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Abstract

Cryptographic technologies are essential to make our daily lives more secure and/or more
convenient. For instance, in an environment where any sent message can be eavesdropped,
by using public-key encryption (PKE) or symmetric-key encryption (SKE), we can send any
message without giving no information about the message to the eavesdroppers. And, in an
environment where any sent message can be maliciously modified, by using digital signature
or message authentication code (MAC), we can send any message in a way such that any
modification of the message is detected. Especially, public-key cryptosystems such as PKE
and digital signature are convenient because the key-change in advance is no necessary.

The current cryptographic schemes are required to be theoretically secure or provably
secure. A reason behind the fact is that there are at least a few examples of cryptographic
schemes such that although they are assessed to be secure from specialists’ empirical points
of view, standardized and widely used, later they were shown to be theoretically insecure.
When we do the proof of security, we formally construct a security model, and then reduce
the hardness breaking the security model to the hardness solving a mathematical problem
which are believed to be hard to solve. For instance, the most desirable security notion of
digital signature is one named strongly existentially unforgeability against chosen message
attack, or sEUF-CMA in short. Intuitively, this formalization states that any adversary,
who is given a signature-verification-key (public-key) in advance, is successful in forging
a signature only with an extremely small probability (i.e., negligible probability), even if
he can adaptively use signing oracle which takes a message and returns a signature on the
message.

In the real world, cryptographic devices are always threatened by secret-information
leakage caused by malicious entities. The most serious threat is Side-Channel Attack (SCA)
which utilizes physical information observed from the device such as power consumption,
electromagnetic radiation, acoustic emanation and temperature to identify the secret-key
of the device. The standard security models, including sEUF-CMA of digital signature
mentioned above, do not consider such information leakage at all. Thus, as soon as 1 bit of
such information leaked, they lose their security guarantees.

Leakage-Resilience guarantees that even if some partial related information of the secret-
information are leaked, the security is maintained. In security models considering leakage-
resilience, we model the information leakage by an efficiently computable function f . The
function should be restricted, and various security models which differ in such a restriction
have been proposed. Especially, a security model named Hard-to-Invert Leakage Model
(HL Model) which requires f to be computationally hard-to-invert is considered to be theo-
retically/practically meaningful.
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We present solutions to the following three open problems concerning the hard-to-invert
leakage-resilience.

The first one is regarding Identity-Based Encryption (IBE) with HL-resilience. The
IBE scheme proposed by Yuen et al. at EUROCRYPT’12 has been known as the only one
claimed to be correctly proven to be secure in a security model with HL-resilience. Firstly,
to show that their security proof is defective, we present some concrete counterexamples of
adversaries which can be the evidence of the deficiency. Moreover, we propose an original
IBE construction and prove that it is secure in a security model considering HL-resilience.
As a result, our IBE scheme is the first one whose HL-resilience is correctly proven.

The second one is regarding Digital Signature with HL-resilience. We propose a generic
construction of digital signature, and show that it is strongly unforgeable, i.e., sEUF-CMA
secure, and resilient to polynomially hard-to-invert leakage. Then, we show that it can be
instantiated under a standard assumption, namely the decisional linear (DLIN) assumption.
Currently, there are some signature schemes proven to be secure in a model considering
HL-resilience. We emphasize that our instantiation of signature scheme is not only the first
one resilient to polynomially hard-to-invert leakage under standard assumptions, but also
the first one proven to be secure in a strong unforgeability model considering HL-resilience.

The third one is regarding Attribute-Based Signature (ABS) and Identity-Based Sig-
nature (IBS) with HL-resilience. Currently, a lot of ABS/IBS schemes secure in a model
with no leakage-resilience have been known. However, no scheme proven to be resilient to
some leakage under standard assumptions has been known. We propose generic construc-
tions of ABS/IBS schemes and prove that they are secure in HL model. Then, we show
that they can be instantiated under the DLIN assumption and the symmetric external Diffie-
Hellman (SXDH) assumption. It should be noted that our schemes are the first ones with
HL-resilience under standard assumptions, and more generally, the first ones with leakage-
resilience under standard assumptions.
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Chapter 1

Introduction

1.1 Background
In the modern society, cryptographic technologies are used everywhere in our daily lives.
Without them, current level of security and convenience of the society cannot be achieved.
For instance, public-key encryption (PKE) and symmetric-key encryption are the core tech-
nologies to realize the secrecy or confidentiality of communication. Digital signature and
message authentication code (MAC) are the core primitives to realize the authenticity of
digital messages. Not only such fundamental cryptosystems, but also various applied cryp-
tosystems are widely used.

In the past, security of cryptosystems were empirically evaluated. That means that cryp-
tosystems can be assessed to be secure if they cannot be broken by trying various known
cryptanalysis techniques. However, there are a few schemes which had been assessed to be
empirically secure, standardized and widely used in the society, but later, were found their
cryptanalyses, e.g., PKCS #1 v1.5 encryption [Ble98], ISO/IEC 9796-1 signature [CNS99]
and ISO/IEC 9796-2 signature [CNS99]. Through the bitter experiences, the current cryp-
tosystems are required to be theoretically secure. The security is generally called as provable
security. Intuitively, we do the proof of security by formally constructing a security model,
and then proving that breaking the security model is at least as hard as solving a math-
ematical problem believed to be computationally hard to solve, e.g., Factoring, Discrete
Logarithm (DL).

For the case of digital signature, the security proof is done as follows. Practically-
ideal security of digital signature is that any entity without the true signature-generation-
key (secret-key) cannot forge any valid signature. The most desirable (or the strongest)
theoretical model capturing the security is a security notion named strongly existentially
unforgeability against chosen messages attack or sEUF-CMA in short. Its formal definition
is given in Sect. 2.9. Informally, the notion means that any adversary, who is given the
signature-verification-key (public-key) in advance, succeeds to forge a valid signature only
with an extremely small probability, i.e., negligible probability, even if he can adaptively use
a signing oracle which takes a message and returns a signature on the message. Here, the
adversary is assumed to be Probabilistic Polynomial Time Algorithm (PPTA). And then, we
prove that if we assume that there exists an adversary breaking the model, i.e., succeeding
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forging a signature with a non-negligible probability, we can construct another algorithm
solving a mathematical problem such as the DL problem. In this case, the signature scheme
remains to be secure as long as the DL problem is computationally hard to solve.

Practically-desirable security of PKE must be something like that any entity without the
decryption-key (secret-key) cannot get any information about the original plaintext from its
ciphertext. A theoretical model capturing the security is a notion called Semantic Security
(SS). However, since SS is difficult to prove, we do not use it for the actual proof, but an-
other notion called Indistinguishability (IND) which was proven to be equivalent to SS. Rig-
orously, based on the strength of adversary, there are some IND-notions. The strongest one
is ciphertext-indistinguishability against adaptively chosen ciphertexts attack (IND-CCA)
[RS91]. For its formal definition, refer to Sect. 2.6. Informally, that means that any PPT ad-
versary who receives the encryption-key (public-key), chooses two plaintexts, then receives
a challenge-ciphertext of randomly chosen one of the two plaintexts, cannot correctly guess
the actual plaintext of the ciphertext, even if he can adaptively use decryption oracle, which
takes a ciphertext and returns its decryption result, before and after receiving the challenge-
ciphertext. For cryptographic schemes other than digital signature and PKE, their security
models are properly formalized in a practically-ideal manner.

The security models given above are blackbox-wise, which means that any adversary
cannot observe the secret-information such as the secret-key. Specifically, in sEUF-CMA
notion, although the adversary can acquire indirect information about the secret-key through
the public-key or the signatures generated on the signing oracle, he can acquire neither direct
information about the secret-key nor direct information about the randomnesses used to
generate the signatures. However, in the real world, such information can be leaked because
of various causes or attacks. Thus, practically, security models without such assumptions
are more desirable. Specifically, leakage-pattern of secret-information can be categorized
into Full Leakage which is a pessimistic pattern and Related-Information Leakage which is
a more realistic pattern.

Full leakage can occur because of various causes. For instance, virus (malware) in-
fection, non-thorough key-management, and intention by malicious insiders, can be the
cause. There are some security models considering the situation where the secret-key is
fully leaked. For instance, Threshold Security [Des87, DF89] divides a secret-key into
multiple shares and guarantees that the security is maintained as long as the number of
shares fully leaked is less than a constant number. Forward Security [And97, BM99] con-
siders a situation where secret-keys are periodically updated and during an arbitrary period
t, the secret-key is fully leaked, and guarantees that the security for the previous periods
i ∈ [1, t − 1] is maintained. Key-Insulated Security [DKXY02] assumes that information
needed to update the secret-key is stored in a leak-free device and guarantees that even if the
secret-key, stored in a non-leak-free device, is fully leaked at arbitrary periods t, the security
for the other periods , t is maintained.

In the real world, related-information leakage is more possible and more hard to pre-
vent than full leakage. Of course, related-information leakage can occur because of the
same reasons as full leakage, such as virus infection and intention by malicious insiders.
Another serious cause is Side-Channel Attack (SCA) which acquires information about
the secret-key of the device through the side-channels. Specifically, many SCAs observe
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physical information from the device including related-information about the secret-key,
and utilize the information to identify the secret-key. More specifically, Timing Attack
[Koc96, Sch00] utilizes the running time consumed to process a cryptographic operation
such as decrypting or signing. Power Analysis Attack [KJJ99, Cor99, MDS99, GPT14]
utilizes the power consumption of the device during processing a cryptographic operation.
The other known SCAs utilizes physical information such as electromagnetic (EM) radi-
ation [GMO01, AARR02, GPT14], acoustic emanation [ST04, GST14] and temperature
[HS13] of the device. In addition to SCA, Cold-Boot Attack [HSH+08], which identifies
the secret-key by utilizing a device’s characteristic such that, for some time after its power
down, information about the secret-key remains in its memory, is also a serious threat of
related-information leakage.

For some SCAs, countermeasures against the attacks are known. Some countermeasures
are algorithmic or software-based, e.g., masking, blinding. Some other ones are physical or
hardware-based, e.g., shielding. It should be noted that any countermeasure accompanies
some negative effects such as degradation of efficiency such as computational cost and in-
creasing of monetary cost. Although various SCAs were proposed, it must be true that new
SCAs are continuously proposed in the future. Thus, even if we take every known coun-
termeasure to realize a cryptosystem, there is no guarantee that it is secure against even
SCAs which will be found in the future. Moreover, some physical information are almost
impossible to completely prevent by any countermeasure. Thus, we obtain the following
conclusion: Even if we take every known countermeasure to realize a cryptosystem with
accompanying some efficiency degradation and monetary cost increasing, it must be impos-
sible for us to perfectly prevent all SCAs including currently known SCAs and SCAs found
in the future, i.e., impossible to make the leakage caused by all SCAs zero.

1.2 Leakage-Resilient Cryptosystems
Leakage-Resilience is a property that guarantees that even if some related-information about
secret-information such as the secret-key is leaked because of various causes such as side-
channel attack (SCA), the security is maintained. Our common ultimate goal in the com-
munity is that we achieve the security against as many types of possible related-information
leakage as possible.

In security models considering leakage-resilience, it is common that a side-channel at-
tack is modelled as an efficiently computable (i.e., polynomial time computable) function
f . Precisely, each adversary in a security model can arbitrarily choose such a function f
and learn leakage information f (sk), then utilizes it to try to break the model. Obviously,
if the adversary is allowed to choose a function which reveals the correct secret-key such
as the identity map, he never fails to break the model. So, a restriction on the function f is
required. Such a restriction differs in each one of the models. Our goal is making a scheme
secure in a model with a looser restriction on f .

We are mainly interested in a leakage-resilient security model called hard-to-invert leak-
age (HL) model. We give a explanation for the model in Subsect. 1.2.4. Before that, we
broadly categorize existing models which are closely related to HL model into three mod-
els, namely bounded leakage model, continual leakage model and noisy leakage model, and
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introduce each model in Subsect. 1.2.1, Subsect. 1.2.2 and Subsect. 1.2.3, respectively.
Specifically speaking, for each model in the subsection, we explain the restriction on the
leakage function f , relation among some models including the model, and some important
known results on the model.

1.2.1 Bounded Leakage (BL) Model
Bounded Leakage (BL) Model was firstly presented by Akavia et al. at TCC’09 [AGV09].
In BL model, the output’s bit-length of the function f is restricted by a variable l(k) called
leakage bound 1 which is smaller than the actual bit-length of the secret-key |sk|. Formally,
each adversary can choose as f only function which satisfies a condition that f : {0, 1}|sk| →
{0, 1}l(k), where l(k) < |sk|. The cold-boot attack [HSH+08] which had been presented right
before the work [AGV09] motivated the authors of [AGV09] to invent the model. Only
Computation Leaks Information (OCLI) security model [MR04] cannot deal with the cold-
boot attack [HSH+08] since the model assumes that only computation leaks information and
no leakage occurs from memory unrelated to the computation. On the other hand, BL model
can be secure against wider class of side-channel attacks including the cold-boot attack.

Given a cryptographic scheme secure in BL model, we define its leakage-ratio of secret-
key as l(sk)/|sk|. We say that the leakage-ratio is optimal if it is written as 1 − o(1). The
leakage-ratio of secret-key is an information whom we use to compare some schemes secure
in BL model each other. Also, for instance, the following information can be used for the
comparison. Firstly, if it is a scheme such as IBE, ABE, IBS or ABS, whether the master-key
can be leaked, or more generally, how large is the leakage-ratio for it. Secondly, whether
leakage from the randomness used to generate the secret-key and/or master-key is allowed,
or more generally, how large is the leakage-ratio for each one of them. Thirdly, if it is a
digital signature scheme such as digital signature, IBS or ABS, whether the scheme is Fully
Leakage-Resilient (FLR) [KV09] 2.

Akavia et al. [AGV09] proved that PKE schemes such as [Reg05] and [GPV08] are
secure in BL model. Because of the simple or easy-to-understand definition of the model,
until the present time, (at least) hundreds of schemes proven to be secure in the model have
been proposed. Some examples, including schemes secure in bounded retrieval (BR) model
or continual leakage (CL) model, are given below.

PKE [AGV09, NS09, BG10, BKKV10, DHLAW10b, LLW11, QL13, QL14, CQX18],
digital signature [KV09, BKKV10, DHLAW10a, DHLAW10b, BSW11, GJS11, KKS11,
LLW11, MTVY11, FNV15], message authentication code (MAC) [CQX18], IBE [CDRW10,
LRW11, KP13, LTZY16], ABE [LRW11, ZSW+13, Zha14], functional encryption (FE)
[YAX+16, WCLH18], inner-product encryption (IPE) [KP13], zero-knowledge proof [GJS11,
Pan14, Kiy15], identification (ID) [DHLAW10a], authenticated key agreement (AKA) [DHLAW10a],
multiparty computation [BGJK12], secret sharing [BDIR18] and fully homomorphic en-
cryption [BL14] have been proposed.

1In Sect. 1.2, k denotes the minimum entropy of the secret-key sk.
2In a broad sense, we say that a signature scheme is fully leakage-resilient (FLR), if it permits not only

leakage from the secret-key, but also leakage from the randomnesses used to generate signatures on the signing
oracle. In a narrow sense, full leakage-resilience (FLR) means that the schemes allows all leakage from the
secret-key, the randomnesses used to generate signatures and the randomness used to generate the secret-key.
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We obtain the following notable facts. Firstly, as schemes achieving the optimal leakage-
ratio, PKE schemes [QL13, QL14, CQX18], IBE schemes [KP13] and digital signature
schemes [BSW11] were proposed. Secondly, as schemes achieving the strongest security,
IND-CCA secure PKE schemes [NS09, QL13, QL14, CQX18], adaptive IND-CCA secure
IBE scheme [LTZY16] and sEUF-CMA secure digital signature schemes [WT14, HHP16]
are known. Thirdly, FLR signature schemes were proposed in [BSW11, GJS11, MTVY11,
FNV15]. Fourthly, as schemes secure against master-key leakage, IBE scheme and ABE
scheme were proposed in [LRW11].

Bounded Retrieval (BR) Model. The terminology Bounded Retrieval (BR) Model ini-
tially appeared in the works [DCLW06, Dzi06] which proposed protocols secure against
intrusion attacks. The first public-key cryptosystem secure in BR model was proposed by
Alwen et al. at CRYPTO’09 [ADW09]. Specifically, they proposed a few schemes including
digital signature secure in the random oracle model. Subsequently, Alwen et al. [ADN+10]
proposed IBE schemes secure in BR model at Eurocrypt’10.

Alwen et al. [ADW09, ADN+10] defined public-key cryptographic schemes secure in
BR model as bounded leakage-resilient schemes which satisfy the condition such that we
can increase its leakage bound l(k) only by increasing the size of secret-key, where no degra-
dation of the other efficiency measures, such as public-key size, ciphertext size, signature
size, decryption cost and signing cost, occurs. Also, they mentioned that schemes secure in
BR model are useful, since they can be secure against hacking or malware attacks.

IBE schemes secure in BR model were proposed in [ADN+10, CZLC16, HLAWW16].
Among the IBE schemes, there is no one which simultaneously achieves the optimal leakage-
ratio and security in the standard model. So, presenting such a scheme is an open problem.
Signature schemes secure in BR model were proposed in [ADW09, FNV15]. Among the
signature schemes, there is no one which simultaneously achieves the optimal leakage-ratio
and FLR in the standard model. Thus, presenting such a scheme is also an open problem.

1.2.2 Continual Leakage (CL) Model
Continual Leakage (CL) Model was independently proposed by Brakerski et al. [BKKV10]
and Dodis et al. [DHLAW10a] at FOCS’10 as a generalization of BL model.

In BL model, total amount of leakage is bounded by the leakage bound l(k). However,
as soon as more information than the bound is leaked, its security guarantee is lost. On the
other hand, in CL model, total amount of leakage is unbounded. In the model, we consider
a situation where the secret-key is updated periodically. We assume that there are t periods
in total and express the secret-key at i-th period as ski, where i ∈ [1, t]. For every i ∈ [1, t],
the model permits ski to leak any information about the key as long as bit-length of total
amount of the leakage is less than l(k). Note that total number of update of secret-key is
unbounded. As a result, total amount of leakage is also unbounded.

In Subsect. 1.2.1, we introduced some indexes which are useful when we compare some
schemes secure in BL model each other, such as whether its leakage-ratio is optimal. Every
one of the indexes is also useful when we decide whether a scheme secure in CL model
is superior to the other one. Additionally, the following indexes are also useful. The first
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one is whether the master-key can be updated. The second one is whether leakage from the
randomness used to update the secret-key and/or the master-key is considered.

Various schemes secure in CL model have been proposed. Specifically, PKE [BKKV10,
LLW11], digital signature [BKKV10, DHLAW10a, BSW11, GJS11, KKS11, LLW11, WT15],
IBE [BKKV10, LRW11, KP13], ABE [LRW11, ZCG+18], functional encryption (FE) [YAX+16],
IPE [KP13], Identification [DHLAW10a], Authenticated Key Agreement [DHLAW10a] and
IBS [WTH16] have been proposed.

Floppy Model, a.k.a. Invisible Key-Update Model. In a broad sense, Floppy Model,
a.k.a. Invisible Key-Update Model [ADW09], is categorized as a CL model. Rigorously,
the model is based on a stronger assumption than the normal CL model. Specifically, in
the model, it is assumed that we can prepare a leak-free device in whom some information
needed to update the secret-key are stored.

Although the strong assumption of the model can be a big disadvantage for schemes
secure in the model, there have been proposed some schemes secure in the model with good
properties whom any previous scheme secure in CL model has not achieved. For instance,
PKE schemes by Agrawal et al. [ADVW13] proven to be secure in the floppy model under
DDH assumption and achieve the optimal leakage-ratio are schemes which do not utilize
bilinear groups (pairing).

Introducing Forward Security into CL Model. CL model has a disadvantage. Specifi-
cally, the model assumes that the situation where the secret-key is entirely leaked at a period
t never occurs. However, in the real world, such a situation can happen. As soon as such a
situation occurs, any scheme secure in the model loses its security guarantee for all periods.

Forward Security [And97, BM99] guarantees that for every polynomial integer t ∈ N,
even if secret-key at period t is revealed entirely, its security guarantee from period 1 to t−1
is maintained. The model also has a disadvantage such that it assumes that all secret-keys
during period 1 to t − 1 do not leak any information about the keys. Thus, the model loses
security guarantee in a case where at least one of the secret-keys during period 1 to t−1 leaks
some information about the keys and the secret-key at period t leaks its entire information.

Bellare et al. [BOS17] introduced forward security into CL model to make a model
without each one of such disadvantages. Specifically, their model guarantees that for every
polynomial integer t ∈ N, even if every secret-key during period 1 to t − 1 leaks its partial
information whose bit-length is less than l(k) and the secret-key at period t leaks its full
information, the security is maintained. By the way, they proposed PKE and digital signature
schemes secure in the model.

1.2.3 Noisy Leakage (NL) Model
We remind us that BL model and CL model assume that bit-length of leakage from the
secret-key is smaller than the leakage bound l(k) s.t. l(k) < |sk|. We consider whether the
assumption is realistic. It must be reasonable to conjecture that most of real side-channel
attacks, especially ones utilizing physical information such as running time [Koc96, Sch00],
power consumption [KJJ99, Cor99, MDS99, GPT14], electromagnetic radiation [GMO01,
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AARR02, GPT14], acoustic emanation [ST04, GST14] and temperature [HS13], leaks a
great amount of information, whose bit-length can be a lot bigger than |sk|. According
to [Sta11], some side-channel attacks such as differential power analysis [KJJ99] can leak
information on the order of gigabits per second. Because of the reasons, we cannot help
saying that the assumption of BL model is unrealistically strong.

Noisy Leakage (NL) Model was invented as a generalization of BL model. The model
removes the restriction of BL model on bit-length of f ’s output. Formally, in NL model, the
function f must be a function f : {0, 1}|sk| → {0, 1}∗ such that the loss of minimum entropy
of sk caused by f is smaller than l(k) < k 3. Obviously, l(k) cannot be l(k) ≥ k since that
means that f can be a function revealing sk such as the identity map. Thus, as BL model,
every function f in NL model does not information-theoretically reveal sk.

The concept of NL model was initially presented by Dziembowski and Pietrzak at
FOCS’08 [DP08], and symmetric-key encryption scheme secure in the model was given.
Subsequently, Naor and Segev at CRYPTO’09 [NS09] presented the first PKE scheme se-
cure in NL model by proving that their PKE scheme proven to be secure in BL model is also
secure in NL model. Signature schemes secure in NL model and BL model were proposed
in [GJS11, FNV15]. Another signature scheme whose security in NL model and BR model
was guaranteed in the random oracle model was proposed in [FNV15].

1.2.4 Hard-to-Invert Leakage (HL) Model
We remind us that in NL model [DP08, NS09] (or BL model [AGV09]), f cannot information-
theoretically determine the secret-key sk. Based on the assumption, we evaluate NL model
(and BL model) from practical/theoretical points of view.

First, we consider whether the assumption is reasonable from practical point of view.
According to [Sta11], some practical side-channel attacks can information-theoretically de-
termine the secret-key sk. In that sense, the assumption is unrealistic.

Next, we theoretically evaluate the assumption. It is obvious that, because of the as-
sumption, functions which information-theoretically reveal sk such as one-way permutation
(OWP) are prohibited for the adversary to query. Theoretically, a model with a looser restric-
tion on f than NL model (and BL model), such that such functions like OWP are allowed
for the adversary to query, is more desirable.

To eliminate such an assumption of NL model (or BL model), or to generalize the mod-
els, Hard-to-Invert Leakage (HL) Model, a.k.a. Auxiliary (Input) Leakage (AL) Model, was
invented by Dodis et al. at STOC’09 [DKL09]. The model requires f to be hard-to-invert.
Formally, f must satisfy a condition that no probabilistic polynomial time algorithm, given
f (sk), can find sk with a probability larger than µ(k), where µ(·), whom we call auxiliary pa-
rameter, is a negligible function satisfying µ(k) > 2−k. Note that the larger the parameter µ(k)
is, the larger the set of leakage-functions is. Based on the parameter µ(k), we consider three
categories for the function, namely polynomially/sub-exponentially/exponentially hard-to-
invert functions, whose formal definitions are given in Sect. 2.4.

3Note that meaning of the function l(·) differs between BL model and NL model. In BL model, it denotes
maximum bit-length of f . In NL model, it denotes maximum loss of minimum entropy caused by f .
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Dodis et al. [DKL09] proposed symmetric-key encryption schemes secure in HL model.
Subsequently, the first PKE schemes secure in the model were proposed by Dodis et al. at
TCC’10 [DGK+10]. The other PKE schemes were proposed in [BG10, SHGL16]. Note that
the above PKE schemes were proven to be secure against chosen plaintext attacks (CPA).
A methodology to transform any CPA-secure PKE scheme in HL model into one secure
against chosen ciphertext attacks (CCA) was proposed in [ZCQ12].

The first IBE scheme (claimed to be correctly proven) secure in HL model was proposed
by Yuen et al. at Eurocrypt’12 [YCZY12]. ABE schemes have been proposed by Zhang
et al. [ZWTM13] and [WY15]. The first digital signature scheme secure in HL model was
proposed by Faust et al. at Asiacrypt’12 [FHN+12]. The other digital signature schemes
have been proposed in [YYH12, WMHT16].

1.3 Contributions
We can fairly say that it has been our common knowledge that HL (hard-to-invert leakage)
model is practically and theoretically the most desirable one among various models con-
sidering leakage-resilience. In this thesis, we give concrete solutions for some especially
meaningful open problems regarding the model, whose details are described in the latter
half of this section. In the research field on leakage-resilient cryptography, until the present
time, BL (bounded leakage) model has been the hottest topic. It is just a fact that at the
current time, papers on BL model greatly outnumber ones on the other models. One of the
reasons behind the fact must be that the simplicity of the definition of the model allows us
to use it the most easily. As we explained in the previous sections, HL model and BL model
are neither independent nor unrelated. The former one is a generalization of the latter one as
said in [DGK+10], and actually, most of schemes proven to be secure in the former one, in-
cluding some schemes introduced in this thesis, are proven to be secure in the latter one. We
think that we can fairly say that our works are very meaningful, because it is highly possible
that they further develop not only the research field on hard-to-invert leakage-resilience, but
also the research field on leakage-resilience on the whole.

Specifically, we consider three open problems and present concrete solutions for them,
as follows.

IBE with HL-Resilience [B2, C2]. One of the identity-based encryption (IBE) schemes
proposed by Yuen et al. at Eurocrypt’12 [YCZY12] has been believed to be the only
one whose hard-to-invert leakage-resilience was correctly proven. Firstly, we show
that their security proof is defective. Specifically, we introduce some concrete coun-
terexamples which can be the evidence for the deficiency. Thus, constructing IBE
schemes secure in HL model is an open problem. Actually, we construct a concrete
IBE scheme which is a modified variant of the IBE scheme proposed by Kurosawa
and Phong [KP13] and proven to be secure in BL model. Then, we prove that our
IBE scheme is secure in HL model. As a result, our IBE scheme is the first one which
is correctly proven to be secure in HL model. A talk on this work was presented at
CANS2018 [B2], and a talk on a work closely related to this work was presented at
SCIS2017 [C2].
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Digital Signature with HL-Resilience [B1, C6, D1, E2]. Digital signature schemes secure
in HL model have been proposed by Faust et al. at Asiacrypt’12 [FHN+12] and the
other ones [YYH12, WMHT16]. By modifying the result by Faust et al., we gener-
ically construct a signature, and prove that it simultaneously achieves the strong un-
forgeability and polynomially hard-to-invert leakage-resilience. Then, we instantiate
it to give a concrete construction secure under a standard assumption, namely the
decisional linear (DLIN) assumption. We emphasize that the instantiation of digital
signature is not only the first one which is resilient to polynomially hard-to-invert
leakage under standard assumptions, but also the first one which is strongly unforge-
able in HL model. A talk on this work was presented at ISC2018 [B1], and a talk on
a work closely related to this work is going to be presented at SCIS2019 [C6].

ABS/IBS with HL-Resilience [C3, C5, E1]. Although various identity-based signature (IBS)
schemes [PS06] and attribute-based signature (ABS) schemes [MPR11, OT11, SAH16]
secure in the non-leakage setting have been proposed, IBS or ABS scheme proven to
have some leakage-resilience under standard assumptions has not been proposed. We
generically construct IBS scheme, and prove that it is existentially unforgeable in HL
model. We generically construct ABS scheme whose predicate is represented as a
general circuit, and prove that it is existentially unforgeable in HL model and com-
putationally signer-private. Then, we instantiate them under standard assumptions,
namely the DLIN assumption and the symmetric external Diffie-Hellman (SXDH)
assumption. We emphasize that they are the first ones secure in HL model under stan-
dard assumptions, and more generally, the first leakage-resilient ones under standard
assumptions. Talks on works closely related to this work were presented at CSS2017
[C3] and CSS2018 [C5].

1.4 Organization of This Thesis
Except for the fist chapter, this thesis has five chapters. As we introduced in the last section,
we have three contributions. The details of the contributions are given in Chapter 3, Chapter
4 and Chapter 5, respectively. Chapter 2 is Preliminaries, where some pieces of information
which are necessary or useful for the reader to comprehend our works are given. Specifi-
cally, notations whose meanings are not necessarily obvious for the reader, and syntaxes and
definitions of security notions or properties of some cryptographic schemes such as digital
signature, IBE, IBS and ABS, are given. Chapter 6 is the conclusion of this thesis.

9



Chapter 2

Preliminaries

2.1 Basic Notations
For a, b ∈ N, [a, b] denotes {x ∈ N | a ≤ x ≤ b}. For λ ∈ N, 1λ denotes a security parameter.
We say that a function h : N → R is negligible if for every c ∈ N, there exists x0 ∈ N such
that h(x) ≤ x−c for every x ≥ x0. G is a function which takes 1λ as input, and randomly
outputs (p,G, g), where p is a prime number whose bit-size is λ, G is a multiplicative cyclic
group whose order is p, and g is a generator of G. PPTA means probabilistic polynomial

time algorithm. For a set A, a
U←− A indicates a procedure which we extract an element a

from A uniformly at random. Given a matrix A of size m × n whose (i, j)-th element is
denoted by ai, j, gA denotes a matrix of size m × n whose (i, j)-th element is gai, j . Im denotes
the identity matrix of size m. For a set A, let |A| denote the bit-length of each element of the
set. For n ∈ N, 0n denotes the bit-string composed of n number of 0.

2.2 Bilinear Groups of Prime Order
Gpg denotes a generator of (asymmetric) bilinear pairing with groups of prime order. Gpg

takes 1λ, where λ ∈ N, as input, and outputs (p,G, G̃,GT , ê, g, g̃), where p is a prime whose
bit-length is λ, G, G̃ and GT are multiplicative groups of order p, g is a generator of G, g̃
is a generator of G̃, and ê : G × G̃ → GT is a map which is computable in polynomial
time and satisfies the following conditions: ê(g, g̃) generates GT . For every a, b ∈ Zp,
ê(ga, g̃b) = ê(g, g̃)ab.

2.3 Hardness Assumptions

2.3.1 Discrete Logarithm (DL) Assumption
For λ ∈ N, let (p,G, g) ← G(1λ). DL assumption holds (on the group G), if there exists a

negligible function negl(λ) s.t. for every PPT A, it holds that Pr[x ← A(p,G, g, gx) | x
U←−

Zp] < negl(λ).

10



2.3.2 Decisional Linear (DLIN) Assumption [BBS04]
For λ ∈ N, let (p,G, g)← G(1λ). DLIN assumption holds (on the group G), if there exists a
negligible function negl(λ) s.t. for every PPTA, it holds that∣∣∣∣∣Pr[1← A(p,G, g, g1, g2, g3, g

r1
1 , g

r2
2 , g

r1+r2
3 ) | g1, g2, g3

U←− G, r1, r2
U←− Zp]

−Pr[1← A(p,G, g, g1, g2, g3, g
r1
1 , g

r2
2 , g

u
3) | g1, g2, g3

U←− G, r1, r2, u
U←− Zp]

∣∣∣∣∣ < negl(λ).

2.3.3 Decisional Diffie-Hellman (DDH) Assumption
For λ ∈ N, let (p,G, g) ← G(1λ). DDH assumption holds (on the group G), if there exists a
negligible function negl(λ) s.t. for every PPTA, it holds that

|Pr[1← A(p,G, g, gr1 , gr2 , gr1r2) | r1, r2
U←− Zp]

−Pr[1← A(p,G, g, gr1 , gr2 , gu) | r1, r2, u
U←− Zp]| < negl(λ).

2.3.4 Symmetric External Diffie-Hellman (SXDH) Assumption
For λ ∈ N, let (p,G, G̃,GT , ê, g, g̃) ← Gpg(1λ). SXDH assumption holds (on the groups G
and G̃), if the DDH assumption holds on both of the groups G and G̃.

2.4 Polynomially/Exponentially Hard-to-Invert Functions
Following [FHN+12], we define polynomially/(sub-)exponentially hard-to-invert functions.
We consider an efficiently computable function h : R → {0, 1}∗. Let x ∈ R denote input
variable of h. Let k denote minimum entropy of x which is randomly chosen from R.

Definition 1. h is a polynomially hard-to-invert leakage function, if there exists a negligible

function negl(·) s.t. for every PPT B, it holds that Pr[x← B(h(x)) | x R←− R] < negl(k).

Definition 2. h is a sub-exponentially hard-to-invert leakage function, if there exists a con-

stant 1 > c > 0 s.t. for every PPT B, it holds that Pr[x← B(h(x)) | x R←− R] < 2−kc
.

Definition 3. h is an exponentially hard-to-invert leakage function, if there exists a constant

c > 0 s.t. for every PPT B, it holds that Pr[x← B(h(x)) | x R←− R] < 2−c·k.

2.5 Goldreich-Levin Theorem for Large Fields [DGK+10]
The following Goldreich-Levin theorem for large fields was proven by Dodis et al. [DGK+10].
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Theorem 2.5.1. Let p denote a prime number. Let H denote an arbitrary subset of GF(p).
f : Hm×1 → {0, 1}∗ is an arbitrary function. If there is a distinguisher D running in time t
such that

δ B
∣∣∣∣∣Pr
[
D ( f (s), r, rs) = 1 | s U←− Hm×1, r

U←− Z1×m
p

]
−

Pr
[
D ( f (s), r, u) = 1 | s U←− Hm×1, r

U←− Z1×m
p , u

U←− Zp

]∣∣∣∣∣ ,
then there is an inverter B running in time t′ = t · poly(m, |H|, 1/δ) such that

Pr
[
B ( f (s)) = s | s U←− Hm×1

]
≥ δ3

512 · m · p2 .

2.6 Public-Key Encryption (PKE)
Syntax of PKE. Public-key encryption (PKE) consists of the following 3 polynomial-time
algorithms, where Gen and Enc are probabilistic and Dec is deterministic.

Gen(1λ)→ (pk, sk). Key-generation algorithm1 takes a security parameter 1λ as an input,
and outputs a public-key pk and a secret-key sk. pk determines plaintext space M
uniquely.

Enc(pk,M)→ C. Encryption algorithm takes pk and a plaintext m ∈ M as inputs, and
outputs a ciphertext C.

Dec(sk,C)→ M / ⊥. Decryption algorithm2 takes sk and a ciphertext C as inputs, and out-
puts a plaintext M or ⊥, where ⊥ indicates a failure of decryption.

Every PKE scheme must be correct. An PKE scheme ΣPKE = {Gen,Enc,Dec} is correct, if
for every λ ∈ N, every (pk, sk) ← Gen(1λ), every M ∈ M and every C ← Enc(pk,M), it
holds that Pr[M ← Dec(sk,C)] = 1.

Standard Security Notions of PKE. To define ciphertext indistinguishability against adap-
tively chosen ciphertexts attack (IND-CCA) for a PKE scheme ΣPKE = {Gen,Enc,Dec}, we
need the following game which is played between an adversaryA and challenger CH .

Key-Generation. CH runs (pk, sk)← Gen(1λ), and sends pk toA.

Query. A is allowed to use the decryption oracle Decrypt adaptively.

Decrypt(C): A queries a ciphertext C ∈ C. CH returns M / ⊥ ← Dec(sk,C).

1In this paper, the pair of keys (pk, sk) can be substituted by another pair of keys (ek, dk), where ek is an
encryption-key and dk is a decryption-key.

2Although Dec needs the public-key pk or the encryption-key ek as an input since the key includes infor-
mation such as the prime p and the group G, we often omit the key as the input.
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Challenge(M0,M1). A sends two plaintexts M0,M1 ∈ M. CH sets b
U←− {0, 1}, then

returns C∗ ← Enc(pk,Mb).

Query 2. A is allowed to use the decryption oracle Decrypt adaptively.

Decrypt(C): A queries a ciphertext C ∈ C which is not the challenge ciphertext C∗.
CH returns M / ⊥ ← Dec(sk,C).

Guess(b′). A sends b′ ∈ {0, 1} to CH .

Definition 4. A PKE scheme ΣPKE is IND-CCA secure if for any PPT adversaryA, AdvIND-CCAA,ΣPKE
(λ) =

|2 · Pr[b′ = b] − 1| is negligible.

Remark. Weaker security notion named ciphertext indistinguishability against chosen
plaintexts attack (IND-CPA) is defined basically in the same manner as IND-CCA except
that the adversary in the security game cannot use the decryption oracle in each one of the
phases Query and Query 2.

2.7 Labeled Public-Key Encryption (LPKE)
Syntax of LPKE. Labeled public key encryption (LPKE) consists of three polynomial
time algorithms. Gen and Enc are probabilistic. Dec is deterministic.

Gen(1λ)→ (pk, sk). Key-generation algorithm1 takes 1λ as input, and outputs a public-key
pk, and a secret-key sk. Plaintext spaceM, ciphetext space C, and label space L are
uniquely determined by pk.

Enc(pk,M, L)→ C. Encryption algorithm takes pk, a plaintext M ∈ M, and a label L ∈ L
as inputs, and outputs a ciphertext C.

Dec(sk,C, L)→ M / ⊥. Decryption algorithm2 takes sk, a ciphetext C ∈ C, and a label
L ∈ L as inputs, and outputs a plaintext M or ⊥.

Every LPKE scheme must be correct. An LPKE scheme ΣLPKE = {Gen,Enc,Dec} is cor-
rect, if for every λ ∈ N, every (pk, sk) ← Gen(1λ), every M ∈ M, every L ∈ L, and every
C ← Enc(pk,M, L), it holds that Pr[M ← Dec(sk,C, L)] = 1.

Standard Security Notions of LPKE. To define weak ciphertext indistinguishability against
adaptively chosen label and ciphertexts attacks (IND-wLCCA) for an LPKE scheme ΣLPKE =

{Gen,Enc,Dec}, we use the following game which is played between an adversary A and
challenger CH .

Key-Generation. CH runs (pk, sk)← Gen(1λ), and sends pk toA.

Query. A is allowed to use the decryption oracle Decrypt adaptively.
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Decrypt(C, L): A queries a ciphertext C ∈ C and a label L ∈ L. CH returns
M / ⊥ ← Dec(sk,C, L).

Challenge(M0,M1, L∗). A sends two plaintexts M0,M1 ∈ M, and a label L∗ ∈ L. CH sets

b
U←− {0, 1}, then returns C∗ ← Enc(pk,Mb, L∗).

Query 2. A is allowed to use the decryption oracle Decrypt adaptively.

Decrypt(C, L): A queries a ciphertext C ∈ C and a label L ∈ L such that L , L∗.
CH returns M / ⊥ ← Dec(sk,C, L).

Guess(b′). A sends b′ ∈ {0, 1} to CH .

Definition 5. An LPKE scheme ΣLPKE is IND-wLCCA secure if for any PPT adversary A,
AdvIND-wLCCAA,ΣLPKE

(λ) = |2 · Pr[b′ = b] − 1| is negligible.

Remark. Stronger notion named strong ciphertext indistinguishability against adaptively
chosen label and ciphertexts attack (IND-LCCA) is defined basically in the same manner as
IND-wLCCA except that the adversary can query (C, L) to the decryption oracle at Query 2
if C , C∗ ∨ L , L∗.

2.8 Identity-Based Encryption (IBE)
Syntax of IBE. Identity-based encryption (IBE) consists of the following 4 polynomial-
time algorithms, where Dec is deterministic and the others are probabilistic.

Setup(1λ)→ (pk,mk). Setup algorithm takes a security parameter 1λ as an input, and out-
puts a system public-key pk and a master-key mk. pk determines the ID space I and
plaintext spaceM uniquely.

KeyGen(pk,mk, ID)→ sk. User’s secret-key generation algorithm takes pk, mk, and ID ∈
I as inputs, and outputs an secret-key sk for ID.

Enc(pk,M, ID)→ C. Encryption algorithm takes pk, a plaintext M ∈ M, and ID ∈ I as
inputs, and outputs a ciphertext C.

Dec(pk,C, sk)→ M / ⊥. Decryption algorithm3 takes pk, a ciphertext C, and a secret-key
sk as inputs, and outputs a plaintext M or ⊥, where ⊥ indicates a failure of decryption.

Every IBE scheme must be correct. An IBE scheme ΣIBE = {Setup,KeyGen,Enc,Dec}
is correct, if for every λ ∈ N, every (pk,mk) ← Setup(1λ), every ID ∈ I, every sk ←
KeyGen(pk,mk, ID), every M ∈ M and every C ← Enc(pk,M, ID), it holds that Pr[M ←
Dec(pk,C, sk)] = 1.

3For some IBE schemes, the decryption algorithm takes not only (pk,C, sk), but also an ID, as input.
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Standard Security Notions of IBE. To define ciphertext indistinguishability against adap-
tively chosen ID/plaintexts attack (IND-ID-CPA) for an IBE scheme ΣIBE = {Setup,KeyGen,
Enc,Dec}, we need the following game which is played between an adversaryA and chal-
lenger CH .

Setup. CH runs (pk,mk)← Setup(1λ), and sends pk toA.

Query. A is allowed to use the key-revelation oracle Reveal adaptively.

Reveal(ID): A queries an ID ID ∈ I. CH returns sk ← KeyGen(pk,mk, ID).

Challenge(M0,M1, ID∗). A sends two plaintexts M0,M1 ∈ M and an ID ID∗ ∈ I. It is

required that ID∗ was never queried to the key-revelation oracle. CH sets b
U←− {0, 1},

then returns C∗ ← Enc(pk,Mb).

Query 2. A is allowed to use the key-revelation oracle Reveal adaptively.

Reveal(ID): A queries an ID ID ∈ I which is not the target ID ID∗. CH returns
sk ← KeyGen(pk,mk, ID).

Guess(b′). A sends b′ ∈ {0, 1} to CH .

Definition 6. A IBE scheme ΣIBE is said to be IND-ID-CPA secure or adaptively secure if
for any PPT adversaryA, AdvIND-ID-CPAA,ΣIBE

(λ) = |2 · Pr[b′ = b] − 1| is negligible.

Remark. Weaker notion named ciphertext indistinguishability against selectively chosen
ID and adaptively chosen plaintexts attack (IND-CPA) or selective security is defined basi-
cally in the same manner as IND-ID-CPA or the adaptive security except that the adversary
is forced to choose the target ID ID∗ before receiving the public-key pk.

2.9 Digital Signature
Syntax of Digital Signature. Digital signature consists of the polynomial time algorithms
{Gen,Sig,Ver}. Gen and Sig are probabilistic, and Ver is deterministic.

Gen(1λ)→ (pk, sk). Key-generation algorithm takes 1λ, where λ ∈ N, as an input, and
outputs a public-key pk and a secret-key sk. The message spaceM is uniquely deter-
mined by pk.

Sig(pk,m, sk)→ σ. Signing algorithm takes the public-key pk, a message m ∈ M, and the
secret-key sk as inputs, and outputs a signature σ.

Ver(pk,m, σ)→ 1 / 0. Signature-verification algorithm takes the public-key pk, a message
m ∈ M, and a signature σ as inputs, and outputs 1 or 0.

Any signature scheme must be correct. A signature scheme ΣSIG = {Gen,Sig,Ver} is correct
if for every (pk, sk) ← Gen(1λ), every m ∈ M, and every σ ← Sig(pk,m, sk), it holds that
Pr[1← Ver(pk,m, σ)].
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Standard Security Notions of Digital Signature. We consider strong existential unfro-
geability (in non-leakage setting) for signature schemes. Specifically, we define strong exis-
tential unforgeability against adaptively chosen messages attack (sEUF-CMA) for signature
schemes.

At first, we define a game w.r.t. a signature scheme ΣSIG = {Gen,Sig,Ver}, which is
played between an adversaryA and challenger CH as follows.

Key-Generation. CH runs (pk, sk) ← SIG.Gen(1λ). CH sends pk to A. CH initializes
the list LS , i.e., LS B ∅.

Query. A is allowed to use signing oracle Sign, adaptively.

Sign(m ∈ M): CH generates σ← SIG.Sig(pk,m, sk), then sends σ toA. After that,
CH sets LS B LS ∪ {(m, σ)}.

Forgery(m∗, σ∗). CH receives (m∗, σ∗) sent by A. We say that A wins the game if [1 ←
SIG.Ver(pk,m∗, σ∗)] ∧ [(m∗, σ∗) < LS ]. We define his advantage AdvsEUF−CMA

ΣSIG,A (λ) as
Pr[A wins.].

Definition 7. ΣSIG is sEUF-CMA-secure, if for every PPTA, AdvsEUF−CMA
ΣSIG,A (λ) is negligible.

Remark. Its weaker version, i.e., weak existential unforgeability against adaptively cho-
sen messages attack (wEUF-CMA), is defined in the same manner as sEUF-CMA except for
the winning condition of the adversaryA in the game. The adversary is said to win the game
if the signature σ∗ is a valid signature on the message m∗, i.e., [1 ← SIG.Ver(pk,m∗, σ∗)],
and the message m∗ has not been queried to the signing oracle Sign.

2.10 Identity-Based Signature (IBS)
Syntax of IBS. Identity-based signature (IBS) consists of polynomial time algorithms
{Setup,KeyGen,Sig,Ver}. Ver is deterministic and the others are probabilistic.

Setup(1λ, 1l)→ (pk,mk). 1λ, where λ ∈ N, denotes a security parameter. l ∈ N denotes
bit-length of an ID. Thus, the ID space is defined as I B {0, 1}l. Setup algorithm
takes 1λ and 1l as inputs, and outputs a system public-key pk and a master-key mk.
The message spaceM is uniquely determined by pk.

KeyGen(pk,mk, ID)→ sk. Key-generation algorithm takes pk, mk and an ID ID ∈ I as
inputs, and outputs a secret-key sk.

Sig(pk,m, ID, sk)→ σ. Signing algorithm takes pk, a message m ∈ M, an ID ID ∈ I, and
a secret-key sk as inputs, and outputs a signature σ.

Ver(pk,m, ID, σ)→ 1 / 0. Signature-verification algorithm takes pk, a message m ∈ M, an
ID ID ∈ I and a signature σ as inputs, and outputs 1 or 0.
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Any IBS scheme must be correct. An IBS scheme ΣIBS = {Setup,KeyGen,Sig,Ver} is
correct if every λ ∈ N, every l ∈ N, every (pk, sk) ← Setup(1λ, 1l), every ID ∈ I, every
sk ← KeyGen(pk,mk, ID), every m ∈ M and every σ ← Sig(pk,m, ID, sk), it holds that
Pr[1← Ver(pk,m, ID, σ)] = 1.

Standard Security Notions of IBS. We define weak existential unforgeability under adap-
tively chosen ID/messages attack (in non-leakage setting) (EUF-CMA) for IBS schemes.
We consider the following game for an IBS scheme ΣIBS = {Setup,KeyGen,Sig,Ver}which
is played by an adversaryA and a challenger CH .

Setup. CH runs (pk,mk)← Setup(1λ, 1l). CH initializes a list LG as en empty set ∅.

Query. A is allowed to adaptively use secret-key-generation oracle Generate, secret-key-
revelation oracle Reveal, and signature-generation oracle Sign as follows.

Generate(ID ∈ I): A issues ID ∈ I. CH generates sk ← KeyGen(pk,mk, ID). If
a list LID for the ID has not been generated, CH generates it and sets it to {sk}.
Else if such a list LID has already been generated, CH sets LID B LID ∪ {sk}.

Reveal(ID ∈ I, i ∈ N): A issues ID ∈ I and i ∈ N such that i ∈ [1, |LID|]. CH
retrieves the i-th secret-key from LID, then returns the secret-key.

Sign(ID ∈ I, i ∈ N,m ∈ M): A issues ID ∈ I, m ∈ M and i ∈ N such that i ∈
[1, |LID|]. CH retrieves the i-th secret-key sk from LID, then generates σ ←
SIG.Sig(pk,m, ID, sk). After that, CH returns σ and sets LS B LS ∪ {(m, ID)}.

Forgery(m∗ ∈ M, σ∗, ID∗ ∈ I). A sends a message m∗ ∈ M, a signature σ∗ and an ID
ID∗ ∈ I. Here, ID∗ must be an ID which was never queried to Reveal. We say that
A wins the game if [1 ← Ver(pk,m∗, ID∗, σ∗)] ∧ [(m∗, ID∗) < LS ]. Its advantage
AdvEUF−CMA

ΣIBS,A (λ) is defined as probability Pr[A wins.].

Definition 8. ΣIBS is EUF-CMA secure (or adaptively secure), if for every PPTA, AdvEUF−CMA
ΣIBS,A (λ)

is negligible.

2.11 Attribute-Based Signature (ABS)
General Circuit [SAH16]. A general circuit is constructed by NAND-gates of fan-in two.
Formally, a circuit is determined by integers L,N and functions I1, I2. L denotes total number
of input wires. N denotes total number of (NAND-)gates. Total number of wires in the
circuit is L + N. We number each wire. Precisely, we give the input wires the numbers
1, · · · , L, the internal wires L+1, · · · , L+N−1, and the output wire L+N. I1 : [L+1, L+N]→
[1, L+N − 1] (resp. I2 : [L+ 1, L+N]→ [1, L+N − 1]) takes an internal wire or the output
wire i ∈ [L + 1, L + N] as input and outputs left (resp. right) input wire of the gate which
generates the wire i.
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Syntax of ABS. We give syntax of attribute-based signature (ABS) whose predicate is
represented as a general circuit. It consists of polynomial time algorithms {Setup,KeyGen
,Sig,Ver}. Setup, KeyGen and Sig are probabilistic, and Ver is deterministic.

Setup(1λ, 1L)→ (pk,mk). 1λ, where λ ∈ N, denotes a security parameter. L ∈ N denotes the
bit-length of an attribute, and the universal set of attributes is denoted byU = {0, 1}L.
The setup algorithm takes 1λ and 1L as inputs, and outputs a system public-key pk and
a master-key mk. The message spaceM is uniquely determined by pk.

KeyGen(pk,mk,W ∈ U)→ sk. The key-generation algorithm takes pk, mk and an attribute
W as inputs, and outputs a secret-key sk.

Sig(pk,m, ϕ = {L,N, I1, I2}, sk)→ σ. The signing algorithm takes pk, a message m ∈ M,
a predicate ϕ represented as a general circuit {L,N, I1, I2}, and a secret-key sk for an
attributeW such that ϕ(W) = 1 as inputs, and outputs a signature σ.

Ver(pk,m, ϕ = {L,N, I1, I2}, σ)→ 1 / 0. The signature-verification algorithm takes pk, a mes-
sage m ∈ M, a predicate ϕ represented as a general circuit {L,N, I1, I2}, and a signature
σ as inputs, and outputs 1 or 0.

Any ABS scheme must be correct. An ABS scheme ΣABS = {Setup,KeyGen,Sig,Ver} is
correct if for every λ ∈ N, every L ∈ N, every (pk, sk) ← Setup(1λ, 1L), every W ∈ U,
every sk ← KeyGen(pk,mk,W), every m ∈ M, every ϕ s.t. ϕ(W) = 1 and every σ ←
Sig(pk,m, ϕ, sk), it holds that Pr[1← Ver(pk,m, ϕ, σ)] = 1.

Standard Security Notions of ABS. In this paragraph, we give definitions of two standard
security notions of ABS. The first notion is related to unforgeability. The second one is
related to signer-privacy.

Firstly, we give definition of a security notion of weak existential unforgeability under
adaptively chosen predicate/messages attack (in non-leakage setting) (EUF-CMA) for ABS
schemes. We consider the following game for an ABS scheme ΣABS = {Setup,KeyGen,Sig,Ver}
which is played by an adversaryA and a challenger CH .

Setup. CH runs (pk,mk) ← Setup(1λ, 1L). The universal set of attributes is set as U =
{0, 1}L. A list LS is set as a set ∅.

Query. A is allowed to adaptively use secret-key-generation oracle Generate, secret-key-
revelation oracle Reveal, and signature-generation oracle Sign as follows.

Generate(W ∈ U): A issuesW ∈ U. CH generates sk ← KeyGen(pk,mk,W). If
a list LW for the attribute has not been generated, CH generates it and sets it to
{sk}. Else if such list LW has already been generated, CH sets LW B LW∪ {sk}.

Reveal(W ∈ U, i ∈ N): A issues W ∈ U and i ∈ N such that i ∈ [1, |LW|]. CH
retrieves the i-th secret-key from LW, then returns it.

Sign(W ∈ U, i ∈ N,m ∈ M, ϕ): A issues W ∈ U, m ∈ M, a predicate ϕ and i ∈
N such that i ∈ [1, |LW|]. CH retrieves the i-th secret-key sk from LW, then
generates σ ← SIG.Sig(pk,m, ϕ, sk). After that, CH returns σ, and sets LS B
LS ∪ {(m, ϕ)}.
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Forgery(m∗ ∈ M, σ∗, ϕ∗). A sends a message m∗, a signature σ∗ and a predicate ϕ∗. The
predicate must be one such that every attributeW queried to Reveal satisfies ϕ∗(W) =
0. We say that A wins the game if [1 ← Ver(pk,m∗, ϕ∗, σ∗)] ∧ [(m∗, ϕ∗) < LS ]. The
advantage AdvEUF−CMA

ΣABS,A (λ) is defined as probability Pr[A wins.].

Definition 9. ΣABS is EUF-CMA secure (or adaptively secure), if for every PPTA, AdvEUF−CMA
ΣABS,A (λ)

is negligible.

Secondly, we give definition of perfect signer-privacy [MPR11, SAH16].

Definition 10. ΣABS is perfectly signer-private , if for every λ, L ∈ N, every (pk,mk) ←
Setup(1λ, 1L), every W1 ∈ U, every W2 ∈ U, every sk1 ← KeyGen(pk,mk,W1), every
sk2 ← KeyGen(pk,mk,W2), every m ∈ M and every ϕ s.t. ϕ(W1) = ϕ(W2) = 1, distribution
of σ1 ← Sig(pk,m, ϕ, sk1) and distribution of σ2 ← Sig(pk,m, ϕ, sk2) are identical.

2.12 Non-Interactive Zero-Knowledge Proof (NIZK)
Syntax of NIZK. Non-interactive zero-knowledge proof (NIZK) ΣNIZK for a language L
consists of three polynomial time algorithms {Gen,Pro,Ver}. Each one of Gen and Pro is
probabilistic. Ver is deterministic. RL denotes the witness relation.

Gen(1λ)→ crs. Common Reference String (CRS) generation algorithm takes 1λ as an in-
put, and outputs a CRS crs.

Pro(crs, x,w)→ π. The proof-generation algorithm takes the CRS crs, a statement x, and
a witness w as inputs, and outputs a proof π.

Ver(crs, x, π)→ 1 / 0. The proof-verification algorithm takes the CRS crs, a statement x,
and a proof π as inputs, and outputs 1 or 0.

Any NIZK scheme must be correct. An NIZK scheme ΣNIZK = {Gen,Pro,Ver} is correct
if for every λ ∈ N, every crs ← Gen(1λ), every (x,w) such that (x,w) ∈ RL, and every
π← Pro(crs, x,w), it holds that Pr[1← Ver(crs, x, π)] = 1.

Standard Security Notions of NIZK. We give the definitions of soundness and zero-
knowledge for an NIZK scheme.

Definition 11. An NIZK scheme ΣNIZK = {Gen,Pro,Ver} is sound if for every λ ∈ N, every
crs← Gen(1λ), and every PPTA,

Pr [A(crs)→ (x, π) s.t. [Ver(crs, x, π)→ 1] ∧ [x < L]]

is negligible.
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Definition 12. An NIZK scheme ΣNIZK = {Gen,Pro,Ver} is zero-knowledge if for every
λ ∈ N and every PPTA, there exists a PPT S = (S1,S2) such that∣∣∣∣Pr

[
AOcrs

0 (x,w)(crs)→ 1 | Gen(1λ)→ crs
]
−

Pr
[
AOcrs,td

1 (x,w)(crs)→ 1 | S1(1λ)→ (crs, td)
]∣∣∣∣

is negligible, where Ocrs
0 (x,w) returns Pro(crs, x,w) (resp. ⊥), if (x,w) ∈ RL (resp. (x,

w) < RL), and Ocrs,td
1 (x,w) returns S2(crs, x, td) (resp. ⊥), if (x,w) ∈ RL (resp. (x,w) < RL).
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Chapter 3

IBE with Hard-to-Invert
Leakage-Resilinece

3.1 Introduction for Chapter 3

3.1.1 Background
Identity-based encryption (IBE) is one type of public-key encryption (PKE), and has an
advantage such that we can use an identifier ID ∈ {0, 1}∗ (e.g., a mail address, telephone
number) as the public key. The idea of IBE was presented by Shamir [Sha84] at Crypto’84.
The first concrete IBE scheme which utilizes a bilinear map was proposed by Boneh et al.
[BF01]. Although the IBE scheme by Boneh et al. was proven to be secure in the random
oracle model, large number of IBE schemes have been proven to be secure in the standard
model, e.g., [CHK03, BB04a, BB04b, Wat05, Wat09]. Large number of lattice-based IBE
schemes have been proposed, e.g., [GPV08, ABB10].

3.1.2 Related Work
Several schemes secure in auxiliary leakage (AL) model (or hard-to-invert leakage (HL)
model) have been proposed. Symmetric-key encryption scheme [DKL09] and digital sig-
nature scheme [FHN+12, YYH12, WMHT16] have been proposed. PKE scheme has been
proposed by Dodis et al. [DGK+10]. An IBE scheme has been proposed by Yuen et al.
[YCZY12] at Eurocrypt’12. They [YCZY12] proposed not only the IBE scheme secure
in AL model, but also an IBE scheme secure in continual auxiliary leakage (CAL) model
which combines AL model and CL model. ABE schemes (secure in AL model) have been
proposed by Zhang et al. [ZWTM13] and Wang et al. [WY15].

3.1.3 Our Results
Firstly, we present an IBE construction and prove that it is fully secure, i.e., adaptively
secure, and resilient to auxiliary leakage under the decisional linear (DLIN) assumption
[BBS04] in the standard model. Secondly, we show that the proof of security of the IBE
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scheme by Yuen et al. [YCZY12] proposed in Eurocrypt’12 is wrong. Yuen et al. insist
that the IBE scheme is correctly proven to be fully secure and resilient to auxiliary leakage
under the decisional subgroup (DSG) assumptions [LW10] in the standard model. As far as
we know, among the previous works, the IBE scheme has been the only one which is proven
to be resilient to auxiliary leakage. Therefore, our IBE construction is the only one proven
to be fully secure and resilient to auxiliary leakage under standard assumptions. Below, we
explain each result in more detail.

Result 1: Presenting an IBE construction fully secure and resilient to auxiliary leakage
under the DLIN assumption. Our security model for IBE scheme is a model adding a
leakage oracle leaking information from a secret-key for the target ID to the standard full se-
curity model without leakage-resilience such as one in [Wat05]. The leakage oracle is added
between the two phases “Phase 1” and “Challenge”. The leakage oracle takes as inputs an
ID ID∗ as the target ID and a function f , then generates a secret-key sk∗ for ID∗ and returns
f (sk∗). The leakage function f is a function included in a function class Fpk,mk,L,ID∗(ξ(λ))
parameterized by variables such as the system public-key pk and master-key mk generated
in the security game, the target ID ID∗, and a negligible function ξ(λ). And, the definition of
Fpk,mk,L,ID∗(ξ(λ)) is as follows. It consists of every function f s.t. for every PPT B, it holds
that Pr[B(pk,mk,L, ID∗,OUT, f , f (sk∗)) → sk∗|(sk∗,OUT ) ← KeyGen′IN(pk,mk, ID∗)] <
ξ(λ), where the algorithm KeyGen′IN(pk,mk, ID∗) is a key-generation algorithm such that
the secret-key sk∗ is generated in the same manner as the “normal” key-generation algo-
rithm KeyGen and the variable OUT includes some information about the secret-key sk∗.

Our IBE scheme is a modified variant of one presented by Kurosawa and Phong [KP13]
which has been proven to fully secure and resilient to bounded leakage under the DLIN
assumption. We introduce an assumption “assumption X parameterized by (an integer) l ”
which is implied by the DLIN assumption. We prove that our IBE construction is secure in
our security model (mentioned earlier) with auxiliary leakage parameter ξ(λ) = 2−mϵ under
the assumption X parameterized by m, where the integer m is set to m B (4λ)1/ϵ by using a
constant 0 < ϵ < 1. Actually, m is related to the number of elements included in a secret-key
for each ID. Specifically, secret-key space is Z2m

p , where p is a prime. Although both the
IBE constructions presented in our work and the work [KP13] are proven to be secure under
the DLIN assumption, reduction cost to the assumption achieved by each work is different.
Ours is determined by the parameter m only. On the other hand, one in [KP13] is determined
by the bit-length of an ID and the total number of oracle queries made by an adversary in
security game. The difference can be interesting.

Result 2: Showing that security proof for the IBE construction proposed by Yuen et al.
[YCZY12] is wrong. Although Yuen et al. describes a proof sketch in [YCZY12], they
have not disclosed the full version of the proof. Based on the proof sketch, we show that
their proof is wrong. Specifically, we introduce several concrete examples of polynomial-
time adversary as counterexamples, each one of which becomes an evidence that their proof
is wrong1. The proof by Yuen et al. is done by a hybrid argument using a sequence of

1Note that each one of our counterexamples indicates that their current proof is wrong, but not that their
scheme cannot be proven to be secure in their security model. Thus, it is possible that their scheme is proven
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games. They insist that a lemma guarantees that two successive games are indistinguishable
since it can be reduced to an indistinguishability-type assumption, i.e., a DSG assumption
[LW10]. However, each one of our counterexamples distinguishes the two games with a
non-negligible advantage. Thus, the lemma at least does not hold.

Yuen et al. also presents an IBE scheme resilient to continual auxiliary leakage. We
can show that properly modified variants of the counterexamples for the scheme resilient to
auxiliary leakage work effectively against it as well3.

Although the ABE schemes by Zhang et al. [ZWTM13] and Wang et al. [WY15] have
been considered to be the only ABE schemes proven to be resilient to auxiliary leakage, we
show that their security proofs are defective. For details, see Sect. 3.6.

3.1.4 Organization
This chapter is organized as follows. In Sect. 3.2, definition of indistinguishability in HL
model of IBE schemes is given. In Subsect. 3.3.1, concrete construction of our IBE scheme
is given. We prove its security and consider its leakage-resilience in Subsect. 3.3.2 and
Subsect. 3.3.3, respectively. In Sect. 3.4, the results by Yuen et al. [YCZY12] are described.
Especially, definition of indistinguishability in HL model of IBE schemes used in their paper
is given in Subsect. 3.4.3, and their concrete construction of IBE scheme is given in Subsect.
3.4.4. In Sect. 3.5, we introduce some counterexamples against the security proof by Yuen
et al. In Sect. 3.6, we discuss the deficiency included in security proofs for ABE schemes
proposed by Zhang et al. [ZWTM13] and Wang et al. [WY15]. Sect. 3.7 is the conclusion
for this chapter.

3.2 Definition of Indistinguishability in HL Model of IBE
We define ciphertext indistinguishability in the auxiliary leakage (AL) model for an IBE
scheme ΣIBE = {Setup,KeyGen,Enc,Dec}. Before its concrete definition, we define a
probabilistic polynomial-time algorithm KeyGen′IN as follows.

• KeyGen′IN(pk,mk, ID)→ (sk,OUT ): This algorithm takes the system public key pk,
the master key mk, ID ∈ I, and an input-information IN ∈ {0, 1}∗ as inputs, and
outputs a user’s secret key sk for ID, and an output-information OUT ∈ {0, 1}∗ which
actually is an information about the secret-key sk.

The algorithm is used in the definition of the ciphertext indistinguishability of an IBE
scheme. The secret-key generated by the algorithm must be generated in the same man-
ner as the secret-key generated by the normal secret-key generation algorithm KeyGen.

Let us define the ciphertext indistinguishability for IBE. Firstly, we define a security
game ξ(λ)-AL-IND-ID-CPA for an IBE scheme ΠIBE = {Setup,KeyGen,Enc,Dec} and its
algorithm KeyGen′IN , which is played between an adversary A and challenger CH . Here,
AL-IND-ID-CPA indicates ciphertext indistinguishability against adaptively chosen ID and
plaintexts attacks in the auxiliary leakage model. The parameter ξ(·) whom we call auxiliary

to be secure if the proof is done in another manner.
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leakage parameter, is a negligible function s.t. ξ(λ) > 2−k, where k denotes the minimum
entropy of the user’s secret key. Concrete definition of the game is as follows.

Setup. CH runs (pk,mk) ← Setup(1λ). CH sends pk to A. CH initializes the list L by
an empty set ∅.

Query. A is allowed to use the key-revelation oracle Reveal adaptively.

Reveal(ID): A issues an ID as a query. CH runs sk ← KeyGen(pk,mk, ID), then
returns sk toA. Then, CH sets L B L ∪ {(ID, sk)}.

Leak(ID∗, f ∈ Fpk,mk,L,ID∗(ξ(λ))). A sends an ID ID∗ which was not queried to Reveal in
Query and a function f ∈ Fpk,mk,L,ID∗(ξ(λ)). Definition of the function classFpk,mk,L,ID∗(ξ(λ))
is given below the game. CH computes a secret user-key for the ID ID∗ by running
sk∗ ← KeyGen(pk,mk, ID∗). Then, CH computes f (sk∗; r), where r is a randomness
of the function.

Challenge(M0,M1). A sends two distinct plaintexts M0,M1 ∈ M. CH sets b
U←− {0, 1},

runs C∗ ← Enc(pk,Mb, ID∗), and sends C∗ toA.

Query 2. A uses the oracle Reveal adaptively in the same manner as Query except that
he cannot query ID∗ to the oracle.

Guess(b′ ∈ {0, 1}). A sends a guess b′ ∈ {0, 1} for b.

Advantage of A is defined as Advξ(λ)−AL−IND−ID−CPA
ΠIBE ,KeyGen′IN ,A

(λ) B |Pr [b = b′] − 1/2|. The func-
tion class Fpk,mk,L,ID∗(ξ(λ)) consists of every probabilistic or deterministic polynomial-time
function f : {0, 1}|sk| → {0, 1}∗ such that for every PPT B, it holds that Pr[B(pk,mk,L, ID∗,
OUT, f , f (sk∗))→ sk∗|(sk∗,OUT )← KeyGen′IN(pk,mk, ID∗)] < ξ(λ).

Definition 13. A scheme ΣIBE = {Setup,KeyGen,Enc,Dec} is (ξ(λ))-AL-IND-ID-CPA
w.r.t. KeyGen′IN , if for every PPTA, Advξ(λ)−AL−IND−ID−CPA

ΠIBE ,KeyGen′IN ,A
(λ) is negligible.

Differences from the Security Model in [YCZY12]. Our security model is different from
one in [YCZY12]. For the definition of the latter model, see [YCZY12] or Subsect. 3.4.3 of
this paper.

Actually, our security model is weaker than one in [YCZY12]. For instance, the fol-
lowing three properties make our security model weaker. Firstly, our security model lacks
leakage-resilience for the master-key. Secondly, ours does not allow the adversary to use
adaptively in the phase 1 an oracle which reveals secret-keys for IDs other than the target ID
ID∗ and an oracle which leaks some information from secret-key(s) for ID∗. Thirdly, ours
does not allow the adversary to use the leakage oracle multiple times.

On the other hand, our security model is superior to one in [YCZY12] in some respects.
One of them is related to the definition of the leakage function class.

In [YCZY12], the authors define the leakage function class in a way that any PPT cannot
find any secret-key for the target ID ID∗ with a probability larger than a concrete negligible
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function. It is hard for us to present concrete examples of functions which satisfy the defini-
tion. It is uncertain whether even a function which outputs only 1 bit of a secret-key for ID∗

really satisfies the definition. Actually, in [YCZY12], any specific example which satisfies
the definition is not given.

We define the leakage function class in a way that any PPT which is given a leakage-
information from a single secret-key sk∗ for ID∗ cannot identify sk∗ with a probability larger
than a concrete negligible function. A benefit whom we obtain by using such a definition
is that it is possible for us to present some concrete examples of functions which satisfy
the definition. Note that in the definition, the inverter B is given a variable OUT which
includes some information about the target secret-key sk∗. It is obvious that if OUT = sk∗,
no function satisfies the definition. So, we should make the information about sk∗ which is
revealed by OUT as small as possible. In Subsect. 3.3.3, we consider what kind of leakage
functions satisfy the definition. We show that not only a function which reveals 1 bit of sk∗,
but also various concrete functions, can satisfy the definition.

3.3 Proposed IBE Scheme
In Subsect. 3.3.1, concrete construction of our IBE scheme ΠIBE is given. In Subsect. 3.3.2,
its security, i.e., ciphertext indistinguishability, is proven. In Subsect. 3.3.3, we consider the
leakage allowed for our IBE scheme.

3.3.1 Concrete Construction
The scheme ΠIBE = {Setup,KeyGen,Enc,Dec} is defined as follows.

Setup(1λ, 1n): Run (p,G,GT , ê, g)← Gpg(1λ), where Gpg denotes a generator of symmetric
bilinear pairing with groups of prime order. Each one of ID space and plaintext space
is set as I B {0, 1}n andM B GT , respectively. For ϵ ∈ R such that 0 < ϵ < 1, set

m B (4λ)1/ϵ . A0 and E are set as A0
U←− Z2×m

p and E
U←− Zm×1

p , respectively.

For i ∈ [0, n], set ri
U←− Zp. Set A′0 ∈ Z2×m

p , Ai ∈ Z2×m
p , where i ∈ [1, n], and D ∈ Z2×1

p
as A′0 B r0A0, Ai B riA0, and D B A0E, respectively.

Return (pk,mk), where pk B (p,G,GT , ê, g, gA0 , gA′0 , gA1 , · · · , gAn , gD) and mk B (r0,
r1, · · · , rn,E).

Hereafter, for an ID ∈ I, ID[i] ∈ {0, 1} denotes the i-th bit of ID. An ID ∈ I is asso-
ciated to a matrix F(ID) ∈ Z2×2m

p which is defined as F(ID) =
[
A0|A′0 + Σn

i=1ID[i]Ai

]
=

A0

[
Im|(r0 + Σ

n
i=1ID[i]ri)Im

]
.

KeyGen(pk,mk, ID): For i ∈ [m + 1, 2m], set vi
U←− Zp. For i ∈ [1,m], set vi B Ei −

(r0 +
∑n

k=1 ID[k]rk)vm+i, where Ei is the (i, 1)-th element of the vector E ∈ Zm×1
p . Set

sk B gv, where the (i, 1)-th element of v ∈ Z2m×1
p is set as vi

2. Return sk.
2It obviously holds that

[
Im|(r0 + Σ

n
i=1ID[i]ri)Im

]
v = E. Note that by pre-multiplying this equation by A0,

we obtain F(ID)v = D.
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Enc(pk,M, ID): Set z
U←− Z1×2

p . Calculate C1 B gzF(ID) ∈ G1×2m and C2 B ê(g, g)zD·M ∈ GT .
Return C B (C1,C2).

Dec(pk,C, sk): C is parsed as (C1,C2). By using c ∈ Z1×2m
p , C1 is written as gc ∈ G1×2m. By

using v ∈ Z1×2m
p , sk is written as gv ∈ G2m×1. Calculate K B ê(g, g)cv ∈ GT . Return

C2/K.

The IBE scheme is correct. We consider a ciphertext for an ID ID and a plaintext M gener-
ated properly, i.e., C = (C1,C2) = (gzF(ID), ê(g, g)zD · M), and a secret user-key for the same
ID ID generated properly, i.e., sk = gv. When C is decrypted by using sk, the calculated
value of K becomes K = ê(g, g)zF(ID)v = ê(g, g)zD since F(ID)v = D. Hence, M is correctly
obtained.

The algorithm KeyGen′l is defined as follows, where l is a polynomial function.

KeyGen′l(pk,mk, ID): For i ∈ [m + 1, 2m], set vi
U←− Zp. For i ∈ [1,m], set vi B Ei − (r0 +∑n

k=1 ID[k]rk)vm+i, where Ei is the (i, 1)-th element of the vector E ∈ Zm×1
p . For every

i ∈ [1,m], do the following:

• Set Hi B {vi} and Hm+i B {vm+i}. For every j ∈ [2, l], do the following:

– Set vm+i, j
U←− Zp \ Hm+i and vi, j B Ei − (r0 +

∑n
k=1 ID[k]rk)vm+i, j. Set Hi B

Hi ∪ {vi, j} and Hm+i B Hm+i ∪ {vm+i, j}.

Set H∗ B H1 ∪ · · · ∪ H2m. Set sk B gv, where the (i, 1)-th element of v ∈ Z2m×1
p is set

as vi. Return (sk,H∗).

Obviously, for any ID ∈ I, the secret user-key outputted by KeyGen′l is generated in the
same manner as the secret user-key outputted by KeyGen.

3.3.2 Proof of Indistinguishability in HL Model
In this subsection, security, i.e., ciphertext indistinguishability in AL model, of the IBE
scheme ΠIBE is proven. Before entering the details of the proof, we introduce a new com-
putational assumption. The assumption X parameterized by an integer l is an assumption
which insists that for every PPTA and λ ∈ N,∣∣∣∣∣Pr

[
A(p,G, g, gAb)→ b

∣∣∣ (p,G, g)← G(1λ), x, y, z
U←− Z1×l

p , s, t,
U←− Zp,

A0 B

xyz
 ∈ Z3×l

p ,A1 B

 x
y

sx + ty

 ∈ Z3×l
p , b

U←− {0, 1}

 − 1/2

∣∣∣∣∣∣∣∣
is negligible. Validity of the assumption is guaranteed by the following theorem whose proof
is given below.

Theorem 3.3.1. For any l ∈ N, the assumption X parameterized by l is implied by the DLIN
assumption.
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Proof of Theorem 3.3.1. For a PPT A, an integer λ ∈ N, and integers 0 ≤ i, j ≤ l, we
define

Adv
i, j
A(λ) B

∣∣∣∣Pr
[
A
(
p,G, g, gx, gy, g(sx1+ty1 ··· sxi+tyi zi+1 ··· zl)

)
→ 1∣∣∣(p,G, g)← G(1λ), x, y, z

U←− Z1×l
p , s, t

U←− Zp

]
−Pr
[
A
(
p,G, g, gx, gy, g(sx1+ty1 ··· sx j+ty j z j+1 ··· zl)

)
→ 1∣∣∣(p,G, g)← G(1λ), x, y, z

U←− Z1×l
p , s, t

U←− Zp

]∣∣∣∣∣ , (3.1)

where for every integer k ∈ [1, l], the (1, k)-th element of x, y and z are denoted by xk, yk

and zk, respectively. Theorem 3.3.1 is proven by the following two lemmas whose proofs
are given below. □

Lemma 3.3.1. For any integer 4 ≤ i ≤ l and any PPTA, Advi,i−1
A (λ) is negligible under the

DLIN assumption.

Lemma 3.3.2. For any PPTA, Adv3,0
A (λ) is negligible under the DLIN assumption.

Proof of Lemma 3.3.1. We prove the lemma by contradiction. We prove that if we assume
that there is a PPT A which makes Advi,i−1

A (λ) non-negligible, we can construct a PPT S
which breaks the DLIN assumption, cf. Subsect. 2.3.2.
S behaves as follows. S receives (p,G, g, g1, g2, g3, g

r1
1 , g

r2
2 , g

sb
3 ) as an instance of the

DLIN problem. S sets x, y, z
U←− Z1×l

p . The vectors x, y and z are parsed as (x1 · · · xl),
(y1 · · · yl) and (z1 · · · zl), respectively. S sets a matrix gA to gx1

1 . . . gxi−1
1 g3 · gxi

1 gxi+1
1 . . . gxl

1
gy1

2 . . . gyi−1
2 g3 · gyi

2 gyi+1
2 . . . gyl

2
gr1 x1

1 · gr2y1
2 . . . gr1 xi−1

1 · gr2yi−1
2 gsb

3 · g
r1 xi
1 · gr2yi

2 gzi+1
3 . . . gzl

3

 . (3.2)

For i ∈ {1, 2, 3}, let gai denote the i-th row vector of gA. S gives (p,G, g, ga1 , ga2 , ga3) to A,
then outputs the output b′ ∈ {0, 1} byA.

If sb B r1 + r2 (resp. sb
U←− Zp), A is given an input which distributes identically to the

input whom the former (resp. latter) PPTA in the Advi,i−1
A defined by (3.1) is given. Hence,

AdvDLIN
S (λ) = Advi,i−1

A (λ). □

Proof of Lemma 3.3.2. Consider a PPT S which attempts to break the DLIN assumption.

S receives (p,G, g1, g2, g3, g
r1
1 , g

r2
2 , g

sb
3 ) as an instance of the DLIN problem. S sets x, y

U←−
Z1×l

p . S sets a matrix gA to gx1
1 gx2

1 g3 · gx3
1

gy1
2 gy2

2 g3 · gy3
2

gr1 x1
1 · gr2y1

2 gr1 x2
1 · gr2y2

2 gsb
3 · g

r1 x3
1 · gr2y3

2

 . (3.3)

S gives (p,G, g, ga1 , ga2 , ga3) toA, then outputs the output b′ ∈ {0, 1} byA.
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If sb B r1 + r2 (resp. sb
U←− Zp), A is given an input which distributes identically to the

input whom the former (resp. latter) PPT A in the Adv3,0
A defined by (3.1) is given. Hence,

AdvDLIN
A (λ) = Adv3,0

S (λ). □
The indistinguishability in HL model of the IBE scheme ΠIBE is guaranteed by the fol-

lowing theorem.

Theorem 3.3.2. IBE schemeΠIBE is (2−mϵ )-AL-IND-ID-CPA-secure with respect to KeyGen′l
under the assumption X parameterized by m.

Proof of Theorem 3.3.2. Gamei, where i ∈ {0, 1, 2}, is defined as follows.

Game0: This is a normal (2−mϵ )-AL-IND-ID-CPA game for the IBE schemeΠIBE and KeyGen′l
which is played between a PPT adversaryA and challenger CH .

Game1: This game is the same as Game0 except that the challenge ciphertext C∗ = (C∗1,C
∗
2)

is generated as follows: C∗1 B g[y∗ |r∗y∗] ∈ G1×2m and C∗2 B ê(g, g)[y∗ |r∗y∗]v∗ · Mb ∈ GT ,

where y∗
U←− Z1×m

p , r∗ B r0 + Σ
n
i=1ID∗[i]ri, and v∗ ∈ Z2m×1

p is the exponent of the
secret-key sk∗ = gv∗ for ID∗.

Game2: This game is the same as Game1 except that C∗2 of the challenge ciphertext C∗ is set

to C∗2 B ê(g, g)u · Mb, where u
U←− Zp.

For i ∈ {0, 1, 2}, Wi denotes the event where A outputs b′ such that b′ = b in Gamei.
The advantage of an adversary A playing the game of

(
2−mϵ
)
-AL-IND-ID-CPA for the

IBE scheme ΠIBE and KeyGen′l satisfies Adv(2−mϵ )−AL−IND−ID−CPA
ΠIBE ,KeyGen′l ,A

(λ) = |Pr[W0] − 1/2| ≤
|Pr[W0] − Pr[W1]| + |Pr[W1] − Pr[W2]| + |Pr[W2] − 1/2|.

By the above inequality and the following three lemmas, Theorem 3.3.2 is proven. □

Lemma 3.3.3. |Pr [W0] − Pr [W1]| is negligible under the assumption X parameterized by m.

Lemma 3.3.4. |Pr [W1] − Pr [W2]| is negligible.

Lemma 3.3.5. |Pr [W2] − 1/2| is negligible.

We prove the first two lemmas. Since Lemma 3.3.5 is true obviously, its proof is not
needed.

Proof of Lemma 3.3.3. We prove the lemma by contradiction. Specifically, we prove that
if there exists a PPTA which makes |Pr[W0]−Pr[W1]| non-negligible, then a PPT simulator
S which breaks the assumption X parameterized by m can be constructed.

The simulator S is given a matrix gĀ ∈ G3×m as an instance of the problem X, then
simulates Game0 (resp. Game1) against A if Ā is the matrix A1 (resp. A0) whose third row
vector is a linear combination of the first two row vectors (resp. a randomly generated one).
The concrete behavior by S is as follows.
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Setup: (p,G,GT , ê) ← Gpg(1λ) is run. g denotes a generator of G. S is given (g, gĀ) as an
instance of the problem in the assumption X, where Ā ∈ Z3×m

p . S sets the first (resp.
second) row vector of gA0 as the first (resp. second) row vector of gĀ.

S sets ri
U←− Zp where i ∈ [1, n], and E

U←− Zm×1
p . S computes gA′0 , gAi , where i ∈ [1, n],

and gD by using gA0 , ri, where i ∈ [1, n], and E, where A′0 = r0A0, Ai = riA0, and
D = A0E.

F(ID) is defined as F(ID) =
[
A0|A′0 + Σn

i=1ID[i]Ai

]
= A0

[
Im|(r0 + Σ

n
i=1ID[i]ri)Im

]
.

S sets pk B (q,G,GT , ê, g, gA0 , gA′0 , gA1 , · · · , gAn , gD) and mk B (r0, r1, · · · , rn,E).

S sends pk toA. S initializes the list L as an empty set ∅.

Query: WhenA issues a query to the oracle Reveal, S behaves as follows:

Reveal(ID , ID∗): S randomly chooses v ∈ Z2m×1
p satisfying[

Im|(r0 + Σ
n
i=1ID[i]ri)Im

]
v = E, and sets sk B gv. S sets L B L ∪ {(ID, sk)}.

Leak(ID∗, f ): S randomly chooses v∗ ∈ Z2m×1
p satisfying

[
Im|(r0 + Σ

n
i=1ID∗[i]ri)Im

]
v∗ = E,

then sets sk B gv∗ . S computes f (sk∗), then gives it toA.

Challenge(M0,M1): S receives two plaintexts (M0,M1). b ∈ {0, 1} is set as b
U←− {0, 1}.

r∗ ∈ Zp is set as r∗ B r0 +Σ
n
i=1ID∗[i]ri. gy ∈ G1×m is set as the third row vector of gĀ ∈

G3×m. v∗ ∈ Z2m×1
p is the exponent of sk∗ = gv∗ ∈ G2m×1 which was generated in Leak.

S sets the challenge ciphertext C∗ to C∗ B (C∗1,C
∗
2) B (g[y|r∗y], ê(g, g)[y|r∗y]v∗ ·Mb), then

sends it toA.

Query 2: If A issues a query to the oracle Reveal, S behaves in the same manner as
Query.

Guess(b′): S receives b′ ∈ {0, 1} sent by A. S outputs β′ B 1 if b′ = b. S outputs β′ B 0
if b′ , b.

We now verify that S simulates Game0 (resp. Game1) against A perfectly when the matrix
Ā ∈ Z3×m

p is the matrix A1 (resp. A0).
Firstly, we consider the case that Ā is A1. In this case, the third row of Ā, i.e., y ∈

Z1×m
p , is a linear combination of the first row and the second row of Ā, so there is z∗ ∈
Z1×2

p such that y = z∗A0. Hence, we obtain [y|r∗y] = [z∗A0|z∗(r∗A0)] = z∗F(ID∗), and
[y|r∗y]v∗ = z∗F(ID∗)v∗ = z∗D. Therefore, the challenge ciphertext is written as C∗ =
(C∗1,C

∗
2) = (gz∗F(ID∗), ê(g, g)z∗D · Mb). The challenge ciphertext C∗ is the proper challenge

ciphertext in Game0. Hence, if Ā is A1, then S simulates Game0 toA perfectly.
Next, we consider another case that Ā is A0. In this case, the third row of Ā, i.e.,

y ∈ Z1×m
p , distributes equivalently to a vector chosen uniformly at random, so the challenge

ciphertext C∗ generated by S is the proper challenge ciphertext in Game1 exactly. Hence, S
simulates Game1 againstA perfectly.

Therefore, we obtain AdvDLIN
S = |Pr[W1] − Pr[W0]|. □
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Proof of Lemma 3.3.4. At first, we define three events U (pk,mk), VL(pk,mk) and V ID∗, f
(pk,mk),L for

the game Game1 or Game2. Here, (pk,mk) is a pair of a system public-key pk and master-key
mk generated in the phase Setup, L is a list generated in the phase Query under the queries
issued by the adversary A given (pk,mk) in Setup, and (ID∗, f ) is the pair of a target ID
and a leakage function chosen byA in the phase Leakwhen (pk,mk) andLwere generated.

The probability for each event U (pk,mk), VL(pk,mk) and V ID∗, f
(pk,mk),L to happen is denoted by

Pr[U (pk,mk)], Pr[VL(pk,mk)] and Pr[V ID∗, f
(pk,mk),L]. We define a set QL(pk,mk) as {L s.t. Pr[VL(pk,mk)] > 0}.

Likewise, we define a set QID∗, f
(pk,mk),L as {(ID∗, f ) s.t. Pr[V ID∗, f

(pk,mk),L] > 0}.
We define games Game(pk,mk),L,(ID∗, f )

1 and Game(pk,mk),L,(ID∗, f )
2 , and events W (pk,mk),L,(ID∗, f )

1

and W (pk,mk),L,(ID∗, f )
2 . Game(pk,mk),L,(ID∗, f )

1 is the following game where a PPT adversaryA and
a challenger CH communicate each other:

Setup: CH runs sk∗ ← KeyGen(pk,mk, ID∗), then CH computes f (sk∗). CH sends (pk,
L, ID∗, f , f (sk∗)) toA.

Challenge(M0,M1): CH receives two distinct plaintexts M0,M1 ∈ M from A. CH sets

C∗1 B g[y|r∗y] and C∗2 B ê(g, g)[y|r∗y]v∗ · Mb, where b
U←− {0, 1}, y

U←− Z1×m
p , r∗ B

r0 +
∑n

i=1 ri · ID∗[i], and v∗ ∈ Z1×2m
p is the exponent of the secret-key sk∗ B gv∗ . CH

sends C∗ B (C∗1,C
∗
2) toA.

Query 2: A is allowed to use the oracle Reveal adaptively.

Reveal(ID , ID∗): CH runs sk ← KeyGen(pk,mk, ID), then sends it toA.

Guess(b′ ∈ {0, 1}): A sends a guess b′ ∈ {0, 1} for b.

Game
(pk,mk),L,(ID∗, f )
2 is the same as Game(pk,mk),L,(ID∗, f )

1 except that the second element C∗2 of

the challenge ciphertext C∗ is set to C∗2 B ê(g, g)u, where u
U←− Zp.

Let W1,(pk,mk),L,(ID∗, f ) (resp. W2,(pk,mk),L,(ID∗, f )) denote the event where A outputs b′ such
that b′ = b in Game(pk,mk),L,(ID∗, f )

1 (resp. Game(pk,mk),L,(ID∗, f )
2 ).

By the definitions of W1, U (pk,mk), VL(pk,mk), V ID∗, f
(pk,mk),L and W2,(pk,mk),L,(ID∗, f ), we obtain

Pr [W1] =
∑

(pk,mk)←Setup(1λ)

∑
L∈QL(pk,mk)

∑
(ID∗, f )∈Q(ID∗ , f )

(pk,mk),L

Pr
[
W1,(pk,mk),L,(ID∗, f )

]
· Pr
[
V ID∗, f

(pk,mk),L

]
·Pr
[
VL(pk,mk)

]
· Pr
[
U (pk,mk)

]
(3.4)
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Likewise, we obtain an equation for Pr[W2]. Hence, we obtain

|Pr[W1] − Pr[W2]|

=

∣∣∣∣∣∣∣∣∣∣
∑

(pk,mk)←Setup(1λ)

∑
L∈QL(pk,mk)

∑
(ID∗, f )∈Q(ID∗ , f )

(pk,mk),L

(
Pr
[
W1,(pk,mk),L,(ID∗, f )

]
− Pr
[
W2,(pk,mk),L,(ID∗, f )

])
·Pr
[
V ID∗, f

(pk,mk),L

]
· Pr
[
VL(pk,mk)

]
· Pr
[
U (pk,mk)

]∣∣∣∣
≤

∑
(pk,mk)←Setup(1λ)

∑
L∈QL(pk,mk)

∑
(ID∗, f )∈Q(ID∗ , f )

(pk,mk),L

∣∣∣∣Pr
[
W1,(pk,mk),L,(ID∗, f )

]
− Pr
[
W2,(pk,mk),L,(ID∗, f )

]∣∣∣∣
·Pr
[
V ID∗, f

(pk,mk),L

]
· Pr
[
VL(pk,mk)

]
· Pr
[
U (pk,mk)

]
.

By Lemma 3.3.6, there exists a negligible function negl(λ) s.t.

|Pr[W1] − Pr[W2]| ≤ negl(λ)

·


∑

(pk,mk)←Setup(1λ)

∑
L∈QL(pk,mk)

∑
(ID∗, f )∈Q(ID∗ , f )

(pk,mk),L

Pr
[
V ID∗, f

(pk,mk),L

]
· Pr
[
VL(pk,mk)

]
· Pr
[
U (pk,mk)

] .
(3.5)

We give three facts. It holds that
∑

(pk,mk)←Setup(1λ) Pr
[
U (pk,mk)

]
= 1. It also holds that for

any (pk,mk) ← Setup(1λ),
∑
L∈QL(pk,mk)

Pr
[
VL(pk,mk)

]
= 1. It also holds that for any (pk,mk) ←

Setup(1λ) and any L ∈ QL(pk,mk),
∑

(ID∗, f )∈QID∗ , f
(pk,mk),L

Pr
[
V ID∗, f

(pk,mk),L

]
= 1.

By the above three facts and (3.5), it is true that for any PPTA, there exists a negligible
function negl(λ) such that |Pr[W1] − Pr[W2]| ≤ negl(λ). □

Lemma 3.3.6. For any PPTA, any λ ∈ N, any (pk,mk)← Setup(1λ), any L ∈ QL(pk,mk) and

any (ID∗, f ) ∈ QID∗, f
(pk,mk),L, there exists negl(λ) such that |Pr[W1,(pk,mk),L,(ID∗, f )]−Pr[W2,(pk,mk),L,(ID∗, f )]| ≤

negl(λ).

Proof of Lemma 3.3.6. To prove the lemma, we use Lemma 3.3.7.
We consider a PPT simulator S. S behaves as the distinguisher D in Lemma 3.3.7. S

behaves concurrently as the challenger in Game(pk,mk)
1 or Game(pk,mk)

2 , so S has to simulate
each game againstA. The concrete behavior of S is as follows:

Setup: S is the distinguisher D in Lemma 3.3.7, so S is given (pk,mk,L, ID∗, f , f (sk∗),[
y|r∗y] , s), where s ∈ Zp is

[
y|r∗y] v∗ or u. S sends (pk,L, ID∗, f , f (sk∗)) toA.

Challenge(M0,M1): S receives two plaintexts M0,M1 ∈ M sent from A. S sets b
U←−

{0, 1}, then sets C∗1 B g[y|r∗y] ∈ G1×2m and C∗2 B ê(g, g)s · Mb. After that, S sends
C∗ B (C∗1,C

∗
2) toA.

Query 2: WhenA issues a query to Reveal, S acts as follows:
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Reveal(ID , ID∗): S runs sk ← KeyGen(pk,mk, ID), then sends sk toA.

Guess(b′ ∈ {0, 1}): S receives b′ ∈ {0, 1} from A. If b′ = b, then S outputs β′ B 1.
Otherwise, then S outputs β′ B 0.

For any PPT A, any λ ∈ N, any (pk,mk) ← Setup(1λ), any L ∈ QL(pk,mk) and any (ID∗, f ) ∈
QID∗, f

(pk,mk),L, we obtain Pr[W1,(pk,mk),L,(ID∗, f )] = Pr[S(pk,mk,L, ID∗, f , f (sk∗), [y|r∗y], [y|r∗y]v∗

)→ 1|(sk∗,H∗)← KeyGen′l(pk,mk, ID∗), y
U←− Z1×m

p ] and
Pr[W2,(pk,mk),L,(ID∗, f )] = Pr[S(pk,mk,L, ID∗, f , f (sk∗), [y|r∗y], u)→ 1|
(sk∗,H∗)← KeyGen′l(pk,mk, ID∗), y

U←− Z1×m
p , u

U←− Zp].
Hence, we obtain

δ B
∣∣∣∣Pr
[
W1,(pk,mk),L,(ID∗, f )

]
− Pr
[
W2,(pk,mk),L,(ID∗, f )

]∣∣∣∣
=
∣∣∣Pr
[S (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , [y|r∗y] v∗)→ 1∣∣∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗), y

U←− Z1×m
p

]
−Pr
[S (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , u)→ 1∣∣∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗), y

U←− Z1×m
p , u

U←− Zp

]∣∣∣∣∣ . (3.6)

Lemma 3.3.7 guarantees that there exists a PPT inverter B such that

Pr
[B (pk,mk,L, ID∗, f , f (sk∗),H∗)→ sk∗∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗)

] ≥ δ3

1024 · m2 · p3 · l . (3.7)

We assume that there exists a polynomial function poly(λ) such that δ ≥ 1/poly(λ). Since
p is p < 2λ, m is m = (4λ)1/ϵ , and l can be written as a polynomial function poly∗(λ), we
obtain

δ3

1024 · m2 · p3 · l >
1

1024 · (4λ)2/ϵ · 23λ · poly(λ)3 · poly∗(λ)
> 2−3λ · 2−λ = 2−4λ = 2−mϵ .

(3.8)
(3.7) and (3.8) lead us to a contradiction against the fact that f ∈ F(pk,mk),L,(ID∗, f )(2−mϵ ).

Hence, there are no polynomial functions poly(λ) such that δ ≥ 1/poly(λ). Therefore, by
(3.6), for any PPT A, any λ ∈ N, any (pk,mk) ← Setup(1λ), any L ∈ QL(pk,mk) and any

(ID∗, f ) ∈ QID∗, f
(pk,mk),L,

∣∣∣∣Pr
[
W1,(pk,mk),L,(ID∗, f )

]
− Pr
[
W2,(pk,mk),L,(ID∗, f )

]∣∣∣∣ is negligible. □
Proof of the following Lemma 3.3.7 is given below.

Lemma 3.3.7. The notations of pk, mk, L, ID∗ and f are the same as the ones in the proof
of Lemma 3.3.4. pk and mk are parsed as pk = (p,G,GT , ê, g, gA0 , gA′0 , gA1 , · · · , gAn , gD)
and mk = (r0, r1, · · · , rn,E), respectively. r∗ is set as r∗ B r0 +

∑n
i=1 ri · ID∗[i].
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We assume that there exists a distinguisherD running in time t such that

δ B
∣∣∣Pr
[D (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , [y|r∗y] v∗)→ 1∣∣∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗), y

U←− Z1×m
p

]
−Pr
[D (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , u )→ 1∣∣∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗), y

U←− Z1×m
p , u

U←− Zp

]∣∣∣∣∣ ,
where sk∗ = gv∗ and v∗ ∈ Z2m×1

p . If such a distinguisher exists, we can construct an inverter
B running in time t′ = t · poly(m, l, 1

δ
) such that

Pr
[B (pk,mk,L, ID∗, f , f (sk∗),H∗)→ sk∗∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗)

] ≥ δ3

1024 · m2 · p3 · l .

Proof of Lemma 3.3.7. The proof is similar to the proof of Goldreich-Levin Theorem for
large fields by Dodis et al. [DGK+10].

Consider a PPT adversary A, a pair of keys (pk,mk) ← Setup(1λ), a list L ∈ QL(pk,mk),
and a pair (ID∗, f ) ∈ QID∗, f

(pk,mk),L.
We assume that there exists a distinguisherD running in time t such that

δ B
∣∣∣Pr
[D (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , [y|r∗y] v∗)→ 1∣∣∣∣∣r′ U←− {0, 1}∗, (sk∗,H∗)← KeyGen′l(pk,mk, ID∗; r′), y

U←− Z1×m
p

]
−Pr
[D (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , u)→ 1∣∣∣∣∣r′ U←− {0, 1}∗, (sk∗,H∗)← KeyGen′l(pk,mk, ID∗; r′), y

U←− Z1×m
p , u

U←− Zp

]∣∣∣∣∣ , (3.9)

where r′ ∈ {0, 1}∗ is the randomness which is used when running KeyGen′l . As is obvious
from the definition of KeyGen′ of ΠIBE, |H∗| ≤ 2ml.

For a randomness r′ ∈ {0, 1}∗, αr′ and βr′ denote the following.

αr′ B Pr
[D (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , [y|r∗y] v∗)→ 1∣∣∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗; r′), y

U←− Z1×m
p

]
(3.10)

βr′ B Pr
[D (pk,mk,L, ID∗, f , f (sk∗),

[
y|r∗y] , u)→ 1∣∣∣∣∣(sk∗,H∗)← KeyGen′l(pk,mk, ID∗; r′), y

U←− Z1×m
p , u

U←− Zp

]
(3.11)

By (3.9), we obtain Er′
[
αr′ − βr′

] ≥ δ. In this proof, we say that r′ ∈ {1, 0}∗ is good when r′

satisfies αr′ − βr′ ≥ δ/2. By the averaging argument, we obtain

Pr
[
r′ is good.

∣∣∣∣∣r′ U←− {0, 1}∗
]
≥ δ/2. (3.12)
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Let n′ B 128 · (2ml)2 · m/δ2 = 512l2m3/δ2. Let c ∈ N be the minimum integer greater
than or equal to 2 which satisfies pc ≥ 512l2m3/δ2.

An inverter B is given (pk,mk,L, ID∗, f , f (sk∗),H∗) as inputs, where (sk∗,H∗) were
randomly generated as (sk∗,H∗) ← KeyGen′l(pk,mk, ID∗; r′). The randomness r′ ∈ {0, 1}∗
is supposed to be “good”. B behaves as follows:

• Choose r†
U←− Zp as a guess for r∗ ∈ Zp. Obviously,

Pr
[
r† = r∗

]
= 1/p. (3.13)

• Calculate the probability κr′ ∈ [0, 1] such that αr′ − δ/8 ≥ κr′ ≥ βr′ + δ/8 as follows:

Generate O(n†/δ2) pairs of (y, u) by y
U←− Z1×m

p and u
U←− Zp. For each pair of (y, u),

calculate the value of βr′ . Let e denote the average of the calculated values of βr′ . By
the Chernoff’s bound, e satisfies Pr

[|e − βr′ | > δ/8
] ≤ 2−n† . We set κr′ as κr′ B e+δ/4.

• Generate a set S ⊆ Zc×1
p \ 0c×1 of cardinality n′ such that every distinct two elements

u1,u2 ∈ S is linearly independent as follows: Generate a set S such that every element
of the set is a vector whose the (1, 1)-th element is 1.

• Set z1, · · · , zc
U←− Z1×m

p and h1, · · · , hc
U←− Zp. For every ρ̄ = (ρ1, · · · , ρc) ∈ S , where

ρ1, · · · , ρc ∈ Zp, set yρ̄ B
∑c

i=1 ρizi and kρ̄ B
∑c

i=1 ρihi.

• For i ∈ [1,m], repeat the following procedures until the guess for (v∗i , v
∗
m+i) is deter-

mined:

– A guess a ∈ H∗ (resp. b ∈ H∗) for v∗i (resp. v∗m+i) is chosen randomly.

– For every ρ̄ ∈ S , do:

∗ Set τi,a,b
ρ̄

U←− Zp.
∗ Give the following tuple to D as an input, and then observe the output,

where ei denotes the unit column vector whose i-th element is 1:(
pk,mk,L, ID∗, f , f (sk∗),

[
yρ̄ + τi,a,b

ρ̄ ei

∣∣∣r†yρ̄ + r†τi,a,b
ρ̄ ei

]
,

kρ̄ + τi,a,b
ρ̄ a + r†τi,a,b

ρ̄ b
)
. (3.14)

– Calculate the average si,a,b ∈ [0, 1] of the outputs of the Ds. Then, if si,a,b ≥ κr′ ,
the guess of (a, b) for (v∗i , v

∗
m+i) is determined, and set v†i B a and v†m+i B b. Else

if si,a,b < κr′ , choose another guess of (a, b) ∈ H∗ × H∗ for (v∗i , v
∗
m+i), and repeat

the above procedures until the guess is determined.

• Set v† ∈ Z2m×1
p as a column vector whose the i-th element is v†i where i ∈ [1, 2m].

Output sk† B gv† ∈ G2m×1 as a (determined) guess for sk∗ = gv∗ .

We consider the running time of B. Since κr′ can be calculated efficiently [DGK+10],
we can ignore that. Hence, the running time of B is approximately equivalent to the time
which B needs to run D. B runs the distinguisher m · |H∗|2 · n′ ≤ 2048l4m6/δ2 times in the
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worst case. The running time ofD is assumed to be t, so the order of the running time of B
is t · poly(m, l, 1/δ).

We two events. E1 is defined as the event where the guess r† for r∗ by B is correct.
Obviously, Pr [E1] = Pr

[
r† = r∗

]
= 1/p. E2 is defined as the event where for every ρ̄ ∈ S ,

yρ̄ and kρ̄ satisfy kρ̄ =
[
yρ̄
∣∣∣r∗yρ̄] v∗. Obviously, Pr [E2] = Pr

[
∀ρ̄ ∈ S , kρ̄ =

[
yρ̄
∣∣∣r∗yρ̄] v∗] ≥

Pr
[
∀ j ∈ [1, c], h j =

[
z j

∣∣∣r∗z j

]
v∗
]
= 1/pc. E1 and E2 are independent, so we obtain

Pr [E1 ∧ E2] = Pr [E2] Pr [E1] ≥ 1/pc+1. (3.15)

Below, we explain that B can correctly guess sk∗ at least with probability 1/2 in the case
when E1 ∧ E2 occurs.

Firstly, we consider the case that both of the guess of a ∈ H∗ for v∗i by B and the guess
of b ∈ H∗ for v∗m+i are correct. B gives the input (3.14) to D, and observes the output. By
Lemma 3.3.8, in the case that a = v∗i ∧ b = v∗m+i, the input given to D by B and the input
given to D in (3.10) distribute identically. Hence, the probability that the distinguisher D
whom B runs outputs 1 is exactly αr′ . Therefore, the probability that B lets through the
correct guess of (a, b) is, by Chebyshev’s inequality, Pr

[
si,a,b ≤ κr′

]
≤ 1

n′·(δ/8)2 =
1

8l2m3 .
Secondly, we consider the case that either the guess of a ∈ H∗ for v∗i by B or the guess

of b ∈ H∗ for v∗m+i is wrong. By Lemma 3.3.8, in the case that a , v∗i ∨ b , v∗m+i, the
input given to D by B and the input given to D in (3.11) distribute identically. Hence,
the probability that the distinguisher D whom B runs outputs 1 is exactly βr′ . Therefore,
the probability that B determines the wrong guess of (a, b) is, by Chebyshev’s inequality,
Pr
[
si,a,b ≥ κr′

]
≤ 1

n′·(δ/8)2 =
1

8l2m3 .

Hence, the probability thatB fails to guess sk∗ = gv∗ correctly is at most
∑|H∗ |2·m

j=1 1/8l2m3 =

|H∗|2 · m/8l2m3 ≤ 4l2m3/8l2m3 = 1/2. We can also say that the probability that B guesses
sk∗ = gv∗ correctly is at least 1/2. By this fact, (3.12) and (3.15), we obtain

Pr
[
B
(
pk,mk, ID∗,H∗,L†qA , { fi,LID,i, fi(pk,mk,Li)}i∈[1,qA]

)
→ sk∗∣∣∣(sk∗,H∗,L†qA , { fi(pk,mk,Li)}i∈[1,qA])← PrmRfr(pk,mk,RA)
]

≥ δ
2
· 1

pc+1 ·
1
2
=
δ

4pc+1 . (3.16)

If p ≥ 512l2m3/δ2, then by the definition of c ∈ N, c is c = 2. It obviously holds that
p3 < p3 · 256 · l · m2/δ2. Hence, we obtain δ/4pc+1 = δ/4p3 > δ3/1024 · l · m2 · p3.

Else if p < 512l2m3/δ2, then by the definition of c ∈ N, we obtain the following two
inequalities, pc ≥ 512 · l2 · m3/δ2 and pc ≤ p · 512 · l2 · m3/δ2. By the latter inequality, it
obviously holds that pc+1 ≤ p2 · 512 · l2 · m3/δ2. Hence, by p > 2lm, we obtain δ/4c+1 ≥
δ3/2048 · l2 · m3 · p2 > δ3/1024 · l · m2 · p3.

□

Lemma 3.3.8. We assume that the event E1 ∧ E2 occurs. For any i ∈ [1,m], if a = v∗i ∧ b =
v∗m+i (resp. a , v∗i ∨ b , v∗m+i), the input which is given to D by B and the input which is
given toD in (3.10) (resp. (3.11)) distribute identically.
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Proof of Lemma 3.3.8. Firstly, we consider the case that a = v∗i ∧ b = v∗m+i. Since we
assume that the event E1 ∧ E2 occurs, the last element of the input which is given to D
by B is transformed as follows: kρ̄ + τi,a,b

ρ̄ a + r†τi,a,b
ρ̄ b =

[
yρ̄
∣∣∣r∗yρ̄] v∗ + τi,a,b

ρ̄ a + r∗τi,a,b
ρ̄ b =[

yρ̄
∣∣∣r∗yρ̄] v∗ + τi,a,b

ρ̄ v∗i + r∗τi,a,b
ρ̄ v∗m+i =

[
yρ̄ + τi,a,b

ρ̄ ei

∣∣∣r∗yρ̄ + r∗τi,a,b
ρ̄ ei

]
v∗. Since any two elements

in S are linearly independent and τi,a,b
ρ̄ is uniformly random in Zp, yρ̄+τi,a,b

ρ̄ ei ∈ Z1×m
p which is

generated by B distributes identically to y which is generated by y
U←− Z1×m

p . Hence, second
to the last element in the input given to D by B distributes identically to the input given to
D in (3.10). Therefore, if a = v∗i ∧b = v∗m+i, the input given toD by B distributes identically
to the input given toD in (3.10).

Secondly, we prove the lemma in the case that a , v∗i ∨ b , v∗m+i. We prove the lemma
only in the case that a , v∗i ∧ b = v∗m+i. Neither proof of the lemma for the case that
a = v∗i ∧ b , v∗m+i nor the case that a , v∗i ∧ b , v∗m+i is omitted, since the proof for each case
is almost the same as the case that a , v∗i ∧ b = v∗m+i.

In this case, there exists u∗i ∈ Zp such that a − v∗i = u∗i , 0. Then, the last element in
the input given to D by B is transformed as follows: kρ̄ + τi,a,b

ρ̄ a + r†τi,a,b
ρ̄ b =

[
yρ̄
∣∣∣r∗yρ̄] v∗ +

τi,a,b
ρ̄ (v∗i +u∗i )+ r∗τi,a,b

ρ̄ v∗m+i =
[
yρ̄ + τi,a,b

ρ̄ ei

∣∣∣r∗yρ̄ + r∗τi,a,b
ρ̄ ei

]
v∗+τi,a,b

ρ̄ u∗i . Since any two elements
in S are linearly independent and τi,a,b

ρ̄ is uniformly random in Zp, yρ̄+τi,a,b
ρ̄ ei ∈ Z1×m

p which is

generated byB distributes identically to y which is generated by y
U←− Z1×m

p . Moreover, since
τi,a,b
ρ̄ is uniformly random in Zp, kρ̄ + τi,a,b

ρ̄ a + r†τi,a,b
ρ̄ b generated by B distributes identically

to u which is generated by u
U←− Zp. Therefore, if a , v∗i ∧ b = v∗m+i, the input given toD by

B distributes identically to the input given toD in (3.11). □

3.3.3 Specific Examples of Allowed Leakage-Functions
In this subsection, we consider the leakage allowed for our IBE scheme ΠIBE. We write the
secret user-key sk∗ as sk∗ = gv∗ ∈ G2m×1, where v∗ ∈ Z2m×1

p . For i ∈ [1, 2m], the (i, 1)-th
element of v∗ is denoted by v∗i .

At first, we consider the case that the leakage function leaks no information about sk∗.
As is obvious from the concrete construction of our IBE scheme, for any i ∈ [1,m], v∗i
and v∗m+i are dependent each other. Hence, any PPT B in the definition of leakage-function
class which is given some information about v∗i can get some information about v∗m+i, and
vice versa. On the contrary, if neither information about v∗i nor v∗m+i is leaked, any PPT B
cannot identify either v∗i or v∗m+i with probability greater than 1/l, information-theoretically.
Therefore, the following statement is true, information-theoretically: for any λ ∈ N, any
(pk,mk) ← Setup(1λ), any L ∈ QL(pk,mk), any ID∗ which is not in the list L, any function
f which leaks no information about sk∗, and any PPT B, it holds that Pr[B(pk,mk,L, ID∗,
f , f (sk∗),H∗) → sk∗|(sk∗,H∗) ← KeyGen′l(pk,mk, ID∗)] ≤ 1/lm. Since m > 4λ, if we set l
such that l > 2, then l−m < 2−4λ = 2−mϵ . Hence, for any λ ∈ N, any (pk,mk) ← Setup(1λ),
any L ∈ QL(pk,mk) and any ID∗ which is not in the list L, any leakage function f which leaks
no information about sk∗ is allowed to query.

Next, we consider the case that the leakage function leaks some information about sk∗.
Obviously, the leakage function which fully leaks sk∗ is not an allowed one, because any
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PPT B given the leakage information can identify sk∗ with probability 1. Hereafter, we let
c be a constant positive real number, and we consider a leakage function which satisfies
the following condition: among m “pairs” of (v∗1, v

∗
m+1), · · · , (v∗m−1, v

∗
2m), there are at least

4λ/c pairs of (v∗i , v
∗
m+i), where i ∈ [1,m], such that the leakage function does not leak any

information about either v∗i or v∗m+i.
The following statement is true, information-theoretically: for any λ ∈ N, any (pk,mk)←

Setup(1λ), anyL ∈ QL(pk,mk), any ID∗ which is not in the listL, any leakage function f which
satisfies the above condition, and any PPT B, it holds that Pr[B(pk,mk,L, ID∗, f , f (sk∗),
H∗) → sk∗|(sk∗,H∗) → KeyGen′l(pk,mk, ID∗)] ≤ 1/l4λ/c. If we set l such that l > 2c, then
l−4λ/c < 2−4λ = 2−mϵ . Hence, For any λ ∈ N, any (pk,mk) ← Setup(1λ), any L ∈ QL(pk,mk),
any ID∗ which is not in the listL, any leakage function f which satisfies the above condition
is allowed to query.

How Large is the Amount of Leakage Allowed for Our IBE Scheme? In the above,
we considered a leakage function such that there are at least 4λ/c pairs of (v∗j, v

∗
m+ j), where

j ∈ [1,m], any one of which does not leak any information about either v∗j or v∗m+ j. We did
not impose any restriction on the leakage function regarding the remaining m − 4λ/c pairs.
We can allow the function to fully leak every one of the m − 4λ/c pairs. The bigger the
parameter m = (4λ)1/ϵ whose ϵ is 0 < ϵ < 1 is, the bigger the number m − 4λ/c of pairs
which can be fully leaked is. Therefore, the amount of allowed leakage linearly increases
with the size of the secret user-key.

3.4 The Results in [YCZY12]
In this section, the results by Yuen et al. [YCZY12] is described. In Subsect. 3.4.1, bi-
linear groups of composite order is explained. In Sebsect. 3.4.2, definitions of decisional
subgroup (DSG) assumptions introduced in [YCZY12] are given. In Subsect. 3.4.3 and
Subsect. 3.4.4, their definition of the ciphertext indistinguishability for IBE schemes and
their concrete construction of IBE scheme are described, respectively. They adopts the dual
system encryption methodology, so defining the semi-functional secret-key and ciphertext
is needed. The definitions are given in Subsect. 3.4.5. The proof sketch for the security of
their IBE construction is given in Subsect. 3.4.6. Our counterexamples against their security
proof will be described in the next section.

3.4.1 Bilinear Groups of Composite Order
Gcomp denotes a generator of bilinear groups of composite order. Gcomp takes 1λ as input,
and outputs (N = p1 p2 p3,G,GT , ê), where p1, p2 and p3 are distinct λ-bit primes, G and GT

are cyclic groups of order N, and ê : G × G → GT is a map computable in polynomial time
which satisfies the following conditions. Firstly, for every g, h ∈ G and a, b ∈ ZN , it holds
that ê(ga, hb) = ê(g, h)ab. Secondly, if g is a generator of G, ê(g, g) becomes a generator of
GT .
Gpi , where i ∈ {1, 2, 3}, denotes a subgroup of order pi in G. For every i, j ∈ {1, 2, 3}

such that i , j, for every hi ∈ Gpi and h j ∈ Gp j , it holds that ê(hi, h j) = 1. Gpi p j , where
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i, j ∈ {1, 2, 3} such that i , j, denotes a subgroup of order pi p j in G. Any element T ∈ Gpi p j

can be uniquely written as the product of an element in Gpi and an element in Gp j .

3.4.2 Decisional Subgroup (DSG) Assumptions
DSG Assumption 1 [YCZY12]. We consider a problem whose advantage of a PPT ad-
versaryA is defined as:

Adv
(1)
A,DS G(λ)

B Pr
[
b← A(N,G,GT , ê, g, X1, X2, X3,Tb)

∣∣∣(N = p1 p2 p3,G,GT , ê)← Gcomp(1λ),

g, X1
U←− Gp1 , X2

U←− Gp2 , X3
U←− Gp3 ,T0

U←− Gp1 p2 ,T1
U←− Gp1 , b

U←− {0, 1}
]
.

DSG Assumption 2 [YCZY12]. We consider a problem whose advantage of a PPT ad-
versaryA is defined as:

Adv
(2)
A,DS G(λ)

B Pr
[
b← A(N,G,GT , ê, g, X1X2, X3,Y2Y3,Tb)

∣∣∣(N = p1 p2 p3,G,GT , ê)← Gcomp(1λ),

g, X1,Z1
U←− Gp1 , Xi,Yi,Zi

U←− Gpi(i ∈ {2, 3}),T0 B Z1Z3,T1 B Z1Z2Z3, b
U←− {0, 1}

]
.

DSG Assumption 3 [YCZY12]. We consider a problem whose advantage of a PPT ad-
versaryA is defined as:

Adv
(3)
A,DS G(λ)

B Pr
[
b← A(N,G,GT , ê, g, gαX2, gsY2,Z2, X3,Tb)

∣∣∣(N = p1 p2 p3,G,GT , ê)← Gcomp(1λ),

g
U←− Gp1 , X2,Y2,Z2

U←− Gp2 , X3
U←− Gp3 , α, s

U←− ZN ,T0 B ê(g, g)αs,T1
U←− GT , b

U←− {0, 1}
]
.

Definition 14. We say that DSG assumption i ∈ {1, 2, 3} holds, if for every PPT A, his
advantage Adv(i)

A,DS G(λ) is negligible.

3.4.3 Definition of Indistinguishability in HL Model of IBE
Yuen et al. use the following IND-ID-CPA game for an IBE scheme ΣIBE = {Setup,
KeyGen,Enc,Dec}. F (gu(ku)) denotes a function class which consists of functions com-
putable in polynomial time, where ku denotes the minimum entropy of the secret user-key,
and gu(ku) denotes a negligible function such that gu(ku) > 2−ku .

Setup. CH runs (pk,mk)← Setup(1λ). CH sends pk toA.

Query. A is allowed to use extraction oracle KEO, leakage oracle LO, and update oracle
UO adaptively.
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KEO(ID, i): i should be i ∈ N+, and ID ∈ I should be such that list LID for the ID
has been generated. CH finds out the tuple in the form of (skID, ID, j) in LID

whose third element is the biggest among all tuples in the list. Let j† ∈ N+ denote
the biggest integer. If i ≤ j†, then CH retrieves the tuple (sk′ID, ID, i) ∈ LID, and
sends sk′ID toA.

LO( fi, ID): fi should be fi ∈ Fi(gu(ku)), and ID ∈ I should be such that list LID

for the ID has been generated. The index i of fi indicates that this query is the
i-th query to the leakage oracle. The definition of the function class Fi(gu(ku))
is described after the definition of the game. CH computes fi(pk,mk,LID, ID),
then sends it toA.

UO(ID): ID should be ID ∈ I. If the list LID for ID has not been generated, CH
generates the list LID initialized by ∅, and sets j† B 0. Otherwise, CH finds out
the tuple in the form of (skID, ID, j) in LID whose third element is the biggest
integer among all tuples in the list, and sets j† to the biggest integer.
CH runs sk′ID ← KeyGen(pk,mk, ID), and setsLID B LID∪{(sk′ID, ID, j†+1)}.

Challenge(M0,M1, ID∗). A sends two plaintexts M0,M1 and an ID ID∗. CH sets b
U←−

{0, 1} and calculates C∗ ← Enc(pk,Mb, ID∗). CH sends C∗ toA.

Query 2. A is allowed to use the oracle KEO in the same manner as Query.

Guess(b′). A sends a bit b′ ∈ {0, 1} to CH as a guess for b.

Every ID queried to KEO in Query or Query 2 should not be ID∗. Advantage of A is
defined as Adv(gu(ku))−AL−IND−ID−CPA

ΠIBE ,A (λ) B |Pr [b′ = b] − 1/2|.

Definition 15. We say that an IBE scheme ΣIBE = {Setup,KeyGen,Enc,Dec} is (gu(ku))-
AL-IND-ID-CPA secure, if for every PPT adversary A in the game of (gu(ku))-AL-IND-ID-
CPA for ΠIBE,A’s advantage Adv(gu(ku))−AL−IND−ID−CPA

Π,A (λ) is negligibly small.

The definition of the function class Fi(gu(ku)), where i ∈ [1, ql], is as follows. Fi(gu(ku))
is a set consists of every function fi which is computable in polynomial time and satisfies
the following condition: for every PPT B, it holds that

Pr
[
B
(
pk, ID∗, S , { f j(pk,mk,LID j, j, ID j)} j∈[1,i]

)
→ skID∗ such that skID∗ ∈ S ∗

]
≤ gu(ku).

Here, S is the set of all secret keys which has been extracted until the i-th leakage oracle
query ( fi, IDi) is issued, S ∗ is the set of all secret keys for ID∗, and f j and ID j, where
j ∈ [1, i − 1], are the function and ID in the j-th leakage oracle query ( f j, ID j) respectively.
Every element or function of pk,mk, S , S ∗ and { f j(pk,mk,LID j, j, ID j)} j∈[1,i]) is randomly
generated or computed.

3.4.4 Concrete IBE Construction Secure in HL Model
Each algorithm of the IBE construction ΠYCZY12

IBE = {Setup,KeyGen,Enc,Dec} proposed by
Yuen et al. is described below.
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Setup(1λ): Run (N = p1 p2 p3,G,GT , ê)← Gcomp(1λ), where Gcomp is a generator of bilinear

groups of composite order. Set g1, u, h
U←− Gp1 , X3

U←− Gp3 , and m B (3λ)1/ϵ , where

0 < ϵ < 1. For every i ∈ [1,m], set αi, ti
U←− ZN , vi

U←− Gp1 , T1,i,T2,i,T3,i
U←− Gp3 ,

K1,i B gαi
1 · hti · T1,i, K2,i B uti · T2,i, and K3,i B vti

i · T3,i. Return (pk,mk), where pk B
(N,G,GT , ê, g1, u, h, X3, {vi, yi B ê(g1, vi)αi}i∈[1,m]) and mk B ({K1,i,K2,i,K3,i}i∈[1,m]). ID
space (resp. plaintext space) is I = ZN (resp. M = GT ).

KeyGen(pk,mk, ID): For every i ∈ [1,m], set ri
U←− ZN and R1,i,R2,i

U←− Gp3 . Return
skID B ({Di, Ei}i∈[1,m]), where Di B K1,i · K ID

2,i · (uID · h)ri · R1,i, and Ei B K3,i · vri
i · R2,i.

Enc(pk,M, ID): For every i ∈ [1,m], set si
U←− ZN . Return C B (A, {Bi,Ci}i∈[1,m]), where

A B M ·∏i∈[1,m] ysi
i , B B vsi

i , and Ci B (uID · h)si .

Dec(pk,C, ID): Return A ·∏i∈[1,m] ê(Ci, Ei)/
∏

i∈[1,m] ê(Bi,Di).

3.4.5 Semi-functional Secret-Keys/Ciphertexts
Under the dual system encryption framework, Yuen et al. define master-keys, secret user-
keys and ciphertexts in semi-functional (SF) form, each one of which is perturbed by an
element in Gp2 . Below, each one of ḡ2 and ĝ2 denotes a randomly generated generator of
Gp2 .

Given a normal master-key mk = ({K1,i,K2,i,K3,i}i∈[1,m]), an SF master-key mk′ is com-
puted as follows: mk′ B ({K′1,i,K′2,i,K′3,i}i∈[1,m]) B ({K1,i · ḡθi2 ,K2,i · ḡτθi2 ,K3,i · ḡwi

2 }i∈[1,m]), where

θ1, · · · , θm
U←− [1, λ], and w1, · · · ,wm, τ

U←− ZN .
Given a normal secret user-key sk = ({Di, Ei}i∈[1,m]), an SF secret user-key sk′ is com-

puted as follows: sk′ B ({C′i , E′i }i∈[1,m]) B ({Ci · ḡκi2 , Ei · ḡzi
2 }), where κ1, z1, · · · , κm, zm

U←− ZN .
Given a normal ciphertext C = (A, {Bi,Ci}i∈[1,m]), an SF ciphertext C′ is computed as

follows: C′ B (A′, {B′i ,C′i }) B (A, {Bi · ĝδi2 ,Ci · ĝxi
2 }), where δ1, xi, · · · , δm, xm

U←− ZN .
Decrypting a normal ciphertext for an ID by using an SF secret user-key for the same ID

always succeeds. Likewise, decrypting an SF ciphertext for an ID by using a normal secret
user-key for the same ID always succeeds. On the other hand, decrypting an SF ciphertext
for ID by using an SF secret user-key for the same ID almost always fails, because the
decryption results in a blinded message by a factor ê(ḡ2, ĝ2)Σ

m
i=1{zi xi−κiδi}. We say that an SF

secret user-key sk′ = ({D′i , E′i }i∈[1,m]) for ID is nominally semi-functional (NSF) for an SF
ciphertext C′ = (A′, {B′i ,C′i }) for the same ID, or that an SF ciphertext C′ for ID is NSF for
an SF secret user-key sk′ for the same ID, if it holds that Σm

i=1{zixi − κiδi} ≡ 0 (mod p2). If
an SF secret user-key (resp. ciphertext) is not NSF, we say that the key (resp. ciphertext) is
truly semi-functional (TSF).

3.4.6 Sketch of Proof of Indistinguishability in HL Model
Yuen et al. claim that security of their IBE scheme is guaranteed by the following theorem.
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Theorem 3.4.1. ([YCZY12]) IBE scheme ΠYCZY12
IBE is (2−mϵ )-AL-ID-CPA secure under the

DSG assumptions 1, 2, 3 given in Subsect. 3.4.2.

Proof-Sketch of Theorem 3.4.1. The definition of the games whom Yuen et al. use to
prove Theorem 3.4.1 is as follows:

• Gamereal is the normal (2−mϵ )-AL-IND-ID-CPA game for ΠYCZY12
IBE in which an adver-

sary A plays with a challenger CH . Let qe, ql and qu denote the number of times
whichA uses KEO, LO andUO, respectively. q denotes q = qe + ql + qu.

• Gamerestricted is the same as Gamereal except that every ID queried to the extraction
oracle satisfies ID , ID∗ mod p2.

• Game0 is the same as Gamerestricted except for the following respects. Firstly, a gener-
ator ĝ2 of Gp2 is randomly generated in Setup. Secondly, the challenge ciphertext is
generated in semi-functional form.

• Gamei, where i ∈ [1, q], is the same as Game0 except for the following respects.
Firstly, a generator ḡ2 of Gp2 is randomly generated in Setup. Secondly, for every
j ∈ [1, i], the reply against the j-th oracle query is computed by using secret-keys in
semi-functional form.

• Game f inal is the same as Gameq except that the challenge ciphertext is generated as a

(semi-functional) ciphertext of a uniformly chosen plaintext M′ U←−M.

AdvX, where X ∈ {real, restricted, 0, 1, · · · , q, f inal}, denotes the advantage of A in
GameX. For the advantage ofA in the game of (2−mϵ )-AL-IND-ID-CPA for the IBE scheme
ΠYCZY12

IBE , it holds that

Adv
(2−mϵ )−AL−IND−ID−CPA
ΠYCZY12

IBE ,A (λ) = Advreal ≤ |Advreal − Advrestricted|

+ |Advrestricted − Adv0| +
q∑

i=1

|Advi−1 − Advi| +
∣∣∣Advq − Adv f inal

∣∣∣ + Adv f inal.

Theorem 3.4.1 is proven by all of the following lemmas whose proofs are omitted in [YCZY12].

Lemma 3.4.1. If the DSG assumption 2 holds, then |Advreal − Advrestricted| is negligible.

Lemma 3.4.2. If the DSG assumption 1 holds, then |Advrestricted − Adv0| is negligible.

Lemma 3.4.3. If the DSG assumption 2 holds, then for any i ∈ [1, q], |Advi−1 − Advi| is
negligible.

Lemma 3.4.4. If the DSG assumption 3 holds, then
∣∣∣Advq − Adv f inal

∣∣∣ is negligible.
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f1(pk,mk,LID∗ , ID∗):
LID∗ is parsed as {(skID∗ , ID∗, 1)}, skID∗ is parsed as ({Di, Ei}i∈[1,m]), Return (D1, E1)

f2(pk,mk,LID∗ , ID∗):
pk is parsed as pk B (N,G,GT , ê, g1, u, h, X3, {vi, yi}i∈[1,m]), LID∗ is parsed as {(skID∗ , ID∗, 1)}
skID∗ is parsed as ({Di, Ei}i∈[1,m]), r′1

U←− ZN , D′1 B D1 · (uID · h)r′1 , E′1 B E1 · vr′1

Return (D′1, E
′
1)

f3(pk,mk,LID∗ , ID∗):
LID∗ is parsed as {(skID∗ , ID∗, 1), (sk′ID∗ , ID∗, 2)}, sk′ID∗ is parsed as ({D′i , E′i }i∈[1,m])
Return (D′1, E

′
1)

f4(pk,mk,LID∗ , ID∗):
sk′ID∗ ← KeyGen(pk,mk, ID∗), sk′ID∗ is parsed as ({D′i , E′i }i∈[1,m]), Return (D′1, E

′
1)

Figure 3.1: Functions f1, f2, f3 and f4.

3.5 Counterexamples against the Security Proof in [YCZY12]
We have not found any cryptanalysis of their scheme. However, we have found some coun-
terexamples of adversaries, each one of which indicates that their proof of Theorem 3.4.1 is
defective. More precisely, they indicate that Lemma 3.4.3, which originally is Lemma 9 in
[YCZY12], is false.

A Counterexample. In this paragraph, we give the details about one of the counterexam-
ples. In the next paragraph, we describe the other ones of them.

One of the counterexamples, denoted byA1, behaves in Gamereal as follows.

1. In Setup,A1 receives pk which is parsed as (N,G,GT , ê, g1, u, h, X3, {vi, yi}i∈[1,m]).

2. In Query,A1 queries ID∗ toUO, where ID∗
U←− ZN . After that,A1 queries ID∗ and a

function f1 in Fig. 3.1 to LO, then receives (D1, E1) ∈ G2. After that,A1 queries ID∗

and a function f2 in Fig.3.1 to LO, then receives (D′1, E
′
1) ∈ G2.

3. In Challenge, A1 queries two plaintexts M0,M1
U←− GT and ID∗, and receives a

challenge ciphertext C∗ = (A∗, {B∗i ,C∗i }i∈[1,m]).

4. In Guess, A1 calculates K1 B ê(C∗1, E1), K2 B ê(B∗1,D1), K′1 B ê(C∗1, E
′
1), and K′2 B

ê(B∗1,D
′
1). A1 outputs 1 if K2/K1 = K′2/K

′
1, and outputs 0 otherwise.

As is obvious from A1’s behavior, A1 does not try to guess the challenge bit b correctly.
However, such a behavior is allowed and there can be a PPT adversary which behaves like
A1. In [YCZY12], the authors insist that every one of the 4 lemmas holds for any PPT
adversary which can be A1. For the case of A1, we need to consider 6 concrete games
Gamereal, Gamerestricted, Game1, Game2, Game3 and Game f inal. The existence of A1 indicates
that Lemma 3.4.3 is false since it states that |Adv1 − Adv2| is negligible because of the DSG
assumption 2. The details are written below.
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Although the real proof of Lemma 3.4.3 is not written in [YCZY12] and has not been
disclosed, it must proceed as follows. A PPT simulator S which tries to break the DSG
assumption 2 receives an instance which is denoted by (N,G,GT , ê, g, X1X2, X3,Y2Y3,Tb). S
perfectly simulates one of Game1 and Game2 when b = 0, and the other one when b = 1, to a
PPT adversaryA which can beA1. As a result, we get a fact that distinguishing Game1 and
Game2 is at least as hard as distinguishing T0 and T1 in the DSG assumption 2.

If the proof is done as above, it implies that any PPT adversary can not distinguish Game1

from Game2 with a non-negligible advantage, because if such an adversary exists, the simu-
lator can distinguish T0 from T1 with a non-negligible advantage by using the adversary. Let
us explain below that A1 can distinguish Game1 from Game2 with a non-negligible advan-
tage. Precisely, A1 which tries to distinguish Game1 from Game2, communicates with CH
as follows.

Setup: CH runs (pk,mk) ← Setup(1λ). pk and mk are parsed as pk = (N = p1 p2 p3,G,
GT , ê, g1, u, h, X3, {vi, yi B ê(g1, vi)αi}i∈[1,m]) and mk = ({K1,i,K2,i,K3,i}), where K1,i B
gαi

1 · hti · T1,i, K2,i B uti · T2,i, and K3,i B vti
i · T3,i, respectively. CH sends pk to

A1. Generators of Gp2-part of semi-functional secret key and challenge ciphertext are
randomly chosen, and they are denoted by ḡ2 and ĝ2 respectively.

Query: IfA1 issues the following three queries sequentially, CH acts as follows.

UO(ID∗): For every i ∈ [1,m], after CH sets ri, κi, zi
U←− ZN and R1,i,R2,i

U←− Gp3 , CH
sets Di and Ei as follows, respectively:

Di B K1,i · K ID∗
2,i · (uID∗ · h)ri · R1,i · ḡκi2 = gαi

1 · (u
ID∗ · h)ri+ti · T1,i · T2,i · R1,i · ḡκi2

Ei B K3,i · vri
i · R2,i = vri+ti

i · T3,i · R2,i · ḡzi
2 .

After that if the game is Game2, CH sets skID∗ B ({Di, Ei}i∈[1,m]), and if the
game is Game1, CH sets skID∗ B ({Di/ḡ

κi
2 , Ei/ḡ

zi
2 }i∈[1,m]). After that, CH sets

LID∗ B {(skID∗ , ID∗, 1)}.
LO( f1, ID∗): CH calculates f1(pk,mk,LID∗ , ID∗), and returns it toA1. After that, in

Game2, the tuple (skID∗ , ID∗, 1) ∈ LID∗ is retrieved, and the secret-key skID∗ =

({Di, Ei}i∈[1,m]) is changed to sk′ID∗ B ({Di/ḡ
κi
2 , Ei/ḡ

zi
2 }i∈[1,m]).

LO( f2, ID∗): CH calculates f2(pk,mk,LID∗ , ID∗), and returns it toA1.

Challenge(M0,M1, ID∗): CH sets b
U←− {0, 1}. For every i ∈ [1,m], after setting si, δi, xi

U←−
ZN , CH sets A∗, B∗i and C∗i as follows:

A∗ B Mb ·
∏

i∈[1,m]

ysi
i , B∗i B vsi

i · ĝ
δi
2 , C∗i B (uID∗ · h)si · ĝxi

2 .

After that, CH sends C∗ = (A∗, {B∗i ,C∗i }i∈[1,m]) toA1.

Guess(b′): CH receives b′ fromA1, where b′ is set as 1 iff K2/K1 = K′2/K
′
1.
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In Game1, K1,K2,K′1 and K′2 are written as follows.

K1 = ê(C∗1, E1) = ê((uID∗ · h)s1 · ĝx1
2 , v

r1+t1
1 · T3,1 · R2,1) = ê(uID∗ · h, v1)s1(r1+t1)

K2 = ê(B∗1,D1) = ê(vs1
1 · ĝ

δ1
2 , g

α1
1 · (u

ID∗ · h)r1+t1 · T1,1 · T2,1 · R1,1)
= ê(uID∗ · h, v1)s1(r1+t1) · ê(v1, g1)s1α1

K′1 = ê(C∗1, E
′
1) = ê((uID∗ · h)s1 · ĝx1

2 , v
r1+r′1+t1
1 · T3,1 · R2,1 · ḡz1

2 ) = ê(uID∗ · h, v1)s1(r1+r′1+t1)

K′2 = ê(B∗1,D
′
1) = ê(vs1

1 · ĝ
δ1
2 , g

α1
1 · (u

ID∗ · h)r1+r′1+t1 · T1,1 · T2,1 · R1,1 · ḡκ12 )
= ê(uID∗ · h, v1)s1(r1+r′1+t1) · ê(v1, g1)s1α1

Because K2/K1 = K′2/K
′
1 = ê(v1, g1)s1α1 ,A1 outputs b′ = 1 with probability 1.

In Game2, K′1 and K′2 are written in the same form as Game1. K1 and K2 are written as
follows.

K1 = ê(C∗1, E1) = ê((uID∗ · h)s1 · ĝx1
2 , v

r1+t1
1 · T3,1 · R2,1 · ḡz1

2 ) = ê(uID∗ · h, v1)s1(r1+t1) · ê(ḡ2, ĝ2)x1z1

K2 = ê(B∗1,D1) = ê(vs1
1 · ĝ

δ1
2 , g

α1
1 · (u

ID∗ · h)r1+t1 · T1,1 · T2,1 · R1,1 · ḡκ12 )
= ê(uID∗ · h, v1)s1(r1+t1) · ê(v1, g1)s1α1 · ê(ḡ2, ĝ2)δ1κ1

Hence, K2/K1 is as follows.

K2/K1 = ê(v1, g1)s1α1 · ê(ḡ2, ĝ2)δ1κ1−x1z1

=

ê(v1, g1)s1α1 = K′2/K
′
1 (δ1κ1 ≡ x1z1 (mod p2))

ê(v1, g1)s1α1 · ê(ḡ2, ĝ2)δ1κ1−x1z1 , K′2/K
′
1 (otherwise)

Each one of κ1, z1, δ1 and x1 is chosen uniformly at random from ZN . So, the probability
that they satisfy the relation δ1κ1 ≡ x1z1 (mod p2) is 1/p2. Hence, A1 outputs b′ = 1 with
probability 1/p2, and outputs b′ = 0 with probability 1 − 1/p2.

Therefore, advantage of A1 distinguishing Game1 from Game2 becomes the following
non-negligible value.∣∣∣Pr

[
b′ = 1|Game1

] − Pr
[
b′ = 1|Game2

]∣∣∣ = |1 − 1/p2| = 1 − 1/p2.

In the above, we explained how one of our counterexamples, i.e.,A1, effectively works.
We have found some other counterexamples. The details of them are given in the next
paragraph.

The Other Counterexamples. In the last paragraph, a counterexample A1 was given. In
this paragraph, the other two counterexamples are given.

The second PPT adversary is denoted byA2 and behaves in Gamereal as follows.

1. In Setup,A2 receives pk which is parsed as (N,G,GT , ê, g1, u, h, X3, {vi, yi}i∈[1,m]).

2. In Query, A2 queries ID∗ to UO, where ID∗
U←− ZN . After that, A2 queries ID∗ and

a function f1 in Fig. 3.1 to LO, then receives (D1, E1) ∈ G2. After that, A2 queries
ID∗ toUO again. After that,A2 queries ID∗ and a function f3 in Fig. 3.1 to LO, then
receives (D′1, E

′
1) ∈ G2.
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3. In Challenge, A2 queries M0,M1 and ID∗, where M1,M2
U←− GT . A2 receives a

challenge ciphertext C∗, where C∗ is parsed as (A∗, {B∗i ,C∗i }i∈[1,m]).

4. In Guess, A2 calculates K1 B ê(C∗1, E1), K2 B ê(B∗1,D1), K′1 B ê(C∗1, E
′
1), and K′2 B

ê(B∗1,D
′
1). A2 outputs 1 if K2/K1 = K′2/K

′
1, and outputs 0 otherwise.

The third PPT adversary is denoted byA3 and behaves in Gamereal as follows.

1. In Setup,A3 receives pk which is parsed as (N,G,GT , ê, g1, u, h, X3, {vi, yi}i∈[1,m]).

2. In Query, A3 queries ID∗ to UO, where ID∗
U←− ZN . After that, A3 queries ID∗ and

the function f1 in Fig. 3.1 toLO, then receives D1 ∈ G, E1 ∈ G. After that,A3 queries
ID∗ and a function f4 in Fig. 3.1, then receives D′1 ∈ G, E′1 ∈ G.

3. In Challenge, A3 queries M0,M1 and ID∗, where M1,M2
U←− GT . A2 receives a

challenge ciphertext C∗, where C∗ is parsed as (A, {Bi,Ci}i∈[1,m]).

4. In Guess, A3 calculates K1 B ê(C1, E1), K2 B ê(B1,D1), K′1 B ê(C1, E′1), and K′2 B
ê(B1,D′1). A2 outputs 1 if K2/K1 = K′2/K

′
1, and outputs 0 otherwise.

As A1, the new PPT adversaries A2 and A3 can also distinguish Game1 from Game2 with a
non-negligible advantage.

3.6 Deficiency of Security Proofs for Some ABE Schemes
We have found some defective parts in the full security proof of the ABE schemes by Zhang
et al. [ZWTM13] and Wang et al. [WY15].

Zhang et al. do not use the GL theorem properly in the proof of their Lemma 5.4, so
the proof of the lemma is not correct. And, we have found some concrete PPT adversaries
as counterexamples which indicate that the proof of their Lemma 5.3 is wrong. The coun-
terexamples behave similarly to ones against the proof of Yuen et al. [YCZY12] introduced
in Subsect. 3.5.

Since Wang et al. [WY15] do not use the GL theorem anywhere in their security proof,
their scheme lacks the guarantee for its leakage-resilience.

3.7 Conclusion for Chapter 3
In the work introduced in this chapter, we achieved the following contributions.

Firstly, we showed that the IBE scheme [YCZY12] which has been believed to be the
only known one whose IND-CPA security in HL model (or AL model) was correctly proven
is defective in its security proof. Specifically, we presented some concrete PPT adversaries
as counterexamples which indicate the deficiency of the security proof. Note that the coun-
terexamples effectively work to imply the deficiency of security proof for their another IBE
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scheme which has been believed to be the only known one whose security in continual aux-
iliary leakage (CAL) model 3 was correctly proven. We also showed that only known ABE
schemes with HL resilience proposed in [ZWTM13, WY15] includes deficiency in their
security proofs.

Secondly, we gave another definition of IND-CPA security considering HL resilience
distinct from the one in [YCZY12]. We suitably modified the IBE scheme proposed by
Kurosawa and Phong [KP13] which has been proven to be secure in BL model. Then, we
proved that our IBE scheme is secure in our HL model under the DLIN assumption in the
standard model. As a result, considering the first contribution given above, we can say that
our IBE scheme is the first one whose HL resilience was correctly proven.

Related to this work, we can present various open problems.
For instance, one of them is presenting an IBE scheme secure in an improved security

model. As we mentioned in Sect. 3.2, adversaries considered in our security model are
weak in the following respects. Firstly, we do not allow them to use the key-revelation
oracle and the leakage oracle simultaneously and adaptively. Secondly, we do not allow
multiple leakage (from a single key for the target ID ID∗). Also, we do not allow (single)
leakage from multiple keys for ID∗. Improving our model in such respects and presenting
an IBE scheme secure in the model can be an open problem.

The other open problems include presenting the first ABE or more functional encryption
scheme secure in HL model, and presenting an IBE scheme secure in HL model under
assumptions other than the DLIN assumption.

3Continual auxiliary leakage model [YCZY12] is a combination model of CL model and AL model (or
HL model).
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Chapter 4

Digital Signatures with Hard-to-Invert
Leakage-Resilience

4.1 Introduction for Chapter 4

4.1.1 Background
We say that a signature scheme is weakly (existentially) unforgeable if it is hard to forge
a signature on a message not signed before. We say that a signature scheme is strongly
(existentially) unforgeable if it is hard to forge a signature on any message which can be a
message signed before. Formal definitions of each security notion in non-leakage setting
was given in Sect. 2.9. Since most of the signature schemes generate a signature randomly,
there is a theoretical/practical gap between the weak unforgeability and strong unforgeabil-
ity. Moreover, in some applications, strongly unforgeable signature scheme is required, e.g.,
Canetti-Halevi-Katz transformation [CHK04].

4.1.2 Related Work
Katz and Vaikuntanathan [KV09] defined that fully leakage-resilient (FLR) signature is a
signature resilient to not only the direct leakage from the secret-key, but also the leakage
from the randomnesses used to generate the secret-key and signatures generated by the sign-
ing oracle. FLR or non-FLR signature schemes secure in the bounded-leakage model have
been proposed in [ADW09, KV09, MTVY11, BSW11] and the others.

The concept of the hard-to-invert leakage-resilience was presented by Dodis et al. [DKL09].
They proposed symmetric-key encryption schemes which is IND-CPA or IND-CCA se-
cure and resilient to exponentially hard-to-invert leakage. In a subsequent work, Dodis
et al. [DGK+10] started a research on public-key encryption with hard-to-invert leakage-
resilience. They defined two leakage-function classes. The classHow(ξ(λ)) (resp. Hpkow(ξ(λ)))
consists of every polynomial-time computable function f : {0, 1}|pk|+|sk| → {0, 1}∗ such that
any PPT algorithm A which is given f (pk, sk) (resp. (pk, f (pk, sk))) as input is able to
guess sk correctly only with a probability smaller than ξ(λ), where ξ(λ) > 2−k is a negligible
function and (pk, sk) is a randomly generated key-pair. They proved that the BHHO en-
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cryption scheme [BHHO08] and a slightly modified version of the GPV encryption scheme
[GPV08] are IND-CPA secure in HL model w.r.t. the function class How(1/µ1(λ)), where
µ1(λ) is a sub-exponential function. They also mentioned in Subsect. 1.2 of [DGK+10] that
a PKE scheme which is IND-CPA secure in HL model w.r.t. Hpkow(1/µ2(λ)), where µ2(λ) is
a polynomial function, is given in its full paper.

Faust et al. presented the first research result on digital signature with hard-to-invert
leakage-resilience [FHN+12]. To construct a signature scheme secure in HL model, there is
an obstacle whom we have to overcome. It is how to prevent from an adversary choosing an
algorithm generating a valid signature on a message as a leakage-function, then output the
pair of signature and message. Faust et al. proposed a signature scheme which is wEUF-
CMA (weakly existentially unforgeability under adaptively chosen messages attack) secure
in HL model w.r.t. the function class Hpkow(1/µ3(λ)), where µ3(λ) is an exponential func-
tion. Their solution to overcome the obstacle explained earlier is to include a ciphertext
of the secret-key sk in a signature. Specifically, their signature scheme adopts the labeled
public-key encryption (LPKE) as a building block, and includes a ciphertext of the secret-
key in a signature. Moreover, for their signature scheme, the hardness parameter 1/µ3(λ) in
the leakage function class is set as 1/µ3(λ) << 2−ldk , where ldk ∈ N denotes the bit-length
of the decryption-key dk of the LPKE scheme. This solution effectively works. The reason
is as follows. Since any PPT algorithm is able to guess the decryption-key dk correctly
with probability 2−ldk , any PPT inverter in the definition of the function classHpkow(1/µ3(λ))
which is given a signature including a ciphertext C of the secret-key sk is able to guess
sk correctly with probability 2−ldk >> 1/µ3(λ) by guessing the decryption-key dk, then de-
crypting the ciphertext C with the guessed dk. Hence, the signing algorithm is excluded
from the class Hpkow(1/µ3(λ)). By the way, they showed that their signature scheme can be
instantiated under standard assumptions such as the DLIN assumption [BBS04].

Independently of Faust et al. [FHN+12], Yuen et al. [YYH12] also presented a re-
search result on signature secure in HL model. To overcome the obstacle to construct a
signature with hard-to-invert leakage resilience, Yuen et al. proposed an original security
model, which is named selective auxiliary input model. In the security model, the adversary
is allowed to choose as the leakage-functions only functions which are independent of the
public-key. They proposed a signature scheme secure in the security model. Their signature
scheme is FLR and resilient to polynomially hard-to-invert leakage. Here, their definition of
leakage function f being resilient to polynomially hard-to-invert leakage is as follows: any
PPT algorithm which is given (pk, S , f (state)) is able to guess sk correctly only with a neg-
ligible probability, where (pk, sk) is a randomly generated key-pair, S is a set of randomly
generated signatures on the messages queried to the signing oracle, and state is a set of ran-
domnesses used to generate sk and the signatures S . Their definition of leakage-function is
undesirable since it depends on the messages whose signatures are generated on the signing
oracle.

Subsequently, Wang et al. [WMHT16] proposed a signature scheme secure in the se-
lective auxiliary input model. Their signature scheme is FLR and resilient to polynomially
hard-to-invert leakage. Their definition for a function to be resilient to polynomially hard-
to-invert leakage is not the same as the one by Yuen et al. [YYH12]. It is improved as
follows: any PPT algorithm which is given f (sk) is able to identify sk only with a negligible
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probability. However, their scheme needs differing input obfuscator (diO), indistinguish-
able obfuscator (iO), and point-function obfuscator with auxiliary input (AIPO), each one
of which has been constructed only under strong assumptions.

Note that each one of the signature schemes with auxiliary leakage resilience by Faust
et al., Yuen et al., and Wang et al., is not strongly existentially unforgeable, but weakly
existentially unforgeable.

Boneh et al. [BSW06] proposed a method to transform a weakly unforgeable signa-
ture scheme into a strongly unforgeable one. However, their transformation can be applied
to partitioned signatures only. In a subsequent work, Steinfeld et al. [SPW07] proposed a
method to transform any weakly unforgeable signature into a strongly unforgeable one. Note
that each transformation by Boneh et al. and Steinfeld et al. has a common property such
that each one of the public-key, secret-key and signature of the strongly unforgeable sig-
nature scheme becomes each one of the public-key, secret-key and signature of the weakly
unforgeable signature whom some new elements are added to. Huang et al. [HWZ07] pro-
posed another transformation where no new elements are added to the public-key, secret-key
and signature.

Wang et al. [WT14] modified the transformation by Steinfeld et al. [SPW07] to get a
transformation from a signature weakly existentially unforgeable and FLR in the bounded
leakage model to a strongly unforgeable one. The transformation by Steinfeld et al. utilizes
two chameleon hash functions (with no leakage-resilience). In the transformation by Wang
et al., one of the chameleon hash functions is assumed to satisfy a property such that any
PPT algorithm cannot find a strong collision even if the algorithm is given a length-bounded
information about the secret-key.

The transformation by Wang et al. needs to add some new elements to both the key-pair
and signature. Huang et al. [HHP16] modifies the transformation by Huang et al. [HWZ07]
to get a method to transform a signature weakly existentially unforgeable and FLR in BL
model into a strongly unforgeable one where no elements are added to the signature1.

4.1.3 Our Result
We propose a generic construction of signature scheme strongly which is unforgeable and
resilient to polynomially hard-to-invert leakage and can be instantiated under standard as-
sumptions. Specifically, we give an example of its instantiation under the decisional linear
(DLIN) assumption [BBS04]. Our security model is not the selective auxiliary leakage
model [YYH12], so the leakage-function can be dependent on the public-key.

Our result is a desirable one because of the following two independent points. Firstly,
our signature instantiation is the first one which is resilient to polynomially hard-to-invert
leakage under standard assumptions. Secondly, our signature instantiation is the first one
which is strongly unforgeable and has hard-to-invert leakage-resilience.

1By the transformation in [HHP16], some new elements are added to the public-key and secret-key.
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4.1.4 Our Approach
Our result is obtained by modifying the one by Faust et al. [FHN+12]. Before explaining
how the modification is done, we explain the result by Faust et al. in detail.

Faust et al. proposed a generic construction of a signature scheme secure in the wEUF-
CMA security model w.r.t. the function class Hpkow(ξ(λ)). It consists of three building
blocks. They are second pre-image resistant hash function (SPRHF), labeled PKE (LPKE)
whose decryption-key dk has bit-size ldk ∈ N, and non-interactive zero-knowledge proof
(NIZK) whose trapdoor td has bit-size ltd ∈ N. The hardness parameter of the leakage
function class is set as ξ(λ) = 2−(λ+ldk+ltd). A signature σ on a message m consists of an
LPKE ciphertext c and an NIZK proof π. Concretely, the ciphertext c is an LPKE ciphertext
encrypting the secret-key sk under the label m, and the proof π is an NIZK proof which
proves that there exists a secret-key sk′ such that the ciphertext c is a ciphertext of sk′ on the
label m and the hashed value of sk′ is equivalent to the hashed value of the real secret-key
sk which is included in the public-key pk.

Intuitively speaking, the security proof for the signature by Faust et al. is done as follows.
By modifying the initial security game several times, we get the final game Game f inal . In
Game f inal, for a signature σ = (c, π) on the signing oracle, the ciphertext c is generated by
encrypting 0|sk| instead of sk, and the proof π is generated by using the trapdoor td instead
of sk. In addition, the adversary is considered to win the game, if he successfully outputs
a signature σ∗ = (c∗, π∗) and a message m∗ such that c∗ is a valid ciphertext of sk∗ on
label m∗, and π∗ is a valid proof. We prove that every PPT A wins the game only with a
negligible probability by a reduction to the hard-to-invert property of the leakage-function
f ∈ Hpkow(2−(λ+ldk+ltd)). In the reduction, a simulator S needs both td and dk to simulate
Game f inal and decrypt the ciphertext c∗. However, by the definition of the leakage function
class Hpkow(·), S is given neither td nor dk, so S has to guess them, and the guess succeeds
with probability 2−(ldk+ltd). By the above reason, the hardness parameter for Faust et al.’s
signature scheme becomes 2−(λ+ldk+ltd).

The above is the result by Faust et al. We modify the result with three steps.
In the first step, we generalize the second pre-image resistance (SPR) property of the

SPRHF, which is one of the building blocks. Intuitively, the SPR property is a property such
that no PPTA given a key-pair (pk, sk) is able to find a secret-key sk∗ which is not sk, but
has a hashed value equivalent to the hashed value of sk with a non-negligible probability.
We generalize it to a property such that no PPTA given (pk, sk) is able to find a secret-key
sk∗ such that a relation holds between sk∗ and sk and another relation also holds between
sk∗ and pk with a non-negligible probability.

The second step is to modify the definition of the leakage-function classHpkow(·). In the
modified definition of the function class, the PPT algorithm (or inverter)A is given not only
the public-key of the key-pair (pk, sk), but also some variables which are generated during
generation of the key-pair and are not directly included in either pk or sk. Specifically, for
our signature scheme, the variables are the decryption-key dk and the trapdoor td. If the
definition of the leakage-function class is modified to such one, the simulator in the proof
for Game f inal is not forced to guess dk and td with probability 2−(ldk+ltd), so the polynomially
hard-to-invert leakage-resilience security is achieved. Instantiating the generic construction
of the signature scheme, we can concretely generate the first signature scheme (weakly un-

50



forgeable and) resilient to polynomially hard-to-invert leakage under standard assumptions
such as the DLIN assumption.

In the third step, we apply a methodology which is invented by modifying the one by
Wang et al. [WT14] to the weakly unforgeable signature scheme in the second step, then get
a strongly unforgeable one. Note that unlike Wang et al., we do not propose a generic trans-
formation from a weakly unforgeable and resilient to hard-to-invert leakage to a strongly
unforgeable one. In the transformation by Wang et al., a chameleon hash function with
strong collision-resistance in the bounded leakage model (BLR-CHF) was used. We use a
CHF with strong collision-resistance in HL model (HLR-CHF). Moreover, the secret-key
of the strongly unforgeable signature scheme obtained by the transformation by Wang et
al. includes not only the original secret-key, i.e., the secret-key of the weakly unforgeable
signature, but also the secret-key of the BLR-CHF. However, the secret-key of our strongly
unforgeable signature includes only the secret-key of the HLR-CHF. By instantiating the
signature scheme, we obtain the first concrete construction of digital signature strongly un-
forgeable and resilient to polynomially hard-to-invert leakage under standard assumptions
such as the DLIN assumption.

4.1.5 Organization
This chapter is organized as follows. In Sect. 4.2, we give the syntax and the security
notions of chameleon hash function. In the section, we also give the definition of strong
unforgeability in HL model of digital signature. In Sect. 4.3, our generic construction of
signature and its security proof are given. In Sect. 4.4, we show that the generic construction
of signature given in the previous section can be instantiated under the DLIN assumption.

4.2 Preliminaries for Chapter 4

4.2.1 Chameleon Hash Function (CHF)
A chameleon hash function scheme consists of the polynomial time algorithms {Gen,Eval,
TC,SKVer,SKVer2}, where SKVer and SKVer2 are algorithms originally introduced by us.
Gen and TC are probabilistic, and Eval, SKVer and SKVer2 are deterministic.

Gen(1λ)→ (pk, sk). The key-generation algorithm takes a security parameter 1λ, where
λ ∈ N, as an input, and outputs a public-key pk and a secret-key (or trapdoor) sk.
The message spaceM, randomness space R and hashed value space H are uniquely
determined by pk.

Eval(pk,m; r)→ h. The evaluation algorithm takes the public-key pk and a message m ∈
M as inputs, and outputs the hashed value h ∈ H which was calculated under a
randomness r ∈ R.

TC(pk, sk, (m1, r1),m2)→ r2. The trapdoor collision finder algorithm takes the public-key
pk, the secret-key sk, a pair of a message and randomness (m1, r1) ∈ M × R, and a
message m2 ∈ M as inputs, and outputs a randomness r2 ∈ R.
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SKVer(pk, sk′)→ 1 / 0. The first secret-key-verification algorithm takes the public-key pk
and a secret-key sk′ as inputs, and outputs 1 or 0.

SKVer2(pk, sk′, sk†)→ 1 / 0. The second secret-key-verification algorithm takes the public-
key pk, a secret-key sk′, and a secret-key sk† as inputs, and outputs 1 or 0. Even if the
two secret-keys are inputted in the reversed order, the output is required to be equiva-
lent. Thus, for any λ ∈ N, any (pk, sk) ← Gen(1λ), and any two valid secret-keys sk′

and sk†, it holds that SKVer2(pk, sk′, sk†) = SKVer2(pk, sk†, sk′).

Every CHF scheme must be correct. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2}
is correct, if for every λ ∈ N, every (pk, sk)← Gen(1λ), every m ∈ M, every m′ ∈ M, every
r ∈ R, and every r′ B TC(pk, sk, (m, r),m′), it holds that [Eval(pk,m; r) = Eval(pk,m′; r′)]∧
[1← SKVer(pk, sk)] ∧ [1← SKVer2(pk, sk, sk)].

We give the definitions of two standard properties for the CHF scheme. They are strong
collision-resistance and random trapdoor collision.

Definition 16. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is strongly collision-
resistant, if for every λ ∈ N and every PPTA, it holds that

Pr[A(pk)→ ((m1, r1), (m2, r2)) s.t. [(m1, r1) , (m2, r2)]
∧[Eval(pk,m1; r1) = Eval(pk,m2; r2)]]

is negligible, where (pk, sk)
R←− Gen(1λ).

Definition 17. A CHF scheme ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is said to have the
property of random trapdoor collision, if for any λ ∈ N, any (pk, sk) ← Gen(1λ) and any
two messages m1,m2 ∈ M, a randomness r1 chosen uniformly at random from R distributes
identically with r2 B TC(pk, (m1, r1),m2).

We give the definition of an original property for a CHF scheme. The property is hard-
to-compute-secret-key (HtC-SK).

Definition 18. ΣCHF = {Gen,Eval,TC,SKVer,SKVer2} is said to have the property of HtC-
SK, if for every λ ∈ N, and every PPTA, it holds that

Pr
[A (pk, sk)→ sk∗ s.t.

[
1← SKVer(pk, sk∗)

] ∧ [0← SKVer2(pk, sk∗, sk)
]]

is negligible, where (pk, sk)
R←− Gen(1λ).

Remark. The property is related to the second pre-image resistance (SPR) [DHLAW10b,
FHN+12]. The algorithm SKVer given pk and sk as inputs is an algorithm which verifies
whether or not a relation holds between pk and sk. The algorithm SKVer2 given two secret-
keys sk and sk† can be defined as the algorithm outputting 1 iff the two keys are equivalent.
Thus, the HtC-SK property can be the SPR property. We can say that the HtC-SK property
is a generalization of the SPR property.
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4.2.2 Definition of Strong Existential Unforgeability in HL Model of
Signature

We consider strong existential unfrogeability in HL model for signature schemes. Specifi-
cally, we define strong existential unforgeability against adaptively chosen messages attack
in HL model (HL-sEUF-CMA) for signature schemes.

At first, we define a game w.r.t. a signature scheme ΣSIG = {Gen,Sig,Ver}, which is
played between an adversaryA and challenger CH , as follows. Note that a leakage function
f : {0, 1}|pk|+|sk| → {0, 1}∗ whose randomness space is denoted by R is included in a class
FΣSIG(λ), i.e., f ∈ FΣSIG(λ) 2.

Key-Generation. CH runs (pk, sk)← SIG.Gen(1λ). CH chooses r
R←− R, then computes

f (pk, sk; r). CH sends (pk, f (pk, sk; r)) to A. CH initializes the list LS as an empty
set ∅.

Query. A is allowed to use the signing oracle Sign, adaptively.

Sign(m ∈ M): CH generates σ← SIG.Sig(pk,m, sk), then sends σ toA. After that,
CH sets LS B LS ∪ {(m, σ)}.

Forgery(m∗, σ∗). CH receives (m∗, σ∗) sent byA.

In the above game,A is said to win the game if [1← SIG.Ver(pk,m∗, σ∗)]∧[(m∗, σ∗) < LS ].
Advantage AdvF (λ)−HL−sEUF−CMA

ΣSIG,A (λ) is defined as the probability Pr[A wins.].

Definition 19. ΣSIG is HL-sEUF-CMA-secure with respect to the leakage-function class
FΣSIG(λ), if for every PPT A and every function f ∈ FΣSIG(λ), AdvF (λ)−HL−sEUF−CMA

ΣSIG,A (λ) is
negligible.

Remark. Its weaker version, i.e., weak existential unforgeability against chosen messages
attack (wEUF-CMA), is defined in the same manner as sEUF-CMA except for the winning
condition of the adversary A in the game. The adversary is said to win the game if the
signature σ∗ is a valid signature on the message m∗, i.e., [1← SIG.Ver(pk,m∗, σ∗)], and the
message m∗ has not been queried to the signing oracle Sign.

4.3 Proposed Signature Scheme
In Subsect. 4.3.1, the generic construction of our signature scheme is given. In Subsect.
4.3.2, the signature scheme is proven to be strongly existentially unforgeable and resilient
to polynomially hard-to-invert leakage. In the next section, i.e., Section 4.4, we show that
the signature scheme can be instantiated under the DLIN assumption.

2In this paper, the function class FΣSIG (λ) can be simply written as F (λ), if it is obvious that the function
class is for the signature scheme ΣSIG.
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4.3.1 Generic Construction
Our generic construction of signature scheme ΣSIG = {SIG.Gen,SIG.Sig,SIG.Ver} has the
following 4 building blocks: An LPKE scheme ΣLPKE = {LPKE.Gen,LPKE.Enc,LPKE.Dec},
an NIZK scheme ΣNIZK = {NIZK.Gen,NIZK.Pro,NIZK.Ver}, a CHF scheme ΣCHF = {CHF.Gen,
CHF.Eval,CHF.TC,CHF.SKVer,CHF.SKVer2} and a CHF scheme ΣCHF2 = {CHF2.Gen,
CHF2.Eval,CHF2.TC}.

The signature scheme ΣSIG is generically constructed as follows.

SIG.Gen(1λ): Run (ek, dk) ← LPKE.Gen(1λ), (pk1, sk1) ← CHF.Gen(1λ) and (pk2, sk2)
← CHF2.Gen(1λ). Run (crs, td) ← S1(1λ), where S1 is the first simulator in the
definition of zero-knowledge for ΣNIZK.

RE and RE2 denote the randomness space of CHF.Eval and CHF2.Eval, respectively.
M̃, M̄, C, P andK1 denote the message space of ΣCHF, the label space of ΣLPKE (or the
hashed value space of ΣCHF2), the ciphertext space of ΣLPKE, the proof space of ΣNIZK,
and the secret-key space of ΣCHF, respectively. M is a space satisfying M̃ =M||C||P.

Verification-key and signing-key are set as pk B (pk1, pk2, ek, crs) and sk B sk1,
respectively. Return (pk, sk). We define language L as

L B
{
(c, m̄) ∈ C × M̄ | ∃sk1 ∈ K1 s.t. [c← LPKE.Enc(ek, sk1, m̄)]

∧ [1← CHF.SKVer(pk1, sk1)
]}
. (4.1)

SIG.Sig(pk,m ∈ M, sk): pk is parsed as (pk1, pk2, ek, crs). sk is written as sk1. Do as
follows in order.

• r′E
U←− RE, rE2

U←− RE2, m′
U←−M, c′

U←− C, π′
U←− P, σ′ B (c′, π′).

• h B CHF.Eval(pk1,m′||σ′; r′E), m̄ B CHF2.Eval(pk2, h; rE2).

• c B LPKE.Enc(ek, sk1, m̄), x B (c, m̄), w B sk1, π B NIZK.Pro(crs, x,w).

• σ B (c, π), rE B CHF.TC(pk1, sk1, (m′||σ′, r′E),m||σ).

Return σ† B (σ, rE, rE2) = (c, π, rE, rE2).

SIG.Ver(pk,m ∈ M, σ†): pk is parsed as (pk1, pk2, ek, crs). σ† is parsed as (c, π, rE, rE2).
h B CHF.Eval(pk1,m||σ; rE). m̄ B CHF2.Eval(pk2, h; rE2). x B (c, m̄). Return
NIZK.Ver(crs, x, π).

4.3.2 Proof of Strong Unforgeability in HL Model
Before giving the theorem for the strong unforgeability in the hard-to-invert leakage model
of the signature scheme ΣSIG, we give the definitions of the leakage-function class F HtI

ΣSIG
(λ)

for the signature scheme and the strong collision-resistance in HL model w.r.t. the function
class F HtI

ΣSIG
(λ) for the chameleon hash function ΣCHF.
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Definition 20. Function class F HtI
ΣSIG

(λ) consists of every polynomial-time computable prob-
abilistic (or deterministic) function f : {0, 1}|pk1 |+|pk2 |+|ek|+|crs|+|sk1 | → {0, 1}∗ which has a ran-
domness space R and satisfies the following condition: for every PPT B,

Pr
[B (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk∗1

s.t.
[
1← CHF.SKVer

(
pk1, sk∗1

)] ∧ [1← CHF.SKVer2
(
pk1, sk∗1, sk1

)]]
(4.2)

is negligible, where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←−

LPKE.Gen(1λ), (crs, td)
R←− S1(1λ) and r

R←− R.

Remark. If the chameleon hash function ΣCHF is a CHF with the second pre-image re-
sistance [DHLAW10b, FHN+12], the algorithm CHF.SKVer2 is defined as the equality-
checking algorithm, and the secret-key sk∗1 which satisfies [1 ← CHF.SKVer(pk1, sk∗1)] ∧
[1 ← CHF.SKVer2(pk1, sk∗1, sk1)] is the original secret-key sk1 only. So, the probabil-
ity (4.2) is simply written as Pr[B(pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)) →
sk1].

Definition 21. CHF scheme ΣCHF = {CHF.Gen,CHF.Eval,CHF.TC,CHF.SKVer,CHF.SKVer2}
is said to be strongly collision-resistant in HL model with respect to the function class
F HtI
ΣSIG

(λ), if for every PPTA and every function f : {0, 1}|pk1 |+|pk2 |+|ek|+|crs|+|sk1 | → {0, 1}∗ which
is included in the function class F HtI

ΣSIG
(λ) and has a randomness space R,

Pr
[A (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ ((m1, r1) , (m2, r2))

s.t. [(m1, r1) , (m2, r2)] ∧ [CHF.Eval(pk1,m1; r1) = CHF.Eval(pk1,m2; r2)
]]

is negligible, where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←−

LPKE.Gen(1λ), (crs, td)
R←− S1(1λ) and r

R←− R.

The strong unforgeability in HL model of the signature scheme ΣSIG is guaranteed by
the following theorem.

Theorem 4.3.1. ΣSIG is HL-sEUF-CMA w.r.t. the function class F HtI
ΣSIG

(λ), if

• ΣLPKE is IND-wLCCA,

• ΣNIZK is sound and zero-knowledge,

• ΣCHF is strongly collision-resistant in HL model w.r.t. the function class F HtI
ΣSIG

(λ),
random trapdoor collision, and HtC-SK, and

• ΣCHF2 is strongly collision-resistant and random trapdoor collision.
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Proof of Theorem 4.3.1. Hereafter, qs ∈ N denotes the number of times that PPT adver-
saryA uses the signing oracle Sign. To prove Theorem 4.3.1, we use multiple games Gamei,
where i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}.

The first game Game0 is the normal HL-sEUF-CMA game w.r.t. the signature scheme
ΣSIG and the function class F HtI

ΣSIG
(λ). Specifically, Game0 is the following game.

Key-Generation. CH runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ),
(ek, dk) ← LPKE.Gen(1λ), and (crs, td) ← S1(1λ). pk and sk are set as pk B
(pk1, pk2, ek, crs) and sk B sk1, respectively. For a function f ∈ F HtI

ΣSIG
(λ), CH chooses

r
R←− R, then computes f (pk, sk; r). CH sends (pk, f (pk, sk; r)) toA. LS is set to ∅.

Query. When A issues a message m ∈ M as a query to the signing oracle Sign, CH
generates a signature (c, π, rE, rE2) on the message as follows.

• r′E
U←− RE, rE2

U←− RE2, m′
U←−M, c′

U←− C, π′
U←− P, σ′ B (c′, π′).

• h B CHF.Eval(pk1,m′||σ′; r′E), m̄ B CHF2.Eval(pk2, h; rE2).

• c B LPKE.Enc(ek, sk1, m̄), x B (c, m̄), w B sk1, π B NIZK.Pro(crs, x,w).

• σ B (c, π), rE B CHF.TC(pk1, sk1, (m′||σ′, r′E),m||σ).

CH returns a signature (c, π, rE, rE2) toA. CH sets LS B LS ∪ {(m, c, π, rE, rE2)}.

Forgery(m∗, (c∗, π∗, r∗E, r
∗
E2)). CH is given a message m∗ ∈ M and a signature (c∗, π∗, r∗E, r

∗
E2).

A wins the game, if [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r
∗
E2) < LS ], where h∗ B

CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2) and x∗ B (c∗, m̄∗).
We define the games Gamei, where i ∈ {1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}, as follows.

Game1. Game1 is the same as Game0 except that CH generates a common reference string
crs by running crs← NIZK.Gen(1λ) in Key-Generation.

Game2. Game2 is the same as Game1 except that A’s winning condition is changed to the
following one, where sk∗1 B LPKE.Dec(dk, c∗, m̄∗): [1 ← NIZK.Ver(crs, x∗, π∗)] ∧
[(m∗, c∗, π∗, r∗E, r

∗
E2) < LS ] ∧ [1← CHF.SKVer(pk1, sk∗1)].

Game3. Game3 is the same as Game2 except that A’s winning condition is changed to the
following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r

∗
E2) < LS ] ∧ [1 ←

CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)].

Game4: Game4 is the same as Game3 except that A’s winning condition is changed to the
following one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r

∗
E2) < LS ] ∧ [1 ←

CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [[m̄∗ < {m̄1, · · · , m̄qs}] ∨
[∃i ∈ [1, qs] s.t. [m̄∗ = m̄i]∧[(h∗, r∗E2) = (hi, rE2,i)]∧[(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)]]],
where, for i ∈ [1, qs], each one of m̄i, hi, rE2,i, ci, πi and rE,i is the element which was
generated when computing the reply to the i-th signing oracle query.
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Game5 Game5 is the same as Game4 except that whenA issues a message m ∈ M as a query
to the signing oracle Sign, CH generates a signature (c, π, rE, rE2) on the message as
follows.

• rE, r′E
U←− RE, r′E2

U←− RE2, m′
U←−M, c′

U←− C, π′
U←− P, σ′ B (c′, π′).

• h′ B CHF.Eval(pk1,m′||σ′; r′E), m̄ B CHF2.Eval(pk2, h′; r′E2).

• c B LPKE.Enc(ek, sk1, m̄), x B (c, m̄), w B sk1, π B NIZK.Pro(crs, x,w).

• σ B (c, π), h B CHF.Eval(pk1,m||σ; rE).

• rE2 B CHF2.TC(pk2, sk2, (h′, r′E2), h).

Game6. Game6 is the same as Game5 except that the following two points. Firstly, CH gener-
ates a common reference string crs by running (crs, td)← S1(1λ) in Key-Generation.
Secondly, when replying to a query to Sign in Query, CH generates a proof π by us-
ing S2, instead of NIZK.Pro, where S2 denotes the second simulator in the definition
of zero-knowledge for ΣNIZK.

Game7(= Game7|0). Game7 is the same as Game6 except thatA’s winning condition is changed
to the following one: [1← NIZK.Ver(crs, x∗, π∗)]∧ [(m∗, c∗, π∗, r∗E, r

∗
E2) < LS ]∧ [1←

CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [m̄∗ < {m̄1, · · · , m̄qs}].

Game7|1, · · · , Game7|qs . Game7|i, where i ∈ [1, qs], is the same as Game7|0 except that when
replying to the j-th signing oracle query, where j ≤ i, CH generates the ciphertext
c j by running c j ← LPKE.Enc(ek, 0|sk1 |, m̄ j), where 0|sk1 | denotes the bit-string of |sk1|
number of 0.

Hereafter, Wi, where i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 7|1, · · · , 7|qs}, denotes the event thatA wins the
game Gamei. It holds obviously that

Adv
F HtI
ΣSIG

(λ)−HL−sEUF−CMA

ΣSIG,A (λ) = Pr [W0]

≤
7∑

i=1

|Pr [Wi−1] − Pr [Wi]| +
qs∑

i=1

∣∣∣Pr
[
W7|i−1

] − Pr
[
W7|i
]∣∣∣ + Pr

[
W7|qs

]
.

Theorem 4.3.1 is proven by the above inequality and the following all lemmas. □

Lemma 4.3.1. |Pr[W0] − Pr[W1]| is negligible if ΣNIZK is zero-knowledge.

Lemma 4.3.2. |Pr[W1] − Pr[W2]| is negligible if ΣNIZK is sound.

Lemma 4.3.3. |Pr[W2] − Pr[W3]| is negligible if ΣCHF is HtC-SK.

Lemma 4.3.4. |Pr[W3] − Pr[W4]| is negligible if ΣCHF2 is strongly collision-resistant.

Lemma 4.3.5. |Pr[W4] − Pr[W5]| is negligible if each one of ΣCHF and ΣCHF2 is random
trapdoor collision.

Lemma 4.3.6. |Pr[W5] − Pr[W6]| is negligible if ΣNIZK is zero-knowledge.
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Lemma 4.3.7. |Pr[W6] − Pr[W7|0]| is negligible if ΣCHF is strongly collision-resistant in HL
model w.r.t. the function class F HtI

ΣSIG
(λ).

Lemma 4.3.8. For any i ∈ [1, qs], |Pr[W7|i−1]−Pr[W7|i]| is negligible if ΣLPKE is IND-wLCCA.

Lemma 4.3.9. Pr[W7|qs] is negligible.

Proof of each lemma is given below.

Proof of Lemma 4.3.1. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W0]−Pr[W1]| non-negligible, then we are able to construct a PPT algorithm which
breaks the zero-knowledge property for ΣNIZK.

We consider a PPT simulator S. On one hand, the simulator S is a PPT algorithm
attempting to break the zero-knowledge for ΣNIZK. On the other hand, S is the challenger
in Game0 or Game1. S is given a common reference string crs. If crs was generated by
(crs, td) ← S1(1λ) (resp. crs ← NIZK.Gen(1λ)), then S simulates Game0 (resp. Game1)
against the PPT adversaryA properly. The concrete behavior by S is the following.

Key-Generation. S runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ) and
(ek, dk) ← LPKE.Gen(1λ). S is given a common reference string crs of ΣNIZK. S
sets pk and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes

f (pk, sk; r) where r
R←− R. S sends (pk, f (pk, sk; r)) toA. S sets LS to ∅.

Query. WhenA issues a message m ∈ M as a query to the signing oracle Sign, S generates
a signature (c, π, rE, rE2) on the message in the normal manner. S sets LS to LS ∪
{(m, c, π, rE, rE2)}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S outputs 1, if [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E,

r∗E2) < LS ], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗;
r∗E2) and x∗ B (c∗, m̄∗). S outputs 0, otherwise.

It is obvious that if the common reference string is generated by (crs, td)← S1(1λ) (resp.
crs← NIZK.Gen(1λ)), then S simulates the game Game0 (resp. Game1) againstA perfectly,
and if and only if the event W0 (resp. W1) occurs, S outputs 1. Hence, we obtain Pr[W0] =
Pr[1 ← S(crs) | (crs, td) ← S1(1λ)] and Pr[W1] = Pr[1 ← S(crs) | crs ← NIZK.Gen(1λ)].
Hence, |Pr[W0] − Pr[W1]| = |Pr[1 ← S(crs) | crs ← NIZK.Gen(1λ)] − Pr[1 ← S(crs) |
(crs, td)← S1(1λ)]|. □

Proof of Lemma 4.3.2. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W1]−Pr[W2]| non-negligible, then we are able to construct a PPT algorithm which
breaks the soundness property for ΣNIZK.

We consider a PPT simulator S attempting to break the soundness of the NIZK scheme
ΣNIZK. Specifically, S behaves as follows.
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Key-Generation. S runs (pk1, sk1) ← CHF.Gen(1λ), (pk2, sk2) ← CHF2.Gen(1λ) and
(ek, dk) ← LPKE.Gen(1λ). S is given a common reference string crs of ΣNIZK. S
sets pk and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes

f (pk, sk; r) where r
R←− R, then sends (pk, f (pk, sk; r)) toA. S sets LS to ∅.

Query. WhenA issues a message m ∈ M as a query to the signing oracle Sign, S generates
a signature (c, π, rE, rE2) on the message in the normal manner. S sets LS to LS ∪
{(m, c, π, rE, rE2)}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S checks whether the following condition is satisfied or not:

[1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r
∗
E2) < LS ] ∧ [0 ← CHF.SKVer(pk1,

sk∗1)], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2),
x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗).

If the condition is satisfied, then S outputs (x∗, π∗) = (c∗, m̄∗, π∗).

It is obvious that S simulates Game1 or Game2, perfectly.
By the way, the definitions of W1 and W2 gives us the following equations.

Pr [W1] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]]
(4.3)

Pr [W2] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

]]
(4.4)

Hence, we obtain

|Pr[W1] − Pr[W2]|
= Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [0← CHF.SKVer(pk1, sk∗1)

]]
= Pr [S(crs)→ (x∗, π∗) s.t. [1← NIZK.Ver(crs, x∗, π∗)]
∧ [0← CHF.SKVer(pk1, sk∗1)

]]
. (4.5)

By the definition of the language L given in (4.1), the following statement is true: for any
(c, m̄) ∈ L, there exists sk1 such that [c← LPKE.Enc(ek, sk1, m̄)]∧[1← CHF.SKVer(pk1, sk1)].

By the above statement, the correctness of ΠLPKE, and the correctness of ΠCHF, the fol-
lowing statement is true: for any (c, m̄) ∈ L, it holds that [1← CHF.SKVer(pk1, sk1)], where
sk1 B LPKE.Dec(dk, c, m̄).

The contraposition of the above statement is the following statement: for any c ∈ C
and any m̄ ∈ M̄, if [0 ← CHF.SKVer(pk1, sk1)], where sk1 B LPKE.Dec(dk, c, m̄), then
(c, m̄) < L.

By the above statement and the equation (5.4), we obtain

|Pr[W1] − Pr[W2]| = Pr [S(crs)→ (x∗, π∗) s.t. [1← NIZK.Ver(crs, x∗, π∗)] ∧ [x∗ < L]] .

□
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Proof of Lemma 4.3.3. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W2]−Pr[W3]| non-negligible, then we are able to construct a PPT algorithm which
breaks the HtC-SK property for ΣCHF.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of HtC-SK for ΣCHF. The concrete behavior by S is the following.

Key-Generation. S is given (pk1, sk1) of the keys of ΣCHF. S runs (pk2, sk2)← CHF2.Gen(1λ),
(ek, dk) ← LPKE.Gen(1λ) and crs ← NIZK.Gen(1λ). S sets pk and sk to pk B

(pk1, pk2, ek, crs) and sk B sk1, respectively. S computes f (pk, sk; r), where r
R←− R,

then sends (pk, f (pk, sk; r)) toA. S sets LS to ∅.

Query. WhenA issues a message m ∈ M as a query to the signing oracle Sign, S generates
a signature (c, π, rE, rE2) on the message in the normal manner. S sets LS to LS ∪
{(m, c, π, rE, rE2)}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S checks whether the following condition is satisfied or not:

[1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r
∗
E2) < LS ] ∧ [1 ← CHF.SKVer(pk1,

sk∗1)]∧ [0← CHF.SKVer2(pk1, sk∗1, sk1)], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E),
m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗).

If the condition is satisfied, S outputs sk∗1.

It is obvious that S simulates Game2 or Game3 againstA perfectly.
By the definitions of W2 and W3, we obtain

Pr [W2] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

]]
Pr [W3] = Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]]

Hence, we obtain

|Pr[W2] − Pr[W3]| = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [0← CHF.SKVer2(pk1, sk∗1, sk1)
]]
. (4.6)

The above probability is equal to the probability with whom S wins the HtC-SK property
game for ΠCHF. □

Proof of Lemma 4.3.4. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W3]−Pr[W4]| non-negligible, then we are able to construct a PPT algorithm which
breaks the strong collision-resistance property for ΣCHF2.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of strong collision-resistance for ΣCHF2. The concrete behavior by S is the follow-
ing.
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Key-Generation. S is given a public key pk2 of ΣCHF2. S runs (pk1, sk1)← CHF.Gen(1λ),
(ek, dk) ← LPKE.Gen(1λ) and crs ← NIZK.Gen(1λ). S sets pk and sk to pk B

(pk1, pk2, ek, crs) and sk B sk1, respectively. S computes f (pk, sk; r), where r
R←− R,

then sends (pk, f (pk, sk; r)) toA. S sets LS and Lm̄ to ∅.

Query. When A issues a message mi ∈ M as the i-th query to the signing oracle Sign, S
generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

• r′E,i
U←− RE, rE2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

• hi B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, hi; rE2,i).

• ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), w B sk1, πi B NIZK.Pro(crs, xi,w).

• σi B (ci, πi), rE,i B CHF.TC(pk1, sk1, (m′i ||σ′i , r′E,i),mi||σi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set to
Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S sets h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E),

m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗). If
[1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E, r

∗
E2) < LS ]∧[1← CHF.SKVer(pk1, sk∗1)]

∧ [1 ← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧ [(h∗, r∗E2) ,
(hi, rE2,i)]], then S outputs ((h∗, r∗E2), (hi, rE2,i)).

It is obvious that S simulates Game3 or Game4 againstA perfectly. By the definitions of
W3 and W4, we obtain

Pr [W3] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]]

(4.7)
Pr [W4] = Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[
[m̄∗ < Lm̄] ∨

[
∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧

[
(h∗, r∗E2) = (hi, rE2,i)

]
∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)

]]]]
(4.8)

By (4.7) and (4.8), we obtain

|Pr[W3] − Pr[W4]|
= Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[
∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧

[
(h∗, r∗E2) , (hi, rE2,i)

]]]
The above probability is equal to the probability with whom S wins the strong collision-
resistance game for ΠCHF2. □
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Proof of Lemma 4.3.5. For a message m̂ ∈ M queried to the signing oracle in Game4

(resp. Game5), P4(ĉ, π̂, r̂E, ˆrE2) (resp. P5(ĉ, π̂, r̂E, ˆrE2)) denotes the probability that the signa-
ture (ĉ, π̂, r̂E, ˆrE2) ∈ C × P × RE × RE2 is generated.

For the probability P4(ĉ, π̂, r̂E, ˆrE2), we obtain

P4 (ĉ, π̂, r̂E, ˆrE2) = Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]
∧ [r̂E = CHF.TC(pk1, sk1, (m′||(c′, π′), r′E), m̂||(ĉ, π̂))] ∧ [ ˆrE2 = rE2]

| r′E
U←− RE, rE2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
(4.9)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE, rE2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
·Pr
[
r̂E = CHF.TC(pk1, sk1, (m′||(c′, π′), r′E), m̂||(ĉ, π̂))

| r′E
U←− RE,m′

U←−M, c′ U←− C, π′ U←− P
]
· Pr
[

ˆrE2 = rE2 | rE2
U←− RE2

]
(4.10)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE, rE2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
· 1
|RE |
· 1
|RE2|

, (4.11)

where h′ B CHF.Eval(pk1,m′||(c′, π′); r′E), m̄ B CHF2.Eval(pk2, h′; rE2) and x B (ĉ, m̄)
(4.9) is the definition. The transformation from (4.9) to (4.10) is correct since each event
is independent. The transformation from (4.10) to (4.11) is correct since the CHF scheme
ΠCHF is random trapdoor collision.

On the other hand, for the probability P5 (ĉ, π̂, r̂E, ˆrE2), we obtain

P5 (ĉ, π̂, r̂E, ˆrE2) = Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]
∧ [r̂E = rE] ∧

[
ˆrE2 = CHF2.TC(pk2, sk2, (h′, r′E2), ĥ)

]
| rE, r′E

U←− RE, r′E2
U←− RE2,m′

U←−M, c′ U←− C, π′ U←− P
]

(4.12)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE, r′E2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
·Pr
[
r̂E = rE | rE

U←− RE

]
· Pr
[

ˆrE2 = CHF2.TC(pk2, sk2, (h′, r′E2), ĥ)

| rE, r′E
U←− RE, r′E2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
(4.13)

= Pr [[ĉ = LPKE.Enc(ek, sk1, m̄)] ∧ [π̂ = NIZK.Pro(crs, x, sk1)]

| r′E
U←− RE, r′E2

U←− RE2,m′
U←−M, c′ U←− C, π′ U←− P

]
· 1
|RE |
· 1
|RE2|

, (4.14)

where h′ B CHF.Eval(pk1,m′||(c′, π′); r′E), m̄ B CHF2.Eval(pk2, h′; r′E2), x B (ĉ, m̄), and
ĥ B CHF.Eval(pk1, m̂||(ĉ, π̂); rE). (4.12) is the definition. The transformation from (4.12) to
(4.13) is correct since each event is independent. The transformation from (4.13) to (4.14)
is correct since the CHF scheme ΠCHF2 is random trapdoor collision.

By (4.11) and (4.14), P4(ĉ, π̂, r̂E, ˆrE2) = P5(ĉ, π̂, r̂E, ˆrE2). Thus, for any m̂ ∈ M and any
signature (ĉ, π̂, r̂E, ˆrE2) ∈ C × P × RE × RE2, the probability in Game4 that the signature
(ĉ, π̂, r̂E, ˆrE2) on the message m̂ is generated is equal to the one in Game5. □
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Proof of Lemma 4.3.6. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W5]−Pr[W6]| non-negligible, then we are able to construct a PPT algorithm which
breaks the zero-knowledge property for ΣNIZK.

We consider a PPT simulator S attempting to break the zero-knowledge property for the
NIZK scheme ΣNIZK. Specifically, S behaves as follows.

Key-Generation. S is given a common reference string crs of ΣNIZK. S runs (pk1, sk1)←
CHF.Gen(1λ), (pk2, sk2)← CHF2.Gen(1λ) and (ek, dk)← LPKE.Gen(1λ). S sets pk
and sk to pk B (pk1, pk2, ek, crs) and sk B sk1, respectively. S computes f (pk, sk; r),

where r
R←− R, then sends (pk, f (pk, sk; r)) toA. S sets each list of LS and Lm̄ to ∅.

Query. When A issues a message mi ∈ M as the i-th query to the signing oracle Sign, S
generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

• rE,i, r′E,i
U←− RE, r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

• h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).

• ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), w B sk1.

• Issues (xi,w) as an query to Ozk, then receives a proof πi.

• σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).

• rE2,i B CHF2.TC(pk2, sk2, (h′i , r
′
E2,i), hi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set to
Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S checks whether the following condition is satisfied or not:

[1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r
∗
E2) < LS ] ∧ [1 ← CHF.SKVer(pk1,

sk∗1)]∧[1← CHF.SKVer2(pk1, sk∗1, sk1)]∧[[m̄∗ < {m̄1, · · · , m̄qs}]∨[∃i ∈ [1, qs] s.t. [m̄∗ =
m̄i]∧[(h∗, r∗E2) = (hi, rE2,i)]∧[(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)]]], where h∗ B CHF.Eval(pk1,
m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk,
c∗, m̄∗).

If the condition is satisfied, S outputs 1. Else, then S outputs 0.

It is obvious that if the common reference string crs is generated by (crs, td) ← S1(1λ)
(resp. crs ← NIZK.Gen(1λ)) and the proof-generation oracle Ozk is Ocrs,td

1 (resp. Ocrs
0 ),

then S simulates Game6 (resp. Game5) against A perfectly, and if and only if W6 (resp. W5)
occurs, S outputs 1. Hence, we obtain

|Pr[W5] − Pr[W6]| =
∣∣∣∣Pr
[
1← SOcrs

0 (x,w)(crs) | crs← NIZK.Gen(1λ)
]

−Pr
[
1← SOcrs,td

1 (x,w)(crs) | (crs, td)← S1(1λ)
]∣∣∣∣ .

□
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Proof of Lemma 4.3.7. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W6]−Pr[W7]| non-negligible, then we are able to construct a PPT algorithm which
breaks the property of strong collision- resistance in HL model w.r.t. F HtI

ΣSIG
(λ) for ΣCHF.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of strong collision resistance in HL model w.r.t. F HtI

ΣSIG
(λ) for ΣCHF. The concrete

behavior by S is the following.

Key-Generation. S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)), where

(pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R. S sets pk to (pk1, pk2, ek, crs). S sends the public key
pk and the leakage f (pk1, pk2, ek, crs, sk1; r) toA. S sets LS and Lm̄ to ∅.

Query. When A issues a message mi ∈ M as the i-th query to the signing oracle Sign, S
generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

• rE,i, r′E,i
U←− RE, r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

• h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).

• ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), πi B S2(crs, xi, td).

• σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).

• rE2,i B CHF2.TC(pk2, sk2, (h′i , r
′
E2,i), hi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set to
Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S checks whether the following condition is satisfied or not:

[1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r
∗
E2) < LS ] ∧ [1 ← CHF.SKVer(pk1,

sk∗1)] ∧ [1 ← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧ [(h∗, r∗E2) =
(hi, rE2,i)]∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)]], where h∗ B CHF.Eval(pk1,m∗||(c∗, π∗);
r∗E), m̄∗ B CHF2.Eval(pk2, h∗; r∗E2), x∗ B (c∗, m̄∗) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗).

If the condition is satisfied, S outputs ((m∗||(c∗, π∗), r∗E), (mi||(ci, πi), rE,i)).

It is obvious that S simulates Game6 or Game7, perfectly. The definitions of W6 and W7

gives us the following equations.

Pr [W6] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[
[m̄∗ < Lm̄] ∨

[
∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧

[
(h∗, r∗E2) = (hi, rE2,i)

]
∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)

]]]]
(4.15)

Pr [W7] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧ [m̄∗ < Lm̄]] (4.16)
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By (4.15) and (4.16), we obtain

|Pr[W6] − Pr[W7]|
≤ Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, c∗, π∗, r∗E, r∗E2) < LS

]
∧ [1← CHF.SKVer(pk1, sk∗1)

] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)
]

∧
[
∃i ∈ [1, qs] s.t. [m̄∗ = m̄i] ∧

[
(h∗, r∗E2) = (hi, rE2,i)

]
∧ [(m∗, c∗, π∗, r∗E) , (mi, ci, πi, rE,i)

]]]
The last probability is equal to the probability with whom S wins the game for the strong
collision-resistance in HL model w.r.t. the function class F HtI

ΣSIG
(λ) for ΠCHF. □

Proof of Lemma 4.3.8. We prove that for any k ∈ [1, qs] if we assume that there is a
PPT adversary A which makes |Pr[W7|k−1] − Pr[W7|k]| non-negligible, then we are able to
construct a PPT algorithm which breaks the IND-wLCCA security for ΣLPKE.

We consider a PPT simulator S attempting to break the IND-wLCCA security for the
LPKE scheme ΣLPKE. CH denotes the challenger in the IND-wLCCA security game. Specif-
ically, S behaves as follows.

Key-Generation. S is given an encryption-key ek of ΣLPKE. S runs (pk1, sk1)← CHF.Gen(1λ),
(pk2, sk2) ← CHF2.Gen(1λ) and (crs, td) ← S1(1λ). S sets pk and sk to pk B

(pk1, pk2, ek, crs) and sk B sk1, respectively. S computes f (pk, sk; r), where r
R←− R,

then sends (pk, f (pk, sk; r)) toA. S sets each list of LS and Lm̄ to ∅.

Query. We consider the case when A issues a message mi ∈ M as the i-th query to Sign.
If i ≥ k + 1 (resp. i ≤ k − 1), then S generates a signature (ci, πi, rE,i, rE2,i) on mi as
follows.

• rE,i, r′E,i
U←− RE, r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

• h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).

• ci B LPKE.Enc(ek, sk1, m̄i) (resp. ci B LPKE.Enc(ek, 0|sk1 |, m̄i)).

• xi B (ci, m̄i), πi B S2(crs, xi, td).

• σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).

• rE2,i B CHF2.TC(pk2, sk2, (h′i , r
′
E2,i), hi).

Else if i = k, then S generates a signature (ck, πk, rE,k, rE2,k) on mk in the same manner
as the case of i ≥ k + 1 or i ≤ k − 1 except that how the ciphertext ci = ck is generated.
In the case of i = k, S sends (sk1, 0|sk1 |, m̄k) to CH in Challenge in IND-wLCCA
game for ΣLPKE, then gets a ciphertext ck.

S returns the generated signature (ci, πi, rE,i, rE2,i) toA. S sets LS to LS ∪ {(mi, ci, πi,
rE,i, rE2,i)}. S sets Lm̄ to Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S computes h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E) and m̄∗ B

CHF2.Eval(pk2, h∗; r∗E2). S issues (c∗, m̄∗) as a query to Decrypt in Query 2 in IND-
wLCCA game, then receives sk∗1. S outputs β′ B 1 in Guess in IND-wLCCA game,
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when the following condition is satisfied: [1← NIZK.Ver(crs, x∗, π∗)]∧[(m∗, c∗, π∗, r∗E, r
∗
E2) <

LS ] ∧ [1← CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)] ∧ [m̄∗ < Lm̄],
where x∗ B (c∗, m̄∗).

Let β ∈ {0, 1} be the challenge-bit in the IND-wLCCA security game for ΠLPKE. It is
obvious that S simulates Game7|k−1 (resp. Game7|k) when β = 0 (resp. β = 1), and if and
only if W7|k−1 (resp. W7|k) happens, S outputs β′ = 1. It is also obvious that when W7|k−1

or W7|k occurs, the label m̄∗ in the query (c∗, m̄∗) to the oracle Decrypt in Query 2 issued
by S satisfies m̄∗ , m̄k, so the query (c∗, m̄∗) is not a forbidden query. Hence, we obtain
Pr[W7|k−1] = Pr

[
β′ = 1 | β = 0

]
and Pr[W7|k] = Pr[β′ = 1|β = 1].

It is obvious that Pr[β′ = β] = Pr[β′ = 0∧ β = 0]+ Pr[β′ = 1∧ β = 1] = 1
2 (Pr[β′ = 0|β =

0] + Pr[β′ = 1|β = 1]) = 1
2 (Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0] + 1).

Hence, we obtain AdvIND−wLCCA
ΣLPKE,S = |2 ·Pr[β′ = β]− 1| = |Pr[β′ = 1|β = 1]−Pr[β′ = 1|β =

0]| = |Pr[W7|k−1] − Pr[W7|k]|. □

Proof of Lemma 4.3.9. We prove that if we assume that there is a PPT adversaryAwhich
makes Pr[W7|qs] non-negligible, then we are able to construct a PPT algorithm which breaks
the property of hardness of inversion for the leakage-function f ∈ F HtI

ΣSIG
(λ).

We consider a PPT algorithm S. S behaves as a PPT algorithm in the definition of
the leakage-function class F HtI

ΣSIG
(λ). S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek,

crs, sk1; r)) as inputs, and simulates Game7|qs against A. The concrete behavior by S is the
following.

Key-Generation. S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)), where

(pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R. S sets pk to (pk1, pk2, ek, crs). S sends (pk, f (pk1,
pk2, ek, crs, sk1; r)) toA. S sets each list of LS and Lm̄ to ∅.

Query. When A issues a message mi ∈ M as the i-th query to the signing oracle Sign, S
generates a signature (ci, πi, rE,i, rE2,i) on the message as follows.

• rE,i, r′E,i
U←− RE, r′E2,i

U←− RE2, m′i
U←−M, c′i

U←− C, π′i
U←− P, σ′i B (c′i , π

′
i).

• h′i B CHF.Eval(pk1,m′i ||σ′i ; r′E,i), m̄i B CHF2.Eval(pk2, h′i ; r′E2,i).

• ci B LPKE.Enc(ek, sk1, m̄i), xi B (ci, m̄i), πi B S2(crs, xi, td).

• σi B (ci, πi), hi B CHF.Eval(pk1,mi||σi; rE,i).

• rE2,i B CHF2.TC(pk2, sk2, (h′i , r
′
E2,i), hi).

S returns (ci, πi, rE2,i, rE,i) to A. LS is set to LS ∪ {(mi, ci, πi, rE2,i, rE,i)}. Lm̄ is set to
Lm̄ ∪ {m̄i}.

Forgery(m∗, c∗, π∗, r∗E, r
∗
E2). S sets h∗ B CHF.Eval(pk1,m∗||(c∗, π∗); r∗E), m̄∗ B CHF2.Eval(pk2,

h∗; r∗E2) and sk∗1 B LPKE.Dec(dk, c∗, m̄∗). S outputs sk∗1.
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It is obvious that S simulates Game7|qs againstA perfectly. IfA wins the game Game7|qs ,
then S is able to acquire a secret-key sk∗1 such that [1 ← CHF.SKVer(pk1, sk∗1)] ∧ [1 ←
CHF.SKVer2(pk1, sk∗1, sk1)]. Hence, we obtain

Pr
[S (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk∗1

s.t.
[
1← CHF.SKVer

(
pk1, sk∗1

)] ∧ [1← CHF.SKVer2
(
pk1, sk∗1, sk1

)]]
= Pr
[
W7|qs

]
,

where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R.
If we assume that there exists a polynomial function poly(λ) such that Pr

[
W7|qs

]
≥

1/poly(λ), then we obtain

Pr
[S (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r))→ sk∗1

s.t.
[
1← CHF.SKVer

(
pk1, sk∗1

)] ∧ [1← CHF.SKVer2
(
pk1, sk∗1, sk1

)]] ≥ 1/poly(λ),

where (pk1, sk1)
R←− CHF.Gen(1λ), (pk2, sk2)

R←− CHF2.Gen(1λ), (ek, dk)
R←− LPKE.Gen(1λ),

(crs, td)
R←− S1(1λ) and r

R←− R.
This contradicts to the hardness of inversion for the leakage-function f ∈ F HtI

ΣSIG
(λ). □

4.4 An Instantiation Secure under the DLIN Assumption
As a concrete construction for the chameleon hash function ΣCHF, we adopt the chameleon
hash functionΠCHF,n given in Fig. 4.1. ForΠCHF,n, we obtain Theorem 4.4.1, Theorem 4.4.2,
and Theorem 4.4.3, whose proofs are given below.

Theorem 4.4.1. For any n ∈ N, ΠCHF,n is HtC-SK under the DL assumption.

Theorem 4.4.2. For any n ∈ N, ΠCHF,n is random trapdoor collision.

Theorem 4.4.3. For any chameleon hash function ΠCHF2, any LPKE scheme ΠLPKE, any
NIZK scheme ΠNIZK, and any integer n ∈ N, ΠCHF,n is strongly collision-resistant in HL
model w.r.t. the function class F HtI

ΠSIG
(λ) under the collision-resistance of the hash function

J : {0, 1}∗ → Zp \ {0} and the DL assumption, where ΠSIG denotes the instantiation of the
signature scheme ΣSIG by ΠCHF, ΠCHF2, ΠLPKE and ΠNIZK.

As a concrete construction for the chameleon hash function ΣCHF2, we adopt the chameleon
hash function ΠCHF,1 which is ΠCHF,n in Fig. 4.1 with n = 1. The following corollary is ob-
tained by Theorem 4.4.3, obviously.

Corollary 4.4.1. For any n ∈ N, ΠCHF,n is strongly collision-resistant under the collision-
resistance of the hash function J : {0, 1}∗ → Zp \ {0} and the DL assumption.

Thus, the random trapdoor collision and strong collision-resistance of the CHF scheme
ΠCHF,1 are guaranteed by Theorem 4.4.2 and Corollary 4.4.1, respectively.

As a concrete construction for the LPKE scheme ΣLPKE, we adopt ΠLPKE,l given in
Fig. 5.10. The LPKE scheme is a modification of the LPKE scheme by Camenisch et
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CHF.Gen(1λ, 1n):

(p,G, g)← G(1λ). x1, · · · , xn, a1, · · · , an
U←− Zp. g1 B ga1 , · · · , gn B gan .y B

∏n
i=1 gxi

i .
Return pk B (p,G, g1, · · · , gn, y) and sk B (x1, · · · , xn).

CHF.Eval(pk,m; r):

r
U←− Zn

p, where r is parsed as (r1, · · · , rn). Return
(
y · Πn

i=1gri
i

)J(m)
.

CHF.TC(pk, sk, (m, r),m′):
sk ∈ Zn

p is parsed as (x1, · · · , xn). r ∈ Zn
p is parsed as (r1, · · · , rn).

For i ∈ [1, n], r′i B J(m)(xi − ri)/J(m′) − xi. Return r′ B (r′1, · · · , r′n).
CHF.SKVer(pk, sk∗):

sk∗ ∈ Zn
p is parsed as (x∗1, · · · , x∗n). Return 1, if

[
y =
∏n

i=1 g
x∗i
i

]
. Return 0, otherwise;

CHF.SKVer2(pk, sk∗, sk′):
sk∗ ∈ Zn

p is parsed as (x∗1, · · · , x∗n). sk′ ∈ Zn
p is parsed as (x′1, · · · , x′n).

Return 1, if
[∧n

i=1

[
x∗i = x′i

]]
. Return 0, otherwise;

Figure 4.1: Construction of CHF Scheme ΠCHF,n, where J : {0, 1}∗ → Zp \ {0} is a collision-
resistant hash function.

al. [CCS09] which is IND-LCCA secure3 under the DLIN assumption and the collision-
resistance of hash function. Faust et al. [FHN+12] modifies the scheme by Camenisch et al.
to get the LPKE scheme ΠLPKE,l which achieves a weaker security, i.e., IND-wLCCA, but
encrypts a plaintext of arbitrary length. Thus,

Theorem 4.4.4. For any l ∈ N, ΠLPKE,l is IND-wLCCA under the collision-resistance of the
hash function HCL : {0, 1}∗ → Zp and the DLIN assumption.

As a concrete construction for the non-interactive zero-knowledge proof ΣNIZK, we adopt
the Groth-Sahai proof ΠNIZK in [GS08] whose soundness and zero-knowledge are guaran-
teed under the DLIN assumption.

By the schemes ΠCHF,n,ΠCHF2,ΠNIZK and ΠLPKE,nλ, where λ denotes the integer in the se-
curity parameter 1λ of ΠCHF,n, our concrete signature scheme ΠSIG is constructed. Hereafter,
for i ∈ [1, n] and j ∈ [1, λ], the j-th bit of xi ∈ Zp in ΠCHF,n is denoted by xi j ∈ {0, 1}, and the
prime and group in ΠLPKE,nλ are written as p̂ and Ĝ, respectively. By the signing algorithm
of ΠSIG, a ciphertext C and a proof π are generated as follows.

The ciphertext C is generated by running C ← LPKE.Enc(ek, (x1, · · · , xn), m̄), where
LPKE.Enc is the encryption algorithm of ΠLPKE,nλ. C is parsed as {ci j}i∈[1,n], j∈[1,λ]. ci j is
parsed as (yi j, zi j ∈ Ĝ, ci j ∈ Ĝ). yi j is parsed as (yi j,1, yi j,2, yi j,3) ∈ Ĝ3.

By using the proof-generation algorithm of the NIZK scheme ΠNIZK, we generate the

3IND-LCCA is stronger security notion than IND-wLCCA. For the details, refer to [FHN+12].

68



LPKE.Gen(1λ, 1l):

(p,G, g)← G(1λ). a1, · · · , al, b1, b2
U←− Zp. ĝ0 B g, ĝ1 B gb1 , ĝ2 B gb2 , g1 B ga1 , · · · , gl B gal .

u1, u2, u3, v1, v2, v3,w1,w2,w3
U←− Zp. d1 B ĝu1

0 · ĝ
u2
1 , d2 B ĝu1

0 · ĝ
u3
2 ,

e1 B ĝv1
0 · ĝ

v2
1 , e2 B ĝv1

0 · ĝ
v3
2 , h1 B ĝw1

0 · ĝ
w2
1 , h2 B ĝw1

0 · ĝ
w3
2 .

ek B (p,G, ĝ0, ĝ1, ĝ2, g1, · · · , gl, d1, d2, e1, e2, h1, h2). dk B (u1, u2, u3, v1, v2, v3,w1,w2,w3).
Return(ek, dk).

LPKE.Enc(ek, x ∈ {0, 1}l, L ∈ {0, 1}∗):
For i ∈ [1, l], the i-th bit of x ∈ {0, 1}l is denoted by xi ∈ {0, 1}.
For every i ∈ [1, l], do:

ri, si
U←− Zp. yi B (yi,1, yi,2, yi,3) B (ĝri+si

0 , ĝri
1 , ĝ

si
2 ). zi B hri

1 · h
si
2 · g

xi
i .

ci B (d1 · eti
1)ri · (d2 · eti

2)si , where ti B HCL(yi, zi, L). ci B (yi, zi, ci).
Return C B {ci}i∈[1,l].

LPKE.Dec(ek, dk,C, L):
For every i ∈ [1, l], do:

c̃i B yu1+tiv1
i,1 · yu2+tiv2

i,2 · yu3+tiv3
i,3 , where ti B HCL(yi, zi, L).

If c̃i , ci, then return ⊥.
Else if zi/(y

w1
i,1 · y

w2
i,2 · y

w3
i,3 ) = gi, then x′i B 1. Else, then x′i B 0.

The i-th bit of x′ is set as x′i .
Return x′ ∈ {0, 1}l.

Figure 4.2: Construction of LPKE Scheme ΠLPKE,l, where HCL : {0, 1}∗ → Zp is a collision-
resistant hash function.

proof π. Actually, the proof π is a proof which proves that

∃{ri j ∈ Zp̂, si j ∈ Z p̂, xi j ∈ {0, 1}}i∈[1,n], j∈[1,λ] such that n∏
i=1

λ∏
j=1

g2 j−1·xi j

i = y

 ∧
i∈[1,n], j∈[1,λ]

[[
ĝri j+si j

0 = yi j,1

]
∧
[
ĝri j

1 = yi j,2

]
∧
[
ĝsi j

2 = yi j,3

]
∧
[
hri j

1 · h
si j

2 · g
xi j

i j = zi j

]
∧
[
(d1 · eti j

1 )ri j · (d2 · eti j

2 )si j = ci j

]
∧
[
xi j(1 − xi j) = 0

]]
,

where y =
∏n

i=1 gxi
i ∈ G.

Proof of Theorem 4.4.1. We prove the theorem by proving that if we assume that there
is a PPT adversary A which breaks the HtC-SK property for ΠCHF,n, then we are able to
construct a PPT algorithm S which breaks the DL assumption. We prove the theorem for
the case that n ≥ 2. The theorem for the case that n = 1 can be proven in the same manner.
S is given (p,G, g, ga) as an instance of the discrete logarithm problem. Then, S behaves

as follows: Chooses j
U←− [1, n] and sets g j B ga. For every i ∈ [1, n], chooses xi

U←− Zp, then

sets x B (x1, · · · , xn). For every i ∈ [1, n] \ { j}, chooses ai
U←− Zp, then sets gi B gai . Sets

y B
∏

i∈[1,n] gxi
i .

S gives pk B (p,G, g, g1, · · · , gn, y) to A. After that, S receives x∗ B (x∗1, · · · , x∗n) ∈ Zn
p

sent by A. Since we are considering a PPT adversary A breaking the HtC-SK property for
ΠCHF,n, x∗ satisfies the relation [x∗ , x] ∧ [

∏
i∈[1,n] gx∗i

i =
∏

i∈[1,n] gxi
i ].
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Hence, we obtain g
x∗j−x j

j =
∏

i∈[1,n]\{ j} g
xi−x∗i
i and g j = g(

∑
i∈[1,n]\{ j} ai(xi−x∗i ))/(x∗j−x j) = ga.

S outputs a = (
∑

i∈[1,n]\{ j} ai(xi − x∗i ))/(x∗j − x j). Note that Pr[x∗j , x j] ≥ 2/n, where
n ≥ 2. □

Proof of Theorem 4.4.2. We consider a key-pair (pk, sk), a message m ∈ M, and a mes-
sage m′ ∈ M. pk and sk are parsed as pk = (p,G, g1, · · · , gn, y) and sk = (x1, · · · , xn),
respectively.

P(r̂) denotes the probability that the randomness r̂ is chosen as the randomness used

to compute the hash value for the message m. Hence, P(r̂) = Pr[r̂ = r | r
U←− Zn

p] =

Pr[
∧

i∈[1,n][r̂i = ri] | r
U←− Zn

p] =
∏

i∈[1,n] Pr[r̂i = ri | ri
U←− Zp] = 1/pn.

P(r̂′) denotes the probability that CHF.TC(pk, sk, (m, r),m′) outputs r̂′ ∈ Zn
p, where the

randomness r ∈ Zn
p is chosen uniformly at random. Hence,

P(r̂′) = Pr[r̂′ = CHF.TC(pk1, sk1, (m, r),m′) | r
U←− Zn

p] = Pr[
∧

i∈[1,n][r̂′i = J(m)(xi −
ri)/J(m′) − xi] | r

U←− Zn
p] =
∏

i∈[1,n] Pr[r̂′i = J(m)(xi − ri)/J(m′) − xi | ri
U←− Zp] = 1/pn.

Hence, P(r̂) = P(r̂′) = 1/pn. Therefore, for any (pk, sk) and any m,m′ ∈ M, r
U←− R and

r′ B CHF.Eval(pk, sk, (m, r),m′) distribute identically. □

Proof of Theorem 4.4.3. We prove the theorem by the argument of game-transformation.
We use four games Game0, Game1, Game2 and Game3. Each game is defined as follows.

Game0. Game0 is the game of strong collision-resistance for the CHF scheme ΠCHF,n in the
auxiliary leakage model w.r.t. the function class F HtI

ΠSIG
(λ). Concretely, the game is the

following.

CH runs (pk1, sk1)← CHF.Gen(1λ), (pk2, sk2)← CHF2.Gen(1λ), (ek, dk)← LPKE.Gen(1λ)
and (crs, td)← S1(1λ). pk1 is parsed as (p,G, g1, · · · , gn, y). sk1 is parsed as (x1, · · · , xn).

pk is set as (pk1, pk2, ek, crs). sk is set as sk1. CH sets r as r
R←− R, where R is the

randomness space of a leakage function f ∈ F HtI
ΠSIG

(λ), then computes f (pk, sk; r). CH
sends (pk, sk2, dk, td, f (pk, sk; r)) toA. Then, (m, r) and (m′, r′), where m,m′ ∈ {0, 1}∗
and r, r′ ∈ Zn

p, are sent to CH byA. r and r′ are parsed as (r1, · · · , rn) and (r′1, · · · , r′n),
respectively. A is said to win the game, if the following condition is satisfied:

[[
m , m′

] ∨ [[m = m′
] ∧ [r , r′

]]] ∧ 
y · n∏

i=1

gri
i

J(m)

=

y · n∏
i=1

gr′i
i

J(m′) .
Game1. Game1 is the same as Game0 except that the winning condition by A is changed to

the following one: [[[m , m′] ∧ [J(m) , J(m′)] ∧ [[x , x∗] ∨ [x = x∗]]] ∨ [[m =
m′] ∧ [r , r′]]] ∧ [(y ·∏n

i=1 gri
i )J(m) = (y ·∏n

i=1 gr′i
i )J(m′)], where, for i ∈ [1, n], x∗i B

(J(m)ri − J(m′)r′i )/(J(m′) − J(m)), x∗ B (x∗1, · · · , x∗n) and x B (x1, · · · , xn).

Game2. Game2 is the same as Game1 except that the winning condition by A is changed to
the following one: [[[m , m′] ∧ [J(m) , J(m′)] ∧ [x = x∗]] ∨ [[m = m′] ∧ [r ,
r′]]] ∧ [(y ·∏n

i=1 gri
i )J(m) = (y ·∏n

i=1 gr′i
i )J(m′)].
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Game3. Game3 is the same as Game2 except that the winning condition by A is changed to
the following one: [m = m′] ∧ [r , r′] ∧ [(y ·∏n

i=1 gri
i )J(m) = (y ·∏n

i=1 gr′i
i )J(m′)].

Wi, where i ∈ {0, 1, 2, 3}, denotes the event thatA wins the game Gamei. It holds that

Pr [W0] ≤ |Pr [W0] − Pr [W1]| + |Pr [W1] − Pr [W2]| + |Pr [W2] − Pr [W3]| .

By the above inequality and the following lemmas, Theorem 4.4.3 is proven.

Lemma 4.4.1. |Pr[W0]−Pr[W1]| is negligible, if J : {0, 1}∗ → Zp \{0} is a collision-resistant
hash function.

Lemma 4.4.2. |Pr[W1] − Pr[W2]| is negligible, if the discrete logarithm assumption holds.

Lemma 4.4.3. |Pr[W2]−Pr[W3]| is negligible under the hard-to-invert property of the func-
tion f ∈ F HtI

ΠSIG
(λ).

Lemma 4.4.4. Pr[W3] is negligible, if the discrete logarithm assumption holds.

□

Proof of Lemma 4.4.1. We prove that if there is a PPTA which makes |Pr[W0]− Pr[W1]|
non-negligible, we can construct a PPT S which breaks the collision-resistance of the hash
function J : {0, 1}∗ → Zp \ {0}. Let us consider a PPT S which behaves as follows.
S randomly generates (pk1, sk1), (pk2, sk2), (ek, dk) and (crs, td). pk1 and sk1 are parsed

as (p,G, g1, · · · , gn, y) and (x1, · · · , xn), respectively. pk and sk are set as (pk1, pk2, ek, crs)

and sk1, respectively. S sets r as r
R←− R, where R is the randomness space of a leakage

function f ∈ F HtI
ΠSIG

(λ), then computes f (pk, sk; r). S sends (pk, sk2, dk, td, f (pk, sk; r)) toA.
Then, S receives (m, r) and (m′, r′) fromA. If [m , m′]∧[J(m) = J(m′)]∧[(y·∏n

i=1 gri
i )J(m) =

(y ·∏n
i=1 gr′i

i )J(m′)], then S outputs (m,m′). We obtain

|Pr[W0] − Pr[W1]| ≤ Pr[[m , m′] ∧ [J(m) = J(m′)] ∧ [(y ·
n∏

i=1

gri
i )J(m) = (y ·

n∏
i=1

gr′i
i )J(m′)]]

= Pr[S(·)→ (m,m′) s.t. [m , m′] ∧ [J(m) = J(m′)]].

If we assume that there is a PPT adversaryAwhich makes |Pr[W0]−Pr[W1]| non-negligible,
S is able to break the collision-resistance property of the hash function J. □

Proof of Lemma 4.4.2. We prove that if there is a PPTA which makes |Pr[W1]− Pr[W2]|
non-negligible, a PPT S which breaks the HtC-SK property for ΠCHF,n can be constructed.
Let us consider a PPT S which behaves as follows.
S is given the keys (pk1, sk1) of ΠCHF,n. pk1 and sk1 are parsed as (p,G, g1, · · · , gn, y)

and (x1, · · · , xn), respectively. S randomly generates (pk2, sk2), (ek, dk) and (crs, td). pk

and sk are set as (pk1, pk2, ek, crs) and sk1, respectively. S sets r as r
R←− R, then computes

f (pk, sk; r). S sends (pk, sk2, dk, td, f (pk, sk; r)) to A. Then, S receives (m, r) and (m′, r′)
from A. S computes x∗i B (J(m) · ri − J(m′) · r′i )/(J(m′) − J(m)) for i ∈ [1, n] and sets
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x∗ B (x∗1, · · · , x∗n) and x B (x1, · · · , xn). If [m , m′] ∧ [J(m) , J(m′)] ∧ [x , x∗] ∧ [(y ·∏n
i=1 gri

i )J(m) = (y ·∏n
i=1 gr′i

i )J(m′)], then S outputs x∗.
We obtain

∏
i∈[1,n] gJ(m)·(xi+ri)

i =
∏

i∈[1,n] gJ(m′)·(xi+r′i )
i , g

∑
i∈[1,n] ai·J(m)·(xi+ri) = g

∑
i∈[1,n] ai·J(m′)·(xi+r′i ),

and g
∑

i∈[1,n] ai·xi = g
∑

i∈[1,n]
J(m′)·r′i−J(m)·ri

J(m)−J(m′) . In the transition from the first equation to the second one,
we used the fact that for every gi ∈ G where i ∈ [1, n], there exists an integer ai ∈ Zp such
that gi = gai .

Likewise, we obtain the following equations.∏
i∈[1,n]

gJ(m)·(x∗i +ri)
i =

∏
i∈[1,n]

gJ(m′)·(x∗i +r′i )
i

g
∑

i∈[1,n] ai·J(m)·(x∗i +ri) = g
∑

i∈[1,n] ai·J(m′)·(x∗i +r′i )

g
∑

i∈[1,n] ai·x∗i = g
∑

i∈[1,n]
J(m′)·r′i−J(m)·ri

J(m)−J(m′)

Hence, we obtain g
∑

i∈[1,n] ai·xi = g
∑

i∈[1,n] ai·x∗i , and y =
∏

i∈[1,n] gxi
i =
∏

i∈[1,n] gx∗i
i .

As a result, we obtain

|Pr[W1] − Pr[W2]|

≤ Pr

[m , m′] ∧ [J(m) , J(m′)] ∧ [x , x∗] ∧
(y · ∏

i∈[1,n]

gri
i )J(m) = (y ·

∏
i∈[1,n]

gr′i
i )J(m′)




= Pr

S(p,G, g1, · · · , gn, y, x)→ x∗ s.t.

y = ∏
i∈[1,n]

gx∗i
i

 ∧ [x , x∗]

 .
If we assume that there is a PPT adversaryAwhich makes |Pr[W1]−Pr[W2]| non-negligible,
S is able to break the property of HtC-SK for ΠCHF,n. We have already proven Theorem
4.4.1 which says that the property of HtC-SK for ΠCHF,n can be proven under the discrete
logarithm assumption. Hence, |Pr[W1]−Pr[W2]| is negligible under the DL assumption. □

Proof of Lemma 4.4.3. Let f be a leakage function f ∈ F HtI
ΠSIG

(λ). We prove that if there is
a PPT A which makes |Pr[W2] − Pr[W3]| non-negligible, we can construct a PPT S which
breaks the hardness of inversion for the function. Let us consider a PPT S which behaves as
follows.
S is given (pk1, pk2, ek, crs, sk2, dk, td, f (pk1, pk2, ek, crs, sk1; r)), where (pk1, sk1), (pk2, sk2),

(ek, dk) and (crs, td) are randomly generated and r ∈ R is randomly chosen. pk1 and sk1 are
parsed as (p,G, g1, · · · , gn, y) and (x1, · · · , xn), respectively. S sends (pk1, pk2, ek, crs, f (pk1,
pk2, ek, crs, sk1; r)) to A. Then, S receives (m, r) and (m′, r′) from A. S computes x∗i B
(J(m)ri − J(m′)r′i )/(J(m′) − J(m)) for i ∈ [1, n] and sets sk∗1 B (x∗1, · · · , x∗n). S outputs sk∗1.
We obtain

|Pr[W2] − Pr[W3]|
≤ Pr[[m , m′] ∧ [J(m) , J(m′)] ∧ [sk1 = sk∗1] ∧ [(y ·

∏
i∈[1,n]

gri
i )J(m) = (y ·

∏
i∈[1,n]

gr′i
i )J(m′)]]

= Pr[S(pk1, pk2, ek, crs, sk2, dk, td, f (pk1, sk1; r))→ sk∗1 s.t. [sk∗1 = sk1]]
= Pr[S(pk1, pk2, ek, crs, sk2, dk, td, f (pk1, sk1; r))→ sk∗1

s.t. [1← CHF.SKVer(pk1, sk∗1)] ∧ [1← CHF.SKVer2(pk1, sk∗1, sk1)].
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If we assume that there is a PPT adversaryAwhich makes |Pr[W2]−Pr[W3]| non-negligible,
S breaks the hardness of inversion of the function f ∈ F HtI

ΠSIG
(λ). □

Proof of Lemma 4.4.4. We prove that if there is a PPT A which makes Pr[W4] non-
negligible, we can construct a PPT S which breaks the n-representation assumption [Bra93,
BGG94]. We give the definition of the assumption below.

Definition 22. We say that n-representation assumption holds if for every PPTA,

Pr
[A(p,G, g1, · · · , gn)→ ((x1, · · · , xn), (x′1, · · · , x′n))

s.t.
[
(x1, · · · , xn) , (x′1, · · · , x′n)

] ∧ ∏
i∈[1,n]

gxi
i =
∏

i∈[1,n]

gx′i
i




is negligible, where (p,G)
R←− G(1λ), g1, · · · , gn

U←− G and x1, · · · , xn
U←− Zp.

Validity of the assumption is guaranteed by the following theorem [Bra93, BGG94].

Theorem 4.4.5. n-representation assumption holds under the DL assumption.

Let us consider a PPT S which behaves as follows. S is given (p,G, g1, · · · , gn) as

an instance of the n-representation problem. S chooses x1, · · · , xn
U←− Zp, and sets y B∏

i∈[1,n] gxi
i . Then, S sets pk1 and sk1 as (p,G, g1, · · · , gn, y) and (x1, · · · , xn), respectively. S

randomly generates (pk2, sk2), (ek, dk) and (crs, td). pk and sk are set as (pk1, pk2, ek, crs)

and sk1, respectively. S sets r as r
R←− R, then computes f (pk, sk; r). S sends (pk, sk2, dk,

td, f (pk, sk; r)) to A. Then, S receives (m, r) and (m′, r′) from A. If [m = m′] ∧ [r , r′] ∧
[(y ·∏n

i=1 gri
i )J(m) = (y ·∏n

i=1 gr′i
i )J(m′)], then S outputs (r, r′). We obtain

(
y ·∏i∈[1,n] gri

i

)J(m)
=(

y ·∏i∈[1,n] gr′i
i

)J(m′)
=

(
y ·∏i∈[1,n] gr′i

i

)J(m)
. Hence,

∏
i∈[1,n] gri

i =
∏

i∈[1,n] gr′i
i . Therefore, we

obtain

Pr[W4] = Pr

[m = m′] ∧ [r , r′] ∧


y · ∏

i∈[1,n]

gri
i


J(m)

=

y · ∏
i∈[1,n]

gr′i
i


J(m′)


= Pr

S(p,G, g1, · · · , gn)→ (r, r′) s.t.
[
r , r′

] ∧ ∏
i∈[1,n]

gri
i =
∏

i∈[1,n]

gr′i
i


 .

If we assume that there is a PPT adversaryA which makes Pr[W4] non-negligible, S is able
to break the n-representation assumption. □

4.5 Conclusion for Chapter 4
In this work, we generically constructed a digital signature scheme which is strongly exis-
tentially unforgeable and resilient to polynomially hard-to-invert leakage which can be cho-
sen dependently on the public-key pk. Then, we instantiated it under the DLIN assumption
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in the standard model. Our result is meaningful because of the following two independent
respects.

Firstly, our instantiation of signature is the first one resilient to polynomially hard-to-
invert leakage (dependent on the public-key) under standard assumptions. Note that the
existing known signature schemes secure in HL model are either one which is resilient
to exponentially hard-to-invert leakage which can be dependent on the public-key under
standard assumptions such as [FHN+12] or one which is polynomially hard-to-invert leakage
which cannot be dependent on the public-key under standard (resp. strong) assumptions
[YYH12] (resp. [WMHT16]).

Secondly, our instantiation of signature is the first one which simultaneously achieves the
strong unforgeability and hard-to-invert leakage-resilience. Note that every existing known
signature scheme [FHN+12, YYH12, WMHT16] is weakly unforgeable.

Related to this work, there are some open problems.
For instance, one of them can be presenting a more efficient scheme. Our signature

scheme degrades its efficiency because of the non-interactive zero-knowledge proof (NIZK)
as one of the building blocks. Thus, presenting a more efficient scheme which is not based
on such inefficient schemes is an open problem.
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Chapter 5

ABS/IBS Schemes with Hard-to-Invert
Leakage-Resilience

5.1 Introduction for Chapter 5

5.1.1 Background
Identity-Based Signature (IBS). The concept of IBS was presented by Shamir at Crypto’84
[Sha84]. IBS is a generalization of digital signature. In IBS systems, each user whose iden-
tity information (or ID) is a bit-string ID ∈ {0, 1}∗ receives a secret-key associated with
the ID which was generated by a trusted authority. By using the secret-key, the user can
generate a valid signature on any message associated with the ID. IBS is required to be ex-
istentially unforgeable. Informally, IBS is said to be existentially unforgeable when every
PPT adversary cannot find with a non-negligible probability a message m∗, a signature σ∗

and an ID ID∗ called the target ID such that σ∗ is a correct signature for (m∗, ID∗), even
if the adversary can adaptively use revelation oracle which takes an ID ID(, ID∗), then
returns a valid secret-key for the ID and signing oracle which takes a message and an ID,
then returns a correct signature for (m, ID). By the way, Shamir [Sha84] pointed out that
an IBS scheme can be generically constructed from two types of digital signature scheme
which sign on different-sized messages by using one of the signature scheme for secret-key
generation and the other one for signature generation. Some concrete constructions of IBS
with better properties such as better efficiency than the well-known generic construction
were proposed in the previous works such as [PS06].

Attribute-Based Signature (ABS). The first ABS scheme was presented by Maji et al.
[MPR11]. ABS is a generalization of IBS. In ABS systems, each user’s secret-key is asso-
ciated with an attributeW. By using the secret-key, the user can generate a signature on any
message associated with any predicate which is satisfied byW. As IBS, ABS is required to
be existentially unforgeable. Its definition is a natural extention from the definition of the
one of IBS. Note that any attributeW∗ satisfying the target predicate ϕ∗ must not be queried
to the revelation oracle. In addition, ABS is required to be signer-private. Informally, the
property means that any signature reveals no information about the set of attributes of the
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signer. By the way, in the first ABS scheme [MPR11], each signer-predicate is required to
be represented as a monotone span program (MSP). Following [MPR11], some works fo-
cused on ABS schemes with a more expressive signer-predicate, e.g., a non-monotone span
program [OT11], a general circuit [SAH16].

5.1.2 Related Work
Signature schemes secure in BL model or CL model were proposed in previous works such
as [KV09, BSW11, GV12, MTVY11].

When we construct a signature scheme existentially unforgeable in HL model, we have
to keep in mind that there exists a well-known attack which makes the adversary successful
in winning the security game. The attack is possible when the signing algorithm generating
a valid signature on a message, and then outputting it, is included in the set of allowed
leakage-functions. If the adversary outputs the signature (and the message) obtained through
the leakage-function as a forged signature, he wins the game. Thus, signature schemes with
HL resilience require a defence mechanism to the attack. Hereafter, in some cases, we call
the attack signature-leakage attack.

The first signature scheme secure in HL model was presented by Faust et al. [FHN+12]
at Asiacrypt’12. Their generic construction of signature uses labeled public-key encryption
(LPKE) as a building block. Let dk denote its decryption-key. One of their important
techniques to defend the signature-leakage attack is to include a ciphertext of the secret-key
in each signature. Before considering the reason why such a defence effectively works, we
need to know how the set of leakage-functions FFHNNZ12(ξ(λ)) is defined, where ξ(λ) is a
negligible function. The set of functions consists of every efficiently computable function
f s.t. no PPT B, given (pk, f (pk, sk)), can find out sk with a probability greater than ξ(λ),
where (pk, sk) is a pair of randomly generated keys. If we let ξ(λ) satisfy 2−|dk| >> ξ(λ), then
any function outputting a valid signature on any message is excluded from FFHNNZ12(ξ(λ))
because any PPT B can find out sk with probability 2−|dk| >> ξ(λ) by firstly finding out dk
with probability 2−|dk| and secondly decrypting the ciphertext of sk in the signature by using
dk.

There are some disadvantages of Faust et al.’s signature scheme. Firstly, their signature
is weakly existentially unforgeable, but not strongly existentially unforgeable. Secondly, the
specific hardness parameter ξ(λ) for their scheme is written as 1/exp(λ), where exp(λ) is
an exponential function. Thus, their signature is secure against exponentially hard-to-invert
functions, but not secure against polynomially hard-to-invert functions.

Recently, Ishizaka and Matsuura [IM18] at ISC’18 proposed an improved signature
scheme from Faust et al.’s one. Their signature scheme is strongly existentially unforge-
able and resilient to polynomially hard-to-invert leakage functions. The signature schemes
by Faust et al. [FHN+12] and Ishizaka and Matsuura [IM18] are closely related to our sig-
nature schemes in this work, so we explain the former one (resp. the latter one) in more
detail in a paragraph below titled Details of Digital Signature by Faust et al. (resp. Details
of Digital Signature by Ishizaka and Matsuura.)

In [YYH12, WMHT16], other signature schemes with HL resilience were presented.
Their signature schemes were proven to be secure in selective auxiliary input model where
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only leakage caused by functions chosen independently of the public-key are considered.
Influenced by the works such as [KP10, GV12, TLNL14], Wu et al. [WTH16] proposed

an efficient IBS scheme resilient to continual leakage in the generic bilinear groups model
which requires a strong assumption. As far as we know, neither IBS nor ABS scheme secure
in BL or HL model under standard cumputational assumptions in the standard model has
been proposed.

5.1.3 Our Results
By extending a signature scheme by Ishizaka and Matsuura [IM18], we generically construct
an IBS scheme existentially unforgeable in HL model. Also, we generically construct an
ABS scheme, whose predicate is represented as a general circuit, existentially unforgeable
in HL model and computationally signer-private. Previous ABS schemes (such as [MPR11,
OT11, SAH16]) were proven to be perfectly signer-private. It must be hard to prove perfect
signer-privacy of our ABS scheme because of the ciphertext of a valid secret-key included in
each signature. We originally define the notion of computational signer-privacy, and prove
that our ABS satisfies it. By the way, since our IBS and ABS are based on the signature in
[IM18], they are resilient to polynomially hard-to-invert leakage.

In addition, we instantiate them under standard assumptions such as the decisional lin-
ear (DLIN) assumption [BBS04] and the symmetric external diffie-hellman assumption
(SXDH) assumption. Let us emphasize that each one of the instantiations of IBS and ABS
is not only the first one secure in HL model under standard assumptions, but also the first
leakage-resilient one secure under standard assumptions.

As we mentioned earlier, our IBS or ABS scheme is closely related to each one of a
signature scheme in [FHN+12] and one in [IM18]. Before explaining the details of our
schemes, we explain the details of the one in [FHN+12] and the one in [IM18].

Details of Digital Signature by Faust et al. [FHN+12]. Their signature scheme is gener-
ically built from three building blocks: IND-wLCCA secure labeled PKE (LPKE), sound
and zero-knowledge non-interactive zero-knowledge proof (NIZK) [GS08] and second pre-
image resistant hash-function (SPR-HF). Informally, second pre-image resistance means
that no PPTA, given a bitstring x ∈ {0, 1}n, can find out any x′ ∈ {0, 1}n which is not equiv-
alent to x and has the same hash value as x with a non-negliglble probability. Definitions
of IND-wLCCA, soundness and zero-knowledge are given in Sect. ??. A randomly chosen
bitstring x is used as the secret-key sk, and its hash value, i.e., y = H(x), is reserved in
the public-key pk. A signature on a message m consists of (C, π), where C is an LPKE-
ciphertext of sk under label m, and π is an NIZK-proof which proves that there exists sk s.t.
its encryption can be C and its hash value is y and the signer has an evidence to support the
statement.

Informally, its existential unforgeability is proven as follows. Firstly, initial security
game is reasonably transformed to a game, namely Game1, where the decryption sk∗ of the
ciphertext C∗ in the forged signature σ∗ has the same hash value as the real secret-key sk
because of the soundness of the NIZK. Secondly, Game1 is properly transformed to a game
Game2, where the secret-key sk∗ is the original secret-key sk itself, because of the SPR prop-
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erty of the hash function. Thirdly, Game2 is changed to Game3, where every proof in every
signature on signing oracle is generated by using the trapdoor td instead of the real secret-
key sk, becaused of the zero-knowledge of NIZK. Fourthly, Game4 is changed to Game5,
where every ciphertext in every signature on signing oracle is generated by encrypting all
zero bitstring, because of the ciphertext-indistinguishability of LPKE. Finally, every PPTA’s
winning probability in Game5 is proven to be negligible, because of the inversion hardness
property of the leakage-function f ∈ FFHNNZ12(2−λ−|dk|−|td|).

Details of Digital Signature by Ishizaka and Matsuura [IM18]. In this paragraph, we
give details of a signature scheme weakly unforgeable and resilient to polynomially hard-
to-invert leakage functions presented in [IM18]. Actually, that is obtained by modifying the
signature scheme by Faust et al. with two steps.

At first modification, we generalize the SPR-HF to an original primitive named PKX
scheme with HtC-SK (Hard-to-Compute Secret-Key) property. PKX consists of a key-
generation algorithm which generates a pair of keys (pk, sk), a secret-key-verification al-
gorithm SKVer which takes a secret-key sk′ then outputs 1 if that is a valid secret-key
under pk, and another secret-key-verification algorithm SKVer2 which takes two secret-
keys then outputs 1 if a relation holds between them. The property HtC-SK means that
no PPTA, given a randomly chosen pair of keys (pk, sk), can find out a secret-key sk′

s.t. 1 ← SKVer(pk, sk′) ∧ 0 ← SKVer2(pk, sk′, sk) with a non-negligible probability.
Note that the definition of the set of leakage-functions is automatically changed as fol-
lows: the set consists of every f s.t. no PPT B, given (pk, f (pk, sk)), can find out sk′ s.t.
1← SKVer(pk, sk′) ∧ 1← SKVer2(pk, sk′, sk) with a non-negligible probability.

At second modification, we modify the definition of set of leakage-functions. In the
modified definition, the PPT inverter B is given not only the public-key pk, but also some
variables which are not included in pk but generated during running the key-generation
algorithm. Specifically, the pair of variables (dk, td) is given. If we use such a definition,
since the reduction simulator introduced to prove the negligibility of the game Game5 is not
forced to randomly guess (dk, td), the new signature scheme can achieve the security against
polynomially hard-to-invert leakage.

Details of Our IBS. Our IBS is an extension of the signature proposed by Ishizaka and
Matsuura.

At first, we explain our definition of existential unforgeability in HL model for IBS
schemes. Basically, its security game is defined in the same manner as the one in non-
leakage setting, which means that the adversary in the game is required to use the secret-key-
revelation oracle and signing oracle adaptively and then output a signature σ∗, a message
m∗ and an ID ID∗ called the target ID such that σ∗ is a valid signature on (m∗, ID∗) and
no signature on (m∗, ID∗) was generated on the signing oracle, except for a leakage oracle
whomA can use only once right before outputting the forged signature. The leakage oracle
takes the target ID ID∗ and a function f , then returns f (LID∗), where the list LID∗ includes
the secret-key(s) for ID∗ used to generate signature(s) on the signing oracle. Note that the
function f should be chosen from a specific set of functions, namely FIBS , whose definition
is given below.
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Our IBS is built from three building blocks: LPKE, NIZK and IBX. IBX’s algorithms
are Setup and KeyGen which are the same algorithms as the ones of IBS, SKVer which
takes (sk, ID) and outputs 1 if sk is a valid secret-key for ID under pk, and SKVer2 which
takes (sk, sk′) and outputs 1 if a relation holds between the two keys. Informally, HtC-SK
property for IBX is defined as follows: for any PPT A , even if A can adaptively use the
key-revalation oracle which takes an ID ID, then returns a secret-key for the ID, A cannot
find out a secret-key sk∗ satisfying both of the following conditions: sk∗ is a valid secret-key
for ID∗ and the relation SKVer2 does not hold between sk∗ and every skID∗ ∈ LID∗ , where
LID∗ consists of all secret-keys for ID∗ generated on the key-revelation oracle.

The generic construction of our IBS is as follows. We run Setup of IBX to generate
a pair of keys (pk′,mk′). We generate each secret-key for an ID ID by running KeyGen
of IBX. We generate a signature σ B (C, π) on a message m and an ID ID by using sk as
follows. Firstly, we generate an LPKE-ciphertext C of sk under label m||ID. Secondly, we
generate an NIZK-proof π which proves that there exists sk′ s.t. C is a ciphertext of sk′

under label m||ID and sk′ is a valid secret-key for ID.
The set of leakage functions is determined dependently of some variables such as pk′,

dk, td, ID∗ and LID∗ generated in the game. Informally, the set consists of every function
f s.t. no PPT B, given variables such as pk′, dk, td, ID∗, f and f (L′ID∗), can find out sk∗

s.t. 1 ← KeyGen(pk′, sk∗, ID∗) and there exists at least one sk′ ∈ L′ID∗ satisfying that
1 ← SKVer2(pk′, sk∗, sk′) with a non-negliglble probability, where L′ID∗ consists of |LID∗ |
number1 of randomly generated secret-keys for ID∗.

Details of Our ABS. Our ABS whose predicate is represented as a general circuit is an
extension (or generalization) of our IBS whose details were given in the last paragraph.

Our definition of existential unforgeability in HL model for ABS schemes is a general-
ization of the one for IBS schemes. Note that the leakage oracle takes the target predicate
ϕ∗ and a function f , then returns f (Lϕ∗), where the list Lϕ∗ is the union of every attribute
LW for attributeW which satisfies ϕ∗, i.e., ϕ∗(W) = 1.

For the generic construction of ABS, we use an original primitive ABX. It consists of
Setup and KeyGen which are the same algorithms as the ones of ABS, SKVer which takes
(sk, ϕ) and outputs 1 if sk is a valid secret-key for an attributeW such that ϕ(W) = 1 under
pk, and SKVer2 which takes (sk, sk′) and outputs 1 if a relation holds between the two keys.
HtC-SK property for ABX is informally defined as follows: for any PPT A, even if A can
adaptively use the key-revalation oracle which takes W, then returns a secret-key for it, A
cannot find out (sk∗, ϕ∗) satisfying both conditions: sk∗ is a valid key for ϕ∗ and for every
W∗ satisfying ϕ∗ and every sk ∈ LW∗ , the relation SKVer2 does not hold between sk∗ and
sk, where LW∗ consists of all secret-keys forW∗ generated on the key-revelation oracle.

The generic construction of our ABS is as follows. We use Setup and KeyGen of ABX
for the same purpose as the case of IBS. We generate σ B (C, π) on m and a predicate ϕ by
using a secret-key sk for an attributeW such that ϕ(W) = 1 as follows. Firstly, we generate
an LPKE-ciphertext C of sk under label m||ϕ. Secondly, we generate an NIZK-proof πwhich
proves that there exists sk′ s.t. C is a ciphertext of sk′ under label m||ϕ and sk′ is a valid
secret-key for an attributeW satisfying ϕ.

1|LID∗ | denotes the number of secret-keys in the list LID∗ .
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ExptIND−wLCCA−b
ΣLPKE,A (1λ):

(ek, dk)← Gen(1λ), (m0,m1, L∗, st)← AO
dk
1 (C,L)

1 (ek), C∗ ← Enc(ek,mb, L∗)

b′ ← AO
dk
2 (C,L)

2 (st,C∗). If b′ = b, then return 1. Else, then return 0.

Figure 5.1: ExptIND−wLCCA−b
ΣLPKE,A

Informally, the set of leakage-functions consists of every function f s.t. no PPT B, given
variables such as pk′, dk, td, ϕ∗, f and f (L′ϕ∗), can find out sk∗ s.t. 1 ← SKVer(pk′, sk∗, ϕ∗)
and there exists at least one sk′ ∈ L′ϕ∗ satisfying that 1 ← SKVer2(pk′, sk∗, sk′) with a non-
negliglble probability, where the list L′ϕ∗ is a randomized one of the list Lϕ∗ in the game.

5.1.4 Organization
This chapter is organized as follows. In Sect. 5.2, we give experiment-based definition of
indistinguishability of LPKE. In the section, we also give definitions of existential unforge-
ability in HL model of IBS/ABS and signer-privacy of ABS. In the section, we also explain
our original primitives IBX and ABX. In Sect. 5.3, our generic construction of IBS and its
security proof for unforgeability are given. In Sect. 5.4, our generic construction of ABS
and its security proofs for unforgeability and signer-privacy are given. In Sect. 5.5, we
show that the generic constructions of IBS and ABS given in the previous sections can be
instantiated under the DLIN and SXDH assumptions.

5.2 Preliminaries for Chapter 5

5.2.1 Experiment-Based Definition of Indistinguishability of LPKE
In this subsection, we give an experiment-based definition of ciphertext indistinguishability
(IND-wLCCA) of LPKE scheme.

To define IND-wLCCA of an LPKE scheme ΣLPKE = {Gen,Enc,Dec}, we use the game
ExptIND−wLCCA−b

ΣLPKE,A (1λ) in Fig.5.1, where A = (A1,A2) are PPT adversaries and b is a bit
b ∈ {0, 1}. The oraclesOdk

1 (C, L) andOdk
2 (C, L) in ExptIND−wLCCA−b

ΣLPKE ,A (λ) are defined as follows:
Odk

1 (C, L) returns LPKE.Dec(dk,C, L). Odk
2 (C, L) returns LPKE.Dec(dk,C, L) if L , L∗, and

⊥ otherwise.
Advantage ofA is defined as

AdvIND−wLCCA
ΣLPKE,A (λ) B

∣∣∣∣Pr
[
ExptIND−wLCCA−0

ΣLPKE,A (1λ))→ 1
]
− Pr
[
ExptIND−wLCCA−1

ΣLPKE,A (1λ))→ 1
]∣∣∣∣ .

Definition 23. If, for every PPT adversary A, AdvIND−wLCCA
A,ΣLPKE

(λ) is negligible, then ΣLPKE is
IND-wLCCA secure.

Remark. Given an LPKE scheme, experiment-based definition of IND-wLCCA of the
LPKE scheme and game-based definition of IND-wLCCA of the LPKE scheme are equiva-
lent. Thus, if an LPKE scheme is IND-wLCCA under the experiment-based definition, i.e.,
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Def. 23, then the LPKE scheme is IND-wLCCA under the game-based definition, i.e., Def.
5, and vice versa. Proof of the equivalence is omitted in this paper since it is very easy.

5.2.2 Existential Unforgeability in HL Model of IBS
In non-leakage setting, it is desirable that an IBS scheme satisfies weak existential unforge-
ability under adaptively chosen ID/messages attack. For the concrete definition, see [PS06].
We define weak existential unforgeability under adaptively chosen ID/messages attack in
HL model (HL-EUF-CMA) for IBS schemes. We consider the following game for an IBS
scheme ΣIBS = {Setup,KeyGen,Sig,Ver} which is played by an adversary A and a chal-
lenger CH . In the game, FΣIBS(λ) denotes a set of leakage-functions2.

Setup. CH runs (pk,mk)← Setup(1λ, 1l). CH initializes a list LS as a set ∅.

Query. A is allowed to adaptively use secret-key-generation oracle Generate, secret-key-
revelation oracle Reveal, and signature-generation oracle Sign as follows.

Generate(ID ∈ I): A issues ID ∈ I. CH generates sk ← KeyGen(pk,mk, ID). If
a list LID for the ID has not been generated, CH generates it and sets it to {sk}.
Else if such a list LID has already been generated, CH sets LID B LID ∪ {sk}.

Reveal(ID ∈ I, i ∈ N): A issues ID ∈ I and i ∈ N such that i ∈ [1, |LID|]. CH
retrieves the i-th secret-key from LID, then returns the secret-key.

Sign(ID ∈ I, i ∈ N,m ∈ M): A issues ID ∈ I, m ∈ M and i ∈ N such that i ∈
[1, |LID|]. CH retrieves the i-th secret-key sk from LID, then generates σ ←
SIG.Sig(pk,m, ID, sk). After that, CH returns σ and sets LS B LS ∪ {(m, ID)}.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). A issues ID∗ ∈ I which was not queried to Reveal and a
function f ∈ FΣIBS . CH returns f (LID∗) 3.

Forgery(m∗ ∈ M, σ∗). A sends a message m∗ ∈ M and a signature σ∗. We say that
A wins the game if [1 ← Ver(pk,m∗, ID∗, σ∗)] ∧ [(m∗, ID∗) < LS ]. Its advantage
Adv

F (λ)−HL−EUF−CMA
ΣIBS,A (λ) is defined as probability Pr[A wins.].

Definition 24. ΣIBS is HL-EUF-CMA secure with respect to the set of leakage-functions
FΣIBS(λ), if for every PPTA, AdvF (λ)−HL−EUF−CMA

ΣIBS,A (λ) is negligible.

5.2.3 Existential Unforgeability in HL Model of ABS
In non-leakage setting, it is desirable for an ABS scheme to satisfy weak existential un-
forgeability under adaptively chosen predicate/messages attack [MPR11, OT11, SAH16].
We define weak existential unforgeability under adaptively chosen predicate/messages at-
tack in HL model (HL-EUF-CMA) for ABS schemes. We consider the following game for
an ABS scheme ΣABS = {Setup,KeyGen,Sig,Ver} which is played by an adversary A and
a challenger CH . In the game, FΣABS(λ) or F (λ) denotes a set of leakage-functions.

2We simply write F (λ) to indicate FΣIBS (λ) if the set of functions is obviously for ΣIBS.
3We assume that the ID ID∗ was queried to Generate at least once and a list LID∗ for the ID has already

been generated.
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Setup. CH runs (pk,mk) ← Setup(1λ, 1L). The universal set of attributes is set as U =
{0, 1}L. A list LS is set as a set ∅.

Query. A is allowed to adaptively use secret-key-generation oracle Generate, secret-key-
revelation oracle Reveal, and signature-generation oracle Sign as follows.

Generate(W ∈ U): A issuesW ∈ U. CH generates sk ← KeyGen(pk,mk,W). If
a list LW for the attribute has not been generated, CH generates it and sets it to
{sk}. Else if such list LW has already been generated, CH sets LW B LW∪ {sk}.

Reveal(W ∈ U, i ∈ N): A issues W ∈ U and i ∈ N such that i ∈ [1, |LW|]. CH
retrieves the i-th secret-key from LW, then returns it.

Sign(W ∈ U, i ∈ N,m ∈ M, ϕ): A issues W ∈ U, m ∈ M, a predicate ϕ and i ∈
N such that i ∈ [1, |LW|]. CH retrieves the i-th secret-key sk from LW, then
generates σ ← SIG.Sig(pk,m, ϕ, sk). After that, CH returns σ, and sets LS B
LS ∪ {(m, ϕ)}.

Leak(ϕ∗, f ∈ FΣABS(λ)). A issues a predicate ϕ∗ such that ϕ∗(W) = 0 for every attribute W
queried to Reveal and a function f ∈ FΣABS(λ). CH returns f (Lϕ∗), where the set Lϕ∗
of secret-keys is set to

∪
W∗∈U s.t. ϕ∗(W∗)=1LW∗4.

Forgery(m∗ ∈ M, σ∗). A sends a message m∗ and a signature σ∗. We say that A wins the
game if [1← Ver(pk,m∗, ϕ∗, σ∗)]∧[(m∗, ϕ∗) < LS ]. The advantage AdvF (λ)−HL−EUF−CMA

ΣABS,A (λ)
is defined as probability Pr[A wins.].

Definition 25. ΣABS is HL-EUF-CMA-secure with respect to the set of leakage-functions
FΣABS(λ), if for every PPTA, AdvF (λ)−HL−EUF−CMA

ΣABS,A (λ) is negligible.

5.2.4 Computational Signer-Privacy of ABS
For the existing ABS schemes [MPR11, OT11, SAH16], the authors discussed whether their
scheme satisfies the information-theoretical signer-privacy, a.k.a. perfect privacy. In this
paper, we originally define computational signer-privacy for ABS schemes and show that our
scheme satisfies it. For the definition, we referred to the definition of semantic security for
PKE scheme given by Goldwasser and Micali [GM84]. For an ABS scheme ΣABS = {Setup,
KeyGen,Sig,Ver}, we use two experiments given in Fig.5.2, where A = (A1,A2) denotes
a PPT adversary, S = (S1,S2) denotes a PPT simulator, h1 and h2 denote polynomial time
computable functions, and Opk,mk

CS P denotes an oracle which takes an attributeW ∈ U as input
and returns KeyGen(pk,mk,W).

Definition 26. An ABS scheme ΣABS is computationally signer-private, if ∀A = (A1,A2),
∀h1, ∀h2, ∃S = (S1,S2) s.t. ∀D, AdvCSPΣABS,D,A,S,h1,h2

(λ) B |Pr[D(ExptCSP−0
ΣABS,A,h1,h2

(1λ, 1L)) →
1] − Pr[D(ExptCSP−1

ΣABS,S,h1,h2
(1λ, 1L))→ 1]| is negligible.

4We assume that at least one attributeW which satisfies the predicate ϕ∗, i.e., ϕ∗(W) = 1, was queried to
Generate at least once and a list LW for the attribute has already been generated.
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ExptCSP−0
ΣABS,A,h1,h2

(1λ, 1L):
(pk,mk)← Setup(1λ, 1L).

(K∗, ϕ∗,m, st)← AO
pk,mk
CS P (W)

1 (pk), where
m ∈ M and K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗, sk∗ ← KeyGen(pk,mk,W∗).
σ∗ ← Sig(pk,m, ϕ∗,W∗).

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗).
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

ExptCSP−1
ΣABS ,S,h1,h2

(1λ, 1L):
(pk,mk)← Setup(1λ, 1L).
(K∗, ϕ∗,m, st)← S1(pk), where

m ∈ M and K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗

v← S2(st, h1(W∗)).
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Figure 5.2: Experiments ExptCSP−0
ΣABS

and ExptCSP−1
ΣABS

.

5.2.5 An Original Primitive: IBX
Syntax of IBX. Ishizaka and Matsuura [IM18] introduced an original primitive named
PKX which is related to signature schemes. A PKX scheme consists of the algorithm which
generates a pair of public-key and secret-key and two secret-key-verification algorithms.
We introduce such a primitive which is related to IBS schemes. An IBX scheme consists
of Setup, KeyGen and two secret-key-verification algorithms whose definitions are given
below.

SKVer(pk, sk, ID)→ 1 / 0. The (first) secret-key-verification algorithm takes pk, a secret-
key sk and an ID ID as inputs and outputs 1 or 0. This algorithm outputs 1 only if
a certain relationship holds among pk, sk and ID, or sk is a valid secret-key for ID
under pk.

SKVer2(pk, sk, sk′)→ 1 / 0. The second secret-key-verification algorithm takes pk, a secret-
key sk and a secret-key sk′ which may be sk as inputs and outputs 1 or 0. This algo-
rithm outputs 1 only if a certain relationship holds between the two secret-keys.

We require that the two secret-key-verification algorithms satisfy that for every λ ∈ N, every
l ∈ N, every (pk,mk) ← Setup(1λ, 1l), every ID ∈ I and every sk ← KeyGen(pk,mk, ID),
it holds that Pr[1← SKVer(pk, sk, ID) ∧ 1← SKVer2(pk, sk, sk)] = 1.

Hard-to-Computer Secret-Key (HtC-SK) Property of IBX. Ishizaka and Matsuura [IM18]
introduced a property for PKX named Hard-to-Compute-Secret-Key (HtC-SK). Intuitively,
the property says that any PPT given a secret-key sk cannot find with a non-negligible prob-
ability a valid secret-key sk′ such that a relation presented by the algorithm SKVer2 does
not hold between sk and sk′. We define the property for IBX. We use the following game
played by an adversaryA and a challenger CH .

Setup. CH runs (pk,mk)← Setup(1λ, 1l).

Query. A is allowed to adaptively use secret-key-revelation oracle Reveal as follows.

Reveal(ID ∈ I): A issues ID ∈ I. CH generates sk ← KeyGen(pk,mk, ID), then
returns the secret-key toA. After that, CH sets LID B LID ∪ {sk}.
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Compute(ID∗ ∈ I, sk∗). A is said to win the game if [1← SKVer(pk, sk∗, ID∗)]∧[
∧

sk′∈LID∗ [0←
SKVer2(pk, sk∗, sk′)]]. The advantage AdvHtC−S K

ΣIBS,A (λ) is defined as probability Pr[Awins.].

Definition 27. ΣIBX is HtC-SK, if for every PPTA, AdvHtC−S K
ΣIBX,A (λ) is negligible.

5.2.6 An Original Primitive: ABX
Syntax of ABX. For IBS, we introduced a new primitive named IBX. For ABS, we intro-
duce a primitive named ABX. An ABX scheme consists of Setup, KeyGen and the follow-
ing two deterministic secret-key-verification algorithms.

SKVer(pk, sk, ϕ)→ 1 / 0. The (first) secret-key-verification algorithm takes a secret-key sk
and a predicate ϕ represented as a general circuit {L,N, I1, I2} as inputs and outputs 1
or 0.

SKVer2(pk, sk, sk′)→ 1 / 0. The second secret-key-verification algorithm takes two secret-
keys sk and sk′ as inputs and outputs 1 or 0.

We require that for every λ ∈ N, every L ∈ N, every (pk,mk) ← Setup(1λ, 1L), every
W ∈ U, every sk ← KeyGen(pk,mk,W) and every ϕ s.t. ϕ(W) = 1, it holds that Pr[1 ←
SKVer(pk, sk, ϕ) ∧ 1← SKVer2(pk, sk, sk)] = 1.

HtC-SK Property of ABX. As the case of IBX, we define the HtC-SK property for
ABX ??. We use the following game played by an adversaryA and a challenger CH .

Setup. CH runs (pk,mk)← Setup(1λ, 1L). The universal set of attributes isU = {0, 1}L.

Query. A is allowed to adaptively use secret-key-revelation oracle Reveal as follows.

Reveal(W ∈ U): CH generates sk ← KeyGen(pk,mk,W), then returns the secret-
key toA. After that, CH sets LW B LW ∪ {sk}.

Compute(ϕ∗, sk∗). We say thatA wins the game if [1← SKVer(pk, sk∗, ϕ∗)]
∧ [
∧
W∈U s.t. ϕ∗(W)=1[

∧
sk∈LW[0← SKVer2(pk, sk∗, sk)]]]. The advantage AdvHtC−S K

ΣABX,A (λ)
is defined as Pr[A wins.].

Definition 28. ΣABX is HtC-SK, if for every PPTA, AdvHtC−S K
ΣABX,A (λ) is negligible.

5.3 Proposed IBS Scheme
We generically construct an IBS scheme in Subsect. 5.3.1, and prove that it is existentially
unforgeable in HL model in Subsect. 5.3.2.
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5.3.1 Generic Construction
We generically construct an IBS scheme ΣIBS = {IBS.Setup, IBS.KeyGen, IBS.Sig, IBS.Ver}
from the following 3 building blocks:

• An LPKE scheme ΣLPKE = {LPKE.Gen,LPKE.Enc,LPKE.Dec}. Its plaintext space,
label space and ciphertext space are denoted byML, LL and CL, respectively.

• An NIZK scheme ΣNIZK = {NIZK.Gen,NIZK.Pro,NIZK.Ver}. S1 denotes the first
simulator which makes ΣNIZK satisfy the definition of zero-knowledge, i.e., Def. 12 in
Sect. 2.12.

• An IBX scheme ΣIBX = {IBX.Setup, IBX.KeyGen, IBX.SKVer, IBX.SKVer2}. Its ID
space is denoted by IX. Let KX denote the space of sk for every ID ∈ IX.

Specifically, each algorithm of ΣIBS is defined as follows.

IBS.Setup(1λ, 1l): Run (ek, dk)← LPKE.Gen(1λ) and (pk′,mk′)← IBX.Setup(1λ, 1l) and
(crs, td)← S1(1λ).

The ID space I of ΣIBS is equivalent to IX. The message space of ΣIBS is the spaceM
satisfying LL =M||I.

Set pk B (pk′, ek, crs) and mk B mk′. Output (pk,mk). Language L is defined as

L B {(C,m, ID) ∈ CL ×M× IX | ∃sk ∈ KX s.t.
[C ← LPKE.Enc(ek, sk,m||ID)] ∧ [1← IBX.SKVer(pk′, sk, ID)

]}
.(5.1)

IBS.KeyGen(pk,mk, ID): mk is written as mk′. Return sk′ B IBX.KeyGen(pk′,mk′, ID).

IBS.Sig(pk,m, ID, sk): sk is parsed as (psk, ssk). Generate C B LPKE.Enc(ek, ssk,m||ID).
Set x B (C,m, ID, psk) and w B ssk, then generate π B NIZK.Pro(crs, x,w). Output
σ B (C, π, psk).

IBS.Ver(pk,m, ID, σ): σ is parsed as (C, π, psk). Set x B (C,m, ID, psk).
Output NIZK.Ver(crs, x, π).

5.3.2 Proof of Existential Unforgeability in HL Model
In the definition of existential unforgeability in HL model for IBS schemes given in Subsect.
??, the set of leakage-functions F (λ) was undefined. So, before we prove that our IBS
scheme ΣIBS satisfies the definition, we need to define the set of leakage-functions. In the
definition given below, variables (pk′,mk′, ek, dk, crs, td) denote the variables which were
generated at Setup in the game, ID∗ denotes the target ID, and an integer k denotes the total
number of secret-keys in the list LID∗ at Leak in the game.
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Definition 29. Set of leakage-functions FΣIBS(λ) consists of every polynomial time com-
putable probabilistic (or deterministic) function f : {0, 1}τ·|sk| → {0, 1}∗ which has a ran-
domness space R and satisfies that for every PPT B,

Pr
[B (pk′,mk′, ek, dk, crs, td, ID∗, f , f

({sk∗i }i∈[1,τ]; r
))→ sk∗

s.t.
[
1← IBX.SKVer

(
pk′, sk∗, ID∗

)] ∧  ∨
i∈[1,τ]

[
1← IBX.SKVer2

(
pk′, sk∗, sk∗i

)]


is negligible, where r
R←− R and for every i ∈ [1, τ], sk∗i ← IBX.KeyGen(pk′,mk′, ID∗).

The existential unforgeability of ΣIBS is guaranteed by the following theorem.

Theorem 5.3.1. ΣIBS is HL-EUF-CMA w.r.t. the set of leakage-functions FΣIBS(λ), if ΣLPKE

is IND-wLCCA, ΣNIZK is sound and zero-knowledge, and ΣIBX is HtC-SK.

Proof of Theorem 5.3.1. Hereafter, qs ∈ N denotes total number of times that PPT ad-
versary A uses the signing oracle Sign. To prove Theorem 5.3.1, we use multiple games
Gamei, where i ∈ {0, 1, 2, 3, 4, 4|1, · · · , 4|qs, 5}.

The game Game0 is the normal HL-EUF-CMA game w.r.t. the IBS scheme ΣIBS and the
set of leakage-functions FΣIBS(λ). Specifically, Game0 is the following game.

Setup. CH runs (pk′,mk′)← IBX.Setup(1λ, 1l), (ek, dk)← LPKE.Gen(1λ), and (crs, td)←
S1(1λ). CH sets pk B (pk′, ek, crs), and sends it toA. CH sets LS B ∅.

Query. When A queries to either one of the oracles Generate, Reveal and Sign, CH
behaves as follows.

Generate(ID ∈ I): CH generates sk ← IBX.KeyGen(pk′,mk′, ID). If a listLID for
the ID has not been generated, CH generates it and sets it to {sk}. Else if such a
list LID has already been generated, CH sets LID B LID ∪ {sk}.

Reveal(ID ∈ I, i ∈ N): CH retrieves i-th secret-key from LID, then returns it.

Sign(ID ∈ I, i ∈ N,m ∈ M): CH retrieves i-th secret-key sk from LID. CH gen-
erates C B LPKE.Enc(ek, sk,m||ID). CH sets x B (C,m, ID) and w B sk,
then generates π B NIZK.Pro(crs, x,w). After that, CH returns a signature
σ B (C, π) toA. After that, CH sets LS B LS ∪ {(m, ID)}.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). CH computes f (LID∗), then returns it.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). Statement x∗ is set to (C∗,m∗, ID∗). A is said to
win the game if [1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ].

We define the other games Gamei, where i ∈ {1, 2, 3, 4, 4|1, · · · , 4|qs, 5}, as follows.

• Game1 is the same as Game0 except that CH generates a common reference string crs
by running crs← NIZK.Gen(1λ) at Setup.

86



• Game2 is the same as Game1 except that A’s winning condition is changed to the
following one, where sk∗ B LPKE.Dec(dk,C∗,m∗||ID∗): [1 ← NIZK.Ver(crs, x∗,
π∗)] ∧ [(m∗, ID∗) < LS ] ∧ [1← IBX.SKVer(pk′, sk∗, ID∗)].

• Game3 is the same as Game2 except that A’s winning condition is changed to the fol-
lowing one: [1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ] ∧ [1← IBX.SKVer(pk′,
sk∗, ID∗)] ∧ [

∨
skID∗∈LID∗ [1← IBX.SKVer2(pk′, sk∗, skID∗)]].

• Game4(= Game4|0) is the same as Game3 except for the following two parts. Firstly, CH
generates a common reference string crs by running (crs, td) ← S1(1λ) at Setup.
Secondly, when replying to a query to Sign at Query, CH generates a proof π by
running π ← S2(crs, x, td), where S2 denotes the second simulator in the definition
of zero-knowledge for ΣNIZK.

• Game4|i, where i ∈ [1, qs], is the same as Game4|0 except that when replying to j-
th signing oracle query, where j ≤ i, CH generates the ciphertext C j by running
C j ← LPKE.Enc(ek, 0|sk|,m||ID).

• Game5 is the following game, which is played byA and CH .

Setup. CH runs (pk′,mk′) ← IBX.Setup(1λ, 1l), (ek, dk) ← LPKE.Gen(1λ), and
(crs, td)← S1(1λ). (pk′,mk′, ek, dk, crs, td) are sent toA.

Leak(ID∗ ∈ I, τ ∈ N, f ∈ FΣIBS(λ)). CH computes f ({sk∗i }i∈[1,τ]), where for i ∈ [1, τ],
sk∗i B IBX.KeyGen(pk′,mk′, ID). Then CH sends it toA.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). CH decrypts the ciphertext C∗ to get sk∗ B
LPKE.Dec(dk,C∗,m∗||ID∗). A is said to win the game if [1← IBX.SKVer(pk′,
sk∗, ID∗)] ∧ [

∨
i∈[1,τ][1← IBX.SKVer2(pk′, sk∗, sk∗i )]].

Hereafter, for i ∈ {0, 1, 2, 3, 4, 4|1, · · · , 4|qs, 5}, Wi denotes the event where A wins the
game Gamei. Obviously, it holds that Adv

FΣIBS (λ)−HL−EUF−CMA
ΣIBS,A (λ) = Pr[W0] ≤ ∑4

i=1 |Pr[Wi−1]−
[Wi]| +

∑qs
i=1 |Pr[W4|i−1] − Pr[W4|i]| + |Pr[W4|qs] − Pr[W5]| + Pr[W5]. Theorem 5.3.1 is proven

by the above inequality and the following lemmas. □

Lemma 5.3.1. |Pr[W0] − Pr[W1]| is negligible if ΣNIZK is zero-knowledge.

Lemma 5.3.2. |Pr[W1] − Pr[W2]| is negligible if ΣNIZK is sound.

Lemma 5.3.3. |Pr[W2] − Pr[W3]| is negligible if ΣIBX is HtC-SK.

Lemma 5.3.4. |Pr[W3] − Pr[W4]| is negligible if ΣNIZK is zero-knowledge.

Lemma 5.3.5. For every i ∈ [1, qs], |Pr[W4|i−1] − Pr[W4|i]| is negligible if ΣLPKE is IND-
wLCCA.

Lemma 5.3.6. Pr[W4|qs] is negligible if Pr[W5] is negligible.

Lemma 5.3.7. Pr[W5] is negligible.

Proof of each lemma is given below.
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Proof of Lemma 5.3.1. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W0]−Pr[W1]| non-negligible, then we are able to construct a PPT algorithm which
breaks the zero-knowledge property for ΣNIZK.

We consider a PPT simulator S. On one hand, the simulator S behaves as a PPT algo-
rithm attempting to break the zero-knowledge for ΣNIZK. On the other hand, S behaves as
the challenger in Game0 or Game1. S is given a common reference string crs. If crs was gen-
erated by (crs, td) ← S1(1λ) (resp. crs ← NIZK.Gen(1λ)), then S simulates Game0 (resp.
Game1) for the PPT adversaryA properly. The concrete behaviour by S is the following.

Setup. S is given crs. S runs (pk′,mk′)← IBX.Setup(1λ, 1l) and (ek, dk)← LPKE.Gen(1λ).
pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes LS as ∅.

Query. When A queries to either one of the oracles Generate, Reveal and Sign, S be-
haves in the normal manner.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). S computes f (LID∗), then returns it.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ID∗). S outputs
β′ := 1 if it holds that [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]. S outputs 0
otherwise.

It is obvious that if the common reference string is generated by (crs, td)← S1(1λ) (resp.
crs← NIZK.Gen(1λ)), then S simulates the game Game0 (resp. Game1) forA perfectly, and
if and only if the event W0 (resp. W1) occurs, S outputs 1. Hence, we obtain Pr[W0] =
Pr[1 ← S(crs) | (crs, td) ← S1(1λ)] and Pr[W1] = Pr[1 ← S(crs) | crs ← NIZK.Gen(1λ)].
Hence, |Pr[W0] − Pr[W1]| = |Pr[1 ← S(crs) | crs ← NIZK.Gen(1λ)] − Pr[1 ← S(crs) |
(crs, td)← S1(1λ)]|. □

Proof of Lemma 5.3.2. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W1]−Pr[W2]| non-negligible, then we are able to construct a PPT algorithm which
breaks the soundness property for ΣNIZK.

We consider a PPT simulator S attempting to break the soundness of the NIZK scheme
ΣNIZK. Specifically, S behaves as follows.

Setup. S is given a common reference string crs of ΣNIZK. S runs (pk′,mk′)← IBX.Setup(1λ, 1l)
and (ek, dk) ← LPKE.Gen(1λ). pk is set to pk B (pk′, ek, crs). S sends pk to A. S
initializes LS as ∅.

Query. When A queries to either one of the oracles Generate, Reveal and Sign, S be-
haves in the normal manner.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). S computes f (LID∗), then returns it.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ID∗). The
secret-key sk∗ is set to LPKE.Dec(dk,C∗,m∗||ID∗). S outputs (x∗, π∗) if it holds that
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ] ∧ [0← IBX.SKVer(pk′, sk∗, ID∗)].
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It is obvious that S simulates Game1 or Game2, perfectly.
By the way, the definitions of W1 and W2 gives us the following equations.

Pr [W1] = Pr [[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]] (5.2)
Pr [W2] = Pr [[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]

∧ [1← IBX.SKVer(pk′, sk∗, ID∗)
]]

(5.3)

Hence, we obtain

|Pr[W1] − Pr[W2]|
= Pr [[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]
∧ [0← IBX.SKVer(pk′, sk∗, ID∗)

]]
= Pr [S(crs)→ (x∗, π∗) s.t. [1← NIZK.Ver(crs, x∗, π∗)]
∧ [0← IBX.SKVer(pk′, sk∗, ID∗)

]]
. (5.4)

By the definition of the language L, i.e., (5.1), the following statement is true: for any
(C,m, ID) ∈ L, there exists sk ∈ KX such that [C ← LPKE.Enc(ek, sk,m||ID)] ∧ [1 ←
IBX.SKVer(pk′, sk, ID)].

By the above statement, the correctness of ΣLPKE, and the deterministic property of the
algorithm SKVer of ΣIBX, the following statement is also true: for any (C,m, ID) ∈ L, it
holds that [1← IBX.SKVer(pk′, sk, ID)], where sk B LPKE.Dec(dk,C,m||ID).

The following statement is contraposition of the above statement. Thus, it is also true.
For any C ∈ CL, any m ∈ M and any ID ID ∈ IX, if [0 ← IBX.SKVer(pk′, sk, ID)], where
sk B LPKE.Dec(dk,C,m||ID), then (C,m, ID) < L.

By the above statement and equation (5.4), we obtain

|Pr[W1] − Pr[W2]| = Pr [S(crs)→ (x∗, π∗) s.t. [1← NIZK.Ver(crs, x∗, π∗)] ∧ [x∗ < L]] .

□

Proof of Lemma 5.3.3. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W2]−Pr[W3]| non-negligible, then we are able to construct a PPT algorithm which
breaks the HtC-SK property for ΣIBX.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of HtC-SK for ΣIBX. The concrete behaviour by S is the following.

Setup. S is given the keys (pk′,mk′) of ΣIBX. S runs (ek, dk)← LPKE.Gen(1λ) and crs←
NIZK.Gen(1λ). pk is set to pk B (pk′, ek, crs). S sends pk to A. S initializes LS as
∅.

Query. When A queries to either one of the oracles Reveal and Sign, S behaves in the
normal manner. WhenA queries to Generate, S behaves in the same manner as CH
in the definition of Game0 except that S queries ID to the oracle Reveal in the game
for HtC-SK property of ΣIBX to acquire the secret-key sk′ for the ID.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). S computes f (LID∗), then returns it.
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Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ID∗). The
secret-key sk∗ is set to LPKE.Dec(dk,C∗,m∗||ID∗). S outputs (ID∗, sk∗) if it holds that
[1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ] ∧ [1 ← IBX.SKVer(pk′, sk∗, ID∗)] ∧
[
∧

skID∗∈LID∗ [0← IBX.SKVer2(pk′, sk∗, skID∗)]].

It is obvious that S simulates Game2 or Game3 forA perfectly.
By the definitions of W2 and W3, we obtain

Pr [W2] = Pr [[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]
∧ [1← IBX.SKVer(pk′, sk∗, ID∗)

]]
Pr [W3] = Pr [[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]

∧ [1← IBX.SKVer(pk′, sk∗, ID∗)
] ∧  ∨

skID∗∈LID∗

[
1← IBX.SKVer2(pk′, sk∗, skID∗)

]


Hence, we obtain

|Pr[W2] − Pr[W3]| = Pr [[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ID∗) < LS ]

∧ [1← IBX.SKVer(pk′, sk∗, ID∗)
] ∧  ∧

skID∗∈LID∗

[
0← IBX.SKVer2(pk′, sk∗, skID∗)

]
 .

The above probability is equal to the probability by whom S wins the HtC-SK property
game for ΣIBX. □

Proof of Lemma 5.3.4. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W3]−Pr[W4]| non-negligible, then we are able to construct a PPT algorithm which
breaks the zero-knowledge property for ΣNIZK.

We consider a PPT simulator S attempting to break the zero-knowledge property for the
NIZK scheme ΣNIZK. Specifically, S behaves as follows.

Setup. S is given crs of ΣNIZK. S runs (pk′,mk′) ← IBX.Setup(1λ, 1l) and (ek, dk) ←
LPKE.Gen(1λ). pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes LS as
∅.

Query. When A queries to either one of the oracles Generate and Reveal, S behaves in
the usual way. WhenA queries to Sign, S behaves as follows.

Sign(ID ∈ I, i ∈ N,m ∈ M): CH retrieves the i-th secret-key sk fromLID. CH gen-
erates C B LPKE.Enc(ek, sk,m||ID). CH sets x B (C,m, ID) and w B sk, then
issues (x,w) to the oracle Ozk to get a proof π. After that, CH returns a signature
σ B (C, π) toA, and sets LS B LS ∪ {(m, ID)}.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). S computes f (LID∗), then returns it.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). Statement x∗ is set to (C∗,m∗, ID∗). sk∗ is set to
LPKE.Dec(dk,C∗,m∗||ID∗). S outputs 1 if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧
[(m∗, ID∗) < LS ]∧[1← IBX.SKVer(pk′, sk∗, ID∗)]∧[

∨
skID∗∈LID∗ [1← IBX.SKVer2(pk′,

sk∗, skID∗)]].
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It is obvious that if the common reference string crs is generated by (crs, td) ← S1(1λ)
(resp. crs← NIZK.Gen(1λ)) and the proof-generation oracle Ozk is Ocrs,td

1 (resp. Ocrs
0 ), then

S simulates Game4 (resp. Game3) forA perfectly, and if and only if W4 (resp. W3) occurs, S
outputs 1. Hence, we obtain

|Pr[W3] − Pr[W4]| =
∣∣∣∣Pr
[
1← SOcrs

0 (x,w)(crs) | crs← NIZK.Gen(1λ)
]

−Pr
[
1← SOcrs,td

1 (x,w)(crs) | (crs, td)← S1(1λ)
]∣∣∣∣ .

□

Proof of Lemma 5.3.5. We prove that for any i ∈ [1, qs] if we assume that there is a PPT
adversaryAwhich makes |Pr[W4|i−1]−Pr[W4|i]| non-negligible, then we are able to construct
a PPT algorithm which breaks the IND-wLCCA security for ΣLPKE.

We consider a PPT simulator S attempting to break the IND-wLCCA security for the
LPKE scheme ΣLPKE. CH denotes the challenger in the IND-wLCCA security game. Specif-
ically, S behaves as follows.

Setup. S is given ek of ΣLPKE. S runs (pk′,mk′) ← IBX.Setup(1λ, 1l) and (crs, td) ←
S1(1λ). pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes LS as ∅.

Query. When A queries to either one of the oracles Generate and Reveal, S behaves in
the normal manner. WhenA queries to Sign, S behaves as follows.

Sign(ID ∈ I, î ∈ N,m ∈ M): CH retrieves the î-th secret-key sk from LID. Suppose
that the query is the j-th signing oracle query.
If j ≤ i − 1 (resp. j ≥ i + 1), then S generates the ciphertext C as C B
LPKE.Enc(ek, 0|sk|,m||ID) (resp. C B LPKE.Enc(ek, sk,m||ID)).
If j = i, then S issues (0|sk|, sk,m||ID) as a challenge query in the IND-wLCCA
game for ΣLPKE to acquire a ciphertext C.
After acquiring C, S behaves as follows. S sets x B (C,m, ID), then generates
π ← S2(crs, x, td). After that, S returns the signature σ B (C, π) to A. After
that, S sets LS B LS ∪ {(m, ID)}.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). S computes f (LID∗), then returns it.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). Statement x∗ is set to (C∗,m∗, ID∗). S issues
(C∗,m∗||ID∗) as a query to the decryption oracle at Query 2 in the IND-wLCCA game
for ΣLPKE, and sk∗ is returned. S outputs 1 if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧
[(m∗, ID∗) < LS ]∧[1← IBX.SKVer(pk′, sk∗, ID∗)]∧[

∨
skID∗∈LID∗ [1← IBX.SKVer2(pk′,

sk∗, skID∗)]].

Let β ∈ {0, 1} be the challenge-bit in the IND-wLCCA security game for ΠLPKE. It is
obvious that S simulates Game4|i−1 (resp. Game4|i) when β = 1 (resp. β = 0), and if and
only if W4|i−1 (resp. W4|i) happens, S outputs β′ = 1. It is also obvious that when W4|i−1 or
W4|i occurs, the label m∗||ID∗ in the query (C∗,m∗||ID∗) to the oracle Decrypt at Query 2
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issued by S satisfies m∗||ID∗ , mi||IDi, where (mi, IDi) is the pair of the message and ID
issued as the i-th signing oracle query by A, because of the rule in the game Game4|i−1 or
Game4. Thus, the query (C∗,m∗||ID∗) is not a forbidden query. Hence, we obtain Pr[W4|i−1] =
Pr
[
β′ = 1 | β = 1

]
and Pr[W4|i] = Pr[β′ = 1|β = 0].

It is obvious that Pr[β′ = β] = Pr[β′ = 0∧ β = 0]+ Pr[β′ = 1∧ β = 1] = 1
2 (Pr[β′ = 0|β =

0] + Pr[β′ = 1|β = 1]) = 1
2 (Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0] + 1).

Hence, we obtain AdvIND−wLCCA
ΣLPKE,S = |2 ·Pr[β′ = β]− 1| = |Pr[β′ = 1|β = 1]−Pr[β′ = 1|β =

0]| = |Pr[W4|i−1] − Pr[W4|i]|. □

Proof of Lemma 5.3.6. We prove that if we assume that there exists a PPT adversary A
which wins Game4|qs with a non-negligible advantage, then we can construct a PPT simulator
S which wins Game5 with a non-negligible advantage.

We consider a PPT simulator S which behaves an adversary in Game5. Specifically, S
behaves as follows.

Setup. S is given (pk′,mk′, ek, dk, crs, td), which were generated by (pk′,mk′)← IBX.Setup(1λ, 1l),
(ek, dk)← LPKE.Gen(1λ), and (crs, td)← S1(1λ). pk is set to pk B (pk′, ek, crs). S
sends pk toA. S initializes LS as ∅.

Query. When A queries to either one of the oracles Generate and Reveal, S behaves in
the normal manner. WhenA queries to Sign, S behaves as follows.

Sign(ID ∈ I, i ∈ N,m ∈ M): CH retrieves i-th secret-key sk from LID. S generates
C B LPKE.Enc(ek, 0|sk|,m||ID). S sets x B (C,m, ID), then generates π B
S2(crs, x, td). After that, S returns the signature σ B (C, π) to A. After that, S
sets LS B LS ∪ {(m, ID)}.

Leak(ID∗ ∈ I, f ∈ FΣIBS(λ)). Let k ∈ N denote the cardinality of LID∗ . S issues (ID∗, k, f )
as a query to the oracle Leak in Game5, then receives f ({sk∗i }i∈[1,k]), where for i ∈ [1, k],
sk∗i is a secret-key for ID∗ which was randomly generated by the challenger of Game5.
Note that the actual secret-keys {sk∗i }i∈[1,k] are unknown to S. After that, S sends
f ({sk∗i }i∈[1,k]) toA.

Forgery(σ∗,m∗). S outputs (σ∗,m∗) at Forgery in Game5.

Since the list LID∗ composed of k secret-keys and possessed by S and the secret-keys
{sk∗i }i∈[1,k] generated by the challenger of Game5 are indistinguishable for A, S perfectly
simulates Game4|qs for A. Also obviously, if A wins Game4|qs , S wins Game5. Hence,
Pr[W4|qs] ≤ Pr[W5]. □

Proof of Lemma 5.3.7. Let us consider a PPT adversary A in Game5. We define the fol-
lowing three events.

U pk′,mk′,ek,dk,crs,td is the event where (pk′,mk′), (ek, dk) and (crs, td) are randomly gener-
ated at Setup by IBX.Setup(1λ, 1l), LPKE.Gen(1λ) andS1(1λ), respectively. V ID∗,τ, f

pk′,mk′,ek,dk,crs,td
is the event where A, given the variables (pk′,mk′, ek, dk, crs, td) at Setup, chooses ID∗ ∈
I, τ ∈ N and function f at Leak. Wpk′,mk′,ek,dk,crs,td,ID∗,τ, f is the event where A wins in the
following game Gamepk′,mk′,ek,dk,crs,td,ID∗,τ, f .
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Setup. A is given (pk′,mk′, ek, dk, crs, td, ID∗, f , f ({sk∗i }i∈[1,τ])), where, for i ∈ [1, τ], sk∗i ←
IBX.KeyGen(pk′,mk′, ID∗).

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). sk∗ is set to LPKE.Dec(dk,C∗,m∗||ID∗). A wins
the game if it holds that [1← IBX.SKVer(pk′, sk∗, ID∗)]∧[

∨
i∈[1,τ][1← IBX.SKVer2(pk′,

sk∗, sk∗i )]].

By the definition of W5 and the definitions of the above three events, we obtain

Pr [W5] =
∑

(pk′,mk′,ek,dk,crs,td)

∑
(ID∗,τ, f )

Pr
[
Wpk′,mk′,ek,dk,crs,td,ID∗,τ, f

]
· Pr
[
V ID∗,τ, f

pk′,mk′,ek,dk,crs,td

]
·Pr
[
U pk′,mk′,ek,dk,crs,td

]
.

By the above equation and Lemma 5.3.8, there exists a negligible function ϵ(λ) such that

Pr [W5] <
∑

(pk′,mk′,ek,dk,crs,td)

∑
(ID∗,τ, f )

ϵ(λ) · Pr
[
V ID∗,τ, f

pk′,mk′,ek,dk,crs,td

]
· Pr
[
U pk′,mk′,ek,dk,crs,td

]
. (5.5)

We give two facts. It obviously holds that
∑

(pk′,mk′,ek,dk,crs,td) Pr
[
U pk′,mk′,ek,dk,crs,td

]
= 1. It also

obviously holds that for any (pk′,mk′, ek, dk, crs, td),
∑

(ID∗,τ, f ) Pr
[
V ID∗,τ, f

pk′,mk′,ek,dk,crs,td

]
= 1. By

these facts and (5.5), we obtain Pr [W5] < ϵ(λ). □

Lemma 5.3.8. For any PPTA, any (pk′,mk′), any (ek, dk), any (crs, td), any ID∗ ∈ I, any
τ ∈ N, and any f ∈ FΣIBS(λ), Pr

[
Wpk′,mk′,ek,dk,crs,td,ID∗,τ, f

]
is negligible.

Proof of Lemma 5.3.8. We prove that if we assume that there exists a PPT adversary A
which wins the game Gamepk′,mk′,ek,dk,crs,td,ID∗,τ, f with a non-negligible probability, we can
construct a PPT simulator which leads us to a contradiction to the fact that the function f is
in FΣIBS(λ). Specifically, S behaves as follows.

Setup. S is given (pk′,mk′, ek, dk, crs, td, ID∗, f , f ({sk∗i }i∈[1,τ])), where, for i ∈ [1, τ], sk∗i ←
IBX.KeyGen(pk′,mk′, ID∗). S gives the variables toA.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). sk∗ is set to LPKE.Dec(dk,C∗,m∗||ID∗). S out-
puts sk∗.

It is obvious that S simulates the game Gamepk′,mk′,ek,dk,crs,td,ID∗,τ, f for A perfectly. If A
wins the game, then S is able to acquire and output a secret-key sk∗ such that [1 ←
IBX.SKVer(pk′, sk∗, ID∗)] ∧ [

∨
i∈[1,τ][1← IBX.SKVer2(pk′, sk∗, sk∗i )]]. Hence, we obtain

Pr
[S (pk′,mk′, ek, dk, crs, td, ID∗, f , f ({sk∗i }i∈[1,τ])

)→ sk∗

s.t.
[
1← IBX.SKVer(pk′, sk∗, ID∗)

] ∧  ∨
i∈[1,τ]

[
1← IBX.SKVer2(pk′, sk∗, sk∗i )

]


= Pr
[
Wpk′,mk′,ek,dk,crs,td,ID∗,τ, f

]
,

where, for i ∈ [1, τ], sk∗i ← IBX.KeyGen(pk′,mk′, ID∗). Assuming that there exists a
polynomial function poly(λ) such that Pr[Wpk′,mk′,ek,dk,crs,td,ID∗,τ, f ] ≥ 1/poly(λ) leads us to a
contradiction to the fact that f ∈ FΣIBS(λ). □
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5.4 Proposed ABS Scheme for a General Circuit
We generically construct an ABS scheme for a general circuit in Subsect. 5.4.1. We prove
that it is existentially unforgeable in HL model and computationally signer-private in Sub-
sect. 5.4.2 and Subsect. 5.4.3, respectively.

5.4.1 Generic Construction
We generically construct an ABS scheme ΣABS = {ABS.Setup,ABS.KeyGen,ABS.Sig,
ABS.Ver} whose predicate is represented as a general circuit by using the following 3 build-
ing blocks.

• An LPKE scheme ΣLPKE = {LPKE.Gen,LPKE.Enc,LPKE.Dec}. For notationsML,
LL and CL, see Subsect. 5.3.1.

• An NIZK scheme ΣNIZK = {NIZK.Gen,NIZK.Pro,NIZK.Ver}. For a notation S1, see
Subsect. 5.3.1.

• An ABX scheme ΣABX = {ABX.Setup,ABX.KeyGen,ABX.SKVer,ABX.SKVer2}
whose predicate is represented as a circuit. Its universal set of attributes and predicate
space are denoted by UX and PX, respectively. Let KX denote the space of sk for
everyW ∈ UX.

Specifically, each algorithm of ΣABS is defined as follows.

ABS.Setup(1λ, 1L): It runs (ek, dk) ← LPKE.Gen(1λ), (pk′,mk′) ← ABX.Setup(1λ, 1L)
and (crs, td)← S1(1λ).

Universal set of attributes U, secret-key space K and predicate space P of ΣABS are
equivalent to UX, KX and PX, respectively. Message space M of ΣABS is the space
satisfying LL =M||P.

It sets pk B (pk′, ek, crs) and mk B mk′, and outputs (pk,mk). The language L is
defined as

L B {(C,m, ϕ) ∈ CL ×M× PX | ∃sk ∈ KX s.t.[
C ← LPKE.Enc(ek, sk,m||ϕ)] ∧ [1← ABX.SKVer(pk′, sk, ϕ)

]}
. (5.6)

ABS.KeyGen(pk,mk,W ∈ U): mk is written as mk′. It outputs sk B ABX.KeyGen(pk′,
mk′,W).

ABS.Sig(pk,m ∈ M, ϕ ∈ P, sk): ϕ is represented as a circuit {L,N, I1, I2}. It generates C B
LPKE.Enc(ek, sk,m||ϕ). It sets x B (C,m, ϕ) and w B sk, then generates π B
NIZK.Pro(crs, x,w). It outputs σ B (C, π).

ABS.Ver(pk,m ∈ M, ϕ ∈ P, σ): σ is parsed as (C, π). It sets x B (C,m, ϕ), then outputs
NIZK.Ver(crs, x, π).

94



5.4.2 Proof of Existential Unforgeability in HL Model
Before we prove the existential unforgeability of our ABS scheme ΣABS, we define the set
of leakage-functions FΣABS(λ). In the definition given below, variables (pk′,mk′, ek, dk, crs,
td) denote the variables which were generated at Setup in the game, ϕ∗ denotes the target
predicate, for an attributeW ∈ U, LW denotes the list forW at Leak in the game, and a set
LŴ denotes a multiset which is generated as follows: we initialize LŴ as en empty set, and
then for everyW ∈ U s.t. ϕ∗(W) = 1, we add |LW| number of the attributeW into LŴ.

Definition 30. Set of leakage-functions FΣABS(λ) consists of every polynomial time com-

putable probabilistic (or deterministic) function f : {0, 1}
∑

sk′∈L′
ϕ∗
|sk′ | → {0, 1}∗ which has a

randomness space R and satisfies that for every PPT B,

Pr
[
B
(
pk′,mk′, ek, dk, crs, td, ϕ∗,LŴ, f , f

(
L′ϕ∗; r

))
→ sk∗

s.t.
[
1← ABX.SKVer

(
pk′, sk∗, ϕ∗

)] ∧
 ∨

sk′∈L′
ϕ∗

[
1← ABX.SKVer2

(
pk′, sk∗, sk′

)]


is negligible, where r
R←− R and for every W ∈ LŴ, sk′ B ABX.KeyGen(pk,mk,W) and

L′ϕ∗ B L′ϕ∗ ∪ {sk′}.

The existential unforgeability of ΣABS is guaranteed by the following theorem.

Theorem 5.4.1. ΣABS is HL-EUF-CMA w.r.t. FΣABS(λ), if ΣLPKE is IND-wLCCA, ΣNIZK is
sound and zero-knowledge, and ΣABX is HtC-SK.

Proof of Theorem 5.4.1. Hereafter, qs ∈ N denotes the number of times that PPT adver-
saryA uses the signing oracle Sign. To prove Theorem 5.4.1, we use multiple games Gamei,
where i ∈ {0, 1, 2, 3, 4, 4|1, · · · , 4|qs, 5}.

The game Game0 is the normal HL-EUF-CMA game w.r.t. ΣABS and FΣABS(λ). Specifi-
cally, Game0 is the following game.

Setup. U B {0, 1}L. CH runs (pk′,mk′)← ABX.Setup(1λ, 1L), (ek, dk)← LPKE.Gen(1λ),
and (crs, td) ← S1(1λ). pk and mk are set to pk B (pk′, ek, crs) and mk B mk′, re-
spectively. pk is given toA. LS is set to ∅.

Query. When A queries to either one of the oracles Generate, Reveal and Sign, CH
behaves as follows.

Generate(W ∈ U): CH generates sk ← ABX.KeyGen(pk′,mk′,W). If the list LW
for the attribute has not been generated, CH generates it and sets it to {sk}. If
the list LW has already been generated, CH sets LW B LW ∪ {sk}.

Reveal(W ∈ U, i ∈ N): CH retrieves the i-th secret-key from LW, then returns the
secret-key.
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Sign(W ∈ U, i ∈ N,m ∈ M, ϕ): ϕ is represented as a circuit {L,N, I1, I2}. CH re-
trieves the i-th secret-key sk from LW. CH generates C B LPKE.Enc(ek, sk,
m||ϕ). CH sets x B (C,m, ϕ) and w B sk, then generates π B NIZK.Pro(crs,
x,w). After that, CH returns a signature σ B (C, π) to A. After that, CH sets
LS B LS ∪ {(m, ϕ)}.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). ϕ∗ is represented as a circuit. CH returns f (Lϕ∗), where a set
Lϕ∗ of secret-keys is set as

∪
W∈U s.t. ϕ∗(W)=1LW.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ϕ∗). A is said
to win the game if [1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS ]

We define the other games Gamei, where i ∈ {1, 2, 3, 4, 4|1, · · · , 4|qs, 5}, as follows.

• Game1 is the same as Game0 except that CH generates a common reference string crs
by running crs← NIZK.Gen(1λ) at Setup.

• Game2 is the same as Game1 except that A’s winning condition is changed to the
following one, where sk∗ B LPKE.Dec(dk,C∗,m∗||ϕ∗): [1 ← NIZK.Ver(crs, x∗,
π∗)] ∧ [(m∗, ϕ∗) < LS ] ∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)].

• Game3 is the same as Game2 except that A’s winning condition is changed to the fol-
lowing one: [1 ← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS ] ∧ [1 ← ABX.SKVer(pk′,
sk∗, ϕ∗)] ∧ [

∨
W∈U s.t. ϕ∗(W)=1[

∨
sk∈LW[1← ABX.SKVer2(pk′, sk∗, sk)]]].

• Game4(= Game4|0) is the same as Game3 except that CH generates a common reference
string crs by running (crs, td)← S1(1λ) at Setup. When replying to a query to Sign
at Query, CH generates a proof π by running π ← S2(crs, x, td), where S2 denotes
the second simulator in the definition of zero-knowledge for ΣNIZK.

• Game4|i, where i ∈ [1, qs], is the same as Game4|0 except that when replying to the
j-th signing oracle query, where j ≤ i, CH generates the ciphertext C j by running
C j ← LPKE.Enc(ek, 0|sk|,m||ϕ).

• Game5 is the following game, which is played byA and CH .

Setup. CH runs (pk′,mk′) ← ABX.Setup(1λ, 1L), (ek, dk) ← LPKE.Gen(1λ), and
(crs, td)← S1(1λ). (pk′,mk′, ek, dk, crs, td) are sent toA.

Leak(ϕ∗,W∗1, · · · ,W∗τ s.t. ϕ∗(W∗1) = · · · = ϕ∗(W∗τ) = 1, f ∈ FΣABS(λ)). CH computes f ({sk∗i }i∈[1,τ]),
where for i ∈ [1, τ], the secret-key sk∗i is generated as sk∗i B ABX.KeyGen(pk′,mk′,W∗i ).
Then CH sends it toA.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). By decrypting C∗, we get sk∗ B LPKE.Dec(dk,
C∗,m∗||ϕ∗). The statement x∗ is set to (C∗,m∗, ϕ∗). A is said to win the game if
[1← ABX.SKVer(pk′, sk∗, ϕ∗)] ∧ [

∨
i∈[1,τ][1← ABX.SKVer2(pk′, sk∗, sk∗i )]].

Hereafter, for i ∈ {0, 1, 2, 3, 4, 4|1, · · · , 4|qs, 5}, Wi denotes the event where A wins the
game Gamei. Obviously, it holds that Adv

FΣABS (λ)−HL−EUF−CMA
ΣABS,A (λ) = Pr[W0] ≤ ∑4

i=1 |Pr[Wi−1]−
[Wi]| +

∑qs
i=1 |Pr[W4|i−1] − Pr[W4|i]| + |Pr[W4|qs] − Pr[W5]| + Pr[W5].

Theorem 5.4.1 is proven by the above inequality and the following lemmas. □
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Lemma 5.4.1. |Pr[W0] − Pr[W1]| is negligible if ΣNIZK is zero-knowledge.

Lemma 5.4.2. |Pr[W1] − Pr[W2]| is negligible if ΣNIZK is sound.

Lemma 5.4.3. |Pr[W2] − Pr[W3]| is negligible if ΣABX is HtC-SK.

Lemma 5.4.4. |Pr[W3] − Pr[W4]| is negligible if ΣNIZK is zero-knowledge.

Lemma 5.4.5. For every i ∈ [1, qs], |Pr[W4|i−1] − Pr[W4|i]| is negligible if ΣLPKE is IND-
wLCCA.

Lemma 5.4.6. Pr[W4|qs] is negligible if Pr[W5] is negligible.

Lemma 5.4.7. Pr[W5] is negligible.

Proof of each lemma is given below.

Proof of Lemma 5.4.1. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W0]−Pr[W1]| non-negligible, then we are able to construct a PPT algorithm which
breaks the zero-knowledge property for ΣNIZK.

We consider a PPT simulator S. On one hand, the simulator S behaves as a PPT algo-
rithm attempting to break the zero-knowledge for ΣNIZK. On the other hand, S behaves as
the challenger in Game0 or Game1. S is given a common reference string crs. If crs was gen-
erated by (crs, td) ← S1(1λ) (resp. crs ← NIZK.Gen(1λ)), then S simulates Game0 (resp.
Game1) for the PPT adversaryA properly. The concrete behaviour by S is the following.

Setup. S is given crs. S runs (pk′,mk′)← ABX.Setup(1λ, 1L) and (ek, dk)← LPKE.Gen(1λ).
pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes LS as ∅.

Query. When A queries to either one of the oracles Generate, Reveal and Sign, S be-
haves in the usual manner.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). CH computes f (Lϕ∗) and returns it, whereLϕ∗ B
∪
W s.t. ϕ∗(W)=1LW.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ϕ∗). S outputs
1 if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧ [(m∗, ϕ∗) < LS ]. S outputs 0 otherwise.

It is obvious that if the common reference string is generated by (crs, td)← S1(1λ) (resp.
crs← NIZK.Gen(1λ)), then S simulates the game Game0 (resp. Game1) forA perfectly, and
if and only if the event W0 (resp. W1) occurs, S outputs 1. Hence, we obtain Pr[W0] =
Pr[1 ← S(crs) | (crs, td) ← S1(1λ)] and Pr[W1] = Pr[1 ← S(crs) | crs ← NIZK.Gen(1λ)].
Hence, |Pr[W0] − Pr[W1]| = |Pr[1 ← S(crs) | crs ← NIZK.Gen(1λ)] − Pr[1 ← S(crs) |
(crs, td)← S1(1λ)]|. □
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Proof of Lemma 5.4.2. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W1]−Pr[W2]| non-negligible, then we are able to construct a PPT algorithm which
breaks the soundness property for ΣNIZK.

We consider a PPT simulator S attempting to break the soundness of the NIZK scheme
ΣNIZK. Specifically, S behaves as follows.

Setup. S is given a common reference string crs of ΣNIZK. S runs (pk′,mk′)← ABX.Setup(1λ, 1L)
and (ek, dk) ← LPKE.Gen(1λ). pk is set to pk B (pk′, ek, crs). S sends pk to A. S
initializes LS as ∅.

Query. When A queries to either one of the oracles Generate, Reveal and Sign, S be-
haves in the normal manner.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). CH computes f (Lϕ∗) and returns it, whereLϕ∗ B
∪
W s.t. ϕ∗(W)=1LW.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ϕ∗). S sets
sk∗ B LPKE.Dec(dk,C∗,m∗||ϕ∗). S outputs (x∗, π∗) if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧
[(m∗, ϕ∗) < LS ] ∧ [0← ABX.SKVer(pk′, sk∗, ϕ∗)].

It is obvious that S simulates Game1 or Game2, perfectly.
By the way, the definitions of W1 and W2 gives us the following equations.

Pr [W1] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS

]]
(5.7)

Pr [W2] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS

]
∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)

]]
(5.8)

Hence, we obtain

|Pr[W1] − Pr[W2]|
= Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS

][
0← ABX.SKVer(pk′, sk∗,S∗)

]]
= Pr [S(crs)→ (x∗, π∗) s.t. [1← NIZK.Ver(crs, x∗, π∗)]
∧ [0← ABX.SKVer(pk′, sk∗, ϕ∗)

]]
. (5.9)

By the definition of the language L, i.e., (5.6), the following statement is true: for
any (C,m, ϕ) ∈ L, there exists sk ∈ KX such that [C ← LPKE.Enc(ek, sk,m||ϕ)] ∧ [1 ←
ABX.SKVer(pk′, sk, ϕ)].

By the above statement, the correctness of ΣLPKE, and the deterministic property of the
algorithm SKVer of ΣABX, the following statement is true: for any (C,m, ϕ) ∈ L, it holds that
[1← ABX.SKVer(pk′, sk, ϕ)], where sk B LPKE.Dec(dk,C,m||ϕ).

The contraposition of the above statement is the following statement: for any C ∈ CL,
any m ∈ M and any ϕ ∈ PX, if [0← ABX.SKVer(pk′, sk, ϕ)], where sk B LPKE.Dec(dk,C,m||ϕ),
then (C,m, ϕ) < L.

By the above statement and the equation (5.9), we obtain

|Pr[W1] − Pr[W2]| = Pr [S(crs)→ (x∗, π∗) s.t. [1← NIZK.Ver(crs, x∗, π∗)] ∧ [x∗ < L]] .

□
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Proof of Lemma 5.4.3. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W2]−Pr[W3]| non-negligible, then we are able to construct a PPT algorithm which
breaks the HtC-SK property for ΣABX.

We consider a PPT simulator S who behaves as a PPT adversary trying to break the
property of HtC-SK for ΣABX. The concrete behaviour by S is the following.

Setup. S is given the keys (pk′,mk′) of ΣABX. S runs (ek, dk) ← LPKE.Gen(1λ) and
crs← NIZK.Gen(1λ). pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes
LS as ∅.

Query. When A queries to either one of the oracles Reveal and Sign, S behaves in the
same manner as the challenger CH in the definition of Game0. WhenA queriesW to
Generate, S behaves in the same manner as CH in the definition of Game0 except
that S queries W to the oracle Reveal in the game for HtC-SK property of ΣABX to
acquire the secret-key sk for the attributeW.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). CH computes f (Lϕ∗) and returns it, whereLϕ∗ B
∪
W s.t. ϕ∗(W)=1LW.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ϕ∗). S sets
sk∗ B LPKE.Dec(dk,C∗,m∗||ϕ∗). S outputs (ϕ∗, sk∗) if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧
[(m∗, ϕ∗) < LS ]∧[1← ABX.SKVer(pk′, sk∗, ϕ∗)]

∧
sk∈Lϕ∗ [0← ABX.SKVer2(pk′, sk∗,

sk)].

It is obvious that S simulates Game2 or Game3 forA perfectly.
By the definitions of W2 and W3, we obtain

Pr [W2] = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS

]
∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)

]]
Pr [W3] = Pr

[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS

]
∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)

] ∧  ∨
sk∈Lϕ∗

[
1← ABX.SKVer2(pk′, sk∗, sk)

]


Hence, we obtain

|Pr[W2] − Pr[W3]| = Pr
[
[1← NIZK.Ver(crs, x∗, π∗)] ∧ [(m∗, ϕ∗) < LS

]
∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)

] ∧
sk∈Lϕ∗

[
0← ABX.SKVer2(pk′, sk∗, sk)

] (5.10)

The above probability is equal to the probability by whom S wins the HtC-SK property
game for ΣABX. □

Proof of Lemma 5.4.4. We prove that if we assume that there is a PPT adversaryAwhich
makes |Pr[W3]−Pr[W4]| non-negligible, then we are able to construct a PPT algorithm which
breaks the zero-knowledge property for ΣNIZK.

We consider a PPT simulator S attempting to break the zero-knowledge property for the
NIZK scheme ΣNIZK. Specifically, S behaves as follows.
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Setup. S is given crs of ΣNIZK. S runs (pk′,mk′) ← ABX.Setup(1λ, 1L) and (ek, dk) ←
LPKE.Gen(1λ). pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes LS as
∅.

Query. When A queries to either one of the oracles Generate and Reveal, S behaves in
the normal manner. WhenA queries to Sign, S behaves as follows.

Sign(W ∈ U, i ∈ N,m ∈ M, ϕ): ϕ is represented as a circuit {L,N, I1, I2}. S retrieves
the i-th secret-key sk from LW. S generates C B LPKE.Enc(ek, sk,m||ϕ). CH
sets x B (C,m, ϕ) and w B sk, then issues (x,w) to the oracle Ozk, then receives
a proof π. After that, CH returns a signature σ B (C, π) to A. After that, CH
sets LS B LS ∪ {(m, ϕ)}.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). CH computes f (Lϕ∗) and returns it, whereLϕ∗ B
∪
W s.t. ϕ∗(W)=1LW.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ϕ∗). S sets
sk∗ B LPKE.Dec(dk,C∗,m∗||ϕ∗). S outputs 1 if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧
[(m∗, ϕ∗) < LS ] ∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)] ∧ [

∨
sk∈Lϕ∗ [1← ABX.SKVer2(pk′,

sk∗, sk)]].

It is obvious that if the common reference string crs is generated by (crs, td) ← S1(1λ)
(resp. crs← NIZK.Gen(1λ)) and the proof-generation oracle Ozk is Ocrs,td

1 (resp. Ocrs
0 ), then

S simulates Game4 (resp. Game3) forA perfectly, and if and only if W4 (resp. W3) occurs, S
outputs 1. Hence, we obtain

|Pr[W3] − Pr[W4]| =
∣∣∣∣Pr
[
1← SOcrs

0 (x,w)(crs) | crs← NIZK.Gen(1λ)
]

−Pr
[
1← SOcrs,td

1 (x,w)(crs) | (crs, td)← S1(1λ)
]∣∣∣∣ .

□

Proof of Lemma 5.4.5. We prove that for any i ∈ [1, qs] if we assume that there is a PPT
adversaryAwhich makes |Pr[W4|i−1]−Pr[W4|i]| non-negligible, then we are able to construct
a PPT algorithm which breaks the IND-wLCCA security for ΣLPKE.

We consider a PPT simulator S attempting to break the IND-wLCCA security for the
LPKE scheme ΣLPKE. CH denotes the challenger in the IND-wLCCA security game. Specif-
ically, S behaves as follows.

Setup. S is given ek of ΣLPKE. S runs (pk′,mk′) ← ABX.Setup(1λ, 1L) and (crs, td) ←
S1(1λ). pk is set to pk B (pk′, ek, crs). S sends pk toA. S initializes LS as ∅.

Query. When A queries to either one of the oracles Generate and Reveal, S behaves in
the usual way. WhenA queries to Sign, S behaves as follows.

Sign(W ∈ U, î ∈ N,m ∈ M, ϕ): CH retrieves the î-th secret-key sk from LW. Sup-
pose that this query is the j-th signing oracle query.
If j ≤ i − 1 (resp. j ≥ i + 1), then S generates the ciphertext C as C B
LPKE.Enc(ek, 0|sk|,m||ϕ) (resp. C B LPKE.Enc(ek, sk,m||ID)).
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If j = i, then S issues (0|sk|, sk,m||ϕ) as a challenge query in the IND-wLCCA
game for ΣLPKE to acquire a ciphertext C.
After acquiring the ciphertext C, S behaves as follows. S sets x B (C,m, ϕ),
then generates π← S2(crs, x, td). After that, S returns the signature σ B (C, π)
toA. After that, S sets LS B LS ∪ {(m, ϕ)}.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). CH computes f (Lϕ∗) and returns it, whereLϕ∗ B
∪
W s.t. ϕ∗(W)=1LW.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). The statement x∗ is set to (C∗,m∗, ϕ∗). S issues
(C∗,m∗||ϕ∗) as a query to the decryption oracle at Query 2 in the IND-wLCCA game
for ΣLPKE, and sk∗ is returned. S outputs 1 if it holds that [1← NIZK.Ver(crs, x∗, π∗)]∧
[(m∗, ϕ∗) < LS ] ∧ [1← ABX.SKVer(pk′, sk∗, ϕ∗)] ∧ [

∨
sk∈Lϕ∗ [1← ABX.SKVer2(pk′,

sk∗, sk)]].

Let β ∈ {0, 1} be the challenge-bit in the IND-wLCCA security game for ΣLPKE. It is obvious
that S simulates Game4|i−1 (resp. Game4|i) when β = 1 (resp. β = 0), and if and only if W4|i−1

(resp. W4|i) happens, S outputs β′ = 1. It is also obvious that when W4|i−1 or W4|i occurs, the
label m∗||ϕ∗ in the query (C∗,m∗||ϕ∗) to the oracle Decrypt at Query 2 issued by S satisfies
(m∗, ϕ∗) , (mi, ϕi), where (mi, ϕi) is the pair of the message and predicate issued as the i-th
signing oracle query by A, so the query (C∗,m∗||ϕ∗) is not a forbidden query. Hence, we
obtain Pr[W4|i−1] = Pr

[
β′ = 1 | β = 1

]
and Pr[W4|i] = Pr[β′ = 1|β = 0].

It holds that Pr[β′ = β] = Pr[β′ = 0 ∧ β = 0] + Pr[β′ = 1 ∧ β = 1] = 1
2 (Pr[β′ = 0|β =

0] + Pr[β′ = 1|β = 1]) = 1
2 (Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0] + 1).

Hence, we obtain AdvIND−wLCCA
ΣLPKE,S = |2 ·Pr[β′ = β]− 1| = |Pr[β′ = 1|β = 1]−Pr[β′ = 1|β =

0]| = |Pr[W4|i−1] − Pr[W4|i]|. □

Proof of Lemma 5.4.6. We prove that if we assume that there exists a PPT adversary A
which wins Game4|qs with a non-negligible advantage, then we can construct a PPT simulator
S which wins Game5 with a non-negligible advantage.

We consider a PPT simulator S which behaves as an adversary in Game5. Specifically, S
behaves as follows.

Setup. S is given (pk′,mk′, ek, dk, crs, td), which were generated by (pk′,mk′)← ABX.Setup(1λ, 1L),
(ek, dk)← LPKE.Gen(1λ), and (crs, td)← S1(1λ). pk is set to pk B (pk′, ek, crs). S
sends pk toA. S initializes LS as ∅.

Query. When A queries to either one of the oracles Generate and Reveal, S behaves in
the normal manner. WhenA queries to Sign, S behaves as follows.

Sign(W ∈ U, i ∈ N,m ∈ M, ϕ): CH retrieves the i-th secret-key sk fromLW. S gen-
erates the ciphertext C as C B LPKE.Enc(ek, 0|sk|,m||ϕ). S sets x B (C,m, ϕ),
then generates π← S2(crs, x, td). After that, S returns the signature σ B (C, π)
toA. After that, S sets LS B LS ∪ {(m, ϕ)}.

Leak(ϕ∗ ∈ P, f ∈ FΣABS(λ)). We generate a multisetL♠ as follows: initialize it as ∅, then for
every attributeW ∈ U such that ϕ∗(W) = 1 and list of secret-keys LW for the attribute
W has already been generated, add |LW| ∈ N number of the attributeW to L♠.
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S issues (ϕ∗,L♠, f ) as a query to the oracle Leak in Game5, then receives f (L′W). S
sends f (L′W) toA.

Forgery(σ∗,m∗). S outputs (σ∗,m∗) at Forgery in Game5.

Obviously, S perfectly simulates Game4|qs for A. Also obviously, if A wins Game4|qs , S
wins Game5. Hence, Pr[W4|qs] ≤ Pr[W5]. □

Proof of Lemma 5.4.7. Let us consider a PPT adversary A in Game5. We define the fol-
lowing three events.

U pk′,mk′,ek,dk,crs,td is the event where (pk′,mk′), (ek, dk) and (crs, td) are randomly gener-
ated at Setup by ABX.Setup(1λ, 1L), LPKE.Gen(1λ) andS1(1λ), respectively. Vϕ

∗,W∗1,··· ,W
∗
τ, f

pk′,mk′,ek,dk,crs,td
is the event whereA, given the variables (pk′,mk′, ek, dk, crs, td) at Setup, chooses a pred-
icate ϕ∗ ∈ P, attributes W∗1, · · · ,W∗τ ∈ U s.t. ϕ∗(W∗1) = · · · = ϕ∗(W∗τ) = 1 for integer
τ ∈ N, and a function f at Leak. Wpk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W

∗
τ, f is the event where A wins the

following game Gamepk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W
∗
τ, f .

Setup. A is given (pk′,mk′, ek, dk, crs, td, ϕ∗,W∗1, · · · ,W∗τ, f , f ({sk∗i }i∈[1,τ])), where, for i ∈
[1, τ], sk∗i ← ABX.KeyGen(pk′,mk′,W∗i ).

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). sk∗ is set to LPKE.Dec(dk,C∗,m∗||ϕ∗). A wins
the game if it holds that [1← ABX.SKVer(pk′, sk∗, ϕ∗)]∧[

∨
i∈[1,k∗][1← ABX.SKVer2(pk′,

sk∗, sk∗i )]].

By the definition of W5 and the definitions of the above three events, we obtain

Pr [W5] =
∑

(pk′,mk′,ek,dk,crs,td)

∑
(ϕ∗,W∗1,··· ,W

∗
τ, f )

Pr
[
Wpk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W

∗
τ, f

]
· Pr
[
Vϕ

∗,W∗1,··· ,W
∗
τ, f

pk′,mk′,ek,dk,crs,td

]
·Pr
[
U pk′,mk′,ek,dk,crs,td

]
.

By the above equation and Lemma 5.4.8, there exists a negligible function ϵ(λ) such that

Pr [W5] <
∑

(pk′,mk′,ek,dk,crs,td)

∑
(ϕ∗,W∗1,··· ,W

∗
τ, f )

ϵ(λ) · Pr
[
Vϕ

∗,W∗1,··· ,W
∗
τ, f

pk′,mk′,ek,dk,crs,td

]
· Pr
[
U pk′,mk′,ek,dk,crs,td

]
.

(5.11)
We give two facts. It obviously holds that

∑
(pk′,mk′,ek,dk,crs,td) Pr

[
U pk′,mk′,ek,dk,crs,td

]
= 1. It also

obviously holds that for any (pk′,mk′, ek, dk, crs, td),
∑

(ϕ∗,W∗1,··· ,W
∗
τ, f ) Pr

[
Vϕ

∗,W∗1,··· ,W
∗
τ, f

pk′,mk′,ek,dk,crs,td

]
= 1.

By these facts and (5.11), we obtain Pr [W5] < ϵ(λ). □

Lemma 5.4.8. For any PPT A, any (pk′,mk′), any (ek, dk), any (crs, td), any ϕ∗ ∈ P, any
W∗1, · · · ,W∗τ ∈ U s.t. ϕ∗(W∗1) = · · · = ϕ∗(W∗τ) = 1 for integer τ ∈ N, and any f ∈ FΣABS(λ),
Pr
[
Wpk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W

∗
τ, f

]
is negligible.
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Proof of Lemma 5.4.8. We prove that if we assume that there exists a PPT adversary A
which wins the game Gamepk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W

∗
τ, f with a non-negligible probability, we

can construct a PPT simulator which leads us to a contradiction to the fact that f ∈ FΣABS(λ).
Specifically, S behaves as follows.

Setup. A is given (pk′,mk′, ek, dk, crs, td, ϕ∗,W∗1, · · · ,W∗τ, f , f ({sk∗i }i∈[1,τ])), where, for i ∈
[1, τ], sk∗i ← ABX.KeyGen(pk′,mk′,W∗i ). S gives the variables toA.

Forgery(σ∗,m∗). σ∗ is parsed as (C∗, π∗). sk∗ is set to LPKE.Dec(dk,C∗,m∗||ϕ∗). S outputs
sk∗.

It is obvious that S simulates the game Gamepk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W
∗
τ, f for A perfectly. If A

wins the game, thenS is able to acquire a secret-key sk∗ which satisfies [1← ABX.SKVer(pk′,
sk∗, ϕ∗)] ∧ [

∨
i∈[1,τ][1← ABX.SKVer2(pk′, sk∗, sk∗i )]]. Hence, we obtain

Pr
[S (pk′,mk′, ek, dk, crs, td, ϕ∗,W∗1, · · · ,W∗τ, f , f ({sk∗i }i∈[1,τ])

)→ sk∗

s.t.
[
1← ABX.SKVer(pk′, sk∗, ϕ∗)

] ∧  ∨
i∈[1,τ]

[
1← ABX.SKVer2(pk′, sk∗, sk∗i )

]


= Pr
[
Wpk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W

∗
τ, f

]
,

where, for i ∈ [1, τ], sk∗i ← ABX.KeyGen(pk′,mk′,W∗i ). Assuming that there exists a
polynomial function poly(λ) such that Pr[Wpk′,mk′,ek,dk,crs,td,ϕ∗,W∗1,··· ,W

∗
τ, f ] ≥ 1/poly(λ) leads us

to a contradiction to the fact that f ∈ FΣABS(λ). □

5.4.3 Proof of Computational Signer-Privacy
Previous ABS schemes [MPR11, OT11, SAH16] were proven to be perfectly signer-private.
On the other hand, it must be hard to prove that our ABS scheme ΣABS is perfectly signer-
private since any signature on any predicate ϕ generated by ΣABS includes a ciphertext of
a secret-key for an attribute satisfying the predicate. So, we prove the following theorem
which guarantees that ΣABS is computationally signer-private.

Theorem 5.4.2. If ΣLPKE is IND-wLCCA and ΣNIZK is zero-knowledge, then ΣABS is compu-
tationally signer-private.

Proof of Theorem 5.4.2. We define six experiments Expti, where i ∈ {0, 1, 2, 3, 4, 5}, to
prove the theorem. Hereafter, A1 and A2 denote PPT adversaries, S1 and S2 denote PPT
simulators, B1 and B2 denote PPT simulators which makes ΣNIZK satisfy the definition of
zero-knowledge, and h1, h2 are polynomial time computable functions.
Expt0, given in Fig.5.3, is the experiment ExptCSP−0

ΣABS,A,h1,h2
(1λ, 1L) w.r.t. PPT adver-

saries A = (A1,A2), and functions h1 and h2. Expt5, given in Fig.5.3, is the experiment
ExptCSP−1

ΣABS,S,h1,h2
(1λ, 1L) w.r.t. PPT simulators S = (S1,S2), and functions h1 and h2. Let us

consider a PPT distinguisherD, whose advantage is defined as follows: AdvCSPΣABS,D,A,S,h(λ) B
|Pr[D(Expt0(1λ, 1L))→ 1] − Pr[D(Expt5(1λ, 1L))→ 1]|.

We define the other experiments Expti, where i ∈ {1, 2, 3, 4}. We describe each experi-
ment in Fig.5.4 and Fig.5.5. Specifically, each experiment is defined as follows.
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Expt0(1λ, 1L)(= ExptCSP−0
ΣABS,A,h1,h2

(1λ, 1L)):
(ek, dk)← LPKE.Gen(1λ)
(pk′,mk′)← ABX.Setup(1λ, 1L)
(crs, td)← B1(1λ)
pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk),
where K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,W∗)
C∗ ← LPKE.Enc(ek, sk∗,m∗||ϕ∗)
x∗ B (C∗,m∗, ϕ∗), w B sk∗

π∗ ← NIZK.Pro(crs, x∗,w), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Expt5(1λ, 1L)(= ExptCSP−1
ΣABS,S,h1,h2

(1λ, 1L)):
(ek, dk)← LPKE.Gen(1λ)
(pk′,mk′)← ABX.Setup(1λ, 1L)
(crs, td)← B1(1λ)
pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← S1(pk),
where K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗

v← S2(st, h1(W∗))
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Figure 5.3: Experiments Expt0 and Expt5.

• Expt1 is the same as Expt0 except that the common reference string crs is generated
by running crs← NIZK.Gen(1λ).

• Expt2 is the same as Expt1 except that the common reference string crs is generated
by running (crs, td)← B1(1λ) and the NIZK-proof π∗ in the signature σ∗ = (C∗, π∗) is
generated by running π∗ ← B2(crs, x∗, td).

• Expt3 is the same as Expt2 except that the LPKE-ciphertext C∗ in the signature σ∗

is generated from a randomly generated secret-key for an attribute W♠ which is ran-
domly chosen independently of the attributeW∗.

• Expt4 is basically the same as Expt3. In the experiment, we generate not only the pair
of (pk,mk), but also another pair of ( p̃k, m̃k). After generating them, we use only the
latter pair. For instance, the public-key p̃k is given to the adversaryA = (A1,A2), and
the key-revelation oracle Op̃k,m̃k

CS P (W̃) generates a secret-key for an attribute W̃ by using
the master-key m̃k and returns it. Every variable which is dependent on the key-pair
( p̃k, m̃k) is given the wide tilde symbol (˜).

We obtain the following inequality: AdvCSPΣABS,D,A,S,h1,h2
(λ) ≤ ∑5

i=1 |Pr[D(Expti−1(1λ, 1L))→
1] − Pr[D(Expti(1λ, 1L))→ 1]|.

Theorem 5.4.2 is proven true by the above inequality and the following 5 lemmas. □

Lemma 5.4.9. If ΣNIZK is ZK, then ∀A = (A1,A2), ∀h1, ∀h2, ∀D, |Pr[D(Expt0(1λ, 1L))→
1] − Pr[D(Expt1(1λ, 1L))→ 1]| is negligible.

Lemma 5.4.10. If ΣNIZK is ZK, then ∀A = (A1,A2), ∀h1, ∀h2, ∀D, |Pr[D(Expt1(1λ, 1L))→
1] − Pr[D(Expt2(1λ, 1L))→ 1]| is negligible.

Lemma 5.4.11. If ΣLPKE is IND-wLCCA secure, then ∀A = (A1,A2), ∀h1, ∀h2, ∀D,
|Pr[D(Expt2(1λ, 1L))→ 1] − Pr[D(Expt3(1λ, 1L))→ 1]| is negligible.
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Expt1(1λ, 1L):
(ek, dk)← LPKE.Gen(1λ)
(pk′,mk′)← ABX.Setup(1λ, 1L)
crs← NIZK.Gen(1λ)
pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk),
where K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,W∗)
C∗ ← LPKE.Enc(ek, sk∗,m∗||ϕ∗)
x∗ B (C∗,m∗, ϕ∗), w B sk∗

π∗ ← NIZK.Pro(crs, x∗,w), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Expt2(1λ, 1L):
(ek, dk)← LPKE.Gen(1λ)
(pk′,mk′)← ABX.Setup(1λ, 1L)
(crs, td)← B1(1λ)
pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk),
where K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,W∗)
C∗ ← LPKE.Enc(ek, sk∗,m∗||ϕ∗)
x∗ B (C∗,m∗, ϕ∗), w B sk∗

π∗ ← B2(crs, x∗, td), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Figure 5.4: Experiments Expt1 and Expt2. The underlined parts indicate the parts which
are changed from the previous experiment.

Expt3(1λ, 1L):
(ek, dk)← LPKE.Gen(1λ)
(pk′,mk′)← ABX.Setup(1λ, 1L)
(crs, td)← B1(1λ)
pk B (pk′, ek, crs), mk B mk′

(K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk),
where K∗ = {W|W ∈ U ∧ ϕ∗(W) = 1}.
W∗

U←− K∗

W♠
U←− K∗, sk♠ ← ABX.KeyGen(pk′,mk′,W♠)

C∗ ← LPKE.Enc(ek, sk♠,m∗||ϕ∗)
x∗ B (C∗,m∗, ϕ∗), w B sk♠

π∗ ← B2(crs, x∗, td), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Expt4(1λ, 1L):
(ek, dk)← LPKE.Gen(1λ)
(pk′,mk′)← ABX.Setup(1λ, 1L)
(crs, td)← B1(1λ)
pk B (pk′, ek, crs), mk B mk′

(ẽk, d̃k)← LPKE.Gen(1λ)
(p̃k
′
, m̃k

′
)← ABX.Setup(1λ, 1L)

(c̃rs, t̃d)← B1(1λ)
p̃k B ( p̃k

′
, ẽk, c̃rs), m̃k B m̃k

′

(K̃∗, ϕ̃∗ ∈ P̃, m̃∗ ∈ M̃, st)← AO
p̃k,m̃k
CS P (W̃)

1 ( p̃k),
where K̃∗ = {W̃|W̃ ∈ Ũ ∧ ϕ̃∗(W̃) = 1}.
W̃∗

U←− K̃∗

W̃♠
U←− K̃∗, s̃k

♠ ← ABX.KeyGen( p̃k
′
, m̃k

′
, W̃♠)

C̃∗ ← LPKE.Enc(ẽk, s̃k
♠
, m̃∗||ϕ̃∗)

x̃∗ B (C̃∗, m̃∗, ϕ̃∗), w̃ B s̃k
♠

π̃∗ ← B2(c̃rs, x̃∗, t̃d), σ̃∗ B (C̃∗, π̃∗)

ṽ← AO
p̃k,m̃k
CS P (W̃)

2 (st, h1(W̃∗), σ̃∗)
If v̄ = h2(W̃∗), then d B 1. Else, then d B 0.
Return (d,K∗).

Figure 5.5: Experiments Expt3 and Expt4.
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A∗(crs):
(ek, dk)← LPKE.Gen(1λ), (pk′,mk′)← ABX.Setup(1λ, 1L)

pk B (pk′, ek, crs), mk B mk′, (K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk)

W∗
U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,W∗)

C∗ ← LPKE.Enc(ek, sk∗,m∗||ϕ∗)
x∗ B (C∗,m∗, ϕ∗), w B sk∗, π∗ ← NIZK.Pro(crs, x∗,w), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0. ReturnD(d,K∗).

Figure 5.6: PPT adversaryA∗ which is used in the proof of Lemma 5.4.9

Lemma 5.4.12. ∀A = (A1,A2), ∀h1, ∀h2, ∀D, Pr[D(Expt3(1λ, 1L))→ 1] = Pr[D(Expt4(1λ, 1L))→
1].

Lemma 5.4.13. ∀A = (A1,A2), ∀h1, ∀h2, ∃S = (S1,S2) s.t. ∀D, Pr[D(Expt4(1λ, 1L)) →
1] = Pr[D(Expt5(1λ, 1L))→ 1].

Proof of each lemma is given below.

Proof of Lemma 5.4.9. We prove the lemma by contradiction. We show that assuming
that the lemma doesn’t hold leads us to a contradiction to the fact that ΣNIZK is zero-
knowledge.

If we assume that the lemma doesn’t hold, we can say that there exist a PPT adversary
A = (A1,A2), functions h1, h2, a PPT distinguisher D, and a polynomial function poly(λ)
such that the following inequality holds.∣∣∣∣Pr

[
D(Expt0(1λ, 1L))→ 1

]
− Pr
[
D(Expt1(1λ, 1L))→ 1

]∣∣∣∣ ≥ 1/poly(λ). (5.12)

Let us consider a PPT adversary A∗ attempting to break the zero-knowldge property of
ΣNIZK. A∗ usesA = (A1,A2), h1, h2 andD defined above. A∗ behaves as shown in Fig.5.6.
The common reference string given to A∗ is generated by running NIZK.Gen(1λ) → crs
or B1(1λ) → (crs, td). If W ∈ U is issued as a query to oracle Opk,mk

CS P by A1 or A2, then
A∗ computes ABX.KeyGen(pk′,mk′,W) and returns it. When crs is generated by running
NIZK.Gen(1λ) → crs (resp. B1(1λ) → (crs, td)), A∗ perfectly simulates Expt1(1λ, 1L)
(resp. Expt0(1λ, 1L)) forA1,A2 andD. Hence, we obtain the following equations.

Pr
[
A∗(crs)→ 1

∣∣∣ NIZK.Gen(1λ)→ crs
]
= Pr

[
D(Expt1(1λ, 1L))→ 1

]
(5.13)

Pr
[
A∗(crs)→ 1

∣∣∣ B1(1λ)→ (crs, td)
]
= Pr

[
D(Expt0(1λ, 1L))→ 1

]
(5.14)

By (5.12), (5.13) and (5.14), we obtain the following inequality.∣∣∣∣Pr
[
A∗(crs)→ 1

∣∣∣ NIZK.Gen(1λ)→ crs
]
− Pr
[
A∗(crs)→ 1

∣∣∣ B1(1λ)→ (crs, td)
]∣∣∣∣

≥ 1/poly(λ)

□
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A∗(crs):
(ek, dk)← LPKE.Gen(1λ), (pk′,mk′)← ABX.Setup(1λ, 1L)

pk B (pk′, ek, crs), mk B mk′, (K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk)

W∗
U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,W∗)

C∗ ← LPKE.Enc(ek, sk∗,m∗||ϕ∗)
x∗ B (C∗,m∗, ϕ∗), w B sk∗, π∗ ← OZK(x∗,w), σ∗ B (C∗, π∗)

v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0. ReturnD(d,K∗).

Figure 5.7: PPT adversaryA∗ which is used in the proof of Lemma 5.4.10

Proof of Lemma 5.4.10. We prove the lemma by contradiction. We show that assuming
that the lemma doesn’t hold true leads us to a contradiction to the fact that ΣNIZK is zero-
knowledge.

If we assume that the lemma doesn’t hold true, we can say that there exist a PPT ad-
versary A = (A1,A2), functions h1, h2, a PPT distinguisher D, and a polynomial function
poly(λ) such that∣∣∣∣Pr

[
D(Expt1(1λ, 1L))→ 1

]
− Pr
[
D(Expt2(1λ, 1L))→ 1

]∣∣∣∣ ≥ 1/poly(λ). (5.15)

Let us consider a PPT adversaryA∗ attempting to break the zero-knowledge property of
ΣNIZK. A∗ usesA = (A1,A2), h1, h2 andD defined above. A∗ behaves as shown in Fig.5.7.
The common reference string given to A∗ is generated by running NIZK.Gen(1λ) → crs
or B1(1λ) → (crs, td). If W ∈ U is issued as a query to oracle Opk,mk

CS P by A1 or A2, then
A∗ computes ABX.KeyGen(pk′,mk′,W) and returns it. The oracle OZK(x,w) which is used
by A∗ is equivalent to the oracle Ocrs

0 (resp. Ocrs,td
1 ) in the definition of zero-knowledge

property for ΣNIZK when crs is generated by running NIZK.Gen(1λ)→ crs (resp. B1(1λ)→
(crs, td)). A∗ perfectly simulates Expt1(1λ, 1L) (resp. Expt2(1λ, 1L)) for A1,A2 and D
when crs is generated by running NIZK.Gen(1λ) → crs (resp. B1(1λ) → (crs, td)). Hence,
we obtain the following equations.

Pr
[
A∗Ocrs

0 (x,w)(crs)→ 1
∣∣∣ NIZK.Gen(1λ)→ crs

]
= Pr
[
D(Expt1(1λ, 1L))→ 1

]
(5.16)

Pr
[
A∗O

crs,td
1 (x,w)(crs)→ 1

∣∣∣ B1(1λ)→ (crs, td)
]
= Pr
[
D(Expt2(1λ, 1L))→ 1

]
(5.17)

By (5.15), (5.16) and (5.17), we obtain the following inequality.∣∣∣∣ Pr
[
A∗Ocrs

0 (x,w)(crs)→ 1
∣∣∣ NIZK.Gen(1λ)→ crs

]
−

Pr
[
A∗O

crs,td
1 (x,w)(crs)→ 1

∣∣∣ B1(1λ)→ (crs, td)
] ∣∣∣∣ ≥ 1/poly(λ)

□

Proof of Lemma 5.4.11. We prove the lemma by contradiction. We show that assuming
that the lemma does not hold leads us to a contradiction to the fact that ΣLPKE is IND-
wLCCA.
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If we assume that the lemma does not hold, then we can say that there exist a PPT
adversaryA = (A1,A2), functions h1, h2, a PPT distinguisherD, and a polynomial function
poly(λ) such that∣∣∣∣Pr

[
D(Expt2(1λ, 1L))→ 1

]
− Pr
[
D(Expt3(1λ, 1L))→ 1

]∣∣∣∣ ≥ 1/poly(λ). (5.18)

Let us consider a PPT adversary A∗ = (A∗1,A∗2) in the experimental definition of IND-
wLCCA of ΣLPKE desribed in Subsect. 5.2.1. A∗ uses A = (A1,A2), h1, h2 and D defined
above. A∗ = (A∗1,A∗2) behaves as shown in Fig. 5.8. IfW ∈ UX is issued as a query to oracle

A∗1(ek):
(crs, td)← B1(1λ), (pk′,mk′)← ABX.Setup(1λ, 1L)

pk B (pk′, ek, crs), mk B mk′, (K∗, ϕ∗ ∈ P,m∗ ∈ M, st)← AO
pk,mk
CS P (W)

1 (pk)

W∗
U←− K∗, sk∗ ← ABX.KeyGen(pk′,mk′,W∗)

W♠
U←− K∗, sk♠ ← ABX.KeyGen(pk′,mk′,W♠)

st′ B (st, pk,mk,m∗, ϕ∗,W∗, sk∗, sk♠), Return (sk∗, sk♠,m∗||ϕ∗, st′)
A∗2(st′,C∗):

x∗ B (C∗,m∗, ϕ∗), w B sk♠, π∗ ← B2(crs, x∗, td)

σ∗ B (C∗, π∗), v← AO
pk,mk
CS P (W)

2 (st, h1(W∗), σ∗)
If v = h2(W∗), then d B 1. Else, then d B 0. ReturnD(d,K∗).

Figure 5.8: PPT adversaryA∗ = (A∗1,A∗2) which is used in the proof of Lemma 5.4.11

Opk,mk
CS P byA1 orA2, thenA∗ computes ABX.KeyGen(pk′,mk′,W) and returns it. If C∗ is a

ciphertext generated by encrypting sk∗ (resp. sk♠), thenA∗ perfectly simulates Expt2(1λ, 1L)
(resp. Expt3(1λ, 1L)) forA1,A2 andD. So, we obtain the following equations.

Pr
[
ExptIND−wLCCA−0

ΣLPKE,A∗ (1λ)→ 1
]
= Pr

[
D(Expt2(1λ, 1L))→ 1

]
(5.19)

Pr
[
ExptIND−wLCCA−1

ΣLPKE,A∗ (1λ)→ 1
]
= Pr

[
D(Expt3(1λ, 1L))→ 1

]
(5.20)

By (5.18), (5.19) and (5.20), the following inequality is obtained.∣∣∣∣ Pr
[
ExptIND−wLCCA−0

ΣLPKE,A∗ (1λ)→ 1
]
− Pr
[
ExptIND−wLCCA−1

ΣLPKE,A∗ (1λ)→ 1
] ∣∣∣∣ ≥ 1/poly(λ) (5.21)

□

Proof of Lemma 5.4.12. In Expt3 and Expt4, the variables (ek, dk, pk′,mk′, crs, td) and
the variables (ẽk, d̃k, p̃k

′
, m̃k

′
, c̃rs, t̃d) identically distribute. Hence, for every PPT adversary

A = (A1,A2), every h1 and every h2, the output (d,K ∗) of Expt3(1λ, 1L) and the out-
put (d, K̂ ∗) of Expt4(1λ, 1L) also identically distribute. Therefore, for every PPT adversary
A = (A1,A2), every h1, every h2 and every PPT distinguisher D, D(Expt3(1λ, 1L)) and
D(Expt4(1λ, 1L)) also indentically distribute, and it holds that Pr[D(Expt3(1λ, 1L)) → 1] =
Pr[D(Expt4(1λ, 1L))→ 1]. □
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S1(pk):
(ẽk, d̃k)← LPKE.Gen(1λ)
( p̃k
′
, m̃k

′
)← ABX.Setup(1λ, 1L)

(c̃rs, t̃d)← B1(1λ)
p̃k B ( p̃k

′
, ẽk, c̃rs), m̃k B m̃k

′

(K̃∗, ϕ̃∗, m̃∗, st)← AO
p̃k,m̃k
CS P (W̃)

1 ( p̃k)
st′ B ( p̃k, m̃k, t̃d, st)
Return (K̃∗, ϕ̃∗, m̃∗, st′).

S2(st′, h1(W∗)):
st′ is parsed as ( p̃k, m̃k, t̃d, st).

W̃∗
U←− K̃∗

W̃♠
U←− K̃∗, s̃k

♠ ← ABX.KeyGen( p̃k
′
, m̃k

′
, W̃♠)

C̃∗ ← LPKE.Enc(ẽk, s̃k
♠
, m̃∗||ϕ̃∗)

x̃∗ B (C̃∗, m̃∗, ϕ̃∗), π̃∗ ← B2(c̃rs, x̃∗, t̃d)

σ̃∗ B (C̃∗, π̃∗), Return v B AO
p̃k,m̃k
CS P (W̃)

2 (st, h1(W̃∗), σ̃∗).

Figure 5.9: PPT simulator S which is used in the proof of Lemma 5.4.13

Proof of Lemma 5.4.13. A = (A1,A2) denotes a PPT adversary in Expt4. S = (S1,S2)
denotes a PPT simulator in Expt5. S1 (resp. S2) uses A1 (resp. A2) as a subroutine. If
the adversary queries an attribute W̃ to the key-reveration oracle, the simulator generates a
secret-key for W̃ by using the master-key m̃k and returns it. If we let S = (S1,S2) behave
as shown in Fig.5.9, for every PPT adversary A = (A1,A2), every function h1, and every
function h2, the output of Expt4(1λ, 1L) and the output of Expt5(1λ, 1L) identically distribute.
Hence, for every A = (A1,A2), every h1 and every h2, there exists S = (S1,S2) such that
for everyD, it holds that Pr[D(Expt4(1λ, 1L))→ 1] = Pr[D(Expt5(1λ, 1L))→ 1]. □

5.5 Instantiations Secure under Standard Assumptions
In this section, we instantiate our IBS and ABS under the DLIN and SXDH assumptions.
On the instantiations, we use EUF-CMA-secure (structure-preserving) signature schemes.

5.5.1 An Instantiation of IBS
As LPKE scheme, we use a modified variant of the LPKE scheme by Camenisch et al.
[CCS09] which is IND-LCCA under the DLIN assumption and the collision-resistance of
the hash function HCL. For the difference between IND-LCCA notion and IND-wLCCA
notion, refer to [FHN+12]. The security of the LPKE scheme ΠLPKE is guaranteed by the
following theorem.

Theorem 5.5.1. For any (polynomially bounded) intergers n, κ, τ ∈ N, ΠLPKE,n,κ,τ is IND-
wLCCA under the DLIN assumption and the collision resistance of the hash function HCL :
{0, 1}τ → Zp.

As NIZK scheme, we adopt the NIZK system by Groth and Sahai [GS08]. Thus, we
obtain the following theorem.

Theorem 5.5.2. NIZK systemΠNIZK by Groth and Sahai [GS08] is sound and zero-knowledge
under the DLIN assumption.

We use the IBX scheme given in Fig. 5.11. Theorem 5.5.3 guarantees its HtC-SK
property. The theorem is proven in the latter half of this subsection.
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Theorem 5.5.3. For any (polynomially bounded) intergers n ∈ N, ΣIBX,n is HtC-SK under
the DL assumption and the EUF-CMA security of ΣSPSIG.

For the (structure-preserving) signature scheme ΠSPSIG as a building block in the IBX
scheme ΣIBX,n, we use the scheme by Kiltz et al. [KPW15]. Details of its construction
can been seen in [KPW15] or [SAH16]. Actually, in the construction, bilinear pairing with
groups of prime order is used. Hereafter, we denote its description by (p,G, G̃,GT , ê, g, g̃).
According to [KPW15, SAH16], we obtain the following theorem.

Theorem 5.5.4. ΠSPSIG is EUF-CMA secure under the SXDH assumption.

LPKE.Gen(1λ, 1n, 1κ): (p,G, g)← G(1λ), g1, · · · , gn, h0, h1, h2
U←− G

u1, u2, u3, v1, v2, v3,w1,w2,w3
U←− Zp, d1 B hu1

0 · h
u2
1 , d2 B hu1

0 · h
u3
2

e1 B hv1
0 · h

v2
1 , e2 B hv1

0 · h
v3
2 , b1 B hw1

0 · h
w2
1 , b2 B hw1

0 · h
w3
2

ek B (p,G, g1, · · · , gn, h0, h1, h2, d1, d2, e1, e2, b1, b2)
dk B (u1, u2, u3, v1, v2, v3,w1,w2,w3), Return (ek, dk)
LPKE.Enc(ek, x1 ∈ Zp, · · · , xn ∈ Zp, θ1 ∈ G, · · · , θκ ∈ G, L ∈ {0, 1}τ):
For i ∈ [1, n] and for j ∈ [1, λ], the j-th bit of xi ∈ Zp is denoted by xi j.
For every i ∈ [1, n] and every j ∈ [1, λ], do:

ri j, si j
U←− Zp, yi j B (yi j,1, yi j,2, yi j,3) B (hri j+si j

0 , hri j

1 , h
si j

2 ), zi j B bri j

1 · b
si j

2 · g
2 j·xi j

i
ti j B HCL(yi j, zi j, L), ci j B (d1 · eti j

1 )ri j · (d2 · eti j

2 )si j , ci j B (yi j, zi j, ci j)
For every i ∈ [1, κ], do:

ri, si
U←− Zp, yi B (yi,1, yi,2, yi,3) B (hri+si

0 , hri
1 , h

si
2 ), zi B bri

1 · b
si
2 · θi

ti B HCL(yi, zi, L), ci B (d1 · eti
1)ri · (d2 · eti

2)si , ci B (yi, zi, ci)
Return C B ({ci j}i∈[1,n], j∈[1,λ], {ci}i∈[1,κ])
LPKE.Dec(ek, dk,C, L ∈ {0, 1}τ):
For every i ∈ [1, n] and every j ∈ [1, λ], do:
ti j B HCL(yi j, zi j, L), c̃i j B yu1+ti jv1

i j,1 · yu2+ti jv2

i j,2 · yu3+ti jv3

i j,3

If c̃i j , ci j, then return ⊥. Else if zi j/(y
w1
i j,1 · y

w2
i j,2 · y

w3
i j,3) = g2 j

i , then x′i j B 1. Else, then x′i j B 0.
The j-th bit of x′i is set as x′i j.

For every i ∈ [1, n], x′i B
∑λ

j=1 2 j · x′i j
For every i ∈ [1, κ], do:
ti B HCL(yi, zi, L), c̃i B yu1+tiv1

i,1 · yu2+tiv2
i,2 · yu3+tiv3

i,3
If c̃i , ci, then return ⊥. Else, then σ′i B zi/(y

w1
i,1 · y

w2
i,2 · y

w3
i,3).

Return (x′1, · · · , x′n, σ′1, · · · , σ′κ)

Figure 5.10: Construction of LPKE schemeΠLPKE,n,κ,τ, where n, κ, τ ∈ N and HCL : {0, 1}∗ →
Zp is a collision-resistant hash function.

Since we use Groth-Sahai NIZK system [GS08], we have to compute the commitments
to the witness, and then prove that the commitments satisfy some equations such as pairing
equations which are needed to generate a signature. As Maji et al. [MPR11], we commit to
an element Z of the group G or the group G̃, and make ⟨Z⟩ denote the commitment value.
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IBX.Setup(1λ, 1n): gk B (p,G, G̃,GT , ê, g, g̃)← Gpg(1λ). g0, g1, · · · , gn
U←− G. I B Zp

(vk,mk)← SPSIG.Gen(gk). Return pk B (gk, vk, g0, g1, · · · , gn) and mk.

IBX.KeyGen(pk,mk, ID ∈ I): x1, · · · , xn
U←− Zp. y B

∏n
i=1 gxi

i .
θ ← SPSIG.Sig(vk,mk, y · gID

0 ). Return sk B (x1, · · · , xn, y, θ).
IBX.SKVer(pk, sk∗, ID ∈ I): sk∗ is parsed as (x∗1, · · · , x∗n, y∗, θ∗).
Return 1, if

[
y =
∏n

i=1 gx∗i
i

]
∧
[
1← SPSIG.Ver(vk, θ∗, y∗ · gID

0 )
]
. Return 0, otherwise;

IBX.SKVer2(pk, sk∗, sk′):
sk∗ and sk′ are parsed as (x∗1, · · · , x∗n, y∗, θ∗) and (x′1, · · · , x′n, y′, θ′), respectively.
Return 1, if

∧n
i=1

[
x∗i = x′i

]
. Return 0, otherwise;

Figure 5.11: Construction of IBX scheme ΣIBX,n, where n ∈ N and ΣSPSIG = {SPSIG.Gen,
SPSIG.Sig,SPSIG.Ver} is a structure-preserving signature scheme whose message space is
G.

We use the above specific primitives to instantiate the IBS scheme ΣIBS. Let us consider
the case when we generate a signature σ on a message m ∈ {0, 1}τ for an ID ID ∈ Zp by
using a secret-key skID for the ID. Note that the secret-key is parsed as (x1, · · · , xn, y, θ).

Firstly, we generate a ciphertext of the plaintext skID under the label m||ID. The cipher-
text is written as C B ({ci j}i∈[1,n], j∈[1,λ], {ci}i∈[1,2]). We parse ci j as (yi j, zi j, ci j), and parse yi j as
(yi j,1, yi j,2, yi j,3). Also, we parse ci as (yi, zi, ci), and parse yi as (yi,1, yi,2, yi,3).

After that, we generate NIZK proofs as follows.
Firstly, we compute commitments whom we need. Specifically, we compute the follow-

ing commitments:

• ⟨gxi j

i ⟩, ⟨g̃xi j⟩, ⟨g2 j·xi j

i ⟩, ⟨hri j

0 ⟩, ⟨h
si j

0 ⟩, ⟨h
ri j

1 ⟩, ⟨h
si j

2 ⟩, ⟨b
ri j

1 ⟩, ⟨b
si j

2 ⟩, ⟨e
ri j

1 ⟩, ⟨e
si j

2 ⟩, ⟨e
ti j·ri j

1 ⟩, ⟨eti j·si j

2 ⟩,
⟨dri j

1 ⟩ and ⟨dsi j

2 ⟩, where i ∈ [1, n] and j ∈ [1, λ].

• ⟨y⟩, ⟨y · gID
0 ⟩, ⟨h

r1
0 ⟩, ⟨h

s1
0 ⟩, ⟨h

r1
1 ⟩, ⟨h

s1
2 ⟩, ⟨b

r1
1 ⟩, ⟨b

s1
2 ⟩, ⟨e

r1
1 ⟩, ⟨e

s1
2 ⟩, ⟨e

t1·r1
1 ⟩, ⟨e

t1·s1
2 ⟩, ⟨dr1

1 ⟩ and
⟨ds1

2 ⟩.

• ⟨θ⟩, ⟨hr2
0 ⟩, ⟨h

s2
0 ⟩, ⟨h

r2
1 ⟩, ⟨h

s2
2 ⟩, ⟨b

r2
1 ⟩, ⟨b

s2
2 ⟩, ⟨e

r2
1 ⟩, ⟨e

s2
2 ⟩, ⟨e

t2·r2
1 ⟩, ⟨e

t2·s2
2 ⟩, ⟨dr2

1 ⟩ and ⟨ds2
2 ⟩.

After that, we prove that the commitments satisfy some equations.
We prove that for i ∈ [1, n] and j ∈ [1, λ], xi j is a bit and xi j of the commitment

⟨gxi j⟩ and that of ⟨g̃xi j⟩ are consistent by generating proofs for the following equations:
[ê(⟨gxi j

i ⟩, ⟨g̃xi j⟩) = ê(gi, ⟨g̃xi j⟩) = ê(⟨gxi j

i ⟩, g̃)].
We prove that the ciphertext {ci j}i∈[1,n], j∈[1,λ] is a valid ciphertext of the plaintext {xi}i∈[1,n]

by generating proofs for the following equations: [yi j,1 = ⟨hri j

0 ⟩ · ⟨h
si j

0 ⟩], [yi j,2 = ⟨hri j

1 ⟩], [yi j,3 =

⟨hsi j

2 ⟩], [ê(⟨g2 j·xi j

i ⟩, g̃) = ê(⟨gxi j

i ⟩, g̃2 j
)], [zi j = ⟨bri j

1 ⟩ ·⟨b
si j

2 ⟩ ·⟨g
2 j·xi j

i ⟩], [ê(⟨eti j·ri j

1 ⟩, g̃) = ê(⟨eri j

1 ⟩, g̃ti j)],
[ê(⟨eti j·si j

2 ⟩, g̃) = ê(⟨esi j

2 ⟩, g̃ti j)], and [ci j = ⟨dri j

1 ⟩ · ⟨e
ti j·ri j

1 ⟩ · ⟨dsi j

2 ⟩ · ⟨e
ti j·si j

2 ⟩], where i ∈ [1, n] and
j ∈ [1, λ].

We prove that the ciphertext c1 is a valid ciphertext of the plaintext y by generating
proofs for the following equations: [y1,1 = ⟨hr1

0 ⟩ · ⟨h
s1
0 ⟩], [y1,2 = ⟨hr1

1 ⟩], [y1,3 = ⟨hs1
2 ⟩], [z1 =
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⟨br1
1 ⟩ · ⟨b

s1
2 ⟩ · ⟨y⟩], [ê(⟨et1·r1

1 ⟩, g̃) = ê(⟨er1
1 ⟩, g̃t1)], [ê(⟨et1·s1

2 ⟩, g̃) = ê(⟨es1
2 ⟩, g̃t1)], and [c1 = ⟨dr1

1 ⟩ ·
⟨et1·r1

1 ⟩ · ⟨d
s1
2 ⟩ · ⟨e

t1·s1
2 ⟩].

We prove that the ciphertext c2 is a valid ciphertext of the plaintext θ by generating
proofs for the following equations: [y2,1 = ⟨hr2

0 ⟩ · ⟨h
s2
0 ⟩], [y2,2 = ⟨hr2

1 ⟩], [y2,3 = ⟨hs2
2 ⟩], [z2 =

⟨br2
1 ⟩ · ⟨b

s2
2 ⟩ · ⟨θ⟩], [ê(⟨et2·r2

1 ⟩, g̃) = ê(⟨er2
1 ⟩, g̃t2)], [ê(⟨et2·s2

2 ⟩, g̃) = ê(⟨es2
2 ⟩, g̃t2)], and [c1 = ⟨dr2

1 ⟩ ·
⟨et2·r2

1 ⟩ · ⟨d
s2
2 ⟩ · ⟨e

t2·s2
2 ⟩].

We prove that the witness variables (x1, · · · , xn, y) satisfy the relation y =
∏n

i=1 gxi
i by

generating a proof for the following equation: [⟨y⟩ =∏n
i=1
∏λ

j=1⟨g
2 j·xi j

i ⟩].
We prove that the witness variables (y, θ) satisfy the relation 1← SPSIG.Ver(vk, θ, y·gID

0 )
by generating proofs for the following equations: [1 ← SPSIG.Ver(vk, ⟨θ⟩, ⟨y · gID

0 ⟩)] and
[⟨y · gID

0 ⟩ = ⟨y⟩ · gID
0 ].

Proof of Theorem 5.5.3. Specifically, the HtC-SK game for ΣIBX played byA and CH is
the following game.

Setup. CH generates gk B (p,G, G̃,GT , ê, g, g̃)← Gpg(1λ) and (vk,mk)← SPSIG.Gen(gk).

CH chooses g0, g1, · · · , gn
U←− G. CH sets pk B (gk, vk, g0, g1, · · · , gn), then sends it

toA.

Query. WhenA queries to the oracle Reveal, CH behaves as follows.

Reveal(ID ∈ Zp): CH chooses x1, · · · , xn
U←− Zp, then calculates y B

∏n
i=1 gxi

i . After
that, CH runs θ ← SPSIG.Sig(vk,mk, y · gID

0 ), then returns the secret-key sk B
(x1, · · · , xn, y, θ) toA. After that, CH sets LID B LID ∪ {sk}.

Compute(ID∗ ∈ Zp, sk∗). sk∗ is parsed as (x∗1, · · · , x∗n, y∗, θ∗).
Let W denote the event whereA wins the game. Thus,

W B


y∗ = n∏

i=1

gx∗i
i

 ∧ [1← SPSIG.Ver(vk, θ∗, y∗ · gID∗
0 )
] ∧

sk†∈LID∗

 ∨
i∈[1,n]

[
x†i , x∗i

]
 ,

where sk† is parsed as (x†1, · · · , x
†
n, y†, θ†). Let us introduce two events A1, A2. They are

defined as follows.

A1 B

 ∨
ID s.t. [LID,∅]∧[ID,ID∗]

∨
sk∈LID

[
y · gID

0 = y∗ · gID∗
0

] and A2 B

 ∨
sk∈LID∗

[
y = y∗

] ,
where sk is parsed as (x1, · · · , xn, y, θ). Obviously, the following equation holds: Pr[W] =
Pr[W ∧ A1] + Pr[W ∧ Ā1 ∧ A2] + Pr[W ∧ Ā1 ∧ Ā2]. Hence, by the following three lemmas,
Pr[W] is negligible. □

Lemma 5.5.1. Pr [W ∧ A1] is negligible under the DL assumption.

Lemma 5.5.2. Pr
[
W ∧ Ā1 ∧ A2

]
is negligible under the DL assumption.

Lemma 5.5.3. Pr
[
W ∧ Ā1 ∧ Ā2

]
is negligible under the EUF-CMA security of ΣSPSIG.

Proof of each lemma is given below.
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Proof of Lemma 5.5.1. We prove that if there exists an PPT adversary A who makes
Pr[W ∧ A1] non-negligible, we can construct a PPT simulator S who breaks the DL as-
sumption. S behaves as follows.

Setup. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). As an instance of the DL problem, S is

given (h, hα), where α
U←− Zp. She sets g0 B hα. She runs (vk,mk)← SPSIG.Gen(gk).

For every i ∈ [1, n], She chooses βi
U←− Zp and sets gi B hβi . She sends pk B

(gk, vk, g0, g1, · · · , gn) toA.

Query. When A issues ID ∈ Zp as a query to the oracle Reveal, S behaves as fol-

lows. She chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She generates
θ ← SPSIG.Sig(vk,mk, y · gID

0 ). She sends sk B (x1, · · · , xn, y, θ) to A. She also sets
LID B LID ∪ {sk}.

Compute(ID∗ ∈ Zp, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). A is assumed to make Pr[W ∧
A1] non-negligible, so the following event happens with a non-negligible probability:y∗ = n∏

i=1

gx∗i
i

 ∧ [1← SPSIG.Ver(vk, θ∗, y∗ · gID∗
0 )
] ∧

sk†∈LID∗

 ∨
i∈[1,n]

[
x†i , x∗i

]
∧
 ∨

ID s.t. [LID,∅]∧[ID,ID∗]

 ∨
sk∈LID

[
y · gID

0 = y∗ · gID∗
0

]
 ,

where sk† and sk are parsed as (x†1, · · · , x
†
n, y†, θ†) and (x1, · · · , xn, y, θ), respectively.

S computes α′ B (
∑n

i=1 βi · (xi − x∗i ))/(ID∗ − ID) and outputs it.

Let us explain why S breaks the DL assumption. Applying the fact that g0 = hα and gi = hβi

to the equation y · gID
0 = y∗ · gID∗

0 , we obtain α = (
∑n

i=1 βi · (xi − x∗i ))/(ID∗ − ID) = α′. Since
ID , ID∗, it holds that y , y∗. Hence, it also holds that

∨
i∈[1,n]

[
xi , x∗i

]
. Hence, she can

compute α′(= α) correctly. □

Proof of Lemma 5.5.2. We prove the lemma by using n-representation assumption.

Definition 31. n-representation assumption holds if for every PPT A, Pr[A(p,G, g1, · · · ,
gn)→ ((x1, · · · , xn), (x′1, · · · , x′n)) s.t. [(x1, · · · , xn) , (x′1, · · · , x′n)]∧[

∏
i∈[1,n] gxi

i =
∏

i∈[1,n] gx′i
i ]]

is negligible, where (p,G, g)← G(1λ) and g1, · · · , gn
U←− G.

Validity of the assumption is guaranteed by the following theorem [Bra93, BGG94].

Theorem 5.5.5. For any n ∈ N, n-representation assumption holds under the DL assump-
tion.

We prove that if there exists a PPT adversary A who makes Pr[W ∧ Ā1 ∧ A2] non-
negligible, then there exists a PPT simulator S who breaks the n-representation assumption.
S behaves as follows.
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Setup. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). As an instance of the problem of the

n-representation assumption, S is given (g1, · · · , gn), where g1, · · · , gn
U←− G. She sets

g0
U←− G. She runs (vk,mk)← SPSIG.Gen(gk). She sends pk B (gk, vk, g0, g1, · · · , gn)

toA.

Query. When A issues ID ∈ Zp as a query to the oracle Reveal, S behaves as fol-

lows. She chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She generates
θ ← SPSIG.Sig(vk,mk, y · gID

0 ). She sends sk B (x1, · · · , xn, y, θ) to A. She also sets
LID B LID ∪ {sk}.

Compute(ID∗ ∈ Zp, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). Assuming that the event W ∧
Ā1 ∧ A2 occurs implies that ∃sk† ∈ LID∗ s.t. [y† =

∏n
i=1 g

x†i
i = y∗ =

∏n
i=1 gx∗i

i ] ∧
[
∨

i∈[1,n][x†i , x∗i ]], where sk† is parsed as (x†1, · · · , x
†
n, y†, θ†). S outputs (x†1, · · · , x

†
n),

(x∗1, · · · , x∗n).

Obviously, S breaks the n-representation assumption. □

Proof of Lemma 5.5.3. We prove that if there exists a PPT adversaryA, then there exists
a PPT simulator S who breaks the EUF-CMA security of ΣSPSIG. S behaves as follows.

Setup. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). S chooses g0, g1, · · · , gn

U←− G. She is
given the verification-key vk of ΣSPSIG. She sends pk B (gk, vk, g0, g1, · · · , gn) toA.

Query. WhenA issues ID ∈ Zp as a query to the oracle Reveal, S behaves as follows. She

chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She issues y ·gID
0 to the sigining

oracle of the EUF-CMA game of ΣSPSIG, then receives θ ← SPSIG.Sig(vk,mk, y ·gID
0 ).

She sends sk B (x1, · · · , xn, y, θ) toA. She also sets LID B LID ∪ {sk}.

Compute(ID∗ ∈ Zp, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). S outputs θ∗ as a forged signa-
ture on a message y∗ · gID∗

0 .

Let us explain why S breaks the EUF-CMA of ΣSPSIG. Assuming that the event W ∧ Ā1 ∧ Ā2

occurs implies that [y∗ =
∏n

i=1 gx∗i
i ]∧[1← SPSIG.Ver(vk, θ∗, y∗·gID∗

0 )]
∧

ID s.t. [LID,∅][
∧

sk∈LID
[y·

gID
0 , y∗ · gID∗

0 ]], where sk is parsed as (x1, · · · , xn, y, θ). Thus, S wins the EUF-CMA game
by outputting (θ∗, y∗ · gID∗

0 ). □

5.5.2 An Instantiation of ABS for a General Circuit
As ABX scheme, we use the scheme described in Fig. 5.12. Its HtC-SK property is guaran-
teed by the following theorem whose proof is given in the latter half of this subsection.

Theorem 5.5.6. For any (polynomially bounded) integers L, n ∈ N, ΣABX,L,n is HtC-SK
under the DL assumption and the EUF-CMA security of ΣSPSIG.
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The ABX scheme needs a structure-preserving signature scheme as a building block.
We use the same structure-preserving signature scheme as the one used to instantiate our
IBS scheme, i.e., the scheme by Kiltz et al. [KPW15]. We also use the same LPKE and
NIZK schemes in the last subsection, i.e., the LPKE scheme in Fig. 5.10 and Groth-Sahai
NIZK system [GS08], respectively.

ABX.Setup(1λ, 1L, 1n):U B {0, 1}L. gk B (p,G, G̃,GT , ê, g, g̃)← Gpg(1λ). g0, g1, · · · , gn
U←− G.

(vk,mk)← SPSIG.Gen(gk, 1L). Return pk B (1L, gk, vk, g0, g1, · · · , gn) and mk.
ABX.KeyGen(pk,mk,W ∈ U): For i ∈ [1, L], the i-th bit ofW is denoted by wi.

x1, · · · , xn
U←− Zp. y B

∏n
i=1 gxi

i . θ ← SPSIG.Sig(vk,mk, (y · gw1
0 , · · · , y · g

wL
0 )).

Return sk B (x1, · · · , xn, y, θ).
ABX.SKVer(pk, sk, ϕ): sk is parsed as (x1, · · · , xn, y, θ). ϕ is represented as a circuit {L,N, I1, I2}.
Return 1, if [y =

∏n
i=1 gxi

i ] ∧ [∃W ∈ {0, 1}L s.t. [ϕ(W) = 1]
∧ [1← SPSIG.Ver(vk, θ, (y · gw1

0 , · · · , y · g
wL
0 ))]]. Return 0, otherwise.

ABX.SKVer2(pk, sk, sk∗): sk is parsed as (x1, · · · , xn, y, θ). sk∗ is parsed as (x∗1, · · · , x∗n, y∗, θ∗)
Return 1, if

∧n
i=1

[
xi = x∗i

]
. Return 0, otherwise.

Figure 5.12: Construction of ABX scheme ΣABX,L,n, where L, n ∈ N and ΣSPSIG =

{SPSIG.Gen,SPSIG.Sig,SPSIG.Ver} is a structure-preserving signature scheme whose
message space is GL.

Let us consider the case when we generate a signature σ on a message m ∈ {0, 1}τ for a
predicate as a circuit ϕ = {L,N, I1, I2} by using a secret-key sk for an attribute W ∈ {0, 1}L
such that ϕ(W) = 1. Note that the secret-key is parsed as (x1, · · · , xn, y, θ).

Firstly, we generate a ciphertext of the plaintext sk under the label m||ϕ. The ciphertext
is written as C B ({ci j}i∈[1,n], j∈[1,λ], {ci}i∈[1,2]). We parse ci j as (yi j, zi j, ci j), and parse yi j as
(yi j,1, yi j,2, yi j,3). Also, we parse ci as (yi, zi, ci), and parse yi as (yi,1, yi,2, yi,3).

After that, we generate NIZK proofs as follows.
Firstly, for every i ∈ [L + 1, L + N − 1], we compute wi B 1 − wI1(i) · wI2(i).
Secondly, we compute commitments whom we need. Specifically, we compute the fol-

lowing commitments:

• ⟨gxi j

i ⟩, ⟨g̃xi j⟩, ⟨g2 j·xi j

i ⟩, ⟨hri j

0 ⟩, ⟨h
si j

0 ⟩, ⟨h
ri j

1 ⟩, ⟨h
si j

2 ⟩, ⟨b
ri j

1 ⟩, ⟨b
si j

2 ⟩, ⟨e
ri j

1 ⟩, ⟨e
si j

2 ⟩, ⟨e
ti j·ri j

1 ⟩, ⟨eti j·si j

2 ⟩,
⟨dri j

1 ⟩ and ⟨dsi j

2 ⟩, where i ∈ [1, n] and j ∈ [1, λ].

• ⟨y⟩, ⟨gw1
0 ⟩, ⟨g̃w1⟩, · · · , ⟨gwL+N−1

0 ⟩, ⟨g̃wL+N−1⟩, ⟨y · gw1
0 ⟩, · · · , ⟨y · g

wL
0 ⟩, ⟨h

r1
0 ⟩, ⟨h

s1
0 ⟩, ⟨h

r1
1 ⟩, ⟨h

s1
2 ⟩,

⟨br1
1 ⟩, ⟨b

s1
2 ⟩, ⟨e

r1
1 ⟩, ⟨e

s1
2 ⟩, ⟨e

t1·r1
1 ⟩, ⟨e

t1·s1
2 ⟩, ⟨dr1

1 ⟩ and ⟨ds1
2 ⟩.

• ⟨θ⟩, ⟨hr2
0 ⟩, ⟨h

s2
0 ⟩, ⟨h

r2
1 ⟩, ⟨h

s2
2 ⟩, ⟨b

r2
1 ⟩, ⟨b

s2
2 ⟩, ⟨e

r2
1 ⟩, ⟨e

s2
2 ⟩, ⟨e

t2·r2
1 ⟩, ⟨e

t2·s2
2 ⟩, ⟨dr2

1 ⟩ and ⟨ds2
2 ⟩.

After that, we prove that the commitments satisfy some equations.
We prove that for i ∈ [1, n] and j ∈ [1, λ], xi j is a bit and xi j of the commitment

⟨gxi j⟩ and that of ⟨g̃xi j⟩ are consistent by generating proofs for the following equations:
[ê(⟨gxi j

i ⟩, ⟨g̃xi j⟩) = ê(gi, ⟨g̃xi j⟩) = ê(⟨gxi j

i ⟩, g̃)].
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We prove that the ciphertext {ci j}i∈[1,n], j∈[1,λ] is a valid ciphertext of the plaintext {xi}i∈[1,n]

by generating proofs for the following equations: [yi j,1 = ⟨hri j

0 ⟩ · ⟨h
si j

0 ⟩], [yi j,2 = ⟨hri j

1 ⟩], [yi j,3 =

⟨hsi j

2 ⟩], [ê(⟨g2 j·xi j

i ⟩, g̃) = ê(⟨gxi j

i ⟩, g̃2 j
)], [zi j = ⟨bri j

1 ⟩ ·⟨b
si j

2 ⟩ ·⟨g
2 j·xi j

i ⟩], [ê(⟨eti j·ri j

1 ⟩, g̃) = ê(⟨eri j

1 ⟩, g̃ti j)],
[ê(⟨eti j·si j

2 ⟩, g̃) = ê(⟨esi j

2 ⟩, g̃ti j)], and [ci j = ⟨dri j

1 ⟩ · ⟨e
ti j·ri j

1 ⟩ · ⟨dsi j

2 ⟩ · ⟨e
ti j·si j

2 ⟩], where i ∈ [1, n] and
j ∈ [1, λ].

We prove that the ciphertext c1 is a valid ciphertext of the plaintext y by generating
proofs for the following equations: [y1,1 = ⟨hr1

0 ⟩ · ⟨h
s1
0 ⟩], [y1,2 = ⟨hr1

1 ⟩], [y1,3 = ⟨hs1
2 ⟩], [z1 =

⟨br1
1 ⟩ · ⟨b

s1
2 ⟩ · ⟨y⟩], [ê(⟨et1·r1

1 ⟩, g̃) = ê(⟨er1
1 ⟩, g̃t1)], [ê(⟨et1·s1

2 ⟩, g̃) = ê(⟨es1
2 ⟩, g̃t1)], and [c1 = ⟨dr1

1 ⟩ ·
⟨et1·r1

1 ⟩ · ⟨d
s1
2 ⟩ · ⟨e

t1·s1
2 ⟩].

We prove that the ciphertext c2 is a valid ciphertext of the plaintext θ by generating
proofs for the following equations: [y2,1 = ⟨hr2

0 ⟩ · ⟨h
s2
0 ⟩], [y2,2 = ⟨hr2

1 ⟩], [y2,3 = ⟨hs2
2 ⟩], [z2 =

⟨br2
1 ⟩ · ⟨b

s2
2 ⟩ · ⟨θ⟩], [ê(⟨et2·r2

1 ⟩, g̃) = ê(⟨er2
1 ⟩, g̃t2)], [ê(⟨et2·s2

2 ⟩, g̃) = ê(⟨es2
2 ⟩, g̃t2)], and

[c1 = ⟨dr2
1 ⟩ · ⟨e

t2·r2
1 ⟩ · ⟨d

s2
2 ⟩ · ⟨e

t2·s2
2 ⟩].

We prove that the witness variables (x1, · · · , xn, y) satisfy the relation y =
∏n

i=1 gxi
i by

generating a proof for the following equation:
[
⟨y⟩ =∏n

i=1
∏λ

j=1⟨g
2 j·xi j

i ⟩
]
.

We prove that the witness variables (y, θ) satisfy the relation ∃W ∈ {0, 1}L s.t. [ϕ(W) =
1] ∧ [1 ← SPSIG.Ver(vk, θ, (y · gw1

0 , · · · , y · g
wL
0 ))] by generating proofs for the following

equations:

• [ê(g0, ⟨g̃wi⟩) = ê(⟨gwi
0 ⟩, g̃)], where i ∈ [1, L].

• [ê(g0, ⟨g̃wi⟩) = ê(⟨gwi
0 ⟩, g̃) = ê(⟨gwI1(i)

0 ⟩, ⟨g̃wI2(i)⟩)−1 · ê(g0, g̃)], where i ∈ [L+ 1, L+N − 1].

• ê(⟨gwI1(L+N)

0 ⟩, ⟨g̃wI2(L+N)⟩) = 1GT ], where 1GT denotes the identity element of GT .

• [⟨y · gw1
0 ⟩ = ⟨y⟩ · ⟨g

w1
0 ⟩], · · · , [⟨y · gwL

0 ⟩ = ⟨y⟩ · ⟨g
wL
0 ⟩] and [1 ← SPSIG.Ver(vk, ⟨θ⟩, (⟨y ·

gw1
0 ⟩, · · · , ⟨y · g

wL
0 ⟩))].

Proof of Theorem 5.5.6. Specifically, the HtC-SK game for ΣABX played by A and CH
is the following game.

Setup. CH sets U B {0, 1}L. CH generates gk B (p,G, G̃,GT , ê, g, g̃) ← Gpg(1λ) and

(vk,mk) ← SPSIG.Gen(gk, 1L). CH chooses g0, g1, · · · , gn
U←− G. CH sets pk B

(1L, gk, vk, g0, g1, · · · , gn), then sends it toA.

Query. When A issues W ∈ U to the oracle Reveal, CH behaves as follows. CH
chooses x1, · · · , xn

U←− Zp, then calculates y B
∏n

i=1 gxi
i . After that, CH runs θ ←

SPSIG.Sig(vk,mk, (y·gw1
0 , · · · , y·g

wL
0 )), then returns the secret-key sk B (x1, · · · , xn, y, θ)

toA. After that, CH sets LW B LW ∪ {sk}.

Compute(ϕ∗, sk∗). sk∗ is parsed as (x∗1, · · · , x∗n, y∗, θ∗).
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Let W denote the event whereA wins the game. Thus,

W B


y∗ = n∏

i=1

gx∗i
i

 ∧
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=1]

 ∧
sk∈LW

 ∨
i∈[1,n]

[
xi , x∗i

]


∧
[
∃W∗ ∈ {0, 1}L s.t.

[
ϕ∗(W∗) = 1

] ∧ [1← SPSIG.Ver(vk, θ∗, (y · gw∗1
0 , · · · , y · g

w∗L
0 ))
]]]
,

where sk is parsed as (x1, · · · , xn, y, θ). Related to the event W, we define a function FW(X)
which takes an event X as input and outputs an event as follows.

FW(X) B


y∗ = n∏

i=1

gx∗i
i

 ∧
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=1]

 ∧
sk∈LW

 ∨
i∈[1,n]

[
xi , x∗i

]
 ∧ [∃W∗ ∈ {0, 1}L

s.t.
[
ϕ∗(W∗) = 1

] ∧ [1← SPSIG.Ver(vk, θ∗, (y · gw∗1
0 , · · · , y · g

w∗L
0 ))
]
∧ X
]]
,

For instance, the input X can be the following event A1.

A1 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=0]

 ∨
sk∈LW

 ∧
i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]

 ,

where sk is parsed as (x1, · · · , xn, y, θ). By the definitions of the events W, A1 and the function
FW(·), we obtain

Pr[W] ≤ Pr[FW(A1)] + Pr[FW(Ā1)]. (5.22)

Related to the event A1, we define another event A2 as

A2 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=1]

 ∨
sk∈LW

 ∧
i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]

 ,

where sk is parsed as (x1, · · · , xn, y, θ). By the definitions of A1, A2, FW(·), we obtain

Pr[FW(Ā1)] ≤ Pr[FW(Ā1 ∧ A2)] + Pr[FW(Ā1 ∧ Ā2)]. (5.23)

By (5.22) and (5.23), we obtain

Pr[W] ≤ Pr[FW(A1)] + Pr[FW(Ā1 ∧ A2)] + Pr[FW(Ā1 ∧ Ā2)]. (5.24)
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We define the other 5 events {B1, B2,C1,C2,C3} as follows, where sk is parsed as (x1, · · · , xn, y, θ).

B1 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=0]

 ∨
sk∈LW

[y = y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]



B2 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=0]

 ∨
sk∈LW

[y , y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]



C1 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=1]

 ∨
sk∈LW

[y = y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]



C2 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=1]∧[W,W∗]

 ∨
sk∈LW

[y , y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]



C3 B

 ∨
W∈{0,1}L s.t. [LW,∅]∧[W=W∗]

 ∨
sk∈LW

[y , y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]



By the definitions of the events, we obtain

Pr[FW(A1)] ≤ Pr[FW(B1)] + Pr[FW(B2)] (5.25)
Pr[FW(Ā1 ∧ A2)] ≤ Pr[FW(Ā1 ∧C1)] + Pr[FW(Ā1 ∧C2)] + Pr[FW(Ā1 ∧C3)] (5.26)

By (5.24), (5.25), (5.26), we obtain

Pr[W] ≤ Pr[FW(B1)] + Pr[FW(B2)] + Pr[FW(Ā1 ∧C1)] + Pr[FW(Ā1 ∧C2)]
+Pr[FW(Ā1 ∧C3)] + Pr[FW(Ā1 ∧ Ā2)] (5.27)

If the following 6 lemmas are true, by (5.27), Pr[W] is negligible. □

Lemma 5.5.4. Pr[FW(Ā1 ∧ Ā2)] is negligible under the EUF-CMA of ΣSPSIG.

Lemma 5.5.5. The event FW(B1) never occurs, i.e., Pr [FW(B1)] = 0.

Lemma 5.5.6. Pr [FW(B2)] is negligible under the DL assumption.

Lemma 5.5.7. Pr
[
FW(Ā1 ∧C1)

]
is negligible under the DL assumption.

Lemma 5.5.8. Pr
[
FW(Ā1 ∧C2)

]
is negligible under the DL assumption.

Lemma 5.5.9. The event FW(Ā1 ∧C3) never occurs, i.e., Pr
[
FW(Ā1 ∧C3)

]
= 0.

Proof of each lemma is given below.
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Proof of Lemma 5.5.4. We prove that if there exists a PPT adversaryA, then there exists
a PPT simulator S who breaks the EUF-CMA security of ΣSPSIG. S behaves as follows.

Setup. LetU B {0, 1}L. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). S chooses g0, g1, · · · , gn

U←−
G. She is given the verification-key vk of ΣSPSIG. She sends pk B (1L, gk, vk, g0, g1, · · · , gn)
toA.

Query. When A issues W ∈ {0, 1}L as a query to the oracle Reveal, S behaves as fol-

lows. She chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She issues (y ·
gw1

0 , · · · , y · g
wL
0 ) to the sigining oracle of the EUF-CMA game of ΣSPSIG, then receives

θ ← SPSIG.Sig(vk,mk, (y · gw1
0 , · · · , y · g

wL
0 )). She sends sk B (x1, · · · , xn, y, θ) to A.

She also sets LW B LW ∪ {sk}.

Compute(ϕ∗, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). If we assume that the event FW(Ā1 ∧
Ā2) occurs, then ∃W∗ ∈ {0, 1}L s.t. [ϕ∗(W∗) = 1] ∧ [1 ← SPSIG.Ver(vk, θ∗, (y ·
gw∗1

0 , · · · , y · g
w∗L
0 ))]
∧
W∈{0,1}L s.t. [LW,∅][

∧
sk∈LW[

∨
i∈[1,L][y · gxi

0 , y∗ · gx∗i
0 ]]], where sk is

parsed as (x1, · · · , xn, y, θ). S outputs θ∗ as a forged signature on a message (y∗ ·
gw∗1

0 , · · · , y∗ · g
w∗L
0 ).

□

Proof of Lemma 5.5.5. For an attribute W ∈ {0, 1}L, if ϕ∗(W) = 0, then there exists i ∈
[1, L] such that wi , w∗i . Additionally, if y = y∗, then there exists i ∈ [1, L] such that
y · wi , y∗ · w∗i . Thus, the event FW(B1) never occurs. □

Proof of Lemma 5.5.6. We prove that if there exists an PPT adversary A who makes
Pr[FW(B2)] non-negligible, we can construct a PPT simulator S who breaks the DL as-
sumption. S behaves as follows.

Setup. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). As an instance of the DL problem, S is

given (h, hα), where α
U←− Zp. She sets g0 B hα. She runs (vk,mk)← SPSIG.Gen(gk, 1L).

For every i ∈ [1, n], She chooses βi
U←− Zp and sets gi B hβi . She sends pk B

(1L, gk, vk, g0, g1, · · · , gn) toA.

Query. When A issues W ∈ {0, 1}L as a query to the oracle Reveal, S behaves as fol-

lows. She chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She generates
θ ← SPSIG.Sig(vk,mk, (y · gw1

0 , · · · , y · g
wL
0 )). She sends sk B (x1, · · · , xn, y, θ) to A.

She also sets LW B LW ∪ {sk}.

Compute(ϕ∗, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). Assuming that FW(B2) occurs implies
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that the following event occurs.y∗ = n∏
i=1

gx∗i
i

 ∧ [∃W∗ s.t.
[
ϕ∗(W∗) = 1

] ∧ [1← SPSIG.Ver(vk, θ∗, (y∗ · gw∗1
0 , · · · , y

∗ · gw∗L
0 ))
]

∧

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=0]

 ∨
sk∈LW

[y , y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]


 ,

where sk is parsed as (x1, · · · , xn, y, θ). Since ϕ∗(W∗) = 1 and ϕ∗(W) = 0, there exists
i ∈ [1, L] such that wi , w∗i . Given the integer i,S computes α′ B (

∑n
j=1 β j · (x j − x∗j))/(w

∗
i−

wi) and outputs it.

Let us explain why S breaks the DL assumption. Applying the fact that g0 = hα and gi = hβi

to the equation y · gwi
0 = y∗ · gw∗i

0 , we obtain α = (
∑n

j=1 β j · (x j − x∗j))/(w
∗
i − wi) = α′. Since

y , y∗,
∨

j∈[1,n]

[
x j , x∗j

]
. Hence, she can compute α′(= α) correctly. □

Proof of Lemma 5.5.7. We prove the lemma by using the n-representation assumption
whose definition was given in the proof of Lemma 5.5.2.

We prove that if there exists a PPT adversary A who makes Pr[FW(Ā1 ∧ C1)] non-
negligible, then there exists a PPT simulator S who breaks the n-representation assumption.
S behaves as follows.

Setup. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). As an instance of the problem of

the n-representation assumption, S is given (g1, · · · , gn), where g1, · · · , gn
U←− G.

She sets g0
U←− G. She runs (vk,mk) ← SPSIG.Gen(gk, 1L). She sends pk B

(1L, gk, vk, g0, g1, · · · , gn) toA.

Query. When A issues W ∈ {0, 1}L as a query to the oracle Reveal, S behaves as fol-

lows. She chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She generates
θ ← SPSIG.Sig(vk,mk, (y · gw1

0 , · · · , y · g
wL
0 )). She sends sk B (x1, · · · , xn, y, θ) to A.

She also sets LW B LW ∪ {sk}.

Compute(ϕ∗, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). Assuming that the event FW(Ā1 ∧C1)
occurs implies that ∃W ∈ {0, 1}L such that [LW , ∅] ∧ [ϕ∗(W) = 1], ∃sk ∈ LW
such that [y =

∏n
i=1 gxi

i = y∗ =
∏n

i=1 gx∗i
i ] ∧ [

∨
i∈[1,n][xi , x∗i ]], where sk is parsed as

(x1, · · · , xn, y, θ). S outputs (x1, · · · , xn) and (x∗1, · · · , x∗n).

Obviously, S breaks the n-representation assumption. □

Proof of Lemma 5.5.8. We prove that if there exists an PPT adversary A who makes
Pr[FW(Ā1 ∧ C2)] non-negligible, we can construct a PPT simulator S who breaks the DL
assumption. S behaves as follows.
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Setup. Let gk B (p,G, G̃,GT , ê, h, h̃)
U←− Gpg(1λ). As an instance of the DL problem, S is

given (h, hα), where α
U←− Zp. She sets g0 B hα. She runs (vk,mk)← SPSIG.Gen(gk, 1L).

For every i ∈ [1, n], She chooses βi
U←− Zp and sets gi B hβi . She sends pk B

(1L, gk, vk, g0, g1, · · · , gn) toA.

Query. When A issues W ∈ {0, 1}L as a query to the oracle Reveal, S behaves as fol-

lows. She chooses x1, · · · , xn
U←− Zp and computes y B

∏n
i=1 gxi

i . She generates
θ ← SPSIG.Sig(vk,mk, (y · gw1

0 , · · · , y · g
wL
0 )). She sends sk B (x1, · · · , xn, y, θ) to A.

She also sets LW B LW ∪ {sk}.

Compute(ϕ∗, sk∗). S parses sk∗ as (x∗1, · · · , x∗n, y∗, θ∗). Assuming that FW(Ā1 ∧ C2) occurs
implies that the following event occurs.y∗ = n∏

i=1

gx∗i
i

 ∧ [∃W∗ s.t.
[
ϕ∗(W∗) = 1

] ∧ [1← SPSIG.Ver(vk, θ∗, (y∗ · gw∗1
0 , · · · , y

∗ · gw∗L
0 ))
]

∧

 ∨
W∈{0,1}L s.t. [LW,∅]∧[ϕ∗(W)=1]∧[W,W∗]

 ∨
sk∈LW

[y , y∗
] ∧

i∈[1,L]

[
y · gwi

0 = y∗ · gw∗i
0

]


 ,

where sk is parsed as (x1, · · · , xn, y, θ). Since W , W∗, there exists i ∈ [1, L] such
that wi , w∗i . Given the integer i, S computes α′ B (

∑n
j=1 β j · (x j − x∗j))/(w

∗
i − wi) and

outputs it.

Let us explain why S breaks the DL assumption. Applying the fact that g0 = hα and gi = hβi

to the equation y · gwi
0 = y∗ · gw∗i

0 , we obtain α = (
∑n

j=1 β j · (x j − x∗j))/(w
∗
i − wi) = α′. Since

y , y∗,
∨

j∈[1,n]

[
x j , x∗j

]
. Hence, she can compute α′(= α) correctly. □

Proof of Lemma 5.5.9. For every sk ∈ LW∗ , if y , y∗, then for every i ∈ [1, L], y · gw∗i
0 ,

y∗ · gw∗i
0 . Thus, the event FW(Ā1 ∧C3) never occurs. □

5.6 Conclusion for Chapter 5
No IBS/ABS schemes whose hard-to-invert leakage-resilience is guaranteed under stan-
dard assumptions have been known. More generally, no IBS/ABS schemes whose leakage-
resilience is guaranteed under standard assumptions have been known.

In this work, we defined existential unforgeability considering hard-to-invert leakage-
resilience for IBS schemes. Then, we generically constructed an IBS scheme, and proved
that it is secure under our definition. Additionally, we instantiated it under the DLIN and
SXDH assumptions. The instantiation is the first one whose leakage-resilience is guaranteed
under standard assumptions.

Similarly, we achieved a result on attribute-based signature whose predicate is repre-
sented as a general circuit. Specifically, we defined existential unforgeability considering
hard-to-invert leakage-resilience and computational signer-privacy for ABS schemes whose
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predicate is represented as a general circuit. After that, we generically constructed an ABS
scheme for a circuit and proved that it is unforgeable and signer-private under our defini-
tions. Then, we instantiated it under the DLIN and SXDH assumptions. The instantiation is
the first one whose leakage-resilience is guaranteed under standard assumptions.
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Chapter 6

Conclusion

Cryptosystems’ secret-information leakage made by various causes such as side-channel
attacks is extremely hard for us to perfectly prevent. Thus, it is one of the most serious
threats. As a result, leakage-resilience which guarantees that if some related-information
about secret-information is leaked, the security is maintained, is practically demanded. Vari-
ous security models considering leakage-resilience have been proposed. Especially, hard-to-
invert leakage (HL) model is considered to be theoretically/practically the most meaningful.
In this thesis, we accomplished the following three research tasks concerning HL-resilience.

The first one is regarding IBE scheme with HL-resilience. The IBE scheme proposed
by Yuen et al. at EUROCRYPT’12 [YCZY12] is known as the only one claimed to be
correctly proven to be secure in a security model with HL-resilience. In this work, we
showed that their security proof is defective by presenting some concrete counterexamples
of PPT adversaries which indicate the deficiency. Moreover, we proposed an original IBE
construction and proved that it is secure in an adaptive IND-CPA security model considering
HL-resilience under the DLIN assumption. Thus, our IBE scheme is currently only one
whose HL-resilience was correctly proven.

The second one is regarding digital signature with HL-resilience. We proposed a generic
construction of digital signature, and proved that it is secure in sEUF-CMA security model
considering resilience to polynomially hard-to-invert leakage. After that, we proved that
it can be instantiated under the DLIN and SXDH assumptions. Currently, as far as we
know, three digital signature schemes with HL-resilience have been proposed by Faust et
al. at ASIACRYPT’12 [FHN+12] and the others [YYH12, WMHT16]. Among them, our
instantiation of digital signature is not only the only one resilient to polynomially hard-to-
invert leakage under standard assumptions, but also the only one secure in an sEUF-CMA
security model with HL-resilience.

The third one is regarding ABS/IBS schemes with HL-resilience. A lot of ABS/IBS
schemes secure in non-leakage setting have been proposed, e.g., [PS06, MPR11, OT11,
SAH16]. However, no schemes secure in a security model with some leakage-resilience
under standard assumptions have been proposed, as far as we know. We proposed generic
constructions of ABS/IBS schemes, and proved that they are secure in an adaptive wEUF-
CMA security models with HL-resilience. For the ABS scheme, we also proved that it is
computationally signer-private. Moreover, we showed that they can be instantiated under the
DLIN and SXDH assumptions. It should be noted that our ABS/IBS instantiations are the
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first ones proven to be secure in HL model under standard assumptions, and more generally,
the first ones proven to be leakage-resilient under standard assumptions.

A lot of open problems related to leakage-resilient cryptography are left. In the area of
leakage-resilient cryptography, BL model has developed the fastest because of the simplest
definition of the model. Thus, there are many problems which have been solved in BL
model, but have not been solved yet in HL model. The followings are some examples
of such problems, and we can objectively say that our results in this thesis more or less
contribute to solving the open problems.

We know that there are many cryptographic primitives such that concrete schemes se-
cure in BL model have been proposed, but ones secure in HL model have not been proposed,
e.g., attribute-based encryption, functional encryption, inner-product encryption, fully ho-
momorphic encryption, and etc. Proposing the first scheme of such primitives is meaningful.
Secondly, presenting the first scheme secure in a combination model of CL model and HL
model is also meaningful. CL model [BKKV10, DHLAW10a] generally means a model
where the leakage function during each period is restricted in its output bit-length like BL
model, whereas a combination of CL and HL models means a model where the leakage
function is required to be hard-to-invert like HL model. Thirdly, proposing the first scheme
resilient to both of the implementation attacks, (hard-to-invert) leakage and tampering, must
be meaningful. Tampering attack means an attack which makes the attacker to modify the
secret-key of cryptographic devices and observe the behavior of the devices. PKE and dig-
ital signature schemes secure against bounded leakage and tampering have been proposed
[FX16]. It must be natural to think how can we realize schemes secure against hard-to-invert
leakage and tampering.
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