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Abstract

The most fundamental mission of modern computer systems is decision-making to assess the

situation by consulting the sensing system and then command the actuator system to handle

and control the situation. Such systems have been constructed for use in areas such as aviation,

finance, and robotics by limiting their application to their own closed networks. Recently,

with the widespread adoption of compact measuring instruments, the Internet, and small yet

powerful processors, traditional computer systems are changing their concepts and roles. The

Internet of Things and social cyber-physical systems (CPSs) are examples of such changes. We

believe that society may become fully automated as a result of forms of artificial intelligences

that handle heterogeneous sensor data collected from real-world observations. However, while

decisions have been supported by experience and knowledge presented by many professionals,

the wisdom thus obtained has not necessarily been recorded. To construct a CPS, we must

develop a generic solution that systematizes the professional knowledge without depending on

any languages or rules.

Frequently, deep artificial neural networks have attracted social attention by their superior

performance and versatility with regard to various tasks of machine learning, but the essence

of their superiority is that heuristics are excluded from the decision-making process. The

applications of these networks are as yet limited to naı̈ve tasks such as detection, classification,

and regression, but they can already reduce the workload of professionals to a certain degree.

For over three years, the research group at the National Institute of Informatics and I have

searched for a way to apply neural networks to the problem of social infrastructure maintenance,

and especially the task of assessing the safety of road bridges. The greatest difficulty in our

research was the reversal of means and purpose. Initially, the target sensors should be installed

under careful consideration of their use. Unfortunately, our study started with the task of finding

some useful application of the sensor data that have been collected from real bridges over a long

period. There was an initial strategy of realizing a fully automated system for monitoring the

structural health of the bridges, but no tactics and concrete operations could be performed. The

concept of deep sensing was born from such a barrier—one that is often faced in the area of

data mining—and permitted us to move forward with our research.
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Deep sensing is the effort of extracting rich latent information hidden in the observation data

by aggressively applying neural network technologies to the sensor data. As we demonstrate

in this dissertation, even trivial vibration data may be a rich source of information about

passing vehicles. Our efforts may enlarge the role of the actual sensors installed on the bridge

and may produce two major benefits. First, we may replace some specialized sensors by a

versatile, miniature, and inexpensive sensor. Moreover, the necessity of developing specialized

sensing devices may be reduced. Second, we may simplify entire sensing systems deployed

in the real world by using the same single sensor for multiple purposes and by reducing the

total number of sensing devices required. Deep sensing may be an antithesis of conventional

sensor-fusion approaches that must synchronize many sensors accurately and are thus unreliable

and require frequent inspection and repair. By applying the idea of deep sensing, we have

successfully developed two approaches to detect anomalous events that may indicate some

structural faults in, and damage to, the target bridge. One approach is the direct comparison

of heterogeneous sensor data that extracts features from several data samples collected from

heterogeneous sensors and media, including camera and strain sensors installed on the target

bridge, and compares them in a common feature space shared by the data domains. The other

approach is the modeling of bridge dynamics by a task of translation between sensors that

extracts features from several data sources and estimates a signal that may be observed via

another sensor. For these purposes, we have developed the techniques of spiral learning and of

media-fusion generative adversarial networks (GANs).

Chapter 4 describes a video analysis framework for collecting ground-truth data for training

the deep sensing models. The traffic surveillance system (TSS) that has been utilized for this

purpose was proposed originally for the purpose of vehicle detection as a preprocessing step

for analyzing natural vibration observed on bridges. Therefore, we also mention the analysis

framework proposed for natural vibrations. The vibration response of a damaged bridge is

known to have changed characteristics. To analyze the response, we must start by collecting

waveforms of the vibration immediately following the passage of a vehicle. We then need to

isolate just those vibrations caused by a single heavy vehicle if the vibration characteristics are

to be accurate. Consequently, we developed the TSS that exploited a surveillance camera. The

system identifies a vehicle from the video by combining a moving-object detector with an object

detector based on a convolutional neural network (CNN), thereby estimating automatically

the bridge’s natural frequencies and damping ratios as features that characterize the bridge’s

damage.

Chapter 5 describes an application of deep sensing to the weighing task of vehicles passing

a bridge. In this chapter, we introduce the bridge weigh-in-motion (BWIM) system. BWIM is

a well-known technique for detecting overloaded vehicles crossing a bridge without requiring
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them to stop. BWIM may also be useful for monitoring the structural health of the bridge.

To achieve accurate weighing of each vehicle, its properties such as speed, locus, and wheel

positions, should be estimated in advance. Conventionally, such information has been obtained

via additional sensors such as cameras or via peak-signal detection using multiple sensors

installed across the bridge. This information may require substantial computational resources

or expensive synchronization between sensors, and the complexity of the overall BWIM system

may lead to frequent breakdowns. In Chapter 5, we propose a single-sensor-based BWIM

system that utilizes a deep neural network. First, a vehicle’s properties are obtained via feature

extraction from the bridge strain response, as sampled by a single strain sensor. BWIM is

then performed using the same response data. The model parameters for vehicle detection are

optimized automatically by consulting a surveillance camera while obtaining ground-truth data

for a large number of vehicles crossing the bridge. After the model is optimized for the target

bridge, the camera may be removed. Our proposal paves the way toward low-cost, compact,

single-sensor BWIM systems.

Chapter 6 proposes a damage detection framework for road bridges based on an anomaly

detection technique. When a vehicle passes over a bridge, the bridge distorts in response to

the vehicle’s load. The response characteristics may change over time if the bridge suffers

damage. We consider the detection of such anomalous responses using data from both traffic

surveillance cameras and strain sensors. The camera data are utilized to treat each vehicle’s

identified properties as explanatory variables in the response model. The video and strain

data are transformed into a common feature space to enable direct comparisons. This space

is obtained via our proposed spiral learning method that is based on a deep convolutional

neural network. We treat the squared Euclid distance between the video and strain data in the

space as the anomaly score. We also propose an adversarial unsupervised learning technique

for removing the influence of the weather from the video features. In our experiments, we

found anomalous strain responses from a real bridge and were able to classify them into four

major patterns. Unfortunately, we had no collection of ground-truth data for bridge damage

detection; thus, we could not validate the meaning of the anomaly quantitatively. In this sense,

our experiments in Chapter 6 are ambitious, and at present, the effectiveness of the proposal is

unfortunately uncertain.

Chapter 7 describes an anomaly detection system that is more progressive than Chapter 6.

The approach involves dynamic simulation whereby damage may be identified by detecting

unusual mechanical behavior by the bridge components in response to passing vehicles.

Conventionally, dynamic simulation requires expert knowledge of mechanics, materials, and

structures, as well as accurate modeling. Moreover, dynamic simulation requires a detailed

specification of the external forces applied, such as vehicle speeds, loci, and axle weights.
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Chapter 7 introduces a novel media-fusion framework to obtain a dynamic model in a fully

data-driven fashion. The proposed generative model successfully simulated strain responses

for a real road bridge by consulting a camera and strain sensors on the bridge. The generative

network was trained by an adversarial learning algorithm customized for media-fusion analysis.

Moreover, anomalous sensor signals may be detected in terms of physical quantities rather than

scalar anomaly scores introduced in Chapter 6. From the perspective of the interpretability of

anomaly detection results, this approach may be superior to Chapter 6.

The three empirical studies are reviewed and discussed in Chapter 8, concluding this

dissertation.

Although we mainly focus on the methodology of data mining, this dissertation contributes

to informatics and to the research field of civil engineering. As a result, one of the papers

establishing this dissertation was presented at an academic workshop on structural health

monitoring. We believe our work will contribute to the wide acceptance of an autonomous

maintenance system for social infrastructures such as bridges and buildings.
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1.1 Social Cyber-Physical System 2

There is growing interest in the mining of large amounts of data acquired by huge sensing

networks involving humans, consumer electronics, industrial machines, and society. Extremely

large-scale data processing is realized by a backdrop of inexpensive, powerful, computational

environments composed of parallel and distributed clusters. Modern computers can have large

memories with hundreds of gigabytes per CPU socket. We believe that artificial intelligence

with extensive knowledge will improve future human society. A cyber-physical system (CPS)

is the realistic answer to this naive expectation.

1.1 Social Cyber-Physical System

The essence of the CPS concept is the application of a traditional information system to social

decision-making. Historically, the fundamental mission of computational and communicational

systems has been acceleration of decision-making. Fig. 1.1 shows the general architecture for

decision-making, involving the sensor system and actuator system. In general terms, a decision

system has four system components, namely data acquisition, situation analysis, command, and

control. The first step, data acquisition, collects data from sensors through a communication

network. The second step, situation analysis, supports the commander, by presenting possible

operation plans. The third step, command, may contain operational planning for the long term,

short term, and for real time. The fourth step, control, performs the command by controlling

humans, machines, and actuators. Such a decision system has been applied to every field of

human activity, including finance, industry, logistics, aviation, diplomacy, and security. Most

decision systems have developed individually within their specific field of application. For

example, an avionics system cannot control a ship or buy and sell stocks. By limiting their

situations, missions, and responsibility levels, decision systems have been put into practical

use.

A social decision system may integrate specialized information systems by organizing and

sharing resources for sensing, communication, computation, situation analysis, and actuation,

which are deployed and interconnected widely in the real world and work together organically

via the Internet. As a result, the social decision system is responsible for any problems and

applications in society. This responsibility may be extended to economic and political fields

in the distant future. In this dissertation, we are interested in the problem of the maintenance

of social infrastructures. It is important, from the perspective of improving social welfare and

security, to maintain regions where depopulation has occurred as a result of people moving

to urban areas. In this context, the social decision system may produce great benefits. We

expect that the system may resolve the problem of some social requirements that have been

neglected for years because of their expense being not worth their benefits, e.g., maintenance of

old regional roads used by few people.
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Unfortunately, the CPS framework is new and technically ambitious. Although we labeled

a CPS as a decision-making system, the main research interest is situation analysis, which is

just a portion of the four major components of a CPS. This dissertation is not an exception.

Strictly, the main topic of this dissertation is developing the techniques and frameworks for

bridge damage detection, which will be a trivial component implemented on the CPS framework

in the distant future.

1.2 Structural Health Monitoring

In this dissertation, we focus mainly on the problem of structural health monitoring (SHM),

especially the case of road bridges. Many bridges built in Japan in the 1960s have deteriorated

and require substantial inspection. As reported by the Japanese government [76], there are at

least 700,000 road bridges that are more than two meters long, and 75% of them are managed

by municipal offices. In addition, in 2013, 18% of the 700,000 bridges were constructed over 50

years previously and this percentage could rise to 43% in 2023 [76]. Unfortunately, periodical

bridge inspection is costly, and hiring civil engineers all over the nation (or world) may be

difficult. Therefore, bridge owners and maintainers demand health-monitoring systems that can

automate the inspection process completely or partially.

Information scientists can approach the health-monitoring problem by applying the concept

of social CPSs. First, we install a number of inexpensive, miniature sensors on bridges. Second,

we acquire sensor data of bridge dynamics via the Internet and manage them in a multimedia

database system. Third, we apply some techniques of data mining and machine learning to

assess the risk of bridge collapse. Finally, the bridge owner makes decisions regarding bridge

maintenance, including repair, demolition, and renovation.

By using long-term monitoring data, we aim to detect small signs of internal damage to the

bridge, such as the fracture and corrosion of steel cables, frames, and reinforcing bars, which

may cause bridge collapse. Such damage may be hardly detectable by visual and hammering

inspection. In contrast, we utilize accelerometers, transducers, and cameras, considering their

versatility and expense. Compared to direct sensors such as radiation inspection, these sensors

have a great weakness in that they cannot identify internal damage. However, these sensors

have great merits in that they are inexpensive, durable, weatherproof, and suitable for permanent

measurement. These benefits may make our monitoring system superior to other approaches,

including running inspection vehicles [51], in terms of the amount of acquired data used for

assessing damage.
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Figure 1.1: General mechanism for decision-making.

1.3 Integrated Health Monitoring System

The main goal of this research is to provide an integrated data management system for the

SHM of social infrastructures. The targets are not limited to bridges but include tunnels, roads,

and other types of buildings. This system collects and archives data from heterogeneous data

sources in an integrated database management system (DBMS). The managed data include

sensor data, videos, inspection documents, and geological and meteorological data. They are

managed in a group of database (DB) systems, including relational, spatiotemporal, and file

DBs.

We are aiming at a highly scalable SHM system based on a CPS where various talents from

various fields, e.g., owners, maintainers, civil engineers, and data scientists, cooperate with

each other. For maintainers and civil engineers, the system provides a web interface for data

search, visualization, and annotation. For data scientists, the system provides an interactive

analysis interface including programming environments. For owners, the system provides an

alert function implemented by the analysts. The processes of exploratory analysis are shared as

documents that are managed in the integrated DBMS and utilized as toolkits for data mining,

visualization, and alerts.

As a part of the SIP [80] program, the research members of NII, including the author, have

implemented a prototype named integrated data management platform (IDAMP). The IDAMP

is composed of a backend and a frontend. The backend integrates heterogeneous DBMSs

including MongoDB [57] and MariaDB [52] and provides query application programming

interfaces (APIs). Inside the backend, a traffic surveillance system (TSS) proposed in Chapter 4

is utilized for indexing vehicle passing events.

IDAMP has two types of frontends, namely a programming interface and a web interface. The

programming interface is based on Jupyter [69] and provides Python APIs for data scientists.

The web interface provides a search engine for civil engineers. Fig. 1.2 illustrates the web

interface named joint data system (JDS) HotBridge, which was developed by the author.

Users can search vehicles that passed over the target bridge by specifying the time ranges,

number of axles, and lanes. Then, users can check the sensor signals and video by selecting

listed thumbnails. In future work, the JDS may provide extensions implemented inside the
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Figure 1.2: The frontend web interface JDS HotBridge for bridge health monitoring.

programming interfaces. We expect the contributions of this dissertation will be exploited

widely by civil engineers and maintainers through IDAMP.



1.4 Research Questions and Objectives 6

1.4 Research Questions and Objectives

The fundamental interest of this study is in applying deep learning techniques to the problem

of SHM for the purpose of creating social CPSs, which acquire bridge dynamical behaviors

sampled by heterogeneous sensors deployed on a real bridge. A neural network may achieve

flexible application to any bridges simply by the acquisition of training data and automatic

optimization based on a statistical loss function. By taking this advantage, we may construct a

fully data-driven health-monitoring system backed by a large amount of observation data, and

may exclude expert heuristics from the process of bridge assessment. This study’s challenge

is composed of two steps. First, we determine the latent features involved in a single sensor

that may explain much about external forces applied to the bridge components. Second, we

develop dynamical models for target bridges that may predict the bridge’s dynamical behavior

by consulting sensors deployed on the bridges. Unfortunately, the mechanisms for damage

progression on real bridges are yet to be fully clarified. There has been no collection of

large-scale ground-truth data for damage identification, which would be helpful for approaches

involving data mining. Therefore, we must develop completely new criteria for damage

detection based on anomaly detection approaches [33, 31].

1.5 Analysis Tasks and Methodology

In this dissertation, the following four analysis tasks are examined: (1) video analysis of a

surveillance camera for traffic dataset preparation, (2) vehicle detection using a single strain or

acceleration sensor on bridges, (3) anomaly detection of strain responses caused by vehicles,

(4) strain response prediction using a generative model.

The first task was traffic dataset preparation, which was utilized for three other tasks as

training data. The task was conducted on real video data recorded by a traffic surveillance

camera installed at the bridge entrance. The camera had captured millions of vehicles for years,

and we implemented a traffic detection system based on a deep CNN. The traffic surveillance

system (TSS) was first proposed for natural vibration analysis, backed by the expert knowledge

that a damaged component may change its natural frequencies. Consequently, TSS was diverted

to another purpose: the preparation of datasets for training and evaluation of the following three

tasks.

The second task was vehicle detection from strain and acceleration signals obtained as

dynamic responses to vehicles crossing bridges. The task was conducted on real strain and

vibration data recorded by strain meters and an acceleration sensor installed underneath bridge

decks. The proposed system was trained using the traffic dataset created by TSS as ground
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truth. The proposal successfully detected vehicles running in specific lanes and estimated their

properties including their speed, locus, and number of wheel axles. This rich signal data was

collected by each sensor instead of consulting multiple sensors installed at multiple points. Our

system worked as if it had consulted a virtual sensor that could detect vehicles directly. We

named this approach deep sensing. The obtained model may be utilized for a vehicle-weighing

system, called bridge weigh-in-motion (BWIM) [47, 99], which has been utilized for bridge

health assessment and legal enforcement of road traffic regulations. Moreover, the proposed

CNN was utilized for the following two tasks.

The third task was the anomaly detection of strain responses caused by vehicles. The task was

conducted using both the video data and strain sensor data in a media-fusion fashion. The task

exploits the achievement of the second task that succeeded in estimating vehicle specifications

from bridge strain responses. The task assumes a response function which explains the bridge

response by consulting vehicle properties and a common feature space shared by two domains

of vehicle appearances and strain responses. We developed the spiral learning technique for

obtaining the common feature space to compare the video and sensor data directly. We defined

the estrangement of video and sensor data as anomaly score and found some anomalous strain

responses and classified them into several cases.

The fourth task was strain signal prediction using a generative neural network. The task

was conducted using both the video and strain data in a media-fusion fashion. A multimodal

generator was developed, which takes a surveillance video and a signal sequence obtained by a

single strain sensor as input and estimates another signal sequence that should be observed at

another point. The generative model may predict strain responses caused by specific vehicles by

consulting a camera and strain sensor. The video data was exploited to improve the estimation

quality by providing rich information about target vehicles, including shapes, axle positions,

speeds, and loci. The sensor data was exploited to obtain data on axle loads, which was an

aspect that could not be detected using video data. The optimized generator may be utilized for

detecting anomalous responses by comparing the predicted and observed waveforms for each

vehicle.

1.6 Structure of the Dissertation

This dissertation is organized as follows.

Chapter 2 introduces sensor data analysis tasks and methods and related work.

Chapter 3 introduces data analysis techniques for image and video, including CNNs, GANs,

and object detection and tracking techniques, which can be applied to the task of vehicle

detection using a surveillance camera.
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Chapter 4 presents the framework of traffic analysis based on image processing techniques.

The proposed system was originally developed for natural vibration analysis, and this chapter

also presents the vibration analysis framework. This chapter includes the contents of the

article [32].

Chapter 5 presents the deep sensing approach. Three CNN models were designed for vehicle

detection, and we successfully exploited the information richness of each sensor with high

accuracy. The proposed approach was evaluated for two real bridges in Japan. The possible

application of the proposed system is BWIM, and our approach may realize an inexpensive,

durable BWIM system using only a single sensor. This chapter includes the contents of the

articles [34, 35].

Chapter 6 presents the spiral learning approach to directly compare traffic surveillance video

and strain response data. A multimedia CNN was designed by merging two CNNs for video and

sensor data and was optimized via the spiral learning proposal. We present some case studies

on anomalous vehicles identified by the anomaly scores proposed in this chapter. This chapter

includes the contents of the article [33].

Chapter 7 presents the media-fusion mechanism of bridge dynamic modeling. A generative

CNN was designed by improving the multimedia CNN proposed in Chapter 6 for the purpose

of sensor-to-sensor translation. This chapter includes the contents of the article [31].

Chapter 8 reviews and discusses the five studies [32, 34, 35, 33, 31], and this dissertation

concludes with future perspectives.



Chapter 2

Structural Health Monitoring
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Many road bridges built in Japan in the 1960s have deteriorated and now require substantial

inspection. This chapter reviews SHM using sensors installed on target bridges. The introduced

techniques aim to identify small signs of bridge deterioration by developing bridge dynamic

models, driven by models and by data.

2.1 Overview

Unfortunately, the true mechanisms for damage progression on real bridges are yet to be

fully clarified. Therefore, we have addressed the bridge problem not by preventing damage

progression but by identifying damage.

There are two major approaches to bridge damage detection, namely destructive inspection

and nondestructive inspection. Inspection techniques that do not involve disassembly of bridge

components, such as peeling off the concrete surfaces, are called nondestructive inspection

techniques. To realize inexpensive, frequent inspections for bridges in service, nondestructive

approaches must be developed.

Traditionally, there are four major approaches to nondestructive damage detection, namely

visual inspection, hammering inspection, radiographic inspection, and ultrasonic inspection.

Among the four approaches, the former two techniques can be performed without any

expensive, large-scale equipment. However, they are mainly targeted to bridge surfaces and

can hardly identify internal damage inside the bridge components. To investigate inside the

bridge, we must remove surface components such as concrete. The techniques of radiographic

and ultrasonic inspection have been utilized for nondestructive identification of fractures and

the corrosion of reinforcing steel rods, girders, and decks. These techniques require dedicated

equipment including transmitters, receivers, and image processors, as well as bridge experts.

With the widespread adoption of compact sensing devices, attention is being directed toward

a fully automated approach using sensor fusion involving heterogeneous sensors installed on

the target bridge. One well-known example is crack detection on bridge surfaces via camera

and image recognition based on CNN [106], but this method is mainly targeted at damage

to bridge surfaces. The definitive approach to internal damage detection is bridge dynamic

inspection, which investigates the mechanical characteristics of bridge components. Such a

technique analyzes dynamic responses to external forces affecting the bridge, such as wind,

earthquakes, and passing vehicles. In this context, indirect bridge monitoring [61, 51] has

been developed, which uses an instrumented vehicle and collects the dynamic properties of

bridge structures from the dynamic response to the instrumented vehicle while crossing the

target bridge.
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2.2 Bridge Dynamic Analysis

Studies of damage detection based on dynamic response can be classified according to two

major approaches. The first approach uses long-term behavior of the bridge, such as natural

vibration [2, 8], which does not depend strongly on individual passing vehicles. The second

approach uses transient state analysis, which identifies an unusual dynamic movement by the

bridge components in response to every passing vehicle [10, 27]. Compared with the first

approach, the second approach may provide rich information sampled under a variety of traffic

conditions. To detect suspicious mechanical responses, the dynamic system of the target bridge

must be modeled in advance.

Existing techniques for bridge modeling can be classified according to two major approaches,

namely explicit mechanical modeling and implicit mechanical modeling. The explicit modeling

approaches utilize finite element analysis (FEA) [95, 82, 56, 55]. They are typically created

by hand and optimized by test-vehicle runs and iterative model updates [95], typically using

sensors installed on the bridge. It is usual for a bridge to bend and distort as a vehicle crosses it.

If we assume that all vehicle properties including speed, locus, axle positions and loads, could

be collected in advance, the structural response of the bridge, including strain, displacement,

and vibration, would be predictable by using a bridge mechanical model. By comparing the

undamaged and damaged FEA models [82], the damage can be localized. However, FEA

requires accurate model making, which is not feasible for the majority of existing bridges.

In contrast, the implicit modeling approach abandons explicit model construction, because

accurate FEA modeling is costly. There are two main methods for anomaly detection. The first

method is based on using the model parameters that dominate the bridge’s dynamics, including

natural vibration frequencies [2], damping ratios [8, 32], and influence lines [10, 27]. The

second method is based on physical quantities where the anomaly is defined as a dissociation

between observed sensor data and predictions. The predicted data can be quasistatic [45, 48]

or dynamic [105]. Traditionally, the transient signals are explained by using Kalman

filtering [3, 96, 70, 64] for the case of quasistatic linear signals. In a recent approach, Neves

et al. [58, 59] modeled bridge acceleration signals by using a perceptron that took previous

5-gram acceleration samples, axle loads, and axle positions as its input. Compared to FEA, the

anomaly detection approach has a great disadvantage in cases where the damage has occurred

before model construction and therefore cannot be completed.
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2.3 Natural Vibration Analysis

Damage detection from natural vibration at bridge components is a well-known, classical

approach. Recently, Li et al. [43] evaluated the effectiveness of a natural-frequency-based

damage detection approach, while Koo et al. [41] assumed a simple damped oscillation model

and found that the damping ratio degrades with damage. Historically, Bicanic and Chen. [2]

considered a bridge’s characteristic equation, as shown in Eq. (2.1).

(K − λiM)ϕi = 0, (2.1)

where K and M are the stiffness matrix and mass matrix, respectively, and λi and ϕi are the

i-th eigenvalue and mode shape for the bridge’s structure, respectively. The bridge’s damage is

regarded as a difference ∆K in the matrix K, and the Eq. (2.1) is to be translated into Eq. (2.2).

{K +∆K − (λi +∆λi)M} (ϕi +∆ϕi) = 0. (2.2)

The change in K is to be observed in the change of the bridge’s natural frequency. In fact, the

natural frequency varies to a certain degree, and Cornwell et al. [11] evaluated the relationship

between frequency and temperature. Therefore, Magalhaes et al. [50] used a linear regression

model to cancel the effect of the temperature–frequency relationship, while Jin et al. [29] used

a multilayer perceptron.

In our research group, Kakitani has improved the natural-frequency-based approach by

considering the bridge’s vibration response to be a mixture of damped oscillations, as described

in Eq. (2.3). He mainly focused on the bridge’s natural vibration and applied his mixture

model to the actual vibration waveform observed on an expressway by utilizing the matrix

pencil method [26, 79] as a means of regression analysis. His model handles not only natural

frequencies, but also time constants corresponding to the natural frequencies as features that

represent the bridge’s damage.

y(t) =

K∑
k=1

Rk exp

{(
− 1

τk
+ i2πfk

)
t

}
+ n(t), (2.3)

where Rk, τk, and fk represent amplitude, time constant, and frequency of the k-th exponential

function, respectively. n(t) is the noise.

2.4 Bridge Weighing in Motion

Vehicle weighing has two aims: to enforce laws regarding illegally overloaded vehicles [74]

and to estimate the damage progression of bridges [7]. Although the mechanisms for damage
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Figure 2.1: Mixture of influence lines scaled by axle weights.

progression in real bridges are yet to be fully explained, an accumulated volume of heavy

vehicles appears to correlate with structural damage. To demonstrate the hypothesis, many

researchers have addressed the task of detecting heavy vehicles. One simple approach is to

install an axle load meter on the road surface. However, this meter is difficult to retrofit to

existing bridges because this process requires paving work for installation. Moreover, this meter

is fragile and requires frequent repair. Additionally, accurate weighing may impose limits on

traveling speed. BWIM systems [42, 39] address this problem by treating the bridge structure

itself as a large weighing scale. BWIM utilizes data from a strain sensor installed at the bridge

deck, girder, beam, or flange.

Once a vehicle enters the bridge, the strain sensors detect the deflection of the bridge’s beam

or deck and estimate the weight of the vehicle, as shown in Fig. 2.1. BWIM can then estimate

the axle loads in consultation with additional information about the vehicle, including its speed,

locus, and axle positions. BWIM assumes a linear response model [47, 99] where the strain

measurement s(t) at time t is proportional to the product of axle weight w(x, t) and the value

of the influence line i(x) at axle point x:

s(t) ≈ ŝ(t) =

∫ l

0

w(x, t)i(x)dx, (2.4)

where l is the bridge length. The function i(x) indicates the proportionality factor for w(x, t)

and is measured by tests run in advance. The objective w(x, t) is obtained by minimizing the

square of the difference between ground truth s(t) and the predicted ŝ(t).

To obtain an accurate result, we require information about the vehicle’s trajectory and shape

at the time. Typically, vehicle lane, speed, and axle positions are required.
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Locus information is sometimes desirable, such as when the axle position across the lane

(orthogonal to the bridge axis) has a great influence on the strain measurements. Conventionally,

vehicle speed and axle positions have been obtained by additional sensors at the road surface,

such as cameras [63]. The speed can be estimated from the time lag of the strain (or vibration)

peaks sampled at two positions on the bridge. The axle positions can then be estimated from

the peak times by assuming uniform linear motion at the determined speed. That assumption

may be a severe limitation for real applications because a vehicle may accelerate or decelerate.

Moreover, such a system is hardly applicable to small bridges and requires strict synchronization

between the sensors, tending to make the system costly, fragile, and unreliable.

2.5 Vehicle Detection Sensors

Recently, the concept of a nothing-on-road (NOR) BWIM [81, 107, 30, 23, 100] has

been proposed, and this concept uses sensors beneath the road surface for vehicle detection.

This strategy may prove to be a definitive vehicle detection technique based on the sensors’

durability, weatherability, and ease of installation on existing bridges. Potentially, the NOR

approach may simplify the total system radically because it may be possible to merge the main

strain sensor for weighing with the additional sensors for vehicle detection. Unfortunately,

existing NOR systems can hardly reduce the number of sensors because they employ a naı̈ve

peak-to-peak approach for speed estimation that consults multiple sensors. For example, Sekiya

et al. [81] utilized two accelerometers installed at the bridge entrance and exit. Zhao et al. [107]

proposed a NOR system that counts pulses sampled by multiple transducers beneath the deck

slab. However, these methods are heuristic, with the thresholds for ignoring noise impulses

having to be optimized by hand. Kalhori et al. [30] have also used shear-strain measurements for

axle detection because the global flexural strain is less sensitive to individual axles. He et al. [23]

proposed a novel technique to overcome this limitation by assuming a virtual simply supported

beam. Interestingly, Yu et al. [100] demonstrated single-sensor-based speed estimation and

axle detection by using wavelet analysis. They demonstrated that while the global bending

response conceals information about each wheel axle’s appearance and disappearance on the

bridge span, the information could be revealed by multiresolution wavelet transforms. Although

their approach might be an effective option in contrast to our proposal, the wavelet resolution

must be optimized heuristically, and their approach cannot estimate the traveling lane and locus

by itself.

Some BWIM systems (e.g., [81]) use an accelerometer instead of a strain sensor because an

accelerometer is less expensive and longer-lived than a typical strain sensor. Such a system

calculates bridge displacement by integrating the acceleration response twice. Because an

accelerometer may capture small vibrations caused by distant vehicles and contains a constant



2.6 Influence Line Estimation 15

offset component, the accelerometer-based approach is much more complex, heuristic, and

impractical at the present time. However, because we believe this approach may become an

alternative to strain-based BWIM systems at some stage, we consider the problem of vehicle

detection in terms of strain sensing and using accelerometers (see Section 5.3).

The most controversial issue in previous BWIM research is that many studies lack any

evaluation in practical use under heavy traffic conditions. Their accuracy is demonstrated only

by simulation [42] or test vehicle experiments [81]. Because of the number of aging bridges in

the world (especially in Japan), the lack of real investment is obvious. To overcome this, we

need an evaluation framework for BWIM systems that automatically collect massive amounts

of traffic data.

2.6 Influence Line Estimation

Aspects of bridge dynamics such as bending, strain, and displacement can be estimated by

introducing the concept of an influence line. As described in Section 2.4, BWIM [47, 99]

utilizes the linear response model for vehicle weighing where the strain measurement s(t) at

time t is proportional to the product of axle weight and the value of the influence line. Such a

linear response may be observed at various bridge components, including flanges, beams, and

decks.

In this section, we define an influence line i(t) as a function of time t instead of the original

form i(x) at axle position x. We assume that the influence line i(t) was obtained by a test run

using a vehicle with K axles traveling at a fixed speed v. If k-th axle was a weight of wk and

passed over the strain sensor at time τk, the estimated strain ŝ(t) may be defined as Eq. (2.5).

ŝ(t) =
K∑

k=1

wki(t− τk). (2.5)

Tateishi et al. [89] proposed an algorithm to obtain the influence line i(t) by using a Fourier

transform. First, Eq. (2.5) can be transformed to a function S(ω) of frequency ω in the Fourier

domain as Eq. (2.6).

S(ω) = I(ω)
K∑

k=1

wke
−jωτk , (2.6)

where j is the imaginary unit, e is the Napier’s constant, and I(ω) is the Fourier transform of

the influence line i(t). By deformation of the formula, the influence line i(t) in the time domain

can be obtained as Eq. (2.7).

i(t) = F−1

( K∑
k=1

wke
−jωτk

)−1

S(ω)

 . (2.7)
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In Section 5.5, we utilize this algorithm for an estimation of 32 influence lines.

Some researchers [10, 27] have applied the linear response model to bridge damage detection.

Damage may be detectable by detecting anomalous strain responses or extracting a temporal

influence line from sensor data. This approach needs vehicle properties including speed, loci,

axle positions, and weights for every passing vehicle.

Zaurin and Catbas [101, 102] investigated the collection of vehicle properties via surveillance

camera analysis. A problem with their approach is that the target vehicles are limited to test

vehicles with known axle weights. The most obvious approach to axle weighing is to use an axle

load meter. However, as discussed in Section 2.4, this approach is difficult to retrofit to existing

bridges, requires frequent repair, and may impose limits on traveling speed on the bridges. An

alternative solution uses a BWIM [89, 65] system. However, if the bridge becomes damaged,

the influence line may change and lead to unreliable axle load estimates. The influence line may

also change its shape if the running position in the lane changes. We must therefore develop

a complex model to handle the large number and wide variety of patterns of strain responses

collected by test runs in advance.



Chapter 3

Video Analysis Technology
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This dissertation exploits several techniques for video processing, including object detection

and feature extraction for experiments in later chapters. In Chapter 4, we propose a traffic

surveillance system (TSS) for an analysis task of traffic on bridges. In Chapter 6, we propose

an anomaly detection technique that compares vehicle appearance and strain response on the

bridge. In Chapter 7, we propose a strain prediction technique that considers vehicle appearance

as an explanatory variable. In this chapter, we explore the basic technologies such as CNNs,

GANs, and their applications such as object detection and tracking.

3.1 Convolutional Neural Networks

A neural network is a computation model that consists of multiple layers of neurons. Each

neuron has parameters such as weight w and bias b that are optimized through back-propagation

learning [78] and applies an activation function f to its input z:

y = f(z) = f(twx+ b), (3.1)

where y is the output value and z is an intermediate value. Each layer plays a role in some

nonlinear mapping, and a multilayer perceptron, one of the simplest networks, can approximate

any continuous function [17]. Generally, a deeper network can extract more complex features

from data; however, the extraction may increase the total number of weight parameters and

make the training more difficult. Many systems [84, 21] have achieved remarkable results

on image classification problems by using CNNs, which can decrease the number of network

parameters drastically by using convolution layers that behave in a similar way to digital filters.

Fig. 3.1 illustrates an example mechanism of a CNN, which is composed of a convolution,

padding, and max pooling. Unfortunately, the network depth (number of the layers) has been

restricted because of attenuating gradients for the loss function in each layer during back

propagation. This attenuation of gradients is called a vanishing gradient. As a countermeasure,

He et al. [21] proposed using a convolution layer block called a residual block to solve this

problem. A residual block divides the propagation path into two branches, with one feeding

two tandem plain convolutional layers and the second being a shortcut to the block output. A

CNN that has a residual block, called a ResNet, works as if two shallower and deeper CNNs

share several layers in common, helping prevent underfitting. A practical ResNet involves many

convolution layers and residual blocks, e.g., two convolution layers and 50 residual blocks [21].

One of the strengths of neural networks is that they require less prior knowledge of data

distribution than other machine-learning models, such as Gaussian mixture models or support

vector machines. Instead, we must define several hyperparameters, e.g., the network depth,

width, activation functions, and the optimizer. Therefore, many researchers have proposed

various architectures in accordance with the target data.
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Figure 3.1: Convolutional layer mechanism.

3.2 Generative Adversarial Network

Recently, generative models [38, 20] are attracting much interest from many researchers.

They have been introduced for image generation, which takes a random variable as input and

generates a fake image that resembles a real one. Variational auto encoder networks (VAEs) [38]

and generative adversarial networks (GANs) [20] are the representative models of generative

neural networks.

A VAE network is descended from the auto encoder [25], which was originally introduced

for the dimensionality reduction of vector data. The concept of auto encoding is quite simple.

A neural network called an encoder takes raw vector data and outputs an encoded feature

vector which may contain some latent variables explaining the input data. Then, another neural

network called a decoder accepts the encoded feature and reconstructs the original vector data

which are fed to the encoder. Both encoder and decoder networks are trained to minimize the

difference between the original and regenerated data for the training data. A VAE network [38]

exploits the decoder network as a generator model. It assumes some simple distribution for the

latent variables, e.g., Gaussian mixture models, and the encoder network outputs the distribution

parameters, e.g., mean and variance, for each sample. Then, a random variable is generated for

each sample by using the distribution parameters, and the decoder network reconstructs the

original data. Both encoder and decoder networks are trained so that the variational lower

boundary for the log likelihood of the original data is maximized.

A GAN [20] comprises two neural networks, namely a generator network and adversary

discriminator network. The generator creates images that are exactly like the real ones, and the

discriminator may then misjudge the created images as real images. The discriminator finds fake

images from a given image set that includes real and generated images. Compared to a VAE, a

GAN does not learn any explicit distribution parameters for the latent random variable. Instead,

the generator is trained so it deceives the adversary model well. The mechanism is as follows.

First, the generator accepts a random variable, typically sampled from a Gaussian distribution,

and generates fake data. Next, real observations and fake samples created by the generator
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network are merged into a dataset. The adversary discriminator is trained so it successfully

discriminates the fake samples from real observations. Finally, the generator network is trained

so that it generates fake data of high quality that is hardly distinguishable as fake for the

adversary network. The training mechanism can be described as a discriminator aiming to

minimize the discrimination error, whereas the generator aims to maximize it. The training

process is repeated until the discriminator fails to find any faults in the fake data. Interestingly,

a GAN may produce data for specific classes by introducing conditional factors [62].

3.3 Techniques for Vehicle Detection

Background subtraction is an old approach to extracting the mask image of a moving

object from a video. The object is detected pixel-wise by subtracting the current image

from a reference background image previously obtained. In this approach, there are two

major challenges, namely changes in ambient illumination and background pixels whose color

changes periodically. Stauffer and Grimson [87] proposed a de facto standard solution to the

problems. Fig. 3.2 illustrates the mechanism. The illumination changes are addressed by using

an online machine-learning approach. Periodic color changes are addressed by applying a

mixture of Gaussian (MoG) model to the pixels. However, the foreground pixels in the MoG

models often lose focus, making part of the body of the target object disappear. A CNN has been

employed [4] to extract pixels probabilistically, which achieves better foreground definition than

a MoG model.

Another background-subtraction approach involves edge subtraction. Both the current and

reference video frames are converted to edge lists using a Canny algorithm [6]. The edges of a

moving object are obtained by comparing the edge lists. Compared with the MoG model, this

model is less sensitive to illumination changes. However, the extracted edges usually change

their shapes and positions across successive frames. A statistical approach [75] may solve this

problem.

Object recognition based on feature extraction is another approach to vehicle detection.

Cascade classifiers based on Haar features [93] are often employed in this approach. Their

algorithm comprises two phases, namely region proposal and filtering. In the former phase, all

possible subimages are clipped from the original image, with their sizes and positions being

varied. Next, in the latter phase, each subimage is tested to determine whether it is a vehicle by

AdaBoosting [16] that uses Haar features. In real video analysis, the detector often loses sight

of a vehicle for a moment, so a MoG model is utilized as a backup detection system [85].

Recently, a CNN-based detector called an R-CNN has been proposed [18]. The R-CNN also

comprises a region proposal step and a classification step. In the proposal step, a selective

search algorithm[91] is employed as opposed to using brute-force extraction. This algorithm
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Figure 3.2: Moving object detection via background subtraction.

Figure 3.3: Region proposal scheme of Faster R-CNN.

Figure 3.4: Semantic segmentation scheme of a fully convolutional network.

first identifies initial segments via a graph-based method and then groups them in a hierarchical

bottom-up fashion. That process dramatically reduces the number of subimages to be processed

in the next step, contributing to speeding up the detection. In the classification step, the R-CNN

converts subimages into feature vectors and classifies them one by one using support vector

machines instead of AdaBoosting. Ren et al. [73] improved the R-CNN by introducing a

region proposal network (RPN) instead of the selective search. First, a deep CNN called a

VGG16 [84] developed by the visual geometry group (VGG) at University of Oxford extracts

features from the image. In this process, the image is downsized to a low resolution by the

VGG16 network. Next, the region proposal network (RPN) [73] finds the approximate bounding

boxes of the vehicles and wheel axles. Finally, the classification task and region regression task

are performed using features for each subimage clipped by region-of-interest pooling. The

RPN was implemented in terms of a CNN. By training the networks in the fashion of multitask

learning, the revised recognizer (named Faster R-CNN) achieved highly accurate results for

region extraction. Fig. 3.3 illustrates the scheme of the RPN.

To extract the shapes (pixels) of vehicle bodies, semantic segmentation may be helpful.

Semantic segmentation can be considered as pixel-wise still-image classification, and a fully

convolutional network (FCN) has been utilized for that purpose [46]. Fig. 3.4 illustrates the

mechanism of FCN. FCN has been attracting considerable attention in the context of computer

vision. However, an unknown vehicle that is too large to fit the image into a single video
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frame may often be divided into many false segments, e.g., a chair and a sofa. In addition,

FCN, as well as a MoG model, may not resolve the occlusion problem by itself. Although

instance segmentation may be a promising solution to the occlusion problem [67, 12], there is

still room for improvement with respect to segmentation recall, as reported in these papers. The

other problem was processing throughput, which was much slower than Faster R-CNN in our

preliminary experiments. Under these circumstances, the semantic segmentation approach is

yet to prove a solution that is an alternative to background subtraction and object recognition.

3.4 Techniques for Vehicle Tracking

After a moving vehicle has been detected, it needs to be tracked through successive frames. A

graph-based approach that considers the relative positions of moving vehicles has been proposed

[83]. An alternative approach [90] detects an identical vehicle in different frames by utilizing

histograms of oriented gradients and color histograms, and this approach is robust against low

frame rates and low-resolution videos.

Beyond the vehicle tracking context, some methods are generally applicable to a variety of

types of objects and environments. In general, such methods utilize two models, namely an

appearance model and a dynamic model. Given a video frame, the appearance model suggests

several target candidates, whereas the dynamic model removes candidates that are too far from

a previous target position. To make the algorithm robust against temporal changes in target

shapes, the appearance model should describe a target template in a simple low-dimensional

feature space by using a correlation filter in the Fourier domain [24], spatial graph[44], principal

component analysis[77], or sparse coding[53, 1].

Recently, it was discovered that a deep CNN could be useful for object tracking [94]. The

different layers of a CNN encode features of different granularity, with a deep layer capturing

highly abstractive categories and a shallow layer capturing detailed and discriminative features.

Moreover, the activated region of a layer accurately captures the shape of the target object.

Based on these observations, an online tracking algorithm that involves information from

several different CNN layers has been proposed.

In general, these algorithms implicitly assume that the tracked target exists in a wide-angled

video for a substantial period, which is not necessarily a valid assumption for traffic analysis on

real bridges because of neighborhood privacy protection requirements.



Chapter 4

Traffic Surveillance System
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As a demonstration of a minimal CPS, we are conducting some experiments on two bridges

in Japan. We have deployed a traffic surveillance camera at an entrance to the bridge and an

accelerometer for vibration measurement at one of the spans inside the bridge. By combining

the data from these sources, we aim to detect early signs of possible bridge collapse. First,

the TSS detects vehicles that pass across the bridge in chronological order. Next, the data

acquisition system collects the vibration response at the bridge span. The bridge deterioration

can be detected by analyzing the vibration responses of free vibration after a vehicle has passed

over the sensor.

Our proposal in Chapter 4 comprises two subsystems, namely a traffic surveillance system

(TSS) and a vibration analysis system (VAS). The TSS described in Section 4.3 is based on a

deep convolutional neural network (CNN)[73] that can recognize individual passing vehicles.

The VAS described in Section 4.5 is only a plan for now, but it can detect changes in vibration

characteristics.

Our main aim is to extract free oscillations from the observed vibration data following events

of passing vehicles. In addition, we study the vehicles, e.g., whether they are full trailers or a

semitrailers, empty or fully laden, because additional information can be used for other purposes

such as detecting overloaded vehicles. From the perspective of the signal vs. noise (SNR) ratio,

the extracted oscillations caused by a large, heavy vehicle are preferred. Therefore, our system

identifies such vehicles by counting their axles. The camera looks down on a vehicle at such an

angle that it can see both its top and one side, enabling the type of vehicle and the number of

axles to be assessed.

4.1 Observation Environment

In this dissertation, we demonstrate our proposals for two road bridges in Japan, denoted

Bridge C and Bridge S. Bridge C (concrete) is a 300-m prestressed-concrete (PC) bridge with

four spans and two lanes, as shown in Fig. 4.1 (a). Bridge S (steel) is a 45-m steel expressway

bridge with five girders, five beams, and two lanes, as shown in Fig. 4.1 (b). In later chapters,

the denotations refer to the same two bridges.

We deployed strain sensors and accelerometers inside the bridges and a surveillance camera

above each bridge. We explain all sensors of the sensing systems in this section, although the

strain sensors are not utilized in this chapter but are addressed in later ones. Table 4.1 shows

the specifications of the two sensing systems.

On Bridge C, we installed four high-sensitivity strain sensors beneath the deck slab. These

are shown as the four red triangles denoted S1P4, S2P4, S3P4, and S4P4, respectively,

in Fig. 4.1 (a). The sensor model was the PKM-50S, manufactured by Tokyo Measuring

Instruments Laboratory, Co. Ltd., and had four strain gauges and a built-in bridge circuit to
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(a) Bridge C.

(b) Bridge S.

Figure 4.1: Installation positions of strain sensors and accelerometers.

Table 4.1: Comparison of the two observation environments.

Camera Sensor channels

Bridge Resolution Clarity Strain Accel. Rate

C 1280×960 Clear 28 ch 34 ch 200 Hz

S 640×480 Noisy 33 ch 5 ch 100 Hz

achieve a resolution of 1/3, compared with a single-gauge transducer. These sensors collected

strain responses at a deck slab in the direction orthogonal to the bridge axis. As seen in

Fig. 4.2, the sensors could react to vehicles at a distance of up to 10 m, considering the

vehicle speed (about 10–20 m/s) and the wave width. In addition, we used an accelerometer

installed at the center of the leftmost span on Bridge C, as shown by the yellow triangle denoted

A3ZP8 in Fig. 4.1 (a). The sensor was installed at the bottom of the box girder. The model

was the JA-70SA, manufactured by Japan Aviation Electronics Industry, Limited, and had a

sensitivity of 0.2039[Vs2/m]. It should be noted that this accelerometer samples vibration

in three axial directions. A3ZP8 samples vertical vibration and the remaining two axes, X

(horizontal vibration in the direction of the bridge axis) and Y (horizontal vibration in the

orthogonal direction), were denoted A3XP8 and A3YP8, respectively.

The two graphs in Fig. 4.2 show examples of the observed strain signals for Bridge C after

a large vehicle enters the bridge from the left to the right (LtoR) and from the right to the left

(RtoL). For the strain data, the spikes show the time when the wheels passed over the sensor.

Fig. 4.3 shows examples of observed acceleration data at the same times on Bridge C. For the

vibration data, the bridge began to vibrate forcibly in response to the moving axle loads. In

general, accelerometers tend to capture the small vibrations caused by vehicles distant from the
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Figure 4.2: Examples of strain responses caused by vehicles.
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Figure 4.3: Examples of acceleration responses caused by vehicles.

bridge span and therefore are less suited to vehicle detection. In contrast, a strain sensor can

easily identify an individual vehicle.

On Bridge S, we installed three types of strain sensors. Sensors of the first type were placed

on vertical stiffeners, denoted VSG2B1, VSG2B2, VSG4B1, and VSG4B2. VSG2B1 and

VSG2B2 were installed at the intersection points of the girder G2 and the two beams B1 and
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B2. VSG4B1 and VSG4B2 were installed at the intersection points of the girder G4 and the two

beams B1 and B2. The second type of strain sensors comprised those installed on lower flanges,

denoted LSG2C, LSG4C, and they were installed underneath the two girders G2 and G4. The

third type of strain sensors comprised those installed on the bridge supports, denoted RG2A1,

RG2A2, RG4A1, and RG4A2. RG2A1 and RG2A2 were installed on the supports of the girder

G2, while RG4A1 and RG4A2 were installed on the supports of the girder G4. RG2A1 and

RG4A1 were located at the bridge entrance, while RG2A2 and RG4A2 were located at the

bridge exit.

For each bridge, all of the sensors were synchronized except for the camera, and we needed

to correct the time shift between the clocks for the sensors and camera. For Bridge C, the sensor

clock gained 2.88 seconds per day until November 4, 2016. After November 4, the sensor clock

lost 4 seconds per day. The sensor clock was reset at 00:30 every day, and the time shift between

the sensors and the camera was cleared to zero seconds. For Bridge S, the sensor and camera

were synchronized once at 00:00 on June 19, 2015, and subsequently lost 3 seconds per day. In

this dissertation, all timestamps are synchronized to the camera time unless otherwise specified.

4.2 Traffic Dataset Preparation

In preparation for the experiments in later chapters, we prepared ground-truth datasets for

Bridges C and S, which were denoted DS601 and DS801, respectively. DS601 was created from

videos recorded between 08:00 and 16:00 from November 5, 2016, to April 28, 2017. DS601

contained data for the 996,093 vehicles, excluding pedestrians, bicycles, and motorcycles.

Fig. 4.4 shows the statistical distributions for vehicle speeds, loci (traveling position in a lane),

axle numbers, and appearance intervals. According to Fig. 4.4, there were 502,943 vehicles

traveling from LtoR, with the remaining 493,150 vehicles traveling from RtoL. The second

dataset, DS801, was created from videos recorded between 06:00 and 18:00 from June 22 to 28,

2015, except for June 26. DS801 contained data for the 92,523 vehicles that crossed Bridge S.

Some vehicles were removed automatically from the traffic datasets to stabilize the training

process of the neural networks.

For Bridge C, the following vehicles were removed automatically from DS601. First,

vehicles crossing Bridge C in the wrong lane were ignored individually. Second, vehicles that

were apparently faster than 82.47 km/h were ignored because these vehicle speeds might be

unreliable. It should be noted that the legal speed limit on Bridge C was 60 km/h. Third,

vehicles which were apparently slower than 5.5 km/h were also ignored individually because

the dynamic response at the target span on Bridge C might then extend beyond the time

window used in neural networks in Chapter 5. In addition, video data recorded on the days

listed in Table 4.2 were ignored. We ignored video before November 5, 2016, because the



4.2 Traffic Dataset Preparation 28

0 25 50 75 100 125 150 175 200
0.0

0.2

0.4

0.6

0.8

1.0

#v
eh

ic
le

s

1e5

LtoR

0 25 50 75 100 125 150 175 200
speed [pixels/frame]

0.0

0.2

0.4

0.6

0.8

1.0

#v
eh

ic
le

s

1e5

RtoL

(a) Traveling speed.

300 400 500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

#v
eh

ic
le

s

1e5

LtoR

300 400 500 600 700 800 900 1000
axle bottom position [pixels]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

#v
eh

ic
le

s

1e5

RtoL

(b) Traveling locus.

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

#v
eh

ic
le

s

1e5

467219

25347 7123 2177 1033 34 8 1 1

LtoR

2 3 4 5 6 7 8 9 10
#axles

0

1

2

3

4

5

6

#v
eh

ic
le

s

1e5

451076

29505 8126 2596 1545 287 10 4 1

RtoL

(c) Number of axles.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.0

2.5

5.0

7.5

#v
eh

ic
le

s

1e4

LtoR

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
interval from disappearance to appearance [s]

0.0

2.5

5.0

7.5

#v
eh

ic
le

s

1e4

RtoL

(d) Interval moment.

Figure 4.4: Statistical distributions for DS601.

synchronization software for the sensing system was replaced on November 4. We ignored

video data on November 9, 2016, because one of the two lanes on the bridge was closed

because of construction work. Under such conditions, the bridge behaved abnormally because

many vehicles were required to use the open lane in the opposite direction to that normally

used. We ignored video data on November 24, 2016, because we had some doubts about the

synchronization between the sensors and camera. We ignored video data from January 6 to 15,

2017, because the sensor data during this period was lost because of a fault in the observation
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Table 4.2: List of removed days (DS101).

2016-11-01 2016-11-02 2016-11-03 2016-11-04

2016-11-09 2016-11-24 2017-01-06 2017-01-07

2017-01-08 2017-01-09 2017-01-10 2017-01-11

2017-01-12 2017-01-13 2017-01-14 2017-01-15

environment.

For Bridge S, vehicles that were estimated as traveling faster than 224.0 km/h or slower

than 11.2 km/h were removed from DS801. Such cases might occur mainly when the strain

responses caused by multiple vehicles cannot be separated in terms of the time window being

used in the speed estimation process.

4.3 Traffic Surveillance System

Section 4.3 describes two versions of the TSS, one of which was first proposed for natural

vibration analysis [32], and the other was an improved version [34] for preparing weatherproof

traffic datasets described in Section 4.2.

4.3.1 Original TSS

Fig. 4.5 illustrates the mechanism of TSS. Once a vehicle enters the bridge, the TSS detects

something moving by using a background-subtraction detector [87]. Then, a CNN-based object

detector called a Faster R-CNN [73] finds a bounding box. The Faster R-CNN is robust

against occlusion but requires substantial computational time for processing every video frame.

The background-subtraction approach is the exact opposite. Although there are differences

between the various subtraction models, as discussed in Section 3.3, we simply adopted a MoG

model[87], which could be replaced if necessary. In a previous paper [32], we mentioned that

the CNN is poorly suited to estimating an accurate bounding box for the vehicle and often loses

sight of the target. This problem was resolved in the later version for Section 4.2 by increasing

the variation of vehicle images for training the CNN.

Extracted regions are assumed to belong to one or more vehicle images or to contain isolated

noise pixels caused by illumination changes. First, the TSS removes the noise regions by

setting a maximum number of vehicles and their minimum sizes. Next, a Faster R-CNN[73]

subsystem using the VGG16 network[84] classifies the targets and deals with occlusion. The

dataset obtained involved many cars under daytime and nighttime conditions being observed

from a variety of angles and distances. From the observation of actual videos, we found that
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Figure 4.5: Traffic surveillance system (TSS).

a vehicle region suggested by a Faster R-CNN is more accurate for analyzing the underside

that includes the axles, whereas the roof region can frequently be ignored. For this reason,

the system resolves occlusions not by extracting the target, but rather by removing non-target

elements from the region. If no vehicle is detected directly by the Faster R-CNN but there is

a large moving object, the TSS assumes that the largest such object represents a vehicle. Such

a case usually occurs when a large trailer appears after its tractor has gone out of frame; this

case occurs less often with small cars. A trailer can conceal anything behind it, so this heuristic

assumption is valid in practice. This problem was partially resolved in the later version for

Section 4.2 by telling the CNN that such objects are parts of vehicle bodies.

We employed a collision detection approach for tracking, because the video’s frame rate

should be set high enough to enable a detailed investigation of the vehicle body, including

Chapter 6. After a vehicle has passed out of the field of view, the TSS catenates the previous

frames. First, the TSS performs a projective transformation to make the vehicle’s images in the

previous frames appear horizontal. Next, the TSS clips out subimages from the frame’s center

by using a clipping window whose width is determined by the vehicle’s speed, and the cutout

images are placed in order. Finally, the TSS performs an affine transformation to smooth the

joint face between patches, and the perspective difference between the vehicle’s underside and

roof is absorbed.

A TSS can identify moments when only one large vehicle has crossed the bridge and no

other large vehicles are involved. A large vehicle generates a large vibration for an extended

period before and after it runs over the vibration sensor. This extended period of vibration

may negatively affect the vibration analysis of another vehicle passing immediately after the

large vehicle, particularly if the two vehicles run over the vibration sensor at the same time.

Our system can deal with these issues by identifying vehicles by axle counting. First, the TSS

detects the positions of the wheel axles underneath a vehicle tracked by the TSS by utilizing

the Faster R-CNN. The TSS lists the axle positions in chronological order. The axles are then

grouped into axle clusters by using the DBSCAN [15] algorithm and considering the vehicle’s
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Figure 4.6: Evolved traffic surveillance system (ETSS).

speed. Finally, the TSS checks if the vehicle looks heavy based on the number of wheel axles.

4.3.2 Evolved TSS

The traffic datasets described in Section 4.2 were created via an improved version of the TSS,

as shown in Fig. 4.6. The surveillance cameras installed at the entrances to Bridges C and S

captured individual vehicles entering or leaving the bridges. The TSS then outputs the vehicle

properties, including time, lane, speed, locus, and number of axles. This process is achieved

as follows. After a vehicle enters the bridge, the Faster R-CNN [73] detects a bounding box

for it. For Bridge C, the Faster R-CNN was trained with 13,407 images named DS702 that

included original VOC2007 [66] images and an additional 3444 vehicle images. For Bridge S,

the Faster R-CNN was trained with 15,087 images named DS703 with an additional 5124

vehicle images. Each bounding box is classified into one of the two lanes by considering its

bottom position. The TSS then starts tracking the vehicle body over consecutive video frames.

In this process, the TSS calculates the approximate speed for the vehicle. The Faster R-CNN

also identifies the wheels. After linking wheels to the nearest vehicles, false axles, which can

be seen frequently with car carriers, are removed. Finally, the vehicle speed, locus, and number

of axles are estimated by tracking each axle.

It should be noted that the coordinates of the wheel images are transformed so the axle

appears to travel horizontally. Consequently, the pixel distance in the transformed image is

proportional to the distance traveled in meters. For DS601, the ratio of distance in meters to

that in pixels was determined as 6.11 mm/pixel and 8.14 mm/pixel for horizontal and vertical

directions, respectively, by watching two vehicles with known wheelbases via the camera. We

ignored lens distortion because it is not remarkable on either bridge.

For Bridge S, we obtained ground-truth speeds by using the two strain sensors, VSG2B1 and

VSG2B2, as shown in Fig. 4.1 (b). The TSS was unable to output the speed, locus, and number

of axles because the Faster R-CNN could barely detect the axles because of significant blurring

(i.e., noise) in the video signal. We therefore abandoned the TSS for the speed estimation on

Bridge S and developed a speed estimator based on peak-signal detection. Fig. 4.7 (a) shows the

actual strain responses sampled by the two strain sensors when a vehicle enters Bridge S. The

distance between the two sensors was 22.4 m. First, we applied a 1 Hz low-pass filter (LPF)
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Figure 4.7: Speed estimation mechanism for DS801.

to the raw signals and extracted a 4 s signal for each vehicle. Each signal was normalized and

clipped, as illustrated in Fig. 4.7 (a). We then obtained the phase difference between the two

signals by calculating the signal correlation. Fig. 4.7 (b) shows the distribution of the estimated

vehicle speeds.

This development was unfortunate but had the side benefit of enabling us to demonstrate

two scenarios for the preparation of ground-truth data. In the first scenario, we can extract

rich information from the traffic surveillance video and do not have to install many additional

sensors. In the second scenario, the video quality may be poor, but we can install multiple

strain sensors for vehicle detection during the system-optimization period. The installation

point of the surveillance camera may sometimes be restricted because of privacy considerations,

such as the camera pointing directly at nearby houses, and the second scenario can then be an

alternative approach. A discussion of how to utilize additional sensors for axle counting and

locus estimation in the second scenario is outside the scope of this dissertation.

4.4 Experimental Results

We tested the functions of the TSS, namely vehicle detection and axle counting, at Bridge C

in Japan. The camera was installed on a pole mast located at the southern entrance to the bridge.

The camera looked down on a vehicle at such an angle that it could see both its top and one

side, and the camera was utilized to identify the type of vehicle. The bridge had two opposing
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Table 4.3: Processing time and accuracy.

Recording date Time TP FP PR GT

10-24 00:00–30� 36’22 41 31 56.9% 18
10-24 06:00–30� 28’56 39 9 81.2% 40
10-24 12:00–30� 45’37 178 18 90.8% 192
10-24 16:00–30� 45’04 208 8 96.3% 215

11-02 00:00–30� 27’49 11 14 44.0% 12
11-02 06:00–30� 28’40 42 2 95.5% 43
11-02 12:00–30� 42’47 183 16 92.0% 191
11-02 16:00–30� 46’56 215 11 95.1% 215

11-05 00:00–30� 33’20 16 54 22.9% 15
11-05 06:00–30� 29’54 57 1 98.3% 57
11-05 12:00–30� 54’06 301 1 99.7% 315
11-05 16:00–30� 47’00 253 1 99.6% 256

11-28 00:00–30! 27’14 36 0 100.% 10
11-28 06:00–30! 35’08 48 64 42.9% 42
11-28 12:00–30! 35’06 112 39 74.2% 110
11-28 16:00–30! 38’30 147 24 86.0% 151

12-10 12:00–30� 41’03 144 14 91.1% 147

lanes, but the camera was aimed at the southbound (nearside) lane. The camera was set at

1280×960 resolution and 25 FPS, and the videos were downscaled into 640×480 resolution

during processing.

4.4.1 Original TSS

We conducted experiments with real videos recorded on October 24; November 2, 5, 28; and

December 10, 2016. We investigated whether the system could detect vehicles properly and

whether it could distinguish large trucks accurately from other vehicles. The tests were held

under a range of conditions that included daytime and nighttime, and sunny, cloudy, rainy, or

snowy weather. We were able to identify situations in which the system had difficulty detecting

vehicles.

For vehicle detection, we utilized a Faster R-CNN that was trained for the VOC2007 [66]

dataset.

Table 4.3 shows the processing time for the videos using an NVIDIA Tesla P100 GPU. On

average, 19.8 frames per second can be processed, which is regarded as almost real time. The

TSS slows down remarkably while tracking a vehicle, with the slowdown being caused mainly
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by forward propagation in the Faster R-CNN. The processing time may therefore degrade with

increasing traffic volume, for which load balancing among GPUs could be a solution.

Table 4.3 also shows the precision rate (PR) with the numbers of true-positive (TP),

false-positive (FP), and ground-truth (GT) vehicles. These scores were obtained by comparing

the detection results with an annotation dataset DS501 prepared by hand to validate the

accuracy. The results indicate that the performance is highly accurate on sunny days but

degrades drastically at dawn (or dusk), at night, and during snowstorms. The reason that the TP

tends to be much higher than the GT at night is that the vehicle is often misidentified because

of tracking failure. At night, although the MoG subtractor can detect movement in the dark, the

truth vehicle is difficult to identify. This difficulty is because the road surface reflects the beams

from vehicles, and the reflection can appear to be a moving object preceding an approaching

vehicle. The details of the vehicle itself are blurred, noisy, and nearly invisible because of the

supersensitive imaging. Nevertheless, the positions of headlights and taillights can be specified

accurately, and the TSS may be able to capture the approximate positions of vehicles in the

future by training the recognizer for nighttime vision. For the snowstorm case, because the

video’s contrast can be quite low in a snowy scene, a dark-colored vehicle is more likely to

be detected than a bright-colored vehicle. The TSS reconstructed 144 TP vehicles in total, but

about 40% of the vehicles were malformed, which is far from practical.

Robustness against occlusion mainly depends on the performance of the Faster R-CNN

because the MoG model cannot separate touching vehicle images by itself. There are two cases

involving occlusion, namely 1) a small vehicle in the nearside lane and another vehicle behind

and 2) a large vehicle in the nearside lane and another vehicle behind. For case 1), the axles of

the rear vehicle will be visible, and both vehicles are likely to be detected as different vehicles,

with the occlusion being solved. For case 2), the rear vehicle may be hidden behind the large

vehicle in front, and the Faster R-CNN should split the two vehicles at the beginning and the

end of the occlusion period. If the TSS fails to segment properly, the reconstructed image may

include excrescences in both cases.

For counting wheel axles, we utilized a Faster R-CNN trained for a specialized dataset DS701

that comprised 445 images captured randomly around noon on the sunny days of October 27

and November 2,4, and 5, 2016. We did not analyze morning and evening videos on rainy and

snowy days since it would be difficult to collect ground-truth data from the noisy videos. The

other conditions were as described in Section 4.3. Note that a signboard at the bottom of the

image field could distract the axle detector when an axle appeared behind it. The system was

therefore configured to ignore such axles.

Table 4.4 shows the accuracy of the axle-number detection. The sum of the True and False

cases in each row equals the GT in Table 4.3. During daylight hours on a sunny or cloudy day,
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Table 4.4: Accuracy of axle-number detection.

Recording date True False Accuracy

10-24 12:00–30� 163 13 92.61 %

11-02 06:00–30� 16 26 38.10 %
11-02 10:00–30� 205 27 88.36 %
11-02 12:00–30� 168 15 91.80 %
11-02 14:00–30� 237 16 93.68 %
11-02 16:00–30� 196 19 91.16 %

11-05 06:00–30� 20 37 35.09 %
11-05 10:00–30� 235 69 77.30 %
11-05 12:00–30� 285 16 94.68 %
11-05 14:00–30� 315 24 92.92 %
11-05 16:00–30� 245 8 96.84 %

11-28 12:00–30! 33 79 29.46 %

12-10 12:00–30� 7 137 4.86 %

the system counted axles with 90% accuracy. However, the accuracy was reduced at dawn, or

on rainy or snowy days, because of the darkness. It might be better to postpone running the

system in such cases by considering the weather forecast for the day, because the system’s aim

is to monitor potential damage over a period, and one or more vibration samples per day may

be sufficient for such a purpose. Consequently, we focus on precision rather than recall, and the

TSS performance given in Table 4.3 is adequate. Errors in the TSS and the VAS may distort the

signals of damage detection, which may be compensated by collecting many samples.

4.4.2 Evolved TSS

Because the datasets introduced in Section 4.2 were created fully automatically, we also

prepared an annotation dataset DS201 by hand to validate the accuracy of DS601. Fig. 4.8

shows a comparison of DS601 and DS201. Fig. 4.8 (a) and Fig. 4.8 (b) show confusion

matrices for the tasks of vehicle detection (Task 1) and axle counting (Task 4), respectively

(defined later in Table 5.1). By focusing on the sums of true-positive cells on the diagonal

lines, the dataset achieved moderate results for precision and recall. It should be noted that

the term vehicle detection refers to each vehicle entering or leaving the bridge and is evaluated

every second. Therefore, the two tasks can be treated as simple classification tasks. DS201

was created from 60 videos that were randomly extracted from the half-year video records

for Bridge C. Each video was of 60 s duration and recorded under a representative variety of

weather conditions that included sunshine, heavy rain, snow, and snow accumulation. Although
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Figure 4.8: Confusion matrices for accuracy validation of DS601.

there were many situations poorly suited to video analysis, the TSS achieved high detection

accuracy for Bridge C. Unfortunately, the tasks of speed estimation and locus estimation were

too difficult to annotate by hand. However, wrong estimation of speed and locus may lead to

wrong estimation of axle numbers, and we are confident about the accuracy of speed and locus

because we confirmed the accuracy of axle counting.

4.5 Vibration Analysis System

Fig. 4.9 illustrates the second component of our proposed system, the VAS, which extracts a

vibration response after a vehicle passes and fits Eq. (2.3). The VAS exploits the TSS for vehicle

detection because the TSS can identify moments when a vehicle has passed and no other vehicle

is stressing the bridge, meaning that the bridge vibrates in a manner of free oscillation. Such

moments are difficult to identify by vibration analysis alone, especially when the vibration

characteristics become deteriorated because of damage.

The variation in the vibration response attributable to environmental conditions such as the

season, the weather, and the temperature is an issue. Such a problem has been considered

previously [11, 50, 29] in the context of classical natural-frequency-based damage detection

[2] that does not involve time constants. Our task was to characterize relations among the

frequencies, time constants, and environmental variables using mining approaches. We could

then identify abnormal vibrations by anomaly detection. This method might be a more

appropriate approach to detecting damage that could be applied more generally than the naı̈ve

approaches based on natural frequency.

We demonstrate the mixture model defined in Eq. (2.3) using the accelerometer A3ZP8

for Bridge C. First, by using a short-time Fourier transformation, we obtained the natural

frequencies below 5 Hz. Next, we extracted the free damped vibrations, as shown in the upper

graph in Fig. 4.10 (a), as sampled by the acceleration sensor. The black area indicates the raw
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Figure 4.9: Vibration analysis system (VAS).
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Figure 4.10: Exponential fitting to damped oscillations.

vibration sampled at a rate of 200 Hz. The red area shows the vibration smoothed by a 1–5 Hz

finite-impulse-response bandpass filter (BPF). Finally, we fitted a mixture of two exponentials

to the data, as shown in the lower graph in Fig. 4.10 (a). We employed the matrix pencil

method[26, 79] for fitting operations. To exploit the time constants, we needed to remove some

forced vibrations caused by the vehicles, which is a difficult problem, particularly in heavy

traffic. It should be noted that the TSS was not utilized for the experiments in this section.

To exploit both natural frequencies and time constants as features representing bridge

damage, we need to extract free damped vibrations from the actual accelerometer data,

removing the forced vibrations caused by the vehicles. However, the extraction is not easy,

especially while many vehicles cross the bridge incessantly. Fig. 4.10 (b) shows such a case.

The best solution is to close the bridge temporarily and let a heavy truck cross the bridge for

testing, but considering the number of bridges to be monitored, that is not a reasonable solution.
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4.6 Discussion

On Bridge C, the difficulty was the narrow-angled camera. In many cases, the camera’s

angle is limited because of neighborhood privacy protection requirements. A trailer truck can

be so large that a single camera cannot fit the image into a single video frame except when

installing the camera well away from the bridge. Therefore, we may have to catenate a number

of frames to reconstruct the overall image of the truck, and for accurate concatenation, we need

to locate the exact position of the truck in each frame. This task can be challenging because a

feature point used in the tracking can appear or disappear suddenly during the video. Therefore,

tracking large trucks can be difficult, and feature-based tracking methods cannot necessarily

accommodate the disappearing-feature problem by themselves. They frequently lose sight of

the vehicle even if it is at the very center of the image field. Such a condition was noticed

particularly when tracking a large vehicle, and we concluded that the recognizer is most likely

to make this mistake when most of the target’s body is not within the image field. Consequently,

we need to employ a traditional background-subtraction approach. However, this cannot solve

occlusions by itself, so we used a deep CNN as a solution. This problem was partially resolved

in the ETSS in Section 4.3.2 by adding such images to DS702 and DS703, which were used as

training data.

4.7 Conclusion

In this chapter, we have proposed a monitoring system that detects large vehicles utilizing

background subtraction and a deep CNN. In addition, we have proposed a vibration-monitoring

system that exploits natural frequencies and their time constants by extracting free vibrations.

Both proposals should be suitable for monitoring a bridge’s accumulated damage with a

day-to-day granularity.

Three tasks need to be urgently addressed. The first issue of current concern is poor detection

at night, which we may overcome by introducing a night-vision system. This system would

exploit a vehicle recognizer trained for real nighttime videos in particular and focus on the

position of headlights and taillights. The second task is to adopt state-of-the-art outcomes

from CNN research, such as semantic and instance segmentation, to enable the TSS to more

accurately extract vehicle shapes from videos. In the work reported in Chapter 4, we adopted a

temporary solution, namely the MoG model, to satisfy the requirement for real-time processing.

However, we will be able to exploit segmentation-based vehicle extraction when it offers

real-time processing in the future. The third most pressing matter is that a single bridge’s

vibration data before and after the bridge becomes damaged are insufficient. We shall therefore
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seek to set up the systems on many bridges other than Bridge C. We would like to substantiate

the effectiveness of the mixture model, which exploits both the natural frequencies and their

time constants, as soon as possible.



Chapter 5

Vehicle Detection from Sensor Data
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Chapter 5 introduces a data-driven vehicle detection system for a BWIM system consulting

only a single strain sensor.

Many BWIM studies [65, 81, 107, 30, 23] have neglected the rich information on the target

vehicles available from an individual sensor. For example, both the strain response and the

vibration response can be predicted from a vehicle’s properties such as its speed, trajectory, and

axle positions. There is therefore the possibility that such properties can be obtained inversely

from the signal waveform, particularly if a high sampling frequency is used.

The proposed system is based on a deep CNN, which detects moving vehicles and estimates

their properties, taking as input the raw strain signal sequence accompanying each target

vehicle’s traversal of the bridge. The sequence contains a large amount of rich information

in itself, especially when the strain data are sampled at high frequency. For decades, this

information has been discarded, but a CNN can exploit it without having to use multiple

sensors installed at multiple positions on the bridge. We call this a deep sensing approach.

This approach may enlarge the role of actual sensors installed on the bridge and may bring

two major benefits. First, we may replace some specialized sensors by a versatile, miniature,

and inexpensive sensor, potentially reducing the necessity of developing specialized sensing

devices. Second, we may simplify entire sensing systems deployed in the real world by using

the same single sensor for multiple purposes and by reducing the total number of required

sensing devices. Deep sensing may be an antithesis of conventional sensor-fusion approaches

that must synchronize many sensors accurately and are therefore unreliable and require frequent

inspection and repair.

Because our system uses a single strain sensor for vehicle detection, our proposal can merge

the main weighing operation, which also requires a single strain sensor, with the vehicle

detection operation. Fig. 5.1 shows the proposed system, named the automobile weighing

system (AWS), that uses a subsystem for vehicle detection named the automobile identification

system (AIS). Unfortunately, the AWS employs the traditional algorithm [47] for weighing, and

the CNN contributes only to the vehicle detection process. The training data can be obtained

either from a surveillance camera or from additional strain sensors installed at multiple positions

across the bridge. After the CNN is optimized, the camera or additional sensors that are no

longer needed can be removed.

Recently, some researchers [81] have developed alternative accelerometer-based BWIM

systems instead of using a strain sensor, because a strain sensor tends to peel off from the

bridge material, thereby requiring regular inspection. Based on these findings, we have applied

the deep sensing proposal not only to strain signals but also to acceleration signals. As we

demonstrate in Section 5.3, our proposed system can achieve high detection accuracy for both

strain-sensor-based and accelerometer-based systems.
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Figure 5.1: System architecture for the proposed BWIM system based on deep sensing.

The contributions of this research are as follows. First, we propose a sensor-fusion framework

for collecting training and validation data from real measurements automatically. Second, we

obtain vehicle properties of moderate accuracy using only a single strain meter or accelerometer.

Finally, we successfully detect vehicles on two kinds of bridges, namely a steel bridge and a PC

bridge. Of these, the vehicle detection capability for PC bridges is a major achievement in the

world of bridge engineering.

5.1 Proposed Models

In this section, we explain our deep learning approach to single-sensor data mining.

Model parameters are optimized statistically via back propagation [78], by considering actual

traffic conditions on a particular bridge. This optimization helps reduce the requirement for

heuristic-based axle detection methods, such as naı̈ve peak detection.

We designed three derivative CNN architectures [34] aimed at vehicle detection, and these

are shown in Fig. 5.2. The models share the same signature, i.e., they accept a signal sequence

for a few seconds as the input and output an estimation result. Among the models, Model 1 is

the simplest model, having just two convolutional layers. By inserting a preactivated residual

block [22] after each convolutional layer, we improved this model to realize Model 2. Model 3

is the deepest model, with 11 convolutional layers which include five residual blocks. Note that

we applied a third activation function to the output of the residual blocks in addition to the two

activation functions inside the blocks.

We employed the rectified linear unit (ReLU) [19] defined in Eq. (5.1) for the activation

function, except for the final (second) linear layer.

f(x) =

{
x if x ≥ 0,

0 if x ≤ 0.
(5.1)

As shown in Table 5.1, the output activation functions for the final linear layer and loss function

are defined according to the estimation task involved, i.e., vehicle detection (Task 1), estimating

speed (Task 2), estimating locus (Task 3), or counting wheel axles (Task 4). We inserted a 50%

dropout [86] between the last convolutional layer and the first linear layer to suppress overfitting.
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(a) Model 1.

(b) Model 2.

(c) Model 3.

Figure 5.2: Network architectures for the proposed system.

We also inserted a 20% dropout between the two convolutional layers in each residual block for

vehicle detection on Bridge S.

In the world of signal processing, waveform preprocessing (feature extraction) requires care.

A typical preprocessing method [103] is to apply multiresolution wavelet transforms to the raw

waveform before propagation. Zhang et al. [104] proposed a unique image-based approach

that transforms the raw waveform into wave shapes. We adopted the raw waveform approach

proposed by Dai et al. [13], who fed the raw audio signal to a very deep residual network. For

both strain and vibration data, the signal should be normalized in advance for learning to be

effective. Each sequence was rescaled so the maximum and minimum of the sequence were

normalized to 1 and 0, respectively.

The four prediction tasks were given to all three networks, differing only in the final linear

layer. We could therefore exploit a multitask learning (MTL) technique [9], which may be
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Table 5.1: Prediction tasks.

Name Definition Output Activator Loss

Task 1 Vehicle detection Existence or not Sigmoid Cross entropy

Task 2 Speed estimation Traveling speed Identity Mean squared error

Task 3 Locus estimation Traveling locus Identity Mean squared error

Task 4 Axle counting Number of axles Softmax Cross entropy

beneficial for preventing a neural network from overfitting. We defined the multitask loss L for

N samples as follows.

L =
1

N

4∑
k=1

λk

N∑
k=1

Lk(ykn)


λ1 = 0.2
λ2 = 1
λ3 = 1
λ4 = 0.2,

(5.2)

where Lk is the loss for Task k, λk is a weight of Task k, and ykn is the output for the n-th

sample. It should be noted that the squared losses L2 and L3 for Tasks 2 and 3 were divided by

the variances of the trainval datasets described in Section 5.2. For Bridge S, the multitask loss

L was defined as the follows.

L =
1

N

2∑
k=1

λk

N∑
k=1

Lk(ykn)

{
λ1 = 1,
λ2 = 1.

(5.3)

By adopting the MTL technique, the networks should be more likely to arrive at a solution

common to the four tasks.

5.2 Training and Evaluation Data

We employed the cross-validation approach [40] to validate the generalizability of the three

CNNs. Before training, each dataset was shuffled at random and divided into five subsets.

One subset was handled as evaluation data, with the remaining four subsets being merged and

treated as trainval data. Unless otherwise specified, 90% of the trainval data were assigned as

training data, with the remaining 10% being validation data. The validation data were utilized

for early stopping [98]. The evaluation processes were performed with models that updated

the minimum of the validation loss for each task. The training and evaluation processes were

repeated, swapping the datasets five times and using one subset as the test data in each trial.

For Bridge C, we prepared four datasets for the supervised training of the four estimation

tasks, from DS601 prepared in Chapter 4. The n-th record for Task k is described as a pair
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{xkn, gkn}, where xkn is a sequence of sensor data and gkn is the ground truth for the target

variable. For Task 1, g indicates the presence of a vehicle at the bridge entrance at each second.

For the other three tasks, g indicates the properties of the individual target vehicles. For LtoR

vehicles, x is a raw signal sequence that starts at the same time as the target period. For RtoL

vehicles, x is a sequence that ends at the same time as the target period. The length of x was

set as 1600 (8 s), as determined by the average speeds and bridge length. It should be noted that

the timestamps for Tasks 2, 3, and 4 were shifted deliberately at random within a range of 1 s

to prevent the neural networks from estimating the vehicle speeds naı̈vely from the positions

of the strain peaks. These datasets were created individually for the four strain sensors S1P4,

S2P4, S3P4, and S4P4, and accelerometers A3XP8, A3YP8, and A3ZP8. Although Bridge C

had many strain meters (channels), only a few of the sensors were useful for vehicle detection,

because strain is a spatially localized feature, and the utility of a strain sensor can be limited by

its installation location.

The vehicle detection dataset for Bridge C involved either all LtoR vehicles or all RtoL

vehicles, with vehicles traveling in the opposite lane being ignored. By detecting LtoR vehicles

but not RtoL ones, or by detecting RtoL vehicles but not LtoR ones, Task 1 could demonstrate

lane detectability. The datasets for Tasks 2, 3, and 4 also targeted only LtoR vehicles or only

RtoL vehicles. For the strain data, we used vehicles recorded during the leading 30 days in

DS601 because of limited time for the experiment. For the vibration data, we used vehicles

that had more than two wheel axles because the smaller vibrations caused by passenger cars

could be hidden in noise and because bridge engineers are interested mainly in heavy vehicles.

Instead, we increased the dataset volume as much as possible, using vehicles recorded during

all 163 days in DS601.

For vehicle detection in Task 1, care is needed in the balance of positive and negative samples.

To reduce the computation time of an epoch and to improve the quality of the resulting models,

we adopted the negative sampling approach [54]. First, we subsampled negative data so that the

numbers of positive and negative samples were equal. We then subsampled the detection data

again for Task 1 so that the dataset had the same volume as the volumes for other tasks. Because

the subsampling may cause significant bias with naturally occurring traffic, this operation was

not performed on the evaluation dataset.

For Bridge S, we prepared two datasets for Tasks 1 and 2 from DS801 prepared in Chapter 4.

The n-th record for Task k is described as a pair {xkn, gkn}. For Task 1, g indicates the presence

of a vehicle at the bridge entrance at each second. For Task 2, g indicates the speed of a vehicle

entering the bridge. For both tasks, x is a sequence of length 400 (4 s) that starts at the same

time as the target period. These datasets were created individually for the three types of strain

sensors described in Section 4.1.
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(a) Model1.
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(b) Model3.

Figure 5.3: Mean loss of cross-validation using a strain sensor (S1P4).
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Figure 5.4: Mean loss of cross-validation using an accelerometer (A3ZP8).

5.3 Experimental Results for Bridge C

We implemented the three proposed networks and four tasks listed in Fig. 5.2, Table 5.1.

The networks were written in Python 2.7 and implemented on Chainer [68] 5.0.0. They were
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accelerated by an NVIDIA Tesla P100 GPU using CUDA [60] 8.

We employed the AMSGrad [72] as an alternative version of the Adam [37] optimizer for

stochastic gradient descent whose parameters were set as defined in the Chainer implementation

by default. The mini-batch size was set at 10.

The CNN models were evaluated mainly in terms of the final generalization performance after

loss convergence and before overfitting. The performance was visualized utilizing statistical

metrics. For Task 1, we used receiver operating characteristic (ROC) curves and the area under

the curves (AUCs). For Tasks 2 and 3, we used histograms, and the model accuracy (ACC) was

evaluated in terms of mean absolute errors (MAEs). For Task 4, we made confusion matrices to

evaluate precision and recall.

It should be noted that the implementation was improved in two aspects in relation to previous

versions in previous papers [34, 35], so that the models could achieve superior performance.

First, we corrected the mechanism of early stopping [98], which had not worked correctly in

the previous versions. Second, we modified the algorithm of random shift of vehicle timestamps

for Bridge C so the strain responses would not fade out of the input window.

5.3.1 Loss Convergence

The networks were trained over 200 epochs. That is, each sample was fed to the networks 200

times. The fivefold cross-validation for Model 3 required about 11 days for the 30-day strain

data and 4 days for the 163-day vibration data. Fig. 5.3 shows the time evolution of the training

and validation losses for Models 1 and 3 using strain sensor S1P4. Fig. 5.4 shows the time

evolution of losses for accelerometer A3ZP8. The models converge in the first 50 epochs and

start overfitting where the training losses become lower than the validation losses. As described

in Section 5.2, the evaluation processes were performed with models whose validation losses

were minimum ones, in the same fashion as the early stopping approach [98].

5.3.2 Detectability with Strain Sensors

Fig. 5.5 shows the LtoR vehicle detection accuracy for Model 3 using strain sensor S1P4.

Similarly, Fig. 5.6 shows the RtoL vehicle detection accuracy using strain sensor S4P4. As

shown in Fig. 4.1 (a), the sensors were installed to be under the wheels of LtoR or RtoL vehicles.

For vehicle detection Task 1, Fig. 5.5 (a) shows the ROC curves for the fivefold evaluation

datasets. According to the AUC, the model achieved high accuracy. The standard deviation of

the AUCs was near zero, meaning that the model achieved stable accuracy levels. Fig. 5.6 (a)

shows the same tendency.

For speed estimation Task 2, Fig. 5.5 (b) and Fig. 5.6 (b) show the total evaluation results for
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Figure 5.5: Model 3 performance of LtoR vehicle detection (S1P4).

the cross-validation. The upper graphs show the distribution of the estimated traveling speeds,

and the lower graphs show the distribution of the residuals. The residuals were distributed

around 0 km/h following a unimodal distribution. For LtoR vehicles, the MAE was 2.63 km/h,

while the standard deviation of prediction (SDP) was 6.05 km/h. For RtoL ones, the MAE

was 2.62 km/h and the SDP was 5.51 km/h. Consequently, a strain signal for 8 s sampled at

200 Hz contains information correlated with the speed, and Model 3 succeeded in extracting the

corresponding features. The validity of the speed estimates is explored later in Section 5.3.4. It
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Figure 5.6: Model 3 performance of RtoL vehicle detection (S4P4).

should be noted that the upper graph is slightly sharper than the ground truth. For LtoR vehicles,

the standard deviation of the estimation result was 6.05 km/h, whereas that of the ground truth

was 7 km/h. Consequently, the estimation results were biased toward the average speed, and

the contribution of the outlier vehicles was weaker than the bias.

For locus estimation Task 3, Fig. 5.5 (c) and Fig. 5.6 (c) show the total evaluation results

for the cross-validation. The upper graphs show the distribution of the estimated traveling

positions, and the lower graphs show the distribution of the residuals. The histograms show the
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same tendencies as those for Task 2. The residuals were distributed around 0 cm. For LtoR

vehicles, the MAE was 7.57 cm, while the SDP was 22.64 cm. For RtoL ones, the MAE was

12.12 cm and the SDP was 23.28 cm. Model 3 succeeded in extracting some features correlated

with the loci. According to the MAE, Model 3 was highly sensitive to locus identification, with

errors less than the wheel widths. The validity of the estimates is explored in Section 5.3.4.

Fig. 5.5 (d) and Fig. 5.6 (d) show the evaluation results for axle counting Task 4. The figures

show the confusion matrices for 2-axle, 3-axle, 4-axle, and more-than-4-axle vehicles. Focusing

on the sum of true-positive cells on the diagonal line, Model 3 achieved moderate values for

precision and recall.

5.3.3 Detectability with Acceleration Sensors

Fig. 5.7 and Fig. 5.8 show the evaluation results for vehicle detection using accelerometer

A3ZP8 and Model 3 on Bridge C. Fig. 5.7 shows the results for LtoR vehicle detection, while

Fig. 5.8 shows the results for RtoL vehicle detection. As shown in Fig. 4.1 (a), A3ZP8 was

installed at the center of the bridge span. It should be noted that 2-axle vehicles were ignored,

as described in Section 5.2, because the light weight of passenger cars made detecting them too

difficult. Instead, we increased the dataset volume to cover 163 days.

Fig. 5.7 (a) and Fig. 5.8 (a), respectively, show the ROC curves for LtoR and RtoL vehicle

detection. According to the AUCs, the model achieved vehicle (lane) detectability with high

and stable accuracy.

For speed estimation Task 2, Fig. 5.7 (b) and Fig. 5.8 (b) show the total evaluation results for

the cross-validation. The upper graphs show the distribution of estimated speeds, and the lower

graphs show the distribution of residuals. The MAEs were 2.33 km/h and 2.18 km/h, while

the SDPs were 5.11 km/h and 5.24 km/h. As a result, a vibration sequence for 8 s sampled at

200 Hz contains some information correlated with the speed, as we found for the strain-based

results.

For locus estimation Task 3, Fig. 5.7 (c) and Fig. 5.8 (c) show the evaluation results. The

upper graphs show the distribution of estimated loci, and the lower graphs show the distribution

of residuals. The MAEs were 11.30 cm and 11.06 cm, while the SDPs were 13.25 cm and

16.16 cm. Compared with the locus estimation using the strain sensors shown in Fig. 5.5 (c)

and Fig. 5.6 (c), the MAEs were not much smaller than the standard deviations. We therefore

have some doubts about the validity of locus prediction, and this is explored in Section 5.3.4.

Fig. 5.7 (d) and Fig. 5.8 (d) show the confusion matrices for axle counting Task 4. The

accuracy was much lower than the axle counting consulting strain sensors shown in Fig. 5.5 (d)

and Fig. 5.6 (d). Focusing on vehicles with more than 3 axles, both precision and recall were

quite low, indicating that the model is impractical.
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Figure 5.7: Model 3 performance of LtoR vehicle detection (A3ZP8).

5.3.4 Validation of Detectability

As noted, we had some doubts about the validity of locus estimation, particularly when

using the accelerometer A3ZP8. To clarify the issue, we visualized the correlation between

the ground-truth g and predicted values y for Tasks 2 and 3. Each graph indicates the density of

the (g, y) distribution obtained by Gaussian kernel density estimation.
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(b) Task 2.
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Figure 5.8: Model 3 performance of RtoL vehicle detection (A3ZP8).

Fig. 5.9 and Fig. 5.10 indicate the validity of vehicle detection from strain sensors S1P4 and

S4P4, respectively. These graphs show the correlation graphs for speed estimation Task 2 and

locus estimation Task 3. For both tasks, the (g, y) clusters are clearly spread along the g = y

line. The correlation coefficients ρ were more than 0.8 for vehicles passing in their lanes. Thus,

the models certainly captured some features correlated with the speeds and loci. It should be

noted that the ground truth was obtained through video analysis via the TSS.

Fig. 5.11 indicates the validity of vehicle detection from the accelerometer. Fig. 5.11 (a)
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Figure 5.9: Validation of vehicle detection performance by Model 3 (S1P4).
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Figure 5.10: Validation of vehicle detection performance by Model 3 (S4P4).

30 40 50 60 70
answer speed [km/h]

30

40

50

60

70

ou
tp

ut
 s

pe
ed

 [
km

/h
]

ρ=0.82

(a) Task 2 LtoR.

30 40 50 60 70
answer speed [km/h]

30

40

50

60

70

ou
tp

ut
 s

pe
ed

 [
km

/h
]

ρ=0.86

(b) Task 2 RtoL.

320 360 400 440 480
answer locus [cm]

320

360

400

440

480

ou
tp

ut
 l

oc
us

 [
cm

]

ρ=0.62

(c) Task 3 LtoR.

640 680 720 760 800
answer locus [cm]

640

680

720

760

800

ou
tp

ut
 l

oc
us

 [
cm

]

ρ=0.72

(d) Task 3 RtoL.

Figure 5.11: Validation of vehicle detection performance by Model 3 (A3ZP8).

and Fig. 5.11 (b) show the correlation graphs for speed estimation Task 2. Fig. 5.11 (c) and

Fig. 5.11 (d) show the correlation graphs for locus estimation Task 3. For speed estimation

Task 2, the (g, y) clusters are clearly spread along the g = y line. The correlation coefficients

ρ are more than 0.8, indicating that the models can estimate the speeds. For locus estimation

Task 3, the (g, y) clusters presented a circular pattern rather than a linear pattern. The correlation

coefficients were not high but were obviously positive, and we believe that the models captured

some features correlated with loci. The weak correlation may be because of the following two

reasons. Large vehicles with more than two axles are generally wide and may not move freely
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(a) Task 2 LtoR (S1P4).
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(b) Task 2 RtoL (S4P4).
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(d) Task 3 RtoL (S4P4).

Figure 5.12: Performance of Model 3 using strain sensors under heavy traffic.

within the lane. Moreover, A3ZP8 was installed at the center of the bridge span, which was

more than 30 m from the camera.

5.3.5 Accuracy under Heavy Traffic

We had some doubts that the detection accuracy using our proposed networks might be

affected by the traffic volume at various times. As shown in Fig. 4.4 (d), the interval between a
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(a) Task 2 LtoR (A3ZP8).
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(b) Task 2 RtoL (A3ZP8).
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(c) Task 3 LtoR (A3ZP8).
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(d) Task 3 RtoL (A3ZP8).

Figure 5.13: Performance of Model 3 using an accelerometer under heavy traffic.

vehicle disappearing and the next one appearing in the camera field could vary considerably. To

investigate the effect of traffic volume, we calculated the detection performance if we ignored

vehicles for which the gap to the following vehicle exceeded 2 s. Fig. 5.12 and Fig. 5.13 show

the histograms of these modified estimation results and the residuals for the strain data and

vibration data, respectively. Compared with the results in Section 5.3.2 and Section 5.3.3, we

can confirm that any degradation in accuracy was insignificant.
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Table 5.2: Comparison of models for LtoR vehicles (S1P4).

Task Index Model 1 Model 2 Model 3 Unit

1 CE 0.26 0.26 0.25 -

2 MAE 2.73 2.69 2.63 km/h

SDP 5.74 6.10 6.05 km/h

3 MAE 7.70 7.82 7.57 cm

SDP 22.01 22.41 22.64 cm

4 CE 0.06 0.05 0.05 -

5.3.6 Comparison of Models

As shown in Fig. 5.2, we designed three derivative CNN architectures. Each row in Table 5.2

indicates the accuracy of a task learned by the three models individually. Overall, the deepest

model, Model 3, achieved superior accuracy to the other two models. On the other hand,

Model 2 failed to improve on the shallowest model, Model 1.

For vehicle detection Task 1, the overall cross entropy (CE) across five folds was slightly

decreased from 0.26 to 0.25 by inserting some residual blocks. For speed estimation Task 2,

Model 3 achieved superior performance to the other models, but there was little superiority in

terms of MAE. However, the shape of the speed distribution estimated by Model 3 was much

closer to the ground truth than that for Models 1 and 2, which can be confirmed in terms of

the SDP. The SDP achieved by Model 3 was 6.05 km/h, whereas the standard deviation of

ground truth was 7.01 km/h. Models 1 and 2 had poor sensitivity toward detecting vehicles

that were either very slow or very fast. For locus estimation Task 3, Model 3 achieved superior

performance to the other models, as for Task 2. The SDP of Model 3 was 22.64 cm, whereas

the standard deviation of ground truth was 25.04 cm. In terms of the SDP, Model 1, the simplest

model, had poor sensitivity toward detecting vehicles that ran too far to the left or too far to the

right in the lane. Model 2 was attracted by outlier loci but failed to improve its MAE. For axle

counting Task 4, Model 3 achieved slightly superior performance to the other models.

5.3.7 Comparison of Sensor Positions

As illustrated in Fig. 4.1 (a), we installed four strain sensors on Bridge C, denoted S1P4,

S2P4, S3P4, and S4P4, from left to right in Fig. 4.1 (a). These sensors were located in a line

orthogonal to the bridge axis. For most LtoR vehicles, sensor S1P4 was the closest to the
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Table 5.3: Comparison of sensor positions for Model 3.

LtoR RtoL

Task Loss S1P4 S2P4 S3P4 S4P4 S1P4 S2P4 S3P4 S4P4 Unit

1 CE 0.25 0.34 0.24 0.23 0.38 0.29 0.24 0.25 -

2 MAE 2.63 3.11 2.88 2.81 3.70 3.19 2.60 2.62 km/h

3 MAE 7.57 8.92 10.87 11.46 16.87 15.06 11.90 12.12 cm

4 CE 0.05 0.06 0.05 0.05 0.11 0.09 0.08 0.08 -

Table 5.4: Comparison of accelerometer axes for Model 3.

LtoR RtoL

Task Loss A3XP8 A3YP8 A3ZP8 A3XP8 A3YP8 A3ZP8 Unit

1 CE 0.26 0.23 0.11 0.25 0.21 0.16 -

2 MAE 3.10 3.21 2.33 2.70 2.62 2.18 km/h

3 MAE 13.00 12.68 11.30 14.92 13.06 11.06 cm

4 CE 0.73 0.70 0.50 0.74 0.67 0.59 -

wheels, while sensor S4P4 was the closest to most RtoL vehicle axles. Each row of Table 5.3

shows the detection accuracy of LtoR and RtoL vehicles using the four strain sensors. In

general, the sensors S1P4 and S4P4 achieved superior accuracy to the other three sensors for

LtoR and RtoL vehicles, respectively.

5.3.8 Comparison of Acceleration Directions

As described in Section 4.1, we installed an accelerometer with three axes, and the vertical

axis (Z) was denoted A3ZP8. The sensor has other two horizontal axes, X (bridge axis) and

Y (orthogonal axis). Each row of Table 5.4 shows the detection accuracy of LtoR and RtoL

vehicles using the three acceleration axes. In general, the A3ZP8 achieved superior accuracy

to the other two axes, and A3XP8 achieved quite low performance. It seems that the Z-axis

responded greatly to the passing vehicles, and the remaining two axes vibrated to a certain

degree, but their amplitudes were much smaller than the vertical axis.
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Table 5.5: Effect of LPF on LtoR vehicle detectability by Model 3.

S1P4 A3ZP8

Task Loss 1 Hz 2 Hz 6 Hz Raw 10 Hz 20 Hz 30 Hz Raw Unit

1 CE 0.26 0.26 0.26 0.25 0.19 0.13 0.13 0.11 -

2 MAE 3.35 3.18 2.90 2.63 3.14 2.65 2.47 2.33 km/h

3 MAE 11.11 10.70 8.31 7.57 13.49 12.32 12.09 11.30 cm

4 CE 0.08 0.07 0.05 0.05 0.67 0.60 0.57 0.50 -

5.3.9 Effect of the Low-Pass Filter (LPF)

It is preferable to use the lowest feasible sampling rate from the perspective of power

consumption and the installation cost of the sensing environment. In addition, we must identify

the frequency band that best correlates with vehicle detectability in the four prediction tasks in

order to elucidate the mechanism by which the deep sensing models identify individual vehicles.

Therefore, we applied an LPF to the strain and vibration data before their input to Model 3 and

compared the resulting performance with the results for models that were fed original signals.

The cutoff frequencies for the LPF were determined by considering the dominant frequencies in

the power spectra shown in Fig. 5.14. The isolated peaks at 50 Hz were caused by power supply

noise. Table 5.5 lists the comparison results for the four tasks. For the strain data, components

over 6 Hz have little influence on vehicle detectability. For the vibration data, components over

30 Hz have little influence on vehicle detectability.

5.3.10 Effect of Training Data Volume

For the experiments in Section 5.3, we collected data from vehicles that crossed Bridge C over

a six-month period. It is preferable to use the smallest feasible dataset from the perspective of

reducing the training cost at system initialization. We thus conducted an additional experiment

to investigate the contribution of dataset volume to detection performance. We subsampled

each trainval dataset for fivefold cross-validation so the volume of sampled trainval data was

varied from 10% to 100%. Fig. 5.15 shows the learning curves for the validation scores. For

regressions in Tasks 2 and 3, the dataset volume barely influences the accuracy, and we may

even decrease the number of samples to 10% (19.2 hours) in extreme cases. In contrast, we

must use more than about 50% (96 hours) of the original trainval data for Task 4. The volume
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Figure 5.14: Power spectra of sensor data on Bridge C.
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Figure 5.15: Effect of training data volume on LtoR vehicle detection by Model 3 (S1P4).

greatly influences the accuracy for axle counting Task 4 because of the rarity of multi-axle

vehicles in the trainval data.

5.4 Experimental Results for Bridge S

We also evaluated Model 3 for vehicles in the first (left) lane on Bridge S. As described in

Section 4.1, we used three types of strain sensors on Bridge S. First, strain sensors were used on

vertical stiffeners, denoted VSG2B1, VSG2B2, VSG4B1, and VSG4B2. Second, strain sensors

were used on lower flanges, denoted LSG2C and LSG4C. Third, strain sensors were used on

bridge supports, denoted RG2A1, RG2A2, RG4A1, and RG4A2.

We implemented Model 3 and Tasks 1 and 2, listed in Fig. 5.2, Table 5.1. The network was

written in Python 2.7 and implemented on Chainer [68] 5.0.0. The network was accelerated by

an NVIDIA Tesla V100 GPU, using CUDA [60] 9.2.

We employed the AMSGrad [72] as an implementation of stochastic gradient descent whose

parameters were set as defined in the Chainer implementation by default. The mini-batch size

was set at 10.

It should be noted that a 20% dropout was inserted between the two convolutional layers in



5.4 Experimental Results for Bridge S 60

0 50 100 150 200
training epoch

0.0

0.1

0.2

0.3

0.4

av
er

ag
e 

lo
ss
 a

cr
os

s 
fo

ld
s

task 1

train
valid

0 50 100 150 200
training epoch

0

100

200

300

400

av
er

ag
e 

lo
ss
 a

cr
os

s 
fo

ld
s

task 2

train
valid

(a) VSG2B1.

0 50 100 150 200
training epoch

0.00

0.25

0.50

0.75

av
er

ag
e 

lo
ss
 a

cr
os

s 
fo

ld
s

task 1

train
valid

0 50 100 150 200
training epoch

0

100

200

300

400

av
er

ag
e 

lo
ss
 a

cr
os

s 
fo

ld
s

task 2

train
valid

(b) VSG4B1.

Figure 5.16: Mean loss of cross-validation using sensors on vertical stiffeners.
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Figure 5.17: Mean loss of cross-validation using sensors on lower flanges.
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Figure 5.18: Mean loss of cross-validation using sensors on girder supports.

each residual block.

5.4.1 Loss Convergence

The networks were trained over 200 epochs, and each sample was fed to the networks 200

times. The fivefold cross-validation for Model 3 required about 3 days. Fig. 5.16 shows the

time evolution of the training and validation losses for strain sensors on vertical stiffeners.

Fig. 5.17 shows the time evolution of losses for strain sensors on lower flanges. Fig. 5.18 shows
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the time evolution of losses for strain sensors on girder supports. The models converge in the

first 50 epochs and start overfitting where the training losses become lower than the validation

losses. As described in Section 5.2, the evaluation processes were performed with models

whose validation losses were minimum in the same fashion as the early stopping approach [98].

5.4.2 Detectability with Strain Sensors on Vertical Stiffeners

In this section, the performance for vehicle detection using strain sensors on vertical stiffeners

is evaluated. The graphs for Tasks 1 and 2 show the same tendencies as the results for Bridge C.

For vehicle detection Task 1, Fig. 5.19 (a) and Fig. 5.20 (a) show the individual ROC

curves for fivefold cross-validation using VSG2B1 and VSG4B1, respectively. According to

the AUCs, Model 3 using VSG2B1 detected vehicles accurately in the first lane, which is a

good demonstration of lane detectability. It is notable that Model 3 using VSG2B1 achieved

superior accuracy to Model 3 using VSG4B1. This may be explainable by the sensor positions.

VSG2B1 was located near the wheels in the first lane, while VSG4B1 was located under the

other lane. The standard deviation of the AUCs was near zero, meaning the model achieved

stable accuracy levels.

For speed estimation Task 2, Fig. 5.19 (b) and Fig. 5.20 (b) show the total results for

the cross-validation using VSG2B1 and VSG4B1, respectively. The upper graphs show the

distribution of the estimated traveling speeds, and the lower graphs show the distribution of the

residuals. The residuals were distributed around approximately 0 km/h, following a unimodal

distribution. For VSG2B1, the MAE was 7.71 km/h, while the SDP was 16.55 km/h. For

VSG4B1, the MAE was 10.65 km/h and the SDP was 12.60 km/h. Consequently, a strain

signal for 4 s sampled at 100 Hz contains information correlated with the speed, and Model 3

succeeded in extracting the corresponding features. However, the MAEs may be inadequate for

practical use.

5.4.3 Detectability with Strain Sensors on Lower Flanges

In this section, the performance for vehicle detection using strain sensors on lower flanges

is evaluated. The graphs for Tasks 1 and 2 show the same tendencies as the results for

Section 5.4.2.

For vehicle detection Task 1, Fig. 5.21 (a) and Fig. 5.22 (a) show the individual ROC curves

for fivefold cross-validation using LSG2C and LSG4C, respectively. According to the AUCs,

Model 3 using LSG2C achieved superior accuracy to Model 3 using LSG4C. This increased

accuracy may be explainable by the sensor positions. LSG2C was located near the wheels in

the first lane, while LSG4C was located under the other lane. The standard deviation of the
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Figure 5.19: Model 3 performance of first-lane vehicle detection (VSG2B1).
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Figure 5.20: Model 3 performance of first-lane vehicle detection (VSG4B1).

AUCs was near zero, meaning both models achieved stable accuracy levels.

For speed estimation Task 2, Fig. 5.21 (b) and Fig. 5.22 (b) show the total results for the

cross-validation using LSG2C and LSG4C, respectively. The upper graphs show the distribution

of the estimated traveling speeds, and the lower graphs show the distribution of the residuals.

The residuals were distributed around approximately 0 km/h, following a unimodal distribution.
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Figure 5.21: Model 3 performance of first-lane vehicle detection (LSG2C).
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Figure 5.22: Model 3 performance of first-lane vehicle detection (LSG4C).

For LSG2C, the MAE was 7.66 km/h, while the SDP was 16.97 km/h. For LSG4C, the MAE

was 10.28 km/h and the SDP was 11.83 km/h. As for Task 1, Model 3 using LSG2C achieved

superior accuracy to Model 3 using LSG4C.
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5.4.4 Detectability with Strain Sensors on Girder Supports

In this section, performance for vehicle detection using strain sensors on girder supports at

bridge entrance and exit are evaluated. The graphs for Tasks 1 and 2 show the same tendencies

as the results for Section 5.4.2.

For vehicle detection Task 1, Fig. 5.23 (a) and Fig. 5.24 (a) show the individual ROC curves

for fivefold cross-validation using RG2A1 and RG4A1, respectively. According to the AUCs,

Model 3 using RG2A1 achieved superior accuracy to Model 3 using RG4A1. This increased

accuracy may be explainable by the sensor positions. RG2A1 was located near the wheels in

the first lane, while RG4A1 was located under the other lane. The standard deviation of the

AUCs was near zero, meaning both models achieved stable accuracy levels.

For speed estimation Task 2, Fig. 5.23 (b) and Fig. 5.24 (b) show the total results for

the cross-validation using RG2A1 and RG4A1, respectively. The upper graphs show the

distribution of the estimated traveling speeds, and the lower graphs show the distribution of the

residuals. The residuals were distributed around approximately 0 km/h, following a unimodal

distribution. For RG2A1, the MAE was 9.04 km/h, while the SDP was 15.09 km/h. For RG4A1,

the MAE was 10.52 km/h and the SDP was 11.59 km/h. As for Task 1, Model 3 using RG2A1

achieved superior accuracy to Model 3 using RG4A1.

5.4.5 Validation of Detectability

As for Bridge C, we had some doubts regarding the validity of speed estimation because the

MAEs were not sufficiently lower than the standard deviation of the ground truth. To clarify

the issue, we visualized the correlation between the ground-truth g and predicted values y for

Task 2. Each graph indicates the density of the (g, y) distribution obtained by Gaussian kernel

density estimation.

Fig. 5.25 indicates the validity of vehicle detection from strain sensors on vertical stiffeners.

For sensors underneath girder G2, the (g, y) clusters are clearly spread along the g=y line. The

correlation coefficients ρ were about 0.7. Thus, the models certainly captured some features

correlated with the speeds. For sensors underneath girder G4, the correlation coefficients were

much lower than VSG2B1 and VSG2B2. This difference may be because of the closeness of

the sensors to the first lane.

Fig. 5.26 indicates the validity of vehicle detection from strain sensors on lower flanges. For

LSG2C, located underneath girder G2, the (g, y) clusters are clearly spread along the g=y line.

The correlation coefficient ρ was about 0.7. As a result, the models certainly captured some

features correlated with the speeds. For LSG4C, located underneath girder G4, the correlation



5.4 Experimental Results for Bridge S 65

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

 p
os

it
iv

e 
ra

te
AUC=0.974±0.002 CE=0.209

fold 0 (AUC 0.976)
fold 1 (AUC 0.973)
fold 2 (AUC 0.975)
fold 3 (AUC 0.973)
fold 4 (AUC 0.972)

(a) Task 1.

50 60 70 80 90 100 110 120 130
0

500

1000

1500

2000

2500

#v
eh

ic
le

s

85.43±15.09
o#tp#t

−40 −30 −20 −10 0 10 20 30 40
speed [km/h]

0

500

1000

1500

2000

2500

#v
eh

ic
le

s

MAE=9.04 MSE=270.19

 esid#al

(b) Task 2.

Figure 5.23: Model 3 performance of first-lane vehicle detection (RG2A1).
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Figure 5.24: Model 3 performance of first-lane vehicle detection (RG4A1).

coefficient ρ was lower than that for VSG2B1 and VSG2B2. This may be explained by the

same possible reason noted for VSG4B1 and VSG4B2.

Fig. 5.27 indicates the validity of vehicle detection from strain sensors on girder supports at

the bridge entrance and exit. According to the correlation coefficients ρ, the sensor RG2A1,

which was located under the first lane at the bridge entrance, achieved the best detectability.
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(a) VSG2B1.
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(b) VSG2B2.
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(c) VSG4B1.
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(d) VSG4B2.

Figure 5.25: Validation of vehicle detection using sensors on vertical stiffeners.
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(a) LSG2C.
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(b) LSG4C.

Figure 5.26: Validation of vehicle detection using sensors on lower flanges.
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(a) RG2A1.
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(b) RG2A2.
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(c) RG4A1.
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(d) RG4A2.

Figure 5.27: Validation of vehicle detection using sensors on girder supports.

In contrast, the correlation coefficients for the remaining three sensors were lower than 0.5.

As seen in Fig. 5.23 (b), the performance of RG2A1 was not higher than other sensor types.

We recommend using sensors on vertical stiffeners and lower flanges for the specific case of

Bridge S.
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5.5 Single-Sensor BWIM

In this section, we demonstrate a BWIM system using only a single strain sensor based on

the deep sensing proposal. On midnight from November 30 to 31, 2017, we performed test

runs to obtain influence lines on Bridge C. We hired a dump truck (Isuzu GIGA) and made 16

round trips (32 traversals) on Bridge C. The truck had 10 wheels and three axles, and the axle

weights were 3.44 t, 8.09 t, and 8.09 t from the front to the rear, respectively. After the test

runs, we estimated 32 influence lines for strain sensor S1P4 by using the algorithm described in

Section 2.4 proposed by Tateishi et al. [89].

Fig. 5.28 shows the vehicle weights estimated using 15 influence lines. We ignored the fifth

influence line because the observation data was lost as the result of a sensing system failure.

The estimation was performed for LtoR vehicles that passed Bridge C from 08:00 to 16:00 on

November 31, 2017. The mechanism was as follows. First, we obtained the score of vehicle

existence for every second by Task 1 using Model 3. Next, we predicted the traveling speed

and number of axles for every time slot whose sigmoid score was higher than 0.5. The axle

positions could be estimated by peak detection from strain samples considering the number of

axles obtained via deep sensing. Lastly, we estimated the sum of axle weights via the main

process of BWIM following Eq. (2.4). In the strict sense, the label vehicles in the vertical axis

of the graphs is the number of time slots when vehicles were detected. The locus information

was not utilized in these experiments.

It should be noted that the deep sensing model was trained individually for each influence

line, although the model could be shared with other influence lines. This sharing potential

demonstrates the repeatability of our deep sensing proposal on Bridge C. The training and

validation data included all vehicles in DS601, which were divided randomly into half for

training and evaluation data. Through the experiments, we found that Model 3 frequently

caused strong overfitting for the enlarged datasets. Therefore, we inserted an additional L2

normalization between the two linear layers shown in Fig. 5.2 to suppress overfitting. The

network was accelerated by an NVIDIA GeForce GTX 1080 Ti GPU using CUDA [60] 9.2.

Through careful investigation of the estimated axle weights, we found a fault where vehicles

were estimated to be much lighter than the ground truth. Such a case might be observed

when the false peaks were detected and did not fit the true axle positions. To overcome this

problem, we should include a fifth task of axle-position detection into the deep sensing models.

Alternatively, we may create a fully neural BWIM system that does not use influence lines

explicitly obtained by test runs. This system may be realized by installing an axle load meter

and collecting ground-truth axle weights during the system initialization period.
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Figure 5.28: Estimated LtoR vehicle weights on October 31, 2017.

5.6 Discussion

The major question in this work is the nature of the features in single-sensor signal data that

are sufficient to specify vehicle properties with moderate accuracy. It is difficult to clarify the

prediction mechanism in the deep CNNs, but we could identify which frequency components

in the strain and vibration signals have significant effects on vehicle detectability. As shown in

Table 5.5, even low-frequency components (under 10 Hz) contain sufficient information about

individual vehicles for the strain and vibration signals. We can conclude that the proposed

models did not focus mainly on the details of the signals but on the outline of the responses.

For the strain signals, we obtained Fig. 5.29 by applying an LPF to a strain data as a heavy

vehicle crossed Bridge C. The large peaks in Fig. 5.29 indicate the number of axles or, more

precisely, the number of shocks caused by the moving loads on the bridge. After applying an

LPF with a cutoff frequency of 6 Hz, the resultant waveform fitted the original strain signal.

By contrast, after applying a lower-frequency LPF, the peaks were less apparent, as shown in



5.6 Discussion 69

−4 −2 0 2 4
time [s]

0

10

20

30

40

50

60

st
ra

in
 [
μS

T]
2016-11-28 14:50:46.51

S1P4
LPF 1Hz
LPF 2Hz
LPF 6Hz

(a) An LtoR vehicle.

−4 −2 0 2 4
time [s]

0

10

20

30

40

50

60

st
ra

in
 [
μS

T]

2017-01-25 09:21:56.00

S4P4
LPF 1Hz
LPF 2Hz
LPF 6Hz

(b) An RtoL vehicle.

Figure 5.29: Example of strain responses caused by vehicles after applying LPF.

Fig. 5.29. This may account for the decreased accuracy of Task 4 when a low-frequency LPF

was used.

By contrast, the locus estimation Task 3 is inherently more difficult. In general, heavier

vehicles bend the bridge deck more than lighter vehicles. The strain amplitude is also increased

by the distance between the closest approach of the wheel axle to the strain meter, which is

relative to the locus. The speed estimation Task 2 is also inherently difficult because the video

timestamps were shifted randomly, as described in Section 5.2. Consequently, naı̈ve statistical

values such as amplitude and peak positions explain little about the regression tasks.

Although the correct answer to the major question has yet to be revealed, we have developed

a hypothesis. We infer that the deep sensing models learned the influence surface for the

2-dimensional road surface of Bridge C. As we described in Eq. (2.4), a typical influence line

is defined as a 1-dimensional curve i(x). However, we can also assume an influence surface

i(x, y) where y indicates a position in the direction orthogonal to the bridge axis. The vehicle

speed ẋ and locus y can then be predicted from i(x, y).

As described in Section 5.4, the sensor installation point may have a great influence on the

estimation accuracy. To optimize this accuracy, we should first seek the best installation point

and then prepare the ground-truth data as accurately as possible. For Bridge S, we adopted

a primitive approach based on peak detection for acquiring ground-truth data. Some vehicles

were ignored because their estimated speed appeared to be too fast or too slow. Such a situation

can occur frequently, particularly when multiple vehicles, running in different lanes, pass over
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the sensors almost at the same time. The primitive peak-based approach that we employed is

not always able to discriminate between individual vehicles in such a situation. This may be one

of the reasons why the accuracy achieved was inadequate for practical applications. To improve

the dataset accuracy, we should utilize a radar speed gun or a high-resolution camera instead of

relying on the naı̈ve peak-based method.

For the accelerometers A3XP8, A3YP8 and A3ZP8, the performance of the axle counting

Task 4 was much lower than those for strain sensors. This decreased performance may be

because identifying individual moving axles from the acceleration graphs shown in Fig. 4.3 was

much more difficult than identifying those from the strain graphs in Fig. 4.2. As for Bridge C,

the acceleration signals had poor sensitivity or spatiotemporal locality of the individual moving

axles. At the time, A3ZP8 was installed at the bottom of the box girder. To improve the

axle detectability from acceleration signals, we should install the sensor closely underneath the

bridge deck to capture vibrations caused by individual axles.

5.7 Conclusion

In Chapter 5, we have proposed a deep sensing approach to a single-sensor BWIM system

that detects target vehicles using only a single strain or vibration sensor. The vehicle properties

obtained by the proposed CNNs include lane, speed, locus, and axles, which are useful for

BWIM systems. The novelty of our work is in its demonstration of the information richness

of the single-sensor data by showing that speed and locus estimation is possible without using

multiple sensors installed at multiple positions on the bridge. The single-sensor-based detector

may simplify conventional BWIM systems dramatically so they can be applied more widely to

bridges at only moderate cost.

The training data for the proposed vehicle detector can be obtained by analyzing traffic

surveillance videos. The training data may contain nonideal, congested traffic conditions, with

a vehicle appearing every second. The model parameters are optimized statistically without

requiring any heuristics, except for the length of the sensor-data sequences fed to the models.

This optimization is one of the advantages over heuristic vehicle detectors, enabling the systems

to be installed on many other bridges in the future. We also believe our proposal can be merged

with the weighing process in a CNN after we have collected substantial amounts of vehicle

weight data.

Our current task is to examine the effectiveness of the deep sensing proposal with other

bridges and for other sensors such as displacement sensors. In addition, we plan to integrate

the weighing process into the deep sensing models by collecting vehicle axle load data and

exploiting the obtained properties, particularly the loci, in the weighing process. Moreover,

we should compare the performance, under the same conditions, of our proposal with that for
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conventional vehicle detectors that use peak detection. To complete these tasks, we may need

to add extra sensors to the bridges.



Chapter 6

Anomaly Strain Detection
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In this chapter, we present an anomaly detection approach for bridge damage detection that

consults a traffic surveillance camera on the bridge and a single strain sensor underneath the

bridge deck. As described in Section 2.4, the strain response on bridge components can be

modeled by a linear response model. Although the linearity may not hold for all vehicles and

bridges, we assume the existence of a response model that may explain the strain response

against passing vehicles. Once the response model was obtained, the strain response may

be predictable by feeding the vehicle properties to the response model. If we set up such a

predictor during the bridge’s construction, we could capture small signs of deterioration later

by comparing predicted waveforms and real observation data. Fortunately, vehicle properties

including shape and motion but excluding axle loads is obtainable using a surveillance camera.

However, we encountered a difficulty, namely that the video data could not supply information

about a vehicle’s axle weights. As described in Section 2.4, the strain response depends on the

moving axle loads, so measuring axle weights directly seems an obvious approach. To obtain

the axle weights, the options are to install a pavement sensor or use BWIM systems [47, 99].

As discussed in Section 2.4, the former is fragile, difficult to retrofit to existing bridges, and

limits the traveling speeds. In contrast, the latter requires that strain response characteristics be

obtained in advance, which is not applicable to the anomaly detection problem. We therefore

abandoned the axle weight approach.

Instead, we developed a new sensor-fusion approach that directly compares the vehicle image

and strain response in a common feature space. Fig. 6.1 shows an architecture of the proposed

system, named the early warning system (EWS). The fact that the deep sensing models in

Chapter 5 successfully extracted vehicle speeds and loci even though the strain waveforms

were shifted deliberately at random indicates the possibility of learning an inverse response

function. If the hypothesis is true, the bridge damage may be detectable by comparing vehicle

properties estimated by deep sensing and video analysis. Once a bridge becomes damaged and

the response model changes, the features of a target vehicle may differ between video and sensor

data. The feature comparison is performed for every passing vehicle. Some video–response

pairs caused by the same vehicle may be inconsistent in the common space. We treat such an

event as an anomaly, making the assumption that such a response may be caused by bridge

structural damage.

This approach is somewhat similar to the Siamese network [5], which compares a pair of

images via features extracted by the same neural network and calculates a similarity score.

However, our approach utilizes two different neural networks for the video and strain data.

Moreover, unlike the Siamese network, the two networks are trained to predict vehicle speeds

and loci individually. As demonstrated in Chapter 5, vehicle speeds and loci may be predictable

from both video and strain data, and they affect the shape of the strain response significantly.
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Figure 6.1: System architecture for the proposed anomaly detection system.

By learning these two tasks, the two networks can acquire feature spaces that seem to comprise

common factors of the video and strain data. Finally, the bases of the two spaces can be matched

by minimizing the distance between two related elements in the respective spaces. We call this

approach spiral learning. It should be noted that bad weather, e.g., a snowstorm or heavy rain,

may disrupt the video signal. In such a situation, an event may be misidentified as an anomaly

even if the strain response was normal. Therefore, we proposed adding an adversarial learning

mechanism as a countermeasure.

6.1 Anomaly Detection Network

Spiral learning is a feature-matching technique whereby a pair of samples, which are

observed by two sensors but share the same latent variable, are fed into two separate networks.

The networks are independent of each other, except for a final linear layer that shares the same

weight matrix. Each network learns from its respective dataset and acquires a feature mapping

that contains the shared latent variable. In this dissertation, the latent variable indicates the

properties of every passing vehicle, such as traveling speed and locus.

Fig. 6.2 shows the proposed neural network architectures. The network, named the spiral

network, consists of two CNNs, namely the CamNet and the SigNet.

The CamNet receives video data observed by a traffic surveillance camera and outputs the

video features for every target vehicle. The input is 50 grayscale video frames (taken over

two seconds) recorded from when the vehicle enters the camera’s field of view. Each frame is

resized to 224×224 pixels in advance. The network was designed in reference to VGG16 [84],

except for using preactivated residual blocks [22] instead of plain convolution layers.

The SigNet receives signal data observed by a strain sensor underneath the bridge deck and

outputs the signal features for every target vehicle. The input is four-second batches of raw

strain data sampled at 200 Hz. Each strain sample was rescaled so its maximum and minimum

were normalized to 1 and 0, respectively, for effective learning. The network was designed by

increasing the number of residual blocks of the deep sensing models proposed in Chapter 5.

The outputs of the two networks are fed to a fully connected layer mutually. This linear layer

estimates speed and locus of the target vehicle using either video or signal features.
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Figure 6.2: Network architectures for video and strain data.

Note that we applied a third activation function to the output of the residual blocks in addition

to the two activation functions inside the blocks. We used ReLU [19] for the activation functions

in each layer of the two networks, except for the output layers. To suppress overfitting, we

inserted a 50% dropout [86] before each linear layer in each network.

6.1.1 Plain Spiral Learning

By learning the two tasks of predicting vehicle properties, the two networks for video and

sensor data can acquire feature spaces that seem to comprise common factors of the video and

sensor data. We selected speed and locus as the outputs. As described in Section 2.4, these

two properties have strong effects on the signal shape of the strain response. We can expect the

two networks to generate the same feature vector as a common factor through learning the two

prediction tasks and sharing the same output layer.

We exploit a multitask learning (MTL) technique [9] for the deep sensing models described

in Chapter 5. The loss function L for the CamNet is defined in Eq. (6.1).

L(f, h) = 1

N

{
N∑

n=1

[hs(f(xn))− sn]
2

Var(s)
+

N∑
n=1

[hl(f(xn))− ln]
2

Var(l)
,

}
(6.1)

where xn is the n-th video sample. f and h denote the feature extraction through the CamNet

and the final linear layer shared by the two networks, respectively. s and l are ground-truth

annotations for the speed- and locus-prediction tasks, respectively. It should be noted that f(x)

was normalized as shown in Fig. 6.2.

The loss function L for the SigNet is defined in Eq. (6.2).

L(g, h) = 1

N

{
N∑

n=1

[hs(g(yn))− sn]
2

Var(s)
+

N∑
n=1

[hl(g(yn))− ln]
2

Var(l)

}
, (6.2)
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where yn is the n-th signal sequence and g denotes the feature extraction through the SigNet.

It should be noted that g(x) was normalized, as shown in Fig. 6.2.

The final linear layer is shared by the two models, enabling the outputs of the two networks

to be treated as feature vectors in a common feature space. Both networks learn the correlation

between the two sources by drawing their feature vectors together. The attracting mechanism

can be described as the anomaly loss A defined in Eq. (6.3).

A(f, g) =
1

N

N∑
n=1

∥f(xn)− g(yn)∥22 . (6.3)

Consequently, the optimization problem for the combined network, named the SpiNet, can

be described in terms of multitasking [9], as given in Eq. (6.4).

LMSE(f, g, h) = L(f, h) + L(g, h) + λA(f, g), (6.4)

where λ is a weight of A and is set as 10. Eq. (6.4) minimizes five individual losses, namely

speed and locus prediction from the video data, speed and locus prediction from the strain data,

and the L2 norm between the feature vectors for video and sensor data. Because these two

networks share the output layer, Eq. (6.3) plays the role of matching the correlative elements

from the two feature spaces. As a result, the video and strain feature spaces will coalesce after

a long training period as two cannibal black holes forming a spiral trajectory.

The video and strain data may differ from each other, although they cover the same target

vehicle. This difference can be identified by monitoring the L2 norm of the subtraction between

f(x) and g(y). We therefore define the L2 norm as an anomaly score. The outliers of the

distribution are identified as anomalous vehicles.

6.1.2 Adversarial Spiral Learning

Anomalous vehicle detection based on spiral learning depends on features extracted from the

surveillance video recordings. The video can be disturbed by environmental conditions such

as weather, traffic jams, pedestrians, and vehicles in the opposite lane. Such disturbances may

cause mistaken anomaly detections. The adversarial mechanism can reduce these errors, which

may enable video features to correlate less with the weather conditions, including heavy rain,

snowstorms, deep snow, and morning haze. We therefore combined the adversarial learning

concept introduced in Section 3.2 with our spiral learning proposal for this purpose. Fig. 6.3

illustrates the mechanism.

One of the simplest methods to achieve weather resistance is to use a weather discriminator.

The discriminator tries to find videos recorded under bad weather conditions by examining

video features carefully and in detail. To implement this function, we need to append weather
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Figure 6.3: Adversarial spiral learning mechanism.

tags to the traffic dataset. The loss function for the SpiNet can be described as in Eq. (6.5),

using the mean cross entropy LCE:

LGAN(f, g, h) = LMSE(f, g, h)− LCE(p, q), (6.5)

where p and q denote the discriminator and the weather tag, respectively. After a long training

period, the discriminator can no longer find faults in the obtained video features.

Initially, we tried to tag each vehicle by consulting the historical climate data archived by

the government, but we encountered a major difficulty. The weather conditions at the bridge

did not always correspond to the historical data, because weather conditions were recorded at

the nearest observation station, a few kilometers away from the target bridge. We then tried

to tag the vehicles manually by watching the video, but we encountered another difficulty.

Because of the complicated weather situations, it was difficult to formulate a robust policy for

weather annotation. For example, should there be a cloudy tag in addition to a sunny tag, and

is there a boundary between cloudy and light-rain conditions, or between snowfall and snow

accumulation? Sometimes, the video lost focus because of morning haze, twilight, or a fogged

lens. Additionally, precipitation and the intensity of solar radiation, which also has a strong

impact on the video quality, should be noted.

We therefore abandoned the weather annotation plan and developed a fully unsupervised

approach. Here, the issue was that a vehicle might be mistakenly judged to be anomalous

because of bad weather, even though the strain response was normal. This issue was a situation

where an anomalous strain response could be found without consulting the strain feature, but

by consulting the video features alone instead. This might be a problematic situation based on

the main purpose of the strain characteristics analysis. We therefore defined the ground-truth
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tag for the discriminator, as given in Eq. (6.6).

q(x,y, f, g) = H
{
∥f(x)− g(y)∥22 −A(f, g)

}
, (6.6)

where H is the step function. The initial value of A for the first epoch was 0.1. The adversarial

network, named the TwiNet, was defined as a perceptron whose hidden layer has 10 dimensions.

In later sections, the adversarial version of the spiral learning is called the GAN model, and

the primitive version described in Section 6.1.1 is called the mean squared error (MSE) model.

6.2 Training and Evaluation Data

In Section 6.3, we demonstrate our proposal for the case of Bridge C. As shown in Fig. 4.1 (a),

we installed a traffic surveillance camera and some strain sensors on the bridge. The camera was

installed at the bridge entrance to capture images of vehicles in close proximity to the vehicle

bodies. We also deployed four highly sensitive strain sensors underneath the bridge deck to

collect strain responses in the direction orthogonal to the bridge axis. The sensors are shown

as the four red triangles denoted S1P4, S2P4, S3P4, and S4P4, respectively, in Fig. 4.1. All of

the sensors were synchronized except for the camera, and their sampling rate was 200 Hz. The

frame rate of the camera was set to 25 frames per second.

In preparation for the experiments, we needed ground-truth data of target vehicles on

Bridge C. We utilized the dataset DS601 prepared in Chapter 4 for this purpose. DS601

was created via a traffic surveillance system (TSS) [32] based on the Faster R-CNN [73] and

contains information about 996,093 vehicles that crossed the bridge between 08:00 and 16:00

from November 5, 2016, to April 28, 2017. In this work, we ignored all vehicles with two axles

because civil engineers are mainly interested in heavy vehicles.

We then collected videos of the vehicles and sensor signals caused by the vehicles. The n-th

vehicle record is described as a triplet {xn,yn, tn}. The video input xn was a sequence of

length 50. The length of signal input yn was set as 800 (4 s), which is half the input length

for the deep sensing models in Chapter 5. This setting aimed to remove the effect of following

vehicles. t is the ground truth of the vehicle speed and locus.

We prepared the trainval and evaluation datasets by randomly dividing DS601 in half. Then,

80% of the trainval vehicles were assigned as training data, with the remaining 20% being

validation data. The validation data were utilized for early stopping [98], where each time

LMSE for the validation dataset reached a new minimum, the model was saved. The evaluation

processes were performed with models that updated the minimum of the validation loss in the

same fashion as the early stopping approach [98].

For LtoR vehicles, the trainval and evaluation datasets contained 17,757 and 17,967 vehicles,

respectively. For RtoL vehicles, the datasets contained 20,996 and 21,078 vehicles, respectively.
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Table 6.1: List of stormy days (DS102).

2016-12-06 2016-12-10 2016-12-11 2016-12-14 2016-12-16 2016-12-24

2016-12-27 2016-12-28 2017-01-05 2017-01-17 2017-01-19 2017-01-21

2017-01-23 2017-01-24 2017-01-25 2017-02-07 2017-02-21 2017-03-07

2017-03-24 2017-03-27 2017-04-09 2017-04-12

6.3 Experimental Results

The proposed networks were written in Python 2.7 and implemented on Chainer [68] 5.0.0.

They were accelerated by an NVIDIA GeForce GTX 1080 Ti and CUDA [60] 9.2. We employed

the AMSGrad [72] as an implementation of stochastic gradient descent, whose parameters were

set as defined in the Chainer implementation by default. The mini-batch size was set at 10.

The combined network was evaluated mainly in terms of the final generalization performance

after loss convergence and before overfitting. The performance was visualized using histograms

for anomaly score and waveforms of high anomaly scores. As described in Section 6.2, the

evaluation processes were performed with models whose validation losses were minimal in the

same fashion as the early stopping approach [98]. It should be noted that the mechanism of

early stopping was corrected, which had not worked correctly in the previous version [33].

6.3.1 Anomaly Score Distribution

We evaluated the distribution of anomaly scores by drawing histograms. We compared two

cases, namely the MSE and GAN models. We also drew histograms for stormy days with heavy

snow or haze for several hours to validate the robustness of the anomaly score against weather

conditions. Table 6.1 lists such stormy days found by examining whether the video clearly

seemed to involve snowy or hazy conditions, paying attention to the video sharpness.

Fig. 6.4 shows the logarithmic histograms of the anomaly scores estimated for LtoR vehicles.

Fig. 6.5 shows the histograms for RtoL vehicles. The anomaly scores were estimated using

strain sensors S1P4 and S2P4 for LtoR vehicles and S3P4 and S4P4 for RtoL vehicles. As

shown in Fig. 4.1 (a), these sensors were installed to be under the wheels of LtoR or RtoL

vehicles. As we anticipated, most anomaly scores were distributed around zero, and a small

number of responses were identified as anomalous. In Chapter 6, we do not consider the proper

thresholds for anomaly detection.

Focusing on the stormy days, the median score was a little higher than the total distribution

for both plain and adversarial cases, although the population was much smaller than the
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Figure 6.4: Anomaly score distributions estimated for LtoR vehicles.
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Figure 6.5: Anomaly score distributions estimated for RtoL vehicles.

total. Unfortunately, we found no remarkable difference between the distributions of plain and

adversarial cases. Consequently, the video features have trivial correlation with the anomaly

score, and thus the robustness against changing weather conditions was able to be obtained

via the MSE model. It should be noted that the DS601 database involves both sunny and

snowy days, and the SpiNet might be able to obtain weatherproof results without the adversarial
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Figure 6.6: Top 2% anomalies detected by the MSE model.
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Figure 6.7: Bottom 2% anomalies detected by the MSE model.

method.
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6.3.2 Anomaly Response Examples

We examined each anomalous and normal strain response detected by the MSE model.

Fig. 6.6 shows four anomalous responses for the top 2% for LtoR and RtoL vehicles passing

over strain sensors S1P4 and S4P4, respectively. Fig. 6.7 shows four normal responses for the

bottom 2% in terms of anomaly score. In the graphs, the sensor signals were normalized so that

their maximum and minimum were 1 and 0, respectively.

Then, we investigated the top 50 anomalous responses in detail [33] and classified them into

four classes as follows. It should be noted that the true meaning of the anomaly score was not

revealed, and the following interpretation was only a hypothesis. However, we consider that the

SpiNet may indicate high anomaly scores because of some abnormalities with regard to vehicle

bodies and traffic conditions, even though the bridge structure itself is healthy.

Traffic Jam Some extremely slow vehicles may be misidentified as anomalies, in particular

under snowstorm conditions. In such a situation, a vehicle takes an excessive amount of time to

arrive at the sensor installation position, exceeding the four seconds allowed. The SigNet will

therefore fail to capture the strain peak caused by the vehicle. We also found cases where the

SigNet identified false peaks caused by other vehicles appearing just before the target vehicle

arrived at the bridge entrance. To deal with such extremely slow vehicles, the input length of

the SigNet should be extended to enable the capture of the peaks for all targets. It should be

also noted that a vehicle caught in a traffic jam might not be able to drive at a steady speed,

which may also affect the strain response.

Multiple Vehicles Some vehicles may be misidentified as anomalies when another heavy

vehicle passes the sensor at almost the same time, causing a mixture of strain responses caused

by multiple individual vehicles. Especially if two vehicles running in opposite lanes pass the

sensor at the same time, the mixed strain signal may contain two groups of influence lines whose

shapes are completely opposite.

Cargo Vibration In some vehicles, cargo may be moving about, with the resulting mechanical

shock being captured by the strain sensor. This movement may cause ripples in the strain peak,

causing the signal to resemble that of a vehicle with additional wheels. Such a situation may be

observed, in particular with lightly loaded vehicles, but it was hardly detectable from an image

with a resolution of 224×224. Because the road surface was flat, a heavily loaded cargo bed

was unlikely to vibrate.

Dataset Error Some vehicles may be misidentified as anomalous because of errors in the

traffic dataset. We found that some cars and motorbikes with two axles were included in the

large-vehicle dataset and were then classified as anomalies. Some cars have more than two axles
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if they are towing trailers or other vehicles. In fact, the vehicles with the highest anomaly scores

had poor signal–noise ratios and were almost buried in noise. By intuition, we believe that such

vehicles may be identified as anomalous in this class not only because their appearance was

rare, but also because of the noise.

6.3.3 Effect of Training Data Volume

For the experiments in Section 6.3, we collected data on vehicles that crossed Bridge C during

a six-month period. It is preferable to use the smallest feasible dataset, from the viewpoint of

reducing the training cost at system initialization. By contrast, as described in Section 6.3.1,

we found no remarkable effect of the adversarial mechanism on the distribution of the anomaly

score. Although there is a possibility that video features may have some correlation with bad

weather conditions, the amount of training data volume may cover the correlation.

We thus conducted an additional experiment to investigate the contribution of dataset volume

to score distribution. We subsampled each trainval dataset for training and validation so that

the volume of sampled trainval data varied from 10% to 100%.

Fig. 6.8 shows the anomaly score distributions for LtoR vehicles in the evaluation dataset

under the subsampling conditions. As shown in the graphs, the median anomaly score for all

vehicles decreased as the dataset volume increased from 20% to 80%. At the same time, the

median anomaly score for stormy days also decreased. Thus, the training data volume has

a strong effect on the anomaly score distribution. Fig. 6.9 shows the distributions for RtoL

vehicles. As for RtoL vehicles, the median anomaly score decreased as the dataset volume

increased from 20% to 80%.

Focusing on the median anomaly score, we may confirm the small effect of the adversarial

mechanism. Fig. 6.10 compares the effect of training data volume on the anomaly score

distribution for the evaluation dataset for the cases of MSE and GAN model. Fig. 6.10 (a)

shows the results for LtoR vehicles, while Fig. 6.10 (b) shows the results for RtoL vehicles.

In our experiments, we found that the median anomaly score obtained by the GAN model was

lower than that obtained by the MSE model. The effect of the adversarial mechanism on the

median anomaly score became stronger with less training data.

6.4 Discussion

The main problem of this work was the interpretation of the anomaly score, which was not

connected directly to the physical abnormality of the bridge structure. The bases of anomaly

detection were feature vectors for video and strain signals, which were extracted via two CNNs.
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Figure 6.8: Effect of training data volume for LtoR vehicles (S1P4).

The meaning of the feature vectors was not completely explored, and the anomaly score may

become high because of reasons that are irrelevant to the structural damage to the bridge, as

explored in Section 6.3.2. Unfortunately, we had no collection of ground-truth data for bridge

damage detection, and thus we could not explore which types of abnormality may be detectable

or undetectable by the proposed system in a quantitative manner. In this sense, our experiments

in Chapter 6 are ambitious and unfortunately, their effectiveness is currently uncertain. From

the perspective of real application, a major weakness with regard to the anomaly scores is that
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Figure 6.9: Effect of training data volume for RtoL vehicles (S4P4).

of identifying the causes of a large number of anomalies.

The anomalous response detection based on spiral learning depends on features extracted

from the surveillance video and strain data obtained by a single strain sensor. Video features

can be disturbed by environmental conditions, including weather, traffic jams, pedestrians, and

other vehicles in the opposite lane. For Bridge C, pedestrians were rare, and we did not observe

cases where a vehicle was mistakenly detected as anomalous because of pedestrians. Light

vehicles in the other lane were also not a problem because the large traffic volume provided the
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Figure 6.10: Effect of training data volume on the median anomaly score.

SpiNet with sufficient opportunities for learning such situations. Traffic jams may be caused by

construction work, snowstorms, or traffic signals. For example, the far-side lane was closed on

November 9, 2016, because of construction work. Under such conditions, the bridge behaved

abnormally because many vehicles were required to use the open lane in the opposite direction

to that normally used. We need not be concerned with such one-off events. However, traffic

signals can be a major problem in general. This problem is not addressed in this dissertation,

however, because there were no signals near our target bridge.

Another doubt about our results was the fact that some anomalies could be detected without

consulting the video data. We are nevertheless confident that the video features are necessary

as explanatory variables for strain analysis. However, there might be some anomalies for which

the strain response appears strange at first glance, e.g., a strain response completely buried in

white noise. Failures in sensors may also cause such situations. We need to investigate in detail

what type of anomaly requires the spiral learning approach.

6.5 Conclusion

In this chapter, we have proposed a novel anomaly detection technique for bridge strain

analysis. Our approach utilizes two data sources, namely a camera installed on the bridge

and a strain sensor installed underneath the bridge deck. The camera captured the motion and

appearance of every passing vehicle, and the strain sensor sampled a strain response at a bridge
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component close to the moving axle loads. For every passing vehicle, the data from the camera

and sensor were fed to two CNNs, and two feature vectors were obtained. Then, the features

were compared directly in a common feature space, which was shared by the two domains of

video and sensor data. The feature space was obtained by our spiral learning proposal, with

an assumption of the existence of latent variables about the target vehicle, shared by the video

and sensor data. The video features may play the role of an explanatory variable in the strain

response.

To offset the negative influence of stormy weather on the anomaly score distribution, we also

proposed the adversarial learning mechanism. The proposed adversarial network tried to detect

any variables in the video features that had a direct correlation with the anomaly score. The

anomaly detector learned to deceive the adversarial network and therefore prevented normal

responses from being detected as anomalies. Unfortunately, we found no remarkable effect

of the adversarial mechanism. Nevertheless, the adversarial mechanism suppressed the median

anomaly score with small numbers of training data, potentially helping the system’s deployment

on real bridges with little traffic.

Our approach has two strengths. First, axle load information was not required in advance;

thus, the fragile, expensive axle load meter was not required. Second, the anomaly score was

obtained in a fully data-driven manner. We tested our proposals on real observation data and

identified outliers of several identifiable types. In contrast, the weakness of the proposal is the

interpretation difficulty of the anomaly score obtained by the neural network, which is similar

to a black box.

In Chapter 7, we investigate an alternative anomaly detection approach whose output is

easy to interpret by constructing a model of bridge dynamics that predicts the strain signal

directly. We believe our proposals will aid bridge damage detection by identifying anomalous

strain responses whose characteristics are different from those observed during the construction

period.
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Strain Signal Prediction
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Chapter 7 proposes an improved framework for anomaly detection using multimedia data

obtained by multiple sensors installed on a bridge.

Bridge damage may be identified by detecting unusual mechanical behavior by the bridge

components in response to passing vehicles. To detect anomalous mechanical responses, the

dynamic system of the target bridge must be modeled in advance. One possible solution is

to use finite element analysis (FEA) [95, 82, 55, 56]. Conventionally, dynamic simulation

requires expert knowledge of mechanics, materials, and structures, in addition to accurate FEA

modeling. Moreover, it requires detailed specification of the external forces applied, such as

vehicle speeds, loci, and axle weights.

Our solution is to use a generative neural network, which predicts the dynamic responses

of the bridge components. Fig. 7.1 shows an architecture of the proposed system, named the

strain prediction system (SPS). The generative network involves two subnetworks, namely the

encoder and the decoder, as introduced in the encoder–decoder [88, 92] approach. The encoder

network collects vehicle properties in a media-fusion fashion, combining a video subnetwork

and a single-sensor data subnetwork. The video is recorded by a traffic surveillance camera

above the bridge and contains rich information about the target vehicle, including speed, locus

(left/right position in the lane), shape, and axle positions. The sensor data are recorded by a

strain sensor (or an accelerometer) underneath the bridge deck and contain information about

axle weights. In this chapter, we focus on the strain responses observed at the bridge deck.

The decoder network generates the mechanical responses caused by the vehicle by taking the

output of the encoder network as its input. That is, our neural network takes the raw sensor-data

signal as input and outputs a decoded sensor signal, thereby modeling the transfer function

between the strain sensors. To realize realistic predictions, we have improved the generative

adversarial networks (GANs) [20, 71]. In Section 7.5, we demonstrate that the GAN-based

approach can be applied successfully to sensor-fusion systems.

The generative network was trained by an adversarial learning algorithm improved for

media-fusion analysis. Although the proposed network was not assisted by either bridge experts

or FEA models, it successfully simulated strain responses for a real road bridge. Our approach

has three strengths. First, axle load information was not required in advance; thus, the fragile,

expensive axle load meter was not needed. Second, the bridge model was obtained in a

fully data-driven manner. Finally, anomaly detection may be performed in terms of physical

quantities, enabling intuitive and tangible interpretation of the detection results. Here, the

weakness of the spiral learning proposed in Chapter 6 is resolved.
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Figure 7.1: System architecture for the proposed strain prediction system.

7.1 Generator Network

Fig. 7.2 shows the architecture of the signal generator network. The network comprises two

subnets, namely the encoder and the decoder. The two networks involve many preactivated

residual blocks [22]. Note that we applied a third activation function to the output (or input) of

the residual blocks in addition to the two activation functions inside the blocks. In this chapter,

we used leaky ReLU [49] defined in Eq. (7.1) instead of ReLU [19] for all activation functions

except for those in the output layers.

f(x) =

{
x if x ≥ 0,

0.2x if x ≤ 0.
(7.1)

This may suppress the vanishing gradient in the deep neural network.

7.1.1 Encoder Network

The encoder network shown in Fig. 7.2 (a) is derived from the spiral network introduced in

Chapter 6. To obtain accurate predictions, the parameters of the unknown target vehicle need

to be acquired by using sensors on the target bridge. As described in Eq. (2.4), the required

parameters include traveling speed, locus, axle loads, and axle positions. These parameters are

obtained by the multimodal encoder, which combines two CNNs for video and strain signals.

First, the video CNN receives 50 grayscale video frames (taken over two seconds) recorded

when the passing vehicle enters the camera’s field of view. Each frame is resized to 224×224

pixels in advance.

Next, the strain CNN receives four-second batches of raw strain (or acceleration) signals

sampled at 200 Hz. We fed the raw signal sequence directly to the CNN, following Dai et

al. [13]. Each sequence starts (or ends) at the same time as the vehicle enters (LtoR) or leaves

(RtoL) the bridge. Then, each sample is scaled so that its maximum and minimum values are

normalized to 1 and 0, respectively, to enable effective learning.

Finally, the multimodal encoder outputs a feature vector of 240 channels by combining video
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(a) Encoder network.

(b) Decoder network.

Figure 7.2: Media-fusion generator network architecture.

Figure 7.3: Media-fusion adversary network architecture.

and signal features of the target vehicle. To suppress overfitting, we inserted a 50% dropout

between the last residual block and the following linear layer in each network. In addition, we

again normalized the video and signal features individually to enable effective learning.

7.1.2 Decoder Network

The decoder network shown in Fig. 7.2 (b) receives the feature vector and predicts a

normalized target waveform of 800 signal points. The decoder was designed as a deep residual

network that upsamples the feature vector by three times to obtain signals at 200 Hz. The

upsampling was performed simply by copying each element in the source vector into four

neighboring elements in the target vector. A generous kernel width for each convolution layer

was set in a manner similar to WaveGAN [14] to enable the layer to handle the low-frequency
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Table 7.1: Classification problem for the adversary.

Real z Fake ẑ

Consistent {yn, zn} {yn, ẑn ∼ G(xn,yn)}

Inconsistent {y′
n, zn} {y′

n, ẑn ∼ G(xn,yn)}

strain signals seen in Fig. 5.29. The target signal was obtained by averaging 20 channels of the

feature vector into a single channel in the final layer.

7.2 Adversary Network

The generator network was trained using the GAN approach [20, 71]. Typically, an adversary

network examines whether the predicted data are as realistic as the observed data [20]. In

addition, our proposal examines the integrity between the source signal and prediction, and the

integrity should exist because they were both caused by the same target vehicle. Therefore, our

adversary takes a pair comprising two signal sequences from the source sensor signal y and

target sensor signal z (or prediction ẑ), similar to pix2pix [28], and classifies the pair into four

classes, as shown in Table 7.1. These four types of pairs are created uniformly for each n-th

observation sample {xn,yn, zn} by the sampling function sk:

s1(n) = {yn, zn}, (7.2)

s2(n) = {y′
n, zn}, (7.3)

s3(n) = {yn, G(xn,yn)}, (7.4)

s4(n) = {y′
n, G(xn,yn)}. (7.5)

y′
n was selected from the samples other than yn in the mini batch in each training iteration.

Consequently, 4N pairs were fed to the adversary for N samples during the training.

Fig. 7.3 shows the proposed architecture of the adversary network. We modified the Model 1

CNN proposed in Chapter 5 to take the source sensor signal y and target sensor signal z as the

input. The adversary network is shallower than the generator, which may suppress overfitting.

The target signal input may comprise real or generated strain signals while the other input is

always real but is sometimes inconsistent with the target signal.
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7.3 Training Algorithm

The objective function for the adversary D is defined as the cross entropy LD for the four

classes and N samples:

LD =
1

N

N∑
n=1

1

4

4∑
k=1

logD(k∥sk(n)). (7.6)

The function D takes a pair created by sk selected uniformly as input and estimates the

probability that the input pair is classified to the k-th class in Table 7.1.

The generator G was trained so the prediction ẑ looks real and consistent with the observation

y. To stabilize the GAN optimization, we added an auxiliary MSE element to the cross entropy

for G, following Yang et al. [97] to obtain Eq. (7.7).

LG =
1

N

N∑
n=1

{
logD(1∥s3(n)) + λ∥ẑ − z∥2

}
. (7.7)

λ was set to 1. Both networks were trained in a mini-batch fashion so that the losses LG and

LD were minimized. In each batch iteration, G was updated first, then D was updated.

7.4 Training and Evaluation Data

In Section 7.5, we demonstrate our proposal for the case of Bridge C. As shown in Fig. 4.1 (a),

we installed a traffic surveillance camera and some strain sensors on the bridge. The camera

was installed at the bridge entrance to capture images of vehicles in close proximity to the

vehicle bodies. At the same time, we deployed four highly sensitive strain sensors underneath

the bridge deck to collect strain responses in the direction orthogonal to the bridge axis. We also

installed an accelerometer at the center of the target span. The sensors are shown as the four red

and yellow triangles denoted S1P4, S2P4, S3P4, S4P4, and A3ZP8, respectively, in Fig. 4.1.

All of the sensors were synchronized except for the camera, and their sampling rate was 200 Hz.

The frame rate of the camera was set to 25 frames per second. As described in Chapter 5, the

response signals themselves contain rich information about the vehicles that may include speed,

loci, and axle numbers, although the accuracy may be somewhat lower than that derived from

the video data. However, axle loads may be better obtained from strain (or acceleration) data

than from video data.

In preparation for the experiments, we needed the ground-truth data of target vehicles on

Bridge C. We utilized the dataset DS601 prepared in Chapter 4 for this purpose. DS601 was

created via a traffic surveillance system (TSS) [32] based on the Faster R-CNN [73] and contains
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information about 996,093 vehicles that crossed the bridge between 08:00 and 16:00 from

November 5, 2016, to April 28, 2017. In this work, we ignored all vehicles with two axles

because civil engineers are mainly interested in heavy vehicles.

We then collected videos of the vehicles and sensor signals caused by the vehicles. The n-th

record is described as a triplet {xn,yn, zn}, which is composed of a video x, source sensor

signal y , and target signal z for the n-th vehicle. The dataset was divided randomly into two

subsets. The first subset was treated as trainval data, and the second was used for evaluation:

80% of the trainval data were assigned as training data, with the remaining 20% being

validation data, which were utilized for early stopping [98]. The evaluation was performed

using a model that updated the minimum of the MSE between the observed waveforms and the

predictions. The trainval dataset therefore involved 17,757 LtoR and 20,996 RtoL vehicles, and

the evaluation dataset involved 17,967 LtoR and 21,078 RtoL vehicles.

7.5 Experimental Results

We implemented two derivative generator models on Chainer [68] 5.0.0. One was the GAN

model described in Section 7.3, and the other was an MSE model trained without the GAN

mechanism. They were accelerated by a GPU (NVIDIA GeForce GTX 1080 Ti) utilizing

CUDA [60] 9.2. We also employed the AMSGrad [72] for optimization, and the mini-batch

size was set to 10. The two models were trained over 200 epochs, and the evaluation processes

were performed using the early stopping approach [98]. In addition, we trained the plain spiral

network described in Chapter 6 and compared anomaly scores for the real observation data and

waveforms predicted by the two generator models.

7.5.1 Strain Prediction Appropriateness

First, we evaluated the signal correlation between the observation z and the prediction ẑ.

Unfortunately, there are no widely accepted metrics for waveform similarity beyond squared

distance and cross-correlation. In this work, we focused on the fact that the values of signal

points could be estimated by a linear combination of influence lines and therefore evaluated the

correlation between the signal points of the ground truth and the prediction. It should be noted

that the distributions of the signal values were not uniform but biased strongly toward 0 µST,

as shown in Fig. 4.2. Therefore, we used the rank correlation coefficient τ ’s [36] as metrics.

Table 7.2 shows the average τ coefficients and the MSEs for the evaluation data. From these

results, the proposed GAN model was able to achieve a strong correlation between observation

and prediction.
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Table 7.2: Kendall τ coefficients and MSEs for the GAN.

LtoR RtoL

Source Target τ ∥ẑ − z∥22 Source Target τ ∥ẑ − z∥22

S3P4 S1P4 0.748 1.242 S1P4 S3P4 0.747 2.756

S2P4 0.687 2.018 S4P4 0.730 3.035

S4P4 S1P4 0.691 1.268 S2P4 S3P4 0.756 2.645

S2P4 0.674 1.881 S4P4 0.720 3.015

A3ZP8 S1P4 0.676 4.559 A3ZP8 S3P4 0.690 6.906

S2P4 0.641 6.150 S4P4 0.693 7.932

7.5.2 Strain Prediction from Strain Data

After the waveform prediction for LtoR vehicles in the evaluation dataset, we sorted the

waveforms in terms of squared error and extracted the first and third quantiles. As described

in Section 6.3.2, the traffic data contained some false large vehicles; quantile extraction may

remove such noise components. In addition, we could grasp the whole tendency of prediction

fitness by focusing on both quantiles.

First, we predicted waveforms for LtoR vehicles that should be observed by the strain sensor

S1P4. As shown in Fig. 4.1 (a), the sensor was installed to be under the wheels of most

LtoR vehicles. Fig. 7.4 and Fig. 7.5 show examples of predictions using strain sensors S3P4

and S4P4, respectively. These sensors were installed underneath the opposite lane and may

be less sensitive to the passing axle loads than S1P4. The numbers in brackets indicate the

anomaly scores for real and fake signals. For both quantiles, the proposed network generated

realistic fake signals that were indistinguishable from the real observation data. As seen in the

graphs, the waveforms generated by the MSE model were much smoother than those obtained

by the GAN model. Consequently, the GAN simulated the macroscopic signals and the noise

components. The strain peaks indicate the times at which axles passed over the sensors, and the

two generators successfully simulated these peaks both in terms of peak heights and times.

Second, we predicted waveforms for LtoR vehicles that should be observed by the strain

sensor S2P4. As shown in Fig. 4.1 (a), the sensor was installed nearby the road center in the

LtoR lane. Fig. 7.6 and Fig. 7.7 show examples of predictions using strain sensors S3P4 and

S4P4, respectively. These sensors were installed underneath the opposite lane and may be less
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Figure 7.4: Strain prediction from S3P4 to S1P4 for LtoR vehicles.
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Figure 7.5: Strain prediction from S4P4 to S1P4 for LtoR vehicles.

sensitive to the passing axle loads than S2P4. The numbers in brackets indicate the anomaly

scores for real and fake signals. For both quantiles, the proposed network generated realistic

signals that were indistinguishable from the real observation data. The sensors S1P4 and S2P4

tend to sample somewhat different waveforms, as shown in Fig. 4.2. By focusing on the peaks

and skirts of the waves, we found that the skirt heights relative to the peaks were much greater
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Figure 7.6: Strain prediction from S3P4 to S2P4 for LtoR vehicles.
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Figure 7.7: Strain prediction from S4P4 to S2P4 for LtoR vehicles.

than those observed by S1P4. This tendency can be seen in the prediction results.

As with LtoR vehicles, we trained the GAN model and MSE model for the RtoL vehicles and

extracted the first and third quantiles in terms of squared error.

First, we predicted waveforms for RtoL vehicles that should be observed by the strain sensor

S3P4. As shown in Fig. 4.1 (a), the sensor was installed near the center of the road in the
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Figure 7.8: Strain prediction from S1P4 to S3P4 for RtoL vehicles.
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Figure 7.9: Strain prediction from S2P4 to S3P4 for RtoL vehicles.

RtoL lane. Fig. 7.8 and Fig. 7.9 show examples of predictions using strain sensors S1P4 and

S2P4, respectively. These sensors were installed underneath the opposite lane and may be less

sensitive to the passing axle loads than S3P4. The numbers in brackets indicate the anomaly

scores for real and fake signals. For both quantiles, the proposed network generated realistic

signals that were indistinguishable from the real observation data. Because of the asymmetric
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structure of the box girder, the shapes of the observed signals were very different from those in

Fig. 7.4. These differences can be seen best in the skirts of the waves, whose heights relative

to the peaks were much greater. Again, our proposal successfully simulated these gentle slopes

that start and end just as the vehicle enters and leaves the target span on the bridge. In contrast,

spikes in the predicted waveforms were flatter than those in the previous graphs because of the

lack of clarify of the strain peaks in the observation data.

Lastly, we predicted waveforms for RtoL vehicles that should be observed by the strain sensor

S4P4. As shown in Fig. 4.1 (a), the sensor was installed to be under the wheels of most RtoL

vehicles. Fig. 7.10 and Fig. 7.11 show examples of predictions using strain sensors S1P4 and

S2P4, respectively. These sensors were installed underneath the opposite lane and may be less

sensitive to the passing axle loads than S4P4. The numbers in brackets indicate the anomaly

scores for real and fake signals. The observed waveforms had a tendency similar to combining

the shape tendencies of the S2P4 signals for LtoR vehicles and S3P4 signal for RtoL vehicles.

In other words, the skirt heights relative to the peaks were great but did not hide the spikes

completely. Again, our proposal successfully simulated both these gentle slopes and spikes.

7.5.3 Strain Prediction from Acceleration Data

Section 7.5.3 explores the probability of using an accelerometer as the source sensor instead

of using strain sensors, as explored in Section 7.5.2. As seen in Fig. 4.3, the acceleration at

the center of the bridge span had poor spatial locality and tended to react to distant vehicles,

possibly making acceleration analysis more difficult than strain analysis. We expected that

this difficulty must have had a great influence on the accuracy of the axle load estimation and

therefore may lead to incorrect waveform prediction. The experiments were performed in the

same manner as Section 7.5.2.

First, we predicted waveforms for LtoR vehicles, which should be observed by the strain

sensors S1P4 and S2P4. As shown in Fig. 4.1 (a), the sensors were installed to be under the

wheels of LtoR vehicles. Fig. 7.12 and Fig. 7.13 show examples of predictions for the two

sensors using accelerometer A3ZP8. A3ZP8 was installed at the center of the target span and

was far from the target strain sensors. The numbers in brackets indicate the anomaly scores for

real and fake signals. Surprisingly, the proposed network generated realistic signals for the first

quantiles with low anomaly scores. However, the residual errors were much greater than those

in Section 7.5.2. For the third quantiles, the strain peaks were shifted a little and their heights

were incorrect. Thus, the generator failed to locate and measure moving axle loads.

Next, we predicted waveforms for RtoL vehicles that should be observed by the strain sensors

S3P4 and S4P4. As shown in Fig. 4.1 (a), the sensors were installed to be under the wheels of

RtoL vehicles. Fig. 7.14 and Fig. 7.15 show examples of predictions for the two sensors using



7.5 Experimental Results 100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2016-12-12 09:15:40.28

real(0.002)
MSE (0.002)
GAN (0.006)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2017-02-23 11:48:16.34

real(0.008)
MSE (0.016)
GAN (0.003)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2017-03-31 13:36:12.16

real(0.006)
MSE (0.015)
GAN (0.003)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2017-01-20 12:11:01.86

real(0.001)
MSE (0.001)
GAN (0.008)

(a) 1st quartile.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2016-11-08 08:32:27.13

real(0.002)
MSE (0.006)
GAN (0.002)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2017-04-08 08:14:31.46

real(0.013)
MSE (0.030)
GAN (0.005)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2017-02-15 13:43:58.24

real(0.001)
MSE (0.068)
GAN (0.002)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time [s]

0.0

0.5

1.0

si
gn

al

2016-11-14 14:50:00.49

real(0.025)
MSE (0.034)
GAN (0.025)

(b) 3rd quartile.

Figure 7.10: Strain prediction from S1P4 to S4P4 for RtoL vehicles.
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Figure 7.11: Strain prediction from S2P4 to S4P4 for RtoL vehicles.

accelerometer A3ZP8. The numbers in brackets indicate the anomaly scores for real and fake

signals. As with LtoR vehicles, the proposed network generated realistic signals for the first

quantiles, with low anomaly scores. Our proposal successfully simulated these gentle slopes

that start and end just as the vehicle enters and leaves the target span on the bridge. In contrast,

for the third quantiles, the strain peaks were shifted a little, and their heights were incorrect. In
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Figure 7.12: Strain prediction from A3ZP8 to S1P4 for LtoR vehicles.
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Figure 7.13: Strain prediction from A3ZP8 to S2P4 for LtoR vehicles.

conclusion, the modeling of bridge dynamics using an accelerometer can be greatly improved.
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Figure 7.14: Strain prediction from A3ZP8 to S3P4 for RtoL vehicles.
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Figure 7.15: Strain prediction from A3ZP8 to S4P4 for RtoL vehicles.

7.5.4 Anomaly Score Distribution

We evaluated the distribution of anomaly scores in a similar manner to Section 6.3.1. We used

a SpiNet which was trained by the plain spiral learning algorithm with pairs of real observations
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(a) LtoR (from S4P1 to S1P4).
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Figure 7.16: Comparison of anomaly score distributions when using strain sensors.
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Figure 7.17: Comparison of anomaly score distributions when using an accelerometer.

for the video and target sensor data. We compared two cases, namely real observations and

prediction by the GAN model. To validate the robustness against weather conditions, we also

drew histograms for stormy days with heavy snow or haze for several hours. Table 6.1 lists the

stormy days.

Fig. 7.16 shows the logarithmic histograms of the anomaly scores estimated for real
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observations and fake waveforms predicted by the GAN model. The two pairs of the upper

graphs and lower graphs were obtained by using the two spiral networks that were trained for

LtoR vehicles and RtoL vehicles, respectively. Therefore, we could compare the upper and

lower graphs directly for the LtoR and RtoL cases. As seen in Fig. 7.16, we found a remarkable

difference between the real and fake signals, and the median score for the fake signals was much

higher than those for the real observations. The difference is a mystery because the fake signals

were judged as anomalous by using video data, even though the signals were obtained using

the same videos. One possible factor was the source signal y, which was not considered in the

calculation of the anomaly scores.

Fig. 7.17 shows the logarithmic histograms of the anomaly scores when using an

accelerometer as a source for the prediction. The distributions indicate similar tendencies to

the cases of using strain sensors. Thus, the predicted waveforms shown in Section 7.5.3 were

not abnormal as long as they were compared with the video data in the common feature space.

In contrast, their MSEs were much greater than the MSEs using strain sensors. Consequently,

the waveforms predicted when using accelerometer A3ZP8 were sufficiently natural but did

not reflect accurate axle loads. In conclusion, the technique of extracting axle loads from

acceleration signals needs to be more sophisticated.

7.6 Discussion

In this work, we focused on strain responses as the target sensor data, although the bridge

components may produce many kinds of mechanical responses when a vehicle crosses the

bridge. Strain responses on the bridge deck have strong spatial and temporal locality, with the

strain meters reacting very little to axle loads at distant points and recovering to the bias points

rapidly after a vehicle departs. In contrast, other sensors, such as an accelerometer, at the center

of the bridge span can react to distant vehicles, and vibrations at the natural frequencies are

likely to be persistent. These properties make vibration analysis more difficult compared with

strain analysis. Whenever anomalous strain responses are found by comparing the predicted

and observed responses, we may locate the area of damage by reference to axle positions, as

has been proposed in some studies [10, 27]. However, strain sensors are prone to peeling off

the surface of bridge components and require regular inspection. This is one motive for using

accelerometers instead of strain sensors in civil engineering applications [81]. Therefore, we

should develop a generator for vibration response prediction as an alternative to strain response

prediction. Note that the proposed generator may aid in the inspection process for strain sensors

themselves.

In Section 7.5.3, we demonstrated strain predictability by using accelerometer A3ZP8 for

the source sensor data. Unfortunately, the performance was lower than using strain sensors as
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sources; thus, the accelerometer could not replace the strain sensors completely. The graphs

explored in Section 7.5.3 suggested that the encoder network failed to locate and measure

moving axle loads. The failure may be explainable by the fact that the accelerometer had poor

sensitivity and spatiotemporal locality to the individual axles, as shown in Fig. 4.3. To improve

predictability, we should change the installation position to be much closer to the road surface,

as discussed in Chapter 5.

It should be noted that our generator did not take a random variable as input, unlike the

previous GAN studies [20, 71]. This was because we required deterministic bridge models, and

the contribution of the random input was not obvious in our study. However, we may explore a

technique of handling probabilistic behavior of the bridge by exploiting random variables.

7.7 Conclusion

In this chapter, we have proposed a novel media-fusion framework for detecting anomalous

strain responses caused by vehicles. The proposed GAN enables direct translation between

strain sensors installed underneath the bridge deck by consulting a traffic surveillance camera on

the bridge. The video features may specify vehicle properties including speed, locus, and axle

positions as explanatory variables in the prediction. Although the video may lack information

about axle loads, this can be compensated for by analyzing the source sensor signals. We tested

our proposals on real observation data with the results demonstrating highly accurate predictions

of measured waveforms.

We expect that bridge damage and sensor faults may be revealed by comparing the error

distributions of predictions collected soon after the bridge’s construction with the current ones.

Compared with the direct comparison of video and strain data in a common feature space, the

proposal in Chapter 7 enables visualization of changes in physical quantities. We also aim to

investigate sensor types other than strain meters for use as alternative signal sources.



Chapter 8

Conclusion
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In this dissertation, the analysis of multimedia data including traffic surveillance cameras,

strain sensors and accelerometers on bridges is explored. The fundamental interest of this study

is the application of data analysis techniques to the realization of social CPSs, acquiring expert

knowledge in a completely data-driven fashion. The application of a deep CNN to multimedia

sequential data is suited to this field. Our approach was oriented to extracting information

richness from each sensor data, which could be exploited widely in the application of SHM. This

approach was consistently applied to the three problems that are vehicle detection, anomalous

signal detection, and signal prediction, and was improved progressively from a single medium

to media fusion addressing all three problems. The study has shown that the bridge dynamics

can be represented by a multimedia CNN, and extraction and utilization of traffic situations on

the bridge have been demonstrated.

In this chapter, we provide the general conclusion of this dissertation and review the previous

chapters from the global perspective. Finally, we state the future prospects in this research field.

8.1 Review

Chapter 1 introduced this dissertation. Conventional decision systems have been developed

individually in their closed application fields. Backed by technical improvements, the traditional

form of decision systems is forced to evolve into social CPSs. A CPS integrates the specialized

decision systems by organizing and sharing resources of sensing, communication, situation

analysis, and actuation, which work together via the Internet. A CPS is responsible for all

domains of social activities and enables maintenance of social infrastructures in depopulated

areas. The main target of this dissertation is bridge maintenance. To realize fully automated

bridge health assessment, a long-term monitoring system involving heterogeneous, inexpensive

sensors is deployed. The aim of this work is to determine whether small signs of bridge

deterioration can be detected by applying data mining techniques to long-term sequential data.

The monitoring system provides multiple interfaces for different types of experts, including

bridge owners, maintainers, civil engineers, and data scientists, who may collaborate with each

other on the system. The fundamental interest of this study is in applying deep CNN techniques

to the problem of bridge damage detection, which enables flexible application to any bridges in

the real world. The study’s challenge is composed of two steps: extracting information richness

from the individual sensor data and exploiting the richness for modeling bridge dynamics.

Because there has been no collection of large-scale data for machine learning related to bridge

damage, the development of an anomaly detection approach is required.

Chapter 2 introduced existing studies of structural health monitoring. Although the true

mechanism for damage progression on real bridges is yet to be fully clarified, there are many

approaches to bridge health assessment. The approaches can be divided into destructive and
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nondestructive inspection approaches, and the latter must be developed to realize inexpensive,

frequent inspection. Traditional nondestructive techniques, including visual and hammering

inspection, can hardly identify damage inside the bridge components, and radiographic

inspection is costly and difficult to automate. Sensor-fusion techniques can be an alternative,

and dynamic analysis may be a definitive approach. To exploit this approach, a bridge

model must be estimated in advance. Conventionally, such a model was obtained via FEA

modeling, but FEA requires specialized knowledge about mechanics, materials, and structures.

Therefore, implicit modeling techniques have been developed, including natural oscillation

models and influence line models. In addition, BWIM systems were utilized for estimation

of an accumulated volume of heavy vehicles on a bridge. BWIM exploits the influence line

model and requires additional sensors for vehicle detection, and they are typically installed

underneath the bridge deck.

Chapter 3 reviews image processing and mining techniques for video data. The CNN is a

derivative of an artificial neural network that can decrease the number of network parameters

drastically and thus has achieved superior scores for image recognition tasks. The GAN is

a framework for training a generative neural network, where a generative model creates a

random fake image by accepting a random variable as input and an adversary model examines

the authenticity of the fake image. After iterative training of the two models, the generative

model generated realistic images that were indistinguishable from the real images. To detect

a vehicle, several approaches such as background subtraction, object detection, and semantic

segmentation may be a solution. Background subtraction is a basic technique for extracting

pixels for moving objects. Object detection utilizes features extracted from video frames and

recently, CNNs have achieved formidable performance. Semantic segmentation extracts object

shapes instead of bounding boxes, considering features extracted by a deep CNN. Some of the

introduced techniques are utilized in later chapters.

Chapter 4 presented a video analysis framework for preparing a traffic dataset to be utilized in

experiments in later chapters. The proposed system, the TSS, combines background subtraction

and CNN for object detection to detect every passing vehicle with moderate accuracy and

throughput. The TSS was first proposed for the purpose of damped vibration analysis for real

bridges, and the chapter also presents the vibration analysis system which utilizes the TSS.

The TSS was evaluated on two real bridges, and robustness against bad weather conditions was

evaluated. We then improved the weatherability of the TSS and created traffic datasets for the

two bridges, named DS601 and DS801. The datasets contained vehicle properties including

traveling lane, speed, locus, and number of axles for every passing vehicle on the bridges.

Some vehicles selected from DS601 at random were compared with ground-truth data created

by hand, and the dataset accuracy was demonstrated.
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Chapter 5 presented a vehicle detection system for a BWIM system that used only a single

strain (or acceleration) sensor. The deep sensing proposal exploits information richness of

individual sensor data and successfully extracted vehicle properties using sensors underneath

the bridge deck. This proposal may extend the role of each individual sensor and may simplify

the whole sensing system deployed on bridges. In this chapter, three derivative CNNs were

proposed that learn four tasks, namely vehicle detection, speed estimation, locus estimation, and

axle counting, taking a multitask learning approach. The proposed CNNs were trained using

the traffic datasets prepared in Chapter 4 until validation losses converged. Then, the model

generalizability was estimated by fivefold cross-validation, which divides the whole dataset

into three subsets for training, validation, and evaluation at random. For both bridges, the

CNNs successfully extracted vehicle properties, but the performance for the steel bridge could

be improved. The high detectability of speed and locus indicates the possibility that the CNNs

learned the influence surface for the two-dimensional road surface. Finally, we implemented

and demonstrated a BWIM system using only a single strain sensor.

Chapter 6 presented an anomaly detection system that exploits the deep sensing approach.

The hypothesis that the deep sensing CNNs learned the response characteristics for moving

axle loads led to the possibility of bridge damage detection in terms of the response function

obtained by the deep sensing approach. Such a response function may accept a passing vehicle

as an explanatory variable, and vehicle properties excluding axle loads are obtainable using a

surveillance camera. Because collecting axle loads is difficult on real bridges, we proposed an

anomaly detection system that extracts vehicle properties excluding axle loads from video and

sensor data and compares them in a common feature space. Bridge damage may be detectable

by collecting accumulated inconsistencies between video and sensor data in the common feature

space. The feature comparison was implemented in a multimodal CNN which combines two

subnetworks for video and sensor data. The subnetworks were trained using DS601 as for the

deep sensing approach in Chapter 5. The experimental results show the possible effectiveness of

the proposed spiral learning approach for anomalous strain detection, and four types of anomaly

were discovered in a case study. In addition, an additional mechanism of adversarial learning

was proposed to eliminate the effect of weather conditions on anomaly detection. Although

we could not confirm the effectiveness of the mechanism, the adversarial learning mechanism

suppressed anomaly scores with small training data. The problem of this work was the difficulty

regarding interpretation of the estimated anomaly score.

Chapter 7 presented a modeling technique for bridge dynamics utilizing a surveillance camera

and two strain sensors. The proposal aims to detect anomalous strain responses for Chapter 6,

but anomaly detection is based on physical quantities that are easy to interpret. The dynamic

model was implemented by a multimodal generative CNN combining encoder and decoder
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CNNs. The encoder accepts a pair of video and sensor data as inputs and is expected to extract

vehicle properties such as traveling speed, locus, shapes, and axle loads. The decoder generates

strain waveforms that should be observed by the other sensor by taking the vehicle features as

input. To obtain realistic waveform prediction, we also implemented an adversarial CNN that

examines the consistency between the source sensor signals and prediction. The generator was

then trained using a multitask learning approach in which the mean squared error of prediction

was minimized while the adversarial loss was maximized. The experimental results show

the successful acquisition of bridge dynamic models that may enable early warning of bridge

deterioration in a fully data-driven manner in the future.

8.2 Future Prospects

Social CPSs will take responsibility for decision-making in various social fields, including

autonomous health monitoring and repair of road infrastructures. The safety assessment of

buildings has been supported by professional wisdom that has not necessarily been recorded,

so future CPSs must systematize professional knowledge within civil engineering without

depending on any language and rule bases. We believe the deep sensing approach may be one

of the solutions for this knowledge-encoding problem, but there are many issues to be solved

urgently, even within the research field of bridge health monitoring. Future work will include

the following three major issues.

Generalized Traffic Surveillance System In this dissertation, TSS implementation described

in Chapter 4 completely depended on the installation situations of the surveillance cameras,

including angle, focal length, frame rate, and resolution. This dependence may be a severe

limitation for the application of the deep sensing approach to other bridges, because the

installation points of a camera may be limited by geometric and political reasons, e.g., obstacles

and neighborhood privacy protection requirements. Therefore, we must develop a generalized

framework of traffic surveillance that can be optimized automatically to individual bridges.

One possibility would be for the vehicle properties obtained by TSS to be fed to the deep

sensing models completely inside the neural paths. In fact, the SPS presented in Chapter 7 is

one such example. Unlike the vehicle detection tasks in Chapter 5 and the anomaly-scoring

task in Chapter 6, strain prediction required only the times of vehicle appearance at the bridge

entrance. By always handling vehicle properties in a feature space, TSS implementation may

be simplified, thus improving generalizability.

Damage Detection based on Acceleration As described in Chapter 5, a weakness of a strain

sensor is that it tends to peel off from the bridge material, thereby requiring regular inspection. It

would therefore be preferable to develop a damage detection system using accelerometers rather
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than strain sensors. For now, the application of acceleration data in this dissertation is limited

to detecting heavy vehicles because acceleration sensors have poor spatial locality and tend to

be influenced by distant vehicles. As a result, the deep sensing models failed to count axles

accurately, and it was impossible to model bridge dynamics using acceleration data because

axle load information may be undetectable from acceleration data. However, we believe this

model may become a definitive approach to providing a durable, inexpensive health-monitoring

system.

Fully Neural Vehicle Weighing in Motion Although we demonstrated the potential of a

single-sensor BWIM system in Chapter 5, the proposed BWIM system required test runs using

a vehicle with known axle weights for calibration. Test runs involving traffic closures on real

bridges can frequently be unrealistic, and we must develop a method for collecting influence

lines by means of a fully automated mechanism. This may be addressed by embedding influence

lines inside the deep sensing models. In other words, a fully neural BWIM system may be a

definitive solution to the problem. To realize this, we must develop a framework for collecting

the ground truth of axle weight data. Fortunately, in the case of expressways, we can utilize axle

load meters installed at tollgates. Generally, the loading and unloading of a vehicle running

on an expressway may be ignorable, and axle weighing data sampled at tollgates may be

sufficiently accurate for the purpose of training deep sensing models. By tracking individual

vehicles using surveillance cameras installed at tollgates and target bridges, fully neural BWIM

systems may be realized.
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