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Abstract

The development of Web technologies has been rapidly accelerating human com-
munication and sharing of knowledge. The massive amount of text on the new
communication platforms or knowledge sources often consists of documents in
several domains and multiple languages. In order to obtain fresh and diverse
information from multilingual and diverse text sources such as Twitter, Wikipedia, or
arXiv, we need to cope with language barrier while also paying attention to domain
differences.

Let us move on to the general topic of natural language processing. Machine
translation, as one of the most promising applications of natural language processing,
has been playing an essential role in overcoming the language barrier. The recent
development of machine learning techniques and huge annotated corpora have
considerably improved the performance of machine translation. In the face of
the increasing use of multilingual platforms and knowledge sources, can machine
translation help us understand the real text data in various domains? Can machine
translation be applied to languages pairs whose vocabulary and grammar are
significantly different (such as English vs. Japanese)? More generally, can machine
directly help humans understand text written in unfamiliar domains/languages?
These are the central topics of this thesis.

To answer the above questions, we propose an instant domain adaptation
method, an accurate translation method for English-to-Japanese translation, and
an automatic description method for unknown phrases.

• Instant domain adaptation for Statistical Machine Translation: To translate
text in various domains, the most basic method is domain adaptation. Most
studies on domain adaptation require supervised in-domain resources such as
parallel corpora or in-domain dictionaries. The necessity of supervised data has
made such methods difficult to adapt to practical machine translation systems.
In this thesis, we thus propose a method that adapts translation models without
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in-domain parallel corpora. Our method improves out-of-domain translation
from Japanese to English by 0.5-1.5 bleu score.

• Accurate translation method for English-to-Japanese translation: English-
to-Japanese translation is more difficult than other language pairs such as
English-to-German or English-to-French translations. This is mainly because (1)
Japanese sentence has much more words in a sentence compared to English, and
(2) Japanese is a free-word-order language. To cope with these problems, we
propose a chunk-based decoder for neural machine translation. Our method
improves English-to-Japanese translation by 0.93 bleu score and achieves
state-of-the-art performance on the WAT ’16 translation task.

• Automatic description generation for unknown phrases: Even if a text is
translated perfectly, or written in our familiar languages, it is still common for
humans to become stuck on unfamiliar words or phrases. To help humans un-
derstand unknown phrases which are not included in hand-crafted dictionaries,
we undertake a task of describing a given phrase in natural language based
on its contexts. In contrast to the existing methods, our model appropriately
takes important clues from contexts and achieves state-of-the-art performance
in four description generation datasets.

To help humans understand real multilingual text is a challenging task because (1)
the target domain is unknown, (2) the source language may extremely differ from the
users’ languages, and (3) the users may be unfamiliar with the words/phrases in the
text. Our proposed methods tackle these problems by (1) instant domain adaptation,
(2) accurate English-to-Japanese translation, and (3) automatic description generation.
We expect that this thesis will provide a promising future direction for research into
multilingual text understanding.
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Chapter 1

Introduction

1.1 Multilingual Text on the Web

The development of Web technologies has been rapidly accelerating human com-
munication and sharing of knowledge. Statistics show that the daily active users
on Facebook in 2018 reached the amount of 1.49 billion 1. On the other hand, 141
thousand of academic papers are uploaded on arXiv 2, the world’s largest academic
paper platform, in 2018.

These platforms enable us to obtain the (1) latest information (e.g., news in various
academic fields), and (2) regional information (e.g., terror incidents occur at a specific
area) instantaneously. For we humans, however, it is not easy to understand all of
those new and various information effectively because most of them are described in
unfamiliar languages for readers (e.g., Facebook is used in more than 100 languages).
Therefore, the natural language processing technologies, such as machine translation
or cross-lingual information retrieval, are becoming more and more desirable to help
human understanding.

1.2 Towards Understanding the Multilingual Text

How can we humans understand the information in the multilingual text efficiently?
In this thesis, we define two requirements for the understandable text. Fist, the
text needs to be translated into the target languages accurately. Since inaccurate
translation usually avoids humans to understand the original meanings of the text,

1“Facebook Demographics & Usage”, https://adespresso.com/blog/facebook-statistics/
2“arXiv monthly submission rates”, https://arxiv.org/stats/monthly_submissions

https://adespresso.com/blog/facebook-statistics/
https://arxiv.org/stats/monthly_submissions
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we need an accurate translation methodology. Second, the text needs to be clear and
straightforward. If the readers are not experts in the fields of the text, we need to
simplify the technical terms or attach the descriptions for those terms. If we can
generate a text that meets these requirements from the multilingual text source, we
can obtain fresh and various information from the text.

1.3 Research Challenges

Machine translation, as one of the most promising applications of natural language
processing, has been playing an essential role in overcoming the language barrier.
The recent development of machine learning techniques and huge annotated corpora
have considerably improved the performance of machine translation. However,
current machine translation technology is not yet a perfect solution for human
understanding of the multilingual text.

In the previous section, we defined two requirements of the readable text.
We summarize the difficulties of the language and domain differences from the
viewpoints of machine translation and human understanding. From the perspective
of machine translation, (1) domain differences between training and test data
deteriorate the translation performance. Also, (2) machine translation between the
distant language pairs (e.g., English to Japanese) is still difficult because of their
significant differences of vocabulary and grammar. On the other hand, from the
viewpoint of human understanding, (3) we can be stuck when reading a text in
unfamiliar domains, even if it is written in our native languages.

In the face of the increasing use of multilingual platforms and knowledge sources,
can machine translation help us understand the real text data in various domains?
Can machine translation be applied to languages pairs whose vocabulary and
grammar are significantly different (such as English vs. Japanese)? More generally,
can machine directly help humans understand text written in unfamiliar domains?
These are the central topics of this thesis.

1.4 Contributions

In order to obtain fresh and diverse information from multilingual and diverse text
sources such as Twitter, Wikipedia, or arXiv, we need to cope with language barriers
while also paying attention to domain differences.
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Figure 1.1: The problems for humans to understand multilingual text and the
solutions presented in this thesis.

Figure 1.1 shows the two problems and the solutions presented in this thesis.
To answer the questions in the previous section, we propose an accurate and
instant domain adaptation method for statistical machine translation, an accurate
translation method for English-to-Japanese neural machine translation, and an
automatic description generation method for unknown phrases.

• Accurate and instant domain adaptation for statistical machine translation:
To translate text in various domains, the most basic method is domain adap-
tation. Most studies on domain adaptation require supervised in-domain
resources such as parallel corpora or in-domain dictionaries. The necessity of
supervised data has made such methods difficult to adapt to practical machine
translation systems. In this thesis, we thus propose a method that adapts
translation models without in-domain parallel corpora. Our method improves
out-of-domain translation from Japanese to English by 0.5-1.5 bleu score.

• Accurate translation method for English-to-Japanese neural machine trans-
lation: English-to-Japanese translation is more difficult than other language
pairs such as English-to-German or English-to-French translations. This is
mainly because the differences in vocabulary and grammar between Japanese
and English are bigger than other language pairs. To cope with this problem, we
propose a chunk-based decoder for neural machine translation. Our method
improves English-to-Japanese translation by 0.93 bleu score and achieves
state-of-the-art performance on the WAT ’16 translation task.

• Automatic description generation method for unknown phrases: Even if
a text is translated perfectly, or written in our familiar languages, it is still
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common for humans to become stuck on unfamiliar words or phrases. To help
humans understand unknown phrases which are not included in hand-crafted
dictionaries, we undertake a task of describing a given phrase in natural
language based on its contexts. In contrast to the existing methods, our model
appropriately takes important clues from contexts and achieves state-of-the-art
performance in four description generation datasets.

To help humans understand real multilingual text is a challenging task because (1)
the target domain is unknown, (2) the source language may extremely differ from the
users’ languages, and (3) the users may be unfamiliar with the words/phrases in the
text. Our proposed methods tackle these problems by (1) instant domain adaptation,
(2) accurate English-to-Japanese translation, and (3) automatic description generation.
We expect that this thesis will provide a promising future direction for research into
multilingual text understanding.

1.5 Thesis Structure

The rest of this thesis is structured as follows. In Chapter 2, we introduce the
related work from the viewpoints of the three challenges described above. This is
followed by Chapter 3, in which we propose a method of accurate and instant domain
adaptation for statistical machine translation (smt). In Chapter 4, we present a new
neural machine translation (nmt) decoder that provides accurate English-to-Japanese
translation. In Chapter 5, we set up a task of describing phrases and propose a model
to generate a description to help human understand unfamiliar expressions. Finally,
in Chapter 6, we conclude the three proposed methods and address future work in
the research area of multilingual text understanding.



Chapter 2

Related Work

In this chapter, we introduce the related work from the view points of the three
challenges described in Chapter 1. Section 2.1 describes the motivation and related
work of domain adaptation for smt. This is followed by Section 2.2, in which we
introduce the efforts to improve machine translation for distant language pairs by
utilizing phrase or chunk structures, from the viewpoints of statistical machine
translation and newly appeared neural machine translation. Finally, in Chapter 2.3,
we present the related work of our description generation task, such as word sense
disambiguation, paraphrasing, and definition generation tasks.

2.1 Out-of-vocabulary Word Translation and Domain
Adaption for Statistical Machine Translation

To translate text in various domains, domain difference between train and test data
causes a serious deterioration of translation performance. One of the major reasons
for this phenomenon is out-of-vocabulary(oov) words. Since there exist several oov
words if the domains of train and test data are different, we can improve the overall
translation performance if we have an accurate oovword translation method.

We discuss the related studies of our translation model adaptation by categorizing
them into two tasks: oovword translation, and more generally, the domain adaptation
for smt.
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2.1.1 Out-of-vocabulary Word Translation

oov word translation has been inherently a difficult task since there is no perfect
multilingual dictionay available in the world. New words and new usages of
words are emerging everyday, and thus it is not possible for human to maintain
a dictionary that covers all words in all languages. To cope with this problem,
researchers have been working on the methods for translating oov words by using
monolingual corpora. The basic idea of oovword translation is: (1) assign a word
vector to the source oov word, and (2) map it to target space, then (3) find the
translation candidates using nearest-neighbor search in the target space. This idea of
vector-based oov translation was originally proposed by Fung [31] for the purpose
of automatic extraction of bilingual dictionary. Their direct mapping method can be
achieved without any machine learning methods because it simply maps a word
vector by translating the context words, each of which is assigned to a specific
dimension of the source vector. Since the translation of context words is based on a
seed bilingual dictionary, the accuracy of vector mapping can be extremely low if
the seed dictionary does not cover many of context words.

To cope with this problem, Mikolov et al.[69] reformulated the mapping of word
vectors as a linear transformation between source and target vector spaces. By using
the seed dictionary as training data, their method learns a linear mapping function
(translation matrix) that translates a source word vector into the target space. While
Fung’s method directly maps vectors using hard constraints (i.e., the correspondence
between dimensions of source and target vector spaces), Mikolov’s translation matrix
automatically learns soft correspondence between two spaces.

Mapping is not the only way to utilize word vectors in multi-languages. There
also exist several methods that directly induce word vectors shared by different
languages [12, 27, 36, 39, 46, 113]. Since these methods require a huge parallel corpus
to train the multilingual word vectors, they cannot be applied to language pairs
that have no parallel corpus. In addition, these approaches are unable to handle
words not appearing in the training data, unlike the aforementioned mapping-based
approaches [31, 70].

2.1.2 Domain Adaptation for Statistical Machine Translation

Most previous approaches to domain adaptation for smt assume a scenario where a
small or pseudo in-domain parallel corpus is available. In this section, we briefly
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overview a method of domain adaptation for smt in a setting where no in-domain
parallel corpus is available.

Wu et al. [110] have proposed domain adaptation for smt that exploits an in-
domain bilingual dictionary. They generate a translation model from the bilingual
dictionary and combine it with the translation model learned from out-of-domain
parallel corpora. An issue here is how to learn a translation probability between
words (or phrases) needed for the translation model, and they resort to probabilities
of words in the target language in a monolingual corpus. Although building a
bilingual dictionary for the target domain is more effective than developing a parallel
corpus to cover rare oovwords, it is still difficult to develop a bilingual dictionary
for most mt users who cannot command the target language.

To cope with this problem, several researchers have recently exploited a bilingual
lexicon automatically induced from in-domain corpora to generate a translation
model for smt [20, 41, 93]. These approaches induce a bilingual lexicon from in-
domain comparable corpora prior to the translation and use it to obtain an in-domain
translation model.

Marthur et al. [65] exploit parallel corpora in various domains to induce the
translation model for the target domain. They used 11 sets of parallel corpora for
domains including TED talks, news articles, and software manuals to train the
translation model for each domain and then linearly interpolated these translation
models to derive a translation model for the target domain. They successfully
improved the quality of translation when no parallel corpus was available for the
target domain. Yamamoto and Sumita [114] assume various language expressions in
translating travel conversations and train several language and translation models
from a set of parallel corpora that are split by unsupervised clustering of the entire
parallel corpus for travel conversations. The language and translation models for
translating a given sentence are chosen in accordance with the similarity between the
given sentence and the sentences in each split of the parallel corpus. Although this
method is not intended for domain adaptation, it can be used in our setting when we
have a parallel corpus for the general domain (and the domain of the target sentence
is included in the general domain). These studies, however, implicitly assume
in-domain (or related domain) parallel corpora are available, while we assume those
resources are unavailable to broaden the applicability of our method.

Among these studies, our method is most closely related to domain adaptation
using bilingual lexicon induction [20, 41, 93] but is different from these approaches
in that it does not need to build a sort of bilingual lexicon prior to the translation
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to support the translation of oovwords in a given sentence. We use a projection of
semantic representations of source-language words to the target-language semantic
space to dynamically find translation candidates of found oov words by computing
the similarity of the obtained representations to semantic representations for words
in the target language at the time of translation. Also, we empirically show that our
approach could even benefit from general-domain non-comparable monolingual
corpora instead of in-domain comparable monolingual corpora used in these studies
on bilingual lexicon induction.

2.2 Utilizing Chunk Structures in Neural Machine Trans-
lation

Neural machine translation performs end-to-end translation based on a simple
encoder-decoder model and has now overtaken the classical, complex statistical
machine translation in terms of performance and simplicity. With the word-based
neural decoder, however, there are two problems to be solved: the long-distance
dependencies and free word-order in some languages. To cope with these problems,
in Chapter 4, we propose a chunk-based decoder for nmt. The proposed decoder
generates sentences in a chunk-by-chunk manner instead of word-by-word manner
and improves the performance of English-to-Japanese translation. In this section, we
introduce the related work that uses chunk (or phrase) structure to improve machine
translation quality.

The most notable work involved phrase-based smt [51], which has been the
basis for a huge amount of work on smt for more than ten years. Apart from this,
Watanabe et al. [2003] proposed a chunk-based translation model that generates
output sentences in a chunk-by-chunk manner. The chunk structure is effective not
only for smt but also for example-based machine translation (ebmt). Kim et al. [45]
proposed a chunk-based ebmt and showed that using chunk structures can help
with finding better word alignments. Our work is different from theirs in that our
models are based on nmt, but not smt or ebmt. The decoders in the above studies
can model the chunk structure by storing chunk pairs in a large table. In contrast,
we do that by individually training a chunk generation model and a word prediction
model with two rnns.

While most of the nmtmodels focus on the conversion between sequential data,
some works have tried to incorporate non-sequential information into nmt [23, 102].
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Eriguchi et al. [23] use a Tree-based lstm [104] to encode the input sentence into
context vectors. Given a syntactic tree of a source sentence, their tree-based encoder
encodes words from the leaf nodes to the root nodes recursively. Su et al. [102]
proposed a lattice-based encoder that considers multiple tokenization results while
encoding the input sentence. To prevent the tokenization errors from propagating to
the whole nmt system, their attice-based encoder can utilize multiple tokenization
results. These works focus on the encoding process and propose better encoders that
can exploit the structures of the source language. In contrast, our work focuses on
the decoding process to capture the structure of the target language. The encoders
described above and our proposed decoders are complementary so they can be
combined into a single network.

Considering that our model can be seen as a hierarchical rnn, our work is also
related to previous studies that utilize multi-layer rnns to capture hierarchical
structures in data. Hierarchical rnns are used for various NLP tasks such as
machine translation [60], document modeling [56, 57], dialog generation [95], image
captioning [52], and video captioning [118]. In particular, Li et al. [56] and Luong
and Manning [60] use hierarchical encoder-decoder models, but not for the purpose
of learning syntactic structures of target sentences. Li et al. [56] build hierarchical
models at the sentence-word level to obtain better document representations. Luong
and Manning [60] build the word-character level to cope with the out-of-vocabulary
problem. In contrast, we build a hierarchical models at the chunk-word level to
explicitly capture the syntactic structure based on chunk segmentation.

In addition, the architecture of our proposed model is also related to stacked
rnn, which has proven to be effective in improving the translation quality [61, 103].
Although these architectures look similar to each other, there is a fundamental
difference between the directions of the connection between two layers. A stacked
rnn consists of multiple rnn layers that are connected from the input side to the
output side at every time step. In contrast, our model has a different connection
at each time step. Before it generates a chunk, there is a feed-forward connection
from the chunk-level decoder to the word-level decoder. However, after generating
a chunk representation, the connection is to be reversed to feed back the information
from the word-level decoder to the chunk-level decoder. By switching the connections
between two layers, our model can capture the chunk structure explicitly. This is
the first work that proposes decoders for nmt that can capture plausible linguistic
structures such as chunk.
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Finally, we noticed that [120] have also proposed a chunk-based decoder for nmt.
Their good experimental result on Chinese to English translation task also indicates
the effectiveness of “chunk-by-chunk” decoders. Although their architecture is
similar to our model, there are several differences: (1) they adopt chunk-level
attention instead of word-level attention; (2) their model predicts chunk tags (such
as noun phrase), while ours only predicts chunk boundaries; and (3) they employ a
boundary gate to decide the chunk boundaries, while we do that by simply having
the model generate end-of-chunk tokens.

2.3 Identifying the Sense for Words and Phrases

When we read news text with emerging entities, text in unfamiliar domains, or text
in foreign languages, we often encounter expressions (words or phrases) whose
senses we are unsure of. To cope with this problem, in Chapter 5, we will address a
task of describing a given phrase with its context. In this section, we explain existing
tasks that are related to our work.

Our task of describing phrases is closely related to word sense disambiguation
(wsd) [76], which identifies a pre-defined sense for the target word with its context.
Although we can use it to solve our task by retrieving the definition sentence for
the sense identified by wsd, it requires a substantial amount of training data to
handle a different set of meanings of each word, and cannot handle words (or senses)
which are not registered in the dictionary. Although some studies have attempted
to detect novel senses of words for given contexts [25, 53], they do not provide
definition sentences. Our task avoids these difficulties in wsd by directly generating
descriptions for phrases or words. It also allows us to flexibly tailor a fine-grained
definition for the specific context.

Paraphrasing [5, 63] (or text simplification [99]) can be used to rephrase words with
unknown senses. However, the target of paraphrase acquisition are words/phrases
with no specified context. Although a few studies [17, 66, 67] consider sub-sentential
(context-sensitive) paraphrases, they do not intend to obtain a definition-like de-
scription as a paraphrase of a word.

Recently, Noraset et al. [85] introduced a task of generating a definition sentence
of a word from its pre-trained embedding. Since their task does not take local
contexts of words as inputs, their method cannot generate an appropriate definition
for a polysemous word for a specific context. To cope with this problem, Gadetsky
et al. [32] proposed a definition generation method that works with polysemous
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words in dictionaries. They presented a model that utilizes local context to filter out
the unrelated meanings from a pre-trained word embedding in a specific context.
While their method uses local context only for disambiguating the meanings that are
mixed up in word embeddings, the information from local contexts cannot be utilized
if the pre-trained embeddings are unavailable or unreliable. On the other hand, our
method can fully utilize the local context through an attentional mechanism, even if
the reliable word embeddings are unavailable.

The most related work to ours is Ni and Wang [83]. Focusing on non-standard
English phrases, they proposed a model to generate the explanations solely from
local context. They followed the strict assumption that the target phrase was newly
emerged and there was only a single local context available, which made the task
of generating an accurate and coherent definition difficult. Our proposed task and
model are more general and practical than Ni and Wang [83]; where (1) we use
Wikipedia, which includes expressions from various domains, and (2) our model
takes advantage of global contexts if available.

Our task of describing phrases with its context is a generalization of these three
tasks [85, 83, 32], and the proposed method naturally utilizes both local and global
contexts of an expression in question.





Chapter 3

Accurate and Instant Translation
Model Adaptation for Statistical
Machine Translation

3.1 Overview

In order to obtain fresh and diverse information from multi-lingual text such as
Twitter, Wikipedia, or research papers on ArXiv, we need to cope with language
barrier. Machine translation, as one of the most important applications of natural
language processing, has been playing an important role in overcoming the language
barrier. smt has been successfully applied to the translation between various
language pairs, particularly phrase-based smt, which is the most common since it
can learn a translation model from a sentence-aligned parallel corpus without any
linguistic annotations.

Although we can improve the quality of machine translation by using a large
language model that can be obtained from easily available monolingual corpora [10],
language models capture only the fluency in languages so the quality of translation
cannot be improved much if the translation model does not provide correct translation
candidates for source-language words and phrases. The quality of translation in smt
is therefore bounded by the size of parallel corpus to train the translation model.
Even if a large parallel corpus is available for the pair of languages in question, we
often want to translate sentences in a domain that has a different vocabulary from
the domain of available parallel corpora, and this inconsistency deteriorates the
quality of translation [40, 18].
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Researchers have tackled this problem and proposed methods of domain adap-
tation that exploits a larger out-of-domain parallel corpus. They have focused on
a scenario in which a small or pseudo in-domain parallel corpus is available for
training [64]. In actual scenarios when users want to exploit machine translation,
the target domains can differ so the domain mismatches between the prepared smt
system and the target documents are likely to occur. Domain adaptation is thus
expected to improve the quality of translation. However, it is unrealistic for most
mt users who cannot command the target language to prepare in-domain parallel
corpora by themselves. The use of crowdsourcing for preparing in-domain parallel
corpora is allowed for a few users who have a large number of documents for
translation and are willing to pay money for improving the quality of translation.

In this study, we assume domain adaptation for smt in a scenario where no
sentence-aligned parallel corpus is available for the target domain. To overcome
the difference of domains in training and test data, we propose an accurate and
instant domain adaptation method for smt. Our method consists of two modules to
adapt translation model accurately and instantly: (1) an accurate word translator
that searches the translation candidates of unknown (out-of-vocabulary, oov) words;
and (2) an instant back-offmodel that dynamically assigns appropriate translation
probabilities to the translation candidates in smt systems.

Based on the two proposed modules, our method adapts translation model in
four steps. First, assuming that source- and target-language monolingual corpora are
available, we train vector-based semantic representations of words in the source and
target languages from those monolingual corpora. Second, we obtain an accurate
projection function from semantic representations in the source language to those
in the target language. The projection function can be automatically trained with
a seed dictionary (in general domain) to learn a translation matrix. Then, we map
the vectors of oov words into target vector space to find translation candidates
with nearest-neighbor search in the target space. Finally, our instant back-offmodel
approximates translation probabilities of the found candidates by using their cosine-
similarity with the mapped oov word in the target language. The obtained back-off
model can be naturally integrated into any smtmodels.

To evaluate the effectiveness of our methods, we conducted evaluations in
two tasks: oov word translation and out-of-domain translation. In the oov word
translation experiment, our oov translation method outperformed existing methods
in four languages, Japanese (ja), Chinese (zh), English (en), and Spanish (es) without
any additional supervisions. In the out-of-domain translation experiment, we apply
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our methods to a translation between English and Japanese in recipe documents.
Since the translation model was trained with Kyoto-related Wikipedia articles,
we applied our back-off model to cope with this serious domain difference. The
experimental results confirmed that our back-off model improves bleu score by
0.5-1.5 and 0.1-0.2 for ja-en and en-ja translations, respectively.

The remainder of this chapter is structured as follows. In Section 3.3, we describe
our method of accurate translation of word semantic representations. This is followed
by Section 3.4, in which we propose a method of adapting smt to a new domain
without a sentence-aligned parallel corpora. In the next two sections, we present the
evaluations for the proposed methods. In Section 3.5 and Section 3.6, we describe
the evaluations of our proposed methods on (1) oovword translation task, and (2)
domain adaptation task for smt, respectively. Finally, in Section 3.7, we conclude
this study and address future work.

3.2 Preliminaries: Statistical Machine Translation

In this section, we briefly introduce the history and the architecture of statistical
machine translation. The original idea of machine translation was first discussed by
Warren Weaver in a letter to Nobert Wiener [84]. His idea of “using digital computers
to translate documents between natural human languages” has been the basis of
machine translation until today.

In 1950’s, the early research on machine translation had been focusing on rule-
based methods. In the rule-based machine translation systems, computers translate
text based on the rules that are described by the linguists who were familiar with both
the source and target languages. In late 1980’s, statistical machine translation [11]
(smt) was newly proposed. Since smt automatically extracts the translation rules
from massive parallel corpora, it no longer requires human linguists to write down
the language-dependent grammars for each language. This characteristic of smt
allows us to build translation systems for several language pairs using a universal
architecture. In the following sections, we describe the basic mechanism of smt and
the method to evaluate the translation systems.

3.2.1 Noisy Channel Model

Weaver’s idea of “using digital computers to translate documents between natural
human languages” can be modeled as a noisy channel model [97], which was
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originally proposed by Claude E. Shannon. A translation system that selects an
appropriate translation eee? (e.g., an English sentence) from all set of sentences EEE given
fff (e.g., a French sentence) can be formulated as:

eee? = argmax
eee∈EEE

P(eee| fff ). (3.1)

Using Bayes’ theorem, this equation can be rewritten as:

eee? = argmax
eee∈EEE

P( fff |eee)P(eee)
P( fff )

(3.2)

= argmax
eee∈EEE

P( fff |eee)P(eee) (3.3)

Here, since the denominator P( fff ) in Eq. (3.2) is a constant, the problem of
translation is reduced to the maximization problem of Eq. (3.3). In the context of
machine translation, we call P( fff |eee) a translation model and P(eee) a language model.
While the translation model represents the adequacy of translation, the language
model captures the fluency of the sentence eee. smt systems output correct and fluent
translations by maximizing the product of the two models.

3.2.2 Language Model

As described in the previous section, the language model encourages smt systems to
output a fluent sentence eee. That is, the language model assigns higher scores to the
sentences which (1) consist of appropriate words and (2) are grammatically correct.
Three examples of translation candidates are shown below:

• eee111 : I drink coffee.

• eee222 : I coffee drink.

• eee333 : I am coffee.

Comparing the three sentences above, we can find that eee111 consists of appropriate
words and grammatically correct. While eee222 is grammatically incorrect, eee333 has
inappropriate words. The role of the language model is to assign a higher translation
probability to translation candidates such as eee111, and help the system to output correct
sentences.

An accurate language model can be obtained by training from a massive mono-
lingual document set (hereafter corpus). For example, if a sentence “I drink coffee.”
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appears 200 times in a corpus consists of one million sentences, the generation
probability can be computed as

P(eee = I drink coffee.) = 0.0002.

However, this naive model suffers from the data sparseness problem. Since long
sentences are not likely to exist in training corpus, this probability model often
outputs 0 given a long sentence. N-gram language model is widely used in the
area of natural language processing to cope with this problem. An n-gram1 is a
sequence of n words that appears in the corpus. Instead of computing the probability
of the whole sentence, the n-gram language model computes the probability of a
sequence of words that consists of the sentence. For example, the sentence probability
described above can be rewritten as

P(eee = I drink coffee.)

=P(〈s〉, I,drink,coffee,〈/s〉), (3.4)

where the 〈s〉 and the 〈/s〉 represent the beginning and the end of a sentence,
respectively. By applying chain rule, this equation can be rewritten as a product of
the conditional probabilities as

P(〈s〉, I,drink,coffee,〈/s〉)

= P(e1 = I|e0 = 〈s〉)

×P(e2 = drink|e0 = 〈s〉,e1 = I)

×P(e3 = coffee|e0 = 〈s〉,e1 = I,e2 = drink)

×P(e4 = 〈/s〉|e0 = 〈s〉,e1 = I,e2 = drink,e3 = coffee). (3.5)

This can be approximated by the n-gram language model by assuming that the
generation of words is only conditioned by the previous n− 1 words, instead of
considering all the preceding words as:

P(en|en−1
1 ) ≈ P(en|en−1

n−N+1) (3.6)

1The terms unigram (n = 1), bigram (n = 2), trigram(n = 3) are used when n is smaller than 4. For
n = 4, it is referred to as 4-gram, 5-gram, and so on.
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For example, if N is set to 2, the conditional probability in Eq. 3.5 can be
approximated as:

P(〈s〉, I,drink,coffee,〈/s〉)

= P(e1 = I|e0 = 〈s〉)

×P(e2 = drink|e1 = I)

×P(e3 = coffee|e2 = drink)

×P(e4 = 〈/s〉|e3 = coffee). (3.7)

Here, note that the number of the 〈s〉 tokens k increases as N becomes larger (k=N−1).
This approximation allows us to assign appropriate probabilities to longer sentences
even if we cannot observe the same sentence in the training corpus.

3.2.3 Phrase-based Statistical Machine Translation

Most of the currently used smt systems are based on the Phrase-based smt [51]
model. Phrase-based smt consists of (1) a phrase translation model that translates
the phrases in the source sentence into target language, and (2) a distortion model
that reorders the translated phrases into a correct order. The translation is computed
with the models as:

eee? = argmax
eee∈EEE

P( fff |eee)P(eee)

= argmax
eee∈EEE

∑
φφφ,ααα

P( fff ,φφφ,ααα|eee)P(eee)

≈ argmax
eee∈EEE

∑
φφφ,ααα

P( fff ,ααα|φφφ)P(φφφ|eee)P(eee) (3.8)

Here, a latent variable ααα is a vector that represents the order of the phrases. A
probability distribution φφφmodels the phrase translation. The right term of Eq. 3.8
denotes the translation process as followings. First, a target sentence eee is generated
from the language model P(eee). Next, it is translated by the translation model P(φφφ|eee).
Finally, the translated phrases are reordered by the distortion model P( fff ,ααα|φφφ) to
obtain the source sentence fff .

Given a set of hand-made translation pair 〈 fff ,eee〉, we can train the translation model
and the distortion model by maximizing the likelihood of P( fff |eee). After training
the models, the translation of a source sentence fff can be reduced to a problem of
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selecting the best eee? from the set of all target sentences EEE by solving the Eq. 3.8.
However, it is impractical to generate all target sentences in EEE. In order to reduce
the search space, the practical systems usually set constraints to limit the number of
reordering patterns.

Several researchers have been working on phrase-based smt and many proposed
methods are implemented on Moses,2 an open-sourced smt project. All experiments
on smt in this thesis are also conducted with Moses toolkit.

3.2.4 Evaluation Methods for Machine Translation

To evaluate a machine translation system, subjective evaluation and automatic
evaluation can be conducted. Since the purpose of machine translation is to help
human understand foreign language, the subjective evaluation conducted by human
is important and reasonable. However, human evaluation has problems such as:
(1) evaluation results by different evaluators may vary, (2) evaluation procedure is
difficult to be reproduced, and (3) it cost much and is time-consuming[108, pp.47–57].
Since the statistical models in smt systems have lots of parameters to be tuned, an
easy, fast, and cheap evaluation method had been required.

The Bilingual Evaluation Understudy (hereafter bleu) [88] is the most commonly
used automatic evaluation method for machine translation. bleu is a precision based
metric that measures the ratio of n-gram overlap between the system output and
reference translations as:

BLEU = BP ·exp

 N∑
n=1

wn logpn

 , (3.9)

where pn represent the precision of n-gram in the system outputs. Here, the bleu has
a problem that high pn can be easily achieved by only generating the words with
high confidence. To cope with this problem, the Brevity penalty (BP) is introduced
to avoid the system output being extremely short:

BP =

1 if c > r

e(1−r/c) if c ≤ r,
(3.10)

where c and r represent the number of words in system output and the reference,
respectively.

2http://www.statmt.org/moses/



20
Accurate and Instant Translation Model Adaptation for Statistical Machine

Translation

3.3 Proposed: Accurate Cross-lingual Projection of Word
Semantic Representations

There exist substantial differences between distributions of words in documents
when they are in different domains. The differences will make a sentence whose
domain is different from that of training data tends to be difficult to be translated.

Our method exploits a projection of semantic representations of oov words in
the source-language onto the target-language semantic space to look for translation
candidates for the oovwords. In this section, we first introduce semantic representa-
tions of words in a continuous vector space. And then, we propose a method that
accurately learns a translation matrix for projecting vector-based representations of
words across languages.

3.3.1 Learning Cross-lingual Projection between Vector Represen-
tations of Words

A vector-based semantic representation of a word, hereinafter word vector, represents
the meaning of a word with a continuous vector. These representations are based
on the distributional hypothesis [37, 29], which states that words that occur in the
similar contexts tend to have similar meanings. The word vectors can be obtained
from monolingual corpora in an unsupervised manner, such as a count-based
approach [59] or prediction-based approaches [8, 68].

The words that have similar meanings tend to have similar vectors [106, 26].
By mapping words into a continuous vector space, we can use cosine similarity
to compute the similarity of meanings between words. However, the similarity
between word vectors across languages is difficult to compute, so these word vectors
are difficult to utilize in cross-lingual applications such as machine translation or
cross-lingual information retrieval.

To solve this problem, Mikolov et al. [70] proposed a method that learns a cross-
lingual projection of word vectors from one language into another. By projecting a
word vector into the target-language semantic space, we can compute the semantic
similarity between words in different languages. Suppose that we have training data
of n examples, {(xxx1,zzz1), (xxx2,zzz2), . . . (xxxn,zzzn)}, where xxxi is the vector representation of a
word in the source language (e.g., “gato”), and zzzi is the word vector of its translation
in the target language (e.g., “cat”). Then the translation matrix, WWW, such that WWWxxxi
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approximates zzzi, can be obtained by solving the following optimization problem:

WWW? = argmin
WWW

n∑
i=1

‖WWWxxxi− zzzi‖
2.

3.3.2 Exploiting Translatable Context Pairs

Within the learning framework above, we propose exploiting the fact that dimensions
of count-based word vectors are associated with context words, and some dimensions
in the source language are translations of those in the target language.

For an illustration purpose, suppose count-based word vectors of Spanish and
English. The Spanish word vectors would have dimensions associated with context
words such as “amigo,” “comer,” “importante,” while the dimensions of the English
word vectors are associated with “eat,” “run,” “small” and “importance,” and so
on. Since, for example, “friend” is an English translation of “amigo,” the Spanish
dimension associated with “amigo” is likely to be mapped to the English dimension
associated with “friend.” Such knowledge about the cross-lingual correspondence
between dimensions is considered beneficial for learning an accurate translation
matrix.

We take two approaches to obtaining such correspondence. Firstly, since we
have already assumed that a small amount of training data is available for training
the translation matrix, it can also be used for finding the correspondence between
dimensions (referred to as Dtrain). Note that it is natural that some words in a
language have many translations in another language. Thus, for example, Dtrain

may include (“amigo”, “friend”), (“amigo”, “fan”) and (“amigo”, “supporter”).
Secondly, since languages have evolved over the years while often deriving

or borrowing words (or concepts) from those in other languages, those words
have similar or even the same spelling. We take advantage of this to find the
correspondence between dimensions. We specifically define function dist(r,s) that
measures the surface-level similarity, and regard all context word pairs (r,s) having
smaller distance than a threshold3 as translatable ones (referred to asDsim).

dist(r,s) =
Levenshtein(r,s)

min(len(r), len(s))
(3.11)

where function Levenshtein(r,s) represents the Levenshtein distance between the two
words, and len(r) represents the length of the word.

3The threshold was fixed to 0.5.



22
Accurate and Instant Translation Model Adaptation for Statistical Machine

Translation

3.3.3 Modified Objective Function

We incorporate the knowledge about the correspondence between the dimensions
into the learning framework. Since the correspondence obtained by the methods pre-
sented above can be noisy, we want to treat it as a soft constraint. This consideration
leads us to develop the following new objective function:

WWW? = argmin
WWW

n∑
i=1

‖WWWxxxi− zzzi‖
2+
λ
2
‖WWW‖2−βtrain

∑
( j,k)∈Dtrain

w jk−βsim

∑
( j,k)∈Dsim

w jk.

The second term is the L2 regularizer, while the third and fourth terms are meant
to strengthen w jk when k-th dimension in the source language corresponds to j-th
dimension in the target language. Dtrain andDsim are sets of translatable dimension
pairs. Dtrain is obtained from the above training data, while Dsim is obtained by
computing the surface-level similarity between the dimensions. λ, βtrain and βsim are
corresponding hyperparameters to control the strength of the added terms.

3.3.4 Optimization

We use the Pegasos algorithm [96], an instance of the stochastic gradient descent [9],
to optimize the new objective. Given the τ-th learning sample (xxxτ,zzzτ), we update
translation matrix WWW as follows:

WWW←WWW−ητ∇Eτ(WWW) (3.12)

where ητ represents the learning rate and is set to ητ = 1
λτ , and ∇Eτ(WWW) is the gradient

which is calculated from τ-th sample (xxxτ,zzzτ):

2(WWWxxxτ− zzzτ)xxxT
τ −βtrainAAA−βsimBBB+λWWW. (3.13)

AAA and BBB are gradients corresponding to the two new terms. AAA is a matrix in which
a jk = 1 if ( j,k) ∈ Dtrain otherwise 0. BBB is defined similarly.
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3.4 Proposed: Instant Translation Model Adaptation
for Statistical Machine Translation

In the previous section, we proposed an accurate cross-lingual projection method
for word vectors. Since this method does not require any parallel corpora, it can be
naturally applied to domain adaptation pipeline for smt, where we cannot access
any in-domain parallel corpora.

In this section, we propose an instant translation model for smt using the
projection of word vectors. Our method assumes that monolingual corpora are
available for the source and target language (in the target domain, if any) and first
induces word vectors from those corpora. It then learns a cross-lingual projection
(translation matrix) using a seed dictionary in a general domain as described in
Section 3.3. Note that a seed dictionary for common words is usually available
for most pairs of languages or could be constructed assuming English as a pivot
language [105].

Having a translation matrix to obtain projections of semantic representations of
oovwords in a given sentence, our method instantly constructs a back-off translation
model used for enumerating translation candidates for the oovwords in the following
way:

Step 1: When the translation system accepts a sentence with an oov word, foov,
it translates a semantic representation of the word, xxxoov into a semantic
representation in the target language xxx′oov using the translation matrix obtained
by the method described in Section 3.3.

Step 2: It then computes the cosine similarity between the obtained semantic rep-
resentations with those in the target languages to enumerate k translation
candidates4 in accordance with the value of cosine similarity. The cosine
similarity is also used to obtain Pvec(e| foov), the direct translation probabilities
from the oov word in the source language, foov, to a candidate word in the
target language, e, by normalizing them to sum up to 1. Although the obtained
translation candidates could include wrong translations, the language model
can choose one that is more appropriate in the contexts in the next step, unless
the contexts are full of oovwords.

Step 3: The decoder of phrase-based smt uses the above translation probabilities
as a back-off translation model to perform the translation. More formally, we

4k was set to 10 in the experiments.
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add a new feature function hvec to the log-linear model used in the decoder as
follows:

logP(eee| fff ) =
∑

i

log(hi(eee, fff ))λi+ log(hvec(eee, fff ))λvec (3.14)

The hvec(eee, fff ) in Eq. (3.14) is computed with Pvec(e| foov), only for each oovword
foov in source sentence fff . An issue here is how to set feature weight λvec since
no in-domain training data are available for turning. We simply set λvec to
the same value as the weight of direct phrase translation probability of the
translation model.

3.5 Experiments: Cross-lingual Projection of Word Se-
mantic Reprensentations

In the previous sections, we proposed two modules to realize an accurate and instant
domain adaptation for smt. In this section, we evaluate the first module: the accurate
cross-lingual projection of word vectors. We perform vector translation experiments
between four languages: English (En), Spanish (Es), Japanese (Ja) and Chinese
(Zh) so that we can examine the impact of each type of translatable context pairs
integrated into the learning objective.

3.5.1 Settings

First, we prepared source text in the four languages from Wikipedia5 dumps following
[7]. We extracted plain text from the XML dumps by using wp2txt.6 Since words
are concatenated in Japanese and Chinese, we used MeCab7 and Stanford Word
Segmenter8 to tokenize the text. Since inflection occurs in English, Spanish, and
Japanese, we used Stanford POS tagger,9 Pattern,10 and MeCab to lemmatize the
text.

Next, we induced count-based word vectors from the obtained text. We considered
context windows of five words to both sides of the target word. The function words
are then excluded from the extracted context words. Since the count vectors are very

5http://dumps.wikimedia.org/
6https://github.com/yohasebe/wp2txt/
7http://taku910.github.io/mecab/
8http://nlp.stanford.edu/software/segmenter.shtml
9http://nlp.stanford.edu/software/tagger.shtml

10http://www.clips.ua.ac.be/pages/pattern



3.5 Experiments: Cross-lingual Projection of Word Semantic Reprensentations 25

Table 3.1: Experimental results: the accuracy of the translation.

Lang. Baseline CBOW Direct Mapping Proposedw/o surface Proposed
pairs P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5
Ja →Zh 0.6% 1.6% 5.4% 13.8% 9.3% 22.2% 11.1% 26.2% 15.5% 34.0%
Zh→ Ja 0.3% 1.2% 2.9% 11.3% 11.6% 26.9% 7.8% 21.6% 13.1% 27.9%
Ja →En 0.2% 1.0% 6.5% 19.1% 22.3% 37.4% 32.3% 51.0% 32.5% 51.9%
En→ Ja 0.3% 1.1% 4.9% 13.3% 5.4% 13.9% 18.5% 36.4% 19.3% 37.1%
Zh→En 0.2% 0.8% 3.4% 11.8% 23.3% 40.6% 22.3% 40.4% 23.1% 42.0%
En→Zh 0.2% 1.1% 5.1% 13.7% 4.5% 11.8% 9.1% 22.1% 9.5% 23.0%
En→Es 0.2% 1.0% 7.1% 18.9% 11.9% 26.1% 28.7% 45.7% 31.3% 49.6%
Es →En 0.0% 0.6% 7.5% 22.0% 45.7% 61.1% 46.6% 62.4% 54.7% 67.6%

high-dimensional and sparse, we selected top-10k frequent words as contexts words
(in other words, the number of dimensions of the word vectors). We converted
the counts into positive point-wise mutual information [16] and normalized the
resulting vectors to remove the bias that is introduced by the difference of the word
frequency.

Then, we compiled a seed bilingual dictionary (a set of bilingual word pairs) for
each language pair that is used to learn and evaluate the translation matrix. We
utilized cross-lingual synsets in the Open Multilingual Wordnet11 to obtain bilingual
pairs.

Since our method aims to be used in expanding bilingual dictionaries, we
designed datasets assuming such a situation. Considering that more frequent
words are likely to be registered in a dictionary, we sorted words in the source
language by frequency and used the top-11k words and their translations in the
target language as a training/development data, and used the subsequent 1k words
and their translations as the test data. Here, if there exist polysemous words, we
extract all of them as independent examples. Thus, as shown in Table 3.2, the
vocabulary sizes in target side and the amount of training data are always larger
than 10k. Since each target word is not always correspond to a single source word,
the size ofDtrain can also be larger than 10k. Note that the Table 3.2 does not include
the (Ja→ Es), (Es→ Ja), (Zh→ Es), and (Es→ Zh). We cannot extract the bilingual
dictionaries for these language pairs because there are no large parallel corpora for
these pairs included in Open Multilingual Wordnet.

We have compared our method with the following three methods:

11http://compling.hss.ntu.edu.sg/omw/
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Table 3.2: Vocabulary size, the amount of the training data, and the translatable
context pairsDtrain andDsim.

Vocab. size (source) Vocab. size(target) # training data Dtrain Dsim

(Ja→ Zh) 10,000 10,641 42,037 9,552 3,189
(Zh→ Ja) 10,000 20,356 69,619 9,552 3,189
(Ja→ En) 10,000 15,060 50,300 18,296 2,234
(En→ Ja) 10,000 28,275 84,451 18,296 2,234
(Zh→ En) 10,000 15,784 41,144 9,292 3,551
(En→ Zh) 10,000 14,770 38,854 9,292 3,551
(En→ Es) 10,000 10,247 34,034 15,567 12,764
(Es→ En) 10,000 19,917 48,125 15,567 12,764

Baseline learns a translation matrix using Eq. 3.3.1 for the same count-based
word vectors as the proposed method. Comparison between the proposed
method and this method reveals the impact of incorporating the cross-lingual
correspondences between dimensions.

CBOW learns a translation matrix using Eq. 3.3.1 for word vectors learned by a neural
network (specifically, continuous bag-of-words (cbow)) [70]. Comparison
between this method and the above baseline reveals the impact of the vector
representation. Note that the cbow-based word vectors take rare context words
as well as the top-10k frequent words into account. We used word2vec12 to
obtain the vectors for each language.13 Since Mikolov et al. [70] reported the
accurate translation can be obtained when the vectors in the source language is
2-4x larger than that in the target language, we prepared m-dimensional (m =
100,200,300) vectors for the target language and n-dimensional (n = 2m,3m,4m)
vectors for the source language, and optimized their combinations on the
development data.

Direct Mapping exploits the training data to map each dimension in a word vector
in the source language to the corresponding dimension in a word vector in
the target language, referring to the bilingual pairs in the training data [31].
To deal with words that have more than one translation, we weighted each
translation by a reciprocal rank of its frequency among the translations in the
target language, as in [91].

12https://code.google.com/p/word2vec/
13The threshold of sub-sampling of words was set to 1e-3 to reduce the effect of very frequent

words, e.g., “a” or “the.”
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Note that all methods, including the proposed methods, use the same amount of
supervision (training data) and thereby they are completely comparable with each
other.

Evaluation procedure

For each word vector in the source language, we translate it into the target language
and evaluate the quality of the translation as in [70]: i) measure the cosine similarity
between the resulting word vector and all the vectors in the test data (in the target
language), ii) next choose the top-n (n = 1,5) word vectors that have the highest
similarity against the resulting vector, and iii) then examine whether the chosen
vectors include the correct one.

3.5.2 Results

Overall performances

Table 3.9 shows results of the translation between word vectors in each language
pair. Proposed significantly improved the translation quality against Baseline, and
performed the best among all of the methods. Although the use of cbow-based word
vectors (CBOW) has improved the translation quality against Baseline, the perfor-
mance gain is smaller than that obtained by our new objective. Proposedw/o surface

uses only the training data to find translatable context pairs by setting βsim = 0. Thus,
its advantage over Direct Mapping confirms the importance of learning a translation
matrix. On the other hand, in (Zh→ Ja) and (Zh→ En) translations, Direct Mapping
performs even better than Proposedw/o surface. Also, there is no clear improvement
in (Ja→ Zh) and (En→ Zh). The amount ofDtrain in Table 3.2 provides the reason
for these phenomena. We can find that the sizes ofDtrain in (Ja, En) or (En, Es) are
1.6x to 2x larger than that of (Ja, Zh) and (Zh, En). This data suggests that if we
have enough size of bilingual dictionary,Dtrain contributes much in improving the
translation performance.

In addition, the greater advantage of Proposed over Proposedw/o surface in the
translation between (En, Es) or (Ja, Zh) conforms to our expectation that surface-level
similarity is more useful for translation between the language pairs which have often
exchanged their vocabulary. Note that the performances of different language pairs
cannot be compared. This is because the sizes of the Wikipedia corpora, on which
we trained the word vectors, are significantly different.
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Table 3.3: The performance changes by introducingDsim in optimization. There exist
1,000 of test data in total.

incorrect→ correct correct→ incorrect
(Ja→ Zh) 53 9
(Zh→ Ja) 60 7
(Ja→ En) 9 7
(En→ Ja) 11 3
(Zh→ En) 14 6
(En→ Zh) 8 4
(En→ Es) 52 26
(Es→ En) 108 27

To further analyze the effect of the surface similarity of context words on the
translation matrix, we show the performance changes due to theDsim in Table 3.3.
We have already discussedDsim helps translation in (Ja, Zh) and (En, Es). The table
shows that only the pairs of (En, Es) have performance deterioration (correct →
incorrect) in several examples, while all the language pairs have improved examples
(incorrect→ correct) This result suggests that the parameters forDsim learn to ignore
minor mistakes and biases the model more aggressively when translating (En, Es).

Impact of the size of training data

Figure 3.1, 3.3, and 3.4 show precision@1s plotted against the size of training data.
Remember that the training data is not only used to learn a translation matrix in
the methods other than Direct Mapping but also is used to map dimensions in
Direct Mapping and the proposed methods. Proposed performs the best among
all methods regardless the size of training data. Comparison between Direct
Mapping and Proposedw/o surface reveals that learning a translation matrix is not
always effective when the size of the training data is small, since it may suffer from
over-fitting (the size of the translation matrix is too large for the size of training
data). We can see that surface-level similarity is beneficial especially when the
size of training data is small. Let us focus on (Ja, Zh) and (En, Es), the language
pairs whose surface forms are similar to each other. We can find that the Proposed
outperforms Proposedw/o surface significantly if the size of training data is large. This
result indicates thatDsim, the clues of surface forms, helps accurate training of the
translation matrix.
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Table 3.4: Top-5 translations in (Zh→ Ja)

Baseline CBOW Direct Mapping Proposed(w/o surface) Proposed
校験位→パリティ /パリティビット/パリティー
# 1 違う 考慮 プリミティブ 縫い目 パリティビット

# 2 動く 相 クライアント 言葉 パリティ

# 3 持つ 把握 結び目 パリティ 縫い目

# 4 周囲 規準 用語 正しい クライアント

# 5 十分 正しい ディレクトリ 一見 言葉

焼瓶→フラスコ

# 1 周囲 卵殻 空気 フラスコ フラスコ

# 2 軽い 微粒子 フラスコ 空気 空気

# 3 動く フラスコ 溶解 磨る 活栓

# 4 小さい 小片 滴 寒天 磨る

# 5 持つ 薄片 寒天 天井 寒天

小農→小作農

# 1 周囲 変質 小作農 困窮 困窮

# 2 見る 溜め込む 困窮 把握 保護

# 3 現れる 無駄 配慮 好ましい 把握

# 4 かなり 不潔 把握 配慮 小作農

# 5 動く 腐敗 作物 保護 配分

Qualitative analysis

We show the translation examples in Table 3.13, Table 3.5, and Table 3.6. The
bolded characters in the tables represent the correct answers. In all three language
pairs, Baseline outputs similar translations. This phenomenon has reported as
Hubness problem [54], which is caused by the ridge regression on high-dimensional
spaces [98].

Using CBOW provides improvement from Baseline. For example, in the (En
→ Ja) translation task, there are “化け物” and “生霊” as translation candidates of
“sorceress”, and “微粒子” in the candidates of “xenon”. Although the cbowmodel
helps induce similar/related words as candidates, their # 1 candidates are still not
the correct translations.

There are lots of common outputs when comparing Direct Mapping and
Proposed(w/o surface). This is because both of them use the bilingual dictionary
to map the vectors. However, their ways of utilizing the bilingual information are
different. While the former uses a bilingual dictionary to directly map the vectors to
other language without any learning methods, the latter captures the information as
an additional term in the objective function.



30
Accurate and Instant Translation Model Adaptation for Statistical Machine

Translation

Table 3.5: Top-5 translations in (En→ Ja)

Baseline CBOW Direct Mapping Proposed(w/o surface) Proposed
sorceress→魔法使い/魔女
# 1 思う 化け物 魔物 魔物 魔法使い

# 2 恐ろしい 生霊 恐ろしい 魔法使い 魔物

# 3 捨てる 狂気 魔法使い 呪い 魔女

# 4 怒る 暴君 思う 魔女 呪い

# 5 邪魔 人殺し 呪い 怪物 エルフ

xenon→キセノン
# 1 逆 微粒子 気体 放射 キセノン

# 2 実際 蒸散 放射 キセノン 放射

# 3 ある程度 変化 粒子 気体 気体

# 4 弱い 吸い込む 特性 粒子 粒子

# 5 小さい 縮む 小さい 重力 重力

abduct→連れ去る
# 1 思う 追い払う 逃げる 連れ去る 襲う

# 2 捨てる 騙す 逃げ出す 襲う 連れ去る

# 3 恐ろしい 庇う 襲う 殺害 殺害

# 4 逃げる 責める 思う 殺し 殺し

# 5 怒る 見捨てる 恐ろしい 逃げ出す 逃げ出す

On top of the Proposed(w/o surface) model, the Proposed can also capture the
surface similarities of context words. By considering the surface similarities with
Dsim, it provides even better performance. As an example, let us compare the
translation of “校験位” in (Zh→ Ja). While Proposed(w/o surface) output the correct
answer “パリティ” as the # 3 candidate, the # 1 and 2 candidates of the Proposed
are both correct. There are a few cases where Proposed performs worse than other
methods, such as “小農”→ “小作農” (Zn→ Ja) and “yambo”→ “iamb” (Es→ En).
However, more examples show the superiority of the Proposed over other models.

3.6 Experiments: Domain Adaptation for Statistical Ma-
chine Translation

In the previous section, we showed the effectiveness of our method for cross-lingual
projection of word vectors. In this section, we apply the proposed projection method
to a domain adaptation task for smt to evaluate its effectiveness in a real world
application.
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Table 3.6: Top-5 translations in (Es→ En)

Baseline CBOW Direct Mapping Proposed(w/o surface) Proposed
clericalismo→ clericalism
# 1 call attitude struggle attitude clericalism
# 2 describe banality attitude negativity attitude
# 3 intend self-consciousness turn struggle struggle
# 4 make fatalistic clericalism clericalism negativity
# 5 ignore egoism espouse fatalistic chauvinism
papio→ baboon
# 1 call crab elephant cow baboon
# 2 turn dwarf antelope ichthyosaur crocodile
# 3 make elephant cow parcel dwarf
# 4 describe crocodile parcel elephant elephant
# 5 intend hairy bovid crocodile obscure
yambo→ iamb
# 1 call fairy call iamb interrogative
# 2 turn pluck turn caesura stanza
# 3 describe stick stanza interrogative iamb
# 4 make dark set gesture caesura
# 5 intend croak iamb stanza gesture

3.6.1 Settings

First, we prepared two parallel corpora in different domains to carry out an experi-
ment of domain adaptation in the smt system. One is the “Japanese-English Bilingual
Corpus of Wikipedia’s Kyoto Articles” (hereinafter kftt corpus), originally prepared
by the National Institute of Information and Communications Technology (nict)
and used as a benchmark in “The Kyoto Free Translation Task”14[78], a translation
task that focuses on Wikipedia articles relates to Kyoto. The other parallel corpus
(hereafter recipe corpus) is provided by Cookpad Inc.,15 which is the largest online
recipe sharing service in Japan. The kftt corpus includes many words which are
related to Japanese history and the temples or shrines in Kyoto. On the other
hand, the recipe corpus includes many words related to foods and cookware. We
randomly sampled 10k pairs of sentences from the recipe corpus as the test corpus
for evaluating our domain adaption method. The language models of the target
languages are trained with the concatenation of the kftt corpus and the remaining
portion of the recipe corpus, while the translation models are trained with only the
kftt corpus. The sizes of the training data and test data are as detailed in Table 3.7.

14http://www.phontron.com/kftt/
15http://cookpad.com/

http://www.phontron.com/kftt/
http://cookpad.com/
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Table 3.7: Statistics of the dataset.

Corpus Japanese English
kftt (training) 29.5MB (440k sentences) 30.6MB (440k sentences)
recipe (test) 0.8MB (10k sentences) 0.7MB (10k sentences)

Table 3.8: Monolingual corpora used to induce semantic representations.

Corpus Japanese English
Wikipedia (general domain) 4.4GB 16GB
recipe (in-domain) 12MB 9.5MB

We conducted experiments with Moses [49]16 with the language models trained
with SRILM [101]17 and the word alignments predicted by GIZA++ [86].18 5-gram lan-
guage models were trained using SRILM with interpolate option and kndiscount
option. Word alignments were obtained using GIZA++with grow-diag-final-and
heuristic. The lexical reordering model was obtained with msd-bidirectional
setting.

Next, we extracted four sets of count-based word vectors from Wikipedia dumps19

(general-domain monolingual corpora) and the remaining portion of the recipe
corpus (in-domain monolingual corpora), for Japanese and English, respectively. We
considered context windows of five words to both sides of the target word. The
function words are then excluded from the extracted context words as described in
Section 3.5. Since the count vectors are very high-dimensional and sparse, we selected
top-d (d = 10,000 for general-domain corpus, d = 5000 for in-domain corpus) frequent
words as contexts words (in other words, the number of dimensions of the word
vectors). We converted the counts into positive point-wise mutual information [16]
and normalized the resulting vectors to remove the bias introduced by the difference
in the word frequency. The size of the monolingual dataset for inducing semantic
representations of words is as detailed in Table 3.8.

16http://www.statmt.org/moses/
17http://www.speech.sri.com/projects/srilm/
18https://github.com/moses-smt/giza-pp
19http://dumps.wikimedia.org/ (versions of Nov, 4th, 2014 (ja), Oct, 8th,2014 (en).

http://www.statmt.org/moses/
http://www.speech.sri.com/projects/srilm/
https://github.com/moses-smt/giza-pp
http://dumps.wikimedia.org/
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Table 3.9: bleu on recipe corpus. ∗ indicates statistically significant improvements
in bleu over the respective baseline systems in accordance with bootstrap resam-
pling [47] at p < 0.05.

All oov sentences
Method ja-en en-ja ja-en en-ja

Baseline (no adaptation) 5.58 3.37 5.36 3.16
Proposed (general-domain) 6.05∗ 3.48∗ 5.87∗ 3.42∗

Proposed (in-domain) 7.08∗ 3.57∗ 7.00∗ 3.63∗

Parallel Corpus 20.88 16.69 20.72 17.01

Table 3.10: Statistics of the oov words in test data (the 10k sentences in the recipe
corpus).

ja-en en-ja
The number of oovwords (types) 3,464 1,613
The number of oovwords (tokens) 21,218 4,639
The number of sentences with oovwords 8,742 3,636

Finally, we used Open Multilingual WordNet20 to train the translation matrices
as described in Section 3.3. The hyperparameters were tuned on the development set
as follows: λ = 0.1, βtrain = 5, βsim = 5 for (ja-en, general-domain). λ = 1, βtrain = 0.1,
βsim = 0.2 for (ja-en, in-domain). λ = 0.1, βtrain = 5, βsim = 5 for (en-ja, general-domain).
λ = 0.5, βtrain = 1, βsim = 2 for (en-ja, in-domain).

3.6.2 Results

Overall results of domain adaptation

We performed domain adaptation as described in Section 3.4 and evaluated the
effectiveness of our method through bleu [88] score. Table 3.9 shows results of
the translations of the 10k sentences in the recipe corpus between Japanese and
English. All and oov sentences in Table 3.9 show the bleu scores measured in the
whole test set and the scores measured only in the sentences that include oovwords,
respectively. Statistics of the oovwords are shown in Table 3.10.

20http://compling.hss.ntu.edu.sg/omw/

http://compling.hss.ntu.edu.sg/omw/
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Table 3.11: bleu on in-domain experiments with kftt corpus.

All oov sentences
Method ja-en en-ja ja-en en-ja

Baseline (no adaptation) 20.88 16.69 12.57 10.80
Proposed (in-domain) 20.88 16.68 12.53 10.77

Table 3.12: Statistics of the oovwords in in-domain setting. Note that the test data
used here is exactly the same as Table 3.10, while the training data is different.

ja-en en-ja
The number of oovwords (types) 1,122 935
The number of oovwords (tokens) 1,190 1,015
The number of sentences with oovwords 1,002 870

All four methods shown in Table 3.9 use translation models that were trained with
the kftt corpus and are tested with the recipe corpus. Proposed (general) uses the
word vectors extracted from Wikipedia corpus, while Proposed (in-domain) uses
the vectors extracted from the remaining portion of the recipe corpus. In both these
methods, we performed domain adaptation by automatically constructing back-off
translation models for oovwords. Parallel Corpus in Table 3.9 uses the remaining
portion of the recipe corpus as a parallel corpus to learn the translation models,
resources of which are assumed to be unavailable in this study. Thus, Parallel
Corpus is the upper-bound for the task. The low bleu score for en-ja translation is
explained by the direction of the translation being different from the direction when
the corpus was built (ja-en) [55]. In addition, the smaller number of oov tokens in
en-ja than in ja-en also causes the smaller improvement in bleu score.

Table 3.9 shows that our methods perform well for the translation task. We
found that it was better to use the in-domain monolingual corpora rather than
general-domain monolingual corpora to obtain the word vectors. This conforms to
our expectation because the contextual information included in the word vectors
strongly correlates with the target domains. The Parallel Corpus has much higher
bleu than all other methods. This result shows that the domain adaptation task we
performed was intrinsically difficult because of the significant differences between
the two domains.
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Limitation of the proposed method

To illustrate the limitation of our method, we conduct an additional experiment in an
in-domain scenario. As the baseline, we first use the recipe corpus to train and test
the translation models. On top of this baseline, we perform the above oov translation
method to translate the unknown words. The results in Table 3.11 show that there is
no significant improvement with the Proposed method in this setting. Table 3.12
shows the statistics of oov words in the recipe corpus in this setting. Comparing
with the out-of-domain setting (Table 3.10), we can find that the amount of oov
words is extremely small in this in-domain setting. Since our adaptation method
focuses on oovwords, it does not improve the translation performance if there are
only a few unknown words in the test set.

Qualitative analysis

We show hand-picked examples of the translations in Table 3.13 to analyze the
methods in more detail. The first two examples show that Proposed (in-domain)
provides more accurate translations than Proposed (general). Despite our method
being able to improve the translations of oovwords, the third and the fourth examples
indicate that it is not good at improving the translations of Baseline that have wrong
syntax. The last example shows that some oovwords tend to be translated into their
related words, mainly because of their similarity in the semantic space.

The examples show that the oov words such as “煮る” (simmer), “トース
ター”　(toaster), and “焼く” (bake) could successfully be translated with Proposed
(in-domain). These words almost never appear in the kftt corpus, since they
do not have any relation with Japanese history or the temples in Kyoto. By
comparing Proposed (in-domain) and Proposed (general), we see that the latter
method translated many oovwords into related words (e.g., “トースター”　(toaster)
to “refrigerator”, or “煮る” (simmer) to “boil”) by mistake. This result also indicates
that the word vectors extracted from the in-domain corpus will work better than the
vectors extracted from the general-domain corpus.

3.7 Chapter Summary

In this chapter, we presented a practical domain adaptation method for smt. The
key idea of the adaptation method is to leverage a cross-lingual projection of word
semantic representations to obtain a translation model for out-of-vocabulary words in
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smt. Assuming monolingual corpora for the source and target languages, we induce
vector-based semantic representations of words and obtain a projection (translation
matrix) from source-language semantic representations into the target-language
semantic space. The first contribution of this work is to propose an accurate method
to induce the translation matrix. Our method exploits the translatable context
pairs (which can be easily obtained from bilingual dictionaries or by computing
Levenshtein distance) to train the translation matrix. In the experiments on word
translation task between four languages (including English, Spanish, Japanese, and
Chinese), our method outperformed the previous approaches by +8.1 points in
averaged Precision.

The second contribution of this work is to present a method to find translation
candidates of oov words using the aforementioned method for vector projection.
We adopt the cosine similarity to induce the translation probability, which can be
used as a back-off translation model only for the oovwords. Experimental results
on domain adaptation from a Kyoto-related domain to a recipe domain confirmed
that our method improved bleu by 0.5-1.5 and 0.1-0.2 for en-ja and ja-en translations,
respectively.



3.7 Chapter Summary 37

Figure 3.1: Impact of the size of training data. (Upper: (Ja→ Zh), Bottom: (Zh→ Ja)
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Figure 3.2: Impact of the size of training data. (Upper: (Ja→ En), Bottom: (En→ Ja)
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Figure 3.3: Impact of the size of training data. (Upper: (Zh→ En), Bottom: (En→
Zh)
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Figure 3.4: Impact of the size of training data. (Upper: (En→ Es), Bottom: (Es→ En)



3.7 Chapter Summary 41

Table 3.13: Hand-picked examples of the translations for the 10k sentences in the
recipe corpus from Japanese to English. Text in bold denotes oovwords in the input
sentences and their translations. The subscripts of the translation of the oovwords
refer to a manual word alignment of the oovwords.

Input 混ぜながら弱火で煮る。
Ref simmer over low heat while mixing .
Baseline 煮る1 at low heat while mixing .
Proposed (general) boil1 over a low heat while mixing .
Proposed (in-domain) simmer1 over a low heat while mixing .
Parallel Corpus simmer1 over low heat while stirring .
Input 玉ねぎ、ニンニクをみじん切りに。
Ref finely chop the onion and garlic .
Baseline みじん切り1 in the onion and garlic .
Proposed (general) the garlic and onion in butter1 .
Proposed (in-domain) mince1 the onion and garlic .
Parallel Corpus finely1chop1 the onion and garlic .
Input オーブントースターで焦げ目がつくまで焼く。
Ref bake until browned in a toaster oven .
Baseline inトースター1 oven until焦げ目2 made焼く3 .
Proposed (general) oven in the refrigerator1 until fenbuconazole2 made bread3 .
Proposed (in-domain) in a toaster1 oven , bake3 until the end2 .
Parallel Corpus bake3 in a toaster1 oven until golden2brown2 .
Input しっとりした食感の素朴なケーキです。
Ref a simple cake with a moist texture .
Baseline しっとり1 food of a simple cakeです2 .
Proposed (general) the food texture1 as a simple cake thing .
Proposed (in-domain) the moist1 food that ’s simple cake .
Parallel Corpus a moist1texture1 of the simple cake .
Input 火を消し、ごま油を入れ混ぜる。
Ref turn off the heat , and stir in the sesame oil .
Baseline 消し1 fire , and putごま油2混ぜる3 .
Proposed (general) heat butter1 completely , add the milk2 .
Proposed (in-domain) fire , add coconut2 , and mix3 .
Parallel Corpus turn1off1 the heat , add the sesame2oil2 and mix3 .





Chapter 4

Chunk-based Decoder for Neural
Machine Translation

4.1 Overview

Neural machine translation (nmt) performs end-to-end translation based on a simple
encoder-decoder model [44, 103, 15] and has now overtaken the classical, complex
smt in terms of performance and simplicity [94, 60, 19, 79]. In nmt, an encoder first
maps a source sequence into vector representations and a decoder then maps the
vectors into a target sequence (§ 4.2). This simple framework allows researchers
to incorporate the structure of the source sentence as in smt by leveraging various
architectures as the encoder [44, 103, 15, 23]. Most of the nmt models, however,
still rely on a sequential decoder based on a recurrent neural network (rnn) due to
the difficulty in capturing the structure of a target sentence that is unseen during
translation.

With the sequential decoder, however, there are two problems to be solved. First,
it is difficult to model long-distance dependencies [6]. A hidden state ht in an rnn
is only conditioned by its previous output yt−1, previous hidden state ht−1, and
current input xt. This makes it difficult to capture the dependencies between an older
output yt−N if they are too far from the current output. This problem can become
more serious when the target sequence becomes longer. For example, in Figure 4.1,
when we translate the English sentence into the Japanese one, after the decoder
predicts the content word “帰っ (go back)”, it has to predict four function words “て
(suffix)”, “しまい (perfect tense)”, “たい (desire)”, and “と (to)” before predicting the
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Figure 4.1: Translation from English to Japanese. The function words are underlined.

next content word “思っ (feel)”. In such a case, the decoder is required to capture
the longer dependencies in a target sentence.

Another problem with the sequential decoder is that it is expected to cover
multiple possible word orders simply by memorizing the local word sequences in
the limited training data. This problem can be more serious in free word-order
languages such as Czech, German, Japanese, and Turkish. In the case of the example
in Figure 4.1, the order of the phrase “早く (early)” and the phrase “家へ (to home)”
is flexible. This means that simply memorizing the word order in training data is
not enough to train a model that can assign a high probability to a correct sentence
regardless of its word order.

In the past, chunks (or phrases) were utilized to handle the above problems in
smt [109, 51] and in example-based machine translation (ebmt) [45]. By using a
chunk rather than a word as the basic translation unit, one can treat a sentence as a
shorter sequence. This makes it easy to capture the longer dependencies in a target
sentence. The order of words in a chunk is relatively fixed while that in a sentence is
much more flexible. Thus, modeling intra-chunk (local) word orders and inter-chunk
(global) dependencies independently can help capture the difference of the flexibility
between the word order and the chunk order in free word-order languages.

In this work, we refine the original rnn decoder to consider chunk information in
nmt. We propose three novel nmtmodels that capture and utilize the chunk structure
in the target language (§ 4.3). Our focus is the hierarchical structure of a sentence:
each sentence consists of chunks, and each chunk consists of words. To encourage
an nmt model to capture the hierarchical structure, we start from a hierarchical
rnn that consists of a chunk-level decoder and a word-level decoder (Model 1).
Then, we improve the word-level decoder by introducing inter-chunk connections to
capture the interaction between chunks (Model 2). Finally, we introduce a feedback
mechanism to the chunk-level decoder to enhance the memory capacity of previous
outputs (Model 3).

We evaluate the three models on the WAT ’16 English-to-Japanese translation
task (§ 4.4). The experimental results show that our best model outperforms the best
single nmtmodel reported in WAT ’16 [23].
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Our contribution is twofold: (1) chunk information is introduced into nmt to
improve translation performance, and (2) a novel hierarchical decoder is devised to
model the properties of chunk structure in the encoder-decoder framework.

4.2 Preliminaries: Neural Machine Translation

In this section, we briefly introduce the architecture of the attention-based nmt
model [6], which is the basis of our proposed models.

4.2.1 Encoder-Decoder Model

An nmtmodel usually consists of two connected neural networks: an encoder and
a decoder. After the encoder maps a source sentence into a fixed-length vector,
the decoder maps the vector into a target sentence. The implementation of the
encoder can be a convolutional neural network (cnn) [44], a long short-term memory
(lstm) [103, 60], a gated recurrent unit (gru) [15, 6], or a Tree-lstm [23]. While various
architectures are leveraged as an encoder to capture the structural information in
the source language, most of the nmtmodels rely on a standard sequential network
such as lstm or gru as the decoder.

Following Bahdanau et al. [6], we use gru as the recurrent unit in this work. A
gru unit computes its hidden state vector hi given an input vector xi and the previous
hidden state hi−1:

hi = gru(hi−1,xi). (4.1)

The function gru(·) is calculated as

ri = σ(Wrxi+Urhi−1+br), (4.2)

zi = σ(Wzxi+Uzhi−1+bz), (4.3)

h̃i = tanh(Wxi+U(ri�hi−1+b)), (4.4)

hi = (1−zi)� h̃i+zi�hi−1, (4.5)

where vectors ri and zi are a reset gate and an update gate, respectively. While the
former gate allows the model to forget the previous states, the latter gate decides how
much the model updates its content. All the Ws and Us, or the bs above are trainable
matrices or vectors. σ(·) and � denote the sigmoid function and element-wise
multiplication operator, respectively.
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Figure 4.2: Standard word-based decoder.

In this simple model, we train a gru function that encodes a source sentence
{x1, · · · ,xI} into a single vector hI. At the same time, we jointly train another gru
function that decodes hI to the target sentence {y1, · · · , yJ}. Here, the j-th word in the
target sentence y j can be predicted with this decoder gru and a nonlinear function
g(·) followed by a softmax layer, as

c = hI, (4.6)

s j = gru(s j−1, [y j−1;c]), (4.7)

s̃ j = g(y j−1,s j,c), (4.8)

P(y j|y< j,x) = softmax(s̃ j), (4.9)

where c is a context vector of the encoded sentence and s j is a hidden state of the
decoder gru.

Following Bahdanau et al. [6], we use a mini-batch stochastic gradient descent
(sgd) algorithm with adadelta [119] to train the above two gru functions (i.e., the
encoder and the decoder) jointly. The objective is to minimize the cross-entropy loss
of the training data D, as

J =
∑

(x,y)∈D

− logP(y|x). (4.10)

4.2.2 Attention Mechanism for Neural Machine Translation

To use all the hidden states of the encoder and improve the translation performance
of long sentences, Bahdanau et al. [6] proposed using an attention mechanism. In
the attention model, the context vector is not simply the last encoder state hI but
rather the weighted sum of all hidden states of the bidirectional gru, as follows:

c j =

I∑
i=1

α jihi. (4.11)
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Figure 4.3: Chunk-based decoder. The top layer (word-level decoder) illustrates
the first term in Eq. (4.15) and the bottom layer (chunk-level decoder) denotes the
second term.

Here, the weight α ji decides how much a source word xi contributes to the target
word y j. α ji is computed by a feedforward layer and a softmax layer as

e ji = v · tanh(Wehi+Ues j+be), (4.12)

α ji =
exp(e ji)∑J

j′=1 exp(e j′i)
, (4.13)

where We, Ue are trainable matrices and the v, be are trainable vectors.1 In a decoder
using the attention mechanism, the obtained context vector c j in each time step
replaces cs in Eqs. (4.7) and (4.8). An illustration of the nmtmodel with the attention
mechanism is shown in Figure 4.2.

The attention mechanism is expected to learn alignments between source and
target words, and plays a similar role to the translation model in phrase-based
smt [51].

4.3 Proposed: Neural Machine Translation with Chunk-
based Decoder

Taking non-sequential information such as chunks (or phrases) structure into consid-
eration has proved helpful for smt [109, 51] and ebmt [45]. Here, we focus on two
important properties of chunks [1]: (1) The word order in a chunk is almost always
fixed, and (2) A chunk consists of a few (typically one) content words surrounded by
zero or more function words.

1We choose this implementation following [62], while [6] use s j−1 instead of s j in Eq. (5.4).
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Figure 4.4: Proposed model: nmtwith chunk-based decoder. A chunk-level decoder
generates a chunk representation for each chunk while a word-level decoder uses the
representation to predict each word. The solid lines in the figure illustrate Model 1.
The dashed blue arrows in the word-level decoder denote the connections added
in Model 2. The dotted red arrows in the chunk-level decoder denote the feedback
states added in Model 3; the connections in the thick black arrows are replaced with
the dotted red arrows.

To fully utilize the above properties of a chunk, we propose modeling the intra-
chunk and the inter-chunk dependencies independently with a “chunk-by-chunk”
decoder (See Figure 4.3). In the standard word-by-word decoder described in § 4.2,
a target word y j in the target sentence y is predicted by taking the previous outputs
y< j and the source sentence x as input:

P(y|x) =
J∏

j=1

P(y j|y< j,x), (4.14)

where J is the length of the target sentence. Not assuming any structural information
of the target language, the sequential decoder has to memorize long dependencies
in a sequence. To release the model from the pressure of memorizing the long
dependencies over a sentence, we redefine this problem as the combination of a
word prediction problem and a chunk generation problem:

P(y|x) =
K∏

k=1

P(ck|c<k,x)
Jk∏

j=1

P(y j|y< j,ck,x)

 , (4.15)

where K is the number of chunks in the target sentence and Jk is the length of the k-th
chunk (see Figure 4.3). The first term represents the generation probability of a chunk
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ck and the second term indicates the probability of a word y j in the chunk. We model
the former term as a chunk-level decoder and the latter term as a word-level decoder.
As demonstrated later in § 4.4, both K and Jk are much shorter than the sentence
length J, which is why our decoders do not have to capture the long dependencies
like the standard decoder does.

In the above formulation, we model the information on words and their orders in
a chunk. No matter which language we target, we can assume that a chunk usually
consists of some content words and function words, and the word order in the chunk
is almost always fixed [1]. Although our idea can be used in several languages, the
optimal network architecture could depend on the word order of the target language.
In this work, we design models for languages in which content words are followed
by function words, such as Japanese and Korean. The details of our models are
described in the following sections.

4.3.1 Model 1: Basic Chunk-based Decoder

The model described in this section is the basis of our proposed decoders. It consists
of two parts: a chunk-level decoder (§ 4.3.1) and a word-level decoder (§ 4.3.1). The
part drawn in black solid lines in Figure 4.4 illustrates the architecture of Model 1.

Chunk-level Decoder

Our chunk-level decoder (see Figure 4.3) outputs a chunk representation. The chunk
representation contains the information about words that should be predicted by the
word-level decoder.

To generate the representation of the k-th chunk s̃(c)
k , the chunk-level decoder (see

the bottom layer in Figure 4.4) takes the last states of the word-level decoder s(w)
k−1,Jk−1

and updates its hidden state s(c)
k as:

s(c)
k = gru(s(c)

k−1,s
(w)
k−1,Jk−1

), (4.16)

s̃(c)
k =Wcs

(c)
k +bc. (4.17)

The obtained chunk representation s̃(c)
k continues to be fed into the word-level

decoder until it outputs all the words in the current chunk.
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Word-level Decoder

Our word-level decoder (see Figure 4.4) differs from the standard sequential decoder
described in § 4.2 in that it takes the chunk representation s̃(c)

k as input:

s(w)
k, j = gru(s(w)

k, j−1, [s̃
(c)
k ;yk, j−1;ck, j−1]), (4.18)

s̃(w)
k, j = g(yk, j−1,s

(w)
k, j ,ck, j), (4.19)

P(yk, j|y< j,x) = softmax(s̃(w)
k, j ). (4.20)

In a standard sequential decoder, the hidden state iterates over the length of a
target sentence and then generates an end-of-sentence token. In other words, its
hidden layers are required to memorize the long-term dependencies and orders
in the target language. In contrast, in our word-level decoder, the hidden state
iterates only over the length of a chunk and then generates an end-of-chunk token.
Thus, our word-level decoder is released from the pressure of memorizing the
long (inter-chunk) dependencies and can focus on learning the short (intra-chunk)
dependencies.

4.3.2 Model 2: Inter-Chunk Connection

The second term in Eq. (4.15) only iterates over one chunk ( j = 1 to Jk). This means
that the last state and the last output of a chunk are not being fed into the word-level
decoder at the next time step (see the black part in Figure 4.4). In other words, s(w)

k,1
in Eq. (4.18) is always initialized before generating the first word in a chunk. This
may have a bad influence on the word-level decoder because it cannot access any
previous information at the first word of each chunk.

To address this problem, we add new connections to Model 1 between the first
state in a chunk and the last state in the previous chunk, as

s(w)
k,1 = gru(s(w)

k−1,Jk−1
, [s̃(c)

k ;yk−1,Jk−1
;ck−1,Jk−1

]). (4.21)

The dashed blue arrows in Figure 4.4 illustrate the added inter-chunk connections.

4.3.3 Model 3: Word-to-Chunk Feedback

The chunk-level decoder in Eq. (4.16) is only conditioned by s(w)
k−1,Jk−1

, the last word
state in each chunk (see the black part in Figure 4.4). This may affect the chunk-level
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decoder because it cannot memorize what kind of information has already been
generated by the word-level decoder. The information about the words in a chunk
should not be included in the representation of the next chunk; otherwise, it may
generate the same chunks multiple times, or forget to translate some words in the
source sentence.

To encourage the chunk-level decoder to memorize the information about the
previous outputs more carefully, we add feedback states to our chunk-level decoder
in Model 2. The feedback state in the chunk-level decoder is updated at every time
step j(> 1) in k-th chunk, as

s(c)
k, j = gru(s(c)

k, j−1,s
(w)
k, j ). (4.22)

The red part in Figure 4.4 illustrate the added feedback states and their connections.
The connections in the thick black arrows are replaced with the dotted red arrows in
Model 3.

4.4 Experiments

4.4.1 Settings

Dataset

To examine the effectiveness of our decoders, we chose Japanese, a free word-order
language, as the target language. Japanese sentences are easy to break into well-
defined chunks (called bunsetsus [38] in Japanese). For example, the accuracy of
bunsetsu-chunking on newspaper articles is reported to be over 99% [74, 117]. The
effect of chunking errors in training the decoder can be suppressed, which means we
can accurately evaluate the potential of our method. We used the English-Japanese
training corpus in the Asian Scientific Paper Excerpt Corpus (ASPEC) [75], which
was provided in WAT ’16. To remove inaccurate translation pairs, we extracted the
first two million out of the 3 million pairs following the setting that gave the best
performances in WAT ’15 [80].
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Corpus # words # chunks # sentences
Train 49,671,230 15,934,129 1,663,780
Dev. 54,287 - 1,790
Test 54,088 - 1,812

Table 4.1: Statistics of the target language (Japanese) in extracted corpus after
preprocessing.

Preprocessings

For Japanese sentences, we performed tokenization using KyTea 0.4.72 [81]. Then
we performed bunsetsu-chunking with J.DepP 2015.10.053 [115–117]. Special end-
of-chunk tokens were inserted at the end of the chunks. Our word-level decoders
described in § 4.3 will stop generating words after each end-of-chunk token. For
English sentences, we performed the same preprocessings described on the WAT ’16
Website.4 To suppress having possible chunking errors affects the translation quality,
we removed extremely long chunks from the training data. Specifically, among the 2
million preprocessed translation pairs, we excluded sentence pairs that matched any
of following conditions: (1) The length of the source sentence or target sentence is
larger than 64 (3% of whole data); (2) The maximum length of a chunk in the target
sentence is larger than 8 (14% of whole data); and (3) The maximum number of
chunks in the target sentence is larger than 20 (3% of whole data). Table 5.1 shows
the details of the extracted data.

Postprocessing

To perform unknown word replacement [61], we built a bilingual English-Japanese
dictionary from all of the three million translation pairs. The dictionary was extracted
with the MGIZA++ 0.7.05 [86, 33] word alignment tool by automatically extracting
the alignments between English words and Japanese words.

Model Architecture

Any encoder can be combined with our decoders. In this work, we adopted a
single-layer bidirectional gru [15, 6] as the encoder to focus on confirming the impact

2http://www.phontron.com/kytea/
3http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/jdepp/
4http://lotus.kuee.kyoto-u.ac.jp/WAT/baseline/dataPreparationJE.html
5https://github.com/moses-smt/mgiza

http://www.phontron.com/kytea/
http://www.tkl.iis.u-tokyo.ac.jp/~ynaga/jdepp/
http://lotus.kuee.kyoto-u.ac.jp/WAT/baseline/dataPreparationJE.html
https://github.com/moses-smt/mgiza
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ρ of adadelta 0.95
ε of adadelta 1e−6

Initial learning rate 1.0
Gradient clipping 1.0
Mini-batch size 64
dhid (dimension of hidden states) 1024
demb (dimension of word embeddings) 1024

Table 4.2: Hyperparameters for training.

of the proposed decoders. We used single layer grus for the word-level decoder and
the chunk-level decoder. The vocabulary sizes were set to 40k for source side and
30k for target side, respectively. The conditional probability of each target word was
computed with a deep-output [89] layer with maxout [35] units following [6]. The
maximum number of output chunks was set to 20 and the maximum length of a
chunk was set to 8.

Training Details

The models were optimized using adadelta following [6]. The hyperparameters
of the training procedure were fixed to the values given in Table 4.2. Note that
the learning rate was halved when the bleu score on the development set did not
increase for 30,000 batches. All the parameters were initialized randomly with a
Gaussian distribution. It took about a week to train each model with an NVIDIA
TITAN X (Pascal) GPU.

Evaluation

Following the WAT ’16 evaluation procedure, we used bleu [88] and ribes [42] to
evaluate our models. The bleu scores were calculated with multi-bleu.pl in Moses
2.1.16 [48]; ribes scores were calculated with RIBES.py 1.03.17 [42]. Following Cho
et al. [14], we performed beam search8 with length-normalized log-probability to
decode target sentences. We saved the trained models that performed best on the
development set during training and used them to evaluate the systems with the
test set.

6http://www.statmt.org/moses/
7http://www.kecl.ntt.co.jp/icl/lirg/ribes/index.html
8Beam size is set to 20.

http://www.statmt.org/moses/
http://www.kecl.ntt.co.jp/icl/lirg/ribes/index.html
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System Hyperparameter Dec. time

Encoder / Decoder Type |Vsrc| |Vtrg| demb dhid bleu ribes [ms/sent.]

Word- / Word-based [22] 88k 66k 512 512 34.64 81.60 -
/ Word-based (our

implementation)
40k 30k 1024 1024 36.33 81.22 84.1

+ chunked training
data via J.DepP

40k 30k 1024 1024 35.71 80.89 101.5

Tree- / Word-based [23] 88k 66k 512 512 34.91 81.66 (363.7)
/ Char-based [22] 88k 3k 256 512 31.52 79.39 (8.8)

Word- / Proposed Chunk-
based (Model 1)

40k 30k 1024 1024 34.70 81.01 165.2

+ Inter-chunk con-
nection (Model 2)

40k 30k 1024 1024 35.81 81.29 165.2

+ Word-to-chunk
feedback (Model 3)

40k 30k 1024 1024 37.26 82.23 163.7

Table 4.3: The settings and results of the baseline systems and our systems. |Vsrc|

and |Vtrg| denote the vocabulary size of the source language and the target language,
respectively. demb and dhid are the dimension size of the word embeddings and
hidden states, respectively. Note that the Tree-to-Seq models are tested on CPUs
instead of GPUs. Only single nmtmodels (w/o ensembling) reported in WAT ’16 are
listed here. Full results are available on the WAT ’16 Website.

Baseline Systems

The baseline systems and the important hyperparamters are listed in Table 4.3.
Eriguchi et al. [22]’s baseline system (the first line in Table 4.3) was the best single
(w/o ensembling) word-based nmt system that were reported in WAT ’16. For a
fairer evaluation, we also reimplemented a standard attention-based nmt system
that uses exactly the same encoder, training procedure, and the hyperparameters
as our proposed models, but has a word-based decoder. We trained this system
on the training data without chunk segmentations (the second line in Table 4.3)
and with chunk segmentations given by J.DepP (the third line in Table 4.3). The
chunked corpus fed to the third system is exactly the same as the training data of our
proposed systems (sixth to eighth lines in Table 4.3). In addition, we also include the
Tree-to-Sequence models [22, 23] (the fourth and fifth lines in Table 4.3) to compare
the impact of capturing the structure in the source language and that in the target
language. Note that all systems listed in Table 4.3, including our models, are single
models without ensemble techniques.
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4.4.2 Results

Proposed Models vs. Baselines

Table 4.3 shows the experimental results on the ASPEC test set. We can observe
that our best model (Model 3) outperformed all the single nmt models reported
in WAT ’16. The gain obtained by switching Word-based decoder to Chunk-based
decoder (+0.93 bleu and +1.01 ribes) is larger than the gain obtained by switching
word-based encoder to Tree-based encoder (+0.27 bleu and +0.06 ribes). This result
shows that capturing the chunk structure in the target language is more effective
than capturing the syntax structure in the source language. Compared with the
character-based nmtmodel [22], our Model 3 performed better by +5.74 bleu score
and +2.84 ribes score. One possible reason for this is that using a character-based
model rather than a word-based model makes it more difficult to capture long-
distance dependencies because the length of a target sequence becomes much longer
in the character-based model.

Comparison between Baselines

Among the five baselines, our reimplementation without chunk segmentations (the
second line in Table 4.3) achieved the best bleu score while the Eriguchi et al. [23]’s
system (the fourth line in Table 4.3) achieved the best ribes score. The most probable
reasons for the superiority of our reimplementation over the Eriguchi et al. [22]’s
word-based baseline (the first line in Table 4.3) is that the dimensions of word
embeddings and hidden states in our systems are higher than theirs.

Feeding chunked training data to our baseline system (the third line in Table 4.3)
instead of normal data had bad effects by −0.62 bleu score and by −0.33 ribes score.
We evaluated the chunking ability of this system by comparing the positions of
end-of-chunk tokens generated by this system with the chunk boundaries obtained
by J.DepP. To our surprise, this word-based decoder could output chunk separations
as accurate as our proposed Model 3 (both systems achieved F1-score > 97). The
results show that even a standard word-based decoder has the ability to predict
chunk boundaries if they are given in training data. However, it is difficult for the
word-based decoder to utilize the chunk information to improve the translation
quality.
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Figure 4.5: Translation examples. “/” denote chunk boundaries that are automatically
determined by our decoders. Words colored blue and red respectively denote correct
translations and wrong translations.

Decoding Speed

Although the chunk-based decoder runs 2x slower than our word-based decoder, it is
still practically acceptable (6 sentences per second). The character-based decoder (the
fifth line in Table 4.3) is less time-consuming mainly because of its small vocabulary
size (|Vtrg| = 3k).

Qualitative Analysis

To clarify the qualitative difference between the word-based decoder and our chunk-
based decoders, we show translation examples in Figure 4.5. Words in blue and
red respectively denote correct translations and wrong translations. The word-
based decoder (our implementation) has completely dropped the translation of
“by oneself.” On the other hand, Model 1 generated a slightly wrong translation
“自分の技術を習得すること (to master own technique).” In addition, Model 1 has
made another serious word-order error “特別な調整 (special adjustment).” These
results suggest that Model 1 can capture longer dependencies in a long sequence
than the word-based decoder. However, Model 1 is not good at modeling global
word order because it cannot access enough information about previous outputs.
The weakness of modeling word order was overcome in Model 2 thanks to the
inter-chunk connections. However, Model 2 still suffered from the errors of function
words: it still generates a wrong chunk “特別な (special)” instead of the correct
one “特別に (specially)” and a wrong chunk “よる” instead of “より.” Although
these errors seem trivial, such mistakes with function words bring serious changes
of sentence meaning. However, all of these problems have disappeared in Model 3.
This phenomenon supports the importance of the feedback states to provide the
decoder with a better ability to choose more accurate words in chunks.
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Decoder c-bleu c-ribes
Word-based (our implementation) 7.56 50.73
+ chunked training data via J.DepP 7.40 51.18
Proposed Chunk-based (Model 1) 7.59 50.47
+ Inter-chunk connection (Model 2) 7.78 51.48
+Word-to-chunk feedback (Model 3) 8.69 52.82

Table 4.4: Chunk-based bleu and ribes with the systems using the word-based
encoder.

4.5 Discussion

In this section, we present further analyses of our model to fully understand its
ability to capture chunk structures and the performance in a low-resource scenario.

4.5.1 Chunk-level Evaluation

Can our models capture local (intra-chunk) and global (inter-chunk) word orders
better than the conventional encoder-decoder model? To answer this question, we
evaluated the translation quality at the chunk level. First, we performed bunsetsu-
chunking on the reference translations in the test set. Then, for both reference
translations and the outputs of our systems, we combined all the words in each
chunk into a single token to regard a chunk as the basic translation unit instead of a
word. Finally, we computed the chunk-based bleu (c-bleu) and ribes (c-ribes).

The results are listed in Table 4.4. For the word-based decoder (the first line
in Table 4.4), we performed bunsetsu-chunking by J.DepP on its outputs to obtain
chunk boundaries. As another baseline (the second line in Table 4.4), we used the
chunked sentences as training data instead of performing chunking after decoding.
The results show that our models (Model 2 and Model 3) outperform the word-based
decoders in both c-bleu and c-ribes. This indicates that our chunk-based decoders
can produce more correct chunks in a more correct order than the word-based
models.

4.5.2 Impact of the Size of Training Data

In order to further investigate the effectiveness of the proposed models in various
situations, we conduct a set of experiments in a low-resource setting. First, we
shuffled the ASPEC corpus and randomly sampled its subsets to build six small
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Figure 4.6: Impact of the size of training data on bleu
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Figure 4.7: Impact of the size of training data on ribes

datasets. The size of the six datasets are n% (n = 1,2,5,10,20,50) of the original
full-size dataset. Figure 4.6 and Figure 4.7 show the bleu and ribes on the six datasets,
respectively. We found that the Model 3 performs worse than the baseline if the size
of the training corpus is small (especially when n 5 20).

Why does the chunk-based decoder require more data than the conventional
word-based decoder does? To answer this question, we set up two hypotheses that
may explain the experimental results. The first hypothesis is that the chunk-based
decoder needs more data because it has more parameters than the word-based
decoder has. Our second hypothesis is that it is because the chunk-based decoder
learns a more difficult problem; while the word-based decoder is solely learning the
translation task, our model needs to jointly learn chunking and translation with a
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Figure 4.8: Comparison of the single-layer rnn and the stacked-rnn on bleu

single model. In the following, we examine these two hypotheses by conducting
additional experiments.

Comparison with the stacked-rnn decoder

In order to confirm the impact of the number of parameters that the model has, we
conduct an additional experiment using stacked-rnn. Since the Model 3 consists of
two decoders and they are connected to each other, its architecture looks similar to
a two-layer stacked rnn and the number of their parameters are also comparable.
In previous work, it is shown that stacking the rnn layers to make model deeper is
effective in improving the translation quality [61, 103]. However, if a large number
of parameters is the reason for the worse performance in the low-resource setting,
stacking the rnn should also has a negative effect when the data size is small.

Since our implementation of chunk-based decoder is hard to extend, we instead
used Open-NMT,8 a Pytorch9 implementation of word-based encoder-decoder model.
We used exactly the same dataset and hyper-parameters as other experiments, with
different optimization10 process and post processings.11

Figure 4.8 and Figure 4.9 show the the experimental results on bleu and ribes,
respectively. Surprisingly, the two figures indicate that stacking the decoder rnns
does not have negative effects on translation performance (in either bleu or ribes)
even in the low-resource setting. Considering the two-layer stacked-rnn has the

8https://http://opennmt.net/
9https://https://pytorch.org/

10We used Adam, without learning rate halving in this analysis.
11We did not use unknown-word replacement.
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Figure 4.9: Comparison of the single-layer rnn and the stacked-rnn on ribes

number of parameters that are comparable to the Model 3, this result suggests that
our first hypothesis is not correct.

Chunking performance in the low-resource setting

Our second hypothesis is that the worse performance with small data is caused by
the difficulty of the problem that the proposed models need to solve. To verify this
hypothesis, we evaluate the performance of chunking in the low-resource setting.
First, we removed the chunk separations that were recognized by the Model 3
automatically. Next, we performed bunsetsu-chunking with J.DepP. Assuming the
outputs of J.DepP as oracles, we finally evaluate the chunking accuracy of the
Model 3.

Figure 4.10 shows the impact of the data size on chunking performance. We can
see that chunking performance becomes much worse as we reduce the training data.
If we decrease the size of the training corpus from the resource-rich setting (n = 100)
to a low-resource setting (n = 1), the chunking accuracy drops from 0.87 to 0.76. This
result suggests that not only translation but also chunk boundary detection can be a
difficult task when the data size becomes small. Because our model needs to learn
the two tasks jointly, it would be affected by the lack of data more seriously than the
baseline model does.



4.6 Chapter Summary 61

100 101 102

Amount of training data [%]
50

55

60

65

70

75

80

85

90

Ch
un

ki
ng

 a
cc

ur
ac

y 
[%

]

Figure 4.10: Impact of the size of training data on chunking performance (sentence-
level accuracy).

4.6 Chapter Summary

In this chapter, we proposed an nmtmodel that can capture the chunk structure in
the target language. As the attention mechanism in nmt plays a similar role to the
translation model in phrase-based smt, our chunk-based decoders are intended to
capture the notion of chunks in chunk-based (or phrase-based) smt. We designed
three models that have hierarchical rnn-like architectures, each of which consists
of a word-level decoder and a chunk-level decoder. Since the chunk structure can
be learned by adding chunk boundaries to training data explicitly, no additional
preprocessing like Part-of-Speech tagging or syntactic parsing is required during
testing time. We performed experiments on the WAT ’16 English-to-Japanese
translation task and found that our best model outperforms the strongest baselines
by +0.93 bleu score and by +0.57 ribes score.





Chapter 5

Learning to Describe Phrases with
Local and Global Contexts

5.1 Overview

When we read news text with emerging entities, text in unfamiliar domains, or text in
foreign languages, we often encounter expressions (words or phrases) whose senses
we are unsure of. In such cases, we may first try to figure out the meanings of those
expressions by reading the surrounding words (local context) carefully. Failing to do
so, we may consult dictionaries, and in the case of polysemous words, choose an
appropriate meaning based on the context. Learning novel word senses via dictionary
definitions is known to be more effective than contextual guessing [13, 30]. However,
very often, hand-crafted dictionaries do not contain definitions of expressions that
are rarely used or newly created. Ultimately, we may need to read through the entire
document or even search the web to find other occurances of the expression (global
context) so that we can guess its meaning.

Can machines help us do this work? Ni and Wang [83] have proposed a task of
generating a definition for a phrase given its local context. However, they follow the
strict assumption that the target phrase is newly emerged and there is only a single
local context available for the phrase, which makes the task of generating an accurate
and coherent definition difficult (perhaps as difficult as a human comprehending
the phrase itself). On the other hand, Noraset et al. [85] attempted to generate a
definition of a word from an embedding induced from massive text (which can be
seen as global context). This is followed by Gadetsky et al. [32] that refers to a local
context to disambiguate polysemous words by choosing relevant dimensions of
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Figure 5.1: Local & Global Context-aware Description generator (LOG-CaD).

their word embeddings. Although these research efforts revealed that both local and
global contexts are useful in generating definitions, none of these studies exploited
both contexts directly to describe unknown phrases.

In this study, we tackle a task of describing (defining) a phrase when given its
local and global contexts. We present LOG-CaD, a neural description generator
(Figure 5.1 on Page 1) to directly solve this task. Given an unknown phrase without
sense definitions, our model obtains a phrase embedding as its global context by
composing word embeddings while also encoding the local context. The model
therefore combines both pieces of information to generate a natural language
description.

Considering various applications where we need definitions of expressions, we
evaluated our method with four datasets including WordNet [85] for general words,
the Oxford dictionary [32] for polysemous words, Urban Dictionary [83] for rare
idioms or slangs, and a newly-created Wikipedia dataset for entities.

Our contributions are as follows:
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• We set up a general task of defining phrases given their contexts. This task
is a generalization of three related tasks [85, 83, 32] and involves various
situations where we need definitions of unknown phrases.

• We build a large-scale dataset from Wikipedia and Wikidata for the proposed
task. We will release the dataset to the public as well as all of the code to
promote the reproducibility of the experiments.

• We propose a method for generating natural language descriptions for
phrases with local and global contexts.

• Empirical results are strong; this method achieves the state-of-the-art perfor-
mance for our new dataset and the three existing datasets used in the related
studies [85, 83, 32].

5.2 Context-aware Phrase Description Generation

In this section, we define our task of describing a phrase in a specific context. Given
an undefined phrase Xtrg = {xi, · · · ,x j} with its context X = {x1, · · · ,xI} (1 ≤ i ≤ j ≤ I),
our task is to output a description Y = {y1, · · · , yT}. Here, Xtrg can be a word or a short
phrase and is included in X. Y is a definition-like concrete and concise sentence that
describes the Xtrg.

For example, given a phrase “sonic boom” with its context “the shock wave may
be caused by sonic boom or by explosion,” the task is to generate a description such
as “sound created by an object moving fast.” If the given context has been changed
to “this is the first official tour to support the band’s latest studio effort, 2009’s Sonic
Boom,” then the appropriate output would be “album by Kiss.”

The process of description generation can be modeled with a conditional language
model as

p(Y|X,Xtrg) =
T∏

t=1

p(yt|y<t,X,Xtrg). (5.1)

5.3 Proposed: LOG-CaD: Local & Global Context-aware
Description Generator

In this section, we describe our idea of utilizing local and global contexts in the
description generation task, and present the details of our model.
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Local & Global Contexts for Describing Unknown Phrases

When we find an unfamiliar phrase in text and it is not defined in dictionaries, how
can we humans come up with its meaning? As discussed in Section 5.1, we may first
try to figure out the meaning of the phrase from the immediate context, and then read
through the entire document or search the web to understand implicit information
behind the text. In this work, we refer to the explicit contextual information included
in a given sentence with the target phrase (i.e., the X in Eq. (5.1)) as “local context,”
and the implicit contextual information in massive text as “global context.” While
both local and global contexts are crucial for humans to understand unfamiliar
phrases, are they also useful for machines to generate descriptions? To verify
this idea, we propose to incorporate both local and global contexts to describe an
unknown phrase.

Model

Figure 5.1 on Page 1 shows an illustration of our LOG-CaD model. Similarly to the
standard encoder-decoder model with attention [6, 60], it has a context encoder and
a description decoder. The challenge here is that the decoder needs to be conditioned
not only on the local context, but also on its global context. To incorporate the
different types of contexts, we propose to use a gate function similar to Noraset
et al. [85] to dynamically control how the global and local contexts influence the
description.

We use bi-directional and uni-directional lstms [34] as our context encoder and
description decoder (Figure 5.1), respectively. Given a sentence X and a phrase Xtrg,
the context encoder generates a sequence of continuous vectors HHH = {hhh1 · · · ,hhhI} as

hhhi = Bi-LSTM(hhhi−1,xxxi), (5.2)

where xxxi denotes the word embedding of word xi. Then, the description decoder
computes the conditional probability of a description Y with Eq. (5.1), which can be
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approximated with another lstm as

ssst = LSTM(yyyt−1,sss
′′′

t−1), (5.3)

dddt =ATTENTION(HHH,ssst), (5.4)

ccctrg = CNN(Xtrg), (5.5)

sss′t =GATE(ssst,xxxtrg,ccctrg,dddt), (5.6)

p(yt|y<t,Xtrg) = softmax(WWWs′sss′t +bbbs′), (5.7)

where ssst is a hidden state of the decoder lstm, and yyyt−1 is a jointly-trained word
embedding of the previous output word yt−1.

Considering the fact that the local context can be relatively long (e.g., around
20 words on average in the Wikipedia dataset that will be introduced in the next
section), it is hard for the decoder to focus on important words in local contexts. In
order to deal with this problem, the ATTENTION(·) function in Eq. (5.4) decides
which words in the local context X to focus on at each time step. dddt is computed with
an attention mechanism [60] as

dddt =

T∑
i=1

αihhhi, (5.8)

αi = softmax(UUUhhhhT
i UUUsssst), (5.9)

where UUUh and UUUs are matrices that map the encoder and decoder hidden states into
a common space, respectively.

In order to capture the surface information of Xtrg, we construct character-level
cnns (Eq. (5.5)) following [85]. Note that the input to the cnns is a sequence of words
in Xtrg, which are concatenated with special character “_,” such as “sonic_boom.”
Following Noraset et al. [85], we set the cnn kernels of length to 2-6 and the size to
10,30,40,40,40 respectively with a stride of 1 to obtain a 160-dimensional vector ccctrg.

In addition to the local context and the character-information, we also utilize
the global context obtained from massive text. We achieve this by two different
strategies proposed by Noraset et al. [85]. First, we feed a phrase embedding xxxtrg to
initialize the decoder as

yyy0 = xxxtrg. (5.10)
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Figure 5.2: Context-aware description dataset extracted from Wikipedia and Wiki-
data.

Here, phrase embedding xxxtrg is calculated by simply summing up all the embeddings
of words that consistute the phrase Xtrg. Note that we use a randomly-initialized
vector if no pre-trained embedding is available for the words in Xtrg.

As described in the previous section, we use both local and global contexts. In
order to capture the interaction between two types of contexts and the description
decoder, we adopt a GATE(·) function (Eq. (5.6)) that updates the LSTM output
ssst to sss′′′t depending on the global context xxxtrg, local context dddt, and character-level
information ccctrg as

fff t = [xxxtrg;dddt;ccctrg] (5.11)

zzzt = σ(WWWz[ fff t;ssst]+ bbbz), (5.12)

rrrt = σ(WWWr[ fff t;ssst]+bbbr), (5.13)

s̃sst = tanh(WWWs[(rrrt� fff t);ssst]+bbbs), (5.14)

sss′t = (1− zzzt)� ssst+ zt� s̃sst, (5.15)

where σ(·), � and ; denote the sigmoid function, element-wise multiplication, and
vector concatenation, respectively. WWW and bbb are weight matrices and bias terms,
respectively. Here, the update gate zzzt controls how much the original hidden state ssst

is to be changed, and the reset gate rrrt controls how much the information from fff t
contributes to word generation at each time step.
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5.4 Proposed: Wikipedia Dataset

Our goal is to describe rare/new expressions such as proper nouns in a variety
of domains. However, among the three existing datasets, WordNet and Oxford
dictionary mainly target the descriptions of relatively common words, and thus are
non-ideal test beds for this goal. On the other hand, although the Urban Dictionary
dataset contains descriptions of rarely-used phrases, the domain of its targeted
words and phrases is limited to Internet slang.

In order to confirm that our model can generate the description of rarely-used
phrases as well as words, we constructed a new dataset for context-aware phrase
description generation from Wikipedia1 and Wikidata2 which contains a wide variety
of entity descriptions with contexts. The overview of the data extraction process
is shown in Figure 5.2. Each entry in the dataset consists of (1) a phrase, (2) its
description, and (3) context (a sentence). For preprocessing, we applied Stanford
Tokenizer3 to the descriptions of Wikidata items and the articles in Wikipedia. Next,
we removed phrases in parentheses from the Wikipedia articles, since they tend to be
paraphrasing in other languages and work as noise. To obtain the contexts of each
item in Wikidata, we extracted the sentence which has a link referring to the item
through all the first paragraphs of Wikipedia articles and replaced the phrase of the
links with a special token [TRG]. Wikidata items with no description or no contexts
are ignored. This utilization of links makes it possible to resolve the ambiguity
of words and phrases in a sentence without human annotations, which is a major
advantage of using Wikipedia. Note that we used only links whose anchor texts are
identical to the title of the Wikipedia articles, since the users of Wikipedia sometimes
link mentions to related articles.

5.5 Experiments

We evaluate our method by applying it to describe words in WordNet [71] and
Oxford Dictionary,4 phrases in Urban Dictionary5 and Wikidata.6 For all of these
datasets, a given word or phrase has an inventory of senses with corresponding

1https://dumps.wikimedia.org/enwiki/20170720/
2https://dumps.wikimedia.org/wikidatawiki/entities/20170802/
3https://nlp.stanford.edu/software/tokenizer.shtml
4https://en.oxforddictionaries.com/
5https://www.urbandictionary.com/
6Dataset will be made available upon publication.

https://dumps.wikimedia.org/enwiki/20170720/
https://dumps.wikimedia.org/wikidatawiki/entities/20170802/
https://nlp.stanford.edu/software/tokenizer.shtml
https://en.oxforddictionaries.com/
https://www.urbandictionary.com/
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definitions and usage examples. These definitions are regarded as ground-truth
descriptions.

5.5.1 Settings

Datasets

To evaluate our model on the word description task on WordNet, we followed Noraset
et al. [85] and extracted data from WordNet7 using the dict-definition8 toolkit. Each
entry in the data consists of three elements: (1) a word, (2) its definition, and (3) a
usage example of the word. We split this dataset to obtain Train, Validation, and
Test sets. If a word has multiple definitions/examples, we treat them as different
entries. Note that the words are mutually exclusive across the three sets. The only
difference between our dataset and theirs is that we extract the tuples only if the
words have their usage examples in WordNet. Since not all entries in WordNet have
usage examples, our dataset is a small subset of Noraset et al. [85].

In addition to WordNet, we use the Oxford Dictionary following Gadetsky et al.
[32], the Urban Dictionary following Ni and Wang [83] and our Wikipedia dataset
described in the previous section. Table 5.1 and Table 5.2 show the properties and
statistics of the new dataset and the three existing datasets, respectively.

To simulate a situation in a real application where we might not have access to
global context for all phrases, we did not train domain-specific word embeddings
on each domain. Instead, we use the same pre-trained cbow9 vectors as global
context following previous work [85, 32]. If the expression to be described consists
of multiple words, its phrase embedding is calculated by simply summing up all the
cbow vectors of words in the phrase, such as “sonic” and “boom.” (See Figure 5.1 on
Page 1). If pre-trained cbow embeddings are unavailable, we instead use a special
[UNK] vector (which is randomly initialized with a uniform distribution) as word
embeddings. Note that our pre-trained embeddings only cover 26.79% of the words
in the expressions to be described in our Wikipedia dataset, while it cover all words in
WordNet dataset (See Table 5.2). Even if no reliable word embeddings are available,
all models can capture the character information through character-level cnns (See
Figure 5.1 on Page 1).

7https://wordnet.princeton.edu/
8https://github.com/NorThanapon/dict-definition
9GoogleNews-vectors-negative300.bin.gz at https://code.google.com/archive/p/

word2vec/

dict-definition
https://wordnet.princeton.edu/
https://github.com/NorThanapon/dict-definition
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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Corpus # Phrases # Entries Length of Length of
Context Description

WordNet

Train 7,938 13,883 5.81 6.61
Valid 998 1,752 5.64 6.61
Test 1,001 1,775 5.77 6.85

Oxford Dictionary

Train 33,128 97,855 17.74 11.02
Valid 8,867 12,232 17.80 10.99
Test 8,850 12,232 17.56 10.95

Urban Dictionary

Train 190,696 411,384 10.89 10.99
Valid 26,876 57,883 10.86 10.95
Test 26,875 38,371 11.14 11.50

Wikipedia

Train 151,995 887,455 18.79 5.89
Valid 8,361 44,003 19.21 6.31
Test 8,397 57,232 19.02 6.94

Table 5.1: Statistics of the word/phrase description datasets.

Models

We implemented four methods: (1) Global [85], (2) Local [83] with cnn, (3) I-
Attention [32], and our proposed model, (4) LOG-CaD. The Global model is our
reimplementation of the strongest model (S + G + CH) in Noraset et al. [85]. It can
access the global context of a phrase to be described, but has no ability to read the
local context. The Local model is the reimplementation of the best model (dual
encoder) in Ni and Wang [83]. In order to make a fair comparison of the effectiveness
of local and global contexts, we slightly modify the original implementation by Ni
and Wang [83]; as the character-level encoder in the Local model, we adopt cnns
that are exactly the same as the other two models instead of the original lstms. The
I-Attention is our reimplementation of the best model (S + I-Attention) in Gadetsky
et al. [32]. Similar to our model, it uses both local and global contexts. Unlike our
model, however, their model cannot directly use the local context to predict the
words in descriptions. This is because the I-Attention model indirectly uses the
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Corpus Domain Inputs Cov. emb.

WordNet General words 100.00%
Oxford Dictionary General words 83.04%
Urban Dictionary Internet slangs phrases 21.00%
Wikipedia Proper-nouns phrases 26.79%

Table 5.2: Domains, expressions to be described, and the coverage of pre-trained
embeddings of the expressions to be described.

Global Local I-Attn. Proposed

# Layers of Enc-LSTMs - 2 2 2
Dim. of Enc-LSTMs - 600 600 600
Dim. of Attn. vectors - 300 300 300
Dim. of input word emb. 300 - 300 300
Dim. of char. emb. 160 160 160 160
# Layers of Dec-LSTMs 2 2 2 2
Dim. of Dec-LSTMs 300 300 300 300
Vocabulary size 10k 10k 10k 10k
Dropout rate 0.5 0.5 0.5 0.5

Table 5.3: Hyperparameters of the models

local context only to filter out unrelated information in phrase embeddings. All four
models (Table 5.3) are implemented with the PyTorch framework.10

5.5.2 Results

Automatic Evaluation

Table 5.4 shows the bleu [88] scores of the output descriptions. We can see that the
LOG-CaD model consistently outperforms the three baselines in all four datasets.
This result indicates that using both local and global contexts helps describe the
unknown words/phrases correctly. While the I-Attention model also uses local and
global contexts, its performance was always lower than the LOG-CaD model. This
result shows that using local context to predict description is more effective than
using it to disambiguate the meanings in global context.

In particular, the low bleu scores of Global and I-Attention models on Wikipedia
dataset suggest that it is necessary to learn to ignore the noisy information in global

10http://pytorch.org/
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Model WordNet Oxford Urban Wikipedia

Global 24.10 15.05 6.05 44.77
Local 22.34 17.90 9.03 52.94
I-Attention 23.77 17.25 10.40 44.71
LOG-CaD 24.79 18.53 10.55 53.85

Table 5.4: bleu scores on four datasets.

Model Annotated score

Local 2.717
LOG-CaD 3.008

Table 5.5: Averaged human annotated scores on Wikipedia dataset.

context if the coverage of pre-trained word embeddings is extremely low (see the
third and fourth rows in Table 5.2on Page 5). We suspect that the Urban Dictionary
task is too difficult and the results are unreliable considering its extremely low bleu
scores and high ratio of unknown tokens in generated descriptions.

Manual Evaluation

To compare the proposed model and the strongest baseline in Table 5.4 (i.e., the Local
model), we performed a human evaluation on our dataset. We randomly selected
100 samples from the test set of the Wikipedia dataset and asked three native English
speakers to score the output descriptions from 5 (correct) to 1 (wrong). The averaged
scores are reported in Table 5.5. Pair-wise bootstrap resampling test [47] for the
annotated scores has shown that the superiority of LOG-CaD over the Local model
is statistically significant (p < 0.01).

Qualitative Analysis

Table 5.6 and Table 5.7 show the examples of a phrase in Wikipedia and a word in
the WordNet dataset, respectively. When comparing the two datasets shown in the
two tables, the quality of generated descriptions of Wikipedia dataset is significantly
better than that of WordNet dataset. The main reason for this result is that the size
of training data of the Wikipedia dataset is 64x larger than the WordNet dataset (See
Table 5.1).
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Input: daniel o’neill

Context: #1 #2

after being enlarged by publisher
daniel o’neill it was reportedly one
of the largest and most prosperous
newspapers in the united states.

in 1967 he returned to belfast where
he met fellow belfast artist daniel
o’neill.

Reference: american journalist irish artist

Global: american musician

Local: american publisher british musician

I-Attention: american musician american musician

LOG-CaD: american writer british musician

Table 5.6: Descriptions for a phrase in Wikipedia.
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Figure 5.3: Number of senses of the phrase.

For all examples in both datasets in Table 5.6 and Table 5.7, the Global model can
only generate a single description for each input phrase because it cannot access any
local context. In the Wikipedia dataset, both the Local and LOG-CaD models can
describe the word/phrase considering its local context. For example, both the Local
and LOG-CaD models could generate “american” in the description for “daniel
o’neill” given “united states” in Context #1, while they could generate “british”
given “belfast” in Context #2. On the other hand, the I-Attention model could not
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Input: waste

Context: #1 #2

if the effort brings no compensating
gain it is a waste

We waste the dirty water by channel-
ing it into the sewer

Reference: useless or profitless activity to get rid of

Global: to give a liquid for a liquid

Local: a state of being assigned to a particu-
lar purpose

to make a break of a wooden instru-
ment

I-Attention: a person who makes something that
can be be be done

to remove or remove the contents of

LOG-CaD: a source of something that is done or
done

to remove a liquid

Table 5.7: Descriptions for a word in WordNet.
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Figure 5.4: Unknown words ratio in the phrase.

describe the two phrases, taking into account the local contexts. We will present an
analysis of this phenomenon in the next section.

5.6 Discussion

In this section, we present analyses on how the local and global contexts contribute
to the description generation task. First, we discuss how the local context helps the
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Figure 5.5: Impact of various parameters of a phrase to be described on bleu scores
of the generated descriptions.

models to describe a phrase. Then, we analyze the impact of global context under
the situation where local context is unreliable.

5.6.1 How do the models utilize local contexts?

Local context helps us (1) disambiguate polysemous words and (2) infer the meanings
of unknown expressions. Can machines also utilize the local context? In this section,
we discuss the two roles of local context in description generation.

Considering that the pre-trained word embeddings are obtained from word-level
co-occurrences in a massive text, more information is mixed up into a single vector
as the more senses the word has. While Gadetsky et al. [32] designed the I-Attention
model to filter out unrelated meanings in the global context given local context,
they did not discuss the impact the number of senses has on the performance of
definition generation. To understand the influence of the ambiguity of phrases to
be defined on the generation performance, we did an analysis on our Wikipedia
dataset. Figure 5.5(a) shows that the description generation task becomes harder as
the phrases to be described become more ambiguous. In particular, when a phrase
has an extremely large number of senses, (i.e., #senses ≥ 4), the Global model drops
its performance significantly. This result indicates that the local context is necessary
to disambiguate the meanings in the global context.
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As shown in Table 5.2 on Page 5, a large proportion of the phrases in our Wikipedia
dataset includes unknown words (i.e., only 26.79% of words in the phrases have their
pre-trained embeddings). This fact indicates that the global context in this dataset is
not fully reliable. Then our next question is, how does the lack of information from
global context affect the performance of phrase description? Figure 5.5(b) shows
the impact of unknown words in the phrases to be described on the performance.
As we can see from the result, the advantage of LOG-CaD and Local models over
Global and I-Attention models becomes larger as the unknown words increases.
This result suggests that we need to fully utilize local contexts especially in practical
applications where the phrases to be defined have many unknown words. Here,
Figure 5.5(b) also shows a counterintuitive phenomenon that bleu scores increase as
the ratio of unknown words in a phrase increase. This is mainly because unknown
phrases tend to be persons’ names such as writers, actors, or movie directors. Since
these entities have fewer ambiguities, they can be described in extremely short
sentences that are easy for our method to decode (e.g., “finnish writer” or “american
television producer”).

5.6.2 How do the models utilize global contexts?

As discussed earlier, local contexts are important to describe unknown expressions,
but how about global contexts? Assuming a situation where we cannot obtain much
information from local contexts (e.g., infer the meaning of “boswellia” from a short
local context “Here is a boswellia”), global contexts should be essential to understand
the meaning. To confirm this hypothesis, we analyzed the impact of the length
of local contexts on bleu scores. Figure 5.5(c) shows that when the length of local
context is extremely short (l ≤ 10), the LOG-CaD model becomes much stronger
than the Local model. This result indicates that not only local context but also global
context help models describe the meanings of phrases.

5.6.3 Differences between the Description Generation Task and
the Word Sense Disambiguation Task

As discussed in Section 2.3, our task of describing phrases is closely related to
word sense disambiguation (wsd) [76], which identifies a pre-defined sense for
the target word with its context. The most significant difference between the two
tasks is that the pre-defined senses are given in wsd, which are not available in the
description generation task. To investigate the applicability of our model to the
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Figure 5.6: The modified version of the proposed model for wsd task

wsd, we conducted an experiment on knowledge-based wsd. In the following, we
describe the models, datasets, and the results of this experiment.

Model

While the output of the description generation model is a sequence of the discrete
symbols (i.e., words), the output of the wsd task is a continuous score that represents
to what extent the given sense is appropriate to the specific context. Thus, we need
to modify our LOG-CaD model as shown in Figure 5.6. Firstly, we add another
bi-lstm encoder that allows the model to read a candidate definition in the sense
inventories. Secondly, we remove the lstm decoder and adopt a linear layer as the
output layer that predicts a single value. This encoder maps the candidate definition
into a single continuous vector. Finally, since the supervised wsd task can be seen as
a ranking problem, we use the margin ranking loss instead of the cross-entropy loss
to optimize the model.
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Data source #Sentences #Tokens #Sense types #Word types

Senseval-2 242 5,766 1,335 1,093
Senseval-3 352 5,541 1,167 977
SemEval-07 135 3,201 375 330
SemEval-13 306 8,391 827 751
SemEval-15 138 2,604 659 512

SemCor 37,176 802,443 33,362 22,436

Table 5.8: Statistics of thewsd datasets after the standarization proposed by Raganato
et al. [92].

Method F-1 measure

Random baseline 39.0
Proposed 44.7
UKB [2, 3] 67.3

Table 5.9: F-1 measure on the Senseval/SemEval dataset.

Dataset

Following the recent proposed evaluation framework onwsd [92], we use SemCor [72]
dataset as training set and the Senseval/SemeEval dataset as test set. The SemCor
is the largest corpus manually annotated with WordNet senses [92]. Our test set
consists of the five datasets from Senseval2 [21], Senseval3 [100], SemEval07 [90],
SemEval13 [77], and SemEval15 [73], and is standardized to the same format. The
statistics of the dataset are shown in Table 5.8.

Result

Table 5.9 shows the performance of our model and UKB[2, 3], which is the state-
of-the-art knoledge-based wsd system. Although the proposed model performed
better than the random baseline, it is significantly worse than the UKB. Note that the
UKB utilizes the WordNet graph and contexts, while our system can only access the
contexts. This result suggests that the LOG-CaD cannot replace the wsd systems,
but the two methods are complementary to each other. If the word to be defined
is included in a hand-made knowledge base, using the wsd systems would help
human understanding better than our system. On the other hand, LOG-CaD can be
utilized in other situations where (1) we need to understand the meanings of new
words/phrases that are not included in the knowledge base, or (2) the wsd system
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cannot select the available sense with high confidence, or (3) we discover a new
usage of the existing expressions with the word sense induction [87] methods.

5.7 Chapter Summary

In this chapter, we examined a method to generate a natural language description
for an unknown phrase with a specific context. The first contribution of this work
is to construct a Wikipedia-based description generation dataset. Compared to the
existing datasets for definition generation, our newly constructed dataset has three
advantages: large, diverse, and versatile. It contains 989k entries, which is the
largest description-generation dataset in the world. Since we built the dataset using
Wikipedia and Wikidata, the dataset covers lots of domains. It should also be noted
that this dataset covers phrases as well as words, while most previous work focused
only on unknown words.

The second contribution of this work is to present LOG-CaD, a state-of-the-art
description generation model. LOG-CaD is a variant of encoder-decoder models
that capture the given local context by an encoder and global contexts by the target
phrase’s embedding induced from a massive text. In the experiments on three
existing datasets and our newly built Wikipedia dataset, our model outperformed
the strongest baselines by +1.38 bleu score (averaged over four datasets).
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Conclusion

In this thesis, we explored methods to help human understanding of multilingual
text. As described in Section 1, there exist two barriers that avoid humans from
understanding the multilingual text: the language differences and the domain
differences. To overcome the two barriers, we started from the area of intersection
area of the language and domain differences: the out-of-domain problem of machine
translation (Chapter 3). Next, we tackled the language barrier between English and
Japanese, a language pair which have significant differences in their grammars and
vocabularies (Chapter 4). Finally, we explored a way to solve the domain differences
between text and the readers who are not the experts in the domain of the text
(Chapter 5) In the following sections, we summarize the solutions for the above
problems and the achievements obtained.

6.1 Accurate and Instant Translation Model Adaptation
for Statistical Machine Translation

In order to obtain fresh and diverse information from multilingual text, we need a
machine translation system that can translate text in any domain. Several domain
adaptation methods had been proposed to achieve this goal. Most work on domain
adaptation for machine translation has been focusing on a scenario where a small or
pseudo in-domain parallel corpus is available. However, in actual scenarios where
users want to exploit machine translation for multilingual text, it is impractical to
prepare all the in-domain parallel data since the target domains are usually unknown
and they vary among users and situations.
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In Chapter 3, we presented a practical domain adaptation method for smt. Since
it does not require any in-domain parallel data, our method can be used to help
multilingual text understanding, where the target domains are unknown and vary
depending on users and situations. The key idea of the adaptation method is to
leverage a cross-lingual projection of word semantic representations to obtain a
translation model for out-of-vocabulary words in smt. Assuming monolingual
corpora for the source and target languages, we induce vector-based semantic
representations of words and obtain a projection (translation matrix) from source-
language semantic representations into the target-language semantic space.

Since the existing methods for vector projection lack in accuracy, we first designed
a projection model that exploits two types of translatable context pairs, which
are taken from the training data and guessed by surface-level similarity. In the
experiments on word translation task between four languages (including English,
Spanish, Japanese, and Chinese), this projection model outperformed the previous
methods by +8.1 points in precision. We then apply the obtained translation matrix
to find translation candidates of oovwords and use the cosine similarity to induce
the translation probability. Experimental results on domain adaptation from a
Kyoto-related domain to a recipe domain confirmed that our method improved bleu
by 0.5-1.5 and 0.1-0.2 for en-ja and ja-en translations, respectively.

This adaptation pipeline freed us from the constraint that the in-domain parallel
data was needed. However, there still exist problems that were not solved in this
work. First, the performance of machine translation is low especially in the language
pairs whose word orders are significantly different (e.g., English and Japanese). This
problem might be overcome by (1) using the state-of-the-art machine translation
algorithm (i.e., nmt) and (2) modeling the differences of the language structures in
its framework. Second, the unknown words for humans have not been dealt with.
The oov words we focused on in this work are unknown words for machines, which
are caused by the domain differences between the train and test data. The unknown
words for humans, which are caused by the lack of domain knowledge of the readers,
might be solved by describing the meanings of the words in natural language. Our
efforts to tackle the above two problems will be described in Chapter 4 and Chapter 5,
respectively.
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6.2 Chunk-based Decoder for Neural Machine Transla-
tion

The domain adaptation method in Chapter 3 improved the quality of the translation
for multi-domain text. From the viewpoint of machine translation, there are two
limitations to this work. First, since the method can only cope with the oovwords, it
does not improve performance if the vocabulary difference is not the major problem
(which was described in Section 3.6.2). The translation quality depends not only on
the domain differences between train/test data but also on the structural differences
between source/target languages. Second, the overall performance of smt is low
compared to the state-of-the-art nmtmodels.

In order to directly tackle these problems, in Chapter 4, we tried to improve
the performance of nmt. In this work, we focus on the translation from English to
Japanese, a language pair that has significant differences in their vocabulary and
syntactic structures. As the attention mechanism in nmt plays a similar role to the
translation model in phrase-based smt, our proposed chunk-based decoders are
intended to capture the notion of chunks in chunk-based (or phrase-based) smt.
We designed three models that have hierarchical rnn-like architectures, each of
which consists of a word-level decoder and a chunk-level decoder. The performed
experiments on the WAT ’16 English-to-Japanese translation task showed that our
best model outperforms the conventional word-based decoder strongest baselines
by +0.93 bleu score and by +0.57 ribes score.

In the paradigm of conventional nmt, machine translation had been formulated
as a problem of sequence-to-sequence mapping. Here, the outputs from the mapping
functions were usually word or subword sequences, which did not consider any
linguistic structure. Leveraging the linguistic structures in the target language is a
hard problem since the target sentences cannot be observed in test time. The main
contribution of this work is the methodology of considering the structures of the target
language. The effectiveness of leveraging target structures has been confirmed in the
work published concurrently to or later than our work[4, 24, 82, 107, 111, 112, 120].
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6.3 Learning to Describe Phrases with Local and Global
Contexts

As described in Chapter 1, we need to extract information from the diverse text
is written in several languages. The domain adaptation method in Chapter 3
approached this problem from the viewpoint of machine translation. It enabled the
smt system to translate oov words that are not included in the train data. However,
from the perspective of human understanding, we still have problems other than
translation. If we readers are not the experts of a text, we may find several words
or phrases whose senses we are unsure of even if the text is written in our native
language. These unknown expressions prevent our effective understanding of the
text because we need to consult dictionaries while reading. In addition, many
domain-specific terms and new entities may not be included in the dictionaries.

In Chapter 5, we examined a method to describe the meaning of unknown phrases
automatically. We first set up a task of generating a natural language description
for an unknown word/phrase in several domains, aiming to help us acquire the
senses of the unknown expressions when reading a multi-domain text. Compared
to the existing datasets for definition generation, our newly constructed dataset has
three advantages: large, diverse, and versatile. It contains 989k entries, which is
the largest description-generation dataset in the world. Since we built the dataset
using Wikipedia and Wikidata, the dataset covers lots of domains. It should also be
noted that this dataset covers phrases as well as words, while most previous work
focused only on unknown words. We approached this task by using a variant of
encoder-decoder models that capture the given local context by an encoder and
global contexts by the target word’s embedding induced from a massive text. We
performed experiments on three existing datasets and the one newly built from
Wikipedia. Our proposed model achieved state-of-the-art performances in all of the
four datasets. In particular, when tested on the multi-domain scenario, it performed
much better than the strongest baseline (+0.9 in bleu, +0.3 in a 5-level human
annotated score).

The main contribution of this work was twofold: (1) to present a practical dataset
for description generation task in the multi-domain scenario, and (2) to propose a
state-of-the-art model for description generation. While the dataset proposed in the
previous work was either small or limited to specific domains, it was difficult to
use them to build a practical description generation model. The domain diversity
of the domains and the massive size of our presented dataset have enabled us to
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build a more practical model for multi-domain text. Besides, we showed that our
description generation method performs better than any other models which had
been proposed previously. This result indicates the effectiveness of our method to
help humans’ understanding their unfamiliar words/phrases.

6.4 Contributions to Humans’ Understanding of Mul-
tilingual Text

At the beginning of this thesis, we discussed the problem of multilingual text
understanding. The multilingual text is written in several languages, and its contents
vary in several domains. Two requirements for the understandable text were defined:
the high translation quality of the text written in unfamiliar languages, and the high
comprehensibility of the terms in unfamiliar domains.

In the following, we discuss how this thesis contributes to solving this problem.
This thesis had presented the methodologies of (1) accurate and instant domain
adaptation for smt (Chapter 3), (2) chunk-aware decoding for nmt(Chapter 4), and
(3) description generation in various domains(Chapter 5) . From the viewpoint of
improving translation quality, we explored (1) and (2). These two methodologies
proposed here are not competing but rather complementary to each other. While
the phrase-by-phrase decoding in conventional smt had significantly contributed
to improving translation performance, there was no way to apply it to the current
nmt models. In work (2), we shed light on this issue and presented a method to
introduce the phrase structure in the neural decoders. On the other hand, even
the state-of-the-art nmt models suffer from the domain differences between the
train and test data [50]. Aiming to solve this problem, in work (1), we explored an
adaptation method that does not require any in-domain text and contributed to the
out-of-domain translation.

From the perspective of the comprehensibility of out-of-domain terms, we
proposed (3). The work (3) tackled the problem of domain differences of multilingual
text from a different aspect from (1). While (1) focused on resolving the domain
differences between the dataset (i.e., train and test data), (3) focused on the domain
differences between text and readers (e.g., a situation where computer science
majored student reads a text in medical domain). Since we intended to directly help
humans’ understanding in (3), we took an approach of using natural language to
describe the words/phrases that are unfamiliar to the readers.
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To conclude, this thesis tackled the problems in assisting humans’ understanding
of the multilingual text. Since both the language barriers and domain barriers are
serious problems to be solved, we presented three approaches to cope with them.
The three approaches presented do not conflict with each other, but are focusing
on the different sides of the problems. We expect that this thesis will provide a
promising future direction for research of multilingual text processing.

6.5 Future Work

This thesis contributed to the research area of multilingual text understanding by
improving machine translation and helping human understanding. However, there
remain important issues to be addressed in this research area. In the following, we
summarize the future work of multilingual text understanding according to its topic.

6.5.1 Domain Adaptation for Machine Translation

Domain adaptation is the key technology when machine translation is used to
translate the multi-domain text. Despite the recent successes of nmt, its poor
performance in out-of-domain settings is one of the most severe problems to be
solved [50]. There are two difficulties in the domain adaptation in multilingual
text understanding: the target domains are unknown and vary. In this thesis, we
tried to resolve the difference of vocabulary between different domains without
using in-domain parallel data. Besides the vocabulary problem, the differences of
topic, genre, style, level of formality of the text are also the essential factors to be
considered into the machine translation models.

6.5.2 Neural Machine Translation

The largest changes of nmt from smt is that it maps the words, phrases, and sentences
into continuous vector spaces rather than directly treat them as discrete symbols. This
property of nmt led us to multilingual nmt [28, 43, 58], the methodologies to perform
translation for several language pairs with a single model. While the multilingual
nmt is a promising approach towards multilingual text understanding, they simply
treat the input and output text as sequences of word or subword. Can the linguistic
structures of the source and target languages help improve translation performance?
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How can we incorporate those features into the framework of multilingual nmt?
These are the essential topics to be addressed in the future.

6.5.3 Sense Identification for Unknown/New Expressions

The presented task of describing unknown phrases is closely related to word sense
disambiguation (wsd) [76], which identifies a pre-defined sense for the target word
with its context. Since it requires a substantial amount of training data for disam-
biguation, it cannot handle expressions that are not registered in the dictionary. Our
description generation task avoids this difficulty by directly generating descriptions
for phrases or words, and also allows us to flexibly tailor a fine-grained definition
for the specific context. However, the quality of the generated descriptions is much
worse than the definitions written by a human.

In this point of view, we may combine a wsd system with our description
generator. For the known expressions, we can utilize the wsd to output a more
accurate definition. If an unknown expression or a known expression with new
usage is the input, we take advantage of our method to provide a description for any
input. To achieve this goal, we need an accurate classifier that predicts how likely
the expression is used in a new meaning. This will also be an interesting research
direction.
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