as follows:

• Input. A Boolean function f : Zt
m → {0, 1}, represented as a truth table of

length mt.

• Output. DNFMODm(f).

While our final theorem confirms that (DNF ◦MODm)-MCSP is NP-hard, we
will first prove NP-hardness of the circuit minimization problem on instances of
a partial function f : Zt

m → {0, 1, ∗}. That is, we regard any input x ∈ f−1(∗)
as “undefined.” For a partial function f : Zt

m → {0, 1, ∗}, we say that a circuit
C computes f if C(x) = f(x) for any x ∈ f−1({0, 1}). We extend the definition
of DNFMODm(f) to the size of the minimum DNF ◦MODm circuit computing the
partial function f : Zt

m → {0, 1, ∗}. The following problem is concerned with the
circuit size of partial functions, and we distinguish it from the problem above by
adding a superscript ∗.

Definition 9.9 (Minimum Circuit Size Problem for Partial Functions). For an
integer m ≥ 2, the Minimum Circuit Size Problem∗ for DNF◦MODm, abbreviated
as (DNF ◦MODm)-MCSP∗, is defined as follows:

• Input. A Boolean function f : Zt
m → {0, 1, ∗}, represented as a string of

length mt over the alphabet {0, 1, ∗}.

• Output. DNFMODm(f).

9.3 Hardness of (DNF ◦MODm)-MCSP Under Randomized Reduc-
tions

9.3.1 Reduction from r-Bounded Set Cover to (DNF ◦MODm)-MCSP∗

This subsection is devoted to proving the following theorem.

Theorem 9.10. (DNF◦MODm)-MCSP∗ is NP-hard under (zero-error) random-
ized polynomial-time many-one reductions.

Let r be a large enough constant so that the approximation factor of ln r −
O(ln ln r) in Theorem 9.7 is larger than 2. We present a reduction from a 2-factor
approximation of the r-bounded set cover problem to (DNF ◦MODm)-MCSP∗.

Let us prepare some notation. Let S be an instance of the r-bounded set
cover problem over the universe [n] (in particular,

∪
S∈S S = [n]). Let t ∈ N

be a parameter chosen later. For each i ∈ [n], pick vi ∼ Zt
m independently

and uniformly at random. For any S ⊆ [n], let vS denote { vi | i ∈ S }. Let
span(vS) := {

∑
i∈S ci · vi | ci ∈ Zm for any i ∈ S } denote the linear span of

vS . (Note that span(vS) is a linear subspace of Zt
m whenever S ̸= ∅.) In our

reduction, an element i ∈ [n] is mapped to a random point vi of Zt
m, and a set

S ∈ S corresponds to a linear subspace span(vS).
For any set cover instance S, we define a function f : Zt

m → {0, 1, ∗} as

f(x) :=


1 (if x = vi for some i ∈ [n])

0 (if x ̸∈
∪

S∈S span(vS))

∗ (otherwise)
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for any x ∈ Zt
m. The truth table of f is the output of our reduction.

It is not hard to see that DNFMODm(f) is at most the minimum set cover size
for S (Claim 9.11 below). Of course, the difficulty is in proving a circuit lower
bound for f (Claim 9.12 below).

The idea is as follows: For simplicity of the exposition, let us focus on the
case of m = 2, and moreover let us first consider the case of a DNF◦MOD2 circuit
C for f that accepts a union of linear subspaces (instead of affine subspaces).
More precisely, let C−1(1) be a union of linear subspaces {Tk}k∈[K]. Then Tk is a

subset of C−1(1) ⊆ f−1({1, ∗}) =
∪

S∈S span(vS); furthermore, each span(vS) is
a random linear subspace of small dimension r; therefore, it is possible to show
that, with high probability, the set { i ∈ [n] | vi ∈ Tk } of points covered by Tk is
contained in some legal set S ∈ S of the set cover instance; hence the circuit size
K is at least the minimum set cover size.

In the case that a circuit C accepts the union of affine subspaces, it is no
longer true that, for any affine subspace T such that T ⊆

∪
S∈S span(vS), the set

{ i ∈ [n] | vi ∈ T } is covered by some legal set S ∈ S; indeed, for any two points vi

and vj , the set {vi, vj}
(
= vi ⊕ {0, vi ⊕ vj}

)
is an affine subspace of Zt

2, whereas
{i, j} is not necessarily legal in the set cover instance S. Nonetheless, we can still
prove that, with high probability, the set { i ∈ [n] | vi ∈ T } is covered by two
legal sets S1, S2 ∈ S. As a consequence, the minimum number of affine subspaces
needed to cover v1, . . . , vn gives us a 2-factor approximation of the minimum set
cover size for S. By Theorem 9.7, it follows that (DNF◦XOR)-MCSP∗ is NP-hard
under randomized reductions. Details follow.

Claim 9.11 (Easy part). Suppose that S has a set cover of size K. Then
DNFMODm(f) ≤ K.

Proof. Let C ⊆ S be a set cover of size K. For each S ∈ C, by Lemma 9.4,
there exists an AND ◦MODm circuit CS such that CS accepts span(vS). Define a
DNF ◦MODm circuit C :=

∨
S∈C CS . It is easy to see that C computes f . □

Conversely, we prove the following:

Claim 9.12 (Hard part). For some parameter t such that mt = (nm)O(r), the
following holds with probability at least 1

2 (over the choice of (vi)i∈[n]):
Let K := DNFMODm(f). Then S has a set cover of size 2K.

The two claims above imply that 2 ·DNFMODm(f) is a 2-factor approximation for
the set cover problem: indeed, let s be the minimum set cover size for S; then
we have s ≤ 2 · DNFMODm(f) ≤ 2s. It thus remains to prove Claim 9.12.

To prove Claim 9.12, let us clarify the desired condition that random objects
(vi)i∈[n] should satisfy. For any I ⊆ [n], define the affine span of vI as

affine-span(vI) :=
{∑

i∈I
civ

i | ci ∈ Zm for i ∈ I and
∑
i∈I

ci = 1
}
.

The important property of the affine span is that, if an affine subspace A covers
the set vI of points in I ⊆ [n], then its affine span must also be covered by A.

Claim 9.13 (Property of the affine span). For any affine subspace A of Zt
m and

any I ⊆ [n], if vI ⊆ A then affine-span(vI) ⊆ A.

Proof. Let us write A = H+a for some linear space H ⊆ Zt
m and vector a ∈ Zt

m.
Since vi ∈ vI ⊆ A for each i ∈ I, there exists some vector hi ∈ H such that
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vi = hi + a. Take any coefficients (ci)i∈I such that ci ∈ Zm and
∑

i∈I ci = 1.
Then, ∑

i∈I
civ

i =
∑
i∈I

ci(h
i + a) =

∑
i∈I

cih
i + a ∈ H + a.

□

By Lemma 9.4, the circuit size of f equals the minimum number of affine
subspaces A1, . . . , AK ⊆ f−1({1, ∗}) such that

∪K
i=1Ai ⊇ f−1(1). Intuitively, we

would like to require that, if the set vI
(
⊆ f−1(1)

)
of points is covered by some

affine subspace A ⊆ f−1({1, ∗}), then there exist two legal sets S1, S2 of the set
cover instance S such that I ⊆ S1 ∪S2. In fact, one of these sets can be taken as
a singleton:

Definition 9.14. We say that (vi)i∈[n] is nice (with respect to S) if, for any
I ⊆ [n],

affine-span(vI) ⊆
∪
S∈S

span(vS) =⇒ I ⊆ SI ∪ {iI} (9.1)

for some SI ∈ S and iI ∈ [n].

We will prove that (vi)i∈[n] is nice with probability at least 1
2 , and that for

any nice (vi)i∈[n], the minimum size of DNF ◦MODm is a 2-factor approximation
of the minimum set cover size. We prove the latter first:

Claim 9.15. Let (vi)i∈[n] be nice, and K := DNFMODm(f). Then S has a set
cover of size 2K.

Proof. Let C =
∨K

k=1Ck be a DNF ◦ MODm circuit computing f , where each
Ck ∈ AND ◦MODm is nontrivial. By Lemma 9.4, C−1

k (1) is an affine subspace of
Zt
m. For each Ck, we will choose 2 sets from S so that the union of all these sets

cover the universe [n].
Fix any Ck and let Ik := { i ∈ [n] | Ck(v

i) = 1 } be the set of all points
covered by Ck. Since C−1

k (1) is an affine subspace of Zt
m and vIk ⊆ C−1

k (1),
we have affine-span(vIk) ⊆ C−1

k (1) by Claim 9.13. Since the circuit C com-
putes f , C−1

k (1) ⊆ C−1(1) ⊆ f−1({1, ∗}) =
∪

S∈S span(vS). Thus we have
affine-span(vIk) ⊆

∪
S∈S span(vS), which means that the hypothesis of niceness

(9.1) is satisfied; hence there exist some subset Sk1 ∈ S and some element ik ∈ [n]
such that Ik ⊆ Sk1 ∪ {ik}. Take any set Sk2 ∈ S such that ik ∈ Sk2 (such a set
Sk2 must exist because we assumed

∪
S∈S S = [n]). Then Ik ⊆ Sk1 ∪ Sk2.

Now we claim that
∪K

k=1 Sk1 ∪ Sk2 = [n] (and hence the set cover instance
S has a cover of size 2K). Indeed, for any i ∈ [n], we have f(vi) = 1 and
hence C(vi) = 1, which means that there exists some subcircuit Ck such that
Ck(v

i) = 1. Thus i ∈ Ik ⊆ Sk1 ∪ Sk2 for some k ∈ [K]. □

It remains to show that a random choice of (vi)i∈[n] is nice with high proba-
bility:

Claim 9.16. For each i ∈ [n], pick vi ∼ Zt
m uniformly at random and indepen-

dently. If t ≥ r + ((r + 2) log n + log |S| + 1)/ logm, then (vi)i∈[n] is nice with

probability at least 1
2 .

To prove Claim 9.16, we will use a union bound over all relevant subsets
I ⊆ [n]; however, the definition of niceness (9.1) appears to suggest that we need
to take a union bound over exponentially many subsets I. The next claim shows
that this is in fact not the case.
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Claim 9.17 (Characterization of niceness). (vi)i∈[n] is not nice (with respect to
S) if and only if there exists some subset I ⊆ [n] such that all the following
conditions hold:

1. |I| ≤ r + 2,

2. I ̸⊆ S ∪ {i} for any S ∈ S and i ∈ [n], and

3. affine-span(vI) ⊆
∪

S∈S span(vS).

In particular, there are at most nr+2 subsets I ⊆ [n] over which we need to take
a union bound.

Proof. By the definition of niceness, (vi)i∈[n] is not nice if and only if there exists

some subset I ⊆ [n] such that affine-span(vI) ⊆
∪

S∈S span(vS) whereas I ̸⊆
S ∪ {i} for any S ∈ S and i ∈ [n]. Therefore, it is clear that the three conditions
imply that (vi)i∈[n] is not nice; we prove below the converse direction (the “only
if” part of Claim 9.17).

A crucial observation is that, for any subset I ⊆ [n] of size at least r + 2,
the second condition always holds: Indeed, recall that S is an instance of the
r-bounded set cover instance; that is, |S| ≤ r for any S ∈ S. Hence, for any
S ∈ S and i ∈ [n], we have |S ∪{i}| ≤ r+1; thus I cannot be a subset of S ∪{i}
simply because |I| ≥ r + 2.

Now suppose that there exists some subset I ⊆ [n] satisfying the second
and third conditions, but not the first one, that is, |I| > r + 2. Take any
subset I ′ ⊆ I such that |I ′| = r + 2. We claim that I ′ satisfies all three
conditions: The first condition (|I ′| ≤ r + 2) is obvious. The second con-
dition holds because of the observation above. To see the third condition,
by assumption, we have affine-span(vI) ⊆

∪
S∈S span(vS); hence, we also have

affine-span(vI
′
) ⊆ affine-span(vI) ⊆

∪
S∈S span(vS). □

Now let us proceed to a proof of Claim 9.16.

Proof of Claim 9.16. We will bound the probability that a random (vi)i∈[n] is not
nice, by using the union bound over all the subsets I ⊆ [n] such that the first and
second conditions in Claim 9.17 hold. To this end, fix any subset I ⊆ [n] such
that |I| ≤ r+2 and I ̸⊆ S ∪ {i} for any S ∈ S and i ∈ [n] (in particular, I is not
empty). We would like to bound the probability that the affine subspace of vI is
a subset of

∪
S∈S span(vS).

Take an arbitrary (e.g. the smallest) element i0 ∈ I. Define coefficients
(ci)i∈I as follows: ci := 1 ∈ Zm for any i ∈ I \ i0 and ci0 := (2 − |I|) mod m ∈
Zm. By this definition, we have

∑
i∈I ci = 1; hence,

∑
i∈I civ

i ∈ affine-span(vI).
Therefore,

Pr
v1,...,vn

[
affine-span(vI) ⊆

∪
S∈S

span(vS)

]
≤ Pr

[∑
i∈I

civ
i ∈

∪
S∈S

span(vS)

]

≤
∑
S∈S

Pr

[∑
i∈I

civ
i ∈ span(vS)

]
.

By the assumption on I, we have I ̸⊆ S ∪ {i0} for any S ∈ S; that is, there
exists some index jS ∈ I \ {i0} \ S. Note that cjS = 1 because jS ∈ I \ {i0}.
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Therefore, the last probability is

∑
S∈S

Pr

[∑
i∈I

civ
i ∈ span(vS)

]
=

∑
S∈S

Pr

vjS ∈ span(vS)−
∑

i∈I\{jS}

civ
i


=

∑
S∈S

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i for some (di)i∈S


=

∑
S∈S

∑
(di)i∈S

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i


≤ |S| ·mr ·m−t,

where the last inequality holds because the random vector vjS does not appear
in the right summations.

Finally, by taking the union bound over all I such that |I| ≤ r + 2 (and
I ̸⊆ S ∪ {i} for any S ∈ S and i ∈ [n]), the probability that (vi)i∈[n] is not nice

is bounded from above by nr+2 · |S| ·mr−t ≤ 1
2 . □

Given these claims above, it is immediate to complete the whole proof.

Proof of Claim 9.12. We may assume without loss of generality that |S| ≤ nr

since S is an instance of the r-bounded set cover problem. We set t ∈ N to be
the smallest integer such that t ≥ r + ((r + 2) log n + log |S| + 1)/ logm; then
t = O(r log(nm)/ logm). (Here the O notation hides only a universal constant.)
Combining Claim 9.15 and 9.16, we immediately obtain Claim 9.12. □

Proof of Theorem 9.10. The encoding of the function f : Zt
m → {0, 1, ∗} is of size

O(mt) = (nm)O(r), which is a polynomial in the input size poly(n, |S|).
Moreover, it is possible to make the reduction zero-error: Indeed, the condi-

tion of the niceness can be checked in polynomial time, by using the characteri-
zation of Claim 9.17.

Finally, recall that the r-bounded set cover problem is NP-hard to approxi-
mate within a factor of 2 by Theorem 9.7 for a sufficiently large constant r ∈ N.
Hence, NP-hardness of (DNF◦MODm)-MCSP∗ follows from Claim 9.11 and 9.12.

□

9.3.2 Reduction from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP

Next, we present a reduction for the minimum circuit size problem for partial
functions to that for total functions:

Theorem 9.18. There is a (zero-error) randomized polynomial-time many-one
reduction from (DNF ◦MODm)-MCSP∗ to (DNF ◦MODm)-MCSP.

Let f : Zt
m → {0, 1, ∗} be an instance of (DNF◦MODm)-MCSP∗. Let r := t+2

and s := ⌈(2r + 2t) logm + 2⌉ = ⌈4(t + 1) logm + 2⌉. We encode each value
f(x) ∈ {0, 1, ∗} of the partial function f as a function on a “hypercube” Zs

m:
namely, we construct a new total function g : Zt

m × Zs
m → {0, 1} such that f(x)

corresponds to (g(x, y))y∈Zs
m
. Specifically, if f(x) ̸= ∗, then f(x) is encoded as a

hypercube whose origin2 0s is assigned f(x) and other points are assigned 0; if

2 0s denotes the zero of Zs
m for any s ∈ N.
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f(x) = ∗, then we pick a random linear subspace Lx ⊆ Zs
m of dimension r and

we encode f(x) as the characteristic function of Lx.
Formally, for each x ∈ f−1(∗), we pick v1x, . . . , v

r
x ∼ Zs

m uniformly and inde-
pendently at random, and define a random linear subspace Lx := span(v1x, . . . , v

r
x).

Then the output g : Zt
m × Zs

m → {0, 1} of our reduction is defined as

g(x, y) :=


f(x) (if f(x) ∈ {0, 1} and y = 0s)

1 (if f(x) = ∗ and y ∈ Lx)

0 (otherwise)

for any (x, y) ∈ Zt
m × Zs

m.
The idea is as follows: Let us imagine how a minimum DNF ◦MODm circuit

C computing g looks like. We need to cover g−1(1) by as few affine subspaces as
possible. Note that g−1(1) consists of two parts: {(x, 0s)} for each x ∈ f−1(1),
and {x} × Lx for each x ∈ f−1(∗). In order to cover the latter one, it is likely
that we need to use the affine subspace {x} × Lx itself for each x ∈ f−1(∗);
indeed, since each Lx is a random linear subspace, under our constraints with
high probability there is no affine subspace which simultaneously covers (a large
fraction of) two random affine subspaces {x} × Lx and {x′} × Lx′ for x ̸= x′ ∈
f−1(∗) (Claim 9.23 below). Therefore, the minimum circuit C should contain a
subcircuit which accepts {x} × Lx for each x ∈ f−1(∗). Now it remains to cover
{(x, 0s)} for each x ∈ f−1(1), but here we can optionally cover {(x, 0s)} for each
x ∈ f−1(∗) (which has been already covered by {x} × Lx). This is exactly the
same situation as (DNF ◦ MODm)-MCSP∗; thus with high probability we have
DNFMODm(g) = DNFMODm(f) + |f−1(∗)|. Details follow.

Claim 9.19. DNFMODm(g) ≤ DNFMODm(f) + |f−1(∗)|.

Proof. Suppose that a DNF ◦MODm circuit C =
∨K

k=1Ck computes f . For each
x∗ ∈ f−1(∗), take an AND ◦MODm formula Cx∗ such that C−1

x∗ (1) = {x∗} × Lx∗

(by Lemma 9.4). Define C ′(x, y) :=
∨K

k=1(Ck(x) ∧ (y1 = 0) ∧ · · · ∧ (ys = 0)) ∨∨
x∗∈f−1(∗)Cx∗(x, y). It is easy to see that C ′(x, y) = g(x, y) for any (x, y) ∈

Zt
m × Zs

m. □

In order to prove the other direction, let us clarify the desired condition for
random linear spaces. We require that (Lx)x∈f−1(∗) is pairwise “disjoint” and
that each Lx is nondegenerated.

Definition 9.20. We say that (Lx)x∈f−1(∗) is scattered if |Lx| = mr and Lx ∩
Lx′ = {0s} for any distinct x, x′ ∈ f−1(∗).

It is easy to prove that the collection of random linear spaces satisfies the
condition above.

Claim 9.21. (Lx)x∈f−1(∗) is scattered with probability at least 1
2 , provided that

s ≥ (2r + 2t) logm+ 2.
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Proof. We first bound the probability that (Lx)x∈f−1(∗) is not pairwise disjoint.

Pr
[
Lx ∩ Lx′ ̸= {0s} for some distinct x, x′ ∈ f−1(∗)

]
≤

∑
x ̸=x′∈f−1(∗)

Pr [Lx ∩ Lx′ ̸= {0s}]

≤
∑

x ̸=x′∈f−1(∗)

Pr

[
r∑

i=1

civ
i
x =

r∑
i=1

div
i
x′ for some nonzero (ci)i∈[r], (di)i∈[r]

]

< m2t ·m2r · 2−s ≤ 1

4
,

where, in the last line, we used the fact that the probability that
∑r

i=1 civ
i
x =∑r

i=1 div
i
x′ is at most 2−s for nonzero (i.e. ci ̸= 0, dj ̸= 0 for some i, j ∈ [r])

coefficients (ci)i∈[r], (di)i∈[r].
3

Next, we bound the probability that |Lx| < mr. Indeed,

Pr
[
|Lx| < mr for some x ∈ f−1(∗)

]
≤

∑
x∈f−1(∗)

Pr

[
r∑

i=1

civ
i
x = 0s for some nonzero (ci)i∈[r]

]

≤ mt ·mr · 2−s ≤ 1

4
.

Overall, the probability that (Lx)x∈f−1(∗) is not scattered is less than 1
4 +

1
4 =

1
2 . □

Note that the condition of being scattered can be checked in polynomial time.
Indeed, for each x ∈ f−1(∗), one can enumerate all the elements of Lx, which
are at most polynomially many in the input size mO(t). Thus, our zero-error
randomized reduction picks random linear subspaces (Lx)x∈f−1(∗) until we obtain
a scattered collection of linear subspaces.

In the rest of the proof, we can thus assume that (Lx)x∈f−1(∗) is scattered.
The next claim gives the reverse inequality of Claim 9.19.

Claim 9.22. DNFMODm(g) ≥ DNFMODm(f)+|f−1(∗)| if (Lx)x∈f−1(∗) is scattered.

Let C =
∨K

k=1Ck be a minimum DNF ◦ MODm circuit computing g. (In
particular, K = DNFMODm(g) ≤ DNFMODm(f) + |f−1(∗)| ≤ mt+1.) For each
x ∈ f−1(∗), we first extract a subcircuit Cl(x) that covers (a large fraction of)
the random linear subspace Lx. Let l(x) ∈ [K] be one of the indices such that
|C−1

l(x)(1)∩({x}×Lx)| is maximized. That is, Cl(x) covers the largest fraction of the

affine subspace {x}×Lx; in particular, since
∪

k∈[K]C
−1
k (1) ⊇ {x}×Lx, there are

at least |Lx|/K
(
= mr/K ≥ mr−t−1 ≥ 2

)
points in the set C−1

l(x)(1)∩ ({x}×Lx).

Intuitively, the subcircuits {Cl(x) | x ∈ f−1(∗) } are supposed to cover random
linear subspaces, and the rest of the subcircuits computes f .

To make the intuition formal, we will prove the following two claims. The first
asserts that, under our constraints, no affine subspace can cover a large fraction
of two distinct random linear subspaces.

Claim 9.23. l : f−1(∗) → [K] is injective.

3Note that any equation ax = b (mod m) with a ̸= 0 is satisfied with probability ≤ 1/2 over
a random choice of x.
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The second claim asserts that, if an affine subspace C−1
l(x′)(1) covers a large fraction

of {x′} × Lx′ , then it cannot cover a point (x, 0s) such that f(x) = 1.

Claim 9.24. Cl(x′)(x, 0
s) = 0 for any x ∈ f−1(1) and x′ ∈ f−1(∗).

Assuming these two claims, it is easy to prove Claim 9.22.

Proof of Claim 9.22. For each k ∈ [K], define an AND ◦ MODm circuit C ′
k as

C ′
k(x) := Ck(x, 0

s) on input x ∈ Zt
m. Define a DNF ◦ MODm circuit C ′ :=∨

k∈ [K] \ { l(x)|f(x)=∗ }C
′
k. By Claim 9.23, the number of subcircuits in C ′ is K −

|f−1(∗)|.
We claim that C ′ computes f . Indeed, for any x ∈ f−1(1), we have C(x, 0s) =

g(x, 0s) = f(x) = 1; hence, there is some k ∈ [K] such that Ck(x, 0
s) = 1, which

implies that C ′
k(x) = 1 by the definition of C ′

k. Claim 9.24 implies k ̸∈ { l(x′) |
f(x′) = ∗ }; thus C ′(x) = 1. On the other hand, for any x ∈ f−1(0), we have
C(x, 0s) = g(x, 0s) = f(x) = 0; in particular, for any k ∈ [K], Ck(x, 0

s) = 0.
Thus C ′

k(x) = 0 for any k ∈ [K], which implies C ′(x) = 0. □

It remains to prove Claim 9.23 and 9.24. We prove the latter fist.

Proof of Claim 9.24. Assume, by way of a contradiction, that Cl(x′)(x, 0
s) = 1

for some x ∈ f−1(1) and x′ ∈ f−1(∗). By the definition of l(x′), there are at least
2 distinct points (x′, a) and (x′, b) in C−1

l(x′)(1) ∩ ({x′} × Lx′). Since C−1
l(x′)(1) is

an affine subspace, we have (x′, a)− (x′, b) + (x, 0s) = (x, a− b) ∈ C−1
l(x′)(1) (as in

the proof of Claim 9.13). It follows that C(x, a − b) = 1. Since C computes g,
we also have g(x, a − b) = 1, which contradicts the fact that a − b ̸= 0s and the
definition of g. □

Proof of Claim 9.23. Assume that l(x1) = l(x2) =: k for distinct inputs x1, x2 ∈
f−1(∗). Take any 2 distinct points (x1, a) and (x1, b) from C−1

k (1)∩ ({x1}×Lx1)
and any point (x2, c) from C−1

k (1) ∩ ({x2} × Lx2). Since C−1
k (1) is an affine

subspace, we have (x1, a)−(x1, b)+(x2, c) = (x2, a−b+c) ∈ C−1
k (1). We also have

(x2, a− b+c) ∈ {x2}×Lx2 , since C
−1
k (1)∩ ({x2}×Zs

m) ⊆ g−1(1)∩ ({x2}×Zs
m) =

{x2} × Lx2 . Therefore, a − b + c ∈ Lx2 . Since c ∈ Lx2 and this is a linear
subspace, it follows that a − b ∈ Lx2 . On the other hand, by the definition of
a and b, we have 0s ̸= a − b ∈ Lx1 . However, this is a contradiction because
0s ̸= a− b ∈ Lx1 ∩ Lx2 = {0s}. □

Proof of Theorem 9.18. By Claim 9.19 and 9.22, we obtain DNFMODm(g) =
DNFMODm(f) + |f−1(∗)| for a scattered collection (Lx)x∈f−1(∗). Since s =

O(t logm), the truth table of g is of length mt+s = mO(t logm), which is a poly-
nomial in the input length for every constant m ≥ 2. Finally, since it is possible
to check whether (Lx)x∈f−1(∗) is scattered in polynomial time, the reduction is
zero-error. □

On our proof strategy and the restriction to functions over boolean
inputs (m > 2). The linear-algebraic and probabilistic techniques employed
here naturally suggest to view a set of inputs for the input instance f as a subset
of the algebraic structure Zn

m (a vector space or module, depending on m). In
order to establish a similar NP-hardness result with respect to functions on the
hypercube and AND-OR-MODm circuits, one is tempted to encode elements
from the structure Zn

m as binary strings, and to consider a bijection φ : Zn
m ↔
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Γ ⊆ {0, 1}∗ between vectors and binary strings. However, a binary encoding
allows a bottom-layer modular gate to access individual bits of this encoding,
and as a consequence, this gate might accept a set A ⊆ {0, 1}∗ that does not
correspond under φ to the set of solutions of a modular equation over Zm. When
this is the case, our argument no longer works.

Another natural approach would be to restrict the input function to boolean
inputs, and to directly view such inputs as elements in {0, 1}n ⊆ Zn

m. Here
certain technical difficulties are transferred to our probabilistic analysis involving
affine subspaces of Zn

m, and it is not immediately clear to us how to modify the
argument in this case.

For these reasons, when m > 2 our techniques do not seem to be directly
applicable to functions defined over boolean inputs only, and a more complicated
argument might be necessary. Note however that this does not exclude the ex-
istence of different and potentially simpler reductions among these and other
intermediary problems.

9.4 Derandomization and Pseudorandom Generators for AND ◦
MODm

In this section, we present a unified way of efficiently derandomizing the zero-
error reductions of Section 9.3. The crucial idea is that certain subconditions of
being nice or scattered can be checked by AND ◦MODm circuits over Zn

m; hence,
a pseudorandom generator for AND◦MODm circuits can be used to derandomize
the reductions.

In order to achieve this, we show that there exists a quick pseudorandom gen-
erator with logarithmic seed length that fools any AND◦MODm circuit (regardless
of its size), a result that might be of independent interest.

Theorem 9.25. For every ϵ = ϵ(n) > 0 and each m ≥ 2, there exists a quick
pseudorandom generator G = {Gn : [Γn] → Zn

m}n∈N that ϵ-fools any AND◦MODm

circuit over Zn
m, where Γn = poly(n, 1/ϵ,m) is a positive integer.

Here we say that, for ϵ > 0 and an integer m ≥ 2, a function Gn : [Γn] → Zn
m

ϵ-fools AND◦MODm circuits if |Eγ∼[Γn][C(Gn(γ))]−Ev∈RZn
m
[C(v)]| ≤ ϵ for every

AND◦MODm circuit C; such a function Gn is called an ϵ-pseudorandom generator
for AND ◦ MODm circuits. We say that a family {Gn}n∈N of pseudorandom
generators is quick if Gn can be computed in poly(Γn) time. (Recall that [Γn]
denotes the set {1, . . . ,Γn}, which means that the seed-length of Gn is logarithmic
in n, m, and 1/ε when its input elements are represented as binary strings.)

9.4.1 Derandomizing the Reductions

We defer a proof of Theorem 9.25 to the next subsection, and present its
applications first: The pseudorandom generator implies polynomial-time deran-
domizations of the reductions presented in Section 9.3.

Theorem 9.26 (Restatement of Theorem 9.1). (DNF ◦ MODm)-MCSP is NP-
hard under polynomial-time many-one reductions.

Our basic strategy is as follows: Each reduction of Section 9.3 employs random
variables that take value on Zk

m, for different choices of k. To derandomize
the reductions, we simply replace these random variables by the output of the
pseudorandom generator of Theorem 9.25; then we try all possible Γn seeds of Gn,
and check whether the generated random variables satisfy the desired condition
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(which can be done in polynomial time). Below we give details for each reduction,
starting with the second.

Derandomizing the second reduction. We start with the reduction from
(DNF ◦ MODm)-MCSP∗ to (DNF ◦ MODm)-MCSP. The reduction required a
scattered collection of linear subspaces, which is provided by the probabilistic
argument of Claim 9.21. Here we present a deterministic construction of such a
collection.

Theorem 9.27. For any integer m ≥ 2, there exists a deterministic algorithm
that, on inputs t and r, outputs a scattered collection of r-dimensional linear
subspaces (Lh)h∈[H] for H := mt. Specifically,

1. Lh is a linear subspace of Zs
m for s := ⌈(2r + 2t) logm+ 2⌉,

2. |Lh| = mr, and

3. Lh ∩ Lh′ = {0s} for any distinct h, h′ ∈ [H].

The running time of the algorithm is mO((r+t) logm).

In the proof of Theorem 9.18, we picked random vectors v1x, . . . , v
r
x ∼ Zs

m and
defined Lx := span(v1x, . . . , v

r
x) for each x ∈ f−1(∗) ⊆ Zt

m. We take a similar
approach, but instead of generating vectors uniformly at random, we use the
output of the pseudorandom generator as the source of randomness. Specifically,
let γ ∈ [ΓrsH ] be a seed of the pseudorandom generator of GrsH ; define vectors
(v1h, . . . , v

r
h)h∈[H] := GrsH(γ) ∈ (Zrs

m)H ; then, define Lh := span(v1h, . . . , v
r
h) for

each h ∈ [H]. We show that the probabilistic argument of Claim 9.21 still works
even if the randomness is replaced in this way:

Claim 9.28. Let GrsH be the pseudorandom generator of Theorem 9.25 with
error parameter ϵ = 2−s. Pick a seed γ ∼ [ΓrsH ] uniformly at random, and
define a collection (Lh)h∈[H] of linear subspaces as above. Then, (Lh)h∈[H] is
scattered with nonzero probability.

Proof. Note that union bounds hold for any distribution; hence, by using the
union bounds as in Claim 9.21, the probability that (Lh)h∈[H] is not pairwise
disjoint is

Pr
[
Lh ∩ Lh′ ̸= {0s} for some distinct h, h′ ∈ [H]

]
≤

∑
h̸=h′∈[H]

∑
(ci),(di)

Pr

[
r∑

i=1

civ
i
h =

r∑
i=1

div
i
h′

]
, (9.2)

where the second sum is taken over all nonzero coefficient vectors (ci)i∈[r] and
(di)i∈[r] with entries ci, di ∈ Zm. If the random vectors (vih)h,i were uniformly
distributed, the probability in (9.2) could be bounded by 2−s as in Claim 9.21;
Here the probability is taken over a random seed γ ∼ [ΓrsH ] of the pseudorandom
generator GrsH . The condition that

∑r
i=1 civ

i
h =

∑r
i=1 div

i
h′ can be checked by

some AND ◦MODm circuit that takes (vih)h,i as input; thus the circuit is ϵ-fooled
by the pseudorandom generator; as a consequence, the probability (9.2) is strictly
less than m2t ·m2r · (2−s + ϵ) ≤ 1

2 .
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Similarly,

Pr [ |Lh| < mr for some h ∈ [H] ]

≤
∑
h∈[H]

∑
(ci)

·Pr

[
r∑

i=1

civ
i
h = 0s

]

< mt ·mr · (2−s + ϵ) ≤ 1

2
.

Overall, the probability that (Lh)h∈[H] is not scattered is strictly less than
1
2 + 1

2 = 1. □

Proof of Theorem 9.27. By Claim 9.28, there exists some seed γ ∈ [ΓrsH ] such
that the output GrsH(γ) defines a scattered collection (Lh)h∈[H] of linear sub-
spaces. By exhaustively searching all the seeds, one can enumerate all the outputs
of GrsH in time poly(ΓrsH) = poly(rsH, 2s,m). Moreover, one can check whether
GrsH(γ) defines a scattered collection for each γ ∈ [ΓrsH ] in time poly(H,ms).
Overall, the running time of our construction is poly(ms) = mO((r+t) logm). □

The randomized reduction of Theorem 9.18 can be now derandomized, using
the deterministic construction of Theorem 9.27 for r := t+ 2.

Corollary 9.29. There is a polynomial-time (mO(t logm) time on input
length O(mt)) many-one reduction from (DNF ◦ MODm)-MCSP∗ to (DNF ◦
MODm)-MCSP.

Derandomizing the first reduction. We now consider the reduction from
the r-bounded set cover problem to (DNF ◦ MODm)-MCSP∗. Let [n] be the

universe, and S ⊆
([n]
≤r

)
be an input to the set cover problem. Derandomizing the

reduction amounts to a deterministic construction of a nice collection (vi)i∈[n] of
vectors. We generate the random vectors using the pseudorandom generator for
AND ◦MODm circuits, and show that the probabilistic argument of Claim 9.16
still works.

Claim 9.30 (Revised Claim 9.16). Let Gtn be the pseudorandom generator of
Theorem 9.25 with error parameter ϵ < m−t. Pick a seed γ ∼ [Γtn] uniformly
at random. Define (v1, . . . , vn) := Gtn(γ) ∈ (Zt

m)n. If t ≥ r + ((r + 2) log n +
log |S|+ 1)/ logm, then (vi)i∈[n] is nice with nonzero probability.

Proof. By using union bounds as in Claim 9.16, it is sufficient to prove

nr+2 · |S| ·mr · Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i

 < 1 (9.3)

for coefficients (ci)i∈I , (di)i∈S and jS ∈ I \ S, where the probability is taken over
a random seed γ.

The condition vjS =
∑

i∈S div
i −

∑
i∈I\{jS} civ

i can be checked by an AND ◦
MODm circuit that takes (v1, . . . , vn) ∈ Ztn

m as input. By Theorem 9.25, we get

Pr

vjS =
∑
i∈S

div
i −

∑
i∈I\{jS}

civ
i

 ≤ m−t + ϵ.
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Consequently, due to our choice of t and using ϵ < m−t, the left-hand side of
(9.3) is strictly less than

nr+2 · |S| ·mr · 2m−t ≤ 1,

which completes the proof. □

In particular, there exists some seed γ ∈ [Γtn] such that (v1, . . . , vn) = Gtn(γ)
is nice. The number of seeds is at most Γtn = poly(tn, 1/ϵ,m) = poly(n,mt) =
(nm)O(r), which is a polynomial in the input length; hence, in polynomial time,
one can try all possible seeds and find a nice collection (vi)i∈[n] of vectors. Thus
the reduction of Theorem 9.10 can be derandomized:

Corollary 9.31. (DNF ◦ MODm)-MCSP∗ is NP-hard under polynomial-time
many-one reductions.

Proof of Theorem 9.26. Immediate from Corollary 9.31 and 9.29. □

9.4.2 Near-Optimal Pseudorandom Generators for AND ◦MODm

This subsection contains a proof of Theorem 9.25. We assume basic familiarity
with concepts from analysis of boolean functions [O’D14]. For simplicity, we first
focus on the case of m = 2, which admits a simpler proof.

Proof for m = 2. An ϵ-biased generator, introduced by Naor and Naor
[NN93], is a pseudorandom generator for XOR functions. That is, we say that
a function G : {0, 1}s → {0, 1}n is an ϵ-biased generator if |Ex∼{0,1}n [χS(x)] −
Es∈R{0,1}s [χS(G(s))]| ≤ ϵ for any S ⊆ [n], where χS(x) :=

⊕
i∈S xi. While this

definition only requires the generator to fool XOR functions, it can be shown
that any Boolean function with small ℓ1 Fourier norm can be fooled by ϵ-biased
generators.

Lemma 9.32 (see e.g., [DETT09, Lemma 2.5]). Every function f : {0, 1}n →
{0, 1} can be ϵ|̂|f |̂|1 fooled by any ϵ-biased generator. Here, |̂|f |̂|1 :=

∑
S⊆[n] |f̂(S)|.

Proof Sketch. Use the Fourier expansion f(x) =
∑

S⊆[n] f̂(S)χS(x), and apply
the triangle inequality. □

Moreover, it is known that any AND ◦ XOR circuit f has |̂|f |̂|1 = 1.

Lemma 9.33 (see e.g., [O’D14, Proposition 3.12]). |̂|f |̂|1 = 1 for any Boolean
function f : {0, 1}n → {0, 1} computable by a nontrivial AND ◦ XOR circuit.

Proof Sketch. Let H + a ⊆ {0, 1}n be the (nonempty) affine subspace accepted
by f . Take a basis of H⊥. Write a characteristic function of f using the basis,
and expand it to obtain a Fourier expansion of f . □

Combining these two lemmas, any ϵ-biased generator fools AND◦XOR circuits.
Moreover, Naor and Naor [NN93] gave an explicit construction of an ϵ-biased
generator of seed length O(log n + log(1/ϵ)), from which Theorem 9.25 follows
when m = 2.

In the proof sketched above, we exploited the fact that {0, 1}n = Zn
2 is a

vector space: We took a basis of a linear subspace in the proof of Lemma 9.33.
In order to generalize the result to the case of m ≥ 2, we need a more direct proof
which does not rely on a basis.
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Proof for any m ≥ 2. Azar, Motwani and Naor [AMN98] generalized the notion
of ϵ-biased generator on {0, 1}n to Zn

m for any integer m ≥ 2, and gave an explicit
construction. We review the generalized notion and their result below.

Definition 9.34 ([AMN98]). For a probability distribution D over Zn
m and a

vector a ∈ Zn
m, biasD(a) is defined as follows: for g := gcd(a1, . . . , an,m),

biasD(a) :=
1

g
max

0≤k<m/g

∣∣∣∣ Prx∼D
[⟨a, x⟩ = kg]− g

m

∣∣∣∣ .
We say that a distribution D is ϵ-biased if biasD(a) ≤ ϵ for every a ∈ Zn

m. We
say that a function G : [Γ] → Zn

m is an ϵ-biased generator if the distribution G(γ)
for a random seed γ ∼ [Γ] is ϵ-biased.

Theorem 9.35 ([AMN98, Theorem 6.1]). For m(n) ≥ 2 and ϵ = ϵ(n) > 0,
there exists a quick ϵ-biased generator G = {Gn : [Γn] → Zn

m}n∈N for some
Γn = poly(n, 1/ϵ,m).

We use the same pseudorandom generator G as in Theorem 9.35. In what
follows, we will show that any ϵ-biased generator mϵ-fools AND ◦MODm circuits,
which completes the proof of Theorem 9.25.

Define em : Zm → C× as em(k) := exp(2π
√
−1 · k/m) for k ∈ Zm.

Lemma 9.36. For any distribution D on Zn
m and any nonzero vector a ∈ Zn

m,
we have ∣∣∣∣ E

x∼D
[em (⟨a, x⟩)]

∣∣∣∣ ≤ m · biasD(a).

Proof. The proof follows the same approach of [AMN98, Lemma 4.4]. Let g :=
gcd(a1, . . . , an,m).

∣∣∣∣ E
x∼D

[em (⟨a, x⟩)]
∣∣∣∣ =

∣∣∣∣∣∣
∑

0≤k<m/g

em(kg) Pr
x∼D

[⟨a, x⟩ = kg]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

0≤k<m/g

em(kg)

(
Pr
x∼D

[⟨a, x⟩ = kg]− g

m

)∣∣∣∣∣∣
≤

∑
0≤k<m/g

|em(kg)| ·
∣∣∣∣ Prx∼D

[⟨a, x⟩ = kg]− g

m

∣∣∣∣
≤ m

g
· 1 · g · biasD(a) = m · biasD(a),

where the first equality follows from the fact that ⟨a, x⟩ is a multiple of g for
any x ∈ Zn

m, and in the second equality we used that
∑

0≤k<m/g em(kg) = 0 for
g < m, which is true if a ̸= 0n. □

As a consequence of the previous lemma, we can prove that any affine function
can be “fooled”:

Lemma 9.37. For any ϵ-biased probability distribution D on Zn
m, any vector

a ∈ Zn
m, and any scalar b ∈ Zm,∣∣∣∣ E

x∼D
[em (⟨a, x⟩+ b)]− E

x∼Zn
m

[em (⟨a, x⟩+ b)]

∣∣∣∣ ≤ mϵ.
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Proof. When a = 0n, both expectations are constant, and hence the lemma
follows. Otherwise, we have Ex∼Zn

m
[em (⟨a, x⟩)] = 0, since this expression can be

written as a product of expectations, and one of them evaluates to zero. Using
Lemma 9.36, we obtain∣∣∣∣ E

x∼D
[em (⟨a, x⟩+ b)]− E

x∼Zn
m

[em (⟨a, x⟩+ b)]

∣∣∣∣
= |em(b)| ·

∣∣∣∣ E
x∼D

[em (⟨a, x⟩)]− E
x∼Zn

m

[em (⟨a, x⟩)]
∣∣∣∣ = 1 ·

∣∣∣∣ E
x∼D

[em (⟨a, x⟩)]
∣∣∣∣

≤ m biasD(a) ≤ mϵ.

□

Theorem 9.38. For any ϵ-biased probability distribution D on Zn
m and any func-

tion f : Zn
m → {0, 1} computable by some AND ◦MODm circuit,∣∣∣∣ E

x∼D
[f(x)]− E

x∼Zn
m

[f(x)]

∣∣∣∣ ≤ mϵ

Proof. Suppose that an AND ◦MODm circuit computing f has K MODm gates,
and, for each k ∈ [K], let gk : Zn

m → Zm denote the affine function that corre-
sponds to the kth MODm gate. That is, gk(x) = ⟨ak, x⟩ + bk for some vector
ak ∈ Zn

m and some scalar bk ∈ Zm; moreover, for any input x ∈ Zn
m, f(x) = 1 if

and only if gk(x) = 0 for all k ∈ [K].
We employ the following construction. Let p(z) be the polynomial over C

defined as follows.

p(z) :=
1

m

∏
α∈Zm\{0}

(z − em(α)) (9.4)

=
1

m

zm − 1

z − 1
=

1

m

m−1∑
i=0

zi, (9.5)

where the second equality holds because the roots of the polynomial zm − 1 are
{ em(α) | α ∈ Zm }. Useful properties of this polynomial are that, by (9.4), we
have p(em(α)) = 0 for any α ∈ Zm \ {0}, and that p(em(0)) = p(1) = 1 because
of (9.5). Using the polynomial, we can write f as follows:

f(x) =
∧

k∈[K]

[gk(x) = 0]

=
∧

k∈[K]

[p(em(gk(x))) = 1]

=
∏

k∈[K]

p(em(gk(x)))

=
∏

k∈[K]

 1

m

m−1∑
j=0

em(j · gk(x))


=

1

mK

∏
k∈[K]

∑
αk∈Zm

em(αkgk(x))

=
1

mK

∑
α∈ZK

m

em

 ∑
k∈[K]

αkgk(x)

 .
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Now, by using Lemma 9.37, we obtain∣∣∣∣ E
x∼D

[f(x)]− E
x∼Zn

m

[f(x)]

∣∣∣∣
≤ 1

mK

∑
α∈ZK

m

∣∣∣∣∣∣ E
x∼D

em
 ∑

k∈[K]

αkgk(x)

− E
x∼Zn

m

em
 ∑

k∈[K]

αkgk(x)

∣∣∣∣∣∣
≤ mϵ,

where in the last inequality we used the fact that
∑

k∈[K] αkgk(x) is an affine
function. □

Proof of Theorem 9.25. The result is immediate from Theorem 9.35 and 9.38. □

9.5 Appendix

9.5.1 Proof of Fact 9.5 – Double Orthogonal Complement in (Z/mZ)n

In this section we present the proof of Fact 9.5, which for convenience is
reformulated as Theorem 9.39 stated below. Our presentation follows the proof
outlined in [God].

Recall the following concepts. We consider the Abelian group G := (Z/mZ)n
equipped with component-wise addition modulo m, and let ⟨x, y⟩ :=

∑
i∈[n] xiyi

mod m, where x, y ∈ G. For a subgroup V of G, define V ⊥ := {x ∈ G | ⟨x, y⟩ =
0 for all y ∈ V }, which is again a subgroup of G.

Theorem 9.39 (folklore). V ⊥⊥ = V for any subgroup V of G = (Z/mZ)n.

It is easy to see V ⊆ V ⊥⊥: indeed, for any x ∈ V , we have ⟨x, y⟩ = 0 for
each y ∈ V ⊥ by the definition of V ⊥; hence x ∈ V ⊥⊥. Therefore, it is sufficient
to show that the size of V ⊥⊥ is equal to that of V . To this end, we prove the
following claim.

Claim 9.40. |V ⊥| = |G|/|V | for any subgroup V of G.

Note that, applying this claim twice, we obtain |V ⊥⊥| = |G|/|V ⊥| =
|G|/(|G|/|V |) = |V |, which completes the proof of Theorem 9.39. Claim 9.40
will be proved by combining the three claims below.

Let H be any finite Abelian group. A character of the group H is a homo-
morphism χ : H → C× Let Ĥ denote the dual group of H, that is, the group of
all characters of H. (See e.g. [O’D14, Section 8.5] for more details.) It is known
that the order of a group H and the order of its dual group Ĥ are the same.

Claim 9.41 ([O’D14, Corollary of Proposition 8.55 and Exercise 8.35]). |H| =
|Ĥ| for any finite Abelian group H.

For any subgroup V of G, define V ∗ := {χ ∈ Ĝ | χ(v) = 1 for every v ∈ V }.

Claim 9.42. Ĝ/V ∼= V ∗ for any subgroup V of G.

Proof. We define an isomorphism φ : Ĝ/V → V ∗. Given χ ∈ Ĝ/V , we define
φ(χ) : G → C× by φ(χ)(x) := χ(x + V ) for x ∈ G. We claim that φ(χ) is
indeed in V ∗: First, φ(χ) : G → C× is a homomorphism since φ(χ)(x + y) =
χ(x + y + V ) = χ((x + V ) + (y + V )) = χ(x + V )χ(y + V ) for any x, y ∈ G.
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Second, φ(χ)(v) = χ(v + V ) = χ(V ) = 1 for any v ∈ V . (Here, we used the
fact that the homomorphism χ maps the identity 0 + V ∈ G/V to the identity
1 ∈ C×.)

We claim that φ is a homomorphism. Indeed, φ(χ1χ2)(x) = (χ1χ2)(x+V ) =

χ1(x + V )χ2(x + V ) = φ(χ1)(x)φ(χ2)(x) for any x ∈ G and any χ1, χ2 ∈ Ĝ/V ;
hence φ(χ1χ2) = φ(χ1)φ(χ2).

In order to prove that φ is a bijection, we construct an inverse map ψ : V ∗ →
Ĝ/V . Given χ ∈ V ∗, define ψ(χ)(a + V ) := χ(a) for any coset a + V ∈ G/V .
Note that this map is well defined since a + V = b + V implies a − b ∈ V , and
thus 1 = χ(a− b) = χ(a)/χ(b). It is straightforward to see that ψ = φ−1: indeed,
ψ(φ(χ))(a + V ) = φ(χ)(a) = χ(a + V ) and φ(ψ(χ))(a) = ψ(χ)(a + V ) = χ(a)
for any a ∈ G. Hence φ is both injective and surjective, and consequently, an
isomorphism. □

Claim 9.43. V ∗ ∼= V ⊥ for any subgroup V of G = (Z/mZ)n.

Proof. We first prepare some notation: For any i ∈ [n], let ei ∈ G be the vector
whose value is 1 on the ith coordinate and is 0 on the other coordinates. Let
ω := exp(2π

√
−1/m) ∈ C× denote the mth root of unity.

We construct an isomorphism φ : V ⊥ → V ∗. Given x ∈ V ⊥, define φ(x) ∈ V ∗

as φ(x)(y) := ω⟨x,y⟩ for any y ∈ G. Note that the image of φ is contained in V ∗:
indeed, for any v ∈ V ⊥, we have φ(x)(v) = ω⟨x,v⟩ = ω0 = 1.

We claim that φ is injective. It is easy to see that φ is a homomorphism; thus,
it is sufficient to prove that the kernel of φ is just 0 ∈ V ⊥. If φ(x) is the constant
function 1, then ⟨x, y⟩ = 0 for any y ∈ G; in particular, letting y ∈ {e1, . . . , en},
we obtain x = 0.

Finally, we claim that φ is surjective. For any χ ∈ V ∗ and any i ∈ [n], there
is some xi ∈ Z/mZ such that χ(ei) = ωxi : indeed, since 1 = χ(0) = χ(m · ei) =
χ(ei)

m, χ(ei) is one of the mth roots of unity. Now we define x :=
∑n

i=1 xiei ∈
G. Then, for any y ∈ G, φ(x)(y) = ω⟨x,y⟩ =

∏n
i=1 ω

xiyi =
∏n

i=1 χ(ei)
yi =∏n

i=1 χ(yiei) = χ(
∑n

i=1 yiei) = χ(y); hence φ(x) = χ for some x ∈ G. Moreover,
for any v ∈ V , we have χ(v) = ω⟨x,v⟩ = 1 since χ ∈ V ∗; thus we have ⟨x, v⟩ = 0,
which implies that x ∈ V ⊥. □

Combining these three claims, we obtain |V ⊥| = |V ∗| = |Ĝ/V | = |G/V | =
|G|/|V |, which completes the proof of Claim 9.40.

9.5.2 On Different Complexity Measures for DNF ◦MODp Circuits

In this section, we provide an example of the robustness of our arguments with
respect to variations of the complexity measure. Let p ≥ 2 be a fixed prime. We
sketch the proof of a hardness result for a variant of the (DNF ◦MODp)-MCSP∗

problem, described as follows. We consider layered OR ◦ AND ◦MODp formulas4

over Zn
p , and measure complexity by the total number of (non-input) gates in

the formula.5 A bit more precisely, we adapt the proof of Theorem 9.10 from
Subsection 9.3.1, and show that this problem is also NP-hard under randomized
reductions.

4Recall that in a formula every non-input gate has fan-out one.
5Under our notion of layered formulas, an (AND ◦ MODp)-circuit with a single MODp gate

has size 2. While this is convenient for the exposition, it is not particularly important for the
result.
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Since Zt
p is a vector space over the field Zp, we can define the dimension of an

affine subspace: For a linear subspace H ⊆ Zt
p, let dim(H) denote the dimension

of H, and let codim(H) := dim(H⊥) = t − dim(H); then, for any a ∈ Zt
p,

define the dimension of an affine subspace H + a as dim(H + a) := dim(H),
and codim(H + a) := dim(H). Observe that this notion is well-defined. Using
dimension, we can characterize the number of gates in AND ◦MODp formulas.

Lemma 9.44. Let A be an affine subspace of Zt
p. Then, the minimum number of

gates in any layered AND ◦MODp formula accepting A is exactly 1 + codim(A).

Proof Sketch. As in the proof of Lemma 9.4, a layered AND ◦MODp formula C
with 1 + s gates accepts the set A = C−1(1) of solutions of s linear equations
over MODp. Let B ∈ Zs×t

p be the matrix that defines these linear equations.
Then, we have dimker(B) = dim(A), and by the rank-nullity theorem, we obtain
codim(A) = t− dim(A) = t− dimker(B) = rank(B) ≤ s.

Conversely, let A =: H + a for some linear subspace H and some a ∈ Zt
p, and

let γ1, . . . , γs be a basis of H⊥, where s := codim(H). Then, using orthogonal
complements, it is easy to check that x ∈ A if and only if ⟨γi, x⟩ = ⟨γi, a⟩ for all
i ∈ [s]. The latter condition can be written as an AND ◦MODp layered formula
with 1 + s gates. □

As a corollary, for any optimal layered (DNF ◦MODp)-formula C =
∨K

k=1Ck

for a function f : Zn
p → {0, 1}, where Ck is an AND◦MODp circuit for each k ∈ [K],

the total number of gates in the formula is precisely 1+K+
∑K

k=1 codim(C−1
k (1)).

For convenience, given a function f : Zt
p → {0, 1, ∗}, let size(f) denote the

complexity of f according to our size measure. Now let us revise the proof of
Theorem 9.10. Given an instance S ⊆

(
n
≤r

)
of the r-bounded set cover instance,

we construct a function f : Zt
p → {0, 1, ∗} in exactly the same way. Below we

adapt the corresponding claims from Subsection 9.3.1. Then we employ the new
claims to argue that the NP-hardness result still holds.

Claim 9.45 (Adaptation of Claim 9.11). Assume that S has a set cover of size
K. Then size(f) ≤ (t+ 1)K + 1.

Proof. Let C ⊆ S be a set cover of size K. For each S ∈ C, let CS be an
AND◦MODp circuit over Zt

p that accepts span(vS). Define a DNF◦MODp circuit

C :=
∨

S∈C CS . Then the circuit size of C is 1+K+
∑K

i=1 codim(C−1
S (1)), which

is obviously at most 1 +K(t+ 1). □

Claim 9.46 (Adaptation of Claim 9.15). Let (vi)i∈[n] be nice, and s := size(f).
Then S has a set cover of size 2(s− 1)/(t− r − (log |S|/ log p) + 1).

Proof. Let C =
∨K

k=1Ck be an optimal DNF◦MODp layered formula of size s com-

puting f . Then, as discussed above, we have s = 1 +K +
∑K

k=1 codim(C−1
k (1)).

On the other hand, the same analysis from Claim 9.15 shows that S has a set
cover of size ≤ 2K. It thus remains to give an upper bound on K.

Since C computes f , we have C−1
k (1) ⊆ C−1(1) ⊆ f−1({1, ∗}) =∪

S∈S span(vS). By counting the number of elements in C−1
k (1) and∪

S∈S span(vS), we obtain pdim(C−1
k (1)) ≤ |S|·pr. Hence, we have codim(C−1

k (1)) ≥
t− r − log |S|/ log p; therefore,

s ≥ 1 +K +
K∑
k=1

codim(C−1
k (1)) ≥ 1 +K +K(t− r − log |S|/ log p),
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which implies K ≤ (s− 1)/(t− r − (log |S|/ log p) + 1). □

Let K be the minimum size of a cover for S. By the claims above, we have
size(f) ≲ tK and K ≲ 2size(f)/t, because t can be taken large enough compared
to the other relevant parameters; hence size(f)/t roughly gives us a 2-factor
approximation. More precisely, we have size(f) ≤ (t+ 1)K + 1 ≤ 2(t+ 1)K, and
K ≤ 2(size(f)−1)/((t+1)/2) ≤ 4size(f)/(t+1) for any t ≥ 2r+2 log |S|/ log p−1.
That is, the set cover size K satisfies

size(f)

2(t+ 1)
≤ K ≤ 4size(f)

t+ 1
,

which gives an 8-factor approximation of K. Since we can take r to be a suffi-
ciently large constant in Theorem 9.7, the result holds.

9.5.3 A Hardness of Approximation Result for (DNF ◦MODm)-MCSP

The reduction from (DNF ◦ MODm)-MCSP∗ to (DNF ◦ MODm)-MCSP pre-
sented in Section 9.3 is not approximation-preserving : given a partial function

f : Zt
m → {0, 1, ∗}, it produces a total function g : ZO(t logm)

m → {0, 1} such that
DNFMODm(g) = DNFMODm(f) + |f−1(∗)|. The reduction introduces an additive
term |f−1(∗)|, and hence a (multiplicative) approximation of DNFMODm(g) does
not give a good approximation of DNFMODm(f). In order to fix this situation,
we give an approximation-preserving reduction. Our approach is inspired by a
reduction described in [AHM+08].

Theorem 9.47 (Approximation-preserving version of Corollary 9.29). There
is a polynomial-time algorithm that, given the truth table of a partial function
f : Zt

m → {0, 1, ∗}, produces the truth table of a total function g : Z2t+2s
m → {0, 1}

such that
DNFMODm(g) = |f−1(∗)| · (DNFMODm(f) + 1),

where s := ⌈(6t+ 4) logm+ 2⌉.

Proof. The idea of the proof is to amplify the circuit size for f ; that is, we
would like to force any circuit C computing g to also compute sub-functions
corresponding to |f−1(∗)| copies of f .

We can amplify the circuit size as follows. Let (Lx)x∈f−1(∗) be a scattered
collection of linear subspaces of Zs

m. Define a function g′ by g′(x, z, w) :=
f(x) if z ∈ f−1(∗) and w ∈ Lz; otherwise g′(x, z, w) := 0. Then, under
an appropriate choice of parameters, it can be shown that DNFMODm(g

′) =
|f−1(∗)| · DNFMODm(f). By combining an analogous reduction and the idea be-
hind the proof of Theorem 9.18, we can obtain a total function g such that
DNFMODm(g) = DNFMODm(g

′) + |f−1(∗)| = |f−1(∗)| · (DNFMODm(f) + 1).6 De-
tails follow.

We first obtain a scattered collection (Lx)x∈f−1(∗) of r-dimensional linear
subspaces of Zs

m by using Theorem 9.27 for r := 2t + 2. Then we define
g : Z2t+2s

m → {0, 1} as

g(x, y, z, w) :=


f(x) (if f(x) ∈ {0, 1} and y = 0s and f(z) = ∗ and w ∈ Lz)

1 (if f(x) = ∗ and y ∈ Lx)

0 (otherwise)

6A black-box application of Corollary 9.29 produces a function g such that DNFMODm(g) =
DNFMODm(g′)+ |g′−1(∗)|, which is not sufficient for our purpose because |g′−1(∗)| is larger than
|f−1(∗)|.
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for any ((x, y), (z, w)) ∈ (Zs
m × Zt

m)2.

Claim 9.48 (Analogue of Claim 9.19). DNFMODm(g) ≤ |f−1(∗)|·(DNFMODm(f)+
1).

Proof. Suppose that a DNF ◦ MODm circuit C =
∨K

k=1Ck computes f . For
each x∗ ∈ f−1(∗), take an AND ◦ MODm circuit Cx∗ accepting {x∗} × Lx∗ (by
Lemma 9.4). Define

C ′(x, y, z, w) :=
∨

z∗∈f−1(∗)

K∨
k=1

(Ck(x)∧y1 = 0∧· · ·∧ys = 0∧Cz∗(z, w))∨
∨

x∗∈f−1(∗)

Cx∗(x, y).

It is easy to see that C ′ computes g. □

The rest of the proof is devoted to the reverse direction.

Claim 9.49 (Analogue of Claim 9.22). DNFMODm(g) ≥ |f−1(∗)|·(DNFMODm(f)+
1).

Let C =
∨K

k=1Ck be a minimum DNF ◦ MODm circuit computing g. In
particular, K = DNFMODm(g) ≤ |f−1(∗)| · (DNFMODm(f) + 1) ≤ m2t+1. For each
x ∈ f−1(∗), let l(x) ∈ [K] be one of the indices such that |C−1

l(x)(1) ∩ ({x} ×Lx ×
Zt+s
m )| is maximized. Since

∪
k∈[K]C

−1
k (1) ⊇ {x} × Lx × Zt+s

m , there are at least

|Lx| ·mt+s/K ≥ mr+t+s/m2t+1 ≥ 2 points in the set C−1
l(x)(1)∩ ({x}×Lx×Zt+s

m ).

Define T0 := {Cl(x) | f(x) = ∗ }. For each z ∈ f−1(∗), let Tz be the set of all
Ck such that k ∈ [K] and Ck accepts at least 2 elements from {(x, 0s, z)}×Lz for
some x ∈ f−1(1). We will show that the sets T0, {Tz}z∈f−1(∗) are pairwise disjoint,
and hence K ≥ |T0|+

∑
z∈f−1(∗) |Tz|. We will also prove that |T0| = |f−1(∗)| and

|Tz| ≥ DNFMODm(f), which completes the proof.

Claim 9.50. l : f−1(∗) → [K] is injective (hence |T0| = |f−1(∗)|).

Claim 9.51. T0 ∩ Tz = ∅ for any z ∈ f−1(∗).

Since the proofs of these claims are essentially the same as in Claim 9.23
and 9.24, respectively (except that we have extra coordinates taking values in
Zt
m × Zs

m), we omit them.

Claim 9.52. Tz1 ∩ Tz2 = ∅ for any distinct elements z1, z2 ∈ f−1(∗).

Proof. The proof is basically the argument from Claim 9.23. For completeness, we
briefly repeat it here. Towards a contradiction, assume that there exists a circuit
Ck in Tz1 ∩ Tz2 . By the definition of Tz1 and Tz2 , there exist elements x1, x2 ∈
f−1(1), a ̸= b ∈ Lz1 , and c ∈ Lz2 such that Ck(x1, 0

s, z1, a) = Ck(x1, 0
s, z1, b) =

Ck(x2, 0
s, z2, c) = 1. Since C−1

k (1) is an affine subspace, we have (x1, 0
s, z1, a)−

(x1, 0
s, z1, b) + (x2, 0

s, z2, c) = (x2, 0
s, z2, a − b + c) ∈ C−1

k (1). Since C−1
k (1) ∩

({(x2, 0s, z2)}×Zs
m) ⊆ {(x2, 0s, z2)}×Lz2 , we get a− b+ c ∈ Lz2 . However, given

that c ∈ Lz2 , we obtain 0s ̸= a−b ∈ Lz1∩Lz2 , which contradicts Lz1∩Lz2 = {0s}.
□

Fix any z ∈ f−1(∗). For each Ck ∈ Tz, define an AND ◦ MODm circuit C ′
k

so that C ′−1
k (1) = {x ∈ Zt

m | Ck(x, 0
s, z, w) = 1 for some w ∈ Zs

m }. (Note that
a projection of an affine subspace C−1

k (1) is again an affine subspace because a
projection is a homomorphism.) Now define Cz :=

∨
Ck∈Tz

C ′
k.
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Claim 9.53. Cz computes f for any z ∈ f−1(∗). (In particular, |Tz| ≥
DNFMODm(f).)

Proof. Fix any x ∈ f−1(1). Since {(x, 0s, z)} × Lz is covered by
∪

k∈[K]C
−1
k (1),

and |Lz| = mr, K ≤ m2t+1, and r = 2t+ 2, there exists k ∈ [K] such that there
are at least 2 elements in ({(x, 0s, z)} × Lz) ∩ C−1

k (1); hence, by the definition
of Tz, we have Ck ∈ Tz. Moreover, C ′

k(x) = 1 by the definition of C ′
k; thus

Cz(x) =
∨

Ck∈Tz
C ′
k(x) = 1.

Now fix any x ∈ f−1(0). Since g(x, 0s, z, w) = 0 for every w ∈ Zs
m, we get

Ck(x, 0
s, z, w) = 0 for any Ck ∈ Tz; thus C

′
k(x) = 0, which implies that Cz(x) = 0.

□

Combining the claims above, we obtain

DNFMODm(g) = K ≥ |T0|+
∑

z∈f−1(∗)

|Tz| ≥ |f−1(∗)| · (DNFMODm(f) + 1).

This completes the proof of Theorem 9.47. □

We can then establish a hardness of approximation result for computing
DNFMODm(f). For a function f : Zt

m → {0, 1}, define |f | := mt, which is the
number of entries in the truth table of a function f .

Theorem 9.54. There exists a constant c > 0 such that if there is a
quasipolynomial-time algorithm which approximates DNFMODm(f) to within a fac-

tor of c log log |f |, then NP ⊆ DTIME(2(logn)
O(1)

).

Proof. As noted by Trevisan [Tre01b], by choosing the parameters of Feige’s
reduction [Fei98], one can obtain hardness of approximation results for the r-
bounded set cover problem. While Trevisan only analyzed the case when r is
constant (cf. Theorem 9.7), a similar analysis7 shows that it is NP-hard (under
quasipolynomial-time many-one reductions) to approximate the r(n)-bounded
set cover problem on n points within a factor of γ log r(n) (= γ log log n ) for
r(n) := log n and some small constant γ > 0.

Suppose that DNFMODm(g) can be approximated to within a factor of
(γ/6) log log |g| by an algorithm A, where g : Zt

m → {0, 1} is a total func-
tion. We show below that if A runs in quasipolynomial time, then NP ⊆
DTIME(2(logn)

O(1)
).

First, note that in order to conclude this it is enough to describe a
quasipolynomial-time algorithm B that approximates r-Bounded Set Cover to
within a factor of γ log r(n) for r(n) = log n. Let ([n],S) be an instance of the
r-Bounded Set Cover Problem. Algorithm B applies the deterministic nO(r(n))-
time reduction provided by Corollary 9.31 to produce a partial Boolean function

f : ZO(r logn)
m → {0, 1, ∗}. It then invokes the deterministic reduction from Theo-

rem 9.47 to construct from f a total function g : ZO(r logn)
m → {0, 1}. Finally, B

uses the approximation algorithm A to compute a (γ/6) log log |g| approximation
to DNFMODm(g). Let g̃ ∈ N be the value output by A. Algorithm B outputs
K̃ := 2g̃/|f−1(∗)|.

7 Specifically, for the parameters and notation in [Fei98], given a 3CNF-5 formula on n
variables, let k be a sufficiently large constant, m :=

√
logn, and ℓ := c log logm for a large

constant c. Then the output of Feige’s reduction is an instance of the set cover problem on
N

(
:= m(5n)ℓ

)
points such that each set is of size at most m2O(ℓ) ≤ r(N) = logN , and the

gap between yes instances and no instances is (1− 4
k
) lnm = Ω(log logN).
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Note that B runs in quasipolynomial time under our assumptions. It remains
to show that it approximates the solution of the original set cover problem within
a factor of γ log log n. Let K be the cost of an optimal solution to the initial set
cover instance. Recall that 2DNFMODm(f) is a 2-factor approximation for K;
that is, K ≤ 2 · DNFMODm(f) ≤ 2K. On the other hand, the guarantees of the
algorithm A imply that

DNFMODm(g) ≤ g̃ ≤ DNFMODm(g) · (γ/6) log log |g|.

Since DNFMODm(g) = |f−1(∗)| · (DNFMODm(f) + 1), we get

K ≤ 2g̃

|f−1(∗)|
≤ (γ/6) log log |g| · (K + 1)

Therefore, for large enough n and on non-trivial instances (i.e. K ≥ 1), the
value K̃ output by B approximates K to within a factor of 2 · (γ/6) log log |g| ≤
(γ/3) · (log r(n) + log log n+O(1)) ≤ (γ/3) · 3 log log n. □

Finally, we note that when m is prime, it is possible to design a
quasipolynomial-time approximation algorithm for DNFMODm(f) with an approx-
imation factor of O(log |f |).

Theorem 9.55. Let p be a prime number. There is a quasipolynomial-time
algorithm which approximates DNFMODp(f) to within a factor of ln |f |.

Proof. Let |f | = pt be the number of entries in the truth table of f , the input
function. By the results of Subsection 9.2.2, computing DNFMODp(f) is equivalent
to solving a set cover instance. Recall that set cover admits a polynomial-time ap-
proximation algorithm that achieves an approximation factor of lnN on instances
over a universe of size N (cf. [Sla97]). Consequently, in order to prove the result
it is enough to verify that computing DNFMODp(f) reduces to a set cover instance
with domain size Nf := |f−1(1)| ≤ |f | and of size at most quasipolynomial in |f |.

Indeed, for a non-zero function f : Zt
p → {0, 1}, DNFMODp(f) is exactly the

minimum number of affine subspaces that cover f−1(1). Therefore, by relabelling
elements, computing DNFMODp(f) reduces to a set cover instance ([Nf ],Sf ),
where a set S ∈ Sf if and only if S viewed as a subset of Zt

p is an affine sub-
space contained in f−1(1). Each such affine subspace has dimension at most t,
and can be explicitly described by a basis v1, . . . , vℓ ∈ Zt

p, where ℓ ≤ t, and a

vector b ∈ Zt
p. Hence there are at most pO(t2) such spaces, and consequently,

|Sf | ≤ pO(t2). In other words, we get a set cover instance over a ground set of
size ≤ |f |, and this instance contains at most |f |O(log |f |) sets.

Finally, since the sets in Sf can be generated in time at most |f |O(log |f |),
and the set cover approximation algorithm runs in time polynomial in its input
length, the result holds. □
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Chapter 10

Hardness Under Local Reductions

In this chapter, we show that MKTP is hard for the complexity class DET
under local reductions, that is, reductions whose output bit depends on a small
number of input bits. This is surprising, because prior work on MCSP and
MKTP had highlighted weaknesses of “local” reductions such as DTIME(n0.49)
reductions. We exploit our local reduction to obtain several new consequences,
such as the equivalence between circuit lower bounds and hardness of MKTPA

for some class of oracles A. We start with outlining the contributions of this
chapter in the next section.

10.1 Background and Overview

Hardness Under Local Reductions

Murray and Williams [MW17] showed that MCSP and MKTP are not TC0-
hard under “local” reductions, i.e., reductions that are not given enough time to
read the whole input. Specifically, they considered a n0.49-time reduction such
that, given random access to an n-bit input and an index i ∈ [nO(1)], the reduction
computes the ith bit of the output in n0.49 steps, and showed that even PARITY
is not reducible to MCSP under such a local reduction. Murray and Williams
speculated that this might be a promising first step toward showing that MCSP
is not hard for NP under Dlogtime-uniform AC0 reductions, since it follows from
[Agr11] that any set that is hard for TC0 under P-uniform AC0 reductions is also
hard for TC0 under P-uniform NC0 reductions. Indeed, the results of Murray and
Williams led us to expect that MCSP and MKTP are not even hard for PARITY
under nonuniform NC0 reductions.

Contrary to these expectations, we show that MKTP is hard not only for TC0

but even for the complexity class DET under nonuniform NC0 reductions (Theo-
rem 10.3). Here DET is the class of problems that are reducible to the problem
Det of computing the determinant of integer matrices, by NC1-Turing reductions.
DET lies between L and P. Under a plausible derandomization hypothesis, our
nonuniform reduction can be converted into a Dlogtime-uniform ≤AC0

tt reduction
that is an AND of NC0-computable queries. Thus “local” reductions are more
effective for reductions to MKTP than may have been suspected.

Our DET-hardness result is proved by building on a randomized reduction
of [AGvM+18], reducing Graph Isomorphism to MKTP. We modify that con-
struction, to obtain a nonuniform AC0 reduction (Corollary 10.2). The restricted
version of Graph Isomorphism that we use is known to be hard for DET [Tor04].
Our proof of Theorem 10.3 then appeals to the “Gap Theorem” of [AAR98], in

order to conclude that DET ≤NC0

m MKTP; the Gap Theorem states that, for any
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class C closed under TC0 reductions, C-hardness under ≤AC0

m reductions implies

C-hardness under ≤NC0

m reductions.
Our hardness results (both unconditional hardness results under nonuniform

reductions, and conditional uniform hardness results) are summarized in Ta-
ble 10.1.

Table 10.1: Hardness for MKTPA: MKTPA is hard for DET under the type of
reducibility listed in the first column, if oracle A satisfies the condition listed
in the second column. The last column shows the theorem where the result is
stated.

reductions R condition on A Theorem

nonuniform ≤NC0

m every A Theorem 10.3

P-uniform ≤AC0

ctt E ̸⊆ i.o.SIZEMKTPA
(2ϵn) Corollary 10.9

L-uniform ≤AC0

ctt DSPACE(n) ̸⊆ i.o.SIZEMKTPA
(2ϵn) Theorem 10.5

Dlogtime-uniform ≤AC0

ctt ΣdTIME(n) hard on average for i.o.SIZEMKTPA
(2ϵn) Theorem 10.6

Equivalence Between Circuit Lower Bounds and Hardness

As shown in Chapter 7, hardness of MCSP under deterministic reductions im-
plies circuit lower bounds. It is natural to wonder whether the converse direction
holds. That is, does circuit lower bounds imply hardness of MCSP? Note that
it is known that if PSPACE ⊆ P/poly then MCSP is NP-hard under ZPP-Turing
reductions [ABK+06b, IKV18]; in this sense, NP-hardness of MCSP is open only
in the case when there is a circuit lower bound of PSPACE ̸⊆ P/poly.

While we are not able to fully answer the question, we make the partial
progress by considering an oracle version of MKTPA. For any oracle A satisfying
MKTPA ⊆ P/poly, we show that DSPACE(n) ̸⊆ i.o.SIZEA(2ϵn) for some ϵ > 0 if
and only if MKTPA is hard for DET under a certain class of reducibilities. (See
Theorem 10.7, and the Remark after Corollary 10.10.)

Non-Oracle-Independent Reductions

In Chapter 7, we showed that MCSPA ̸≤P
T MCSP for some oracle A unless

MCSP ∈ P. The oracle A is constructed by a diagonalization argument, so it is
a very artificial. A natural question is whether a similar behavior happens for
a natural oracle A. Here we show that DET reduces to MKTP (Theorem 10.5),
whereas even PARITY is not reducible to MKTPQBF (Corollary 10.10) under some
logspace-uniform AC0 reductions, assuming a plausible complexity assumption.
Thus the power of MKTPA oracles is not monotone increasing with respect to
even natural oracles A such as QBF oracles. It should be also noted that the
reduction from DET to MKTP under logspace-uniform AC0 reductions is not
oracle-independent because it does not generalize to a reduction to MKTPA for
A = QBF. (The part of a proof in which the reduction is not oracle-independent
is simply the plausible complexity assumption which we assume in order to de-
randomize the reduction from DET to MKTP.)

Preliminaries: Uniformity of Circuits

In this chapter, we will use various notions of uniformity of circuit families.
For example, the class AC0 (corresponding to families {Cn : n ∈ N} of unbounded
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fan-in AND, OR, and NOT gates having size nO(1) and depth O(1)) comes in
various flavors, depending on the complexity of computing the mapping 1n 7→ Cn.
When this is computable in polynomial time (or logarithmic space), then one
obtains P-uniform AC0 (logspace-uniform AC0, respectively). If no restriction at
all is imposed, then one obtains nonuniform AC0. As discussed in [Vol99], the
more restrictive notion of Dlogtime-uniform AC0 is frequently considered to be
the “right” notion of uniformity to use when discussing small complexity classes
such as AC0,AC0[p] and TC0. If these classes are mentioned with no explicit
mention of uniformity, then Dlogtime-uniformity is intended. For uniform NC1

the situation is somewhat more complicated, as discussed in [Vol99]; there is wide
agreement that the “correct” definition coincides with ATIME(O(log n)).

10.2 Hardness of MKTP under nonuniform many-one reductions

We modify the ZPP reduction of [AGvM+18, Section 3.1], which reduces the
rigid graph isomorphism problem to MKTP, showing that it can be replaced
by a nonuniform AC0 reduction. Here we say that a graph is rigid if it has no
nontrivial automorphisms.

Lemma 10.1. Let A be any oracle. There is a function f computable in
Dlogtime-uniform AC0 such that, for any two rigid graphs G0, G1 with n ver-
tices:

• Prr[f(G0, G1, r) ̸∈ MKTPA] > 1− 1

24n2 if G0 ̸≡ G1, and

• Prr[f(G0, G1, r) ∈ MKTPA] = 1 if G0 ≡ G1.

Proof. We present the proof for A = ∅; however, it is immediate that the proof
carries over for any oracle A. The function f is given by the reduction presented
in [AGvM+18, Section 3.1], showing that the Rigid Graph Isomorphism Problem
is in Promise-ZPPMKTP. This reduction takes graphs G0 and G1 as input, and
interprets the random coin flip sequence r as a tuple (w,Π) where Π is a sequence
of t random permutations π1, . . . , πt, and |w| = t.

We make use of a result of Hagerup [Hag91], showing that there is a func-
tion e computed by Dlogtime-uniform AC0 circuits,1 generating a nearly-uniform
distribution on permutations of n elements. More precisely, let Sn denote the
symmetric group on [n], where permutation σ is represented as a binary string of
the form σ(1) . . . σ(n). Then for every ℓ there is a k > ℓ and a Dlogtime-uniform

AC0-computable function e : {0, 1}nk → Sn∪{0n logn} such that, for every σ ∈ Sn

Pr
s∈{0,1}nk

[e(s) = σ] ≥ 1/n!− 2−nℓ

and Pr
s∈{0,1}nk [e(s) = 0n logn] ≤ 2−nℓ

.

Following the presentation in [AGvM+18], our AC0 reduction takes two graphs
G0 and G1, along with a random string r = ws1s2 . . . st where |w| = t = nO(1)

and each si has length nk, where k and ℓ (from the previous paragraph) are

chosen so that 2−t/2 + t/2n
ℓ
< 2−4n2

. Thus, for a randomly-chosen r, with

probability at least 1 − (t/2n
ℓ
), in AC0 we can compute the pair (w,Π) where

Π = π1, π2, . . . πt = e(s1), e(s2), . . . , e(st). Next we compute the string xr =

1Hagerup [Hag91] states this result in terms of CRCW PRAMs with a polynomial number of
processors, running for O(1) steps. It is known [BIS90] that this class coincides with Dlogtime-
uniform AC0.
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π1(Gw1), . . . , πt(Gwt). (With probability at most t/2n
ℓ
, some e(si) consists of a

block of zeros, in which case our AC0 function will set xr equal to a string of zeros,
indicating failure.) We observe this is computable in AC0: Graphs are encoded
as adjacency matrices. Thus, given a graph G and a permutation π, the bit (r, s)
of π(G) is the same as the bit (i, j) in G, where π(i) = r and π(j) = s. That is,
position (r, s) in the output is the ORi,j (taken over all relevant positions (i, j)
in the encoding of π) of [Gi,j AND [the encoding of π contains the strings (i, r)
and (j, s)]]. This latter condition can easily be checked in AC0.

The proof in [AGvM+18, Section 3.1] shows that, if G0 ≡ G1, then KT(xr) ≤
t(log n!) + t/2.

On the other hand, [AGvM+18] observes that if G0 ̸≡ G1 then the entropy
of the distribution on strings xr (assuming t uniformly random permutations
and a uniformly-randomly chosen string w) is at least t+ t log(n!), and hence the
probability that KT(xr) < (t+t log(n!))−t/2 is at most 2−t/2. In our setting, the
permutations are very nearly uniformly random (and it approaches the uniform
distribution as ℓ increases), and there is also the possibility that xr does not
consist of t permuted graphs, but instead is all zeros. This latter condition arises
with probability at most t/2n

ℓ
. Recalling that 2−t/2 + t/2n

ℓ
< 2−4n2

, we now
have the following:

• If G0 ≡ G1, then KT(xr) ≤ t(log n!) + t/2.

• If G0 ̸≡ G1, then with probability > 1−2−4n2
, we have KT(xr) ≥ t(log n!)+

t/2.

We are now ready to define the AC0-computable function f : f(G0, G1, r) =
(xr, θ), where θ = t(log n!) + t/2. We have established that f has the desired
properties. □

Corollary 10.2. Let A be any oracle. The rigid graph isomorphism problem is
reducible to MKTPA via a nonuniform ≤AC0

m reduction.

Proof. A standard counting argument shows that there is a value of r that can
be hardwired into the probabilistic reduction of Lemma 10.1 that works correctly
for all pairs (G0, G1) of n-vertex graphs. (Note that the length of the input is
2n2, and the error probability is at most 1/24n

2
.) □

Theorem 10.3. Let A be any oracle. DET is reducible to MKTPA via a nonuni-
form ≤NC0

m reduction.

Proof. Since DET is closed under ≤TC0

m reductions, it suffices to show that

MKTPA is hard under ≤AC0

m reductions, and then appeal to the “Gap” theorem

of [AAR98], to obtain hardness under ≤NC0

m reducibility. Torán [Tor04] shows
that DET is AC0-reducible to GI. In fact it is shown in the proofs of Theorem 5.3
and Corollary 5.4 of [Tor04] that DET is AC0-reducible to GI via a reduction that
produces only pairs of rigid graphs as output. Composing this reduction with the
nonuniform AC0 reduction given by Corollary 10.2 completes the argument. □

We mention that the reduction of Theorem 10.3 is “natural” in the sense of
[KC00]: A reduction is said to be natural if the size parameter of the reduction
depends only on the input length.

Since our reduction is efficient, an appeal to the circuit lower bounds of
Razborov and Smolensky [Raz87, Smo87] now yields the following corollary:
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Corollary 10.4. MKTPA is not in AC0[p] for any oracle A and any prime p.

In Chapter 12, we will strengthen Corollary 10.4 to an average-case lower
bound.

10.3 Equivalence between hardness of MKTP and circuit lower
bounds

The reader may wonder whether the nonuniform reduction can be made uni-
form under a suitable derandomization hypothesis. We do not know how to
obtain a uniform AC0-many-one reduction, but we can come close, if the oracle
A is not too complex. Recall the definition of ctt-reductions: B ≤C

ctt C if there
is a function f ∈ C with the property that f(x) is a list f(x) = (y1, . . . , ym), and
x ∈ B if and only if yj ∈ C for all j. Furthermore, we say that f is a natural

logspace-uniform ≤AC0

ctt -reduction to MKTP if each query yj has the same length
(and this length depends only on |x|), and furthermore each yj is of the form
(zj , θ) where the threshold θ depends only on |x|.

The following theorem can be viewed as a “partial converse” to results of
[MW17, AHK17], which say that problems in LTH ⊆ E require exponential size

circuits if MCSP or MKTP is hard for TC0 under Dlogtime-uniform ≤AC0

m reduc-
tions.2 That is, the earlier results show that very uniform hardness results imply
circuit lower bounds, whereas the next theorem shows that somewhat stronger
circuit lower bounds imply uniform hardness results (for a less-restrictive notion
of uniformity, but hardness for a larger class). Later on, in Theorem 10.7, we
present a related condition on reductions to MKTPA that is equivalent to circuit
lower bounds.

Theorem 10.5. Let A be any oracle. If there is some ϵ > 0 such that
DSPACE(n) ̸⊆ i.o.SIZEMKTPA

(2ϵn), then every language in DET reduces to

MKTPA via a natural logspace-uniform ≤AC0

ctt -reduction.

Proof. Let B ∈ DET. Thus there is an AC0 reduction g reducing B to the Rigid
Graph Isomorphism Problem [Tor04]. Consider the following family of statistical
tests Tx(r), indexed by strings x:

On input r:
Compute z = f(g(x), r), where f(G0, G1, r) is the function from
Lemma 10.1.
Accept iff (x ∈ B iff z ∈ MKTPA).

Since B ∈ DET ⊆ P, the test Tx(r) has a polynomial-size circuit with one MKTPA

oracle gate. (In fact, the statistical test is an NC2 circuit with one oracle gate.) If
x ∈ B, then Tx accepts every string r, whereas if x ̸∈ B, Tx accepts most strings
r.

Klivans and van Melkebeek [KvM02] (building on the work of Impagliazzo
and Wigderson [IW97]) show that, if DSPACE(n) requires exponential-size cir-
cuits from a given class C, then there is a hitting set generator computable in
logspace that hits all large sets computable by circuits from C that have size nk.
In particular, under the given assumption, there is a function h computable in
logspace such that h(0n) = (r1, r2, . . . , rnc) with the property that, for all strings
x of length n, there is an element of h(0n) that is accepted by Tx.

2Recall that LTH =
∪

k ΣkTIME(O(n)) is the linear-time analog of the polynomial time
hierarchy.
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Now consider the logspace-uniform AC0 oracle circuit family, where the circuit
for inputs of length n has the strings h(0n) = (r1, r2, . . . , rnc) hardwired into it.
On input x, the circuit computes the queries f(g(x), ri) for 1 ≤ i ≤ nc, and
accepts if, for all i, f(g(x), ri) ∈ MKTPA. Note that if x ̸∈ B, then one of the
ri is accepted by Tx, which means that f(g(x), ri) ̸∈ MKTPA; if x ∈ B, then
f(g(x), ri) ∈ MKTPA for all i. This establishes that the reduction is correct. □

It is also possible to prove a result analogous to Theorem 10.5, in terms of
Dlogtime-uniform AC0 reductions, in place of logspace-uniform AC0 reductions.
However, this requires a much stronger, average case circuit lower bound, for sets
in LTH (as opposed to DSPACE(n)):

Theorem 10.6. Let A be any oracle. There is a constant c such that, if there is
some ϵ > 0, b ≥ 1 and a set B in the d-th level of LTH such that, for all large n
and every oracle circuit C of size 2ϵn,

Pr
x∈{0,1}n

[B(x) = CMKTPA

(x)] < 1− 1/nb,

then every language in DET reduces to MKTPA via a natural Dlogtime-uniform
≤AC0

ctt -reduction of depth d+ c.

Proof. The idea is similar to the proof of Theorem 10.5. Let B ∈ DET. We
consider the same family of statistical tests Tx(r).

Viola [Vio05, Theorem 4.3] shows that, under the hypothesis of Theorem 10.6,
there is a pseudorandom generator G : {0, 1}O(logn) → {0, 1}nc

that is secure
against all statistical tests computable by circuits of size nc. In particular, as
in the proof of Theorem 10.5, we obtain a hitting set generator h. The depth
required by the construction in [Vio05] is d+O(1).

The rest of the proof proceeds precisely as in the proof of Theorem 10.5. □

We remark that the hardness assumption of Theorem 10.5 (DSPACE(n) ̸⊆
i.o.SIZEMKTPA

(2ϵn)) can probably be weakened (saying that DSPACE(n) requires
large circuits of some restricted sort), since the class of statistical tests that need
to be fooled consists only of NC2 circuits with one oracle gate. On the other hand,
Theorem 10.7 indicates that the hardness assumption that we use is equivalent
to the existence of uniform reductions, for certain oracles A – so it is not clear
that there is much to be gained by searching for a weaker hardness assumption.

Theorem 10.5 deals with the oracle problem MKTPA, but the most interesting
case is the case where A = ∅, both because the hypothesis seems most plausible
in that case, and because MKTP has been studied in connection with MCSP,
which has been studied more than the associated oracle circuit problem MCSPA.
The hypothesis is false when A = QBF, since the KTA measure is essentially the
same as the KS measure studied in [ABK+06b], where it is shown that PSPACE =
ZPPRKS , and thus PSPACE has polynomial-size MKTPQBF-circuits. Strikingly, it
is of interest that not only the hypothesis is false in this case – but the conclusion
is false as well. (See Corollary 10.10.)

For certain oracles (and we discuss below how broad this class of oracles is),
the existence of uniform reductions is equivalent to certain circuit lower bounds.

Theorem 10.7. Let MKTPA ∈ PA/poly. Then the following are equivalent:

• PARITY reduces to MKTPA via a natural logspace-uniform ≤AC0

ctt -reduction.
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• For some ϵ > 0, DSPACE(n) ̸⊆ i.o.SIZEA(2ϵn).

• For some ϵ > 0, DSPACE(n) ̸⊆ i.o.SIZEMKTPA
(2ϵn).

• DET reduces to MKTPA via a natural logspace-uniform ≤AC0

ctt -reduction.

Furthermore, if PARITY reduces to MCSPA via a natural logspace-uniform ≤AC0

ctt -
reduction, then all of the above hold.

Proof. First, we show that the first condition implies the second.
Let {Cn : n ∈ N} be a logspace-uniform family of oracle circuits computing

PARITY, consisting of AC0 circuitry feeding into oracle gates, which in turn are
connected to an AND gate as the output gate. Let the oracle gates in Cn be
g1, g2, . . . , gnc . On any input string x, let the value fed into gate gi on input x be
(qi(x), θ), and recall that, since the reduction is natural, the threshold θ depends
only on n, and thus it is a constant in Cn.

At this point, it is useful to recall a lemma from [AHK17] (distilled from
[MW17]) that describes how the complexity depends on θ:

Lemma 10.8. [AHK17, Claim 3.11] For any language A and any 0 ≤ v ≤ m,
MCSPA on inputs f ∈ {0, 1}m, with the size parameter fixed to θ, is solved by a
DNF formula of size m · 2O(θ2 log θ).

Thus, by Lemma 10.8, each MKTPQBF oracle gate can be replaced by a DNF
formula of size at most nO(1)2O(θ2 log θ). Inserting these DNF formulae into Cn

(in place of each oracle gate) results in a circuit of size nO(1)2O(θ2 log θ) computing
PARITY. Let the depth of this circuit be some constant d. It follows from [H̊as86]

that nO(1)2O(θ2 log θ) ≥ 2Ω(n1/(d−1)), and hence that θ ≥ n1/4d.
Note that all of the oracle gates gi must output 1 on input 0n−11, and one of

the oracle gates gi0 must output 0 on input 0n. Thus we have KTA(qi0(0
n)) ≥

θ ≥ n1/4d. It follows from [ABK+06b, Theorem 11] that the function with
truth table qi0(0

n) has no circuit (with oracle gates for A) of size less than
(KTA(qi0(0

n)))1/3 ≥ θ1/3 ≥ n1/12d.
Note that, in order to compute the j-th bit of some query qi(0

n), it suffices
to evaluate a logspace-uniform AC0 circuit where all of the input bits are 0.
Since this computation can be done in logspace on input (0n1i0j), note that the
language H = {(n, i, j) : the j-th bit of query qi(0

n) is 1} is in linear space. Let
m = |(n, i, j)|, and let s(m) be the size of the smallest circuit Dm computing H
for inputs of length m. Hardwire the bits for n and also set the bits for i to i0.
The resulting circuit on |j| < m bits computes the function given by qi0(0

n), and
it was observed above that this circuit has size at least n1/20d ≥ 2m/20d.

This establishes the first implication. (Note also that a similar argument
yields the same conclusion from the assumption that PARITY reduces to MCSPA

via a natural logspace-uniform ≤AC0

ctt -reduction.)
The assumption that MKTPA ∈ PA/poly suffices to show that the second

condition implies the third. More formally, we’ll consider the contrapositive.
Assume that DSPACE(n) ⊆ i.o.SIZEMKTPA

(2ϵn) for every ϵ > 0. An oracle gate
for MKTPA on inputs of size m can be replaced by a circuit (with oracle gates for
A) of sizemc for some constant c. Carrying out this substitution in a circuit (with
oracle gates for MKTPA) of size 2ϵn yields a circuit of size at most 2ϵn+2ϵn(2ϵn)c.

Let δ > 0. Then we can pick ϵ small enough so that 2ϵn + 2ϵn(2ϵn)c < 2δn,
thereby establishing that DSPACE(n) ⊆ i.o.SIZEA(2δn) for every δ > 0. This
establishes the second implication.
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Theorem 10.5 establishes that the third condition implies the fourth. The
fourth condition obviously implies the first. □

To the best of our knowledge, this is the first theorem that has given conditions
where the existence of a reduction to MCSPA implies the existence of a reduction
to MKTPA. We know of no instance where the implication goes in the opposite
direction.

The logspace uniformity condition in Theorem 10.7 can be replaced by other
less-restrictive uniformity conditions. We mention the following example:

Corollary 10.9. Let MKTPA ∈ PA/poly. Then the following are equivalent:

• PARITY reduces to MKTPA via a natural P-uniform ≤AC0

ctt -reduction.

• For some ϵ > 0, E ̸⊆ i.o.SIZEA(2ϵn).

• For some ϵ > 0, E ̸⊆ i.o.SIZEMKTPA
(2ϵn).

• DET reduces to MKTPA via a natural P-uniform ≤AC0

ctt -reduction.

Furthermore, if PARITY reduces to MCSPA via a natural P-uniform ≤AC0

ctt -
reduction, then all of the above hold.

At this point, we should consider the class of oracles for which Theorem 10.7
applies. That is, what is the set of oracles A for which MKTPA ∈ PA/poly?
First, we observe that this condition holds for any PSPACE-complete set, which
yields the following corollary:

Corollary 10.10. PARITY does not reduce to either MKTPQBF or MCSPQBF

via a natural logspace-uniform ≤AC0

ctt -reduction.

Remark. As an instructive example of an oracle A for which MKTPA ∈ PA/poly,
consider the set A = {(M,x, 1m) : M is an alternating Turing machine that
accepts x, and runs in time at most m and makes at most logm alternations}. A
is complete for the class ATIME− ALT(nO(1), O(log n)) under ≤AC0

m reductions. It
is easy to see that MKTPA ∈ ATIME− ALT(nO(1), O(log n)), and thus MKTPA ∈
PA. (Other examples can easily be created in this way, using an even smaller
number of alternations.) Note that, for this oracle A, it seems plausible that all
four conditions in Theorem 10.7 hold.

Nonetheless, we do grant that this does seem to be a strong condition to
place upon the oracle A – and it has even stronger consequences than are listed
in Theorem 10.7. For instance, note that the proof that the first condition in
Theorem 10.7 implies the second relies only on the fact that PARITY requires
large AC0 circuits. Thus, an identical proof shows that these four conditions are
also equivalent to the condition that PARITY is reducible to MKTPA via a natural
ctt-reduction where the queries are computed by logspace-uniform AC0[7] circuits.
(Or you can substitute any other problem and class of mod circuits, where an
exponential lower bound is known because of [Raz87, Smo87].) In fact, as in the
proof of [AHK17, Lemma 3.10] we can apply random restrictions in a logspace-
uniform way (as described in [Agr11]) and obtain a reduction from PARITY to
MKTPA where the queries are computed by logspace-uniform NC0 circuits! For
example, here is an argument showing that MAJORITY is reducible to MKTPA

(for oracle A satisfying the hypotheses of Theorem 10.7) via natural ctt-reductions
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computed by logspace-uniform AC0[3] circuits iff PARITY is reducible to MKTPA

via reductions where the queries are computed by logspace-uniform NC0 circuits:
Assume first that MAJORITY is reducible to MKTPA via natural ctt-

reductions computed by logspace-uniform AC0[3] circuits. The proof that the
first condition in Theorem 10.7 implies the second also shows that the second
condition holds if MAJORITY is reducible to MKTPA via natural ctt-reductions
computed by logspace-uniform AC0[3] circuits. (The only things that need to be
changed, are (1) every occurrence of “PARITY” should be changed toMAJORITY”
(2) the phrase “consisting of AC0 circuitry feeding into oracle gates” should be
changed to “consisting of AC0[3] circuitry feeding into oracle gates”, and (3) “Note
that all of the oracle gates gi must output 1 on input 0n−11” should be replaced
by “Note that all of the oracle gates gi must output 1 on input 1n”.) Thus,
under our assumption, all four of the conditions in Theorem 10.7 hold. In partic-
ular, PARITY reduces to MKTPA via a natural logspace-uniform ≤AC0

ctt -reduction.
The AC0-computable function f that computes the list of oracle queries has the
property that there is a logspace-computable restriction ρ that leaves nϵ input
variables unset (for some ϵ > 0) with the property that the function f |ρ on nϵ

variables is NC0-computable. (See, e.g., [AAR98, Lemma 7] and see [Agr11] to
see how ρ can be computed in logspace.) This yields the claimed reduction from
PARITY to MKTPA where the queries are NC0-computable.

Conversely, assume now that PARITY is reducible to MKTPA via a natural
≤AC0

ctt -reduction where the queries are computed by logspace-uniform NC0 circuits.
This is a stronger condition than the first condition on Theorem 10.7, and hence
all four of these conditions hold. In particular, DET reduces to MKTPA via ≤AC0

ctt

reductions. The claim now follows, since MAJORITY ∈ DET.
We find these implications to be surprising. The “gap” phenomenon that was

described in [AAR98] (showing that completeness under one class of reductions
is equivalent to completeness under a more restrictive class of reductions) had
not previously been observed to apply to AC0[p] reducibility.

We want to highlight some contrasts between Theorem 10.5 and Corol-
lary 10.10. MKTPQBF is hard for PSPACE under ZPP-Turing reductions
[ABK+06b], whereas MKTP is in NP. Thus MKTPQBF appears to be much
harder than MKTP. Yet, Theorem 10.5 shows that, under a plausible hypoth-
esis, the “easier” set MKTP is hard for DET, whereas (by Corollary 10.10) the
“harder” problem MKTPQBF cannot even be used as an oracle for PARITY under
this same reducibility. In other words, the (conditional) natural logspace-uniform

≤AC0

ctt reductions from problems in DET to MKTP given in Theorem 10.5 are not
“oracle-independent” in the sense of Chapter 7.

Prior to this work, it appears that there was no evidence for any variant of
MCSP or MKTP being hard for a reasonable complexity class under ≤L

T reduc-
tions. All prior reductions (such as those in [AD17, ABK+06b, AGvM+18]) had
been probabilistic and/or nonuniform, or (even under derandomization hypothe-
ses) seemed difficult to implement in NC. But Theorem 10.7 shows that it is quite
likely that MKTP is hard for DET under ≤L

T reductions (and even under much
more restrictive reductions). Previously, we had viewed the results of [AHK17]
as providing evidence that none of these variants would be hard for P under, say,
logspace reducibility. Now, we are no longer sure what to expect.
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10.4 On the importance of uniformity

Surprisingly, the notion of uniformity appears to be central. In particular,
the reader is probably wondering whether the logspace-uniformity condition in
Theorem 10.5 (relating hardness of MKTPA to worst-case circuit lower bounds)
can be improved to Dlogtime-uniformity. As a partial answer to this question,
we note that Viola [Vio05] shows that there is no black-box construction of a
pseudorandom generator computable in AC0 that is based on worst-case circuit
lower bounds. In this section, in Theorem 10.12, we show that, when consid-
ering hardness of MKTP and MCSP, small details about the complexity of the
reduction (including the precise depth, and the notion of uniformity) cannot be
ignored.

First, we recall Corollary 3.7 of [AHK17], which states that MKTPQBF is not
hard for P under ≤L

m reductions unless PSPACE = EXP. It turns out that this
holds even for logspace-Turing reductions.

Theorem 10.11. MKTPQBF is not hard for P (or NP) under ≤L
T reductions

unless PSPACE = EXP (PSPACE = NEXP, respectively). MKTPQBF is not hard
for PSPACE under ≤L

T reductions. The same holds for MCSPQBF.

We include this proof here, both because it improves a corollary in [AHK17],
and because the proof can be viewed as a warm-up for the proof of Theorem 10.12.

Proof. First, note that ≤L
T and ≤L

tt reducibilities coincide [LL76]. Thus assume
that MKTPQBF is hard for P under ≤L

tt reductions; we will show that PSPACE =
EXP. (The proof for MCSPQBF is identical, and the variant concerning hardness
for NP is analogous.)

The proof idea is as follows: Assume that P ⊆ LMKTPQBF

tt . (Here, Ltt means a

≤L
tt reduction.) By standard padding, we obtain EXP ⊆ PSPACEMKTPQBF

tt . Any
query of a PSPACEtt machine has low KTQBF complexity. Moreover, one can
check whether a string has low KTQBF complexity in PSPACE. Combining these

two facts, we obtain EXP ⊆ PSPACEMKTPQBF

tt = PSPACE. A formal proof follows.

Let B ∈ EXP. Let B′ = {x102|x| : x ∈ B} and note that B′ ∈ P. Consider the
≤L

tt reduction that reduces B′ to MKTPA. On any input string y, let the i-th

oracle query be qi(y). The language {(i, j, x) : the j-th bit of qi(x10
2|x|) is 1} is

in PSPACE and thus is in PQBF. It follows that qi(x10
2|x|) is of the form (yi, θi),

where KTQBF(yi) = |x, i, j|O(1). Thus, to evaluate the oracle query qi on input

x102
|x|
, this PSPACE computation (on input x) suffices: Compute the bits of θi;

this can be done in PSPACE, since the number of bits in θi is at most |x|O(1),
and each bit is computable in PSPACE. If θi > |x, i, j|c (for the appropriate value
of c), then return “1” since the query yi certainly has KTA complexity less than
this. Otherwise, try all descriptions d of length at most θi, to determine whether
there is some such d for which UQBF(d, j) is equal to the j-th bit of qi (allowing
at most |x, i, j|c steps for the computation of U).

The rest of the ≤L
tt reduction on input x102

|x|
can be computed in space

|x|O(1), by re-computing the values of the oracle queries, as required.
The unconditional result that MKTPQBF is not hard for PSPACE under ≤L

T

reductions follows along the same lines, choosing B ∈ EXPSPACE, and leading to
the contradiction EXPSPACE = PSPACE. □

A similar approach yields the following result:
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Theorem 10.12. For each d ≥ 0, if Σp
d+2 ⊆ PA/poly and PSPACE ̸⊆ PHA,

then neither MKTPA nor MCSPA is hard for NC1 under Dlogtime-uniform ≤AC0

tt

reductions of depth d.

Proof. We present the proof for MKTPA; the proof for MCSPA is identical.
Assume that MKTPA is hard for NC1 under Dlogtime-uniform ≤AC0

tt reduc-
tions of depth d; we will show that PSPACE ⊆ PHA.

By the closure properties of PH, it will suffice to show that ATIME(n) ⊆ PHA.

Let B ∈ ATIME(n). Let B′ = {x102|x| : x ∈ B} and note that B′ ∈ NC1.
Consider the oracle family (Cm) that reduces B′ to MKTPA. Let the oracle gates
in C2n+n+1 be g1, g2, . . . , gℓ. On any input string y, let the query that is fed into

gate gi be qi(y). The language {(2|x| + |x|+ 1, i, j, x) : the j-th bit of qi(x10
2|x|)

is 1} is in Σp
d+2 and thus is in PA/poly. It follows that qi(x10

2|x|) is of the form

(yi, θi), where KTA(yi) = |x, i, j|O(1). Thus, to evaluate oracle gate gi on input

x102
|x|
, this PHA computation (on input x) suffices: Compute the bits of θi; this

can be done in PH, since the number of bits in θi is at most |x|O(1), and each bit
is computable in PH. If θi > |x, i, j|c (for the appropriate value of c), then return
“1” since the query yi certainly has KTA complexity less than this. Otherwise,
guess a description d of length at most θi, and universally check (for each j) that
UA(d, j) is equal to the j-th bit of qi (allowing at most |x, i, j|c steps for the
computation of U).

To evaluate the rest of the circuit, note that the unbounded fan-in AND and
OR gates that sit just above the oracle gates can also be evaluated in PHA (at
one level higher in the hierarchy than is required to evaluate the oracle gates).
Repeating this process through the remaining O(1) levels of the circuit yields the
desired PHA algorithm for B. □

Remark. The significance of Theorem 10.12 is best viewed by combining it with
Theorem 10.5. If we choose A to be any PP-complete set, or if we choose A to
be one of the sets discussed in the Remark after Corollary 10.10, then for all d
we have Σp

d+2 ⊆ PA and both of the hypotheses

• PSPACE ̸⊆ PHA, and

• DSPACE(n) ̸⊆ i.o.SIZEMKTPA
(2ϵn)

are plausible. Thus, for such oracles A, under a plausible hypothesis, we have
both MKTPA is not hard for NC1 under Dlogtime-uniform ≤AC0

tt reductions, and

MKTPA is hard for DET under logspace-uniform ≤AC0

ctt reductions. Thus different
notions of uniformity are a key part of the puzzle, when trying to understand the
hardness of problems such as MKTP and MCSP.

As another example, choose A to be any set that is complete for Σp
d+2, and

assume PSPACE ̸= PH. Then under the strong-but-plausible hypothesis that
there is a set B ∈ Σd′TIME(n) that has large symmetric difference with any set

in SIZEMKTPA
(2ϵn), we have Σp

d+2 ⊆ PA and PSPACE ̸⊆ PHA = PH, thereby
satisfying the hypotheses of both Theorem 10.12 and Theorem 10.6. Thus, for
this choice of A, under a plausible hypothesis, we have both MKTPA is not hard
for NC1 under Dlogtime-uniform ≤AC0

tt reductions of depth d, and MKTPA is

hard for DET under Dlogtime-uniform ≤AC0

ctt reductions of depth d′ + c (where c
is the constant from Theorem 10.6).

In both of these examples, the key ingredient seems to be that, in order for
AC0 to be able to reduce problems to MCSPA or MKTPA, it is essential to be

143



able to formulate useful queries, by either having sufficient depth, or by having
sufficient power in the uniformity condition.

We are even able to extend our approach in some cases, to apply to AC0-Turing
reducibility.

Theorem 10.13. Let NPA ⊆ PA/poly. If PSPACE ̸⊆ PHA, then neither MKTPA

nor MCSPA is hard for NC1 under Dlogtime-uniform ≤AC0

T reductions.

Proof. The proof is similar to that of Theorem 10.12. Assume that MKTPA

is hard for NC1 under Dlogtime-uniform ≤AC0

T reductions; we will show that
ATIME(n) ⊆ PHA by presenting a PHA algorithm to evaluate the gates in the

≤AC0

T reduction of the NC1 language B′ from the proof of Theorem 10.12.

Note that in a circuit computing an ≤AC0

T reduction, there is an “initial” layer
of oracle gates, whose queries are computed nonadaptively, while all oracle gates
at deeper levels have queries whose values depend upon oracle gates at earlier
levels in the circuit. Note also that, under the given assumption NPA ⊆ PA/poly,
we can conclude that PHA ⊆ PA/poly.

The proof now proceeds along precisely the same lines as the proof of Theo-
rem 10.12, which shows that a PHA computation can compute the value of each
wire that feeds into the “initial” layer of oracle gates. Similarly, as in the proof
of Theorem 10.12, all of the AND, OR, and NOT gates at higher levels can be
computed in PHA, given that the gates at lower levels can be evaluated in PHA.
Thus, we need only show how to deal with oracle gates at deeper levels.

Consider any such oracle gate g. On any input string y, let the query that
is fed into gate g when evaluating the circuit on input y be qg(y). The language

{(2|x|+ |x|+1, g, j, x) : the j-th bit of qg(x10
2|x|) is 1} is in PHA and thus (by our

new assumption) is in PA/poly. It follows that qg(x10
2|x|) is of the form (y, θ),

where KTA(y) = |x, g, j|O(1). Thus, to evaluate oracle gate g on input x102
|x|
,

this PHA computation (on input x) suffices: Compute the bits of θ; this can be
done in PHA, since the number of bits in θi is at most |x|O(1), and each bit is
computable in PH. If θi > |x, g, j|c (for the appropriate value of c), then return
“1” since the query y certainly has KTA complexity less than this. Otherwise,
guess a description d of length at most θ, and universally check (for each j) that
UA(d, j) is equal to the j-th bit of qg (allowing at most |x, i, j|c steps for the
computation of U). □

In order to compare our results with those of [AHK17, MW17], we also state
a related theorem, whose proof is similar:

Theorem 10.14. Let NPA ⊆ PA/poly. If CH ̸⊆ PHA, then neither MKTPA nor

MCSPA is hard for TC0 under Dlogtime-uniform ≤AC0

T reductions.

Proof. The proof is nearly identical to that of Theorem 10.13.
Under the assumption that MKTPA is hard for TC0 under Dlogtime-uniform

≤AC0

T reductions; it suffices to show that the linear-time counting hierarchy (see
[AKR+01] for a definition) is contained in PHA by presenting a PHA algorithm
for a set B in the linear-time counting hierarchy. The language B′ is now in
TC0, instead of merely being in NC1. The rest of the proof proceeds virtually
unchanged. (One can modify the statement of Theorem 10.12 in a similar way,
but we do not include this modification here.) □
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A consequence of Theorem 10.13 and Theorem 10.14 is the following corollary,
which has the same flavor of results of the form “MCSP is hard for class C implies
a likely but hard-to-prove consequence” as presented by Murray and Williams
[MW17], but moving beyond the ≤AC0

m reductions considered by them, to the

more general ≤AC0

T reductions.

Corollary 10.15. If either of MKTP or MCSP is hard for NC1 (or TC0) under

Dlogtime-uniform ≤AC0

T reductions, then NP ̸= NC (NP ̸= TC0, respectively).

Proof. This follows from Theorem 10.13 and Theorem 10.14 when A = ∅. If
NP = NC, then NP ⊆ P/poly, and PH = NC ̸= PSPACE. Thus neither MKTP

nor MCSP is hard for NC1 under Dlogtime-uniform ≤AC0

T reductions. Also, if
NP = TC0, then NP ⊆ P/poly, and PH = TC0 ̸= CH [All99]. Thus neither

MKTP nor MCSP is hard for TC0 under Dlogtime-uniform ≤AC0

T reductions. □

Corollary 10.15 should be compared to the earlier work of [MW17, AHK17].
Murray and Williams presented nonuniform lower bounds that would follow from
MCSP or MKTP being hard for NP under Dlogtime-uniform ≤AC0

m reductions. In
[AHK17] even stronger nonuniform consequences were shown to follow from the
weaker assumption of hardness for TC0. (See Table 10.2.) In Theorem 10.13, we
present a weaker uniform lower bound that follows from the weaker assumption
that MCSP or MKTP is hard for TC0 under amore powerful notion of reducibility.

Table 10.2: Consequences of hardness for MCSP and MKTP: If MCSP or MKTP
is C-hard under R, then condition S holds. The last column shows where the
result is found.

class C reductions R statement S Reference

TC0 Dlogtime-uniform ≤AC0

m NP ̸⊆ P/poly and LTH ̸⊆ i.o.SIZE[2ϵn] [AHK17]

PARITY L-uniform ≤AC0

ctt MKTP ̸∈ P/poly or
DSPACE(n) ̸⊆ i.o.SIZE[2ϵn] Theorem 10.7

TC0 Dlogtime-uniform ≤AC0

T NP ̸⊆ P/poly or CH = PH
(hence NP ̸= TC0) Corollary 10.15

NC1 Dlogtime-uniform ≤AC0

T NP ̸⊆ P/poly or PSPACE = PH
(hence NP ̸= NC) Corollary 10.15

NP Dlogtime-uniform ≤AC0

T NP ̸⊆ P/poly or NEXP = MA
(hence NP ̸= MA ∩ P/poly) Corollary 10.16

NP L-uniform ≤AC0

T NP ̸⊆ P/poly or NEXP = PSPACE Corollary 10.19

NP P-uniform ≤AC0

T NP ̸⊆ P/poly or NEXP = EXP Corollary 10.19

We also present another result in this vein, about NP-completeness. Prior
work [MW17, AHK17] had obtained stronger consequences from the stronger

assumption that MCSP is NP-complete under Dlogtime-uniform ≤AC0

m reductions.

Corollary 10.16. If either of MKTP or MCSP is hard for NP under Dlogtime-
uniform ≤AC0

T reductions, then

NP ̸= MA ∩ P/poly.

Proof. If you modify the proof of Theorem 10.13, replacing NC1 by NP and re-
placing PSPACE by NEXP, you obtain that, if NP ⊆ P/poly, then NEXP ̸= PH im-

plies that neither MKTP nor MCSP is hard for NP under Dlogtime-uniform ≤AC0

T

reductions. (That is, if we assume that MKTP is hard for NP under Dlogtime-

uniform ≤AC0

T reductions, then the argument from Theorem 10.13 shows that
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NEXP ⊆ PH, by presenting a PH algorithm to evaluate the gates in an AC0 oracle
circuit reducing an NP language B′ to MKTP.)

Or, restating this using the same hypothesis as in the statement of the corol-
lary, if MKTP or MCSP is hard for NP under Dlogtime-uniform ≤AC0

T , then either
NP ̸⊆ P/poly or NEXP = PH. Since (NP ⊆ P/poly and NEXP = PH) is equiva-
lent to NEXP ⊆ P/poly, and since NEXP ⊆ P/poly is equivalent to NEXP = MA
[IKW02], we obtain that NP-hardness of MCSP or MKTP implies NP ̸⊆ P/poly
or NEXP = MA. (Murray and Williams obtain essentially this same consequence

under the stronger assumption that MCSP is complete under ≤AC0

m reductions,
but are also able to show that NEXP ̸⊆ P/poly in this case.)

In either case, we obtain the consequence NP ̸= MA ∩ P/poly. □

We close this section with another variant of Theorem 10.13, proved via the
same technique:

Theorem 10.17. Let NPA ⊆ PA/poly. If NEXP ̸⊆ PSPACEA (or NEXP ̸⊆
EXPA), then neither MKTPA nor MCSPA is hard for NP under logspace-uniform

≤AC0

T reductions (P-uniform ≤AC0

T reductions, respectively).

Corollary 10.18. MKTPQBF is not hard for NP under logspace-uniform ≤AC0

T

reductions (P-uniform ≤AC0

T reductions) unless PSPACE = NEXP (EXP = NEXP,
respectively). The same holds for MCSPQBF.

Although the following corollary discusses ≤AC0

T reductions, it also says
something about ≤L

T reducibility. This is because, assuming DSPACE(n) ̸⊆
i.o.SIZEMKTPA

(2ϵn), any ≤L
T reduction to MKTP can be simulated by a logspace-

uniform ≤AC0

T reduction to MKTP. (To see this, note that, by Theorem 10.5,
MKTP is hard for DET under this class of reductions, and hence each of the
logspace-computable (nonadaptive) queries can be computed using oracle gates
for MKTP, and similarly the logspace computation that uses the queries can also
be simulated using MKTP. Similar observations arise in [AO96].)

Corollary 10.19. If either of MKTP or MCSP is hard for NP under logspace-
uniform ≤AC0

T reductions (P-uniform ≤AC0

T reductions), then NP ̸⊆ P/poly or
NEXP = PSPACE (NEXP = EXP, respectively).
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Chapter 11

Natural NP-Intermediate Problems

A problem in NP is called NP-intermediate if it is neither solvable in P nor
NP-complete. It has been known since the work of Ladner [Lad75] that some NP-
intermediate problem exists under the weakest assumption that P ̸= NP. How-
ever, no “natural” NP-intermediate problem was known under similar complexity-
theoretic assumptions. The NP-intermediate problem constructed by Ladner is
very artificial because it is constructed by a diagonalization argument.

Problems such as factoring and Graph Isomorphism are sometimes put for-
ward as candidates for NP-intermediate problems. Indeed, these problems are
in NP ∩ coAM [Bab85], and hence these problems cannot be NP-complete unless
NP ⊆ coAM. On the other hand, there is no strong complexity-theoretic argu-
ment explaining why these problems should not lie in P. (It should be noted that
the recent breakthrough result of Babai [Bab16] showed a quasi-polynomial-time
algorithm for Graph Isomorphism.)

In this chapter, we show the first natural NP-intermediate problems under
very weak complexity-theoretic assumptions. We show that if NP ̸⊆ P/poly then
approximating the size of the maximum clique in a graph within a factor of
n1−o(1) is NP-intermediate. We also show that GapϵMCSP is NP-intermediate
for ϵ(n) = o(1) under the existence of auxiliary-input one-way functions.

11.1 GapMCSP is NP-Intermediate

In this section, we show that GapϵMCSP is NP-intermediate when ϵ(n) = o(1)
and an auxiliary-input one-way function exists. We first observe that GapϵMCSP
is equivalent to the following optimization problem. (See also [Gol06] for similar
comments.)

Fact 11.1. GapϵMCSP is polynomial-time Turing equivalent to the following
approximation problem: Given a truth table T of length 2n, the task is to output
a value f(T ) ∈ N such that

size(T ) ≤ f(T ) ≤ 2(1−ϵ(|T |))·n · size(T ).

Note that GapϵMCSP becomes easier when ϵ becomes smaller. If ϵ(n) = o(1),

then it is easy to see that GapϵMCSP can be computed in DTIME(2n
o(1)

). Here
we show that a much faster algorithm can be obtained when MCSP reduces to
GapϵMCSP via a polynomial-time reduction.

Theorem 11.2. For any efficiently computable nonincreasing ϵ(n) = o(1), if
MCSP ∈ PGapϵMCSP then MCSP ∈ P.
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The idea is that the GapϵMCSP is “strongly downward self-reducible.” We
will show that any GapϵMCSP instance of length n is reducible to n1−ϵ MCSP
instances of length nϵ. To this end, we will exploit the following simple fact.

Lemma 11.3. For a function f : {0, 1}n → {0, 1}, a string x ∈ {0, 1}k and
k ∈ N, let fx : {0, 1}n−k → {0, 1} be a function defined as fx(y) := f(x, y). Then,
the following holds:

max
x∈{0,1}k

size(fx) ≤ size(f) ≤ 2k ·
(

max
x∈{0,1}k

size(fx) + 3

)
,

(In other words, maxx∈{0,1}k size(fx) gives an approximation of size(f) within a

factor of 2k.)

Proof. We first claim that maxx∈{0,1}k size(fx) ≤ size(f). Indeed, let C be a
minimum circuit that computes f and let x be an arbitrary string of length k. For
each x ∈ {0, 1}k, define a circuit Cx as Cx(y) := C(x, y) on input y ∈ {0, 1}n−k.
Then, since Cx computes fx and the size of Cx is at most that of C, we have
size(fx) ≤ size(f).

Next, we claim that size(f) ≤ 2k ·
(
maxx∈{0,1}k size(fx) +O(1)

)
. For any

x ∈ {0, 1}k, let Cx be a minimum circuit that computes fx. We build a circuit that
computes f =: fϵ recursively as follows: fz(x, y) = (¬x1 ∧ fz0(x2, . . . , xk, y)) ∨
(x1 ∧ fz1(x2, . . . , xk, y)) for any string z of length less than k, and fx(y) = Cx(y)
for any x ∈ {0, 1}k. Since size(fz) ≤ size(fz0) + size(fz1) + 3 we obtain

size(f) ≤
∑

x∈{0,1}k
Cx(y) + 3 · (2k − 1)

< 2k ·
(

max
x∈{0,1}k

size(fx) + 3

)
.

□

Proof of Theorem 11.2. Let M be a polynomial-time oracle machine which re-
duces MCSP to GapϵMCSP. Let |T |c be an upper bound for the running time of
M , given a truth table T , and let |T | = 2n.

We recursively compute the circuit complexity of T by the following proce-
dure: Run M on input T . If M makes a query S to the GapϵMCSP oracle,
then divide S into consecutive substrings S1, · · · , S2k of length |S| ·2−k such that
S1 · S2 · · ·S2k = S (where k is a parameter, chosen later, that depends on |S|),
and compute the circuit complexity of each Si recursively for each i ∈ [2k]. Then

continue the simulation of M , using the value 2k ·
(
maxi∈[2k] size(Si) + 3

)
as an

approximation to size(S).
We claim that the procedure above gives the correct answer. It suffices to

claim that the simulation of M is correct in the sense that every query of M is
answered with a value that satisfies the approximation criteria of GapϵMCSP.
Suppose that M makes a query S. By the assumption on the running time of M ,
we have |S| ≤ |T |c = 2nc. By Lemma 11.3, we have

size(S) ≤ 2k ·
(
max
i∈[2k]

size(Si) + 3

)
≤ 2k · (size(S) + 3) .

In particular, the estimated value satisfies the promise of GapϵMCSP if 2k ·
(size(S) + 3) ≤ |S|1−ϵ(|S|)·size(S). Since we may assume without loss of generality
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that size(S) ≥ 3, it suffices to make sure that 2k+1 · size(S) ≤ |S|1−ϵ(|S|) · size(S).
Let |S| = 2m. Then, in order to satisfy k + 1 ≤ (1 − ϵ(|S|)) · m, let us define
k := (1 − ϵ(|S|)) · m − 1. For this particular choice of k, the estimated value

2k ·
(
maxi∈[2k] size(Si) + 3

)
of the circuit complexity of S satisfies the promise

of GapϵMCSP, which implies that the reduction M computes the correct answer
for MCSP.

Now we analyze the time complexity of the algorithm. Each recursive step
makes at most 22cn many recursive calls, because there are potentially 2cn many
queries S of M , each of which may produce at most 2k ≤ 2cn recursive calls. The
length of each truth table Si that arises in one of the recursive calls is |Si| =
|S| · 2−k = 2m−k = 2ϵ(|S|)·m+1. We claim that |Si| ≤ 21+(n/2) holds for sufficiently
large n. Let us take n to be large enough so that ϵ(2n/2) ≤ 1/2c. If m ≥ n/2,

then |Si| ≤ 2ϵ(2
m)·m+1 ≤ 2ϵ(2

n/2)·cn+1 ≤ 21+(n/2). Otherwise, since m ≤ n/2
and ϵ(|S|) < 1, we obtain |Si| ≤ 2ϵ(|S|)·m+1 ≤ 21+(n/2). Therefore, on inputs of
length 2n, each recursive call produces instances of length at most 21+(n/2). The
overall time complexity can be estimated as 2c

′n ·2c′n/2 ·2c′n/4 · · · = 22c
′n for some

constant c′ (say, c′ = 3c), which is a polynomial in the input length 2n. □

Remark. If we drop the assumption that ϵ(n) be computable, then the proof of
Theorem 11.2 still shows that if MCSP ∈ PGapϵMCSP/poly then MCSP ∈ P/poly.

Corollary 11.4. Let ϵ(n) = o(1). If GapϵMCSP ̸∈ P/poly then GapϵMCSP

is not hard for NP (or even for MCSP) under ≤P/poly
T reductions, and is thus

NP-intermediate.

Proof. This is immediate from the preceding remark. If MCSP ∈ PGapϵMCSP/poly
then MCSP ∈ P/poly, which in turn implies that GapϵMCSP ∈ P/poly. □

In what follows, we show that the assumption of Corollary 11.4 is true under
very modest cryptographic assumptions. Specifically, we assume the existence
of auxiliary-input one-way functions secure against polynomial-size circuits. (We
note that, in Chapter 3, the security of auxiliary-input one-way function is defined
with respect to randomized polynomial-time machine; here we need a stronger
notion of security.)

Theorem 11.5. If an auxiliary-input one-way function secure against
polynomial-size circuits exists, then there is a function ϵ(n) = o(1) such that
GapϵMCSP is NP-intermediate. (Namely, GapϵMCSP ̸∈ P/poly and GapϵMCSP

is not NP-hard under ≤P/poly
T reductions.)

Proof Sketch. Let f be an auxiliary-input one-way function secure against any
polynomial-size circuit. Let S(n) be the size of the smallest circuit A such that
for some y ∈ {0, 1}n of length n, Prx[fy(A(fy(x))) = fy(x)] ≥ 1/2 where n = |y|
and x is chosen uniformly at random. By assumption, S(n) is not bounded
by any polynomial. Let ϵ(n) be a nondecreasing unbounded function such that
nc/ϵ(n

c) < S(n) for infinitely many n, where c is a constant that we will pick later.
Observe that GapϵMCSP defines a natural property useful against

SIZE(2ϵ(n)n). By inspecting the reduction from an auxiliary-input one-way func-
tion to a natural property (Theorem 3.7), one can show that there exists an

nO(1/ϵ(nO(1)))-size oracle circuit that inverts the auxiliary-input one-way function
f with oracle access to GapϵMCSP. If GapϵMCSP ∈ P/poly, then we obtain a

circuit of size nO(1/ϵ(nO(1))) that inverts f . However, this is a contradiction for a
large enough c. □
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Remark. Observe that Theorem 11.5 can also be rephrased in terms of uniform
probabilistic adversaries, if we assume that the one-way functions require time
ne(n) to invert, for some easy-to-compute function e.

11.2 Reductions among GapMCSPs Require Large Stretch

In the previous section, we studied GapϵMCSP where ϵ(n) = o(1). Our results
do not rule out the possibility of NP-hardness of GapϵMCSP when ϵ is a fixed
positive constant. Here we observe that, even if ϵ is a constant, a similar proof
technique enables us to show that a reduction requires large stretch: We say that
a reduction from GapδMCSP to GapϵMCSP has stretch nc if, on input T , the
reduction makes queries of length at most |T |c.

Theorem 11.6. Let 0 < ϵ < δ < 1. If GapδMCSP is reducible to GapϵMCSP
via a polynomial-time Turing reduction of stretch at most nc for some c < δ/ϵ,
then GapδMCSP ∈ P.

Proof. The argument is almost identical to the argument in the preceding sec-
tion. Given an input to GapδMCSP, simulate the reduction from GapδMCSP
to GapϵMCSP. As before, if the reduction makes a query S, then divide S into
consecutive substrings S1, . . . , S2k of length 2m−k, where m is defined as |S| = 2m

and k is a parameter chosen later depending on m. For each i ∈ [2k], recursively
solve GapδMCSP on the instance Si, and let f(Si) be the answer of the recursive
call. Now, we estimate the circuit complexity of S as 2k · (maxi∈[2k] f(Si) + 3)
and continue the simulation.

We claim the correctness of the simulation for a certain choice of parameter
k = k(m). Let e denote the estimated circuit complexity of S, that is, e :=
2k · (maxi∈[2k] f(Si) + 3). The goal is to show that e satisfies the promise of
GapϵMCSP, or equivalently,

size(S) ≤ e ≤ |S|1−ϵ · size(S). (11.1)

We may assume that answers of recursive calls satisfy the promise of GapδMCSP
by induction: that is, size(Si) ≤ f(Si) ≤ |Si|1−δ · size(Si). Thus, by Lemma 11.3,
we have

e ≥ 2k ·
(
max
i∈[2k]

size(Si) + 3

)
≥ size(S),

as required in the first inequality of (11.1). Now we turn to the second in-
equality of (11.1). We may assume, without loss of generality, that e ≤
2k+1 ·maxi∈[2k] f(Si). Therefore, we obtain

e ≤ 2k+1 · max
i∈[2k]

f(Si)

≤ 2k+1 · max
i∈[2k]

|Si|1−δ · size(Si) (by the promise of GapδMCSP)

= 2k+1+(m−k)(1−δ) · max
i∈[2k]

size(Si) (since |Si| = 2m−k)

≤ 2k+1+(m−k)(1−δ) · size(S) (by Lemma 11.3)

≤ |S|1−ϵ · size(S),

where the last inequality holds if k + 1 + (m − k)(1 − δ) ≤ m · (1 − ϵ), that is,
k ≤ m −mϵ/δ − 1/δ. Thus we define k as k := m −mϵ/δ − 1/δ, which ensures
the second inequality of (11.1).
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Now we turn to analysis of the running time of the algorithm. Let 2n be
the length of the input to the algorithm. By the assumption on the stretch of
the reduction, we have |S| ≤ 2nc, that is, m ≤ nc. Therefore, |Si| = 2m−k =
2mϵ/δ+1/δ ≤ 2ncϵ/δ+1/δ. Since cϵ/δ < 1, the algorithm above runs in polynomial
time. (Indeed, let t(N) be an upper bound of the running time of the algorithm
on inputs of length N and ρ := cϵ/δ < 1. We have t(N) ≤ NO(1)t(Nρ). Solving
this recursive inequality, we obtain t(N) = NO(1).) □

11.3 Approximating Maximum Clique is NP-Intermediate

We observe that the strongly downward self-reducibility property that we
exploited above is fairly common. For instance, it has been noticed previously
that CLIQUE also has this property [Sri03, AK10]. Thus a similar proof technique
enables us to show NP-intermediateness of the following problem.

Definition 11.7. For any function ϵ : N → (0, 1), let GapϵCLIQUE be the ap-
proximation problem that, given an n-vertex graph G, asks for outputting a value
f(G) ∈ N such that

ω(G) ≤ f(G) ≤ n1−ϵ(n) · ω(G).

Here, as usual ω(G) denotes the clique number of G: the size of the largest clique
in G.

Theorem 11.8. NP ̸⊆ P/poly if and only if there is an ϵ(n) = o(1) such that

GapϵCLIQUE has no solution in P/poly and is not hard for NP under ≤P/poly
T

reductions.

Proof. Assume NP ̸⊆ P/poly. Define e(n) to be the least c such that, for all
m ≤ n, there is a circuit of size mc + c that computes a function f(G) (for
m-vertex graphs G) such that ω(G) ≤ f(G) ≤ m1−1/c · ω(G). If e(n) = O(1),
it follows from [H̊as99] that CLIQUE ∈ P/poly, contrary to assumption. Thus
e(n) = ω(1).

Let ϵ = ϵ(n) = 1/e(n); thus ϵ(n) = o(1). It follows immediately from the
definition of e(n) that GapϵCLIQUE has no solution in P/poly.

If we partition the vertices of an n-node graph G into n1−ϵ parts V1, . . . , Vn1−ϵ

of size at most ⌈nϵ⌉, then ω(G) ≤ (n1−ϵ) · maxi ω(Gi), where Gi is the induced
subgraph of G with vertices in Vi. (See [Sri03, AK10] for other applications of
this observation.)

Now, precisely as in the proof of Theorem 11.2, it follows that if CLIQUE
were P/poly-Turing reducible to GapϵCLIQUE, then CLIQUE ∈ P/poly, contrary
to our assumption. This shows that GapϵCLIQUE is not NP-hard under P/poly
reductions, and thus completes the “only if” direction of the Theorem. (The
converse is trivial.) □
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Chapter 12

Unconditional Lower Bounds

It is widely believed that solving MCSP is hard; indeed, in Chapter 3, we
showed that MCSP is not easy unless every one-way function is invertible. In
this chapter, we present further evidence that MCSP is indeed a hard problem by
establishing several unconditional circuit lower bounds for MCSP and its variants.

12.1 De Morgan Formula Lower Bounds for MCSP

In this section, we prove an unconditional formula lower bound for computing
MCSP.

Theorem 12.1. There exists a universal constant d > 0 such that MCSP[s]
requires a de Morgan formula of size N2−o(1) for any size parameter s : N → N
such that nd ≤ s(n) ≤ nO(1). Here N := 2n and N denotes the length of inputs
of MCSP[s].

A De Morgan formula is a circuit where the fan-out of each gate is at most
1 (i.e., the underlying graph is a tree), each internal gate is an AND or OR gate
with fan-in 2, and the leaf is labelled with a literal (i.e., an input xi or its negation
¬xi). We denote by L(φ) the size of a de Morgan formula φ, that is, the number
of the literals that appear in φ.

The main idea of Theorem 12.1 is to use a pseudorandom restriction. Im-
pagliazzo, Meka and Zuckerman [IMZ12] showed that the size of any formula
hit with a pseudorandom restriction shrinks. We then observe that MCSP[s] hit
with a pseudorandom restriction does not become a trivial function unless the
size parameter s is too small, because each bit of a pseudorandom restriction can
be efficiently computed.

We proceed to reviewing several ingredients. One of the fundamental results
about de Morgan formulas is that a random restriction shrinks a formula. For
a “restriction” ρ : [N ] → {0, 1, ∗} and a function f : {0, 1}N → {0, 1}, let f↾ρ
denotes the function such that f↾ρ(x1, · · · , xn) = f(y1, · · · , yn) where yi := ρ(i)
if ρ(i) ∈ {0, 1} and yi := xi otherwise. In other words, ρ(i) = ∗ means that the
variable is left unrestricted, and in the other case the variable is set to ρ(i). We
consider a random restriction, i.e., a distribution R of restrictions ρ. A random
restriction ρ ∼ R is said to be p-regular for p > 0 if Prρ∼R[ρ(i) = ∗] = p for every
i ∈ [N ] and Prρ∼R[ρ(i) = b] = (1 − p)/2 for every i ∈ [N ] and every b ∈ {0, 1}.
We denote by Rp the distribution of p-regular random restrictions ρ such that
ρ(i) is drawn from the p-regular distribution for each i ∈ [N ] independently.

Lemma 12.2 (H̊astad [H̊as98], Tal [Tal14]). Let φ be any de Morgan formula.
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Then, for every p > 0, it holds that

E
ρ∼Rp

[L(φ↾ρ)] = O
(
p2L(φ) +

√
p2L(φ)

)
.

Lemma 12.2 shows that a formula shrinks quadratically under a random re-
striction ρ ∼ Rp. However, MCSP[s]↾ρ becomes a trivial function with high
probability, since almost all the inputs are set to uniformly random bits. We
thus need to use a pseudorandom restriction. Impagliazzo, Meka and Zuckerman
[IMZ12] showed that there is a distribution R′ such that for every restriction
ρ ∈ supp(R′), the circuit complexity size(ρ) of ρ is small. (Here we identify
ρ : [N ] → {0, 1, ∗} with ρ ∈ {0, 1, ∗}N , and size(ρ) ≤ s means that there is a
circuit C of size at most s such that ρ(i) = C(i) for every i ∈ [N ].) We explain
the idea below, following a simple exposition of [KRT17]. First, a De Morgan
formula can be decomposed into small formulas in the following sense.

Lemma 12.3 (Tal [Tal14]). Let φ be a de Morgan formula. Let ℓ ∈ N be any
parameter. Then there exist m (≤ O(L(φ)/ℓ) ) formulas, denoted by φ1, · · · , φm,
each of size at most ℓ, and there exists a read-once formula ψ of size m such that
ψ(φ1(x), · · · , φm(x)) = φ(x) for every x ∈ {0, 1}N .

In light of this, φ shrinks even under p-regular ℓ-wise independent random re-
strictions, since each small formula shrinks. Here we say that a random restriction

ρ is ℓ-wise independent if every set I
(
∈
([N ]

ℓ

) )
of ℓ coordinates is independent,

that is, Pr[ρ(i) = bi (∀i ∈ I )] =
∏

i∈I Pr[ρ(i) = bi] for every b ∈ {0, 1, ∗}I . There
is a randomness-efficient way to sample such an ℓ-wise independent random re-
strictions.

Lemma 12.4 (Alon, Babai and Itai [ABI86]). For every N ∈ N, p > 0 and
ℓ ∈ N, there exists a p-regular ℓ-wise independent random restriction ρ ∼ Rp,ℓ

such that size(ρ) ≤ poly(ℓ, logN, log 1
p) for every ρ ∈ supp(Rp,ℓ). We denote this

distribution by Rp,ℓ.

Lemma 12.5. There exists some universal constant c > 1 such that, for every
de Morgan formula φ, for any parameter p > 0 and any ℓ = Θ(p−2), it holds that

E
ρ∼Rp,ℓ

[L(φ↾ρ)] ≤ cp2L(φ).

Proof. By Lemma 12.3, we decompose φ so that ψ(φ1(x), · · · , φm(x)) = φ(x) for
every input x. Since ψ is a read-once formula, we have L(φ↾ρ) ≤

∑m
i=1 L(φi↾ρ)

for every restriction ρ. Therefore,

E
ρ∼Rp,ℓ

[L(φ↾ρ)]

≤
m∑
i=1

E
ρ∼Rp,ℓ

[L(φi↾ρ)]

=

m∑
i=1

E
ρ∼Rp

[L(φi↾ρ)] (since φi depends on ≤ ℓ variables)

≤
m∑
i=1

O
(
p2L(φi) +

√
p2L(φi)

)
(by Lemma 12.2)

≤ O (m) = O(L(φ)/ℓ) = O(p2L(φ)).

□
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In Lemma 12.5, we cannot take p to be small enough for our purpose; however,
by composing independent p-regular random restrictions r times, we can reduce p
while keeping size(ρ) small. Here the composition ρ1ρ2 of two restrictions ρ1, ρ2 is
defined naturally as follows: ρ1ρ2(i) = ρ1(i) if ρ1(i) ∈ {0, 1} and ρ1ρ2(i) = ρ2(i)
otherwise, for each i ∈ [N ]. Let Rr

p,ℓ denote the distribution of the composition
of r independent p-regular ℓ-wise independent random restrictions. In particular,
Rr

p,ℓ is p
r-regular and ℓ-wise independent.

Lemma 12.6. There exists some universal constant c > 1 such that, for every
de Morgan formula φ, for any parameters p > 0, r ∈ N, ℓ = Θ(p−2), it holds that

E
ρ∼Rr

p,ℓ

[L(φ↾ρ)] ≤ crp2rL(φ).

Proof. By induction on r ≥ 1. Fix any restriction σ ∈ supp(Rr−1
p,ℓ ).

We pick a random restriction ρ ∼ Rp,ℓ. By applying Lemma 12.6 for φ↾σ, we
obtain

E
ρ∼Rp,ℓ

[L((φ↾σ)↾ρ)] ≤ cp2L(φ↾σ).

By averaging this inequality under the distribution σ ∼ Rr−1
p,ℓ , we obtain

E
σρ∼Rr

p,ℓ

[L(φ↾σρ)] ≤ cp2 E
σ∼Rr−1

p,ℓ

[L(φ↾σ)]

≤ cp2 · cr−1p2(r−1)L(φ) (by the induction hypothesis)

= crp2rL(φ).

□

Now we argue that, for a pseudorandom restriction ρ ∈ Rr
p,ℓ, MCSP[s]↾ρ does

not become a trivial function with high probability. Specifically, we show that
MCSP[s]↾ρ depends on almost all variables left unrestricted.

Lemma 12.7. Assume s ≥ n. Let ρ : [N ] → {0, 1, ∗} be a restriction such that
size(ρ) ≤ s−O(1). Let V be ρ−1(∗), that is, the set of all the indices of variables
left unrestricted by ρ. Then, for any formula φ computing MCSP[s], we have
L(φ↾ρ) ≥ |V | −O(s log s).

Proof. Let V0 ⊆ V be the set of variables on which φ↾ρ does not depend. It
suffices to claim that |V0| = O(s log s) because L(φ↾ρ) ≥ |V | − |V0|.

Let 0̄ : [N ] → {0, 1, ∗} denote the constant-0 function. Consider an input
ρ0̄ ∈ {0, 1}N , that is, the string where each ∗ of ρ is replaced with 0. Since
size(ρ) ≤ s − O(1), one can easily observe that size(ρ0̄) ≤ s. Therefore, ρ0̄ is an
Yes instance of MCSP[s]. Since φ↾ρ does not depend on V0, for every assignment
σ : V0 → {0, 1}, φ also accepts the input ρσ0̄. Now by counting the number of
Yes instances in MCSP[s], we obtain

2|V0| ≤ #{x ∈ {0, 1}N | φ accepts x }
= #{x ∈ {0, 1}N | x ∈ MCSP[s] } ≤ 2O(s log s).

□

We are now ready to prove unconditional de Morgan formula lower bounds.
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Proof of Theorem 12.1. Let φ be any de Morgan formula computing MCSP[s].
Fix any small constant ϵ > 0.

By Lemma 12.6, for any parameters p > 0, r ∈ N, ℓ = Θ(p−2), it holds that

E
ρ∼Rr

p,ℓ

[L(φ↾ρ)] ≤ crp2rL(φ). (12.1)

Observe that crp2r = (pr)2−log1/p c = (pr)2−ϵ, where we fix p to be a small enough
constant so that ϵ = log1/p c.

On the other hand, by Lemma 12.7,

L(φ↾ρ) ≥ |ρ−1(∗)| −O(s log s), (12.2)

for every ρ such that size(ρ) ≤ s−O(1).
We will take r so that r ≤ logN = n. By the construction of Rr

p,ℓ, we have

size(ρ) ≤ poly(r, ℓ, logN) = poly(1/p2, n) = poly(n) for every ρ ∈ supp(Rr
p,ℓ).

Thus there exists a universal constant d such that size(ρ) ≤ nd − O(1) for all
large n ∈ N. We assume that nd ≤ s as the hypothesis of Theorem 12.1.

Therefore, we can combine (12.1) and (12.2) to obtain

(pr)2−ϵL(φ) ≥ E
ρ∼Rr

p,ℓ

[|ρ−1(∗)| −O(s log s)] = prN −O(s log s)

≥ prN/2,

where, in the last inequality, we take r so that O(s log s) ≤ prN/2 ≤ nO(1). We
thus obtain

L(φ) ≥ N

(pr)1−ϵ
≥ N

(nO(1)/N)1−ϵ
= N2−ϵ/nO(1) ≥ N2−2ϵ

for all large n ∈ N. □

An obvious open question is to prove a better formula lower bound.

Open Question 12.8. Show that MCSP requires a de Morgan formula of size
ω(N2).

12.2 Average-case AC0[p] Lower Bound of MKTP

In this section, we show an unconditional average-case AC0[p] circuit lower
bound of MKTP. The whole section is devoted to proving the following result:

Theorem 12.9. There exists some function s(n) such that (MKTP[s],U) is not
in AvgϵAC

0[p] for any prime p and any constant ϵ ∈ (0, 1).

Our proof is based on the techniques of Fefferman, Shaltiel, Umans and Vi-
ola [FSUV13] They constructed a pseudorandom generator G secure against
AC0[p] such that each output bit of G has small KT-complexity. We first fo-
cus on the case when p ̸= 2. In this case, we use the following pseudorandom
generator G based on PARITY.

Definition 12.10 ([FSUV13]). For a parameter k = k(m) chosen later, define
G : ({0, 1}m)k → {0, 1}mk+k as

G(x1, . . . , xk) := x1 · · ·xk · PARITY(x1) · · ·PARITY(xk)

for every (x1, . . . , xk) ∈ ({0, 1}m)k. Let n := mk + k.
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Lemma 12.11 (implicit in [FSUV13]). If there is an oracle A that distinguishes
G from the uniform distribution with advantage ϵ for some constant ϵ > 0, then
there is an AC0 circuit C with A-oracle gates such that CA(x) = PARITY(x) for
any input x ∈ {0, 1}m.

Proof Sketch. For completeness, we include a brief proof sketch. They showed
that, by using resamplability of PARITY, there is an NC0 circuit C0 with one
A-oracle gate such that Prx∼Um [C

A
0 (x) = PARITY(x)] ≥ 1+ϵ

2 ([FSUV13, Lemma
4.5]). By using resamplability again for t independent choices of randomness
(for some appropriately chosen t), we obtain circuits CA

1 , . . . , C
A
t each of which

approximates PARITY. Now taking the majority vote of these circuits, we can
compute PARITY on all inputs. Here, the majority can be implemented by using
Approximate Majority [AB84] in AC0, because the advantage of approximating
PARITY is at least a constant ϵ. As a result, we obtain an AC0 circuit with A-
oracle gates that computes PARITY on all inputs ([FSUV13, Proposition 4.21]).

□

Therefore, it is sufficient to claim that an errorless heuristic algorithm for
MKTP[s] distinguishes the pseudorandom generator G. We first claim that the
KT-complexity of any output of the pseudorandom generator G in Lemma 12.11
is small.

Claim 12.12.
KT(G(x1, . . . , xk)) ≤ mk + poly(m, log k)

for every seed (x1, . . . , xk) ∈ ({0, 1}m)k.

Proof. We use a description d := (x1, . . . , xk). Given an index i ∈ {1, . . .mk+k}
of G(x1, . . . , xk), if i ≤ mk then output the ith bit of the description d; if i > mk
then compute and output PARITY(xi−mk), which takes poly(m, log k) steps. □

Therefore, for a sufficiently large polynomial k(m) = mO(1), it holds that
KT(G(x1, . . . , xk)) ≤ mk + o(k) ≤ n − log n =: s(n) (and thus an MKTP[s]
oracle distinguishes G from the uniform distribution).

Now assume, towards a contradiction, that there is an errorless heuristic
AC0[p] circuit A0 that computes MKTP[s] with failure probability ϵ. We de-
fine another circuit A as A(y) := 1 if A0(y) = 1 or ⊥; otherwise A(y) := 0. Note
that A does not err on Yes instances of MKTP[s]; that is, A(G(x1, . . . , xk)) = 1
for every seed (x1, . . . , xk). On the other hand, consider the uniform distribution
y ∼ Un. Observe that the probability that A0(y) = ⊥ is at most ϵ, and the
probability that y is an Yes instance of MKTP[s] is at most 2− logn+1 = o(1).
Therefore, Pry∼Un [A(y) = 0] ≥ 1 − ϵ − o(1). Hence A distinguishes the output
of G from the uniform distribution with advantage 1 − ϵ − o(1). Now we ap-
ply Lemma 12.11 to obtain an AC0 circuit CA with A-oracle gates that solves
PARITY. Since A ∈ AC0[p], it shows that PARITY ∈ AC0[p], which contradicts
the lower bounds of Razborov-Smolensky [Raz87, Smo87] for an odd prime p.

When p = 2, we use a pseudorandom generator GCMD based on a problem
called CMD (connectivity matrix determinant), which was introduced by Ishai
and Kushilevitz [IK00, IK02]. For the exact definition of GCMD, the reader is
referred to [FSUV13]. Here we only need the following property, which easily
follows from the fact that CMD is computable in polynomial time.

Fact 12.13.
KT(GCMD(x1, . . . , xk)) ≤ mk + poly(m, log k)

for every seed (x1, . . . , xk) ∈ ({0, 1}m)k.
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Lemma 12.14 ([FSUV13]). If there is an oracle A that distinguishes GCMD

from the uniform distribution with advantage a constant ϵ > 0, then there is an
AC0[2] circuit C with A-oracle gates such that CA(x) = MAJORITY(x) for any
x ∈ {0, 1}m.

Proof Sketch. The problem CMD is resamplable in AC0[2] ([FSUV13]), and hence
as in Lemma 12.11, CMD can be solved by an AC0[2] circuit with A-oracle gates.
Since CMD is ⊕L-complete under NC0 reductions ([IK02]), MAJORITY can be
also solved by an AC0[2] circuit with A-oracle gates. □

Combining Fact 12.13 and Lemma 12.14, we obtain an AC0[2] circuit that
solves MAJORITY, which contradicts the lower bound of [Raz87, Smo87] for the
majority function. This completes the proof of Theorem 12.9.
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Chapter 13

Conclusions

In this thesis, we investigated the complexity of MCSP and its variants. Our
results further highlight that improved understanding of MCSP will have major
impacts in complexity theory. In particular, any hardness of GapϵMCSP implies
further evidence that DistNP ̸⊆ AvgP, i.e., there is no efficient errorless heuristic
algorithm solving NP problems on average (cf. Chapter 4). This can be seen as a
significant step towards excluding Heuristica. We strongly believe that our results
and techniques developed in this thesis are a key to understanding Heuristica well
and advancing complexity theory further.

Currently, NP-hardness of C-MCSP is known only for C = DNF or DNF◦XOR
(cf. Chapter 9). Extending it to larger circuit classes C is challenging as argued
in Chapter 7. However, there is no fundamental barrier that prevents us from
obtaining such a result. Thus we believe that it is possible to push this direction
further, and moreover we believe that pushing this direction would give us new
insight about a circuit class C.

Another potential approach for showing NP-hardness of MCSP is via non-
relativizing proof techniques. While there is some relativization barrier (cf.
Chapter 4), a non-relativizing proof technique enables us to prove NP-hardness of
MCSP under the unlikely assumption that PSPACE ⊆ P/poly [ABK+06b, IKV18].
Extending this proof technique to obtain NP-hardness of MCSP unconditionally
is left as an important open question, as it will exclude Heuristica. It should be
noted that a similar situation happens often in complexity theory: Santhanam
[San09] proved that MA/1 ̸⊆ SIZE(nk) for every constant k by analyzing two
cases depending on whether PSPACE ⊆ P/poly or not. Similarly, one might be
able to prove NP-hardness of MCSP assuming PSPACE ̸⊆ P/poly.

An important direction left as future work is to go beyond Heuristica: Can
one construct a one-way function from hardness of MCSP? In the seminal work
of Ajtai [Ajt96] about worst-case to average-case reductions, a one-way function
was constructed based on the worst-case hardness of the shortest vector problem.
As shown in Chapter 3, the existence of auxiliary-input one-way functions implies
intractability of MCSP. As an intermediate step towards the existence of one-
way functions, we pose the question of the converse direction: Can one construct
auxiliary-input one-way functions from hardness of MCSP? For example:

Open Question 13.1. Show that an auxiliary-input one-way function exists if
GapϵMCSP ̸∈ P/poly for every constant ϵ > 0.

Subsequent to our work, the “hardness magnification” phenomenon was found
by Oliveira and Santhanam [OS18], later with Pich [OPS18]. Very roughly speak-
ing, given a circuit lower bound for MCSP[s], one can construct another function
of s-bit inputs that have the same circuit lower bound. Thus in particular, a very
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weak circuit lower bound for MCSP[s] is enough to prove a circuit lower bound
such as NP ̸⊆ P/poly. Unfortunately, the results presented in Chapter 12 are
not enough to be combined with their results. First, one needs to compute an
error-correcting code within a circuit class C in order to apply the hardness mag-
nification phenomenon. Thus the lower bound of MCSP[s] ̸∈ Formula(N2−o(1))
cannot be combined with their ideas. Second, the size parameter s must be small
enough (e.g., s(n) = (log(n))c for some fixed constant c, where n denotes an input
length). In our lower bound of MKTP[s] ̸∈ AC0[p], the size parameter s(n) must
be close to n, and thus the hardness magnification does not amplify the circuit
lower bound.

It was an open question to extend our circuit lower bound MKTP ̸∈ AC0[p]
to the case of MCSP. Very recently, the circuit lower bound MCSP ̸∈ AC0[p] was
proved by Golovnev, Impagliazzo, Kabanets, Kolokolova, and Tal (personal com-
munication). However, all the proof techniques for showing AC0[p] circuit lower
bounds do not seem to yield any lower bound for GapϵMCSP. An interesting open
question is to prove AC0[p] circuit lower bounds for a 2-factor approximation of
MCSP or MKTP.

Open Question 13.2. Show that there is no AC0[p] circuit that can approximate
the minimum circuit size of a given truth table within a factor of 2.

More broadly, we believe that understanding the complexity of MCSP is not
only a fundamental question itself, but also an approach of advancing complexity
theory. We conjecture that there are still a number of exciting results about
MCSP waiting to be found.
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