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ABSTRACT

Wireless localization is a fundamental task which refers to extracting geo-locating
information of an object based on its wireless signals to multiple known devices. It
plays important roles in the Internet of Things (IoT) due to its numerous important ap-
plications, particularly industrial applications, commercial environments, public safety
settings, and everyday life and defense/security systems. Rapid technological develop-
ment in IoT offers new opportunities for wireless localization. New network systems,
applications, IoT equipped devices, etc. produce unconventional localization problems
which remain mostly unexplored.

The main purposes of this dissertation are to propose and motivate new localization
problems, as well as to develop practical techniques to resolve the problems. It focuses on
a proposal of a new localization problem related to scenarios where the device positions
are known a priori, however, the device IDs are not, and therefore need to be matched
using radio frequency methods. The problem, called WLMP: the wireless localization
matching problem, is motivated through various real-world applications including, but
not limited to, disaster prevention wireless sensor networks (WSNs), indoor positioning,
and smart lighting and heating systems. We propose several practical techniques to
resolve the WLMP in different scenarios and network paradigms. Extensive computer
simulations and real experiments in various environments validate that the proposed
techniques can achieve high localization accuracy satisfied the requirements of real-world
applications.

The dissertation consists of three parts. The first part investigates major wireless
localization systems and techniques. It studies the properties and applicability of ev-
ery technique to derive low-cost techniques that are most suitable for almost all IoT
devices. The second part exploits low-cost localization techniques through two different
case studies. The first case study illustrates that localization in multi-hop networks can
determine coarse location of wireless devices, thus substantiating the validity of low-cost
localization. The second case study demonstrates that Received Signal Strength Indi-
cator (RSSI)-based localization, which is one of the low-cost localization methods, can
achieve satisfactory accuracy for some specific applications, thus validating the applica-
bility of low-cost localization. The third part, which is the main part, therefore, proposes
low-cost localization techniques to resolve the WLMP in different scenarios and network
paradigms. It first proposes maximum-likelihood matching localization algorithms called
MLMatch and MLMatch3D for resolving this problem based on RSSI values under mesh
network paradigms. The main benefit of these algorithms is that they do not rely on
propagation models, i.e. independent of wireless environments. Therefore, they are more
practical than traditional localization techniques that requires a time-consuming cam-
paign to survey radio environment to produce an accurate propagation model. Extensive
experiments in different environments show that the proposed method can achieve high
localization accuracy, especially 100% accuracy in various environments. On the other
hand, in the scenario where an accurate propagation model is available, the dissertation
further proposes a machine learning-based method called MLRefine to improve the accu-
racy of the above localization algorithms. Experimental results show that MLRefine can
improve up to 10% of localization accuracy. Consequently, the WLMP can be resolved
efficiently using mesh network models. In practice, however, some sensor networks are
not built as mesh networks, i.e. sensor nodes are not connected with each other. Instead,
they are connected to a central unit, e.g. a wireless concentrator. Using a mobile central
unit, we propose novel methods called LEMOn and LEMOn-M to resolve the traditional
localization problem as well as the WLMP. Various simulations show that the two al-
gorithms achieve a very high localization accuracy even in harsh radio environments.
In conclusion, the WLMP can be solved efficiently in the context of different network
models.

This dissertation advances the state of art on wireless localization for IoT in sev-
eral dimensions. First, it defines and promotes unexplored localization problems that
are applicable in many real-world applications. Second, it bridges gaps between theory
and practice by exploring features that are hard to get practically and substitute by
new features that can be obtained easily in practice for a certain network system. It
then proposes practical algorithms for resolving defined problems. Besides, the proposed



methods are easily deployable in different environments because they do not rely on
a specific environment/hardware. Third, the stability of the proposed methods is not
only proved theoretically but also evaluated through various experiments. Last but not
least, extensive real experiments in various environments illustrate that the proposed
localization methods can achieve enough localization accuracy for real applications, thus
validating the practicability of the proposed localization techniques.
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Chapter 1

Introduction

With the improvement of wireless communication technology in these decades,
the Internet of Things (IoT) is a promising technology and has been widely
adopted in constructing smart cities, buildings, and houses. There are numer-
ous key issues in IoT including wireless localization. Localization, which refers
to extracting geo-location information of an object, has therefore been well re-
searched and developed. However, with the rapid development of IoT and thus
new network paradigms, there are new localization problems and applications
that haven’t been defined. The main purposes of this dissertation are to propose
and to develop new classes of wireless localization that haven’t yet been explored.
Proposed localization methods can be widely applied in various real-world appli-
cations for IoT, and are compatible with many network paradigms.

This chapter investigates perspectives and opportunities for wireless local-
ization for IoT in Sections 1.1 and 1.2. It also highlights issues and challenges
in developing wireless localization systems in practice in Section 1.3. It then
summarizes the main contributions of this dissertation in Section 1.4. Finally,
abbreviations, acronyms, notations and symbols used in this dissertation are
summarized in Sections 1.5 and 1.6.

1.1 A Brief History and Future Perspectives of The Internet of
Things

The Internet of Things (IoT) is a promising technology which is composed of
three paradigms: Internet-oriented, things-oriented and semantic-oriented [1].
Typically, an IoT system consists of low power devices which interact with each
other through the Internet. The main goal of IoT is to ensure every device,
including sensors, smart-phones, wearable sensors, tablets, transportation sys-
tem, etc., can connect with each other through a common interface. This allows
machine-to-machine (M2M) communication without human intervention [2] and
can be attained equipping things with sensors that can connect to the Internet.

The phrase Internet of Things was first coined by Procter & Gamble executive
Kevin Ashton in 1999 in the context of supply chain management. However, the
actual ideas of connected devices have been conceptualizing for decades. In 1990,
a toaster, one of “Things”, was connected and controlled via the Internet. Since
then, many companies, including industry, utilities, and logistics companies, have
begun connecting their machines to each other. The term Internet of Things,
where “Things” indicates everything including devices, assets, people, etc., is
considered to be innate around 2008 when there were more connected devices
than people. Today, the definition covered a wider range of applications including
health care, utilities, transport, etc. [3]. Although the definition of “Things” has
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changed from time to time, the main goal of making things of inter-connecting
with each other without the aid of human remains the same. For instance, an
agriculture IoT [4], can enable seamless data collection from various sensor types,
i.e., cameras, drones, and soil sensors, even in the face of power and Internet
outages.

Recently, the number of IoT devices has been increasing exponentially. There
are nine billion interconnected devices in 2013 and it is expected to reach 24
billion devices by 2020. This amounts to 1.3 trillion US Dollars revenue oppor-
tunities according to the GSMA [5]. This is partly because IoT can enhance
the efficiency of various systems including delivery, retail, marketing, health, and
smart services, etc [1]. Consequently, IoT is expected to have great potential for
future technology.

The increase in the number of IoT devices offers new opportunities for new
research and development related to IoT. With the expansion of the hype around
IoT, new applications are being developed. For instance, smart house, smart city
and smart grids use IoT solutions to solve various problems such as automatic
control and management, optimizing electricity consumption and supplement,
etc. In most applications, it is necessary to relate the geolocation to the user
or the source of data. Consequently, the vision of research and development of
localization or navigation using IoT is great.

1.2 Opportunities and Vision of Wireless Localization for IoT

Wireless localization plays an important role in the development of IoT. A local-
ization system extracts geo-location information of an object based on its wireless
signals to multiple known devices. The opportunities for localization systems are
great because of their numerous important applications, particularly industrial
applications, commercial environments, public safety settings, everyday life, and
deference/security systems. The expansion of low-cost IoT hardware enables us
to track and locate many things, and not only limited to high-cost items. The
tracking of people in a building allows businesses to optimize product placements.
This also allows people to navigate themselves in an unknown environment. Be-
sides this, localization systems that use low-cost IoT can substitute traditional
technologies such as security gates, high-cost positioning and navigation systems.

Wireless localization also plays an important role in wireless sensor networks
(WSNs), which are a crucial component of IoT. A WSN uses numerous sensors
to execute different functions of environmental sensing such as humidity sensing,
temperature sensing, pressure sensing. Sensed data is then sent to a central unit
such as a backhaul server, or a data fusion through wireless connections. The
central unit is then process received data to make the data available to the user.
To make the data useful, it is necessary to relate the stream of sensed data to
the location of the corresponding sensor node. Therefore, wireless localization is
crucial in most WSNs.

The next-generation of IoT network further brings new challenges and op-
portunities for wireless localization. With the proliferation of IoT devices, new
network models are being researched and developed to enable anything can inter-
connect [2]. For instance, cooperative communication and networking, which is
predicted to be a key component in next-generation wireless networks, has been
developed to improve quality of service [6]. Wireless network systems that use
mobile-agents, such as UAVs, as relay agents, data collector offers one promising
solution to enhance inter-device connectivity [7]. Further, the expansion of IoT
systems offers new opportunities for wireless localization through developing new
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applications. Consequently, it is necessary to establish new research related to
localization to target new applications and also to adapt to the change of network
models.

In conclusion, the opportunities for the research of localization using IoT are
great, ranging from improving conventional techniques to developing totally new
techniques/systems.

1.3 Challenges in Developing Practical Wireless Localization Sys-
tems

The previous sections expose that the opportunities for wireless localization for
IoT are great. However, there are many issues and challenges in developing lo-
calization systems in practice. This section highlights the major issues and chal-
lenges in developing practical wireless localization systems. It also illustrates our
solutions for those issues, thus demonstrating the practicability of our proposed
localization systems.

• Cost effectiveness: Cost is one of the major challenges to the application
of wireless localization. Some localization systems require specific wireless
hardware to be equipped with IoT devices, and extra wireless infrastruc-
ture. This not only adds cost to the localization services but also make the
devices bigger and heavier. As discussed in Section 1.1, IoT devices are
often equipped with low-cost and tiny wireless hardware, therefore localiza-
tion systems that require additional wireless hardware would be inappro-
priate for most IoT applications. We overcome this issue by using existing
infrastructure and wireless hardware.

• Energy constraint : Since most IoT devices are constrained on energy con-
sumption, energy efficiency is also a major challenge of wireless localization.
Many existing localization systems consume high energy to provide accu-
racy. For instance, a Global Positioning System (GPS) module embedded
to a wireless device consumes about 30 mA at 3.3 V. However, since local-
ization is often not a primary task of most of the user devices, and an IoT
device is often constrained on energy, high power consumption can limit the
usage of localization. Consequently, it is necessary to constrain the energy
consumption of the localization service. To deal with this problem, our
localization methods do not use additional hardware that consumes energy.

• Environment dependency : Wireless localization is heavily affected by the
surrounding environment. The accuracy of a localization system change
with the variation of the environment, especially when the surrounding
environment changed significantly. Therefore, to enhance accuracy, most
localization systems requires a priori measurements to be performed at the
same environment of interest, or when the environment changed signifi-
cantly. This adds manual cost to the system, thus limiting the adoption
of localization. Besides, obstacles such as wall also reduce the accuracy
of localization systems that assume the existent of a line of sight (LoS)
path between two wireless devices. To overcome these issues, we develop
localization methods that independent from the environment parameters.
Further, we also develop a method that can detect non-line of sight (NLoS)
signals.
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• Accuracy : There is a trade-off between localization accuracy and other fea-
tures including hardware cost, manual cost, energy consumption as afore-
mentioned. Therefore, cost and energy constraints limit the accuracy of a
localization system. To improve the localization accuracy without increas-
ing the cost, we observe new features that can be obtained practically in a
specific system and application. These features are used as additional input
information to perform accurate localization. Consequently, our localiza-
tion systems can achieve high localization accuracy that is enough for the
requirement of real-world applications.

1.4 Dissertation Contribution and Structure

As discussed in previous sections, developing new wireless localization techniques
has great opportunities and potential in the development of IoT. New network
systems, applications, IoT equipped devices, etc. produce unconventional local-
ization problems which remain mostly unexplored. Further, there are many issues
and challenges in developing practical localization systems used in IoT.

This dissertation proposes and motivates new localization problems, as well
as proposes and develops practical techniques to resolve the problems. It focuses
on a proposal of a new localization problem related to scenarios where the device
positions are known a priori, however, the device IDs are not, and therefore need
to be matched using radio frequency methods. The problem, called WLMP: the
wireless localization matching problem, is motivated through various real-world
applications including, but not limited to, disaster prevention wireless sensor net-
works (WSNs), indoor positioning, and smart lighting and heating systems. We
propose several practical techniques to resolve the WLMP in different scenarios
and network paradigms. Extensive computer simulations and real experiments
in various environments validate that the proposed techniques can achieve high
localization accuracy satisfied the requirements of real-world applications.

The remainder of this section summarizes our main contributions, organized
in this dissertation in the same order as described below.

1.4.1 Investigation of Major Localization Systems and Techniques

In Chapter 2, we investigate major wireless localization systems and techniques.
We analysis the advantages and disadvantages of each system and techniques to
derive the most suitable techniques for most IoT devices.

We studied from this investigation that:

• Radio frequency (RF) localization is well-suited for many IoT devices.

• Among RF measurement techniques, Received Signal Strength Indicator
(RSSI) and range-free measurement techniques are applicable for most IoT
devices because they are more economical than other measurement tech-
niques.

• While range-free techniques are suitable for multi-hop, i.e. large scale,
networks, RSSI-based techniques are more suited for small-scale networks,
for instance, indoor localization.

• The main disadvantage of these techniques is the low localization accuracy.
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1.4.2 Exploiting Low-Cost Localization

Chapter 2 demonstrates that low-cost localization is suitable for many IoT de-
vices. We illustrate the validity of low-cost localization by using two different
case studies.

Localization in Multi-Hop Networks

The first case study, described in Chapter 3, investigates the localization accuracy
of wireless localization method used a hop-count technique which is a range-free
technique. This technique is often used in large-scale or multi-hop networks. In
this study, we first survey the state-of-the-art localization methods for multi-
hop networks to derive high potential methods. We then propose a maximum-
likelihood-based multihop localization algorithm called kHopLoc that is strong
in both isotropic and anisotropic network deployment regions [8]. During an
initial training phase, a Monte Carlo simulation is utilized to produce multihop
connection density functions [9]. Then, sensor node locations are estimated by
maximizing local likelihood functions of the hop counts to anchor nodes. Finally,
we perform simulations to evaluate and to compare localization accuracy between
the proposed kHopLoc and conventional localization methods. The proposed
kHopLoc outperforms conventional methods in varying network configurations
and connection link-models.

We studied from this work that:

• Coarse positions of wireless devices can be determined using the proximity
measurement technique, which is known as the lowest ranging accuracy
among radio frequency measurement techniques. This enables us to assume
that localization of wireless devices can be realized using RSSI measurement
techniques, which is known as providing better accuracy.

• The proposed kHopLoc enhances accuracy because it is provided full sta-
tistical information for the multihop connection probabilities, which is ob-
tained through an off-line training phase. This training phase is conducted
using simulation data and Monte Carlo simulation method, thus not requir-
ing extra data collection cost. We thus further extend this idea to improve
the accuracy of different localization problems, which is demonstrated in
Chapter 6.

Indoor Binary Localization

After demonstrating the validity of RF-based localization, we explore new poten-
tial applications related to RSSI-based wireless localization, which is described in
Chapter 4. We propose a new approach towards RSSI based wireless localization
for scenarios where, instead of absolute positioning of an object, only the infor-
mation whether an object is inside or outside of a specific area is required [10].
This is motivated through a number of applications including, but not limited
to, a) security: detecting whether an object is removed from a secure location, b)
wireless sensor networks: detecting sensor movements outside of a network area,
and c) computational behavior analytics: detecting customers leaving a retail
store. The result of such detection systems can naturally be utilized in building
a higher level contextual understanding of a system or user behaviors. We use a
supervised learning method to overcome issues related to RSSI based localization
systems including multi-path fading, shadowing, and incorrect model parameters
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(as in unsupervised methods). Moreover, to eliminate the cost of collecting train-
ing data, we employ a detection method called One-Class SVM (OC-SVM) which
requires only one class of data (positive data, or target class data) for training.
Since this class of data can be obtained during the operation of the wireless net-
work system, our method does not require a priori measurements. We derive
a mathematical approximation of accuracy which utilities the characteristics of
wireless signals as well as OC-SVM. Based on this we then propose a novel math-
ematical formulation to find the optimal placement of devices. This enables us
to optimize the placement without performing any costly experiments or simu-
lations. We validate our proposed mathematical framework based on simulated
and real experiments.

We studied from this work that:

• RSSI-based localization can achieve satisfactory localization accuracy for
some specific applications. This motivates us to further develop new appli-
cations related to RSSI-based localization.

• Low-cost device placement guidelines to improve the localization accuracy is
realizable without performing a priori measurements. This suggests that the
accuracy of a localization system can be improved using low-cost methods.

In summary, Chapter 2 derives appropriate localization techniques suitable
for most IoT devices. Chapter 3 demonstrates the validity of low-cost RF-based
localization through a proposed method called kHopLoc. Chapter 4 illustrates
the applicability of RSSI based localization through a proposed method called
WiLAD.

1.4.3 The Wireless Localization Matching Problem

After demonstrating the validity and applicability of low-cost RF-based localiza-
tion, we propose and motivate a new class of wireless localization called WLMP:
Wireless Localization Matching Problem that has not been yet explored. The
problem is applicable in numerous real-world applications related to the Internet
of Things (IoT).

The Wireless Localization Matching Problem

In Chapter 5, we propose a new class of wireless localization, called WLMP: wire-
less localization matching problem belonging to the Internet of Things, specifically
related to scenarios where the device positions are known a priori, however, the
device IDs are not [11, 12]. These positions and device IDs, therefore, need to
be matched using radio frequency positioning methods, which are more time and
cost efficient as compared to manual installation. Immediate examples of real-
world applications include but are not limited to smart lighting and heating.
We propose maximum-likelihood matching algorithms called MLMatch and ML-
Match3D for resolving this problem based on measured RSSI values. Since the
search space of node-to-position permutations grows factorially with the number
of target devices, we propose several searching methods including Mixed Inte-
ger Programming, LP relaxation to reduce computation time. The MLMatch3D
algorithm further addresses the problem whereby nodes are located at multiple
rooms and/or floors of a building. This algorithm first utilizes a Graph Partition-
ing method to determine in which room a node is located, followed by MLMatch
for finding room specific positions corresponding to each node. In addition, this
chapter analyses the stability of these algorithms with respect to different wireless

6



fading models as well as compares the performance of these algorithms in vari-
ous environments via numerical simulations. Finally, we report on experiments
performed in different environments using up to 33 wireless devices in order to
demonstrate the problem and validate our results. We demonstrate that the pro-
posed algorithm can achieve high localization accuracy satisfied the requirements
of real-world applications.

The main contributions of this work are to:

• Define and motivate the WLMP which is a new class of wireless localization.

• Propose and analytically study the performance of MLMatch and ML-
Match3D as candidate solutions to the WLMP.

• Experimentally validate MLMatch and MLMatch3D.

Improved Localization Accuracy: Predicting and Refining RSSI Mea-
surements

After proposing algorithms for resolving the WLMP, we propose a machine
learning-based method called MLRefine to improve the accuracy of the algo-
rithms. Chapter 6 describes the proposed MLRefine, which uses machine learning
methods to model the relationship between accurate values and features extracted
from in silico RSSI values [13]. MLRefine then applies the trained model to fea-
tures extracted from real RSSI measurement values to return a predicted set of
refined RSSI values. The idea of MLRefine is actually similar to the idea of the
kHopLoc described in Chapter 3, which extracts useful information using Monte
Carlo and simulation measurement data for use with real measurements.

The main contributions of this work are to:

• Propose a novel method called MLRefine to reduce the magnitude of noisy
factors attached to RSSI values.

• Substantiate MLRefine through various simulations and experiments.

• Quantify the impact of MLRefine by combining with state-of-the-art local-
ization estimators.

LEMOn: Wireless Localization for IoT Employing A Location-Unaware
Mobile Unit

Chapters 5 and 6 proposed localization techniques and an improved technique
to resolve the proposed WLMP under a scenario that sensor nodes connect with
each other. In practice, however, there are network systems that sensor nodes
connect to a central unit, e.g. a wireless controller or a wireless concentrator,
etc., rather than with each other. Considering that the central unit equipped
with mobile robot, in Chapter 7, we address the problem of localizing sensor
nodes using a mobile wireless unit [14,15].

Existing localization methods that use a mobile wireless unit assume an ac-
curate knowledge of the location of the mobile unit and a precise propagation
model of the actual radio environment. By getting rid of these two require-
ments, our proposed localization algorithms make mobility-assisted localization
far more practical as we do not need to equip the mobile unit with a GPS or
run a time-consuming campaign to survey radio environment. LEMOn, i.e. Lo-
calization Employing a location-unaware MObile unit, estimates the position of
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target nodes by using known locations of a small set of fixed anchor nodes while
receiving messages sent from a mobile unit from unknown arbitrary locations.
LEMOn-M, i.e. LEMOn for the WLMP, on the other hand, solves the WLMP
by mapping an arbitrary number of target nodes to the known set of locations.
Both algorithms first estimate an inter-node distance using a similarity between
RSSI of beacons received from the mobile unit. Conventional location estimators
are then employed to localize target nodes with an unknown location. Obvious
examples of real-world applications include but are not limited to UAV-assisted
wireless sensor works and indoor IoT systems.

The main contributions of this work are to:

• Define and motivate new localization problems that are hybrid between
static localization and mobility-assisted localization,

• Propose and analytically study the performance of LEMOn and LEMOn-M
as candidate solutions to the above problems,

• Highlight some potential applications related to real-world scenarios.

Finally, Chapter 8 concludes the dissertation. The dissertation advances the
state of art on wireless localization for IoT in several dimensions. First, it de-
fines and promotes unexplored localization problems that are applicable in many
real-world applications. Second, it bridges gaps between theory and practice by
exploring features that are hard to get practically and substitute by new features
that can be obtained easily in practice for a certain network system. It then
proposes practical algorithms for resolving defined problems. Besides, the pro-
posed methods are easily deployable in different environments because they do
not rely on a specific environment/hardware. Third, the stability of the proposed
methods is not only proved theoretically but also evaluated through various ex-
periments. Last but not least, extensive real experiments in various environments
illustrate that the proposed localization methods can achieve enough localization
accuracy for real applications, thus validating the practicability of the proposed
localization techniques.

1.5 List of Abbreviations and Acronyms

IoT Internet of Things
WSN Wireless Sensor Network
NW Network
AP Access Point
GPS Global Positioning System
IR Infrared Radiation
RF Radio Frequency
AoA Angle of Arrival
ToF Time of Flight
ToA Time of Arrival
TDoA Time Difference of Arrival
RSSI Received Signal Strength Indicator
UWB Ultra Wide Band
DSSS Direct-Sequence Spread Spectrum
MHz Megahertz
dBm Decibel-miliwatt
SNR Signal to Noise Ratio
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LoS Line of Sight
NLoS No Line of Sight
SDP Semidefinite Programming
LP Linear Programming
MIP Mixed Integer Programming
MILP Mixed Integer Linear Programming
MIQP Mixed Integer Quadratic Programming
ILP Integer Linear Programming
LSAP Linear Sum Assignment Problems
SVM Support Vector Machine
OC-SVM One-Class Support Vector Machine
GA Genetic Algorithm
BF Brute Force algorithm
3D 3-Dimensional
CDF Cumulative Distribution Function
PDF Probability Density Function
LOOCV Leave-One-Out Cross Validation

kHopLoc k-hop Localization
WiLAD Wireless Localization through Anomaly Detection
WLMP Wireless Localization Matching Problem
MLMatch Maximum Likelihood Matching
MLRefine Machine Learning based Refining technique
LEMOn Localization Employing a Mobile unit
LEMOn-M LEMOn for the wireless localization matching problem

1.6 List of Notations and Symbols

N Gaussian distribution
N (0, σ2) Gaussian distribution with 0 mean and σ2 variance
x a vector
|x| absolute-value norm of x
∥x∥ Euclidean norm of vector x
≈ approximate
X ∼ N random variable X has the probability distribution N∑

summation∏
product

R real numbers
∀ for all
A ⪰ B A−B is a positive semidefinite matrix
lg log10, logarithm to base 10
ln loge, natural logarithm

P0 reference power
η path loss exponent
ni the i-th wireless node
r an RSSI value (in dB microwatt)
ri,j RSSI value between nodes ni and nj

d a distance (in meter)
ri,j separation distance between nodes ni and nj

pi′ the i′-th position
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X a random variable
FX complementary cumulative distribution function of X
A a set
A the number of elements in set A
V a two-dimensional domain
V area of domain V
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Chapter 2

Investigation of Wireless Localization

Systems and Techniques

The previous chapter illustrates great opportunities for wireless localization used
in IoT. It also discusses major requirements on developing localization systems
for IoT. This chapter reviews existing localization systems and techniques. By
discussing their advantages and disadvantages, we derive localization techniques
appropriate for many IoT devices. This enables us to focus on particular tech-
niques to develop our localization systems presented in the next chapters.

This chapter is organized as follows. In Section 2.1, we introduce an overview
of state-of-the-art wireless localization systems. In Section 2.2, we present a
review on major measurement Radio Frequency measurement techniques. In
Section 2.3, we introduce major RSSI-based location estimators. In Section 2.4,
we discuss major sources of localization error, as well as a well-known lower bound
on the error. Finally, Section 2.5 concludes the chapter.

2.1 Wireless Localization Systems

This section introduces an overview of state-of-the-art wireless localization sys-
tems, which is shown in Table 2.1.4. We focus on the Radio Frequency based
localization systems.

2.1.1 Global Positioning System

The Global Positioning System (GPS) [16] is a navigation system to estimate the
location of an object that connects to a cellular network. It performs well in many
outdoor environments. However, it does yet not work in indoor environments
because it relies on Time of Arrival (ToA) measurement technique that disallows
the presence of obstacles, e.g. walls, between the satellite and the object. GPS,
thus, is infeasible for indoor localization systems. Moreover, a GPS module
embedded or attached to each IoT device adds significant production costs and
power requirements (about 30mA at 3.3V). Due to constraints on energy and
cost in many IoT systems such as wireless sensor networks (WSNs), GPS is not
suited for those systems.

2.1.2 Ultrasound Based Localization System

An Ultrasound-based localization system estimates the position of an object
through ultrasound signals emitted from the object to multiple location-known
receivers [17]. It makes use of the Time of Flight (ToF) of the ultrasound signals
from the object to each receiver to calculate the distance between them. Then the

11



position of the object is estimated through these distances and known-locations
of receivers. Ultrasound signals cannot travel through walls but reflect off most
obstructions. Ultrasound-based localization in indoor systems is termed as high
accuracy systems having centimeter level location accuracy due to the slow prop-
agation speed of signals, which is about 340 m/s. However, these systems require
specific hardware, i.e. ultrasonic transducers, which are not always equipped with
ordinary IoT devices, especially cheap wireless sensor nodes.

2.1.3 Infrared Radiation Based Localization System

Infrared Radiation (IR) localization systems are one of the most common local-
ization systems, which make use of the scanning sweep method [18]. They use
infrared light pulses to locate objects in indoor. Typically, there are IR land-
marks deployed at many places in a building. When an IR tag or sensor pulses,
it is read by the IR landmarks. Then, the position of the IR tag is determined
using line-of-sight (LoS) pulses and known locations of the landmarks. The main
advantage of IR based systems is that the devices are small, lightweight, and
easy to carry out. However, the IR based indoor system has expensive system
hardware and maintenance cost. Similar to ultrasound localization systems, IR
based localization systems require specific hardware, i.e. IR emitter and receiver,
thus being inappropriate for many IoT systems.

2.1.4 Radio Frequency Based Localization System

Radio Frequency (RF) localization systems are the most common localization
systems for IoT networks, which make use of properties of wireless signals [19].
Wireless devices in a network system send signals to each other. A localiza-
tion system uses either Received Signal Strength Indicator (RSSI), Time of Ar-
rival (ToA), or Angle of Arrival (AoA) of these signals to determine positions of
location-unknown devices. We will discuss detailed properties of these measure-
ment techniques in Section 2.2. The main advantage of RF based systems is to
determine the position of almost every wireless devices without installing extra
software or embedding extra hardware. Beside this, signal strength based systems
do not require line-of-sight (LoS). Therefore, RF-based localization techniques are
suitable for almost IoT networks. The main disadvantage of RF based systems
is, however, low accuracy. Signal attenuation of the static environment like a
wall, furniture, and movement of people caused large localization error. We will
further discuss advantages and limitations of RF-based localization techniques in
Sections 2.2 and 2.4.

2.2 Measurement Methods Used for RF Based Localization

A Radio Frequency (RF) based wireless localization system based on various
measurement methods. This section presents a review of major measurement RF
measurement techniques as shown in Table 2.2. Our main focus is put on the
Received Signal Strength Indicator (RSSI) measurement techniques.

There are four major measurement methods, including Angle of Arrival (AoA)
measurements, propagation time measurements, Received Signal Strength Indica-
tor (RSSI) measurements and connectivity measurements [20]. Table 2.2 summa-
rizes the characteristics of these measurements. As every measurement method
has advantages and disadvantages, appropriate methods should be chosen con-
sidering the network architecture, wireless hardware, and requirements of target
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applications. The remainder of this section briefly discusses these techniques and
their limitations in different IoT applications.

2.2.1 Angle of Arrival Measurements

The Angle of Arrival (AoA) measurement method refers to the technique for es-
timating the direction of propagation of a radio-frequency wave incident on an
antenna array or determined from maximum signal strength during antenna rota-
tion [21]. It is also known as the bearing measurement or the direction of arrival
measurement. The AoA measurement allows us to calculate the angle at which
the signal arrives from a target node, i.e. the transmitter, to an anchor node,
i.e. the receiver. Then, the target node is likely to lie in the straight line having
a certain angle from the anchor node. Thereby, the locations of target nodes
can be estimated using at least two anchor nodes. A small error in measurement
could cause a large localization error. Measurement is further sophisticated by
the presence of the multi-path effect of the deployed environment. A multi-path
component from the transmitted signal may appear as a signal coming from an
entirely different direction and consequently causes a very large error in measure-
ment accuracy [22]. In addition, using NLoS measurements, which often appear
in environments having many obstacles, as input in the localization, a great ad-
ditive localization error will arise [23]. Therefore, the AoA measurement method
is of limited interest in the localization of IoT networks and consequently being
an inappropriate choice of localization measurements.

2.2.2 Propagation Time Measurements

Propagation time measurement methods refer to the technique for estimating
the time of propagation of a Radio Frequency signal traveling between two de-
vices [24]. These methods can be divided into two categories: Time of Flight
(ToF) measurement methods and Time Difference of Arrival (TDoA) measure-
ment methods [25].

Time of Flight

Time of Flight (ToF) uses the signal’s travel time from a transmitter, which is
usually a target node, to a receiver, which is usually anchor node, to measure the
distance between them [26]. Given flight time t, the distance between the two
wireless nodes can be calculated by d = c× t, where c is the speed of RF signal
(approximately equals to the speed of light, 3 × 108 m/s). In order to properly
localize with ToF, there must be at least three anchor nodes. When the distances
from different anchors are known, the location of the target can be determined
using either multilateration methods, maximum likelihood methods, or least-
squares methods [25], which estimate the position of a target node from distance
measurements to known anchor nodes. ToF can be calculated using either one-
way Time of Arrival (ToA) or two-way ToA. One-way ToA measures the Time
of signal pulses transmitted by the transmitter arrival at receivers to determine
their ToF. It, therefore, requires perfect synchronization between the target node
and anchor nodes. This technique is more common in cellular networks since
the target nodes are typically synchronized to anchor nodes, i.e. base stations.
On the other hand, two-way ToA measures ToA of signal pulses from a node to
another node and back to determine the ToF of these signals. Therefore, it does
not require synchronization between nodes. However, the main disadvantage of
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this method is that signal pulses need to be sent consecutively between nodes
which may cause latencies for applications where devices move quickly.

Time Difference of Arrival

Time Difference of Arrival (TDoA)-based localization techniques use a hyperbolic
method to estimate the location of a target node [27]. Similar to ToF techniques,
TDoA uses the travel time from a transmitter, which is usually a target node,
to receivers, which are usually anchor nodes, to measure distance. The basic
idea of these techniques is to estimate the location of the transmitter by means
of the difference in arrival time of the signal at separated multiple receivers. In
order to calculate the time difference, the synchronization between the receivers is
required [28]. However, the synchronization between the transmitter and receivers
is not required because TDoA techniques do not use the distance between them.

Although the principle of time based localization is simple, measuring ToF,
TDoA for wireless signals is extremely challenging in various dimensions. Since
the speed of RF signals is extremely fast, i.e. one nanosecond translates to 0.3
meter, a time based localization system requires fine resolution of the timestamps.
Two mostly used technologies for ToF systems are Ultra Wide Band (UWB)
impulse [29] and Direct-Sequence Spread Spectrum (DSSS) [30], which provide
very fine time resolution. Besides this, the localization system need to process the
delay introduced by the hardware. In addition, large errors occur when the Line
of Sight (LoS) signals are undetectable [31]. Due to the these challenges, ToF,
TDoA based localization techniques are inappropriate for many IoT systems, for
instance systems that use only ordinary low-cost wireless hardware or systems
that require low-power consumptions.

2.2.3 Received Signal Strength Indicator

Received Signal Strength Indicator (RSSI) uses the received power level of a
signal sent from a transmitter, which is measured at the receiver, to determine the
distance between them. An RSSI value, which is a measurement of the received
signal power, is available in most of the wireless receivers. It can be used for
distance estimation due to the property of signal attenuation over distance [32].
Therefore localization of unknown target nodes can be realized by means of RSSI
measurements. For instance, in free space propagation, the relationship between
an RSSI value r and transmission distance d is expressed through Friis free-space
propagation model as follows [33].

r =
PtGtGrλ

2

(4π)2d2
, (2.1)

where Pt is the transmitted power, Gt is the transmitted antenna gain, Gr is the
receiver antenna gain and λ is the wavelength of the transmitter signal in meters.
However, this equation is an over-idealization. In practice, the signal attenuation
due to path loss is often more complicated than that suggested by (2.1) due to
surrounding environments. For instance, the singular path loss function in (2.1)
which diverges at d = 0 can replaced by multi-slope and non-singular alternatives
in some specific environments [34].

In the following, we introduce two representative propagation models that are
used in this dissertation.
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Log-Distance Path Loss Model

The log-distance path loss model, which is an extension to Friis free space model,
is widely used and adopted by the scientific community [35]. While Friis model is
limited to free space without any obstruction LoS path between the transmitter
and the receiver, log-distance path loss model is a representative propagation
model for most environments [35]. Received power observed at the receiver,
denoted as r, is modeled as follows (in dBm).

r = P0 − 10η log10(d) +X (2.2)

where d is the separation distance in meter between the transmitter and the
receiver, P0[dBm] is the reference power in dB milliwatts at the reference distance
of 1 meter from the transmitter, η is the path loss exponent that measures the
rate at which the received signal strength decreases with the distance. P0 is
environment and hardware dependent, while η is environment dependent. For
instance, the value of path loss exponent η depends on the measured environment.
For instance, it is approximately 2 in free space, and from 3 to 5 in shadowed
urban cellular radio [36]. X is a random variable characterizing multi-path fading,
and shadowing effects, etc. X is often assumed to follow a zero-mean log-normal
distribution, namely Gaussian distribution in dB. In other words, X ∼ N (0, σ2),
where σ2 is the variation of random variable X. Since this model is commonly
used in literature in most environments [35], we will use it in our analysis and
evaluation simulations in the rest of this dissertation.

Non-Singular Path Loss Model

While log-distance path loss model encapsulated in Formula (2.2) is commonly
used to describe the propagation loss, in practice, propagation is often more
complicated than the log-distance model. For instance, the singular path-loss
function in (2.2) which diverges at d = 0 can be replaced by multi-slope and
non-singular alternatives [34]. Besides, the fluctuation of the received power,
which is denoted as random variable X in (2.2) does not always follow Gaussian
distribution model. For instance, the short-term signal variation can be described
by several other distributions such as Hoyt, Rayleigh, Rice, Nakagami-m, and
Weibull [37]. In this dissertation, we employ the following model in our evaluation
simulations to verify the robustness of our proposed localization methods. In
this model, propagation path loss follows a non-singular model and the random
variable follows a Rayleigh fading model. The RSSI values r̄ relates to distance
d as follows.

r̄ = P0 − 10 log10(ϵ+ dη) + X (2.3)

where ϵ > 0, and X is a random variable with density

fX (x) = P[X = x] =
d

dx
P
[
10 log10 |h|2 ≤ x

]
= λ10x/10 exp

(
− λ10x/10

) ln 10
10

(2.4)

where we have assumed that the channel gain |h|2 is an exponentially distributed
random variable with mean 1/λ. Recent indoor measurements at 2.4GHz [38]
have confirmed the above model.

The major merits of RSSI-based localization techniques are the unnecessity
of specific hardware and low power consumption. However, the major demerits
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of these methods are the requirement of many prior measurements to be done
after performing localization because they are highly sensitive to environments.

2.2.4 Range-Free Localization Techniques

Range-free schemes realize localization through the attributes of network and de-
vices, for instance, network connectivity, geometric relationship, and hop count
between the target node and anchor nodes, etc [39, 40]. There are various ap-
proaches related to connectivity-based techniques such as Distance Vector hop
(DV hop) [39], centroid algorithm [19], multi-hop techniques [41], and Approxi-
mate Point in Triangulation test (APIT) [39]. In DV hop localization, a target
node first counts the minimum numbers or hop to the anchor nodes, then cal-
culates the distance to anchor nodes using the hop-count, and finally localizes
itself using estimated distances and known-location of anchor nodes. Centroid
algorithm, which is proximity based scheme, outputs the averaged coordinates of
multiple nearby anchor nodes as the coordinates of the target node. Multi-hop
techniques, which are centralized schemes, first compute a connectivity graph
and then use a Multidimensional Scaling (MDS) method to perform localization.
APIT makes use of the area-based scheme to perform localization by dividing the
are into triangular regions between anchor nodes. It then estimates each target
node’s position by determining whether the target node is inside or outside the
triangle regions.

Similar to RSSI-based localization techniques, the main advantages of range-
free schemes are the specific hardware-free and low power consumption. However,
the main disadvantage of these schemes is the low localization accuracy. Besides,
these techniques are only suitable for high-density multi-hop networks, i.e. large-
scale networks, but are inappropriate for one-hop networks.

In conclusions, RSSI-based localization techniques are well suited for many
IoT applications because they satisfy the requirements of many IoT systems on
using ordinary low-cost hardware, and on low power consumption. However, the
aforementioned disadvantages of RSSI-based techniques should be alleviated so
as to enhance applicability in practice.

2.3 RSSI-Based Location Estimators

An RSSI-based location estimator determines the geo-location of unknown wire-
less nodes (called target nodes) using RSSI values between nodes and provided
locations of known wireless nodes (called anchor nodes). This section presents
a review on major state-of-the-art RSSI-based location estimators shown in Ta-
ble 2.3. RSSI-based location estimators can be divided into two schemes: RSSI
profiling-based schemes and propagation model-based schemes. As every local-
ization method has advantages and disadvantages, appropriate methods should
be chosen considering the network architecture, environments, and requirements
of target applications.

2.3.1 RSSI Profiling-Based Localization Techniques

RSSI profiling-based techniques [42], which are also known as supervised tech-
niques or fingerprinting techniques, estimate the location of a wireless device by
means of the map of RSSI measurements. The map is built through either a
real-time phase by using some sniffing devices [43], or a priori measurements [42].
The target node, whose position is unknown, determines its position by referring
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to the RSSI map. It calculates RSSIs to anchor nodes and then matches the
position from the corresponding map by means of a supervised machine learn-
ing techniques such as k nearest neighbors (kNN) [44], support vector machine
(SVM) [45].

RSSI profiling-based techniques can alleviate multi-path shadowing, fading
and NLoS effects caused by obstacles, thus enhancing accuracy. However, the
main drawback of these methods is the requirement of expensive a priori mea-
surements to build an RSSI map. For instance, sniffing devices or reference points
should be distributed throughout the coverage area. Therefore, these techniques
are suited for localization in small indoor environments but are inappropriate for
many low-cost IoT applications such as applications that do not allow human
intervention.

2.3.2 Propagation Model-Based Localization Techniques

Propagation model-based techniques determine the location of target nodes by
means of the propagation model of wireless signals rather than search for the best-
fit location from the RSSI database. The distance between two wireless nodes can
be obtained from the RSSI value between them using a given propagation model
and the model parameters. The model and its parameters are often obtained
through a priori measurements.

A location estimator is then applied to determine the location of the target
nodes using estimated distances and known-locations of anchor nodes. There are
various location estimators, which can be broadly categorized into three groups:
Non-cooperative methods, cooperative methods, and mobility-assisted methods
[46] [47, 48]. In non-cooperative localization, distance measurements are made
only between anchor nodes and target nodes. Each target node estimates its
distance to the anchor nodes using measured RSSI values, then use localization
algorithm such as multilateration [49] to locate itself. These methods are suitable
for the target tracking problem, or server-client network models.

Cooperative localization methods, where distance measurements between tar-
get nodes are also made, estimate all node positions simultaneously rather than
localizing each target node individually. These methods enhance localization
accuracy compared to non-cooperative techniques as they use more measure-
ments. These methods are, therefore, more suitable for wireless sensor mesh net-
works [50]. There are numerous localization algorithms such as Multidimensional
Scaling (MDS) [51], Semidefinite Programming (SDP) [52], stochastic optimiza-
tion (e.g. Simulated Annealing (SA) [53]), etc. On the other hand, mobility-
assisted localization methods use a wireless mobile unit, which is aware of its lo-
cation (e.g. equipped with GPS), to assists the location-unknown wireless nodes
in localizing themselves [47, 48]. A mobile unit could be an Unmanned Aircraft
Vehicle (UAV), a drone or a ground vehicle, etc. A wireless node could be a
wireless sensor node or any device that equipped with a wireless hardware. A
wireless node is often assumed having a fixed position, i.e. its position does not
change frequently. These mobility-assisted localization methods are advanced
to the aforementioned localization methods that reliable inter-node distance in-
formation is hard to obtain [48]. However, obtaining accurate positions of the
mobile unit is a big challenge. The main advantage of propagation model-based
techniques is that they do not require a prebuilt RSSI map, thus reducing man-
ual cost. However, these techniques encounter the following challenges. First, in
practice, RSSI values often do not strictly follow a specific propagation model.
These values fluctuate due to the surrounding environments, especially those hav-
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ing irregular obstacles inside. This induces inaccuracy on distance measurement.
Second, the estimation of model parameters is also a very difficult task. For in-
stance, the path loss exponent in the log-distance model formulated as (2.2) is
environment dependent, which is usually close to 2 for free space wireless propa-
gation and from 3 to 5 in shadowed urban areas [36]. Besides this, the reference
power, P0 is a function of the calibration of both the transmitter and receiver.
Transmitted powers and received powers vary from device to device. This is even
truer in IoT systems where each device is equipped with a different type of wire-
less hardware. Wireless nodes might be designed to measure and report their
own calibration data to each other. This, however, complicates the hardware de-
sign. Consequently, to obtain accurate model parameters, a priori measurements
are often conducted at the environment of interest [20]. This process raises the
manual cost and is challenging when wireless nodes are deployed in inaccessible
areas such as post-disaster areas.

2.4 Understanding Localization Error of RSSI-Based Localiza-
tion

The previous section showed that propagation model-based localization tech-
niques are suitable for most WSNs, which are crucial parts of IoT. This section
describes major sources of localization error and introduces the famous Cramer-
Rao lower bound of localization error covariance.

2.4.1 Major Sources of Error

In practice, multi-path fading and shadowing are two main factors caused local-
ization error. Since the distance between a pair of wireless nodes is typically
unchanged, multiple measurements between them may not reduce these effect
unless using specific hardware or techniques. For instance, multiple antennas can
reduce the effect of shadowing [54], a spread-spectrum method can reduce the ef-
fect of frequency-selective fading [50]. However, an ordinary wireless node is not
always equipped with those hardware devices. Typically, the standard deviation
of X, denoted as σX , (cf. (2.2)) which characterizes the above effects, is as low
as four and as high as 12 [50]. This value causes large ranging error, which is
illustrated through the following calculation.

A Ranging Method and Ranging Error

Using the log-distance path loss model described by Formula (2.2), the distance
between the transmitter and the receiver can be estimated via the inversion of
the formula as follows.

d̂ = 10
P0−r
10η (2.5)

Assuming that X ∼ N (0, σ2
X), the root mean squared ranging error εX due to X

can thus be calculated as follows.
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εX = (E[(d̂− d)2])1/2 =
(
E(d2(10

X
10η − 1)2)

)1/2
= d

[ ∫ ∞

−∞

1√
2πσ

e
−X2

2σ2 (e
X ln 10
10η − 1)2dX

]1/2
= d

[ 1√
2πσ

(
e
(
√
2σ ln 10
10η

)2
∫ ∞

−∞
e
− 1

2σ2 (X− 2σ2 ln 10
10η

)2
dX

− 2e
( σ ln 10
10

√
2η

)2
∫ ∞

−∞
e
− 1

2σ2 (X−σ2 ln 10
10η

)2
+ e−

X2

2σ2 dX
)]1/2

= d
[
e
(
√

2σ ln 10
10η

)2 − 2e
( σ ln 10
10

√
2η

)2
+ 1

]1/2

(2.6)

Thus ranging methods (2.5) are subject to errors that increase exponentially with
the signal fluctuations. For instance, considering two nodes with a separation
distance of 100m, path loss exponent η = 2, when σX = 3, σX = 6 and σX = 12
the expectation of the instantaneous distance estimation error is averagely 38 m,
102 m, and 642 m, respectively. In another environment, η = 3, and σX = 10,
the average error is around 125 m.

2.4.2 Cramer-Rao Lower Bound of Localization Error Covariance

As the wireless localization problem is formulated as a parameter estimation prob-
lem, the localization error is often analyzed through estimation theory. Cramer-
Rao Lower Bound (CRLB) [55] is the most famous estimation technique. We
briefly introduce the intuition of CRLB analysis which is detailed in [50].

To calculate a CRLB, we need the statistical model of the random measure-
ments. We denote the model by g(Y |θ), where Y is the random measurement
and θ are the parameters to be estimated from the measurements. Any unbiased
localization estimator θ̂ must satisfy the following.

Cov(θ̂) ≥ [E{−▽θ (▽θ ln g(Y |θ))T }]−1 (2.7)

where Cov(θ̂) is the covariance of the estimator, E[·] is expected value, ▽θ is the
gradient operator of the vector θ, superscript T is transpose, and ln g(Y |θ) is the
log-likelihood function.

The random measurements Y is often characterized by the random variable
X in (2.2).

The CRLB for RSSI-based wireless localization mainly depends on the fol-
lowing factors:

• Positions of the wireless nodes,

• Characteristic of the measurement environment, i.e. the path loss exponent
η, and

• Standard deviation of the measurement noise σ.

The CRLB analysis suggests that for a certain deployment of a network sys-
tem, the lower bound on error covariance is essentially related to the ratio η/σ,
where η and σ are, respectively the path loss exponent and the standard devia-
tion of the random variable X (cf. Equation (2.2) ). Intuitively, if σ is large, i.e.
the log-likelihood function is broad, then the variance of the localization error is
large. Conversely, if σ is small, i.e. the shape log-likelihood function is sharp,
then the variance of the localization is small.
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CRLB analysis gives insights on studying parameters elements that affect
the localization error. Therefore, it is useful to optimize the settings of the
IoT network in order to achieve the best localization accuracy. CRLB analysis,
however, has some limitation. First, it can only bound the variance of localization
error after the localization has been executed. Second, it does not consider the
inaccuracy of propagation model parameters, e.g. parameters P0, η. It, thus, does
not return the mean error of the estimator, especially when estimated values of
these parameters are incorrect. In practice, however, it is crucial to estimate the
localization error before the execution of the location estimation, considering all
possible inaccuracies.

2.5 Conclusions

In this chapter, we have presented a brief overview of wireless localization sys-
tems and techniques with the focus on techniques that are suitable for most IoT
devices. We first discussed major state-of-the-art localization systems, including
GPS, ultrasound-based systems, Infrared Radiation (IR) based systems, and Ra-
dio Frequency (RF) based systems. Based on their characteristics, we concluded
that RF-based localization is suitable for numerous IoT devices. We then intro-
duced RF measurement techniques and their properties including Angle of Arrival
(AoA), Time of Flight (ToF), Time Difference of Arrival (TDoA), Received Sig-
nal Strength Indicator (RSSI), and range-free techniques which are often used to
realize wireless localization. Since almost all IoT devices equipped with ordinary
wireless hardware are able to measure RSSI information and connectivity infor-
mation, range-free localization and RSSI-based localization is low-cost compared
to methods using AoA or time-based measurements. The main disadvantage
of these low-cost methods is their low localization accuracy. In the next two
chapters, we will exploit low-cost localization through two different case studies
on localization: one uses connectivity information and the other one uses RSSI
measurements.
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Chapter 3

Exploiting low-cost Localization:

Maximum Likelihood-based Multi-hop

Localization in Wireless Sensor Networks

The previous chapter introduces existing localization systems and techniques.
Besides some localization techniques that can achieve high accuracy using spe-
cific hardware and technologies, there are low-cost localization methods that do
not require any specific hardware or technologies. This chapter and the next
demonstrate that localization techniques that do not require these hardware de-
vices and technologies can achieve accuracy that meets the application needs.
This validates the practicality and the applicability of low-cost localization tech-
niques. This chapter illustrates that a range-free localization technique, which is
known as low-accurate technique and is a low-cost technique, can produce coarse
localization. Besides, the next chapter demonstrates that another low-cost lo-
calization techniques using RSSI can achieve accuracy that meets some specific
localization needs.

This chapter presents the validity of low-cost localization through a proposed
localization algorithm called kHopLoc which stands for k hop localization. kHo-
pLoc is a maximum-likelihood-based multihop localization algorithm for use in
Wireless Sensor Networks (WSNs) that is strong in both isotropic and anisotropic
network deployment regions. Compared to other multi-hop localization algo-
rithms, the proposed kHopLoc algorithm can provide coarse locations of target
nodes, and achieves higher accuracy in varying network configurations and con-
nection link-models.

The rest of this chapter is organized as follows. In Section 3.1, we introduce
multi-hop localization techniques and related state-of-the-art works. In Section
3.2 we describe the network and system model. In Section 3.3 we present the de-
tails of our proposed kHopLoc algorithm. In Section 3.4 we evaluate the perfor-
mance of kHopLoc through numerical simulations. Finally, Section 3.5 concludes
the chapter.

3.1 Introduction

Wireless Sensor Networks (WSN) are composed of a set of spatially distributed
wireless nodes, with sensing and transceiving capabilities, tasked with monitor-
ing physical or environmental conditions, such as temperature, sound, pressure,
radiation, etc. Data collected is then wirelessly passed through the network to
a main gateway for storing and processing. WSNs are essential for applications
such as environmental monitoring, target tracking, disaster relief and rescue oper-
ations [56,57]. Nowadays, they are also becoming an indispensable part of smart
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technologies with applications in smart cities and smart buildings [58].
In view of the Internet of Things future vision, almost every device will soon

have transceiving capabilities, be packed with sensors, connected to a network
and producing huge data sets. As is often the case however, location information
is vital for the insightful processing of this data. GPS modules may be embed-
ded to each sensor node enabling it to autonomously discover its location both
accurately and on demand, however this does not come without a cost to the
manufacturer (and hence the user) and the node’s power source - about 30mA at
3.3V. Moreover, in some extreme instances such as sand storms and blizzards, or
simply when operating indoors, satellite signals cannot reach the sensor nodes.

To alleviate such problems, cooperative schemes have been developed to esti-
mate the locations of sensor nodes with the assistance of nodes which have perfect
location information [50,59]. The nodes whose locations are known and the nodes
whose locations are unknown are usually called anchor nodes and target nodes
respectively and the localization techniques can be broadly classified into two
schemes: range-based and range-free schemes. Range-based schemes [60] assume
that the distance or angle between anchor nodes and target node can be mea-
sured based on signal measurements such as received signal strength indication
(RSSI), Time of Arrival (ToA), or Angle of Arrival (AoA). In large-scale WSNs
where signal range is limited however, range based schemes typically require a
lot of anchor nodes to produce accurate results. On the other hand, range-free
schemes [39] estimate inter-node distances based on hop count information, thus
all target nodes can be localized with fewer anchor nodes.

Conventional range-free approaches [61–63] usually consider isotropic WSNs
where sensor nodes are uniformly distributed in a regular region (e.g. a square do-
main), thus the distance between two nodes is assumed to be proportional to their
hop count. The celebrated DV-hop algorithm [61] estimates the average one-hop
distance, and then multiplies this by the hop count to at least three anchor nodes
before trilaterating. Although improved DV-hop algorithms have been suggested
in the literature [62,63], performance gains have been limited, even more so when
used in anisotropic WSNs where factors such as irregular radio propagation, ob-
stacles, nonuniform node distributions degrade the hop-distance proportionality
assumption. DV-hop-like variants which are anisotropic network compatible have
also been proposed [64,65], the main idea usually being to reduce the estimation
error by reducing the effect of unreliable anchors. Thus, these algorithms require
an increased number of anchor nodes, possibly as many as range-based schemes.
Other approaches [66, 67] attempt to use approximate shortest paths to reduce
the effect of anisotropic networks, yet [67] under performs in irregular-shaped re-
gions as shown in [66] which comes with large communication and computational
overhead.

We propose a maximum likelihood based multihop localization algorithm called
kHopLoc which achieves good performance in both isotropic and anisotropic
WSNs. The algorithm first runs a training phase during which a Monte Carlo
simulation is utilized to produce accurate multihop connection probability density
functions (described later). In its second phase, the algorithm constructs likeli-
hood functions for each target node based on their hop counts to all reachable
anchor nodes which it then maximizes to produce localization information. Un-
like most DV-hop algorithms which use only first order statistics, the proposed
kHopLoc algorithm generates and uses the full multihop density distributions
(even for anisotropic networks) thus constructing accurate likelihood functions
and in turn localization results. In addition, our algorithm’s communication cost
is about half of most DV-hop-like algorithms and computational cost is much
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smaller than [66] for example.

3.2 Network Definitions and System Model

Consider a WSN of N total sensor nodes, M of which are anchor nodes (i.e. have
perfect location information). The remaining N−M sensors are target nodes (i.e.
locations are unknown). All nodes are randomly distributed in some subset of R2

and are equipped with isotropic antennas. Due to phenomena such as fading and
multi path, the communication model adopted may not be well described by the
simplistic disk model (where two nodes connect if they are within a finite range of
each other). Instead, we adopt a random connection model where nodes connect
with a distance dependent probability while also accommodating for environmen-
tal parameters such as path loss exponent [68]. Namely, we consider two such
communication models: Rayleigh fading communication model and Quasi Unit
Disk Graph (QUDG) communication model [69]. Moreover, we consider isotropic
networks in which the sensor nodes are distributed in a square, and anisotropic
networks where sensor nodes are deployed in irregular shaped regions.

3.2.1 Rayleigh Fading Communication Model

The pair connectedness function H defined as the probability that two nodes are
directly connected. One way of formulating H is thus the complement of the
information outage probability with respect to a mutual information threshold
ϑ. For a narrow band transmission subject to small-scale fading

H = P (log2(1 + SNR ·X) > ϑ) = FX

(
2ϑ − 1

SNR

)
, (3.1)

whereX is a random variable defining the gain of the wireless channel between the
two nodes, FX is its complementary cumulative distribution function (CCDF),
and SNR is the long-term average received signal-to-noise ratio. Since the nodes
are equipped with isotropic antennas, the SNR ∝ d−η, where d is the distance
between the two nodes, and η is the path loss exponent. Adopting a Rayleigh
fading model for the small-scale fading gain X ∼ exp(1) implies that the CCDF
of X is written as FX(x) = exp(−x), and the pair connectedness function can be
expressed as

H = exp(−βdη), (3.2)

where β is a constant depending on the node transmission power, wavelength,
information threshold etc. and can be understood as an effective communication
range r0 = β−1/η. Notice that in the theoretical limit of η → ∞, we have that
r0 → 1 and H converges to the unit disk model. Without loss of generality, we
will henceforth set β = 1.

3.2.2 Quasi Unit Disk Graph Communication Model

In the QUDG communication model [69], the probability H that two nodes a
distance d apart are directly connected is

H =


1 if d < dmax/DOI
DOI(dmax−d)
dmax(DOI−1) if d ∈ [dmax/DOI, dmax]

0 if d > dmax/DOI

(3.3)
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Figure 3.1: Plots of the pair connectedness function H using (a) the Rayleigh
fading communication model (3.2) for parameters β = 1 and η = 2, 3, 4, and (b)
the Quasi Unit Disk Graph communication model (3.3) for parameters dmax = 1
and DOI = 2, 3, 4.

where dmax > 0 and DOI > 1 are the maximum successful transmission distance
and the degree of radio irregularity respectively.

During computer simulations, the network graph edges are formed if a random
number ζ ∈ [0, 1] is less than the calculated H of the respective communication
model. Two nodes sharing a successful link are called one-hop neighbours. More
generally, two nodes with the minimum hop count of k ≥ 1 (measured along the
shortest path) are called k-hop neighbours. The two pair connectedness functions
are plotted in Fig. 3.1.

3.3 KHopLoc Algorithm Description

Our proposed kHopLoc algorithm is composed of three simple steps. In the
first step, each target node counts the minimum number of hops to each anchor
node. In the second step, the conditional probability density function is generated
for the probability density function p(d|k) of the Euclidean inter-node distance
d given hop count from target to anchor node equal to k = 1, 2, . . .. This is
performed locally at one or several nodes using Monte Carlo simulations. Finally,
in the third step, each target node calculates its position by maximising the joint
conditional density function to all reachable anchors. We now describe each of
these steps in more detail.

3.3.1 Step 1: Minimum Hop-Count to Anchor Nodes

In this initial step, a classic distance vector exchange routine takes place (as in
most DV-hop type localization algorithms [61]) where all target nodes in the
network get distances, in hops, to their reachable anchors i.e. at most K-hops
away. This can be initiated by anchors nodes which broadcast beacons to be
flooded throughout the network containing the anchor’s location with a hop-count
value initialized to one. Each node maintains a table containing the coordinates
(xi, yi) of anchor node i and the minimum hop distance to it hi, and exchanges
such updates only with its immediate neighbours.

3.3.2 Step 2: Multihop Connection Probability Density Function

The conditional probability density function p(d|k) of inter-node distance d given
the minimum hop count k, is to the best of our knowledge the necessary ingre-
dient which differentiates our algorithm from all others. From Bayes theorem we
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have that p(d|k) = p(k|d)p(d)/p(k). We may therefore calculate p(d|k) indirectly
through p(k|d)p(d) and p(k). Since p(k) is independent of the inter-node distance,
it does not affect the maximization calculation which follows and so will later be
ignored.

The conditional probability of the target-to-anchor hop count being k, given
that they are a distance d apart is given by p(k|d) and can be approximately
formulated in closed form as given by [9, 70]. Similarly, the probability distribu-
tion of the distance between two random points p(d) can be formulated as in [71].
However, the probability density function in [70] consists of multiple integrals and
assumes very dense networks, making it difficult to calculate, even more so by the
sensor’s weak processing unit. Therefore, in order to make progress we propose
here a method for producing the probability density function p(k|d)p(d) and then
flooding the network with the required fitting parameters. First, Monte Carlo
simulations are employed to calculate the discrete values of p(k|d)p(d), which are
then fitted into a continuous functions.

Monte Carlo Simulation

LetK < N andD ≫ 1 be the maximum allowed hop count and maximum allowed
Euclidean distance between a target and anchor node respectively. Roughly, D
should be at least larger than Kdmax or K/β. Partition the disk of radius D
into L concentric shells (like an archery target) of widths 2δ = D/L indexed
by l = 1, 2 . . . L such that each shell has central radius of dl = δ(2l + 1). We
want to calculate the value of p(k|dl)p(dl) for each k = 1, 2, . . .K and each dl
with l = 1, 2 . . . L. The Monte Carlo simulation can now be performed at one or
more sensor nodes (preferably ones with significant processing power) or a central
server e.g. the gateway as follows:

(1) Generate random coordinates with intensity ρ = N/A inside some predefined
region. If the total number of nodesN and the WSN deployment region shape
and area A are known then this is easy. If the WSN region shape is unknown,
then a large square region can be used - it is shown that this does not affect
the results significantly (see Fig. 3.5). If the density of nodes is unknown,
then it can be estimated by the method described below in subsection 3.3.2.

(2) Generate communication links between nodes based on their mutual distances
and appropriate connection probability function H (e.g. (3.2) or (3.3) or
other).

(3) For each k ∈ [1,K] and l ∈ [1, L], calculate the discretized cumulative prob-
ability p(k|dl)p(dl) ≈ P (k|(dl − δ < d ≤ dl + δ))P (dl − δ < d ≤ dl + δ)/2δ.

(4) Repeat steps (1) - (3) above several times in a Monte Carlo fashion in order
to refine the estimated p(k|dl)p(dl).

Fitting: For each k ∈ [1,K], fit the discrete probability distribution p(k|d)p(d)
to the following function of d

p(k|d)p(d) = exp(−A(k)(d−B(k))2 + C(k)), (3.4)

where A(k), B(k), C(k) are functions of k, e.g. polynomials of degree ℘ ≫ 1. In
the simulations that follow we use ℘ = 4. The Gaussianity of (3.4) was inspired
by the extensive simulations results and analysis presented in [72].
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Density Estimation

This section describes a simple method of estimating node density ρ, a prerequi-
site for performing the Monte Carlo simulations and building the said distribu-
tions. In a uniformly distributed network, the node density is defined as ρ = N/A,
where A is the WSN deployment region area, thus it can be approximated by the
average number of one-hop neighbours Ne divided by it’s average communica-
tion area Ae. The former can be simply determined by each sensor counting the
number of 1-hop neighbours from each node while the latter can be calculated by

Ae =

∫ 2π

0

∫ ∞

0
rH(r)drdθ, (3.5)

where H(r) is the pair connectedness function of two nodes whose relative dis-
tance is r (see (3.2) and (3.3)). The estimated density ρe is then sent to the
nearest processor which performs an average to obtain a refined estimate.

3.3.3 Step 3: Maximum Likelihood Based Multihop Localization

This subsection describes our proposed kHopLoc algorithm utilizing maximum
likelihood methods. First we introduce the likelihood function and then we ad-
dress a method to maximize it. Consider a target node X and let hi be the hop
count measure along the shortest path from X to anchor node i ∈ [1,M ]. The
likelihood function of X at the yet undetermined coordinate (x, y) is defined as

L(x, y) = p(x, y|h1, h2, ...hM ). (3.6)

It follows that the best estimate of the true location of node X is the value that
maximizes it’s likelihood

(x∗, y∗) = argmax
(x,y)

L(x, y). (3.7)

Assuming that the probability density functions p(x, y|hi) and p(x, y|hj) are mu-
tually independent for i ̸= j, equation (7.5) can be written as

L(x, y) =

M∏
i=1

p(x, y|hi) =
M∏
i=1

p(di|hi), (3.8)

where di =
√
(x− xi)2 + (y − yi)2 and (xi, yi) are the coordinates of anchor node

i. Invoking Bayes theorem p(di|hi) = p(hi|di)p(di)/p(hi) yields

L(x, y) =
M∏
i=1

p(hi|di)p(di)
p(hi)

. (3.9)

Substituting equation (3.9) back into equation (3.7) , we obtain

(x∗, y∗) = argmax
(x,y)

∏M
i=1 p(hi|di) ·

∏M
i=1 p(di)∏M

i=1 p(hi)
. (3.10)

Because p(hi) is independent of (x, y), the product in the denominator can be
eliminated from equation (3.10) such that

(x∗, y∗) = argmax
(x,y)

M∏
i=1

p(hi|di)p(di). (3.11)

29



(a) Isotropic network (b) Anisotropic network

Figure 3.2: Illustration of fixed anchor node locations.

Finally, substituting our fitted equation (3.4) into equation (3.11) gives the result

(x∗, y∗) = argmax
(x,y)

M∏
i=1

exp(−A(hi)(di −B(hi))
2 + C(hi))

= argmin
(x,y)

M∑
i=1

A(hi)(di −B(hi))
2.

(3.12)

The left hand side of equation (3.12) can be easily calculated using gradient
descent method or Newton method for example and can be performed by each
target node independently.

3.4 Performance Evaluation and Analysis

In this section, we demonstrate using computer simulations the effectiveness of
kHopLoc, and also compare to the original DV-hop [61] algorithm and a recent
improved variant [66] which we will refer to as the ASP algorithm for short. To
evaluate the performance of the kHopLoc in isotropic networks and anisotropic
networks, we deploy sensor nodes randomly in a 10 × 10 square-shaped region
(such that A = 100) and in a 10 × 10 C-shaped of width 2 (such that A =
52), where communication probabilities in isotropic networks and anisotropic
networks are assumed to follow Raleigh fading communication model and QUDG
communication model, respectively. In Rayleigh fading communication model,
we assume the path loss exponent to be η = 2 and parameter β = 1 in formula
(3.2). In the QUDG communication model, we assume the maximum connection
distance dmax = 1, and the degree of irregularity DOI = 1.5. Moreover, to study
the characteristic localization errors we simulate results in both isotropic and
anisotropic WSN deployment regions with variable a) anchor node positions (fixed
and random), b) number of anchor nodes, and c) node densities. Communication
and computation overhead costs are also compared and discussed.

3.4.1 Localization Error

Fig. 3.3 depicts the average localization errors of DV-hop algorithm and kHopLoc
by varying the number of anchor nodes and total sensor nodes in a square-shaped
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region under Rayleigh fading communication model. In all cases, the error based
on kHopLoc is significantly smaller than that of the DV-hop algorithm with per-
formance gains ranging between 20 and 40%. Generally, the average localization
error decreases with number of anchor nodes. Fixed anchor nodes (at strategic
locations as in Fig. 3.2(a)) in general provides better performance than random-
izing anchor nodes, especially when the number of anchor nodes is small. This is
clearly due to the controlled avoidance of overlaps between anchor nodes which
can lead to duplicate mutual information.

Fig. 3.4 illustrates two example network topologies (a sparse regime at N =
200, and a dense regime at N = 700), and highlights the localization error of
each node. There are exactly M = 13 fixed anchor nodes in all cases. The green
lines connecting the nodes and blue circles describe communication links and
localization errors in which the radius are proportional to the localization errors.
In kHopLoc (panels (a) and (c)), errors of nodes having few links tend to be big,
thus the average error decreases in the dense regime of N = 700. On the other
hand, in the DV-hop algorithm, localization errors of nodes near the border tend
to be significantly larger.

Fig. 3.5 depicts the average localization error of the DV-hop algorithm [63],
the ASP algorithm [66], and kHopLoc, for varying number of anchor nodes and
total sensor nodes in C-shaped anisotropic region under the QUDG communica-
tion model. In all cases, the error based on kHopLoc is smaller than the other
algorithms. Notice that there are two result curves for kHopLoc: when the den-
sity and shape of the deployment region are known (green curve), and when both
the density and shape of the region are unknown (purple curve). The performance
of the case when the region shape is known is better than the other case since
the Monte Carlo simulation phase of the algorithm over a known shape region
produces more precise distributions and thus results for the multihop connection
probability than when the region is assumed to be a square. Significantly, it is
worth noting that the average localization error due to kHopLoc continues to
decrease for the other two algorithms seems to saturate after 300 nodes. This
demonstrates the benefits of using the full statistical hop-distribution generated
during the first step of our algorithm (see section 3.3.2) rather than just first
order statistics such as the mean one-hop Euclidean distance.

Fig. 3.6 illustrates network topologies (a sparse regime at N = 200, and a
dense regime at N = 700), and highlights the localization errors of each node.
There are exactly 14 fixed anchor nodes in the anisotropic C-shaped WSN de-
ployment regions as shown in Fig. 3.2(b). The green lines connecting the nodes
and blue circles describe communication links and localization errors in which
the radius are proportional to the localization errors. Similar to isotropic net-
work, in kHopLoc,the main source of localization errors is due to nodes having
few one-hop links. The reason for this is that nodes with fewer links tend to
require a larger than average hop-count to reach anchors, thus making it diffi-
cult to estimate these node locations accurately. As can be seen, this improves
significantly in the dense regime. On the other hand, localization errors in the
other two algorithms seem not to improve with node density. The reason for this
is that these algorithms suffer from inaccurate inter-node distance estimations.

3.4.2 Overhead Analysis

This section discusses the communication and computational costs of the three
localizations algorithms under investigation: the DV-hop algorithm, the ASP
algorithm, and kHopLoc
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Computational Cost

For calculating location of one target node, DV-hop algorithm costs O(M8) if
using normal matrix multiplication. This cost comes from the matrix operations
necessary to estimated the least square error [62]. The ASP algorithm costs
consist of additional computation costs of O(∆) (where ∆ is the number of tagged
partitions for calculating Riemann sum) for calculating node density and M(M−
1)/2 · O(ϵ−3/2) for estimating distances between the target node and M anchor
nodes, where M(M − 1)/2 is number of compound shortest paths, and O(ϵ−3/2)
(in which ϵ is the upper bound of the norm of the gradient) is the number of
iterations of Newton method [73] for calculating the optimal central angles of the
virtual holes [66]. Consequently, the total computation complexity of the ASP
algorithm is O(M8 +∆+M2 · ϵ−3/2).

On the other hand, the cost of kHopLoc consists of Monte Carlo simulation
cost and the MLE localization cost. The former computational cost requires
generating the random network, finding the shortest k-hop paths and fitting.
Thus, the cost comes up to O(I ·N3+K ·L · ϵ−3/2), where I is number of Monte
Carlo iterations and O(N3) is the cost for calculating all-pairs shortest paths if
using for example the Floyd Warshall algorithm [74], and O(K · L · ϵ−3/2) is the
fitting cost (see (3.4)) if using Newton method. However, this computation can
be done just once at a central node (or some server e.g. at the gateway) and
then flooded through the network thus incurring an additional communication
cost of O(N). Or otherwise, it is done before deploying the sensor nodes and
then derived parameters (A(k), B(k)) are included into each sensor nodes, thus
no additional communication cost occurs.

The MLE cost is O(M · ϵ−3/2), where O(ϵ−3/2) is the number of iteration of
Newton method and O(M) is cost for calculating the value of function (3.12)
in each iteration. Therefore the total cost amounts to O(I · N3 + M · ϵ−3/2)
Obviously, the MLE localization cost is smaller than that of the ASP algorithm.

Communication Cost

The communication costs of the DV-hop algorithm and the ASP algorithm are
bounded by 2O (M(N −M)), where M and N −M are number of anchor and
target nodes respectively. This is because these algorithms perform flooding twice
- first for the minimum hop count estimation, and second to broadcast the average
one-hop distance.

The communication cost of kHopLoc however is due to the initial hop count
calculation giving O(M(N −M)) (i.e. similar to [67]). When the density ρ is
unknown, additional communication costs of 2O(N) can be incurred, in which
O(N) occurs when the nodes pass theirs 1-hop neighbour number to the central
node. After the central runs the Monte Carlo simulations and fits the said distri-
butions, it then broadcast the results (parameters A(k), B(k)) to all nodes, thus
costing another O(N).

3.5 Conclusions

We have proposed a maximum likelihood-based multihop localization algorithm
called kHopLoc for use in Wireless Sensor Networks (WSNs). The main advan-
tage of the algorithm is the use of a Monte Carlo initial training phase to gener-
ate the multihop connection probability density functions. These are then used
to build likelihood functions whose maxima estimate each target node location.
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Since the algorithm uses full statistical information for the multihop connection
probabilities, localization results are significantly (about 20−40%) more accurate
for both in isotropic and anisotropic networks. We have validated these results
through computer simulations and discussed how and why some localization er-
rors appear. Finally, we have discussed the communication and computational
costs of kHopLoc compared to conventional ones. Moreover, like most range-free
algorithms, kHopLoc can be used in conjunction with GPS and/or range-based
localization schemes to improve performance and energy consumption in WSNs.

We studied from this work that

• Coarse positions of wireless devices can be determined using the proximity
measurement technique, which is known as the lowest ranging accuracy
among radio frequency measurement techniques. This enables us to assume
that localization of wireless devices can be realized using RSSI measurement
techniques, which is known as providing better accuracy.

• The proposed kHopLoc enhances accuracy because it is provided full sta-
tistical information for the multihop connection probabilities, which is ob-
tained through an off-line training phase. This training phase is conducted
using simulation data and Monte Carlo simulation method, thus not requir-
ing extra data collection cost. We thus further extend this idea to improve
the accuracy of different localization problems, which is demonstrated in
Chapter 6.
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Figure 3.3: Average localization error of DV-hop and kHopLoc in isotropic net-
works with random target node locations. Top: N = 300 with random anchor
node locations. Middle: N = 300 with fixed anchor node locations as in Fig.
3.2(a). Bottom: M = 13 fixed anchor node locations and N ∈ [200, 700].
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Figure 3.4: Example isotropic WSN topologies and localization errors shown as
disks. In all cases there are M = 13 fixed anchor nodes as in Fig 3.2(a). Panels
(a) and (c) use kHopLoc and N = 200, 700 sensor nodes. Panels (b) and (d) use
DV-hop algorithm and N = 200, 700 sensor nodes. It is clear that kHopLoc has
smaller localization errors, particularly near the domain boundary.
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Figure 3.5: Average localization error of DV-hop, ASP, and kHopLoc in
anisotropic networks with random target node locations. Top: N = 300 with
random anchor node locations. Bottom: M = 14 fixed anchor node locations (as
in Fig. 3.2(b)) and N ∈ [200, 700].
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(a) kHopLoc, 200 nodes (b) DV-Hop, 200 nodes

(c) ASP, 200 nodes (d) kHopLoc, 700 nodes

(e) DV-Hop, 700 nodes (f) ASP, 700 nodes

Figure 3.6: Example anisotropic WSN topologies and localization errors shown
as disks. In all cases there are M = 14 fixed anchor nodes as in Fig 3.2(b). It is
clear that kHopLoc has smaller localization errors, particularly near the domain
boundary.
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Chapter 4

Exploiting Low-cost Localization:

Indoor Binary Localization

In the previous chapter, we demonstrate that low-cost localization techniques
that use ordinary wireless hardware can provide coarse locations of target wire-
less nodes. We also showe that a simple technique based on Monte Carlo simula-
tion, which does not increase extra cost, can improve localization accuracy. This
demonstrates the potency of low-cost localization. In this chapter, we illustrate
the applicability of low-cost localization through a new localization scheme called
WiLAD, which stands for Wireless Localization through Anomaly Detection.

WiLAD is a special case of wireless localization for scenarios where, instead
of absolute positioning of an object, only the information whether an object
is inside or outside of a specific area is required. This is motivated through
a number of applications including, but not limited to, a) security: detecting
whether an object is removed from a secure location, b) wireless sensor networks:
detecting sensor movements outside of a network area, and c) computational
behavior analytics: detecting customers leaving a retail store. The result of such
detection systems can naturally be utilized in building a higher level contextual
understanding of a system or user behaviors. Through experiments conducted in
a real store, we demonstrate that a simple and low-cost RSSI-based localization
technique can achieve satisfactory localization accuracy. Besides this, we propose
low-cost optimization methods to improve accuracy.

This chapter is organized as follows. In Section 4.1, we highlight related
works and motivate WiLAD through potential real-world applications. In Sec-
tion 4.2, we describe the system model, and related background. In Section 4.3,
we present the details of our proposed localization technique. In Section 4.4,
we propose a mathematical formulation for estimating the accuracy under some
assumptions, aimed at providing meaningful insights towards achieving optimal
accuracy. In Section 4.5, we propose optimization methods to improve the local-
ization accuracy. In Section 4.6, we evaluated the performance of WiLAD in real
environments and to validate our proposed optimization through experiments in
a real store environment. Finally, Section 4.7 concludes the chapter.

4.1 Introduction

Wireless localization, which has been of great interest over the past few years [20],
refers to extracting geo-location information of an object based on its wireless
signals to multiple known devices. There are numerous important applications,
particularly industrial applications, commercial environments, public safety set-
tings, everyday life and defense/security systems [75]. Solutions for deriving the
location information can be categorized into two groups as unsupervised methods
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and supervised methods [20]. Unsupervised methods also known as triangulation
methods estimate the distance from a number of known devices (anchors) and
multilaterate the location of target objects [76]. These methods are subject to
errors that are caused by various factors including noise, multi-path fading, shad-
owing and Non-Line of Sight (NLoS). Moreover these are sometimes costly and
time-consuming since model parameters need to be adjusted for specific environ-
ments. On the other hand supervised methods such as fingerprinting compare
signal features to a pre-generated database in order to identify the most likely
location of target objects [77]. Received Signal Strength Indicator (RSSI)-based
location fingerprinting is commonly used for this method. There are various
fingerprinting-based localization algorithms such as probabilistic methods [78], k-
nearest-neighbor (kNN), Neural Networks, Support Vector Machine (SVM) [79],
and Smallest M-vertex Polygon (SMP) [80]. These methods often perform bet-
ter than unsupervised methods, however they are computationally expensive and
time consuming since signal fingerprints are required to be collected in advance.

These localization methods provide absolute positions of target objects. How-
ever in some applications, the absolute positions are not always required. For ex-
ample, in some scenarios a target object is only required to be detected whether it
is inside or outside of a specific place. In security, it is crucial to detect whether
an object (for example an object that can transmit wireless signals such as a
smart-phone, a tablet) is removed from a secure location. In the context of cus-
tomer analytics (for example in retail), the main interests are in the number of
people entering or leaving the store and the time they spend purchasing/viewing
products. Such analytics can be enabled assuming that people have access to
wireless devices such as smart phones. With pre-designated zones in the store,
a more thorough and complete understanding of consumer behavior can be es-
tablished. For example, analysis of customers entering and spending time at a
particular section can be made where a new product has been recently launched.
Such localization systems can also find an application in the sensor networks do-
main where a sensor node is required to be detected if it goes out of its specific
(i.e. usual) area. The information can be used such as to detect when some
phenomenon happened (earth quake, landslide).... Such kind of applications mo-
tivate us to define and develop a new class of localization, WiLAD (Wireless
localization through Anomaly Detection) which classifies the target object into
two types of area: target area (i.e. inside) and non-target area (i.e. outside).
Due to the fact that the non-target area can be too large making data collection
practically infeasible, collecting training data in only the target area, which is
normally small, can significantly reduce data collection costs compared with con-
ventional fingerprinting methods in which training data for all classes is required.
Therefore, these methods cannot be directly utilized in our localization system
which requires only training data in one class. Besides, other information such
as locations of anchors and model parameters (particularly needed in the case of
unsupervised methods), are also not required, thus deployment requirements are
minimal.

In order to identify objects of a specific class amongst all objects, we approach
this with a one-class (or unary) classification mechanism. This is performed by
learning from a training set containing only the objects of that class [81]. Among
one-class classification methods, one-class Support Vector Machine (OC-SVM)
is known to outperform other methods in several datasets [81]. Therefore we
employ OC-SVM in our localization system. To the best of our knowledge, this
is the first such attempt to perform wireless localization.

Besides, other works related to improving localization accuracy, such as local-
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ization accuracy estimation [75], anchor placement optimization [82,83] has also
attracted significant attention in recent times. For example, [75] derive the bound
of localization accuracy for RSSI measurements. This gives a useful insight in to
localization performance and deployment issues of a localization system, which
could help in designing an efficient localization system. In [82,83], the authors set
out to find the optimal number and placement of the anchor nodes in a given area
for improving localization accuracy. These methods rely on real experiments or
simulations for specific environment (specifically requiring experiments or simu-
lations for each of the given areas) thus raising both the cost and complexity. We
derive approximation formulation of accuracy which utilizes the characteristics
of wireless signals as well as OC-SVM. Moreover, based on the formulation we
then propose a novel mathematical framework to find the optimal placement of
devices (anchor devices as well as target areas for target objects). This mathe-
matical formulation enables us to optimize device placement without performing
any costly experiment or simulation.

Our main contributions are summarized as following:

• Propose a method to estimate the detection accuracy.

• Propose methods to improve the accuracy including a novel method for
optimizing placement of devices.

• Validate proposed methods via numerical simulations as well as real exper-
iments.

4.2 Preliminaries

4.2.1 System Model

Consider a wireless network system of k anchors (here referred to as access points
or APs) positioning at a1,a2, ...,ak, and a target object normally moving or stay-
ing around an area called target area. The target object is equipped with a radio
transceiver, and broadcasts beacon signals at a set interval of time. Each AP
then receives the signals and retrieves RSSIs (Received Signal Strength Indica-
tors), followed by sending values of RSSIs to a backhaul server. The server then
uses collected RSSIs to determine whether the target object stays inside its target
area or not (i.e. non-target area).

4.2.2 Propagation Models

RSSI rt,i between a target object positioning at t and the i-th AP positioning at
ai is related through the log-distance propagation model (in dBm) [35]. one

rt,i = P0 − 10η lg ∥t− ai∥+ X (4.1)

where η and P0which are constants, are the path loss exponent and the reference
power at the distance of 1 meter respectively, X is a random variable charac-
terizing the effects due to multi-path fading and noisy measurements. ∥x∥ is
Euclidean norm of a vector x, thus ∥x− y∥ is the distance between two positions
x and y. We denote log10 x as lg x for simplicity. The signal fluctuations X due
to multi-path fading and noise depend on the wireless propagation environment.
For example, the long-term signal variation is known to follow the Log-normal
distribution, whereas the short-term signal variation can be described by several
other distributions such as Hoyt, Rayleigh, Rice, Nakagami-m, and Weibull.
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4.2.3 One-Class Support Vector Machine (OC-SVM)

OC-SVM (a particular type of supervised learning) tries to identify objects of a
specific class amongst all objects, by learning from a training set containing only
the objects of that class. We briefly introduce OC-SVM [84] as follows. Suppose
the training target class is r̂1, r̂2, ..., r̂s, where r̂j ∈ Rk,∀j ∈ [1, s]. In the input
space, OC-SVM aims to determine a hyperplane to separate the target class and
the origin of the input space with the maximum margin:

min
1

2
∥w∥2 − ρ+

1

ϑ · s
∑

1≤j≤s

ξj

s.t. w · r̂j ≥ ρ− ξj

ξj ≥ 0, ∀j

(4.2)

where parameter ϑ ∈ (0, 1) is used to trade off the sphere volume and the errors∑
1≤j≤s ξj , s is the size of the training data. For a test sample r̂t if

w · r̂t ≥ ρ, (4.3)

it is classified into the target class, otherwise, it belongs to the non-target class.
In practice, ϑ is automatically calculated if provided the fraction of training error
(called ν). The inner product is normally calculated using a kernel. The Radial
basis function kernel, also called the RBF kernel, or Gaussian kernel is widely
used, which is defined as follows.

x · y = exp (−γ ∥x− y∥2) (4.4)

where γ is a constant. The kernel is the indicator of similarity between two
vectors x and y.

4.3 Localization Anomaly Detection Method

Our proposed framework for anomaly detection in localization system has two
main phases: training phase and decision phase. In the training phase, data in
the target class collected beforehand is used to train an OC-SVM. In the detection
phase, the trained model is used to determine whether the target object is inside
the target area or outside using the data collected in real-time.

To improve the accuracy, before passing to the OC-SVM, we perform feature
extraction as follows.

4.3.1 Feature Extraction

As described in Section 4.2.2, a single signal fluctuation normally follows a non-
Gaussian distribution, in which, in extreme cases it is possible that the absolute
value of random variable X becomes very large, i.e., RSSI between nodes is small
even when their distance is close. Such fluctuations can have a significant effect
on the detection accuracy. Therefore to improve detection accuracy, we average
N successive RSSI values between the target object an each APs, in which N can
be empirically selected depending on the applications. Therefore, the availability
of multiple independent RSSI measurements enables the use of the Center Limit
Theorem (CLT), and thus the modeling of fluctuation by a Gaussian distribution.
The averaged RSSIs between the target object positioning at t and the i-th APs
positioning at ai follows:

r̄t,i = P0 − 10η lg ∥t− ai∥+X, (4.5)
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where X is a random variable (with a Gaussian distribution).
Secondly, in order to achieve a generalized applicability and a scalable method,

we standardize our averaged data to minimize cross-environmental RSSI magni-
tude variance. Namely, in the training phase each averaged RSSI is subtracted
by the mean from each feature type, then divided by its standard deviation. On
the other hand, in the detection phase, the averaged RSSIs is subtracted by the
mean from the corresponding features in training data.

4.3.2 Parameter Settings for OC-SVM

To enhance the system accuracy, it is fundamental to choose appropriate param-
eters for the OC-SVM. While in binary SVM, the training data in both classes
are available thus the parameters can be optimized using such as cross validation,
in OC-SVM the parameters are difficult to be optimized since data in non-target
class is unavailable. The RBF’s parameter γ is therefore set to be at its default
value, i.e., γ = 1/k, where k is the number of features which is equal to number
of APs. This is because, Section 4.4 shows that the value of γ does not effect the
OC-SVM strongly if the data is standardized.

4.4 Probability of Successful Detection

In this section we propose a mathematical formulation for estimating the accu-
racy under some assumptions, aimed at providing meaningful insights towards
achieving optimal accuracy. Given the fraction of training error ν, the accuracy
is related to the probability of successful detection (here called detection rate)
when the target node goes outside of its target area.

4.4.1 Formulation

For simplicity, we propose a method for calculating the detection rate under the
following assumptions: Firstly, we assume that the target area is small, so we can
consider that it is a point positioning at tin. Note that if the target is not that
small, we can approximately consider tin as the middle point of the target area.
For instance, tin is illustrated by symbol X in Fig. 4.4 which is the middle point
of a particular target area. Secondly, due to the averaging process described
in section 4.3, fluctuation of each averaged RSSI can be assumed as following
Gaussian distribution with 0 mean, σ2 variance, namely, X ∼ N (0, σ2). Due
to Equation (4.5), the averaged RSSI between target object positioning at tin
and the i-th AP follows N (P0− 10η lg ∥tin − ai∥ , σ2). Thus the value of the i-th
feature corresponding to the j-th training data is

r̂j,i =
r̄j,i − P0 + 10η lg ∥tin − ai∥

σ
=

X

σ
. (4.6)

Hence each training vector r̂j consists of k components following N (0, 1), where
k is the number of APs. We then estimate the margin of an OC-SVM trained by
training data r̂1, ..., r̂s. The first constraint of OC-SVM given by Formula (4.2)
can be written as follows.

exp (−γ ∥w − r̂j∥2) ≥ ρ− ξj

⇔ ∥w − r̂j∥2 ≤ −
ln(ρ− ξj)

γ

(4.7)
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Since the objective of an OC-SVM is to minimize the sum 1
2 ∥w∥

2−ρ+ 1
ϑ·s

∑
1≤j≤s ξj ,

namely approximately minimize ∥w∥ and ξj−ρ. Thus ∥w − r̂j∥2 (the left side of
(4.7)) and ∥w∥ should take small values. Moreover the average of training data
r̂ is 0, consequently w is approximately also 0.

Substituting w = 0 in Equation (4.3), a vector r̂t can then be classified as in
the target class if:

exp (−γ ∥w − r̂t∥2) ≥ ρ

⇔ ∥r̂t∥2 ≤ δ,
(4.8)

where δ = − ln(ρ)/γ.
Since vector r̂j has k components, in which each component r̂j,i followsN (0, 1)

and are independent to each other, thus ∥r̂j∥2 follows chi-squared distribution
with k degrees of freedom. As fraction of training error is ν, there is 1−ν fraction
of training data satisfying Equation (4.8). Thus,

δ = F−1
χ2 (1− ν) (4.9)

where Fχ2(x) is the cumulative distribution function (CDF) of variable χ2 fol-
lowing chi-squared distribution with k degrees of freedom, evaluated at x, and
F−1
χ2 (x) is its inverse function. Equation (4.9) shows that the value of δ only

depends on ν, thus is a constant.
We now calculate the detection rate of a specific position t, which is the

probability that the trained OC-SVM classifies a vector r̂t as non-target class
when the target object positioned at t is outside its target area. Averaged RSSI
between t and AP ai can be described as follows.

r̄t,i = P0 − 10η lg ∥t− ai∥+X. (4.10)

Utilizing Equation (4.6), the standardized vector r̂t has i-th component having
the following value:

r̂t,i =
r̄t,i − P0 + 10η lg ∥tin − ai∥

σ

=
10η

σ
lg
∥tin − ai∥
∥t− ai∥

+
X

σ
,

(4.11)

which follows N (10ησ lg ∥tin−ai∥
∥t−ai∥ , 1) Thus we have,

∥r̂t∥2 =
∑

i∈[1,k]

(
10η lg ∥tin−ai∥

∥t−ai∥ +X

σ
)2 (4.12)

which follows non-central chi-squared distribution with k degrees of freedom and
non-centrality parameter λt/σ

2, where,

λt =
∑

i∈[1,k]

(10η lg
∥tin − ai∥
∥t− ai∥

)2. (4.13)

The target object is classified as non-target area (cf. (4.8)) iff: ∥r̂t∥2 > δ.
Therefore, the detection rate, i.e., probability that the target object t (called

R(t)) is classified as non-target area is:

R(t) = P[∥r̂t∥2 > δ]

= 1− P (δ; k, λt/σ
2)

= Qk/2(
√

λt/σ,
√
δ),

(4.14)
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where δ can be calculated using Equation (4.9), P (δ; k, λt/σ
2) is the CDF eval-

uated at δ, of a random variable following non-central chi-squared distribution
centering at λt/σ

2 and having k- degrees of freedom. This CDF can be calculated
by Marcum Q-function Qk/2(

√
λt/σ,

√
δ) which is proved to be monotonic [85].

Moreover as δ is a constant, R(t) is a monotonic function of
√
λt/σ.

The detection rate of a domain D, which is the probability that a trained
OC-SVM classifies the target object as non-target area, when the target object
positioned at an arbitrary point inside domain D, is:

R(D) =
1

VD

∫
D
R(t)dt, (4.15)

where VD is the volume of domain D.

4.4.2 Stability of The Proposed Formulation

In practice, the signal attenuation due to path loss and its fluctuations due to
multi-path fading are often more complicated than suggested by Formula (4.5).
To investigate the appropriateness of the proposed Equation (4.14) as well as
to analyze factors that affect the detection accuracy, we conduct Monte Carlo
simulations under two different propagation models: One following Formula (4.5)
and the other following a more advanced propagation model described below.

Advanced Propagation Model

We simulate a propagation environment experiencing Rayleigh fading, non-singular
path loss. The RSSI values r under this propagation model are generated via:

r = P0 − 10 lg(ϵ+ dη) + X (4.16)

where ϵ > 0, d is the distance between two wireless devices, and X is a random
variable with density:

fX (x) = λ10x/10 exp
(
− λ10x/10

) ln 10
10

(4.17)

Recent indoor measurements at 2.4GHz [38] have confirmed the above model.
where λ is a constant, and here we set λ=0.561 because in this case the mean
of X is zero [11,12]. A meaningful correspondence between X and our simplified
Gaussian approximation X can be established (σ = 5.57).

Parameter Settings

Assuming that there are three APs located at positions having coordinates of
[0, 0], [0, 10], [10, 0] (in meters). The tin corresponding to the target area is set at
[5, 5]. The fraction of training error ν is set as 0.1. We calculate and compare
the detection rate R(t) at 20 positions of t that are approximately 3-30m from
tin.

For each position of the target object, we generated 1000 sets of data, in
which each set contained 3 RSSIs from the target object to three APs. In each
random realization and for each pair of target object and AP, RSSI is generated
randomly under two propagation models given by (4.5) Utilizing random variable
X ∼ N (0, σ2) and (4.16) and the random variable X with its probability density
described by (4.17) and ϵ = 0.1, and common parameters σ = 0.57, η = 2 and
P0 = −30dBm. The detection rate R(t) for each position t is the percentage of
data classified as non-target area.
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Figure 4.1: Detection rate when the target object moved out of its target area:
Blue diamonds describe the rate calculated by the proposed Equation (4.14), red
circles and green square illustrate the detection rate achieved using simulation
under the assumption that RSSI follows Equations (4.5) and (4.16) respectively.
X-axis corresponds to the distance from the target object to the target area in
a) (the top figure), and to the λt in b) (the bottom figure).

Results

When the signal attenuation due to path loss follows Friis model described by
Equation (4.5), and its fluctuations following Gaussian distribution, the detec-
tion rate R(t) calculated by simulation are closed to the proposed formula (4.14)
(shown in Figure 4.1). It indicates that under the assumption that random vari-
ables X follows Gaussian distribution, our proposed formula (4.14) is accurate.

When RSSIs follow a different model (e.g. following (4.16)), detection rate
R(t) by simulations is not close to the proposed Equation (4.14) as it has been
derived under the assumption that RSSIs strictly follow Equation (4.5) for sim-
plicity. On the other hand, Fig. 4.1 b) verifies the our claim that the detection
rate is a monotonic function of λt regardless of propagation models. It indicates
that the accuracy (i.e. detection rate) can be optimized by maximizing λt, which
provides meaningful insights towards optimizing placement of APs, as well as
target area of the object as discussed in Section 4.5.2.
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4.5 Optimization Methods

In this section, we propose two optimization methods – capable of improving the
detection rate – Utilizing our proposed solution in Equations (4.14) and (4.15).
These equations illustrate that for any domain D and any position of the APs,
the detection rate R(D) increases when σ decreases. In this work, we hypothesize
that σ can be decreased by averaging successive RSSI, as also discussed in Sec-
tion 4.5.1. Moreover, we also propose a novel mathematical formulation to find
optimal placement of APs as well as target areas which maximizes the detection
rate of a specific domain D, detailed in Section 4.5.2. The proposed formulation
is environment independent, i.e. it can be used in any environment, enabling
us to establish optimized placement of APs/target-areas without performing any
costly experiments.

4.5.1 Averaging

Averaging successive RSSI can reduce the standard deviation of the signal result-
ing in less fluctuation and enabling an improved detection accuracy. To illustrate
this, we pick signal fluctuations experiencing Rayleigh fading, namely probability
density X following Equation (4.17), for example. The probability density of X
is illustrated by Fig. 4.2 a), and its standard deviation is approximately 5.56.
Fig. 4.2 b) shows the probability distribution of averaged five time series succes-
sive RSSIs and its standard deviation is now approximately 1.8, which is much
smaller than 5.56, the standard deviation of the single signal fluctuation.

4.5.2 Device Placement Optimization

In this section, we discuss the proposed solution to the optimization problem of
placing APs/target-areas in order to maximize the detection rate.

Problem Definition

In the context of our application case-study, a store would like to locate a set
Ak comprised of k access points (APs) and a set Tm consisting m target objects.
Each AP can choose its position from a set AK consisting K candidate positions,
and each target object can choose its target area from a set TM with M candidate
areas. Note that any two APs/objects cannot choose the same candidate posi-
tion/area. The objective is to choose appropriate positions/areas for APs/objects
to maximize the detection rate especially when a target object goes out of the
store.

Proposed Method

We first define some symbols. Utilizing a set Ak of APs, we denote R(D|Tm, Ak)
as the detection rate of domain D given target areas Tm, which is the value we
would like to maximize; R(t|Tm, Ak) as the detection rate when any target object
in Tm reaches position t; and R(t|tin, Ak) as the detection rate if the target object
with its target area being tin reaches the position t.

We solve the problem under assumptions described in Section 4.4 and that the
store is separated by walls that absorb wireless signals. Therefore the detection
rate R(t|Tm, Ak) at any position t ∈ D (where D is the domain outside the store,
see Fig. 4.4) is not smaller than the detection rate R(td) of the position td which
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Figure 4.2: Probability density of the RSSI fluctuations due to multi-path fading
and noise (X ). a) Single RSSI (the top figure), b) averaged 5 successive RSSI
(the bottom figure)

is the position in the middle of the gate (see Fig. 4.4). We have:

R(t|Tm, Ak) ≥ R(td|Tm, Ak), ∀t ∈ D

⇒ R(D|Tm, Ak) ≥ R(td|Tm, Ak).
(4.18)

therefore maximizing the detection rate R(D|Tm, Ak) is approximately maximiz-
ing the detection rate R(td|Tm, Ak). Moreover, the store would like to detect if
any target object goes outside, thus R(td|Tm, Ak) can be defined as:

R(td|Tm, Ak) = min
tin∈Tm

R(td|tin, Ak) (4.19)

Consequently the objective of the problem is maximizing the right side of Equa-
tion (4.19). Therefore, the objective of the problem can be written as follows:

A∗
k, T

∗
m = argmax

Ak⊂AK ,Tm⊂TM

min
tin∈Tm

R(td|tin, Ak) (4.20)

Since R(td|tin, Ak) is a monotonic function of λ(td, tin, Ak)/σ
2 (see Section

4.4), where

λ(td, tin, Ak) =
∑
a∈Ak

(10η lg
∥tin − a∥
∥td − a∥

)2 (4.21)
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η is a constant reducing Equation (4.20) to:

A∗
k, T

∗
m = argmax

Ak⊂AK ,Tm⊂TM

min
tin∈Tm

∑
a∈Ak

(lg
∥tin − a∥
∥td − a∥

)2 (4.22)

Thus the optimal positions of APs and target areas can be calculated easily
and efficiently – without doing costly experiments or simulations – in order to
maximize the detection rate when an object is moved out of the store.

4.6 Experimental Investigation of WiLAD

In order to evaluate the performance of WiLAD in real environments and to
validate our optimization methods described in Section 4.5, we performed exper-
iments in a real store environment (see Fig. 4.3).

4.6.1 Experimental Setup

The experiments were conducted at a store in which the area inside and outside
the store is approximately 120m2 and 40m2 respectively (area of Z5 in Fig. 4.4).
The store is separated between inside and outside by concrete walls. Inside the
store there are some obstacles such as goods shelves (1.6 m of height), tables
(0.8 m of height; see Figs. 4.3 and 4.4). We used multiple Tessera RL7023
Stick-L acting as APs as well as target objects in the experiment, using 920
MHz band. These IEEE802.15.4 standardized devices operate at 926.9 MHz and
house a patch antenna transmitting at 13 dB. Four APs were placed at positions
described by red points labeled as A1 to A3 (0.8 m of height) and A4 (2 m of
height) in Fig. 4.4 . Other three RL7023 Stick-L acting as target objects, could
move around their target areas described by blue rectangles labelled as Z1 to Z3
in Fig. 4.4. During the experiment, the target objects broadcasted beacons every
second; the APs after receiving the beacons and getting the RSSI would send it
to a server for post-processing.

To collect data, we first divided the space of the store into five zones, illus-
trated by Z1 to Z5 in Fig. 4.4. Z1 to Z3 (shown as the blue rectangles) are target
areas corresponding to three target objects. Z4 is the remaining area inside the
store and Z5 is the area outside of the store. We then installed wireless devices
(RL7023 Stick-L) collecting 4 to 9 sets of data in each zone, and each set contain-
ing approximately 400 subsets of data (where each subset contains four RSSIs
from the target object to four APs). The experiment was conducted at different
times of the day covering a range of business hours from less busy (few people in
the store) to very busy (many people in the store).

4.6.2 Evaluation Methodology

Cross Validation

For each pair of target area and non-target area, we used a Leave-One-Out Cross
Validation (LOOCV) scheme and calculated the evaluation value (i.e. detection
rate or F-measure). For instance, consider that Z1 is the target area, we used 7
of the total 8 sets of data collected at Z1 as the training data, and the remaining
set as the test data (positive data), and also the data in non-target area as the
test data (negative data).
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Detection Rate

Assuming the scenario described in Section 4.5, we estimate the detection rate
showing the percentage of detections made by the OC-SVM when a target object
goes out of the store, namely, R(Z5). We calculate the detection rate as follows.
For each target object (target area), similar to LOOCV described in the previous
section, we use S − 1 data sets (S is the number of data set for the target
area) as the training data. We then use the trained OC-SVM to calculate the
percentage of successful detections when the target object stays in Z5 followed
by repeating this calculation S times for other target objects and averaging the
results. Detection rate is used in Experiment 1 below.

F-Measure

F-measure [86] is defined as follows.

F = 2 · precision · recall
precision+ recall

where precision =
tp

tp+ fp

recall =
tp

tp+ fn
,

(4.23)

where tp (true positive) is the number of positive data (i.e. data in target area)
classified as target-area; fp (false positive) is the number of positive data (i.e.
data in target area) classified as non-target area; fn (false negative) is the number
of negative data (i.e. data in non-target area) classified as target area. F-measure
is used to evaluate the performance of WiLAD in Experiment 2 below.

4.6.3 Experiment 1

In order to validate our proposed optimization method for installation points
given by Equation (4.22) in Section 4.5, we vary the value of k ∈ [1, 3],m ∈ [1, 3]
which are the number of APs and number of target objects that the store would
like to setup, respectively. k APs can choose their positions from 4 candidates
depicted by red points in Fig. 4.4. m target objects can choose their areas from
3 areas Z1, Z2, Z3 (namely K = 4,M = 3). Similar to the problem described in
Section 4.5, the objective is to choose the best combination of k AP positions and
m target areas that maximizes the detection rate when one of the target object
goes outside the store.

To compare the solutions based on the proposed Equation (4.22) and our
experimental solutions, for each values of k,m, we first list all feasible solutions,
then sort the list using Equation (4.22) as well as based on the detection rate by
experiment described in Section 4.6.2. Here, we set a small fraction of training
error (ν = 0.02) to enlarge the sphere volume of the OC-SVM. We then calculate
the Pearson’s correlation coefficient and its p-value between the two lists.

These results are shown in Table 4.1. For each pair k,m, we list the optimal
solution based on the experimental setup followed by the number describing its
order based on the theoretical representation (i.e., the proposed Equation (4.22)).
Text in bold describe solutions that have the same order in both the experiments
and the proposed formulation. For example, when k = 1, and m = 2, the best
solution is A[1], Z[1,2] which means that the detection rate is maximum if the
AP is set at A1, and two target objects are set at Z1 and Z2. It is ranked 1 based
on our proposed formula and the experimental evaluation. For all values of k,m,
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Table 4.1: Experiments vs Theoretical results

k,m Solutions Correlation p-value

1, 1 A[3], Z[3] (1) 0.79 2e− 3

1, 2 A[1], Z[1,2] (1) 0.66 0.02

1, 3 A[4], Z[1,2,3] (2) 0.60 0.40

2, 1 A[3,4], Z[3] (1) 0.92 1e− 7

2, 2 A[1, 3], Z[1, 3] (2) 0.90 3e− 7

2, 3 A[1, 3], Z[1, 2,3] (1) 0.89 0.02

3, 1 A[1, 3, 4], Z[3] (1) 0.76 4e− 3

3, 2 A[2, 3, 4], Z[2, 3] (6) 0.80 2e− 3

3, 3 A[1, 2, 3], Z[1, 2, 3] (1) 1.00 0.00

the correlation coefficient ranges from 0.60 to 1.00 with corresponding p ≤ 0.05
in most cases, showing that our proposed approach is appropriate. Table 4.1 also
shows that 67% of the optimal solutions by the proposed formulation match the
optimal solutions by experiments. In some cases, where the proposed formulation
produces a different solution can be attributed to various environmental factors
that RSSIs experience including multi-path fading, shadowing, and NLoS.

4.6.4 Experiment 2

To evaluate the performance of the proposed WiLAD system in Section 4.3 and
to validate our approach described in Section 4.5.1, we performed the experiment
under the following scenario. There are three target objects with target areas
namely Z1, Z2, Z3. Using three APs positioning at A1, A2, A3 (see Fig. 4.4), we
are mainly interested in detecting whether a target object stays inside its target
area or goes out of that area. Note that the positions of target areas as well as
APs are chosen using the results of the previous experiments: optimal solution
for k = m = 3.

For each target object, we define its non-target area as, 1) the remaining area
of its target area located inside the store (i.e. non-target area of the first object
is Z2+Z3+Z4. The main purpose is to estimate the decision accuracy of WiLAD
under the assumption that the object stays inside the store which is one of the
non-target areas and 2) the remaining area of its target area (i.e. which is the non-
target area of the first object i.e., Z2+...+Z5). This is because, we are interested
in estimating the decision accuracy of WiLAD under the assumption that the
object stays inside the store or outside the store, called combined non-target
area. In each pair of target and non-target areas, we calculate the F-measure
(see Section 4.6.2) using two type of data: 1) raw data (i.e. use single RSSI,
namely set N = 1, where N is number of data to be averaged, see Section 4.3
) and 2) averaged RSSI using 5 successive data points (i.e. N = 5); here called
raw data and averaged data respectively. We set the fraction of training error as
0.1 (i.e. ν = 0.1).

The mean F-measure depicted in Figure 4.5 shows that the averaged data
provides significantly better results compared with the raw data in every case
(t-test, p ≤ 0.05). The overall results achieved are always greater than 0.75 illus-
trating a highly reliable system, further proving our arguments given in Section
4.5.1.

Average detection rate depicted in Figure 4.6 illustrates that the farther the
target object goes out of its target area, the higher percentage that WiLAD
can detect. Especially, it can detect with the accuracy of 100% when a target
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Figure 4.3: Photos of the store, and a close-up of an RL7023 Stick-L as an AP.
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Figure 4.4: Layout of the experimental environment.

node goes outside of the store, thus demonstrating that WiLAD can archive high
accuracy enough for security/defense applications, i.e. detecting a device moving
out of a store.

4.7 Conclusions

We have proposed a new type of RSSI-based localization method called WiLAD,
and in particular addressing the problem of determining whether an object is
inside its target area or not. Examples of such scenarios are commonly found in
real life, for instance in security, in outlier detection of a wireless sensor network,
or in customer analytics. We employed a one class classifier (OC-SVM) to classify
an object in either target or non-target areas using its RSSIs to a number of known
access points. We also derived an approximation formulation for estimating the
accuracy and used it to derive a mathematical framework to optimize device
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Figure 4.6: Average detection rate in each zone, where Z1 is the target area,
and non target areas are Z2, Z3, Z4, Z5.

placements. Finally, we validated our approach through experiments in a real
store. The results showed that 67% of the optimal solutions by the proposed
method match optimal solutions by experiments. Moreover, the achieved F-
measures are always greater than 0.75 illustrating a high reliability. Especially,
WiLAD can detect a device moving out of a store with an accuracy of 100%, thus
satisfying the requirement of security/defense applications.

We studied from this work that

• RSSI-based localization can achieve satisfactory localization accuracy for
some specific applications. This motivates us to further develop new appli-
cations related to RSSI-based localization.
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• Low-cost device placement guidelines to improve the localization accuracy is
realizable without performing a priori measurements. This suggests that the
accuracy of a localization system can be improved using low-cost methods.

We, therefore, use RSSI measurements to develop new localization systems
described in the next three chapters.
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Chapter 5

The Wireless Localization Matching Problem

In the previous chapter, we demonstrate that low-cost RSSI-based localization
can achieve satisfactory accuracy of some specific applications. The rapid de-
velopment of IoT open new opportunities for developing new applications for
low-cost wireless localization. We propose a new class of wireless localization
of devices belonging to the Internet of Things, called WLMP: the Wireless Lo-
calization Matching Problem. Immediate examples of real-world applications in-
clude but are not limited to smart lighting and heating. This chapter and the
next two chapters define, motivate and propose solutions for WLMP. This chap-
ter proposes localization algorithms for resolving WLMP under mesh network
paradigms. Chapter 6 presents a method for improving localization accuracy.
Chapter 7 proposes a new solution for WLMP, which uses a mobile unit assisting
node localization.

WLMP relates to scenarios where the device positions are known a priori,
however, the device IDs are not. These positions and device IDs, therefore,
need to be matched using radio frequency positioning methods, which are more
time and cost efficient as compared to manual installation. In this chapter,
we propose maximum-likelihood matching algorithms called MLMatch and ML-
Match3D for resolving this problem based on measured RSSI values. Since the
search space of node-to-position permutations grows factorially with the number
of target devices, we propose several searching methods including Mixed Inte-
ger Programming, LP relaxation to reduce computation time. The MLMatch3D
algorithm further addresses the problem whereby nodes are located at multiple
rooms and/or floors of a building. This algorithm first utilizes a Graph Partition-
ing method to determine in which room a node is located, followed by MLMatch
for finding room specific positions corresponding to each node. In addition, this
chapter analyzes the stability of these algorithms with respect to different wire-
less fading models as well as compares the performance of these algorithms in
various environments via numerical simulations. Finally, we report on experi-
ments performed indoors and outdoors using up to 33 wireless devices in order to
demonstrate the problem and validate our results. We demonstrate that the pro-
posed algorithm can achieve high localization accuracy satisfied the requirements
of real-world applications.

This chapter is organized as follows. In Section 5.1, we define and motivate
our proposed WLMP by giving potential real-world applications. In Section 5.2,
we describe the system and propagation models. In Section 5.3, we give brief
introductions to two branches of combinatorial optimization used later in the
chapter. In Sections 5.4 and 5.5, we present the details of our proposed MLMatch
and MLMatch3D algorithms. In Section 5.6, we study the overhead and stability
analysis of the algorithms. In Section 5.7, we study and compare the algorithms’
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performance utilizing various searching methods via numerical simulations. In
Section 5.8, we evaluate the performance of MLMatch through real experiments
conducted in Japan. Finally, Section 5.10 concludes this chapter.

5.1 Definition and Motivation of The WLMP

We propose, analyze, and experimentally demonstrate a new localization problem
found in many large scale WSN deployments: the Wireless Localization Match-
ing Problem (WLMP) [11]. Unlike most localization problems studied in the
literature, here the locations of the sensor nodes are known a priori. What is
unknown however is the unique ID of the wireless sensor node which is located at
each position, or in other words, which node is which. Essentially, the WLMP is
a spatially embedded version of the celebrated matching problem of probability
theory, first proposed by Pierre-Remond Montmort in 1714 [87]: A deck of N
cards labeled 1 through N is shuffled randomly. A match occurs when the num-
ber on the card matches the card’s position in the deck. What is the probability
of k ∈ [0, N ] matches? By analogy, the complexities of localizing a device in
space in conventional localization problems [46,88] are replaced in the WLMP by
those of correctly matching (assigning) N unique device IDs to a discrete set of
N device positions.

We motivate the WLMP through a number of real-world application scenarios.
In disaster prevention WSNs, sensors are often deployed randomly (e.g., sensors
are air-dropped from an airplane) [46], and then their locations are obtained via
high resolution satellite photos from the sky. In indoor position tracking systems
where cameras provide node positions (e.g., the location of parcels in depart-
ment stores or warehouses). A final example is related to the mass installation
of equipment in factories or office buildings. Whilst the equipment positions
are well known from the floor plan blueprints (often found in out-of-reach po-
sitions, e.g., behind ceiling panels or rooftops), the specific equipment ID may
be difficult to be recorded by installation engineers since it is often printed on
small wireless devices used to wirelessly control said equipment. In fact, many
wireless light bulbs for example have their ID number printed inside the bulbs,
mainly for aesthetic reasons. In practice, to check the ID number of a wireless
light bulb after installation, an engineer needs to turn on/off a specific bulb in
order to find its position and make a record of it. Either way, even if a spe-
cific equipment ID is visible and easily readable, recording it manually is still
time and therefore cost consuming. Such scenarios are further intensified when
different (sub-)contractors are employed for the installation of heating, ventila-
tion, and air conditioning (HVAC) units, thermostats, security units, lighting, or
some other fixed infrastructure IoT. Consider the example of wireless controlled
smart lighting which is currently commercially available. Installation typically
requires manual calibration via a smart phone app, which assigns smart-bulbs to
specific rooms (e.g., bulb 001 to living-room, bulb 002 to kitchen, bulb 003 to
bedroom, etc.) in a user-editable floor plan. While this is easily performed in
residential properties, manual calibration in commercial and industrial buildings
containing hundreds of lamps [89] is a taxing and lengthy exercise. This is fur-
ther complicated since it is difficult to request a specific device to be installed
at a specific position, especially when lighting is delivered and installed in bun-
dle. Recalling that lighting in commercial buildings contributes to about 38% of
their total energy output, that lighting is responsible for 19% of global electricity
consumption and accounts for 6% of total greenhouse emissions, and finally that
smart-lighting can reduce these numbers by up to 40% [90], it becomes paramount
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to devise methods to facilitate the wide-spread adoption of WSNs and green IoT.
The WLMP is one such challenge.

Indeed, we are currently seeing more and more smart sensor devices being
introduced to the consumer market in the form of place & play clusters of products
which monitor and control our homes, our health, our sleep etc. with promises of
a better and more efficient lifestyle. A major enabler for these products has been
the power efficient ZigBee and Bluetooth 4.x wireless technologies which threads
together the Low-Energy IoT. Already, research projects are exploring how such
sensors can transition from place & play add-on services to built-in infrastructure
and how these can bridge e-health and the IoT [91]. In view of these trends, we
expect that the WLMP will soon become widespread in many IoT applications.

The WLMP is a bipartite matching problem between N position candidates
and N nodes (the devices) which utilize RF localization methods. In addition,
3D-WLMP is a special case of the WLMP in which the nodes can be located at
multiple rooms and floors.

We use RSSI between each of the N(N − 1)/2 pairs of nodes to calculate
the best matching between nodes and position candidates. We chose RSSI-based
ranging methods because most WSNs employ cheap devices with low-profile hard-
ware (e.g. compatible with ZigBee and Bluetooth 4.x wireless technologies), no
precise clocks, or ultra wide-band (UWB) capabilities. Our first proposed al-
gorithm called MLMatch is divided into two phases: i) a likelihood calculation
phase and ii) a maximum likelihood searching phase. In the first phase, the like-
lihood of a match is reduced into a simple formula which is independent from
environment based constants (e.g., path-loss exponent, transmission power) thus
rendering our approach applicable to generic propagation environments. In the
second phase, to target various applications, we propose several searching meth-
ods including exact, approximation and heuristic methods. Our second proposed
algorithm called MLMatch3D provides a solution for the 3D-WLMP under the
assumption that the signal absorption loss by room wall is unknown and/or un-
certain. It also contains two phases: i) a node-room determining phase and ii) a
node-position matching phase. In the first phase, the algorithm first constructs
a graph consisting of vertices and edges corresponding to nodes and RSSIs, then
uses our proposed novel class of Graph Partitioning to determine in which room
a node is located. In the second phase, in each room it employs MLMatch to
calculate the best matching between nodes and positions for each room. The
latter process can of course be trivially parallelised for each room.

The main contributions of this chapter are as follows.

1. We define and motivate the WLMP and 3D-WLMP.

2. We propose and analytically study the performance of MLMatch and ML-
Match3D as candidate solutions to the WLMP and 3D-WLMP respectively.

3. We experimentally validate MLMatch and MLMatch3D.

5.2 System and Propagation Models

5.2.1 Problem Definitions

WLMP

Consider a wireless mesh network ofN wireless nodes which are labeled n1, n2, ..., nN ,
and are located at N candidate positions labeled p1, p2, ..., pN . It is unknown
however in which position pi′ node ni is located. Each node is equipped with a
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Figure 5.1: The WLMP system setup. Each node is equipped with a radio
transceiver thus can obtain RSSI from other nodes by exchanging messages each
other. RSSIs are then sent to a backhaul server.

radio transceiver and can exchange messages from other nodes. Thus RSSI be-
tween each pair of nodes can be obtained, and sent to a backhaul server for post-
processing. After collecting all RSSIs from the wireless nodes, the server saves
them in a matrix R with entries rij equal to the RSSI between two nodes ni and
nj . The server is then tasked with matching the node labels ni to their correct
positions pi′ using R and the known distances between positions di′j′ = |pi′ −pj′ |
obtained from a floor plan or similar. Figure 5.1 represents an example of the
WLMP system setup. Note that only one node can be located at each position.

3D-WLMP

In 3D-WLMP, the mesh network consists of N wireless nodes and N positions.
The N positions are located at l different rooms and/or floors (called rooms for
short) labeled L1, L2, . . . , Ll. It is known a priori that a particular position pi′ is
located at a particular room Lk, however it is unknown in which position pi′ or
room Lk node ni is located at. Similar to the WLMP, RSSI between each pair of
nodes can be obtained and used to resolve the matching problem.

5.2.2 Propagation Models

RSSI r is related with distance d, and obstacles such as wall, between wireless
devices through the following formula.

r = f(d, T ) +X (5.1)

where f(d, T ) is a function characterizing the path loss depending on distance
d and transmission coefficient of walls T . When there are no walls between the
wireless devices, namely line-of-sight (LoS) f(d, T ) = f(d). In Equation (5.1) the
parameter X is a random variable characterizing the effects due to multi-path
fading and noisy measurements.

57



LoS Propagation Models

There are various path loss models which are appropriately used in different
environments. The log-distance model is widely used and adopted by the scientific
community [35]. Here, RSSI r is related with distance d between wireless devices
through the log-distance path loss model (in dBm).

f(d) = P0 − 10η log10(d) (5.2)

where η is the path loss exponent usually set to 2 for free space wireless propa-
gation and closer to 4 for cluttered or urban environments. P0 is the reference
power at one meter, measured in dB milliwatt. In practice, the signal attenuation
due to path-loss are often more complicated than that suggested by (5.2). The
singular path-loss function in (5.2) which diverges at d = 0 is often replaced by
multi-slope and non-singular alternatives [34].

NLoS Propagation Model

When the wireless signal is propagated though a wall, the RSSI r is related with
distance d between wireless devices by [92]

f(d, T ) = P0 − 10η log10 d+ 10η log10 T (5.3)

where T is transmission coefficient through the wall, having value depending on
various parameters such as the wall material, thickness. The term −10η log10 T
is also known as signal absorption loss by a wall, called wallLoss for short.

Fading and Noise

The signal fluctuations due to multi-path fading and noise depend on the wireless
propagation environment. For example, the long-term signal variation is known
to follow the Lognormal distribution, whereas the short-term signal variation
can be described by several other distributions such as Hoyt, Rayleigh, Rice,
Nakagami-m, and Weibull. Under those distributions, in extreme cases it is
possible that the absolute value of random variable X becomes very big, i.e.,
RSSI between nodes is small even when their distance is close. Such fluctuations
can have a significant effect on localization accuracy. Averaging successive RSSI
values might be used to weaken these effects, thus improve localization accuracy.
Therefore, the availability of multiple independent RSSI measurements enables
the use of the Center Limit Theorem (CLT), and thus the modeling of the random
variable X by a Gaussian distribution.

Assuming that the distribution of random variable X is characterized by a
function g(X), then for a given distance d between a pair of sensor nodes, the
probability that RSSI equals a specific value r is

P[RSSI=r|distance=d]=P
[
X = r − f(d, T )

]
=g(r − f(d, T )).

(5.4)

Especially, when the propagation model follows the log-distance model and the
random variable X is Gaussian distributed with zero mean and σ standard devi-
ation, we have that the propagation model is given by

r = P0 − 10η log10 d+ 10η log10 T +X (5.5)
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where T ∈ (0, 1], with T = 1 if there are no wall between the wireless devices.
Equation (5.4) can be rewritten as follows

P[RSSI=r|distance=d]=P
[
X=r−P0+10η log10(d/T )

]
=

1√
2πσ

e−
(r−P0+10η log10(d/T ))2

2σ2

(5.6)

5.3 Introduction to Combinatorial Optimization

Combinatorial optimization is concerned with the study of efficient algorithms
for finding an optimal object from a finite set of objects. In this section, we
briefly introduce two branches of combinatorial optimization including Mixed
Integer Programming (MIP) and Graph Partitioning used later in our proposed
algorithms described in sections 5.4 and 5.5.

5.3.1 Mixed Integer Programming

MIP refers to a mathematical optimization program in which some or all the
variables are restricted to integer values. There are a number of MIP computa-
tional solvers specializing in linear objectives and linear constraints (called MILP:
Mixed Integer Linear Programming), and others for quadratic objectives and/or
quadratic constraints (called MIQP: Mixed Integer Quadratic Programming) [93].
A general MILP optimization problem is formulated as follows:

min cTx

s.t. Ax = b

l ≤ x ≤ u

and some or all x must take integer values.

(5.7)

On the other hand, a MIQP models are of the form:

min xTQx+ qTx

s.t. Ax = b

l ≤ x ≤ u

xTQix+ qTi x ≤ bi

and some or all x must take integer values.

(5.8)

MIP methods find application in industrial and agricultural production plants
(when only integral quantities can be produced), scheduling of transport routes,
and resource allocation problems in cellular and D2D networks [94].

The integrality constraints above allow MIP models to capture the discrete
nature of some decision. For instance, in the WLMP, a variable whose values are
restricted to 0 or 1 (Binary Integer Programming), can be used to decide whether
a node located at a specific position or not. The integer nature of MIPs makes
them non-convex optimization problem and thus NP-hard in general [95].

To target applications of WLMP that restrict computational time, we develop
herein two approximation searching methods (described in more detail in section
5.4.2) utilizing a Linear Programming relaxation (LP relaxation) technique. The
LP relaxation technique of a Binary Integer Linear Program is to replace the
constraint that each variable must be 0 or 1 by a weaker constraint, namely that
each variable belongs to the continuous interval [0, 1]. This technique transforms
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a MILP which is NP-hard into a Linear Programming (LP) problem that is
solvable in polynomial time. The solution to the relaxed Linear Program can be
used to gain information about the solution to the original MILP. However, not
only may this solution not be optimal, it may not even be feasible, that is it may
violate some of the constraints.

5.3.2 Graph Partitioning

The Graph Partitioning problem is the problem that a weighted graph G=(V,E)
with V vertices and E edges, is parted into two or more smaller components as
to satisfy a set of specific properties. For example, a k−way partition divides
the vertex set into k smaller components. A good partition is defined as one
in which the sum of edges weights connecting the parted components is small.
There are a number of Graph Partitioning classes studied in literatures such as the
balanced Graph Partitioning problem which tries to divide the vertices of a graph
into almost equal size components [96], and the capacitated Graph Partitioning
problem in which the maximum of number of nodes in each component is limited
[97].

In view of the WLMP, we define a new Graph Partitioning problem in which
the number of vertices in each component is restricted to be a pre-defined number.
The problem is applied within the MLMatch3D algorithm (see section 5.5) to
determine in which room a node is located.

5.4 MLMatch Algorithm

In this section, we describe our proposed MLMatch algorithm for solving WLMP
and 3D-WLMP under the assumption that transmission coefficient through the
wall T is known a priori. The problem is a bipartite matching problem between
the N node positions and the N node IDs. Note however that a simple threshold
based sorting algorithm would suffer from degenerate solutions and inaccuracies
since it would only perform pairwise comparisons between each of the RSSI esti-
mated distances and the real ones. For example, a simple threshold based sorting
algorithm could first calculate the N − 1 pair distances for each node using the
known positions pi′ (e.g., using the floor blueprint), then sort the distances in
ascending order, and finally compare these with those obtained from the RSSI
estimated pair distances. Comparison is achieved by calculating the norm of the
difference between the two lists for each node position and ID, thus giving a fit-
ness measure. If this difference is less than some small threshold then a match
is made. If not all pairs are matched successfully, then the threshold is increased
slightly until all are matched. Degenerate solutions and inaccuracies would cer-
tainly arise however if the real pair distances are fairly similar to one another
(e.g., when nodes are almost symmetrically deployed on a grid for instance). An
algorithm that takes into account non-local statistical information is required.

We therefore propose and formulate a likelihood function of the bipartite
match between all sensor nodes and their all their positions. We call each possible
matching as a hypothesis h, where h(i) = i′ if node ni locates at position pi′ .
Note that h is a permutation of the label set {1, 2 . . . , N}, and that there are N !
possible permutations.
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5.4.1 Hypothesis Likelihood Calculation

For an RSSI matrix R, we wish to find the hypothesis that maximises the likeli-
hood function over the hypothesis set H which can be formulated as follows

h∗=argmax
h∈H

P[h|R]=
P[R|h]P[h]

P[R]

=argmax
h∈H

P[R|h]
(5.9)

since P[R] and P[h] are constants. We next make use of the known distances
between positions di′j′ = |pi′−pj′ | and the independence of the individual RSSI
measurements

P[R|h]=
∏
i<j

P[rij |dh(i)h(j), Th(i)h(j)]

=
∏
i<j

g(rij−f(dh(i)h(j), Th(i)h(j)))
(5.10)

Substituting this back into (5.9) we arrive at

h∗=argmax
h∈H

∑
i<j

(
ln g(rij−f(dh(i)h(j), Th(i)h(j)))

)
(5.11)

Especially, when the propagation model follows the log-normal models, and vari-
able X follows Gaussian distribution, the formula can be reduced to

h∗=argmin
h∈H

∑
i<j

(
rij−P0+10η log10

dh(i)h(j)

Th(i)h(j)

)2

=argmin
h∈H

∑
i<j

(
rij ln

dh(i)h(j)

Th(i)h(j)

) (5.12)

since
∑

i<j ln r
2
ij ,

∑
i<j ln d

2
h(i)h(j),

∑
i<j lnT

2
h(i)h(j), P0 and η are constants, and

lnx is the natural logarithm of x. Note that the hypothesis which has the largest
likelihood is also the hypothesis in which the Pearson correlation between RSSIs
and the logarithm of the distances divided by transmission coefficient is smallest.
Note also that if some RSSI values are missing, we may simply ignore them from
the computation of (7.5).

Equation (7.5) demonstrates that h∗ is independent of the transmit power
and other specifics of the wireless propagation environment η and σ. This simpli-
fication is due to the maximum likelihood formulation of (5.9) and the Gaussian
approximation of X in (5.4), thus enabling the calculation of h∗ for any wireless
propagation environment without the need to estimate or input further system
parameters. For this reason, we will employ formula (7.5) in the following simu-
lations and experiments. This approach is beneficial towards the implementation
of MLMatch in real environments, however may be inaccurate in some extreme
conditions or when X is far from Gaussian distributed. We will study this aspect
both experimentally, and via numerical simulations.

5.4.2 Computing Likelihoods

Equation (5.11), as well as (7.5) is a combinatorial optimization problem of N
variables. Solution methodologies for problems can be categorised into three
groups: exact, heuristic, and approximation methods. Unlike to exact methods,
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heuristic and approximation methods typically do not guarantee convergence to
the optimal solution however offer significant benefits in terms of computation
time which is much less than exact search methods, especially when the number
of nodes is large. This makes them appropriate for large networks.

Exact Methods

To improve on the performance of trivial brute-force search, we formulate the
problem as an Integer Quadratic Programming (IQP) problem as follows

min
∑

i,j,i′,j′

ci,j,i′,j′zi,i′zj,j′

s.t.
∑
i′

zi,i′ = 1, ∀i∑
i

zi,i′ = 1, ∀i′

zi,i′ = 0 or 1, ∀i, i′

(5.13)

where ci,j,i′,j′ are constant values obtained by real measurements, substituted by
ln g(rij−f(di′,j′ , Ti′,j′)) or rij ln(di′,j′/Ti′,j′) if utilizing (5.11) or (7.5), respectively.
The variable zi,i′ equals 1 if node ni locates at positions pi′ , otherwise zi,i′ = 0
(the last constraint). For each node ni, there is only one candidate position
pi′ such that the node matches the position,

∑
i′ zi,i′ = 1 (the first constraint).

Similarly, for each position pi′ , there is only one node ni matches the position
(the second constraint). The IQP problem defined above is a (0 − 1) Quadratic
Programming of N2 variables that can be solved by Mixed Integer Programming
(MIP) solvers such as CPLEX [93].

We also propose Mixed Integer Linear Programming (MILP) formulation such
that it can be addressed by MIP solvers that do not support solving IQP.

min
∑

i,j,i′,j′

ci,j,i′,j′xi,j,i′,j′

s.t. xi,j,i′,j′ ≤ (zi,i′ + zj,j′)/2, ∀i, j, i′, j′∑
i′

zi,i′ = 1, ∀i∑
i

zi,i′ = 1, ∀i′

xi,j,i′,j′ = 0 or 1, ∀i, j, i′, j′

0 ≤ zi,i′ ≤ 1, ∀i, i′

(5.14)

where zi,i′ = 1 if the node ni locates at positions pi′ , otherwise zi,i′ < 1 (the
last constraint). Due to the fourth constraint and the first constraint, and the
negative values of parameters c , xi,j,i′,j′ = 1 if and only if zi,i′ = zj,j′ = 1,
otherwise xi,j,i′,j′ = 0. Hence the term xi,j,i′,j′ can substitute the product zi,i′zj,j′

given in the IQP form. Note that if some values of c are positive, subtracting a
constant from every c is required before passing to a MILP solver.

Approximation Methods

Since IQP and MILP problems are NP-complete, the computational time needed
is at worst exponential. Thus, exact methods are not appropriate for large net-
works. Instead, we proposed approximation methods by utilizing LP relaxation
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techniques. Note however that unless xi,j,i′,j′ is an integer, xi,j,i′,j′ cannot be sub-
stituted for the product zi,i′zj,j′ . We therefore propose ILP formulation having
larger number of constraints.

min
∑
i<j

∑
i′ ̸=j′

ci,j,i′,j′xi,j,i′,j′

s.t.
∑
i′ ̸=j′

xi,j,i′,j′ = 1, ∀i < j

∑
i̸=j

xi,j,i′,j′ = 1, ∀i′ < j′

∑
j′

xi,j,i′,j′−
∑
k′

xi,k,i′,k′ =0, ∀j < k, and ∀i, i′

xi,j,i′,j′ − xj,i,j′,i′ = 0, ∀i < j, i′ ̸= j′

0 ≤ xi,j,i′,j′ ≤ 1, ∀i < j, i′ ̸= j′

xi,j,i′,j′ is integer, ∀i < j, i′ ̸= j′

(5.15)

where xi,j,i′,j′ = 1 if the two nodes ni, nj locate at positions pi′ , pj′ , otherwise
xi,j,i′,j′ = 0 (the two last constraints). This problem is and ILP problem of
N4 variables. For each pair of nodes ni, nj , there is only one pair of candidate
positions pi′ , pj′ such that node pair matches the position pair,

∑
i′ ̸=j′ xi,j,i′,j′ = 1

(the first constraint). Similarly, for each pair of candidate positions pi′ , pj′ , there
is only one matched pair of node IDs ni, nj (the second constraint). For every
node nj there is one candidate position pj′ such that nj matches pj′ . Therefore, for
each pair of node ni and candidate position pi′ , if ni matches pi′ ,

∑
j′ xi,j,i′,j′ =

1, ∀j. Otherwise, if ni does not match pi′ ,
∑

j′ xi,j,i′,j′ = 0,∀j. Consequently,∑
j′ xi,j,i′,j′ −

∑
k′ xi,k,i′,k′ = 0, ∀j, k and ∀i, i′ (the third constraint). Finally, if a

pair of node ni, nj matches the pair of candidate position pi′ , pj′ , i.e., xi,j,i′,j′ = 1,
then pair of node nj , ni also matches pair of candidate position pj′ , pi′ , and vice
versa. Therefore, xi,j,i′,j′ − xj,i,j′,i′ = 0, ∀i < j, i′ ̸= j′ (the forth constraint).

We next illustrate our two approximation methods basing mainly on LP relax-
ation. The first method, called LP method for short, first solves the LP problem
obtained by relaxing the last constraint given in (5.15). Since the solutions may
not be integers, it then utilizes the following method to obtain approximate so-
lutions: For all i, i′ we let

zi,i′ =
1

N − 1

∑
j, j′

j ̸=i

xi,j,i′,j′
(5.16)

where 0 ≤ zi,i′ ≤ 1 acts as an indicator for the event that node ni matches
the position pi′ . The closer zi,i′ is to one, the higher the probability that node
ni is positioned at pi′ . We can assemble all this information in a matrix Z with
entries zi,i′ . The approximate method then continues to find a bipartite matching
between nodes and positions (namely a hypothesis h where h(i) = i′ if node ni

is positioned at pi′) that maximize the sum of z over all nodes

h∗ = argmax
h∈H

∑
i

zi,h(i), (5.17)

where H is a set of all hypothesis. The maximal hypothesis h∗ can be found
efficiently by using the Hungarian algorithm for solving Linear Sum Assignment
Problems (LSAP) [98]. Note that the original LSAP tries to find the matching
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that minimizes the cost sum. Hence, by setting the cost matrix as −zi,i′ , an
equivalent problem is obtained.

To check optimality, letting matchSum = 1
N

∑
i zi,h∗(i), then it follows that

0 < matchSum ≤ 1 with matchSum = 1 iff all solutions obtained by the LP
relaxation methods are integer, namely, optimal solutions for (5.15) are obtained.

This LP relaxation method however may be inaccurate, i.e., it produces non
optimal solutions in some extreme conditions especially when nodes are posi-
tioned in highly symmetric layouts and/or in noisy networks. As a remedy to
this and to obtain more accurate results, we propose an approximation algorithm
called MILP method, in which some variables are constrained to be integers. The
algorithm first runs the LP method as described above. If matchSum = 1, i.e.
optimal solutions are obtained, the algorithm halts and output its solutions. Oth-
erwise, a second run is proposed where the method solves the following MILP
problem which includes an additional constraint: x0,1,i′,j′ is an integer ∀i′, j′.
Thus this is a MILP problem of N2 integer variables and N4−N2 real variables.
The algorithm finally concludes with a runs Hungarian algorithm (same as in
the LP method) to obtain approximate solutions. Note that this algorithm is
faster than the original ILP problem since it has less integers than ILP, but its
computation time is at worst exponential.

Heuristic Methods

Combinatorial optimization search methods such as Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), Simulated Annealing (SA) [99] can signifi-
cantly speed up the computation compared to exact methods. However, it is well
known that such methods can fall into local optima, especially if a traditional
hill climbing algorithm is assumed. There are many ways of countering these
falls including mutation in combination with crossover techniques and noise per-
turbations which are designed to move the particle populations away from local
optima. We will compare the performance of heuristic methods and approxima-
tion methods via numerical simulations in section 5.7.

5.5 MLMatch3D Algorithm

In many 3D localization applications, it is difficult to obtain accurate value of
transmission coefficient through a wall T since it depends on various parameters
such as wall material, thickness, and number of layers [100]. The coefficient T also
varies even when wireless signals transmit through the same wall. Measurements
have shown that RF signal absorption loss by a wall whose average value is 20
dBm, varies from 10 dBm up to 40 dBm [101]. It is therefore useful to solve the
3D-WLMP under the assumption that T is unknown. To this end we propose an
algorithm called MLMatch3D.

The formula (7.5) can be rewritten as

h∗=argmin
h∈H

∑
i<j

(
rij ln

dh(i)h(j)

Th(i)h(j)

)
=argmin

h∈H

∑
i<j

q(h(i))=q(h(j))

(
rij ln dh(i)h(j)

)
+
∑
i<j

q(h(i)) ̸=q(h(j))

(
rij ln

dh(i)h(j)

Th(i)h(j)

) (5.18)

where we have defined q(i′) = k if position pi′ belongs to room Lk. Since T
only affects the second term in (5.18), we would like to remove this term from
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the calculation after determining which room Lk a wireless node ni is located in.
We call this process the node-room determining problem for short. The problem
then reduces to the original WLMP given in section 5.4 and can thus be solved
by MLMatch.

We demonstrate our proposed method for solving the node-room determining
problem via a Graph Partitioning method. First, we construct a weighted graph
(V,E) in which, V consists of vertices i, (1 ≤ i ≤ N) corresponding to the wireless
nodes, and E consists of edges (i, j) connecting two vertices i and j, having non-
negative weight wi,j = ri,j − rmin, where rmin(dBm) is the minimum value of
RSSI that a wireless node can measure. We set wi,j = 0 if there is no connection
between nodes between the pair ni ∼ nj . Typically, the RSSI between nodes
located in different rooms is small compared to RSSI between nodes located in
the same room. Thus, the weight of edges connecting nodes in different rooms
will be smaller than the weight of edges connecting nodes in the same room. The
Graph Partitioning problem therefore aims to partition the node set of a graph so
that the total nodes within each set of the partition is constrained by the a priori
known number of nodes in each room. The objective is to minimize the sum of
the weights of edges having their endpoints in different sets of the partition. We
propose ILP formulation for this problem:

min
∑
i<j

wi,jyi,j

s.t.
∑
k

zki =1, ∀i∑
i

zki =Fk, ∀k

yi,j ≥ zki −zkj , ∀i, j, k
yi,j , z

k
i ∈ {0, 1}, ∀i, j, k,

(5.19)

where zki and yi,j are variables, such that zki = 1 if vertex i lies in set number
k (i.e., node ni is located in room Lk), and zki = 0 otherwise. Further, we have
that yi,j = 1 if vertices i and j lie in different sets (i.e., nodes ni, nj are located in
different rooms), and yi,j = 0 otherwise (the last constraint). For each vertex i,
there is only one set that i belongs to (the first constraint). For each partitioning
set, there are exactly Fk vertices (the second constraint), where Fk is the number
vertices that lie in set k (i.e., the number of wireless nodes located at room Lk). If
two vertices i, j lie in different sets, then yi,j must equal 1 (the third constraint).

This is a N2 + N variables ILP problem which can be solved using a MIP
solver [93]. To target application in which computation time is restricted, we
propose a Genetic Algorithm implementation for solving this, which is illustrated
in detail in section 5.7.1.

By utilizing the node-room determining method described above, the 3D-
WLMP can be solved even when parameter T is unknown or its value is not a
constant. Moreover, since the search space of WLMP is parted into smaller sets,
the computation time for hypothesis searching can be reduced significantly. On
the other hand, when parameter T is close to 1, namely wireless signal absorption
loss by the wall wallLoss is small, the method may not work well since it is hard
to distinguish between signals travelling through walls from LOS signal. Besides,
when T can be obtained accurately, ignoring RSSI between nodes located in
different rooms from the calculation can actually reduce the amount of useful
information and may in effect reduce accuracy of MLMatch. For these reasons, we
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recommend to use node-room determining methods when the parameter variation
of T is large and/or when the network is large.

5.6 Overhead and Stability Analysis

5.6.1 Overhead Analysis

This subsection discusses computation and communication costs of the proposed
MLMatch algorithm.

• Computation cost: The algorithm is divided into two parts, the likelihood
calculation part, and the search part. The likelihood calculation of each
hypothesis is O(N2), where N is the number of nodes. In the search phase,
a brute force search would entail O(N !) complexity, a GA search would
depend on initial parameters, LP method would entail in polynomial time,
whilst ILP, IQP, MILP would generally be faster than brute force search,
and at worst exponential.

• Communication cost: The algorithm requires two transmission broadcasts
by each node. Each node after receiving RSSI from all other N−1 nodes
saves the values locally and forwards them to a central server.

5.6.2 MLMatch Stability

In this subsection, we study the features that can affect the performance of ML-
Match under ideal conditions, i.e., assuming that the algorithm can produce
global optimal solutions the random variable X follows a perfect Gaussian distri-
bution model, and there are no absorption losses between wireless nodes. Namely,
we study the probability that the correct hypothesis ht is more likely than some
other hypothesis h. We therefore compare the likelihoods of the two hypothesis
and arrive at

Pc(ht, h)= P
[∑

i<j

(
rij−P0+10η log10 di′j′

)2
>
∑
i<j

(
rij−P0+10η log10 dij

)2]
=P

[∑
i<j

(
Xij + 10η log10(di′j′/dij)

)2
>

∑
i<j

X2
ij

]
=P

[∑
i<j

20ηXij log10(di′j′/dij)

> −
∑
i<j

(
10η log10(di′j′/dij)

)2]
(5.20)

where we have used the fact that

rij=P0−10η log10 dij+Xij . (5.21)

Letting E(h) =
√∑

i<j

(
log10(di′j′/dij)

)2
, the right hand side of the final in-

equality in (5.20) equals to −(10ηE(h))2. Moreover, since Xij ∼ N (0, σ2) we
have that

20ηXij log10(di′j′/dij)∼N (0, (20ησ log10(di′j′/dij)
2), (5.22)
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and by the central limit theorem (CLT) we arrive at

W =
∑
i<j

20ηXij log10(di′j′/dij)∼N (0, (20ησE(h))2). (5.23)

Therefore, we can rewrite Pc(ht, h) as

Pc(ht, h)=P
[
W > −

(
10ηE(h)

)2]
=
1

2
+

1

2
erf

[10ηE(h)√
8σ

]
.

(5.24)

Finally, the probability that the correct hypothesis ht has maximum likelihood
over all other hypothesis can be obtained via the theory of order statistics:

Pc(ht,H)=P
[
ht=h∗

]
=

∏
h∈H,
h̸=ht

Pc(ht, h)
(5.25)

Equations (5.24) and (5.25) suggest that that probability that correct hypothesis
ht has maximum likelihood and is therefore resolved by MLMatch is an exponen-
tial function of η/σ. The larger this ratio, the more accurate we expect MLMatch
to be. Nodes having distance-closed neighbors can be estimated incorrectly in
high probability. In highly symmetric layouts however, E(h), where h is a hypoth-
esis describing a reverse layout corresponding to ht, can be very close to 0 thus
reducing the accuracy of the algorithm. As a mitigation strategy, we propose the
external input of at least one node-position pair as to avoid such shortcomings.

5.7 Simulations

In order to substantiate our proposed methods, we have performed a series of nu-
merical simulations in various environments utilizing Monte Carlo simulations.
The 1st to 3rd simulations demonstrate the performance of MLMatch described
in section 5.4 in various environments, as well as compare its performance uti-
lizing different searching methods described in section 5.4.2. The 4th simulation
demonstrates performance of MLMatch and MLMatch3D under various 3D en-
vironments.

5.7.1 Implementations and Computer Specifications

Implementations for Searching Methods

To compare the performance of three different searching methods, we have im-
plemented brute-force search for exact method, LP method and MILP method
given in section 5.4.2 for approximation methods, and Genetic Algorithm (GA)
for heuristic method. For the approximation approach, we have used the software
package CyLP which is a Python interface to open source COIN-OR’s Linear and
mixed-integer program solvers. Further, we have used the primal-dual method
for solving LP problem and, Branch & Bound method for solving MILP problem.
For the heuristic approach, we have implement GA for the Traveling Salesman

Problem (TSP) [102], where the value of
∑

i<j

(
rij ln dh(i)h(j)

)
is substituted for

the total travel distance used in TSP, as the evaluation value of a hypothesis h.
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Implementations for Graph Partitioning

In general, a GA simulates the survival of the fittest among individuals over con-
secutive generation for finding optimal solution of a problem. To solve the Graph
Partitioning problem described in section 5.5, a GA first codes each individual
(here called ind) as an N -length vector of components in terms of alphabets
1, 2, ..., l, where N and l are the number of wireless nodes and the number of
rooms, respectively. Each individual corresponds to a partition, in which the i-th
component corresponds to wireless node ni and its alphabet corresponds to the
room that it belongs to. For instance, ind[i] = k indicates that nodes ni locates
at room Lk, e.g., an individual ind = 1122 corresponds to a partition in which
nodes n1, n2 and n3, n4 belongs to room L1 and room L2, respectively. Note that
number of each alphabet k ∈ [1, l] appearing in an individual equals to the num-
ber of nodes belonging to room Lk. The GA then utilizes celebrated selection,
crossover, mutation operators to search the fittest individual corresponding to
the best partition, where the fitness of an individual is evaluated as follows

fitness(ind) =
∑
i<j

ind[i]̸=ind[j]

wi,j ,
(5.26)

which is the sum the weights of edges having their endpoints in different sets of
the partition.

Computer Specifications

The simulations describe in this section were performed in a computer processor
with 4 cores with 2533.492 MHz CPU, cache size of 4 MB and 8 GB memory.

5.7.2 Parameter Settings

Parameter Settings for Propagation Models

We simulate a propagation environment experiencing Rayleigh fading and a non-
singular path-loss model. The RSSI values r̄ under this propagation model are
generated via

r̄ = P0 − 10 log10(ϵ+ dη) + X (5.27)

where ϵ > 0, and X is a random variable with density

fX (x) = P[X = x] =
d

dx
P
[
10 log10 |h|2 ≤ x

]
= λ10x/10 exp

(
− λ10x/10

) ln 10
10

(5.28)

where we have assumed that the channel gain |h|2 is an exponentially distributed
random variable with mean 1/λ. Recent indoor measurements at 2.4GHz [38]
have confirmed the above model. The mean and variance of X are given by

E[X ]=−10(γ+lnλ)
ln 10 , and var(X )= 50(6γ2+π2+6(2γ+lnλ) lnλ)

3(ln 10)2
, respectively, where γ≈

0.577 is Euler’s constant.
We argue that the proposed Gaussian model for X, and the singular path-loss

model encapsulated in (5.5) is a sufficient and convenient approximation of the
propagation environment for addressing the WLMP using MLMatch. Indeed,
while such approximations are known to induce significant errors in conventional

68



RF based localization techniques [46], and in cellular networks throughput cal-
culations [34], these errors are diluted by the maximum likelihood formulation
and the fact that, unlike other localization problems, the WLMP has a finite and
discrete solution set. Hence, the mean of X is zero only when λ= e−γ ≈ 0.561
in which case the variance reduces to var(X ) = 50π2

3(ln 10)2
≈ 31.025. Therefore, a

meaningful correspondence between X and our simplified Gaussian approxima-
tion X can be established with respect to their first two central moments only

when λ=e−γ , and σ=
√

50π2

3(ln 10)2
≈5.570.

Parameter Settings for Genetic Algorithm

In each GA simulation run, crossover rate and mutual rate, are randomly gen-
erated in the range of [0.6, 0.95] and [0.005, 0.01], respectively. In each selection
stage, the best individual among random k individuals is advanced to the next
stage. Furthermore, the value of k is generated randomly from the range of [3, 13].
Each GA simulation run halts when the evaluation value stays the same for 200
times or the number of iterations reaches 104. To prevent GA falling into local
optima, for each data set, the best solution among 10 is selected as the output.

Parameter Settings in Each Simulation

To test the robustness of MLMatch described in section 5.4 against different wire-
less propagation models and to compare the performance of different searching
methods, we have performed four simulations employing Monte Carlo simula-
tions.

Simulation 1: In the first simulation, for the number of nodes N ranging
from 3 to 20, we numerically randomly generate a set of N=100 different sensor
node positions in a 20×20 m2 square domain. In each random realization and
for each pair of nodes, we generate 4 separate pairs of RSSI values. Two using
(5.5), and two using (5.27), for different values of η = 3, and 4, with common
parameters σ=5.570, λ=e−γ , and ϵ=0.1. We run MLMatch as defined in (7.5)
(i.e., assuming normally distributed RSSI fluctuations) and measure the average
accuracy over the N random realizations. This way we can test the robustness of
MLMatch against other propagation models. A brute force search approach was
performed for N ≤ 13 followed by a GA method for 14 ≤ m ≤ 20.

Simulation 2: In the second simulation, 10 nodes were randomly generated in
a 10×20 m2 rectangle domain under two types of layouts: random layouts (Figure
5.3a)) and highly symmetric layout (Figure 5.4a)). In each random realization
and for each pair of nodes, random RSSI values were also generated using (5.5)
and for different values of σ in the chosen uniformly from {2, 2.5, 3, ..., 10.5}, with
common parameters η = 3. We run MLMatch utilizing three methods: brute
force (BF), LP method and MILP method. This way we can test the robustness
of MLMatch against search methods.

Simulation 3: In the third simulation, for N ranging from 3 to 20, we ran-
domly generate a set of N=100 different node positions in a 10×20 m2 rectangle
domain. For each pair of nodes, RSSI is generated randomly under the model of
equation (5.5), in which the path-loss exponent η and the standard deviation of
the noisy channel σ are set as 3 and 5.57, respectively. We run MLMatch utilizing
two searching methods: LP method, and Genetic Algorithm (GA).This way we
can test the robustness of MLMatch against other search methods.

Simulation 4: In the forth and final simulation we test the robustness of
MLMatch for the 3D-WLMP described in section 5.5. Here, we have generated
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Table 5.1: Description of Simulations
Simulation 1 Simulation 2 Simulation 3 Simulation 4

4 ×
Area(m2) 20× 20 10× 20 10× 20 10× 20

×2 rooms

Layout random random & random random

high symmetry

# of Nodes 3 - 20 10 3 - 20 10× 2

Path-loss exp.η 3 & 4 3 3 3

NoiseStd σ(dBm) 5.57 2 - 10.5 5.57 6

RSSI models (5.5) & (5.27) (5.5) (5.5) (5.5)

wallLoss (dBm) x x x 30

wallLoss std(dBm) x x x 0-17

# of Running 100 100 100 100

Search BF/GA BF & LP LP & GA GA

method & MILP

20 nodes randomly in two rooms located at adjacent floors. Each room is 10 ×
20m2 large and 4 m height, contains 10 sensor nodes. Among the 10 sensor
nodes, we fix one of the nodes, i.e., we provide its correct position pi′ . In each
random realization and for each pair of nodes, we generate random RSSI values
using (5.5) for η = 3, σ = 6 and use different values of signal absorption by
wall wallLoss. The value of the parameter wallLoss is chosen randomly from
a Gaussian distribution with mean 30 dBm (namely T = 0.1) and standard
deviation ranging from 0 to 17 dBm. For each realization, we run MLMatch and
MLMatch3D utilizing a GA for hypothesis searching.

The values of these simulation parameters and methods used are summarized
in Table 5.1.

5.7.3 Simulation Results

The results of the first simulation are plotted in Figure 5.2b) indicating a clear
positive trend as the number of sensor nodes N increases, approaching 100% for
larger values of N ≥20. Note however that the simulation accuracy is quite low
for N ≤5. We expect that this is due to symmetric position layouts. Moreover,
for small N the matching errors are statistically more pronounced since matching
errors come at least in pairs. For example for N=5, MLMatch accuracy can only
attain values {0, 15 ,

2
5 ,

3
5 , 1}, but not 4

5 . These are smoothed out in Figure 5.2b)
by averaging over realizations. There is also a clear difference in performance for
different path loss exponents η, as expected from the stability analysis of (5.24).
Finally, MLMatch appears to be robust against the two fading models X and X
despite them having noticeably different distributions (see Figure 5.2a)).

The results of the second simulation are plotted in Figures 5.3b) and 5.4b) in-
dicating that the accuracy of MLMatch utilizing any of the investigated searching
methods decreases as σ increases. In random layouts, while for any value of σ the
accuracy of MILP method is very close to the accuracy of brute force method, the
accuracy of LP method goes down comparing to the other two methods when σ
becomes large. In highly symmetric layouts the accuracy of approximation meth-
ods, especially of the LP method, are worse than exact method. This is because,
as LP relaxation allows some fractional values, the indicator that a node matches
a position zi,i′ tends to share its magnitude with the mirror of the position, thus
reducing localization accuracy.
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The LP method takes averagely 4 seconds to run, while the brute force method
takes on average 133 seconds in the second simulation setup. The MILP method
has a varying running time depending on the values of σ. When σ is large,
the MILP running time increases and may become even larger than that of the
brute force method. Our understanding is that when σ is large, especially in
highly symmetric layouts, the probability that LP outputs the global optimum
decreases and thus the algorithm has to perform further MILP computations
which are CPU taxing. Hence, these simulation results illustrate the various
trade-off between accuracy and computation time found in the WMLP.

The results of the third simulation are plotted in Figure 5.5. When the number
of nodes N ≤ 11 the accuracy of GA is higher than LP method. In contrast, for
N > 11 the LP method tends to give better results. This is because for large N
the search space increases exponentially, and hence it is easier for GA methods to
fall into local optima if the sampling size is kept the same. Increasing number of
iterations and/or the number of running GA (thus running time also increases)
might alleviate this shortcoming. Recall that the running time by LP method
increases polynomially with N , and sub-linearly for GA. Our simulations suggest
that this transition is at about N ≈ 17 nodes when the computation time of LP
methods becomes larger than GA.

The results of the second and third simulations hint towards choosing the right
searching method as appropriate for certain applications and certain networks.
For example, if the application has a constraint running time, LP methods or
GA with small number of iterations can be used. If the application requires high
accuracy, exact methods or GA with large number of iterations might be more
suited.

The results of the fourth simulation are plotted in Figure 5.6. When wallLoss
standard deviation is less than 7, the accuracy by MLMatch is higher than that
of MLMatch3D, while for larger than 7, MLMatch3D tends to give better results.
This is because by eliminating instances where RSSI is available for pairs of
nodes in adjacent rooms, MLMatch3D actually loses useful information. This
can reduce the algorithm’s performance. Note however that when wallLoss varies
dramatically, utilizing RSSI between rooms actually can also influence negatively
the matching accuracy.

Finally and as expected, the running time by MLMatch3D is much lower than
MLMatch. This is because MLMatch3D divides the search space into smaller
compartments.

5.8 Experimental Investigation of The WLMP

5.8.1 Prototype Implementation

In order to validate our proposed solution to the WLMP, we have performed a
series of experiments in our premises in Japan, utilizing the 920MHz band. Figure
5.1 illustrates our network system consisting of a server and multiple wireless
nodes. The server which is an ordinary PC, is used to collect RSSI data and run
MLMatch algorithms. Each wireless node (shown in Figure 5.10) is a Raspberry-
pi 2 acting as a host connected to a wireless transceiver of TESSERA RL7023
Stick-L (RL7023 for short) used to interchange message among nodes utilizing
the 920MHz band (IEEE 802.15.4), and a Wi-Fi adapter of Planex GW-450D
used to control the experiments: RSS data collection start/stop, and 920MHz
wireless parameters control. RSSI value measurements are only done within
RL7023 which is equipped with a RF of ADF7023-J operating at 926.9 MHz and
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housing a patch antenna transmitting at 13dB. The TESSERA RL78/G13 micro-
controller of a RL7023 is programmed to do a simple Trickle [103] multicast where
each RL7023 broadcasts at least one message within an pre-defined time interval.
Once a RL7023 has received a message, it measures RSSI and reports to the
host via USB serial port. The host then sends RSSI to the server immediately
via equipped Wi-Fi adapter. We defined time interval as 10 seconds, namely
a matrix R with N × N entries ri,j can be collected within 10 seconds. In
Experiments 3, and 5 prototype Toshiba wireless devices were used as wireless
nodes (not shown) instead of RL7023s, operating at three channels: 922.5MHz,
924.5MHz, and 927.7MHz.

5.8.2 Description of Experimental Setup

In all cases, the devices were placed at specific positions throughout the various
experiments. The layouts of these six experiments are depicted in Figures 5.7 and
5.8, photographed in Figure 5.9, and described in Tab. 5.2. Especially, detailed
results of Experiment 6 are described in Figure 5.12.

To verify the MLMatch algorithm described in section 5.4 in various con-
straints, we varied the number of nodes from 10 to 33 in different layouts, and
in different deployment areas ranging from 9m2 up to 4100m2 in indoor and
outdoor environments. To induce different levels of noise and path loss in our
measurements, we experimented in different locations, different node positions,
different environments, and different number of channels. For example, to induce
variations in our measurements, we placed the wireless nodes inside ceiling tiles
(Experiment 1), on tables (Experiments 2, 5), on the floor (Experiments 3, 6)
and also on the grass outside (Experiment 4).

To verify the MLMatch3D algorithm described in section 5.5, we deployed
30 nodes in two adjacent office rooms (see Figure 5.8) partitioned by a concrete
wall whose average absorption loss (wallLoss) is approximately 16 dBm, and the
standard deviation of wallLoss approximately 9 dBm. Not all 30 nodes where
used simultaneously. Instead, from the 30 nodes, we randomly choose N =
{7, 9, 11, . . . , 19} nodes and run the two algorithms MLMatch and MLMatch3D
separately. This was performed 50 times in order to calculate and compare the
average localization accuracy of each algorithm.

Finally, our RSSI matrix R and path-loss model was constructed as follows.
For each pair of nodes, the maximum value of RSSI over 10 measurements was
collected. This approach gave the lowest values of σ compared to other RSSI
values such as min, mean, median. Using these measurements we numerically
fitted RSSI to (5.5) and obtained estimates of η and σ for each environment (see
Tab. 5.2 and Figure 5.11). These were then used to calculate h∗ using (7.5). In
layouts which had a high degree of symmetry (e.g., Experiments 1, 4, and 5), we
provided the algorithm with one true node-position in order to prune the solution
set.

5.8.3 Experimental Results

Figure 5.7 depicts the estimation results of the MLMatch algorithm for the first
five experiments. Red circles and blue circles describe nodes that are estimated
correctly and incorrectly by MLMatch, respectively. In Experiments 1, and 5,
MLMatch algorithm produced 33%, and 30% incorrect answers, namely, three
nodes and ten nodes are estimated to be located at wrong candidate positions,
respectively. In Experiments 2, 3, and 4, MLMatch had 100% correct answers.
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As suggested by our analysis in section 5.6.2, environments in which the path-
loss exponent is small, signal fluctuations are high and MLMatch tends to produce
inaccurate answers. This is indeed what we have observed in our experiments.
Experiments 1 and 5 having low path-loss exponent to measurement noise data
η/σ are 0.34 and 0.37, displayed poor results in terms of matching accuracy. In
contrast, Experiment 2 which had a very similar path-loss exponent to Experi-
ment 1 managed to localize correctly all devices by utilizing more channels and
positioning the devices on desks as to avoid strong ceiling multi-path reflections.
On the other hand, high path-loss exponents are capable of countering noisy envi-
ronments such as in Experiment 3, further mitigated by an average level of layout
symmetry. In Experiment 4, the path-loss exponent was high and the level of
noise was low thus leading to accurate localization matching results. As a general
rule of thumb, we have observed that a high ratio η/σ is a good indicator of the
algorithm performance.

Figure 5.12 depicts the estimation results of the MLMatch3D vs MLMatch
for the last Experiment 6. On average, MLMatch3D gave better accuracy as
well as running time than MLMatch. This was because the standard deviation
of wallLoss in this case was quite large (approximately 9dBm). Focusing on
MLMatch3D, the Graph Partitioning method gave 100% correct results, namely,
the method could determine in which room a node is located correctly. In each
room, the algorithm then utilizes MLMatch freely as to estimate in which location
nodes are positioned. Therefore, MLMatch3D’s accuracy equals to MLMatch in
each room. From this we may transfer a lot of the engineering insights developed
in Experiments 1-5 for MLMatch. For instance, the accuracy of MLMatch3D
depends on the η/σ ratio and the degree of layout symmetry. Even when the
ratio η/σ is quite high (0.55), the average accuracy by MLMatch3D is lower than
in other experiments because of the layout symmetry effect causing degenerate
solutions.

We can draw multiple conclusions from the above experiments:

• The proposed localization algorithms can achieve room-level localization
accuracy of 100%.

• The proposed algorithms can achieve nearly 100% of localization accuracy
in less noisy environments. Besides, they can determine coarse location of
nodes in noisy environments.

• Relationship between the localization accuracy and the ratio η/σ is vali-
dated.

5.9 Applications

Similar to conventional RSSI-based localization techniques, the proposed local-
izations MLMatch and MLMatch3D do not always achieve localization accuracy
of 100% in every environment. However, we demonstrate that the achievable ac-
curacy is enough for various real-world applications. This section briefly describes
some potential applications.

Room-level devices control and management applications: In many applica-
tions, for instance, smart house applications, wireless devices such as light bulbs,
air conditioners are often controlled and managed at room or zone level. For in-
stance, the followed commands are often found in smart home scenarios: “Turn off
all light bulbs in the living room”, “Turn on an air conditioner in the bedroom”,
etc. Since MLMatch3D can achieve localization accuracy of 100% at room-level,
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it can be applied in such applications to automatically match wireless devices
with their positions. Similarly, some applications may require zone-level accu-
racy, for instance, to control a light bulb in the north of room number one to be
turned on, etc. Since MLMatch and MLMatch3D can produce coarse location of
wireless devices, they can be applied in those applications.

Localization in wireless sensor networks (WSNs): As described in Section 5.1,
MLMatch can be combined with image processing techniques to determine the
location of sensor nodes in a WSN. In many WSN applications, coarse locations
of sensor nodes are enough for some applications such as sensed data processing,
wireless routing, and wireless node clustering, etc.

Assistance to reduce manual calibration cost: As described in Section 5.1,
manual calibration in commercial and industrial buildings containing hundreds
of wireless devices, for instance, light bulbs, is a taxing and lengthy exercise. The
proposed MLMatch and MLMatch3D, which can automatically determine the
proximity of devices, can teach labors nearby devices which should be calibrated.
This can reduce manual cost compared to the scenario where there is no prior
information on the vicinity of these wireless devices.

5.10 Conclusions

While RF localization has come a long way [88, 104], there are many unconven-
tional localization problems which remain unexplored. In this chapter, we have
proposed a new type of localization problem for use in WSNs: the wireless lo-
calization matching problem (WLMP), which is a bipartite matching problem
between perfectly known sensor node positions and their unknown IDs via wire-
less RF positioning methods. Examples of such scenarios are commonly found in
real life, for instance during mass equipment (e.g., smart-lighting) installations in
commercial or industrial buildings which are currently time and cost inefficient.

The solution to the WLMP is hindered by noisy wireless measurements and
symmetric deployment layouts. We have therefore proposed the use of maximum
likelihood-based algorithms called MLMatch and MLMatch3D, and also several
maximum likelihood searching methods. The main advantage of the MLMatch
algorithms is the use of likelihood estimation to reduce the error rate. Flexibility
in searching methods is also an advantage as accuracy can be traded off with
localization speed according to the application setting. In a 3D setting where
nodes are located within a multi-room or multi-story building, the main advan-
tage of MLMatch3D is that it can solve the 3D-WLMP even when the wallLoss
signal attenuation through walls is uncertain or unknown. Not only have we pro-
posed and defined the WLMP, but we have also numerically and experimentally
analyzed the main factors that affect the accuracy of our algorithms. Extensive
experiments in various environments illustrated that the proposed algorithms can
achieve high localization accuracy enough for a number of real-world IoT applica-
tions. For instance, the proposed MLMatch3D which can achieve 100% room-level
of accuracy can be successfully applied into IoT devices control and management
at room-level. We have also discussed some of the algorithms’ limitations and
suggested methods to improve their performance. In the next chapter, we will
introduce a method that uses machine learning to improve the accuracy of the
proposed algorithms.
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Figure 5.2: a) Probability density of the RSSI fluctuations due to multi-path fad-
ing and noise, modeled here as a normally distributed random variable X (blue),
and also as a Rayleigh fading random variable X (purple). b) MLMatch accuracy
as a function of N randomly positioned nodes in a 20×20 m2 square domain, for
different RSSI fluctuation models X (blue circles and yellow diamonds) and X
(purple squares and green triangles) and path-loss exponents.
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Figure 5.3: a) An example of a Random Layout (left), b) MLMatch accuracy
(lines) and running time (bars) utilizing LP method (in red), MILP method (in
blue) and brute force method (in purple). Nodes are randomly positioned in a
10× 20m2 rectangle domain. (right)
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Figure 5.4: a) An example of a Highly Symmetric Layout (left), b) MLMatch
accuracy (lines) and running time (bars) utilizing LP method (in red), MILP
method (in blue) and brute force method (in purple). Nodes are randomly po-
sitioned in 10 × 20m2 rectangle domain, under assumption of highly symmetric
layout. (right)
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Figure 5.5: MLMatch accuracy (lines) and running time (bars) utilizing LP
method (in red) and GA (in green).
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Figure 5.6: Accuracy and running time of MLMatch3D (in red) and MLMatch
(in blue) through simulations.
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Figure 5.7: Layouts of deployed nodes and estimation results. Coordinates de-
scribe length in meter. Green rectangles depict fixed nodes. Red circles and
blue circle depict nodes that are estimated correctly and incorrectly, respectively.
Correct node positions and estimated positions are connected by blue lines.
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Figure 5.8: Layout of deployed nodes in Experiment 6.
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Figure 5.9: Photos of Experiments 4 and 5.

Figure 5.10: A wireless node equipped with RL7023 Stick-L

Figure 5.11: Linear fitting of the path loss exponent for Experiments 2 and 3.
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Figure 5.12: Accuracy (lines) and running time (bars) of MLMatch3D (in red)
and MLMatch (in blue) through experiments.
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Chapter 6

Improved Localization Accuracy: Predicting

and Refining RSSI

In the previous chapter, we defined and promoted a new class of wireless localiza-
tion called WLMP (i.e., the Wireless Localization Matching Problem). We also
proposed algorithms called MLMatch to resolve the problem. Although MLMatch
algorithms are practical because they do not require a priori measurements, their
accuracy are related to the variation of the noisy factor. In many cases in practice,
however, calibration of the propagation model which is measured during a priori
measurements, can be conducted. Using the propagation model, we can improve
the localization accuracy of MLMatch. In this chapter, we propose a method
called MLRefine (i.e., Refining RSSI measurements using Machine Learning) to
reduce the variation of the noisy factor, thus enhancing localization accuracies.

MLRefine uses machine learning methods to model the relationship between
accurate values and features extracted from in silico RSSI values. MLRefine then
applies the trained model to features extracted from real RSSI measurement val-
ues to return a predicted set of refined RSSI values. The refined RSSI values
are shown through computer simulations and real experiments to improve local-
ization accuracies of state-of-the-art location estimators including the proposed
MLMatch described in the previous chapter.

This chapter is organized as follows. In Section 6.1, we illustrate the impor-
tance of refining RSSI measurements in wireless localization. In Section 6.2, we
discuss conventional related work on noise reduction techniques and localization
techniques. In Section 6.3, we define the RSSI refining problem and describe
our proposed MLRefine. In Section 6.4, we substantiate MLRefine through com-
puter simulations. In Section 6.5 we investigate and validate the performance
benefits of MLRefine through real experiments. Finally, Section 6.6 concludes
this chapter.

6.1 Motivation

RSSI based localization methods are subject to much errors due to background
noise, wireless multi-path fading, shadowing, non line-of-sight (NLoS), path loss,
etc. Hence, empirical models are often evoked to improve the accuracy of local-
ization methods. These are sometimes costly and time-consuming since model
parameters need to be adjusted for each specific WSN deployment environment.
At their core, most range based RSSI localization methods require a conversion
function f that relates the distance d between two wireless devices with the RSSI
value r. Most range based RSSI localization methods require a ranging function
f that relates the distance d between two wireless devices with the RSSI value r.
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This can be expressed in dBm through the log-distance propagation model [35]
as

r = f(d) +X = P0 − 10η log10 d+X (6.1)

where P0 is a known reference power value at distance of 1 meter from the trans-
mitter. η is the path loss exponent usually set to 2 for free space wireless prop-
agation or can be experimentally fitted via linear fitting (cf. Fig. 6.1a)). X is a
random variable that captures the statistics of the RSSI spatio-temporal fluctu-
ations and therefore the inherent error of each data measurement. X is normally
assumed as a zero-mean Gaussian random variable (in dB), i.e. X ∼ N (0, σ2).
RSSI based localization methods are subject to much errors due to background
noise, multi-path fading, shadowing, etc. A calculation in Section 2.4 however can
show that the ranging error per node-pair grows exponentially with the variance
σ2 of X, and specifically with the ratio σ/η (cf. Appendix).

Non-zero values of X cause ranging error and thus localization error. The
Cramer-Rao lower bound (CRLB) can give a lower bound on the covariance
of localization error for a given environment is proportional to the ratio σ/η
(cf. Section 2.4.2). More generally, we have previously shown theoretically and
experimentally that the accuracy of localization matching algorithms scales with
the ratio η/σ (cf. Chapter 5). Hence, the lower the σ/η ratio is, the higher
localization accuracy a localization estimator can achieve.

It follows that it would be useful to predict and remove the value of the ran-
dom noise variableX attached to each measurement, thus decreasing the variance
σ2 and thereby improving the localization accuracy. Without information on sur-
rounding environment, this is not trivial since it is unknown which factors affect
a single signal. To achieve this, we start from the realization that RSSI measure-
ments between different node pairs in a network correlate with each other. We
therefore extract useful geometrical information from non-local RSSI measure-
ments that when combined with local RSSI measurements can generate a refined
predicted set of more accurate local RSSI measurements. To this end, we employ
standard regression techniques trained on computer simulated RSSI data (in or-
der to reduce training data collection time and cost) to build a prediction model,
and then apply the model to real RSSI data to achieve more accurate RSSI mea-
surements (here called refined RSSI ). The refined RSSI data is general and can
be used with any existing RSSI location estimator to improve its accuracy.

The main contributions of this chapter are to:

• Propose a novel method called MLRefine reducing the magnitude of noisy
factors attached to RSSI values.

• Substantiate MLRefine through various simulations and experiments.

• Quantify the impact of MLRefine by combining with state-of-the-art local-
ization estimators including MLMatch described in Chapter 5.

6.2 Related Work

Many range-based localization techniques consist of three phases: 1) the cali-
bration phase during which the propagation model is calibrated using real RSSI
measurements (cf. Figure 6.1a), 2) the measurement phase during which nodes
broadcast packets that are used at the receiver end to estimate and collect RSSI
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values between all nearby nodes, and 3) the localization phase during which the
collected RSSI values are used to estimate each node’s location by means of the
propagation model and a localization algorithm. The proposed MLRefine method
sits between phases 2) and 3). This section discusses related work on noise re-
duction methods (Section 6.2.1) and gives background on localization algorithms
used to quantify the impact of MLRefine (Section 6.2.2).

6.2.1 Noise Reduction Methods

Types of ranging noise can be classified into outlier noise and normal noise [105].
Outlier, which is often caused by malicious attacks, non-line-of-sight (NLoS),
hardware malfunction, means abnormal measurements far beyond the normal
range. There are numerous attempts that try to detect distance outliers whose
distance measurement errors are significantly large and hence are most likely out-
liers (see [106] for a survey). For instance, Jian et al. [105] use triangle inequality
to detect outlier distances that are a factor of ten away from accurate measure-
ments. Xiao et al. [107] propose method to detect outlier distances and outlier
nodes that can collude due to malicious attacks. Recently, Xiao et al. [108] use
multi-norms regularized matrix completion to realize localization methods that
are robust to outlier noise. All of these methods consider that normal distance
measurements are highly accurate or contain a small Gaussian error. Therefore,
they are inapplicable to RSSI-based localization in which normal RSSI measure-
ments contain large error. Considering RSSI measurements, we have proposed a
method that uses a Graph Partitioning to detect and remove NLoS signals that
travel through walls in Chapter 5.

Normal noise, which is often caused by multi-path fading, shadowing, etc, is
hard to be detected. Smoothing consecutive RSSI measurements between two
wireless nodes can reduce the normal noise. For instance, averaging RSSI values
from multiple antennas can reduce the effect of shadowing [54]. Time-consecutive
RSSI measurements can be filtered to reduce noise using particle filters such as
Hampel filter, Kalman filter [109], or using averaging technique (cf. Chapter
4). These methods, however, can only be realizable if there are transmissions
between a pair of nodes.

The proposed method, MLRefine, is neither an outlier detection method nor a
smoothing method. It uses correlation between RSSI measurements between dif-
ferent pairs of nodes to reduce normal noise. It, however, can also be combined
with the above techniques to further reduce the effect of noise. For instance,
outlier RSSI measurements are first detected and removed using a Graph Parti-
tioning method as discussed in Chapter 5. A smoothing method such as averaging
is then applied to reduce the effect of shadowing. MLRefine is, finally, applied to
further reduce normal noise level.

6.2.2 Cooperative Localization Algorithms

Once the data is refined from noisy errors, a localization algorithm must be
applied. In contrast to traditional multilateration techniques [49], cooperative
localization methods estimate all node positions simultaneously using measure-
ments between almost all nodes rather than localizing each node, thus enhancing
accuracy [50]. There are many cooperative localization algorithms such as mul-
tidimensional scaling (MDS), semidefinite programming (SDP) [52], stochastic
optimization (e.g. simulated annealing (SA)) [46], and matching methods (cf.
Chapter 5). Among cooperative localization, SDP localization enhance accuracy
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Figure 6.1: a) Linear fitting of the path loss exponent η and reference power
P0 via real measurements. b) Correlation between RSSI vectors similarity (here
used Euclidean norm distance) and nodes separation distance.

and can provide deterministic solutions, while localization matching technique
enhance accuracy when a set of node positions is provided. To quantify the im-
pact of proposed MLRefine, we will, therefore, employ SDP method designed
for resolving RSSI-based localization problems (i.e., Formulas (11) and (12) in
Ref. [52]) and the proposed MLMatch that is described in Sections 5.4, 5.4.2.
These localization algorithms will be applied to the refined datasets in Sections
6.4 and 6.5.

6.3 The MLRefine Algorithm

6.3.1 Problem Definition

Consider a WSN composed of m nodes that are labeled 1, 2, ...,m and equipped
with a radio transceiver such that they can exchange messages with each other.
RSSI measurements between nodes can be obtained and thus sent to a backhaul
server for post-processing. The server then saves all the RSSI values in a square
m×m matrix R with entries ri,j equal to RSSI value between nodes i, j. If some
RSSI values are missing, their corresponding entries are saved as null values.
This network model for localization is often used in literatures [50,52]. MLRefine
is a method that enable the server to refine these measurements and output a
refined RSSI square matrix R′ with refined RSSI entries r′i,j that can provide
more accurate ranging and therefore can improve localization estimators. In
other words, r′i,j is closer to r̃i,j = f(di,j) (here called non-noisy RSSI value, cf.
Formula (6.1)) than ri,j .

6.3.2 MLRefine Intuition

MLRefine exploits the inherent geometrical properties of the network deploy-
ment space. Namely, since wireless sensor nodes are located in Euclidean space,
the pair-separation-distance between two nodes correlates strongly with various
distances of other node pairs. Note that the latter can be estimated via RSSI
values. In practice, if nodes i and j are close to each other, then the similarity
between RSSI values ri,k and rj,k is high for an arbitrary node k. In contrast, if
nodes i and j are far from each other, then the similarity between ri,k and rj,k
is low for some node k. It follows that inter-node separation distance di,j , and
therefore non-noisy RSSI value r̃i,j , are correlated with some similarity metric
between RSSI vectors ri and rj , where ri = [ri,1, ri,2, . . . , ri,m]. Figure 6.1 b)
illustrates the strong correlation between distances di,j and the similarity of ex-
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Table 6.1: Description of features

Feature type Feature name Formula

Vector similarity

Pearson correlation
cov(ri,rj)

σri
σrj

Average Absolute value norm
∥ri−rj∥1

∥ri∥0

Average Euclidean norm
∥ri−rj∥2

∥ri∥0

Other statistic values
Standard deviation of ri, rj , ri − rj , ri + rj

Average of ri, rj

Raw RSSI value RSSI value between 2 nodes ri,j

where ∥x∥p = (|x1|p + |x2|p + ...)1/p,

cov(x, y) is covariance of x and y, σx is standard deviation of x

perimentally measured RSSI vectors. Here, we used Euclidean norm distance the
of two vectors ri and rj as the similarity metric. As a result we may conclude
that RSSI vector similarities can be used as features to predict non-noisy RSSI
values. However, the correlations between RSSI vector similarities and non-noisy
RSSI values are not known a priori and are difficult to formulate. To avert this
problem, MLRefine leverages standard machine learning regression methods that
encode said mathematical relationships using computer generated training data.

6.3.3 The MLRefine Algorithm

The proposed localization method is illustrated in Figure 6.2. The whole process
is schematically broken down into four blocks: the propagation model calibration
block, the training block, the refining block, and finally the localization algorithm.
The calibration process will not be discussed since it can be chosen from any
existing method such as linear fitting method (cf. Fig. 6.1). We also will not
discuss the final block in detail since MLRefine is to a large extent agnostic to
the chosen algorithm and should improve localization accuracy and performance
regardless by decreasing the ratio σ/η.

Training Phase

The training phase, described by Algorithm 3, is designed to study the relation-
ship between a non-noisy RSSI value and features extracted from other noisy
RSSI values. As such, a key benefit of MLRefine is that it can be trained in silico
(i.e., using computer simulated data). First, m pairs of coordinates are generated
at random from some finite subspace A of R2 of comparable area to that of the
intended WSN deployment. These coordinates represent the m sensor node loca-
tions. Inter-node separation distances di,j are then calculated and converted into
non-noisy RSSI values r̃i,j using the Propagation Model (6.1). Secondly, Gaus-
sian noise is then added to all the non-noisy RSSI values ri,j = r̃i,j+X and stored
in a symmetric m×m matrix R. In our simulations we have chosen the standard
deviation of the added noise from the range of σ ∈ [3, .., 7] dB as suggested from
experiments in Chapter 5. Note that we are neither restricted to Gaussian noise
nor specific range of σ; for instance in environments where distribution of X can
be obtained accurately, it can be substituted for the chosen values of X. In the
third step, features corresponding to each node pair i, j are then extracted. In
machine learning, a feature is any measurable property or characteristic of a phe-
nomenon being observed. Choosing informative and discriminating features is a
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crucial step for effective algorithms in regression. Whilst there are learning tech-
niques that can extract features automatically from raw datasets such as image,
voice, etc. (e.g., CNN), efficient learning techniques for treating weighted graph
data (i.e. wireless network data) is still unknown. Moreover, efficient learning
from artificial data (in this case simulated RSSI data) is still a challenge. We
therefore, heuristically extract features described in Table 6.1, in which vector
similarities are intuitively correlated with non-noisy RSSI values (cf. Section
6.3.2). Namely, we extract the Pearson correlation, the average absolute and Eu-
clidean norms. Other statistical values such as the standard deviation of vectors
ri and rj and combinations of them are also extracted. All of these values are
not strongly dependent on a single RSSI value but rather represent the whole
network thus alleviating negative influence caused by the difference between a
single simulated RSSI value and real or experimental RSSI one. Note that this
is not a unique set of features since other statistical values could be used just as
well.

Once features have been selected and extracted from the noisy RSSI matrix
R, we then use regression techniques to model the relationship between the non-
noisy RSSI values r̃i,j and its corresponding features. There are a number of
standard regression techniques suitable for this task. We ran linear regression,
support vector machine, neural networks with various parameter settings, then
compared the results on some sample sets. The results showed that except linear
regression, other regression models gave similar results. This is because, the
number of features is small. In the remaining of this chapter, we will report results
of using a simple neural network model with a single hidden layer consisting of
10 hidden nodes, and activation function of ReLu.

Algorithm 1 Training phase

Require: r = f(d){propagation model}, m {number of nodes}, A {nodes de-
ployment area}

Ensure: F {trained model}
Training data generation

1: for all σ ∈ σ { σ is a bounding range of σ } do
2: Generate m random coordinates in Area A
3: for all i, j ∈ {1, . . . ,m} do
4: r̃i,j ← f(di,j) {non-noisy RSSI value}
5: ri,j ← r̃i,j +X, where X ∼ N (0, σ2) {noisy RSSI value}
6: end for

Feature Extraction
7: for all i, j ∈ {1, ..,m} do
8: featuresi,j ← features described in Table 6.1
9: end for

10: end for
Training

11: Model Function F satisfying r̃i,j ≈ F (featuresi,j), ∀i, j, using a regression
method.

Refining Phase

The refining phase of MLRefine is described by Algorithm 4 and begins after
a backhaul server has collected real RSSI measurements.To predict an accurate
RSSI value corresponding to nodes i, j, MLRefine first extracts features from real
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Algorithm 2 Refining phase

Require: R{measured RSSI matrix with entries ri,j}, F {trained model}
Ensure: R′ {refined RSSI value matrix with entries r′i,j}

for all i, j ∈ {1, . . . ,m} do
2: featuresi,j ← features described in Table 6.1

r′i,j ← F (featuresi,j)
4: end for

RSSI values. This process is similar to the feature extraction process that is de-
scribed in Section 6.3.3. MLRefine then applies the trained model F obtained
from the training phase to the extracted features to yield the refined value r′i,j .
The refined RSSI values can be applied with the proposed MLMatch (cf. Chapter
5), or can be converted to distances using the propagation model (6.1) before the
SDP localization algorithm [52] is applied to estimate nodes’ locations. Alter-
natively, the refined RSSI dataset can be used in any off-the-shelf range based
localization algorithm to improve multilateration accuracy.

6.4 MLRefine Performance Evaluation Via Simulations

In order to substantiate our proposed method, we have performed three computer
simulations. We compare the variance fluctuations of raw RSSI values against
the fluctuations of refined RSSI values, and we also contrast the final localization
accuracy achieved when SDP localization method is applied (see Section 6.2.2).

6.4.1 Parameter Settings

Simulation 1 : To test our proposed method against 1) different numbers of nodes
m ∈ {10, ..., 100} are deployed randomly in a 100 × 100m square domain, and
2) different noise distributions X. In each random realization and for each pair
of nodes, we generate two separate pairs of RSSI values using Formula (6.1);
one with a Gaussian distributed X ∼ N (0, σ2), where σ = 5.57 and one with a
Rayleigh distributed X whose probability density function is given by

fX(x) = λ10x/10 exp
(
− λ10x/10

) ln 10
10

, (6.2)

where λ = 0.561, in which case the standard deviation of X is σ ≈ 5.57 (cf.
Chapter 5). Simulation 2 : To test MLRefine against different types of node dis-
tributions and different values of Gaussian noise variance we generate 49 nodes in
a 100×100m square domain under two types of deployment layouts: 1) a random
layout, and 2) a 7×7 grid layout with one grid length equals to 14m. In each ran-
dom realization and for each pair of nodes, random RSSI values were generated
using (6.1) with X ∼ N (0, σ2) and for different values of σ chosen uniformly from
{3, 3.5, 4, 4.5, . . . 7}. As discussed in Section 6.1, reducing the variation of signal
fluctuation equivalent to reducing the lower bound of the variance of localization
error. However, to quantify the impact of MLRefine, we feed SDP localization
method, which is known as enhancing accuracy [52], with refined and unrefined
(i.e. raw) RSSI data. Simulation 3 : To test our proposed method’s performance
in anisotropic domain shape deployments against 1) different noise distributions:
Gaussian and Rayleigh distributions given by Formula (7.10), and 2) different
numbers of anchor nodes: from 20% to 50% of all the nodes, we generate 50
nodes randomly deployed in a C-shape domain (Figure 6.5 c). In this instance,
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Table 6.2: Description of parameters in Simulations

Simulation 1 Simulation 2 Simulation 3

# of Nodes 10 - 100 49 50

Area(m) 100× 100 100× 100 C-shape

Layout Random Random&Grid Random

X distribution Gaussian&Rayleigh Gaussian Gaussian&Rayleigh

Std of X 5.57 3.0 - 7.0 5.57

# of anchors - 4 10 - 25

we use the SDP method with a ∈ {10, 12, 15, . . . , 25} anchors located randomly
in the C-shaped WSN deployment region. All RSSI values in the above three
simulations were generated using common parameters P0 = −30 dB and η = 2.
The values of all other parameters used are summarized in Tab. 6.2 For each set
of parameters, simulations were performed 10 times to obtain statistical averages.

6.4.2 Results and Analysis

In every simulation, we first run the proposed MLRefine algorithm and measure
the accuracy of the output refined values r′i,j compared to non-noisy RSSI values.
Namely, we measure the standard deviation σ′ of variable X ′ , where X ′ =
r′i,j − P0 + 10η log10 di,j . Note that we calculate standard deviation of X ′ under
the assumption that the mean of X ′ is zero, which is equivalent to the mean
squared error of refined RSSI values. We then compare σ′ with σ, which is the
standard deviation of input random variable X of raw (unrefined) RSSI values.
As discussed in Section 6.1, we expect that the smaller of standard deviation of
the RSSI values used for localization, the better the accuracy that a localization
estimator can achieve. This is why it is meaningful here to compare σ′ with σ. In
addition to the fluctuations, we then also apply the SDP localization method and
compare the corresponding localization errors using raw RSSI values and refined
RSSI values.

The results are plotted in Figures 6.3,6.4,6.5 indicating that in any case, the
value of σ′ is much smaller than σ. The results of Simulation 1 (Figure 6.3 a)
indicates that the standard deviation of refined RSSI values σ′ decreases while
the standard deviation of raw (unrefined) RSSI values σ is unchanged (equals to
5.57, cf. Section 6.4.1), hence the ratio σ′/σ < 1. Also, a clear positive trend is
seen as the number of sensor nodes m increases. Figure 6.3 a) also validates the
robustness of MLRefine against other random variable distribution models for
wireless fading such as the Rayleigh distribution even though the training data
is generated using a Gaussian distribution. Figures 6.3 b, c) illustrate that the
refined distribution of variable X ′ is similar to the distribution of X, namely X ′

also follows Gaussian (or Rayleigh) when X follows Gaussian (or Rayleigh), but
with smaller variation.

The results of Simulation 2 (Figure 6.4) illustrate the localization error of SDP
method using raw vs. refined RSSI values when nodes are distributed randomly
or in a grid layout. Observe that the localization error is much smaller for refined
RSSI data compared to the raw (unrefined) RSSI values. Moreover, localization
error significantly decreases when the standard deviation of raw RSSI values σ de-
creases, which suggest robustness of MLRefine especially in noisy networks. The
figures also validate the robustness of MLRefine against other node distribution
patterns such as a grid structure, even though the nodes are distributed under
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Figure 6.3: Simulation 1 results: a) Comparison between fluctuations of raw
(unrefined) RSSI values (i.e. σ) and fluctuation of refined values (i.e. σ′). Lines
express ratio σ′/σ, bars express values of σ′. b, c) Probability density comparison
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a random uniform spatial distribution during the training phase. The results of
Simulation 3 (Figures 6.5) illustrate the localization error of SDP method using
raw and refined RSSI values when nodes are distributed in a C-shape domain.
Observe that MLRefine improves localization error consistently in these settings
too and is impervious to using different fading models for noise and fading effects
X despite our training phase using Gaussian noise, with uniform node deploy-
ments in a square domain. Further improvements could be anticipated if the
training data utilized anisotropic C-shaped deployment regions. In conclusion,
the results illustrate that MLRefine is robust in various environments despite the
difference of distribution models between training data and raw RSSI values.

6.5 Experimental Investigation

This section investigates and validates the performance benefits of MLRefine
through real experiments. We compare the variance fluctuation of the experi-
mentally measured raw RSSI values against the fluctuation of the refined RSSI
values, and we also contrast the localization accuracy achieved when combined
with MLMatch algorithm (see Section 6.2.2). The accuracy of the algorithm is
defined as the ratio of number of correctly matched nodes to the number of total
nodes, which is different from other localization methods.

6.5.1 Description of Experimental Setup

We have performed experiments in Toshiba premises in Japan, utilizing 33 Toshiba
wireless devices operating at 920MHz band. The devices were placed at specific
positions described in Figure 6.6 a). For further details of the experimental setup,
prototype, and surrounding environment, readers are referred to Experiment 5 in
Chapter 5 from which much of the data was obtained. Calibration: In order to
determine the propagation model, we put 6 wireless devices located at positions
described in Figure 6.6 b). The devices communicate with each other, thus RSSI
value between each pair of nodes can be collected and sent to a server. The server
uses a linear fit to calculate parameters P0 and η (Figure 6.7 c).

6.5.2 Results and Analysis

Using data from a total of 33 wireless nodes we randomly select a subset and run
MLRefine and compare refined RSSI values with the raw (unrefined) ones. Train-
ing was performed through computer simulations that have the same parameters
as the experimental setup. Similar to our simulation results and analysis, we mea-
sure the expected accuracy of refined values r′i,j through the standard deviation
of their fluctuations σ′. In addition, we run a localization matching algorithm
(MLMatch) on both RSSI types: raw RSSI values and refined RSSI values. The
results of this experiment are plotted in Figure 6.7 a) indicating that the value
of σ′ is much smaller than σ. Figure 6.7 a) depicts the distribution of variables
X and X ′ illustrating that the distribution of unrefined (raw) signal fluctuations
follows neither Gaussian nor Rayleigh distributions. This is due to the effect of
the surrounding realistic indoor environment such as reflections and scattering.
By truncating the original database we can study the experimental effects of ML-
Refine on smaller networks. We find that MLRefine can enhance the localization
accuracy as seen in Figure 6.7 b) which illustrates the performance gains of the
localization algorithm MLMatch running on refined RSSI datasets. These gains
appear to onset when the number of nodes m is bigger than 17. For instance, the
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difference of median is up to 10% for m = 25, up from 54% to 64%, respectively.
This trend is similar to the results in Simulation 1 (cf. Figure 6.3 a), where the
efficiency of MLRefine increased with the number of wireless devices being used.

6.6 Conclusions

In this chapter, we have proposed a method called MLRefine to refine raw RSSI
data collected from wireless sensor networks in order to improve wireless ranging
and therefore localization accuracy. MLRefine uses machine learning algorithms
to extract and exploit the inherent spatial network geometrical correlations that
are hidden in noisy RSSI datasets used for RF wireless localization. These cor-
relations are captured by features that are then used to reduce the magnitude
of RSSI fluctuations, in turn improving the localization accuracy. We note that
training data can be generated off-line, thus minimizing the cost of collecting
training data. We have validated the efficiency of MLRefine through extensive
computer simulations but also real-world experiments. Especially, it can improve
the localization accuracy of MLMatch described in the previous chapter up to
10%, thus improving the practicality of MLMatch.
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Chapter 7

LEMOn: Wireless Localization for IoT

Employing a location-unaware Mobile Unit

Chapters 5 and 6 propose localization techniques and an improvement technique
to resolve the proposed WLMP under a scenario that sensor nodes connect with
each other. In practice, however, there are network systems that sensor nodes
connect to a central unit, e.g. a wireless controller or a wireless concentrator,
etc., rather than with each other. Considering that the central unit equipped
with mobile robot, in this chapter, we address the problem of localizing sensor
nodes using a mobile wireless unit.

Existing localization methods that use a mobile wireless unit assume an ac-
curate knowledge of the location of the mobile unit and a precise propagation
model of the actual radio environment. By getting rid of these two requirements,
our proposed localization algorithms make mobility-assisted localization far more
practical as we do not need to equip the mobile unit with a global positioning
system or run a time-consuming campaign to survey radio environment. LEMOn
estimates the position of target nodes by using known locations of a small set
of fixed anchor nodes while receiving messages sent from a mobile unit from un-
known arbitrary locations. LEMOn-M, on the other hand, solves the localization
matching problem by mapping an arbitrary number of target nodes to the known
set of locations. Both algorithms first estimate an inter-node distance using a
similarity between Received Signal Strength Indicators of beacons received from
the mobile unit. Conventional location estimators are then employed to localize
target nodes with an unknown location. Obvious examples of real-world appli-
cations include but are not limited to unmanned aerial vehicle assisted wireless
sensor networks and indoor IoT systems. Various simulations show that the two
algorithms achieve a very high localization accuracy even in harsh radio environ-
ments while static localization techniques fail.

The main contributions of this chapter are as follows:

• We define and motivate new localization problems that are hybrid between
static localization and mobility-assisted localization.

• We propose and analytically study the performance of LEMOn and LEMOn-
M as candidate solutions to the above problems,

• We highlight some potential applications related to real-world scenarios.

The remainder of this chapter is organized as follows. In Section 7.1, we
briefly introduce two major RF-based localization techniques for IoT: localiza-
tion techniques using mesh network paradigms and mobility-assisted localization
techniques. In Section 7.2, we describe the system model and problem definitions.
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In Section 7.3, we highlight conventional work on mobility-assisted localization
and localization estimation algorithms with a focus on algorithms that are used
in this chapter. In Section 7.4, we present the details of our proposed LEMOn
and LEMOn-M techniques. In Sections 7.5 and 7.6, we evaluate the performance
of the above algorithms through an extensive simulation-based study. In Sec-
tion 7.7, we highlight potential real-world applications. Finally, we conclude this
chapter with a summary of our results and discuss our future plans in Section
7.8.

7.1 Introduction

With improvements in wireless communication technology over the last decades,
the Internet of Things (IoT) is now widely deployed in smart cities, buildings,
and houses [1]. Typically, an IoT system consists of low cost and low power
devices which interact with each other through the Internet. The main goal of
IoT is to ensure every device, including sensors, smart-phones, wearable sensors,
tablets, transportation system, etc., can connect with each other through a com-
mon interface. This allows machine-to-machine (M2M) communication without
human intervention [2], thus can reduce manual cost. There are numerous key
issues in IoT including wireless localization. Wireless localization, which refers
to extracting geo-location information of an object, has therefore been well re-
searched and developed [110]. Although a Global Positioning System (GPS)
module can provide location information of a wireless device, this incurs addi-
tional cost and huge power consumption. GPS is thus not always suitable for
many IoT applications. To alleviate such problems, several radio-frequency (RF)
based localization methods have been developed to estimate the devices’ location.
These methods measure either devices’ proximity (i.e. connectivity) [8], Angle
of Arrival (AoA) [111], Time of Arrival (ToA) [112], Time Difference of Arrival
(TDoA) [113], or Received Signal Strength Indicator (RSSI) [10, 11] to localize
target devices deployed at unknown locations. In contrast to AoA measurements
and time-based measurements that require additional hardware and techniques,
RSSI can be obtained from almost all wireless hardware. Therefore, RSSI based
localization is an cost-effective solution for most IoT applications. We, therefore,
consider localization problems using RSSI. Typically, an RSSI value r in dBm is
estimated through the log-distance propagation model [35].

r = P − 10η log10 d+X (7.1)

where d is the distance between the transmitter and the receiver, η is the path
loss exponent, P is a reference power value measured in dBm at a distance of
one meter from the transmitter, and X is a random variable characterizing the
ranging error caused by multi-path fading and shadowing.

Depending on network paradigms, RF-based localization can be broadly di-
vided into two categories: inter-node communication based localization schemes
and mobility-assisted localization schemes. The former type of schemes (referred
as static localization schemes in this chapter), first estimate the Euclidean dis-
tances between communicating nodes using inter-node RF measurements, then
localize target devices using either multi-lateration methods [49] or cooperative
localization methods [11,50,52,114]. These schemes are deemed suitable for mesh
network paradigms. On the other hand, mobility-assisted localization schemes
use a wireless mobile unit, which is aware of its location (e.g., equipped with
GPS), to assist in estimating the location of target wireless nodes [47,48]. A mo-
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bile unit can use an Unmanned Aerial Vehicle (UAV), a drone, a ground vehicle,
etc.

A node could be any device that equipped with a wireless hardware, position
of which is often assumed to be fixed or changed only infrequently. We call these
devices as sensor nodes to distinguish from the mobile unit. Unlike the power-
constrained sensors, the energy of the mobile unit is typically assumed to be
unconstrained. Therefore, these mobility-assisted localization methods are more
advanced and practical than static localization methods as reliable inter-node
distance is hard to obtain for the latter schemes [48]. For instance, while static
localization techniques suffer from the problem of non-line-of-sight (NLoS), e.g.
due to obstruction, line-of-sight (LoS) communication links can be established
between the UAV and sensor nodes over time when UAV moves. Besides, in
sparse node deployments, a nodes may not be able to inter-connect due to their
energy constraints. A more powerful UAV, however, can often connect to every
sensor node and can thus help localize these nodes. With the rapid development
of UAV-assisted WSNs [115], mobility-assisted localization systems are attracting
greater attention [116].

However, all of the above localization techniques suffer from the following
limitations.

• Difficulty in Estimating Accurate path loss exponent : The value of path
loss exponent η depends on the measured environment. For instance, it
is approximately 2 for free space, and varies from 3 to 5 in shadowed ur-
ban cellular radio [36]. Estimating accurate values of these parameters is
often prohibitively expensive in practice, and is even impossible in human-
inaccessible environments, for instance, WSNs for post-disaster monitoring.

• Difficulty in the Calibration Process: An RSSI value is a function of the
calibration of both the transmitter and receiver. Transmitted powers and
received powers vary from device to device due to use of different hardware
components. Wireless nodes might be designed to measure and report
their own calibration data to each other. This, however, complicates the
design [50].

• Large Ranging Error : Even if calibration process can be reliably done and
path loss exponent is estimated accurately, there is a ranging error caused
by multi-path fading and shadowing. These effects can be reduced only
if sensor nodes are equipped with specific hardware or technologies. For
instance, multiple antennas can mitigate the effect of shadowing [54] and a
spread-spectrum method can reduce the effect of frequency-selective fading
[50]. However, an ordinary wireless node is not always equipped with such
hardware. A calculation in Section 2.4 illustrates that ranging error can be
up to six times larger than the distance itself.

• In Mobility-assisted Localization: Uncertainty of the Mobile Unit’s Posi-
tion: Certain application deployment areas or environmental conditions
can prevent from accurately determining position of the mobile unit [117].
These factors may include unavailability of the GPS in indoor environments
or under poor weather conditions. Even if GPS is available, determining ac-
curate position of the mobile unit is challenging in real-time, especially for
a high-speed mobile unit. A standard non-differential GPS receiver has an
error of 5 m to 10 m. In addition, delay caused by a low update rate, which
varies from 1 to 10 Hz on average, and GPS response further increases the
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Table 7.1: Comparison of localization techniques
Static localization Mobility-assisted local-

ization
LEMOn, LEMOn-M

Method Measure distance be-
tween sensor nodes us-
ing inter-node RF mea-
surements

Measure distance between
the mobile unit and a sen-
sor node using their RF
measurements

Measure distance between
sensor nodes using RSSI
measurements to the mo-
bile unit

Advantages Do not require the mo-
bile unit

Do not require to fix an-
chor devices. Localization
accuracy can be improved
by increasing the number
of beacons

Do not require calibration,
propagation model param-
eter, and location of the
mobile unit

Requirements Require calibration,
accurate propagation
model and positions of
anchor nodes

Require calibration, accu-
rate propagation model,
and accurate location of
the mobile unit

Require a set of anchor
nodes or a set of node po-
sitions

Applications Localization in static
WSNs

Localization in UAV as-
sisted WSNs in environ-
ments that accurate loca-
tion of the UAV can be ob-
tained accurately

Localization using a mobile
unit whose location is not
obtained accurately

positioning error of a high-speed UAV. Moreover, the GPS position accu-
racy is known to deteriorate when fewer satellites are reachable [118]. To
the best of our knowledge, these issues have not been considered and solved
in mobility-assisted techniques.

To eliminate the above drawbacks of existing mobility-assisted localization
methods and static localization methods, we propose two localization techniques
that can combine the strength of both schemes. In our network model, we assume
that a mobile unit broadcasts beacon messages (referred to as beacons for short)
periodically to sensor nodes. Unlike conventional mobility-assisted localization
techniques, we assume that neither the position of the mobile unit nor the signal
propagation model is known. However, we assume that the following information
is known: 1) Position of some of the fixed sensor nodes also called anchor nodes, or
2) A set of node positions, however, we do not know which node locates at which
position. The former localization problem is often found in literature [50, 52].
On the other hand, the latter localization problem is studied in Chapter 5 and
is called as the wireless localization matching problem. Using the RSSI values
estimated from the beacon transmissions we propose two methods called LEMOn,
i.e. Localization Employing a location-unaware MObile unit and LEMOn-M, i.e.
LEMOn for localization matching to respectively resolve the above two problems.
The main advantages of the proposed LEMOn and LEMOn-M are:

• Suitable for both indoor and outdoor environments as the location of the
mobile unit is not required,

• Easily applicable as these methods do not require system calibration as well
as a priori measurements to estimate the path loss exponent,

• Robust to noise as these methods use statistical features of RSSI measure-
ments rather than a single or few RSSI measurement that indeed fluctuates
a lot.

The characteristics of the above localization techniques are summarized in
Table 7.1.

101



7.2 System Model and Problem Definitions

Consider a wireless network consisting of N sensor nodes, n1, n2, ..., nN that are
deployed in a domain of interest D. A mobile unit moving along an arbitrary tra-
jectory inside a domain of interest V broadcasts beacons periodically to all sensor
nodes. Each beacon includes its unique sequence number k, k ∈ {1, 2, 3, ...,K}
(K is the number of beacons). We assume that signals transmitted by the mobile
unit are strong enough to reach all wireless sensor nodes. Each sensor node ni

receives the beacon transmissions, estimates their RSSI values, then constructs a
vector ri ∈ RK with entries ri,k equal to the RSSI value retrieved from the k-th
beacon. Node ni then sends its corresponding vector ri back to a server (poten-
tially via the mobile unit) for post-processing. The server is then tasked with
estimating the locations of the target nodes. Without loss of generality, D and V
are assumed as two-dimensional spaces, i.e. D,V ⊂ R2. We assume that either
a wireless node or the mobile unit is equipped with an isotropic antenna. RSSI
ri,k is, therefore, related with distance di,k between a wireless nodes ni and the
mobile unit when it sends the k-th beacon through the log-distance propagation
model [35].

ri,k = Pi − 10η log10 di,k +Xi,k (7.2)

where η is the path loss exponent, which is approximated to 2 for free space, and
a value between 3 and 5 for urban environments. Since wireless nodes can be
deployed in any environment, we assume that η is an unknown constant but is
identical for all nodes. Pi is a reference power corresponding to node ni value
at a distance of one meter from the transmitter, and X is a random variable
characterizing the noise factors. The reference power Pi corresponding to node
ni is an unknown constant, as sensor nodes are assumed not to be calibrated.
The distribution of X depends on the wireless propagation environment. For
example, the long-term signal variation is known to follow the Log-normal distri-
bution, whereas the short-term signal variation can be described by several other
distributions, such as the Rayleigh distribution. For simplicity, in our analysis, X
is assumed to follow the Log-normal distribution, namely Gaussian distribution
in dB, i.e. X ∼ N (0, σ2

X), where the standard deviation σX can be as low as
three (cf. Chapter 5) and as high as 12 [50].

We define two different problems, called the localization problem and the local-
ization matching problem, which are motivated through real-world applications
described in Section 7.7.

7.2.1 The Localization Problem

The localization problem can be defined in a similar way as in [50]. Given a set A
comprising of A (A < N) anchor nodes with known-positions (acquired through
GPS or or as a result of deployment process), the problem is to estimate the
location of other sensor nodes, called target nodes.

7.2.2 The Localization Matching Problem

The wireless localization matching problem, is defined as follows. Given a set of
N positions p1, p2, ...., pN where N sensor nodes are located, the problem is to
correctly match each node label ni with its correct position pi′ . In the beginning,
it is unknown which position pi′ node ni is located at.
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7.3 Background and Related Work

Since our proposed algorithms adopt a hybrid approach based on mobility-assisted
and static localization techniques, this section highlights existing work on mobility-
assisted localization as well as localization estimation algorithms for static net-
works. Section 7.3.1 describes a brief history of mobility-assisted localization
and differentiates these localization techniques from our proposals. Section 7.3.2
provides a background on localization estimation algorithms for static networks,
mainly focusing on the representative algorithms used in this chapter.

7.3.1 Mobility-Assisted Localization

Mobility-assisted localization schemes locate target nodes using mobile units that
are aware of their own location and are capable of moving around the target nodes
arbitrarily. The mobile units periodically broadcast beacons with their location,
enabling the nearby target nodes to hear this information and estimate their own
location [116].

RSSI-based mobility-assisted localization techniques are pioneered by Sichitiu
and Ramadurai [47]. They use a wireless device carrying truck that broadcasts
messages containing its known location to sensor nodes deployed in an outdoor
environment. The nodes estimate RSSI values of the received messages to de-
termine their distance to the truck. The nodes finally calculate their locations
using a probabilistic method. Menegatti et al. [119] estimate the location of a
robot while mapping the nodes simultaneously using RSSI measurements and
odometry from the robot. They use a log-distance propagation model, which is
calibrated before the experiments to calculate the distance between the robot
and sensor nodes. Caballero et al. [120] use a robot equipped with Differential
GPS (DGPS) moving in an outdoor parking lot to measure RSSI values from
neighboring nodes. Similar to the above approaches, the propagation model is
calibrated before the experiments.

Besides, mobility can be combined with time-based ranging techniques to
localize the sensor nodes. For instance, Sun and Guo [121] use a mobile beacon
traversing deployed area of sensor network and broadcasting location-containing
packets. On receiving the beacon packets, nodes combine the received locations
with the time of arrival of the packets to calculate its own location. Localization
is performed using either non-parametric or parametric probabilistic estimation
techniques.

In contrast to the ranging techniques described above, some range-free ap-
proaches [122–124] use connectivity information for locating nodes, thus no extra
hardware or data communication is needed for the sensor nodes.

Recently, with the rapid research and development on UAV, there are numer-
ous works on using a UAV to localize unknown devices [125, 126]. For instance,
Villas et al. [126] use a UAV equipped with GPS broadcasting its geo-location
when flying over the monitoring area. Using these 3D geo-locations and the corre-
sponding RSSI values, sensor nodes can calculate its 3D location. Yang et al. [125]
use a UAV carrying GPS and a camera to collect sensor node images. Locations
of non-occluded nodes are then determined using image processing techniques.
These nodes are then used as anchor nodes to localize occluded nodes using RSSI
ranging localization techniques.

It is, however, worth noting that all of the above techniques require an ac-
curate distance estimation method (i.e. calibration of the propagation model
for ranging techniques, or connectivity model for range-free techniques), and an
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accurate mobile unit position, which can be hard to obtain in practice [117].
Recently, an RSSI-based localization method [15] is proposed that relaxes the

requirement for the UAV to know its location. This work, however, can localize
sensor nodes that are equipped with the exactly same hardware for the wireless
devices. It is, therefore, less practical than the proposals in this chapter. To
overcome such limitations, the proposed methods in this chapter, to the best of
our knowledge, are the first ones that require neither calibration nor location of
the mobile unit.

7.3.2 Location Estimation Algorithms

Location estimation algorithms (see [46] for a detailed survey) can be broadly
divided into two categories: non-cooperative methods and cooperative methods.
In non-cooperative localization, distance measurements are made only between
anchor nodes and target nodes. Each target node estimates its distance to the
anchor nodes using measured RSSI values, then uses localization algorithm such
as multilateration [49] to locate itself. These methods are suitable for either
target tracking problem, or mobility-assisted localization.

On the other hand, cooperative localization methods, where distance mea-
surements between target nodes are also made, estimate all node positions simul-
taneously rather than localizing each target node individually. These methods
enhance localization accuracy of non-cooperative techniques by using more mea-
surements. These methods are, therefore, ideal for wireless mesh networks where
nodes can communicate with each other [50]. There are numerous localization al-
gorithms such as Multi-Dimensional Scaling (MDS) [51], Semi-Definite Program-
ming (SDP) [52], stochastic optimization (e.g. simulated annealing (SA) [53]),
and localization matching (cf. Chapter 5).

All above methods can determine nodes’ location given estimated distances
between them. We focus on proposing new distance estimation techniques rather
than new location estimators. Therefore, we use the existing location estima-
tors. We choose SDP localization method for resolving the localization problem
because it can output deterministic solutions and can also enhance accuracy com-
pared to other methods [52]. On the other hand, a localization matching method
called MLMatch (cf. Chapter 5) is the unique location estimator that can solve
the localization matching problem.

The remainder of this section depicts a high-level description of SDP local-
ization and MLMatch, while more details can be found in [52] and Chapter 5.

SDP Localization Method

The problem can be stated as follows: given a set of anchors A with known
locations aj , (j ∈ A), a set of target nodes T whose locations are unknown, and

some estimated distances d̂i,j(i, j ∈ A∪T ), find xi, (i ∈ T ) the location of target
nodes, such that:

∥xi − xj∥ = d̂i,j , i, j ∈ T
∥xi − aj∥ = d̂i,j , i ∈ T , j ∈ A (7.3)

The problem in (7.3) can be reformulated as follows.

min
xi

N∑
i=1

(∑
j∈A

(d̂i,j − ∥xi − aj∥)2 +
∑
j∈T

(d̂i,j − ∥xi − xj∥)2
)

(7.4)
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To solve the non-convex optimization problem in (7.4), Biswas et al. [52] use
relaxation techniques and reformulate it as an SDP problem that can be solved
in polynomial time. Note that the solutions may not be global optima.

MLMatch Method

MLMatch is formulated using a maximum likelihood technique and a statistical
model between RSSI values and distances. Each possible matching between nodes
and positions is formulated through a permutation h, where h(i) = i′ if node ni

is guessed to be located at position pi′ . Given an RSSI matrix R consisting
of RSSI values between sensor nodes, MLMatch tries to find the best matching
h∗ whose likelihood is biggest. Namely, nodes ni are most likely to be located
at positions h∗(i). Using the correlation between RSSI values and distances,
MLMatch reduces the problem into a simple mathematical formulation as follows:

h∗ = argmin
h∈H

∑
i<j

(
ri,j ln dh(i),h(j)

)
, (7.5)

where H is the set consisting of all permutation h. It then applies an appropriate
searching method, for instance, meta-heuristic or LP relaxation, to find the best
matching h∗. Similar to SDP localization, MLMatch may not output the global
optima.

7.4 Proposed Algorithms LEMOn and LEMOn-M

We illustrate algorithms for LEMOn and LEMOn-M. We first derive the rela-
tionship between an inter-node separation distance and the similarity between
RSSI values in Section 7.4.1. We then illustrate localization methods using this
similarity in Sections 7.4.2 and 7.4.3. Finally, we analyze factors that affect the
localization accuracy in Section 7.4.4.

7.4.1 Distance Estimation

Inter-node distance estimation is fundamental in any localization method. The
proposed algorithms make use of the correlation between inter-node separation
distance and the similarity between RSSI values. Intuitively, if nodes ni and nj

are close to each other, then the distance from the mobile unit to ni is close to
the distance from the mobile unit to nj . In contrast, if nodes ni and nj are far
from each other, their distances to the mobile unit are different from each other.
Since an RSSI value ri,k correlates with the distance between the mobile unit
and a sensor node ni, it follows that inter-node distance di,j between nodes ni

and nj correlates with some similarity metric between RSSI vectors ri and rj ,
where ri = [ri,1, ri,2, ..., ri,K ]. Using standard deviation of the elements of vector
(ri−rj) denoted as si,j , as a similarity metric, we prove that it is a monotonically
increasing function of distance di,j under some assumptions.

Theorem 1 Standard deviation of the elements of vector (ri − rj) is approxi-
mately a monotonically increasing polynomial function of distance di,j when K
and V are large enough.

Proof 1 The mathematical proof of the above theorem is provided in the Ap-
pendix.
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Algorithm 3 LEMOn Algorithm

Require: ri, ∀i ∈ {1, ..., N} {ri = [ri,1, ri,2, ..., ri,K ]}, ai, ∀i ∈ A {positions of
anchor nodes}

Ensure: xi,∀i ∈ T {positions of target nodes}
1: s← new Array; d← new Array
2: for all i, j ∈ A do
3: d.append(∥ai − aj∥) {distance between two anchor nodes}
4: si,j ← std(ri − rj)
5: s.append(si,j)
6: end for
7: α, β ← Linear Regression(s,d)
8: for all i ∈ A, j ∈ A ∪ T do
9: si,j ← std(ri − rj)

10: d̂i,j ← si,j−α
β

11: end for
12: for all i ∈ T do
13: xi ← position of node ni derived by SDP localization method
14: end for

Theorem 1 suggests that si,j can be used to estimate distance di,j . For the
following reasons, we assume that si,j is an approximately linear function of dis-
tance di,j , and is expressed through Equation (7.6). First, the accuracy of the
assumption is illustrated through simulations (see Section 7.5). Second, a lin-
ear function has a minimal number of unknown parameters compared to other
polynomial functions. Thus, these parameters are easy to estimate using mea-
surements between anchor nodes.

si,j = α+ β × di,j + Y (7.6)

where α and β are constants, Y is a variable characterizing the error between
the linearity, i.e. α + β × di,j , and si,j . Y is a function of the noise that is
caused by RSSI noise (see the proof in Appendix) and the difference between
si,j and the linear function of the distance. Since Y is unknown, it is considered
as a random variable. Using Equation (7.6), algorithms for resolving the two
localization problems are described next.

7.4.2 LEMOn Algorithm

LEMOn is designed to solve the localization problem described in Section 7.2.1.
It first calculates Euclidean distance di,j and the similarity si,j between each pair
of anchor nodes ni, nj (∀i, j ∈ A), to derive values of α and β in (7.6) using the

least squared linear regression technique. It then estimates distance d̂i,j between
every pair of sensor nodes ni,nj using the inversion of (7.6), namely:

d̂i,j =
si,j − α

β
(7.7)

It finally applies SDP localization method [52] (see Section 7.3.2) to estimate
location of target nodes. A pseudo-code of LEMOn is described in Algorithm 3.
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Algorithm 4 LEMOn-M algorithm

Require: ri, ∀i ∈ {1, ..., N} {ri = [ri,1, ri,2, ..., ri,K ]}, pi′ , ∀i′ ∈ {1, ..., N}
{positions of sensor nodes in an arbitrary order}

Ensure: Permutation h∗ that node ni locates at position ph∗(i), ∀i ∈ {1, ..., N}
1: H ← set of all permutations of a set of elements 1, 2, ..., N

2: h∗ ← argmaxh∈H
∑

i<j

(
si,jdh(i),h(j)

)
{h∗ is found using searching methods

as in Chapter 5}

7.4.3 LEMOn-M Algorithm

LEMOn-M is designed to solve the localization matching problem described in
Section 7.2.2. It is designed similar to the MLMatch algorithm described in Sec-
tion 7.3.2. While MLMatch use a logarithmic relationship between an RSSI value
and the corresponding distance, in LEMOn, this relation should be substitute by
the linear relationship between the similarity si,j and distance di,j . Consequently,
the formula (7.5) (cf. Section 7.3.2) is substituted by (7.8).

h∗ = argmax
h∈H

∑
i<j

(
si,jdh(i),h(j)

)
. (7.8)

LEMOn-M then uses the same searching methods as in MLMatch to find the best
matching. A pseudo-code of LEMOn-M is described in Algorithm 4.

7.4.4 Limits on Localization Accuracy

Similar to other RSSI-based localization methods, the proposed algorithm cannot
guarantee 100% accuracy. It is meaningful to understand factors causing local-
ization error, and the impact of those factors on localization accuracy. This can
give insights to optimize the localization accuracy.

As discussed, the proposed algorithms consist of two phases namely distance
estimation phase and location estimation phase. Therefore, localization error
can accumulate in both phases. The location estimation error is a function of
number target nodes and anchor nodes, sensor geometry, and error of approximate
solutions due to the location estimators. We recommend the readers to refer to
Chapter 5 and [50] for further details.

As we focus on distance estimation techniques, we analyze factors that affect
the distance estimation error. As discussed in Section 7.4.1 distance estimation
error (which is denoted by the variable Y in Equation (7.6)) is a function of the
difference of the similarity si,j and the linear function of the distance di,j and the
noise due to the RSSI fluctuation. Theoretically, due to the proof of Theorem
1, the difference can be minimized if we increase the area of V, i.e. making the
mobile unit move in a large domain. In practice, however, the trajectory of the
mobile unit is often pre-determined. In many applications, V typically equals
to D which is the deployment area of sensor nodes (cf. Section 7.7). Besides,
simulations in Sections 7.5 and 7.6 will show that V = D is enough to realize
accurate localization.

On the other hand, distance estimation error can be reduced by reducing the
effect of RSSI noise, i.e. reducing the variation of random variable Z in Equation
(7.12). Its variation can be reduced by increasing the number of beacons K.
Note that, the distance estimation error cannot be reduced to zero even if K
approaches infinity because the error is also affected by the difference described
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above. We call the localization accuracy that can be achieved whenK approaches
infinity the limitation of localization accuracy. In fact, there is a finite value
of K, often called a threshold, that can achieve the limitation of localization
accuracy. Finding this value can not only optimize the localization accuracy but
can also optimize the number of beacons. This value, however, is difficult to be
derived mathematically as it is dependent with other parameters. The value can
be estimated through simulations as in Sections 7.5 and 7.6. All of the above
arguments will be confirmed in the two sections.

7.5 Performance Evaluation of LEMOn Through Simulations

In order to substantiate the performance of LEMOn, we perform and analyze
three simulations in various environments. Further, for reference, we also perform
static cooperative localization methods for which RSSI values between individual
nodes are used. Note that we do not benchmark our results against those of static
methods because of significant differences in the structure and assumptions of
our system. In static cooperative localization methods, we assume that all sensor
nodes are perfectly calibrated and the path loss exponent is accurately estimated.
We also assume that RSSI values between individual nodes are measured or
known. In both cases, the SDP method is used as a localization estimator [52].

7.5.1 Propagation Models

Although our analysis described in Section 7.4.1 assume that the RSSI values
follow the log-distance propagation model, we argue that it is also sufficiently
accurate even if RSSI values follow other models. We substantiate our claim
through numerical simulations shown below using a more advanced propagation
model that is validated through indoor measurements at 2.4GHz [38]. We simu-
late a propagation environment experiencing Rayleigh fading and a non-singular
path loss. The RSSI values r̄ under this propagation model are generated via

r̄ = Pi − 10 log10(ϵ+ dη) + X (7.9)

where ϵ > 0, and X is a random variable with density

fX (x) = P[X = x] =
d

dx
P
[
10 log10 |h|2 ≤ x

]
= λ10x/10 exp

(
− λ10x/10

) ln 10
10

(7.10)

In the rest of this chapter, we call this model Rayleigh model for short, while
Gaussian model stands for the log-distance propagation model encapsulated in
Equation (7.2).

7.5.2 Parameter Settings

Simulations 1 and 2 consider a UAV assisted WSNs where N = 35 sensor nodes
are deployed randomly in a square domain D = 100 × 100 m2. The mobile
unit (i.e. the UAV) flies at a height of h = 20 m, randomly inside a domain
V = D = 100 × 100 m2, which is an common case found in practice. The path
loss exponent is set as η = 3, which is a common value noted by [36] for outdoor
urban environments.
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Simulation 1 investigates the localization error when numbers of beacons K
varies. It validates the robustness of the proposed method under different prop-
agation models.Using Rayleigh model, RSSI values between the devices are gen-
erated using Equation (7.9) with common parameters σX = 5.57, λ= e−γ , and
ϵ=0.1 (cf. Chapter 5). Using Gaussian model, RSSI values are generated using
Equation (7.2) with σX also equal 5.57. We also use this parameter settings for all
RSSI values that follow the Rayleigh model in the rest of the simulations. This
way we can test the robustness of LEMOn against other propagation models.
The positions of the mobile unit are also generated randomly in the domain V.
The number of beacons K is chosen in the range {100, 200, 300, ..., 1000}. This
way we can observe the effect of K on the localization error.

Simulation 2 observes the localization error of LEMOn against different levels
of signal noise. RSSI values are generated using a Gaussian model with σX is
chosen in the range {3, 4, 5, 6, ..., 12} which is as low as in Chapter 5 as high as
in [127]. The number of beaconsK is set as 200 and 800. This way we can test the
robustness of LEMOn in a less noisy environment and very noisy environments,
and also the effect of K on these scenarios.

Simulation 3 considered an indoor IoT network where sensor nodes are de-
ployed in a room with area D = 10 × 14 m2 and height h = 3 m. The path
loss exponent is set as η = 2.5, which is a common value used for indoor en-
vironments [11, 36]. It investigates localization error of LEMOn against differ-
ent numbers of sensor nodes. The number of nodes N is chosen from the set
{15, 20, 25, ..., 45} among which A = 5 or A = 10 nodes acted as anchors. RSSI
values were generated using the Rayleigh model. The number of beacons K is
set to 500.

In each simulation, the reference power Pi (cf. Equations (7.2), (7.9)) for
each node is generated randomly. For each set of parameters, simulations are
performed 20 times to obtain statistical averages.

The values of all other parameters used are detailed in Table 7.2.

7.5.3 Simulation Environment

We run our experiments with Python, a high-level programming language. In
each realization, position of N sensor nodes are generated randomly under Pois-
son distribution in domain D. Among these nodes, A nodes are chosen randomly
acting as anchor nodes. Position of the mobile unit when it sends a beacon is also
generated randomly in domain V. An RSSI value ri,k is generated using either
formulation (7.2) or (7.9), where random variable X follows Gaussian distribu-
tion or Rayleigh distribution, respectively. In particular, X is generated using
random.py module, a Python pseudo-random number generator that implements
various probability distributions.

7.5.4 Implementation of SDP Localization

In the proposed localization problem, we use Formula (6) of [52], which is designed
to localize nodes when distances between some nodes are accurately known. On
the other hand, in the static localization problem, namely localization using inter-
node RSSI values, we use Formulas (11) and (12) from [52] that solve RSSI-based
cooperative localization problems. We use MOSEK optimizer for Python [128]
as the SDP solver.
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7.5.5 Result Analysis

In every simulation, we run LEMOn to estimate the location of target nodes
using the mobile unit. For reference, we also run SDP localization scheme using
inter-sensor nodes’ RSSI, which is a static cooperative localization technique. We
then output localization error that is the mean error (in meter). The results are
illustrated by Figures 7.1, 7.2 indicating that LEMOn performs well in various
environments. Localization errors from Simulation 1 are illustrated in Figure 7.1
a) indicating that the localization error decreases when the number of beacons K
are increased to 400. The average localization error, however, does not vary when
K varies from 400 to 1000. This confirms the argument on the threshold of K in
Section 7.4.4. Besides, LEMOn performs very well regardless of the distribution
of RSSI values such as the Gaussian model or the Rayleigh model. This simulation
validates the robustness of LEMOn against other random variable distribution
models for wireless fading such as the Rayleigh distribution.

Localization errors from Simulation 2 are illustrated in Figure 7.1 b) indicating
that the localization error increases with the level of noise, especially when the
value of K is not large enough, e.g. K = 200. However, for a large K (e.g.,
K = 800), LEMOn can achieve accuracy of less than 10 m in a noisy environment
characterized by a σX = 10 when static localization technique fails (cf. Figure
7.2 b). This is because static localization technique that estimates inter-node
separation distance directly from RSSI measurement between them suffer a large
error. The calculation in Section 2.4 shows that RSSI-based ranging error in this
environment is even larger than the inter-node separation distance. On the other
hand, LEMOn uses statistical RSSI similarity, thus can suppress error caused
by a single RSSI value. Simulation 2 validates the robustness of LEMOn in
noisy environments. Simulations 1 and 2 confirm the argument in Section 7.4.4
regarding the impact of the number of beacons on localization accuracy. Besides,
the localization error can be minimized to 5- 10 m even in noisy environments.

Localization errors from Simulation 3 are illustrated in Figure 7.1 c) indicating
that the localization error does not vary a lot with the variation in the number of
nodes N . On the other hand, decreasing number of anchors slightly reduces the
localization accuracy. Especially, LEMOn performs much better than the static
SDP localization when there is a small number of anchors (for example A = 5).
This suggests that a high localization accuracy can be achieved using LEMOn
even for a small number of anchor nodes. Besides, the localization error is around
1.5 m in this indoor environment.

The relationship between the similarity si,j and inter-node distances di,j is
illustrated in Figure 7.2 c) indicating that the similarity is approximately linearly
related to the distance. This confirms the argument on the linearity discussed in
Section 7.4.1. Figure 7.2 c) also depicts that the linear fitting of distance between
anchor nodes and their similarities si,j is close to that of the target nodes. This
enables node localization without a priori measurements.

All above results confirmed the robustness of LEMOn in various environments,
and against different propagation models. Especially, it is robust even in very
noisy environments.

7.6 Performance Evaluation of LEMOn-M Through Simulations

Similar to simulations in Section 7.5, we performed three simulations in different
environments. Further, for reference, we also performed the static localization
matching method, i.e. inter-sensor nodes RSSI values are used. In the static
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Figure 7.1: Simulations 1-3 results: Average localization error obtained by
LEMOn (bars) and by using static localization, i.e. using inter-node RSSIs (cir-
cles). a) Simulation 1: Impact of number of beacons on localization accuracy;
b) Simulation 2: Impact of noisy level on localization accuracy; c) Simulation 3:
Impact of number of nodes on localization accuracy.
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localization matching method, we assume that all sensor nodes are perfectly
calibrated. We also assume that RSSI values between all node-pairs are obtained.

7.6.1 Parameter Settings

Similar to Simulation 3 in Section 7.5, we consider an indoor IoT network where
wireless nodes are deployed in a room with area D = 10×14 m2 and height h = 3
m. The path loss exponent η is set to 2, 2.5, and 3 based on the real empirical
measurements acquired from multiple indoor environments in Chapter 5. Use of
multiple path loss exponents thus enables us to evaluate our protocols in different
indoor environments. Wireless nodes attached to light bulbs and air conditioners
serve as fixed objects, while a ground vehicle that moves around the room acts
as a mobile unit. Furthermore, V is set equal to D. Other parameters are set
to exactly same as the three simulations described in Section 7.5 to evaluate
the performance of LEMOn-M in different scenarios, and whether it performs
similarly to LEMOn.

Simulation 4 evaluates the localization accuracy when the number of bea-
cons K varies. It also validates the robustness of the LEMOn-M under dif-
ferent propagation models. The position of the mobile unit is also generated
randomly in the domain V. The number of beacons K is chosen from the set
{100, 200, 300, ..., 1000}. RSSI values are generated randomly using the Gaussian
model or the Rayleigh model. This way we can observe the effect of K on the
localization error.

Simulation 5 observes the localization accuracy of LEMOn-M against different
levels of signal noise. RSSI values are generated using a Gaussian model with σX
chosen from the set {3, 4, ..., 12}. The number of beacons K is set to 200 and 800.
This way we can test the robustness of LEMOn-M in environments characterized
by different noise levels, and also the impact of K on these scenarios.

Simulation 6 studies localization accuracy of LEMOn-M against different
numbers of sensor nodes. The number of nodesN is chosen in the range {11, 13, ..., 27}.
RSSI values are generated using the Rayleigh model. The number of beacons K
is set to 500. The path loss exponent η is set to 2 or 3, which is different than
Simulations 4 and 5, in order to test the performance of LEMOn-M in other
environments.

In each simulation, the reference power Pi (cf. Equations (7.2), (7.9)) for each
node is generated randomly. For each set of parameters, simulations are run 20
times to obtain statistical averages. The values of all other parameters used are
detailed in Table 7.2.

7.6.2 Results Analysis

In every simulation, we run LEMOn-M and to determine the best matching be-
tween nodes and positions using the mobile unit. For reference, we also run
MLMatch localization using RSSI values between nodes that is the static local-
ization matching technique. We then output localization accuracy that is defined
as the ratio between the number of accurately matched nodes and the number
of total nodes (cf. Chapter 5). The results are illustrated by Figure 7.3 in-
dicating that LEMOn-M performs well in various environments. Localization
accuracy from Simulation 4 are illustrated in Figure 7.3 a). Localization accu-
racy increases with increase in the number of beacons K up to 500. The average
localization accuracy, however, does not vary when K increases further from 500
to 1000. Besides, LEMOn-M performs very well regardless the RSSI values fol-
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low the Gaussian model or the Rayleigh model. This validates the robustness of
LEMOn-M against other random variable distribution models for wireless fading
such as the Rayleigh distribution.

Localization accuracy from Simulation 5 are illustrated in Figure 7.3 b) indi-
cating that the localization accuracy decreases when the level of noise increases,
especially when K is not large enough, e.g. K = 200. However, when K is large
(e.g. K = 800), LEMOn-M can achieve localization accuracy even in very noisy
environment.

Localization accuracy from Simulation 6 are illustrated in Figure 7.3 c) indi-
cating that the localization accuracy does not vary a lot with the variation of the
number of nodes N .

The trend of localization error by LEMOn-M is similar to that in LEMOn.
Our results show that both algorithms can outperform static cooperative localiza-
tion methods when there are sufficient number of beacon nodes K. Both methods
are resilient against high noise level especially for sufficiently large K, which in-
troduces diverse variations of distance between the mobile unit and sensor nodes.
It helps in suppressing the effect of noise by shadowing and fading. On the other
hand, in static localization techniques, multiple transmissions between two fixed
nodes can reduce the effect only if nodes are equipped with specific hardware or
technologies (cf. Section 7.1).

7.7 Applications

This section highlights some real-world applications of LEMOn and LEMOn-M.

7.7.1 UAV Assisted WSNs

The proposed algorithm can be used in a UAV assisted WSN which has various
applications. For instance in agriculture, a UAV can control the amount of chem-
ical sprayed over a piece of land [129], or to gather data from deployed wireless
sensors [130]. For the purpose of post-disaster monitoring, UAVs are used to
deploy a WSN in the area [131]. For data collection, a UAV is designed to collect
data from a WSN efficiently [132], or to dispatches mobile agents that are used
to collect data [133]. In all of these applications, it is necessary to collect sensed
data from nodes and is necessary to relate the stream of data to the location of
the corresponding sensor node. The UAV is, therefore, planned to fly along an
optimal trajectory to collect the data from the WSN. To cover all sensor nodes
without leaving any gap, the UAV is made to fly through an operation area par-
allel to the sensor node deployment plane [134, 135] (see Figure 7.4). Because
a sensor node should detect whether the UAV is nearby, the UAV is assumed
to transmit beacon messages periodically (e.g. every two seconds in [135]). It
is often assumed that there is a small number of sensor nodes that know their
positions either through GPS or deployment time configuration. These nodes
are often used as a cluster head that collects data from nearby nodes. Since the
energy supply of the UAV is not limited as that of sensor nodes, it is possible to
assume that the transmit power of the UAV is large enough so that all the sensor
can receive the beacons. Under this network model, we can obtain all necessary
information to perform LEMOn. Further, simulation results in Section 7.5 show
that LEMOn can provide an accuracy of 5-10 m which is similar to the accuracy
that one can get from enhanced GPS.
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Figure 7.3: Average localization accuracy obtained by LEMOn-M (bars) and by
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Figure 7.4: A UAV traveling around to collect data from sensor nodes

7.7.2 Wireless Localization for Indoor IoT

We consider an indoor IoT system where objects, for instance, light bulbs, air
conditioners, TVs, fans, etc., are equipped with wireless transceivers (see Figure
7.5). To control each object, it is necessary to match its location and its ID (
e.g., MAC address). Whilst the equipment positions of some fixed objects such
as light bulbs, air conditioners, are well known from the floor plan blueprints
(often found in out-of-reach positions, e.g., behind ceiling panels or rooftops),
the specific equipment ID may not be recorded by installation engineers due to
high manual labor cost (cf. Chapter 5).

Chapter 5 proposes a new problem called the wireless localization matching
problem (WLMP) that automatically matches an object’s position and its ID.
The problem is resolved using RSSI values between all pairs of devices, and the
set of positions of devices that are known from floor plan blueprints. However,
in some network systems, collecting RSSI values between those devices compli-
cates the network design. This is because wireless devices are often designed to
communicate to some peculiar wireless controllers or sink nodes rather than to
each other. The proposed solution in Chapter 5 is, therefore, inappropriate for
typical sensor networked systems.

LEMOn-M can resolve the above problem. Moving the controller or the sink
node around the floor and connecting it with a UAV or a ground robot such
as vacuum cleaning robot can efficiently collect RSSI values from the wireless
devices. A vacuum cleaning robot is often designed to move around a floor, thus
making collection process of the RSSI values feasible.

Simulation results in Section 7.6 show that LEMOn-M outperforms in doing
the localization matching in the wireless mesh networks , thus being feasible
for real-world applications. Consequently, devices such as light bulbs and air
conditioners can be matched to their exact position efficiently.

Furthermore, besides matching known fixed positions to the devices using
LEMon-M, LEMon can be used to localize devices for which localization is not
known at all. Simulation 3 in Section 7.5 shows that LEMOn achieves less than
2 meters of accuracy on average. This is sufficient for many indoor applications.
Figure 7.6 illustrates an application use-case common to today’s smart homes.
Electronic devices are controlled through an Infrared Radiation (IR) controller.
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Figure 7.5: A wireless mobile unit going around to collect RSSIs from IoT devices

The emitting angle of an IR controller is often between ±10◦ and ±60◦. We
assume that emitting angle of the IR controller is ±25◦, and the distance between
the controller and an electronic device (e.g. a TV) is larger than 5 m. Then the
IR controller can control the TV using an estimated position of TV that is less
than 2m away from its real position.

7.8 Conclusions

This chapter proposes two novel localization methods namely LEMOn and LEMOn-
M that use a location-unaware mobile unit to help estimating location of other
wireless nodes. The mobile unit can be either an UAV, a ground robot, or a
mobile access point. The method can, therefore, be used for many IoT systems,
for instance, UAV assisted WSNs which have attracted great attention recently.

The proposed methods advance conventional localization methods in several
dimensions. First, these can be used in both indoor and outdoor environments
because he location of the mobile unit is not needed. Second, the techniques
are hardware-independent and do not require complex calibration, making these
suitable for a wide variety of emerging IoT applications. Third, we do not need
to run lengthy campaigns to estimate parameters (such as path loss exponents) of
each individual radio environment wherever the applications are to be deployed.

We extensively evaluated the performance of LEMOn and LEMON-M using
simulations. LEMOn achieves a 5-10 m accuracy on average similar to a GPS
in outdoor environments. In outdoors, LEMOn accurately localize within 2 m
on average, which makes it suitable for many indoor applications. LEMOn-M
is shown to outperform the static localization matching techniques even in very
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Figure 7.6: An example of application of indoor IoT localization

noisy environments where competing solutions fail. Consequently, LEMOn-M is
a alternative solution of the proposed MLMatch described in Chapter 5 using
star network models.

7.9 Appendix: Proof of Theorem 1

Notations, and assumptions used in the proof are first described. si,j denotes
standard deviation of vector (ri−rj). ck denotes the position, i.e. coordinate, of
the mobile unit when it sends the k-th beacons. ni denotes the position of node
ni. ∥x− y∥ is the Euclidean distance between two points locating at positions
x and y, e.g., di,j = ∥ni − nj∥. ln · denotes the nature logarithm. x is the
magnitude of vector x. V and D are the areas of V and D. For simplicity, V
and D are assumed to be parallel to each other; h denotes the distance between
them.

Using Equation (7.2), we have

ri,k − rj,k = Pi − Pj − 10η log10
di,k
dj,k

+Xi,k −Xj,k

= Pi − Pj −
10η

ln 10

(
ln

di,k
dj,k

+Xk

) (7.11)

where, Xk =
(Xi,k−Xj,k) ln 10

10η . Let δ = 10η
ln 10 , then Xk ∼ N (0, 2(σX

δ )2). Since
(Pi − Pj) and δ are constant, the standard deviation si,j of the vector ri − rj
divided by δ equals the standard deviation of a vector r whose entries equals
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rk = ln
di,k
dj,k

+Xk. Namely,

(
si,j
δ

)2 =
1

K

∑
1≤k≤K

(
ln

di,k
dj,k

+Xk − ln
d̄i
d̄j
− X̄

)2
=

1

K

∑
1≤k≤K

(Xk − X̄)2

+
1

K

∑
1≤k≤K

2(Xk − X̄)(ln
di,k
dj,k
− ln

d̄i
d̄j

)

+
1

K

∑
1≤k≤K

(ln
di,k
dj,k
− ln

d̄i
d̄j

)2

(7.12)

where d̄i, d̄j , and X̄ denote, respectively, the average value of distance di,k, ∀k,
dj,k, ∀k, and Xk, ∀k. The first term of the right side of (7.12) is the variance of
Xk as K being large enough, thus equaling 2(σX/δ)2. We denote Z the second
term of the right side of (7.12). Due to Central Limit Theorem (CLT), Z is a
random variable following zero mean Gaussian distribution. Consequently, (7.12)
equals

(
si,j
δ

)2 ≈ Z +
2σ2

X

δ2
+

1

K

∑
1≤k≤K

(ln
di,k
dj,k
− ln

d̄i
d̄j

)2

≈ Z +
2σ2

X

δ2
+ lim

K→+∞

1

K

∑
1≤k≤K

(ln
∥ck − ni∥
∥ck − nj∥

− ln
d̄i
d̄j

)2

≈ Z +
2σ2

X

δ2
+

∫
V
(ln
∥x− ni∥
∥x− nj∥

− ln
d̄i
d̄j

)2dx

(7.13)

Using the assumption that V is large enough, V can approximately be assumed
to be a disc having radius of R =

√
V/π, and centered at the projection of the

midpoint of ni and nj onto the plane V (see Figure 7.7). Under this assumption,

d̄i equals d̄j therefore ln d̄i
d̄j

can be ignored. Let θ be the angle between vector x

and the projection of vector nj − ni onto domain V, distances between x and
ni,nj are formulated as (7.14)

∥x− ni∥2 = h2 + x2 + (di,j/2)
2 + xdi,j cos θ

∥x− nj∥2 = h2 + x2 + (di,j/2)
2 − xdi,j cos θ

(7.14)

Using Taylor series expansion of ln(a+x) when x < a, i.e. ln(a+x) ≈ ln a+x/a,
(7.15) is obtained.

ln ∥x− ni∥
ln ∥x− nj∥

=
1

2
(ln ∥x− ni∥2 − ln ∥x− nj∥2)

≈ 1

2

(
ln(h2 + x2 + (di,j/2)

2) +
xdi,j cos θ

h2 + x2 + (di,j/2)2

− (ln(h2 + x2 + (di,j/2)
2)− xdi,j cos θ

h2 + x2 + (di,j/2)2
)
)

≈ xdi,j cos θ

h2 + x2 + (di,j/2)2

(7.15)

By substituting (7.15) into (7.13) we have:
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(
si,j
δ

)2

≈ Z +
2σ2

X

δ2
+

1

πR2

∫ R

0
xdx

∫ π

−π

( xdi,j cos θ

h2 + x2 + (di,j/2)2
)2
dθ

≈ Z +
2σ2

X

δ2
+

1

πR2

∫ R

0

πx3d2i,j
(h2 + x2 + (di,j/2)2)2

dx

≈ Z +
2σ2

X

δ2
+

d2i,j
2R2

∫ R2

0

y

(y + h2 + (di,j/2)2)2
dy

≈ Z +
2σ2

X

δ2
+

d2i,j
2R2

∫ R2

0

( 1

y + h2 + (di,j/2)2

− h2 + (di,j/2)
2

(y + h2 + (di,j/2)2)2
)
dy

≈ Z +
2σ2

X

δ2
+

d2i,j
2R2

(
ln

R2 + h2 + (di,j/2)
2

h2 + (di,j/2)2

− R2

R2 + h2 + (di,j/2)2
)

(7.16)

Let x =
(di,j
2R

)2
, (7.16) can be rewritten as

si,j ≈ δ
[
Z +

2σ2
X

δ2
+

x

2

(
ln

1 + (h/R)2 + x

(h/R)2 + x

− 1

1 + (h/R)2 + x

]1/2 (7.17)

Since R is large enough, x is smaller than 1, and is close to 0. Therefore,
applying Taylor series expansion around x = 0 to (7.17), similarity si,j approxi-
mates

si,j ≈ δ
[
(Z +

2σ2
X

δ2
)1/2 +

1

4(Z +
2σ2

X
δ2

)1/2

×
(
ln

1 + (h/R)2

(h/R)2
− 1

1 + (h/R)2
)
x+O(x2)

] (7.18)

Consequently, similarity si,j is a monotonically increasing polynomial function
of distance di,j . It, therefore, can be used to estimate distance di,j .
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Figure 7.7: An example of geometric relationship between domain V and sensor
nodes.
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Chapter 8

Conclusion and Future Perspectives

8.1 Conclusion

Wireless localization refers to extracting geo-locating information of an object
based on its wireless signals to multiple known devices. It plays important roles
in many Internet of Things (IoT) systems due to its numerous important ap-
plications, particularly industrial applications, commercial environments, public
safety settings, everyday life and defense/security systems. However, although
wireless localization has come a long way, there are many unconventional local-
ization problems which remain mostly unexplored.

The main purpose of this dissertation is to propose and motivate a new local-
ization problem, as well as proposes and develops practical techniques to resolve
the problem. The localization problem relates to scenarios where the device posi-
tions are known a priori, however, the device IDs are not, and therefore need to be
matched using radio frequency methods. The problem, called WLMP: the wire-
less localization matching problem, is motivated through various real-world appli-
cations including, but not limited to, disaster prevention wireless sensor networks
(WSNs), indoor positioning, and smart lighting and heating systems [11,12].

To build accurate and practical localization systems, we have approached the
WLMP step by step: investigation phase, preliminary study phase, and WLMP
resolving phase. In the investigation phase, we first studied characteristics of
wireless hardware equipped with most IoT devices. We then study the properties
of major wireless localization systems and techniques to derive the most suit-
able techniques for IoT devices. As a result, we concluded that low-cost radio
frequency (RF), especially Received Signal Strength Indicator (RSSI) measure-
ment technique, is appropriate for most IoT devices due to their simplicity, small
energy cost, and low processing overhead than other measurement techniques.

In the preliminary study phase, we exploited low-cost localization techniques
through two different case studies. In the first case study, we proposed a max-
imum likelihood-based multihop localization method, called kHopLoc: k-hop lo-
calization, that is from 20% to 40% more accurate than conventional methods,
thus confirming that localization accuracy of low-cost localization can be im-
proved [8]. Besides, extensive simulations in various environments demonstrated
that this range-free technique can produce coarse location of wireless devices, thus
substantiating the validity of low-cost localization. In the second case study, we
proposed an RSSI-based localization method, called WiLAD: wireless localization
through anomaly detection, that used one-class classification [10]. We also pro-
posed a low-cost devices placement optimization method that was in contrast to
conventional methods that relied on expensive simulations or experiments. Ex-
periments in a real store verified that the proposed WiLAD can detect whether
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a wireless device is taken out of a store with an accuracy of approximately 100%,
thus satisfying requirements of defense/security applications. Besides, the pro-
posed devices placement method was substantiated to improve the localization
accuracy without additional cost. In conclusion, the above two case studies vali-
dated the practicability of low-cost RF localization: it can achieve high accuracy
enough for some specific applications, and localization accuracy can be improved
without additional cost.

In the WLMP resolving phase, which is the main phase, we proposed low-
cost localization methods to resolve the WLMP in different scenarios and net-
work paradigms [11, 12]. We first proposed practical methods, called MLMatch:
maximum likelihood-based localization matching and MLMatch3D: MLMatch for
3 dimensions that resolved the WLMP under mesh network paradigms. The
main advantage of the MLMatch algorithms is the use of likelihood estimation
to reduce the error rate. Flexibility in searching methods is also an advantage
as accuracy can be traded off with localization speed according to the applica-
tion setting. In a 3D setting where nodes are located within a multi-room or
multi-story building, the main advantage of MLMatch3D is that it can solve the
3D-WLMP even when the signal attenuation through walls is uncertain or un-
known. Not only have we proposed and defined the WLMP, but we have also
numerically and experimentally analyzed the main factors that affect the accu-
racy of our algorithms. Extensive experiments in various environments illustrated
that the proposed algorithms can achieve high localization accuracy enough for a
number of real-world IoT applications. For instance, the proposed MLMatch3D
which can achieve 100% room-level of accuracy can be successfully applied into
IoT devices control and management at room-level.

We then proposed a method calledMLRefine to refine raw RSSI data collected
from wireless sensor networks in order to improve localization accuracy [13]. ML-
Refine uses machine learning algorithms to extract and exploit the inherent spa-
tial network geometrical correlations that are hidden in noisy RSSI datasets used
for RF wireless localization. These correlations are captured by features that are
then used to reduce the magnitude of RSSI fluctuations, in turn improving the
localization accuracy. We note that training data can be generated off-line, thus
minimizing the cost of collecting training data. We have validated the efficiency
of MLRefine through extensive computer simulations but also real-world exper-
iments. Especially, it can improve the localization accuracy of MLMatch up to
10%, thus improving the practicality of MLMatch.

Finally, we proposed a new approach for resolving the WLMP under star
network models, which is in contrast with mesh network models assumed above
[15]. We addressed the problem of localizing sensor nodes using a mobile wireless
unit. This, in contrast to existing works, does not assume the mobile unit knows
its own location, thus can be used in indoor. We proposed a new ranging method
that uses the similarity between sets of RSSI values rather than using conventional
propagation models. The proposed localization algorithms, therefore, require
neither a priori measurements nor accurate positions of the mobile unit, thus, can
be deployed practically. Extensive simulations in different environments validated
high localization accuracy of the proposed algorithms even under noisy channel
conditions. Especially, localization method for the WLMP outperformed that in
mesh network models, thus being applicable.

The above localization algorithms are suitable for many IoT applications due
to several reasons. First, they use RSSI values which can be read using any wire-
less hardware. Second, they do not require propagation model parameters, thus
expensive prior measurements are not required. Third, they use only input fea-
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tures that can be obtained practically. Finally, they can achieve high localization
accuracy that is enough for many real-world IoT applications.

8.2 Future Perspectives

The proposed WLMP can be applied in numerous real-world IoT applications.
The initial purpose of the WLMP is to reduce the manual installation cost re-
quired by smart lighting systems which are currently commercially available.
Recalling that lighting in commercial buildings contributes to about 38% of their
total energy output, that lighting is responsible for 19% of global electricity con-
sumption and accounts for 6% of total greenhouse emissions, and finally that
smart-lighting can reduce these numbers by up to 40% [90], it becomes paramount
to devise methods to facilitate the wide-spread adoption of WSNs and green IoT.
The WLMP can be further applied into other IoT applications, especially heat-
ing, ventilation, and air conditioning (HVAC) units, thermostats, security units,
lighting, or some other fixed infrastructure IoT. Recalling that the number of
IoT devices has been increasing exponentially recently, for instance, there are
nine billion interconnected devices in 2013 and it is expected to reach 24 billion
devices by 2020, and this amounts to 1.3 trillion US Dollars revenue opportuni-
ties [5], opportunities for applications related to the IoT are great. The WLMP
is one such challenge.

Besides, this dissertation opens several avenues for future research:

1. Combination with image processing techniques: The WLMP combined with
image processing techniques can be further applied into ordinary WSNs
to derive the position of sensor nodes. For instance, in disaster preven-
tion WSNs, sensors are often deployed randomly (e.g., sensors are air-
dropped from an airplane) [46], and their set of locations are obtained using
a camera-equipped unmanned aerial vehicle (UAV) and image processing
techniques.

2. Combination with unmanned aerial vehicle control techniques: Wireless lo-
calization techniques that use a mobile unit can be combined with UAVs
control techniques in UAV-enable WSNs not only to enhance localization
accuracy, but also to enhance connectivity of sensor nodes, or to enhance
the energy efficiency of the UAV.

3. Combination with data processing techniques: Outliers caused by obstacles,
multi-path, and noisy environments can decrease the proposed algorithms’
accuracy. These deteriorating effects should be detected by future algo-
rithms and removed efficiently. In addition, advanced data processing tech-
niques can be evoked to counter the effects of outliers due to sudden signal
fluctuations, fading, interference, etc.

4. Generalization to large-scale networks: Although this dissertation focused
on developing localization methods for small-scale networks, i.e. one hop
networks, this can be generalized into large-scale networks, i.e. multi-hop
networks.

5. Combination with different measurement methods: Hybrid wireless localiza-
tion techniques that combine RSSI with other RF measurement methods
such as ToA, TDoA, and AoA are attracted great attention. Similarly,
combining RSSI with such measurement techniques can improve the local-
ization accuracy for the WLMP.
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