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Abstract 13

To achieve a robotic system that is capable of both task execution and interaction behaviors in
our society, the research proposes a system architecture under the theme of ”scenting” the human
interaction willingness from non-verbal behaviors at the beginning of an interaction. The scenting
capability is applicable to different task and social situations, and solves the problems of current
social robots not having control over human-robot conversations, or problems where current task
robots do not have a way of initiating a task.

In chapter 1, we point out the current failures of social robots, what is currently being requested
in society, and argue that, for social robots to better benefit our society, social capability should be
discussed with other robotic skills e.g. manipulation and navigation.

In chapter 2, we discuss the different focuses in interaction research and explain the novelty
of understanding interaction at an initiating stage under different task context. Typical human-
robot interaction focus on robot behaviors, dialogue research focus on speech behaviors, however,
both target mainly on what happens during a conversation after an interaction has been initiated.
Previous systems with interaction functions do not consider the interaction willingness of the
person.

In chapter 3, to achieve the scenting capability, we propose a computational method using se-
quential data on human behavior in relation to robot behavior. We categorize the relationship
between the interaction willingness of two agents, and explain that there are nine interpersonal
situation patterns. Then, we formalize the situations into a hidden Markov based probabilistic
graph model. The model is then trained using human-robot interaction recordings or on runtime.
We evaluate the advantages of our method in scenting interaction willingness.

In chapter 4, we summarize the type of skills that are requested in business today and the skills
that are requested in near-future settings such as in robot competitions. We explain the importance
of heuristic-based manipulation, constraint simplifying hardware designs, task-finite scenarios,
and software minimization. This is the basis of our task system for discussion in the other chapters.

In chapter 5, we explain the detailed implementation of our proposed system architecture. Based
on general-purpose dialogue patterns, we explain that for action required interactions, we must
consider a task scheduler that resolve constraints in the physical context. The task scheduler is
combined with the scenting capability and takes into account when and whether the person is
willing to interact, listen to the person’s dialogue purpose, schedule actions depending on the
purpose, postpone interactions if a primary context such as first-come-first-served exists between
the human and robot. We show task-interaction integration in settings such as a restaurant and
show how our architecture technically applies to these settings.

In chapter 6, we go over various experiments using our system to understand its effect and
evaluate our system from both a technical and social perspective, including appropriate and in-
appropriate behavior in task postponing, how people interact with robots to use its task skills,
training a robot’s initial interaction behavior, and examples where the system is beneficial in a real
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setting such as a guiding robot.
In chapter 7, we summarize our achievements and provide future directions.
In summary, we have proposed a task execution system with an interpersonal situation scenting

capability, which handles the different interaction situations during task execution, achieves the
barebone robotic skills requested in our society, and allows the robot to self-supervise interaction
behaviors at an initiating stage of an interaction. From experiments inside and outside the lab, we
have evaluated our concept, the technical approach, and the potential effects of a task execution
robot with social capabilities including non-verbal initiating behaviors.
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1.1 Gap between Robots in Society and Robots in HRI

As of 2018, robots with only communicative skills are seen as failures. Human-robot inter-

action (HRI) studies have questioned and answered, ”How would a social robot be beneficial?”

[99, 36]. (Here, a social robot refers to a robot that has a role, interacts with a person, and has

some communicative skills.) There have even been comparisons on how a robot is better than a

tablet [67, 127]. Some researchers have and are still investigating on how a robot —if had commu-

nication intelligence—would be valuable to the society using the ”Wizard of Oz” (WoZ) paradigm

[112] (a research scenario is set; a person is controlling the robot from a different room, making

it look as if intelligent). Yet, when we step away from these scientific scenarios, we find that the

so-called effects and advantages of social robots that have actuated movements are not worth the

extra price for consumers.

Smart speakers have captured the skills wanted by consumers; the speaker interface have pro-

vided much of the skills with a lower price when compared to social robots. This was especially

the case with the Jibo robot. A similar phenomenon has been observed with the Pepper robot

[98] as well, although, unlike Jibo, which is a vendor-consumer product, Pepper is more of a

vendor-enterprise-consumer product. Looking at posts on the web, many consumers find that the

benefits of the robot interface could be altered with a tablet. From our own investigation, people

from the enterprise find that the robot should be replaced with a more human-shaped appearance

(no on-board tablets or alien shaped heads). Thus, only 15% of the companies using Pepper have

decided to continue using Pepper, leaving the remaining 80% to abandon the robot. The market

challenges of communication robots show that the end consumer’s expectation toward robots is

more toward robotic skills (e.g. navigation, manipulation). Looking at succeeding robots in the

market today (with a few exceptions in the medical and rehabilitation field [116, 25]), a robot has

at least one of the below functionalities: capable of manipulating objects in a fixed environment

(industrial arms), or navigate in a structured environment (security robots), or navigate and carry

objects (e.g. Savioke Relay [23]). The former is a vendor-enterprise product while the later two

are a vendor-enterprise-consumer product.

Since communication is not a clear capability, to better benefit end consumers or enterprise,

interaction should be a capability on top of core robotic skills such as manipulation and navigation.
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Socialness or interaction should be a capability to enhance these skills rather than interaction being

the objective.

1.2 Unsolved Technical Problems

Adding interaction to a task execution system that executes robotic skills is not simple, and

is much more than just adding extra interaction components. Existing systems only trigger the

interaction skill or the other robotic skills (navigation and/or manipulation) one-by-one and in a

sequential manner. For example, bring a drink after speech recognition. However, in a real setting,

interaction skills and other skills may happen simultaneously. A robot could respond and listen to

orders from a person while continuing its chores (assuming that the robot is an open-loop look-

and-move vision-based control system [128]). This requires developing a system that handles

interaction in parallel but also a system that is able to schedule a task in relation to the interaction

context. In addition, most of the existing interaction systems wait and expect for a user input. In

a real setting —especially when whether the robot is ready for an interaction is uncertain to the

user, which is the situation when a robot is executing a different skill—the robot must have certain

control of the interaction and take the initiative (Fig. 1.1 shows an example). This requires the

robot to scent an interaction before any verbal user input is given. Since a robot moves around in

a task setting, such a scenting capability must be implemented using on-board sensors, which is a

constraint that is often ignored with in-waiting social robots.

1.3 Thesis Goals and Proposed Solution

The goal of this thesis is to solve the above problem of integrating interaction capabilities and

systems that execute robotic skills. The novel and core idea is to look at interaction from a total

setting where the other robot capabilities are active. We provide an architecture that computation-

ally handles the different situations that happen when an interaction is triggered or about to trigger

during a task by using probabilistic models and an integrated scheduling component; not just the

verbal behaviors but the non-verbal behaviors that happen at the beginning of an interaction. By

modeling the effect of non-verbal robot behaviors (including a at task state) and its relation to a
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robot	 human	

goal goal 

robot	 human	

goal goal 

accept	

process	
/meline	
(robot	
view)	

goal goal 

robot	 human	

no	interac/on	 interac/on	or	
no	interac/on	

robot	 human	

goal goal 

process	
/meline	
(robot	
view)	

give	up	

a	may	or	may	not	
interact	state	

ini/al	interac/on	

Fig 1.1: An example of an uncertain interaction beginning where the human and robot must go
over an interaction initiating process. The human and robot are acting according to their own goal
(whatever task they are doing), then, the human tries to change the robot’s task through contact.
The robot may accept the change or decline the change. (The discussion is interchangeable, and
the agent that is contacting could be the robot instead of the human.)

human’s willingness toward an interaction, we are able to express more precisely on the differ-

ent interpersonal situation that is happening between an interacting human and a task-executing

robot. Since we are using information on robot behavior, we have richer sequential information

and therefore we are able to simplify the required sensor input on the human behaviors. This is an

essential technique for embedding a scenting capability on a running robot with limited on-board

sensors. The proposed architecture is essential for applying interaction capabilities on top of other

robotic skills, but moreover, for a task robot to come out of factories and into our society. The

timing of a person triggering a robot’s task capability is arbitrary once outside the factory, and

therefore, interaction will play a key role in handling and controlling task initiation. An overview

of our proposed architecture is illustrated in Fig. 1.2 .

1.4 Prerequisite

Terminology- In this book, we will not be using the term task as opposed to the term interaction.

A task could be defined as a robot action or list of actions that are conducted for a certain purpose.
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dialogue	modules	

robot	controllers	ac1on	execu1on	modules	

task	ac1ons	task/ac1on	scheduling	

interpersonal	situa1on	manager	

human	behavior	extrac1on	 robot	sensors	
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Chap.3.2,	3.3,	5.3	

Chap.3.3,	5.3,	5.7	

Chap.5.5,	5.6	 Chap.5.5	 Chap.4.6	

Chap.5.4	

Fig 1.2: The proposed architecture handling the initiation and transition of an interaction task in
parallel to task execution. Dotted lines indicate streaming information.

A handover, for example, could be a task but more specifically an interaction task.

We will refer to the interaction (especially non-verbal interactions such as responding) that

happens between two agents (human and robot) before beginning an interaction task as an initial

interaction (A more concrete definition will be provided in Chapter 3). Note that the term may

sound similar to initial contacts. However, the word initial contact is used in the context where

a contact is supposed to lead to an interaction. In contrast, as we will see later in the book, the

term initial interaction also refers to situations where the contact between human and robot may

be unintended.

Author’s Standpoint Toward Robots- Human-robot interaction has a characteristic similar

to human-human interaction but also typical to human-robot situations. For example, although

many people will approach a robot and see a robot’s head movement as a response (just like in a

human-human interaction), people may also stare and walk around the robot before beginning an

interaction (which would be impolite and unlikely with a human-human interaction). Therefore,

in this book, we will assume that human-robot interaction is similar to human-human interaction

at its core; yet, the human-robot interaction will also have robot-unique features that differ from

human-human interaction. This means that, although we model human-robot interaction from a

human-human interaction perspective, we will train the model from a real human-robot interaction

dataset in order to achieve a better expression of the robot typical interaction.
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Moreover, in this book, we will treat a robot as a device to assist people, but a device that must

also act reasonable to the users. Here, reasonable could mean a human-like manner but more

concretely, understandable and comfortable to the users. The unique part of a robot device is

that, not only are they capable of physical assistance, but, since robots are able to give physical

responses or physical actions, a robot could change its interface to a more optimal interaction style

through training with runtime data. This is very different from tablets or speakers, which have a

pre-programmed fixed interface.

1.5 Thesis Structure

The structure of the book is shown in Fig. 1.3 . Below we describe the details.

In Chapter 2, we go over the broad field of interaction and explain the novelty of our perspec-

tive toward interaction. We explain interaction, introduce a ten-dimensional graph explaining how

previous works —including systems with interaction capability—have captured aspects of inter-

action, and the aspects we capture opposed to the other works.

In Chapter 3, we introduce our solution for modeling the scenting of interpersonal situations at

an initial interaction stage and how to computationally estimate a person’s interaction willingness

in relation to the robot’s behavior. We apply real human-robot interaction recordings to train our

model and evaluate its effect through experiments held inside and outside the lab.

In Chapter 4, we explain the required robotic skill components especially those that are being

requested in society. One of the problems with current interaction robots was the hardware quality

and lack of robotic skills. We look at the recent tasks asked by the enterprise, and the requests

we see in competitions. We summarize the required barebone robotic skills we should focus on

for further discussion on interaction-task integration, as well as some of the solutions needed for

executing skills under the more severe non-table environments a robot would face in our daily

lives.

In Chapter 5, we introduce our solution for scheduling interaction tasks that consider both the

interaction context and the robot’s current task context. We propose the idea of task acceptance,

integrate the interpersonal situation scenting model, and explain the details of the entire architec-

ture. We evaluate the performance of our architecture on different person dialogue objectives. We
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Fig 1.3: Structure of thesis.

also show how our architecture handles a layered scenting scenario where a chance of interaction

is scented during a different interaction task.

In Chapter 6, we evaluate our architecture from both a technical and social perspective to un-

derstand the actual type of scenarios in society where our architecture would be most valuable.

As a technical evaluation, we show that the system can be used to change the robot’s belief on

a human’s interaction willingness and provide better interaction behaviors throughout time. As a

social evaluation, we look at how people try to interact with a robot under a task other than waiting

for an interaction. We summarize the way people perceive task robots and the feedbacks we had

on robot behavior during an interaction.

In Chapter 7, we conclude our findings and achievement.



2

Background and Related Works
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2.1 Interaction from Theory in Different Fields

To understand the total setting of interaction in robots, and its relation or uniqueness com-

pared to other interaction research, we must first understand what is an interaction. By definition,

interaction is related to communication, and therefore, we begin by understanding what is com-

munication.

2.1.1 Looking at Interaction from Communication and Dialogues

Robert T. Craig [24] has summarized different theories in communication, and has indicated

seven communication theories. These theories look at communication as a flow of information,

gap between viewpoints of subjects, influence on others, and/or to the more macro scale i.e. devel-

oping the functions of society. A common idea among some of these theories is that, communica-

tion is used to fill in the gaps and generate a consensus between individuals. While these theories

provide understanding of communication in general, to capture the actual relation between the

gaps, or the settings that produce the gaps, we must look more deeply into the type of speeches

and actions that happen during a communication.

A known field that covers such area is the dialogue or dialogue act. Harry Bunt [16] has shown

two general-purpose functions of a dialogue, which are information-transfer functions and action-

discussion functions. Information-transfer functions can further be seen as information-seeking

functions and information-providing functions. Action-discussion functions can further be seen

as commissives and directives. There are many other ways in which researchers have explained

dialogues and category of dialogues. Yet, these categories can be looked as a different angle of

Bunt’s explanation of information-transfer and action-discussion functions, and therefore, we will

mainly refer to Bunt’s theory.

Taking into account Bunt’s viewpoint, we may say that the gaps being filled through dialogues

are the information and agreement of actions. Bunt further looks at the information or agree-

ment being updated, and explains the importance of looking at these information from the five-

component context model which are: linguistic context, semantic context, cognitive context, phys-

ical/perceptual context, and social context. The linguistic context is the discourse plan dependent

on the knowledge of the agent. The semantic context is the goals of each agent and the belief of
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goals on the other agent. The cognitive context refers to the cognitive process and production of

utterances of each agent. The physical/perceptual context is the physical situation that the dialogue

is being held. The social context is the context that generated the social acts such as greetings or

apologies.

The discussions on information updates by Bunt provide us hints about interaction or the con-

texts behind that lead to a communication or dialogue in an interaction. The linguistic context and

cognitive context are more about the characteristic or knowledge of an agent, while the semantic

context, physical/perceptual context, and social context is more about the situation between the

agents. The term semantic is tied to a linguistic meaning, but when we look at the context as

relating to goals and beliefs of other agent’s goals, we may say that the semantic context is more

generally an objective context or an objective frame. The frame refers to what the agent is trying

to do and the agent’s belief on what the other agent is trying to do.

2.1.2 Looking at Interaction from Psychology and Objectives

Not surprisingly, we may look at the situational contexts leading to interactions also from the

psychology field. After all, psychology is the field that helps us understand the relations between

our internal states (objective frame) and actions (physical and social context).

Here we will introduce William T. Powers explanation on goals and goal-oriented behaviors

from his theory on perceptual control (PCT) [104, 81]. Powers uses the term living system for

agents, and explains a living system as anything that has the capability to behave. In his theory,

he explains that living systems are goal-oriented and that their behaviors are controlled under

perceptual input from the external environment. For example, a human driver takes an action of

stop, accelerate, and handle, to fulfill his goal of parking. The driver selects his actions according

to the difference between the goal (parked state) and current state (what the driver perceives).

From Powers’ idea, it is apparent that an agent’s action is determined by both the goal and phys-

ical environment, that is, the difference between the two. The goal corresponds to the objective

frame, and the physical environment corresponds to the physical context. The two are a different

concept, but are a common effect to the agent’s behavior.

Extending Powers’ idea, we may explain the social context from what happens when multiple

systems try to fulfill their goal. Here is an example. A human worker at an office takes an action
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of wait and talk, to fulfill his goal of handing over a paper to his busy colleague. The worker

selects his action according to the difference between the goal (interrupt colleague at a suitable

timing) and current state (colleague is busy to be interrupted, or, colleague maybe interruptible).

The worker may take additional actions such as ”cough” to catch his colleague’s attention and

create a bigger cough depending on the colleague’s response (the perceptual feedback). In this

example, the worker accomplishes his goal by disturbing his colleague’s goal i.e. his colleague’s

work. PCT describes such disturbing situations of one’s goal as conflict. Using this idea from

PCT, we may understand an interpersonal conflict as a situation where A) to accomplish the goal

of one system, a disturbance to a goal of another system is essential, and B) therefore, at least one

of the system desires to re-organize (terminology as used in PCT) the other system’s goal. In our

above example, the worker must disturb his colleague’s work in order to handover his papers (A)

and therefore he desires to re-organize his colleague’s goal from ”focusing on work” to ”talk with

the worker” (B).

An agent’s action is determined by both the goal and the social situation between the agents.

Similar to the relation between the objective frame and physical context, the relation between the

objective frame and the social context are a common effect to the agent’s behavior. The difference

between the physical context and the social context is that, a social context exists only under the

situation with multiple agents.

2.1.3 Relation to HCI

It is also interesting to note that the aspects of interaction discussed so far also follows the

human-computer interaction (CHI) ideas explained by Bonnie A Nardi [90]. Nardi explains that

CHI can be represented as situated action models, activity theory, or distributed cognition. The

situated action models can be seen as the relation between physical context and behaviors. The

activity theory can be seen as the relations between objective frame, physical context, and behav-

iors. The distributed cognition can be seen as the relations between the objective frame, social

context, and behaviors. Nardi explains that the activity theory and distributed cognition are sim-

ilar and that the difference is whether the human and agent are seen as equal or not. We see that

the two are indeed similar also from our discussion in that, both perspectives somehow connect

the objective frame with behaviors. In addition, Nardi explains that the representation of activity



28 — 2： Background and Related Works —

theory is deeper than the situated action models. We see a similar structure from our discussion

as the activity theory discusses an additional objective frame, whereas, the situated action model

only discusses the relation between the physical context and behaviors.

2.1.4 Representing Interaction as a Ten Dimensional Graph

From our discussion, an interaction is what leads to an exchange in gap of information or agree-

ment of actions. Such exchange is triggered from the objective, physical, and social context.

While the dialogue act literature focuses mainly on dialogues or speech behaviors, it is apparent

that, there is also non-verbal communication involved in an interaction such as gaze [59]. The

five categories of gaze behavior discussed in [59] can be explained from a similar discussion of

objective, physical, and social context.

Summing up our discussion and different perspectives from different fields, we may summarize

the total view of an interaction as in Fig. 2.1 . There are two agents (here we focus on machine

and human interaction) exchanging information and agreement of actions through verbal and non-

verbal behaviors, which are generated from the objective, physical, and social context. Note that

the social context only happens when there are multiple agents. Likewise, a verbal behavior hap-

pens as an exchange between multiple agents. Therefore, these two aspects of interaction meet

together as shown in the figure. In contrast, the objective and physical context, as well as a non-

verbal behavior may happen within a single agent.

An interaction research captures the different aspects of interaction with different focuses, and

the different focus weights on each aspect. In the next sections, we will look at the different focuses

of interaction, and compare how they are similar or different from our approach of interaction.

2.2 Research in Interaction

2.2.1 Typical HRI

In the 2018 HRI conference, there were four main categories that were announced by the con-

ference organizers. We will use slightly different terms, but the categories were: HRI user studies,

technical HRI, HRI robot design, and HRI analysis. HRI user studies include works such as, in-

vestigating robot applicable scenarios and finding their effect [142, 36], applying human-to-human
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interaction methods to human-to-robot interaction and evaluating validity [3, 52]. Technical HRI

include works such as designing user-centric motion algorithms and comparison between motions

using the algorithm versus motions not using the algorithm [29, 88, 20], conversation engines and

evaluation on whether the engine provides better results to specific problems [18]. Robot design

include works such as developing robot emotions and evaluating whether users perceived emotions

correctly [77], but also proposals of interaction robot hardware designs and evaluate satisfactory

of the design [39]. HRI analysis include works such as survey of the field [63], survey on user

profile and its relation towards acceptance of robots [71].

Despite the category, an HRI study requires some form of user study in the end to evaluate the

study proposal. This is what makes HRI unique from other themes in robotics. HRI is not always

solving a new problem but find scientific facts about user acceptance toward robots. In contrast,

robotics require solving new problems, different approaches to problems, and summarize findings

in a way that will benefit the field. Due to these different goals of the field, robotics and HRI

only overlap partially. The technical HRI category include both a robotics and HRI aspect. The

robot design category usually use simple reproducible hardware designs, and therefore, may not

be much of a benefit to robotics.

The other categories focus on sociology or statistics and are more towards science. HRI user

studies focus and weight the social context. HRI robot design is more of a design research rather

than an interaction research (it evaluates appearance readability without no or little context), there-

fore, does not fit in the ten-dimensional graph. HRI analysis is more of a research on interaction

research, and also does not fit in the graph.

Given these different characteristics of each category, our approach toward the total setting

falls closely to the technical HRI. We develop an algorithm to autonomously scent interpersonal

situations, and we go over user studies to evaluate its performance. However, as we will see in the

next section, our approach differs from other technical HRI approaches in that, the focus includes

the social context of what happens before, or at the beginning of an interaction. We summarize

the HRI categories and its relation to robotics in Fig. 2.2 .
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2.2.2 Technical HRI Approaches with Physical Context

Popular themes in interaction with physical task context include human-robot manipulation

and human-robot navigation. For example, human-robot manipulation may include human-robot

handover [80, 135, 85, 1, 53], human-robot cooperation [86, 30, 20], human readable (including

expression of incapability) manipulation motion designs [31, 131, 69], or human-robot teaching

[42, 7]. Human-robot navigation may include human-robot avoidance [107], robot-to-human ap-

proaching [26, 122], or even combination of handover and navigation [126].

In most manipulation related scenarios, the human and robot are already in interaction with a

shared goal or role (for example, human teaching and robot learning). [135] discusses part of

before handover phase and its relation in the handover context. Yet, the situation assumes that the

person accepts the handover. Although the themes of prior work include the physical context, the

social context is somewhat weak. There is no social background or verbal communication that

influences the interaction between the human and robot.

The navigation scenarios, on the other hand, may seem more like a discussion on interaction

initiation. However, the focus of these scenarios is mainly on appropriate approaching behaviors.

Such navigation problems focus on the physical context (e.g. distance or formation between the

human and robot) and robot’s action in response to that context. Again, there is no social back-

ground or verbal communication that influences the interaction. It does not question whether the

person will respond when the robot approaches.

In one of our experiments from Chapter 3, we see that sometimes, people are not aware of the

robot’s approach. In Chapter 6, we even see situations where a person passes by the robot by

ignoring its approach. In some long-term experiments [138], we see that in fact, people are not

always interested in the robot and people do not notice some of the robot’s signals. In this book,

we assume that on top of the robot’s willingness, the interpersonal situation is dependent on the

interaction willingness of the human.

Most of the approaches above solve a mathematical optimization problem with human-in-the-

loop cost functions, and then evaluate whether the cost functions were appropriate through surveys.

The cost is usually between user experience and task performance. [86] and [53] both discuss that

user experience and task performance do not always correlate. Whether we should maximize user

experience or maximize task performance is a recent question even in autonomous car driving
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behaviors [117].

The initial interaction problem in the total setting is somewhat different to behavior optimiza-

tion. As we see in the other chapters, there are situations where the robot is not able to interact,

not because it is trying to maximize performance, but because its motions are under some task

constraint and must resolve the constraint before beginning any interaction. Or even, the person

may ask the robot to come to his office later, or bring a drink once the robot has finished its cur-

rent task. As in this example, the person may tell the robot how he or she wants it to behave per

situation, rather than having the robot to autonomously optimize what it thinks is the correct cost

function.

2.2.3 Engaging and Scenting

Some topics focus more on the social intent of a person. Here we will discuss approaches to

intent in relation to robot behavior. One of the questions in this book is how will a robot know if a

person really wants to interact? To this particular topic of intent, terms such as ”engagement” or

”attention” [70] have been used. Engagement refers to both before and during interaction interest

of a person toward a machine. It has been an important topic of discussion [129, 4]. [13, 14]

detected engagement using visual information of human face and location. Method and evaluation

on intent understanding of different situations at a shopping mall has been conducted in [65]. [73]

discusses with-me-ness of an interaction. However, the term ”engagement” focuses on whether a

person is engaged with the robot or not. How about whether the robot is engaged with the person

or not? Most researches discussing engagement, do not consider the robot’s objective or physical

context, and is mostly focused only on the human-side of interactions. We must step one step

further into engagement, where a robot may be under a different desire than to interact.

A robot may not always be ready to detect engagement. It might be focusing on a task, and

a person may be out of the robot’s view. Instead, a robot may scent that a person who may be

engaged is coming close by. (The robot could use its base lasers for this particular situation)

Scenting is different from detection in that, what is being observed is a chance of truth rather than

the most likely truth. What is scent could be very uncertain but provide hints to how the robot

should react in the next time frame. For example, if a robot scents that a person is engaged, it

could try to look back at the person. By doing so, the robot could then detect whether the person
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was actually engaged. One of the goals of this book is to understand this procedure of scenting,

responding, and detecting; and how this procedure could be represented on an autonomous robot.

This covers a wider scenario than engagement, which only discuss about detection.

Some studies have discussed situations where the human initiates an interaction. [154] has ana-

lyzed initial human actions in elderly day cares. However, technical implementation for detecting

these initial human actions has not been achieved on a fully autonomous robot. A more general-

ized discussion on interaction situations is required for technical implementations; especially for

a re-usable system.

Several researches have discussed situations where the human may or may not interact with the

robot, and have focused on how to initiate an interaction. An approach using a participation zone

concept was discussed in [125]. Human-to-human interaction strategies for handling fliers were

discussed in [126]. These discussions provide methods for initiating an interaction in situations

where the robot approaches the human. These researches provide scenario-based interacting meth-

ods for concrete situations. Meanwhile, the focus of this book is more on understanding situation

patterns in general. The role (objective) of the robot is fixed for the usual robot-to-human scenario,

and the robot is often the initiator of the interaction. In contrast, the robot could be a listener or

an initiator in our approach of the total setting, and the role could change from estimations in the

initial interaction. Therefore, we focus more on the objective frame when compared to previous

research.

2.2.4 Comparison to Dialogue Research

Robots focus mainly on non-verbal behavior, therefore are quite different from the dialogue

research field. Yet, robots also go through verbal communication after initiating an interaction.

The problem of turn taking during an interaction has common interests in both fields. The fields

are also similar in that, statistical models are used to automate and understand interaction. Here

we will go over few of the recent approaches in dialogue, and how they are similar or different to

the total setting approach of human-robot interaction.

[132] focus on a temporal model for estimating who has floor in a turn-taking dialogue, and

reports that for their scenario, data must be trained on human-machine interaction rather than

human-human interaction. Interestingly, the approach is similar to our approach in estimating will-
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ingness, in that, the model takes in temporal binary data for estimation, uses run time probabilistic

scores, and trains on human-machine interaction. The difference is that, instead of willingness,

the dialogue model tries to detect a hold or a switch in conversation. However, the more important

difference is that, while a dialogue tries to detect a change in intent, in our scenario with robots,

we try to change the behavior of the person (get a response from a person who was not willing)

or change the behavior of the robot (stop trying to initiate an interaction if it finds out the person

was not willing) from the scented intent. In our case, there are situations where no one may have

floor of the interaction (it has not yet been initiated). This leads to considering different and more

types of estimation states but also different discussions on how to integrate model estimations to

the entire system. How to map the estimation outcomes and machine behavior is not as direct as

the turn-taking scenario.

In terms of objective differences, [93] focuses on a dialogue version of the total setting where

two agents have different goals, and try to negotiate through a dialogue. The authors propose

three negotiation patterns: individualistic, cooperative, and competitive. This is similar to some of

our interpersonal situation patterns. The individualistic may be seen as an agreement where both

agents fulfill their own goal. The cooperative may be seen as an agreement where either agent is

following the goal (cooperating) with the other agent. The competitive may be seen as a conflict

where both agents are trying to push their goal over the other agent’s goal. However, we also

realize that the setting in [93] is actually scoped in terms of possible interpersonal situations. The

goal differences discussed in their paper refer to the difference of the same topic: two agents trying

to get fruits from one market. The setting starts from where both agents are aware of each other,

and try to predict the other agent’s goal within the topic. We find that there are more possible

interpersonal situations if we step one step back, consider the total setting from before the two

agents are aware of each other. In fact, the speech behavior of concern is quite different if we take

this step.

We notice that it is common in the dialogue research field to consider the objective of both

agents. This is quite different from HRI where the objectives of agents are often ignored, or the

objective of the human is the main concern. Yet, dialogue is what happens after an interaction

is initialized. To this extent, our focus of robots is slightly different and must consider a broader

range of situations including unintended interactions and integration under different context of
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non-willing situations.

2.2.5 Approaches to Reading Human Intent

The problem of understanding human actions in the computer vision field and the robotic field

is slightly different. Human action recognition in computer vision is a problem of detecting hu-

man actions from images or videos and are evaluated through datasets [101]. Some other works

focus on action segmentation to extract key frames [58]. Others try to capture group conversation

behaviors such as detecting F-formation [124].

In contrast to the above problems, human actions in the robotic field are tied more toward under-

standing actions in relation to daily life objects, forward predicting actions on real time, or under-

standing under first person interaction. (Although, some computer vision approaches do consider

understanding human-object pose relations [43, 56, 156].) To understand human behavior, antic-

ipation gesture based reasoning approaches have successfully represented human actions in daily

life task situations [68]. Other approaches detect human intention from grasp inference [133],

or from object reaching inference [108]. [37] proposes that beyond intent, there is the human’s

rationale that is estimated by: understanding activity (e.g. pour cereal), understanding motion

(e.g. pick, place), and understanding intent (e.g. domain knowledge such as object presence).

Some works target specifically on human interruptibility to decide the timing for robot-to-human

interaction [8]. These approaches each capture understanding of human behavior from different

perspectives in robotics but without the context of the robot. Even approaches that do include a

robot in the scene, the robot just sits and waits, and there is no specific context [153, 84].

Our interest is not only to capture human behavior, but also understand human behavior in

relation to robot behavior. [9] have studied on whether a robot should take the initiative for a col-

laborative task. We question about unintended interactions that initiatives may cause. [152] have

proposed robot centric understanding of human intent under a limited set of interaction actions.

Regarding machine-human interruption, interrupting computer behaviors has been discussed in the

CHI field [82]. However, the CHI approaches largely rely on robot speech behavior, and do not

consider physical actions of the machine. Likewise, the dialogue field also discusses interruption

and initiation of an interaction using speech behavior [92]. [92] points out that preferred speech

behavior is different among people in an interruption setting. However, the results could be differ-
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ent if there is physical activity involved (e.g. the approaching activity is a continuous interruption

while a speech is a sudden interruption). Beside visual approaches, there are text-based approaches

to understand human intent [35, 46]. These techniques are helpful for understanding human intent

verbally after an interaction has begun, but since our discussion is more on interaction beginnings,

these techniques are slightly out of scope.

There are many approaches to understanding human behavior and intent. It is possible to use

these approaches to understand human intent for initiating interactions. However, reading the

intent does not answer the process that occurs when initiating an interaction, and some approaches

are even tied to scenarios where there must be some specified object the human is using. We

provide a more general framework that may be applied with or without object context.

2.3 Robot System Architectures

In this section, we will compare the total setting from a system perspective.

2.3.1 Different Task Execution System Designs

Various robot system architecture designs have been proposed over the years. While designs

differ depending on expected level of autonomy, most systems are composed with general robotic

components and a sequence-managing layer. How components are divided and what components

are integrated largely depend on what the system finds as important, or what is the system’s ob-

jective.

In terms of autonomy, [49] discusses five level of automation in relation to the problem structure

the system will solve. [49] describes fully modeled problems solved with pre-defined repeating

actions as level 0, problems requiring check after action as level 1, problems requiring sensing

before action as level 2, problems requiring feedback control as level 3, and problems requiring

prediction as level 4. Below, we will see that most near-future manipulation problems such as

the ones from competitions fall into the level 2 automation requiring a scene-plan-act system. A

manipulation-centered system may focus on a one-way connection between vision, manipulation

planning, and servoing [48, 134, 47]. However, other systems may connect components in various
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ways. For example, the PR2 system [12] has a vision, manipulation, and navigation compo-

nent. These components are not connected in one single way but are triggered at different timings

depending on the application. Such applications may be written using state machines such as

SMACH [11]. Whether represented by state machines or not, the components are often triggered

from task descriptions. [95] describe three types of descriptions: without failure recovery, with

local recovery, and with local and global recovery. In their paper, strategies such as fail and then

abort (switch plans) fall into the first type of task description, while repeating actions is referred

as local recovery. Failure recovery may also be handled on the component side rather than at task

description or planning level. For example, recovery behaviors are seen in the ROS navigation

stack. These type of component based error handling are more like strategies rather than logical

plans. Whether error handling should be done on the component side or on the task description

side may be determined by whether the plan is a logical recovery or a human insight. In cases

such as rapid prototyped systems or user-designed applications, components are combined with-

out recovery behavior [54]. In other systems like ASIMO, components are triggered from events

rather than from task descriptions [118].

Some systems such as teleoperation systems do not have task descriptions but instead a user

interface [158, 57, 6, 47]. How components are divided differ from automated systems. For exam-

ple, [158] have divided components so that multiple operators may operate the robot in parallel.

The components they describe are trajectory design, execution managing, and perceptual. An au-

tomated robot would plan and then act, however, in teleoperated systems as the one mentioned

above, an operator prepares the next plan while another operator tries to fix the current plan in

action.

For systems that expect HRI, there are some unique components related to HRI or even a se-

mantic knowledge component [60]. We also see such HRI components within architectures pro-

posed by [118] and [136]. These architectures are mostly event driven parallel running behavior

modules. Another important part of these architectures, are that, each component accesses to a

knowledge database related to the task. The system either collects knowledge such as a human

face, or some predefined knowledge such as a building map is applied. Speech recognition, text

to speech, face recognition, and gesture recognition are common type of functions that compose

the HRI component. Surprisingly, the HRI component does not handle how to initiate an interac-
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tion but only the basic functions that would be required for a person to talk with a robot during

an interaction. Perhaps such limitation comes, as some of these systems were developed toward

solving the RoboCup@Home [149] problem. In the competitions, it is assumed that the robot is

always willing to begin an interaction, and in some situation, even waits for a person to come by.

In addition, the robot somehow has control of the world, people do not bother the robot, nor do the

people ignore the robot when questioned. More non-integrated interaction robot systems or mid-

dleware based systems such as the NAOqi [103] focus on managing more low-level components

such as gestures and speech in both sequential and parallel ways. More complicated interaction

specialized robots such as ERICA consider complex decisions for speech dialogues [83]. They

use multiple channels such as utterance and event (e.g. long term silence) to trigger a dialogue,

which considers part of the initiation problem especially those that are tied to dialogue events.

Most systems explained above handle a structured or semi-structured environment. However,

when we look toward problems in other fields, we see that some components must dynamically

adapt to the environment. For example, an agricultural robot reported by [87] points out that a GPS

approach cannot be used reliably at all times especially when the sorghum crop is tall, therefore,

requiring different combination of multiple sensors for navigation depending on the environmental

situation. Such component design would be too much for an indoor scenario but would be essential

for an outdoor scenario.

The systems introduced so far do not use any planning or only use some form of deterministic

planning. Meanwhile, probabilistic action decision has enabled information gathering and robots

to conduct tasks under uncertain environments [61]. [44] proposes a more advanced system with a

three-layer architecture and switches between deterministic planning and decision-theoretic plan-

ning under uncertainty. In their three-layer structure, the semantic component (relational map) is

placed in the belief layer between the task description (deliberative layer) and components (com-

petence layer). Although the deliberative layer is more complicated, failures are reasoned, and

the plans are re-planned; the layer will decide a set of actions the robot should conduct from a

given goal. Therefore, such layers still manage a sequence and are connected to general robotic

components, however, the difference is that actions triggered from each component is fed back to

the manager rather than just being stored as semantic knowledge for the components to access.

There are many different ways systems are designed. Teleoperation based systems lead to user
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interface connected components. Automated systems have managing layers instead of user in-

terfaces. Competition based or problem based systems lead to strategic plans rather than logical

plans. Specific manipulation based systems lead to one-way sequential component connections.

General-purpose systems lead to multiple connections between components. HRI involved sys-

tems lead to having semantic components. Systems that tackle practical problems lead to more

complex component design. Systems that tackle high-level uncertainty lead to more complex

management, logical plans, as well as more complicated connections to the semantic components.

2.3.2 Systems from Evaluation Benchmarks vs. Systems Asked by Society

When we look at how the above systems were developed, some systems were developed through

benchmarks such as RoboCup. Some were developed from predefined problem settings such

as teleoperation. Some were developed as an experimental platform to tackle more uncertain

problems.

The problem with benchmarks is that they fall into specific evaluations such as grasping [145]

and not the robot functionality as a whole (e.g. manipulating in the clutter). In addition, functional

tests try to cover tasks not in depth but rather in variety [105]. These variety do not answer whether

these are the functions required by society or whether these are only technical tests.

To this extent, competitions (sponsored by the government or enterprise) have better settings as

they are truly a simplified version of a real problem in society, and the developed systems provide

likely solutions to the problem. The winning team of the DRC developed a hardware that switches

between walking and driving with standing and kneeling postures [94]. The winning team of the

APC in 2016 used a hybrid approach of suction and gripping [48]. However, we must also be

aware that solutions for one competition may only be beneficial for the specific problem, and for

business, a generalized solution helps in reducing cost as they target more domains. Suction with

large compressors may relax a specific problem but is not suitable for passing through doors or

moving on terrains. To avoid such local maximum and to achieve more scalable solutions, we

propose at looking through several competitions instead of one. This not only helps us avoid local

maximum but understand the required technologies that are in common among different tasks and

the technologies that are specific to the problem.

Yet, competitions are still a simplified version of a future challenge. Before the robot is able
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to achieve the real challenge, it will take a few years. For new technologies to get accepted,

the technology must gradually enter our society. This helps in avoiding over expectations, but also

help find out critical problems at an early stage. Therefore, we must keep in mind what is currently

possible, what is expected in the future, and what stage of the technology lies in between. In this

sense, experimental platforms lie too far in the future, making it difficult to capture the steps in

which the technology will advance. With systems developed for experimental research purposes,

we might be going in a direction away from what will be accepted in society.

2.3.3 Mapping Complexity of Systems

We may summarize the different type of system architectures as in Fig. 2.3 . The systems on

the left side are more automated systems. The systems on the right side are more autonomous

systems. The systems on the top handle simpler situations, the systems on the bottom handle more

complex situations. The components depend on the scope of the system including its scope toward

task variety and depth of the task.

From the figure, we see that the total setting tries to tackle more complex situations but there is

room to enhance level of autonomy (we have much room for discussion on whether we actually

want such autonomy).

Complex systems may be more experimental rather than practical at the current stage. However,

some systems have to be complex to be practical. Especially in a setting where an arbitrary cus-

tomer comes to use the robot, the robot must first understand that the customer wants the robot’s

response and then handle the customer. The timing that a customer comes and interacts with the

robot is arbitrary, and the robot may not be ready for an interaction if doing a task. Therefore,

understanding interaction decisions and management, is an essential part of a system for robots

entering our society. We must challenge the complexity, and the first step is to build an automated

system handling interactions during a task.

2.4 Approach Background

This section provides some of the backgrounds on our method for understanding interpersonal

situations and producing robot behaviors. The section is supplementary for understanding why we
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Fig 2.3: A way of looking at the different system architectures. Colors match the component
colors in Fig.1.2. Note, task action/scheduling and task actions are combined as a task manager
component for easier comparison.
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choose our assumptions and methods in this book.

2.4.1 Human-human Assumption in Human-machine Interaction

In our method, robots will produce looking behaviors or speech behaviors, and act accordingly

to the outputs of our situation engine model. The assumption that underlie in these behaviors, are

that, robots have their own goals, a robot will look toward which ever direction that is related to

their goal, and a robot will try to avoid conflicted interaction states.

This kind of behavior comes from human behavior models. One may question why we apply

human behaviors to robots. HRI studies have shown that applying human-like behaviors lead

to more natural and preferred interaction behaviors. For example, [3] reports human-to-human

gaze aversion are effective when applied to human-robot conversations. [109] point out the ef-

fect of non-linguistic utterances by robots to enhance contextual meanings. In addition, adapting

human-like behaviors help robots to look intellectual. It has been reported by [79] that without in-

tellectual behavior, robots may look uncanny. Although the above was studied on robot androids,

even for robots like the PR2, there is data that supports the relation between behavior preference

and intellectual behaviors, that is, anticipation behaviors [140]. In this example, Disney principles

[143, 102] were applied instead of human-likeness. This shows that human-like behaviors are

not the only path to being intellectual, but rather, human understandable behaviors are the key to

acceptable robot behaviors. Some also report the importance of exaggerated motions for inter-

action [38]. In one of our previous work, we introduce that robot specific-mechanisms such as

an actuated hair may be perceived as context emphasizing motions and are understandable [120].

Yet, some behaviors and its relation to intellectualness are not always obvious, and may depend

on who is interacting. [5] points out that robot-to-human touching behaviors give an impression

that the robot is more capable of a job, however results differ depending on the subject’s gender.

We have explained in the previous chapter that we assume that human-robot interaction will

be slightly different from human-human interaction but will have similarities to human-human

interaction at its core. The above works in the HRI field have shown some supportive data on

this assumption. A person will expect some level of human-like intellectualness for better HRI,

however, the expected intellectualness is more about understandable behaviors rather than being

exactly human.
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2.4.2 Usage of Sequential Data for Situation Understanding

In this book, we use a Hidden Markov Model (HMM) based model structure for understanding

human-robot interpersonal situations. Hidden Markov Model although proposed in the 1960s have

been seen effective in many applications that use sequential inputs [32]. HMMs are generative

models and unlike discriminative models, they capture the joint probability instead of directly

finding the conditional probability between input and outputs. In some comparisons between

generative models and discriminative models, it has been seen that generative models reach its

asymptotic error faster with smaller data [91].

Advances in machine learning have introduced other ideas for handling sequential data. Dis-

criminative models such as Recurrent Neural Networks (RNN) and Long Short-Term Memory

(LSTM) [51] are becoming applicable to practical applications such as handwriting [41] and

speech recognition [40]. In the speech recognition literature, LSTMs capture longer context than

RNNs, and RNNs have richer expressions than HMMs for large state-space [40]. However, the

comparison of such methods are not as simple, and depending on required learning time or data

amount in the problem scope, HMMs tend to be more appropriate than LSTMs [100]. Other

ideas include the idea of using attention mechanisms that are computation efficient in longer se-

quences [147]. Attention mechanisms have been used in combination with RNNs and LSTMs

in the machine translation literature [78] or speech recognition [22], but more recent work use

only attention mechanisms (namely Transformer) and also handle intra-input and intra-output re-

lations [147]. Whether an attention mechanism is necessary depend on the problem. For example,

[113] reports N-gram RNN models works as well as sophisticated attention integrated models for

dataset problems that only require local context such as predicting verbs and prepositions [19] in

the Children Book Test [50].

Whether to use a generative model or discriminative model, whether to use attention mecha-

nisms or no, depends on the number of data, required efficiency, and whether understanding of

sequences require a global look of the sequence. In terms of interaction, the interaction patterns

may differ among situations and we do not have enough data that benefit from using the more

sophisticated models. In addition, the larger data the better may not apply for an interaction. In

the later chapters, we show that interpersonal situations reach an asymptotic probability at around

forty-to-sixty interaction datasets. Instead of being able to handle large datasets, it might be bet-
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ter to quickly adapt to new data and new interaction patterns the robot faces. Moreover, typical

HRI have shown the importance of statistically understanding interaction between the human and

robot. It is important to technically achieve a short hand answer like discriminative models, but it

is also as important to understand what underlies in the answers like the generative models.

Let us step a little bit further into our discussion of handling sequential data. The examples so far

are hand writing recognition, speech recognition, and machine translation, which are all relevant

to context understanding. However, interaction not only requires the understanding of context,

but gaining information from the visual is also an important part of interaction. Some approaches

treat sequential problems similar to computer vision problems by mapping input and output as a

two-dimensional grid [33]. In this approach, contextual attention is expressed similarly to a visual

attention. Other problems such as image captioning are by nature a combination of a context

and visual understanding problem. In such problems, an idea such as using both bottom-up and

top-down attention has been introduced [2]. [2] handles the contextual problem with the softmax

top-down attention (the ones we have seen so far), and the visual problem with the ResNet-101

[45] based Faster-RCNN [111] trained bottom-up attentions. In vision only problems, [74] uses a

bottom-up and top-down structure to capture smaller objects in an image.

The model we use for understanding interpersonal situation scenting is somewhat similar to

the top-down bottom-up attention integration explained above. In a human to robot interaction, a

bottom-up attention of someone who might be willing to interact is passed to a top-down attention

of who to (or who not to) interact. In a robot to human interaction, the robot may try to interact

through a top-down attention. In our system, the bottom-up and top-down mechanism is divided

as the required data size for the two attentions differs. The top-down mechanism requires only

about forty-to-sixty interaction recordings. The bottom-up mechanism responds to more general-

ized features and will require more data. Between the two mechanisms, a binary structured data is

passed. One might question why not directly feed images to process sequences. The one limitation

of directly feeding images is that we are tied to a specific sensor. A robot has multiple sensors.

When a person is out of view, it may scent a person coming by using its base laser. A robot may

have multiple sensors and may scent with one sensor, but detect with a different sensor. Direct

sensor feeding may limit the capabilities of our system. Yet, if a higher context understanding

(such as person is not understanding the robot’s behavior or the person is not understanding the
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spoken language of the robot) were required for the interaction, then, some kind of direct sensor

feeding (perhaps integrated with semantic knowledge) might benefit. In our experiments, 70% of

the time, we did not require understanding of such higher context to move from task to interaction.

Moreover, we may just want to train on the top-down attention but reuse the bottom-up mecha-

nism. Transfer learning or fine-tuning [157] have similar concepts of reusing the general feature

extraction and train on top of what is already learnt.

2.5 Conclusion

The total setting perspective is balanced between the social, physical, and objective context.

This is different from usual works in HRI, where the perspective is either more towards social

(HRI user studies), or more towards physical (technical HRI). Although areas in technical HRI

such as cooperation are similar to our focus in that, the robot tries to understand a person’s intent,

and behaviors are changed according to intent estimations, the main context is physical, and the

objectives between human and robot are aligned. In contrast, our focus considers situations where

a human may not want to interact and therefore, must scent the social context on top of a physical

context (e.g. whether a robot is in work, or the distance between the human and robot).

In terms of social context understanding, our focus overlaps with the field of engagement. How-

ever, in usual engagement, the robot’s behavior is not considered for estimation, and approaches

try to understand a person’s intent mainly from visual observation and in a robot waiting setting.

We step one step ahead of engagement and generalize different interpersonal situations including

robot-to-human interaction. The difference of our approach and other robot-to-human interaction

research is that, we consider situations where a robot could become a listener, and the initiator of

an interaction may alter depending on situation.

The total setting looks at what happens before an interaction, which may potentially connect to

the dialogue field once an interaction has been initiated. The difference between dialogue research

and our robot perspective of an interaction is that, the objective of the human and agent could be

completely different and related more towards physical context (whether a robot looks, or whether

a robot has shown a physical response of looking back).

Although there are several overlaps between our approach and other research fields, none of

them have covered interaction in a balanced way as we do. Most research focus on specific context,
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and some are more towards social, some are more towards physical, some do not consider the

objective frame, some do not take into account the effects of robot behavior. In order for a robot to

interact in different task situations, we must not look at one, but multiple situations and how they

relate to other situations.



3

Interpersonal Situations and the Situation
Scenting Model
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3.1 Introduction

In the total setting, a robot may or may not begin an interaction. A decisional process is han-

dled from the interpersonal situation. The chapter will introduce the willingness state to explain

the possible interpersonal situations related to decisions. The core idea behind is that, the dif-

ferent context and number of interpersonal situations can be simplified to nine patterns if used

the willingness state. We will discuss the total setting problem from both an HRI (human-robot

interaction) and technical perspective. The HRI perspective allows us to find the underlying char-

acteristics behind interaction situations. For example, will there be a difference in human behavior

when it is the situation where the robot desires to interact, compared with when it is the person

who desires to interact? Which interaction situations are rare, and what happens in these rare

situations? Will a robot’s behavior influence a person’s interaction desire? Sub questions to this

question would be: Will a person give up interacting if a robot keeps on ignoring him (her)? Will

a person more likely respond to a robot that tries to catch attention by talking, or more likely re-

spond to a robot that tries to wait politely without talking? The technical perspective on the other

hand, allows us to understand how to computationally model the characteristic findings into an

autonomous procedure.

As a result, we achieve a situation scenting model that includes underlying characteristics of

various interaction situations and context. The chapter will also point out the rare interaction

situations such as unintended interactions and why they occur in real human-robot interaction

scenarios. At the end of the chapter, we show that different situations occur depending on human

behavior, and that a robot can understand these situation differences using the scenting model. We

show that the robot can then behave according to each situation using the proposed computational

model. (This chapter has been written based on our dual track oral presentation conference paper

[119]. In this book we add details that were excluded due to page limitations and have reformatted

the structure in order to clarify the relations with the other chapters. We have also added extra

discussion to avoid possible confusion on the abstracted nine interaction situations, and how they

relate to real interaction scenarios.)
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goal goal goal 
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other’s	goal	

Accepted	own	goal	
with	contact	

Fig 3.1: The three types of willingness state representing situated goal acceptance.

3.2 Interpersonal Situations

3.2.1 Willingness State

To begin with, we will assume two interacting agents. One is the human and one is the robot.

Both agents are looked as equal (similar to the distributed cognition approach in HCI).

Looking at the ways a goal (objective context) by an agent can be tied to the goal of the other

agent, we find that there are three patterns. The patterns are based on how the current goal by the

agent is in relation to the goal of the other agent (Fig. 3.1 ). We will refer to these relations as

connected arrows and name this discretized representation of a goal as a willingness state. The

patterns are: 1) Agent’s goal is irrelevant to the other agent (non-connecting arrows, the agent is

not trying to initiate the interaction nor accepting the other agent), 2) Agent’s goal is an action

to the other agent (outward connecting arrows, the agent is trying to initiate the interaction), 3)

Agent’s goal is a reaction to the other agent (inward connecting arrows, the agent accepts that the

other agent is trying to initiate the interaction).

Note that when it is only two agents that are interacting, the first agent’s goal is prioritized

in the non-connecting state and the outward connecting state. Whereas, the other agent’s goal

is prioritized in the inward connecting state. In addition, the state is named willingness as the

state indicates whether the agent is willing to accept a change in goal (or the re-organization as

explained in Chapter 2) from the other agent.

In a simple question-and-answer information-seeking situation, it is easy to understand that

the outward connecting arrow corresponds to questioning, and that the inward connecting arrow

corresponds to answering. In an information-providing situation where one agent believes that
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the other agent may want the information, and therefore informs, the outward connecting arrow

corresponds to informing, and the inward connecting arrow corresponds to receiving.

3.2.2 Willingness in Different View Points

The discussion becomes tricky when one agent is trying to seek information, while the other

agent is waiting to provide information e.g. a situation at an information desk. One way to look

at this situation is, both are at a willingness state of an outward connection (let us denote this

way of understanding the situation as view A). The other way of looking at the situation is, the

information-seeking agent was willing to interact before the information-providing agent noticed

the other agent. The information-providing agent only became willing once after noticing the other

agent, and therefore, the information-seeking agent is outward connecting but the information-

providing agent is inward connecting (view B).

From a third person view, both views A and B are correct. A third person does not know the

truth of which willingness happened first, and therefore, it can be either situation.

From a first person view, there is only one answer. If the information-providing agent scented

an outward connection of the other agent before its own change in willingness state, the agent

believes its view as B. If the information-providing agent scented the other agent’s willingness

state as a non-connecting state, the agent believes its view as A.

Now let us say there is a god that knew each agent’s belief on the other agent’s willingness. If

one agent believed that the other agent was willing beforehand and if the other agent believed that

the other agent reacted to its own willingness, the view is B. If both agents believed that the other

agent was not willing, the view is A.

Since we are handling a mental model that is not observable, the idea of willingness often

causes confusion depending on which view point we are looking at the problem. To clarify, we

will use the following view points for each of the following topics: when we are theoretically dis-

cussing interpersonal situations, we will take the god view, when we are annotating interpersonal

situations, we will take the third person view, when we are implementing interpersonal situation

understanding to robots, we will take the first person view (estimated god view on the robot).
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Fig 3.2: Nine interpersonal situations from willingness state. A god’s view of situations.

3.2.3 Conflict and Agreement

In the previous section, we have explained the three willingness state of an agent. Depending

on the willingness state of each agent in god view, there are nine possible situations as shown in

Fig. 3.2 . Notice that while the two goals are not conflicting in some of the situations, the goals

are still in conflict in others. For example, in situation 2-3, the robot’s goal is now aligned with

the human’s goal. In situation 1-1, although the robot’s goal and human’s goal differ, they are not

conflicting and is under an agreement to not bother each other. However, in situation 2-1, the

human is trying to re-organize the robot’s goal, while the robot is continuing its own goal.

Note that the interpersonal situation could alter from a conflict situation to an agreement situ-

ation, and then to a different agreement situation. For example, the human and robot may have

agreed to discuss the details of the goal to proceed (which is either situation 2-3 or 3-2). The

human and robot may end up finding out the goal is impossible to accomplish, and therefore de-

cides not to proceed the goal (which is situation 1-1). For discussion purposes, we will distinguish
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the first agreement with any agreement that happens after the first agreement. We will define any

interpersonal situations that happen between the previous task and until the first agreement as an

initial interaction and any situation happening after the initial interaction until the end of an inter-

action task as a during interaction. For most simple task interruptions, the final agreed situation

is equal to the agreed situation of the initial interaction (as we show in the experiments section).

Therefore, we will mainly focus on the initial interaction.

An interesting situation is situation 2-2. This is the situation where a human tries to re-organize

a robot’s goal while at the same time, the robot tries to re-organize the human’s goal. A real

example of this situation can be given at a restaurant. A waiter tries to approach a customer to

ask whether he or she requires a new drink for an empty glass. At the same time, a customer may

try to ask for additional food orders. If the waiter was a robot, the robot should understand that

the customer has something to say, and —depending on the situation —listen to the customer’s

request first. Such a situation is not characterized in any of the engagement detectors discussed in

Chapter 2, which shows how understanding the total setting is different from simple engagement.

Other interesting situations are 1-3, 3-1, and 3-3. These situations are unique situations we find

from discussion on willingness. We may call these situations as unintended situations. Unin-

tended situations are unintended conflicts that would otherwise have been a 1-1 agreement. An

example would be when a person asks, ”did you say something to me?” even when no one was

calling him or her. For robots, such situations can often happen due to recognition failures. Ta-

ble. 3.1 summarize the interaction type of each situation. Example of actual situations are shown

in Fig. 3.3 .

3.2.4 Multiple Agents

The discussion can easily be extended to multiple agents. For example, if a robot is talking to

person-A while a different person person-B is trying to talk with the robot, the situation between

the robot and person-A is 2-3 (3-2), the situation between the robot and person-B is 2-1, and the

situation between person-A and person-B is 1-1. The point is that the current accepted goal of the

robot is relevant to person-A but irrelevant to person-B. Likewise, when the robot, person-A, and

person-B are all talking together, they are all under agreement.
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Table 3.1: Interaction type of each situation.

state human-robot interpersonal situation

1-1 (Hn-Rn) agreement: no interaction
1-2 (Hn-Rp) conflict: robot to human interaction
1-3 (Hn-Rr) unintended: mistaken by robot
2-1 (Hp-Rn) conflict: human to robot interaction
2-2 (Hp-Rp) conflict: purpose-crossing interaction
2-3 (Hp-Rr) agreement: interacting for human’s goal
3-1 (Hr-Rn) unintended: mistaken by human
3-2 (Hr-Rp) agreement: interacting for robot’s goal
3-3 (Hr-Rr) unintended: mistaken by both

Accepted	
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no	contact	
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Fig 3.3: Example pictures of interpersonal situations.
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Fig 3.4: Transition between each interpersonal situation at an initial interaction.

3.2.5 Transitions between Interpersonal Situations

Fig. 3.4 shows the possible transitions to reach an agreement at an initial interaction. Here,

we assume that only one goal is changed one at a time. Also, since we are focusing on an initial

interaction, the two agents will no longer change their goals once reached an agreement.

An interaction situation is determined from the god view willingness state of the robot and the

god view willingness state of the human. A robot may start from a willingness state depending on

the flow of the task. For example, if the robot is doing its task, it is at a non-connected (irrelevant)

state. If the robot needs to contact a human before continuing the task, it is at an outward connected

(active) state. However, a willingness state will not start from an inward connected (reactive) state,

as this is a goal outside of the task flow. Likewise, a human’s willingness will also start from either

a non-connected or outward connected state. Depending on the starting situation, the robot and

human will change the situation based on their behavior until reached an agreement situation. In

the next section, we will go over in detail, how such transitioning of situations can be modeled as

a probability graph for computation.
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3.3 Situation Scenting Model

3.3.1 Modeling the Decision Process

In order for a robot to understand its current interaction situation, the robot must know the hu-

man’s willingness state. However, this is hidden to the robot and must be guessed from sensor ob-

servations on human behavior. On the other hand, the robot knows its own state. In an interaction

situation, a robot will conduct some behavior related to the robot’s desire (primary willingness).

The robot behavior will influence a human’s willingness state, and thus, also influence the per-

ceived human behavior. Likewise, the human behaviors —which implicitly indicate a change or

no change in human’s willingness state —will influence the robot’s next behaviors. Using a time

index i, we can illustrate such relations of human willingness state xi, robot primary willingness

y0, robot behavior ai, and human behavior oi as in Fig. 3.5 . We name this graph representation of

human-robot interaction from the perspective of willingness as the situation scenting model. (In

[119], we use the term ”agreement model”. The term is specifically used under the HRI context.

However, in this book, we will be speaking of interaction in relation to the total setting. Therefore,

a more general terminology ”situation scenting” is used instead of ”agreement”.) We will simplify

the graph representation by implicitly representing the robot’s willingness yi with ai (ai ∝ yi).

The model assumes that behavior and willingness relations are Markov i.e. there are no latency

in behavior and influence on one’s willingness. We will discuss whether this assumption is valid

later on in the discussion section.

3.3.2 Transition and Emission Probabilities

Although we take into account human behaviors for controlling our robot behaviors, we as-

sume that the robot behaviors are independently controlled and that we are able to ignore the

probabilistic relation of human behavior causing robot behavior. From this assumption, the agree-

ment model is nothing more than a Hidden Markov Model (HMM) by defining a joint willingness

Xi = (xi, ai) as states, and defining human behavior oi as observations. Therefore, we are able to

solve the problem of understanding interaction situations as an HMM problem. Our probabilities

of interest are the transition probability P(Xi|Xi−1) = P(xi, ai|xi−1, ai−1) and emission probability

P(oi|Xi) = P(oi|xi, ai). For the transition probability, we are able to further rewrite the probabil-
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Fig 3.5: The situation scenting model. xi are the hidden human willingness state. oi are the
human behaviors observable by the robot. ai are the robot behaviors. y0 is the robot’s primary
willingness.[119]

ity using Bayes ball, and conditional independence between ai−1, xi given joint (xi−1, ai). That is

(denoting time index i − 1 as j)

P(xi, ai|x j, a j) =
P(a j|xi, ai, x j)P(xi|ai, x j)P(ai|x j)

P(a j|x j)

=
P(a j|x j, ai)P(xi|x j, ai)P(xi|ai, x j)P(ai|x j)

P(a j|x j)

= P(ai|a j)P(xi|ai, x j)

(3.1)

As the robot behavior is independent from the previous behavior, P(ai|ai−1) = P(ai). P(ai) rep-

resents a scaling factor. Thus, P(xi, ai|xi−1, ai−1) ∝ P(xi|ai, xi−1). In summary, we will analyze

human-robot interaction situations based on the two probabilities P(xi|ai, xi−1) and P(oi|xi, ai).

3.3.3 Observations

From a technical viewpoint, no observations are easy to achieve when it comes to human behav-

ior. However, human head directions have been used as an approximation of human gaze (percep-

tual) direction for engagement detection ([4, 73]). Moreover, gaze has an important connection

with PCT; which is the basis from the psychology field we are using to explain interpersonal

situations.
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Fig 3.6: Two examples where a person is looking away from the table. Both are looking away,
however the person is under an internal state irrelevant to the another agent with the left image,
but is acting to another agent with the right image.

In the PCT assumption, an agent behaves according to what it perceives. Therefore, the obser-

vation where the person is looking (eye gaze) most likely correlates to the human’s current goal.

As we defined the willingness state in relation to goals, it is not a surprise that the observation

of human gaze or head direction tells us the willingness state of the person. However, the human

gaze direction does not exactly tell the willingness state and contains uncertainty. When a person

behaves according to an internal decision (e.g. emotions, thoughts), the gaze direction is irrelevant

to goals of the other agents. Therefore, even if the person was looking toward the robot, there is

a chance that the gaze could be an acceptance of another agent’s goal but also a chance that the

gaze is a result of an internal state. The willingness state is remained hidden. Real examples are

shown in Fig. 3.6 . Although in both pictures, the person is looking away from the table, one pic-

ture indicates a non-connecting willingness state while the other indicates an outward connecting

willingness state.

Although we will be using gaze by default, the important logic behind is that, there is some

type of observation that indicate a higher probability of acceptance on a different agent’s goal

(disturbance) over the current agent’s goal. In general, such an observation could be a binary

observation of more toward the other agent’s goal and more toward its own goal. In the case of

gaze, the binary is the person is looking toward the robot and the person is looking away from the

robot.
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3.3.4 Robot Behaviors

As discussed in the previous sections, a robot’s behavior a is an implicit representation of the

robot’s willingness y, where y is one of the following: 1) Agent’s goal is irrelevant to the other

agent (Rn), 2) Agent’s goal is an action to the other agent (Rp), 3) Agent’s goal is a reaction to

the other agent (Rr). (Likewise, we will use Hn, Hp, Hr to indicate the human’s willingness. See

section 3.4.2 for details.)

The concrete behavior itself can be of any motion by the robot. In addition, the above behavior

categories are not specific to interaction behaviors as they are categorized according to goals. Any

task action will implicitly indicate one of the behavior categories. For example, if a robot is not

interacting and is doing a task action, the goal is irrelevant to the other agents, and therefore, the

task actions are all Rn behaviors despite the content of the action.

In a multiple people setting, a robot could be talking with person-A while person-B is trying

to interrupt the conversation. The robot’s behavior is Rr to person-A but Rn to person-B. As in

this example, a robot’s behavior category is not dependent on the robot’s motion and may differ

depending on the opponent.

Although concrete behaviors depend on the objective, social, or physical context, we may define

a generalized behavior category-transitioning pattern for the robot. In section 3.2, we went over

the possible transitions from a conflict situation to an agreement situation. The objective of the

situation engine (especially for the initial interaction) is to resolve a conflict situation and enter an

agreement situation. From the transitions in Fig. 3.4 , we are able to define a behavior category

transitioning pattern to meet an agreement situation. The pattern and procedure is shown below.

First, we have stated that a behavior is decided from human behavior o and primary willingness

y0. y0 is determined by task flow. When a robot is doing its task or not interacting, y0 is Rn. When

a robot must approach a human to begin an interaction, y0 is Rp (including situations where a

robot is actively moving toward the human). In addition, using our situation scenting model, we

are able to estimate human willingness x′ from observation o. That is, we calculate the posterior

probability (using a recursive function f ) of each possible willingness state, and select the most
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likely state as our estimate.

x′i = argmax
x

P(x|o0:i, a0:i)

∝ argmax
x

P(x, ai|o0:i, a0:i)

∝ argmax
x

P(oi|x, ai)
∑

j

f j(i − 1)P(x, ai|x j, ai−1)

(3.2)

Using x′ we are able to understand the interpersonal situation, thus, a robot’s willingness

changes from y0 to a different state y if in conflict. When a robot is capable of interacting (which

is decided by task flow) and x′ is likely Hp, y will change to Rr to resolve the conflict. When a

robot fails to interact with Rp (x′ does not change from Hn), y will change to Rn or will stay Rp

depending on task flow. When a robot detects x′ as Hr while y is Rp, y will change to any state

defined by task flow.

3.3.5 Agreement Level in Behaviors

If we compare different behaviors of the same category, we will notice that some behaviors

may lead to an agreement quicker. For example, stare at the person, stare and wave the robot’s

hand, or even grab a person’s shoulder and force him or her to look toward the robot are all Rp

actions but will have a different effect when leading the situation to an agreement. We may define

such differences as an agreement level. In general, we may model multiple behaviors of the same

category but with different levels. However, the more levels we add, the more complex our model

will become. For simplicity, we will consider only two types of level in this book: normal basis

(steady) level and one resolve faster level that uses speech. To distinguish different level behavior,

we will use the following notations in this book: Rn0, Rp0, Rp1, Rr0, Rr1, where 0 indicates the

steady level (no speech behavior) and 1 indicates the resolve faster level (speech behavior). Rn1

is not included as this was not observed from the dataset we used to train the model (although

theoretically, Rn may also have a speech level behavior such as speaking ”go away”).

3.3.6 Forward Guessing

One of the problems with using HMM based models on an application running in real time, is

that, the HMM may not find the best estimate from the current observations. For example, from
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one observation, if the person is looking away, the model might estimate x0 as Hn. However,

after three observations, the model might update its estimate on x0 as Hp after seeing the other

observations. Although this is not a problem if we were to only estimate the situation (we may keep

on observing until reached a confidence threshold), it is a problem for the situation scenting model

since the robot needs to decide its next actions from the most recent estimation. The inaccuracy

of the estimate with few observations will delay the robot’s response. It may take a while for the

robot to realize that x is actually Hp instead of Hn. We do not want the robot to wait till it is

confident, but rather have the robot behave so that it can gain more confidence on the situation.

The robot should behave whether it is confident or not, but at the same time, should behave in a

reasonable way. This is partly why we call it scenting rather than detecting.

To solve this problem we use a technique we call forward guessing. We assume that the latest

observation continues for a while in the future. That is, if the current observation was look away,

look toward, we will assume that the observations in the coming future would be look away, look

toward, look toward, look toward. For deciding the robot’s next behavior, we use the estimation

from the forward guessed sequence. (We only use the forward guessed sequence for deciding the

behavior. For understanding the situation, we will use the estimation from the raw observation

sequence.) The strategy is naı̈ve, yet is simple enough to apply to any observation sequence.

A question related to forward guessing, is to what magnitude should we seek into the future?

When the current observation is look away, look toward, how many look toward should we add to

the raw sequence? The less we seek into the future, the more similar result to the raw sequence

we will get. But what happens if we seek too much in the future? There is an interesting and

reasonable result regarding this question. Using the probabilities we discuss in section 3.4, let us

assume the situation where a robot is Rp trying to re-organize the human’s goal, and we observe

a looking toward after an Rp1 followed by an Rp0 behavior. An intuitive guess would be that x is

Hr as the person looked back at the robot after the robot’s speech. With a reasonable seek in the

future, our model also returns an intuitive guess Hr. However, if we seek long into the future, our

model returns Hp. There is a reasonable and intuitive explanation for this result. The key is that

the final robot behavior was Rp0. This means that in the seeked future, the person is looking toward

the robot for a long time although the robot is not in speech. It would be more intuitive for the

person to return to his or her goal if the robot had nothing to say. If that goal were irrelevant to the
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robot, the person would most likely look away from the robot (at least from the PCT perspective).

However, if the goal was relevant to the robot, it is understandable that the person is not looking

away from the robot. Such a situation is Hp. As shown in this result, a long seek into the future

may give a sequence that would have a completely different meaning from the current situation.

Therefore, we should not seek too close but not too far in the future. In the experiments, we seek

three frames of the future.

3.3.7 Backward Trimming

The other problem with using HMM models on runtime is, the observations may be continuous.

For example, let us say that a person is nearby the robot and the robot is able to observe the person

the whole time. When there is no interaction, the person is looking away from the robot. This may

lead to a very long observation of look aways. Usually (and for the recordings and experiments)

this was not a problem as a person appeared and disappeared from the robot’s view. The sequence

was re-initialized every time the person re-appeared in the view. However, this might not be always

the case in some situations. For example, think of a receptionist-helping robot. The robot is always

next to the receptionist and responds only when the receptionist is about to give an order. In such a

scenario, the initial state would refer to the situation that was happening first thing in the morning.

The initial state would most likely give a wrong effect if this was used for estimating something

happening in the afternoon. (The model will try to estimate the human willingness from the global

situation rather than what is happening locally at the moment.)

To solve this problem, we use a technique we call backward trimming. When we observe a

look toward observation after a look away observation, we will look back at the sequence and see

how long the person was looking away. If the look away sequence was very long, we will trim the

current sequence so that the current sequence looks as if a new person appeared in the scene to

begin an interaction.

How far in the past should we seek? We must be careful, as a look away between two look

toward may sometimes be valuable. For example, ”that person was looking toward me a second

ago, but looked away quickly, now the person is looking to me again” is a valuable information in

that, it could lead to a guess of ”this person may have a habit of looking around, so this looking

behavior may just be a coincidence rather than a sign of engagement.” Therefore, we should not
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Fig 3.7: The directions robot setting in the HRI video recordings used for training our model.

decide to trim by only looking into a few shots of the past. Yet, at the same time, we must decide to

trim before looking too far into the past. We should not leave an interaction context that happened

far in the past in the current sequence. In the experiments, we seek five frames of the past. If

the observation of the last five frames is look away, we will reset the observation sequence with

leaving only the most recent look away.

3.4 Understanding Model Characteristics from Recordings

3.4.1 Setup

First we will discuss how our model applies to a real HRI scenario. For the HRI scenario, we

will use in-the-wild HRI video recordings from the directions robot [14]. An image of the setting

is shown in Fig. 3.7 . The recordings capture a quantitative number of daily-situated interaction

beginnings and endings, both successful and not successful. In the recordings, a Nao robot po-

sitioned in front of an elevator gave directions to people who came by close to the robot. Each

recording began with a person (or group of people) coming in toward the robot and ended with a

walking out from the recording camera. Most people interacted with the robot by asking direc-
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tions or by playing with the robot, while others refused to interact after a robot speech. In most

occasions, the robot had floor for starting the conversation and —although people sometimes were

in groups—interacted with one person who was most engaged. The robot was autonomous, used

an external wide-range 2D-camera to capture human faces, an external Kinect microphone array

for speech recognition, but used default speaking and motion capability of the robot. We use 93 of

the recordings and add labels to the recordings from the perspective of willingness. These labels

will help understand the characteristics of willingness in a real HRI situation. Also, the labels will

be used to train the situation scenting model for the other experiments.

3.4.2 Labeling Human Willingness on Recordings

As discussed in section 3.2, a human willingness state x has three categories: 1) Agent’s goal is

irrelevant to the other agent (Hn), 2) Agent’s goal is an action to the other agent (Hp), 3) Agent’s

goal is a reaction to the other agent (Hr). Therefore, we will label each video with one of these

states. Note that the state could change multiple times in one video.

One problem with labeling human willingness state on existing video recordings is, we do

not have the ground truth from the participants (although, the participants would not be able to

concentrate on the interaction if we were to ask for the ground truth). There are no pre-defined

labeling rules as the human behavior may vary in many ways. However, by observing multiple

videos of similar situation, we are able to extract a speech or motion pattern of the human. We will

begin by finding whether there is a possible willingness state over the finite number of patterned

human behaviors. The found patterns in the recordings are listed below.

1. A human ignores a robot speech.

2. A human conducts a behavior not related to the context of the robot speech.

3. A human talks to the robot before the robot speech.

4. A human waits for an answer from a robot.

5. A human behaves according to a robot’s favor (e.g. ”swipe a badge”).

6. A human responds with an utterance (e.g. ”uh...”).
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7. A human quickly responds with a request after the robot speech.

8. A human quickly responds with a negative response.

9. A human starts playing with a robot after a negative response.

In some of the patterns, the willingness can be easily labeled as the situation matches the defi-

nition of one of the states. In pattern 1 and 2, it is obvious that the goal of the robot is not being

accepted, nor is the person willing to interact with the robot. Therefore, the willingness state x

must be Hn. In pattern 3, the person is trying to contact the robot to re-organize its goal. In pattern

4, the person is waiting for a re-organization. Therefore, in these two patterns x is Hp. In pattern

5, it is obvious that the person is accepting the robot’s goal and therefore x must be Hr.

Other patterns require a discussion before labeling. For instance, pattern 6 is an interesting

reaction we see in real HRI. The person may be thinking of how to word his or her goal and x

could be Hp. However, in the recordings, the first question by the robot was ”can I help you find

something?” which can be immediately answered by a ”yes” if x was Hp. Therefore, we have

labeled pattern 6 as Hr. In contrast —from our above discussion—pattern 7 is Hp as the person

immediately responded to the robot’s question. Pattern 8 is a tricky one. The global willingness is

Hn as the person is trying to end up with a 1-1 agreement. However, to reach a 1-1 agreement, the

person first responds to the robot’s question, which is a 3-2 agreement. We will label this pattern as

a change from Hn to Hr, and then back to Hn to distinguish between no reaction and with reaction.

Note that in reality, a robot will not immediately accept an agreement situation. Although a robot

understands the situation as an agreement, it will not accept the situation as a real agreement until

there is enough confidence. If trained correctly, the model should detect a 3-2 situation but with

low confidence for patterns like 8. It should only accept the final 1-1 agreement and therefore, the

whole interaction can be seen as a continuation of an initial interaction. The last pattern is a unique

pattern found in the recordings. A person answers ”no” to the robot’s question ”can I help you

find something?” but is actually willing to interact with the robot. Again, the global willingness is

Hp but the local response is Hr. Therefore, the pattern can be seen as a change from Hr to Hp.

Besides the above patterns there were some ambiguous patterns where a person was looking

around near the robot but not speaking. We have labeled all ambiguous patterns as Hn. The reason

is that, from the perspective of PCT, it is less likely for a person to look around if the goal is
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targeted toward the robot. It is most likely that the person is under an internal input or a different

goal irrelevant to the robot.

[55] discusses the labeling of engagement and points out that there exist labeling differences

depending on the annotator’s character. However, their focus is mainly on a conversational inter-

action. We will see from the labeling in our recordings that, when there is a task skill that the robot

provides, the engagement (willingness) of a person does not alter as frequently as in a conversa-

tional context. Therefore, we do not take into account an annotator’s character and mainly label

according to pre-defined rules.

3.4.3 Labeling Observations on Recordings

For the observations, a human annotator looked through each recording and annotated whether

the human head was facing toward the robot (Otw), or whether the head was facing away (Oaw),

or whether the head was facing downwards such as looking at cellphones (Odw). All ambiguous

directions were counted as Otw (κ = 0.693). The head direction was annotated and not the actual

gazing direction.

3.4.4 Labeling Robot Behavior on Recordings

As explained in the previous section, the robot behaviors depend on the context of the interac-

tion rather than the action content. A robot behavior is an approximation of the robot’s objective

context that is hidden to the annotator, and the annotator may only see the interaction as a third

person view. We have already discussed that an interpersonal situation may be multiple in the

third person view. Therefore, we will double sample some of the videos depending on the pos-

sible interpretations of the situation. That is, for videos that may have multiple possible contexts

(specifically two different context for the recordings we used), we will label the same video in

two different ways. In the first label, we label the context as the robot is not willing to interact

before the interaction, but begins an interaction because a person has approached the robot. In

the second label, we label the context as the robot is willing to request an interaction, and tries to

encourage approaching people to ask directions. Although the sampled video is exactly the same,
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the labeled behavior is completely different. In the first case, y0 is Rn changing to Rr. In the second

case, y0 is Rp.

In most interactions, y0 has only one context Rn. However, when the human willingness x0 is

Hn, we also sample the interaction as a y0 = Rp context. The exceptional interactions where y0 is

not a sample of Rn and only Rp, is when a person has asked a question before a robot’s first speech,

but the robot begins a greeting and encourages the person to ask for directions. This situation is

2-2 —although both the human and robot are willing to interact—the conversation is conflicting.

For all other y, we annotate Rp or Rr depending on speech context of the robot (until the next robot

speech, y does not change). We annotate the robot behaviors from annotated y and from whether

the robot is talking at the moment or not. When a robot is not talking (Rp0, Rr0), the robot silently

gazes toward the human. When the robot is not gazing and is at a neutral state, it is Rn0.

3.4.5 Results on Human Behaviors from Recordings

When all o, x, a are not changing for more than a second, we have divided the interaction into

multiple segments. We analyze and count up the occurring situation patterns from these segments.

We summarize our results in Table. 3.2 . Four sets of 23 recordings were randomly chosen

from the 93 interaction recordings (no duplicates between sets). The table represents the mean

probability of the four sets and its standard deviation. Paired t-test was conducted for analysis.

We first summarize our results during the initial interaction. In the recordings, we have assumed

that an agreement was established after the first two greeting speeches. In our discussion with

labeling human willingness states, we have explained that a robot only accepts an agreement

situation when it is confident. Even if our labels indicate an agreement, this does not indicate

that the robot has detected an agreement with confidence. While the robot is greeting, we have

assumed that the situation is: the robot is trying to understand the current interaction situation

better. That is, a greeting is not part of the interaction content of the agreed situation therefore,

while the greeting is on going, the robot has not yet reached an agreement. When an interaction

ends with only greeting speeches, we assume that there were no during interactions and only an

initial interaction ending with a 1-1 agreement.

The table shows that Otw is higher when x is Hp and y is Rn, but lower when x is Hn and y

is Rp (p < .05), i.e. a human looks toward the robot more when it is the human to request
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an interaction, compared with when it is the robot that requests an interaction. When the

situation is purpose-crossing (Hp-Rp), a human looks toward even more (p < .05). The table also

indicates the different effect of robot speech. When it is the human who is requesting to interact,

speech or no speech has little effect on human looking behavior (p=.602). However, when it is the

robot that is requesting to interact, a human may (but not significantly) look less toward the robot

when the robot is speaking (p=.117). In the recordings, the robot sometimes spoke to people who

were talking over a phone. In these situations, people were looking at the robot but faced away

once the robot had started speaking. The probabilities also indicate that people are sometimes

not looking toward the robot even though they are requesting to interact. In the recordings, some

people looked around while approaching the robot. These also include situations where people

had glanced at another person when someone else was coming close by. Others were looking at

their phone before interacting (they were checking for the room number they were finding).

The second part of the table summarizes the end of an interaction where a human is finishing

an interaction but a robot is still requesting to interact. Although a person is no longer willing to

interact, the person may sometimes keep looking at the robot while leaving the conversation. The

table indicates that when a robot’s willingness is Rr at an end of an interaction, and if the robot

was speaking, the more likely that a human will look back at the robot (p < .10). However,

when a robot’s willingness is Rp such results were not found (p=.468). In the recordings, there

were several situations where a person heard a robot’s request, reacted to the request while the

robot was still in speech, and left (without looking back) before the robot had finished its speech.

The third part of the table summarizes the transition probability of human’s willingness x at

the beginning of an interaction. The table indicates that a human will more likely change from

a non-willing to interact state when a robot speaks (p < .05, excluding one set with no goal

change samples). When a human is not willing to interact (Hn) and the robot is only staring

(Rp0,Rr0), the chance of a human state change is the same as not interacting (Rn0) (p=.398,.513).

For the recordings we used, the probability that a human changes his or her willingness Hn, Hp is

low. In the dataset, people usually had a mind set before interacting (those who wanted to interact

approached the robot for interaction purpose, those who did not want to interact were coincidently

standing near the robot). Another indication from the table is that, Hr changes even if the robot is

still requesting to interact (Rp). However, this is due to how we analyzed the data. People often
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responded a ”no” which is —in the long context—a declaration of not willing to interact. We have

analyzed ”no” responses as Hr to distinguish from ignoring behaviors. Probability is lower when

a robot is speaking, due to the fact that people often respond ”no” right after robot speech.

The results also show probabilities for rare unintended situations discussed in section 3.2. These

are situations where a robot mistakenly reacts and a human starts interacting due to the mistaken

reaction. Such situations were analyzed using our double sampling method. The results indicate

that, when a robot’s willingness is Rr, the chances of a person looking toward a robot is

the same despite whether the human’s willingness is Hr or Hp (no significant difference as

p=.333,.588). In addition, observations on when a robot speaks toward a person with Hr varied

among the recording sets. As we discuss in the next section, this is partly due to the lack of

recordings of such situation.

3.4.6 Limited Sample Situations in Recordings

In most of the recordings, a person did not change his or her goal throughout the interaction. We

did not find as many Hr-Rp situations where a robot had a desire of giving directions and a person

who did not care about directions started listening for directions. However, such cases were not

zero. In two recordings, a person changed from Hp to Hr. A person tried shaking hands with

the robot, but the robot tried to give directions. The person gave up shaking hands and decided

to ask for directions. The other situation happened when the robot could not catch where the

person wanted to go. The person first tried to correct the robot but then decided to —although

the directions were not the answers she had intended—listen to the robot’s directions. In nine

recordings, a person changed from Hn to Hr. The most common pattern of this type was: a person

had left but noticed that the robot had something additional to say and then came back to interact.

Another common pattern was: two or more people were talking with each other but the robot was

interrupting their conversation. As they had been interrupted, one of the persons decided to talk

with the robot.

Due to the recordings we used, we do not have enough results for when a robot keeps ignoring a

person who is requesting to interact. However, 11 recordings finished from robot speech recogni-

tion failure. In these recordings, people had retried recognition two to three times but finally gave

up interacting as the robot kept on failing to understand human speech. In three recordings, the
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Table 3.2: Situation and Probabilities from 92 Recordings (4 sets of 23 recordings each) [119]

probability situation mean stddev

emission Otw Hn-Rn0 .301 ±.0472
at beginning Hn-Rp0,Rp1 .392, .303 ±.0215,±.0954

Hn-Rr0,Rr1 .398, .293 ±.0104,±.123
Hp-Rn0 .617 ±.139
Hp-Rp0,Rp1 .772, .798 ±.200,±.124
Hp-Rr0,Rr1 .788, .767 ±.0242,±.0796
Hr-Rn0 .833 ±.319
Hr-Rp0,Rp1 .853, .552 ±.153,±.332
Hr-Rr0,Rr1 .884, .635 ±.148,±.423

emission Otw Hn-Rp0,Rp1 .258, .204 ±.0746,±.154
at end Hn-Rr0,Rr1 .206, .316 ±.0990,±.108

transition of Hn → Hn-Rn0 .975 ±.00713
no change in Hn → Hn-Rp0,Rp1 .951, .850 ±.0419,±.104
willingness Hn → Hn-Rr0,Rr1 .961, .871 ±.0333,±.0830

Hp → Hp-Rn0 .986 ±.00946
Hp → Hp-Rp0,Rp1 .948, .964 ±.0553,±.0684
Hp → Hp-Rr0,Rr1 .991, 1.0 ±.00604,±.0
Hr → Hr-Rn0 .612 ±.209
Hr → Hr-Rp0,Rp1 .732, .417 ±.200,±.479
Hr → Hr-Rr0,Rr1 .766, .666 ±.171,±.471
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Fig 3.8: The detection pipeline used in the experiments for detecting human behavior. Note that a
more accurate, fast, less computational, and stable detection pipeline is used for the other chapters.

robot accidently finished the interaction by misrecognizing ”uh...” as ”nah...”. In these situations,

people tried to re-initiate the interaction with the robot, but the robot kept on ignoring them. The

accidental finishes sometimes lead a person with willingness Hr to change to Hp. As in these

samples, people do not easily give up interaction; however, the robot did not look busy when its

goal was Rn. Different results might be observed when a robot actually does look busy when a

person is trying to re-initiate an interaction.

Other limited samples include the purpose-crossing situation, which was found in only five of

the recordings. In these recordings, the conversation was conflicting. Most of the time, the robot

agreed with the human’s goal after speech recognition. Exceptions are the Hp to Hr recordings

that we have already discussed.
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3.5 Experiment

3.5.1 Applying Model on Real Robots

In the experiment, we will see how our situation scenting model will work on an autonomous

interacting robot. For estimating the interaction situations, we will use the probabilities found

from the recordings in the previous section. We will wait at least for two interaction segments

before giving estimation. (A segment is until a change in observation or robot behavior is detected

OR when all model variables o, x, a are not changing for more than a second.) Before, going on

to the experiments, we will go over the technical settings to use our model in the scenario.

In order to capture whether a human is looking toward a robot, we either mounted an RGB-D

camera or used the robot’s internal camera. The placement of the camera was different depending

on the robot; however, we used the same algorithm to detect human behavior. The algorithm

consists of three parts. The first part uses RGB data and Open Pose [17] to detect human joint

positions in pixels. Depth information is added to the neck joint of the human, and any pixel

with greater depth value is subtracted as background. The second part crops the head boundary

using the extracted pixel positions. An upper body Haar cascade detector is used on the subtracted

image to find head boundaries. The third part uses the HyperFace [106] network to estimate human

head poses from images. The cropped head image is passed to HyperFace and the estimated roll,

pitch, yaw values are used to estimate head orientation in 3D space. A threshold was applied to

distinguish looking toward and away from the orientation values. Note that we have used the head

orientation as an approximation of gaze direction. (The state of the art eye gaze recognition is

not yet reliable when faces are far from the camera. They require calibration or high-resolution

cameras, as well as camera distance constraints [97]. Head movements are alternative cues to eye

gaze, and the robustness and accuracy of head detection itself is much more reliable.) Although we

use state-of-the-art technology to capture observations, the method has limitations in view range

and timing. Depending on the camera resolution, at worst case, a human must be within 1[m] of

the camera range for accuracy. In addition, we rely on external GPU machines for calculation.

Depending on the robot’s CPU power and network condition, a 1[sec] delay occurs while image is

being processed. Although timing is not strictly handled and proximity is limited, we are still able

to capture an overall scope on the occurring interaction situations. The detection pipeline is shown



— 3： Interpersonal Situations and the Situation Scenting Model — 73

in Fig. 3.8 . The algorithm was used for the experiments in this section. In the later chapters,

we use a more accurate, fast, less computational, and stable pipeline using single-shot multibox

detectors [76] and datasets from [155].

Regarding the robot behaviors, we have already mentioned the decision process in section 3.3.4.

However, we have not yet mentioned how the agreement level is decided. That is, the decision

on whether the robot should speak or not. We will apply a decision rule based on findings from

our analysis, which we will discuss more deeply in section 3.6. Here, we will explain the basic

decision rule as below: a robot will speak once at the beginning when Rp, and not speak for Rr. As

an exception, when a behavior is applied by task context (e.g. moving toward a person) the robot

may begin with Rp0.

The concrete behaviors depend on the context of each experiment especially for Rn. For Rp0

and Rr0, the robot will turn its head toward the person. For Rp1 and Rr1, the robot will turn its head

toward the person and also speak.

3.5.2 Experiments

We will do one experiment in a non-public in-lab domain and two experiments in a public do-

main. One of the public domain experiments was interaction-only similar to the recordings, but

the robot may or may not have conversational floor. The other included a task situation. In each

experiment, we implemented our model on top of a scenario flow designed by an engineer. (The

purpose of the experiments was to see the effects of the situation scenting model, and therefore, the

task side of the system was simplified. Complex task interrupting situations such as the one dis-

cussed in Chapter 5 were not part of the experiment.) A different engineer designed each scenario.

When there were multiple people, the robot faced toward one of the persons for interaction.

In-lab Experiment

The first experiment was held in-lab where one participant (the task flow engineer) interacted in

the scenario. The participant was debugging the task side of the scenario, and interacted as part of

the task flow. The engineer was not informed how the robot would reason a situation; therefore,

the setting captured natural human behaviors worth discussing.
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Fig 3.9: The in-lab experiment task flow.

The task had four phases. 1) The robot was looking around and moved close to a person who

seemed to have had a request (Rr), 2) the robot listened to the person’s command, 3) the robot

conducted the command of finding and delivering an object, 4) after finding the object, the robot

approached back to the person and confirmed an interaction before handing over the object (Rp).

In phase 4, the robot said ”hey” to confirm an interaction with a maximum of three times when the

situation was uncertain. Pictures of phase 4 are shown in Fig. 3.9 .

The participant was not always looking toward the robot at phase 4, and was sometimes looking

at debug logs when the robot approached with an object. The participant caused different response

timing. We experimented whether our situation scenting model would understand the different

situations and thus, lead to different robot behaviors.

Estimation results are shown in Fig. 3.11 and the actual interaction in Fig. 3.10 . From the

graphs and interaction images, we can see that the robot distinguished the two situations. In the

first situation, the participant was focusing on the logs and looked back at the robot after it had

said ”hey.” The robot estimated this situation as Hr-Rp. In the second situation, the participant

was not focusing on the logs and looked back at the robot as it was approaching him. The robot

estimated this situation as Hp-Rp.
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Hey	 !	

Did	you	need	
something?	

Fig 3.10: The two different interactions observed in the experiment. One where the participant’s
attention is toward the display (above) and one where the participant’s attention is toward the robot
(below) when the robot is approaching.

From the graphs, we also observe that the robot spoke ”hey” multiple times. Since the camera

used was mounted on the robot’s head, depending on the planned mobile path trajectory, the

participant suddenly appeared in front of the robot’s view. In such situations, the situation was

sudden and uncertain to the robot. Therefore, the speech was triggered multiple times until there

was enough certainty on the agreement situation.

Public Domain Social Context Only Experiment

This experiment was held indoors near an entrance of a building as shown in Fig. 3.12 . The

robot had chatting capability and an engineer designed the chatting flow. Observations were cap-

tured using two external Kinect V2 cameras. Using our model, the robot either responded to

people to start the chatting flow (Rr) or encouraged people to chat by calling ”hey” (Rp). When no

one was nearby, the robot stayed still (Rn). The robot also tried detecting the end of an interaction

using our probabilities. However, the flow was also programmed so that when the phrase ”bye”

was detected, the interaction would forcefully finish. Also, when a person was lost for a few sec-

onds, this also triggered an end of an interaction. We collected a total of 14 interactions in one day

(including one where a robot had mistaken a person passing by as requesting an interaction).
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Fig 3.11: Different situation estimation from different human behavior. The two graph show the
estimated posterior probability of the human state (-1.0 not willing, 1.0 willing). Gray, blue, red
line denote Hn, Hr, Hp. Blue blocks in observation indicate looking toward, gray blocks away.
Blue blocks in robot behavior indicate Rp1, light blue Rp0 (moving toward human), and pink Rr0.
In the first graph, the person responds after the robot speech thus Hr is estimated. In the second
graph, the person was looking before the robot speech thus Hp. [119]

Fig 3.12: Picture image of the public domain social context only experiment.
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As the appearance of the robot looked interactive, in 10 interactions people were Hp, and in three

interactions people quickly responded with a ”no” and went away. People were looking toward

the robot (including those with ”no” responses) and therefore, the robot reasoned all situations as

Hp-Rr and agreed to interact. In most of the interactions, the person walked away at the end of

the interaction or said ”bye.” These cues triggered the end of an interaction before any detection

using probabilities. However, in one interaction, two people started talking with each other and

the robot detected this as an end of a conversation (Hn).

Public Domain with Physical Context Experiment

This experiment was held at a robot exhibition. The robot demonstrated its task capabilities of

picking objects from a shelf. Group of people walked by to see what the robot was doing. The

robot interacted optionally when it was not picking objects and —after greetings to confirm the

situation—explained the demonstration to any audience that seemed Hp or Hr and asked whether

the robot should pick something from the shelf. A low-wall barrier between human and robot

was set for safety. A rotating Kinect V2 camera on the robot torso always faced the audience and

captured the situation. We collected a total of 56 interactions in one day.

The task had five phases as shown in Fig. 3.13 . 1) The robot was at start position (between the

shelf and audience) and optionally moved close to the audience, then interacted (Rp) depending

on the situation, 2) the robot went to pick an object, 3) the robot turned back to show what it had

picked to the audience, 4) the robot placed the object back to the shelf, 5) the robot went back to

start position. Pictures of the experiment are shown in Fig. 3.13 .

As the exhibition setting attracted people, most of the time, people were looking toward the

robot. The looking caused similar Hp or Hn estimations as in the interaction-only experiment.

The robot succeeded in agreeing with 39 interactions (including agreeing not-to-interact with non-

interested people walking away), leading to an F1 score of 0.821 (precision 0.813, recall 0.830).

However, we also observed failures in situation understanding. In four interactions, the audience

requested what the robot should pick from the shelf while the robot was at phase 3 or 4. This was

observed from people who copied interaction of other audiences. To the audience this situation

was Hp − Rr while to the robot the situation was Hp − Rn. The robot’s behavior had not looked

Rn, and thus, caused this difference in understanding of the situation. Another four interaction
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Fig 3.13: Flow of the public domain with physical context experiment. The robot finds an engaged
user then fetches a requested item from the shelf, comes back, and shows the requested item. After
showing the item, the robot returns the item to the shelf.

failed, as head directions were not representing actual gaze directions and the robot thought Hn as

Hp. Other failures included people who could not understand the language of the robot and were

confused.

3.6 Discussion

pros and cons of robot speaking behavior—While a speech helps to gain information on an

interaction situation, and also helps getting people to interact, we also found drawbacks. As a

speech would change a person’s goal and interaction situation, the situation becomes more un-

certain. For example, when a person is looking toward and a robot reactively speaks ”hi,” the

information person is looking toward could indicate either a situation Hp-Rr or Hr-Rr. No signif-

icant probabilistic difference in observation was found for the two situations. In contrast, when

a robot does not speak, it is unlikely that a human’s goal will change. Therefore, the human’s

willingness is either Hn or Hp. The two has a significant probabilistic difference in observation.

Perhaps one of the learning from our discussion on conflict and agreement are that, an interaction
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could unintendedly happen. An unintended interaction could confuse both the human and robot.

It may be better for the robot to not immediately say ”hi,” but wait a while, be skeptical, and be

sure of the situation before responding with greetings.

situation of surprised latency—We have assumed that there are no latency between robot be-

havior and the influence on human’s goal. For the most part, the assumption held true. In the

recordings, people reacted quickly from the robot speech and answered ”no”. They quickly re-

sponded to a robot’s request including utterances such as ”uh....” However, we also observed rare

cases where this assumption may not be true. In an accidental finish found in the recordings, peo-

ple were surprised when the robot suddenly ended the interaction. In such situations, it took people

some time before they could react to the robot’s behavior. Perhaps the worst type of interaction

is this type of situation where even the human is not able to understand the situation. When an

interaction is not understandable to both the human and robot, the robot will no longer be capable

of reasoning the situation from probabilities.

agreeing and engagement—In the task scenarios, the robot was able to reason conflict and

agreement situations —including Hp-Rp—in different scenarios using the same probability model.

This was possible by using sequence of human head observations and robot behavior information

instead of person location. The model was able to handle both people approaching and people

in place (robot approaching). Our results indicate that, especially for public domains, agreeing

was mostly the same as understanding engagement. The in-lab experiment, however, indicates

how understanding purpose-crossing situation might benefit in non-public domains where people

behave in various timing.

fire and forgetting interaction—In the interaction-only scenario, the engineer was concerned

about detecting the end of an interaction. However, in the task scenarios, the engineers did not care

much about the end. Rather, the engineers preferred a timeout when the robot was not receiving

a command or an answer. In scenarios where the robot was doing a task, the robot ended the

interaction by start going for a pick, or after finishing a handover. Instead of reasoning the end of

an interaction for a robot under physical context, perhaps we could begin (fire) but purposefully

end (forget) an interaction. The advantage of this strategy is that, if the end were purposeful, it

would not be accidental (to the person, why the robot stopped interacting is understandable).

controlling expectation—In the interaction-only experiment, some people asked to play the
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game of rock, paper, and scissors. Other people asked to have a walk with the robot. The requested

physical skill was diverse. In contrast, in the task experiment, people asked to fetch an object from

the shelf. It was clear to the audience what to expect of the robot. Results show that the task

context provides more control over user expectations.

3.7 Conclusions

Intuitively, a robot’s speaking behavior should have an effect on the person’s willingness, and

whether the person was looking after a robot’s action should provide a valuable hint on a person’s

willingness. We found from our analysis that our intuition was true. The probability of a person’s

looking behavior and willingness changes depending on the robot’s speaking behavior. The prob-

ability of a person looking toward the robot after a robot’s response is significantly higher when

the person is willing to interact with the robot. Therefore, modeling robot action provides more

information of the situation when compared to only using human observations.

From a technical viewpoint, using a probabilistic model allows us to directly implement the

statistical results found about interpersonal situations. We have found that the implementation

was successful from several experiments. The in-lab experiment has shown that the robot was

able to distinguish whether the person was looking at the robot or responded to the robot using

the probabilities. The public domain experiment showed that the robot was able to successfully

distinguish between people who wanted to interact with the robot and people who did not with a

70% success rate and an F1 score of 0.821.

From an HRI viewpoint, we have found patterns on how people behave in the total setting. First,

a person close to a robot does not necessarily indicate that the person wants to use the robot. This

indicates that understanding a person’s willingness and having the robot to only respond when

it scents an interaction, is a very important function. Second, a robot with a purpose (physical

context) will lead to a much smoother social interaction than a robot with only a social context. It

is easier for the robot to have control over the conversation flow as what the person will request is

bounded, and the robot is more likely to fulfill the person’s desire.



4

Task Execution Systems for Acceptance in
Society





— 4： Task Execution Systems for Acceptance in Society — 83

4.1 Introduction

In order to evaluate the real possibilities of robots, we must get away from game-like settings we

often see in HRI research. In this chapter, we try to capture the essence of required physical robotic

skills in our society. We approach the problem from multiple perspectives. The first perspective

comes from a survey with a vendor. We will look at some of the business-to-business requests

that the vendor has faced before. The requests provide us an actual image of what is already

being asked in business today. The second perspective comes from an investigation on multiple

robot competitions. Robot competitions provide a small-scaled version of actual tasks asked by

the enterprise. Participating in these competitions provide us a more concrete image of required

physical settings and possible skills in near-future business of robotics. The third perspective

comes from what type of intelligence and automation is being researched or is still a challenge

in current robotics. The stories provide us hints on what type of business would be difficult for

robotics. By the end of the chapter, we will summarize the found elements from the different

perspectives. (The second perspective in this chapter covers the topics written in our journal paper

[121]. In this book we discuss the lessons in relation to other perspectives.)

4.2 Perspectives from Vendor

According to the vendor we surveyed, the most often requests are automation in information

centers and teleoperation devices toward entertainment (however, this may be due to how the

vendor commercialized its robot product). While the automation at an information center is a job

of a social robot, what was asked was a human-shaped barebone stack of motors. Social skills were

not requested on the robot but requested on the backyard system. Teleoperation is another field

that requests barebone robot devices, and there is no real need for robotic skills, except actuating

the motors.

In contrast, a more robotic skill that seems to be catching attention is navigation. Although

navigation is requested from the enterprise, they are more of an experimental skill the enterprise is

trying to investigate on. Such skills have their needs for object transportation in the industry, or for

dismantling in datacenters. It is also interesting to note that, these requests also require some sort

of manipulation skill of handling objects. However, precise manipulation in the open world is still



84 — 4： Task Execution Systems for Acceptance in Society —

a challenge and some may prefer an automated infrastructure solution for preciseness. A different

vendor [23] points out that, although not having a manipulation skill, navigation skill may still

provide value to object transportation. Beside combination with navigation, manipulation alone

was not requested except from research institutes. This may be due to the fact that the vendor was

selling a human shaped robot or a mobile base, and those who need manipulation-only skills go

for industrial arms.

To this point, we do not know the general hardware qualities that are expected in our society.

Navigation is preferred, reliable barebone hardware is preferred for interaction, but these are tied

to specific settings and usage of robots. Manipulation is an uncertain field that is being hesitated.

So far, there is no one design that is accepted for the different settings, perhaps due to its cost. One

of the problems of these requests is that, they are framed to how the enterprise envisions robots

from current state-of-the-art (or at least what is believed to be state-of-the-art in our society). The

requests demand solutions as soon as possible, and do not challenge the long-term boundaries of

robotics. Therefore, we must also look at what would be requested of robotics possibly in the near

future.

4.3 Perspectives from Robot Challenges

Robotic competitions try to tackle a specific problem but an existing problem that may be han-

dled by robotics in the near future. The Darpa Robotics Challenge (DRC) held in 2015 targeted

a disaster response setting. The Amazon Picking Challenge (APC) held in 2016 targeted a ware-

house setting. The Tomato Robot Challenge (TRC) held in 2015 targeted an agricultural setting.

The Future Convenience Store Challenge (FCSC) held in 2017 targeted a daily life shop setting.

These challenges were organized by enterprise or government, or sponsored by a specific com-

pany. Although we may not be able to capture the whole picture of what is required in our society

with just four competitions, we will be able to capture some of the common essence that will

draw possible conclusions on hardware and software skills/designs that will benefit the society.

The approach is bottom-up, which is different from the usual top-down approach when designing

robot hardware and systems. Note that although we are aware of other competitions, we will ex-

clude some competitions from our discussion for specific reasons. For example, we will exclude
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Fig 4.1: Mapping of different problem settings at competitions.

the RoboCup@Home [149] as the competition does not target a real problem proposed by soci-

ety. The rules are strictly tied to skill benchmarks rather than to actual settings. We also exclude

competitions that focus more on developing standard platforms for a specific problem (usually

virtual competitions, e.g. the Space Robotics Challenge). These competitions are framed toward a

specific design solution and the discussions would be too platform-specific. We will also exclude

discussions on competitions that focus on multiple robots e.g. the MBZIRC. Although multiple

robots could be one way of entering society, a full discussion on multiple robots would be out of

the scope of this book.

Mapping the different competition settings from its characteristic in required skill (task) variety

and depth, we find that some problems require handling of more variety while others require

handling more depth of the skill (Fig. 4.1 ). The variety shows the number of tasks (e.g. navigate

to a room, pick and place an object, answer user questions, etc.) a single system must handle.

The depth shows the number of steps in that task (e.g. number of actions required in the task,
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number of objects) the system must handle. As a comparison, the present practical systems we

see in industrial settings mostly fall into the right hand corner where both the number of tasks and

the depth of the task is limited. (The plot in the figure may slightly differ depending on how we

define a task as a single task or skill. Here, we will define two skills as different tasks when the

robot changes its workspace or when there is a change in the task problem setting.)

4.3.1 The Darpa Robotics Challenge Finals (DRC)

The competition was held in 2015 in the United States. There were eight continuous tasks that

were held outdoors under wind and sunlight including: driving, egress, door opening, turning a

valve, cutting a wall, traversing debris/walking over terrain, climbing stairs, and a surprise task

(operating a switch/plugging socket). The eight tasks had to be completed within a one-hour time

limit. Teleoperation was allowed and the robots were semi-autonomous. However, the operators

were far away from the robot and only had feedback from the robot’s sensors. When compared to

the other challenges, the unique part of the challenge was that, the field condition was the toughest

and required locomotion and mobility challenges. Power and durability was especially required

for the operations.

The disaster setting required the robot body size to be compact to pass a door but have power

to open the door and be durable at the same time. The robot had to be designed so that it was

durable against fall downs. Falls happened as the robot had to climb stairs and move on a slopped

ground condition (or even thick dirt if the driving task was skipped). In the competitions, the three

main approaches in robot design was 1) transform the robot body (e.g. RoboSimian [47]) or 2) to

use a biped humanoid robot close to human size (e.g. nedo-jsk [62]) or 3) to create a lightweight

compact robot with power (e.g. Momaro [123]). Transformation allows the robot to change its

body size. Bipeds are compact but capable of producing power. One problem with bipeds is that,

they may not be durable in case of a fall over. Lightweight and power are often tradeoffs. One

way to overcome this problem is to use the robot’s whole body to produce power instead of only

producing power with its arm. However, this strategy may cause unintended overloads to some of

the robot’s body part during operation. The robot must be durable and have a safety mechanism

against overloads. An example solution would be the use of stepper motors (See appendix A.1 for

details).
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Fig 4.2: The field and flow of the DRC competition. The robot starts from position 1 and then
moves by either traversing dirt or by driving a car to position 2. The robot then opens the door and
does any of the tasks in area 3. Finally, the robot ends the task by climbing the stairs to position 4.
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The disaster setting also required the robot to work in different workspace and heights. The

robot had to be compact in one task, but had to reach higher or further in a different task. A lower

height was preferred for traversing the debris but required higher height for the valve task. This

can be thought as a problem of moving the relative position of the upper body from the base (foot

or mobile base) position. We will name a body structure that fulfills this function as a middle

mobility layer. The function enhances the robot to work in workspaces of different scale. Such a

function can be expressed as the following equation:

(proot ,Rroot) = Mobilityl1,...,ln(qmobility) (4.1)

where li(i = 1, ..., n) are the link parameters of the middle mobility layer, proot ∈ R3 is the position

of the upper body root joint in the robot base coordinate, Rroot is the orientation of the upper

body root joint in the robot base coordinate which is fixed, qmobility the joint angles of the middle

mobility layer. Fig. 4.3 provides an actual example of a middle mobility layer using parallel links.

The parallel link structure fulfills the function with the following equation:

(proot ,Rroot) = Legl1,l2(qleg) (4.2)

where l1, l2 are the two link length parameters of the leg, proot = [px pz + z0] ∈ R2 where z0 is an

offset from the base, qleg = [qa qb] ∈ R2 the joint angles of the leg.

A common topic regarding robot design is the sensor placement and the number of required

sensors. In the disaster setting, a human operator had to operate the robot from a remote location.

To this extent, a camera mounted on the head was suitable. The head is the highest point on the

robot that is able to gain the most field of view (if the ”eyes” were on the body, it would gain less

view). In addition, the head is isolated from the other body parts and can be in action throughout

the whole task (if the ”eyes” were on the hands, it cannot be in action if the arm is in action).

Beside the head sensor, in the disaster setting, the robot had to traverse over deep sand and it was

essential to have a camera in the middle of the four crotch to see whether any of the legs were stuck

in the sand or not. When the operator detected that the robot was stuck in the sand, the operator

had moved the legs to ”walk” out of the sand hole (Fig. 4.4 ).

For all the tasks in the competition, the size of the manipulating objects was known beforehand.

Intuitively, using a model-based approach (pre-calculated according to the structure of the target
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(I)	 (II)	
qb	
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l2	

l1	
Z0	
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Fig 4.3: An example of a middle mobility lifter on the Seednoid platform. (I) The parallel link
structure. (II) An example motion. [121]

operator	screen	

feedback	camera	image	

head	camera	

crotch	camera	

Fig 4.4: Crotch camera for the operator to decide whether to use the wheels or walk out of the
sand was necessary.
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model and the model motion dynamics) will allow us to apply all of what we know about the prob-

lem setting. However, for a robot that lack sensors and are only capable of open loop motions,

a motion approximation was more practical then using a full model based motion approach. For

example, let us look at the door-opening task that consists of turning a knob and then pushing

the door. An end-effector trajectory following the turning of the knob and an end-effector trajec-

tory following the movement of the opening door could be designed from the model knowledge.

Unfortunately, these type of precise trajectory requires the real robot and environment to match

the model state when beginning the motion. A small error between the model and real will lead

to a mismatch in trajectory, therefore, not turning the knob enough to open the door (the hand

could get stuck in the middle of the trajectory as the expected physical conditions may not be

matching with the real motion). There are slight errors from vision, and these errors are hard to

adjust by a remote operator as the operator may only see in a hand-occluded and limited camera

view. In contrast, the door-opening problem could be solved using an approximate motion of ver-

tically pushing down the knob (perhaps move the hand a little bit inward as the hand goes down)

and then push the door by moving the robot body forward. The point is that we are not solving

any orientation of the end-effector nor are we following the actual trajectory of the object motion

dynamics. This removes the assumed model-based motion constraints. We have a less chance

of getting stuck during a motion as we are not relying on the state of the model but choosing a

motion that most likely works (pushing down the knob will always turn the knob despite the state

of the knob). Fig. 4.2 shows how the approximation approach worked at the competition finals.

Similarly, many teams have approached the valve task by rotating the center of the valve instead

of actually holding and rotating the handle part of the valve. We find that a model-based approach

is not always used for generating manipulation motions in practical settings.

4.3.2 The Tomato Robot Challenge (TRC)

The competition was held in 2015, Japan. There was one task: to pick as many valid tomatoes

from real tomato branches and place them in a cage (attaching a small cage to the robot was

allowed). Valid tomatoes were pure red, while the non-valid tomatoes were green or not as red.

Experts judged whether the tomatoes were valid. Robot operation was either semi-autonomous or

fully autonomous, had the option to either move toward to the tomato branches on a flat ground, or
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Fig 4.5: Picture of the TRC.

to use linear guide assistance for mobility. Damaging tomatoes were not allowed. 10 minutes time

limit was provided. Unlike the other challenges, the field was not an artificially made environment

and the environment gained uncertainty through physical contact.

The tomato task required a specialized end effector design: the end effector had to be small

enough to maneuver between tomato branches, and cutting the tomato required handling of swing-

ing branches. One approach to the problem was to use a scissor end-effector that holds the cut

tomatoes, while other approaches were to use end-effectors that pull the tomatoes or spin the

tomatoes. Feature based approaches were possible for detecting the tomatoes but required seg-

mentation in occluded branches. In terms of body structure, the requirements were not as intense

compared to the disaster setting.

There were many similarities with the tomato task and the disaster response task. The tomatoes

hung vertically requiring manipulating on a ”wall”, the operators only had feedback from cameras,

an additional camera was required for the operator to presume the task. Yet, there were slight

differences on where the feedback camera should be placed. The task required precision and

the operator had to see whether the scissors were close enough to the tomatoes to cut the tomatoes

(Fig. 4.6 ). As the tomato swung while putting the scissors in the tomato branches, it was necessary

for the operator to get feedback of what was happening. An extra hand camera for the disaster
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Fig 4.6: Hand camera for the operator to decide whether to cut the tomatoes or whether the hand
must get closer to the tomatoes.

setting would have bothered many of the disaster response tasks, however, for the tomato setting,

as long as the camera did not get in the way of the scissors, there was no problem attaching a hand

camera.

One comparative lesson we may have is the difference between an arm manipulator (Fig. 4.7 )

on a mobile platform, compared with a human-shaped (semi-humanoid) platform. All conditions

except the upper body and control interface is the same between the two: exact same mobile base,

middle mobility layer structure, end-effector, and semi-autonomous competing condition. The

advantage of the humanoid platform was it had two arms and one arm could be used to hold the

tomatoes from hanging away when a scissor tried to cut the tomato. However, the results were that

the arm manipulator scored second and the semi-humanoid platform scored third. The dual arm

advantage was not well used by the operator, and controlling two arms only resulted to operation

complexity. Beside the fact that the dual arm was not beneficial for teleoperation, we believe

that the score difference more comes from the control interface (GUI versus a direct joint control

device), and there is no real meaning to comparing scores for the particular competition (for a

practical solution to the tomato problem, we would want the robot to be autonomous or at least

semi-autonomous so that the operator only has to push a button once in a while which was not the

case for these direct controlling robots), but we have one fact that a humanoid might be an over
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Fig 4.7: Single arm version of the Seednoid platform and the operation device.

specification for the problem. A single arm robot with fewer joints would work well enough to cut

the tomatoes.

4.3.3 The Amazon Picking Challenge (APC)

The competition was held in 2016 in Germany. There were two tasks: stow and pick in a

warehouse environment. In the stow task, the robot picked up items from a tote and placed them

in a shelf bin. In the pick task, the reverse operation was conducted. All 38 objects and geometric

features of the tote and shelf were known, however, the position of the shelf was slightly moved

by a referee after the robot was placed at start position. The items that were in each bin were given

at start time, but how they were placed was not known. There was no restriction in the placement

of the tote. Robots were fully autonomous except for a start signal. 15 minutes time limit was

provided for each task. Unlike the other challenges, it was not essential for the robot to move its

base, but the robot had to operate in bins placed at high positions. The number of items and how

they were placed were the toughest among the competitions.

One of the requirements was to scale a robot to a large environment. This lead to tool-attached

designs, large designs, or scalable designs using a middle mobility layer. In addition, the task

of manipulating in small messy bins required a relatively thin and compact tool axis. For most
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Fig 4.8: Images of the starting conditions in the stow task. Setup instruction panel for the compe-
tition staff (left). Actual setup from the instructions (right).

teams, the tough challenge resulted in relaxing the problem as much as possible by using a suction

type end effector and removing base mobility of the robot. This has lead to similar designs among

teams of using a large industrial robot. On the software side, the task of operating known objects

has lead to strategies such as learning, reducing uncertainty using pre-computation and/or model

based approaches. Picking of different shaped objects required testing of multiple end effector

design.

In the warehouse setting, larger objects had to be grasped from the front, and smaller objects

from the above. The robot had to grasp various objects, which required different grasp directions.

However, all directions had to be conducted under similar restrictions and not under free space like

a tabletop condition. Both small and large objects were placed in the same sized bin. Grippers, if

used, had to be compact in both grasping conditions. In this sense, a non-centered fingertip design

might have suited the problem (Fig. 4.9 ). (See appendix A.2 for details.)

Regarding motion planning, a pre-defined bin model was necessary to check the collision of the

motion. However, checking collision between the end effector and items inside the bin was not

always necessary. If taken an approach of picking the most nearest item, we would not have to
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Fig 4.9: Grasping an object with non-centered fingertips at the actual competition.

consider collisions with the other items. Moreover, in some situations items had to be pushed away

in order to pick the target item. Therefore, there was not much benefit in checking collision with

the bin items. For the motion plans, there was no guarantee that we would have a solution with

a complete search-based planner. Some teams have pre-computed possible solutions beforehand

[34], while others took inverse kinematics sampling approaches using an initial guess of pre-

defined reaching poses.

4.3.4 Future Convenience Store Challenge (FCSC)

The competition was held in 2017 in Japan. There were two tasks: the storing task and the

disposal task in a convenience store environment. The robot had to move between two shelves of

which each task was conducted. In the storing task, the robot carried a tote to the shelf, picked

items from the tote (three rice balls, three cylinder shaped drinks, and three bentos (lunch box))

and placed them on a shelf. In the disposal task, the robot picked five randomly placed sand-

wiches on a shelf, checked the expiration date of the sandwich (not actual letters but alternative

markers), and re-placed the sandwich if it was still edible but collected the sandwich if it had been

expired. All items were known beforehand but slightly changed in color and package design at

the competitions. There was no restriction in how the items should be placed inside the tote and

where/how the tote should be placed. However, there was a restriction in where the items should
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carry	container	

2	
3	

start	se.ng	of	display	task	

start	se.ng	of	sandwich	task	

sandwich	task	

display	task	

1	

Fig 4.10: The field and flow of the FCSC competition. The robot starts from position 1 and finishes
by returning to this position. The robot first goes to position 2 and displays the items in the tote.
The robot then goes to position 3 to carry back expired sandwiches and organize the non-expired
sandwiches.
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Fig 4.11: Reach solvable positions of the two wrist structures in two tasks. Blue dots indicate po-
sitions solved by the industrial structure, purple indicate positions solved by the human structure,
green indicate positions solved by both. [121]

be placed on the shelf (e.g. each item should be placed within an area box and on two shelf boards

of different height). Five sandwiches in the disposal task were placed and oriented randomly by

a referee. Robot operation was fully autonomous and had to finish both tasks within 20 minutes.

Infrastructure reformation (e.g. changing shelf height, adding a line trace, but not changing shelf

positions) was allowed as long as the reforming and task was completed within the 20 minutes

time limit. Unlike the other challenges, placing of objects required neatness and accuracy.

A robot had to move between different work shelves and required accurate mobility. As infras-

tructure reformation was possible, some teams approached the problem using multiple robots and

a robotic shelf. A navigation-based approach used the usual AMCL localization with laser based

feedback. However, for confirming correctness of position, visual based feedback approaches us-

ing AR markers posted on the shelf were also used in combination. Vision was used as a final

adjustment between the robot’s current position and desired position. Other approaches reformed

the floor by adding a line for tracing. The solution was specific to the simplified competition set-

ting, but would be a problem if the robot had to avoid people in a real convenience store. The

difficulty of the sandwich and bento discouraged usage of grippers over suction, leading to similar

design approaches as the warehouse setting.
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Regarding required manipulation, the convenience store setting was similar to the warehouse

setting in that, the robot had to operate in a narrow environment (e.g. a tote filled with items).

In these conditions, the end effector pose is crucial. Interestingly, we found that the pose of

grasping a bento from a tote was actually more difficult to create than the pose of grasping an item

from a warehouse bin. The narrow settings make us think more carefully about appropriate joint

arrangements. For example, let us compare a roll-pitch-yaw human wrist structure (Bh) and a roll-

pitch-roll PUMA type industrial wrist structure (Br). A comparative result is shown in Fig. 4.11 .

The figure shows the different non-colliding reachable grasp positions of the two wrist structures

at a fixed base position (we used the BKPIECE [10, 137] with MoveIt to find the path between

a solved goal pose and initial pose before grasping). Blue points indicate item positions that are

solved with the Br structure and the purple indicate positions that are solved with the Bh structure.

Green points are positions solved by both. In the bento task, the Br solves for 822 test points

and Bh solves for 244. In the warehouse task, the Br solves for 262 test points and Bh solves for

279. As there exists collision (the red box in Fig. 4.11 ), Bh solves for slightly more points in the

warehouse task. However, in the warehouse task, the robot is able to move its direction sideways

and position itself to reach the non-solved points. In contrast, there is no way (unless the robot

is enlarged) for the Bh structure to reach the bento when the tote is at table height. Therefore, Br

has a work range that can generalize to more problems while keeping a compact structure. (See

appendix A.4 for a theoretical comparison on the two structures).

The fact that objects could be placed in any way inside the container for the storing task meant

that object position and environmental condition was predictable. Motion plans that most likely

avoided collisions were pre-computed and therefore did not require any realtime modeling of the

environment. Placing the object was more of a navigation problem. As long as the relative position

between the robot, the object, and the environment was nearly the same as the pre-computed

motion plans, the robot was able to grasp and place the object. In addition, such an approach

generalized to grasping the bento that required dual arm picking if used a gripper. As a dual arm

pose has an extra constraint between the two arm positions, finding a solution in given time is

difficult with a search based motion planning approach. (Strictly speaking, the bento task can be

solved relatively easily with a motion planning approach. In case of the bento, the left and right

arm has a symmetric pose. Therefore, an approach of solving for one arm and copying the result
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to the other is possible. However, this is a special case of dual arm manipulation.)

By looking through different competitions, we have a much clearer view of the type of hardware

and software required for robots to be successful in the near future. We see that many problem

simplification techniques are essential for a promising manipulation and accurate task achieve-

ment. However, problem simplification may limit the possibilities of robots. Next, we would like

to know whether some of these simplifications would be unnecessary in the future, or whether

robots for the next ten or so years will most likely be successful in the simplified scopes.

4.4 Perspectives from Research

Unlike the competition settings where how to relax a problem was the main focus of building

robot hardware and systems, the field of science tries to handle various uncertainties by either

searching over several possibilities [66], or from decision using large amount of trained data [21].

However, the scope of such state-of-the-art approaches is still limited. We are still handling how

to reduce the search space to be computationally feasible [148], discussing abstraction [144], and

figuring out cost functions [150]. Unfortunately, the approaches only work under limited state

and action space, which actually pull us away from real problem settings that are possibly more

rigorous in terms of required actions. In the current stage, there seems to be a tradeoff between

handling tasks with many procedures and handling tasks under uncertainty. This is not a surprise.

As the number of task steps becomes large, so does the search space on uncertainty. Although

we may gain situational robustness by handling uncertainty, we see that this will in fact limit the

possible scale of the task.

4.5 Discussion

hardware requirements—Although requests to vendors have hesitated in using manipulation

skills, it is apparent from competitions that, in the long-term future business of robotics, a manip-

ulation skill is inevitable. Yet, in the current stage of society, manipulation is not seen as reliable

as navigation, and we found many difficulties in manipulation through the competition settings.

There seems to be a gap between what was believed to be essential for manipulation and what

was really missing to solve real problems. Directions in research have gone for handling broader
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situational uncertainty, while real problems asked for robustness toward long task procedures. To

understand our lessons, we must first briefly look over what was believed or known about manip-

ulation.

For the degrees of freedom of manipulation, we often see an upper body structure with 7

degrees-of-freedom (DoF) for each arm (e.g. PR2 [151], HRP [64]). Joint arrangements are

similar to the human structure that is a 3-1-3 shoulder-elbow-wrist structure. There are reasons

to why 7-DoF manipulators is preferred over six, which can be explained by how each joint is

expected to contribute to a task. From the perspective of analytic inverse kinematics, the last three

joints (the wrist) of a 7-DOF arm are used to get a desired tool axis [130]. From analysis on the

human upper body arm motions, the other four joints are used to position the arm. According to

[139], a combination of the shoulder roll, shoulder pitch, and especially the elbow joint is used

for a one direction reaching action. In contrast, the shoulder yaw joint is not used when an arm is

being reached in one direction. [139] explain that the shoulder yaw is used for inward and outward

motions, and interestingly, we use different shoulder yaw values depending on where we place the

hand in the height direction. Some motions are easier to achieve using different combinations of

the joints. Therefore, a redundant manipulator is expected to solve more type of different reaching

problems. Another possible reason why redundant joints are preferable is because we achieve

faster motions [96].

Although, such discussion on degrees of freedom is correct, the arrangements of roll, pitch, yaw

has not been systematically evaluated, especially under a narrow environment. Most hardware

design follows either the human-like structure design or industrial structure design. By observing

the actual tasks requested by company-sponsored competitions, an additional lesson about manip-

ulation was that, the industrial structure better suits for settings with collision, which is the case

in our society. Surprisingly, there were no tabletop tasks in many of the settings and most were

against a wall or against the shelf. Even for tasks that were table view, the operation was in a con-

tainer. The type of applications required by the challenges proved that being able to work in free

space is not enough for manipulation in our lives. (A minor exception would be the convenience

store task. Some teams have approached the problem by pulling out the shelf board, leading to a

tabletop manipulation task. Yet, the solution must still handle the container constraint.)

Another important gap between what is being researched for task robots and what was re-
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ally required was that, manipulation is not only about arms. Most settings required operation

in workspace of different heights. Sometimes the robot must operate at a lower height, other times

the robot must operate at a higher position. It is essential for a robot to consider a middle mo-

bility layer that will adapt to different work heights or reaching length. Although, robots such as

the HSR already consider a middle mobile lifter that moves to different heights, it does not con-

sider the reaching length, and depending on the height, the robot’s reach length is often limited

due to environmental collision. Real problems tackle a narrower environment with more motion

constraints and a larger work area.

Regarding end effector designs, we were not able to find answers to an appropriate one design.

Grippers had much more difficulty in solving some of the problems when compared to suction

based approaches. The problem with grippers is that, the designs usually simplify the characteris-

tics of a human hand. [15] classifies the usage of the human hand during a task. Of the detailed

classification, the common prehensile grasp modes that are actually implemented on robots are

the fingertip and encompassing grasp [89]. These functions were obviously not enough to handle

manipulation in the cluttered situation. It is also obvious that some actions require non-prehensile

actions (see appendix A.5 for details). Perhaps a hybrid suction and gripper approach would suit

most problems, yet, such solutions would lead to extra costs. Although the HSR has such hybrid

structure, the power of the suction cup only work against flat cards. For cost, there requires a

decision between suction and gripper. If picking and storing various objects in open space were

the main skill required, then a suction solution would be appropriate. If the robot had to open a

hatch before picking objects, or if there is a handover between the human and robot, then, a gripper

solution might be more suitable (handover timings would be difficult with a suction end effector).

In terms of number of arms, this will also depend on the end effector design or problem do-

main. A suction approach is usually capable of picking items with a single arm, thus reducing

the hardware cost. A gripper approach requires the usage of two arms for picking up the larger

items. For some problem domain such as picking tomatoes, two arms increases the complexity of

the system with not much difference in performance over a single arm. In a picking scenario, two

arms is mostly beneficial for supporting the pick. If the end effector is powerful enough and does

not require any support, then, maybe we should reduce the cost with only having one arm. Yet,

when there is social context, the answers may be not as clear.
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software requirements—In current business requests, sometimes the enterprise does not re-

quire a software, or only require minimum software for teleoperation: streaming images from

camera and actuating the robot. This was partly true for some of the more teleoperated semi-

autonomous competitions.

Object recognition was not a severe demand in current business requests. Perhaps this is be-

cause, recognition will not have much meaning without a manipulation or navigation capability.

However, we also learn that recognition is essential for most other automated manipulation set-

tings (e.g. disposing a sandwich or picking objects from a bin). In object recognition, there are

mainly three types of problem settings. 1) All objects or state of objects are known. 2) Some

objects are unknown but we have time to register new objects. 3) Some objects are unknown but

we do not have time to register the objects. After attending several competitions, we found that

from a practical perspective, situation 3 —although the most general approach and a problem of

interest to researchers—may be a rare situation. The warehouse setting in APC 2016 was situation

1. The warehouse setting in APC 2017 and the home setting in RoboCup@Home was situation 2.

For situation 2, there are fine-tuning [157] approaches and we may also use recent cloud services

such as Microsoft Custom Vision, which only require 15 images and can be trained in seconds.

In all situations, the basic approach is to combine a segmentation problem and detection problem

(however, there are also end-to-end approaches for situation 1 [110, 76]). In general, the segmen-

tation problem can be seen as a bottom-up attention problem (or saliency problem) to roughly

find regions that are interesting but well parted from other regions. The detection problem can

be seen as a labeling problem. Both situation 1 and 2 handles these two problems using deep

training techniques. In contrast, situation 3 must map semantic knowledge with recognition in the

order of seconds without any training. Being able to handle situation 3 requires a more complex

software of semantic knowledge management and a larger database (see appendix A.3 for possible

approaches). Perhaps situation 3 is not much of an interest to the society, since, we know the job

we want the robot to do, and we want the robot to perform its job accurately. If situation 3 is rarely

asked, it might be better for robotic systems to focus on situations 1 and 2.

Regarding manipulation, it seems that there are hardware problems we must first over come

before going into the software issues. From our discussion, changing the hardware structure has

significantly increased the number of possible solutions in a tote manipulation. Yet, once we have
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the appropriate hardware, difficulty still remains in software. Unlike factory automation, where

the task workspace is designed for the robot, robots entering our society have a shared workspace

with people. The physical context is much more rigorous and computational solutions struggle

against the large search space. For these more difficult problems that require more manipulation

steps, heuristic approximated plans do better than computational solutions. Instead of focusing on

having the robot learn manipulation from scratch, perhaps it is better to focus on how we automate

heuristics for the more complicated scenarios. We must also consider the fact that, manipulation

is not just about arms, and problems can be simplified using the mobile base or middle mobility

layer. We must balance between heuristics, hardware provided solutions, and automation.

4.6 A Proposed Minimum Task Execution System to Fit Our Society

We summarize the required skills as a system structure shown in Fig. 4.12 . Note that this

is more of a minimum operating system (OS) structure that we are proposing, rather than a full

system to handle various tasks. Below we will briefly explain each component.

4.6.1 Vision Component

Vision is used in combination with manipulation. Although vision may be used in combina-

tion with navigation for data collecting, perhaps from a business perspective, clients would want

a navigation-only robot, and then collaborate with a company with a vision-based data-collecting

specialty. Unlike manipulation, the navigation and vision scenario does not require a high inte-

gration of the two. In manipulation, the main settings are object recognition with a known list of

items, or non-realtime registration of items. We have explained that in these settings, some type of

recognition model is learned from data and a recognition algorithm (e.g. Ssd [76], mask-RCNN

[114], or communicate with cloud services) outputs the detection results.

The output results are then passed to an information extractor (e.g. in the convenience storage

task it was finding the nearest item, in the convenience sandwich task it was finding the sandwich

in the most right followed by an update of regions-of-interest, in other tasks this could connect to

a principal component analysis using point clouds). The information extractor largely depends on
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Fig 4.12: The minimum required task execution system from current and near-future needs. In
addition to the ROS navigation stack, a parameter switching node is added to use navigation for
both mobility and manipulation purposes. For motion planning, initial guesses and hardware
(middle mobility layer) based heuristic solutions are used to simplify calculation under constraints.
For recognition, online information is used to model small objects and offline information is used
to model large objects.
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the task whereas the recognition algorithm could be re-used to different tasks. The extracted target

is then stored to memory.

Note, that the result does not always directly connect to the motion planning component. It may

connect to navigation (location adjustment) before generating manipulating motions. In addition

to what has been requested about vision, the vision component has an online modeling module

for visualizing the recognition results. This provides feedback to the users, and is an important

component at development stage. Although online modeling would also help in calculating colli-

sion, in a cluttered situation, the access to the object is limited and there is not much we can do

by knowing the surrounding environment of the object. The possible grasping poses are restricted

and we may even require push-grasp [28] solutions instead of collision avoidance. (See appendix

A.6 for details on the visualization.) Note that the vision component explained is the minimum

requirement for robots to do a task in society. It is mostly a vision for manipulation. Depending

on the task, other task-specific vision components such as checking the expiration date of an ob-

ject might be necessary. However, to reduce software costs, such components should be an extra

application and not included in the basic software (OS of the robot).

4.6.2 Manipulation Component

To enter society, manipulation requires preciseness. However, this is not the preciseness of the

motion, but the preciseness of achieving the manipulation task. The most important part is re-

peatability. Since the type of problem we have seen assumed some knowledge of the problem in

a structured or semi-structured environment, we find that open loop strategies are applicable, sim-

pler, and more stable. (Closed-loop feedback based approaches are parameter sensitive. Closed-

loop is better for handling uncertainty but not repeatability.)

Most tasks that seem to be of concern is pick, carry, place, and perhaps opening of hatches

and drawers. The need for manipulation seems to be related to transportation of objects, which

was a request to vendors but what was also required in the warehouse and convenience store

setting. To achieve such a pipeline, we propose a general motion generation pipeline as follows:

1) Reach: some pre-defined heuristic pose is applied as an initial guess for the robot, and the

planning algorithm generates a kinematic (or navigated) solution that ”fits” the pose in relation

to object position. 2) Pick: repeat 1, except under a more strict kinematic constraint of handling



106 — 4： Task Execution Systems for Acceptance in Society —

end	pose	adjustment	on	
recogni1on	result	using	
inverse	kinema1cs	

collision	avoided	
interpola1on	trajectory	
using	mo1on	planner	

pre-designed	ini1al	guess	
pose	(provided	solu1on	
using	game	controller)	

pulling	out	a	box	under	planar	mo1on	constraint	using	the	middle	mobility	layer	

a<er	ini1al	reach	

Fig 4.13: Example of a manipulation pipeline for a complex picking task. Above row shows the
reaching process: a pre-defined pose for an initial guess, solved end pose, and the solved trajectory.
Bottom row shows the picking process using the middle mobility layer to solve joint continuity
constraints after the initial reach.

desired	pose	and	posi+on	
cost	map	

obstacle	map	
navigate	to	desired	posi+on	

check	correctness	

check	
trespass	

Fig 4.14: Manipulating from a pre-defined pose by navigating to a desired offset position.
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object orientation. 3) Place: repeat 2. This basically leads to the modules illustrated in the figure

with one algorithm module and storage of poses. Targeted environment in our lives are much more

restricted than open table top tasks, and require heuristics to handle computation efficiency or to

achieve stable solutions. The difficulty of manipulation is perhaps this applying of heuristics. The

picking and placing usually has the following planar constraint on the object in addition to joint

continuity:

Mw
o (x, z) = Mw

o0
Trans(xv1)Trans(zv2) (4.3)

or in case of a non-prehensile picking:

Mw
o (x, z, θ) = Mw

o0
Trans(xv1)Trans(zv2)Rot(n, θ) (4.4)

However, if we look carefully at the function of the middle mobility layer, we realize that such

constraints can be directly solved using the middle mobility layer. The middle mobility layer

keeps the upper body pose (joint continuity, object orientation constraint) but allows the robot to

move forward/backward or upward/downward (object movement). Fig. 4.13 shows an example

of applying heuristics using the middle mobility layer for solving a picking task of a large item

from a bin. Fig. 4.14 shows an example of combining heuristics with navigation.

For more specific tasks such as a tomato task, we would need a more task-specific end-effector

solution, but the motion generation pipeline should not be much different from what is being pro-

posed here (the required constraints are usually the same). Even for the disaster response setting,

the motion generation could be based on heuristics (as we have already discussed), therefore,

following the proposed pipeline. In the default manipulation software, what is required is this

pipeline of applying heuristics and connection with the other components.

4.6.3 Navigation Component

Most business requests on navigation are structured settings e.g. inside a building. Although,

companies may provide their own navigation algorithms, these own developments add to extra

costs. Simple navigation problems can mostly be solved using the open source ROS navigation

stack, if chosen the correct navigation planner and parameters. For example, the timed elastic band

[115] planner creates a smooth path for forward and rotating directions, and suits for long distance
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navigation that may require avoiding of people. However, in order to use the planner in navigation-

manipulation integrated scenarios, we must change parameters and disable local obstacles as the

planner often tries to avoid obstacles using a long path even when what is wanted is the robot to

move a few centimeters to the left. Therefore, we add a parameter-switching node that sets the

appropriate navigation settings for the different usages. Regarding the common parameters, the

AMCL parameters should be set to update every centimeter. The default parameters only update

every twenty centimeters leading to a large error in localization especially for robots that navigate

in a small workspace (other than the hallway). In addition to parameters, we separate the obstacle

map and the localization cost map. The obstacle map defines where a robot should not enter, while

the localization cost map is used for estimating the robot’s current location (usually created using

any kind of laser-based SLAM algorithm). For example, a carpet may be colored black in the

obstacle map but white in the localization cost map.

4.7 Experiments using the Proposed System

various picking—Fig. 4.15 shows examples of various picking using the system. The top row

in the figure shows a grasping of a 500[ml] bottle from a neatly cluttered shelf. Unlike the APC,

the robot is not able to push-grasp the item, and the only available handle is the bottle cap. Trying

to pull out the item directly will get the bottle stuck, and the robot must tilt the bottle to get it out.

The robot successfully achieves this motion by using the shelf guard as a fulcrum, and adjusting its

movement using the middle mobility layer. The success rate is 8 out of 20 trials with slight noise

in position, tuned parameters, but without feedback. Failure is mostly due to fingers colliding with

bottles on the side when the modeled position differs from the bottle’s actual position. The middle

and bottom row shows other examples where a middle mobility layer solves the problem. The

success rate is 14 out of 20 trials for both situations, slightly better than the bottle as collision on

the side was less severe. The results prove that the system is able to easily integrate heuristics to

achieve various complex manipulations, and that the actions are repeatable.

evaluation from competitions—Table. 4.1 is a summary on the competition results using our

proposed system or a former version of the system. From the results, we find that the system is

able to score and scale to different problem settings. Looking more closely to our scores in FCSC

(the convenience store challenge), our system accomplished 50% of the task. We have dropped
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Fig 4.15: Common constraints in picking solved with a combination of the middle mobility layer
and grasping modes. [121]

Table 4.1: Actual scores in the competition using the proposed system.
competition results

DRC 0pt (due to skipping of desert challenge)
TRC 44pt, 3rd/14
APC pick 16pt, stow 3pt
FCSC 50pt, 2nd/9, Most Challenging Award, Seven Eleven Award

34% of the storing task and 22% of the sandwich task due to the time limit, leading to a total of

28% of the whole task. The other 22% were failures of which 5% came from the storing task and

the other 17% from the sandwich task. The failure in the storing task was due to a non-stable grasp

from a vision error. We may avoid this type of error by capturing objects more toward the center of

field of view, which result to more sensor detection accuracy. The failure of the sandwich task was

more due to the fact that we did not prepare appropriate end effectors for the task. The system was

not targeted specific for the task, and we have challenged the system’s capability by not attaching

the tote to the robot (which was the approach for most teams including the winning team). Despite

the disadvantage, the system scored second place, did best within the other multi-purpose robots

e.g. HSR, and scored 0.476 more points per team member than the winning team.
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4.8 Conclusion

The findings from this chapter indicate that manipulation —especially the transporting and de-

livering of tools or objects—is an important skill requested in society. We find that the challenges

of manipulation are its reliability and targeted scope. We have shown that applying heuristics

instead of computational approaches increases reliability. We have shown that the approach was

sufficient enough to handle various complex picking situations including grasping from a narrow

shelf, grasping from a container, and grasping from an organized cluttered environment with 70%

success rate in most cases. To apply the heuristics, integrating hardware solutions such as using

a middle mobility layer that simplifies the joint continuity constraint in constrained environments

was key.

In addition, we were able to accomplish 50% of the convenience store challenge despite the sys-

tem not being targeted for the specific task, scoring second place out of nine teams, and receiving

two awards. The convenience store challenge was balanced in the number of tasks, and the number

of procedures in each task. The result shows the generality of the proposed task execution system

and its effectiveness especially for task-finite scenarios requested in society (scenarios where the

request by a user, the role of the robot, and the scope of the problem, are all defined and controlled

to some extent).



5

System Architecture
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5.1 Introduction

The purpose of this chapter is to solve the problem of interaction and task integration by building

a system (Fig. 5.1 ) using the situation scenting capability from Chapter 3 and a task scheduler

proposed in this chapter. The scheduler is unique in that it not only considers robot-centric physical

constraints but also human-centric dialogue objectives. This chapter will begin by explaining this

idea with examples, and then explain how to achieve the components required for this idea. In the

end of the chapter, we will show how our system achieves a restaurant scenario task, which include

a mixture of task skills presented in the previous chapter, but also various interaction situations.

5.2 Interpersonal Situations During a Task

Interpersonal situations happen in parallel to a task. A robot may be picking, placing, navigat-

ing, or transporting an object but also reacts and listens to a person. Even when it is the robot that

is trying to initiate an interaction, task and interaction happen in parallel. A robot may greet a per-

son as it is approaching the person. The speech timing is dependent on the scented interpersonal

situation. Therefore, the situation engine is always running on background, and then triggers a

robot behavior at any timing depending on the interaction willingness of the robot, and estimated

interpersonal situation. However, the discussion on robot willingness is rather complicated as the

discussion involves looking at the physical, social, and objective context of the task.

From Chapter 3, the process of entering (or not entering) an interaction during a task is described

as below: assuming that unintended situations are avoided, the human and robot are first at an Hn-

Rn agreement situation which at some point may turn to a Hp-Rn or Hn-Rp conflict situation. In

this section, we will go over the Hp-Rn conflict situation and its relation to the different context.

5.2.1 Simple Interaction without Context Constraints

When there are no constraints, there is no reason for the robot to not be willing, and therefore,

the robot may simply change to Rr to enter an interaction agreement. An example of such a

situation is shown in the Chapter 6 guiding robot experiment, where the robot is in idle mode

when there are no users willing to use the robot.
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Fig 5.1: Summary and detail of the proposed system and the running nodes. The system au-
tonomously handles the initiation of dialogue-based interaction tasks while executing automated
object-transportation/navigating tasks. Information is transferred through ROS based communi-
cation. Dotted lines indicate streaming information. Whited lines indicate information that stream
under certain conditions. Orange boxes indicate prior or pre-trained knowledge used by the sys-
tem. Red boxes indicate nodes that require scenario-based implementation. Gold boxes indicate
stored memory. ** server nodes act as a proxy layer and therefore detailed implementation are not
explained in this book.
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5.2.2 Social Context Before an Interaction

For an object transportation or navigating task, the robot might be moving around while a human

user may be at a positioned location. Examples include the public domain with physical context

experiment from Chapter 3 or the restaurant experiment from this chapter. In these situations,

there is distance between the human and robot, and it would sometimes be inappropriate to talk

over such a long distance, especially from the perspectives of proxemics [141]. It may be better for

the robot to say ”in a moment” and move close by to the person instead of accepting an interaction

and talking over long distances.

Moreover, in the example from Chapter 3, the robot may be interacting with one customer, and

therefore, may not be in the state to handle a second customer. In fact, in the experiment from

Chapter 3, the robot is both at distance and doing a prioritized object transportation task for the

first-come-first-served customer.

From the above examples, we see that social constraints sometimes provide reasons to postpone

an interaction. Often, these constraints are where the customer is also accepting to wait. Therefore,

the situation is more of keeping the Hp-Rn conflict rather than trying to reach a Hn-Rn agreement.

5.2.3 Robot-centric Physical Context

The robot may be under a physical constraint where the robot may not be able to turn its head, as

it must keep a look at its current task. The robot may also be busy during the picking and placing

process of the task (which we will discuss more in the later sections). Unlike social constraints,

physical constraints are robot-centric conditions; therefore, these constraints try to reach a Hn-Rn

agreement. As this is robot-centric, this may be uncomfortable for the user. See Chapter 6 for

experimental results on the side effects.

5.2.4 Human-centric Dialogue Objectives

Even if the robot is under a physical constraint, there are times where a robot may accept an

interaction. This depends on the objective of the interaction (the concrete goal behind the Hp state).

From the perspective of dialogues there are mainly two types of user objectives: information-

transfer and action-discussion. While the action-discussion objective requires handling of physical

constraints, the information-transfer objective could be handled despite the physical state of the
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robot. A person may ask something to the robot, and the robot could simply provide answers

while pausing the task. When the robot does not know whether the user’s objective is information-

transfer or action-discussion, the robot may accept an interaction once (Hp-Rr), and then decide to

postpone (go back to a Hp-Rn conflict) if the objective was an action-discussion, and then accept

the task once the physical constraint is removed.

From the above discussion on constraints, the human and robot usually reaches the Hp-Rr agree-

ment directly or through an extension of the Hp-Rn conflict. It should be rare to have to reach a

Hn-Rn agreement from the robot side. However, when we look at the situation from the human

perspective, we will see that the user may try to reach a Hn-Rn agreement. Such results have been

seen in the dataset in Chapter 3.

5.2.5 Required System for Handling Interaction

By looking more deeply into the type of interpersonal situations that happen during a task, we

see that an integrated interaction-task system must have the following features: 1) A parallel run-

ning interpersonal situation understanding function that lead to an interaction for understanding

the dialogue objectives. 2) A task scheduler that handles removing of the physical constraint. 3)

A parallel running robot willingness module that updates the willingness state by keeping track of

the current social and objective constraints. The third feature depends on the task scenario, there-

fore we will not provide general implementations but instead, general input/output connections

required for the integration.

5.3 Parallel Interpersonal Situation Managing

5.3.1 Interpersonal Situation Manager Component

This component (Fig. 5.1 red region) detects whether there is a chance of interaction using the

situation engine from Chapter 3. The role of the situation engine was two folds: 1) understand

interpersonal situations and 2) to decide a goal through interactions (whether to interact or not).

In Chapter 3, we have explained that the robot during an initial interaction will output a behavior

with a category of Rp0, or Rp1, or Rr0, or Rr1 where 0 indicates no speech (a looking behavior)
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and 1 indicates a with-speech behavior. The initial interaction can be seen as a callback con-

necting to the situation engine. This is just like recent computer systems that use asynchronous

callbacks to handle user input events. The parallel initial interaction callback is triggered when the

engine scents a situation, and then enters a different callback (parallel interaction callback) when

the engine is confident of an agreement situation. Similar structures can be seen in recent speech

recognition systems that have a callback to return partial results and a final result. The imple-

mentations of these callbacks are arbitrary. The initial interaction callback receives the behavior

category, and the concrete movement can be designed per task. Usually it should be the actua-

tion of head movements and triggering of speech-to-text. Therefore, these callbacks are usually

connected to the robot controller and speech synthesizer directly or through a dialogue module

component. In contrast, the situation engine is a higher-level decision layer that does not directly

connect to the actuators, but manages decisions relating to interaction.

5.3.2 Human Behavior Extraction Component

This component (Fig. 5.1 orange region) is used to generate an abstracted human behavior

observation required for the input to the interaction situation handling component. We have ex-

plained in the other chapters that the abstracted observation is binary information that provides

hints to estimating human interaction willingness. The implementation of the component depends

on the task and may combine multiple nodes to extract different binary cues such as person dis-

tance (close or far away from robot) or person face directions (looking at the robot or not). We have

shown an example using face directions in Chapter 3. We will show an example of the multiple

combined implementation at the end of this chapter in the restaurant example.

5.3.3 The Flow of the Interaction Situation Handling Component

In this section, we will explain the parallel process that is happening in the situation engine, and

how it is achieved. The key to the implementation is the multi-threaded structure that is some-

times paused and processed together. Each person in the scene will be applied its own willingness

estimation thread. These threads are always running asynchronously, but are paused and synchro-

nized when an interaction target is being searched. Below we explain this threaded process in
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Fig 5.2: How the process works inside the situation engine.

more detail. An image of how the process of the situation engine works is shown in Fig. 5.2 . The

actual code flow of the situation engine is presented in Algorithm 5.1 and 5.4.

The first algorithm represents the cyclic process for one of the estimation threads (tied to one of

the persons detected in the robot’s view). The process runs inside the situation engine at a constant

rate (e.g. 10 Hz) and continuously estimates a person’s willingness. The robot’s willingness is by

default Rn during this cycle. Once an update in a robot’s primary willingness y0 is reported to

the engine, the procedure in the second algorithm is triggered on a background process. This

background process temporarily stops all cyclic processing threads and tries to set an interaction

target (select one of the threads; possible selection strategy is passed as one of the interaction

settings in Fig. 5.1 ). (The stopping of all processes is done before triggering the background

process therefore not written in the algorithm.) The cyclic processes restart once the above target

setting procedure has finished. (Strictly speaking, the cyclic process starts once the engine finds

out that the thread is not a possible target, which is not written in the algorithm for simplicity.)

The background process will stop if found a target or a merge signal (see Fig. 5.1 ) is provided

from the task side. (The merge signal is usually called at the end of a task action.)

First, we will explain the cyclic process running in each thread in more detail. In the cyclic

process (when an interaction target is not set or the process is not the thread of the interaction
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Algorithm 5.1 Cyclic process of the situation engine.
1: if thread is already running then
2: return
3: start new thread for person thread
4: observation← GetObservation(thread)
5: if no person in observation then
6: S tackS equence(thread)
7: ParameterU pdate(thread)
8: Reset(thread)
9: S yncOnce(thread)

10: if thread is interaction target then
11: S etTarget(NULL)

12: if observation is different from previous frame then
13: Trim(thread)
14: Process(thread, observation)
15: reset time
16: if time has elapsed then
17: ObserveFrom(thread)
18: reset time
19: S yncOnce(thread)

Algorithm 5.2 Process(thread, observation) function in cyclic process.
1: append observation, thread.robotWillingness to thread.observations
2: ParameterU pdate(thread) if any sequence in stack
3: humanWillingnessEstimate← GetS tate(thread.observations)
4: if thread is not interaction target then
5: S yncOnce(thread)
6: return thread.robotWillingness

7: if not Con f lict?(thread.robotWillingness, humanWillingnessEstimate) then
8: if humanWillingnessEstimate is not Hn then
9: S tackS equence(thread)

10: return thread.robotWillingness

11: nextWillingness← DecideAction(thread.robotWillingness, humanWillingnessEstimate)
12: if nextWillingness is the same as thread.robotWillingness then
13: return thread.robotWillingness

14: thread.robotWillingness← nextWillingness
15: return ObserveFrom(thread)
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Algorithm 5.3 ObserveFrom(thread) function in cyclic process.
1: if level(thread.robotWillingness) is not 0 OR thread.robotWillingness is different from pre-

vious frame then
2: ExecuteAction()
3: while robot behavior has not finished do
4: S yncOnce(thread)
5: observation← GetObservation(thread)
6: if observation is different from previous frame then
7: append observation, thread.robotWillingness to thread.observations
8: ParameterU pdate(thread) if any sequence in stack

9: observation← GetObservation(thread)
10: Trim(thread)
11: return Process(thread, observation)

Algorithm 5.4 Background process when the robot’s primary willingness is updated.
1: interactionType← from parameters passed with primary willingness
2: expectedTarget ← from parameters passed with primary willingness
3: candidates← ϕ

4: if inteactionType is parallel (check human to robot) interaction then
5: for thread in threads do
6: if thread.observations is not empty then
7: humanWillingnessEstimate← GetS tate(thread.observations)
8: if Con f lict?(thread.robotWillingness, humanWillingnessEstimate) AND

humanWillingnessEstimate is Hp then
9: push thread to candidates

10: if candidates not empty AND interaction target is not set then
11: S etTarget(S earchTarget(expectedTarget, candidates))
12: thread.robotWillingness ← DecideAction(thread.robotWillingness,

targetThread.humanWillingnessEstimate)
13: pause targetThread
14: ObserveFrom(targetThread)
15: restart targetThread

16: else if interactionType is sequential (robot to human) interaction then
17: S etTarget(S earchTarget(expectedTarget))
18: pause targetThread
19: ObserveFrom(targetThread)
20: restart targetThread
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target), an observation is updated when 1) the robot conducts a new action, 2) a change in ob-

servation occurs, or 3) constant time has elapsed. When the robot is at task state, the robot is

Rn, and thus, the observation will proceed with only conditions 2 and 3. When a person is lost,

Reset() is called to initiate observations and estimations. Observations from sensors are queued

and the latest observation is popped with a S yncOnce() function. The latest observation is then

called from GetObservation(), the human state is estimated with GetS tate(), and the state confi-

dence and conflict termination (whether the robot has reached an agreement) is evaluated with the

method Con f lict?(). If the conflict has not yet reached an agreement, the next action is decided

with DecideAction(), and if there is a change in action decision (meaning the robot will conduct

a new action through the parallel initial interaction callback), a signal is sent to the interaction

callback with ExecuteAction().

Note that for the GetS tate() function, only the target thread uses the robot’s willingness for

estimation and the rest continues the cyclic process with robot’s willingness set as Rn.

After an interaction target is set, the cyclic process of the target thread will pause and the thread

will instead loop over ObserveFrom() (updating observations and robot action) and Process()

(updating estimations) until reached an agreement. Once reached an agreement, the thread will

go back to the cyclic process with the robot’s willingness set to whatever reached agreement state

(could be any of Rn, Rp, or Rr).

5.3.4 Runtime Model Training

The S tackS equence() and ParameterU pdate() function in the algorithm stores the current in-

teraction sequence and updates estimation probabilities on runtime from how an actual interaction

went. Update rules are built as addons and are embedded in the situation engine. Results of using

such runtime updates are shown in Chapter 6. However, in the rest of the experiments, this func-

tion is turned off. Even when the function is turned off, all interaction data are stored as logs in

case a model is wanted to be trained later offline.

5.3.5 Remarks on Detecting Interaction Finishes

It is possible to check the end of an interaction using the situation engine if needed. In this

case, the interaction callback will communicate with the situation engine by providing the robot’s
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willingness state every time it changes. (Basically a state will change when there is a change in

who has floor. The willingness could automatically be mapped from speech content.) This is not

illustrated in the figure as we find this connection as optional, and not used for most of the task

execution tasks we encounter in this book. The end of an interaction can usually be reported from

the task side. For example, an interaction only task could finish when the person walks away from

the robot, and a task related interaction could finish from a known context flow (a conversation

with a waiter could finish by asking ”anything else?” and a following ”no” response could trigger

the end of an interaction). Finish flags are passed as one of the merge signals.

5.3.6 Remarks on Robot-to-Human Interaction

Estimations in robot-to-human scenario may also run in parallel. The process is similar to

human-to-robot interaction, except the robot tries to estimate between Hr and Hn and possibly Hp

(depending on the scenario) instead of between Hp and Hn. The other difference is that the robot-

to-human interaction setting usually transitions to a sequential task prepared by the robot. This

means that although the initiation happens in parallel (physically approaching and speech timing

happen separately), the initiated interaction will happen as a sequential flow. Therefore, instead of

triggering the interaction callback, in the robot-to-human scenario, the situation engine will return

whether the task is proceedable or not to the task actions. A task might not be proceedable if a

person ignores a robot (Hn), or the person instead asks a request (Hp). In the former case, the robot

will have to abort its task. In the later case, the robot will enter the parallel interaction callback.

5.4 Dialogue Modules

Dialogue modules are triggered in the following cases: 1) interaction callback after scenting

an interaction, 2) from the task actions. In the first situation, the robot is listening to the user’s

request to find out the dialogue objective, or providing short answers that do not require any

gestures. Using gestures may require scheduling of actions (next section) and should not be used

in this situation. In the second situation, the robot is doing an interaction task. In this situation, the

robot may use gestures or connect to manipulation actions such as fetching a drink. The situation

is the usual situation we see in task-interaction integrated systems where both the human and robot

are ready for an interaction at the beginning of the task. Modules include a speech recognition,
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Table 5.1: Some of the command level action sequences from the APC stow task.

command purpose

move(lifter) potential collision avoidance
pose() init a pose
move(torso) pose for recognition
move(left-shoulder) occlusion avoidance
move(lifter) pose for recognition
move(left-shoulder) prepare reach pose
pose() prepare reach pose
move(torso) prepare reach pose
move(lifter) reach collision avoidance
trajectory() reach by inverse kinematics
move(lifter) reach collision avoidance
grasp()
move(lifter) withdraw collision avoidance

language understanding, and a dialogue script module. Speech recognition converts human speech

to text and the language understanding extracts the intent of the text (e.g. ”Where is the office?” is a

speech, find location is the intent). By extracting the intent we may map the speech to the dialogue

objective (information-transfer or action-discussion). These modules are provided as open cloud

services (e.g. Microsoft LUIS, Google Dialogue Flow). The dialogue script is a mapped list of

human-intent and robot-response pairs. A predefined speech and gesture by the robot is triggered

from the detected human intent.

5.5 Task Scheduling and Constraints

5.5.1 Robot-centric Physical Context and Task Acceptance Types

Table. 5.1 and Table. 5.2 lists some of the actual command level action sequences that were

required in the APC stow task and FCSC display task from the previous chapter. From our analysis

on motion commands and the purpose of the command, we find that there are three types of actions

regarding task acceptance (acceptance from task to a different task, especially an action-discussion

request).
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Table 5.2: Some of the command level action sequences from the FCSC display task.

command purpose

pose() pose for recognition
pose() init a pose
move(base) adjust to recognition
openhand()
trajectory() reach by plan
grasp()
trajectory() withdraw by undo
move(base) undo adjust

The first type of action is acceptance hard. This is the case where a robot is not able to freely

move its body (e.g. potential collision, holding an object with both hands, etc.) and therefore,

must proceed or backward the task before it is able to accept an action-discussion driven task. For

example, such examples are seen when the robot is putting its hand in the APC shelf. The robot

must either backward its actions and remove its hand out of the shelf or proceed and grasp an

object and then move its hand out before it is able to begin the next task. Another example that

falls into an acceptance hard condition is when the robot is opening a fridge, or is manipulating

under an opened fridge. The robot must close the fridge first before it can accept any new tasks,

and therefore, cannot move freely.

The second type of action is acceptance conditional. In this type of action, a robot may move

freely, but must redo some previous actions when it returns to its current task. For example, in the

APC task, the robot positions to look inside the tote. The robot may move to a different task as it is

not under any potential collision, but when it returns to the task, the robot must redo the looking.

The third type is acceptance. The robot may move freely and does not have to redo actions

when returning to its task. For example, in the FCSC, the robot is just about to move to the

sandwich shelf to begin a sandwich task. In this situation, the robot will begin from moving to

the sandwich shelf despite whether it was interrupted with a different task. Pictured examples of

acceptance hard and acceptance conditional is provided in Fig. 5.3 .
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Fig 5.3: Picture example of an acceptance hard action (left) and an acceptance conditional action
(right).

5.5.2 Percentage of Task Acceptance Types in Object Transportation Tasks

Fig. 5.4 shows the actual percentage of each acceptance type in the two competitions. From the

graph, we see that an action-discussion driven task is actually not immediate acceptable in most

cases. Tasks are mostly acceptance hard and if not, mostly acceptance conditional. Since the

examples are both object transportation tasks, these would be common situations in most targeted

applications of task robots entering society.

5.5.3 Exceptions to Acceptance Hard and Forward Looking at Actions

Below we provide an example exception to acceptance hard conditions that may transit to an

action-discussion task. Let us assume an action sequence that is composed of the following list of

actions: moveLocation, pose, doRecognition, moveArmVisionContext, grasp, release, lookPerson-

Context, moveArmPersonContext. moveLocation moves the robot to a pre-defined work spot. pose

directly moves the joint angle of the robot to create some pose. doRecognition does the recognition

and creates a model environment. moveArmVisionContext moves the joint angles from kinematic

calculation in relation to the model environment. grasp closes the hand. release opens the hand.

lookPersonContext looks at a person. moveArmPersonContext moves the joint angles from kine-

matic calculation in relation to a person.

Let us assume the current action sequence (we will name this sequence A) is a pick and place
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Fig 5.4: Percentage graph of each acceptance type in the APC and FCSC task, followed by the
percentage of constraint types of acceptance hard.

task on a table, where a big open box and a drink is on the table. The actions are moveLoca-

tion(table1), pose(for recognition), doRecognition, moveArmVisionContext(drink), grasp(power

grasp, drink), pose(move arm away from table1), moveArmVisionContext(box), release(drink),

pose(move arm out of box). Let us assume that during pose(move arm away from table1) we

encounter an interaction.

In this interaction task, the robot is not sure what the person is going to ask, and therefore,

accepts to talk with the person. During the talk, the robot finds out that the person wants the

robot to do the following action sequence (we will name this sequence B): lookPersonContext,

moveArmPersonContext, release(drink). As the robot is holding a drink, it is not able to move

freely and is under an acceptance hard state. However, the task that is being asked requires the

robot to do the next task at the particular moment despite the fact that the upcoming task requires

the robot to move its body. The exception here is that, the constraint that is keeping the robot from

accepting a new task is removed by the upcoming task. We will assume that there is a pre-defined

constraint that the robot may check to decide whether the robot may move freely using information
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on the upcoming task

5.5.4 Defining Actions

For smooth transitions between tasks, we must divide task actions so that one action does not

include multiple acceptance types. For example, rather than setting a ”pick” as one action includ-

ing pre-posing and recognition processes, the ”pick” should at least be divided to ”getting ready

for a pick” and ”pick”. This will allow a person to interrupt the robot before it begins a pick,

and smoothly transition to the next task. Elsewise, the person may have to wait until the robot

finishes placing an item. Dividing actions depending on acceptance types will allow more chance

of smooth transitions between tasks. In addition, actions may have to be divided according to a

change in acceptance hard constraint conditions (increase or decrease in constraints) depending on

the task scenarios the robot accepts. This was the case for the exception in the previous section.

5.5.5 Processing Task Acceptance

From the discussions in the previous sections, there are three things that must be checked when

switching tasks under an action-discussion. First, we must check the acceptance type of the current

action in the task. If the robot is under acceptance hard it must proceed or backward its current

task. If the robot is under acceptance conditional or acceptance it may consider proceeding to the

upcoming task. Second, if the robot is under acceptance hard it must check the constraints of the

current task and the upcoming task. If there is a current constraint or any constraint in the future

that is removed in the upcoming task, the robot may accept the task at the moment the constraint

is removed. Third, if the robot was at acceptance conditional, we must check for a redo or skip of

the task actions.

5.5.6 Task/Action Scheduling Component

This component (Fig. 5.1 blue region) handles the conditions regarding acceptance. We assume

that some scripted information on acceptance type and constraint of each action in a task is pro-

vided. The scheduling module parses this script to inform the system on the current acceptance

state as well as the required number of steps to forward/backward before starting a new task. The
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input of the module is the script, but also the result from the situation engine (whether the robot

is free of being Rn or the robot must try to enter Rr; here, the result includes information such

as what the next task should be). The scheduling module returns a list of actions to do (forward-

ing/backwarding) before an interrupted action-discussion task, or a list when returning from the

interrupted task to the original task. If there is no need to handle any task transitions (free of being

Rn), the scheduling module will execute the list of actions in the current task one-by-one.

We summarize our procedure for switching tasks from script information in Algorithm 5.5 and

5.6. The algorithm assumes that the interaction (getting a request of the next task) happened and

finished before finishing the current action, or the current action waited for the interaction to finish

before proceeding to the next.

5.5.7 Limitations and Relation to Task Planning

In some cases, the previous task may abort once finished the new task. For example, in the

case of the person wanting to take over the current task of the robot and instead wanting to order

something different e.g. take away what the robot is delivering and ask to go over and handle a

customer. In more complicated situations, a robot may be doing a looped pick and place task and

sometimes, a person may ask to handover an item instead of placing it. In these cases, a pointer

to the start of the task (in this case, the start of the loop which is a pick) may be set when going

back to the previous task. Or, a robot may start from a middle of a task as if the acceptance

conditional situation. If the robot requires an action that is not in the action list of the previous

task, then, that is a problem that requires global planning such as using SMACH [11]. Planning

in some sense can be seen as an online generation of a task script. For our framework to work

on a generated script, we would have to automatically annotate constraints and acceptance type.

Yet, there are many interaction related tasks or switching between various tasks that do not require

such planning complexity. For example, postponing and coming back later is one of those tasks

that do not require handling complex transitions. In another example, a robot pushing a cart may

be stopped by a person, and the person may add additional items to the cart for the robot to carry.

These are interactions that require scenting in a middle of a physical task but do not require any

motion from the robot.

In other cases, the robot may not have information on the upcoming task. Such situations can be



— 5： System Architecture — 129

Algorithm 5.5 Interaction acceptance and task scheduling.
1: actionList, acceptanceTypet, allowedProcesst ← read current task script
2: if acceptanceTypet is not ACCEPTANCE HARD then
3: return SUCCESS
4: nextActionList ← read task script of upcoming task
5: for a in nextActionList do
6: nextConstraintS tatus← add information of a
7: backingPlan← ϕ, proceedingPlan← ϕ, backingPlanComplete← FALSE
8: if allowedProcesst includes backward planning then
9: for a in descending range [t, 0] of actionList do

10: push a to backingPlan
11: constraintS tatusi ← read information of a
12: acceptanceTypei ← read information of a
13: if constraintS tatusi is removed in nextConstraintCondition OR acceptanceTypei is

not ACCEPTANCE HARD then
14: backingPlanComplete← TRUE
15: break
16: proceedingPlanComplete← FALSE
17: if allowedProcesst includes forward planning then
18: for a in ascending range [t, ] of actionList do
19: push a to proceedingPlan
20: constraintS tatusi ← read information of a
21: acceptanceTypei ← read information of a
22: if constraintS tatusi is removed in nextConstraintCondition OR acceptanceTypei is

not ACCEPTANCE HARD then
23: proceedingPlanComplete← TRUE
24: break
25: if proceedingPlanComplete is TRUE then
26: if backingPlanComplete is FALSE OR length of proceedingPlan is shorter than

backingPlan then
27: do proccedingPlan
28: return SUCCESS
29: else if backingPlanComplete is TRUE then
30: do backingPlan
31: return SUCCESS
32: else if backingPlanComplete is TRUE then
33: do backingPlan
34: return SUCCESS
35: else
36: return FAILED
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Algorithm 5.6 Return to task after acceptance conditional.
1: redoActions← ϕ

2: actionList ← read current task script
3: for a in descending range [t, 0] of actionList do
4: stack a to redoActions
5: acceptanceTypei ← read information of a
6: if acceptanceTypei is ACCEPTANCE then
7: break
8: while redoActions is not empty do
9: do top of redoActions

10: pop redoActions

found in a teaching-by-demonstration scenario. The person interrupts the robot and tries to teach

or revise a skill. In this situation, the forwarding and backwarding of actions could be commanded

by a person instead of automatically handled by the algorithm. These type of settings are passed

as parameters to the scheduling component, but also require extra nodes (not in the figure) to

auto-generate action lists.

5.5.8 Relation to Task Queuing

In addition to checking the task acceptance state and handling forwarding/backwarding of a

task, the task scheduler must have a queuing function. It is apparent that the module requires such

a function since the scheduler also handles returning of a task for an acceptance conditional task.

Here we will briefly explain its mechanism.

There are five types of queued tasks. The next task, tasks queued with priority, tasks that were

queued due to interruption, tasks escaped from an error state, and routine tasks. The next task

will always happen after the current task. Tasks queued with priority will happen before the other

task types if it has a high priority but after other types if low priority. Tasks that were interrupted

will be popped before the other tasks unless the other tasks have a higher priority setting. Tasks

escaped from an error are queued in occasions such as failing a robot-to-human interaction. These

have lower priority as an error might be under fix by someone else or the robot has to come back

later when the person might be ready. These will only be popped when at least one different task

from queue is selected first, or when there are no other tasks in queue or all tasks in queue are
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error-escaped tasks. The routine task will be selected last unless the routine tasks have priority or

the task was interrupted. The routine tasks will be popped in whatever order specified by the user.

When an interruption happens during a task, the current task will be queued unless specified

an abort option. An abort option may be specified from the task or the interaction callback. An

example of an abort from task will be when the robot fails a robot to human interaction. However,

the robot also has a choice of queuing this task as an error and pops and retries the task later on.

An example of a callback abort is when a person asks the robot to do something else, and the

person takes over the current robot’s task.

5.6 Primary Context Node

The primary context node sets the primary robot’s willingness of reaching a Hn-Rn agreement

or reaching a Hp-Rr agreement (responding with a ”please wait” or ”yes?”), as well as, settings

during a robot-to-human interaction.

In the human-to-robot interaction situation, there are three types of settings: accept an interac-

tion (reach a Hp-Rr situation and listen now), or postpone an interaction (reach a temporary Hp-Rr

situation but then reach Hn-Rn at the moment and listen to the details later), or completely avoid

an interaction (try to reach Hn-Rn without a temporary agreement). The settings are related to the

social context such as distance between the human and robot.

Note that not all social contexts are handled in the primary context node and some are related

to task acceptance and physical constraint. For example, a robot may be throwing away some

garbage as a person comes by asking for directions. The request itself is an information-transfer

dialogue. Yet, the robot may have to point toward some direction. It may be rude for the robot

to have garbage in its hand while pointing. This is more of a post-process manner decision and is

expressed as a hand usage constraint. Once the robot finds out that it needs to point directions, it

will forward its actions of throwing the garbage before answering the person’s question.

Beside, social contexts, a more robot-centric metric could also be applied. For example, the

robot could use the acceptance state information and speak that it is busy, despite whether the

person will ask for an information-transfer or an action-discussion. This may sound inappropriate,

but when the robot is under a long action, such behavior may be required; especially if there is a
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chance that the robot will keep the person waiting for quite a while, after knowing that the request

is an action-discussion.

In the robot-to-human interaction situation, the node may set settings such as to just stare at

the person to catch attention, catch attention by speaking, or catch attention if the estimation

score seems not to change. By setting such settings in an independent node, we may control the

interaction timing independent from the task state. For example, a robot could have a task where

the robot approaches a person. The node could set the robot’s behavior to just stare but then change

the behavior to catch attention once estimated a high score of a person willing to interact. The

change in setting is then passed to the situation engine as a change in primary robot’s willingness.

The change will at the end, affect the type of behavior to conduct in the initial interaction callback.

Since the changing of a robot’s willingness is dependent on the scenario of the task, such setting

of willingness is defined outside the situation engine.

5.7 Interaction-Task Integrated Example using the System

5.7.1 Achieving the Restaurant Task

In this section, we prove that our system works and achieves a complex setting such as a restau-

rant scenario. The robot is capable of the following tasks: routineTask, goAndListen, entrance-

CustomerHandling, storeMenuToShelf, passTheMenu. The restaurant task is composed of four

parts and uses a combination of three sensors: base laser, head camera and torso camera. The four

parts are shown in Fig. 5.5 and is running one or two of the capable tasks. The task procedure

description (scripted list of task actions) for the goAndListen task is provided at the end of the

section as an actual coded example.

The first part is handling of an interruption during the robot’s routineTask. In this routine task,

the robot is picking up a dish to clean the table and tries to put the dish in a carrying container. This

is similar to the FCSC storing task in that we are picking items from the narrow (the goal position

of fingers are constrained between the object and the table). The robot succeeds the task by using

the techniques from Chapter 4. For the picking, the planar constraint holds, and therefore, we use

the middle mobility layer to move the fingers under the dish. In addition, the navigated solution

”fits” a heuristic pose using both arms to pick up a dish. Since the robot is holding a large dish
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Fig 5.5: The restaurant task. In the top row, the robot is cleaning up the dish from the table. In the
second row, the robot approaches the person and tries to initiate an interaction. In the third row, the
robot interacts between two customers and acts according to the scented willingness. In the fourth
row, the robot receives the menu and starts guiding the second customer. The timing of receiving
the menu is decided from the customer’s willingness state. In the fifth row, the robot finishes the
guiding task and scents an interaction on its way back. In the sixth row, the robot hands back the
menu. The move away timing is decided from the customer’s willingness state.
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Fig 5.6: The behavior observation module with multiple sensor gateways. This allows more com-
plex scenting but does not change the structure of the situation engine nor the base architecture.

that is almost the same size as the container, the problem of placing the dish in the container is

difficult to solve with online planning. The images in the figure show that our approach of using

predefined motions and the navigated solution simplifies such planning and achieves the solution.

While the robot is doing this routine task, the robot is constantly scenting human engagement

from a sitting customer (the customer is at a different table). We use the torso sensor for this

detection. The primary context uses the distance metric. If there is any possibility of a human to

robot interaction, the robot will enter a temporary agreement but ask the user to wait until the robot

reaches close by. After knowing that the robot must approach the person, the robot will check the

task acceptance state. If the robot finds that it is in an acceptance or conditional state, it will go to

the customer first. Else, the robot will forward or backward its task depending on which is faster

(have fewer action steps) to accomplish. The images in the figure show that the robot successfully

scents a customer and reaches back after finishing the dish-placing task.

The second part is approaching the customer at the table. The robot starts a new task goAn-

dListen that was set when scenting a temporary agreement. The robot navigates itself using the
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Fig 5.7: The willingness estimate between the two customers. The face detection results indicate
the customer who is requesting orders. When the willingness from the face detection decreases,
the robot handles the scented leg. When the willingness from the face detection increases, the
robot re-handles the customer requesting orders.

navigation stack and predefined map information. The robot will not accept any new interaction

at this phase (the robot’s willingness is strictly Rp). The robot uses observations from its head

sensor, and passes the observations to the situation engine to sense whether the person is ready to

interact with the robot. After the robot has successfully interacted with the customer, it will listen

to the customer’s request (ordering from a menu). This is shown in the second row in the figure.

While the robot is taking orders, the robot will either focus on the current customer, or if the

robot notices that a different customer is waiting at the entrance and the current customer is busy

looking at the menu, the robot will give eye contact to the customer waiting at the entrance. This

is an example of handling interaction situations during interaction tasks.

The handling is done by using multiple sensor inputs and comparing willingness scores (Fig. 5.6 ).

The customer already under interaction with the robot is observed using the torso sensor. The sec-

ond waiting customer near the entrance is observed using a leg to camera switching observation.

When the willingness score (posterior probability) of the current customer becomes low and the

score of the entrance customer is high, the robot will give an eye contact to the customer at the
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entrance. However, if the current customer’s score increases, the robot will stop (cancel) the eye

contact motion and look back at the current customer. Fig. 5.7 shows that the system successfully

estimates and achieves the above situation.

At the end of the interaction task, the robot will take away the menu. For the timing of initiation

of the handover, we will again use our engine. If the human’s willingness score rises, the robot

will suggest taking away the menu.

Since the robot’s hand becomes occupied, it will gain a physical constraint. In order to remove

constraints before doing other tasks, the robot must queue a storeMenuToShelf task with high

priority to remove the constraint. However, if interrupted (in this case, a customer at the entrance

is waiting), a robot may set the next task as entranceCustomerHandling. As we have explained,

the system handles the queue in the order of: next task first, then whatever is prioritized in the

queue. This is successfully done as shown in the fourth and fifth row of Fig. 5.5 .

The third part of the task is handling the entrance customer in the entranceCustomerHandling

task. Again, the robot will try a robot to human interaction. If it fails the interaction (e.g. the

person was already seated) the robot will continue with the queued task (store the menu). Here

we assume that the robot has knowledge that the entranceCustomerHandling task does not have

any conditions relating to the hand occupancy constraint (in this task, we assume the menu for the

new customers are already prepared on the table and does not require any hand over actions from

the robot). The scheduler will therefore, accept this task.

The fourth and final part is the storeMenuToShelf task. The robot is navigating itself to place the

menu in-hand back into the shelf. This time, a customer tries to catch the robot’s attention as the

robot passes by. Therefore, the distance is close enough that the robot will accept the interruption

immediately. The user will ask that he wants to see the menu again. This is an example of handling

constraints that is removed in the upcoming task (passTheMenu). The sixth row in Fig. 5.5 show

that the task scheduler successfully handles this situation.

5.7.2 Limitations

A person’s attention toward a robot may decrease as he or she looks at the menu or looks at

his or her phone. Our default trained scenting model does not take into account such context, but

instead, tries to distinguish long-term loss of attention and short term loss such as gaze aversions.
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Our model will not distinguish an end of an interaction (Hn-Rn agreement) opposed to long-term

loss of attention. They are both a long term loss. Such high level context would be required during

an interaction that is complex as the restaurant task. We see that there is room for enhancing the

current architecture. We would need to integrate task-situation scenting on top of interpersonal

situation scenting.

Although we have experimented a restaurant scenario, one may question how well the experi-

ment condition would apply to a real restaurant. We have looked at five tasks: cleaning up a dish

from the table, taking orders, guiding a customer, storing the menu, and handing over the menu.

Each task in the restaurant task was represented as a sequence of actions. We have assumed that

the type of dish and scenery is possible of knowing beforehand, and that such knowledge is appli-

cable. We have handled object location uncertainty using the movement of the base, which should

be an applicable solution at real restaurants as long as there are enough landmarks to laser scan

match and localize the robot’s position. Technically, the task falls under the paradigm of pick,

carry, and place of known objects; which is what we have explained are the basic and required

functions for a task execution system to enter society.

However, the problem with the restaurant task is that most of these tasks were triggered through

interpersonal situations rather than from the robot’s task state space. We may say that this is why

our architecture is technically important for developing these type of tasks, but at the same time,

this is why we may say that the restaurant task will not yet enter our society. There are too many

expectations on the robot in the restaurant task. The robot must take an order, might need to re-fill

a drink, might need to pick a dropped item, there are so many things a person could ask the robot.

We have seen with the current social robots that, over expectations must be taken with care.

# go_and_listen (ac indicates acceptance conditional, ah indicates hard)

0,0,init,_get_agreed:false

0,0,acSetupScentingSensors

0,0,acPose

0,0,acLookAtPersonAction,_agree_point:0,_agree_type:prioritized

0,0,acMoveToPersonAction,_agree_point:0,_agree_type:prioritized

0,0,ahInteractWithCustomer,_agree_point:3,_agree_type:prioritized

0,1,ahGraspMenuAction

1,1,ahPose
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5.7.3 Achieving the Garbage Throwing Task

Our system also achieves other scenarios such as taking away a tray and throwing away garbage

for a person at a food court. While the restaurant task has shown that our system is able to handle

various initiation scenes, the garbage task shows that the system is able to handle various initiation

timings and different objectives that happen in a single scene. Successful results are shown in

Fig. 5.8 .

5.8 Conclusion

There are three types of interpersonal agreements, but also, two distinct dialogue functions;

which make interaction-task integration complex. To solve the different contexts that underlie, we

have introduced task acceptance and its relation to the physical context and human objectives. By

analyzing the competition tasks, we have found that in object transportation tasks, more than 50%

of the time, a robot may not be able to accept an interaction task, but if the system checks between

the constraints of the current task and the upcoming task, the robot might be able to accept for

more than 30% of the acceptance-hard task state.

We have shown the capabilities of our system through a restaurant and garbage task scenario.

The task setting had a more close-to-real assumption when compared to the restaurant task at

competitions e.g. RoboCup@Home. The robot is always doing some routine work and not just

waiting. Multiple customers may be waiting for the robot. A person may be looking at his or her

cellphone when the robot approaches. A passing of a menu is done between the person and robot.

The manipulation is much more rigorous and so are the interpersonal situations. We have achieved

such a complex setting using the manipulation simplifying techniques from the previous chapter,

combining a parallel running situation scenting capability to the task execution nodes, and adding

a task scheduler that handles task switching from both a robot-centric and human-centric view.
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Fig 5.8: An example of a task with different initiation patterns. Top two row shows accepting
once and then postponing an interaction to receive a tray. Middle row shows backwarding current
action to accept an interaction of receiving garbage. Bottom row shows accepting an interaction
and then forwarding a task to meet a social context.
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6.1 Introduction

In this chapter, we will test our system under different scenarios to find out how and where our

system would be beneficial to our society. We will experiment the reaching of the three agreement

situations in possible future robotic applications related to navigation and object transportation.

The first part of the chapter experiments no-interaction agreement situations by adding a pay-

ment handling interaction to the FCSC competition task. Although such agreement situations are

rare for a practical application, and most of the time the robot should politely extend a conflict

situation, we will see the effects of reaching such an agreement, whether or not such an agree-

ment is acceptable for the user, and if not, what are the causes of the non-acceptance. We have

already explained in the previous chapter that most of the FCSC task is acceptance hard. The

payment handling is an action-discussion type of interaction and therefore requires scheduling af-

ter the interruption. Instead of reaching a temporary human-to-robot agreement (which would be

the usual case when the robot is not at an acceptance state), we will purposefully try to reach the

no-interaction agreement unless the robot is at an acceptance state. The robot does not respond

but instead reports that it is busy when a conflict is detected.

In the second part of the chapter, we will experiment the human to robot agreement in a guiding

task scenario. The application was a practical application that was actually required due to short-

age of guiding staffs at an exhibition. We will see whether an autonomous changing in a robot’s

interaction behavior would be beneficial in the particular agreement scenario. Note that although

the robot often started the speech, the situation is human to robot as the robot only tries to interact

when a person seems to be trying to initiate an interaction.

The third part of the chapter looks at a robot to human interaction, especially one where a robot

proactively acts to begin an interaction. Unlike in the other experiments where the robot initiated

an interaction in a situation where a person was usually engaged due to the setting (exhibition) or

due to the previous context (robot coming back from a previous order), in this section, we discuss

whether robot to human interaction would be acceptable when there is no sign of engagement.

After going through the three sections, we will conclude with the possibilities of robots with

integrated skills, and evaluate how our system architecture would be beneficial to the society.
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Table 6.1: Task procedure description of the payment and sandwich task.

action description of acceptance

payment

initialize required: no collision
pose body toward person
loop until request = f inish
handle payment
loop
undo pose body toward person

sandwich

initialize required: both hands free
loop until items = ϕ
pose and recognize in shel f conditional
pull sandwich with rightarm hard, collision constraint
recognize with rightarm hard, collision constraint
rotate sandwich with rightarm hard, collision constraint
pick sandwich with rightarm hard, right hand occupied constraint
place sandwich to var acceptance
loop

6.2 No Interaction Agreement Convenience Store Experiment

6.2.1 Task Setting

The procedure of the task and the acceptance state of each procedure action is scripted in the

table. Note that the acceptance state and constraint described in the description refers to the state

after the action has finished. There are two scripts; the sandwich task that is the default non-

interaction task the robot is doing, and the payment task that is the interrupting user request.

For the non-interaction task, we apply hand occupancy constraints and collision constraints.

As mentioned in the previous chapter, an action should be divided whenever there is a change

in constraint. The script in the table follows this rule. To experiment no interaction agreement

conditions, we have set actions in the sandwich task as mostly collision constraints. This enables a

long manipulation scenario where a robot does not react most of the time. Here, we have assumed
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that the robot is continuously operating between shelves until picked a sandwich. Note that the

experimental constraint condition is different from the actual sandwich task, and was a purposeful

setting for the experiment. The actual sandwich task was not between shelves and there were

open space like a tabletop task (assuming that shelves in convenience stores can be pulled out

during manipulation). If we were to follow the actual setting, the pull sandwich is acceptance and

recognize with arm is conditional.

We tested the above task as part of an open demonstration that introduced the capabilities of the

robot. A presenter of the demonstration who had little knowledge of the system tried to interrupt

the non-willing robot during the sandwich task. Since the task was done at an open demonstration

with some audience, the presenter had to seriously interact with the robot. The presenter however,

had knowledge that the camera was doing some scenting of human-robot interaction, and that the

robot was running autonomously. What the presenter did not know was when the robot would

actually interact, and therefore, interacted with the robot at random timings where the presenter

thought the robot would react. Two presenters explained the demonstration with each presenter

doing a minimum of at least three trials.

6.2.2 Remarks on Implementation on Postponing Behavior

Every time the robot detects a Hp-Rn conflict, the situation will trigger the initial interaction

callback. The actual postponing behavior (e.g. say ”please wait”) is implemented in this initial

interaction callback (remember that by definition, this is indeed an initial interaction that tries to

reach a Hn-Rn agreement from a conflict state). The interaction callback (after the initial callback)

will never be called when trying to reach the Hn-Rn agreement.

6.2.3 Technical Results

We provide the outcome images of one of the trials in Fig. 6.1 . In the second image in the

figure, we see that the presenter stares at the robot. In the third image, the robot scents this staring

and speaks ”please wait.” In the fourth image, we see that the presenter decides to pick some item

on the shelf before trying to re-interact with the robot. In the fifth image, the presenter re-tries to

interact with the robot. The robot scents this situation again, but this time, the robot finds that it is

at an acceptance state and therefore, accepts the interaction with ”yes ma’am.” The robot handles
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please	
wait	

yes	
ma’am	

Fig 6.1: A robot postponing an interaction with a non-expert.

the payment task in the seventh image and returns to its task in the eighth and ninth image. Since

the robot has finished the sandwich task, it begins a queued storing task.

From a technical viewpoint, we see that our system successfully postpones an interaction task

and accepts an interaction with a non-expert. In addition, we found some interesting results regard-

ing the situation estimation. In the demonstration, the presenter looked back and forth between

the robot and the audience. This was a natural head movement at a demonstration, as the presenter

had to look toward the audience to explain what was going on, but also look at the robot for shared

attention with the audience. The estimation results for such situation are shown in Fig. 6.2 . From

the bottom graph in the figure, we see that the robot scents the situation correctly; the presenter is

not willing to interact even though the presenter looks toward the robot several times. This is one

of the advantages of using our proposed method when compared to more naı̈ve approaches where

a robot starts interacting once it sees a person looking toward the robot. In the upper graph, we

see that the robot scents that the presenter may be willing to interact, and therefore, responds by

looking back at the presenter. However, since the presenter was no longer looking at the robot,

or looked away from the robot just before the robot had responded, we see a drop in the posterior
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Fig 6.2: Estimation of the presenter’s willingness (posterior probability) while the presenter looked
back and forth between the robot and the audience. -1.0 indicates not willing and 1.0 indicates
willing. Gray line denote Hn, red line denote Hp. Blue blocks in observation indicate looking
toward, gray blocks away. Gray blocks in robot behavior indicate Rn and pink Rr0. The graph
shows that our system avoids naı̈ve interaction timing and enables accurate task decisions.

probability. This shows that accounting robot behavior for situation estimation is beneficial when

a person may be looking in multiple directions.

6.2.4 Study Results

We collected feedbacks from the two presenters. We provided open questionnaires. In one of

the questions, we asked how many times would postponing an interaction be acceptable. In the

experiment, we have assumed a manipulation task setting with mostly constraints. Therefore, the

robot said, ”please wait” zero to three, four times depending on how it scented the interpersonal

situation, and depending on the timing of the presenter to do the interaction. While one presenter

did not have concerns on the number of times the interaction was postponed, the other replied that

up to two postponing was acceptable but no more. A comment we had from one of the presenters

was, I was puzzled sometimes as the robot did not enter the payment task even right after the robot

had said ”Yes ma’am.” (comment translated from Japanese).

This happened when the interaction was much shorter compared to the non-interaction task (in

this case, the interaction was the ”Yes ma’am” response and queuing of the payment task when

accepted a Hp-Rr agreement). The user had to wait a full one action to finish before the next task
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(payment task) began. The learning here is that, some human-to-robot interactions are not actually

parallel and have a severe timing. Indeed, the phrase ”Yes ma’am.” indicates that the robot is going

to listen to the person, and it would be strange if the robot kept on doing its task in parallel.

The results of this experiment indicate that a non-willing robot is accepted under some circum-

stances. What is more important than avoiding non-willing responses, is to avoid false willing

responses. How much action remains in a task should be tracked and the robot should honestly

report that it is going to take some time before entering an interaction.

6.2.5 Discussion

Perhaps the result is limited to repeating customers or the customer’s personality. In the exper-

iment, the robot immediately entered an interaction in some trials, therefore, the presenter may

had the impression that she was not interacting in the right timing in the trials where the robot

postponed the interaction.

Perhaps the critical part of the agreeing-but-continuing-task situation was that, to the presenter,

why she was kept waited was not understandable. When the robot was warned that it was busy,

this was understandable to the presenter, and gave time to the presenter to do something else e.g.

talk over the audience or taking an item from the shelf.

6.2.6 Handling Long Constrained Actions

There are few solutions we may come up with for the problem we encountered on false accep-

tance. First, we may set the action as acceptance hard if that action is mostly under an acceptance

hard state. In the experiment, we have set the acceptance state of an action according to what

would be the state after the robot finishes its action. A more appropriate tagging would be to set

the action as acceptance hard followed by a dummy action that is acceptance. The problem with

this approach, is that, depending on timing, the robot may say ”please wait” then immediately

”Yes ma’am.” However, this is better than saying, ”Yes ma’am” and having the person wait for an

interaction.

A second approach to the problem would be to pause task actions in the initial interaction phase,

and then add extra phrases such as ”In a moment” if the task has more to progress (this is similar

to the extending conflict strategy, except, instead of looking at the remaining action sequence, the
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robot has to look at the sequence within the action). The problem with the second approach is that,

the progress may not be possible of obtaining with some of the control systems.

A third approach would be to make each action shorter (instead of sending joint trajectories

at once, divide each trajectory to sub actions). For the third approach, the robot should continue

moving at the initial interaction phase and only pause when an interaction is accepted. Otherwise,

the robot may stop its motions too often, every time it scents a chance of interaction. When the

third approach is not possible, the general approach would be the first one.

6.3 Training Human to Robot Agreement Guiding Experiment

6.3.1 Task Setting

The task setting of the experiment is described below: a robot is in idle mode. When the robot

scents a Hp-Rr situation, the robot will begin the guiding task. Once the robot finishes its task, it

will return to its home position and idle mode. Pictures of the task is shown in Fig. 6.3 .

From which direction a person would approach the robot was unknown beforehand. The field

of view of the cameras was not enough to capture people coming from different directions. Since

our engine allows arbitrary binary hints for observations, we have used a switching observation

between a robot’s base laser and camera. That is, use a base laser that detects nearby legs to scent

a person approaching from any direction, and then, after looking back at that direction, use the

head camera to confirm the situation. For the leg detection, we have used the methods by Leigh et

al. [72]. Pictures of the used observations is shown in Fig. 6.4 .

Theoretically, the probability model for this switching observation should slightly differ from

the camera-input only models used in the other experiments. However, we may also say that

the probabilities should be similar as, in this approaching case, a person’s standing position (leg

detection) has high relevance to that person’s goal.

We have ran a runtime training of the model to see how the scenting model will change overtime.

In addition, we evaluate whether the training improves the performance of the robot, both from a

technical perspective using F1 scores, and from a user-centered perspective by rating whether the

interaction went well.
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Fig 6.3: Pictures of the guiding task. The top row shows an instructor leading a customer to the
robot, and the robot initiates a guiding task. The bottom row shows the robot returning from guid-
ing a different customer, and then immediately initiates the guiding task for a waiting customer.

Fig 6.4: Screen capture of the guiding task observations from base laser and head camera.
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before	

a'er	

Fig 6.5: Comparison of estimation results before and after the training. The top row shows esti-
mation of before the training and the bottom row shows the estimation after the training. The left
side shows the estimations for a non-willing person, and the right side shows the estimations for a
willing person.

6.3.2 Training Setting

We recorded the observation sequence and the timing of the robot’s action sequence. We pro-

vided interaction true labels when a person was in front of the robot for a while after the initial

interaction. We provided false labels when the person went away after the initiation. Note that

these labels were automatically annotated from the system. The system updated the model after

every five interactions. When the robot failed to initiate an interaction the first time but succeeded

the second time right after the first failure, we provided true labels for the failed interaction. This

meant that the robot revised its estimation of its failures.

6.3.3 Overall Results

We collected a total of 172 interaction initiations in three days (excluding people who just

passed by or people who came at in invalid robot state such as while changing the batteries). The

interactions included situations such as: the person was guided, the robot failed to initiate the

interaction, and where the initiation was successful but the person decided not to use the guiding

robot. In some of the interactions, a staff led a visitor in front of the robot.

First, we compare estimation results before the training and after the training. Fig. 6.5 shows

estimation on the same observation sequence. Here, we use an actual observation sequence that

was collected from some of the visitors. From the figure, we see a clear difference. Before the
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training (the model from the original dataset), the probability that a person is willing to interact

increases only after observing a few frames. In contrast, after the training (the model using param-

eters collected after running a guiding task for three days), the model estimates a high chance that

a person is willing to interact once it detects a person, but then the estimation drops toward not

willing afterwards. In addition, we notice that before the training, the model estimated the will-

ingness as false if the person was not looking toward the robot after the robot looked back. After

the training, the model shows a similar estimation once, but will increase the chance of human

willingness right afterwards.

From these results, we see that, first, when a person suddenly comes close by (which happened

when two people were approaching and one person was hidden behind the other), the trained model

reacts faster than the model used before training. Second, the robot keeps the characteristics that

lead to correct estimations. For example, we see a similar rise in the estimation when the person

is willing to interact for both models. Third, the trained model tries to recover from a chance

of (initiation) failure when it detects a human non-willing state. Example situations where this

happened was when a person approached the robot but then started looking at a nearby sign, then,

re-approached the robot afterwards.

After the training, the robot responded faster to these types of interactions. From the result, we

see that how the robot interprets these observations change due to training. Also, we see that the

robot trains itself especially on the estimations before and after showing a sign of reaction. This

shows the importance of collecting data not only when the robot is reacting, but also when a robot

is doing a non-interactive behavior.

6.3.4 Technical Results

Table 6.2: The task initiation F1 score during the training of the guiding robot.

day1 day2 day3

F1 score 0.85(0.72) 0.88(0.84) 0.89(0.84)
precision 0.87(0.75) 0.86(0.82) 0.86(0.80)
recall 0.84(0.69) 0.90(0.86) 0.92(0.88)

Table. 6.2 shows the F1 score of the first day (starting the training), the second day (middle

of the training), and the third day (finishing the training). We see that the scores become slightly
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higher as the training proceeds. The scores in parentheses indicate the score when excluding the

people who decided not to use the robot after listening to the robot’s speech. The result shows that

the model is becoming more accurate in scenting whether a person is willing or not.

6.3.5 Study Results

Table 6.3: Rating percentage of the interaction by two researchers.

day1(good:fair:bad) day2(good:fair:bad) day3(good:fair:bad)

rater 1 0.28 : 0.24 : 0.48 0.28 : 0.36 : 0.36 0.33 : 0.44 : 0.23
rater 2 0.38 : 0.31 : 0.31 0.57 : 0.20 : 0.23 0.68 : 0.17 : 0.15

Two researchers have looked over all the interaction that happened in the three days and rated

the interaction initiation as good, fair, or bad. An example of a good interaction was where the

interaction went smoothly and the person and robot directly entered an interaction. An example of

a fair interaction was where the person had to try to catch the robot’s attention before entering an

interaction. Bad interactions included not responding, responding too late and users going away,

and reacting to people passing by. Table. 6.3 show the rate percentage of each day. From the

table, we see that the raters rated fewer interactions as bad as the training proceeded (Cohen’s

kappa score of 0.51, 0.69, 0.41 for each day respectively). This means that a robot’s interaction

behavior can be trained to increase the number of acceptable interactions, by using probabilities

on sequential observations.

6.3.6 Discussion on Raters

When we look at the number of good and fair interactions, we see different opinions depending

on the rater. One rater rated more interactions as good as the model was trained. In contrast, the

other rater rated the same amount of good for the model in the middle of training and the model

finishing the training. Although the scenting accuracy increased, one rater found that the speech

timing could be faster (should enter an interaction with a shorter initial interaction duration). This

is one of the drawbacks of trying to be accurate. In general, taking more observations allow more

accurate estimations, however, the person will lose interest in the robot if the decisions are slow.

The trained model sometimes collected observations as much as possible, but has made decisions

right before the user would lose interest. Although such a strategy would increase the F1 score, it
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might not increase user preference scores. However, this rater had more experience with the field

of human-robot interaction. The other rater with less experience found that if the robot interacted

before the person went away, it was good.

Another interesting difference between the raters is that, the rater with more experience found

that in some situations, not interacting was reasonable (a person looked at the robot for a few

seconds and soon went away) and therefore rated the interaction as fair. The rater with less experi-

ence found that the robot should also interact in such cases, therefore rated the interaction as bad.

Training does indeed correct the robot’s scent towards an interaction; however, preference might

dependent on different factors such as a user’s previous experience or expectance toward robots.

6.3.7 Discussion on Application Usage

When people are guided by the robot, some are actually impressed with the robot’s capability.

Yet, about half the visitors decided not to use the robot once hearing the robot’s capability after an

initial interaction. This included situations where people did not understand the robot’s language,

but also situations where people just wanted to take a picture of the robot. In addition, since the

experiment was done at an art exhibition, some people have looked at the robot as one of the

art works and may have lost interest because they found that the robot was not the art they were

looking for.

The training results did not correlate with how much the robot was actually used for its physical

capability. The number of people guided was highest in the second day where the model was in

the middle of the training. Perhaps this is because the reasons for the people not using the robot

was due to speech content or a person’s initial mindset toward the robot, rather than the robot’s

behavior at an initiation. Similar results have been seen in Chapter 3 as well.

To make a robot more acceptable, perhaps there could be a staff to introduce the robot. When

a staff introduced the robot as a tool to help guide the visitor, all visitors accepted the robot and

were successfully guided.

If a staff initiates the interaction between the visitor and the robot, it may seem as if we would not

need an automated initiation function. However, we have observed in our experiment that the staff

will have more time talking and explaining things to the visitor if the robot initiates the interaction

automatically. Unlike a tablet interface that takes away a staff’s attention from the visitor to the
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screen, a robot interface less distracts human-human conversations and could seamlessly begin the

guiding task just by being introduced. Not only does removing the tablet lower the cost of the

robot, but it also allows a more smoothly acting interface.

6.3.8 Benefits of Training

When the robot is not responding, people do not speak to the robot (only in a few occasions,

a person will say ”hello”). The first thing people (mainly adults) do is look around the robot as

if trying to find a switch to activate the robot. However, once the robot responds, people often

wait and stay still until a robot speaks a phrase. In this sense, a robot has certain control over the

interaction if initiated the interaction at correct timing. However, if the robot fails to initiate, the

human behavior becomes unpredictable. Both the human and robot will enter a confused state and

most likely fail to enter an interaction. This was often seen in the first day at start of the training.

We may look at this result the other way around. Revising estimations revise a robot’s behavior,

and a revised robot behavior will provide better estimations.

As we have seen, the main advantage of using a complex model that trains and estimates in-

terpersonal situations, is that, the robot could better fit to interaction scenarios, and self-supervise

itself when it encounters an interaction failing pattern. Such failures may happen, as how a person

will act in front of the robot is not known beforehand.

6.3.9 Limitations

We must be aware that the model was trained in an open space and a lot of people were passing

by the robot. The open space also meant that the robot would detect people (legs) approaching

from a far away distance. In addition, the model captured some of the flow patterns where a hidden

person suddenly appeared, or when a person looked at a sign before starting the interaction with

the robot. These were typical flow patterns in the scenario. Depending on the scenario, we may

have different flow patterns. We may also have different observation patterns even when using

the same combination of sensors. For example, if this was a small room and far away detection

was not possible, we would have completely different observation patterns. Therefore, the trained

model most likely fits only the scenario that it was trained. However, as we did in the experiment,

we may use an already trained model to generate initial interaction behaviors to begin with.
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Fig 6.6: An example where an approaching robot fails to initiate an interaction.

6.4 Approaching Robot to Human Agreement Experiment

6.4.1 Experiment and Results

The last part of this chapter will discuss robot to human interaction. Unlike the experiments

in the other sections with specific task settings, we will pick up some of the other experiments

we have done but have not yet discussed in this book. These experiments were those that failed.

We will discuss mainly on these failures and conclude with the limitations of robot to human

interaction.

The first experiment was done as a side experiment of the Chapter 3 interaction-only public

domain experiment. In the Chapter 3 experiment, the robot starts an interaction with Rn, whereas,

the side experiment started with a Rp willingness state. The robot tried to catch a walking-by

person’s attention by speaking. The robot even tried moving toward people passing by. However,

no one interacted with the robot and almost all people ignored the robot. One person stopped and

looked back at the robot but soon walked away. Perhaps the problem was that both the person and

robot were moving around which made the interaction initiation difficult. In addition, people were

walking by, meaning that they might have been busy, and the situation was not right for interacting.

Even in human-human interaction, we sometimes ignore people giving out fliers out in the road.

However, our second experiment rejects this hypothesis.

The second experiment was done at a forum in the university (the same location where the robot

navigated people in the previous section). We have used the same robot as the other experiments

in this chapter. Instead of navigating, the robot moved toward a person standing up from a table

and asked if there was any garbage the robot could throw away for the person. This time, the

robot was moving around and the person was mostly at the table preparing to leave. Some peo-

ple started walking away from the table, but this was after the robot started approaching them.
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Again, no one interacted with the robot. One person faced away from the robot when the robot

approached. Another person was walking in the direction where the robot was approaching from,

but passed through the side of the robot as if trying to avoid it (Fig. 6.6 ). One group noticed the

robot and looked back, but seemed surprised and became speechless. Unlike the first experiment,

people were in place and had a chance of interacting. Compared to the situation in the first exper-

iment, there would have been more chance of an interaction happening if it were a human-human

interaction. Yet, the results show that people do not interact with approaching robots.

6.4.2 Discussion

It seems that people feel odd about an approaching robot. An approaching machine is out of

their expectations, they are facing something unfamiliar, and they are puzzled with the situation.

In addition, not everyone accepts a robot. We have seen that even in human to robot interaction

scenarios, some people are not willing to interact with the robot and walk away once seeing the

robot respond. There is a chance that we are trying to interact with the non-accepting people

(which could be the majority), and therefore, an approaching robot might be inappropriate for our

society.

However, in some cases, it is beneficial for a robot to approach a person. For example, in the

Chapter 3 in-lab experiment, the engineer asked the robot to bring an item, but was not aware

that the robot brought back the item. In this situation, the person asked for the robot’s help and

the approaching machine was within his expectation. This is a successful example of a robot-to-

human interaction.

The other possibility of robot-to-human interaction is to reach an interaction faster. If a robot

comes near a person while a person approaches the robot, the person will have to walk a shorter

distance to reach the robot. This may seem as if the robot must know the intent of the person.

However, we know that most of the time, people will just ignore the approaching robot if they do

not need to use the robot. There would not be many side effects if the robot correctly decides not

to begin an interaction while it is approaching the person. Therefore, we may have some kind of

trigger to have the robot proactively start moving, and then we may use the situation engine to find

out if the proactive action was correct. For example, in a garbage-collecting scenario at a food

court, we may have the robot start moving once detecting a person leaving the table. While the



158 — 6： The System in Different Situation Scenting Scenarios —

robot approaches the person, the robot could observe the looking direction of the person. If the

person seems to be not willing from the observations, the robot could stop its approach and decide

not to talk. If the person seems to be willing, the robot could proceed to reaching an interaction

agreement.

We have found in the experiments that as people start to familiarize with the robot, they try to

have more control over the interaction with the robot (they try to initiate the interaction with the

robot instead of waiting for the robot to speak). In order for the robot to still have some control

over the interaction, a robot might need to act beforehand.

6.5 Conclusions

The experiment results show that the robot must react and initiate the conversation. The reaction

helps users to use the robot more intuitively, but also helps the robot to have more control over the

interaction. In order to achieve such control, scenting is a very important function as it allows the

robot to react at an appropriate timing where the interaction can be controlled, but does not stress

users who are not willing to use the robot. The system structure is indeed essential for providing

better usability in initiating robot task skills.

However, by evaluating our system in different situations, we find that not all interaction sit-

uations are appropriate for the robot to have control. The robot should only have control over

interaction situations when people are able to predict the robot’s behavior. For example, robot to

human interaction in the wild is one of those situations where people are not able to predict or

understand why the robot is approaching the person. We have not found any successful tries in

such situation. Another example is the false agreement.

The other finding from this chapter was that, scenting can be trained per scenario to provide

better control over interaction patterns in a particular scenario. The recall score has increased

by 0.08 in total, and increased by 0.19 for the users who actually used the robot’s task skill. In

addition, the number of bad-rated interactions has decreased by an average of 22%.
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7.1 Conclusion and Findings

In Chapter 1, we have pointed out the limitations and failures of current social robots as not

meeting customer expected skills, and therefore, our goal of integrating interaction skills with

other robotic skills such as navigation and manipulation.

In Chapter 2, we have clarified the novelty of solving interaction under a total setting where

other robotic skills are active. The unsolved problems included managing of physical and non-

verbal interaction in the initiating stage under the situation of interaction goals not being aligned.

In Chapter 3, we have achieved a model that is able to estimate the interpersonal situation

between the human and robot at an interaction initiating stage of non-verbal behaviors. The pro-

posed method of taking into account the probabilistic relations between the human behavior and

the robot’s behavior has succeeded in estimating a switch in initiative, scent willing users, detect

non-willing users, and achieve an F1 score of 0.821 despite using only a sequence of simple binary

observations, and has been proved effective.

In Chapter 4, generality reduces cost, and we have indicated the barebone task architecture that

provides baseline solutions to the task skills requested in our society. By clarifying a hardware

solution of using a middle mobility layer that minimizes the number of required joints to execute a

continuous position control for picking and placing objects in a structured environment, the system

has succeeded in reducing on-board calculation time by only dropping 28% of the convenience

store task, and holding the task error rate to 30%, placing second in the competitions despite not

targeting for the specific task.

In Chapter 5, we have achieved a scheduling algorithm that processes the required transition

from task to interaction under the physical, social, and objective context. The proposed method of

combining constraint-based task acceptance, a person’s dialogue objective, and the robot’s interac-

tion willingness from prior context has shown to be practical in preparing an interaction task in the

following situations: removing social constraints during information-transfer objectives, planning

the minimum number of actions to remove physical constraints for action-discussion objectives,

and postponing interactions under inappropriate social proximity.

In Chapter 6, we have proved by going through a total of 172 interactions in a real guiding

application that, the robot taking the initiative through physical behaviors help prepare people for
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an interaction. In addition, we have indicated that the scenting mechanism trains and fits itself

to the specific task context through self-update and self-revising, which has increased the recall

score in the particular scenario by 0.08 and decreasing the number of bad-rated interactions by an

average of 22%.

As a result of the above achievements, we have achieved an architecture that is able to au-

tonomously initiate and automatically prepare an interaction from different task states under dif-

ferent interpersonal and task situations including those under non-verbal behaviors. As we have

indicated from our experiments in the wild, such architecture is inevitable for robots to enter our

society, provide an entrance to using the physical capabilities of the robot, and be socially accept-

able.

7.2 Outcomes

Filling the gap between society. Interaction task-based scenarios using the most fundamental

capabilities of robots have not been well discussed over the past. This book has covered such miss-

ing areas to fill in the gap between task-based expectations in society and handling of interactions

in those task-based scenarios.

Beyond current social robots. Adding task skills will obviously be beyond current social

robots. Yet, even as a social capability, our solution provides more than current robots. Using our

solution, a robot may lead the conversation instead of waiting for its name to be called; which

provide more control over user expectations. A robot may reason between who is more engaged

when there are multiple people, and provide eye contact from person to person. These are impor-

tant social skills to provide better usage and better acceptance toward society.

Answers to questions in the industry. As part of a graduate school leading program (GCL-

GDWS), we have investigated on what people from the industry (hardware vendors in the country)

find difficult when developing software for multi-purpose robot systems. Our investigation has

found that, what people from the industry find most difficult is how to write codes with lot of ifs

and how to achieve complex tasks. For example, how to stop a robot passing by and request some-

thing different. The work in this book has provided the answers for combining non-interaction

and interaction tasks by providing a situation scenting capability embedded system under the total
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setting. We have shown that different interaction scenarios can be achieved with this single tech-

nology of situation scenting. In addition, we have confirmed that the architecture works on several

robots including the Seednoid, HSR, Pepper, and Fetch.

A gateway to the next generation of robot business. We have shown through our experiments

that people are still not at the stage of accepting robot-to-human interaction, at least in a public

setting. However, results also show that more than 50% of public users accept human-to-robot

interaction, and 100% under guidance by a human staff. The achieved technology will act as a

core to such scenarios in the business market. We may estimate at least $5 billion market size

in Japan that would benefit from this technology (assuming the robot’s capability to be 20% of

the human’s capability for 50% expense in the first year, and assuming 5% of the market uses the

robot).

7.3 Limitations and Future Work

Although we have clarified on how the social context influences the robot’s interaction accep-

tance or postponing in the total setting, the approach is not yet autonomous. An open area in

research is teaching robots the social manners appropriate for a particular setting. While the usual

theme in this area is based on preferable motions, we believe from our findings that manners for

postponing an interaction are also as important, especially for a task robot.

One remaining issue that exists for robots to enter society is, automating the generation of a task

skill. Although, vendors provide code samples for using the robot, how to code depends on each

scenario, and the vendor has to mentor each client to provide the appropriate solution. This leads

to an over cost on human resource on the vendor side. As the robotic skills become advanced, a

more data-driven solution where the enterprise feeds data, and the flow to be generated from that

data is necessary. To reach the consumer in an actual market, we must solve the problems between

the vendor and enterprise. This is another challenge we must investigate before marketing.
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A.1 Evaluation of a Robot using Ball Screws and Stepper Motors

Stepper motors have two advantages when compared to brushless motors: 1) stepper motors

require less maximum input of 5 to 10[W], thus it is easier to achieve a longer battery life when

the motors are in stall. 2) The platform is able to detect high loads and collision from motor

missteps during manipulation. Compared to other sensorless collision detection [27], a mechanical

approach ensures the platform to safely stop its movements before breaking its hardware.

Table. A.1 shows the force tolerance of using ball screws and stepper motors. We experimented

two poses, elbow bended to 90 degrees (B), and arm straightened at shoulder height (S). The

percent in the table represents used electrical current. f, t, h, w, e each denote the part detecting a

misstep as finger, torso-yaw, hand-roll, wrist-pitch, elbow-pitch. No misstep indicates a tumbling

risk. The wheels were servoed during the experiments and measured using a force gauge (FGPX-

250H). The values were sufficient for pull-opening doors, picking up a 3lb. warehouse item, as

well as bottle drinks.

In addition, the power produced during collision was experimented. The robot descended the

right forearm toward a robot impact sensor (KMG-300-75) until a motor misstep was detected.

The produced force was measured starting 60[mm] above the sensor at a maximum stroke speed

of 60[mm/s] in the elbow actuator. The maximum impact measured was 65[N] at the hand. The

value is within doubled safety range explained by [146]. This also provides evidence on how

damage is reduced by using stepper motors. The disadvantage of stepper motors is its speed.

Table A.1: The force tolerence of the seednoid platform. Unit in [N]. [121]
direction 30%B 100%B 30%S 100%S

forward 69-f 79-f 72-f 72-f
inward 38-t 83- 23-t 51-t
outward 26-t 46-f 22-t 42-w
upward 45-h 44-e 32-h 46-e
downward 12-h 53-e 30-e 46-h



172 Appendix

A.2 Constraints Inside Narrow Bins and Non-centered Fingertips

In general, a grasping surface S φ ∈ R2 by a planar hand movement is represented as the follow-

ing equation:

Sφ =
 Lh sin θ + r cos(θ − θ0)

Lh sin θ + r sin(θ − θ0)

 (A.1)

where Lh is the distance between the wrist to the virtual root joint of the fingers (a virtual root

joint is the summed center of all finger root joints), r is the distance between the virtual root joint

to the fingertip grasping position, θ0 an angular offset of the grasping position (for example, in a

common parallel gripper θ0 = 0 while theta0 = 0.78539 for the gripper in Fig. A.1 ), and θ is the

orientation (pose) of the hand in the grasping plane. Let us assume the situation where the hand is

grasping from a narrow shelf. A required fingertip workspace may have an upper bound φ+ and a

lower bound φ−. Assuming that the robot does not operate on a ceiling, the picking of an object

from front side is conducted near φ+ and the picking of an object from above is conducted near

φ−. The fingertip height from the wrist to φ+ and φ− is expressed as the following by using the

above equation:

z+ = Lh sin θ0, z− = −r − Lh cos θ0 (A.2)

When picking an object from a shelf, we want a smaller |Z+| for a frontal grasp, and a smaller |z−|

for grasping from above. A centered fingertip (θ0 = 0) will minimize |z+| but maximize |z−|. In

contrast, θ0 > 0 would balance |z−| and |z+|. The human like gripper (θ0 > 0) is more suitable

when compared to an industrial gripper (θ0 = 0) in this narrow shelf condition.

The disadvantage of the human like gripper is that, it has difficulty in rotating objects. For a

robot to rotate an object, the simplest way would be to grasp an object from the top, and then rotate

the hand yaw joint. This type of strategy was also seen with the valve task in the DRC by many of

the robots. The strategy would also have been beneficial for the FCSC sandwich task. A human

does not have this yaw joint but instead is able to do in-hand manipulations.

A.3 Recognition Pipeline in the APC without Training of Items

Fig. A.2 shows an approach of detecting objects without training using pixel segmentation

and object detection via a cloud database. This assumes that a robot has some knowledge of its



Appendix 173

physical context and tries to map the knowledge with a new label. In the APC, this knowledge

was the location of the item (which bin the item was in), the color, the shape, and a matching to a

similar known object. For the known object matching we used the COCO dataset [75] as our base.

For example, a teddy bear was already a known object to the COCO dataset, but the brush was

unknown and was referred to as a monitor. Therefore, the robot labeled a monitor like object that

was blue and long and is in bin D as a brush. During the competition, we were able to detect the

glove (a shirt like object that is black and small and was in bin B) using this approach. However,

we were only able to grasp one object with this approach, as the location of the object was too

vague due to inaccurate bounding from general segmentation approaches.

A.4 A Theoretical Comparison of Two Compact Wrist Structures

This section is a supplementary material to the discussion of wrist structures in Chapter 4. In

general, when a spherical assumption holds for the wrist, the pose (tool axis) Rh of the hand can

be expressed as the following quaternion:

Rh = cos
θ1

2
+ (S xθ2 ,θ3 î + S yθ2 ,θ3 ĵ + S zθ2 ,θ3 k̂) sin

θ1

2
(A.3)

where θ1, θ2, θ3 are the root (wrist) joint angles, and S = [S x S y S z] a unit normal vector on a

spherical surface. θ2 and theta3 must rotate around a different axis. From the above equation,

the number of pose solutions is dependent on the joint limits; especially the joint with the smallest

range among θ1, θ2, and θ3. These limits are tied to the hardware structure. It may seem reasonable

to design a hardware so that θ1, θ2, θ3 ∈ [−2π, 2π]. However, this is not always possible especially

if we are trying to develop a compact hardware.

With the roll-pitch-yaw structure (Fig. A.3 -I), θ1 = ψ ∈ [0, π], θ2 = ϕy ∈ [−0.08π, 0.14π],

θ3 = θ ∈ [−0.39π, 0.36π], therefore, the number of solutions is dependent on ϕy. Likewise, with the

roll-pitch-roll (Fig. A.3 -II) structure, θ1 = ϕr ∈ [−π, π], θ2 = ψ ∈ [0, π], θ3 = θ ∈ [−0.39π, 0.36π],

therefore, the number of solutions is dependent on θ. Comparing ϕy and θ, the roll-pitch-roll

provides more functionality.
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A.5 Hand Designs for Non-prehensile Manipulation

We have explained that common prehensile grasp modes are the fingertip and encompassing

grasp. Likewise, we may define two major grasp modes for the non-prehensile actions, depending

on the usage of the thumb. The hook mode, which uses the thumb for post-contact after a non-

prehensile action (e.g. topple and catch), and the thumbless mode, which stores the thumb so

that the thumb does not disturb the operating finger (e.g. sliding a thin object). We see that the

Seednoid gripper has each grasp mode Fig. A.4 . This allows combining various actions in the

narrow. For example, using non-prehensile actions will allow the robot to pull out objects that are

deep inside the shelf.

A.6 Environment Modeling

The modeling module uses both online and offline information to visualize the environment.

Offline prior knowledge of the problem environment is applied via an environment map. Moreover,

some objects are better to be defined prior rather than on runtime. A stereo camera is not able to

detect walls, and because position of walls often do not change, it is better to input such models as

prior knowledge. Likewise, a shelf is often occluded with objects and is also better to be generated

from prior knowledge. Other smaller objects should use runtime detection as the position often

changes in the scene. However, since only the frontal face of an object is observed through the

sensor, sometimes it is better to use prior knowledge to model the shape and use runtime detection

for modeling object location. For objects that are modeled for collision, we may not need the

precise shape and create a bounding box by analyzing point cloud information.
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Fig A.4: Grasp modes of the Seednoid gripper based on human anatomy.
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