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Abstract

High-dimensional models that have hundreds of thousands of parameters such as deep
neural networks and sparse models are effective in machine learning and data mining tasks.
Controlling the complexity of such high-dimensional models is necessary for attaining
appropriate inductive inference, e.g., preventing overfit and making it easier to interpret
the results.

On the contrary, there are numerous different principles for measuring the complexity
of models. The minimum description length (MDL) principle is an information-theoretic
principle proposed by Rissanen (1978), of which one salient feature is offering a unified
framework of inductive inference without imposing any assumptions on the distribution of
data. According to the MDL principle, the complexity of models is quantified depending
on the minimax-regret code length. However, for high-dimensional models, the compu-
tation of the exact code length is intractable and no analytic approximation method has
been implemented till date to resolve this issue. This is problematic in terms of two basic
tasks of inductive inference, namely model selection and prediction: (i) High-dimensional
model selection is difficult since the code length of each candidate model is intractable.
(ii) Even if it is numerically tractable, designing high-dimensional prediction algorithms
is difficult as the code length cannot be analytically evaluated.

Considering this, in this thesis, we propose three approaches to the problems of high-
dimensional inductive inference under the MDL principle. (i) We address the problem
of high-dimensional model selection over exponentially many candidates leveraging the
continuous relaxation of the minimax code lengths. The proposed algorithm overcomes the
computational difficulty minimizing code lengths without computing them but sampling
the stochastic gradients. (ii) We study the minimax code length of smooth models to derive
a new analytic approximation. We demonstrate its effectiveness through the problem of
hyperparameter selection. (iii) We study a novel complexity measure, namely the envelope
complexity, that provides a more general framework for the analytic approximation of
the minimax code length. Its power is demonstrated by deriving an adaptive minimax
predictor over high-dimensional ℓ1-balls and systematic upper bounds on predictive risks.

These three approaches provide the tools and foundations for the MDL principle to deal
with high-dimensional modeling and prediction.
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Chapter 1

Introduction

Herein, we formulate the problems that we have considered in this thesis. To this end, we
first present the notions of inductive inference and the minimax regret principle. Then,
we introduce the minimum description length (MDL) principle, which is an information-
theoretic instance of the minimax regret principle. Finally, we list our research questions
and summarize our contributions with regard to the high-dimensional learning problems
based on the MDL principle.

1.1 Inductive Inference and Minimax Regret Principle
We are interested in methods for learning laws and regularities in data, i.e., inference by
induction. For example, one may conclude by induction that all crows are black after
observing that 100 random crows are black. The conclusion may be incorrect owing to
some unobserved exceptions, but it enables us to learn from our experience and generalize
them as a piece of knowledge. Therefore, induction forms an essential building block
of any intelligent systems that can learn from their experience and has been one of the
central subjects of research in many fields, including statistics, machine learning, data
mining, and artificial intelligence.

1.1.1 Elements of Inductive Inference

Inductive inference systems may be characterized with four elements interacting with each
other (see Figure 1.1). The goal of inductive inference is to infer the nature of sources S
on the basis of data Xn = (X1, . . . , Xn) ∈ Xn generated by S itself. In doing so, there
are models H in our mind that describe S and they derive the corresponding predictors
(or algorithms) A, which are designed in the light of H to make the best prediction on
Xi+1, given X

i (0 ≤ i ≤ n).
For instance, each datum X ∈ X may be a single feature vector (i.e., unsupervised

learning setting) or a pair of a feature vector U ∈ U and a label/response variable Y ∈
Y (i.e., supervised learning setting). Models are assumed to be represented with sets
of hypotheses, H = {h = hθ | θ ∈ Ω}, that express prior beliefs about the possible laws
behind the source S. Here, each hypothesis h is either a probability distribution over
X P (X|h) (unsupervised learning) or a regressor or classifier h : U → Y (supervised
learning). Correspondingly, predictors A are defined as mappings from the data to the
hypotheses, A : X ∗ → H0, where H0 is the universal set of hypotheses, including the
model H. The quality of the outputs of predictors is measured through some extended
real-valued loss function f : H0 ×X → R(= R ∪ {∞}).

These four elements of inductive inference is distinguished through two functional at-
tributes as illustrated in the diagram: The subjects to the left belong to environments
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and others that we do not have control over, while the ones on the right belong to self and
what we have control over. The subjects to the bottom are materialistic and quantifiable,
whereas the ones on the top represent the corresponding mental models where inductive
inference occurs.

S H

Xn A

Generate

Describe

Derive

Predict

Fig. 1.1: Elements of inductive inference

The goal of inductive inference is usually either modeling or prediction. In modeling,
one wants to construct good models H that represent knowledge and truths on S, which
is only validated through the performance of A with respect to Xn. On the contrary, in
prediction, one wants to make a good prediction on unseen data Xn+1 generated from
the same source S. As no predictor performs universally well (e.g., see the no-free-lunch
theorem in Shalev-Shwartz and Ben-David (2014), Chapter 5), good predictors A cannot
be designed without the help of good models H on the nature of S.

1.1.2 Principles of Inductive Inference

Despite the predictors and the models being two sides of the same coin, different predic-
tors can be derived from the same model; conversely, the same predictor can be evaluated
in different ways. In terms of prediction, this is because the models often have uncer-
tainty (remember that models are just sets of possible hypotheses) and the derivation
of predictors is dependent on how we deal with the uncertainty. In contrast, in terms of
modeling, this is because the goodness of algorithms depends on the purpose of modeling
even if the same predictor A and the same data Xn are given.

These uncertainties are solved using the principles of inductive inference. Each principle
is categorized as either one for modeling or one for prediction. The principles for modeling
provide a mapping score : (H, Xn)→ R from models and data to the scores that quantify
the goodness of models (smaller is better). The mapping is often written as a function of
predictors and data, score : (A,Xn) 7→ R, when a predictor has been already associated
with the given model H. On the contrary, the principles for prediction give a mapping
derive : H 7→ A from models to predictors.

Below, we review some of the common principles of inductive inference. First, we start
with the principles for modeling.

Validation
One of the most common and simple principles for modeling is based on valida-
tion (Geisser, 2017). In validation, the given data are split into training sets Xtrain

and validation sets Xvalidation. The validation sets must be held unseen and used
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solely for validating the performance of predictors. Thus, with some principle for
prediction, the goodness of models is measured through the validation error given by
score : (A,Xn) = f(A(Xtrain), Xvalidation) where f denotes some loss function.

One of the largest advantages of validation is that one can obtain unbiased estimates
for predictive performance under mild assumptions on the data distributions. A major
drawback is that a part of the given data cannot be used for prediction as it is sacrificed
for validation. This is problematic because if we take a large portion of data as the
validation set, additional costs of data collection to feed a sufficient number of training
samples to the predictor must be paid or the quality of the prediction degenerates; On
the contrary, if we take a small portion of data as the validation set, the variance of
the validation errors increases and it is unreliable as a measure of the goodness. The
cross-validation technique can be used to solve this trade-off by reusing validation sets as
training sets. However, cross-validation is computationally expensive and difficult to be
used with large-scale models and datasets.

Akaike Information Criterion (AIC)
Akaike’s information criterion (AIC) (Akaike, 1974) can be seen as the asymptotic ap-
proximation of validation. Under stronger conditions on the data source S and the model
H including the i.i.d.ness of data distributions, AIC computes an asymptotically unbiased
estimate of the predictive performance of models without sacrificing any portions of data
for validation. The scoring with AIC is given by

AIC(H, Xn) = min
h∈H

f(h,Xn) + d

where d is the dimensionality of the models H.

Bayesian Information Criterion (BIC)
Bayesian information criterion (BIC) (Schwarz et al., 1978) was introduced as an asymp-
totic approximation of the Bayesian marginal likelihood, which is considered as a decision
criteria under some circumstances. The scoring with BIC is given by

BIC(H, Xn) = min
h∈H

f(h,Xn) +
d

2
lnn

Under some regularity conditions, the models chosen with BIC is known to be consistent,
i.e., if H1 contains the correct hypothesis and H2 does not, then the BIC of H1 is strictly
smaller than that of H2 with arbitrarily high probability if n is sufficiently large.

Prequential Principle
The prequential principle is one of the most general principles of modeling proposed
by Dawid (1984), which is applicable without any assumptions on data distributions S
(though it is developed in a statistical context). According to this principle, the goodness
of models should be measured only with what they actually predict and the actual out-
comes. More specifically, it is proposed that the goodness of predictors be measured with
the prequential error, or cumulative loss,

f(A,Xn)
def
=

n∑
i=1

f(A(Xi−1), Xi).

We note that this measure can be seen as a generalization of the Bayesian marginal
likelihood. Thus, the empirical Bayes method is an instance of the prequential principle;
moreover, it is connected with BIC in an asymptotic manner.
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Probably Approximately Correct (PAC) Risk Bounds
Probably approximately correct (PAC) risk bounds are often used in theoretical studies
under the PAC-learning regime (Valiant, 1984) to provide the upper bounds on the pre-
dictive performance of given models or predictors. Popular instances of such bounds are
the Rademacher complexity (Koltchinskii and Panchenko, 2000; Bartlett and Mendelson,
2002) and the PAC–Bayes bound (McAllester, 1999; Catoni, 2007). With either bounds,
under some assumptions on the data distribution, one can bound above the predictive per-
formance of given predictors on unseen data Xn+1. For example, one may have bounds
in the form of

f(A(Xn), Xn+1) ≤
1

n
f(A(Xn), Xn) + C(n, δ),

with probability 1− δ over the draw of the data Xn+1, where C denotes some complexity.
Therefore, the right-hand side may be used as a goodness measure.

Next, we provide common examples of the principles for prediction. Those principles
often come with some specific principles for modeling introduced above.

Empirical Risk Minimization Principle
The empirical risk minimization (ERM) principle (Vapnik, 1992) is one of the simplest
principles for prediction. It dictates that one should pick the hypothesis h ∈ H that
performs best on Xn,

AERM(Xn) = argmin
h∈H

f(h,Xn).

In the statistical context, it is also known as the maximum likelihood principle (RA Fisher,
1922). If the generation mechanism of Xn and Xn+1 is homogeneous (e.g., i.i.d.), then
AERM is expected to perform well with high probability or in expectation.

As for the modeling, the ERM principle can be coupled with most modeling principles,
e.g., validation, AIC, BIC, and PAC risk bounds.

Minimax Risk Principle
The minimax risk principle (Wald, 1950; Lehmann and Casella, 2006) is a theoretical
principle and is often used for showing the optimality of the other principle such as the
ERM principle. Under the minimax risk principle, the hypotheses h ∈ H are assumed to
be probability distributions over X and the data is assumed to be subject to one of them.
Then, the minimax risk predictor is given by

Arisk(X
n) = argmin

h∈H0

max
h0∈H

Eh0
[f(h,Xn+1)] .

Bayes Principle
Under the Bayes principle (Gelman et al., 2013), each hypothesis h ∈ H0 is assumed to
be a probability distribution over X ∗ and the loss is measured with the logarithmic loss,
f(h,X) = − ln p(X|h) where p is the probability density function. In addition, we have a
prior probability distribution π over H instead of just having a set of hypotheses, which
expresses a prior belief on which hypothesis is possibly true. Then, we may adopt the
hypothesis that minimizes the posterior risk,

ABayes(X
n) = argmin

h∈H0

Eπ [f(h,Xn+1)|Xn] .
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Typically, models are evaluated either with marginal likelihood (i.e., under the prequential
principle) or with BIC.

Minimax Regret Principle
Under the minimax regret principle (Savage, 1951), we construct the predictor whose
worst-case regret is the minimum. Here, the regret of algorithm A is defined as the exces-
sive loss relative to the best hindsight prediction h ∈ H, REG(A|Xn,H) = f(A,Xn) −
minh∈H f(h,Xn). Thus, the minimax regret predictor is given by

AMMR = argmin
A∈A

max
Xn∈Xn

REG(A|Xn,H),

where A denotes the set of all feasible prediction algorithms A = {A : X ∗ → H0}. As
no assumption on S is made, the quality of predictors is often measured with cumulative
loss under the prequential principle.

These principles differ in their assumptions about the source S. The ERM and minimax
risk principle implicitly assume that Xn and Xn+1 is similar in their distributions. The
Bayes principle utilize the prior beliefs on the true hypothesis. In contrast, the minimax
regret principle uses no side information and assumes nothing about the source S but is
only justified if the worst-case regret is justified as a performance metric. Therefore, these
principles should be used appropriately depending on the problem setting.

1.1.3 Advantages of Minimax Regret Principle

As mentioned later, we adopt the minimax regret principle in this work. There are at least
three reasons supporting this choice. First, it does not involve any implicit assumptions
on S other than the model H. Therefore, the principle clarifies where the responsibility of
prediction lies even under circumstances wherein we do not know the source S much, which
is often the case in inductive inference. In other words, if the prediction is good, then the
model must be good and vice versa. Second, as will also be mentioned later, adopting the
minimax regret principle is justified from an information-theoretic perspective. Finally,
if the models are high-dimensional, the minimax regret also characterizes the behavior of
the other inference systems that follows the other principles such as the ERM principle
and Bayes principle. As a result, the predictions made with the minimax regret principle
often perform reasonably well in terms of the scores of the ERM and Bayes principles.

1.2 Minimum Description Length Principle
In this section, we first quickly introduce the minimum description length (MDL) princi-
ple, a meta-principle of inductive inference, which combines the prequential principle and
the minimax regret principle within the information theory framework.

The minimum description length (MDL) principle suggests that one must choose the
hypothesis that compress the data Xn the most. The birth of the MDL principle in the
most primitive form dates back in the 13th century known as Occam’s razor. Later, the
notion of the shortest code length is formally given by Kolmogorov (1963) as the Kol-
mogorov complexity, and it is extended to the context of information theory by Rissanen
(1978) with the current formalization of the MDL principle.
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1.2.1 Code Length, Logarithmic Loss, and MDL Criterion

In view of the MDL principle, hypotheses h ∈ H0 are seen as lossless encoders and models
H are sets of such encoders. In particular, encoders are mappings from n-sequences of
alphabets Xn ∈ Xn to binary sequences C(Xn|h) ∈ {0, 1}∗ where C(·|h) : Xn → {0, 1}∗
is a bijective mapping. We denote the length of codes by L(Xn|h) = |C(Xn|h)| ln 2 in
nats. The lossless assumption implies the Kraft–McMillan inequality,∑

Xn∈Xn

e−L(X
n|h) ≤ 1,

and hence there exists a sub-probability mass function P (·|h) such that L(Xn|h) =
− lnP (Xn|h). Conversely, for any sub-probability distribution P over Xn, there exists
a lossless encoding method called Shannon coding C whose code length is equal to the
negative logarithm of P within only one bit, ||C(Xn)| − − lnP (Xn)| ≤ ln 2. As such, it is
customary to identify lossless encoders with sub-probability distributions and allow them
to take non-integer values ignoring the difference of one bit. In other words, models are
the set of sub-probability measures and the loss of prediction is measured with logarithmic
loss.

To facilitate inductive inference based on the MDL principle, a code length function
L(Xn|H) = − ln P̄ (Xn|H) is considered that “represents” each model H. For example,
one may consider two-part code lengths of Xn with respect to H, which are given by

L(Xn|H) = min
h∈H

L(Xn|h) + L(h|H) = min
h∈H

ln
1

P (Xn|h)
+ ln

1

P (h|H)
,

where the cardinality of the model H is assumed to be countable. Here, the second term
is arbitrarily defined before seeing data Xn, e.g., uniform coding L(h|H) = − ln |H|.

According to the philosophy of the MDL principle, a good modelH describes regularities
in data Xn well and hence can be utilized to compress it. To illustrate this, consider the
following binary sequence

X100 = 01010101010101010101010101010101 . . . 01︸ ︷︷ ︸
100bits

.

We can describe this by just writing “repeat ‘01’ for 50 times”, which has a length of 24
characters and is much shorter than directly writing down the whole binary sequence. In
this specific example, the belief that “‘0’ is followed by ‘1’ for every consecutive two bits”
allows us to compress the length of the description from 100 characters to 24 characters.
Further expanding this argument, we consider that a model H is a good model if and only
if the description length L(Xn|H) is small. In particular, L(Xn|H) is referred to as the
MDL criterion (of H).

1.2.2 Universal Coding and Minimax Regret Principle

The MDL criterion is actually a metacriterion as there is a freedom of choice on the code
length L(Xn|H) as long as it “represents” the model H. Formally, this is defined through
the notion of universality.

As a natural measure of the relative performance of code length functions L with respect
to base encoders h ∈ H, we define the redundancy of L with respect to Xn and h as

RED(L|Xn, h)
def
= L(Xn)− ln

1

P (Xn|h)
.



1.2 Minimum Description Length Principle 7

A code length L is universal (in the sense of individual sequence) with respect to H if,
for all h ∈ H and ϵ > 0, there exists n0 such that

sup
Xn∈Xn

RED(L|Xn, h) < ϵ,

where for all n ≥ n0. This notion has a practically important meaning such that if L
is universal with respect to H, then for any encoders h ∈ H, the code length L(Xn) is
asymptotically no larger than L(Xn|h) no matter what sequence Xn is given. In fact, the
two-part code length is also universal and the universality is the only requirement on the
MDL criterion L(·|H) (Grünwald, 2007).

Taking this one step further, the worst-case regret is given as a doubly worst-case
approach such that

REG⋆(L|H) = sup
Xn∈Xn

sup
h∈H

[RED(L|Xn, h)] .

This provides a concept stronger than that of universality. In particular, if the worst-case
regret of L grows sublinearly, then L is universal too. Now, the minimax-regret code
length is defined as the minimizer of the worst-case regret,

L⋆ = argmin
L:lossless

sup
Xn∈Xn

REG(L|Xn,H),

whose explicit form is given by Shtarkov (1987) as

L⋆(Xn|H) = inf
h∈H

L(Xn|h) + lnZ(H),

where Z(H) =
∑
Xn∈Xn suph∈H P (Xn|h). Rissanen (1996) later demonstrated that the

minimax-regret code length L⋆(Xn) is realizable with a smart two-part coding scheme
and proposed to use it for the code length function of the MDL criterion such that
L(Xn|H) = L⋆(Xn). This special instance of the MDL criterion is called the normalized
maximum likelihood (NML) code length L⋆ = LNML since it consists of the maximum
logarithmic likelihood term (the first term) and the normalizing term (the second term).
Sometimes we refer to NML as the stochastic complexity LNML = SC for short. In the
context of probabilistic modeling, one may be interested in the probabilistic counterpart

P̄NML(X
n|H) def

= exp {−LNML(X
n|H)} and refer to it as the NML distribution.

When the NML code length LNML is used, the MDL principle is nothing more than the
minimax-regret principle with the logarithmic loss f(h,Xn) = L(Xn|h) = − lnP (Xn|h).
In fact, the corresponding minimax predictor ANML : X ∗ → H0 defines a probability
distribution

P (Xi+1|ANML(X
i)) = P̄NML(Xi+1|Xi,H) =

∑
Xn

i+2∈Xn−i−1 suph∈H P (Xn|h)∑
Xn

i+1∈Xn−i suph′∈H P (Xn|h′)
, (1.1)

which coincides with the prequential form of the NML distribution. Moreover, the score
of the predictor ANML with respect to the prequential principle is equivalent to the NML
code length, score(ANML, X

n) = f(ANML, X
n) = LNML(X

n|H).
The advantage of considering the MDL principle instead of the general minimax-regret

principle is two-fold. First, the explicit formula of the minimax optimal predictor is avail-
able. This allows us to analyze the optimal predictor in an accurate and non-asymptotic
manner even if the model is so complex that the general minimax regret is difficult to
analyze. Second, the logarithmic loss has an information-theoretic interpretation and
thus has a wide range of applications on its own, such as classification and clustering.
Moreover, general loss functions can be reframed into a form of logarithmic ones via
entropification (Grünwald, 1999).
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1.2.3 Tasks of Inductive Inference under the MDL principle

On the basis of the MDL principle, we focus on two common tasks of inductive inference—
model selection and prediction. In both tasks, the NML code length LNML plays a central
role as the measure of model complexity.

Model selection
In model selection, we have candidates of models {Hk}Kk=1 associated with the minimax
regret predictors Ak that describe the same source S. To select the best models, given
data Xn, we may choose the model Hk such that the corresponding Ak performs best
on Xn. With the MDL principle, the optimal predictors are the NML distributions.
Therefore, the problem is the evaluation of the NML code length for the given models Hk.
Specifically, most previous work in this literature has been focused on the computation or
approximation of the normalizing term Z(H) as it is analytically intractable in general.

Prediction
To make a prediction, given models H, we derive computationally tractable algorithms
A on the basis of H. In terms of the MDL principle, the optimal predictor is also given
by the NML distribution. However, owing to the computational difficulty of the normal-
izing term Z(H), the corresponding optimal prediction algorithm is not tractable either.
Furthermore, the numerical computation or approximation of Z(H) does not suffice for
this task. One has to obtain the prequential form P̄NML(Xi|Xi−1,H) for actually making
predictions and it requires analytically intractable summation over the space of possible
data as in (1.1).

1.3 Research Question: MDL principle in High Dimensions

High-dimensional models are the models parameterized with vectors θ ∈ Ω ⊂ Rd, H =
{hθ | θ ∈ Ω}, whose dimensionality d is (much) larger than the sample size n. High-
dimensional models have been extensively utilized for machine learning and data mining,
partially because of recent successes in prediction tasks involving sparse modeling (Rish
and Grabarnik, 2014), gradient boosting (Friedman, 2001), and deep learning (Goodfellow
et al., 2016). Owing to the high-dimensionality, these models are flexible in the sense
that they have large degrees of freedom. The prediction with such models is especially
useful when one knows nothing much about the data-generating source S or one cannot
rigorously formulate the knowledge for inference. Specifically, deep learning has been
demonstrated to dramatically improve state-of-the-art methods in speech recognition,
image recognition, object detection, and reinforcement learning, as well as drug discovery
and genomics. Moreover, as the high dimensionality allows us to model the source with
the sparseness condition, i.e., most coefficients of the parameter θ are zero, they make it
easier to interpret the results of inference than low-dimensional dense models.

In contrast, the MDL principle in the high-dimensional context has not been extensively
explored so far. Specifically, the existing studies on the NML code length largely rely on
asymptotic analyses with large sample limit n → ∞ where the dimensionality of the
models held constant. Thus, we focus on the following two research questions in view of
the MDL principle. (Q1) How can we evaluate the NML code length of high-dimensional
models non-asymptotically? (Q2) Can we provide (approximately) analytic expressions
of the prequential form of the NML distribution under the high-dimensional regime? As
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Fig. 1.2: Overview of the thesis

we will see in Chapter 2, we address these questions with techniques of relaxation.

1.4 Contributions and Outline
With regard to the above research questions, the contributions of the present study are
summarized as follows:

(C3) We approach the problem of model selection by introducing continuous relaxation
and stochastic approximation of the NML code length. It enables us to approximate
the normalizing term without asymptotic assumption (Chapter 3).

(C4) We non-asymptotically study the NML code length of smooth models to derive a
new analytic approximation. Although the smoothness of the model is assumed to
apply this method, the new approximation guarantees that the approximation error
is uniformly bounded. We also develop an algorithm to optimize the approximated
NML with some convergence guarantees (Chapter 4).

(C5,6) We study a novel complexity measure, namely the envelope complexity, that
provides a theoretical framework to analytically approximate the NML code length
based on Bayesian approximation. We demonstrate its power by designing a
tractable adaptive minimax predictor over high-dimensional ℓ1 balls (Chapter 5).
We also utilize envelope complexity to give systematic upper bounds on predic-
tive risks. This demonstrates that envelope complexity actually is an essential
complexity measure alternative to the minimax regret (Chapter 6).

Each of these offers a systematic manner of constructing minimax optimal predictors
and/or evaluating minimax regrets in a high-dimensional setting. Hence, by putting them
altogether, the present thesis provides theoretical foundations and tools for inductive
inference based on the MDL principle with high-dimensional models. The visual summary
of the overview is shown in Figure 1.2.

The rest of the thesis is organized as follows. We first provide a comprehensive review
and more detailed introduction to the tools and results developed under the MDL principle
in Chapter 2. Then, we present the results on high-dimensional model selection in the
following consecutive two chapters (Chapter 3 and 4). In the next two chapters, we
demonstrate the results on high-dimensional prediction derived from the framework of
the envelope complexity (Chapter 5 and 6). Finally, we conclude the thesis and discuss
future directions in Chapter 7.
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Chapter 2

Preliminary

In this chapter, we introduce the existing results in the MDL literature that are relevant
to our study and clarify our position among them.

To this end, we first describe the known properties and limitations of the normalized
maximum likelihood (NML) code length, which is the key quantity of the MDL principle.
Then, we discuss previous results and our results on the extensions and approximations
of the NML code length.

2.1 Normalized Maximum Likelihood (NML) Code Length
Under the MDL principle, the NML code length is both the criterion of model selection
and the optimal predictor. Thus, almost all inference tasks based on the MDL principle
can be seen as the computation of NML or its approximation.

2.1.1 Definition

Let (X , µ) be a measure space of data, where µ is the base measure like the Lebesgue
measure or the counting measure, and denote data by Xn = (X1, . . . , Xn). Let H =
{p(X|θ) | θ ∈ Ω ⊂ Rd} be a model or a set of (sub) probability densities over X . We
denotes the joint density of sequence Xn with respect to parameter θ as p(Xn|θ) =∏n
i=1 p(Xi|θ).
The (idealized) lossless code lengths L are measurable functions over X that satisfy the

Kraft-McMillan inequality
∫
exp {−L(X)}µ(dX) ≤ 1. The NML code length, or NML

for short, with respect to the model H is defined as

LNML(X
n)

def
= inf

θ∈Ω
ln

1

p(Xn|θ)
+ lnZ(H)

where Z(H) =
∫
supθ∈Ω p(X

n|θ)µ(dXn) is the normalizing term to make it lossless code
length. If the normalizing term is undefined, i.e., the integral is infinite, NML is not
well-defined.

2.1.2 Properties

The motivation behind using the NML code length as the criterion of the MDL principle
is based on the fact that NML, if defined, achieves Shtarkov’s minimax regret. More
precisely, it satisfies the following equality.
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Theorem 1（Shtarkov (1987)） If Z(λ) is finite, then we have

lnZ(H) = inf
L:lossless

sup
Xn∈Xn,θ∈Ω

REG(L|Xn,H),

where REG(L|Xn,H) = L(Xn) − infθ∈Ω ln 1
p(Xn|θ) denotes the regret of code length L

with respect to data Xn and model H. Moreover, the minimax regret is uniquely attained
with NML, i.e., the other code lengths do not achieve the minimax regret.

The proof is relegated to that of a general theorem in Section 2.2.1. It is immediately

seen that REG⋆(H) def
= infL:lossless supXn REG(L|Xn,H) = Z(H), and hence we refer to

Z(λ) as the Shtarkov complexity. Note that this is minimax in the sense of an individual
sequence. This must be distinguished from one in the expectation sense, which assumes
that Xn is subject to some distribution, unlike ours.

Moreover, when we see the NML code length as a probability density p̄(Xn) =
e−LNML(X

n), the associated sequential prediction strategy p̄(Xi|Xi−1) achieves minimax
regret with respect to the logarithmic loss − ln p(Xi|Xi−1). This is easily seen from the
telescoping sum

LNML(X
n) =

n∑
i=1

ln
1

p̄(Xi|Xi−1)
,

where p̄(Xi|Xi−1) = p̄(Xi)/p̄(Xi−1) denotes the conditional distribution.

2.1.3 Direct Approximation and Exact Computation of NML

Since the integration in the normalizing term is intractable in general, a number of for-
mulae for calculating NML have been proposed so far.

Rissanen’s Asymptotic Formula One of the most famous approximations is Rissanen’s
asymptotic expansion (Rissanen, 1996). It states that for models H satisfying certain
regularity conditions that include some exponential families of distributions, we have

lnZ(H) = d

2
ln

n

2π
+ ln

∫
Ω

√
det I(θ)dθ + o(1),

where o(1) → 0 as n → ∞. Here, I(θ) denotes the Fisher information matrix I(θ) =
−EX∇2

θ ln p(X|θ). Note that this is equal to BIC (Schwarz et al., 1978) except with a
constant, and Rissanen’s expansion can be thought of as a more accurate version of BIC for
the NML distribution. Later, arbitrary precise expansions for multinomial distributions
are obtained through the singularity analysis (Flajolet and Odlyzko, 1990) by Kontkanen
(2009).

Exact Computation for Continuous Exponential Families For some instances of continuous
exponential families of distributions including normal, Gamma, exponential, and logistic
distributions, non-asymptotic formulae are also developed (Hirai and Yamanishi, 2013).
These are derived by transforming the integral with respect to the data space Xn into the
parameter space Ω.

Efficient Numerical Computation The multinomial distribution is one of the most common
distributions over discrete data. Accordingly, the computation of NML for the multinomial
distributions has been extensively studied. The NML of multinomial models with m
outcomes and n observations is reduced by recursion to that of binomial models in linear
time, and the total time complexity is O(m + n) (Kontkanen and Myllymäki, 2007).
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Moreover, the NML of binomial models with finite precision is computed ever faster with
O(
√
n) time (Mononen and Myllymäki, 2008).

2.1.4 Limitations

Notwithstanding the above calculation techniques, there remain some limitations. We
discuss two of the largest limitations in the following.

Limitation 1) First, the NML code length, even with asymptotic approximation, is
often not tractable in practical situations. In particular, most of the results on the exact
computation focus on exponential families such as normal and multinomial distributions,
and the asymptotic formula is only applicable to regular models, which excludes most
practical models. Moreover, specifically with continuous data spaces, the normalizing
term tends not to be well-defined and requires appropriate restriction of the parameter
space.

Limitation 2) Secondly, although NML is the unique optimal predictor, actual pre-
dictions based on NML are almost impossible. This is because the conditional density
p̄(Xi|Xi−1) requires marginal density p̄(Xi), and the marginal density requires the integral∫
p̄(Xn)µ(dXn

i+1), which is even more intractable than the NML code length itself.
In the following, we discuss the existing approaches and our approach to these limita-

tions.

2.2 Extension of NML Code Length
several extensions of NML have been proposed to bypass Limitation 1, i.e., to deal with
practical models where the ordinary NML cannot be computed.

2.2.1 Luckiness NML

The luckiness NML (Kakade et al., 2006; Grünwald, 2007) (LNML) is an extension of NML
whose complexity term takes a function over hypotheses instead of a set of hypotheses. It
can also be seen as a generalization of the conditional NML (Rissanen and Roos, 2007).
Let γ : Rd → R be a penalty function of hypotheses. The LNML with respect to γ is
given by

LLNML(X
n) = inf

θ∈Rd

[
ln

1

p(Xn|θ)
+ γ(θ)

]
+ lnZ(γ),

where Z(γ) =
∫
supθ∈Rd p(Xn|θ)e−γ(θ)µ(dXn) denotes the corresponding normalizer.

LNML can be seen as a generalization of NML in terms of the restriction of parame-
ter spaces from hard constraints to soft constraints. Note that LNML recovers NML
when γ(θ) = 0 for θ ∈ Ω, and γ(θ) =∞ otherwise.

LNML can be used as a remedy for the infinite complexity problem. By choosing
appropriate penalty functions γ, one can bound Z(γ) without actually hard-constraining
the parameter space. Moreover, if one takes γ nicely with respect to the density p(Xn|θ),
LNML is easily computed even if NML is not (e.g., see Miyaguchi (2017)). Furthermore,
LNML may be utilized for deriving an upper bound on NML. If the parameter space is
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restricted as γ(θ) ≤ B, then we have

lnZ(H) = ln

∫
sup

γ(θ)≤B
p(Xn|θ)µ(dXn)

≤ ln

∫
sup
θ∈Rd

p(Xn|θ)e−γ(θ)+Bµ(dXn)

= B + lnZ(γ).

LNML satisfies generalized minimax regret optimality. To show this, let REG(L|Xn, γ) =

L(Xn)− infθ∈Rd

[
ln 1

p(Xn|θ) + γ(θ)
]
denote the generalized regret.

Theorem 2（Minimax optimality of LNML） For all γ : Rd → R+, we have

lnZ(γ) = inf
L:losless

sup
Xn∈Xn

REG(L|Xn, γ).

Moreover, if Z(γ) < +∞, the minimax regret is uniquely obtained with LNML.

Proof Let LLNML be the LNML code length. Suppose any code length L0 such that
there exists E ⊂ Xn and LLNML ̸= L0 for all X ∈ E with µ(E) > 0. Then, noting

that
∫
e−L

0(Xn)µ(dXn) ≤ 1 =
∫
e−LLNML(X

n)µ(dXn), there exists Xn ∈ Xn such that
L0(Xn) < LLNML(X

n), otherwise we have a contradiction. By exploiting Xn, we have

sup
Y n∈Xn

REG(L0, Y n, γ) ≥ REG(L0, Xn, γ)

= L0(Xn)− inf
θ∈Rd

[
ln

1

p(Xn|θ)
+ γ(θ)

]
> LLNML(X

n)− inf
θ∈Rd

[
ln

1

p(Xn|θ)
+ γ(θ)

]
= lnZ(γ)

= sup
Y n∈Xn

REGn(LLNML, Y
n, γ),

and therefore L0 does not achieve minimax regret, but LLNML does. In addition, the
minimax regret turns out to be lnZ(γ).

Rissanen’s asymptotic expansion is also generalized for LNML (Grünwald, 2007). The
generalized version is given by

lnZ(γ) =
d

2
ln

n

2π
+ ln

∫
Ω

√
det I(θ)e−γ(θ)dθ + o(1),

under the asymptotics of n→∞. Here, the similar regularity conditions as in the original
expansion are required.

2.2.2 Latent Variable Completion

Latent variable models (LVMs) are useful generative models that have unobserved random
variables Wi ∈ W whose densities are given by

p(X|θ) =
∫
W
p(X|θ,W )π(dW |θ).
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This class of densities includes practically important models such as mixture models, the
hidden Markov models, and the restricted Boltzmann machines. In general, the NMLs of
LVMs are intractable since the maximum likelihood estimation (MLE) inside the integral
Z(H) is analytically intractable.

To address this issue, the technique of latent variable completion (LVC-NML) has been

developed. We estimate the latent variables Ŵn = Ŵn(Xn) from the observables Xn and
treat them as if they were the true values Wn, i.e.,

LLVC(X
n) = LNML(X

n, Ŵn(Xn)).

Thus, the MLEs are often analytically solved and the integrals Z(H) are computed by
sophisticated recursions. The LVC-NMLs of the näıve Bayes models are computed utiliz-
ing the moment generating functions within O(n2) time (Mononen and Myllymäki, 2007).
The LVC-NMLs of mixtures of exponential families are also reduced to that of the base
exponential families based on the techniques of moment generating functions (Hirai and
Yamanishi, 2013, 2017). Its computation time is O(n2K), where K is the number of mix-
ture components. Wu et al. (2017) further extended LVC-NML to derive the decomposed
NML (DNML) for more complex models such as latent Dirichlet allocation models, where
the ordinary LVC-NML is intractable.

2.2.3 Our Approach

Applicability of the above extensions still appears to be remaining in a confined class of
models. In other words, either with LNML or LVC-NML, one should derive their new
formulae when they have encountered new complex models. Although the asymptotic
expansion of LNML is exceptional from this issue, it is still not applicable to our high-
dimensional setting since the expansion is only valid for the conventional large-sample
limits.

In this work, to further expand the applicability to larger classes of models including
high-dimensional models, we take two different approaches. For one approach, we run
the stochastic gradient method on the surface of LNML (Chapter 3). By computing
gradients directly and bypassing the value of LNML, the proposed method has much
wider applicability to high-dimensional and complex models. On the other hand, we
propose two non-asymptotic analytic approximations of LNML (Chapter 4 and 5). By
abandoning the exact value, we obtain simple analytic formulae that can be systematically
computed given models.

2.3 Approximation of NML as a Predictor
In this section, we review the previous work on the approximation of NML in terms of
tractable prediction to address Limitation 2.

2.3.1 Sequential NML

The sequential NML (SNML) allows us to make computationally inexpensive prediction
by taking the current observation as the last one for every time step (Takimoto and
Warmuth, 2000; Rissanen and Roos, 2007; Roos, 2008). The equivalence of SNML and
NML has been studied by Hedayati and Bartlett (2012) and they gave key insights on
when NML can be simulated with inexpensive classes of predictors such as SNML and
Bayes predictors.
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2.3.2 Bayes Predictors

The Krichevsky–Trofimov (KT) estimator (Krichevsky and Trofimov, 1981) is one of the
most traditional universal code lengths that can be seen as a Bayesian approximation
of NML for multinomial models. It achieves asymptotic minimax regret for almost all
ranges of data. After it was proposed, Xie and Barron (2000); Watanabe and Roos (2015)
improved upon it to achieve strict asymptotic minimaxity.

Takeuchi and Barron (2013) showed that the Bayesian predictor with the Jeffreys prior
asymptotically achieves minimax regret for exponential families. Barron et al. (2014) also
studied numerical Bayesian simulation of NML and showed that signed discrete priors
allow us to exact simulation for certain discrete variable models.

2.3.3 Our Approach

We take the Bayesian approach to approximate the NML predictors in Chapter 5. The
largest difference between our method and conventional ones is that we assume the high-
dimensionality of models, whereas others assume large sample size compared to the dimen-
sionality. Moreover, in Chapter 6, we show that our analysis can naturally be extended
to the batch-prediction scenario, thereby justifying the proposed approximation of NML.
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Chapter 3

Graphical Model Selection via Relaxed

Stochastic Complexity

Discovering a true sparse model capable of generating data is a challenging yet important
problem for understanding the nature of the source of data. A major part of the chal-
lenge arises from the fact that the number of possible sparse models grows exponentially
as the dimensionality of the models increases. In this study, we consider a method for
estimating the true model over an exponentially large number of sparse models based
on the minimum description length principle*1. We show that a novel criterion derived
by continuous relaxation of the stochastic complexity induces selection of the true model
by solving the ℓ1-regularization problem for which the hyperparameters are appropri-
ately chosen. Moreover, we provide an efficient optimization algorithm for finding the
appropriate hyperparameters and select the sparse model accordingly. The experimental
results we obtained for the problem of sparse graphical modeling indicate that the pro-
posed method estimates the true model effectively in comparison to existing methods for
choosing hyperparameters to solve the ℓ1-regularization problem.

3.1 Motivation
In sparse modeling, combinatorial sets of explanatory factors are considered in order to
interpret observations X = (x1, x2, · · · , xn)⊤. Each combinatorial set J is a subset of the

universal set of explanatory factors J ⊂ [d]
def
= {1, 2, · · · , d}, where d denotes the number

of available factors. Sparse modeling allows us to choose Ĵ such that the observations
are well explained and Ĵ is sparse, i.e., |Ĵ | is small at the same time. Estimation of an
appropriate sparsity of J is not only beneficial in terms of space and computational time,
but it is also useful for constructing good predictors of the source of the data X or for
discovering essential explanatory factors. Sparse modeling has had recent advances and
success in applications in areas such as medicine, chemistry, and materials science (Rish
and Grabarnik, 2014).

When we consider a model of probability density (or mass)M =
{
p(X; θ)

∣∣ θ ∈ Ω ⊂ Rd
}
,

each dimension of the parameter θ can be seen as an explanatory factor. In this context,
sets of explanatory factors J are defined as the sparsity patterns of parameters, i.e., j ∈ J
if and only if θj ̸= 0. In order to understand the nature of the source of the data X, we
must determine the sparsity pattern of the generative parameter, which we denote by
J∗. We are often motivated to solve the ℓ1-regularization problem given by the following

*1 The content of this chapter was published in Miyaguchi et al. (2017)



3.1 Motivation 17

𝐽 = 𝜙 𝐽 = 1

𝐽 = 1,2𝐽 = 2

Stochastic complexity Relaxed SC

𝑣 = 0,0 𝑣 = 0,1

𝑣 = 1,1

𝑙1-regularizationModel selection

Fig. 3.1: Schematic of the proposed method for the dimensionality d = 2. In order to
solve the minimization of the stochastic complexity over the power set of explanatory
factors 2J (bottom left), we relax it to the optimization of the relaxed stochastic complex-
ity (bottom right), which can be efficiently minimized. This relaxation also reveals the
underlying relationship between model selection (top left) and hyperparameter selection
of ℓ1-regularization (top right).

formulation:

θ̄(X,λ) = argmin
θ∈Ω

ln
1

p(X; θ)
+
∑
j

λj |θj |

 (3.1)

given the hyperparameter λ = (λ1, λ2, · · · , λd) ≥ 0. Note that although λ is often assumed
to be univariate, i.e., λ = c1, it has been shown that such a simplification may give an
inconsistent estimate in some cases (Zou, 2006). This is why we are concerned with the
general formulation in (3.1). The sparsity patterns of θ̄(X,λ) depend on the value of λ.
In the case of λ = 0, we obtain the maximum likelihood (ML) estimate, which is typically
dense. In contrast, θ̄(X,λ) becomes sparse as λ increases. In general, there exists an
optimal hyperparameter λ∗ such that θ̄(X,λ∗) can recover the true sparsity pattern J∗;
that is, θ̄j(X,λ

∗) ̸= 0 if and only if j ∈ J∗. However, λ∗ is not known in real applications,
and several methods for hyperparameter selection, such as cross validation and Bayesian
methods, have been proposed to date.

On the other hand, as each sparsity pattern J ⊂ [d] corresponds to a probabilistic
model MJ = {p(X; θ) | θj = 0,∀j /∈ J}, we can regard sparse modeling as a problem of
choosing a probabilistic model, namely, model selection. In this study, we approach the
problem of estimating the true pattern of J∗ by means of model selection based on the
MDL principle (Rissanen, 1978). According to this principle, we choose the pattern Ĵ
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that minimizes the NML code length, also known as stochastic complexity :

SC(X; J) = − ln
p(X; θ̂(X, J))∫
p(Y ; θ̂(Y, J))dY

, (3.2)

where θ̂(·, J) denotes the ML estimator with respect to the probabilistic model MJ .
Traditionally, model selection is formulated as the minimization of criteria over finite
candidates and is conducted by computing their values for all candidates. In the case of
sparse modeling, the number of candidates grows exponentially as the dimensionality d
increases. Therefore, it is impossible to compute all of the abovementioned criteria in a
real application.

In this chapter, we consider model selection based on the MDL principle and propose
an algorithm for finding the optimal sparsity pattern from the viewpoint of the MDL prin-
ciple. By applying continuous relaxation for the discrete minimization of the stochastic
complexity, we obtain the relaxed stochastic complexity (RSC) (see Figure 3.1) and derive
an algorithm to minimize the relaxed criterion, in which the problem of ℓ1-regularization
in (3.1) is iteratively solved. Not only does this allow us to efficiently find the optimal
model from an exponentially large number of candidates, but it also gives a criterion for
choosing the hyperparameter λ in (3.1).

The remainder of the chapter is organized as follows. In Section 2, we present the
conventional methods and clarify their relationship to this study. Section 3 states the
notion of the MDL principle and the derivation of novel MDL-based criteria suited to
sparse modeling. Section 4 introduces the problem of sparse graphical modeling as a
typical issue of sparse modeling. A state-of-the-art solution to this problem, the Graphical
LASSO (Friedman et al., 2008), is also discussed. In Section 5, we present an algorithm
for optimizing the proposed criteria specialized for sparse graphical mode. Section 6
contains the experimental results obtained for the proposed algorithm in identifying the
true sparsity pattern J∗. Section 7 provides concluding remarks and suggests future
research.

3.2 Related Work
As we study the problem of sparse modeling by connecting the model selection with
the hyperparameter selection of the ℓ1-regularization, we review work related to these
two domains. In general terms, the purpose of model selection and ℓ1-regularization in
sparse modeling is either generalization or interpretation. For generalization purposes, we
are concerned with estimating accurate values of a parameter by selecting an appropriate
model or hyperparameter in the sense that the risk of the estimates relative to some classes
of the distribution of data is bounded or minimized. On the other hand, our focus is on
models for interpretation purposes. We are interested in finding the sparsest model that
explains the data sufficiently well, i.e., the essential model, by either directly choosing a
model or by choosing a hyperparameter and examining the resulting estimate with the aim
of exploiting it for knowledge discovery of the source of the data. Specifically, we consider
the consistency of the estimated models relative to the true probability distribution.

A number of criteria for model selection have been proposed thus far, namely the Akaike
information criteria (AIC) (Akaike, 1974), the Bayes information criteria (BIC) (Schwarz
et al., 1978), the MDL principle (Rissanen, 1978), etc. It has been shown that the estimates
provided by the BIC and MDL are consistent, whereas those of the AIC are not. Another
fascinating property of the MDL is that it is well-defined even for finite samples, which is
typically not the case for the other criteria. In view of continuous relaxation, definiteness
is important since the resulting relaxed criteria can also be interpreted as the description
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length of the presented samples, and the minimization over relaxed criteria continues to
make sense.

A similar observation holds for Bayesian variable selection (George and McCulloch,
1997) in that Bayesian evidence can be regarded as the description length. One of the
notable differences between the stochastic complexity and Bayesian evidence is that the
stochastic complexity depends only on probabilistic models, whereas the evidence depends
on the parameter priors, which have infinite degrees of freedom in principle. The proposed
method utilizes this simple dependence of the stochastic complexity, which is useful for
applications that solely depend on models. Moreover, it differs from our intention in the
sense that it manages to directly optimize a criterion (i.e., evidence) over the exponential
number of discrete candidates.

Methods for minimizing the criteria of model selection, such as the BIC and MDL,
present the problem of computational complexity in view of sparse modeling. The min-
imization is often formulated as nonconvex, essentially discrete optimization, in which
there is an exponentially large number of candidates to compare. Rissanen (2000) and
Roos et al. (2009) studied the use of stochastic complexity in the problem of sparse feature
selection. In these studies, it was assumed that features are orthogonal to one another.
This assumption is necessary, as it reduces the essential number of candidate sets of fea-
tures from exponential to linear. In contrast, we remove the orthogonality assumption
and consider optimizing the nonlinear interaction among features, i.e., the explanatory
factors. On the other hand, within the framework of PAC-Bayesian theory, a similar prob-
lem arising from model averaging for generalization purposes can be efficiently solved with
sampling methods (Alquier et al., 2011). In fact, our method also employs a paradigm
of sampling when solving the continuous-relaxationized problem, and it aggregates the
information of the discrete candidates in the same manner.

The problem of ℓ1-regularization was originally introduced by Tibshirani (1996) in or-
der to find sparse estimates by means of convex optimization, which can be efficiently
solved. As for the methods of hyperparameter selection for the ℓ1-regularization prob-
lem, techniques involving cross validation (Kohavi, 1995) and the Bayesian LASSO (Park
and Casella, 2008) have been widely used. On the other hand, theoretical risk bounds
of LASSO estimates have recently been investigated from the viewpoint of the MDL
principle (Barron and Luo, 2008; Chatterjee and Barron, 2014; Kawakita and Takeuchi,
2016), and several methods for selecting the optimal hyperparameters that minimize the
bounds have been presented in various scenarios of statistical learning. Those methods
are designed to choose the appropriate λ in (3.1) to estimate accurate parameter values as
θ = θ̄(X,λ), which rather than being typically suitable for the purposes of interpretation
such as identifying the true sparsity pattern, are appropriate for the purpose of general-
ization. However, our method resembles the Bayesian LASSO in the technical sense that
concerns optimization over a continuous space of probabilistic models.

The adaptive LASSO (Zou, 2006) was proposed considering the estimation of the true
sparse model. It specifies a half line of the hyperparameter lX , which satisfies the oracle
property according to observed data. The oracle property ensures approximate consistency
and that there exists λ+ ∈ lX such that the sparsity pattern of the estimate θ̄(X,λ+) is
J∗ with a high probability approaching one as n→∞. However, although the theoretical
rates of the hyperparameter λ = λn are presented in the analysis of consistency, they do
not provide any information on how to choose λ relative to the given data X. Moreover,
conventional methods for choosing λ fail to identify the true sparse model, even if the half
line with the oracle property is given.
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3.3 Relaxed Dual of the MDL Principle
There are a number of studies that have applied the MDL principle to problems of model
selection, e.g., the orthogonal basis selection of regression models (Rissanen, 2000; Roos
et al., 2009), the cluster-number selection of Gaussian mixture models (Hirai and Yaman-
ishi, 2013), and rank selection for nonnegative matrix factorization (Ito et al., 2016). In
these works, the description length of the data X relative to the probabilistic modelsMJ

is minimized with respect to the index J . The description length is typically given by the
stochastic complexity in (3.2), which is the length of the optimal lossless coding of the
data X in the sense of Shtarkov’s minimax regret (Shtarkov, 1987). In the asymptotic
setting, under standard regularity conditions for the models {MJ}, the minimizer of the
stochastic complexity

Ĵ(X)
def
= argmin

J⊂[d]

SC(X; J) (3.3)

is known to be a consistent estimator of the true sparsity pattern J∗ (Rissanen, 2012),
i.e.,

lim
n→∞

P
{
Ĵ(X) = J∗

}
= 1.

That is, in the context of sparse modeling, we can theoretically estimate the true spar-
sity pattern given a sufficient number of observations. However, näıve minimization of
the stochastic complexity in (3.3) is practically intractable since the number of candi-
dates is 2d, which exponentially grows as d increases. Moreover, computation of the
stochastic complexity itself is often analytically intractable owing to the normalizing fac-

tor
∫
p(Y ; θ̂(Y, J))dY in (3.2).

The key idea to overcome these difficulties is to conduct continuous relaxation. We note
that the 2d candidates can be naturally embedded in the Euclidean space Rd as the vertices
of the d-dimensional unit hypercube Cd; that is, there is a natural mapping φ such that
2[d] ∋ J 7→ φ(J) =

∑
j∈[d] χJ(j)ej ∈ Cd. Here, we define χJ(·) as an indicator function of

the set J . Then, we introduce the RSC, which a continuous interpolation of the stochastic
complexity over the hypercube RSC(X; v)v∈Cd , such that RSC(X;φ(J)) = SC(X; J) for
all J ⊂ [d]. Once we obtain the minimizer of the RSC by utilizing continuous optimization

techniques, an approximate solution of Ĵ(X) is obtained by a certain backward mapping
ψX from the hypercube Cd back to the power set 2[d]. Formally, we can define a new
estimator of the sparsity pattern as follows.

Definition 1 The relaxed MDL estimator of the sparsity pattern is given by

J̄(X)
def
= ψX

(
argmin
v∈Cd

RSC(X; v)

)
. (3.4)

Note that this no longer suffers from the exponentially large number of candidates.
The relaxation of the stochastic complexity starts with the minimax optimality of the

stochastic complexity:

SC(·; J) = argmin
L:lossless

max
X,θ∈ΩJ

{
L(X)− ln

1

p(X; θ)

}
(3.5)

given a subspace ΩJ = {θ ∈ Ω | θj = 0,∀j /∈ J}. Let UJ(θ) be a function such that
UJ(θ) = 0 for all θ ∈ ΩJ , and UJ(θ) = +∞ otherwise. Then, we can rewrite (3.5) in a
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functional form:

SC(·; J) = argmin
L:lossless

max
X,θ∈Ω

{
L(X)− ln

1

p(X; θ)
− UJ(θ)

}
. (3.6)

The dependence of the stochastic complexity on the sparsity pattern J is reflected only

in the function UJ(θ). By relaxing this function into Ūv(θ)
def
= −

∑
j |θj | ln vj , we have

continuous relaxation of the stochastic complexity (RSC):

RSC(·; v) def
= argmin

L:lossless
max
X,θ∈Ω

{
L(X)− ln

1

p(X; θ)
− Ūv(θ)

}
. (3.7)

By the definition above, we can see that RSC(X;φ(J)) = SC(X; J) for all J ⊂ [d] since
Ūφ(J)(θ) ≡ UJ(θ) with the conventional definition of ln 0 = −∞. The RSC can be also
written in the explicit form

RSC(X; v) = − ln
maxθ∈Ω p(X; θ)

∏
j v

|θj |
j∫

maxθ′∈Ω p(Y ; θ′)
∏

j v
|θ′j |
j dY

, (3.8)

which is also known as a special case of the LNML code length (Grünwald, 2007). Here,
the integral is taken over all possible values of the data Y . Observing the right-hand side
of (3.8), it is straightforward to see that the RSC is continuous with respect to v ∈ Cd
under standard conditions onM.

In order to construct the backward mapping ψX : Cd → 2[d], we notice the ML estimator

θ̂(X, J) as an indicator of the sparsity pattern of the model J . Since the ML estimate
can be characterized as the maximizer of the regret on the right-hand side of (3.6), we
consider the maximizer of the relaxed regret on the right-hand side of (3.7) as the ancillary
relaxation of the ML estimate. In fact, the relaxed ML estimate is equivalent to the
solution θ̄(X,λ) of (3.1) under a transformation of variables; that is, we can see that

θ̄(X,λ(v)) = argmax
θ∈Ω

{
− ln

1

p(X; θ)
− Ūv(θ)

}
, (3.9)

where λj(v) = − ln vj . Therefore, a natural backward operator ψX(·) can be defined as
the sparsity pattern of θ̄(X,λ(·)) as

ψX(v) =
{
j ∈ [d]

∣∣ θ̄j(X,λ(v)) ̸= 0
}
. (3.10)

Hereafter, we refer to λ(v) as simply λ if the dependency is clear from the context.
Up to this point, we have given a feasible approximation of consistent model selection in

(3.3) by the technique of continuous relaxation in (3.4) in view of the MDL principle. The
relaxed objective function in (3.8) can be efficiently minimized by the family of gradient
descent methods, as will be described in Section 5, and the pulling-back operation of the
minimizer v̄ back to the original domain is essentially equivalent to solving the problem
of ℓ1-regularization in (3.1).

3.4 Graphical LASSO
Undirected graphical models are used to express statistical dependence such as the corre-
lation or noncorrelation among the variables of interest; that is, there is an edge between
node i and node j if and only if the i-th and j-th variables are dependent, where the
other variables are conditioned. Assuming that we have n independent observations of
the m variables denoted as X ∈ Rn×m, we are motivated to infer the underlying graphical
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model in order to understand the relationship between the variables of high-dimensional
observations in real life, e.g., see Menéndez et al. (2010).

It is known that the adjacency matrix of a graphical model is equivalent to the sparsity
pattern of the precision matrix Θ = Σ−1 ∈ Rm×m, given that the variables are drawn from
an m-dimensional Gaussian distribution with zero mean Nm[0,Σ]. Using the notation of
the empirical covariance S = X⊤X/n, the sparsity pattern of Θ can be inferred by solving
the following graphical LASSO problem (Friedman et al., 2008):

Θ̄(S,Λ) = argmin
Θ≻0

{
tr [SΘ]− ln detΘ +

∑
i,j

Λij |Θij |

}
(3.11)

for a given symmetric matrix Λ ∈ [0, 1]m×m. This minimization is well-defined as long as
S is positive definite. Here, Λ = 1 gives the sparsest solution, i.e., no edges in the graph;
therefore, we restrict the range of the hyperparameters to 0 ≤ Λij ≤ 1. The data X are
assumed to be normalized, i.e., diagS = 1, for the sake of scale invariance.

Note that this minimization is a special case of the formulation in (3.1). Hence, ac-
cording to the discussion in Section 3.3, the estimator in (3.11) plays an important role
in mapping the relaxed continuous domain to the original discrete domain, i.e., (3.10).
This is important with regard to the backward operation and also a key quantity in the
minimization of the RSC. For the sake of later use in the minimization, we introduce
notation for the loss of graphical LASSO, denoted by

h(S,Λ)
def
= min

Θ≻0

tr [SΘ]− ln detΘ +
∑
i,j

Λij |Θij |

 . (3.12)

The graphical LASSO is a convex optimization problem, and a number of efficient algo-
rithms are known for it with a complexity of at most O(m3) per iteration. We employ
one of them (Duchi et al., 2012) in the following section, which is suitable for the scenario
in which each coefficient Λij is an independent free hyperparameter.

3.5 Persistent Contrastive LASSO Algorithm for Sparse

Graphical Modeling
In this section, we formulate the problem of sparse graphical modeling via the paradigm of
model selection described in Section 3.3. Under the assumption of a Gaussian distribution,

we have the universal probabilistic model p(X; Θ) =
(

detΘ√
2π

)n
exp

(
−n2 tr [SΘ]

)
. By the

definition in (3.8), the RSC for sparse graphical modeling is given by

RSC(X; v) =
n

2
h(S,Λ) + ln

∫
e−

n
2 h(S

′,Λ)dX ′, (3.13)

given Λij = − ln vij for 1 ≤ i, j ≤ m.

3.5.1 Computing Gradient of RSC

Our objective is to minimize the RSC with respect to v, or equivalently, with respect to
Λ. The gradient of the RSC with respect to Λ is given by

∂

∂Λij
RSC(X; v) = n

{∣∣Θ̄ij(S,Λ)∣∣− Eq
∣∣Θ̄ij(S′,Λ)

∣∣} , (3.14)
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where the expectation is taken with respect to the probability density q(X ′) =

e−RSC(X′;v), and we define S′ = X ′⊤X ′/n. The derivation of this formula is provided
in Section A.1.1. Note that q(X) is a proper density function because the RSC is the
length of the lossless coding that attains the continuous version of Kraft’s upper bound,
i.e.,

∫
e−RSC(X;v)dX = 1. Since the above expectation is analytically intractable, regular

gradient descent (SGD) algorithms cannot be applied. Therefore, we approximate the
expectation by sampling and then utilizing the SGD algorithm. The update formula of
Λij at the t-th iteration is formulated as

Λ
(t)
ij ← Π[0,1]

[
Λ
(t−1)
ij − η(t)ij ∆ij

]
, (3.15)

∆ij =
∣∣∣Θ̄ij(S,Λ(t−1))

∣∣∣− ∣∣∣Θ̄ij(S(t),Λ(t−1))
∣∣∣ ,

given the step size η
(t)
ij and the empirical covariance of the t-th sample S(t) = X(t)⊤X(t)/n.

Here, Π[0,1] denotes the projection operator onto the interval [0, 1]. We employ the Ada-

grad (Duchi et al., 2011) algorithm to determine the step size η
(t)
ij , which has only one

hyperparameter to choose.

3.5.2 Sampling from RSC

Now, we consider a sampling method for the density q(X) = e−RSC(X;v). There are two
major problems that make the sampling difficult. One is the high dimensionality of the
variable X ∈ Rn×m, which increases linearly with the number of samples n. In order
to reduce the dependency on n, we project the target distribution onto the space of the
sample covariance S ∈ Rm×m. Since the integrand

∣∣Θ̄ij(S,Λ)∣∣ only depends on X through
S, we can change the variable as

Eq
∣∣Θ̄ij(S′,Λ)

∣∣ = ∫ ∣∣Θ̄ij(S′,Λ)
∣∣ q(X ′)dX ′

=

∫ ∣∣Θ̄ij(S,Λ)∣∣ q(S)dS,
where the projected density is given by

q(S) ∝ (detS)
n−m−1

2 exp
{
−n
2
h(S,Λ)

}
.

The second problem is that we cannot directly sample from the density q owing to
the normalization factor. In order to avoid computing the density directly, we employ
the Metropolis–Hastings algorithm (MHA), which allows us to produce effective samples
(i.e., uncorrelated samples) in the long run by making use of the sample of the previous
iteration, namely

S(t) ← zS̃ + (1− z)S(t−1), (3.16)

S̃ = S(t−1) + σN (t),

z ∼ Bernoulli
(
min

[
1, e−βq

])
,

where each N
(t)
ij = N

(t)
ji is independently subject to the normal distribution, and N

(t)
ii = 0
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for all 1 ≤ i ≤ m. Here, we define βq as the rejection factor

βq
def
= − ln

q(S̃)

q(S(t−1))

=
n

2

{
h(S̃,Λ)− h(S(t−1),Λ)

}
− n−m− 1

2
ln

det S̃

detS(t−1)
.

Further, we can adopt the Metropolis-adjusted Langevin algorithm (MALA) (Roberts
and Rosenthal, 1998), which scales better than the vanilla MHA. It scales down the mixing
period of the Markov chain from O(m2) to O(m2/3) by utilizing first-order information
as follows:

S̃ = S(t−1) + σ(t)N (t) +
σ(t)2

2
G(t),

where σ(t) = σ detS(t−1) is a scale factor considering the geometry of the set of symmetric
positive definite matrices, and G(t) =

{
Gij(S

(t−1))
}
1≤i,j≤m denotes the gradient of the

logarithmic density, where

Gii(S)
def
= 0,

Gij(S)
def
=

∂

∂Sij
ln q(S)

= (n−m− 1)S−1
ij − nΘ̄ij(S,Λ) (i ̸= j). (3.17)

The derivation of (3.17) is given in Section A.1.2. The rejection probability is also modified
accordingly as

z ∼ Bernoulli
(
min

[
1, e−βq−βπ

])
,

where βπ denotes the additional rejection factor due to the asymmetric transition proba-
bility π(S̃|S(t−1)),

βπ
def
= − ln

π(S(t−1)|S̃)
π(S̃|S(t−1))

=
1

2

∥∥∥ρN (t) +
σ

2

{
ρ2G(S(t−1)) +G(S̃)

}∥∥∥2

F
−

1

2

∥∥∥N (t)
∥∥∥2

F
− m(m− 1)

2
ln ρ,

given ρ = detS(t−1)/ det S̃.
In summary, our algorithm consists of two interleaving update chains: the update of

the SGD on Λ(t) in (3.15) and the update of the MHA on S(t) in (3.16). Note that
because the probability density q implicitly depends on Λ(t) and Λ(t) is not constant, the
density q is not constant during iteration. This means that the output of the MHA is not
exactly subject to the target density unless we iterate the update of the MHA from line
7 to line 23 in Algorithm 1 an infinite number of times before the update of the SGD.
However, it is empirically known that just one update of S(t) is sufficient for practical
use if the step size ηt is appropriately decreased. This type of algorithm is known as
the persistent contrastive divergence algorithm (Tieleman, 2008) for training restricted
Boltzmann machines. Since two LASSO estimates are iteratively compared in terms of
their magnitudes in our algorithm, we call it the persistent contrastive LASSO algorithm
(PCLA).
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The detailed procedure of the PCLA is presented in Algorithm 1. It takes the arguments
X ∈ Rm×n as the data, Λ(0) ∈ Rm×m

+ as the initial guess of the hyperparameter, T > 0 as
the number of iterations, and σ > 0 and η > 0 as the scale parameters of the MHA and
SGD steps, respectively. Note that there are three lines of computation for the graphical
LASSO estimator per iteration. Since the estimator Θ̄(S,Λ) is computed with an iterative
algorithm, we can apply warm starting to the computation of the t-th iteration by utilizing
the result of the (t− 1)-th iteration.

Algorithm 1 Sparse graphical modeling via the PCLA

Input: X ∈ Rn×m, Λ(0) ∈ Rm×m
+ , T, σ, η > 0

1: # Initialize
2: S ← X⊤X/n
3: S(0) ← Im
4: Θ̄(0) ← Θ̄(S(0),Λ(0))
5: V ← 0m×m
6: for t = 1, 2, . . . , T do
7: # MHA step via the MALA
8: # Propose new sample
9: N ← symmetric offdiagonal normal(m,m)

10: Ĝ← G(S(t−1),Λ(t−1))

11: S̃ ← S(t−1) + σ(t)N + σ(t)2

2 Ĝ

12: Θ̃← Θ̄(S̃,Λ(t−1))
13: # Accept/reject new sample

14: if S̃ is symmetric positive definite then

15: ĥ← h(S(t−1),Λ(t−1)), h̃← h(S̃,Λ(t−1))

16: G̃← G(S̃,Λ(t−1))

17: βq ← n
2 (h̃− ĥ) +

n−m−1
2 ln ρ.

18: βπ ←
∥ρN+σ

2 {ρ2Ĝ+G̃}∥2
F

2 − ∥N∥2
F

2 − m(m−1)
2 ln ρ

19: z ← Bernoulli (min {1, exp(−βq − βπ)})
20: S(t) ← zS̃ + (1− z)S(t−1)

21: Θ̄(t) ← zΘ̃ + (1− z)Θ̄(t−1)

22: end if
23: # SGD step via AdaGrad
24: ∆←

∣∣Θ̄(S,Λ(t−1))
∣∣− ∣∣Θ̄(t)

∣∣
25: Vij ← Vij +∆2

ij for all i and j

26: Λ
(t)
ij ← Π[0,1]

[
Λ
(t−1)
ij − η√

Vij

∆ij

]
for all i and j

27: Θ̄(t) ← Θ̄(S(t),Λ(t))
28: end for
29: return sparsity pattern(Θ̄(S,Λ(T )))

3.6 Experimental Results
In order to validate the proposed algorithm, we evaluate PCLA quantitatively answer-
ing the following two questions. Firstl, (i) does PCLA successfully minimize the relaxed
stochastic complexity? Although PCLA is designed to minimize RSC, it is a stochastic
iterative algorithm and we do not have any meaningful stopping conditions. Hence, when
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it is stopped with finite iterations, its performance should be validated empirically. Sec-
ondly, (ii) is the sparsity pattern estimation with PCLA consistent as expected? Our idea
for minimizing RSC to find sparse models is based on the fact that the minimizer of the
stochastic complexity is consistent, i.e., in the large sample limit, the estimated sparsity
pattern coincides with the true one in probability. However, as we have applied continuous
relaxation on the stochastic complexity to obtain RSC, we should also check whether the
estimation with PCLA is actually consistent.

Settings We have conducted three experiments, and in each experiment, we have a dis-
tinct generative graphical model. The first model is a chain-shaped graph with a size
of five, in which the nodes are connected in a line with each partial correlation of ±0.3.
The second one is a star-shaped graph with a size of five, in which there is a central
node connected to all other nodes with the partial correlation of ±0.2. The third one is a
random graph with a size of 10 whose precision matrix Θ∗ is generated with the following
procedure according to Mazumder and Hastie (2012). Let A ∈ R10×10 be a random matrix
with each entry drawn from an i.i.d. normal distribution N [0, 1], and let B ∈ R10×10 be
a symmetric matrix whose entries are identical to (A+ A⊤)/2, except with 70 randomly
chosen entries in symmetric positions shrunk to zero. Then, we have Θ∗ = B+(1−κB)Im,
where κB denotes the smallest eigenvalue of B. By its construction described above, Θ∗

is symmetric positive definite and hence is a valid precision parameter for Gaussian distri-
butions. The corresponding graphical model consists of 10 vertices and 10 random edges.
The generated graphical model is shown in Figure 3.2. Note that the number of possible
models amounts to 210C2 ≈ 35trillion.

Next, we generated an i.i.d. sequenceX = (x1, x2, . . . , xn)
⊤ ∈ Rn×m from the multivari-

ate Gaussian distribution with zero mean, N [0,Θ∗−1], and then estimated the precision
matrix Θ∗ with the PCLA. We generated five independent sequences and executed the
PCLA for each experimental configuration to obtain 25 distinct minimum RSC estimates
J̄(X). Here, we set T = 106 and η = 10−3 and chose σ so that the acceptance rate is
near 0.574, as suggested in Roberts and Rosenthal (1998). We chose the initial guess of
the hyperparameter as Λ(0) = 0m×m to avoid the trivial local minimizer Λ = 1m×m.

We compared the PCLA with the method of five-fold cross validation with an equally
spaced grid with a size of 256 for Λ = c1m×m (0 ≤ c ≤ 1), which we call CV here, as a
conventional method of hyperparameter selection for the graphical LASSO. We have also
included the PCLA with the initial value Λ(0) given by CV, called CV+PCLA.

Result: Code Length Since RSC itself is difficult to compute exactly, we evaluate an
upper bound of RSC. We substitute the normalizing term of RSC with the upper bound
computed with the Bayesian minimax regret, which is introduced in Chapter 5. It is given
as

RSC(X; Λ) ≤ h(S,Λ) +
∑
i<j

ln

[
1 +

2R2

Λ2
ij

exp

(
−

Λ2
ij

2R2

)]
,

where R−1 is a lower bound of the smallest eigenvalue of the precision matrix Θ. In our
setting, the eigenvalue can be arbitrarily small and we cannot fix R < +∞ before training.
Thus, we adopt a two-stage coding approach such that

˜RSC(X; Λ)
def
= min

k∈N
h(S,Λ) +

∑
i<j

ln

[
1 +

2R2
k

Λ2
ije

exp

(
−

Λ2
ij

2R2
k

)]
+ L(Rk),

where Rk = 2−k, and L(Rk) denotes the code length for the lower bound itself. We adopt
the universal code length for integers suggested by Rissanen (1983).
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Fig. 3.2: Synthetic random undirected graph with a size of 10. There are 10 randomly
generated edges in the graph. The partial correlation coefficients according to the true
precision matrix, −Θ∗

ij/
√
Θ∗
iiΘ

∗
jj , are presented on the corresponding edges.

Figure 3.3 shows the upper bound of RSC corresponding to the selected Λ. In compar-
ison to CV, the code lengths of the estimates produced with PCLA are no larger. Specif-
ically, when the size of model m is large, they are significantly smaller than CV (note
the difference in the scale of vertical axes among figure parts (a)–(c)). Therefore, it is
indirectly implied that PCLA successfully minimizes RSC as we intended.

Result: Consistency Figure 3.4 shows the Hamming distance of the estimated sparsity
pattern J̄(X) relative to the true pattern J∗ when varying the number of observations
n. As shown in the figure, the estimate of the PCLA converges to the true one for the
first two experiments as n increases. For the last experiment, owing to the lightweight
edges in the graph, e.g., e = (2, 9), (3, 5), the Hamming distance does not converge to
zero. However, it still gives a much better approximation than CV for large n. Further,
the warm-starting PCLA with CV improves the performance, where n is relatively small
and gives almost identical performance with large n.

3.7 Concluding Remarks
We presented a paradigm that relaxes the problem of sparse model selection to the problem
of hyperparameter selection of ℓ1-regularization in view of the MDL principle. The relax-
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(a) Chain-shaped graph
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(b) Star-shaped graph
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Fig. 3.3: Upper bounds of the excess of the relaxed stochastic complexity relative to the
expected optimal code length. Each figure shows the results of the respective experiment,
and the vertical whiskers in them show the ranges of ±1 standard deviation. The horizon-
tal axes represent the number of observations n. It is shown that the PCLA successfully
lowers RSC compared to CV, especially with the larger model (c), and the initialization
with CV takes some effect with smaller sample size.
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(a) Chain-shaped graph
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(b) Star-shaped graph
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Fig. 3.4: Hamming distance of the estimates of the sparsity pattern relative to the true
one. Each figure shows the results of the respective experiment, and the vertical whiskers
in them show the ranges of ±1 standard deviation. The horizontal axes represent the
number of observations n. The distance of the PCLA converges to zero at n = 1000
for the first two experiments but not in the third experiment. On the other hand, the
distance of CV is volatile throughout all experiments. Although CV+PCLA performs
almost identically to the PCLA for large n, it tends to improve the performance of the
PCLA where n is small.
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ation immediately induces criteria for the hyperparameter selection of ℓ1-regularization as
a feasible approximation of the MDL criteria for model selection. We have also derived an
iterative algorithm for its optimization, the PCLA, by which we can efficiently choose the
optimal undirected graphical model out of an exponentially large number of candidates.
The experiments show that the resulting estimate successfully identifies the true structure
of graphical models as the number of observations increases.

To conclude, let us present a number of possible applications and extensions of the
proposed scheme. In the proposed algorithm, the variable v obtained by the continuous
relaxation can be regarded as the storage of messages passed by the data X about the
preference for the sparsity patterns J ⊂ [d]. Therefore, in the context of a time series
analysis for example, we suggest that the variable v by itself—not ψX(v)—can be utilized
to detect changes in the true sparsity pattern. Moreover, the iterative nature of the
PCLA allows efficient online learning of v for streaming data. Other interesting future
work includes the extension of the PCLA towards the problem of regression with ℓ1-
regularization. We also require theoretical analyses of the validity of the relaxation, such
as a convex analysis of the relaxed objective function RSC(X; v) and the consistency of
its minimizer J̄(X).
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Chapter 4

High-dimensional Penalty Selection via

Analytic Approximation of Minimax

Regret

We tackle the problem of penalty selection of regularization on the basis of the MDL
principle. In particular, we consider that the design space of the penalty function is
high-dimensional. In this situation, the LNML-minimization approach is favorable, be-
cause LNML quantifies the goodness of regularized models with any forms of penalty
functions in view of the MDL principle and guides us to a good penalty function through
the high-dimensional space. However, the minimization of LNML entails two major chal-
lenges: 1) the computation of the normalizing factor of LNML and 2) its minimization
in high-dimensional spaces. In this chapter, we present a novel regularization selection
method (MDL-RS), in which a tight upper bound of LNML (uLNML) is minimized with
local convergence guarantee*1. Our main contribution is the derivation of uLNML, which
is a uniform-gap upper bound of LNML in an analytic expression. This solves the above
challenges in an approximate manner because it allows us to accurately approximate
LNML and then efficiently minimize it. The experimental results show that MDL-RS
improves the generalization performance of regularized estimates specifically when the
model has redundant parameters.

4.1 Motivation
We are concerned with the problem of learning with redundant models (or hypothesis
classes). This setting is not uncommon in real-world machine learning and data mining
problems. This is because the amount of available data is sometimes limited owing to the
cost of data collection (e.g., in biomedical data analyses), while researchers can come up
with an unbounded number of models for explaining the data that may contain a number
of irrelevant features. For example, in sparse regression, one may consider a number of
features that is much larger than the number in the data, assuming that useful features are
actually scarce (Rish and Grabarnik, 2014). Another example is statistical conditional-
dependency estimation, in which the number of the parameters to estimate is quadratic
compared to the number of random variables, while the number of nonzero coefficients is
often expected to be sub-quadratic.

In the context of such a redundant model, there is a danger of overfitting, which is
where the model fits the present data excessively well but does not generalize well. To

*1 The content of this chapter was published in Miyaguchi and Yamanishi (2018b)
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address this, we introduce regularization and reduce the complexity of the models by
taking the regularized empirical risk minimization (RERM) approach (Shalev-Shwartz
and Ben-David, 2014). In RERM, we minimize the sum of the loss and penalty functions
to estimate parameters. However, the choice of penalty function should be made cautiously
as it controls the bias-variance trade-off of the estimates, and hence has a considerable
effect on the generalization capability.

In conventional methods for selecting such hyperparameters, a two-step approach is usu-
ally followed. First, a candidate set of penalty functions is configured (possibly randomly).
Then, a penalty selection criterion is computed for each candidate and the best one is cho-
sen. Note that this method can be applied to any penalty selection criteria. Sophisticated
approaches like Bayesian optimization (Mockus et al., 2013) and gradient-based meth-
ods (Larsen et al., 1996) also tend to leave the criterion as a black-box. Although leaving
it as a black-box is advantageous in that it works for a wide range of penalty selection
criteria, a drawback is that the full information of each specific criterion cannot be uti-
lized. Hence, the computational costs can be unnecessarily large if the design space of the
penalty function is high-dimensional.

In this chapter, we propose a novel penalty selection method that utilizes information
about the objective criterion efficiently on the basis of the MDL principle (Rissanen, 1978).
We especially focus on the LNML code length (Grünwald, 2007) because the LNML code
length measures the complexity of regularized models without making any assumptions on
the form of the penalty functions. Moreover, it places a tight bound on the generalization
error (Grünwald and Mehta, 2017). However, the actual use of LNML on large models is
limited so far. This is owing to the following two issues.

I1) LNML contains a normalizing constant that is difficult to compute, especially for
large models. This tends to make the evaluation of the code length intractable.

I2) Since the normalizing term is defined as a non-closed form of the penalty function,
efficient optimization of LNML is non-trivial.

Next, solutions are described for the above issues. First, we derive an upper bound of
the LNML code length, namely uLNML. The key idea is that the normalizing constant
of LNML, which is not analytic in general, is characterized by the smoothness of loss
functions, which can often be upper-bounded by an analytic quantity. As such, uLNML
exploits the smoothness information of the loss and penalty functions to approximate
LNML with much smaller computational costs, which solves I1. Moreover, within the
framework of the concave-convex procedure (CCCP) (Yuille and Rangarajan, 2003), we
propose an efficient algorithm for finding a local minimima of uLNML, i.e., finding a good
penalty function in terms of LNML. This algorithm only adds an extra analytic step to the
iteration of the original algorithm for the RERM problem, regardless of the dimensionality
of the penalty design. Thus, I2 is addressed. We combine these two methods and propose
a novel method of penalty selection named MDL regularization selection (MDL-RS).

We also validate the proposed method from both a theoretical and empirical perspective.
Specifically, as our method relies on approximation of uLNML and the CCCP algorithm
relies on uLNML, the following questions arise.

Q1) How well does uLNML approximate LNML?
Q2) Does the CCCP algorithm on uLNML perform well with respect to generalization

compared to the other methods for penalty selection?

To answer Q1, we show that the gap between uLNML and LNML is uniformly bounded
under smoothness and convexity conditions. As for Q2, from our experiments on example
models involving both synthetic and benchmark datasets, we found that MDL-RS is at
least comparable to the other methods and even outperforms them when models are highly
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redundant, as we expected. Therefore, the answer is affirmative.
The remainder of this chapter is organized as follows. In Section 2, we introduce a novel

penalty selection criteria called uLNML with uniform gap guarantees. Section 3 demon-
strates some examples of the calculation of uLNML. Section 4 provides the minimization
algorithm of uLNML and discusses its convergence property. Conventional methods for
penalty selection are reviewed in Section 5. Experimental results are shown in Section 6.
Finally, Section 7 concludes the chapter and discusses future work.

4.2 Method: Analytic Upper Bound of LNMLs
In this section, we first briefly review the definition of RERM and the notion of penalty
selection. Then, we introduce the LNML code length. Finally, as our main result, we
show an upper bound of LNML (uLNML) with approximation error analyses and several
examples.

4.2.1 Preliminary: Regularized Empirical Risk Minimization (RERM)

Let fX : Rp → R(= R ∪ {∞}) be an extended-value loss function of parameter θ ∈ Rp
with respect to data X = (x1, . . . , xn) ∈ Xn. We assume fX(θ) is a log-loss (but not
limited to i.i.d. loss), i.e., it is normalized with respect to some base measure ν over Xn,
where

∫
Xn exp {−fX(θ)} dν(X) = 1 for all θ in some closed subset Ω0 ⊂ Rp. Here, xi can

be a pair of datum and label (xi, yi) in the case of supervised learning. For simplicity, e
drop the subscript of X and write f(θ) = fX(θ) if there is no confusion.

The regularized empirical risk minimization (RERM) with convex domain Ω ⊂ Ω0 is
defined as the following minimization:

RERM(λ) : minimize fX(θ) + g(θ, λ) s.t. θ ∈ Ω, (4.1)

where g : Rp×A→ R denotes the penalty function, and λ ∈ A ⊂ Rd is the hyperparameter
that parametrizes the shape of penalty on θ. We assume that at least one minimizer always

exists in Ω and denote it as θ̂(X,λ). Here, we focus on a special case of RERM in which
the penalty is linear in terms of λ:

g(θ, λ) =

d∑
j=1

λjgj(θ), λj ≥ 0 (j = 1, . . . , d), (4.2)

and A ⊂ Rd+ is a convex set of positive vectors. Finally, let us define D(λ)
def
= {X ∈ Xn |

θ̂(X,λ) ∈ Ωo}, where Ωo is the interior of the set Ω. Then, we assume that the following
regularity condition holds:

Assumption 1（Regular penalty） D(λ) is monotonically increasing, i.e.,

λ ≤ λ′ ⇒ D(λ) ⊂ D(λ′),

or equivalently,

λ ≤ λ′, θ̂(X,λ) ∈ Ωo ⇒ θ̂(X,λ′) ∈ Ωo.

Regularization is beneficial from two perspectives. It improves the condition number of
the optimization problem, and hence it enhances the numerical stability of the estimates.
It also prevents the estimate from overfitting to the training data X, which hence reduces
generalization error.
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However, these benefits come with an appropriate penalization. If the penalty is too
large, the estimate will be biased. If the penalty is too small, the regularization no longer
takes effect and the estimate is likely to overfit. Therefore, we are motivated to select
good λ as a function of data X.

4.2.2 LNML

In order to select an appropriate hyperparameter λ, we introduce the LNML code length
as a criterion for the penalty selection. The LNML code length associated with RERM(λ)
is given by

L(X | λ) def
= min

θ∈Ω
fX(θ) + g(θ, λ) + lnZ(λ), (4.3)

where Z(λ)
def
=

∫
maxθ∈Ω exp {−fX(θ)− g(θ, λ)} dν(X) is the normalizing factor of

LNML.
Note that LNML is originaly derived by generalization of the Shtarkov’s minimax coding

strategy (Shtarkov, 1987; Grünwald, 2007). The normalizing factor Z(λ) can be seen as
a penalization of the complexity of RERM(λ). It quantifies how much RERM(λ) will
overfit to random data. If the penalty g is small such that the minimum in (4.1) always
takes a low value for all X ∈ Xn, Z(λ) becomes large. Specifically, any constant shift on

the RERM objective that does not change the RERM estimator θ̂ does not change LNML
since Z(λ) cancels it out. Moreover, recent advances in the analysis of LNML show that

it bounds the generalization error of θ̂(X,λ) (Grünwald and Mehta, 2017). Thus, our
primary goal is to minimize the LNML code length (4.3).

4.2.3 Upper Bound of LNML (uLNML)

The direct computation of the normalizing factor Z(λ) is often impossible because it
requires integration of the RERM objective (4.1) over all possible data. To avoid compu-
tational difficulty, we introduce an upper bound of Z(λ) that is analytic with respect to
λ. Then, adding the upper bound to the RERM objective, we have an upper bound of
the LNML code length itself.

To derive the bound, let us define the following H-upper smoothness condition.

Definition 2（H-upper smoothness） Let H ∈ Sp++ ⊂ Rp×p be a symmetric positive defi-

nite matrix. A function f : Rp → R is calledH-upper smooth, or (H, c, r)-upper smooth to
avoid any ambiguity, if there exists a constant c ≥ 0, a vector-valued function ξ : Rp → Rp,
and a monotonically increasing function r : R→ R+ such that

f(ψ)− f(θ) ≤ c+ ⟨ξ(θ), ψ − θ⟩+ 1

2
∥ψ − θ∥2H + r(∥θ − ψ∥2), ∀ψ ∈ Rp,∀θ ∈ Ω,

where ∥ψ − θ∥2H
def
= (ψ − θ)⊤H(ψ − θ) and r(t2) = o(t2).

There are a few remarks to make about this definition. The H-upper smoothness is a
condition that is weaker than that of standard smoothness. In particular, ρ-smoothness
implies ρIp-upper smoothness, and all the bounded functions are upper smooth with

their respective triples (H, c, r). Moreover, the function r only describes the behavior of
the function outside of Ω. Thus, if the penalty gj(θ) is upper smooth, we can take the
corresponding r as zero without changing the solution of RERM.

Now, assume that fX and gj (j = 1, . . . , d) are upper-smooth:
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Assumption 2（Upper-smooth objective） Both of the following equivalent conditions are
satisfied:

i) fX is (H0, c0, r)-upper smooth for all X ∈ Xn and gj is (Hj , cj , 0)-upper
smooth (j = 1, . . . , d).

ii) fX(·) + g(·, λ) is (H(λ), c(λ), r)-upper smooth for all X ∈ Xn and all λ ≥ 0, where

H(λ)
def
= H0 +

∑d
j=1 λjHj and c(λ)

def
= c0 +

∑d
j=1 λjcj .

Then, the following theorem states that the upper bound depends on fX and g only
through their smoothness.

Theorem 3（Upper bound of Z(λ)） Suppose that Assumption 2 holds. Let R(H;U) =

Ez∼Np[0,H−1]

[
1U(z) exp

{
−r
(
∥z∥2

)}]
. Then, for all the symmetric neighbors of the

origin U ⊂ Rp satisfying Ω + U ⊂ Ω0, we have

Z(λ) ≤ Z̄(λ) def
=

1

R(H0;U)

ec(λ) detH(λ)
1
2

√
2π

p

∫
Ω+U

e−g(θ,λ)dθ. (4.4)

Proof Let qλ(X)
def
=
∫
Ω+U

exp {−fX(θ)− g(θ, λ)} dθ. First, by Hölder’s inequality, we
have

Z(λ) =

∫
Xn

max
θ∈Ω

exp {−fX(θ)− g(θ, λ)} dν(X)

≤
∥∥∥∥maxθ∈Ω exp {−f·(θ)− g(θ, λ)}

qλ(·)

∥∥∥∥
∞
∥qλ(·)∥L1(ν)

= sup
X∈Xn

max
θ∈Ω

exp {−fX(θ)− g(θ, λ)}
qλ(X)︸ ︷︷ ︸
A

∫
Xn

qλ(X)dν(X)︸ ︷︷ ︸
B

,

where ∥·∥∞ denotes the uniform norm, and ∥·∥L1(ν) denotes the L
1-norm with respect to

measure ν. Then, we will bound A and B in the right-hand side, respectively. Since we
assume that fX(θ) is a logarithmic loss if θ ∈ Ω0, the second factor is simply evaluated
using Fubini’s theorem,

B =

∫∫
(Ω+U)×Xn

exp {−fX(θ)− g(θ, λ)} dθdν(X)

=

∫
Ω+U

e−g(θ,λ)dθ.
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On the other hand, by the H(λ)-upper smoothness of f(θ) + g(θ, λ), we have

A−1 = qλ(X) exp {fX(θ) + g(θ)}

=

∫
Ω+U

exp {fX(θ) + g(θ, λ)− fX(ψ)− g(ψ, λ)} dψ

≥
∫
Ω+U

exp

{
−c(λ)− ⟨ξ(θ), ψ − θ⟩ − 1

2
∥ψ − θ∥2H(λ) − r(∥ψ − θ∥

2
)

}
dψ

≥ e−c(λ)
∫
U

exp

{
−⟨ξ(θ), z⟩ − 1

2
∥z∥2H(λ) − r(∥z∥

2
)

}
dz

≥ e−c(λ)
∫
U

exp

{
−1

2
∥z∥2H(λ) − r(∥z∥

2
)

}
dz

= e−c(λ)
√
2π

p

detH(λ)
1
2

R(H(λ);U)

≥ e−c(λ)
√
2π

p

detH(λ)
1
2

R(H0;U).

This concludes the proof.

The upper bound in Theorem 3 can be easily computed by ignoring the constant factor
R(H0, U)−1 given the upper smoothness of fX and g(·, λ). In particular, the integral∫
Ω+U

e−g(θ,λ)dθ can be evaluated in a closed form if one chooses a suitable class of penalty

functions with a suitable neighbor U (e.g., quadratic penalty functions with U = Rp).
Therefore, we adopt this upper bound as an alternative of the LNML code length, namely
uLNML:

L̄(X|λ) def
= min

θ∈Ω
fX(θ) + g(θ, λ) + ln Z̄(λ), (4.5)

where Z̄(λ) is defined in Theorem 3. Note that the symmetric set U should be fixed
beforehand. In practice, we recommend simply taking U = Rp because uLNML with
U = Rp bounds uLNMLs with U ̸= Rp, and then we have

L̄(X|λ) = min
θ∈Ω

fX(θ) + g(θ, λ) + c(λ) +
1

2
ln detH(λ) + ln

∫
Rp

e−g(ψ,λ)dψ + const.

However, for the sake of the later analysis, we leave U to be arbitrary.
We present two useful specializations of uLNML with respect to the penalty function

g(θ, λ). One is the Tikhonov regularization, known as the ℓ2-regularization.

Corollary 1（Bound for Tikhonov regularization） Suppose that Assumption 2 holds with
fX . Suppose that g(θ, λ) = 1

2

∑p
j=1 λjθ

2
j , where λj > 0 for all 1 ≤ j ≤ p. Then, we have

Z(λ) ≤ ec0

R(H0;Rp)

√
det(H0 + diag λ)

det diag λ
.

Proof This claim follows from the setting of U = Rp in Theorem 3 and the fact that
g(·, λ) is (diag λ, 0, 0)-upper smooth.

The other specialization is that of LASSO (Tibshirani, 1996), known as ℓ1-regularization.

This is useful if one requires sparse estimates of θ̂(X,λ).
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Corollary 2（Bound for LASSO） Suppose that Assumption 2 holds with fX . Suppose
that g(θ, λ) =

∑p
j=1 λj |θj |, where λj > 0 for all 1 ≤ j ≤ p. Then, we have

Z(λ) ≤ ec0

R(H0;Rp)

√
e

2π

p
√

det(H0 + (diag λ)2)

det(diag λ)2
.

Proof As in the proof of Corollary 1, it follows from Theorem 3 and the fact that g(·, λ)
is ((diag λ)2, 1/2, 0)-upper smooth.

Finally, we present a useful extension for RERMs with Tikhonov regularization, which
contains the inverse temperature parameter β ∈ [a, b] (0 < a ≤ b) as a part of the
parameter:

fX(β, θ) = βf̃X(θ) + lnC(β), (4.6)

g(β, θ, λ) = βg̃(θ, λ) = β

d∑
j=1

λj
2
θ2j , (4.7)

where C(β)
def
=
∫
e−βf̃X(θ)dν(X) < ∞ is the normalizing constant of the loss function.

Here, we assume that C(β) is independent of the non-temperature parameter θ. Interest-
ingly, the uLNML of variable temperature models (4.6) (4.7) coincides with that of the
fixed temperature models given in Corollary 1 except with a constant.

Corollary 3（Bound for variable temperature model） Let (β, θ) ∈ [a, b]×Ω be the param-

eter of the model (4.6). Suppose that f̃X(θ) is (H0, c0, r)-upper smooth for all X ∈ Xn.
Then, there exists a constant C[a,b] such that

Z(λ) ≤ Ca,b e
(b+a/2)c0

R(a2H0;Rp)

√
det
(
H0 + diag λ

)
det diag λ

.

Proof Let F̃X(λ) = minθ∈Ω f̃X(θ) + g̃(θ, λ). Let W = [a/2, b + a/2] and q̃λ(X) =∫
W

exp
{
−βF̃X(λ)− lnC(β)

}
dβ. Note that lnC(β) is continuous and hence bounded

over W , which implies that it is upper smooth. Let (hβ , cβ , rβ) be the upper smoothness
of lnC(β) over W . Then, using the same techniques as in Theorem 3, we have

Z(λ) =

∫
max

β∈[a,b], θ∈Ω
exp

{
−β
[
f̃X(θ)− g̃(θ, λ)

]
− lnC(β)

}
dν(X)

≤ max
β∈[a,b]

sup
X∈Xn

exp
{
−βF̃X(λ)− lnC(β)− ln q̃λ(X)

}∫
q̃λ(X)dν(X)

≤ Ca,b
∫
W

dβ

∫
max
θ∈Ω

exp
{
−βf̃X(θ)− βg̃(θ, λ)− lnC(β)

}
dν(X)

≤ Ca,b
∫
W

dβ
eβc0

R(βH0;Rp)

√
detβ

(
H0 + diag λ

)
detβ diag λ

=
Ca,b e

(b+a/2)c0

R(a2H0;Rp)

√
det
(
H0 + diag λ

)
det diag λ

,

where Ca,b
def
= ecβ

Rβ(hβ ;[−a/2,a/2])

√
hβ

2π .
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4.2.4 Gap between LNML and uLNML

In this section, we evaluate the tightness of uLNML. To this end, we now bound LNML
from below. The lower bound is characterized by the strong convexity of fX and g(·, λ).

Definition 3（H-strong convexity） LetH ∈ Sp++ ⊂ Rp×p be a symmetric positive definite
matrix. A function f(θ) is H-strongly convex if there exists a vector-valued function
ξ : Rp → Rp such that

f(ψ)− f(θ) ≥ ⟨ξ(θ), ψ − θ⟩+ 1

2
∥ψ − θ∥2H , ∀ψ ∈ Rp,∀θ ∈ Rp.

Note that H-strong convexity can be seen as the matrix-valued version of the standard
strong convexity. Now, assume the strong convexity of fX and gj :

Assumption 3（Strongly convex objective） Both of the following equivalent conditions
are satisfied:

i) fX is H0-strongly convex for all X ∈ Xn, and gj is Hj-strongly convex (j =
1, . . . , d).

ii) fX(·)+g(·, λ) is H(λ)-strongly convex for all X ∈ Xn and all λ ≥ 0, where H(λ)
def
=

H0 +
∑d
j=1 λjHj .

Then, we have the following lower bound on Z(λ).

Theorem 4（Lower bound on Z(λ)） Suppose that Assumption 1 and 3 hold. Let

T (V )
def
= infψ∈V

∫
D(0)

exp {−fX(ψ)} dν(X). Then, for all V ⊂ Ω0, we have

Z(λ) ≥ T (V )
detH(λ)

1
2

√
2π

p

∫
V

e−g(θ,λ)dθ. (4.8)

Proof Let qλ(X)
def
=
∫
V
exp {−fX(θ)− g(θ, λ)} dθ. First, from the positivity of qλ, we

have

Z(λ) =

∫
Xn

max
θ∈Ω

exp {−fX(θ)− g(θ, λ)} dν(X)

≥
∫
D(λ)

max
θ∈Ωo

exp {−fX(θ)− g(θ, λ)} dν(X)

≥ inf
X∈D(λ)

max
θ∈Ωo

exp {−fX(θ)− g(θ, λ)}
qλ(X)︸ ︷︷ ︸
A

∫
D(λ)

qλ(X)dν(X)︸ ︷︷ ︸
B

.

Then, we bound from below A and B in the right-hand side, respectively. Since we
assumed that fX(θ) is a logarithmic loss, the second factor is simply evaluated using
Fubini’s theorem:

B ≥
∫∫

V×D(0)

exp {−fX(θ)− g(θ, λ)} dθdν(X)

≥ T (V )

∫
V

e−g(θ,λ)dθ,

where the first inequality follows from Assumption 1.
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On the other hand, by Lemma 18 in Section A.2, we have

A−1 = qλ(X) min
θ∈Ωo

exp {fX(θ) + g(θ)}

=

∫
Ω

exp

{
min
θ∈Ωo

fX(θ) + g(θ, λ)− fX(ψ)− g(ψ, λ)
}
dψ

≤
∫
Ω

exp

{
−1

2
∥z∥2H(λ)

}
dz

≤
√
2π

p

detH(λ)
1
2

.

This concludes the proof.

The lower bound in Theorem 4 has a similar form to the upper bound Z̄(λ). Therefore,
combining Theorem 4 with Theorem 3, we have a uniform gap bound of uLNML.

Theorem 5（Uniform gap bound of uLNML） Suppose that the assumptions made in The-
orem 3 and 4 is satisfied. Suppose that the penalty function is quadratic, i.e., Hj = Hj

and cj = 0 for all j = 1, . . . , d. Then, the gap between LNML and uLNML is uniformly
bounded for all X ∈ Xn and λ ∈ A as

L̄(X|λ)− L(X|λ) ≤ c0 +
1

2
ln

detH0

detH0

− lnR(H0;U)− lnT (Ω + U), (4.9)

where R(H0;U) and T (V ) are defined as in the preceding theorems.

Proof From Theorem 3 and Theorem 4, we have

L̄(X|λ)− L(X|λ) ≤ ln Z̄(λ)− lnZ(λ)

≤ c(λ) + 1

2
ln

detH(λ)

detH(λ)
− lnR(H0;U)− lnT (V )

+ ln

∫
Ω+U

e−g(θ,λ)dθ∫
V
e−g(θ,λ)dθ

,

where c(λ) = c0 from the assumption. Taking V = Ω+ U to cancel out the last term, we
have

L̄(X|λ)− L(X|λ) ≤ c0 +
1

2
ln

detH(λ)

detH(λ)
− lnR(H0;U)− lnT (Ω + U). (4.10)

Let κ(Q)
def
= ln det(H0+Q)

det(H0+Q) for Q ∈ Sp+, and let Q = H
− 1

2

0 QH
− 1

2

0 and Q = H
− 1

2
0 QH

− 1
2

0 .

Then, we have

∂

∂t
κ(tQ) = tr

(
(H0 + tQ)−1Q− (H0 + tQ)−1Q

)
= tr

(
(I + tQ)−1Q− (I + tQ)−1Q

)
≤ 0,

where the last inequality follows from Q ⪯ Q. This implies that

ln
detH(λ)

detH(λ)
= κ

 d∑
j=1

Hj

 ≤ κ(O) = ln
detH0

detH0

,
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which, combined with (4.10), completes the proof.

The theorem implies that uLNML is a constant-gap upper bound of the LNML code
length if fX is strongly convex. Moreover, the gap bound (4.9) can be utilized for choosing
a good neighbor U . Suppose that there is no effective boundary in the parameter space
Ω = Ωo. Then, we can simplify the gap bound, and the optimal neighbor U is explicitly
given.

Corollary 4（Uniform gap bound for no-boundary case） Suppose that the assumptions
made in Theorem 5 are satisfied. Then, if Ω = Ωo, we have a uniform gap bound

L̄(X|λ)− L(X|λ) ≤ c0 +
1

2
ln

detH0

detH0

− lnR(H0;U) (4.11)

for all X ∈ Xn and all λ ∈ A. This bound is minimized with the largest U , i.e., U =∩
θ∈Ω [Ω0 − {θ}].

Proof According to Theorem 5, it suffices to show that T (V ) ≡ 1 for all V ⊂ Ω0. From

the existence of the RERM estimate in Ω, we have θ̂(X,λ) ∈ Ω = Ωo for all X ∈ Xn
and all λ ∈ A. Therefore, we have D(λ) = Xn = D⋆, and hence

∫
D⋆
e−fX(ψ)dν(X) ≡ 1

for all ψ ∈ Ω0, which is followed by T (V ) ≡ 1. The second argument follows from the
monotonicity of R(H; ·).

As a remark, if we assume in addition that fX is a smooth i.i.d. loss, i.e., fX =
∑n
i=1 fxi

and c0 = 0, the gap bound is also uniformly bounded with respect to the sample size n.
This is derived from the fact that the right-hand side of (4.11) turns out to be

ln
detnH

detnH
− lnE

z∼Nm[0, 1nH
−1
0 ]

[
1U(z)e−r(∥z∥

2)
]
n→∞−→ ln

detH

detH
<∞.

4.2.5 Discussion

In previous sections, we derived an upper bound of the normalizing constant Z(λ) and
defined an easy-to-compute alternative for the LNML code length called uLNML. We
also presented uniform gap bounds of uLNML for quadratic penalty functions. Note
that uLNML characterizes Z(λ) with upper smoothness of the loss and penalty functions.
This is both advantageous and disadvantageous. The upper smoothness can often be
easily computed even for complex models like deep neural networks. This means that
uLNML is applicable to a wide range of loss functions. On the other hand, if the Hessian
of the loss function drastically varies across Ω, the gap can be considerably large. In this
case, one may tighten the gap by reparametrizing Ω to make the Hessian as uniform as
possible.

The derivation of uLNML relies on the upper smoothness of the loss and penalty func-
tions. In particular, our current analysis on the uniform gap guarantee given by Theo-
rem 5 holds only if the penalty function is smooth. This is violated if one employs the
ℓ1-penalties.

We note that there exists an approximation of LNML called Rissanen’s asymptotic
expansion (RAE), which was originally given by Rissanen (1996) for a special case and
then generalized by Grünwald (2007). RAE approximates LNML except for the o(1) term
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with respect to n:

L(X|λ) = min
θ∈Ω

fX(θ) + g(θ, λ) +
p

2
ln

n

2π
+ ln

∫
Ω

√
det I(ψ)e−g(ψ,λ)dψ + o(1),

where I(ψ)
def
=
∫ [
∇fX(θ)∇fX(θ)⊤

]
e−fX(θ)dν(X) denotes the Fisher information matrix.

Differences between RAE and uLNML are seen from two perspectives: their approxima-
tion errors and tractability.

As for the approximation errors, one of the largest differences is in their boundedness.
RAE’s o(1) term is not necessarily uniformly bounded with respect to λ, and actually it
can be unboundedly large for every fixed n as ∥λ∥ → ∞ in the case of, for example, the
Tikhonov regularization. This is in contrast to uLNML, in that the approximation gap is
uniformly bounded with respect to λ according to Corollary 5, but it does not necessarily
tend to zero as n → ∞. This difference can be significant, especially in the scenario of
penalty selection, where one compares different λ while n is fixed.

In terms of tractability, uLNML is usually easier to compute than RAE. One of the
major obstacles when one computes RAE is that the integrand

√
det I(ψ)e−g(ψ,λ) depends

on both fX and λ. Unless the analytic value of the integral is known, which is unlikely
especially for complex models, one may employ the Monte Carlo approximation to evaluate
it, which is typically computationally demanding for high-dimensional models. On the
other hand, in uLNML, the unwieldy integral is replaced with the upper-smoothness
term and the integral of the penalty. The upper smoothness can be computed with
differentiation, which is often easier than integration, and the penalty integral does not
depend on fX anymore. Therefore, uLNML is often applicable to a wider class of models
than RAE is. See Section 4.3.2 for an example.

4.3 Examples of uLNML
In the previous section, we have shown that the normalizing factor of LNML is bounded if
the upper smoothness of fX(θ) is bounded. The upper smoothness can be easily charac-
terized for a wide range of loss functions. Since we cannot cover all of it here, we present
a few examples that will be used in the experiments below.

4.3.1 Linear Regression

Let X ∈ Rn×m be a fixed design matrix and let y ∈ Rn = Xn represent the corresponding
response variables. Then, we want to find β ∈ Rm such that y ≈ Xβ. We assume that
the ‘useful’ predictors may be sparse, and hence most of the coefficients of the best β for
generalization may be close to zero. As such, we are motivated to solve the following ridge
regression problem:

min
σ2∈[a,b], β∈Rd

− ln p(y|X,β, σ2) +
1

2σ2

p∑
j=1

λjβ
2
j , (4.12)

where − ln p(y|X,β, σ2) = 1
2σ2 ∥y −Xβ∥2 + n

2 ln 2πσ2. According to Corollary 3, the
uLNML of the ridge regression is given by

L̄(X|λ) = min
σ2∈[a,b], β∈Rd

− ln p(y|X,β, σ2) +
1

2σ2

p∑
j=1

λjβ
2
j

+
1

2
ln

det(C + diag λ)

det diag λ
+ const.,
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where C
def
= X⊤X. Note that the gap of the uLNML here is uniformly bounded, because

the LNML of the variable temperature model (4.12) is bounded from below with that of
fixed-variance models, which coincides with the above uLNML except with a constant.

4.3.2 Conditional Dependence Estimation

Let X = (x1, x2, . . . , xn)
⊤ ∈ Rn×m = Xn be a sequence of n observations independently

drawn from the m-dimensional Gaussian distribution Nm[0,Σ]. We assume that the
conditional dependence among the m variables in X is scarce, which means that most of
the coefficients of precision Θ = Σ−1 ∈ Rm×m are (close to) zero. Thus, to estimate the
precision matrix Θ, we penalize the nonzero coefficients and consider the following RERM

min
Θ∈Ω
− ln p(X|Θ) +

1

2

∑
i ̸=j

λijΘ
2
ij , (4.13)

where − ln p(X|Θ) = 1
2

{
trX⊤XΘ− n ln det 2πΘ

}
denotes the probability density func-

tion of the Gaussian distribution. Here, we take Ω =
{
Θ ∈ Sm++

∣∣ Θ ⪰ R−1Im
}
such that

the Hessian is appropriately bounded: ∇2
ΘfX = Θ−1 ⊗ Θ−1 ⪯ H0 = R2

2 Im×m. As for

the choice of R, we can use any upper-bound estimates of the largest eigenvalue of Θ−1.
Specifically, we employed R =

∥∥X⊤X/n
∥∥
∞ in the experiments. One may include the

code length of the hyperparameter itself, L(R), to make the code length complete. How-
ever, when we use any universal code length, including Rissanen (1983), the effect of the
additional code length is at most O(lnR). Moreover, we can utilize the renormalization
technique (Rissanen, 2000) to further reduce the dependency to O(ln lnR). Hence we
omit it for simplicity.

As it is an instance of the Tikhonov regularization, from Corollary 1 withH0 = n
2R

2Im2 ,
the uLNML for the graphical model is given by

L̄(X|λ) = min
Θ∈Ω
− ln p(X|Θ) +

1

2

∑
i ̸=j

[
λijΘ

2
ij + ln

(
1 +

nR2

2λij

)]
.

4.4 Minimization of uLNML
Given data X ∈ Xn, we want to minimize uLNML (4.5) with respect to λ ∈ A as it
bounds the LNML code length, which is a measure of the goodness of the penalty with
respect to the MDL principle (Rissanen, 1978; Grünwald, 2007). Furthermore, it bounds

the risk of the RERM estimate EY fY (θ̂(X,λ)) Grünwald and Mehta (2017). The problem
is that grid-search-like algorithms are inefficient since the dimensionality of the domain
A ⊂ Rd is high.

In order to solve this problem, we derive a CCCP for uLNML minimization. The algo-
rithm is justified with the convergence properties that result from the CCCP framework.
Then, we also give concrete examples of the computation required in the CCCP for typical
RERMs.

4.4.1 CCCP for uLNML Minimization

In the forthcoming discussion, we assume that A is closed, bounded, and convex for
computational convenience. We also assume that the upper bound of the normalizing
factor ln Z̄(λ) is convex with respect to λ. This is not a restrictive assumption as the true
normalizing term lnZ(λ) = ln

∫
exp {maxθ∈Ω−fX(θ)− g(θ, λ)} dν(X) is always convex if
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the penalty is linear, as given in (4.2). In particular, it is actually convex for the Tikhonov
regularization and LASSO, as in Corollary 1 and Corollary 2, respectively.

Recall that the objective function,uLNML, is written as

L̄(X|λ) = min
θ∈Ω

fX(θ) + g(θ, λ) + ln Z̄(λ).

Therefore, the goal is to find a λ⋆ ∈ A that attains

L̄(X|λ⋆) = min
θ∈Ω,λ∈A

hX(θ, λ),

where hX(θ, λ)
def
= fX(θ) + g(θ, λ) + ln Z̄(λ). Note that the existence of λ⋆ follows from

the continuity of the objective function L̄(X|λ) and the closed nature of the domain A.
The minimization problem can be solved by alternate minimization of hX with respect

to θ and λ as in Algorithm 2, which we call MDL regularization selection (MDL-RS). In
general, minimization with respect to θ is the original RERM (4.1) itself. Thus, it can
often be solved with existing software or libraries associated with the RERM problem.
On the other hand, for minimization with respect to λ, we can employ standard convex
optimization techniques since hX(θ, ·) is convex as both g(θ, ·) and ln Z̄(·) are convex.
Specifically, for some types of penalty functions, we can derive closed-form formulae of
the update of λ. If one employs the Tikhonov regularization and H0 is diagonal, then

∂

∂λj

[
g(θt, λ) + Z̄(λ)

]
= 0⇔ λ =

H0,jj

2

[√
1 +

4

θ2t,jH0,jj

− 1

] (
= λ̃t,j

)
.

Therefore, if A = [a1, b1]×· · ·× [ad, bd], the convex part is completed by λt,j = Π[aj ,bj ]λ̃t,j ,
where Π[aj ,bj ] is the projection of the j-th coordinate. Similarly, if one employs LASSO,

λ̃t,j =
3

√√√√
α+

√
α2 +

(
H0,jj

3

)3

+
3

√√√√
α−

√
α2 +

(
H0,jj

3

)3

,

where α = H0,jj/ |θt,j |. The projection procedure is the same as that for Tikhonov
regularization.

Algorithm 2 MDL regularization selection (MDL-RS)

Input: X ∈ Xn, λ0 ∈ A
1: t← 0
2: repeat
3: t← t+ 1
4: θt ← argminθ∈Ω fX(θ) + g(θ, λt−1)
5: λt ← argminλ∈A g(θt, λ) + ln Z̄(λ)
6: until stopping condition is met
7: return θt, λt

The MDL-RS algorithm can be regarded as a special case of CCCP (Yuille and Ran-
garajan, 2003). First, the RERM objective is concave as it is the minimum of linear
functions FX(λ) = minθ∈Ω fX(θ) + g(θ, λ). Hence, uLNML is decomposed into the sum
of concave and convex functions

L̄(X|λ) = FX(λ) + ln Z̄(λ).
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Secondly, F̃
(t)
X (λ)

def
= fX(θt) + g(θt, λ) is a linear majorization function of FX(λ) at λ =

λt−1, i.e., F̃
(t)
X (λ) ≥ FX(λ) for all λ ∈ A and F̃

(t)
X (λt−1) = FX(λt−1). Therefore, as

we can write λt = argminλ∈A F̃
(t)
X (λ) + ln Z̄(λ), MDL-RS is a concave-convex procedure

for minimizing uLNML. The CCCP interpretation of MDL-RS immediately implies the
following convergence arguments. Please refer to Yuille and Rangarajan (2003) for the
proofs.

Theorem 6（Monotonicity of MDL-RS） Let {λt}∞t=0 be the sequence of solutions pro-
duced by Algorithm 2. Then, we have L̄(X|λt+1) ≤ L̄(X|λt) for all t ≥ 0.

Theorem 7（Local convergence of MDL-RS） Algorithm 2 converges to one of the station-
ary points of uLNML L̄(X|λ).

Even if the concave part, i.e., minimization with respect to θ, cannot be solved exactly,
MDL-RS still monotonically decreases uLNML as long as the concave part monotoni-
cally decreases the objective value fX(θt) + g(θt, λt−1) ≤ fX(θt−1) + g(θt−1, λt−1) for all
t ≥ 1. This can be confirmed by seeing that L̄(X|λt) = hX(θt+1, λt) ≤ hX(θt, λt) ≤
hX(θt, λt−1) = L̄(X|λt−1), where hX(θ, λ) = fX(θ) + g(θ, λ). Moreover, if the subroutine
of the concave part is iterative, early stopping may even be beneficial in terms of the
computational cost.

4.4.2 Discussion

We previously introduced the CCCP algorithm for minimizing uLNML, namely MDL-RS.
The monotonicity and local convergence property follow from the CCCP framework. One
of the most prominent features of the MDL-RS algorithm is that the concave part is left
completely black-boxed. Thus, it can be easily applied to the existing RERM.

There exists another approach for minimization of LNMLs in which a stochastic min-
imization algorithm is proposed (Miyaguchi et al., 2017). Instead of approximating the
value of LNML, this directly approximates the gradient of LNML with respect to λ in a
stochastic manner. However, since the algorithm relies on the stochastic gradient, there is
no trivial way of judging if it converges or not. On the other hand, MDL-RS can exploit
the information of the exact gradient of uLNML to stop the iteration.

Approximating LNML with uLNML benefits us more because can combine MDL-RS
with grid search. Since MDL-RS could be trapped at fake minima, i.e., local minima
and saddle points, starting from multiple initial points may be helpful to avoid poor fake
minima and help it achieve lower uLNML.

4.5 Related Work
In the literature of model selection based on the MDL principle, there exist a number of
methods that are concerned with discrete sets of candidate models (example.g., see Roos
et al. (2009) and Hirai and Yamanishi (2011)). Note that in the problem of regularization
selection, the candidate models are infinite in general and hence typical methods of the
MDL model selection cannot be straightforwardly applied. Nevertheless, some of the
RERM problems are addressed utilizing such methods. For example, the ℓ0-norm RERM
can be cast into the discrete model selection over all the subsets of features (e.g., see
Dhillon et al. (2011) and Miyaguchi et al. (2017)). On the other hand, our method is
applicable to arbitrary penalty functions as long as they are reasonably upper-smooth,
although this is not the case with the ℓ0-penalty. Therefore, our method can be regarded
as a complement of the conventional discrete model selection.
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As compared to existing methods of regularization selection, MDL-RS is distinguished
by its efficiency in searching for penalties and its ease of systematic computation. Con-
ventional penalty selection methods for large-dimensional models are roughly classified
into three categories. Below, we briefly describe each one emphasizing its relationship
and difference to the MDL-RS algorithm.

4.5.1 Grid Search with Discrete Model Selection Criteria

The first category is grid search with a discrete model selection criterion such as the cross
validation score, Akaike’s information criterion (AIC) (Akaike, 1974), or Bayesian infor-
mation criterion (BIC) (Schwarz et al., 1978; Chen and Chen, 2008). In this method, we
choose a model selection criterion and a candidate set of the hyperparameter {λ(k)}Kk=1 ∈
A ⊂ Rd in advance. Then, we calculate the RERM estimates for each candidate θ(k) =

θ̂(X,λ(k)). Finally, we select the best estimate according to the pre-determined criterion.
This method is simple and universally applicable for any model selection criteria. How-
ever, the time complexity grows linearly as the number of candidates increases, and an
appropriate configuration of the candidate set can vary corresponding to the data. This
is specifically problematic for high dimensional design spaces, i.e., d≫ 1, where the com-
binatorial number of possible configurations is much larger than the feasible number of
candidates.

On the other hand, the computational complexity of MDL-RS often scales better.
Though it depends on the time complexity of the subroutine for the original RERM
problem, the MDL-RS algorithm is not explicitly affected by the curse of dimensionality.
However, it can be used for model selection in combination with the grid search. Al-
though MDL-RS provides a more efficient approach to seeking a good λ in a (possibly)
high-dimensional space as compared to simple grid search, it is useful to combine the two.
Since uLNML is nonconvex in general, MDL-RS may converge to a fake minimum, such
as local minima and saddle points, depending on the initial point λ0. In this case, starting
MDL-RS with multiple initial points λ0 = λ(k) may improve the objective value.

4.5.2 Evidence Maximization

The second category is evidence maximization. In this methodology, one interprets the
RERM as a Bayesian learning problem. The approach involves converting loss functions
and penalty functions into conditional probability density functions p(X|θ) = e−fX(θ)

and prior density functions p(θ;λ) = e−g(θ,λ)(
∫
e−g(ψ,λ)dψ)−1, respectively. Then, the

evidence is defined as p(X;λ) =
∫
p(X|θ)p(θ;λ)dθ and it is maximized with respect to λ.

A successful example of evidence maximization is the relevance vector machine (RVM)
proposed by Tipping (2001). It is a Bayesian interpretation of ridge regression with
different penalty weights λj on different coefficients, as described in Corollary 1. This
results in so-called automatic relevance determination (ARD) and makes the approach
applicable to redundant models.

The maximization of the evidence can also be thought of as an instance of the MDL
principle, as it is equivalent to minimizing − ln p(X;λ) with respect to λ, which is a code-
length function of X. Moreover, LNML and the evidence each have an intractable integral
in them. A notable difference between the two is the computational cost to optimize them.
Though LNML contains an intractable integral in its normalizing term lnZ(λ), it can be
systematically approximated by uLNML, and uLNML is efficiently minimized via CCCP.
On the other hand, in the case of evidence, we do not know of any approximation that is
as easy to optimize and as systematic as uLNML. Although a number of approximations
have been developed for evidence, such as the Laplace approximation, variational Bayesian
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inference (VB), and Markov chain Monte Carlo sampling (MCMC), these tend to be
combined with grid search (e.g., Yuan and Lin (2005)), except for some special cases such
as the RVM and Gaussian processes (Rasmussen and Williams, 2006).

4.5.3 Error Bound Minimization

The last category is error bound minimization. The generalization capability of RERM
has been extensively studied in bounding generalization errors, specifically on the basis
of the PAC learning theory (Valiant, 1984) and PAC-Bayes theory (Shawe-Taylor and
Williamson, 1997; McAllester, 1999). There also exist a considerable number of studies
that relate error bounds with the MDL principle, including (but not limited to) Barron and
Cover (1991), Yamanishi (1992), and Chatterjee and Barron (2014). One might determine
the hyperparamter λ by minimizing the error bound. However, being used to prove the
learnability of new models, such error bounds are often not used in practice more than the
cross validation score. MDL-RS can be regarded as an instance of the minimization of an
error bound. Actually, uLNML bounds the LNML code length, which was recently shown
to be bounding the generalization error of the RERM estimate under some conditions
including boundedness of the loss function and fidelity of hypothesis classes (Grünwald
and Mehta, 2017).

4.6 Experiments
In this section, we empirically investigate the performance of the MDL-RS algorithm.*2

We compare MDL-RS with conventional methods, applying the two models introduced in
Section 4.3 on both synthetic and benchmark datasets.

We employ two models, namely linear regression with Gaussian noise and conditional
dependency estimation. For each model, a comparison is conducted from two perspec-
tives: First, as a preliminary experiment, we check if the MDL-RS algorithm can actually
minimize uLNML. Secondly, we evaluate the generalization performance of the MDL-RS
algorithm. In particular, because we expect that the proposed method performs better
than the other methods if the model is high-dimensional, we focus on the dependency of
the performance on the dimensionality.

4.6.1 Linear Regression

Setting. For the linear regression, we compared MDL-RS with ARD regression with
RVM Tipping (2001) and deterministic and random grid search methods for the cross
validation score. As for the deterministic cross validation, we employ ridge regression
and LASSO with penalty weights of 20 points spread logarithmically evenly over λj =
λ ∈ [10−4, 100] (j = 1, . . . , p). As for the random cross validation, 100 random points
are drawn from the log-uniform distribution over [10−4, 100]p. The performance metric
is test logarithmic loss (log-loss) − ln p(y|X,β, σ2) (see Section 4.3.1) on 5-fold cross val-
idation. Figure 4.2 shows the results of the comparison with six datasets, namely three
synthetic datasets and three real-world dataset. In the synthetic datasets, the number of
design variables m varies from 5 to 100, and the true coefficients β are randomly chosen
with some set to zero. The real-world examples are taken from the Diabetes dataset*3,

*2 The source codes and datasets of the following experiments are available at
https://github.com/koheimiya/pymdlrs.

*3 http://www4.stat.ncsu.edu/ boos/var.select/diabetes.html
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ResidentialBuilding dataset Rafiei and Adeli (2015)*4, and YearPredictionMSD dataset*5.
We note that there is huge variety in the dimensionality of parameter spaces: m = 14 for
Diabetes, m = 90 for YearPredictionMSD, and m = 103 for ResidentialBuilding dataset.

Result. Figure 4.1 shows the results of the preliminary experiments with linear regression.
It is shown there that the MDL-RS algorithm successfully minimizes uLNML compared
to the other non-MDL algorithms.

As for the generalization errors, from the overall results, we can see that MDL-RS
and RVM are comparable to one another and outperform the other three. Figure 4.2a,
Figure 4.2b, and Figure 4.2c suggest that the proposed method performs well in all the
synthetic experiments. Figure 4.2d, Figure 4.2e, and Figure 4.2f show the results of the
real-world experiments. One can observe the same tendency as in the synthetic ones;
Both MDL-RS and RVM outperform the rest in terms of generalization error (log-loss)
and the difference is bigger when the sample size is smaller. However, note that in the
YearPredictionMSD dataset, RVM converges to a poor local minima and hence fails to
lower the log-loss well, even with large training samples. It is also noteworthy that the
performance of the random grid-search method becomes poor and unstable for the high-
dimensional cases, which is due to the curse of dimensionality of the design space. These
results emphasize the efficiency of MDL-RS in optimizing uLNML with high-dimensional
models.

4.6.2 Conditional Dependence Estimation

Setting. For the estimation of conditional dependencies, we compared MDL-RS with the
grid search of LASSO Friedman et al. (2008) with AIC, (extended) BIC, and the cross
validation score. We generated data X ∈ Rn×m fromm-dimensional double-ring Gaussian
graphical models (m = 10, 20, 50, 100) in which each variable j ∈ [1,m] is conditionally
dependent to its 2-neighbors j − 2, j − 1, j + 1, and j + 2 (mod m) with a coefficient of
0.25. Note that MDL-RS can be applied to the graphical model just by computing the
upper smoothness, while RVM cannot be applied straightforwardly.

Result. Figure 4.3 shows the results of the preliminary experiments for conditional de-
pendency estimation. It is shown that the MDL-RS algorithm is the best for minimizing
uLNML as we expected, especially when the dimensionality d is relatively large compared
to the sample size n. We note that these results are a natural consequence of our ex-
perimental design, as the other methods are not designed for minimizing uLNML. We
have simply confirmed that the MDL-RS algorithm works well in accordance with our
intention.

Figure 4.4 shows the results of the experiment on the generalization errors. It is seen
that all the estimators converge at the same rate of O(n−1), whereas MDL-RS gives the
least Kullback–Leibler divergence by far, specifically with large m. In particular, when
m = 100, the proposed estimator outperforms the others by more than a factor of five.
This supports our claim that penalty selection in high-dimensional design spaces has a
considerable effect on generalization capability when the model is redundant.

4.6.3 Discussion

Both results indicate that MDL-RS performs well, specifically when the model is high-
dimensional, as expected. Note that the generalization error LNML and uLNML bound is

*4 https://archive.ics.uci.edu/ml/datasets/Residential+Building+Data+Set
*5 https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd



48 Chapter 4 High-dimensional Penalty Selection via Analytic Approximation of Minimax Regret

101 2 × 101 3 × 101 4 × 101

Training samples

2

3

4

5

6

7

Co
de

 L
en

gt
h ridge+CV

lasso+CV
RandomSearch
RVM
MDL-RS

(a) m = 5

1023 × 101 4 × 101 6 × 101

Training samples

2

3

4

5

6

7

8

9

Co
de

 L
en

gt
h ridge+CV

lasso+CV
RandomSearch
RVM
MDL-RS

(b) m = 20

2 × 102 3 × 102 4 × 102 6 × 102

Training samples

2

4

6

8

10

Co
de

 L
en

gt
h ridge+CV

lasso+CV
RandomSearch
RVM
MDL-RS

(c) m = 100

102 2 × 102 3 × 102

Training samples

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Co
de

 L
en

gt
h ridge+CV

lasso+CV
RandomSearch
RVM
MDL-RS

(d) Diabetes

2 × 103 3 × 103 4 × 103 6 × 103

Training samples

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

Co
de

 L
en

gt
h

ridge+CV
lasso+CV
RandomSearch
RVM
MDL-RS

(e) YearPredictionMSD

1026 × 101 2 × 102 3 × 102

Training samples

5

10

15

20

25

30

35

Co
de

 L
en

gt
h

ridge+CV
lasso+CV
RandomSearch
RVM
MDL-RS

(f) ResidentialBuilding

Fig. 4.1: Convergence of normalized uLNML in linear regression
The horizontal axes show the number of training samples in logarithmic scale, while the
vertical axes show uLNML per sample. Each shaded area shows ±one-standard deviation.

the expected logarithmic loss EX,Y fY (θ̂(X,λ)), and the performance metric we employed
in the experiments is (an unbiased estimator of) the logarithmic loss itself. Hence, if the
metric is changed, the result could be different.

4.7 Concluding Remarks
In this chapter, we proposed a new method for penalty selection on the basis of the MDL
principle. Our main contribution was the introduction of uLNML, which is a tight upper
bound of LNML for smooth RERM problems. This can be analytically computed, except
for a constant, given the (upper) smoothness of the loss and penalty functions. We also
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Fig. 4.2: Convergence of log-loss in linear regression
The horizontal axes show the number of training samples in logarithmic scale, while the
vertical axes show the test log-loss. Each shaded area shows ±one-standard deviation.

presented the MDL-RS algorithm, which is a minimization algorithm of uLNML with
convergence guarantees. Experimental results indicated that MDL-RS’s generalization
capability was comparable to that of conventional methods. In the high-dimensional
setting we are interested in, it even outperformed conventional methods.

In related future work, further applications to various models such as latent vari-
able models and deep learning models must be analyzed. As the above models are not
(strongly) convex, the extension of the lower bound of LNML to the non-convex case would
also be an interesting topic of future study. While we bounded LNML with the language
of Euclidean spaces, the only essential requirement of our analysis is upper smoothness of
loss functions defined over parameter spaces. Therefore, we believe that it is possible to
generalize uLNML to Hilbert spaces to deal with infinite-dimensional models.
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Fig. 4.3: Convergence of normalized uLNML for graphical models
The horizontal axes show the number of training samples in logarithmic scale, while the
vertical axes show the uLNML per sample associated with penalty weight λ. Each shaded
area shows ±one-standard deviation.
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Fig. 4.4: Convergence of Kullback–Leibler divergence for graphical models
The horizontal axes show the number of training samples in logarithmic scale, while the
vertical axes show the divergence of estimates relative to true distributions. Each shaded
area shows ±one-standard deviation.
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Chapter 5

Minimax Regret for Smooth

Logarithmic Losses over

High-Dimensional ℓ1-Balls

We develop a new theoretical framework called envelope complexity to analyze the min-
imax regret with logarithmic loss functions and derive a Bayesian predictor that adap-
tively achieves 2-approximate minimax regret over high-dimensional ℓ1-balls. The prior
is newly derived for achieving the minimax regret and is called the spike-and-tails (ST)
prior, named after its look. The resulting regret bound is so simple that it is completely
determined with the smoothness of the loss function and the radius of the balls except
with logarithmic factors, and it has a generalized form of existing regret/risk bounds. In
the preliminary experiment, we confirm that the ST prior outperforms the conventional
minimax-regret prior under non-high-dimensional asymptotics*1.

5.1 Motivation
As a notion of complexity of predictive models (sets of predictors), minimax regret has
been considered in the literature of online learning (Cesa-Bianchi and Lugosi, 2006) and
the MDL principle (Rissanen, 1978; Grünwald, 2007). The minimax regret of a model H
is given by

REG⋆(H) = inf
ĥ∈Ĥ

sup
X∈X

{
fX(ĥ)− inf

h∈H
fX(h)

}
, (5.1)

where fX(h) denotes the loss of the prediction over data X made by h, Ĥ denotes the
feasible predictions, and X is the space of data. Here, the data may consist of a sequence of
datum X = Xn = (X1, . . . , Xn), and the loss maybe additive (fX(h) =

∑n
i=1 fXi

(h)), but
we keep them implicit for generality. The minimax regret is a general complexity measure
in the sense that it is defined without any assumptions on the generation process of X.
For instance, one can bound statistical risks with REG⋆(H) regardless of the distribution
of data (Littlestone, 1989; Cesa-Bianchi et al., 2004; Cesa-Bianchi and Gentile, 2008).

Therefore, bounding the minimax regret and constructing the corresponding predictor ĥ
is important to make a good and robust prediction.

We consider that H is parametrized by a real-valued vector θ ∈ Rd: H =
{hθ | γ(θ) ≤ B, θ ∈ Rd}, where γ(θ) denotes a radius function such as norms of θ.

*1 The contents of this chapter was published in Miyaguchi and Yamanishi (2018a).
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Thus, we may consider the luckiness minimax regret (Grünwald, 2007)

LREG⋆(γ) = inf
ĥ∈Ĥ

sup
X∈X

{
fX(ĥ)− inf

θ∈Rd
[fX(θ) + γ(θ)]

}
(5.2)

instead of the original minimax regret. Through abuse of notation, we say fX(θ) = fX(hθ).
There are at least three reasons for adopting this formulation. First, as we do not assume
the underlying distribution of X, it may be plausible to pose a soft restriction as in (5.2)
rather than the hard restriction in (5.1). Secondly, it is straightforwardly shown that the
luckiness minimax regret bounds above the minimax regret. Thus, it is often sufficient
to bound LREG⋆(γ) for bounding REG⋆(H). Finally, the luckiness minimax regret is
including the original minimax regret as a special case such that γ(θ) = 0 if θ ∈ H, and
γ(θ) = ∞ otherwise. Therefore, we may avoid possible computational difficulties of the
minimax regret by choosing the penalty γ carefully.

That being said, the closed-form expression of the exact (luckiness) minimax regret is
intractable except with few special cases (e.g., Shtarkov (1987); Koolen et al. (2014)).

However, if we focus on information-theoretic settings, i.e., the model H is a set of prob-
abilistic distributions, everything becomes explicit. Now, let predictors be sub-probability
distributions P (· | θ), and adopt the logarithmic loss function fX(θ) = − ln dP

dν (X|θ) with
respect to an appropriate base measure ν, such as counting or Lebesgue measures. Note
that a number of important practical problems, such as logistic regression and data com-
pression, can be handled with this framework. With the logarithmic loss, the closed form
of the luckiness minimax regret is given by Shtarkov (1987); Grünwald (2007) as

LREG⋆(γ) = ln

∫
e−m(fX+γ)ν(dX)

def
= S(γ), (5.3)

where m denotes the minimum operator given by m(f) = infθ∈Rd f(θ). We refer to the
left-hand-side value as the Shtarkov complexity. Moreover, when all the distributions in
H are i.i.d. regular distributions of n-sequences X = (X1, . . . , Xn), under some regularity
conditions, the celebrated asymptotic formula (Rissanen, 1996; Grünwald, 2007) is given
by

S(γ) =
d

2
ln

n

2π
+

∫ √
det I(θ)e−γ(θ)dθ + o(1), (5.4)

where I(θ) is the Fisher information matrix, and o(1) → 0 as n → ∞. More impor-
tantly, although the exact minimax-regret predictor achieving S(γ) is still intractable, the
asymptotic formula implies that it is asymptotically achieved with the Bayesian predictor
associated with the tilted Jeffreys prior π(dθ) ∝

√
det I(θ)e−γ(θ)dθ.

Here, our research questions are as follows: First, (Q1) How can we evaluate S(γ) in
modern high-dimensional contexts? In particular, the asymptotic formula (5.4) does not
withstand high-dimensional learning problems where d increases as n → ∞. The exact
evaluation of the Shtarkov complexity (5.3) on the other hand is often intractable due
to the minimum operator inside the integral. Secondly, (Q2) How can we achieve the
minimax regret with computationally feasible predictors? It is important to provide the
counterpart of the tilted Jeffreys prior in order to make actual predictions.

Regarding the above questions, our contributions are summarized as follows:

• We introduce envelope complexity, which is a non-asymptotic approximation of
the Shtarkov complexity S(γ) that allows us systematic computation of its upper
bounds and predictors achieving these bounds. In particular, we show that the
regret of the predictor is characterized with the smoothness.
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• We demonstrate its usefulness by giving a Bayesian predictor that adaptively
achieves the minimax regret within a factor of two over any high-dimensional
smooth models under ℓ1-constraints ∥θ∥1 ≤ B.

The remainder of this chapter is organized as follows: In Section 5.2, we introduce the
notion of Bayesian minimax regret as an approximation of the minimax regret within
the ‘feasible’ set of predictors. We then develop a complexity measure called envelope
complexity in Section 5.3 as a mathematical abstraction of the Bayesian minimax re-
gret. We also present a collection of techniques for bounding the envelope complexity
to the Shtarkov complexity. In Section 5.4, we utilize the envelope complexity to con-
struct a near-minimax Bayesian predictor under ℓ1-penalization, namely the ST prior.
We also show that it achieves the minimax rate over H = {θ ∈ Rd | ∥θ∥1 ≤ B} under
high-dimensional asymptotics. In Section 5.5, we demonstrate numerical experiments to
visualize our theoretical results. Discussion on these results in comparison to existing
results is given in Section 5.6. Finally, we conclude the chapter in Section 5.7.

5.2 Bayesian Minimax Regret
The minimax regret with logarithmic loss is given by the Shtarkov complexity S(γ). The
computation of the Shtarkov complexity S(γ) is often intractable if we consider practical
models such as deep neural networks. This is because the landscapes of loss functions
f ∈ F are as complex as the models are, so their minimums m(f) and the complexity,
which is an integral over the function of m(f), are not tractable. Moreover, computations
of the optimal predictor h⋆ are still often intractable, even if S(γ) are given. For instance,
the minimax-regret prediction for Bernoulli models over n results in a time cost of O(n2n).

Clearly there exist some special cases for which closed forms of ĥ are given. However, so
far, they are limited to exponential families.

One cause of this issue is that we seek for the best predictor ĥ among all the possible
predictors Ĥ, i.e., all probability distributions. This is too general, so it is potentially im-

possible to compute ĥ and REG⋆(γ). To avoid this difficulty, we narrow the set of feasible

predictors Ĥ to the Bayesian predictors. Let w ∈M+(Rd) be a positive measure over Rd,
which we may refer to as pre-prior, and let hw be the Bayesian predictor associated with
the prior π(dθ) ∝ e−γ(θ)w(dθ). Then, we have

fX(hw) = ln
w [e−γ ]

w [e−fX−γ ]

def
= fX(w), (5.5)

where w [·] denotes the integral operation with respect to w(dθ). Now, we consider the
Bayesian (luckiness) minimax regret given by

LREGBayes(γ)
def
= inf

w∈M+(Rd)
LREG(w|γ),

LREG(w|γ) def
= sup

X∈X
{fX(w)−m (fX + γ)} .

One advantage of considering the Bayesian minimax regret is that given a measure w,
one can compute hw analytically or numerically utilizing techniques developed in the lit-
erature of Bayesian inference. In particular, a number of sophisticated variants of Monte
Carlo Markov chain (MCMC) methods, such as stochastic gradient Langevin Dynam-
ics (Welling and Teh, 2011), have been developed for sampling θ from complex posteriors.

Note that there does exist a case where the Bayesian minimax regret strictly differs
from the minimax regret. The following example is taken from Barron et al. (2014).
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Example 1（Existence of gap） Consider a single observation of a ternary variable X ∈
{1, 2, 3} under a model consisting of three predictors with no penalty, h1, h2, h3, defined
as follows.

P (·|h1) =
(
1

2
,
1

2
, 0

)
, P (·|h2) =

(
0,

1

2
,
1

2

)
, P (·|h3) =

(
2

7
,
3

7
,
2

7

)
.

Let γ(j) = 0 for all j = 1, 2, 3 and γ(θ) = ∞ otherwise. The maximum likelihood values
are given by 1/2 for all X since the maximum of 1/2 is achieved by either h1 or h2, the

minimax distribution is the uniform distribution P (X|ĥ) = 1/3 (X = 1, 2, 3).
Now, assume that the minimax distribution is a Bayesian predictor with pre-prior w:

ĥ = hγ,w. Then, we have P (X|hγ,w) =
∑3
j=1 w [P (X|hj)] = 1/3 for all X. It is only

satisfied if w ∝ (−1,−1, 7/2), which cannot be a proper pre-prior. This yields a contra-
diction, and therefore by the continuity of the regret with respect to w, it implies that
REG⋆(γ) < LREGBayes(γ).

It implies that narrowing the range of predictors to Bayesian may worsen the achievable
worst-case regret. However, as we will show shortly, the gap between these minimax
regrets can be controlled with model γ.

5.3 Envelope Complexity

We have introduced the Bayesian minimax regret LREGBayes(γ). In this section, we
present a set representation of Bayesian minimax regret, namely the envelope complex-
ity C(γ,F). Then, we show that the Shtarkov complexity is bounded by the envelope
complexity, which can be easily bounded even if the models are complex.

5.3.1 Set Representation of Bayesian Minimax Regret

The envelope complexity is a simple mathematical abstraction of Bayesian minimax re-
gret and gives a fundamental basis for systematic computation of upper bounds on the
(Bayesian) minimax regret. Let F be a set of continuous functions f : Rd → R that is
not necessarily logarithmic. Define the Bayesian envelope of F as

E(F) def
=
{
w ∈M+(Rd)

∣∣∣ ∀f ∈ F , w [e−f+m(f)
]
≥ 1
}
,

and define the envelope complexity as

C(γ,F) def
= inf

w∈E(F)
lnw

[
e−γ

]
.

Then, the envelope complexity characterizes Bayesian minimax regret.

Theorem 8（Set representation） Let F = {fX + γ | X ∈ X}. Then, all measures in the
envelope w ∈ E(F) satisfy that

LREG(w|γ) ≤ lnw
[
e−γ

]
.

Moreover, we have

LREGBayes(γ) = C (γ,F) .
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Proof Let c(w) = inff∈F w[e
−f+m(f)]. Observe that

ln
w [e−γ ]

c(w)
= sup
f∈F

{
ln
w [e−γ ]

w [e−f ]
−m(f)

}
= sup
X∈X

{
ln

w [e−γ ]

w [e−fX−γ ]
−m(fX + γ)

}
(f = fX + γ)

= LREG(w|γ).
(∵ (5.5))

Then, since c(w) ≥ 1 for all w ∈ E(F), we have the inequality.
Note that w̄ = w/c(w) ∈ E(F) for any w ∈ M+(Rd), and w̄ [e−γ ] ≤ w [e−γ ] whenever

w ∈ E(F). Then, we have

C(γ,F) = inf
w∈M+(Rd)

ln
w [e−γ ]

c(w)

= inf
w∈M+(Rd)

LREG(w|γ) (the above equality)

= LREGBayes(γ),

yielding the equality. This completes the proof.

We have seen that the envelope complexity is equivalent to the Bayesian minimax regret.
Below, we present upper bounds of the Shtarkov complexity that the remainder of this
chapter is based.

Theorem 9（Bounds on Shtarkov complexity） Let F = {fX + γ | X ∈ X}, where fX is
logarithmic. Then, for all w ∈ E(F), we have

S(γ) ≤ C(γ,F) ≤ lnw
[
e−γ

]
.

Proof The first inequality follows from the fact that the envelope minimax regret is no
less than the minimax regret, as the range of infimum is shrunk from Ĥ to the Bayes class{
hw
}
. The second inequality follows from the definition of the envelope complexity. This

completes the proof.

5.3.2 Useful Lemmas for Evaluating Envelope Complexity

Next, we show several lemmas that highlight the computational advantage of the envelope
complexity. We start to show that the envelope complexity is easily evaluated with the
surrogate relation. We say a function g is surrogate of another function f if and only
if f − m(f) ≤ g − m(g), which is denoted by f ⪯ g. Moreover, if there is one-to-one
correspondence between g ∈ G and f ∈ F such that f ⪯ g, then we may write F ⪯ G.

Lemma 10（Monotonicity） Let F ⪯ G′ ⊂ G. Then, we have

.E(F) ⊃ E(G),

and therefore

C(γ,F) ≤ C(γ,G).
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Proof Note that e−f+m(f) ≥ e−g+m(g) if f ⪯ g, which means E(F) ⊃ E(G′). Also, as
increasing the argument from G′ to G only strengthens the predicate of the envelope, we
have E(G′) ⊃ E(G). Therefore, we have

C(γ,F) = inf
w∈E(F)

lnw
[
e−γ

]
≤ inf
w∈E(G′)

lnw
[
e−γ

]
E(F) ⊃ E(G′)

≤ inf
w∈E(G)

lnw
[
e−γ

]
E(G′) ⊃ E(G)

= C(γ,G).

This is especially useful when the loss functions F are complex but there exist simple sur-
rogates G. Consider any models such that the landscapes of the associated loss functions
f ∈ F are not fully understood and the evaluation of m(f) is expensive. It is impossible
to check if w is in the envelope w ∈ E(F), and therefore Theorem 9 cannot be used di-
rectly. However, even in such cases, one can possibly find a surrogate class G of F . If the
surrogate G is simple enough for checking if w ∈ E(G), it is possible to bound the envelope
complexity utilizing Lemma 10 and Theorem 9.

In the following, we consider the specific instance of the surrogate relation based on the
smoothness. A function f : Rd → R is L-upper smooth if and only if, for all θ, θ0 ∈ Rd,
there exists g ∈ Rd such that

f(θ) ≤ f(θ0) + g⊤(θ − θ0) +
L

2
∥θ − θ0∥22 . (5.6)

Note that the upper smoothness is weaker than (Lipschitz) smoothness. Thus, if f is
L-upper smooth and has at least one minima θ0 ∈ argm(f), we can construct a simple

quadratic surrogate of f : θ 7→ L
2 ∥θ − θ0∥

2
2 (⪰ f).

Motivated by the smoothness assumption, below we present more specific bounds for
quadratic functions. LetQ be the set of all quadratic functions with curvature one, defined
as Q = {θ 7→ 1

2 ∥θ − u∥
2 | u ∈ Rd}. Moreover, for all sets of loss functions F and penalty

functions γ : R → R, we write Fγ = F + γ = {f + γ | f ∈ F}. Then, the envelope
complexity of Fγ is evaluated with that of Qγ .

Lemma 11（Bounds of smoothness） Suppose that all f ∈ F are L-upper smooth. Let

φ(θ) =
√
L
−1
θ be the scaling function. Then, we have

E(Qγ◦φ) ◦ φ−1 ⊂ E(Fγ),

and moreover,

C(γ,Fγ) ≤ C(γ ◦ φ,Qγ◦φ).

Proof Note that Fγ ⪯ (LQ)γ = (Q◦φ−1)γ since F is a set of L-upper smooth functions.
Observe that, for all F ,

E(F ◦ φ) =
{
w
∣∣∣ w [e−f◦φ−m(f◦φ)

]
≥ 1, ∀f ∈ F

}
=
{
w
∣∣∣ w ◦ φ−1

[
e−f−m(f)

]
≥ 1, ∀f ∈ F

}
=
{
w̃ ◦ φ

∣∣∣ w̃ [e−f−m(f)
]
≥ 1, ∀f ∈ F

}
= E(F) ◦ φ,
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where w and w̃ range over M+(Rd). Thus, by Lemma 10, we have E(Fγ) ⊃ E((Q ◦
φ−1)γ) = E(Qγ◦φ) ◦ φ−1. This proves the inclusion. Now, we also have

C(γ,Fγ) = inf
w∈E(Fγ)

lnw
[
e−γ

]
≤ inf
w∈E(Qγ◦φ)◦φ−1

lnw
[
e−γ

]
= inf
w∈E(Qγ◦φ)

lnw ◦ φ−1
[
e−γ

]
= inf
w∈E(Qγ◦φ)

lnw
[
e−γ◦φ

]
= C(γ ◦ φ,Qγ◦φ),

which yields the inequality.

This lemma shows that as long as we consider the envelope complexity of of upper
smooth functions F , it suffices to bound above them to evaluate the envelope complexity
of penalized quadratic functions Qγ .

Further, according to the lemma below, we can restrict ourselves to one-dimensional
parametric models without loss of generality if the penalty functions γ are separable. Here,

γ is said to be separable if and only if it can be written in the form of γ(θ) =
∑d
j=1 γj(θj).

Lemma 12（Separability） Suppose that γ is separable. Then, the envelope complexity
of Qγ is bounded by a separable function, i.e.,

C(γ,Qγ) ≤
d∑
j=1

C(γj ,Q1
γj ),

where Q1 is the set of normalized one-dimensional quadratic functions with curvature one:
Q1 = {x(∈ R) 7→ 1

2 (x− u)
2 | u ∈ R}.

Proof Note that all f ∈ Qγ are separable, i.e., f(θ) =
∑d
j=1 fj(θj), where fj ∈ Q1

γj and

γ(θ) =
∑d
j=1 γj(θj). Let Ed = E(Q1

γ1)⊗ · · · ⊗ E(Q
1
γd
). Then, we have

C(γ,Qγ) = inf
w∈E(Qγ)

lnw[e−γ ]

≤ inf
w∈Ed

lnw[e−γ ] Ed ⊂ E(Qγ)

=

d∑
j=1

inf
wj∈E(Q1

γj
)
lnwj [e

−γj ]

=

d∑
j=1

C(γj ,Q1
γj ).

Summary We have defined the Bayesian envelope and envelope complexity. The envelope
complexity C(γ,F) is equal to the Bayesian minimax regret if F is the set of penalized
logarithmic loss functions. Any measures w in the Bayesian envelope E(F) can be uti-
lized for bounding the Shtarkov complexity through the envelope complexity. Most im-
portantly, the envelope complexity satisfies some useful properties such as monotonicity,
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parametrization invariance, and separability. Specifically, the monotonicity differentiates
the envelope complexity from the Shtarkov complexity.

5.4 The ST Prior for High-Dimensional Prediction
We leverage the envelope complexity to give a Bayesian predictor closely achieving
LREG⋆(γ), where γ(θ) = λ ∥θ∥1, namely the ST prior. Moreover, the predictor is shown
to be also approximately minimax without luckiness, where en ≥ d/

√
n→∞.

5.4.1 Envelope Complexity for ℓ1-Penalties

Let γ be the weighted ℓ1-norm given by

γ(θ) = λ ∥θ∥1 , (5.7)

where λ > 0. Let πλ be the ST prior over Rd given by

πST
λ (dθ) ∝ e−λ∥θ∥1

d∏
j=1

wST
λ (dθj), (5.8)

wST
λ (dx) = δ0(dx) +

eλ
2/2

λ2e
1 {|x| ≥ λ} dx, (5.9)

where δt denotes Kronecker’s delta measure at t. We call it the ST prior because it
consists of a delta measure (spike) and two exponential distributions (tails), as shown in
Figure 5.1.

Then, envelope complexities for quadratic loss functions can be bounded as follows.

0

De
ns

ity

exp( y2/2)/( e)
Spike-and-tails prior

Fig. 5.1: Density of the spike-and-tails prior

Lemma 13（Sharp bound on envelope complexity） Take γ as given by (5.7). Then, we
have wST

λ ∈ E(Qγ) and

d ln

(
1 +

e−λ
2/2

λ3(c+ o(1))

)
≤ C(γ,Qγ) ≤ lnwST

λ

[
e−γ

]
= d ln

(
1 +

2e−λ
2/2

λ2e

)
for some constant c, where o(1)→ 0 as λ→∞.
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Proof Consider the logarithmic loss functions of the d-dimensional standard normal
location model given by fX(θ) = 1

2 ∥X − θ∥
2
2 + d

2 ln 2π, X ∈ X = Rd, and let F =

{fX | X ∈ Rd}. Note that F ⪯ Q. Then, the lower bound follows from Lemma 19 in
Section A.3.1 with S(γ) ≤ C(γ,Fγ) ≤ C(γ,Qγ).

Note that γ is separable, and by Lemma 11, we restrict ourselves to the case of d = 1.
Let c and t be positive real numbers. Let w = δ + cU be a measure over the real line,
where δ denotes the delta measure and U denotes the Lebesgue measures restricted to
[−λ, λ]c = R \ [−t, t]. That is, we have w(E) = 10∈E + c |E \ [−t, t]| for measurable sets
E ⊂ R. Then, we have

lnw
[
e−γ

]
= ln

(
1 +

2c

λ
e−tλ

)
. (5.10)

We want to minimize (5.10) with respect to w ∈ E(Qγ). Let fu(θ) =
1
2 (θ − u)

2
+ λ |θ|.

Then, we have m(fu) =
1
2u

2 if |u| ≤ λ, and m(fu) = λ |u|− 1
2λ

2 otherwise. It suffices for c

and t to have w
[
e−fu

]
≥ e−m(fu) for all u ∈ R. Here, we only care about the case of u ≥ λ

since it is symmetric with respect to u and trivially we have w
[
e−fu

]
≥ δ

[
e−fu

]
≥ e−m(fu)

for all u ∈ [−λ, λ]. Now, for x = u− λ ≥ 0, we have

w
[
e−fu

]
= e−

1
2u

2

+ ce−tλ
(∫ −t

−∞
+

∫ ∞

t

)
e−

1
2 (θ−u)

2

dθ

≥ e− 1
2u

2

+ ce−tλ
∫ ∞

t

e−
1
2 (θ−u)

2

dθ

= e−m(fu)

(
e−

1
2x

2

+ c

∫ ∞

t−x
e−

1
2y

2

dy

)
.

Let A(x) = e−
1
2x

2

+ c
∫∞
t−x e

− 1
2y

2

dy. Thus a sufficient condition for w ∈ E(Qγ) is that

A′(x) = ce−
1
2 (t−x)

2−xe− 1
2x

2 ≥ 0, which is satisfied with c = 1
t exp

(
1
2 t

2 − 1
)
. Finally, eval-

uating (5.10) at t = λ yields the ST pre-prior w = wST
λ . Therefore, we have wST

λ ∈ E(Qγ),
and the upper bound is shown. The equality is a result of straightforward calculation of
lnw [e−γ ].

According to Lemma 13, the ST prior bounds the envelope complexity in a quadratic rate
as λ → ∞. The exponent − 1

2λ
2/2 is optimally sharp since the lower bound C(γ,Qγ) =

Ω(d exp
[
− 1

2λ
2
]
/λ3) has the same exponent.

This gives an upper bound on the envelope complexity for general smooth loss functions.
Let πST

λ,L and wST
λ,L be the scale-corrected ST preprior and prior given respectively by

πST
λ,L(dθ) = πST

λ/
√
L
(
√
Ldθ), wST

λ,L(dθ) = wST
λ/

√
L
(
√
Ldθ).

The following is a direct corollary of Lemma 11, Lemma 12, Lemma 13, and Lemma 10.

Corollary 5 If all f ∈ F are L-upper smooth with respect to θ, and if γ is given by (5.7),
then wST

λ,L ∈ E(Fγ), and therefore

C(γ,Fγ) ≤ lnwST
λ,L

[
e−γ

]
= d ln

(
1 +

2L

eλ2
e−

1
2Lλ

2

)
.

5.4.2 Regret Bound with the ST Prior

Now, we utilize Corollary 5 for bounding actual prediction performance of the ST prior.
Here, we consider the scenario of online-learning under ℓ1-constraint.
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Setup Let Xn = (X1, . . . , Xn) ∈ Xn be a sequence of outcomes. Let fX be a logarithmic
loss function such that

∫
e−fX(θ)dν(X) ≤ 1. Then, the conditional Bayesian pre-posterior

with respect to w ∈M+(Rd) given Xt (0 ≤ t ≤ n) is given by

w(dθ|Xt) = w(dθ)

t∏
i=1

exp {−fXi(θ)} .

The online regret of the predictor is defined as

REGn(w|H)
def
=

sup
Xn∈Xn,θ∗∈H

n∑
t=1

{
fXt

(w(·|Xt−1))− fXt
(θ∗)

}
. (5.11)

Now, we can bound the online regret of the ST prior as follows.

Theorem 14（Adaptive minimaxity over ℓ1-balls） Suppose that fXi are L-upper smooth

and logarithmic. Let HB = {θ ∈ Rd | ∥θ∥1 ≤ B}. Take λ =
√
2Ln ln(d/

√
Ln). Then,

with ω(1) = ln(d/
√
n) = o(n), we have

REGn(w
ST
λ,Ln|HB) ≤ B

√
2Ln ln

d√
Ln

(1 + o(1))

for all B > 0. Moreover, this is adaptive minimax rate and not improvable by more than
a factor of two, even if B is fixed and non-Bayesian predictors are involved.

Proof Let fXn be the cumulative loss fXn =
∑n
i=1 fXi

, and observe that fXn is Ln-
upper smooth and logarithmic. Let F = {fXn | Xn ∈ Xn} and γ(θ) = λ ∥θ∥1. Also, let
γ0 be the indicator penalty of the set HB such that γ0(θ) = 0 if and only if θ ∈ HB ,
and γ0(θ) =∞ otherwise. Then, we have REGn(w|HB) = LREG(w|γ0), where LREG is
taken with respect to fXn . Now, observe that

LREG(wST
λ,Ln|γ0) ≤ LREG(wST

λ,Ln|γ − λB)

(∵ γ0 ≥ γ − λB)

≤ lnwST
λ,Ln

[
e−γ+λB

]
,

(∵ Theorem 8)

= λB + lnwST
λ,Ln

[
e−γ

]
,

which, combined with Corollary 5 where λ =
√

2Ln ln(d/
√
Ln), yields the asymptotic

equality. The proof of the minimaxity is adopted from the existing analysis on the minimax
risk (see Section A.3.2 for the rigorous proof and Section 5.6.5 for detailed discussions).

5.5 Visual Comparison of the ST Prior and the Tilted Jeffreys

Prior
Now, we verify the results on the ℓ1-regularization obtained above. In particular, we
compare the worst-case regrets achievable with Bayesian predictors to the minimax regret,
i.e., the Shtarkov complexity.
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Setting We adopted the one-dimensional quadratic loss functions with curvature one,
q ∈ Q1, and the ℓ1-penalty function γ(θ) = λ |θ|. We varied the penalty weight λ from
10−1 to 101 and observed how the worst-case regret of each Bayesian predictor changes.
Specifically, we employed the ST prior (5.9) and the tilted Jeffreys prior for the predictors.
Note that in this case the tilted Jeffreys prior is nothing more than the double exponential
prior given by πJeff′

λ (dθ) = λ
2 e

−λ|θ|dθ.

Results In Figure 5.2, the worst-case regrets of the ST prior and the Jeffreys prior are
shown along with the minimax regret (Optimal). While the regret of the tilted Jeffreys
prior is almost same as the optimal regret where λ is small, it performs poorly where λ
is large. On the other hand, the ST prior performs robustly well in the entire range of λ.
Specifically, it converges to zero quadratically where λ is large. Therefore, since one must
take λ sufficiently large if d is large, it is implied that the ST prior is a better choice than
the tilted Jeffreys prior.
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Fig. 5.2: Worst-case regrets of the spike-and-tails prior and the tilted Jeffreys prior

5.6 Implications and Discussions
In this section, we discuss interpretations of the results and present solutions to some
technical difficulties.

5.6.1 Gap between LREG⋆ and LREGBayes

One may wonder if there exists a prior that achieves the lower bound LREG⋆(γ), where
γ(θ) = λ ∥θ∥1 , λ > 0. Unfortunately, the answer is no. With a similar technique of
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higher-order differentiations used by Hedayati and Bartlett (2012), we can show that if γ
is convex and not differentiable like the ℓ1-norm, then the gap is nonzero, i.e., LREG⋆(γ) <

LREGBayes(γ). The detailed statement and proof of this is in Section A.3.3.

5.6.2 Infinite-dimensional Models

If the dimensionality d of the parameter space is countably infinite, the minimax regret
REG⋆(HB) with any nonzero radius B diverges. In this case, one may apply different
penalty weights to different dimensions. For instance, taking different penalty weights
for different dimensions, e.g., γ(θ) =

∑
j=1 λj |θj | for λj =

√
2LLn{j Ln j} and Lnx =

lnmax {e, x}, the separability of the envelope complexity guarantees that C(γ,Fγ) ≤∑∞
j=1

(
j Ln2 j

)−1
< +∞. Then, the corresponding countably-infinite tensor product of

the one-dimensional ST prior πST
{λj}(dθ) =

∏∞
j=1 π

ST
λj

(dθj) gives a finite regret with respect

the infinite-dimensional models H = {θ ∈ RN | γ(θ) ≤ B}.

5.6.3 Comparison to the Titled Jeffreys Priors and Others

There have been previous studies on the minimax regret with Bayesian predic-
tors (Takeuchi and Barron, 1998, 2013; Watanabe and Roos, 2015; Xie and Barron,
2000). In these studies, the Bayesian predictor based on the Jeffreys prior (namely
Jeffreys predictor) is proved to attain minimax-regret asymptotically under some regu-
larity conditions. The tilted Jeffreys prior, which takes the effect of penalization γ into
consideration, is given by Grünwald (2007) as πJeff′(dθ) ∝ dθ

√
det I(θ)e−γ(θ), where

I(θ) denotes the Fisher information matrix. In the case of quadratic loss functions Q,
as the Fisher information is equal to identity, we have πJeff′(dθ) ∝ e−γdθ. Therefore, it
is implied that that taking the uniform pre-prior w(dθ) ∝ dθ is good for smooth models
under the conventional large-sample limit. This is in very strong contrast with our
result, where completely nonuniform preprior wST

λ performs better with high-dimensional
models.

5.6.4 Comparison to Online Convex Optimization

So far, we have considered the luckiness minimax regret, which leads to the adaptive
minimax regret. Perhaps surprizingly, our minimax regret bound coincides with the results
given in the literature of online convex optimization, where different assumptions on the
loss functions and predictors are made. Specifically, with λ =

√
2L ln d, the regret bound

is reduced to
√
2L ln d + 1/e. This coincides with the standard no-regret rates of online

learning such as Hedge algorithm (Freund and Schapire, 1997) and high-dimensional online
regression (Gerchinovitz and Yu, 2014), where L is referred to as the number of trials T
and d is referred to as the number of experts or dimensions n. Moreover, with λ = 1, the
regret bound is reduced to O(d lnL). This is equal to the minimax-regret rate achieved
under large-sample asymptotics such as in Hazan et al. (2007); Cover (2011).

Note that the conditions assumed in those two regimes are somewhat different. In
our setting, loss functions are assumed to be upper smooth and satisfy some normalizing
condition to be logarithmic losses, while the boundedness and convexity of loss functions
is often assumed in online learning. Moreover, we have employed Bayesian predictors,
whereas more simple online predictors are typically used in the context of online learning.
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5.6.5 Comparison to Minimax Risk over ℓ1-balls

In the literature of high-dimensional statistics, the minimax rate of statistical risk is also
achieved with ℓ1-regularization (Donoho and Johnstone, 1994), where the true param-
eter θ is in the unit ℓ1-ball. Although both risk and regret are performance measures
of prediction, there are two notable differences. One is that risks are calculated under
some assumptions on a true statistical distribution, whereas regrets are defined without
any assumptions on data. The other is that risks are typically considered with an in-
model predictor, i.e., predictors are restricted to a given model, whereas regrets are often
considered with out-model predictors such as Bayesian predictors and online predictors.
Therefore, the minimax regret can be regarded as a more agnostic complexity measure
than the minimax risk.

If we assume Gaussian noise models and adopt the logarithmic loss functions, the mini-

max rate of the risk is given as
√

2L ln d/
√
L according to Donoho and Johnstone (1994).

Interestingly, this is same with the rate of the regret bound given by Theorem 14, where
L = Ln. Moreover, the minimax-risk optimal penalty weights λ are also minimax-regret
optimal in this case. Therefore, if the dimensionality d is large enough compared to L (n
in case of online-learning), making no distributional assumption on data costs nothing in
terms of the minimax rate.

5.7 Conclusion
In this study, we presented a novel characterization of the minimax regret for logarithmic
loss functions called the envelope complexity, with ℓ1-regularization problems. The virtue
of envelope complexity is that it is much easier to evaluate than the minimax regret
itself and is able to produce upper bounds systematically. Then, using the envelope
complexity, we proposed the ST prior, which almost achieves the luckiness minimax regret
against smooth loss functions under ℓ1-penalization. We also show that the ST prior
actually adaptively achieves the 2-approximate minimax regret under high-dimensional
asymptotics ω(1) = ln d/

√
n = o(n). Experimentally, we have confirmed our theoretical

results: the ST prior outperforms the tilted Jeffreys prior where the dimensionality d is
high, whereas the tilted Jeffreys prior is optimal if n≫ d.

Limitations and future work The present work is relying on the assumption of smooth-
ness and logarithmic property on the loss functions. The smoothness assumption may be
removed by considering the smoothing effect of stochastic algorithms like SGD, as in Klein-
berg et al. (2018). As for the logarithmic assumption, it will be generalized to evaluate
complexities with non-logarithmic loss functions with the help of tools that have been de-
veloped in the literature of information theory, such as in Yamanishi (1998). Finally, since
our regret bound with the ST prior is quite simple (there are only the smoothness L and
the radius B except with the logarithmic term), applying these results to concrete models
such as deep learning models would be interesting future work, as would comparison to
the existing generalization error bounds.
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Chapter 6

Excess Risk Bounds with Envelope

Complexity

In this chapter, we derive a novel risk bound in terms of the envelope complexity. This
directly connects the Bayesian minimax regret with statistical risk and reveals a new
relationship between the minimax-regret code length and batch prediction. First, we give
a generic risk bound based on the PAC-Bayesian analysis and the envelope complexity,
namely PAC-Bayesian-Envelope (PAC-BE) bound. Then, we present an instance of the
PAC-BE bound for practical models.

6.1 Motivation
The envelope complexity, which we introduced in Chapter 5, is a complexity measure of
online-learning problems in terms of the minimax regret achievable with Bayesian pre-
dictors. Since Bayesian predictors are a powerful yet relatively easy-to-compute class
of predictors, the envelope complexity is an important quantity in its own right in the
online-learning scenario.

On the contrary, sometimes one may want to guarantee the instantaneous risk of pre-
dictions at a specific future time point instead of the cumulative/averaged loss over time.
Such a learning regime is addressed within the framework of the batch learning problem.
In the batch learning scenario, the data Xn+1 (note that the future data Xn+1 is included
here) are assumed to be subject to some unknown probability distribution. Since one
cannot make any meaningful claims on the worst-case behavior on the instantaneous loss
for unseen data, the excess risk

r(h|H) def
= R(h)− inf

h′∈H
R(h′)

may be considered instead. Here, R(h)
def
= EℓXn+1

(h) denotes the expected loss or risk of
h.

In fact, online predictors induce certain excess-risk bounds independent of the data-
generating distribution if their worst-case regrets are bounded (Littlestone, 1989; Cesa-
Bianchi et al., 2004; Cesa-Bianchi and Lugosi, 2006). Specifically, if Xn+1 are i.i.d and
the loss functions is logarithmic, the averaged predictor associated with online predictor
h

Qave(x) =
1

n

n∑
i=1

P (x|h(Xi−1))
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achieves the following excess risk bound:

r(Qave|H) ≤ 1

n
sup
Xn

REG(h|Xn,H).

Therefore, good predictors in the online-learning scenario can be utilized for constructing
good batch predictors. However, the averaged predictor is computationally expensive as
it requires n different predictions to be computed for every single batch prediction, which
is unacceptable for high-dimensional and complex models.

In this study, we consider plug-in predictors rather than averaged predictors. That is,
we want to find a predictor h⋆ in the given model H that (approximately) achieves small
excess risks

ĥ ≈ argmin
h∈H

r(h|H),

where ĥ can be stochastically chosen. Then, we establish a novel relationship between
Bayesian online and plug-in batch predictions combining the envelope complexity with
PAC-Bayesian analysis (McAllester, 1999; Catoni, 2007). In particular, we develop a
novel (excess) risk bound, namely the PAC-Bayesian-Envelope (PAC-BE) bound. The
significance of our approach is summarized as follows:

• It enable us to systematically compute risk bounds for a wide range of complex
models via the monotonicity of the envelope complexity.
• Its PAC-Bayesian nature allows us to drop the logarithmic assumption of the loss
function.

The remainder of this chapter is organized as follows. In Section 6.2, we review previ-
ous research on controlling (excess) risks in terms of information theory and clarify the
differences and our contributions relative to them. Then, we proceed to the main results
on the PAC-BE bound in Section 6.3. In Section 6.4, we develop some instances of the
PAC-BE bound that will be useful in practice. Then, we compare our risk bounds to
the existing risk bounds and discuss the advantages and disadvantages of our approach.
Finally, in Section 6.6, we conclude this chapter.

6.2 Related Work
One of the earliest results on utilizing information-theoretic complexity to bound risks is
Barron and Cover (1991). They proposed the notion of the index of resolvability, which
bounds the risk (not excess risk). The first PAC-Bayesian risk bound was proposed by
McAllester (1999) and later numerous variants were proposed (e.g.,Catoni (2007); Seldin
et al. (2012); Bégin et al. (2016)). The combination of the PAC-Bayesian analysis and the
index of resolvability was developed by Zhang (2004). Barron and Luo (2008); Chatterjee
and Barron (2014) also extended the index of resolvability applicable to the models with
uncountable cardinality, including sparse regression and sparse graphical modeling. The
resulting risk bounds achieve fast convergence of the excess risk if the model H is correctly
specified, i.e., the data-generating distribution is given by P (·|h0) and h0 ∈ H. However,
if the model is misspecified as h0 /∈ H, then the excess risk does not necessarily converge
to zero.

Xu and Raginsky (2017); Asadi et al. (2018) also studied upper bounds of excess risk
in terms of mutual information. Their results can be seen as the optimal upper bound
based on PAC-Bayesian analysis. However, the resulting upper bounds are completely
dependent on the data-generating distribution, which we do not know. Therefore, it does
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not straightforwardly provide us any principles for designing predictors without knowing
the true distribution.

The PAC-BE bound, which we propose in this chapter, differs from these existing
approaches in that it is able to work with misspecified models and assumes nothing about
the data-generating distribution.

6.3 PAC-Bayesian Analysis with Envelope Complexity
In the following, we give risk bounds with the envelope complexity. First, we give a
straightforward bound exploiting the standard reduction technique from risks to regrets.
This requires the computation of posterior predictors at each iteration. Secondly, under
some light-tail assumption on data, we give a risk bound called the PAC-BE bound. The
PAC-BE bound suggests that we may predict with stochastic point predictors, which are
easier to compute than Bayesian posteriors.

Let x ∈ X be a random variable generated from a stochastic source S and θ ∈ Rd be a
parameter of predictors for x. Let ℓx : θ 7→ R be the loss incurred for making predictions

with θ over actual outcomes x. Let ℓS(θ)
def
= R(θ) = Ex[ℓx(θ)] be the risk of predictor θ.

Assume that the lower tail probability of the loss function ℓx is σ-subGaussian,

Ex
[
e−β(ℓx(θ)−ℓS(θ))

]
≤ exp

(
σ2β2

2

)
(6.1)

for all β > 0 and all predictors θ ∈ Rd.
Let fx be an arbitrary surrogate function of ℓx, where ℓx(θ) ≤ fx(θ) for all θ ∈ Rd.

Here, ℓx may be difficult to optimize due to the non-convexity of the loss with respect to
the parameter θ, whereas fx can be considered as easier to minimize.

Let X = xn = (x1, . . . , xn) ∈ Xn be an n-sequence of i.i.d. copies of x and define the
empirical risk function ℓ̄X(θ) =

∑n
i=1 ℓxi

(θ)/n and the empirical surrogate risk function
f̄X(θ) =

∑n
i=1 fxi(θ)/n. Also, let F = {f̄X | X ∈ Xn} be the entire set of f̄X . We

are allowed to exploit f̄X ∈ F for choosing a good predictor θ, which minimizes the
risk ℓS(θ). To control the complexity of the predictors θ, also consider penalty functions
γ : θ 7→ [0,∞].

To choose a good predictor, we consider prior and posterior distributions given as
follows. Let M+(Rd) be all nonnegative Borel measures over Rd. For all w ∈ M+(Rd),
we denote by w [·] the integration with respect to w(dθ). Let P(Rd) be the set of all
probability measures π over Rd, which means that π [1] = 1. Let P ∈ P(Rd) be the
priors given by P (dθ) ∝ e−αγ(θ)w(dθ) for some w ∈ M+(Rd) and α > 0. Then, the
corresponding Gibbs posteriors are given by

QX(dθ) ∝ P (dθ) exp
[
−βf̄X(θ)

]
, β > 0, (6.2)

which we make a prediction based on in the following sections.
We analyze the performance of such predictions on the basis of the Bayesian envelopes.

Let E(G) be the Bayesian envelope of sets of functions G ∋ g : θ 7→ R, which is given by

E(G) def
=
∩
g∈G

∩
θ∈Rd

{
w ∈M+(Rd)

∣∣∣ w [e−g] ≥ e−g(θ)} .
We may consider w ∈ E(G) as envelope measures of G. We also define the envelope
complexity of measures w ∈ M+(Rd) with respect to the surrogate loss functions F and
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the penalty γ as

C(w) = C(w|F , γ) def
=

{
lnw [e−γ ] (w ∈ E(F + γ))
∞ (otherwise)

,

where we abbreviate γ and F when any confusion is unlikely. Moreover, let Cβ(w) =
Cβ(w|γ,F) = C(w|βγ, βF)/β be the annealed envelope complexity with inverse temper-
ature parameter β > 0.

6.3.1 Direct Reduction for Logarithmic Losses

Assume that, for now, ℓx is logarithmic with respect to x, i.e., ℓx(θ) = − ln p(x|θ) for
some probability density functions p(·|θ). Moreover, for all priors π ∈ P(Rd), denote the
loss of the corresponding Bayesian predictors by ℓx(π) = − lnπ [p(x|·)] and the risk by
ℓS(π) = Exℓx(π).

Now, we present the risk bounds on the Bayesian predictors via direct reduction from
risks to regrets. Define the averaged posterior as

Qave
X (dθ) =

1

n

n∑
t=1

Q
(t−1)
X (dθ), (6.3)

Q
(t)
X (dθ) ∝ exp

[
−

t∑
i=1

fxi(θ) + nγ(θ)

]
w(dθ). (6.4)

Below, we present the risk bound of the predictions based on the posteriors Qave
X with

respect to the best risk.

Theorem 15（Direct risk bound） Take an arbitrary w ∈M+(Rd). Then, we have

EℓS(Qave
X ) ≤ Ef̄X(θ∗) + γ(θ∗) + Cn(w)

for all θ∗ ∈ Rd.

Proof It follows that

EℓS(Qave
X ) ≤ 1

n

n∑
t=1

EℓS
(
Q

(t−1)
X

)
(Jensen′s inequality)

= − 1

n

n∑
t=1

E lnQ
(t−1)
X

[
e−ℓxt

]
≤ − 1

n

n∑
t=1

E lnQ
(t−1)
X

[
e−fxt

]
=

1

n
E ln

w [e−nγ ]

w
[
e−nf̄X−nγ

] (telescoping sum)

≤ Cn(w)−
1

n
E lnw

[
e−nf̄X−nγ

]
(definition of Cn(w))

≤ Ef̄X(θ∗) + γ(θ∗) + Cn(w). (w ∈ E(nF + nγ) w.l.o.g.)

The key point here is the triplet (f̄X , γ, w) and how they interact with each other
through the envelope complexity Cn(w) = Cn(w|F , γ). In particular, it is necessary for
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giving small upper bounds to design f̄X such that there exists a good approximation
f̄X ≈ ℓ̄X and that it gives a low envelope complexity Cn(w|F , γ). If we take fx = ℓx for
all x ∈ X , then the risk bound simplifies and we have an excess risk bound as follows.

Corollary 6（Direct excess risk bound） Let HB =
{
θ ∈ Rd : γ(θ) ≤ B

}
and take fx = ℓx.

Take an arbitrary w ∈M+(Rd). Then, we have

r(Qave
X |HB) ≤ B + Cn(w)

for all θ∗ ∈ Rd.

We note that if γ ≡ 0, then the conventional regret-based excess risk bound is recovered:

r(Qave
X |H) ≤ Cn(w),

where H =
{
θ ∈ Rd

}
.

6.3.2 PAC-BE Bounds on Generalization Errors

The above risk bound guarantees the predictive performance of the Bayesian predictors πT ,
which are not necessarily easy to compute. Moreover, it is only applicable to logarithmic
loss functions. However, at the cost of an additional complexity, we can guarantee the
performance of stochastic point predictors, which are much less computationally expensive
than Bayesian predictors, with non-logarithmic loss functions.

Let β > 0 be an inverse temperature parameter and let P be a prior over predictors
θ such that P (dθ) ∝ e−βγ(θ)w(dθ) for some envelope measures w ∈ E(βFγ). The Gibbs
posteriors QX are now defined as

QX(dθ) ∝ P (dθ)e−βf̄X(θ). (6.5)

Then, given observations X, we make a prediction with θ randomly drawn from the
Gibbs posterior QX . The average risk is hence written as QX [ℓS ]. Finally, define the gap
function as

∆X = f̄X − ℓ̄X , (6.6)

which is nonnegative. Below, we show that QX [ℓS +∆X ], which is an upper bound of
the risk QXℓS , is bounded with respect to the best empirical penalized risk.

Theorem 16（ PAC-BE risk bound） Assume the σ-subGaussian property of ℓX as
in (6.1). Let ∆X be given by (6.6). For arbitrary β > 0 and w ∈ M(Rd), define the
posterior QX as in (6.5). Then, with probability 1− δ over the draw of X ∼ Sn, we have

QX [ℓS +∆X ] ≤ f̄X(θ∗) + γ(θ∗) + Cβ(w) +
ln 1

δ

β
+
βσ2

2n

for all θ∗ ∈ Rd. Moreover, we have a similar bound on the expectation:

EQX [ℓS +∆X ] ≤ Ef̄X(θ∗) + γ(θ∗) + Cβ(w) +
βσ2

2n
.

Proof Without loss of generality, we assume that w ∈ E(βFγ). According to the change
of measure lemma (Donsker and Varadhan, 1975), we have

QX
[
β(ℓS − ℓ̄X)

]
≤ KL(QX∥P ) + lnP

[
eβ(ℓS−ℓ̄X)

]
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for all X. The definitions of measures P and QX yield

KL(QX∥P ) = QX

[
ln

dQX
dP

]
= −βQX f̄X + ln

w
[
e−βγ

]
w
[
e−β(f̄X+γ)

]
≤ −βQX f̄X + βCβ(w) + β(f̄X(θ∗) + γ(θ∗)) ∵ w ∈ E(βFγ)

for all θ∗ ∈ Rd. Thus, combining both inequalities divided by β, we have

QX [ℓS +∆X ] ≤ f̄X(θ∗) + γ(θ∗) + Cβ(w) +
1

β
lnP

[
eβ(ℓS−ℓ̄X)

]
.

The last term is further evaluated as

P
[
eβ(ℓS−ℓ̄X)

]
≤ 1

δ
PE

[
eβ(ℓS−ℓ̄X)

]
Markov′s inequality

=
1

δ
PE

[
exp

{
β

n

n∑
i=1

(ℓS − ℓxi
)

}]

≤ 1

δ
exp

(
σ2β2

2n

)
subgaussian tail

with probability 1− δ. This yields the desired bound. As for the expectation bound, take
the expectation of the last term and evaluate it as follows:

E lnP
[
eβ(ℓS−ℓX)

]
≤ lnPE

[
eβ(ℓS−ℓX)

]
Jensen′s inequality

≤ σ2β2

2
. subgaussian tail

This completes the proof.

We call this bound the PAC-BE bound as it is derived from the PAC-Bayesian bound
and the Bayesian envelope. A notable difference between the PAC-BE bound and the
direct bound is that there is the additional term βσ2/2n. Without this term, the PAC-
BE bound is essentially the same as the direct bound taking β = n. Thus, the last term
can be seen as the price for restricting the predictor θ to point predictors from Bayesian
ones.

As a direct corollary, we have an excess risk bound if fx = ℓx.

Corollary 7（PAC-BE excess risk bound） Assume the σ-subGaussian property of ℓX as
in (6.1). Let ∆X = 0 for all X ∈ Xn and let HB = {γ(θ) ≤ B}. For arbitrary β > 0 and
w ∈M(Rd), define the posterior QX as in (6.5). Then, we have

Eθ∼QX
[r(θ|HB)] ≤ B + Cβ(w) +

βσ2

2n
,

where Eθ∼QX
denotes the expectation with respect to both X and θ.

6.4 PAC-BE Instances
Now, for d-dimensional parametric models, we give concrete and ready-to-use risk bounds
based on the PAC-BE bound and Bayesian envelopes. In particular, we give constructive



6.4 PAC-BE Instances 71

examples for the posteriorsQX . Below, let θ+ = θ+(X) ∈ Rd be the output of an arbitrary
prediction algorithm. For simplicity, we assume that ℓx(θ) is bounded to the unit interval
[0, 1]. Thus, the subgaussian coefficient is given as σ = (2

√
n)−1.

6.4.1 Quadratic Surrogates with ℓ2-Regularization

First, we consider ℓ2-penalty functions γ = λ ∥θ∥22. Assume that there exists the local
approximation of f̄X at θ+ given by

f̄HX (θ) = f̄X(θ+) +∇fX(θ+)⊤(θ − θ+) + 1

2
(θ − θ+)⊤HX(θ − θ+), HX ∈ Rd×d,

such that fHX ≥ fX . Let Dλ(X) be the flat-minima dimension of fX defined as

Dλ(X) =
1

2
ln det(Id + λ−1HX). (6.7)

We note thatDλ is small if fHX is flat, i.e., the eigenvalues ofHX are small. Let {µj(X)}dj=1

be the eigenvalues of HX in descending order and let µ1(X) be uniformly bounded. Then,
we have

Dλ(X) =
1

2

n∑
i=1

ln

(
1 +

µi(X)

λ

)

≤ Cd0 ln(1 + λ−1) +
1

2λ

n∑
i=d0+1

µi(X),

where C = 1
2 ln (1 + supX µ1(X)). Then, if d0 is taken such that

∑n
i=k0

µi(X)/λ is small,

we have Dλ = O(d0 lnλ
−1), where d0 corresponds to the number of dimensions on which

fHX is not flat. In other words, Dλ decreases as the number of ‘flat’ dimensions increases.
Let ∆H

X(θ) = fHX (θ)− ℓX(θ) (≥ 0) be the corresponding gap function. Accordingly, let
QHX be the surrogate posterior given by

QHX(dθ) = w(dθ) exp
{
−β
(
fHX (θ) + γ(θ)

)}
.

Note that QHX is easier to compute than QX . Take the prior as e−βγdw ∝
dNd[0, (βλ)−1Id]. Then, the posterior is given as

QHX = Nd[θ+, β−1(λId +HX)−1]. (6.8)

Then, as a corollary of Theorem 16, we have the following risk bounds for flat minima.

Corollary 8（Flat-minima risk bound） Let γ(θ) = λ ∥θ∥22 for λ > 0. Let QHX be the pos-
terior given by (6.8). Then, we have

QHXℓS ≤ fX(θ+) + λ
∥∥θ+∥∥2

2
+

√
D̃λ(X) + ln⋆ D̃λ(X) + ln c

δ

2n
,

where c ≈ 2.865064 and D̃λ(X) = 1+Dλ(X), with probability 1−δ over the draw of data

X ∼ S. Here, ln⋆ x
def
= lnx + ln lnx + . . ., where the sum involves only the nonnegative

terms.
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Proof Let w(dθ) = (βλ/2π)d/2eDλ(X)dθ. Let FH be the set of fHX for all possible X.
Then, we have

lnw
[
e−βγ

]
= Dλ(X)

and w ∈ E(β(fHX + γ)). This, combined with Theorem 16, yields

QHXℓS ≤ fHX (θ+) + λ
∥∥θ+∥∥2

2
+
Dλ(X) + ln 1

δ

β
+
βσ2

2
.

= fX(θ+) + λ
∥∥θ+∥∥2

2
+
Dλ(X) + ln 1

δ

β
+
βσ2

2
.

Finally, taking union bound over the best choice of β ∈ N with the prior proposed by
Rissanen (1983) completes the proof.

6.4.2 Quadratic Surrogates with ℓ1-Regularization

Next, we consider ℓ1-regularization. Take the prior as e−γ(θ)dw(θ) = dπd√
β/Lλ

(
√
βLθ)

with (5.9), i.e., take the posterior as

QMX (θ) = πd√
β/Lλ

(√
βLθ

∣∣∣ √βL [θ+ −∇fX(θ+)
])
, (6.9)

where πdλ(·|·) is the d-th tensor product of πλ(·|·) such that

πλ(·|x) ∝ e−x
2/2δ0+

√
2π

λe

(
Φ(x− 2λ)e−λ(x−λ)N≥λ[x− λ, 1] + Φ(−x− 2λ)eλ(x+λ)N≤−λ[x+ λ, 1]

)
.

Here, N≥λ and N≤λ denote the truncated normal distributions. Then, as a corollary of
Theorem 16 and Corollary 5, we have the following risk bounds.

Corollary 9（PAC-BE risk bound with ℓ1-penalties） Let d ≥ 2 and assume (6.1). Suppose
that fX is L-smooth and γ(θ) = λ ∥θ∥1 with λ > 0. Let QMX be the Gibbs posterior given
by (6.9) with β = 2λ−2L ln d. Then, we have

QMX ℓS ≤ fX(θ+) + λ
∥∥θ+∥∥

1
+
L ln d

4nλ2
+

λ2

2L ln d
ln
e

δ

with probability 1− δ over the draw of data X ∼ S.

Proof Let FM be the set of fMX for all possible X. By Corollary 5, we have w ∈ E(βFMγ )
and

lnw
[
e−βγ

]
=

d∑
j=1

ln

(
1 +

2βL

eβ2λ2
e−

β2λ2

2βL

)

= d ln

(
1 +

1

ed ln d

)
β = 2λ−2L ln d

≤ 1

e ln d
≤ 1. d ≥ 2
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Meanwhile, since fMX ≥ fX owing to the smoothness of fX , we can safely replace fX with
fMX in Theorem 16. Therefore, we have

QX
[
ℓS +∆M

X

]
≤ fMX (θ+) + λ

∥∥θ+∥∥2
2
+
βσ2

2
+

1

β
ln
e

δ

= fX(θ+) + λ
∥∥θ+∥∥2

2
+
σ2L ln d

λ2
+

λ2

2L ln d
ln
e

δ
. fMX (θ+) = fX(θ+)

This, together with σ = (2
√
n)−1, completes the proof.

Comparing Corollary 8 and Corollary 9, one can see that there is a trade-off between
the dependencies on the dimensionality d and the penalty weight λ. The bound for ℓ2-
regularization grows logarithmically to λ, but linearly to d in the worst case (considering
all the eigenvalues µj as large). On the other hand, the ℓ1-regularization bound grows
polynomially to λ, but logarithmically to d. Therefore, the latter bound can be non-
vacuous even if d≫ n.

6.5 Discussion
The PAC-Bayesian bound has been extensively utilized to bound the (excess) risk for
the last couple of decades in the literature of statistical learning theory. Specifically,
in the context of deep learning, Dziugaite and Roy (2017, 2018) showed that the PAC-
Bayesian bound can give a non-vacuous risk bound on based on flat-minima phenomena.
Neyshabur et al. (2017) also analyzed the generalization of deep neural networks with a
PAC-Bayesian scheme under the large-margin assumption, where another type of flatness
is assumed. Compared to these results, the flat-minima bound (Corollary 8) can be seen as
yet another PAC-Bayesian interpretation of the generalization power of flat minima. The
major difference of our bounds to previous work is that the flatness is characterized with
the eigenspectrum of the curvature matrix HX . The effective dimensionality associated
with the curvature also plays an important role in the theory of the kernel method (Shawe-
Taylor et al., 2005; Steinwart and Christmann, 2008; Suzuki, 2018). From this viewpoint,
our flat-minima bound can be seen as an extension of such curvature characterization to
the PAC-Bayesian framework.

On the other hand, the ℓ1-penalized risk bound given in Corollary 9 is more closely
based on the ordinary large-margin assumption. This is because with ℓ1-penalty, the
prior distribution e−γw(dθ) depends on L, and hence the degree of flatness L cannot vary
in response to data X. However, λ is easily optimized owing to the constant property of
L, and we have

QMX ℓS ≤ fX(θ+) +

(
2B2L ln d

n

)1/3

+O

(
n−2/3 ln

1

δ

)
,

where ∥θ+∥1 ≤ B. By comparing this to the margin-based bounds, even though the
exponent 1/3 is less attractive, it is independent of the margin assumption, which was
difficult to guarantee beforehand, and instead, it bounds the risk with respect to the
Lipschitz smoothness L. It is also advantageous that the bound is simple, easy to compute
given L, and has no implicit large constant in the major term.
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6.6 Conclusion
In this chapter, we have introduced the PAC-BE bound, which is derived from the PAC-
Bayesian analysis and the envelope complexity. It has revealed that the Bayesian minimax
regret actually bounds above the risk of plug-in batch prediction. Moreover, the proposed
bound can be systematically evaluated and is applicable to non-logarithmic losses. We
have also presented two instances of the PAC-BE bound that are readily applicable to
actual instances of machine learning.
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Chapter 7

Conclusion

7.1 Concluding Remarks
In this thesis, we have addressed fundamental challenges that occur when the MDL prin-
ciple is applied to high-dimensional models. We have considered two major tasks of the
MDL principle: model selection and prediction. The key challenge throughout this study
was how to approximate the NML distribution in a non-asymptotic manner, and we have
consistently utilized the LNML distribution, which is a relaxation of the NML distribution,
to this end.

In Chapter 3 and Chapter 4, we developed two different approximation methods for
high-dimensional model selection, namely the stochastic gradient approximation and
smoothness-based analytic approximation. In Chapter 3, we demonstrated that the
stochastic gradient of LNML is useful for selecting sparse high-dimensional models from
an exponential number of candidates. The major advantage of this method is its wide
applicability. It can be applied to any models as long as the stochastic gradients of
their likelihoods are analytically tractable. On the other hand, as it is an iterative
sampling-based method, its computational cost relies on the mixing speed of the sampling
and the stopping criterion is not clearly given. In Chapter 4, we developed the analytic
approximation method as well as theoretical guarantees on the approximation gap and
the convergence of the local minimizer. The strengthes of this method, compared to the
previous one, are the theoretical guarantees and the deterministic optimization behavior
backed by the smoothness assumption. However, the applicability to non-smooth models,
including ReLU neural networks, remains as future work.

In the following two chapters, we turned to the novel notion of complexity, i.e., the en-
velope complexity, to facilitate high-dimensional prediction based on the MDL principle.
We have considered two prediction scenarios, namely online prediction and batch predic-
tion. In Chapter 5, we studied high-dimensional online prediction and presented adaptive
minimax predictors based on the analysis of the envelope complexity. In Chapter 6, we
studied the batch learning scenario and revealed a novel relationship between the on-
line and batch regimes through the generic risk bound called the PAC-Bayesian-envelope
bound.

We believe that these results contribute to the foundation of the MDL principle in
high-dimensional settings from both the perspectives of model selection and prediction.

7.2 Future Perspective
The strengthes of the MDL principle, in our view, are in the generality owing to its
information-theoretic nature (information is everywhere!) and the existence of the closed-
form optimal predictor, i.e., the NML distribution. This may be the reason why the
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MDL principle has prospered, albeit in diverse formulations, in every corner of machine
learning and data mining literature, and this is why we believe it is key to achieve the
unified understanding of inference systems.

However, the scope of the MDL analysis has been limited to large-sample settings to date
due to the lack of non-asymptotic analyses. This thesis provides three distinct methods,
i.e., the stochastic gradient approximation, the smoothness-based analytic approximation,
and the Bayesian minimax-regret approximation, to deal with small-sample settings.

Currently, we are aware of at least two promising future extension of these results.
First, it is important to be able to deal with infinite-dimensional models. Numerous
high-dimensional models, including neural networks and Gaussian mixture models, can
be regarded as the finite approximation of their infinite limit. Applying the MDL principle
to the infinite-dimensional models is not trivial, but it is beneficial for understanding the
behavior of such large-scale models in view of information theory. We presume that the
smoothness-based approximation would be fit to this end because the smoothness of some
infinite-dimensional models has already been well-studied in the language of reproducing
kernel Hilbert space.

Secondly, minimax regret analysis is also important in the fields of reinforcement learn-
ing and adversarial learning, where we must deal with black-box, nonstationary, and
interactive environments. In this setting, the model tends to be high-dimensional as we
consider complex environments or adversaries. Therefore, our approximation method of
the high-dimensional minimax-regret optimal solution could be useful for improving effi-
ciency of the reinforcement.

In either case, the approximation of the NML distribution is one of the key problems
and can be addressed using our results.
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A

Technical Results and Lemmas

A.1 Derivation of Derivatives in Relaxed Stochastic Complexity
In this section, we give proofs for the formulae of derivatives (3.14) and 3.17.

A.1.1 Derivation of (3.14)

By differentiating both sides of (3.13), we have

∂

∂Λij
RSC(X; v)

=
n

2

∂

∂Λij
h(S,Λ) +

∫ [
−n

2
∂

∂Λij
h(S′,Λ)

]
e−

n
2
h(S′,Λ)dX ′∫

e−
n
2
h(S′,Λ)dX ′

=
n

2

{
∂

∂Λij
h(S,Λ)− Eq

[
∂

∂Λij
h(S′,Λ)

]}
.

Then, by the following theorem, we have

∂

∂Λij
h(S,Λ) =

∂

∂Λij
min
Θ≻0

tr [SΘ]− ln detΘ +
∑
k,l

Λkl |Θkl|


=

∂

∂Λij

tr
[
SΘ̄

]
− ln det Θ̄ +

∑
k,l

Λkl

∣∣Θ̄kl

∣∣
= 2

∣∣Θ̄ij

∣∣ ,
given Θ̄ = Θ̄(S,Λ). This implies (3.14).

Theorem 17 (Danskin (Danskin, 1966)) Suppose that f(y, θ)θ∈Ω is a continuous function
and C1 with respect to y. Further, assume that Ω is compact and f(y, ·) has a unique

minimizer. Then, f̄(y)
def
= minθ∈Ω f(y, θ) is C1, and ∂

∂y f̄(y) = ∂
∂yf(y, θ̄) given θ̄ =

argminθ∈Ω f(y, θ).

Now, in order to apply the theorem, we confirm that the assumed conditions are sat-
isfied. Let f(y, θ) be the objective function of the graphical LASSO, where y = S ⊗ Λ,
θ = Θ, and Ω = {Θ ∈ Rm×m | Θ ≻ 0}. Then, the continuity and y-differentiability of the
objective function and the existence of a unique minimizer θ = Θ̄(S,Λ) hold immediately.
Since the objective function is strictly convex with respect to θ, there exist for every y, a
closed ε-ball centered at θ̄, say Bε(θ̄), and an open δ-ball centered at y, say Γδ(y), such
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that

∀y1 ∈ Γδ(y), argmin
θ∈Ω

f(y1, θ) ∈ Bε(θ̄) ⊂ Ω, (A.1)

for ε, δ > 0. Therefore, we can restrict the range of minimization to Bε(θ̄), which is
compact, in a point-wise manner.

A.1.2 Derivation of (3.17)

With trivial calculation, we have

∂

∂Sij
ln q(S) =

∂

∂Sij

{
n−m− 1

2
ln detS −RSC(X; v)

}
= (n−m− 1)S−1

ij − n

2

∂

∂Sij
h(S,Λ).

Then, again by Theorem 17, we have

∂

∂Sij
h(S,Λ) =

∂

∂Sij
min
Θ≻0

{
tr [SΘ]− ln detΘ +

∑
k<l

Λkl |Θkl|

}

=
∂

∂Sij

{
tr
[
SΘ̄

]
− ln det Θ̄ +

∑
k<l

Λkl

∣∣Θ̄kl

∣∣}
= 2Θ̄ij ,

given Θ̄ = Θ̄(S,Λ). This implies (3.17).

A.2 Proof of Utility Lemma of Strong Convexity
In this section, we present a useful property of strongly convex functions. The following
lemma introduces a useful lower bound of H-strongly convex functions.

Lemma 18 Let θ̂ = argminθ∈Ω f(θ), and suppose that θ̂ ∈ Ωo. Then, for all H-strongly

convex functions f : Rp → R, we have

f(ψ) ≥ f(θ̂) + 1

2

∥∥∥ψ − θ̂∥∥∥2
H
, ∀ψ ∈ Rp.

Proof Choose α0 and define µ(α)
def
= αθ̂+(1−α)ψ (α0 ≤ α < 1) such that µ(α) ∈ Ω for

all α ∈ [α0, 1). Note that this is possible because θ̂ resides in the interior. By the strong

convexity of f and the inequality f(θ̂) ≤ f(µ(α)), we have

f(ψ)− f(θ̂) ≥ f(ψ)− f(µ(α)) ≥ α
⟨
ξ(µ(α)), ψ − θ̂

⟩
+
α2

2

∥∥∥ψ − θ̂∥∥∥2
H
,

0 ≥ f(θ̂)− f(µ(α)) ≥ −(1− α)
⟨
ξ(µ(α)), ψ − θ̂

⟩
+

(1− α)2

2

∥∥∥ψ − θ̂∥∥∥2
H
.

Then, adding the upper inequality to the lower one multiplied with α
1−α yields

f(ψ)− f(θ̂) ≥ α

2

∥∥∥ψ − θ̂∥∥∥2
H
.

Therefore, taking α→ 1 completes the proof.
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A.3 Lower Bounds and Gaps on Bayesian Minimax Regret
In this supplementary section, we present some technical lemmas and theorems for com-
pleteness.

A.3.1 Asymptotic Lower Bound of Shtarkov Complexity for Standard Normal

Location Models

We show an asymptotic lower bound of the Shtarkov complexity of standard normal
location models.

Lemma 19 Consider the d-dimensional standard normal location model given by fX(θ) =
1
2 ∥X − θ∥

2
2 +

d
2 ln 2π, where X ∈ X = Rd. Let γ = λ ∥θ∥1 for λ ≥ 0. Then, we have

S(γ) ≥ d ln

(
1 +

e−λ
2/2

√
2πλ3

(1 + o(1))

)
.

Proof By definition of S(γ), we have

S(γ) = ln

∫
e−m(fX+γ)ν(dX)

= d ln
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2π
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exp
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−1

2
(x− t)2 − λ |t|
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dx
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2 dx+
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−λ
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2 dx+
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]

= d ln

[
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2e−λ
2/2

√
2π

∫ ∞

0

e−λxdx

]

= d ln

[
2Φ(λ)− 1 +

√
2

π

e−λ
2/2

λ

]
,

where Φ(λ) denotes the standard normal distribution function. Now, by Komatu (1955),

Φ(λ) is bounded below with Φ(λ) > 1− 2ϕ(λ)/(
√
2 + x2 + x) for ϕ(λ) being the standard

normal density, which yields the lower bound of interest after a few lines of elementary
calculation.

A.3.2 Lower Bound on Minimax Regret of Smooth Models

We describe how we adopt the minimax risk lower bound to show the minimax-regret
lower bound.

The concept of the proof is based on Donoho and Johnstone (1994). First, the so-called
three-point prior is constructed to approximate the least favorable prior. Then, since the
approximate prior violates the ℓ1-constraint, the degree of the violation is shown to be
appropriately bounded to derive a valid lower bound.
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The goal of our proof is to establish a lower bound on the minimax regret with respect
to logarithmic losses, whereas their proof is about the minimax risk with respect to ℓq-
loss. Therefore, below we present the proof highlighting (i) an approximate least favorable
prior for logarithmic losses over ℓ1-balls, and (ii) the way to bound regrets on the basis of
risk bounds.

Let H = {θ ∈ Rd | ∥θ∥1 ≤ B} be an ℓ1-ball. Let X ∼ Nd[θ, Id/L] be a d-dimensional
normal random variable with mean θ ∈ H and precision L > 0. We denote the distribution
simply by X ∼ θ where any confusion is unlikely. Let h ∈ Ĥ be a predictor associated
with any sub-probability distribution P (·|h) ∈ M+(Rd). For notational simplicity, we

may write fX(θ) = L
2 ∥X − θ∥

2
2+

d
2 ln

2π
L and fX(h) = ln dP (X|h)

dν , where ν is the Lebesgue

measure over Rd.
Consider the risk function

Rd(h, θ)
def
= EX∼θ [fX(h)− fX(θ)]

and the Bayes risk function

Rd(h, π)
def
= Eθ∼π [Rd(h, θ)] ,

where π ∈ P(H) denotes prior distributions on H. Then, the minimax Bayes risk bounds
below the minimax regret:

REG⋆(H) = inf
h∈Ĥ

sup
θ∈H

sup
X∈Rd

fX(h)− fX(θ)

≥ inf
h∈Ĥ

sup
π∈P(H)

Eθ∼πEX∼θ [fX(h)− fX(θ)]

= inf
h∈Ĥ

sup
π∈P(H)

Rd(h, π).

The minimax theorem states that there exists a saddle point (h∗, π∗) such that

Rd(h
∗, π∗) = inf

h∈Ĥ
sup

π∈P(H)

Rd(h, π) = sup
π∈P(H)

inf
h∈Ĥ

Rd(h, π)
def
= sup

π∈P(H)

Rd(π),

and π∗ is referred to as the least favorable prior. We want to approximate π∗ to give an
analytic approximation of Rd(π∗), which is a lower bound of REG⋆(H).

Let Fϵ,µ ∈ P(R) be the three-point prior defined by

Fϵ,µ = (1− ϵ)δ0 +
ϵ

2
(δ−µ + δµ)

for ϵ, µ > 0. We show that the corresponding achievable Bayes risk R1(Fϵ,µ) tends to be
the entropy of the prior Fϵ,µ in some limit of small ϵ.

Lemma 20 Take µ = µ(ϵ) =
√
2L−1 ln ϵ−1. Let Hϵ = H(Fϵ,µ) = (1 − ϵ) ln(1 − ϵ)−1 +

ϵ ln 2ϵ−1 be the entropy of the prior. Then, we have

R1(Fϵ,µ) ∼ Hϵ ∼ ϵ ln
1

ϵ

as ϵ→ 0. Here, x ∼ y denotes the asymptotic equality such that x/y → 1.

Proof First, we show the famous inequality on the entropy given by R1(Fϵ,µ) ≤ Hϵ.
Let P (·|h) = Eθ∼Fϵ,µ

P (·|θ) = (1− ϵ)P (·|0) + ϵ
2 (P (·| − µ) +P (·|µ)) be the Bayes marginal
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distribution with respect to Fϵ,µ. Then, we have

Hϵ −R1(Fϵ,µ) = Hϵ −R1(h, Fϵ,µ)

= Hϵ − Eθ∼Fϵ,µ
EX∼θ ln

dP (X|θ)
dP (X|h)

= Hϵ − (1− ϵ)EP (X|0) ln
dP (X|0)
dP (X|h)

− ϵEP (X|µ) ln
dP (X|µ)
dP (X|h)

= (1− ϵ)EP (X|0) ln

(
1 +

ϵ

1− ϵ
dP (X|µ) + dP (X| − µ)

2dP (X|0)

)
+ ϵEP (X|µ) ln

(
1 +

1− ϵ
ϵ

2dP (X|0) + dP (X| − µ)
dP (X|µ)

)
≥ 0.

Now, we show that with the specific value of µ = µ(ϵ), the gap is negligible compared to
the entropy itself. Applying Jensen’s inequality, we have

Hϵ −R1(Fϵ,µ) ≤ ϵ+ ϵEP (X|µ) ln
(
1 + (1− ϵ)

(
2e−LµX + ϵ3e−2LµX

))
≤ ϵ(1 + ln 4 + EP (X|µ) max {0, −2LµX})

= ϵ
(
1 + ln 4 + EZ∼N [0,1] max

{
0, 2
√
Lµ(Z −

√
Lµ)

})
(∵ −

√
L(X − µ) = Z)

≤ ϵ
(
1 + ln 4 + 2

√
Lµϵ

)
= ϵ

(
1 + ln 4 + 2ϵ

√
2 ln

1

ϵ

)
= o(Hϵ).

Thus, we obtain Hϵ ∼ R1(Fϵ,µ).

Now we show that the d-th Kronecker product of Fϵ,µ, F
d
ϵ,µ, can be used to bound

the Bayes minimax risk Rd(π∗) with appropriate choices of ϵ and µ. To this end, let
π+ = F dϵ,µ | H be the conditional prior restricted over the ℓ1-ball H.

Lemma 21 Take ϵµ = (1 − c)B/d and µ =
√
2L−1 ln ϵ−1 for 0 < c < 1. Then, if ϵ → 0

and dϵ→∞, we have

Rd(π∗) ≥ Rd(π+) ∼ Rd(F dϵ,µ) ∼ dϵ ln
1

ϵ
.

Proof First, the inequality is trivial from the definition of Rd(π). Moreover, the second
asymptotic equality immediately follows from Lemma 20.

Now, we consider the first asymptotic equality. Let h be the Bayes minimax predictor
with respect to the prior Fϵ,µ and h+ be the one with respect to the conditional prior π+.
Then, we have

Rd(F
d
ϵ,µ) = Rd(h, F

d
ϵ,µ)

= Eθ∼Fd
ϵ,µ

[Rd(h, θ)]

= F dϵ,µ(H)Rd(h, π+) + Eθ∼Fd
ϵ,µ

[Rd(h, θ) · 1 {θ /∈ H}]

≥ F dϵ,µ(H) ·Rd(π+)
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and

Rd(F
d
ϵ,µ) ≤ Rd(h+, F dϵ,µ)

= Eθ∼Fd
ϵ,µ

[
Rd(h

+, θ)
]

= F dϵ,µ(H) ·Rd(π+) + Eθ∼Fd
ϵ,µ

[
Rd(h

+, θ) · 1 {θ /∈ H}
]
.

Let N be the number of nonzero elements in θ ∼ F dϵ,µ. Then, N is subject to the Binomial
distribution Bin(d, ϵ). On the other hand, the event θ ∈ H is equal to {∥θ∥1 ≤ B} =
{N ≤ B/µ = EN/(1− c)}. Therefore, applying Chebyshev’s inequality, we obtain

Pd
def
= F dϵ,µ(Hc) = Pr

{
N − EN

EN
>

c

1− c

}
≤ (1− c)2

c2dϵ
→ 0.

Similarly, we have E |N − EN | /EN → 0. Now, observe that

Eθ∼Fd
ϵ,µ

[
Rd(h

+, θ) · 1 {θ /∈ H}
]
≤ Eθ∼Fd

ϵ,µ
Eφ∼π+
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≤ 2LEθ∼Fd
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Eφ∼π+
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∥φ∥22 + ∥θ∥

2
2

)
· 1 {θ /∈ H}

]
≤ 2Lµ2E [PdN +N · 1 {N > B/µ}]

(∵ ∥θ∥22 = µ2N)
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(
2Pd +
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= 4dϵ ln
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ϵ

(
2Pd +

E |N − EN |
EN

)
.

= o(Rd(F
d
ϵ,µ)).

Thus, combining all of the above, we get

(1 + o(1))Rd(π+) = (1− Pd)Rd(π+)

≤ Rd(F dϵ,µ)
≤ (1− Pd) ·Rd(π+) + Eθ∼Fd

ϵ,µ
[Rd(h

∗, θ) · 1 {θ /∈ H}] .

= (1− o(1))Rd(π∗) + o(Rd(F
d
ϵ,µ)),

which implies the desired asymptotic equality Rd(Fϵ,µ) ∼ Rd(π+).

Summing these, we have an asymptotic lower bound on the minimax regret, which is the
same as the upper bound given by the ST prior within a factor of two (see Theorem 14).
This implies that both the regret of the ST prior and the Bayes risk of the prior π+ are
tight with respect to the minimax-regret rate except with a factor of two.

Theorem 22（Lower bound on minimax regret） Suppose that ω(1) = ln(d/
√
L) = o(L).

Then, we have

REG⋆(H) ≳ B

2

√
2L ln

d√
L
,

where x ≳ y means that there exists y′ ∼ y such that x ≥ y′.
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Proof The assumptions of Lemma 21 are satisfied for all 0 < c < 1, since

ϵ ≲ ϵ

√
ln

1

ϵ
=

1− c
d

√
L

2
→ 0,

dϵ = (1− c)
√

L

2 ln 1
ϵ

∼ (1− c)
√

L

2 ln d√
L

→∞.

Thus, we have

REG⋆(H) ≥ Rd(π∗) ≳ dϵ ln
1

ϵ
∼ (1− c) B

2

√
2L ln

d√
L

for all 0 < c < 1. Slowly moving c towards zero completes the theorem.

A.3.3 Existence of Gap between LREG⋆ and LREGBayes under ℓ1-Penalty

Below we show that under standard normal location models, the Bayesian luckiness min-
imax regret is strictly larger than the non-Bayesian luckiness minimax regret if γ is non-
trivial and has a non-differentiable point. Here, we refer to γ as trivial when there exists
θ0 such that γ(θ) =∞ for all θ ̸= θ0.

Lemma 23 Let fX(θ) = 1
2 (X − θ)

2
+ 1

2 ln 2π for X ∈ R and θ ∈ R. Then, for all

nontrivial, convex, and non-differentiable penalties γ : R→ R,

LREG⋆(γ) < LREGBayes(γ).

Proof Let F = {fX | X ∈ R} and recall that LREGBayes(γ) = infw∈E(Fγ) lnw [e−γ ] by

Theorem 8. Let ∥·∥γ be the metric of pre-priors w ∈ M+(R) given by ∥w∥γ = w [e−γ ].

Owing to the continuity of w 7→ lnw [e−γ ] and the completeness of E(Fγ) ⊂ M+(R), it
suffices to show that there exists no pre-prior w ∈ E(Fγ) such that lnw [e−γ ] = S(γ). Let
us prove this by contradiction. Assume that lnw [e−γ ] = S(γ). Observe that

0 = w
[
e−γ

]
− expS(γ)

= w

[∫
e−fX−γν(dX)

]
−
∫
e−m(fX+γ)ν(dX)

=

∫ {
w
[
e−fX−γ]− e−m(fX+γ)

}
ν(dX),

which means w
[
e−fX−γ] = e−m(fX+γ) for almost every X, since w ∈ E(Fγ). Note that

fX(θ) is continuous with respect to X, and then we have w
[
e−fX−γ] = e−m(fX+γ) for all

X. After some rearrangement and differentiation, we have

0 =
d

dX
w
[
e−fX−γ+m(fX+γ)

]
= w

[
de−fX−γ+m(fX+γ)

dX

]
= wθ

[
(θ − θ∗X) e−fX−γ+m(fX+γ)

]
, (A.2)
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where θ∗X = argm(fX + γ). Here, we exploited Danskin’s theorem at the last equality.
One more differentiation gives us

0 =
d

dX
wθ

[
(θ − θ∗X) e−fX−γ+m(fX+γ)

]
,

= wθ

[{
(θ − θ∗X)

2 − dθ∗X
dX

}
e−fX−γ+m(fX+γ)

]
for all X ∈ R.

Note that we have
dθ∗X
dX |X=t = 0 for any non-differentiable points t of γ. Then, this

implies that w = cδθ∗t , where δs denotes the Kronecker delta measure. Then, according
to (A.2), we have

0 = wθ

[
(θ − θ∗X) e−fX−γ+m(fX+γ)

]
.

= c (θ∗t − θ∗X) e−fX(θ∗t )−γ(θ
∗
t )+m(fX+γ),

which means that θ∗X = θ∗t is a constant independent of X. However, this contradicts the
assumption that γ is nontrivial.

As a remark, we note that this lemma is easily extended to a multidimensional expo-
nential family of distributions.


