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Abstract

Pixel labeling is one of the most classical and important problems in the field of
computer vision because it has a variety of applications. In this thesis, we tackle two
major challenges of pixel labeling: (i) how to deal with the large solution space,
and (ii) how to learn the relationships between neighbor labels effectively.

For the first challenge, we propose two neighbor-aware fast optimization methods.

• Neighbor-aware fast optimization for general MRF: One is the fast optimiza-
tion method for general pixel-labeling problems based on Markov random
field (MRF) models where the smoothness between the neighbor labels is
forced. We focus on an optimization method called cost-volume filtering (CVF)
and propose a coarse-to-fine strategy for CVF that efficiently and accurately
addresses pixel-labeling problems with a large label space size. Experimental
results show that our algorithm achieves much higher efficiency than the
original CVF method while maintaining a comparable level of accuracy on
stereo matching and optical flow estimation.

• Neighbor-aware fast optimization for special MRF: The other is the fast
optimization method for special case of pixel-labeling problems where the
neighbor labels are forced to be connected. We propose a fast optimization
method named “multi-pass dynamic programming” for this optimization
problem, which is approximately 90 times faster and consumes 8 times less
memory than conventional graph cuts methods. The main application of
this optimization problem is volume seam carving (seam carving for 3D cost
volume), which is applied to various of image processing tasks such as video
retargeting, tone mapping, and contrast enhancement.

For the second challenge, we propose two novel neighbor-aware learning methods
that boost the performance of pixel labeling.

• Learning neighbors with convolutional neural network: We reveal the math-
ematical relationship between the fixed point iteration of dense CRF and



vi

recurrent convolution. Based on this interpretation, we propose a new model
based on dense CRF, which automatically learns the relationships between
neighbor labels from training data and enables jointly train with deep neural
networks. The proposed dense CRF can be incorporated into fully convo-
lutional network (FCN) as a module and trained end-to-end. Experimental
results show that our method obtains better results on semantic segmentation,
compared with the existing methods based on hand-crafted CRF.

• Learning neighbors with deep reinforcement learning: We propose a com-
pletely novel problem setting (pixelRL) and an effective neighbor-aware learn-
ing method for pixelRL named reward map convolution. PixelRL is a novel
pixel-labeling problem combined with reinforcement learning, where the label
is a sequence of actions at each pixel, and its objective is to maximize the
accumulated total rewards at all pixels. We apply the proposed method to three
image processing tasks: image denoising, image restoration, and local color
enhancement. Our experimental results demonstrate that the proposed method
achieves comparable or better performance, compared with the state-of-the-art
methods based on supervised learning at each task.
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Chapter 1

Introduction

1.1 Pixel Labeling

Pixel labeling is one of the most classical and important problems in the field of
computer vision because it has a variety of applications such as stereo matching [7],
optical flow estimation [8], image segmentation [9] and so on. The objective of pixel
labeling is to assign a label li to each pixel i ∈ {1, · · · ,N} appropriately. Formally,
it is defined as an energy minimization problem to obtain an optimal labeling
lll = (l1, · · · , lN):

lll∗ = arg min
lll

E(xxx, lll), (1.1)

where xxx = (x1, · · · ,xn) is the input image, and E(xxx, lll) is the energy function (also called
cost function).

Let’s start with the simplest case of pixel labeling, where the energy function is
defined independently at each pixel:

E(xxx, lll) =
∑

i

ϕi(xxx, li). (1.2)

In this case, it is a trivial problem because we can divide it into N independent
subproblems and can obtain optimal label at each pixel:

l∗i = arg min
li

ϕi(xxx, li). (1.3)

However, it is generally said that this simple modeling causes noisy and poor results
because the relationships (smoothness, co-occurrence, exclusiveness and so on)
between labels at neighbor pixels are not taken into account.



2 Introduction

Therefore, in this thesis, we tackle neighbor-aware pixel labeling, which is
formulated as follows:

E(xxx, lll) =
∑

i

ϕi(xxx, li)+
∑

i

ψNi(lllNi), (1.4)

where Ni is the set of neighbor pixels around i, and lllNi is the labeling assigned to
Ni. This model is called Markov/conditional random field (MRF/CRF). ϕi(xxx, li) is the
unary term, and ψNi(lllNi) represents the relationships between neighbor labels. In
neighbor-aware pixel labeling, the optimization problem in Eq. (1.4) is no longer
trivial, and there are two major challenges: (i) how to deal with the large solution
space, and (ii) how to learn the relationships between neighbor labels effectively.

1.2 Neighbor-Aware Fast Optimizations

Here, we discuss the first challenge. When the label candidates (pre-defined label
set) is li ∈ {1, ...,L}, the entire solution space is O(LN), where the brute force search
is computationally impractical. If we don’t consider the relationships between
neighbor labels (i.e., Eq. (1.2)), we can obtain the optimal labeling by Eq. (1.3) with
the computational cost of O(LN). In contrast, in the case of neighbor-aware pixel
labeling in Eq. (1.4), efficient optimization methods are required. To this end, we
propose neighbor-aware fast optimization methods in chapter 2 and 3, respectively.

In chapter 2, we tackle the pixel labeling with general MRF model, where the
smoothness between neighbor labels are forced. We focus on an optimization
method called cost-volume filtering (CVF), which is one of the most widely used
techniques for solving general pixel-labeling problems based on a Markov random
field (MRF). Although CVF is easy to implement and provides high-quality results, it
is inefficient when the label space size (i.e., the number of labels) is large. Therefore,
we presents a coarse-to-fine strategy for cost-volume filtering that efficiently and
accurately addresses pixel-labeling problems with a large label space size. Based
on the observation that true labels at the same coordinates in images of different
scales are highly correlated, we truncate unimportant labels in each local region
by leveraging the labeling output of lower scales. Experimental results show that
our algorithm achieves much higher efficiency than the original CVF method while
maintaining a comparable level of accuracy. Although we performed experiments
that deal with only stereo matching and optical flow estimation, the proposed



1.2 Neighbor-Aware Fast Optimizations 3

method can be employed in many other applications because of the applicability of
CVF to general discrete pixel-labeling problems based on an MRF.

In chapter 3, we focus on the special case of MRF optimization in Eqs. (1.5) and
(1.6).

arg min
lll

E(lll) = arg min
lll

∑
i

ϕi(li)+
∑

(i, j)∈N

ψi, j(li, l j) (1.5)

ψi, j(li, l j) =

0 if |li− l j| ≤ 1

∞ otherwise,
(1.6)

whereN is a set of all neighbor pixels. By the constraint in Eq. (1.6), the neighbor
labels are forced to be connected, in other words, the differences between two labels
assigned to neighbor pixels are forced to be less than one. To date, the graph cuts
algorithm [10] has been the only choice in this special case of MRF optimization.
However, graph cuts algorithm requires a tremendous amount of computational
time and memory when the number of nodes and edges increases. Therefore, we
propose a fast optimization method named “multi-pass dynamic programming” for
this optimization problem, which is approximately 90 times faster and consumes 8
times less memory than conventional graph cuts methods. The main application of
this optimization problem is volume seam carving (seam carving for 3D cost volume),
which is applied to various of image processing tasks such as video retargeting [10],
video summarization [11, 12], tone mapping [13], contrast enhancement, and depth
remapping [14]. The volume seam carving procedure is as follows: A cost volume
C(x, y,z) is first created, then a seam surface zzz = z(x, y) is determined that affects the
cost less if it is removed. That seam surface is then removed, and the procedure
is repeated until the targeted 3D volume is obtained. A seam surface is a two-
dimensional (2D) manifold in the cost volume. In the procedure, to determine a
seam surface is an optimization problem, which is described as

arg min
zzz

∑
x,y

C(x, y,z(x, y)), (1.7)

s.t. |z(x, y)− z(x+1, y)| ≤ 1, (1.8)

|z(x, y)− z(x, y+1)| ≤ 1. (1.9)
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We can regard this optimization problem as one of the MRF optimization in Eqs.
(1.5) and (1.6) by setting the energy function as

arg min
zzz

E(zzz) = arg min
zzz

∑
i

ϕi(zi)+
∑

(i, j)∈N

ψi, j(zi,z j), (1.10)

ϕi(zi) = C(x, y,z(x, y)), (1.11)

ψi, j(zi,z j) =

0 if |zi− z j| ≤ 1

∞ otherwise,
(1.12)

where i = (x, y) is a pixel position and the label zi = z(x, y) is the seam surface at the
position. Therefore, our fast optimization method for the MRF in Eqs. (1.5) and (1.6)
makes various of image processing techniques based on volume seam carving more
practical.

1.3 Learning Neighbors

As discussed in Sec. 1.1, the relationships between neighbor labels can be taken
into account with MRF/CRF models. The remaining question is how to learn the
relationships between the neighbor labels effectively. To answer the question, in
chapter 4 and 5, we propose novel neighbor-aware learning methods that boost the
performance of pixel labeling.

Most of existing works use hand-crafted CRFs to represent the relationships
between neighbor labels, which require domain knowledge by humans. To solve the
problem, we propose a new model based on dense CRF, which automatically learns
the relationships between neighbor labels from training data and enables jointly train
with deep neural networks in chapter 4. We reveal the mathematical relationship
between the fixed point iteration of dense CRF and recurrent convolution, and by this
interpretation, the dense CRF can be incorporated into fully convolutional network
(FCN) as a module and trained end-to-end. Experimental results show that our
method obtains better results on PASCAL VOC semantic segmentation benchmark,
compared with the existing methods based on hand-crafted CRF.

In chapter 5, we propose a completely novel problem setting (pixelRL) and an
effective neighbor-aware learning method for pixelRL named reward map convo-
lution. PixelRL is a novel pixel-labeling problem combined with reinforcement
learning, where the label is a sequence of actions aaai = (a(1)

i , · · · ,a
(T)
i ) at each pixel, and

its objective is to maximize the accumulated total rewards at all pixels. In pixelRL,
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each pixel has an agent, and the agent changes the pixel value by taking an action.
The proposed reward map convolution significantly improves the performance by
considering not only the future states of the own pixel but also those of the neighbor
pixels. The proposed method can be applied to some image processing tasks that
require pixel-wise manipulations, where deep RL has never been applied. We apply
the proposed method to three image processing tasks: image denoising, image
restoration, and local color enhancement. Our experimental results demonstrate
that the proposed method achieves comparable or better performance, compared
with the state-of-the-art methods based on supervised learning at each task.





Chapter 2

Neighbor-Aware Fast Optimization
for General MRF

2.1 Introduction

Many low-level computer-vision problems (e.g., stereo matching and optical flow
estimation) are formulated as multi-labeling problems, where discrete labels (e.g.,
disparity and motion vector) are assigned to pixels. In general, there are two
approaches to solve these problems: global and local. The former models a labeling
problem as a Markov random field (MRF), where global optimization techniques [15–
22] are used to minimize the energy function. Although such an approach is effective,
using it to solve a large optimization problem makes the inference intractable when
the image size or label space is large. Rhemann et al. [1] presented a local approach
called cost-volume filtering (CVF), which efficiently solves general multi-labeling
problems by performing MRF optimization via fast local filtering of label costs instead
of global smoothing. CVF is easy to implement and provides high-quality results;
therefore, it has been widely used to solve various multi-labeling problems [23–27].
However, a limitation of CVF is that it does not scale to extremely large label sets
(e.g., sub-pixel stereo matching and up-sampling of 16-bit depth maps captured by a
Kinect sensor).

To overcome this limitation, Lu et al. [28] proposed the PatchMatch filter (PMF),
which performs CVF iteratively on local superpixels with compact label subsets
instead of performing it on the entire image coordinate space. In general, the average
size of local label subsets is much smaller than the size of the entire label space;
therefore, although PMF and CVF provide similar levels of accuracy, the efficiency of
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PMF is considerably higher. Nevertheless, PMF relies on global optimization based
on the complex PatchMatch approach [29, 30] to estimate a label subset for each
superpixel. Thus, the computational complexity of PMF increases with the number
of superpixels, and therefore, PMF becomes less effective when an image is divided
into many superpixels.

This chapter presents an alternative coarse-to-fine strategy for efficiently estimat-
ing compact label subsets to solve the label space problem in cost-volume filtering.
Based on the observation that true labels at the same coordinates in an image of
different scales are highly correlated, we propose that lower-scale labeling outputs be
leveraged for estimating higher-scale local label subsets. Starting with an image of
very low-resolution, we iteratively truncate unimportant labels at each higher scale,
and finally, we assign compact and approximately optimal label subsets to local
regions of the original scale. The advantage of the proposed framework is a simple
and efficient coarse-to-fine strategy, which does not require any global optimization
as in [28]; moreover, its computational complexity is not significantly affected by
the number of local regions. Extensive experiments described in Sec. 2.4 show that
our algorithm achieves higher efficiency than PMF and CVF while providing a
comparable or often superior level of accuracy.

Note that we are not proposing a better algorithm for stereo matching and optical
flow estimation, but proposing a coarse-to-fine method to drastically reduce the
computational time of CVF while preserving its accuracy. As presented in [1, 24–27],
the CVF can be used for wide range of applications and the stereo matching and the
optical flow estimation presented in this chapter is just an example.

Our proposed algorithm can be directly applied to not only original CVF [1] but
also several of its variants picked up in Sec. 2.2. In addition, our proposed algorithm
can be implemented on GPU similar to the original CVF. However, in this chapter,
we did not perform those implementations, and compared with only the original
CVF because we focus on “how to deal with the large label space efficiently”, not to
improve the accuracy and not the real-time application.

The reminder of this chapter is organized as follows. Section 2.2 reviews related
studies. Section 2.3 briefly reviews CVF [1] and describes the details of the proposed
coarse-to-fine strategy. Section 2.4 presents the experimental results and describes
their evaluation using the Middlebury benchmark [31, 32]. Finally, Section 2.5
summarizes our findings and concludes the chapter.
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2.2 Related Works

In this section, we mainly focus on related works about stereo matching and optical
flow estimation, because they are main problems among multi-labeling problems
and a lot of methods using cost-volume filtering techniques have been proposed in
stereo matching and optical flow estimation. However, as mentioned in Sec. 2.1, the
cost-volume filtering technique is not only used for them but also applied to wide
range of multi-labeling problems such as image segmentation [26], and depth-map
up-sampling [27].

2.2.1 Cost Aggregation Methods for Labeling Problems

First, we review cost aggregation methods for correspondence field estimation.
Yoon and Kweon [33, 34] proposed a cost aggregation method using an adaptive
weighted window such as an edge-preserving bilateral filter [35]. This method is slow
because it needs to perform naive bilateral filtering iteratively, where the number of
iterations is equal to the number of disparity candidates. To address this problem,
Richard et al. [36] proposed an approximate bilateral filtering technique that reduces
the computational complexity of adaptive support weight calculation. However,
this approach provides low-quality results , as compared to state-of-the-art stereo
matching methods. On the other hand, Yang [23, 37] proposed a tree-based non-local
cost aggregation method using a minimum spanning tree. This method aggregates
the cost values based on a tree structure constructed using input images, and the
final disparity refinement process is also performed on the basis of the tree structure.
Bai et al. [38] proposed an algorithm based on loop-erased random walk to improve
the support weighted window of [23] near depth discontinuities. As stated in Sec. 2.1,
Rhemann et al. [1] proposed CVF for general multi-labeling problems. By using
an O(1) edge-preserving filter called a guided filter (GF) [39] for cost aggregation,
CVF can efficiently solve general multi-labeling problems and achieve high-quality
results. Lu et al. [40] proposed a new edge-preserving filter called a cross-based local
multipoint filter (CLMF), which is an extension of the GF. Although the shape of the
local support region of the GF is a square, that of the CLMF can be an adaptively
derived from a reference image. Further, Lu et al. [40] showed that higher-quality
stereo matching results can be achieved by applying the CLMF instead of the GF for
cost aggregation. Zhang et al. [41] proposed a cross-scale cost aggregation algorithm
based on CVF [1] for stereo matching. They showed that higher-quality disparity
maps can be obtained by adding a regularization term between the cost values of
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different scales, and that the computational time of cross-scale aggregation is not
significantly greater than that of the original CVF [1]. This method [41] is similar to
ours in terms of multi-scale cost-volume utilization, but its purpose is to improve the
quality of the disparity maps, not to reduce the computational complexity. Recently,
Zhan et al. [42] proposed some techniques for local stereo matching methods to
improve the accuracy: mask filtering as a pre-processing, an improved matching
cost function, and multi-step disparity refinement as a post-processing. Inspired
by the great success of convolutional neural networks (CNNs) in image recognition
task, CNNs are recently used for computing the label costs (matching costs in stereo
matching and optical flow estimation) instead of hand-crafted cost functions [43–47],
which has led to significant improvement in terms of accuracy. In MC-CNN [44, 46],
the CNN directly outputs the matching cost of two input patches. Cross-based cost
aggregation and semi-global matching are preformed for the obtained cost-volume to
produce accurate disparity map. To speed up computing the matching cost, Chen et
al. [45] and Luo et al. [47] proposed similar ideas, where the matching cost is defined
as the inner product of two features from CNN. In FlowNet [43], the matching costs
are defined as the correlation between two patches of feature maps, and the final flow
map is obtained by upconvolution operation. The computation of the correlations is
implemented as correlation layer, which is incorporated into CNN.

Most of local methods perform cost aggregation for all the labels (disparities) at
every pixel. Therefore, those methods are limited in that they do not scale to extremely
large label sets. To overcome this problem, with regard to stereo matching, Min et
al. [48, 49] proposed a technique to estimate a compact disparity subset for every
pixel by considering disparities with the local minima of the pre-filtered cost values.
Although this method efficiently achieves high-quality results with the Middlebury
stereo benchmark [31], it cannot be applied to general multi-labeling problems
directly. Wang et al. [50] adapted the sequential probability ratio test to reduce the
disparity search range with the sufficient confidence in stereo matching problem.
Helala and Qureshi [51] proposed the Accelerated CVF using an occulusion handling
technique for stereo matching problem. For general multi-labeling problems, Lu et
al. [28] proposed PMF, which is based on CVF [1]. As mentioned in Sec. 2.1, PMF
estimates a compact label subset for every superpixel using the PatchMatch [29, 30]
strategy; therefore, it is usually much more efficient than CVF while maintaining
a similar level of accuracy. However, because PMF relies on complex PatchMatch-
based global optimization to estimate a label subset for each superpixel, it becomes
less effective when an image is divided into many superpixels.
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2.2.2 Coarse-to-Fine Strategy

Coarse-to-fine strategies have been employed in a variety of methods for labeling
problems such as stereo matching and optical flow estimation. We can classify them
into two types: the coarse-to-fine strategies where the cost aggregation results from
all resolution are merged in order to obtain more accurate results such as [52, 53, 41],
and ones where the results of lower resolution are propagated to higher resolution
in order to reduce the search range of labels such as [54, 55]. We focus on the latter
because our method is classified into latter group.

Brox et al. [56] employed a coarse-to-fine strategy in their global optimization
framework to estimate a optical flow field. They obtain an output flow field as
the solution of their energy minimization formulation by solving Euler-Lagrange
equations. They supplied a theoretical explanation that justifies their coarse-to-
fine strategy by regarding it as a part of the two nested iterations for non-convex
optimization, and argued that their coarse-to-fine strategy helps the convergence to
the global minimum by setting the solution of coarser scale to the initialization of the
next finer scale. Similar to [56], Wedal et al. [57] employed a coarse-to-fine strategy in
their optical flow estimation framework, where the flow field is obtained by solving
the total variation (L1 norm) minimization problem using linear approximation and
alternating optimization scheme. They argued that their coarse-to-fine strategy has
the advantage of avoiding poor local minimum by propagating the solution of coarser
scale to the finer scale. Those coarse-to-fine strategies such as [56, 57] are tailored for
global optimization techniques. These method iteratively update one solution for
the entire image and propagate it to the next scale after the predetermined number of
iterations. Therefore, their coarse-to-fine approaches cannot be used for CVF which
needs pixel-wise cost computation for all possible labels and obtains pixel-wise
solutions by winner-take-all strategy. Yang et al. [55] proposed a coarse-to-fine
technique for belief propagation (BP), which reduces the computational complexity
in both spatial and depth domain. This method is tailored for BP and cannot be
directly applied to CVF. Different from these approaches, we propose a coarse-to-fine
strategy for the cost-volume filtering technique that is categorized in local methods.

Next, we discuss the coarse-to-fine strategies employed in local cost aggregation
methods which are close to our method. Zhao et al. [54] employed a coarse-to-fine
strategy in their elegant implementation on GPGPU for real-time stereo. They limit
the search range within ±2 pixels of the disparity value obtained in lower resolution.
The main difference between their method and ours is that the reduction of the search
range is performed per pixel in their method, while it is done in each local region
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in our method. In addition, the comparison with their method has little meaning
because their objective is the efficient disparity estimation in only foreground region
and their algorithm is optimized for it. Their experimental results on Middlebury
stereo datasets with the assumption that whole image area is foreground show
the poor accuracy especially around the object boundaries (Disc. in Table 1 [54]).
Tao et al. [58] proposed a multiscale local cost aggregation method for optical flow
estimation called SimpleFlow. They upsampled the flow field obtained at the coarser
scale and skipped the cost computation by interpolating the flow using simple
bilinear interpolation in the regions where the flow was smooth. Therefore, their
method can obtain a flow field with sublinear time with respect to the size of input
images. Thier coarse-to-fine strategy is different from ours because our method
estimates a compact label set in each local region to handle the large label space. In
addition, without the refinement using the global optimization [59], the accuracy
of the flow fields obtained by SimpleFlow [58] is much lower than that of CVF [1].
Although the SimpleFlow with the refinement can obtain the comparable accuracy
to the CVF, the running time drastically increases because the global optimization
in the refinement process is computationally expensive (Table 4 in [60]). On the
other hand, our method can obtain comparable accuracy to the CVF [1] and is
several times faster than CVF. Bao et al. [60, 61] proposed a fast edge-preserving
PatchMatch for optical flow estimation. Their method estimates an approximate
nearest neighbor field (NNF) using PatchMatch search at the coarsest scale, and
repeats upsampling the NNF and the refinement of it within a small search range
(3×3 pixels) until the original resolution. Their method is very fast and can achieve
high-quality results for large displacement optical flow. However, for the datasets
with small displacement optical flow, their coarse-to-fine strategy obtains the less
accurate results than when without it (Table 4 [60]) because their method is tailored
for large displacement optical flow. In contrast, our coarse-to-fine strategy for general
multi-labeling problems obtains the comparable or more accurate results than the
original CVF both when the label space is small and large.

2.3 Coarse-to-Fine Strategy for Efficient CVF

In this section, we present a coarse-to-fine strategy for CVF [1] in order to address
multi-labeling problems with a large label space. Given a label set L = {l0, · · · , lL−1},
the objective of a multi-labeling problem is to assign a label li ∈ L to each pixel
i ≜ [xi, yi] (i = 0, . . . ,M−1) in the image coordinate space I such that it minimizes the
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Input Cost computation Filtering WTA label selection Output 

ℒ = {𝑙0 , … , 𝑙𝐿−1} Candidate labels: 

Figure 2.1: Framework of CVF [1].

label costs encoded in the energy function [1]. Here, L and M denote the number of
labels and the number of pixels, respectively.

2.3.1 CVF

The outline of CVF [1] is shown in Fig. 2.1. CVF solves a multi-labeling problem in
three steps. First, a 3-D cost volume C is constructed as a collection of costs C(i, l) for
selecting label l at each pixel i on the basis of the data term in the energy function.
Then, each slice of the cost volume is independently filtered by an edge-preserving
filter [39, 40], which is substituted for the smoothness term in the energy function:

C(i, l)←
∑
i′∈ωi

Wii′C(i′, l), (2.1)

where ωi is the squared window centered at the pixel i. Finally, the label at pixel i is
simply selected by the winner-takes-all (WTA) strategy:

li = arg min
l∈L

C(i, l). (2.2)

When an O(1) edge-preserving filter (e.g., guided filter [39]) is used, the computational
complexity of filtering an entire cost volume is O(ML); thus, it is difficult to handle
an extremely large label space.

One possible strategy for handling a large label space is to locally change the label
space in order to reduce its size. Because the true label configuration is generally
smooth in space (e.g., disparities are smooth except for object boundaries), the label
space required for performing CVF on a local region should be smaller than the
entire label space. As an example, we present a colored true disparity map of cones
(see Fig. 2.2) that is divided into local regions by regular rectangular grids. In
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Figure 2.2: Colored true disparity map of cones, and a histogram of the true disparities
l in the entire image and the ones in local regions S0

i and S0
j . The disparities l are

rounded off to integer values.

addition, we show a histogram of the true disparities l in the entire image and the
ones in the local regions S0

i and S0
j . We observe that the types of true labels in a local

region are fewer than those in the entire label space.

However, the problem is of course that we do not know a priori which labels are
important for each local region, and thus, the estimation of local label subsets is
required [28].

2.3.2 Problem Statement

Here, we present a simple but efficient label subset estimation algorithm. Unlike
Lu et al. [28], we do not rely on global optimization for estimating local label
subsets; instead, we leverage the coarse-to-fine framework. An overview of the
proposed method is shown in Fig. 2.3. Our algorithm mainly involves two steps (i)
in-scale cost-volume filtering and (ii) across-scale label propagation. The latter is
an essential feature of our approach, whereby a local label subset is estimated from
the CVF output at a low-resolution. Because the computational cost of CVF for a
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Figure 2.3: Framework of proposed method.

low-resolution image is negligibly small, we perform CVF using a large label space
with a low-resolution and truncate unimportant labels using the output.

Let Ik(k = 0, . . . ,n−1) denote a cascade of images of decreasing resolution ranging
from the original scale (i.e., Ik+1 = Ik

↓s, where ↓ is a down-scaling operator with a

scale factor s ∈ (1,∞))1, and let Lk denote the set of all possible labels at the k-th
scale. Then, we divide I0 (= I) into m non-overlapping local regions S0

j and partition

Ik(k ≥ 1) into local regions Sk
j( j = 0, . . . ,m−1) such that Sk+1

j = Sk
j↓s

. In addition, we

represent a label subset for Sk
j as Lk

j and its size as Lk
j . The total computational

complexity of CVF from the lowest scale (k = n−1) to the original scale (k = 0) is
expressed as

O(
n−1∑
k=0

m−1∑
j=0

Mk
jL

k
j), (2.3)

1We used the “buildPyramid” function in OpenCV to down-sample images.
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where Mk
j is the number of pixels in Sk

j (i.e., Mk
j = s−2kM0

j ). Therefore, our objective is to

estimate compact label subsetsLk
j such that

∑n−1
k=0

∑m−1
j=0 Mk

jL
k
j≪ML while maintaining

the accuracy of CVF. The optimal m and n values will be discussed in Sec. 2.4.

2.3.3 Across-Scale Label Propagation

In this section, we present an algorithm for estimating compact label subsets (Lk
j) that

sufficiently reduce the computational cost in Eq. (2.3) without truncating important
labels. Our algorithm begins with the coarsest scale (i.e., k = n−1). At this scale, we
set ∀ j Ln−1

j ←L
n−1 and simply perform CVF [1] to acquire the filtered cost volume

Cn−1 at the (n−1)-th scale. Note that although we use a complete label set, the
computational complexity of CVF at this scale is O(s−2(n−1)ML), which is generally
negligible (e.g., if we set s to 2 and n to 4, O(s−2(n−1)ML)≈O(10−2

×ML)). Then, we
initialize the label subset at the higher resolution (L̃n−2

j ) by merging labels having

the smallest cost values in Cn−1 at the corresponding local regions Sn−1
j . Strictly

speaking, the initialization is expressed as

L̃
n−2
j =

⋃
i∈Sn−1

j

f (li), li = arg min
l

Cn−1(i, l), (2.4)

where Cn−1(p,q) is the value of the cost volume at the (n−1)-th scale with regard to
the position p and the label q, and f is a projection function that normalizes the label
space if required. In general, the projection function is represented as a constant scale
factor giving f = s. For instance, a disparity l at the k-th scale corresponds to sl at the
(k−1)-th scale in the stereo matching problem2. The initialization method based on
across-scale label propagation is motivated by a reasonable observation that true
labels at the same coordinates in images of different scales are highly correlated; in
particular, they are very close when the difference in scales is small.

Although the initial estimation L̃n−2
j is a good approximation of the optimal

label subset Ln−2
j , the problem is that L̃n−2

j does not consist of labels that are not

included in f (Ln−1
j ), which results in aliasing artifacts when the intermediate labels

of Ln−1
j should be included in Ln−2

j (artifacts become more problematic as the scale

difference increases). In addition, the filtered cost volume Cn−1 often contains
numerical errors due to occlusion boundaries or insufficient energy modeling. We

2In some cases, the label space does not need to be normalized because the scale of a label does not
depend on the image coordinate space. Examples include depth-map up-sampling [27] and image
segmentation [26].
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adopt two strategies to overcome these difficulties. First, we down-sample images
with a relatively small scale factor (e.g., s ≤ 2), such that the scale difference between
two layers becomes sufficiently small. Second, we complete the initial label subset
by adding the supporting labels within ±s/2. Note that our algorithm supports
floating labels (e.g., sub-pixel disparity values). For instance, if the scale factor
is 2 and the disparity unit is 0.5, the initial estimation L̃n−2

j = {2,5} is extended

as Ln−2
j = {1,1.5,2,2.5,3,4,4.5,5,5.5,6}. Once a compact label subset Ln−2

j has been
constructed, the target layer is shifted to the higher scale (i.e., k←n−2). Similarly
to the case of the coarsest scale, CVF is performed on Sn−2

j with regard to Ln−2
j .

Cost-volume filtering with respect to Lk
j and the estimation of Lk−1

j from Ck are

iterated n−1 times until L0
j is obtained. Then, the final label at each pixel in S0

j is
selected by a simple WTA strategy, as in the case of CVF [1].

For the entirety of the coarse-to-fine process, we fix the radius of the edge-
preserving filter to smooth the cost-volumes; in other words, the radius is not
changed when the target scale is shifted to a higher scale. Therefore, the lower the
scale, the more strongly is the cost-volume smoothed. Thus, incorrect labels that
accidentally have low costs are truncated during our coarse-to-fine process. In the
original CVF [1], especially near object boundaries, the low costs of such incorrect
labels are sometimes not sufficiently smoothed, and these incorrect labels are selected
by the WTA strategy. Therefore, in such cases, our coarse-to-fine strategy sometimes
increases the accuracy of the output at the finest scale, as compared to the original
CVF. The results will be presented in Sec. 2.4.1.

It is possible to generate S0
j in various ways, e.g., using regular rectangular grids

or superpixels [62], as shown in Fig. 2.4. The former is simple and suitable for edge-
preserving filters using integral images, e.g., a guided filter [39]. In contrast, when
S0

j are generated by superpixels, some additional computational time is required
because we need to apply the edge-preserving filter to the bounding-box containing
each region, as in the case of [28]. However, in such cases, it is easier to estimate
the local label subsets because the local regions based on the superpixels are less
likely to cross object boundaries than regular grids. For these reasons, we use
both regular rectangular grids and superpixels for generating local regions S0

j , as
described in Sec. 2.4.1.

The proposed algorithm is summarized as Algorithm 1.
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(a) Rectangular regular grids (b) SLIC super-pixels [62]

Figure 2.4: Examples of local regions S0
j .

2.4 Results

In this chapter, we demonstrate the validity of our coarse-to-fine approach for CVF
by applying it to stereo matching and optical flow estimation. Important to note
that our technical contribution is the computational efficiency as compared to the
original CVF algorithm, not the accuracy improvement. Besides, the application of
CVF is not limited to stereo matching and optical flow estimation.

2.4.1 Middlebury Stereo

Experiments were conducted to evaluate the performance of our proposed method
using the Middlebury stereo matching benchmark [31]. In stereo matching, the label
l corresponds to the integer disparity between a pixel i in the target image I and its
equivalent in the reference image I′ shifted by the disparity. In the same manner, the
cost function is selected as [1]:

C(i, l) = (1−α)min[∥I′i+l− Ii∥,τ1]+αmin[∥∇xI′i+l−∇xIi∥,τ2], (2.5)

where ∇x is the gradient in the x direction. The model parameters α, τ1, and τ2

are set to 0.89, 0.0027, and 0.0078, respectively3. We divide eight test image pairs
of the Middlebury stereo datasets [31] into two categories according to their size:
small and large. The small category includes cones (450×375), teddy (450×375),

3Parameters have been provided by the authors of [1]
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Algorithm 1: The proposed coarse-to-fine strategy

1 INPUT: image pyramid Ik (k = 0, · · · ,n−1)
2 OUTPUT: labeling at the original scale (k = 0).

set k← n−1 and Ln−1
∗ ←L

n−1 # start from the coarsest scale.
while scales k ≥ 0 do

divide the image Ik into m local regions Sk
j

for regions j = 0 to m−1 do
for all i ∈ Sk

j and l ∈ Lk
j do

compute the cost value Ck(i, l).
end for
for all i ∈ Sk

j and l ∈ Lk
j do

Ck(i, l)←
∑

i′∈ωi
Wii′Ck(i′, l) # filter the cost volume.

end for
L̃

k−1
j =

⋃
i∈Sk

j
f (li), li = arg min

l∈Lk
j

Ck(i, l) # across scale label propagation.

L
k−1
j = L̃k−1

j + supporting labels
end for
k← k−1 # move to the next higher scale.

end while

# at the original scale (k = 0)
for regions j = 0 to m−1 do

for all i ∈ Sk
j do

li = arg min
l∈L0

j

C0(i, l) # get the final labeling.

end for
end for

tsukuba (384×288), and venus (434×383). Further, the large category includes art
(1390×1110), books (1390×1110), moebius (1390×1110), and reindeer (1342×1110).
The label space size L is set to 60 for small datasets and 240 for large datasets. All
the experiments were performed using an Intel Core i7-2600 (3.4GHz, single thread)
machine with 16 GB of RAM, and they were implemented in C++. As in the original
study of CVF [1], we use the guided filter [39] to smooth the cost volume (the radius
of the filter is fixed at 9).
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Figure 2.5: Evaluation of the computational time. The results of eight Middlebury
stereo datasets are averaged. Post indicates the total computational time after
weighted median filtering for the final disparity-map refinement.

Evaluation of Label Selection

We begin by evaluating the efficiency of our coarse-to-fine strategy, as compared to
that of CVF [1]. Here, we apply our method (n = 5,s = 2,m = 30) and CVF [1] to both
small and large datasets; the results are averaged as shown in Fig. 2.5. We observe
that overall, our coarse-to-fine strategy takes much less time than CVF [1]. As
expected, the computational time for small scales (e.g., 1/16,1/8,1/4×) is negligible
as compared to that for the original resolution (1/1×).

Further, we present the average size of local label subsets estimated in our
coarse-to-fine process, as compared to the size of the entire label space (see Fig. 2.6).
We observe that although the latter increases exponentially with the scale, there is
no significant increase in the former, which is much smaller than the latter in the
original scale. As a result, our method is much more efficient than CVF [1].

However, an important question arises, which directly addresses the accuracy
of the final label selection: “Are the estimated label subsets of the original scale
really correct?” To answer this question, we define two metrics for measuring the
correctness of the final label subset:

P( j) =
|L

0
j ∩L j|

|L
0
j |

, R( j) =
|L

0
j ∩L j|

|L j|
, (2.6)
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Figure 2.6: Evaluation of label set size at each scale. The results of eight Middlebury
stereo datasets are averaged.

where L j is the subset of ground truth labels at the original scale (i.e., a collection
of ground truth disparity values that emerge in the j-th region), and we recall
that L0

j is the subset of estimated labels at the original scale. These two metrics
evaluate the estimated label subset in two different aspects: P( j) ∈ [0,1] measures the
precision of L0

j , which implies how correctly unimportant labels are removed, and

R( j) ∈ [0,1] measures the recall of L0
j , which implies how correctly important labels

are maintained. Note that the ideal situation of course occurs when ∀ jL0
j =L j. For

L j, we used the ground truth of the disparity maps precomposed in the Middlebury
stereo datasets [31].

Using these metrics, we evaluate our method with a varying scale factor s and
number of layers n using only small datasets, as shown in Table 2.1 and Table 2.2.
Here, the results are averaged over all the datasets in this category.

Table 2.1 shows the evaluation of the label subset estimation with a fixed lowest
scale and varying scale differences. We observe that when the scale difference
between two layers is small (down-scale factor s = 2), our algorithm successfully
maintains around 90% of ground truth labels and truncates more than 50% of
unnecessary labels, on average, whereas the original label subset contains 90% of
unnecessary labels. When the scale difference is large (s = 16), our method maintains
more than 70% of unnecessary labels, on average. Therefore, we select a small
down-scale factor (s = 2) in the following.
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Table 2.1: Evaluation of label subset estimation with fixed lowest scale and varying
scale differences.

Transition of scale Ave. Ave.
Precision Recall

1/16→1/8→1/4→1/2→1/1 (s=2, n=5) 0.58 0.89
1/16→1/4→1/1 (s=4, n=3) 0.48 0.89

1/16→1/1 (s=16, n=2) 0.23 0.93
1/1 (CVF[1]) 0.13 1.00

Table 2.2: Evaluation of label subset estimation with fixed scale difference and
varying number of layers.

Transition of scale Ave. Ave.
Precision Recall

1/16→1/8→1/4→1/2→1/1 (s=2, n=5) 0.58 0.89
1/8→1/4→1/2→1/1 (s=2, n=4) 0.58 0.91

1/4→1/2→1/1 (s=2, n=3) 0.57 0.90
1/2→1/1 (s=2, n=2) 0.49 0.92

1/1 (CVF[1]) 0.13 1.00

Next, Table 2.2 shows the case of a fixed scale difference and varying number of
layers. We observe that when the number of layers n is set to 4, the performance
of our method is optimal, considering both the precision and the recall. In such
cases, our algorithm maintains more than 90% of ground truth labels and truncates
more than 50% of unnecessary labels, on average. Further, we observe that when
the number of layers is small (n = 2), the precision is low (less than 50%).

In summary, our observations are in good agreement with our experiments:
the improvement in precision is generally limited when the number of layers is
too small or the scale difference between two layers is too large. When setting
the appropriate number of layers (n = 4) and scale difference (s = 2), our method
successfully maintains important labels and removes unimportant labels using the
coarse-to-fine strategy. Therefore, in the experiments described below, we fix n to 4
and s to 2.

Comparison with PatchMatch Filter

Here, we evaluate the performance of our method by comparing it with PatchMatch
filter (PMF) [28] using both small and large datasets of the Middlebury stereo
benchmark [31]. We did not compare the performance of our method with other
algorithms dedicated for stereo matching because the stereo matching is merely
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one of the applications of our method for general multi-labeling problems. For a
fair comparison, our method and PMF are performed using the same superpixels
clustered by SLIC [62], the cost function, and post-processing based on left-right cross-
checking and median-filtering (for further details, see [1])4. Further, we evaluate the
performance of our method on the basis of a regular image grid with varying block
size. Note that the number of local regions is inversely proportional to the block size.
The results are presented in Table 2.3 and Table 2.4. Here, the percentage disparity
errors (threshold is set as one for small datasets, and one and four for large datasets)
are averaged over all images within the same category. We observe that although
our method, PMF [28], and CVF [1] provide nearly the same level of accuracy, our
method is the most efficient method for both categories. In particular, for large
datasets, our method achieves 6× faster performance than CVF [1], while providing
a similar (or higher level) accuracy. We also observe that our method outperforms
PMF when the number of local regions is large (e.g., superpixels with K = 200,500) or
when the image is divided into local regions on the basis of a simple image grid. This
is because unlike the case of PMF [28], we do not consider any spatial smoothness of
label subsets within the scale; instead, we consider the cross-scale smoothness of the
local label subset, which is independent of the spatial coherence.

The estimated disparity maps of the teddy and art datasets are shown in Fig. 2.7
and Fig. 2.8, respectively. These are compared with those obtained by PMF [28] and
CVF [1]. We observe that our method succeeds in estimating smoother and more
reasonable disparity maps than CVF and PMF, especially in the case of the teddy
dataset. Near object boundaries, CVF and PMF assign many incorrect labels, whereas
our method does not. The reason is that our coarse-to-fine strategy successfully
truncates incorrect labels that accidentally have low costs, as mentioned in Sec. 2.3.3.

Finally, we present the estimated disparity maps of small and large datasets
in Fig. 2.9 and Fig. 2.10, respectively.

2.4.2 KITTI Stereo 2015

We also conducted experiments on the KITTI stereo 2015 benchmark, which is more
difficult than the Middlebury stereo dataset in Sec. 2.4.1 in terms of disparity range
and image resolution. All the parameters and the cost function are exactly same
as those in Sec. 2.4.1. We used 200 training images with ground truth disparity
maps. The resolutions of all images are 1241×376. In this dataset, we did not

4Post-processing is performed on our method only in the original resolution.
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Table 2.3: Comparison with PMF using small datasets.

Method Time[s] Err. %: thre. = 1.0
nonocc all disc

CVF[1] 35.38 3.30 6.17 9.74
PMF[28] (K=50) 23.43 3.19 5.97 9.56
PMF[28] (K=100) 28.97 3.23 6.03 9.32
PMF[28] (K=200) 43.14 3.27 6.04 9.36
PMF[28] (K=500) 73.21 3.30 6.08 9.31

Ours (Superpixels, K=50) 15.98 3.51 6.31 10.8
Ours (Superpixels, K=100) 16.56 3.46 6.23 10.7
Ours (Superpixels, K=200) 18.48 3.69 6.48 11.3
Ours (Superpixels, K=500) 23.55 4.15 7.03 12.2

Ours (Grid, 150x150) 17.67 3.11 5.98 10.1
Ours (Grid, 75x75) 12.47 3.22 6.02 10.4

Table 2.4: Comparison with PMF using large datasets.

Method Time[s]
Err. % (all)

Err. Err.
thre.=1 thre.=4

CVF[1] 1413 21.5 14.8
PMF[28] (K=50) 266 22.7 15.6

PMF[28] (K=100) 322 22.5 15.5
PMF[28] (K=200) 484 22.5 15.6
PMF[28] (K=500) 802 23.3 16.2

Ours (Superpixels, K=50) 269 22.5 15.3
Ours (Superpixels, K=100) 249 23.0 15.7
Ours (Superpixels, K=200) 262 23.6 16.0
Ours (Superpixels, K=500) 304 24.5 17.2

Ours (Grid, 600x600) 1186 21.1 14.4
Ours (Grid, 300x300) 796 20.5 13.4
Ours (Grid, 150x150) 371 21.6 14.4
Ours (Grid, 75x75) 246 25.2 17.6

perform the post-processing (weighted median filtering) in order to compare the
pure performance of each method. The search range of disparity was set to 256 in all
methods.

We show the comparison of computational time and accuracy in Table 2.5.
Following the official evaluation rule of KITTI stereo 2015, we computed the
percentage of error pixels. We regarded the pixel to be correctly estimated if the
disparity error is less than 3 pixel or 5% at each pixel. The results of 200 images
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(a) Left image (b) Ground truth (c) Ours
(Grid, 150x150)

(d) CVF [1] (e) PMF
(K=500) [28]

Figure 2.7: Qualitative comparison with regard to estimated disparity maps of Teddy
dataset.

(a) Left image (b) Ground truth (c) Ours
(Grid, 300x300)

(d) CVF [1] (e) PMF
(K=500) [28]

Figure 2.8: Qualitative comparison with regard to estimated disparity maps of Art
dataset.

(a) Left image (b) Ground truth (c) Ours
(Grid, 150x150)

(d) Left image (e) Ground truth (f) Ours
(Grid, 150x150)

Figure 2.9: Qualitative results on the small datasets.
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(a) Left image (b) Ground truth (c) Ours
(Grid, 300x300)

(d) Left image (e) Ground truth (f) Ours
(Grid, 300x300)

Figure 2.10: Qualitative results on the large datasets.

Table 2.5: Comparison of computational time and accuracy using KITTI stereo 2015
datasets.

Method Time[s] Err. %
Err. Err.

Nonocc. All
CVF[1] 244 32.0 33.2

PMF[28] (K=50) 28.5 35.9 36.6
PMF[28] (K=100) 30.7 35.5 36.2
PMF[28] (K=200) 37.7 35.1 35.8
PMF[28] (K=500) 53.5 35.2 35.9

Ours (Superpixels, K=50) 58.2 24.2 25.5
Ours (Superpixels, K=100) 50.9 23.5 24.8
Ours (Superpixels, K=200) 45.2 22.6 23.8
Ours (Superpixels, K=500) 44.5 22.3 23.6

Ours (Grid, 300x300) 89.4 26.3 27.5
Ours (Grid, 150x150) 67.3 27.2 28.4

Ours (Grid, 75x75) 39.3 24.3 25.6

are averaged in Table 2.5. We observe that the accuracy of PMF [28] (K = 50) is
worse than the original CVF [1] although PMF [28] is the fastest. In this dataset, our
method with superpixel division is 5 or 6 times faster than the original CVF [1], and
our method (K = 500) is much more accurate in both non-occluded and all regions.
We observe that the patchmatch search did not work effectively in this dataset as
opposed to our coarse-to-fine strategy. However, our method with regular grid
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Left image

CVF [28]

PMF [24]

K=500

Ours

Superpixels

K=500

Ours

Grid

75x75

Figure 2.11: Qualitative comparison with regard to estimated disparity maps of
KITTI stereo 2015 dataset. Disparity maps (upper rows) and error maps (lower
rows).

division is worse than that with superpixel division in terms of both efficiency and
accuracy.

The estimated disparity maps are shown in Fig. 2.11. Compared with CVF [1] and
PMF [28], our method achieved smoother and more reasonable results by truncating
unnecessary labels with the coarse-to-fine strategy. We observe that our method is
better especially in less or repeated texture regions (e.g., on the road and in the sky).

2.4.3 Middlebury Optical Flow

We also carried out experiments using the Middlebury optical flow benchmark [32].
In optical flow estimation, the label l corresponds to the 2-D motion vector (u,v)
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between the target image and the reference image. Further, u and v denote the
displacements along the x and y directions, respectively, and they take floating
values. We use the same cost function as that in the original CVF [1]:

C(i, l) = (1−α)min[∥I′i+l− Ii∥,τ1]+αmin[∥∇xI′i+l−∇xIi∥+ ∥∇yI′i+l−∇yIi∥,τ2], (2.7)

where ∇x and ∇y are the gradients in x and y direction, respectively. The parameters
are set to the same values as those in the experiments for stereo matching; only τ2

is changed to 0.0156 in the same manner as in [1]. In all the datasets, the search
ranges of both u and v are set to the interval of −10 to 10 pixels. To achieve
sub-pixel accuracy, the units are set to 0.25 pixel (i.e., each space of u and v is
{−10,−9.75,−9.5, . . . ,0, . . . ,9.5,9.75,10}). Therefore, the size of the entire label space is
81×81 = 6561.

The results are listed in Table 2.6. Here, the average angle error (AAE) and average
end-point error (AEE) are used for evaluation. They are defined, respectively, as

AE = cos−1

 1.0+u×uGT+v×vGT
√

1.0+u2+v2
√

1.0+u2
GT+v2

GT

 , (2.8)

EE =
√

(u−uGT)2+ (v−vGT)2, (2.9)

where (u,v) is the estimated flow and (uGT,vGT) is the ground truth flow. We did not
compare the performance of our method with other algorithms dedicated for optical
flow estimation for the same reason as stereo matching. From Table 2.6, we observe
that our method is superior to and much faster than the original CVF [1] in all cases.
In particular, by using superpixel division (K = 50), our method achieves the most
accurate results and much faster performance than CVF (10× or more). Further by
using regular grid division, our method achieves a higher level of accuracy than
CVF, and it is the most efficient.

The estimated flow maps of the Middlebury optical flow dataset are shown in
Fig. 2.12. We observe that our method estimates the flow around boundaries more
accurately than CVF. As in the case of our stereo matching results, this is because
erroneous flow vectors, which yield minimum costs even though they are the wrong
choices, are efficiently removed by our hierarchical approach.
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Table 2.6: Comparison in optical flow estimation.

Method RubberWhale Grove2 Venus
time[s] AAE AEE time[s] AAE AEE time[s] AAE AEE

CVF[1] 6978 5.20 0.165 10792 3.65 0.258 5353 6.60 0.432
Ours (Superpixels, K=50) 537 4.26 0.139 768 2.59 0.191 493 4.21 0.318

Ours (Superpixels, K=100) 523 4.36 0.143 748 2.63 0.194 485 4.13 0.315
Ours (Superpixels, K=200) 588 4.45 0.145 786 2.63 0.194 524 4.24 0.317
Ours (Superpixels, K=500) 769 4.44 0.145 1009 2.67 0.197 752 4.07 0.306

Ours (Grid, 150x150) 574 4.32 0.140 739 2.62 0.193 902 4.18 0.312
Ours (Grid, 75x75) 376 4.29 0.1399 555 2.61 0.193 448 4.10 0.308

(a) First frame (b) Ground truth (c) Ours (Grid, 150x150) (d) CVF [1]

Figure 2.12: Qualitative comparison with regard to estimated flow maps of Middle-
bury optical flow dataset.

2.5 Conclusions

In this chapter, we proposed a coarse-to-fine strategy to reduce the large label space
for efficient cost-volume filtering. The proposed method truncates redundant labels
in each local region by using the labeling output of lower scales. Our method
demonstrated higher efficiency than CVF while maintaining a comparable level
of accuracy in stereo matching and optical flow estimation. Compared with PMF,
our method showed comparable performance. Although PMF estimates compact
label sets to reduce the computational cost by complex patchmatch search, our
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method does by simple coarse-to-fine strategy. Therefore, our method is yet another
approach to optimize the label sets for efficient cost-volume filtering, which is much
easier to implement than PMF.

In future work, as the performance of our method depends on the shape and
number of local regions, we intend to explore the optimal division of local regions.
In addition, we plan to investigate the GPU implementation of our method for
real-time applications.



Chapter 3

Neighbor-Aware Fast Optimization
for Special MRF

3.1 Introduction

This chapter proposes a scheme for seam carving (finding seam surfaces) in three-
dimensional (3D) cost volume that features low computation time and memory
consumption (Fig. 3.1). (Hereafter, we call seam carving for 3D cost volume as
“volume seam carving.") Volume seam carving has been applied to various image
processing tasks, such as video retargeting [10], video summarization [11] [12], and
tone mapping [13]. The volume seam carving procedure is as follows: Create a cost
volume, find a seam surface that is less affected if removed, and then remove that
seam surface. A seam surface is a two-dimensional (2D) manifold in the cost volume
and must be monotonic and connective.

To achieve the volume seam carving outlined above, to date, users can only
use the graph-cut algorithm [10] because more efficient algorithms such as the
dynamic-programming (DP) algorithm used in still image seam carving [63] are not
considered for use in this area. Rubinstein et al. [10] stated that volume seam carving
cannot be solved with DP and deemed graph cuts the only choice. However, it is well
known that the graph-cut algorithm utilizes a tremendous amount of computational
time and memory when the number of nodes and edges increases. Consequently, to
make problems solvable, Rubinstein et al. [10] proposed a multi-resolution method
and Chen and Sen [11] employed a video-chunking method. However, the significant
computation time and high memory usage of the graph-cut algorithm remain critical
problems in the era of high-resolution images/videos.
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In this chapter, a multi-pass DP scheme for volume seam carving that realizes
volume seam carving with low computation time and memory consumption is pro-
posed. Here, we propose two options: a continuous mode and a discontinuous mode.
The continuous method, which produces a connective seam surface, is presented
in subsection 3.3.1. The discontinuous method, which produces a discontinuous
seam surface, is presented in subsection 3.3.2. The discontinuous seam surface is
connective in one direction and discontinuous in the other direction. We describe a
monotonic manifold as a seam surface even if it is unconnected. In video retargeting,
seams may be amenable to the discontinuous mode between frames, as discussed
by Grundmann et al. [64], Chao et al. [65], and Yan et al. [66]. In contrast, in tone
mapping, the connectivity of the seam surface is important. For these reasons, two
different operational modes are presented here.

The proposed method is applied to video retargeting, tone mapping, and contrast
enhancement to verify its efficacy. We present the results obtained, including the
computation time and memory consumption, which, on average, decreased to
approximately 1/90th and 1/8th, respectively, of those of graph cut-based solutions.
We also verify via large-scale subjective evaluation experiments that the suboptimal
solution can produce an image quality roughly equivalent to that of graph cuts in
volume seam carving applications. It is important to note that this chapter presents a
new and general optimization method (multi-pass DP) that is more efficient in terms
of computation time and memory usage than the conventional graph cut-based
methods for various types of volume seam carving-based applications, not for a
specific application using the multi-pass DP.

The reminder of this chapter is organized as follows. Section 3.2 reviews related
studies. Section 3.3 describes the details of the proposed multi-pass DP. Section 3.5
presents the applications and experimental results. Finally, Section 3.6 summarizes
our findings and concludes the chapter.

3.2 Related Works

3.2.1 DP for 3D Volume

DP has been utilized in various image-processing applications other than seam
carving. Let us take depth estimation as an example and compare it with seam carving.
In depth estimation, a cost volume C(d,x, y) (hereafter, for ease of understanding,
the seam-carved axis is indicated as the first element) is created and a depth value d
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Figure 3.1: Multi-pass DP for volume seam carving proposed to reduce computation
time and memory consumption. Three example applications of multi-pass dynamic
programming are presented.

is estimated at each pixel so that the sum of the energy in all pixels is the minimum.
This minimization is formulated in a Markov random field (MRF) framework to
obtain a smooth depth map and can be solved using algorithms such as graph
cuts and belief propagation [67]. DP is also used for this minimization when quick
response is required. For example, scanline optimization is a well-known method in
which energy minimization is solved in each line, considering the continuity only in
the x direction [68]. In other words, the continuity in the y direction is not considered
at all. Our multi-pass DP is different from this approach because 2D connectivity
is guaranteed in its discontinuous mode and 3D connectivity is guaranteed in its
continuous mode.

DP for 3D volume has been applied to depth estimation by Kim et al. [69],
in which DP is performed in both the x and the y directions and discontinuous
paths are penalized to maintain the smoothness of the depth map. Fukushima et
al. [70] proposed a similar method to that of Kim et al. [69] for free viewpoint image
rendering. Their method [70] performs DP in not only the forward x direction but
also the backward direction and then sums the two accumulated costs. After that,
DP is performed in the y direction similarly to [69]. Semi-global matching (SGM) [71]
is a DP-based technique for 3D volume in which cost accumulation is performed in
8 or 16 directions and a final disparity map is obtained in a winner-takes-all manner.
Fukushima et al. [72] applied an idea similar to SGM [71] for real-time free viewpoint
image generation. Chen and Koltun [73] proposed a fast MRF optimization method
based on DP for 3D volume, in which label assignments in even/odd lines in an image
are optimally updated by DP fixing odd/even lines. However, unlike in our method,
discontinuity is allowed in both the x and the y directions in these methods [69–73].
This is because, for example, discontinuous depth is reasonable at the boundary of
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two objects. On the other hand, continuity is sometimes required for seam carving,
depending on the applications. The connectivity of a seam is assured by localizing
the search range as done by Avidan and Shamir [63]. If a seam is discontinuous, the
image quality may be deteriorated by removing the pixels on the seam.

In [12], a DP-based video seam carving technique called ribbon carving is
presented. However, the seam obtained in [12] is a chunk of connected rigid rectangle
running vertically or horizontally. The technique is suitable for surveillance video
summarization, but not for general-purpose volume seam carving. Moreover, the
seam can be found by 2D DP rather than by multi-pass DP. From this point of view,
the ribbon carving technique [12] is essentially different from our multi-pass DP.

3.2.2 Video Retargeting

Video retargeting is a nonlinear image-resizing method for videos. Various methods
have been presented for video retargeting, including cropping and warping-based
methods [74] [75] [76] [77] [78] [79] [80]. Seam carving has also been applied to
video retargeting, with each frame image retargeted sequentially by seam carv-
ing [64] [65] [66]. In contrast to still image retargeting, temporal correlation is taken
into account for video retargeting.

Rubinstein et al. [10] introduced volume seam carving for video retargeting. In
their scheme, the video sequence is treated as a space-time volume and seam carving
is extended from a seam on a 2D image to a seam surface in a 3D volume. The cost
volume C(x, y, t) is created by aligning the energy functions of all frames, and a seam
surface is derived by energy minimization with graph cuts. Furthermore, all frame
images are reduced in size by removing the pixels on the seam surface. Forward
energy has also been proposed as an alternative to conventional backward energy to
maintain the image quality. The forward energy criterion looks ahead to the resulting
image after removing the seam, which takes into account the inserted energy due to
the new edges created by previously nonadjacent pixels that become neighbors once
the seam is removed. Conversely, the backward energy criterion looks behind at the
image before removing the seam. This method can reduce temporal flicker because
the removed seams are continuous in the temporal direction. However, it is time-
and memory-consuming because it uses slow graph cuts to obtain an optimal seam
surface, as discussed in Sec. 3.1. This method can be significantly accelerated while
maintaining the output quality by replacing graph cuts with our method.

Han et al. [81] proposed an algorithm that finds multiple seam surfaces simul-
taneously to improve the output quality. Although they use some techniques to
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accelerate the running time such as multi-resolution strategy and searching for a
small number of seam surfaces iteratively, their method is still slow because they
employ graph cuts to obtain a globally optimal solution [81].

Recently, Jain et al. [82] proposed a video retargeting method based on gaze
tracking, in which a cropping window is determined by considering the gaze
information. Katti et al. [83] utilized the gaze information to calculate the saliency
costs for seam carving. Although these methods [82, 83] can obtain preferable results
for users, they need to perform eye tracking to get the gaze information.

As discussed above, a variety of methods have been proposed for video retargeting.
However, it is important to note that we are proposing a fast and memory-efficient
optimization method for volume seam carving applications, not one specific to video
retargeting.

3.2.3 Tone Mapping

Tone mapping is a technique for dynamic range compression that creates a low-
dynamic–range (LDR) image from a high-dynamic-range (HDR) image. Many tone-
mapping methods have already been introduced. They can be roughly classified into
global and local methods. Global methods have a uniform conversion characteristic
in the whole image. Specifically, plural pixels that have the same luminance value
in an input HDR image have the same luminance value in the output LDR image.
Similar luminance values in the HDR image are grouped and replaced with a
luminance value in the LDR image. Therefore, textures whose variation in luminance
is small easily vanish in the global methods. A typical global method is histogram
equalization, which converts the luminance distribution so that the histogram of
the LDR image has a high variation. A high-contrast LDR image is obtained by
histogram equalization; however, the contrast is sometimes too exaggerated. Larson
et al. [84] subsequently presented an improved histogram equalization method that
constrains the contrast.

On the other hand, local methods do not have a uniform conversion characteristic
in the entire image and volume seam carving-based tone mapping is categorized
as a local method. Recently, various methods that preserve detailed local textures
have been introduced. Fattal et al. [85] proposed a gradient domain method that
manipulates the gradient field of the luminance image by attenuating the magnitudes
of large gradients while preserving the fine details: the LDR image is obtained by
solving a Poisson equation on the gradient field. Paris et al. [2] proposed local
Laplacian filters (LLFs) that decompose an HDR luminance image into a Laplacian
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pyramid and compress the dynamic range in each level while keeping the local
contrast. Aubry et al. [86] developed fast local Laplacian filters that improve LLFs
in terms of computation time. Gu et al. [3] proposed local edge-preserving filters
(LEPFs) that apply a multiscale decomposition to an HDR luminance image using an
edge-preserving filter and compress the dynamic range in each level. He et al. [87]
proposed a method based on a guided filter that decomposes an HDR image into a
detail layer and a base layer, and adds an enhanced detail layer to the compressed
base layer. Recently, Ma et al. [88] proposed an iterative tone-mapping method
that optimizes the tone-mapped image quality index (TMQI) score. Because this
method [88] requires a large number of iterations to converge, it is time consuming,
compared with the filter-based approaches [2, 3].

The histogram equalization method can create higher-contrast LDR images than
the above methods, but it may delete the fine details. Local methods can retain fine
details, but are prone to reducing the contrast. A method that uses seam surfaces was
proposed by Tsubaki and Iwauchi [13] to satisfy both high-contrast and fine-detail
requirements by creating a cost volume C(l,x, y) with luminance l and space axes.
The cost volume is defined based on a local luminance histogram, and a graph is
constructed similar to that by Rubinstein et al. [10]. Furthermore, a seam surface
S(x, y) is derived by graph cuts, and luminance values that are larger than the value
in the seam surface are reduced by one. This process is iterated until the obtained
image has the desired dynamic range. This method can obtain better or comparable
results, compared with filter-based state-of-the-art methods [2, 3]. However, this
method needs subsampling in 3D volume to make processing time and memory
usage reasonable because it employs graph cuts to obtain an optimal seam surface,
similar to [10]. This method can be significantly accelerated while maintaining the
output quality by replacing graph cuts with our method.

3.2.4 Contrast Enhancement

Contrast enhancement is a classical issue for which many algorithms have already
been proposed. Histogram equalization and histogram modification are widely
utilized and can create a very high contrast image [89]. However, the contrast
of the image obtained is sometimes too exaggerated; furthermore, fine details are
not preserved. These problems for contrast enhancement are the same as for tone
mapping. Enhancement methods based on the retinex theory, which estimates the
reflectance and the illumination at each pixel, are also utilized widely [90] [91]. They
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retain the fine details better than histogram modification; however, halo artifacts
sometimes arise.

Image contrast is deteriorated by various factors, such as blur and haze. Some
detail enhancement and dehazing approaches can also enhance the contrast. Yun
et al. [92] adopted Laplacian pyramid decomposition to enhance the contrast of a
low-pass filtered image by histogram equalization. An LLF has also been applied to
detail enhancements other than tone mapping [2]. A dehazing method that utilizes
a local color-line model was more recently proposed by Fattal [93]. However, to
the best of our knowledge, contrast enhancement using volume seam carving has
not been reported to date. Furthermore, as stated above, contrast enhancement is
similar to tone mapping. Thus, contrast enhancement using volume seam carving is
proposed for the first time in this chapter.

3.3 Fast Volume Seam Carving with Multi-Pass DP

We propose a new approach based on DP for volume seam carving. A cost volume is
defined as C(x1,x2,x3), where x1,x2,x3 are integers in the ranges 0≤x1< n1, 0≤x2<n2,
and 0≤x3< n3, and n1, n2, and n3 are the resolutions of the cost volume in the x1,x2,x3

directions, respectively. A seam surface that crosses the x1 axis is defined as S(x2,x3).
When the seam surface passes a coordinate (x1,x2,x3), we describe it as S(x2,x3)=x1.
(x1,x2,x3)=(x, y, t) for video retargeting, which reduces the x resolution at each frame
t. (n1,n2) is the image size and n3 is the number of frames. The value of a cost volume
C(x1,x2,x3) at each coordinate is obtained in the same manner as with conventional
methods. For example, C(x, y, t)= | ∂∂x I(x, y, t)|+ | ∂∂y I(x, y, t)|, which is defined as the
backward energy for video retargeting [10] (I(x, y, t) is the pixel value at the location
(x, y) in the t-th frame).

We present two methods: a continuous method and a discontinuous method.
These two methods are proposed because different applications require different
characteristics in the seam surface, as discussed in Sec. 3.1.

3.3.1 Continuous Method to Obtain a Connective Seam Surface

Step 1: Accumulation along the x2 axis
In this step, cost values are accumulated in each x1−x2 plane along the x2 axis, from
x2=0 to n2−1, with minimization just like in the original seam carving for image
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Figure 3.2: The continuous DP process. The seam surface is connected in both the x2
and the x3 directions.

retargeting [63]. An accumulated cost function A1 is obtained by
A1(x1,x2,x3) = C(x1,x2,x3)+ min

j∈{−1,0,1}
A1(x1+ j,x2−1,x3), (x2>0)

A1(x1,0,x3) = C(x1,0,x3).
(3.1)

Here, C is the cost defined for the volume. Note that the minimum cost of A1(x1,x2,x3)
is not computed yet when arriving at end point x2, unlike with the original seam
carving.

Step 2: Accumulation along the x3 axis and determination of a seam in the
x1−x3 plane at x2=n2−1.
A seam is derived in the x1−x3 plane at x2=n2−1 in this step. The accumulated cost
function A1(x1,x2,x3) is further accumulated in the x3 direction, from x3=0 to n3−1,
with minimization, and an accumulated cost function A2 is obtained. The j value
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Figure 3.3: The discontinuous DP process. The seam surface is connected in the
x2 direction. The seam obtained as an intersection between the seam surface and
the x1−x3 plane at x2=n2−1 is connected in the x3 direction. The seams in different
x1−x3 planes are not necessarily connected.

selected at the minimization is saved in a path P2(x1,n2−1,x3).
A2(x1,x2,x3) = A1(x1,x2,x3)+ min

j∈{−1,0,1}
A2(x1+ j,x2,x3−1), (x3>0)

P2(x1,x2,x3)=arg min
j∈{−1,0,1}

A2(x1+ j,x2,x3−1)+x1, (x3>0)

A2(x1,x2,0) = A1(x1,x2,0).

(3.2)

Then, x1, which minimizes A2(x1,n2−1,n3−1) in the current x2, is chosen and assigned
to S(n2−1,n3−1). A seam is obtained as the optimal path by following P2 from
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x3=n3−1 to 0. S(x2,n3−1) = arg min
x1

A2(x1,x2,n3−1)

S(x2,x3) = P2(S(x2,x3+1),x2,x3+1), (x3<n3−1).
(3.3)

Step 3: Accumulation along the x3 axis and determination of a seam in each
x1−x3 plane.
A seam in each x1−x3 plane is derived in this step, starting from x2=n2−2 and then
reducing x2 by one. First, the accumulated cost function A2 is updated at each x1−x3

plane:

A2(x1,x2,x3)=

 A2(x1,x2,x3), (|x1−S(x2+1,x3)|≤1)
∞, (otherwise).

(3.4)

This update has the effect of making the seams between consecutive x2’s connected.

Second, an accumulated cost function A2(x1,x2,x3) and a path P2(x1,x2,x3) are
obtained by accumulating A1(x1,x2,x3) in the x3 directions, from x3=0 to n3−1, in
the same way as Eq. (3.2). Then, x1, which minimizes A2(x1,x2,n3−1), is chosen and
assigned to S(x2,n3−1). A seam is obtained as the optimal path by following P2 from
x3=n3−1 to zero in the same way as in Eq. (3.3). Subsequently, x2 is reduced by one,
and the derivation of a seam in the next x2 is started from Eq. (3.2). The complete
seam surface is obtained when the process ends at x2=0.

Fig. 3.2 shows the continuous DP process. The gray path shows the seam obtained
at x2=n2−1. By creating a seam in each x1−x3 plane successively so as to be connected
to the seam in the previous x2, the continuous method enables the seam surface
to become totally connected in the x2 direction. In addition, the seam obtained in
each x2 is connected in the x3 direction because j is selected from among {−1,0,1} in
Eq. (3.2). Hence, the obtained seam surface S(x2,x3) is guaranteed to be connected.

3.3.2 Discontinuous Method to Obtain a Discontinuous Seam Sur-
face

Steps 1 and 2 are virtually the same as in subsection 3.3.1. The only difference is that,
unlike in the continuous method, a path P1 in the x2 direction is saved in Eq. (3.1) to
give

P1(x1,x2,x3)=arg min
j∈{−1,0,1}

A1(x1+ j,x2−1,x3)+x1, (x2>0). (3.5)



3.4 Derivation of the Proposed Multi-Pass DP 41

Step 3: Determination of a seam in each x1−x2 plane
A seam in each x1−x2 plane is derived in this step. By selecting a path among those
in P1 that crosses seam S(n2−1,x3) in the x1−x3 plane at x2=n2−1, the discontinuous
method can obtain a seam independently in each x1−x2 plane.

S(x2,x3) = P1(S(x2+1,x3),x2+1,x3), (x2<n2−1) (3.6)

The complete seam surface is derived by obtaining a seam in every x1−x2 plane.

Fig. 3.3 shows the process followed by the discontinuous method. The gray path
shows the seam obtained at x2=n2−1. The seam obtained in each x3 is connected
in the x2 direction because j is selected from among {−1,0,1} in Eq. (3.5). Although
the seam in x2 =n2−1 is connected in the x3 direction because of Eq. (3.2), any
seam obtained as an intersection of the seam surface and other x1−x3 planes is not
guaranteed to be connected because Eq. (3.3) is calculated independently at each
x3. The connective seam in the x1−x3 plane at x2=n2−1, however, has an effect that
makes the seam surface prone to connecting in other x1−x3 planes.

3.3.3 Concrete Example

For ease of understanding, we explain the concrete process of the proposed method
in video retargeting. Let (x, y, t) be the pixel location (x, y) in the t-th frame in the
video. For video retargeting to reduce the width of the image, DP is first conducted
in each x−y plane to the direction y=n−1 (where n is the image height). Specifically,
the cost is accumulated at the x−t plane (y=n−1). Then, the second DP is applied to
the x−t plane, where y=n−1. For the continuous mode, the best seam in the x−t
plane (y=n−2) is generated to ensure the connectivity with that in the x−t plane
(y=n−1), and this process is repeated until the last x−t plane (y = 0). In this manner,
connectivity is ensured even though the generated seam surface is suboptimal, not
global optimal. For the discontinuous mode, the seam is searched by tracing back in
each x−y plane. In this mode, connectivity is not guaranteed, but a lower energy
path than that in the continuous mode can be found.

3.4 Derivation of the Proposed Multi-Pass DP

In this section, we describe the derivation of the proposed multi-pass DP.
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3.4.1 DP in 2D Plane

First, we consider the process of dynamic programming (DP) to obtain an optimal
path in a two dimensional plane as a simple example. As shown in Fig. 3.4,
the objective is to obtain a path S that crosses the x1 axis in the x1 − x2 plane
(0 ≤ x1 < n1, 0 ≤ x2 < n2). When the path passes coordinate (x1,x2), we describe it as
x1 = S(x2). We call the path “seam” in seam carving problems, and the seam must be
connected in the x2 direction. The cost C(x1,x2) is assigned to each coordinate (x1,x2),
and our objective is to obtain a seam such that the sum of the cost is minimum. This
optimization problem is described as

arg min
S

∑
x2

C(S(x2),x2), (3.7)

s.t. |S(x2)−S(x2+1)| ≤ 1. (3.8)

The accumulation process of DP along the x2 axis is described as
A(x1,0) = C(x1,0),
A(x1,x2) = C(x1,x2)+ min

j∈{−1,0,1}
A(x1+ j,x2−1), (x2>0)

P(x1,x2)=arg min
j∈{−1,0,1}

A(x1+ j,x2−1)+x1, (x2>0)
(3.9)

where A(x1,x2) is the accumulated cost function, and the value of j selected during
the accumulation is recorded in paths P. The optimal path is obtained by tracking
back P from x2 = n2−1 to 0.S(n2−1) = arg min

x1

A(x1,n2−1),

S(x2) = P(S(x2+1),x2+1), (x2<n2−1)
(3.10)

Because j is selected from among {−1,0,1}, the obtained path S(x2) is guaranteed to
be connected in the x2 direction, in other words, Eq. (3.8) is satisfied.

The optimal path is obtained by the process described above. However,
Fukushima et al. [70] stated that a suboptimal solution that is almost equal to
the optimal one can be obtained by selecting the x1 that has the minimum accu-
mulated cost A(x1,x2) at each x2 without recording paths for tracking back (Fig. 7
in [70]). That process is described as

S(x2) = arg min
x1

A(x1,x2). (3.11)
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Figure 3.4: Connected pass by DP in 2D plane.

However, the path obtained by Eq. (3.11) is not guaranteed to be connected in
the x2 direction. This method is reasonable for disparity estimation, in which
(x1,x2) corresponds to (disparity,xpixel), and the smoothness of the path (disparity) is
required, but the connectivity is not. Therefore, for seam carving problems in which
the connectivity is required, we vary Eq. (3.11) as

S(n2−1) = arg min
x1

A(x1,n2−1),

S(x2) = arg min
x1∈{S(x2+1),S(x2+1)±1}

A(x1,x2). (x2< n2−1)
(3.12)

First, the x1 which has the minimum accumulated cost A(x1,x2) is selected at
x2 = n2 − 1. Subsequently, x2 is reduced by one, and the range of x1 is restricted
among {S(x2+1)−1,S(x2+1),S(x2+1)+1} where S(x2+1) is the previously selected
x1. In other words, the candidate of the next x1 is restricted within the range of ±1 of
the previous result. The final seam that is connected in the x2 direction is obtained
by repeating the process from x2 = n2−2 to 0.

The seam obtained by Eq. (3.12) is equal to the one obtained by Eq. (3.13).
S(x2) = arg min

x1

A(x1,x2),

A(x1,x2)=

 A(x1,x2), (|x1−S(x2+1)|≤1)
∞, (otherwise).

(3.13)

When x2 is reduced by one, the costs that are out of the range of ±1 of the previous
result is set to infinity. This setting makes the obtained seam satisfy Eq. (3.8).
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Figure 3.5: Connected seam surface in 3D space.

3.4.2 DP in 3D Volume

In this section, we consider the problem to obtain a seam surface that is connected
in three dimensional space as shown in Fig. 3.5. When the seam surface passes
coordinate (x1,x2,x3), we describe it as x1 = S(x2,x3). This optimization problem is
described as

arg min
S

∑
x2,x3

C(S(x2,x3),x2,x3), (3.14)

s.t. |S(x2,x3)−S(x2+1,x3)| ≤ 1, (3.15)

|S(x2,x3)−S(x2,x3+1)| ≤ 1. (3.16)

The globally optimal solution of this problem cannot be obtained by DP as Rubinstein
et al.. [10] pointed out. Here, we consider the reason why DP cannot directly be
applied to this volume seam carving problem. We first perform the accumulation
process of DP along the x2 axis in each x1−x2 plane independently as Eq. (3.17).

A1(x1,0,x3) = C(x1,0,x3),
A1(x1,x2,x3) = C(x1,x2,x3)+ min

j∈{−1,0,1}
A1(x1+ j,x2−1,x3). (x2>0)

P1(x1,x2,x3)=arg min
j∈{−1,0,1}

A1(x1+ j,x2−1,x3)+x1, (x2>0).
(3.17)
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Figure 3.6: DP in each x1−x2 plane independently. Although the obtained seam is
connected in the x2 direction, not connected in the x3 direction.

We obtain the seam surface by tracking back as Eq. (3.18).S(n2−1,x3) = arg min
x1

A1(x1,n2−1,x3)

S(x2,x3) = P1(S(x2+1,x3),x2+1,x3), (x2<n2−1)
(3.18)

The obtained seam surface is connected in the x2 direction because j is selected from
among {−1,0,1}. However, it is not connected in the x3 direction as shown in Fig. 3.6
because the DP is performed in each x1−x2 plane independently. In other words,
although Eq. (3.15) is satisfied, Eq. (3.16) is not.

3.4.3 Multi-Pass DP in 3D Volume

Continuous Method

The continuous method of the proposed multi-pass DP can obtain a suboptimal
solution that is connected in both the x2 and x3 directions in 3D space as shown in
Fig. 3.5. The flow chart is shown in Fig. 3.2. We derivate our continuous method by
extending the suboptimal solution of DP in 2D plane to 3D space.

Definition
We define a vector whose elements are x1 = S(x2,x3) (x3 = 0, · · · ,n3−1) as XXX1 when x2

is fixed.
XXX1 := SSS(x2) = [S(x2,0), · · · ,S(x2,n3−1)]. (3.19)
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A XXX1 corresponds to a gray (or blue) seam in Fig. 3.5. We denote by C(XXX1,x2) the cost
of the seam XXX1, in other words, C(XXX1,x2) is the sum of the costs at the coordinates
where the seam XXX1 passes.

C(XXX1,x2) :=
∑
x3

C(S(x2,x3),x2,x3). (3.20)

Extension of the 2D suboptimal to 3D
First, we independently accumulate the costs along the x2 axis in each x1−x2 plane,
similarly to Eq. (3.17). This process is the step 1 in subsection 3.3.1.

If simply tracking back P1, the obtained seam surface is not guaranteed to be
connected in the x3 direction as described in Section 3.4.2. As Rubinstein et al. [10]
pointed out, we cannot obtain an optimal solution by DP in volume seam carving
problems. In other words, we cannot extend the optimal solution obtained by
Eq. (3.10) to 3D space. Therefore, we instead extend the suboptimal solution in
Eq. (3.11) to 3D space in Eq. (3.22).

SSS(x2) = arg min
XXX1

∑
x3

A1(S(x2,x3),x2,x3) (3.21)

= arg min
XXX1

A1(XXX1,x2). (3.22)

In Eq. (3.11), we obtain a suboptimal seam by selecting the x1 whose cost is the
minimum at each x2. Similarly, in Eq. (3.22), we obtain a suboptimal seam surface by
selecting the seam XXX1 whose cost is minimum in each x1−x3 plane. The solution
XXX1 = [S(x2,0), · · · ,S(x2,n3−1)] in Eq. (3.22) can be obtained by performing 2D DP in
the x1−x3 plane.

A2(x1,x2,0) = A1(x1,x2,0).
A2(x1,x2,x3) = A1(x1,x2,x3)+ min

j∈{−1,0,1}
A2(x1+ j,x2,x3−1), (x3>0)

P2(x1,x2,x3)=arg min
j∈{−1,0,1}

A2(x1+ j,x2,x3−1)+x1, (x3>0)

S(x2,n3−1) = arg min
x1

A2(x1,x2,n3−1)

S(x2,x3) = P2(S(x2,x3+1),x2,x3+1), (x3<n3−1).

(3.23)

This is the step 2 in subsection 3.3.1. Because j is selected from among {−1,0,1}, the
obtained seam XXX1 is guaranteed to be connected in the x3 direction, in other words,
it satisfies Eq. (3.16).
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However, the obtained seam XXX1 is not guaranteed to be connected in the x2

direction (SSS(x2) and SSS(x2+1) are not connected), in other words, it does not satisfy
Eq. (3.15). Therefore, similarly to Eq. (3.12), we restrict the range of candidate seam
XXX1 within ±1 of the previous seam SSS(x2+1) when reducing x2 by one. Subsequently,
we obtain the optimal seam in Eq. (3.22). Similarly to Eq. (3.13), this process is
redescribed as

A2(x1,x2,x3)=

 A2(x1,x2,x3), (|x1−S(x2+1,x3)|≤1)
∞. (otherwise)

(3.24)

This is the step 3 in the continuous method in subsection 3.3.1. From x2 = n2−1 to 0,
by repeating the acquisition of seam in Eq. (3.23) and the restriction of the range in
Eq. (3.24) alternately, we can obtain a suboptimal seam surface in both the x2 and x3

directions.

3.4.4 Discontinuous Method

As shown in Fig. 3.3, the discontinuous method can obtain a seam surface that is
connected in the x1− x3 plane at x2 = n2− 1 by simply tracking back P1 after first
step 2 in Eq. (3.23). This connectivity has the effect of making the seam surface
prone to connecting in other x1−x3 planes, but not guaranteed to be connected in
other x1−x3 planes. It is important because disconnectivity is sometimes required
for seam carving depending on the applications (e.g., retargeting for videos with
extreme motion) as described in the next section.

3.5 Applications and Results

To show that the proposed method is general, we applied our proposed multi-pass
DP to three different applications. All experiments were performed on a machine
with an Intel Core i7-2600 3.4-GHz CPU and 16 GB of RAM, with the methods
implemented in C++. In our experiments, we also tried to use belief propagation [94],
but it did not work well for our applications.
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3.5.1 Video Retargeting

Method

Video retargeting is achieved by applying the proposed method to the energy
functions presented by Rubinstein et al. [10]. When the backward energy is utilized,
the procedure is as follows: First, the cost volume is calculated. Then, a seam surface
is derived using the proposed method. Finally, the image size is reduced by one at
each frame by removing the pixel on the seam surface. This process is iterated until
the image size has reached the target size.

When the forward energy is utilized, the methods described in subsections 3.3.1
and 3.3.2 should be modified as follows. For the continuous method, Eq. (3.1) is
replaced by

A1(x1,x2,x3)=min[A1(x1−1,x2−1,x3)+CL(x1,x2,x3),

A1(x1,x2−1,x3)+CU(x1,x2,x3),

A1(x1+1,x2−1,x3)+CR(x1,x2,x3)] (x2>0)

A1(x1,0,x3) =min[CL(x1,x2,x3),CU(x1,x2,x3),CR(x1,x2,x3)] ,

(3.25)


CL(x1,x2,x3)= |It(x+1,y)−It(x−1,y)|+|It(x,y−1)−It(x−1,y)|

CU(x1,x2,x3)= |It(x+1,y)−It(x−1,y)|

CR(x1,x2,x3)= |It(x+1,y)−It(x−1,y)|+|It(x,y−1)−It(x+1,y)|,

(3.26)

where (x, y, t)= (x1,x2,x3) and It(x, y) is a luminance image of the tth frame. For the
discontinuous method, Eq. (3.5) is replaced in the same manner as in the continuous
method. We adopted the forward energy for video retargeting in all the experiments.

Experimental Results

We tested the proposed method with five videos. The results for the five videos
are shown in Fig. 3.7. The resolution (width, height, and number of frames) of the
original videos 1 - 5 in Fig. 3.7 is (352, 288, 300), (148, 144, 131), (282, 288, 91), (540, 280,
99), and (540, 280, 97), respectively. For comparison, the results for the seam surfaces
derived by graph cuts are shown in Fig. 3.7(d). A simple multi-resolution method
was adopted for Fig. 3.7(d). More specifically, first, the images were downsampled
by four, without any prefiltering, and a preliminary seam surface was derived by
graph cuts. Then, the maximum and minimum value of the preliminary seam
surface x1max,x1min were calculated. Finally, a final seam surface was derived from
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(b) Multi-pass DP 
(continuous) 

(a) Original (c) Multi-pass DP 
(discontinuous) 

(d) Graph cuts 

Video 1 

Video 2 

Video 3 

Video 4 

Video 5 

Figure 3.7: Results of the video retargeting. The upper and lower rows are different
frames in videos 3, 4, and 5.
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the full-resolution images by graph cuts within the range of x1 from (4x1min−4) to
(4x1max+4). No multi-resolution or downsampling was adopted for Fig. 3.7(b) and
(c) because it is not necessary.

Videos 1 and 2 are scenes in which foreground objects are moving and the
background is stable. The other videos are scenes in which both the foreground and
the background are moving. In videos 1 and 2, noticeable deterioration is not created
in Fig. 3.7(b) and (d). In contrast, the foreground or background is shaking between
frames in Fig. 3.7(c) because connectivity is not guaranteed in (c). In video 3, visible
deterioration is not created in Fig. 3.7(b) and (c). In videos 4 and 5, some players are
distorted, as shown in Fig. 3.7(b) and (d). It is clear that the continuous method is
suited for videos that have little motion and that the discontinuous method is suited
for videos whose motion is strenuous. The discontinuous method may be suited for
high-motion scenes compared to graph cuts. If a salient object is moving, a seam
near the object should leap the object between adjacent frames to avoid distorting it.
When graph cuts or the continuous DP is utilized, the seam cannot leap the object
and then may cross it. On the other hand, our discontinuous multi-pass DP can
avoid this problem by its discontinuous nature.

Fig. 3.8 shows the seam surfaces obtained for videos 1 and 5 in Fig. 3.7. Fig. 3.8(a)
and (c) verifies that the seam surfaces are connective because the values change
smoothly over the entire seam surface. The seam surfaces obtained by all methods
for video 1 have horizontal stripes. This occurs because the object has moved slightly;
therefore, the seam surface crosses at virtually the same position in every frame.
In Fig. 3.8(b), video 1, some vertical stripes are shown, which cause background
shaking. In Fig. 3.8(b), video 5, many vertical stripes are shown; however, the stripes
vanish at the bottom of the seam surface because the seam surface is connective in
the x2=n2−1 plane.

Fig. 3.9 shows histograms of the discontinuous level in seam surfaces using the
discontinuous method. Discontinuous level k is defined as k= |S(y, t+1)−S(y, t)|. The
vertical axis shows the frequency of k averaging in all seam surfaces. k=0 and 1
indicate that the seam surface is connective at a specific point. Other values of k
indicate that the seam surface is discontinuous at those points. In Fig. 3.9(a), because
the sum of the frequency at k = 0 and 1 is approximately 60%, the seam surfaces are
connective over approximately 60% of the area. In Fig. 3.9(b), because the sum of the
frequency at k = 0 and 1 is approximately 30%, the seam surfaces are connective in
only approximately 30% of the area. This figure clarifies why the seam surfaces for
video 5 are more discontinuous than those for video 1.
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(a) Multi-pass DP (b) Multi-pass DP (c) Graph cuts
(continuous) (discontinuous)

Figure 3.8: Seam surfaces obtained in Fig. 3.7 in the first iteration. The upper and
lower lines are for videos 1 and 5, respectively. The horizontal axis shows the time.

The computation time and maximum memory consumption are shown in Ta-
ble 3.1(a) and (b), respectively. Continuous and discontinuous DP require virtually
the same processing time in each video. By replacing graph cuts with multi-pass DP,
we can reduce the computation time to 1.5%. The maximum memory consumption
is reduced to 5.6% by replacing graph cuts with continuous DP and to 11% with
discontinuous DP, even without the multi-resolution or downsampling. Note that
the computation time and memory usage of our multi-pass DP would increase by
the order of O(n), where n is the number of voxels in the cost volume. On the other
hand, those of graph cut-based methods grow more rapidly with n.

Subjective Analysis

We conducted subjective evaluation experiments to verify that the quality of the
videos retargeted by our multi-pass DP is almost equal to that of graph cuts with
respect to human perception. We used a crowdsourcing service, and 163 participants
took part in the test. The flow of the test was as follows: First, subjects were asked
to watch four videos (the original and three videos retargeted by our continuous
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(a) Video 1 (b) Video 5

Figure 3.9: Histograms of the discontinuous level in seam surfaces using the
discontinuous method.

method, our discontinuous method, and graph cuts) on our web page, in which the
original video was displayed at the center of the top row and the three retargeted
videos were arranged horizontally on the row beneath. After that, subjects were
asked to “choose the best video in terms of quality." They could replay the videos
any number of times and were able to choose one of four choices: “Video A is the
best," “Video B is the best," “Video C is the best," or “Cannot notice the difference."
The three retargeted videos and four choices were randomly ordered to remove any
bias. Each video was scaled by a factor of min(320

w , 240
h ), where w and h are the video

width and height, respectively, to fit it in a 320×240 window. The aspect ratio was
not changed. We used the eight videos mentioned in subsection 3.5.1 along with
two other videos for dummy questions, in which three identical retargeted videos
were displayed on the lower row. Therefore, the subjects were asked to answer 10
questions including two dummy questions. The order of the 10 questions was also
random.

The result of the five videos in Fig. 3.7 is shown in Table 3.2(a). We observed
that, on average, approximately half of the 163 subjects answered that there was no
noticeable difference between the retargeted videos. For video 1, which contains little
movement in the scene, the graph–cut method was the best of the three methods.
However, our continuous method was the best for videos 2 and 3, which contain
moderate motion. In addition, our discontinuous method was the best for videos 4
and 5, which contain extreme motion. On average, both of our methods obtained



3.5 Applications and Results 53

Table 3.1: Computation time and memory consumption for Fig. 3.7.

(a) Computation time [s]

Multi-pass DP Multi-pass DP Graph–cuts(continuous) (discontinuous)

Video 1 207 213 4988
Video 2 13 13 347
Video 3 83 85 4645
Video 4 445 449 43,419
Video 5 436 436 24,115

Average 237 239 15,503

(b) Maximum memory consumption [MB]

Multi-pass DP Multi-pass DP Graph cuts(continuous) (discontinuous)

Video 1 124 241 2.4×103

Video 2 15 27 358
Video 3 41 77 721
Video 4 65 123 1.2×103

Video 5 64 121 866

Average 62 118 1.1×103

a score that was near that of graph cuts, and the sum of the two methods was
significantly more than that of graph cuts. Therefore, in practical use, users can
obtain an output that is equivalent to that of graph cuts by selecting the best result
after applying both of our methods to the input video because our methods are very
fast to calculate.

Table 3.2(b) shows the results of the 72 subjects who correctly selected the choice
“Cannot notice the difference" in the dummy questions, i.e., the subjects who were
not fooled by the dummy questions. We can regard the result in Table 3.2(b) as a
more reliable result than that of Table 3.2(a) because the noisy results of dishonest
subjects were filtered out. We observed that, on average, 67.8% of these 72 subjects
answered that there were no noticeable differences between the retargeted videos.

As discussed above, the majority of subjects could perceive no differences. In
addition, here, we excluded the subjects who selected the choice “Cannot notice the
difference” and show that there was no significant difference between the number
of subjects who preferred graph cuts and multi-pass DP. Following [95] and [96],
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Table 3.2: Number of subjects who preferred the retargeted video of each method.

(a) All subjects
Multi-pass DP Graph cuts Cannot notice Total(continuous /discontinuous) the difference

Video 1 24 / 8 39 92 163
Video 2 42 / 13 28 80 163
Video 3 40 / 17 22 84 163
Video 4 14 / 50 25 74 163
Video 5 19 / 39 37 68 163

Average 27.8 / 25.4 30.2 79.6 163

(b) Subjects who were not fooled by the dummy questions
Multi-pass DP Graph cuts Cannot notice Total(continuous /discontinuous) the difference

Video 1 6 / 2 11 53 72
Video 2 14 / 2 10 46 72
Video 3 11 / 2 5 54 72
Video 4 3 / 15 8 46 72
Video 5 4 / 12 11 45 72

Average 7.6 / 6.6 9.0 48.8 72

we conducted a significance test of score differences. We regarded the score of each
method as the sum of the numbers in each column in Table 3.2(a) (e.g., the score of
the continuous DP is 24+42+40+14+19 = 139). The scores of the continuous DP,
discontinuous DP, and graph cuts were 139, 127 and 151, respectively, and total score
was 417. Unlike in [95] and [96], our subjective evaluation test was not a paired
comparison because we asked the subjects to compare three videos at one time.
Therefore, we regarded these scores as the result of a paired comparison where the
number of subjects was n = 417/3C2 = 139 and the number of objects (methods) was
t = 3. We needed to find a value R so that there was no significant difference between
the two methods with the confidence level α if the score difference was less than or
equal to R. It can be found from Eq. (3.27):

P(Wt,α ≥
2R−0.5
√

nt
). (3.27)

We set the confidence level α = 0.05 and obtained W3,0.05 = 3.31 because the values of
Wt,α were tabulated in [97]. We obtained R = 34.05 from Eq. (3.27) and observed that
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the results of the three methods (continuous DP, discontinuous DP, and graph cuts)
were not significantly different because the score differences between any pairs of
the three methods were less than R.

3.5.2 Tone Mapping

Method

Most tone-mapping methods compress the Y (luminance) values of the YCbCr color
space. We also compress the Y values, but we convert them using the logarithmic
function in advance. Luminance image is defined by L0(x, y)= logY(x, y), where
Y(x, y) is the Y value of the input HDR image I(x, y;c). First, a guided filter [87] is
performed on the luminance image L0(x, y) and a high-frequency component H(x, y)
is calculated by

H(x, y) =
L0(x, y)− L̄(x, y)

Lmax−Lmin
, (3.28)

where L̄(x, y) is the image obtained by the guided filtering. Lmin and Lmax are the
minimum and maximum values of L0(x, y), respectively. The initial luminance image
L(x, y) is defined as

L(x, y)= (r0−1)
L̄(x, y)−Lmin

Lmax−Lmin
, (3.29)

where r0 is a constant that determines an initial luminance range.

Next, the cost volume is defined based on a local luminance histogram at each
block. To reduce the memory consumption, we subsample the cost volume in both
the space and the luminance directions in advance. A subsampled coordinate and
luminance value is expressed as x̃ = x/(2p+1), ỹ = y/(2p+1), l̃ = l/q where 2p+1,q
is the subsampling parameter of the space and luminance, respectively. The cost
volume is defined as

C(l̃, x̃, ỹ) =
w∑

i=−w

w∑
j=−w

q−1∑
k=0

f (l̃+i, x̃+ j, ỹ+k) (3.30)

f (l,x, y)=

1, l = floor(L(x, y))

0, l , floor(L(x, y)),

where w is a window size and floor() indicates rounding down to an integer.
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Then, a subsampled seam surface S̃(x̃, ỹ) is derived from the cost volume Ct(l̃, x̃, ỹ)
using the proposed continuous method. A seam surface in full resolution S(x, y) is
obtained from S̃(x̃, ỹ) by simple bilinear interpolation. Converting the luminance
image using the obtained seam surface is expressed simply as

L′(x, y) =

 L(x, y)−q, L(x, y) > qS(x, y)

L(x, y), L(x, y) ≤ qS(x, y),
(3.31)

where L′(x, y) is a converted luminance image. This equation has the effect of
reducing the maximum luminance value by q. The meaning of this process is that
the cuboid is divided into two parts by the seam surface: one part is pruned on the
surface, and both parts are again bonded to each other. As a result, the length of the
luminance direction of the cuboid becomes shorter by q. The process from Eqs. (3.30)
to (3.31) is iterated until the dynamic range of L′(x, y) becomes the target range rT.
The parameter q is calculated at every iteration using the current range r of L(x, y)
by q = ceil(r/ρ), where ceil() indicates rounding up to an integer. The parameter ρ
controls the maximum size of the cost volume in the luminance direction.

Finally, the high-frequency component (H(x, y) in Eq. (3.28)) is added to the
obtained luminance image L′(x, y) with enhancement and the LDR luminance
image LL(x, y) is obtained. The final dynamic range is controlled to be rL by linear
transformation. rL is the desired range of the LDR image, typically rL=256:

LL(x, y) =
rL

rT
L′(x, y)+λ(rL−1)H(x, y), (3.32)

where λ is a constant that controls the level of enhancement. The LDR color image
IL(x, y;c) is created from LL(x, y) by a method similar to that used by Fattal et al. [85]:

IL(x, y;c) = LL(x, y)
(

I(x, y;c)
Y(x, y)

)sc

, (3.33)

where c = {R,G,B} and the exponent sc controls the color saturation of the resulting
image. The method described above is almost the same as that of Tsubaki and
Iwauchi [13]. The only difference is that graph cuts is replaced by the proposed
multi-pass DP and the guided filter is utilized.
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Experimental Eesults

We tested the continuous method with six HDR images obtained from [98], [99],
and [100]. The results for the six images are shown in Fig. 3.10. The resolution
(width, height) of images 1 - 6 in Fig. 3.10 is (1000, 664), (760, 1016), (512, 381), (401,
535), (512, 768), and (1000, 563), respectively. The parameters r0=1024,rT=512,rL=

256,p=12,w=12,ρ=128,λ=4,sc=0.5 were used. In the guided filtering, the window
size was five and ε=0.01. For comparison, the results for the seam surfaces derived
by graph cuts are shown in Fig. 3.10 (b). The images in Fig. 3.10 (a) and (b) look
very similar. Fig. 3.11 shows the difference images for Fig. 3.10(a) and (b), where the
contrast was exaggerated by eight. The mean square errors between Fig. 3.10(a) and
(b) were 9.0 and 20.5 in images 1 and 6, respectively. Because the peak signal-to-noise
ratio (PSNR) was approximately 40, there were no visible differences between these
images. Fig. 3.12 shows the seam surfaces obtained for Fig. 3.10 in the last iteration.
The seam surface appears to be smooth and keeps the connectivity with the adjacent
blocks.

Fig. 3.10(c) and (d) shows the results for LLF [2] and LEPF [3], respectively, for
comparison. The parameters σr= log(2.5),α=0.5,β=0 were used for LLF. On the
whole, the detail is clear in (c) and (d); however, the contrast in (a) and (b) is higher
than that in (c) and (d). We evaluated these images using QMOS, sharpness, and
variance. QMOS, the mean-opinion-score prediction from 0 to 100, where 100 is the
highest quality, was proposed by Mantiuk et al. [101] for evaluating image quality.
Sharpness is defined as S = 1

N
∑
|I|, where N is the number of pixels in image I [3].

Furthermore, we calculated the variance of the luminance image to express the
image contrast. Fig. 3.13 shows the QMOS, sharpness, and variance of the images in
Fig. 3.10. Multi-pass DP and graph cuts had similar values in all the indexes. LLF
had the highest QMOS, and LEPF had a high sharpness. Multi-pass DP and graph
cuts had high variance but had moderate values for QMOS and sharpness.

The computation time and maximum memory consumption are shown in Ta-
ble 3.3(a) and (b), respectively. By replacing graph cuts with continuous DP, we
reduced the computation time to 2.2% and the maximum memory consumption to
51%. The number of iterations was 81 in (a) and (b) for each image.

Fig. 3.14 shows the computation time and maximum memory consumption when
the subsampling parameter p was changed. The ratio of the time for multi-pass DP to
the time for graph cuts was smaller when p was smaller. The memory consumption
for multi-pass DP did not vary by p.
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Table 3.3: Computation time and memory consumption for Fig. 3.10.

(a) Computation time [s] (b) Max memory consumption [MB]
Multi-pass DP Graph cuts(continuous)

Image 1 0.88 18.38
Image 2 4.17 245.29
Image 3 0.28 24.82
Image 4 0.28 3.69
Image 5 0.53 10.99
Image 6 0.76 26.09

Average 1.15 54.88

Multi-pass DP Graph cuts(continuous)

40 70
46 82
12 22
14 24
24 42
34 90

28 55

Subjective Analysis

We conducted subjective evaluation tests for the tone-mapping results, similar to
those for video retargeting in subsection 3.5.1, to verify that the image quality of the
results of our proposed method was almost equal to that of graph cuts with respect
to human perception. The number of subjects was 198, and only two tone-mapped
images were displayed side by side on the web page. Subjects were asked to select
one of three choices: “Image A is better," “Image B is better," or “Cannot notice
the difference." We used the 10 HDR images mentioned in subsection 3.5.2 and
three other images for the dummy questions, in which two identical images were
displayed.

The results for the six images in Fig. 3.10 are shown in Table 3.4(a). We did
not compare our method with the results of LLF [2] in Fig. 3.10(c) and LEPF [3] in
Fig. 3.10(d). These methods are not volume seam carving-based methods, and the
purpose of this experiment was to verify that the same image quality can be obtained
by our multi-pass DP and graph cuts. We observed that, on average, 60.5% of the
198 subjects noticed no difference between the two tone-mapped images.

Table 3.4(b) shows the results of the 101 subjects who were not fooled by the three
dummy questions. We observed that, on average, 80.4% of the 101 subjects noticed
no difference between the two tone-mapped images.

We conducted a significance test of score difference for Table 3.4(a), similar to
that in video retargeting. The score of continuous DP and graph cuts was 216 and
253, respectively, and the total score was 469. We regarded these scores as the results
of a paired comparison where the number of participants was n = 469. We obtained
W2,0.05 = 3.64 from [97] and calculated R = 42.67 from Eqs. (3.27). Because the score
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Table 3.4: Number of subjects who preferred the tone-mapped image of each method.

(a) All subjects
Multi-pass DP Graph cuts Cannot notice Total(continuous) the difference

Image 1 23 46 129 198
Image 2 86 48 64 198
Image 3 28 58 112 198
Image 4 30 28 140 198
Image 5 36 35 127 198
Image 6 13 38 147 198

Average 36.0 42.2 119.8 198

(b) Subjects who were not fooled by the dummy questions
Multi-pass DP Graph cuts Cannot notice Total(continuous) the difference

Image 1 3 11 87 101
Image 2 34 14 53 101
Image 3 7 17 77 101
Image 4 5 6 90 101
Image 5 7 9 85 101
Image 6 1 5 95 101

Average 9.5 10.3 81.2 101

difference was less than R, we observed that there was no significant difference
between the two methods.

3.5.3 Contrast Enhancement

Method

We propose a contrast enhancement method based on luminance range compression.
First, the dynamic luminance range is reduced via a process similar to tone mapping
in subsection 3.5.2. The luminance values that have low frequency in the local
histogram are then shrunk in this process. Next, the dynamic range is reverted to the
original range using the linear enlargement method. The local contrast is enhanced
by this process because the spatial gradient of the luminance image is relatively
enlarged.
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The compression process is the same as in Eqs. (3.28)-(3.31), with the exception
that luminance value Y(x, y) in the YCbCr color space is used for L0(x, y) directly
(L0(x, y) = Y(x, y)) instead of using a logarithmic function, and parameter q is fixed at
1. The linear enlargement is performed using

L′′(x, y) =
Lmax−Lmin

rT
L′(x, y)+Lmin. (3.34)

The high-frequency component is added by

LL(x, y) = L′′(x, y)+λ(Lmax−Lmin+1)H(x, y). (3.35)

Finally, a color image IL(x, y;c) is created from LL(x, y) using Eq. (3.33).

Experimental Results

We tested the continuous method with six images obtained from [2] and [102]. The
results for the six images are shown in Fig. 3.15. The resolution (width, height) of
images 1 - 6 in Fig. 3.15 is (800, 533), (800, 533), (512, 512), (876, 584), (795, 532), and (876,
584), respectively. The parameters r0=Lmax−Lmin+1,rT=128,p=12,w=12,λ=2,sc=1.4
were used. An 8-bit luminance value was reduced to 7 bits and then reverted to 8
bits. In the guided filtering, the window size was three and ε=0.01. For comparison,
the results for the seam surfaces derived by graph cuts are shown in Fig. 3.15(c). The
images in Fig. 3.15(b) and (c) look very similar, with the exception that the blue sky
is brighter in (b) than in (c). Fig. 3.16 shows the difference images for Fig. 3.15(b) and
(c), where the contrast was exaggerated by eight. The mean square errors between
Fig. 3.15(b) and (c) were 0.2 and 2.6 in image 2 and image 4, respectively. Because
the PSNR was larger than 40, there were no visible differences between these images.
Fig. 3.17 shows the seam surfaces obtained for Fig. 3.15(b) in the final iteration. The
seam surface looks smooth and keeps the connectivity with the adjacent blocks.

Fig. 3.15(d) shows the results for the LLF method [2] for comparison. The
parameters σr=0.4,α=0.25,β=1.0 were used for LLF. On the whole, the detail was
clear in Fig. 3.15(d); however, the contrast in (b) and (c) was higher than that in (d).
We evaluated these images using sharpness and variance in the same way as for
tone mapping. Fig. 3.18 shows the sharpness and variance of the images in Fig. 3.15.
Multi-pass DP and graph cuts had similar values in both indexes. The results for LLF
were very sharp. The results for multi-pass DP and graph cuts had high variance,
and the sharpness was higher than that in the original images.
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Table 3.5: Computation time and memory consumption for Fig. 3.15.

(a) Computation time [s] (b) Maximum memory consumption [MB]
Multi-pass DP Graph cuts(continuous)

Image 1 0.90 335.89
Image 2 0.68 25.88
Image 3 0.46 115.37
Image 4 0.62 24.12
Image 5 0.89 99.25
Image 6 0.92 200.16

Average 0.75 133.45

Multi-pass DP Graph cuts(continuous)

28 79
27 68
17 44
30 71
28 74
33 86

27 70

The computation time and maximum memory consumption are shown in Ta-
ble 3.5(a) and (b), respectively. By replacing graph cuts with continuous DP, we
reduced the computation time to 0.6% and the maximum memory consumption to
39%.

Subjective Analysis

We conducted subjective evaluation tests for the contrast enhancement results, similar
to those for tone mapping in subsection 3.5.2, to verify that the image quality of the
results of our proposed method is almost equal to that of graph cuts with respect
to human perception. The number of subjects was 191, and only two enhanced
images were displayed side by side on the web page. Subjects were asked to select
one of three choices: “Image A is better," “Image B is better," or “Cannot notice the
difference." We used the 10 images mentioned in subsection 3.5.3 and three other
images for the dummy questions, in which two identical images were displayed.

The results for the six images in Fig. 3.15 are shown in Table 3.6(a). We did not
compare our method with the results of LLF [2] in Fig. 3.15(d). This latter method
is not a volume seam carving-based method, and the purpose of this experiment
is to verify that the same image quality can be obtained by our multi-pass DP as
that of graph cuts. We observed that, on average, 34.7% of 191 subjects noticed no
difference between the two tone-mapped images.

Table 3.6(b) shows the results of the 90 subjects who were not fooled by the three
dummy questions. We observed that, on average, 46.3% of the 90 subjects noticed
no difference between the two enhanced images.
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Table 3.6: Number of subjects who preferred the enhanced image of each method.

(a) All subjects
Multi-pass DP Graph cuts Cannot notice Total(continuous) the difference

Image 1 74 75 42 191
Image 2 39 36 116 191
Image 3 37 102 52 191
Image 4 31 28 132 191
Image 5 16 123 52 191
Image 6 75 112 4 191

Average 45.3 79.3 66.3 191

(b) Subjects who were not fooled by the dummy questions
Multi-pass DP Graph cuts Cannot notice Total(continuous) the difference

Image 1 30 36 24 90
Image 2 9 9 72 90
Image 3 12 42 36 90
Image 4 7 4 79 90
Image 5 1 53 36 90
Image 6 35 52 3 90

Average 15.7 32.7 41.7 90

We conducted a significance test of score difference for Table 3.6(a), similar to
that in tone mapping. The score of continuous DP and graph cuts was 476 and 272,
respectively, and the total score was 748. We regarded these scores as the results of
a paired comparison where the number of participants was n = 748. We obtained
W2,0.05 = 3.64 from [97] and calculated R = 53.82 from Eq. (3.27). Because the score
difference was higher than R, we observed that there was a significant difference
between the two methods. However, there were no visible differences between
the results from continuous DP and graph cuts in some images, as discussed in
subsection 3.5.3 (e.g., images 2 and 4 in Fig. 3.15). The quality improvement in other
images is our future work.
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3.6 Conclusions

In this chapter, we have proposed a fast volume seam carving method based on
multi-pass DP and applied it to video retargeting, tone mapping, and contrast
enhancement. The seam surface obtained by the continuous method is monotonic
and connective, as with the method by Rubinstein et al. [10]. Discontinuous DP
creates a seam surface that is monotonic and connective in one direction. We verified
that suboptimal seam surfaces obtained by our methods can be utilized sufficiently
in those applications. We also showed that our methods create a seam surface that is
approximately 90 times faster and consumes 8 times less memory than conventional
methods, which makes volume seam carving more practical.

Changing the axes enables video seam carving to be applied to entirely different
applications. The characteristics of the cost volume and the optimal seam surfaces
differ depending on the applications. In tone mapping and contrast enhancement,
because a seam surface is only utilized to determine whether the value of the seam
surface at a pixel is higher than the luminance value of the image, many different
seam surfaces can give the same result, in contrast to video retargeting. Furthermore,
the density of the cost volume is different. Because the cost volume in tone mapping
is very sparse, it is easy to find a seam surface whose energy is sufficiently low.
However, because the cost volume in video retargeting is dense, the optimality of
seam surfaces is more important.
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(a) (b) (c) (d)

Image 1

Image 2

Image 3

Image 4

Image 5

Image 6

Figure 3.10: Tone mapping results. (a) Multi-pass DP (continuous), (b) graph cuts,
(c) LLF [2], and (d) LEPF [3].
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Image 1 Image 6

Figure 3.11: Difference images for Fig. 3.10 (a) and (b). The contrast was exaggerated
by eight.

Image 1 Image 6

Figure 3.12: Seam surfaces obtained by continuous DP for Fig. 3.10 in the last
iteration.
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(a) QMOS

(b) Sharpness

(c) Variance

Figure 3.13: Evaluation results for Fig. 3.10.
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(a) Computation time (b) Memory consumption

Figure 3.14: Computation time and memory consumption for image 5 in Fig. 3.10.
The horizontal axis shows the subsampling parameter of the space.
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Image 1

Image 2

Image 3

Image 4

Image 5

(a) (b) (c) (d)

Image 6

Figure 3.15: Contrast enhancement results. (a) Input, (b) multi-pass DP (continuous),
(c) graph cuts, and (d) LLF [2].
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Image 2 Image 4

Figure 3.16: Difference images between Fig. 3.15 (b) and (c). The contrast was
exaggerated by 8.

Image 2 Image 4

Figure 3.17: Seam surfaces obtained by continuous DP for Fig. 3.15 in the last
iteration.
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(a) Sharpness

(b) Variance

Figure 3.18: Evaluation results for Fig. 3.15.



Chapter 4

Learning Neighbors with
Convolutional Neural Network

4.1 Introduction

Pixel labeling problems such as semantic segmentation and depth estimation are
the tasks to assign a label to each pixel from the pre-defined label set (Fig. 4.1). The
performance of pixel labeling problems has been improved significantly after the
introduction of convolutional neural networks (CNN) [105–108]. Because of its simple
architecture and high performance, fully convolutional network (FCN) [109, 110]
that have only convolution and pooling layers (i.e., no fully connected layer) has
been widely used [111, 43, 112–116]. However, FCN still has two drawbacks. One
is that the prediction accuracy around the object boundary is not good because
the resolution of the output is much less than the input image due to the pooling
layers. The other is that the relationships between each pixels are not considered
because the label at each pixel is independently predicted by the last convolutional
layer. To tackle these problems, Chen et al. [117] proposed to use densely connected
conditional random field (dense CRF) [118] as a post-processing of FCN in semantic
segmentation. The dense CRF takes the output from FCN as unary terms and
considers every pair of pixels in a certain range. The penalty is imposed if the two
different labels are assigned to the pair of pixels whose color or spatial distance
is close. Because the optimization of dense CRF with mean field approximation
is extremely efficient and significantly improves the accuracy, it has been used in
many works [119–122]. However, FCN and the dense CRF are treated as completely
independent modules. The parameters of dense CRF are manually decided by
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(a) Input image (b) Ground truth (c) DeepLab-v2 [103]

(d) DeepLab-v2 (e) CRFasRNN [104] (f) Proposed
w/ denseCRF [103]

back-ground aeroplane bicycle bird boat bottle bus

car cat chair cow table dog horse

motorbike person plant sheep sofa train tv/monitor

(g) Label set

Figure 4.1: An example of pixel labeling problems: semantic segmentation, where
the labels are pre-defined object class names.

cross-validation while those of FCN are learned by back-propagation. To solve this
drawback, Zheng et al. [104] found that the mean field algorithm for the dense CRF is
composed of only filtering processes and proposed an end-to-end trainable model of
FCN and dense CRF (named CRFasRNN). However, its pairwise terms can take only
bilateral weights and the learnable parameters are still limited (label compatibility
and weights of kernels). This drawback still remains although similar end-to-end
trainable models of dense CRF and FCN are recently proposed for not only semantic
segmentation but also depth estimation [123].

In this chapter, we propose a new model for pixel labeling problems, where FCN
and dense CRF can be trained end-to-end. The proposed model is based on the
interpretation that the fixed-point iteration for the general dense CRF mathematically
equals to the recurrent convolution, which is shown in Sec. 4.3. The dense CRF in
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our model is more flexible than that in CRFasRNN [104] and can represent more
general functions. In addition, our model can treat not only pairwise terms but also
higher-order terms. Experimental results show that our method achieves comparable
accuracy but much faster on the PASCAL VOC semantic segmentation benchmark.

4.2 Related Works

4.2.1 FCN and Dense CRF in Pixel Labeling Problems

Here, we focus on only the works that are relevant to dense CRF because so many
pixel labeling methods have been proposed. Semantic segmentation has attracted
large attention after the instruction of FCN [109, 110]. FCN is the network that does
not have fully-connected layer and is composed of only convolution and pooling
layers. Because of its simple structure and high performance, FCN is used as the
bases of many works [111, 43, 112–116]. Chen et al. [117] showed that the accuracy is
significantly improved by using dense CRF optimization [118] as a post-process of
FCN. Desmaison et al. [124] proposed an efficient optimization method for the dense
CRF with quadratic programming and linear programming by relaxing the discrete
labels to continuous values. Ajanthan et al. [125] recently extend the work [124]
and proposed a more accurate method by solving the dual problem of dense CRF.
Although these methods can obtain more accurate results, they are slower than mean
field approximation [118]. Moreover, the FCN and dense CRF are still independent
modules.

Zheng et al. [104] regarded the mean field algorithm for dense CRF as the
sequential filtering operations and proposed an end-to-end trainable model of FCN
and dense CRF. However, its pairwise terms can take only bilateral weights and the
learnable parameters are still limited as discussed in Sec. 4.1. Similar ideas have
been also proposed by [126, 127]. Liu et al. [128] proposed a method that directly
learns the unary and pairwise costs of dense CRF by using CNN, which is based on
message passing algorithm. After that, Lin et al. [129] proposed an efficient piecewise
training method for [128], which separately trains the unary and pairwise networks.
Although these methods [128, 129] are more accurate than hand-crafted dense CRF,
they do not scale to high resolution images because it is needed to concatenate every
pair of intermediate features and input it to the pairwise network. Vemulapalli et
al. [130] proposed an efficient optimization method for Gaussian dense CRF, where
the unary and pairwise values are obtained as the output of CNN. Chandra et al. [131]
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showed that the exact solution of the sparse CRF that is jointly learned with FCN
is more accurate then the approximate solution of dense CRF. Different from the
above methods that explicitly formulate only pairwise terms, our method can treat
higher-order terms. Arnab et al. [132] extended CRFasRNN [104] to the model that
can treat higher-order terms. However, their higher-order terms are hand-crafted,
which imposes the penalty when the labeling result is inconsistent with the detection
results of Faster-RCNN [133]. Therefore, it is different direction from our method
that learns general higher-order terms.

The dense CRF is used in not only semantic segmentation but also continuous
labeling problems such as denoising and depth estimation. Ristovski et al. [134]
proposed an efficient optimization method for continuous dense CRF. Xu et al. [123]
proposed a joint model of FCN and the continuous dense CRF for depth estimation.
Vemulapalli et al. [135] proposed an end-to-end trainable model of Gaussian dense
CRF and CNN for denoising. Knöbelreiter et al. [136] recently proposed a hybrid
CNN-CRF model for stereo matching. These methods are based on only pairwise
formulations. Wang et al. [137] showed that the proximal algorithm for structured
labeling problems can be represented by recurrent convolution blocks and applied
the end-to-end trainable model for denoising, depth refinement and optical flow
estimation. Recently, the joint trainable model of dense CRF and FCN is applied to
instance-aware semantic segmentation [138].

4.2.2 CNN and CRF in Other Applications

The joint trainable models of CRF and CNN have also been proposed in other
applications (not pixel labeling problems): e.g., human pose estimation [139–141],
object detection [142, 143], image tag prediction [144], character recognition [145, 144],
and multi-label classification [146, 147]. These methods do not scale to the problems
where the numbers of nodes and edges are extremely large (i.e., pixel labeling
problems).

4.3 Proposed Method

4.3.1 Basic Model

First, we derive the mathematical relationship between the dense CRF and recurrent
convolution. Our formulation is inspired by DeepMRF model [148], in which that
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between grid CRF and 2D RNN was derived. We start from the simple dense CRF
model. Let xxxu denote the RGB vector of the u-th pixel in the input image xxx. The
objective of pixel labeling problems is to assign a label yyyu ∈L to each pixel u(= 1, · · · ,n).
For notational simplicity, we introduce the vector hhhu. L is a continuous space (e.g.,
L = [0,L]m orRm), and hhhu directly represents the continuous label (i.e., yyyu = hhhu) when
we consider continuous labeling problems such as depth or optical flow estimation.
On the other hand, we have a pre-defined label set (i.e.,L = {0, · · · ,L}), and hhhu ∈ {0,1}L

is the indicator vector of the one-dimensional label yu ∈ Lwhen considering discrete
labeling problems such as semantic segmentation: in other words, the l-th element
of hhhu is 1 when the label yu = l is assigned.

We define the dense CRF model as following:

p(xxx,hhh)=
1
Z

∏
u

∏
v∈Nu

ϕ(hhhu,xxxv)
∏

u

∏
v∈Nu

ψ(hhhu,hhhv)
∏

u
λ(hhhu), (4.1)

ϕ(hhhu,xxxv)=exp(hhh⊤u RRRuvxxxv), (4.2)

ψ(hhhu,hhhv)=exp(hhh⊤u WWWuvhhhv), (4.3)

λ(hhhu)=exp(−111⊤η(hhhu)), (4.4)

where ϕ(hhhu,xxxv) is the unary factor that represents the relationship between the label
hhhu and the neighbor pixel value xxxv. ψ(hhhu,hhhv) is the pairwise factor that represents the
relationship between the label hhhu and the neighbor label hhhv. This dense CRF model
considers the relationships between the pixel u and every neighbor pixel v in the
certain rangeNu centered at u. λ(hhhu) is the regularization factor, and 111 is the vector
with all elements being 1. η is the element-wise nonlinear function (see [148] for
details). RRRuv and WWWuv are the learnable parameters, and Z is the partition function to
normalize the sum to 1. This model is same as DeepMRF [148] except for the range
of pairwise connection: DeepMRF [148] is the grid CRF that has connections with
only 4 neighbors.

We obtain the optimal labeling ĥhh by maximizing the probability in Eq. (4.1):

ĥhh = arg max
hhh

p(xxx,hhh). (4.5)

As described above, hhhu is a discrete vector and defined as Eq. (4.6) in discrete labeling
problems:

hhhu ∈ {0,1}L,
∑

l

hu(l) = 1. (4.6)
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We relax the hhh to continuous vector as Eq. (4.7) in order to make the inference and
training tractable,

hhhu ∈ [0,1]L,
∑

l

hu(l) = 1, (4.7)

and the final labeling is obtained as Eq. (4.8):

yu = arg max
l

ĥu(l). (4.8)

We solve the maximization problem in Eq. (4.5) with the similar way to [148].
First, we focus on the pixel u and marginalize Eq. (4.1) as following:

p(hhhu|xxxNu ,hhhNu)∝λ(hhhu)
∏

v∈Nu

ϕ(hhhu,xxxv)
∏

v∈Nu

ψ(hhhu,hhhv) (4.9)

=exp

−111⊤η(hhhu)+
∑

v∈Nu

hhh⊤u RRRuvxxxv+
∑

v∈Nu

hhh⊤u WWWuvhhhv

. (4.10)

Next, we differentiate Eq. (4.10) by hhhu,

∂p
∂hhhu
=exp(∼)

−111⊤η′(hhhu)+
∑

v∈Nu

RRRuvxxxv+
∑

v∈Nu

WWWuvhhhv

, (4.11)

due to limitations of space, we omitted the content in the blanket of exp function.
Eq. (4.12) is derived by making the right hand of Eq. (4.11) equal to 0,

hhhu = σ

 ∑
v∈Nu

RRRuvxxxv+
∑

v∈Nu

WWWuvhhhv

 , (4.12)

where we put σ−1(z) = η′(z). Wu et al. [148] proposed a way to update the hhhu by
running 2D RNN on image grid because their model is based on the grid CRF.
However, that way cannot be applied to our model because our model is the dense
CRF where every pair of pixels has a connection in a certain range. Therefore, we
obtain the optimal hhh by fixed-point iteration as Eq. (4.13):

hhh(t+1)
u = σ

 ∑
v∈Nu

RRRuvxxxv+
∑

v∈Nu

WWWuvhhh(t)
v

 , (4.13)
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𝒉

Unary

Pairwise Regularizer

(a) Basic model

𝒙

FCN

conv 𝑊 activation σ

𝒉

Unary

Pairwise Regularizer

upsample

(b) unary FCN

𝒙

FCN

conv 𝑊

activation σ

𝒉

Unary

Regularizer

upsample

1x1 conv 𝐴

activation g

(c) Higher-order model

Figure 4.2: Our model can be interpreted as recurrent convolution. xxx is the input
image and hhh is the output labeling.

where hhh(t)
u is the probability vector hhhu at t-th iteration. Different from the DeepMRF [148]

where hhhu(u = 1, · · · ,n) is updated sequentially, we update hhhu(u = 1, · · · ,n) simultane-
ously at all pixels. The second term of the right hand in Eq. (4.13) can be regarded
as a convolution because Nu is the certain range centered at u. σ can be regarded
as an activation function. Consequently, our model can be interpreted as recurrent
convolution as shown in Fig. 4.2a. The first convolution with RRR works to predict
unary scores, and the second one with WWW refines hhh by considering pairwise relations
in the convolution rangeN .

4.3.2 FCN as Unary Network

Our basic model in Fig. 4.2a has one convolution with RRR as unary part because we
started from simple dense CRF in Sec. 4.3.1. However, one convolution layer is
generally not enough to predict the labels. Therefore, we replace the convolution
layer RRR with the powerful FCN for more accurate prediction as shown in Fig. 4.2b.
In that case, the unary term in Eq. (4.2) is replaced with Eq. (4.14), and the update
function is represented as Eq. (4.15):

ϕ(hhhu,xxx) = exp(hhh⊤u fff FCN
u (xxx)), (4.14)

hhh(t+1)
u = σ

 fff FCN
u (xxx)+

∑
v∈Nu

WWWuvhhh(t)
v

 , (4.15)



78 Learning Neighbors with Convolutional Neural Network

where fff FCN
u (xxx) is the unnormalized unary score predicted by FCN. Because the

resolutions of the output maps from FCN are small, we upsample them to the
original resolution by simple linear interpolation. In our experiments (Sec. 4.4), we
use DeepLab-v2 [103], which is a kind of FCNs and more accurate than the original
FCN [109, 110] on semantic segmentation.

4.3.3 Extension to Higher-Order Term

Although our formulation starts from the pairwise dense CRF, we can extend the
proposed model to higher-order CRF. As shown in Fig. 4.2c, we simply add the
element-wise nonlinear function g and 1x1 convolution. By this addition, the pairwise
term in Eq. (4.3) and the update function in Eq. (4.15) are extended as Eq. (4.16)
and Eq. (4.17), respectively:

ψ(hhhNu) = exp

hhh⊤u AAA g

 ∑
v∈Nu

WWWuvhhhv


 , (4.16)

hhh(t+1)
u = σ

 fff FCN
u (xxx)+AAA g

 ∑
v∈Nu

WWWuvhhh(t)
v


 , (4.17)

where AAA is the learnable parameter of 1x1 convolution. Eq. (4.16) is a higher-order
term because it has the nonlinear function g and cannot be decomposed to the sum
of pairwise terms. Eq. (4.16) has more expressive power than the pairwise term
in Eq. (4.3) because the hhhu is predicted from the higher-order interaction around u.

4.3.4 Large Field of View (FoV)

In order to make the higher-order term in Eq. (4.16) more powerful, we employ the
dilated convolution [149] as shown in Fig. 4.3a. Our large FoV model is as shown
in Fig. 4.3b, which has a 5x5 conv layer followed by a 3x3 conv layer with dilation
5. The higher-order term in our model has large field of view (15x15) by these two
convolution layers with less number of parameters than that of a 15x15 convolution
layer.

4.3.5 Coarse-to-Fine Strategy

In our model (Fig. 4.3b), we upsample the output map from DeepLab by the factor 8
and input it to the recurrent convolution part. For more accurate prediction, we take
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(a) Dilated convolution

𝒙

FCN

3x3 conv

(dilation 5)
activation σ

𝒉

Unary

Regularizer

upsample

1x1 conv

activation g

5x5 conv

activation g

(b) Large FoV model

Figure 4.3: To make the field of view large, we employ the dilated convolution as
(a). The size of first convolution layer is 5x5 (blue area), and the second convolution
layer is 3x3 with dilation 5 (red pixels). The large area (15x15) is covered by the two
convolutions with less number of parameters than that of one 15x15 convolution
layer. Our large FoV model is as (b).

the coarse-to-fine strategy as shown in Fig. 4.4. The output map from DeepLab is 2x
upsampled and refined by the recurrent convolution part. This process is repeated
until the original resolution. The recurrent convolution part at higher resolution can
capture fine local patterns while it has small FoV. At lower resolution it has larger
FoV while it can capture only rough local patterns. We show this coarse-to-fine
strategy leads to more accurate results in Sec. 4.4.

4.4 Experimental Results

4.4.1 Dataset

We conducted experiments on the PASCAL VOC 2012 segmentation benchmark,
which has 20 object classes and background (total 21 classes). The original dataset has
only 1,464 train images. Therefore, similar to [103], we used 10,582 annotated images
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for training, which was provided by [150]. We used 1,449 validation images for test.
For evaluation metric, we used intersection-over-union (IoU) that are official metric on
the dataset and class accuracy that are shown in recent papers [109, 124, 125, 129, 110].

4.4.2 Implementation Details

We implemented the proposed model based on DeepLab-v2 [103] using the Caffe
library [151] on a Tesla K80 GPU with 12GB memory. The number of output channels
of 5x5 convolution is 128, and that of 3x3 convolution is 256. We used the batch
normalization just after each of these two convolution layers. We adopted softmax
as the activation function σ and ReLU as the nonlinear function g in Eq. (4.16).
Although the original DeepLab-v2 [103] uses three ResNets [152] for multi-scale
training and testing, we used only one ResNet due to the GPU memory limitation.
Similar to [103], we employed the poly learning, where the learning rate started from
2.5×10−4 and multiplied by (1− ( iter

max_iter )power) at each iteration. We set the max_iter to
20,000, power to 0.9, momentum to 0.9, and weight decay to 5.0×10−4. When training
our model, we adopted the piecewise training: the unary network (DeepLab-v2)
was first trained, and then the unary network and the recurrent convolution part
were trained end-to-end. We used the model pre-trained on ImageNet as the initial
weights of the unary network. As a reference, we also report the results when the
unary network was frozen and only the recurrent convolution part was trained. We
set the number of iteration of the recurrent convolution part to one. Although we
tried more iterations, it little improved the performance. We used the pixel-wise
cross-entropy between the groundtruth label ȳu and hhhu defined as following:

loss(ȳyy,hhh) =
1
n

∑
u

∑
j

[ȳu = j] loghu( j), (4.18)

where [·] is the indicator function that is 1 if the statement in the blanket is true and
0 otherwise.

4.4.3 Results

We show the quantitative comparison of the unary network, unary network with
CRFasRNN [104], and unary network with the proposed model in Table 4.1. We
observe that the performance of proposed model is a little better than the only unary
network in terms of both mean accuracy and IoU. When the proposed model is
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Table 4.1: Quantitative comparison on the PASCAL VOC 2012 segmentation bench-
mark. The unary network is ResNet-based DeepLab-v2.

method end-to-end coarse-to-fine mean acc. mean IoU feedforward
time [ms]

unary (ResNet) 81.8 74.6 296
unary + denseCRF [103] 82.3 75.6 3710

unary + CRFasRNN [104] ✓ 83.7 76.1 1144

unary + proposed 82.4 74.9 414unary + proposed ✓ 82.6 75.5
unary + proposed ✓ ✓ 83.7 76.1 454

trained end-to-end, the performance is further improved. The coarse-to-fine strategy
further improves the performance, and the coarse-to-fine model is comparable or
a little better than the hand-crafted dense CRF [103]. The proposed models are
comparable with the CRFasRNN [104] in terms of both mean accuracy and IoU.
However, in terms of the computational time for feedforward, the proposed model is
much faster than CRFasRNN: (1144−296)/(454−296) = 848/158 ≈ 5.4x faster1. The
reason is because the proposed model can benefit from the parallelization by GPU
while the CRFasRNN cannot.

We show the IoU of each class in Table 4.2 and the qualitative comparison
in Fig. 4.5. We observe that the proposed method successfully labels to the small
objects such as the plant, the legs of the bird, and the cat in the cat’s house.

1The run time was measured for 500x450 pixel images due to the GPU memory limitation.
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Figure 4.4: Coarse-to-fine strategy: the output map from DeepLab is 2x upsampled
and refined by the recurrent convolution part. This process is repeated until the
original resolution. The recurrent part in (a) is unfolded as (b).
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Table 4.3: Quantitative comparison on the PASCAL VOC 2012 segmentation bench-
mark. The unary network is VGG-based DeepLab-v2.

method end-to-end coarse-to-fine mean acc. mean IoU feedforward
time [ms]

unary (VGG) 81.0 68.7 168
unary + denseCRF [103] 81.3 71.2 3582

unary + proposed 81.1 68.7 289unary + proposed ✓ 80.3 69.3
unary + proposed ✓ ✓ 80.1 69.3 332

Fig. 4.6 shows the failure cases of the proposed method. The proposed method
predicts the legs of the horse by considering the spatial relationships with the body
although they are occluded. In the second case, the proposed method labels the
person in the tv monitor because the situation where a person appears in a tv monitor
is not unnatural.

4.4.4 Discussion

Table 4.3 shows the results when the unary network is the VGG-based DeepLab-v2.
Similar to [103], we set the initial learning rate to 1.0×10−3 and the batch size to 10
when training the VGG-based Deeplab. We set the batch size to 5 when training
the single-scale proposed model, and set it to 4 when training the coarse-to-fine
proposed model due to the GPU memory limitation. We observe that the proposed
model cannot improve the performance, compared with the only unary network.
That is consistent with [153], where the authors reported that their model could not
be successfully trained from the output of the unary network (VGG-based FCN [109])
because it was too noisy. When the unary network is highly accurate (ResNet-based),
the proposed model can be trained well as shown in Table 4.1. Therefore, we believe
that the proposed model can possibly improve the performance further when the
unary network is more accurate (e.g., [115]).

4.5 Conclusions

In this chapter, we proposed a joint model of FCN and dense CRF, which is derived
from the fixed-point iteration of the dense CRF. We employed some techniques such
as enlarging the field of view with dilated convolution and coarse-to-fine strategy in
order to improve the performance. Experimental results on semantic segmentation
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benchmark show that the performance of the proposed method is comparable with
the CRFasRNN. However, the proposed method is yet another approach of joint
model of FCN and dense CRF, which is much faster and simple. Compared with the
CRFasRNN, the proposed method is easy to implement because it is composed of
only fundamental layers in deep learning libraries. Applying the proposed model to
other applications such as optical flow or depth estimation is a future work.
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Input GroundtruthUnary Dense CRF CRFasRNN Proposed

back-ground aeroplane bicycle bird boat bottle bus

car cat chair cow table dog horse

motorbike person plant sheep sofa train tv/monitor

Figure 4.5: Successful cases of the proposed method on the PASCAL VOC 2012
segmentation benchmark. The unary network is ResNet-based DeepLab-v2.
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Input GroundtruthUnary Dense CRF CRFasRNN Proposed

back-ground aeroplane bicycle bird boat bottle bus

car cat chair cow table dog horse

motorbike person plant sheep sofa train tv/monitor

Figure 4.6: Failure cases of the proposed method.





Chapter 5

Learning Neighbors with Deep
Reinforcement Learning

5.1 Introduction

After the introduction of the deep Q-network (DQN) [154], which can play Atari
games on the human level, much attention has been focused on deep reinforcement
learning (RL). Recently, deep RL is also applied to a variety of image processing
tasks [155–157]. However, these methods can execute only global actions for the
entire image and are limited to simple applications, e.g., image cropping [155] and
global color enhancement [157, 158]. Therefore, these methods cannot be applied to
applications that require pixel-wise manipulations such as image denoising.

To overcome this drawback, we propose a new problem setting: pixelRL for
image processing. PixelRL is a multi-agent RL problem, where the number of agents
is equal to that of pixels. The agents learn the optimal behavior to maximize the
mean of the expected total rewards at all pixels. Each pixel value is regarded as the
current state and is iteratively updated by the agent’s action. Applying the existing
techniques of the multi-agent RL to pixelRL is impractical in terms of computational
cost because the number of agents is extremely large. Therefore, we solve the
problem by employing the fully convolutional network (FCN). The merit of using
FCN is that all the agents can share the parameters and learn efficiently. Herein,
we also propose reward map convolution, which is an effective learning method for
pixelRL. By the proposed reward map convolution, each agent considers not only
the future states of its own pixel but also those of the neighbor pixels.
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The proposed pixelRL is applied to image denoising, image restoration, and
local color enhancement. To the best of our knowledge, this is the first work to
apply RL to such low-level image processing for each pixel or each local region. Our
experimental results show that the agents trained with the pixelRL and the proposed
reward map convolution achieve comparable or better performance, compared with
state-of-the-art methods based on supervised learning. Although the actions must be
pre-defined for each application, the proposed method is interpretable by observing
the actions executed by the agents, which is a novel and different point from the
existing deep learning-based image processing methods for such applications. The
interpretability is important for some applications such as medical image processing
as discussed in [159].

Our contributions are summarized as follows:

• We propose a novel problem setting: pixelRL for image processing, where the
existing techniques for multi-agents RL cannot be applied.

• We propose reward map convolution, which is an effective learning method for
pixelRL and boosts the performance.

• We apply the pixelRL to image denoising, image restoration, and local color
enhancement. The proposed method is a completely novel approach for
these tasks, and shows better or comparable performance, compared with
state-of-the-art methods.

• The actions executed by the agents are interpretable to humans, which is of
great difference from conventional CNNs.

5.2 Related Works

5.2.1 Deep RL for Image Processing

Very recently, deep RL has been used for some image processing applications. Cao et
al. [160] proposed a super-resolution method for face images. The agent first chooses
a local region and inputs it to the local enhancement network. The enhancement
network converts the local patch to a high-resolution one, and the agents chooses
the next local patch that should be enhanced. This process is repeated until the
maximum time step; consequently, the entire image is enhanced. Li et al. [155] used
deep RL for image cropping. The agent iteratively reshapes the cropping window
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to maximize the aesthetics score of the cropped image. Yu et al. [161] proposed
the RL-restore method, where the agent selects a toolchain from a toolbox (a set
of light-weight CNNs) to restore a corrupted image. Park et al. [157] proposed a
color enhancement method using DQN. The agent iteratively chooses the image
manipulation action (e.g., increase brightness) and retouches the input image. The
reward is defined as the negative distance between the retouched image by the agent
and the one by an expert. A similar idea is proposed by Hu et al. [158], where the
agent retouches from RAW images. As discussed in the introduction, all the above
methods execute global actions for entire images. In contrast, we tackle pixelRL,
where pixel-wise actions can be executed.

Wulfmeier et al. [162] used the FCN to solve the inverse reinforcement learning
problem. This problem setting is different from ours because one pixel corresponds
to one state, and the number of agents is one in their setting. In contrast, our pixelRL
has one agent at each pixel.

5.2.2 Image Denoising

Image denoising methods are classified into two categories: non-learning and
learning based. Many classical methods are categorized into the former class
(e.g., BM3D [163]). Although learning-based methods include dictionary-based
methods such as [164], the recent trends in image denoising is neural network-based
methods [4, 165]. Generally, neural-network-based methods have shown better
performances, compared with non-leaning-based methods.

Our denoising method based on pixelRL is a completely different approach from
other neural network-based methods. While most of neural-network-based methods
learn to regress noise or true pixel values from a noisy input, our method iteratively
removes noise with the sequence of simple pixel-wise actions (basic filters).

5.2.3 Image Restoration

Similar to image denoising, image restoration (also called image inpainting) methods
are divided into non-learning and learning-based methods. In the former methods
such as [166], the target blank regions are filled by propagating the pixel values or
gradient information around the regions. The filling process is highly sophisticated,
but they are based on a handcrafted-algorithm. Roth and Black [167] proposed a
Markov random field-based model to learn the image prior to the neighbor pixels.
Mairal et al. [168] proposed a learning-based method that creates a dictionary from
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an image database using K-SVD, and applied it to image denoising and inpainting.
Recently, deep-neural-network-based methods were proposed [169, 5], and the
U-Net-based inpainting method [5] showed much better performance than other
methods.

Our method is categorized into the learning-based method because we used
training images to optimize the policies. However, similar to the classical inpainting
methods, our method successfully propagates the neighbor pixel values with the
sequence of basic filters.

5.2.4 Color Enhancement

One of the classical methods is color transfer proposed by Reinhard et al. [170],
where the global color distribution of the reference image is transfered to the target
image. Hwang et al. [171] proposed an automatic local color enhancement method
based on image retrieval. This method enhances the color of each pixel based on the
retrieved images with smoothness regularization, which is formulated as a Gaussian
MRF optimization problem.

Yan et al. [6] proposed the first color enhancement method based on deep learning.
They used a DNN to learn a mapping function from the carefully designed pixel-wise
features to the desired pixel values. Gharbi et al. [172] used a CNN as a trainable
bilateral filter for high-resolution images and applied it to some image processing
tasks. Similarly, for fast image processing, Chen et al. [173] adopted an FCN to
learn an approximate mapping from the input to the desired images. Unlike deep
learning-based methods that learn the input for an output mapping, our color
enhancement method is interpretable because our method enhances each pixel value
iteratively with actions such as [157, 158].

5.3 Background Knowledge

Herein, we extend the asynchronous advantage actor-critic (A3C) [174] for the
pixelRL problem because A3C showed good performance with efficient training in
the original paper1. In this section, we briefly review the training algorithm of A3C.
A3C is one of the actor-critic methods, which has two networks: policy network and
value network. We denote the parameters of each network as θp and θv, respectively.
Both networks use the current state s(t) as the input, where s(t) is the state at time step

1Note that we can employ any deep RL methods such as DQN instead of A3C.
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t. The value network outputs the value V(s(t)): the expected total rewards from state
s(t), which shows how good the current state is. The gradient for θv is computed as
follows:

R(t) = r(t)+γr(t+1)+γ2r(t+2)+ · · ·+γn−1r(t+n−1)+γnV(s(t+n)), (5.1)

dθv = ∇θv

(
R(t)
−V(s(t))

)2
, (5.2)

where γi is the i-th power of the discount factor γ.
The policy network outputs the policy π(a(t)

|s(t)) (probability through softmax) of
taking action a(t)

∈A. Therefore, the output dimension of the policy network is |A|.
The gradient for θp is computed as follows:

A(a(t),s(t)) = R(t)
−V(s(t)), (5.3)

dθp = −∇θp logπ(a(t)
|s(t))A(a(t),s(t)). (5.4)

A(a(t),s(t)) is called the advantage, and V(s(t)) is subtracted in Eq. (5.3) to reduce the
variance of the gradient. For more details, see [174].

5.4 Reinforcement Learning with Pixel-wise Rewards
(PixelRL)

Here, we describe the proposed pixelRL problem setting. Let Ii be the i-th pixel in the
input image III that has N pixels (i = 1, · · · ,N). Each pixel has an agent, and its policy
is denoted as πi(a

(t)
i |s

(t)
i ), where a(t)

i (∈A) and s(t)
i are the action and the state of the i-th

agent at time step t, respectively. A is the pre-defined action set, and s(0)
i = Ii. The

agents obtain the next states sss(t+1) = (s(t+1)
1 , · · · ,s(t+1)

N ) and rewards rrr(t) = (r(t)
1 , · · · ,r

(t)
N )

from the environment by taking the actions aaa(t) = (a(t)
1 , · · · ,a

(t)
N ). The objective of the

pixelRL problem is to learn the optimal policies πππ = (π1, · · · ,πN) that maximize the
mean of the total expected rewards at all pixels:

πππ∗ = arg max
πππ

Eπππ

 ∞∑
t=0

γtr(t)

 , (5.5)

r(t) =
1
N

N∑
i=1

r(t)
i , (5.6)

where r(t) is the mean of the rewards r(t)
i at all pixels.
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A naive solution for this problem is to train a network that output Q-values or
policies for all possible set of actions aaa(t). However, it is computationally impractical
because the dimension of the last fully connected layer must be |A|N, which is too
large.

Another solution is to divide this problem into N independent subproblems
and train N networks, where we train the i-th agent to maximize the expected total
reward at the i-th pixel:

π∗i = arg max
πi

Eπi

 ∞∑
t=0

γtr(t)
i

 . (5.7)

However, training N networks is also computationally impractical when the number
of pixels is large. In addition, it treats only the fixed size of images. To solve the
problems, we employ a FCN instead of N networks. By using the FCN, all the N
agents can share the parameters, and we can parallelize the computation of N agents
on a GPU, which renders the training efficient. Herein, we employ A3C and extend
it to the fully convolutional form. Our architecture is illustrated in Fig. 5.1.

The pixelRL setting is different from typical multi-agent RL problems in terms of
two points. The first point is that the number of agents N is extremely large (> 105).
Therefore, typical multi-agent learning techniques such as [175] cannot be directly
applied to the pixelRL. Next, the agents are arrayed in a 2D image plane. In the next
section, we propose an effective learning method that boosts the performance of the
pixelRL agents by leveraging this property, named reward map convolution.

5.5 Reward Map Convolution

Here, for the ease of understanding, we first consider the one-step learning case (i.e.,
n = 1 in Eq. (5.1)).

When the receptive fields of the FCNs are 1x1 (i.e., all the convolution filters in the
policy and value network are 1x1), the N subproblems are completely independent.
In that case, similar to the original A3C, the gradient of the two networks are



5.5 Reward Map Convolution 95

Policy network

Value network

Receptive field

Current state 𝑠𝑖
(𝑡)

Policy 𝜋(𝑎𝑖
𝑡 |𝑠𝑖

(𝑡)
)

Value 𝑉(𝑠𝑖
(𝑡)
)

Shared network Policy network

Conv+ReLU Conv+ReLU Conv+ReLU Conv+ReLU Conv+ReLU Conv+ReLU ConvGRU
Conv

+Softmax

3x3, 1, 64 3x3, 2, 64 3x3, 3, 64 3x3, 4, 64 3x3, 3, 64 3x3, 2, 64 3x3, 1, 64 3x3, 1, 𝐴

Value network

Conv+ReLU Conv+ReLU Conv

3x3, 3, 64 3x3, 2, 64 3x3, 1, 1

Figure 5.1: Network architecture of the fully convolutional A3C. The numbers in the
table denote the filter size, dilation factor, and output channels, respectively.

computed as follows:

R(t)
i = r(t)

i +γV(s(t+1)
i ), (5.8)

dθv = ∇θv

1
N

N∑
i=1

(
R(t)

i −V(s(t)
i )

)2
, (5.9)

A(a(t)
i ,s

(t)
i ) = R(t)

i −V(s(t)
i ), (5.10)

dθp = −∇θp

1
N

N∑
i=1

logπ(a(t)
i |s

(t)
i )A(a(t)

i ,s
(t)
i ). (5.11)

As shown in Eqs. (5.9) and (5.11), the gradient for each network parameter is the
average of the gradients at all pixels.

However, one of the recent trends in CNNs is to enlarge the receptive field
to boost the network performance [176, 4]. Our network architecture, which was
inspired by [4] in Fig. 5.1, has a large receptive field. In this case, the policy and value
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networks observe not only the i-th pixel s(t)
i but also the neighbor pixels to output the

policy π and value V at the i-th pixel. In other words, the action a(t)
i affects not only

the s(t+1)
i but also the policies and values inN(i) at the next time step, whereN(i) is

the local window centered at the i-th pixel. Therefore, to consider it, we replace Ri

in Eq. (5.8) as follows:
R(t)

i = r(t)
i +γ

∑
j∈N(i)

wi− jV(s(t+1)
j ), (5.12)

where wi− j is the weight that means how much we consider the values V of the
neighbor pixels at the next time step (t+1). www can be regarded as a convolution filter
weight and can be learned simultaneously with the network parameters θp and θv.
It is noteworthy that the second term in Eq. (5.12) is a 2D convolution because each
pixel i has a 2D coordinate (ix, iy).

Using the matrix form, we can define the RRR(t) in the n-step case.

RRR(t) = rrr(t)+γwww ∗ rrr(t+1)+γ2www2
∗ rrr(t+2)+ · · ·

+γn−1wwwn−1
∗ rrr(t+n−1)+γnwwwn

∗V(sss(t+n)), (5.13)

where ∗ is the convolution operator, and wwwn
∗ rrr denotes the n-times convolution on rrr

with the filter www. Similar to θp and θv in Eqs. (5.9) and (5.11), the gradient for www is
computed as follows:

dwww = −∇www
1
N

N∑
i=1

logπ(a(t)
i |s

(t)
i )(R(t)

i −V(s(t)
i ))+∇www

1
N

N∑
i=1

(R(t)
i −V(s(t)

i ))2. (5.14)

Similar to typical policy gradient algorithms, the first term in Eq. (5.14) encourages a
higher expected total reward. The second term operates as a regularizer such that Ri

is not deviated from the prediction V(s(t)
i ) by the convolution.

We summarize the training algorithm of the fully convolutional A3C with the
proposed reward map convolution in Algorithm 2. The differences from the original
A3C are highlighted in red.

5.6 Applications and Results

We implemented the proposed method on Python with Chainer [177] and ChainerRL 2

libraries, and applied it to three different applications.

2https://github.com/chainer/chainerrl
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Algorithm 2: Training pseudo-code of fully convolutional A3C with the pro-
posed reward map convolution
//Assume global shared parameter vectors θp, θv, and www and global counter T = 0.
// Assume thread-specific parameter vectors θ′p, θ′v, and www′.
Initialize thread step counter t← 1.
repeat

Reset gradients: dθp← 0, dθv← 0, and dwww← 0.
Synchronize thread-specific parameters θ′p = θp, θ′v = θv, and www′ = www
tstart = t
Obtain state s(t)

i for ∀i
repeat

Perform a(t)
i according to policy π(a(t)

i |s
(t)
i ) for ∀i

Receive reward r(t)
i and new state s(t+1)

i for ∀i
t← t+1
T← T+1

until terminal s(t)
i or t− tstart == tmax

for ∀i Ri =

0 for terminal s(t)
i

V(s(t)
i ) for non-terminal s(t)

i
for k ∈ {t−1, · · · , tstart} do

Ri← γRi
Convolve RRR with www: Ri←

∑
j∈N(i) wi− jR j for ∀i

Ri← r(k)
i +Ri

Accumulate gradients w.r.t. θ′p:

dθp← dθp−∇θ′p
1
N

∑N
i=1 logπ(a(k)

i |s
(k)
i )(Ri−V(s(k)

i ))

Accumulate gradients w.r.t. θ′v: dθv← dθv+∇θ′v
1
N

∑N
i=1(Ri−V(s(k)

i ))2

Accumulate gradients w.r.t. www′:
dwww← dwww−∇www

1
N

∑N
i=1 logπ(a(k)

i |s
(k)
i )(Ri−V(s(k)

i ))+∇www
1
N

∑N
i=1(Ri−V(s(k)

i ))2

end for
Update θp, θv, and www using dθp, dθv, and dwww, respectively.

until T > Tmax

5.6.1 Image Denoising

Method

The input image III(= sss(0)) is a noisy gray scale image, and the agents iteratively
remove the noises by executing actions. It is noteworthy that the proposed method
can also be applied to color images by independently manipulating on the three
channels. Table 5.1 shows the list of actions that the agents can execute, which were
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Table 5.1: Actions for image denoising and restoration.

action filter size parameter

1 box filter 5x5 -
2 bilateral filter 5x5 σc = 1.0,σS = 5.0
3 bilateral filter 5x5 σc = 0.1,σS = 5.0
4 median filter 5x5 -
5 Gaussian filter 5x5 σ = 1.5
6 Gaussian filter 5x5 σ = 0.5
7 pixel value += 1 - -
8 pixel value -= 1 - -
9 do nothing - -

empirically decided. We defined the reward r(t)
i as follows:

r(t)
i = (Itarget

i − s(t)
i )2
− (Itarget

i − s(t+1)
i )2, (5.15)

where Itarget
i is the i-th pixel value of the original clean image. Intuitively, Eq. (5.15)

means how much the squared error on the i-th pixel was decreased by the action
a(t)

i . As shown in [178], maximizing the total reward in Eq. (5.15) is equivalent to
minimizing the squared error between the final state sss(tmax) and the original clean
image IIItarget.

Implementation Details

We used BSD68 dataset [167], which has 428 train images and 68 test images. Similar
to [4], we added 4,774 images from Waterloo exploration database [179] to the
training set. We set the minibatch size to 64, and the training images were augmented
with 70×70 random cropping, left-right flipping, and random rotation. To train the
fully convolutional A3C, we used ADAM optimizer [180] and the poly learning,
where the learning rate started from 1.0×10−3 and multiplied by (1− episode

max_episode )0.9) at
each episode. We set the max_episode to 30,000 and the length of each episode tmax to 5.
Therefore, the maximum global counter Tmax in Algorithm 2 was 30,000×5 = 150,000.
To reduce the training time, we initialize the weights of the fully convolutional A3C
with the publicly available weights of [4], except for the convGRU and the last layers.
We adopted the stepwise training: the fully convolutional A3C was trained first,
subsequently it was trained again with the reward map convolution. We set the
filter size of www to 33×33, which is equal to the receptive field size of the networks
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Table 5.2: PSNR [dB] on BSD68 test set with Gaussian noise.

Method std. σ
15 25 50

BM3D [163] 31.07 28.57 25.62
WNNM [181] 31.37 28.83 25.87
TNRD [182] 31.42 28.92 25.97
MLP [183] - 28.96 26.03
CNN [4] 31.63 29.15 26.19

CNN [4] +aug. 31.66 29.18 26.20

Proposed
+convGRU +RMC +aug.

31.17 28.75 25.78
✓ 31.26 28.83 25.87
✓ ✓ 31.40 28.85 25.88
✓ ✓ ✓ 31.49 28.94 25.95

in Fig. 5.1. The number of asynchronous threads was one (i.e., equivalent to A2C:
advantage actor-critic). www was initialized as the identity mapping (i.e., only the
center of www was one, and zero otherwise). It required approximately 15.5 hours for
the 30,000 episode training, and 0.44 sec on average for a test image whose size is
481×321 on a single Tesla V100 GPU.

Results

Table 5.2 shows the comparison of Gaussian denoising with other methods. RMC is
the abbreviation for reward map convolution. Aug. means the data augmentation
for test images, where a single test image was augmented to eight images by a
left-right flip and 90◦, 180◦, and 270◦ rotations, similar to [184]. We observed that
CNN [4] is the best. However, the proposed method achieved the comparable results
with other state-of-the-art methods. Adding the convGRU to the policy network
improved the PSNR by approximately +0.1dB. The RMC significantly improved
the PSNR when σ = 15, but improved little when σ = 25 and 50. That is because the
agents can obtain much reward by removing the noises at their own pixels rather
than considering the neighbor pixels when the noises are strong. The augmentation
for test images further boosted the performance. We report the CNN [4] with the
same augmentation for a fair comparison.

Table 5.3 shows the comparison of Poisson denoising. Similar to [185], we simu-
lated the Poisson noise with different peak intensities. The lower the peak intensity,
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Table 5.3: PSNR [dB] on BSD68 test set with Poisson noise.

Method Peak Intensity
120 30 10

CNN [4] 31.62 28.20 25.93
CNN [4] +aug. 31.66 28.26 25.96

Proposed
+convGRU +RMC +aug.

31.17 27.84 25.55
✓ 31.28 27.94 25.64
✓ ✓ 31.37 27.95 25.70
✓ ✓ ✓ 31.47 28.03 25.77

Table 5.4: PSNR [dB] on BSD68 test set with Salt&Pepper noise.

Method Noise density
0.1 0.5 0.9

CNN [4] 40.16 29.19 23.58
CNN [4] +aug. 40.40 29.40 23.76

Proposed
+convGRU +RMC +aug.

36.51 27.91 22.73
✓ 37.86 29.26 23.54
✓ ✓ 38.46 29.78 23.78
✓ ✓ ✓ 38.82 29.92 23.81

the higher is the noise generated. An almost similar tendency to Gaussian denois-
ing was observed. The proposed method achieved a slightly lower performance,
compared with CNN [4].

Fig. 5.2 shows the number of actions executed by the proposed method at each
time step for Gaussian denoising (σ = 50) on the BSD68 test set. We observed that
the agents successfully obtained a strategy in which they first removed the noises
using strong filters (box filter, bilateral filter σc = 1.0, and Gaussian filter σ = 1.5);
subsequently they adjusted the pixel values by the other actions (pixel values +=1
and -=1).

Table 5.4 shows the comparison of salt and pepper denoising. We observed that
the RMC significantly improved the performance. In addition, the proposed method
outperformed the CNN [4] when the noise density is 0.5 and 0.9. Unlike Gaussian
and Poisson noises, it is difficult to regress the noise with CNN when the noise
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Figure 5.2: Number of actions executed at each time step for Gaussian denoising
(σ = 50) on the BSD68 test set.

density is high because the information of the original pixel value is lost (i.e., the
pixel value was changed to 0 or 255 by the noise). In contrast, the proposed method
can predict the true pixel values from the neighbor pixels with the iterative filtering
actions.

We visualize the denoising process of the proposed method, and the action map
at each time step in Fig. 5.3. We observed that the noises are iteratively removed by
the chosen actions.

Fig. 5.4 shows the qualitative comparison with CNN [4]. The proposed method
achieved both quantitative and visually better results for salt and pepper denoising.

Ablation Study with Different Action Sets

We conducted the ablation studies with different set of actions on Gaussian denoising.
Table 5.5 shows the results. When the actions were only basic filters ([1] box filters,
[4] median filter, [5] Gaussian filter with σ = 1.5, and [9] do nothing in Table 5.1), its
PSNRs were 29.82, 27.60, and 25.20 for noise std. 15, 25, and 50, respectively. When
we added [2] bilateral filter with σc = 1.0, the PSNRs increased to 29.93, 27.81, and
25.30. In addition, when we added the two actions ([7] pixel value += 1 and [8] pixel
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Figure 5.3: Denoising process of the proposed method and the action map at each
time step for salt and pepper denoising (density=0.9).

Table 5.5: PSNR [dB] on Gaussian denoising with different action sets.

Actions std. σ
15 25 50

only basic filters 29.82 27.60 25.20
+ bilateral filter σc = 1.0 29.93 27.81 25.30
+ pixel value ± = 1 30.72 28.25 25.59

+ different filter parameters. 31.26 28.83 25.87

value -= 1), the PSNRs further increased to 30.72, 28.25, and 25.59. Finally, when we
added the two filters with different parameters ([3] bilateral filter with σc = 0.1 and
[6] Gaussian filter with σ = 0.5), the PSNRs were 31.26, 28.83, and 25.87. Therefore,
all the actions are important for the high performance although it may be further
increased if we can find more proper action set. Although we tried adding some
advanced filters for image denoising such as guided filter [186] and non-local means
filter [187], the performance was not improved any more.
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Figure 5.4: Qualitative comparison of the proposed method and CNN [4] for salt
and pepper noise (density=0.5). PSNR / SSIM are reported.

5.6.2 Image Restoration

Method

We applied the proposed method to “blind” image restoration, where no mask of
blank regions is provided. The proposed method iteratively inpaints the blank
regions by executing actions. We used the same actions and reward function as those
of image denoising, which are shown in Table 5.1 and Eq. (5.15), respectively.

For training, we used 428 training images from the BSD68 train set, 4,774 images
from the Waterloo exploration database, and 20,122 images from the ILSVRC2015
val set [188] (a total of 25,295 images). We also used 11,343 documents from the
Newsgroups 20 train set [189]. During the training, we created each training image
by randomly choosing an image from the 25,295 images and a document from 11,343
documents, and overlaid it on the image. The font size was randomly decided from
the range [10,30]. The font type was randomly chosen between Arial and Times New
Roman, where the bold and Italic options were randomly added. The intensity of the
text region was randomly chosen from 0 or 255. We created the test set that has 68
images by overlaying the randomly chosen 68 documents from the Newsgroup 20
test set on the BSD68 test images. The settings of the font size and type were the
same as those of the training. The random seed for the test set was fixed between the
different methods. All the hyperparameters were same as those in image denoising,
except for the length of the episodes, i.e., tmax = 15.
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Table 5.6: Comparison on image restoration.

Method PSNR [dB] SSIM

Net-D and Net-E [5] 29.53 0.846
CNN [4] 29.75 0.858

Proposed
+convGRU +RMC

✓ 29.50 0.858
✓ ✓ 29.97 0.868

Results

Table 5.6 shows the comparison of the averaged PSNR between the output and
ground-truth images. We saved the models of the compared methods at every one
epoch, and reported the best results. For the proposed method, we saved the model
at every 300 episodes (≃ 0.76 epoch) and reported the best results. Here, we compared
the proposed method with the two methods (Net-E and Net-D [5] and CNN [4])
because the Net-E and Net-D achieved much better results than the other restoration
methods in the original paper. We found that the RMC significantly improved the
performance, and the proposed method obtained the best result. This is the similar
reason to the case of the salt and pepper noise. Because the information of the
original pixel value is lost by the overlaid texts, its regression is difficult. In contrast,
the proposed method predicts the true pixel value by iteratively propagating the
neighbor pixel values with the filtering actions.

Fig. 5.5 is the visualization of restoration process of the proposed method, and
the action map at each time step. Fig. 5.6 shows the qualitative comparison with
Net-E and Net-D [5] and CNN [4]. We observed that there are visually large
differences between the results from the proposed method and those from the
compared methods.

5.6.3 Local Color Enhancement

Method

We also applied the proposed method to the local color enhancement. We used the
dataset created by [6], which has 70 train images and 45 test images downloaded
from Flicker. Using Photoshop, all the images were enhanced by a professional
photographer for three different stylistic local effects: Foreground Pop-Out, Local
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Table 5.7: Thirteen actions for local color enhancement.

Action

1 contrast ×0.95
2 contrast ×1.05
3 color saturation ×0.95
4 color saturation ×1.05
5 brightness ×0.95
6 brightness ×1.05
7 red and green ×0.95
8 red and green ×1.05
9 green and blue ×0.95

10 green and blue ×1.05
11 red and blue ×0.95
12 red and blue ×1.05
13 do nothing

Xpro, and Watercolor. Inspired by [157], we decided the action set as shown
in Table 5.7. Given an input image III, the proposed method changes the three channel
pixel value at each pixel by executing an action. When inputting III to the network,
the RGB color values were converted to CIELab color values. We defined the reward
function as the decrease of L2 distance in the CIELab color space as follows:

r(t)
i = |I

target
i − s(t)

i |2− |I
target
i − s(t+1)

i |2. (5.16)

All the hyperparameters and settings were same as those in image restoration, except
for the length of episodes, i.e., tmax = 10.

Results

Table 5.8 shows the comparison of mean L2 errors on 45 test images. The proposed
method achieved better results than DNN [6] on all three enhancement styles, and
comparable or slightly better results than pix2pix. We observed that the RMC
improved the performance although their degrees of improvement depended on
the styles. It is noteworthy that the existing color enhancement method using deep
RL [157, 158] cannot be applied to this local enhancement application because they
can execute only global actions.

Fig. 5.7 is the visualization of the color enhancement process of the proposed
method, and the action map at each time step. Similar to [157], the proposed method



106 Learning Neighbors with Deep Reinforcement Learning

Table 5.8: Comparison of mean L2 testing errors on local color enhancement. The
errors except for the proposed method and pix2pix are from [6].

Method Foreground Local WatercolorPop-Out Xpro

Original 13.86 19.71 15.30
Lasso 11.44 12.01 9.34

Random Forest 9.05 7.51 11.41
DNN [6] 7.08 7.43 7.20

Pix2pix [190] 5.85 6.56 8.84

Proposed
+convGRU +RMC

✓ 6.75 6.17 6.44
✓ ✓ 6.69 5.67 6.41

is interpretable while the DNN-based color mapping method [6] is not. We can see
that the brightness and saturation were mainly increased to convert the input image
to watercolor style.

Fig. 5.8 shows the qualitative comparison between the proposed method and
DNN [6]. The proposed method achieved both quantitatively and qualitatively
better results.

5.7 Conclusions

We proposed a novel pixelRL problem setting and applied it to three different
applications: image denoising, image restoration, and local color enhancement. We
also proposed an effective learning method for the pixelRL problem, which boosts the
performance of the pixelRL agents. Our experimental results demonstrated that the
proposed method achieved comparable or better results than state-of-the-art methods
on each application. Different from the existing deep learning-based methods for
such applications, the proposed method is interpretable. The interpretability of deep
learning has been attracting much attention [191], and it is especially important for
some applications such as medical image processing [159].

The proposed method can maximize the pixel-wise reward; in other words, it
can minimize the pixel-wise non-differentiable objective function. Therefore, we
believe that the proposed method can be potentially used for more image processing
applications where supervised learning cannot be applied.



5.7 Conclusions 107

𝑡 = 0 (Input) 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5

𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10

𝑡 = 11 𝑡 = 12 𝑡 = 13 𝑡 = 14 𝑡 = 15

1. box filter

2. bilateral filter 𝜎𝑐 = 1.0

3. bilateral filter 𝜎𝑐 = 0.1

4. median filter

5. Gaussian filter 𝜎 = 1.5

6. Gaussian filter 𝜎 = 0.5

7. pixel value += 1

8. pixel value -= 1

9. do nothing

Figure 5.5: Restoration process of the proposed method and the action map at each
time step.
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Figure 5.6: Qualitative comparison of the proposed method with Net-E and Net-D [5]
and CNN [4] on image restoration. PSNR / SSIM are reported.
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Figure 5.7: Color enhancement process of the proposed method for watercolor, and
the action map at each time step.
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Figure 5.8: Qualitative comparison of the proposed method and DNN [6]. The satu-
ration of the images from DNN appear higher owning to the color correction for the
sRGB space (for details, see https://github.com/stephenyan1231/dl-image-enhance).

https://github.com/stephenyan1231/dl-image-enhance




Chapter 6

Conclusions

In this thesis, we tackled two challenges of pixel labeling: (i) how to deal with
the large solution space, and (ii) how to learn the relationships between neighbor
labels effectively. For the first challenge, we proposed two neighbor-aware fast
optimization methods in chapter 2 and 3. For the second challenge, we proposed
two effective learning methods that boost the performance of pixel labeling by
considering neighbor labels in chapter 4 and 5.

In chapter 2, we proposed a fast optimization method based on CVF for general
pixel-labeling problems, where smoothness of labels between neighbor pixels are
forced. We applied the proposed method to stereo matching and optical flow
estimation. It is important to note that the applications of the proposed method are
not limited to these two. Experimental results showed that the proposed method
was much more efficient when the label space is large while keeping the accuracy,
compared with the original CVF. In addition, our method was more accurate
than CVF in some cases by successfully truncating noisy labels with the proposed
coarse-to-fine strategy.

In chapter 3, we proposed a fast optimization method named “multi-pass dynamic
programming” for the MRF optimization with the constraint that the neighbor labels
must be connected. Volume seam carving (seam carving for 3D cost volume) is its
main application, which is applied to various image processing tasks. The proposed
method was applied to three different image processing tasks: video retargeting,
tone mapping, and contrast enhancement. Experimental results showed that the
proposed method is approximately 90 times faster and consumes 8 times less memory
than graph cuts, which has been the only choice for the volume seam carving so far.
Our large scale subjective analysis by more than 198 crowd workers confirmed that
a suboptimal solution obtained by the proposed method creates almost equivalent
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image quality to that of graph cuts. The proposed method makes various of image
processing techniques based on volume seam carving more practical.

In chapter 4, we revealed that the fixed point iteration of a dense CRF is
mathematically equivalent to recurrent convolution. Based on this observation, we
proposed a new dense CRF model that can automatically learn the relationships
between neighbor labels from training data in contrast to conventional hand-crafted
CRF. In addition, the proposed model can be trained end-to-end with the unary part
(FCN) by backpropagation. We applied the proposed model to semantic segmentation
and confirmed that the proposed model achieved superior performance on PASCAL
VOC benchmark.

In chapter 5, we proposed a novel problem setting pixelRL by extending deep
reinforcement learning to pixel labeling. We also proposed reward map convolution,
which is a neighbor-aware learning method in the pixelRL framework. We applied
the proposed method to three image processing applications: image denoising,
image restoration, and local color enhancement. Experimental results demonstrated
that the proposed method achieved comparable or better results than state-of-the-art
methods. It was also confirmed that the proposed reward map convolution boosted
the performance by considering the future states of neighbor pixels.

Future Directions

We presented two neighbor-aware fast optimization methods and two neighbor-
aware learning methods for pixel labeling. We believe that combining the proposed
methods is a promising future direction and can possibly solve more difficult pixel-
labeling problems that have never been tackled. For example, by combining the
proposed coarse-to-fine strategy in chapter 2 and multi-pass DP in chapter 3, we
can tackle the pixel-labeling problems where the label space is extremely large and
neighbor labels must be connected. Another example is that the proposed CRF
model in chapter 4 can be incorporated into pixelRL in chapter 5 to consider neighbor
actions at current time step. These combinations can potentially broaden the range
of applications of pixel labeling.
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