

博士論文

Efficient algorithms for processing genome-wide chromatin information

(ゲノム全域のクロマチン情報を処理する効率的アルゴリズム)

市川 和樹

1

Contents

Abstract……………………………………………………………………………....2

General Introduction……………………………………………………………………4

Chapter 1: A Simple but Powerful Heuristic Method for Accelerating

k-Means Clustering of Large-Scale Data in Life Science…...……….…......9

 Introduction………………………………………………………....…10

 Methods………………………………………………………………...13

 Results…………………………………………………………………27

 Conclusions and Discussion……………………………….…………40

Chapter 2: A linear time algorithm for detecting long genomic regions

enriched with a specific combination of epigenetic states...........................41

 Introduction………………………………………………………....…42

 Methods………………………………………………………………46

 Results…………………………………………………………………51

 Conclusions and Discussion……………………………….…………60

Chapter 3: De novo assembly of medaka fish genome using SMRT sequencing

and construction of chromosome map using Hi-C data…………….……...62

 Introduction………………………………………………………....…63

 Results………………………………………………………………66

 Methods………………………………………………………………70

 Conclusions and Discussion……………………………….…………74

Concluding Remarks……………………………………………………….………....75

Acknowledgements………………….……..………………………………………....77

References……………..………………………………………...................................78

2

Abstract

Development of sequencing technology such as Chip-seq, MNase-seq, and Single-

Molecule Real-Time sequencing has been accelerating genome-wide chromatin

information collections. To gain insight into biological systems from large-scale

chromatin data, there is a pressing need to have efficient analytical methods. To

overcome this problem, I devised two novel algorithms for processing chromatin

information and verified the efficiency and effectiveness of my methods using real

biological datasets.

 One algorithm named “BoostKCP” boosts the calculation of k-means clustering in

terms of the Pearson correlation distance, which is widely used for processing large-

scale datasets in life science. BoostKCP avoids unnecessary computation in k-means

clustering by utilizing some heuristic properties specific to the Pearson correlation

distance, thereby reducing the overall computational time. To demonstrate the

usefulness of the heuristics, I compared its computational time with those of the classic

Lloyd’s algorithm and other two relevant accelerating methods, the Elkan’s and

Hamerly’s algorithms, using nucleosome positioning data and two other biological data.

BoostKCP outperformed other methods in various conditions.

 For detecting regions with a specific combination of epigenetic modifications, I

invented “CSMinfinder” that is capable of handling large epigenetic information in time

linear to the size of a given genome. Precisely, CSMinfinder calculates the similarity

score between a focal combination and raw epigenetic states at each DNA position, and

outputs an optimal set of large non-overlapping regions (longer than a threshold) that

maximizes the sum of similarity scores. With this method, I detected large

hypomethylated regions with H3K27me3 marks which overlapped with many

3

developmental genes in the human and medaka genomes.

 In my efforts to achieve more precise analysis on chromatin information, I found it

essential to use more accurate genomic sequences with a smaller number of gaps. For

this purpose, I used chromatin conformation capture data collected by the Hi-C method,

and constructed new medaka genomes for three inbred strains so that each genome has

only hundreds of gaps and contains pericentromeric regions.

4

General Introduction

Chromatin is a conformation in eukaryotic cell composed of DNA, proteins and RNA

[1]. The basic unit of chromatin is a structure consisting of a segment of DNA wound

around histone octamer composed of two copies of each of the four core histone proteins.

In each nucleosome, approximately 146bp base pairs of DNA wrap around histone core

particle 1.65 times in a left-handed super-helical turn [2], [3]. Fundamental structure is

an iteration of nucleosome core particles and bare DNA sequence between nucleosomes

called linker DNA [4], [5]. As higher order structures of chromatin DNA form

heterochromatin or heterochromatin classified by the level of condensation [6]. In

heterochromatin, a highly condensed chromatin forms, gene expressions are suppressed,

conversely chromatin condensation are loosened, and gene transcriptions are activated.

Gene regulation by chromatin has been widely studied in epigenetics. In chromatin

structure, nucleosome positioning patterns are known to be one of the important factors

regulating gene transcription [7], [8]. Especially, nucleosome positioning around

transcription starting sites have an important role in gene expression. Nucleosomes

downstream of promoters are called +1 nucleosomes and are known to be stably

positioned [9]. In the S. cerevisiae genome, it has been reported the presence of

nucleosome-depleted regions (NDRs) in upstream of promoters [10]. As the factors of

regulating nucleosome positioning, DNA sequence [11], DNA methylation [12] and

histone modifications [13] are thought to be important; however, the mechanism of

nucleosome positioning have not fully understood.

In addition to nucleosome positioning, histone modifications influence activation and

5

repression of gene expression [14], [15]. Histone tails which are N-terminals of histone

proteins are likely to have chemical modifications including methylation, acetylation,

phosphorylation and ubiquitination. Histone modifications change the chromatin

construction and affect gene transcription in a variety of ways [16]. Histone acetylation

is correlated with transcriptional activation [17], [18]. Acetylation reduces positive

charge of histone and loosen the binding between nucleosome and DNA, thereby

promoting gene expression. On the other hand, lysine methylation causes both

transcriptional activation and suppression determined by position of residue in histone

tail [19], [20]. Histone H3 lysine 4 (H3K4) methylation is enriched specifically in

hypomethylated gene promoter regions and causes transcriptional activation [21], [22].

Conversely, in embryonic stem cells, hypomethylated regions around promoters of

developmentally regulated genes are frequently marked with H3K27me3 which repress

gene transcription [23], [24]. These regions are often longer than several kilo base pairs,

and genes are stayed in “poised” state, which is not simply suppressed. Poised states are

thought to be essential for embryonic cells to maintain pluripotency, and previous

research in medaka genome suggested that shortening development hypomethylated

domains with H3K27me3(K27HMD) weakens repression so that developmental genes

are activated [25]. Large K27HMD around developmental gene promoter are often

conserved between medaka and human, suggesting a combination of hypomethylation

and H3K27me3 in vertebrate could be a common mechanism behind gene regulation.

By the recent advances on the development of sequencing technology such as Chip-seq

[26], MNase-seq [27], and single molecule real time [28]–[30] sequencer, genome-wide

chromatin information can be captured at a feasible cost. To analyze such massive data

and gain new insight, efficient methods for processing are needed.

6

In my thesis I devised two novel methods focused on accelerating k-means clustering

using Pearson correlation distance, and detecting regions which modified by specific

epigenomic combinations.

Clustering is an unsupervised learning method to classify data into groups based on

similarity among data. Typical clustering methods are hierarchical clustering, k-means

clustering, self-organizing maps, and principal components analysis [31]. To process

biological data, such as gene expression data [32]–[35], histone modifications [36]–[44]

and nucleosome positioning [12], [45]–[54], various clustering methods are utilized to

discover biological findings in clustered groups. Extensive research studies have been

done to classify nucleosome positioning around transcription starting sites using

clustering. In yeast, for example, nucleosome positioning in the regions within 800bp

of TSSs were clustered into 4 patterns by k-means clustering, and characteristic of

clusters were annotated according to Gene Ontology [46]. A striking example different

from the previous research [55] was that two of four cluster were found to lack clear

NDR. In the human genome, nucleosome patterns were classified into 17 clusters and

roughly divided into categories which have strongly positioned nucleosomes in

upstream of the TSS and in downstream of the TSS [54]. It was revealed by the precise

clustering general model of nucleosome-depleted regions in upstream of promoters is

not necessarily hold.

Detecting chromatin states with distinct combinations of chromatin modification

patterns have been also widely researched. ChromHMM [42] is a statistical method for

classifying epigenetic modifications and dividing a DNA sequence into sub-regions of

similar chromatin states using Hidden Markov model. In the human genome,

7

ChromHMM listed chromatin states by combinations of histone modifications, and

identified region specific chromatin states.

In my doctoral thesis, I devised two novel algorithms for processing genome-wide

chromatin information to solve above mentioned problems. In Chapter 1, to classify

large high dimensional biological data such as nucleosome positioning signal data, I

invented “BoostKCP”, an accelerating method for k-means clustering using the Pearson

correlation distance. I applied BoostKCP to human nucleosome positioning signal data

and two other biological data, and compared the computational time with classic

Lloyd’s algorithm, the first, simple k-means clustering, and other two accelerating

methods, Elkan’s and Hamerly’s algorithms. In a variety of conditions, my method

outperformed Lloyd’s, Elkan’s and Hamerly’s algorithm.

In Chapter 2, I proposed a linear time algorithm for detecting regions which modified

by specific epigenomic combinations called “CSMinfinder”. My algorithm calculates

the similarity score between a focal combination of epigenetic modifications and raw

epigenetic states at each DNA position, and is able to detect a set of non-overlapping

regions which maximizes the sum of similarity scores under the constraint that the

length of each region is greater than or equal to a given minimum threshold. Using

CSMinfinder, I detected large hypomethylated and modified by H3K27me3 regions

(K27HMD) which contained many developmental genes in the medaka and human

genome.

In Chapter 3, I constructed medaka draft genome using SMRT sequencing reads

intended to make less gap genome to elucidate chromatin conformation. I used Hi-C

8

data to anchor contigs to chromosome which contained centromeric repeats that could

not be assembled in past medaka genome.

9

Chapter 1

A Simple but Powerful Heuristic Method for Accelerating k-Means

Clustering of Large-Scale Data in Life Science

10

Introduction

This chapter is a modified version of my paper “A Simple but Powerful Heuristic

Method for Accelerating k-Means Clustering of Large-Scale Data in Life Science” [56].

Nucleosome is a fundamental unit of chromatin structure in eukaryotes, which is

composed of a segment of DNA wound around eight histone proteins core [1]. Each

nucleosome core is consisting of 2 copies each of core histones H2A, H2B, H3 and H4

and about 146bp of DNA are wrapped around histone octamer [2], [3]. Chromatin

structure is composed of nucleosomes and free DNA between nucleosomes called

“linker DNA”. Generally, existence of nucleosome prevents binding of transcription

factor and nucleosome positioning patterns are thought to be associated with gene

regulations [7], [8]. Especially it is known that around transcription starting sites there

are nucleosome-free regions on the upstream of promoters, and +1 nucleosome

downstream of promoters are stably positioned in whole genome [10]. Recent studies

have revealed the association between nucleosome and gene regulation by clustering

nucleosome patterns. As example, in yeast, nucleosome patterns are classified into four

clusters and tendencies of genes in each clusters are researched [46]. In the human

genome, nucleosome positioning around transcription starting sites were classified into

17 clusters and asymmetric pattern which have strongly positioned nucleosomes in

upstream of TSS [54]. Mechanism of regulating nucleosome positioning has not been

fully understood and clustering nucleosome positioning is thought to be a useful method

for getting new insight of chromatin structures.

A variety of clustering algorithms, such as hierarchical clustering, k-means clustering,

self-organizing map (SOM), and principal components analysis (PCA), have been used

11

for gain insights into biological systems (for review, see [31]).

Of these, k-means clustering is the most widely used to process large-scale data sets, in

part because the computational complexity of hierarchical clustering is quadratic or

higher in the number of data points, while k-means clustering algorithms have lower

computational complexity [57]. Accelerating k-means clustering algorithms is still

necessary to process the growing volume of biological data due to the recent progress

in data collection by next-generation sequencing.

The basic concept of k-means clustering is simple.

1. It first selects k cluster centroids in some manner. The behavior of the algorithm is

highly sensitive to the initial selection of k initial centroids, and many efficient

initialization methods have been proposed to calculate better k centroids [57]–[64].

In this study, I use the initialization method proposed by Bradley and Fayyad [62],

since it consistently performs better than the other methods in terms of several

criteria according to the recent report by Celebi et al [57].

2. Subsequently, k-means clustering repeats the process of assigning individual points

to their nearest centroids and updating each of k centroids as the mean of points

assigned to the centroid until no further changes occur on the k centroids [65].

Quantifying the same data points is essential. Various measures are available, such as

Euclidean distance, Manhattan distance, Pearson correlation distance, and Spellman

rank correlation. Of these, Euclidean distance and Pearson correlation distance have

been widely used for large-scale biological data processing [34], [35], [54], [66], [67].

Euclidean distance is sensitive to scaling, while correlation is unaffected by scaling.

Precisely, given two data of high dimension such that their patterns are quite similar but

their scales are different, Euclidean distance is not suitable for measuring the similarity.

To avoid this problem, standardized Euclidean distance, which is not sensitive to scaling,

12

is frequently used [34], [67]–[71].

Of note, standardized Euclidean and Pearson correlation distances are equivalent in the

sense that both yield the same k-means clustering result for identical sets of k initial

centroids because the standardized Euclidean distance is proportional to the square root

of the Pearson correlation distance [34], [71], and the two distances always produce

consistent orderings. Thus, optimization methods designed to calculate one distance are

applicable to the other.

Despite the importance of the Pearson correlation and standardized Euclidean distances

for machine learning, optimization methods customized for these distances are largely

unexplored. In general, several efficient k-means clustering algorithms have been

proposed for processing Euclidean distances by utilizing the triangle inequality [72]–

[74] or by analyzing the correlation coefficient between the centroids [75]. Thus, I can

use optimization methods for the Euclidean distance to yield a k-means clustering result

based on the standardized Euclidean distance that is in agreement with that based on the

Pearson correlation distance [34].

I instead examined the properties of the Pearson correlation distance and devised a

simple and novel method for avoiding unnecessary computation in order to boost k-

means clustering using the Pearson correlation distance. I demonstrate that my method

outperforms pruning method applications using the Euclidean distance [72]–[74]

compared with those that use the standardized Euclidean distance. My method has been

best optimized for k-means clustering using the standardized Euclidean and Pearson

correlation distances.

13

Methods

I first introduce the definition of Pearson’s correlation coefficient.

Definition. To measure the distance between two d dimensional vectors

 𝒙 = (𝒙[1], … , 𝒙[𝑑]), 𝒚 = (𝒚[1], … , 𝒚[𝑑]), I define Pearson’s correlation coefficient:

ρ(𝒙, 𝒚) =
1

𝑑
∑ (

𝒙[𝑖] − �̅�

𝜎𝒙
) (

𝒚[𝑖] − �̅�

𝜎𝒚
)

𝑑

𝑖=1
,

where �̅� denotes the average of 𝒙[1], … , 𝒙[𝑑] and 𝜎𝒙 is the standard deviation

defined as √∑ (𝒙[𝑖] − �̅�)2𝑑
𝑖=1 𝑑⁄ . Let ‖𝒙‖ denote its length defined as √∑ 𝒙[𝑖]2𝑑

𝑖=1 .

Note that Pearson’s correlation coefficient ranges from −1 to 1, i.e., −1 ≤ ρ(𝒙, 𝒚) ≤

1. The Pearson’s correlation coefficient ρ(𝒙, 𝒚) itself does not serve as a distance

because when 𝒙 and 𝒚 are more similar to each other, ρ(𝒙, 𝒚) becomes larger and

approaches 1 rather than 0.

Definition.[76] The Pearson correlation distance 𝑑𝑖𝑠(𝒙, 𝒚) is defined as 1 − 𝜌(𝒙, 𝒚).

The Pearson correlation distance approaches 0 when 𝒙 and 𝒚 are similar. In contrast,

when 𝒙 and 𝒚 are more dissimilar, the Pearson’s correlation coefficient decreases to

−1, and the Pearson correlation distance between 𝒙 and 𝒚 increases approaching

2. The range of the distance is 0 ≤ dis(𝒙, 𝒚) ≤ 2 . The Pearson correlation distance

violates the triangular inequality.

14

Example. When 𝒙1 = (9, 3, 1), 𝒙2 = (3,1, 9), and 𝒙3 = (1,3, 9), Pearson correlation

distances are

dis(𝒙1, 𝒙2) = 1.5, dis(𝒙2, 𝒙3) = 0.115, and dis(𝒙1, 𝒙3) = 1.846,

which do not meet the triangular inequality:

dis(𝒙1, 𝒙2) + dis(𝒙2, 𝒙3) ≥ dis(𝒙1, 𝒙3)

I illustrate here two examples that clarify how the Pearson correlation distance differs

from the Euclidean distance.

Example. When 𝒙1 = (1, 3, 9), 𝒙2 = (0.9, 0.3, 0.1), and 𝒙3 = (0.1, 0.3, 0.9),

𝒙1 and 𝒙3 have similar patterns, but their scales are different, while 𝒙2 and 𝒙3 have

dissimilar patterns, yet their Euclidean distance is smaller than the distance between 𝒙1

and 𝒙3. Indeed, we have:

dis(𝒙1, 𝒙3) = 0 < 1.84615 = dis(𝒙2, 𝒙3),

while

‖𝒙1 − 𝒙3‖ = 8.58545 > 1.13137 = ‖𝒙2 − 𝒙3‖.

15

The next example illustrates the discrepancy between the Pearson correlation distance

and the “normalized” Euclidean distance.

Example. When 𝒙1 = (0.1, 0.3, 10), 𝒙2 = (0.1, 1, 10), and 𝒙3 = (0.1, 0.1, 1),

Pearson correlation distances meet

dis(𝒙1, 𝒙3) = 0.00016 < 0.00338 = dis(𝒙2, 𝒙3),

implying that 𝒙3 is more similar to (correlated with) 𝒙1 than is 𝒙2. In contrast, the

normalized Euclidean distance yields the opposite ordering:

‖
𝒙1

‖𝒙1‖
−

𝒙3

‖𝒙3‖
‖ = 0.11304 > 0.08920 = ‖

𝒙2

‖𝒙2‖
−

𝒙3

‖𝒙3‖
‖

I next define the standardized Euclidean distance.

Definition. Let dis_𝑆𝐸(𝒙, 𝒚) denote

√∑ (
𝒙[𝑖] − �̅�

𝜎𝒙
−

𝒚[𝑖] − �̅�

𝜎𝒚
)

2𝑑

𝑖=1

the standardized Euclidean distance between two d dimensional vectors 𝒙 and 𝒚.

The square root of the Pearson correlation is proportional to the standardized Euclidean

distance.

Proposition.[34] [71]

√2𝑑√𝑑𝑖𝑠(𝒙, 𝒚) = dis_SE(𝒙, 𝒚)

The Pearson correlation distance and the standardized Euclidean distance produce

consistent orderings; namely for any 𝒙𝟏, 𝒚𝟏, 𝒙𝟐, 𝒚𝟐,

dis(𝒙𝟏, 𝒚𝟏) ≤ dis(𝒙𝟐, 𝒚𝟐)

 if and only if

dis_SE(𝒙𝟏, 𝒚𝟏) ≤ dis_SE(𝒙𝟐, 𝒚𝟐).

16

I note here that the Pearson correlation distance and its square root are largely different.

For example, √𝑑𝑖𝑠(𝒙, 𝒚) = 0.4 when 𝑑𝑖𝑠(𝒙, 𝒚) = 0.16 , and √𝑑𝑖𝑠(𝒙, 𝒚) = 1.3

when 𝑑𝑖𝑠(𝒙, 𝒚) = 1.69 . In general, two proximal (distal, respectively) points of the

Pearson correlation distance < 1 (> 1) become more distant (closer) according to the

square root of the Pearson correlation distance.

Next, I outline Lloyd’s algorithm, which implements k-means clustering. Given 𝑛

points in 𝑑 dimensional space, a k-means algorithm starts with selecting 𝑘 initial

centroids, {𝒄𝑝 | 𝑝 = 1, … , 𝑘}, in some way. It then repeats the following two steps

until no further changes occur in any of the 𝑘 centroids:

 Assigning step: Assign each of 𝑛 points to its nearest centroid.

 Updating step: Update each 𝒄 of 𝒌 centroids as the mean of points assigned to

𝒄.

Lloyd proposed the basic concept of the above procedure [65].

Suppose that it takes Θ(𝑑) time to compute the distance between two 𝑑-dimensional

points. A naïve implementation of the assigning step is to calculate the distance between

each point and each centroid, which takes a Θ(𝑑𝑘𝑛) time in total, while the updating

step needs a Θ(𝑑𝑛) time. Thus, accelerating the assigning step is crucial. Here, I

present a way of avoiding unnecessary computation in the assigning step by finding

unchanged nearest centroids.

Selecting the distance between points is crucial in k-means clustering. The Euclidean

and Pearson correlation distances are not always consistent and may produce different

17

clustering results for an identical set of k initial centroids because during the assigning

step, the centroid nearest to each vector can differ according to the distance selected. In

contrast, the standardized Euclidean and Pearson correlation distances produce

consistent orderings, and consequently the centroid closest to each vector is the same

regardless of the distance selected. Using this property, I show that both distances yield

the same clustering result.

Proposition. For an identical set of k initial centroids the k-means clustering algorithm

produces the same clustering result for each of the standardized Euclidean distance as

the Pearson correlation distance.

Proof.

I prove the inductive hypothesis stating that before each round of iteration, the set of k

centroids for the standardized Euclidean distance is identical to that for the Pearson

correlation distance. The hypothesis holds true before the first iteration simply because

the same set of k initial centroids is the input for each distance. Assuming that the

hypothesis is true before the 𝑖th iteration, after the assigning step, the centroid nearest

to each vector is identical for each of the two distances because for any vector 𝒙 and

any centroids 𝒄1 and 𝒄2 , 𝑑𝑖𝑠(𝒙, 𝒄1) ≤ 𝑑𝑖𝑠(𝒙, 𝒄2) if and only if 𝑑𝑖𝑠_𝑆𝐸(𝒙, 𝒄1) ≤

𝑑𝑖𝑠_𝑆𝐸(𝒙, 𝒄2). Thus, after the updating step, the set of vectors closest to each centroid

c is identical for the two distances, implying that the mean of the set, the revised centroid,

is also identical. Consequently, the inductive hypothesis is true before the (i+1)-th

iteration.

This proposition allows us to perform k-means clustering with the Pearson

correlation distance by using optimization algorithms developed for the (standardized)

18

Euclidean distance [72]–[74]; however, it is unclear whether methods for the Euclidean

distance are effective for accelerating the performance when using the standardized

Euclidean distance. I show relevant experimental results in the next section.

For the following, I describe my new algorithm customized for the Pearson correlation

distance. Centroids are updated frequently and are likely to move long distances in early

stages of the repetitive steps. In contrast, in later steps, centroids are unlikely to move,

and therefore, the assigning step has a tendency to reassign each point to the previous

centroid as the nearest one, which should be avoided. Thus, we can accelerate the

assigning step if we can test whether the nearest centroid for a point remains unchanged

without recalculating the distances between the point and all centroids. Suppose that

after the updating step, the centroid 𝒄𝑝 nearest to 𝒙 moves to 𝒄𝑝′ for 𝑝 = 1, … , 𝑘,

and any other centroid 𝒄𝑞 (𝑞 = 1, … , 𝑘, 𝑞 ≠ 𝑝) moves to 𝒄𝑞′. We ask if 𝒙 is still

closest to cluster 𝒄𝑝’ after the updating step:

dis(𝒄𝑝′, 𝒙) ≤ dis(𝒄𝑞′, 𝒙),

for 𝑞 = 1, … , 𝑘(𝑞 ≠ 𝑝)

To check this test efficiently for any point 𝒙 without recalculating the new distances

on both sides of the inequality, we will develop an efficient method to estimate an upper

bound of the new distance dis(𝒄𝑝′, 𝒙) using the existing distance dis(𝒄𝑝, 𝒙):

dis(𝒄𝑝
′, 𝒙) ≤ dis(𝒄𝑝, 𝒙) + an_upper_bound,

where we will define “an_upper_bound(≥ 0)” shortly.

19

Similarly, we will derive a lower bound of dis(𝒄𝑞
′, 𝒙) using the previous distance

dis(𝒄𝑞 , 𝒙):

dis(𝒄𝑞 , 𝒙) + a_lower_bound ≤ dis(𝒄𝑞
′, 𝒙)

for 𝑞 = 1, … , 𝑘(𝑞 ≠ 𝑝), where a_lower_bound ≤ 0.

Using these methods, we can implement a pruning procedure. If

 dis(𝒄𝑝, 𝒙) + an_upper_bound ≤

dis(𝒄𝑞 , 𝒙) + a_lower_bound for 𝑞 = 1, … , 𝑘(𝑞 ≠ 𝑝), (∗)

we can confirm dis(𝒄𝑝′, 𝒙) ≤ dis(𝒄𝑞′, 𝒙) (𝑞 ≠ 𝑝) without calculating the new

distances, while retaining the final solution. In the next round of the assigning step, it

might be necessary to calculate the new distances, but we can omit this step by

substituting dis(𝒄𝑝, 𝒙) + an_upper_bound and dis(𝒄𝑞 , 𝒙) + a_lower_bound for

new distances dis(𝒄𝑝
′, 𝒙) and dis(𝒄𝑞

′, 𝒙) respectively because this replacement does

not violate the validity of the pruning procedure in the next assigning step. In cases in

which the inequality (*) does not hold, we calculate dis(𝒄𝑝′, 𝒙) and dis(𝒄𝑞′, 𝒙) for

𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝), and determine the centroid nearest to 𝒙.

To facilitate the simple description of formula and derivations, I introduce a method of

decomposing the Pearson’s correlation coefficient 𝜌(𝒙, 𝒚) into two vectors called

“correlation coefficient vectors.”

20

Definition. Correlation coefficient vectors are defined as

1

√𝑑
(

𝒙[1] − �̅�

𝜎𝒙
,
𝒙[2] − �̅�

𝜎𝒙
, ⋯

𝒙[𝑑] − �̅�

𝜎𝒙
),

1

√𝑑
(

𝒚[1] − �̅�

𝜎𝒚
,
𝒚[2] − �̅�

𝜎𝒚
, ⋯

𝒚[𝑑] − �̅�

𝜎𝒚
),

for 𝒙 = (𝒙[1], … , 𝒙[𝑑]) and 𝒚 = (𝒚[1], … , 𝒚[𝑑]), respectively. Let 𝐶𝐶𝒙 and 𝐶𝐶𝒚

denote the respective correlation coefficient vectors.

Note that the Pearson’s correlation coefficient ρ(𝒙, 𝒚) is equal to the inner product of

𝐶𝐶𝒙 and 𝐶𝐶𝒚; i.e., ρ(𝒙, 𝒚) = (𝐶𝐶𝒙, 𝐶𝐶𝒚). Any correlation coefficient vector 𝐶𝐶𝒙 is

of length 1; namely, ‖𝐶𝐶𝒙‖ = 1, and similarly, ‖𝐶𝐶𝒚‖ = 1.

To facilitate the discussion of calculating better upper and lower bounds, I introduce a

new definition.

Definition. Let 𝒄 and 𝒄′ be respective centroids before and after the updating step

and let 𝐶𝐶𝒄 𝑎𝑛𝑑 𝐶𝐶𝒄′ be their correlation coefficient vectors. Let ∆𝑑𝑖𝑠(𝒄, 𝒄′, 𝒙)

denote 𝑑𝑖𝑠(𝒄′, 𝒙) − 𝑑𝑖𝑠(𝒄, 𝒙) the distance variation of point 𝒙 to 𝒄 and 𝒄′.

For example, dis(𝒄𝑝
′, 𝒙) ≤ dis(𝒄𝑝, 𝒙) + an_upper_bound can be concisely

described by

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) ≤ an_upper_bound.

21

Another merit of this notation is that we are able to transform the distance variation into

an inner product of (𝐶𝐶𝒄 − 𝐶𝐶𝒄′) and 𝐶𝐶𝒙 :

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) = 𝑑𝑖𝑠(𝒄𝑝

′, 𝒙) − 𝑑𝑖𝑠(𝒄𝑝, 𝒙)

 = 𝜌(𝒄𝑝, 𝒙) − 𝜌(𝒄𝑝
′, 𝒙)

 = (𝐶𝐶𝒄𝑝, 𝐶𝐶𝒙) − (𝐶𝐶𝒄𝑝
′, 𝐶𝐶𝒙)

 = (𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′, 𝐶𝐶𝒙)

This inner product allows us to estimate an upper bound and a lower bound of

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) by analyzing the two vectors independently as well as by considering

each dimension separately.

We can derive an upper bound and a lower bound that are effective for any point 𝒙 for

which the nearest centroid is 𝒄𝑝. A simple approach is to derive two bounds from

‖∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙)‖ = ‖(𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝

′, 𝐶𝐶𝒙)‖

 ≤ ‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖‖𝐶𝐶𝒙‖,

where the inequality holds because of the Cauchy-Schwarz inequality. Because

‖𝐶𝐶𝒙‖ = 1, we can use ‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖ and −‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝

′‖ as upper and

lower bounds, respectively, and I define them as follows:

Definition.

upperA(𝒄𝑝, 𝒄𝑝′) ≝ ‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖

 lowerA(𝒄𝑝, 𝒄𝑝′) ≝ −‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖

22

These upper and lower bounds are simple formulas but effective for eliminating

unnecessary computation. It takes Θ(𝑑𝑘) time to calculate the lower and upper

bounds for all k centroids, and Θ(𝑘) space to store these bounds. I also design more

complicated bounds by taking the sum of the differences at individual coordinates.

Definition. Let 𝑆𝒄𝑝
denote the set of all points for which the nearest centroid is 𝒄𝑝

upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) ≝ ∑ maximum (𝐶𝐶𝒄𝑝[𝑗] − 𝐶𝐶𝒄𝑝′[𝑗], 𝑆𝒄𝑝

) ,
𝑑

𝑗=1

where

maximum (𝑧, 𝑆𝒄𝑝
) ≝ {

𝑧 × max {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 ≥ 0

𝑧 × min {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 < 0

For 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝) define

lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝
) ≝ ∑ minimum (𝐶𝐶𝒄𝑞[𝑗] − 𝐶𝒄𝑞′[𝑗], 𝑆𝒄𝑝

)𝑑
𝑗=1 ,

where

minimum (𝑧, 𝑆𝒄𝑝
) ≝ {

𝑧 × min {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 ≥ 0

𝑧 × max {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 < 0

Proposition. For any 𝒙 ∈ 𝑆𝒄𝑝
,

 ∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) ≤ upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝

) and

 lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝
) ≤ ∆𝑑𝑖𝑠(𝒄𝑞 , 𝒄𝑞′, 𝒙) (𝑞 ≠ 𝑝).

23

It takes Θ(𝑑𝑛 + 𝑑𝑘2) time and Θ(𝑑𝑘 + 𝑘2) space in order to calculate

upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) and lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝

) (𝑝 = 1, … , 𝑘, 𝑞 = 1, … , 𝑘, 𝑞 ≠ 𝑝)

for every cluster 𝒄𝑝.

Proof

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) = ((𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝

′), 𝐶𝐶𝒙)

 = ∑ (𝐶𝐶𝒄𝑝[𝑗]– 𝐶𝐶𝒄𝑝′[𝑗]) × 𝐶𝐶𝒙[𝑗]
𝑑

𝑗=1

 ≤ ∑ maximum (𝐶𝐶𝒄𝑝[𝑗] − 𝐶𝐶𝒄𝑝′[𝑗], 𝑆𝒄𝑝
)

𝑑

𝑗=1

 = upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
)

∆𝑑𝑖𝑠(𝒄𝑞 , 𝒄𝑞′, 𝒙) = ((𝐶𝐶𝒄𝑞 − 𝐶𝐶𝒄𝑞
′), 𝐶𝐶𝒙)

 = ∑ (𝐶𝐶𝒄𝑞[𝑗]– 𝐶𝐶𝒄𝑞′[𝑗]) × 𝐶𝐶𝒙[𝑗]
𝑑

𝑗=1

 ≥ ∑ minimum (𝐶𝐶𝒄𝑞[𝑗] − 𝐶𝐶𝒄𝑞′[𝑗], 𝑆𝒄𝑞
)

𝑑

𝑗=1

 = lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑞
)

For efficiency, I first compute the maximum and minimum of {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} for

each dimension 𝑗 = 1, … , 𝑑 and for each cluster 𝒄𝑝 (𝑝 = 1, … , 𝑘), and store this

information in a table of size Θ(𝑑𝑘) . This tabulation process takes Θ(𝑑𝑛) time.

Looking up the table, it is possible to calculate upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) for any cluster

24

𝒄𝑝 in Θ(𝑑) time, and lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝
) for (𝑘 − 1) clusters 𝒄𝑞 (𝑞 =

1, … , 𝑘, 𝑞 ≠ 𝑝) in Θ(𝑑(𝑘 − 1)) time. Repeating this calculation for each cluster 𝒄𝑝 =

𝒄1, … , 𝒄𝑘 requires Θ(𝑑𝑘2) time and Θ(𝑘2) space for storing upper and lower bounds.

Using the above two calculations for upper and lower bounds, we devise the pruning

procedure that checks

dis(𝒄𝑝, 𝒙) + upperA(𝒄𝑝, 𝒄𝑝′) ≤ dis(𝒄𝑞 , 𝒙) + lowerA(𝒄𝑞 , 𝒄𝑞′),

or

dis(𝒄𝑝, 𝒙) + upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) ≤ dis(𝒄𝑞 , 𝒙) + lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝

)

for each 𝒙 of 𝑛 points (𝒙 ∈ 𝑆𝒄𝑝
 for each 𝑝 = 1, … , 𝑘) and for each 𝑞 =

1, … , 𝑘 (𝑞 ≠ 𝑝) . If 𝒙 meets one of the inequalities, we can confirm dis(𝒄𝑝′, 𝒙) ≤

dis(𝒄𝑞′, 𝒙) (𝑞 ≠ 𝑝) by skipping the calculation of the new distances. The total

computation time of checking the above inequality is Θ(𝑘𝑛). Using upperB and lowerB

requires additional computational time Θ(𝑑𝑛 + 𝑑𝑘2) and space Θ(𝑑𝑘 + 𝑘2), which

is constantly required to calculate the two bounds in each iteration. In contrast,

computing upperA and lowerA needs Θ(𝑑𝑘) time and Θ(𝑘) space.

For each 𝒙 that violates the above inequality, new distances dis(𝒄𝑝′, 𝒙) and

dis(𝒄𝑞′, 𝒙) for 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝) are computed to find the centroid nearest to 𝒙.

In the best case, no calculation is needed. In the worst case, however, it is necessary to

compute new distances dis(𝒄𝑝′, 𝒙) for 𝑝 = 1, … , 𝑘 and 𝑛 points, and the worst time

25

complexity is 𝑂(𝑑𝑘𝑛) . Recall for comparison that the assigning step of Lloyd’s

algorithm requires Θ(𝑑𝑘𝑛) time.

I have defined two heuristic algorithms: one uses upperA and lowerA, and the other

upperB and lowerB to prune unnecessary computations when performing k-means

clustering using the Pearson correlation distance. I call the former BoostKCP (boundA)

and the latter BoostKCP (boundB), where BoostKCP stands for Boosting K-means

Clustering for Pearson correlation distance.

I compare the performance of Elkan’s and Hamerly’s methods, BoostKCP(boundA),

and BoostKCP(boundB) with respect to time and space complexity. Although individual

method accelerates Lloyd’s algorithm using lower and upper bounds to prune

unnecessary computation, each iteration requires 𝑂(𝑑𝑘𝑛) time in the worst case. Thus,

I summarize the overhead of computing lower and upper bounds in terms of time and

space complexity (Table 1). The entries of “time/iteration” show the asymptotic

overhead computation time required to calculate lower and upper bounds in each

iteration by individual algorithms. The entries for BoostKCP have been described, while

those for Elkan’s and Hamerly’s algorithms are detailed in [73]. Table 1 shows that the

time and space complexity of BoostKCP(boundA) are smaller than those of the other

methods. In the experimental results, I will show that BoostKCP(boundA) also

outperforms the others in terms of computational performance using real biological data

sets, confirming that BoostKCP(boundA) is a simple and powerful heuristic method for

accelerating k-means clustering when using Pearson correlation and standardized

Euclidean distances.

26

TABLE 1

Comparison of the Asymptotic Overhead Spent by Calculating Lower and Upper

Bounds in Addition to Lloyd’s Algorithm in Terms of Time and Space Complexity

 time / iteration memory

BoostKCP(boundA) Θ(𝑑𝑘) Θ(𝑘)

BoostKCP(boundB) Θ(𝑑𝑛 + 𝑑𝑘2) Θ(𝑑𝑘 + 𝑘2)

Elkan Θ(𝑑𝑘2) Θ(𝑘𝑛 + 𝑘2)

Hamerly Θ(𝑑𝑘2) Θ(𝑛)

27

Results

Data sets

I generated a synthetic data set of vectors whose elements were randomly selected from

0 to 1 using the Mersenne twister [77], a widely used pseudorandom number generator

with an extraordinarily long cycle of 219,937 − 1. I generated data sets of 50,000 vectors

of dimension d = 10, 20, 50, 101, 201, 501, 1,001, and 2,001. This random data set was

an extreme example from which meaningful clusters were difficult to extract. I used

these sets to compare the effectiveness of BoostKCP (boundA) and BoostKCP (boundB)

for pruning unnecessary computation.

In order to compare BoostKCP with other available state-of-the-art pruning methods, I

used three different types of high-dimensional real biological data sets rather than

random data sets. The first real data set was a set of vectors with human nucleosome

positioning signals at genomic positions surrounding transcription start sites (TSSs). A

nucleosome positioning signal at a genomic position is a real value and represents the

possibility of the presence of nucleosome centers at that position. From the GENCODE

database (version 7) [78], I obtained human nucleosome positioning signals using

MNase-sequencing and the TSSs of the human reference genome hg19. I repeated the

process of merging neighboring TSSs within 1,000 bp into a group, and I selected

representative TSSs whose expression levels were maximal in individual groups. From

the representative TSSs, I excluded those having any other TSSs within 1,000 bp on the

reverse strand to eliminate their effect. Subsequently, from the nucleosome positioning

signal data, I generated a base set of 56,772 vectors of dimension 2,001 (~400M bytes)

such that their elements were real-valued nucleosome positioning signals within 1,000

28

bp around representative TSSs and more than half of the elements within 50, 100, 250,

and 500 bp of the TSSs were nonzero. To monitor how the algorithms behave for data

of different dimension, from the base set, I generated sets of vectors of dimension d =

101, 201, 501, 1001, and 2001 by selecting the elements within 50, 100, 250, 500, and

1000 bp surrounding the TSSs. The last digit “1” of dimension d indicates the TSS

position. Because of the construction of the base set, more than half of the elements in

each vector is guaranteed to be nonzero. For smaller dimensions d =10, 20, and 50, I

selected every (2000/𝑑)-th element for d = 10, 20, and 50 from the base set; e.g.,

elements at -1000, -800, -600, …, +600, and +800 bp for d=10. The second real data set

was a typical example of gene expression data, a set of 54,613 genes from 180 glioma

samples [79]. The third real data set was a set of 60,000 gray-level images of

handwritten letters in the MNIST database [80]. Each image consisted of 28 x 28 pixels,

and I set dimension d = 282 = 784.

Comparison of computational performance

I compared the following five methods:

 Lloyd’s algorithm [65].

 BoostKCP (boundA).

 BoostKCP (boundB).

 Elkan’s algorithm [72].

 Hamerly’s algorithm [73], [74].

I used the first three methods to compute k-means clustering using the Pearson

correlation distance. In contrast, since the latter two algorithms were designed to process

the Euclidean distance, I used these to calculate k-means clustering using the

29

standardized Euclidean distance, the results of which are equal to those using Pearson

correlation distance as described in the previous section. For any initial centroid set, the

above five methods give the same final clustering result.

Selecting the initial set of k centroids largely affects the final result, and for this purpose,

I used Bradley and Fayyad’s method [62] because it performed better than the other

applicable initialization methods for several criteria [57]. After selecting the initial

centroids, I measured the elapsed time during the application of each method towards

the same initial centroid set derived from different types of data. I excluded the time

required to compute the initial set of centroids because it was typically much less than

the time used to compute k-means clustering. I monitored the computational

performance using an Intel(R) Xeon(R) CPU E5-2680 v3 processor with a clock rate of

2.50GHz and 529 GB of main memory.

I first compared the performances of BoostKCP (boundA) and BoostKCP (boundB)

using 50,000 random vectors of dimension d = 10, 20, 50, 101, 201, 501, 1,001, and

2,001. I calculated the average elapsed time by executing 10 trials for d = 10, 20, 50,

101, 201, 501, but five trials for d =1,001 and 2,001, due to the large amount of

computation. I observed that BoostKCP (boundA) outperformed BoostKCP (boundB).

Specifically, I calculated the performance improvement by BoostKCP(boundA) as the

acceleration rate; i.e., the elapsed time for BoostKCP (boundB) divided by that for

BoostKCP (boundA). Fig. 1 displays the elapsed time and acceleration rate for each

dimension and for k = 10, 20, and 30. In all cases, BoostKCP (boundA) was faster than

BoostKCP (boundB) partly because computing lower and upper bounds for

BoostKCP(boundA), Θ(𝑑𝑘) , is less expensive than computing those for

30

BoostKCP(boundB), Θ(𝑑𝑛 + 𝑑𝑘2), where d is the dimension, n is the number of data,

and k is the number of clusters (Table 1). I therefore used BoostKCP (boundA) for my

comparisons with the other four algorithms using real data sets.

0

1

2

3

0

100

200

300

400

500

600

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

E
la

p
se

d
 t

im
e

(s
ec

o
n

d
s)

data dimension d

k = 20

BoostKCP(bound A)

BoostKCP(bound B)

acceleration

0

1

2

3

0

100

200

300

400

500

600

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

E
la

p
se

d
 t

im
e

(s
ec

o
n

d
s)

data dimension d

k = 10

BoostKCP(bound A)

BoostKCP(bound B)

acceleration

0

1

2

3

0

100

200

300

400

500

600

700

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

E
la

p
se

d
 t

im
e

(s
ec

o
n

d
s)

data dimension d

k = 30

BoostKCP(bound A)

BoostKCP(bound B)

acceleration

Fig. 1.

Comparison between BoostKCP (boundA) and

BoostKCP (boundB). Randomly generated 50,000

vectors of dimension 𝑑 = 10, 20, 50, 101, 201,

501, 1,001, and 2,001 were grouped into k (= 10,

20, and 30) clusters. The first y-axis and second y-

axis show the elapsed time and acceleration rate,

respectively.

31

I next compared BoostKCP (boundA) with Lloyd’s, Elkan’s, and Hamerly’s algorithms

using real biological data sets. For measuring the performance improvement by

BoostKCP(boundA), I again defined the acceleration rate as the average elapsed time

of each algorithm divided by that of BoostKCP (boundA).

Fig. 2 shows the experimental results obtained by applying the four algorithms to the

nucleosome positioning data for dimension d =10, 20, 50, 101, 201, 501, 1,001 and

2,001 and for number of clusters k = 10, 20, and 30. I set these values for k because

nucleosome positioning signal vectors can be categorized into 10–30 groups with

biologically meaningful characteristics [54]. I computed the average elapsed time by

performing 10 trials with the exception of five trials where d =1,001 and 2,001. Figs.

2A, 2B, 2C show the BoostKCP (boundA) acceleration rates compared with those of

the Lloyd’s, Elkan’s, and Hamerly’s algorithms. BoostKCP (boundA) clearly

outperformed Lloyd’s and Hamerly’s algorithms for all parameter value combinations,

and it was also faster than Elkan’s algorithm.

It has been reported that Hamerly’s algorithm is often faster than Elkan’s algorithm for

various low-dimensional (d < 50) data using the Euclidean distance [73], [74]; however,

Hamerly’s algorithm did not work as well for nucleosome positioning data using the

standardized Euclidean distance (Figs. 2A, 2B, 2C). I remark here that the standardized

Euclidean distance between two points is likely to be much smaller than the Euclidean

distance between the two points, implying that the points are densely distributed in

standardized Euclidean space. When handling more densely distributed points, greater

care has to be taken for pruning unnecessary computation. In each iteration, Elkan’s

algorithm carefully maintains the lower and upper bounds for the distance between each

32

point and each centroid, while Hamerly’s algorithm considers the closest and second

closest centroids only. For pruning unnecessary computation, put another way, Elkan’s

algorithm requires more time and space to estimate tighter bounds than does Hamerly’s

algorithm, allowing the former to be more effective in removing unnecessary

computation than the latter.

Figs. 2D, 2E, and 2F display the average elapsed time when using each combination of

d and k values; however, there is insufficient information as to how these times differed,

since the elapsed time in each trial largely depended on the selection of the initial k

vectors. To understand this further, I investigated how the elapsed time in each trial

changed depending on the number of iterations when I applied BoostKCP (boundA),

Elkan’s, and Lloyd’s algorithms to the nucleosome positioning signal data of dimension

d = 501 for k = 10, 20, and 30. I did not consider Hamerly’s algorithm because its

performance was similar to that of Lloyd. Fig. 3A shows that how elapsed time of

individual algorithm changes for ten different initial sets of centroids. The figure shows

that the elapsed time of each algorithm increased in proportion to the number of

iterations. A major difference between the three algorithms was that the elapsed time of

Elkan’s and Lloyd’s algorithms increased for larger values of k, but that of my pruning

method was almost independent of k, which explains why the acceleration rate increased

for larger values of k, as seen in Fig. 2.

To gain a better understanding of this, Fig. 3B presents an in-depth analysis, showing

the elapsed time in each iteration of the three algorithms. Each iteration time for Lloyd’s

algorithm is almost constant because the algorithm does not avoid unnecessary

computation, while each iteration time for BoostKCP (boundA) and Elkan’s algorithm

33

for k = 10, 20, and 30 decreased markedly after the first few steps. In later steps, the

elapsed time of BoostKCP (boundA) became almost independent of the value of k,

giving the account that its overall elapsed time was almost proportional to the number

of iterations but independent of k, as shown in Fig. 3A. In contrast, the elapsed time of

Elkan’s algorithm in each iteration increased for larger values of k. This is because in

each iteration, Elkan’s algorithm maintains a large array of lower and upper bounds for

the distance between each ~56K points and each k centroid at an expense. In contrast,

BoostKCP (boundA) needs to calculate only the lower and upper bounds for each k

centroid (Table 1).

34

0

5

10

15

20

25

30

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Hamerly

Elkan

BoostKCP

0

5

10

15

20

25

30

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Hamerly

Elkan

BoostKCP

0

5

10

15

20

25

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Hamerly

Elkan

BoostKCP

Fig. 2.

Performance improvement by BoostKCP

(boundA) using nucleosome positioning data of

dimension d = 10, 20, 50, 101, 201, 501, 1,001,

and 2,001.

(A-C) Acceleration rates by BoostKCP (boundA)

for each of Lloyd’s, Hamerly’s, and Elkan’s

algorithms. The lines for BoostKCP(boundA)

show the constant rate of 1, the elapsed time for

BoostKCP (boundA) divided by itself.

Nucleosome positioning data were grouped into

k clusters where k = 10 (A), 20 (B), and 30 (C).

To make the comparison fair, I supplied all the

algorithms with the same set of initial centroids

that I generated using Bradley and Fayyad’s

method.

(D-F) The average elapsed time of BoostKCP

(boundA), Lloyd’s, Hamerly’s, and Elkan’s

algorithms.

A k =10

B k =20

C k =30

35

0

1000

2000

3000

4000

5000

el
ap

se
d

 t
im

e
(s

ec
o

n
d

s)

data dimension d

BoostKCP

Elkan

Hamerly

Lloyd

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

el
ap

se
d

 t
im

e
(s

ec
o

n
d

s)

data dimension d

BoostKCP

Elkan

Hamerly

Lloyd

0

500

1000

1500

2000

el
ap

se
d

 t
im

e
(s

ec
o

n
d

s)

data dimension d

BoostKCP

Elkan

Hamerly

Lloyd

D k =10

E k =20

F k =30

36

Fig. 3.

In-depth performance analysis on k-means clustering of nucleosome positioning data.

(A) Analysis of clustering nucleosome positioning data of dimension d = 501 by BoostKCP

(boundA), Elkan’s and Lloyd’s algorithms. Hamerly’s algorithm was not considered because

Lloyd’s and Hamerly’s algorithms performed similarly. A dot represents the number of iterations

(x-axis) and the elapsed time (seconds) of each experiment of 10 trials for k = 10, 20 and 30.

(B) Elapsed time of each iteration (including the assigning and updating steps) in typical trials.

A

B

nucleosome positioning data (d = 501)

37

I then applied the three algorithms to the gene expression data, a set of 54613 vectors of

dimension d = 180. Because the dimension was fixed, I grouped the data into k (= 2, 3,

10, 20, 30, 40, 50, 60, 70) clusters of genes to determine if BoostKCP (boundA)

achieved better performance with larger values of k. Fig. 4 shows the average elapsed

time for ten trials and the acceleration rate of BoostKCP (boundA). The three algorithms

used Bradley and Fayyad’s method to generate the same set of initial centroids.

BoostKCP (boundA) outperformed Elkan’s and Lloyd’s algorithms for each k except

for the case that the acceleration rate by BoostKCP (boundA) for Elkan’s algorithm was

1.54 when k = 2. The acceleration rates were 1.66, 1.79, and 2.22 when k = 3, 10, and

20, respectively. The acceleration rate increased for larger values of k, which was

consistent with the performance improvement that I observed for the nucleosome

positioning data in Fig. 2.

0

200

400

600

800

1000

2 3 10 20 30 40 50 60 70

e
la

p
se

d
 t

im
e

 (
se

co
n

d
)

number of clusters: k

BoostKCP(boundA)

Elkan

Lloyd

0

2

4

6

8

10

12

14

16

18

20

2 3 10 20 30 40 50 60 70

ac
ce

le
ra

ti
o

n
 r

at
e

number of clusters: k

Lloyd

Elkan

BoostKCP(boundA)

Fig. 4.

Performance improvement by BoostKCP (boundA) using gene expression data of dimension d =

180 to group the data into k (=2, 3, 10, 20, 30, . . ., 70) clusters.

(A) Acceleration rates by BoostKCP (boundA) for each of Elkan’s and Lloyd’s algorithms.

(B) Average elapsed time of 10 trials.

Data dimension d = 180, Number of data n = 54,613

A

B

38

I also applied BoostKCP (boundA) and Elkan’s algorithm to a data set of handwritten

letters (d = 784) to obtain 78 (= k) groups. The average acceleration rate of the 10 trials

was high (4.76 – 8.16) presumably because the number of clusters was large. Fig. 5

shows the elapsed time, acceleration rate, and number of iterations for each of the ten

trials. The iteration numbers are likely to be smaller than those in Fig. 3A because the

images of the handwritten letters are grouped inherently. In general, the number of

iterations depends on individual data, and it tends to be smaller when the focal data have

inherently discriminating groups of similar vectors that are relatively easier to

categorize. In contrast, randomly generated data avoid this data skewness; thus, the

algorithms spend more time searching for centroids.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0

200

400

600

800

1000

1200

0 50 100 150 200

ac
ce

le
ra

ti
o

n
 r

at
e

el
ap

se
d

 t
im

e
(s

ec
o

n
d

s)

Number of iterations

Elkan

BoostKCP (boundA)

acceleration

Data dimension d = 784, Number of data n = 60,000,

Number of clusters (letters) k = 78

Fig. 5.

The elapsed time, acceleration rate, and number of iterations of each of ten attempts to cluster

handwritten letter images of dimension 784 (=d) into 78 (=k) groups using BoostKCP (boundA)

and Elkan’s algorithm.

39

I have so far examined situations when the number of clusters (k) ranges from two to 78

simply because these numbers of groups are of interest in real biological applications. I

here investigate whether BoostKCP (boundA) outperforms Elkan’s and Lloyd’s

algorithms for larger values of k, such as k = 100 and 500. Indeed, Fig. 6 illustrates that

BoostKCP (boundA) was the winner when the three algorithms were used to cluster the

nucleosome positioning data of dimension d = 10, 20, 50, 101, and 201 into k = 100 and

500 groups.

0

5

10

15

20

25

30

35

40

45

10 20 50 101 201

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Elkan

BoostKCP(bound A)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 50 101 201

e
la

p
se

d
 t

im
e

 (
se

co
n

d
)

data dimension d

BoostKCP(bound A)

Elkan

Lloyd

0

500

1000

1500

2000

10 20 50 101 201

e
la

p
se

d
 t

im
e

 (
se

co
n

d
)

data dimension d

BoostKCP(bound A)

Elkan

Lloyd

0

10

20

30

40

50

60

10 20 50 101 201

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Elkan

BoostKCP(bound A)

Fig. 6.

Performance improvement by BoostKCP (boundA) using nucleosome positioning data of

dimension d = 10, 20, 50, 101, and 201 to group the data into k = 100 and 500 clusters. (A,C)

Acceleration rates by BoostKCP (boundA) for each of Elkan’s and Lloyd’s algorithms when k =

100 (A) and k = 500 (C). (B,D) Average elapsed time of ten trials for BoostKCP (boundA), Elkan’s,

and Lloyd’s algorithms when k = 100 (B) and k = 500 (D).

A k =100

B k =100

C k =500

D k =500

40

Conclusions and Discussion

High-dimensional data, such as epigenome data, nucleosome positioning, and gene

expression patterns, are quite common in biological research. K-means clustering using

the Pearson correlation and standardized Euclidean distances has proven useful for

obtaining novel insight from such large-scale biological data sets; however, it is likely

to be a computationally intense task, thus demanding a method for accelerating

computational performance for high-dimensional biological data. I have addressed the

problem of eliminating unnecessary calculations associated with the k-means clustering

algorithm. In this chapter, I introduced BoostKCP, a simple but powerful heuristic

method that has proved useful for reducing the computational time. I applied BoostKCP

to nucleosome positioning signal data sets and other two types of real biological data

sets of dimension d = 10, 20, 50, 101, 180, 201, 501, 784, 1,001 and 2,001 to perform

k-clustering for k = 2, 3, 10, 20, 30, 40, 50, 60, 70, 78, 100, and 500. BoostKCP

outperformed Elkan’s, Lloyd’s, and Hamerly’s algorithms in most cases. My concept is

also applicable to k-medians clustering, which uses the median of points in a cluster as

the cluster representative, and this method is applied frequently to generate tight clusters.

41

Chapter 2

A linear time algorithm for detecting long genomic regions enriched

with a specific combination of epigenetic states

42

Introduction

This chapter is a modified version of my paper “A linear time algorithm for detecting

long genomic regions enriched with a specific combination of epigenetic states” [81].

Epigenetic modifications have been shown to play a vital role in regulating gene

expression. Recent genome-wide studies have revealed that in vertebrates, although

most CpG sites in DNA sequences are highly methylated, hypomethylated CpG islands

proximal to genes are involved in regulating gene expression [82]. Specifically,

hypermethylated CpG islands in promoter regions are relevant to gene silencing, while

hypomethylated CpG islands are in an active or permissive state for transcription [83].

In addition to cytosine methylation of CpG sites, some histone modifications around

promoter regions also are known to affect the regulation of gene expression [84], [85].

It was found recently that long hypomethylated regions enriched with H3K27me3 were

likely to overlap with regions encoding key genes essential for cell development and

differentiation in human embryonic stem cells [86], mouse hematopoietic stem cells

[87], early Xenopus tropicalis embryos demonstrates [88], and medaka fish blastula

(half-day) embryos [25]. Although many hypomethylated domains (HMD) are

subjected to modification of the active histone mark H3K4me2 that promotes gene

expression [89]–[92], it is remarkable that ~300 HMDs of length >4 kb rarely have

H3K4me2 histone marks but have repressive H3K27me3 histone marks, and are found

in association mostly with developmental genes [25]. Promoters in HMD with

H3K27me3 marks (called, “K27HMD”) are in a ‘poised’ state, in which the genes are

not simply silenced but are ready for activation immediately during cell differentiation,

which is important for sustaining the pluripotency of pluripotent cells [23], [24]. Figure

43

7 shows four examples of long K27HMD regions that include developmental genes such

as cbx4, cbx8, hoxa genes, six2, hnf6, and zic1/4.

Thus, there has been considerable interest in long K27HMD regions with biologically

important characteristics. However, computational methods for detecting long

K27HMD regions are still heuristic and ad hoc, emphasizing the need to develop an

effective algorithm from a profound background in computation theory. For example,

to identify K27HMD, Nakamura et al. proposed a heuristic method that used certain ad

hoc parameter settings to define hypomethylated regions and H3K27me3 peak detection

[25]. The method is not guaranteed to output K27HMD regions longer than a given

threshold, and it often generates regions of differing lengths. ChromHMM [42] is a

statistical method that classifies epigenetic modifications into classes of combinations

and divides a DNA sequence into sub-regions such that each sub-region has a uniform

combination of epigenetic states while neighboring sub-regions have distinct

characteristics. ChromHMM has been used successfully to partition regions

surrounding genes into active/inactive promoters, exons, and introns by analyzing

epigenetic codes. Although ChromHMM can be used for K27HMD detection by setting

its parameters to find regions that are hypomethylated and marked by H3K27me3,

ChromHMM often generates many short regions and thus is not suitable for detecting

large K27HMD regions. Overall, these previous methods have simply not been designed

to output regions of lengths greater than or equal to a given minimum threshold.

To address this problem, I propose a linear time algorithm for calculating a set of non-

overlapping regions such that the set maximizes the score of focal combinations of

epigenetic modifications (e.g., K27HMD) and the length of each region is greater than

44

or equal to a given minimum threshold (e.g., 4 kb). I define the score of a focal

combination of epigenetic modifications at each DNA position as the similarity between

the vector of focal epigenetic states and the vector of raw epigenetic states at the position.

I then define the similarity score of a set of regions as the sum of similarity scores of all

positions in the set. This method solves several issues in previous heuristic methods

because it allows us to set a minimum region length for detecting ‘long’ regions of

biological importance and guarantees the output of an optimal set of long regions that

maximizes an objective function.

I implemented the algorithm. I call the program CSMinfinder (Chromatin State with

minimum length finder). With CSMinfinder, I identified large K27HMD regions in the

medaka and human genomes [25], [93], [94] that overlapped many developmental genes.

CSMinfinder can be applied to epigenetic data from other vertebrates for understanding

cell development and differentiation.

CSMinfinder runs in time proportional to the size of the genome, and it can process

vertebrate genomes in feasible amounts of time. Although I applied CSMinfinder

specifically to K27HMD, it can be used for the detection of regions with other types of

epigenetic combinations by defining the vector of focal epigenetic states appropriately.

45

Fig. 7. Examples of long K27HMD regions in the medaka genome

Examples of K27HMD regions enclosed in dashed boxes. Each screen capture shows an image in

a medaka genome browser that displays tracks of gene structures, CpG methylation levels observed

by bisulfite sequencing, and levels of H3K27me3 and H3K4me2 in blastula cells (half-day

embryos). A. A K27HMD region of length ~4 kbp with cbx4, and a ~8 kbp region with cbx8. B. A

large region of length ~90 kbp with hoxa genes. C. A ~6 kbp region with six2, and a ~14 kbp region

with hnf6. D. A ~20 kbp region with zic1 and zic4.

46

Methods

To detect long regions of focal epigenetic states, I formulated this as a problem of

finding an optimal set of disjoint (non-overlapping) regions in a sequence that

maximizes the sum of similarity scores in all regions. My method calculates a similarity

score between a vector of epigenetic modifications at each position and the feature

vector of a focal epigenetic state, such as K27HMD, and outputs the set of regions with

the highest sum of similarity scores.

Calculating a similarity vector

I need to generate a modification vector at each position from epigenomic signal data.

For example, to create benchmark datasets in this study, I binarized the modification

signal level at each position using BinarizeSignal in ChromHMM [42], which classified

the signal at each position into 0 or 1 according to a Poisson background model.

Subsequently, I defined a modification vector as the vector with binary scores of

modifications at each position.

Definition 1. Let 𝑤1, 𝑤2 … , 𝑤𝑛 be non-overlapping windows of the same length (e.g.,

200 bp in this study) in a DNA sequence. Let 𝑠𝑖
1, … , 𝑠𝑖

𝑘 be binary or real-valued signals

of 𝑘 modifications in window 𝑖. The modification vector of 𝑤𝑖 is defined as 𝑀𝑖 =

(𝑠𝑖
1, … , 𝑠𝑖

𝑘) . Let 𝐹 denote the feature vector of a focal modification pattern with 𝑘

elements. The similarity score of 𝑀𝑖 and 𝐹 is defined as their inner product minus a

given threshold 𝜏.

47

Example. Suppose that 𝑘 = 3 , 𝜏 = 1.3 , 𝐹 = (1,1,0) , 𝑀1 = (1,1,0) , 𝑀2 =

(1,0,1) and 𝑀3 = (0,0,1). Similarity scores of 𝐹 and 𝑀𝑖 are 0.7, −0.3, and −1.3

for 𝑖 = 1, 2, 3.

When the inner product of 𝑀𝑖 and 𝐹 is positive for all 𝑖 = 1, … , 𝑛, the optimal set of

regions that maximizes the sum of similarity scores in the regions becomes the entire

region, [1, 𝑛], which may not be informative. If we want to select a set of regions whose

modification vectors are closer to the feature vector 𝐹, we can set the threshold 𝜏 to

an appropriate positive value to yield a negative similarity score for the inner product

that is lower than 𝜏 . Positions with negative similarity scores are less likely to be

included in the optimal set of regions. A higher threshold is likely to divide the entire

genome into smaller regions with a higher precision, while a lower threshold yields an

opposite trend. In this manner, for a series of windows 𝑤1, 𝑤2 … , 𝑤𝑛 in a DNA

sequence, we generate a series of similarity scores.

Detecting an optimal set of disjoint regions

To detect regions of focal epigenetic states such as K27HMD, I present an algorithm for

calculating an optimal set of disjoint regions in a sequence that maximizes the sum of

similarity scores for all regions. In addition, to identify sufficiently long regions, I define

a minimum length threshold of regions such that each region is longer than or equal to

the minimum length. The problem can be defined as follows.

48

Definition 2. Let L ={𝐿𝑖 | 𝑖 = 1,2, … , 𝑛} be a series of real valued weights 𝐿𝑖 (e.g.,

similarity scores). Let C be a series of non-overlapping regions 𝐼𝑗 (𝑗 = 1, … 𝑘) of L

such that the length of each 𝐼𝑗 is greater than or equal to a given minimum threshold

𝑚1 , and the length of the interval between 𝐼𝑗−1 and 𝐼𝑗 is greater than or equal to

another given minimum threshold 𝑚0 . That is, C is a series of regions of the form

{[𝑎1, 𝑏1], ⋯ [𝑎𝑘 , 𝑏𝑘]} (1 ≤ 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 ⋯ < 𝑎𝑘 < 𝑏𝑘 ≤ n) such that

1. 𝑎𝑡 + 𝑚1 − 1 ≤ 𝑏𝑡 for 𝑡 = 1, … , 𝑘 (the minimum length constraint on regions),

2. 𝑏𝑡−1 + 𝑚0 < 𝑎𝑡 for 𝑡 = 2, … , 𝑘 (the minimum length constraint on intervals

between regions), and

3. 𝑎1 = 1 or 𝑎1 > 𝑚0 (the first region start at position 1 or at position

larger than 𝑚0).

Readers may find the last condition strange because it appears to disallow the situation

that the first region starts at position 𝑎1 ≤ 𝑚0 . I used the condition to simplify the

presentation of my linear-time algorithm, which is described later. To obtain such an

optimal series of regions that the first region starts at 𝑎1 ≤ 𝑚0, for example, you can

temporarily add 𝑚0 negative weights in front of L, calculate the optimal series, and

restore the coordinate.

49

To calculate a C that maximizes the sum of weights in C, ∑ 𝐿𝑖𝑖∈𝐼∈𝐶 , I used a dynamic

programming algorithm developed by Csurös [95]. Here, I outline the algorithm.

Definition 3. I assume that all series meet the conditions given in Definition 2. Let

𝑤(𝐶) denote the sum of weights in 𝐶, ∑ 𝐿𝑖𝑖∈𝐼∈𝐶 . I consider two cases: that in which

the last region of 𝐶 ends at 𝑖 and that in which it does not. When the last region does

not end at 𝑖, let 𝐶𝑖,𝑚
0 denote a series of regions that maximizes 𝑤(𝐶) among all series,

such that the last region ends at position 𝑏𝑘 ≤ 𝑖 − 𝑚 , where 𝑚 ≥ 1 . When the last

region ends at 𝑖, let 𝐶𝑖,𝑚
1 denote a series of regions that maximizes 𝑤(𝐶) among all

series, such that the last region is of length ≥ 𝑚 (≥ 1); specifically, 𝑎𝑘 + 𝑚 − 1 ≤

𝑖 (= 𝑏𝑘).

Example. When 𝑖 = 12, and 𝐿 = (1, 1, −3, 1, 1, −3, 1, 1, 1, 1, −2, 1), we have

𝐶12,1
0 = {[1,2], [4, 5], [7,10]}, 𝐶12,4

0 = {[1,2], [4,5], [7,8]},

𝐶12,7
1 = {[1,2], [4,12]}, 𝐶12,12

1 = {[1,12]} .

According to this definition, C maximizing 𝑤(𝐶) is either 𝐶𝑛,1
0 or 𝐶𝑛,𝑚1

1 . For

calculating these two series, I define here 𝑤(𝐶𝑖,𝑚
0) and 𝑤(𝐶𝑖,𝑚

1) recursively for 𝑖 =

1, … , 𝑛 and 𝑚 ≥ 1.

50

Definition 4. I define the following four types of weight sums, 𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑖) 𝑊𝑙𝑜𝑛𝑔

0 (𝑖)

𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖) , and 𝑊𝑙𝑜𝑛𝑔

1 (𝑖) , depending on whether the last region ends at 𝑖 or not

(denoted as 1 or 0, respectively) and whether the minimum length constraint is satisfied

or not (denoted as long or short, respectively):

𝑊𝑠ℎ𝑜𝑟𝑡
0 (1) = 0, 𝑊𝑠ℎ𝑜𝑟𝑡

1 (1) = 𝐿1,

𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑖) = 𝑤(𝐶𝑖,1

0) 𝑊𝑙𝑜𝑛𝑔
0 (𝑖) = 𝑤(𝐶𝑖,𝑚0

0)

𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖) = 𝑤(𝐶𝑖,1

1) 𝑊𝑙𝑜𝑛𝑔
1 (𝑖) = 𝑤(𝐶𝑖,𝑚1

1)

Csurös showed that these four types of weight sums can be calculated recursively as

follows [95]:

𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑖) = 𝑚𝑎𝑥 {𝑊𝑠ℎ𝑜𝑟𝑡

0 (𝑖 − 1), 𝑊𝑙𝑜𝑛𝑔
1 (𝑖 − 1)} for 𝑖 ∈ [2, 𝑛]

𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖) = 𝐿𝑖 + 𝑚𝑎𝑥 {𝑊𝑙𝑜𝑛𝑔

0 (𝑖 − 1), 𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖 − 1)} for 𝑖 ∈ [2, 𝑛]

𝑊𝑙𝑜𝑛𝑔
0 (𝑖) = 𝑊𝑠ℎ𝑜𝑟𝑡

0 (𝑖 − 𝑚0 + 1) for 𝑖 ∈ [𝑚0, 𝑛]

𝑊𝑙𝑜𝑛𝑔
1 (𝑖) = 𝑊𝑠ℎ𝑜𝑟𝑡

1 (𝑖 − 𝑚1 + 1) + ∑ 𝐿𝑗
𝑖
𝑗=𝑖−𝑚1+2 for 𝑖 ∈ [𝑚1, 𝑛]

Recall that C maximizing 𝑤(𝐶) is either 𝐶𝑛,1
0 or 𝐶𝑛,𝑚1

1 . From 𝑊𝑙𝑜𝑛𝑔
1 (𝑛), I can build

the series of regions, 𝐶𝑛,𝑚1

1 , by tracing back the process of calculating 𝑊𝑙𝑜𝑛𝑔
1 (𝑛) .

Similarly, from 𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑛), I can obtain 𝐶𝑛,1

0 .

I implemented the above idea. I call the program CSMinfinder.

51

Results

Data sets

To compare CSMinfinder with other available methods for detecting large K27HMD, I

used real biological datasets from the medaka-fish and human genomes, each of which

was a set of vectors of DNA methylation levels at CpG sites, determined by bisulfite

sequencing, and H3K4me2 and H3K27me3 histone modification Chip-seq data [25]. I

set the window size to 200 bp, normalized the data using a Poisson distribution model,

and set the binarized score of a window to 1 if its probability was < 0.0001 and to 0

otherwise.

Detecting large K27HMD in medaka epigenomic data

I compared CSMinfinder with ChromHMM [42] and Nakamura’s method [25].

 Using ChromHMM, I estimated six chromatin states and divided the given DNA

sequence into these six states. Specifically, ChromHMM asks users to input the

number of epigenetic states beforehand. Thus, I started with inputting a small

number into ChromHMM, increased the number gradually one by one until I found

a state similar to K27HMD, hypo-methylated DNA modification and H3K27me3

histone modification, and called the number sufficient. Inputting a value larger than

the sufficient number into ChromHMM did not make much sense because it just

output a state similar to K27HMD. The sufficient number was six. Among the six

states, one represented hypomethylated DNA modifications and the H3K27me3

histone modification. I therefore treated the state as K27HMD.

 Nakamura’s method detects a hypomethylated domain on a DNA sequence that has

more than nine contiguous CpG sites with low methylation (methylation level <0.4)

52

and no more than four contiguous highly methylated CpG sites. Parameters are

selected heuristically. A hypomethylated domain is treated as a K27HMD if it

contains H3K27me3 peaks detected by QuEST [96], such that each peak is more

than three times larger than the average.

 In CSMinfinder, I used two types of minimum length thresholds, 4 kbp and 8 kbp,

to evaluate the effect of this constraint. I set the minimum length of any interval

between regions to 600 bp.

Comparing the performance in detection of large K27HMD around genes in the

medaka genome

Large K27HMD regions of length >4 kbp suppress the expression of many

developmental genes [25]. Thus, I verified the effectiveness of CSMinfinder for

detecting large K27HMD regions surrounding genes in the medaka genome.

Nakamura’s method could detect 246 large K27HMD regions containing the promoter

regions of developmental genes (e.g., hox clusters) that were relevant to transcriptional

regulation and the developmental process. CSMinfinder detected 911 K27HMD regions,

and of these, 386 regions contained promoter regions of >4 kbp in size and contained

242 of the 246 regions identified using Nakamura’s method. Indeed, CSMinfinder’s

regions covered 91% of bases in the entire regions detected by Nakamura’s method.

Specifically, although the exact boundaries of individual regions estimated by the two

methods were unlikely to be consistent, these regions largely overlapped each other.

These results demonstrate the high concordance between CSMinfinder and Nakamura’s

methods as well as the ability of CSMinfinder to identify more K27HMD regions than

did Nakamura’s method.

53

I assessed the quality of each K27HMD region in terms of their low average DNA

methylation level because this property is considered to be essential in maintaining the

suppression of developmental gene expression in embryonic cells [25]. Indeed, Figure

8 shows the tendency of the average methylation level in the vertical axis to become

lower for a longer K27HMD region, the length of which is displayed in the horizontal

axis. This trend was also observed with all three methods.

Fig. 8. - Lengths and average methylation levels of K27HMD regions in the

medaka genome

Each dot represents a region that is identified by CSMinfinder, ChromHMM, and Nakamura’s

method in the medaka genome. The x-axis shows the length of a K27HMD region and the y-axis

presents the average methylation level of the region.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10000 20000 30000 40000 50000 60000 70000 80000

M
et

h
yl

at
io

n
 le

ve
l

Segmentation length(bp)

Nakamura

ChromHMM

CSMinfinder

54

I then compared the performance of the three methods by examining the length

distributions of K27HMD regions in the medaka genome. Figure 9A shows the length

distributions of large K27HMD regions (>4 kb in size) estimated by each of the three

methods. Setting the minimum length threshold to 4 kbp in CSMinfinder detected more

regions of length > 6 kbp but fewer regions of length > 7 kbp compared with

Nakamura’s method. CSMinfinder can output longer regions by setting the minimum

length threshold to a higher value. For example, setting the minimum length to 8 kbp,

CSMinfinder found more regions than did Nakamura’s method (Figure 9C).

Analysis of large K27HMD regions in human epigenomic data

I also compared CSMinfinder with the other two for processing human epigenomic data.

For ChromHMM, I calculated the sufficient number for the human data according to the

procedure described before, and I classified epigenetic modification data into seven

states rather than six so as to identify a state similar to K27HMD. The sufficient numbers

of epigenetic states in the human and medaka data differed due to the difference in data

quality. The sufficient number in the medaka data was smaller than that in the human

data presumably because epigenetic state signals in the medaka data were clearer.

In CSMinfinder, I set the minimum length threshold to 8 kbp and the interval between

regions to 600 bp. I also searched an ideal value of threshold τ by repeated trials to

detect large continual regions, and I set τ to 1.4 and 1.6 in the respective medaka and

human data.

55

0

100

200

300

400

500

600

700

800

900

1000

4000 5000 6000 7000 8000 9000 10000

A
cc

u
m

u
la

te
d

 n
u

m
b

er
 o

f
d

o
m

ai
n

s

Length(bp)

Nakamura

ChromHMM

CSMinfinder 4000

0

5

10

15

20

25

30

35

40

11000 12000 13000 14000 15000 16000 17000

A
cc

u
m

u
la

te
d

 n
u

m
b

er
 o

f
d

o
m

ai
n

s

Length(bp)

Nakamura

ChromHMM

CSMinfinder 4000

0

50

100

150

200

250

300

350

8000 9000 10000 11000 12000 13000 14000 15000 16000 17000

A
cc

u
m

u
la

te
d

 n
u

m
b

er
 o

f
d

o
m

ai
n

s

Length(bp)

Nakamura

ChromHMM

CSMinfinder 8000

Fig. 9. Length distribution of large K27HMD regions in the medaka genome

Comparison between CSMinfinder (minimum length threshold of 4 kbp), ChromHMM, and

Nakamura’s method. The x-axis shows the minimum length of K27HMD regions, and the y-axis

shows the accumulated number of K27HMD regions longer than or equal to the threshold in the

x-axis. Because of the space limitations, the histogram is divided into two sub-histograms A

(threshold is < 10 kbp) and B (threshold > 11 kbp). C. In this case, I set the minimum threshold to

8 kbp using CSMinfinder.

A

B

C

56

Because the human genome is longer than the medaka genome, I focused on large

K27HMD regions of length > 8 kbp. Nakamura’s method detected 314 regions, and

CSMinfinder identified 542 regions, including 291 of those found using Nakamura’s

method. Again, there was high concordance between the results obtained by the two

methods. Figure 10 shows examples of large K27HMD regions detected around

developmental genes. Although CSMinfinder and Nakamura’s method yielded slightly

different regions with distinct boundaries in the output, each created regions of similar

sizes. In contrast, ChromHMM yielded shorter regions than the other two did.

Specifically, I compared the length distribution of large K27HMDregions estimated by

each of the three methods (Figure 11). I found that CSMinfinder and Nakamura’s

method were comparable. Precisely, although the number of extremely large regions

longer than 12 kbp is slightly smaller than the number found by Nakamura’s method,

CSMinfinder could detect similar numbers of large regions between 8 kbp to 12 kbp.

Later I will discuss the reason why ChromHMM were inferior to the other two methods.

57

Fig. 10. Examples of large K27HMD regions around developmental genes in the

human genome.

A. The figure displays large K27HMD in the human chromosome 7 around a cluster of hox genes

that regulate the body plan of the head-tail axis. ChromHMM yielded much smaller K27HMD

regions as output than did the other two methods.

B. These several K27HMD on human chromosome 11 were located around pax6, a gene that

regulates eye and brain development. CSMinfinder and Nakamura’s method detected large

K27HMD regions of >4 kbp in size and output large regions that largely overlapped; however,

ChromHMM divided these regions into smaller ones.

58

0

100

200

300

400

500

600

700

8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000

A
cc

u
m

u
la

te
d

 n
u

m
b

e
r

o
f

d
o

m
ai

n
s

Length(bp)

Nakamura

CSMinfinder

ChromHMM

Fig. 11. - Length distribution of large K27HMD regions in the human genome.

Comparison between CSMinfinder (minimum length threshold of 8 kbp), ChromHMM, and

Nakamura’s method. The x-axis shows the minimum K27HMD region length threshold, and the y-

axis shows the accumulated number of K27HMD regions longer than or equal to the threshold on

the x-axis.

59

Computational performance and software availability

I observed the computational performance of CSMinfinder using Intel Xeon CPU E5-

2670 processor with a clock rate of 2.60 GHz and 66GB of main memory. The

computation time to calculate the optimal series of regions was negligible. Figure 12

shows that the average elapsed time was less than 2 seconds when I processed the

epigenetic data of any of human and medaka chromosomes. Furthermore, Figure 12 also

illustrates that the elapsed time is almost proportional to the size of each chromosome,

thereby confirming experimentally that the worst-case time complexity of the algorithm

is linear in the input size. CSMinfinder does not consume a large amount of main

memory. CSMinfinder is made available at the following site:

URL: http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/Segmentation/

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.E+00 1.E+08 2.E+08 3.E+08

A
ve

ra
ge

 e
la

p
se

d
 t

im
e(

se
c)

Chromosome size(bp)

Processing 24 human chromosomes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.E+00 1.E+07 2.E+07 3.E+07 4.E+07

A
ve

ra
ge

 e
la

p
se

d
 t

im
e(

se
c)

Chromosome size(bp)

Processing 24 medaka chromosomes
B

Fig. 12. - Average elapsed time of processing human (A) and medaka (B)

chromosomes ten times by using CSMinfinder

The minimum threshold is set to 8 kbp for handing the human genome, and 4 kbp for the medaka

genome. Each dot represents a chromosome, the x-axis value shows the size of the chromosome,

and the y-axis value is the average elapsed time.

A

60

Conclusions and Discussion

In this chapter, I proposed a method that estimates large K27HMD region [25], [86]–

[88], [92] by calculating the similarity between the vector of focal epigenetic states and

that of raw epigenetic states at each DNA position. The advantage of this algorithm

(CSMinfinder) is the output of an optimal series of regions while allowing us to set the

minimum length threshold on individual regions. I estimated large K27HMD in the

medaka and human genomes and verified that CSMinfinder was comparable to

Nakamura’s heuristic method [25] designed to detect K27HMD and was advantageous

over ChromHMM in terms of the lengths of K27HMD regions.

For the medaka genomic data, ChromHMM performed well and could detect as many

long regions as CSMinfinder did; however, for the human genomic data, ChromHMM

found a smaller number of large K27HMD regions of length > 8 kbp than the other two

methods did. This was likely due to the differences in characteristics between the

medaka and human genomic data. In the medaka genome, the data were collected from

an inbred stain in which the genomic differences between the two alleles were quite

small. Thus, methylation levels were bimodal and were clearly divided into two states,

hypomethylated and hypermethylated, making it relatively easy to identify blocks of

hypomethylated domains. In the human genome, however, the majority of methylation

levels were poised because the human genome is diploid intrinsically and allele-specific

methylation is prevalent, making it more difficult to detect clear boundaries between

hypermethylated and hypomethylated domains. Although many DNA methylation

levels are ambiguous in the human genome, ChromHMM attempts to assign one state

to each position. Positions with vague DNA methylation levels are assigned only a

61

single state by ChromHMM. Thus, ChromHMM is likely to output too many short

regions.

One advantage of CSMinfinder is that we can set the minimum region length for specific

purposes. For example, in the medaka genome, using an 8-kbp minimum length

threshold merged some of the shorter regions that were generated using a 4-kbp

minimum threshold into a longer continuous region. Thus, we could obtain longer

regions using a higher minimum length threshold. Similarly, we can also adjust the

minimum threshold for defining similarity scores between modification vectors and the

feature vector for a variety of purposes. Setting the minimum threshold to a lower value

generates more regions that are less similar to the feature vector of interest. Having more

than one series of regions that may overlap can be informative. We can therefore tune

CSMinfinder easily to meet various demands.

In this chapter, I demonstrated the advantages of my algorithm by detecting large

K27HMD regions that have attracted much interest because of their importance in

characterizing the behavior of developmental genes and confirmed the performance of

my algorithm. CSMinfinder is not limited to the identification of large K27HMD

regions but can be used for the detection of other large DNA regions that have different

types of epigenetic state combinations associated with regulating gene functions.

62

Chapter 3

De novo assembly of medaka fish genome using SMRT sequencing

and construction of chromosome map using Hi-C data

63

Introduction

This chapter is based on the paper “Centromere evolution and CpG methylation during

vertebrate speciation,” in which I am the first author [97].

The medaka, Japanese killifish (Oryzias latipes) is freshwater fish distributed in East

Asia including Japan. Medaka has many useful characters for model organism such as

small size of whole genome sequence (~800Mb), short generation time and easiness to

breeding, and thought to valuable for elucidating fish genome as zebrafish [98], [99].

Especially, some medaka inbred strains which can mate and produce healthy offspring

under laboratory conditions established in medaka. Two medaka inbred strains HNI

which is a medaka inbred strain from local subpopulations in north Japan, and Hd-rR

from south japan are estimated to be diverged in ~18 million years ago (MYA) [100].

About 16 million SNP are discovered between Hd-rR and HNI, and it account for 3.4%

of whole DNA sequence [100]–[102]. In spite of the higher mutation rate, Hd-rR and

HIN can produce healthy offspring . These inbred strains are thought to be in the middle

of speciation and research of structure variants between inbred strains are valuable for

resolving mechanism of evolution and differentiation [103]. Sequencing whole medaka

genome have been attempted more than ten years ago, and version 1 of the medaka

reference genome from Hd-rR inbred strain using Sanger sequencer was reported in

2007 [104].

Past researches using chromatin information in medaka genome have revealed new

findings in epigenetics. In human it was known that SNP rate around methylated CpG

site is significantly higher than other regions. However, genetic variation between

human reference genomes is not sufficiently high to analyze the relation between

64

methylation and genetic variation. Using high mutation rate between Hd-rR and HNI,

W. Qu et al. showed that SNP rate around methylated CpG site is also high and “CGCG”

motif possibly related to the regulation of hypomethylation [93]. Nucleosome

positioning around promoter regions was researched and typical patterns in

hypomethylated domains and short DNA motif which regulate nucleosome positioning

pattern was discovered [105]. Estimation of nucleosome positioning using DNA

sequence was worked well in yeast genome [106], [107], however in vertebrate

sequence preference of nucleosome could not be determined. Around methylated

transcription starting site DNase I signal have periodical pattern in 180bp interval, in

contrast in hypomethylated domains nucleosome positioning around TSS have 200bp

interval in medaka genome[105]. It was also revealed that in hypomethylated linker

DNA specific 6-mer sequence exist in significantly high probability. The research of

long hypomethylated domains with H3K27me3 marks at developmental promoter

showed that poised state by epigenetic modifications have an important role in cell

development and differentiation [25].

As stated above analysis of chromatin conformation in medaka genome is thought to be

led to novel finding in epigenetics. However, in version 1 of the medaka genome

contained low-quality regions and 97,933 sequence gaps [104], particularly assembly

around centromere regions which contain abundant tandem repeat sequence was

difficult by short reads in sanger sequencing. Centromere is the region of a chromosome

where combined with spindle fiber in cell division, and have an important role in

chromosome separation. In centromere region-specific proteins such as CENP-A are

accumulated and construct heterochromatin [108]. Mechanism of regulating

composition in centromere was not perfectly elucidated. In yeast specific base sequence

65

locate in centromere and guide nucleosome positioning [106], [107]. However, in

vertebrate it was reported that neocentromeres which are regions which haven’t peculiar

sequence work as centromere [109], and centromere are thought to be controlled by

epigenetic structures.

In my research I used single-molecule real-time sequencing and Hi-C data to construct

new medaka genome containing centromere regions which could not be assembled by

ver.1 medaka draft genome.

Hi-C is a technology to capture chromatin conformations in genome [110]. In Hi-C

method genomes are cross-linked by formaldehyde and fragmented by restriction

enzyme. Fragments are ligated and digested. The resulting DNA fragments are

sequenced. Hi-C data can detect the chromatin interaction in genome-wide sequence.

Recent studies in contact genomics show that the information of chromatin contacts can

be used to determine genomic positions and some applications for genome scaffolding

by Hi-C data was invented.

In this chapter I constructed medaka genomes of three inbred medaka strains using

single-molecule real-time sequence technology. I utilized single nucleotide

polymorphism genetic markers, BAC/fosmid-end pairs to anchor contigs to the 24

medaka chromosomes. Additionally, I used Hi-C data to locate contigs which contain

centromeric repeats but hardly to be anchored by other methods. To show the

comprehensive ness of new draft genome I illustrate some examples, Tol2 elements

[111], Y-specific regions [112], [113] and large structure variant [114] which could not

be found in version 1 of the medaka genome [104].

66

Results

Generating long contigs using SMRT sequencing

DNA was collected from adult medaka testes of the Hd-rR, HNI, and HSOK strains. A

SMRT sequencer (PacBio RS II) was used to collect ~13.4, ~14.8, and ~5.5 million

subreads, with average lengths of 6,519 bp, 3,575 bp, and 10,972 bp, from the Hd-rR,

HNI, and HSOK strains, respectively. The three datasets are equivalent to coverages of

~109-, ~66.0-, and ~75.8-fold, assuming a medaka genome size of 800 Mbp. The

FALCON assembler [115] was used to generate contigs; the respective N50 contig

lengths were ~2.5, ~1.3, and ~3.5 Mbp. The assembled contigs was polished by Quiver

[116] and Pilon [117] using Illumina-derived short reads. Then, the new Hd-rR assembly

was compared with the medaka genome version 1 that was generated by using Sanger

sequencing technology [104], and the high-level sequence identity (99.8%) was

confirmed. To assess the large-scale orderings of regions in the contigs, the 19,448 pairs

of BAC-end Sanger reads was mapped approximately to the identical Hd-rR contigs in

order. Only 0.3% of BAC-end pairs were inconsistent, confirming that the assembled

contigs were of high quality.

Chromosome map construction

I used 2,347 single nucleotide polymorphism (SNP) genetic markers to construct a

chromosomal map of the Hd-rR strain [104]. Assuming that genetic markers are

distributed uniformly, a marker would be available every ~341kbp. Some 90% of

contigs were sufficiently long to bear genetic markers; the respective N90 contig lengths

of Hd-rR, HNI and HSOK were ~653, ~450, and ~1,102kbp. Thus, I skipped the

67

traditional step of connecting contigs into longer scaffolds, instead attempting to directly

anchor contigs to the 24 medaka chromosomes using genetic markers (Methods).

Certain contigs failed to be anchored to any chromosomes because they did not contain

genetic markers. For Hd-rR contig anchoring, I used 48,955 BAC-end pairs and 199,657

fosmid-end pairs that had earlier been collected [104]. By scaffolding Hd-rR contigs

connected by multiple BAC/fosmid-end pairs, I was able to anchor additional 23 Hd-rR

contigs to chromosomes (Methods). A total of 768 BAC-end pairs and 376 fosmid-end

pairs linked the Hd-rR contigs. This suggests that the gaps between contigs are likely to

be longer than fosmid clones of median length 37.5kbp, and longer reads would be

needed to fill such gaps. I used Hi-C data to locate 11 orphan contigs which could not

be anchored onto chromosomes (Methods). I finalized the draft genomes by inserting a

1kbp gaps between neighboring contigs; I term these drafts version 2.2.4. In this version,

the total numbers of bases in the contigs anchored to the Hd-rR, HNI, and HSOK

chromosomes were ~733.5, ~677, and ~744 Mbp respectively with 491, 717 and 318

gaps. Thus, the quantity of gaps was dramatically lower than the ~100,000 gaps in the

previous Sanger-sequence Hd-rR genome assembly.

To demonstrate the comprehensive nature of the current sequences, I examined the

distributions of Tol2 element insertions. Tol2 is 4682bp in length, and represents an

example of an early innate autonomous transposon in a vertebrate genome [111]. While

the previous Sanger-sequence genome assembly had no full Tol2 matches, the new Hd-

rR, HNI and HSOK genomes bore 15, 5, and 16 full matches, respectively, in different

positions. These occurrences were >99.4% identical to the reference Tol2 sequence,

implying their horizontal transfer after the divergence of Hd-rR and HNI. Another

68

example is the Y-specific region carrying DMY, the male-determining gene, the first

non-mammalian equivalent of SRY [112]. DMY had mapped to three scaffolds with gaps

in the earlier Hd-rR genome (version 1) because of its proximal repetitive elements

[113], but I obtained a single contig bearing DMY in the version 2.2.4.

Large structural variants between strains

Comparisons among the contigs of the three inbred strains revealed substantial numbers

of large SVs including insertions, deletions, duplications, and inversions. The biggest

SV is a >15-Mbp inversion in chromosome 11 (Fig. 13), which was suggested [114] but

unclear based on the prior Sanger-sequence genome assembly [104]. In the present study,

when I anchored contigs onto HNI and HSOK chromosome 11, I identified two pairs of

contigs that had two sets of distal genetic markers that were separated by ~16Mb while

I found no such pairs in Hd-rR, indicating that the inversion had occurred in the Hd-rR

lineage. I determined the inversion breakpoints in focal HNI and HSOK contigs by

aligning these contigs with the corresponding region of Hd-rR. Contigs surrounding the

breakpoints of the inversion are associated with their contig identifiers (e.g., 83F and

481F). In the HNI genome, the two breakpoints are located at 7F and 143F, whereas in

the Hd-rR genome, one breakpoint lies between 83F and 481F, and the other is between

240F and 138F. This is partly because the breakpoints lie in the long repetitive regions

shown in Figure 13B.

69

Fig. 13. Large inversion in chr 11

A. An extremely large inversion (>15 Mbp) in chromosome 11 was evident when Hd-rR and HNI

were compared. The presence of the inversion was suggested by the Sanger-sequence genome

assembly; however, the contigs assigned to chromosomes were not of sufficient length to reveal the

boundaries of the inversion.

B. Dot plots comparing the four pairs of Hd-rR and HNI regions that contain the two breakpoints

of the inversion. The inversion was surrounded by highly repetitive regions of ~200 kb and ~10 kb

in size, which were difficult to detect using short read sequencing technology.

A

B

70

Methods

Data Availability

I deposited the sequence data of SMRT reads and assembled genomes from Hd-rR, HNI,

and HSOK at the NCBI SRA (BioProject Accession: PRJNA325079 for Hd-rR,

PRJNA325193 for HNI, PRJNA325194 for HSOK), and the in-situ Hi-C reads from

Hd-rR and d-rR at NCBI SRA (PRJNA378460 for Hd-rR, PRJNA378464 for d-rR). The

accession number of the RNA-seq data for gene prediction is DRA005309, and the

accession number of two RNA-seq biological replicates from blastulae of Hd-rR and

HNI is SRP116580. The assembled genomes of the three strains, a comparative genomic

analysis of the three strains, a medaka gene model, DNA methylation estimation from

SMRT sequencing kinetic data, and a web browser for visualizing these datasets are

available at http://utgenome.org/medaka_v2/ .

Generating a chromosome map for each strain

I used 2,347 SNP genetic markers to anchor contigs of the three strains to the 24 medaka

chromosomes using the alignment software program ispcr (in-silico PCR), which is

available at https://github.com/mkasa/klab/blob/master/script/ispcr. I ordered the

contigs along each chromosome according to the genetic distances between markers.

Some contigs were subsumed by other (longer) contigs; I eliminated the former

redundant contigs. I detected 17 misassembled contigs in the Hd-rR strain, 16 in the

HNI strain, and 8 in the HSOK strain; all contained genetic markers originating from

two different chromosomes. I corrected these misassembled contigs by dividing them

into two subcontigs by reference to the genetic markers, and anchored the partitioned

(sub)contigs to their respective chromosomes. I also anchored remaining Hd-rR contigs

71

that were connected by multiple BAC/fosmid-end pairs. Specifically, after considering

the estimated median sizes of BAC and fosmid clones (135kbp and 37.5kbp), I used

BAC-end (fosmid-end) reads mapping to a position within 150 and 50kbp from one end

of a contig. In contrast, for HNI and HSOK, sufficient BAC-end and fosmid-end pairs

were unavailable and no Hi-C data were collected. I instead located 44 HNI contigs with

no genetic markers to chromosomes by reference to their best matches to Hd-rR contigs.

Some Hd-rR, HNI, and HSOK contigs remain unoriented because they were associated

with only a single genetic marker, or multiple genetic markers at the same genetic

distance apart. I attempted to determine the orientation of each unoriented contig by

reference to the orientations of the best-matched contigs in the other strains.

Collecting Hi-C reads

In situ Hi-C was performed as previously described [118] with slight modifications.

Samples (~2x10^6 cells of fibroblast or liver/brain from single individuals) were fixed

with 1% (v/v) formaldehyde solution. MboI restriction enzyme (NEB) was used for

digestion of cross-linked chromatin. After DNA shearing using the S220 Focused-

ultrasonicator (Covaris), 300-500bp fragments were selected using AMPure XP beads

(Beckman Coulter). End-repair, adapter ligation and library amplification were

performed using KAPA Hyper Prep Kit (KAPA BIOSYSTEMS). Libraries were

sequenced for 101 cycles from both ends on Illumina HiSeq 1500.

72

Assembly by Hi-C data

I used Hi-C data to locate 11 orphan contigs which contained centromeric repeats but

failed to be anchored onto chromosomes because of the absence of genetic markers on

them. First I trained a naïve Bayes classifier to predict the chromosome of each orphan

contig considering its contact frequency information with individual chromosomes. For

each orphan contig, contact frequency 𝑎𝑖 with chromosome 𝑖 was calculated by the

number of Hi-C reads mapped between the contig and chromosome 𝑖 . The contact

frequency variables 𝑎1, … , 𝑎24 are conditionally independent of each other given the

chromosome 𝑖.The posterior probability of the orphan contig anchored to chromosome

𝑐 is

𝑝(𝑐|𝑎1, … 𝑎24) =
𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)24

𝑖=1

𝑍

where 𝑝(𝑐) is a prior probability proportional to the number of contigs in chromosome

c , 𝑝(𝑎𝑖|𝑐) is a conditional probability of contact frequency 𝑎𝑖 under the condition

that the orphan contig was anchored to chromosome 𝑐 and 𝑍 is a normalization factor.

I verified the correctness of the above naïve Bayes classifier by checking whether 500

contigs that were already anchored by genetic markers were also accurately classified

to chromosomes which had the highest posterior probability. Indeed, I confirmed that

all contigs could be correctly classified. Thus I assigned the chromosomes to eleven

orphan contigs with centromeric repeats by using the naïve Bayes classifier.

Next I predicted the precise positions and orderings of the eleven orphan contigs in their

assigned chromosomes. To this end, I utilized the property that, along each chromosome,

the contact frequency increased almost exponentially towards one position (Fig. 14).

Certainly, the average contact frequency of the 1Mbp region surrounding the position

was clearly higher than that outside. According to this property, for each orphan contig

73

that was anchored by the naïve Bayes classifier, I calculated the contact frequency

between the orphan contig and anchored contigs in the chromosome assigned to the

orphan contig, and located the orphan contig next to the position which had the highest

contact frequency.

0

2000

4000

6000

8000

10000

12000

A
ve

ra
ge

 o
f

co
n

ta
ct

 f
re

q
u

en
cy

distance (Kbp)

Fig14. - Contact frequency distribution between paired-end Hi-C reads.

74

Conclusions and Discussion

In this chapter, I constructed new draft genome of three inbred medaka strains using

single-molecule real-time sequencing. The number of gaps in version 2.2.4 medaka

genome are 491, 717 and 318 in Hd-rR, HNI and HSOK and these are dramatically

lower than the ~100,000 gaps in previous Hd-rR genome assembly.

Long reads make it possible to assemble regions which have abundant tandem repeats

that are hardly resolved by Sanger-sequence genome assembly and determined

breakpoints of large inversion in chr11. Additionally, distributions of Tol2 elements in

each strain can be identified. Copy numbers and positions in chromosomes of Tol2

elements were highly diverged and it implies their horizontal transfer after the

divergence of Hd-rR and HNI.

I used Hi-C data to locate 11 contigs which could not be anchored on to chromosome

by genetic markers. Assembly around centromere regions is still arduous problem even

using SMRT sequencing, therefore to clear the centromere sequence using chromatin

conformation data by Hi-C seq was verified as useful method.

In version 2.2.4 of the medaka draft genome new insight of centromere evolutions

become clear by the precise examination of centromere methylation in each strain. To

achieve more precise analysis on chromatin information, our medaka draft genome is

thought to be useful resources for future studies.

75

Concluding Remarks

In my doctoral thesis, I invented two novel algorithms for processing large-scale

chromatin information helpful for gain biological insights.

In Chapter 1, I devised “BoostKCP”, an accelerating method for k-means clustering

using the Pearson correlation distance. I applied BoostKCP and other two accelerating

methods to human nucleosome positioning data of various dimension d =10 – 2001 to

perform k-means clustering for k= 2-500 and compared computational time. In all

conditions my algorithm outperformed other methods and 5-26 times faster than

ordinary k-means clustering without boosting. My accelerating method for pruning

unnecessary calculation is specialized to Pearson correlation distance, therefore my

algorithm calculates faster than other boosting methods originally designed for

Euclidean distance. My algorithm is effective in various situations, especially in high

dimension data which take long time without acceleration. Reducing computational

time by BoostKCP make it easy to find better clustering conditions and useful for

grasping new knowledge from massive biological data.

In Chapter 2, I presented “CSMinfinder”, a method for detecting regions which

modified by specific epigenomic combinations. CSMinfinder calculates the similarity

between the vector of focal epigenetic states and that of raw epigenetic states at each

DNA position and detects an optimal set of regions that maximizes the sum of similarity.

The minimum length threshold of each region in CSMinfinder makes it possible to

detect continuous regions. I estimated large K27HMD regions using CSMinfinder in the

medaka and human genome and showed that my method could detect equivalent regions

76

as Nakamura’s methods and longer regions compared with ChromHMM. My method

could detect 242 regions containing the promoter regions of developmental genes.

CSMinfinder is also applied to detect other combination of epigenetic modifications.

In Chapter 3, I performed de novo assembly of three inbred medaka strains using Hi-C

data. Centromeric regions could be anchored using contiguity of chromatin information

and more precise investigation into alternation of epigenetic modifications during

speciation appear to be possible by new medaka draft genome.

77

Acknowledgements

I would like to take this opportunity to express my appreciation to cooperators of my

research.

 Firstly, I would like to express the deepest appreciation and respect to my

supervisor, Dr. Shinichi Morishita, for the kindly guidance and encouragement. Without

his accurate advice and support this thesis would not have been accomplished.

 I would also like to express my gratitude to Dr. Hiroyuki Takeda and Dr. Ryohei

Nakamura for the collaboration and support in biological experiments. Thanks for

providing precise biological data and insightful comments.

 My appreciation also goes to all co-authors of our paper. I would like to thank

Mr. Shingo Tomioka for his meticulous comment of assembly around centromere, Mr.

Yuta Suzuki for his valuable suggestions of clustering, Dr. Koichiro Doi and Dr. Jun

Yoshimura for the gracious help about computational analyses, Dr. Masahiko Kumagai,

Dr. Naoki Irie, Dr. Yusuke Inoue and Ms. Yui Uchida for their technical assistance.

 I am also grateful to the member of Morishita Laboratory. I would like to offer

my thanks to Mr. Yuichi Motai for his Hi-C pipeline, and Dr. Wei Qu for providing

medaka gene data.

 I owe my gratitude to the developers of the tools used in my research. I am

indebted to Dr. Masahiro Kasahara who invented ispcr and Dr. Taro L. Saito who built

up UTGB genome browser.

 Finally, I would like to show my greatest appreciation to my parents for their

sincere support. Without their encouragement this thesis would not have materialized.

78

References

[1] J. D. Griffith, “Chromatin Structure: Deduced from a Minichromosome,”

Science (80-.)., vol. 187, no. 4182, pp. 1202–1203, Mar. 1975.

[2] K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond,

“Crystal structure of the nucleosome core particle at 2.8 Å resolution,” Nature,

vol. 389, no. 6648, pp. 251–260, 1997.

[3] R. D. Kornberg and Y. Lorch, “Twenty-five years of the nucleosome,

fundamental particle of the eukaryote chromosome,” Cell, vol. 98, no. 3, pp.

285–294, 1999.

[4] R. Kornberg, “Chromatin Structure : A Repeating Unit of Histones and DNA

Chromatin structure is based on a repeating unit of eight,” Science (80-.)., vol.

184, pp. 868–871, 1974.

[5] A. L. Olins and D. E. Olins, “Spheroid Chromatin Units (ngr Bodies),” Science

(80-.)., vol. 183, no. 4122, pp. 330–332, 1974.

[6] S. C. Elgin, “Heterochromatin and gene regulation in Drosophila,” Curr. Opin.

Genet. Dev., vol. 6, no. 2, pp. 193–202, 1996.

[7] D. E. Schones et al., “Dynamic Regulation of Nucleosome Positioning in the

Human Genome,” Cell, vol. 132, no. 5, pp. 887–898, 2008.

[8] C. Jiang and B. F. Pugh, “Nucleosome positioning and gene regulation:

Advances through genomics,” Nat. Rev. Genet., vol. 10, no. 3, pp. 161–172,

2009.

[9] L. Bai, G. Charvin, E. D. Siggia, and F. R. Cross, “Nucleosome-Depleted

Regions in Cell-Cycle-Regulated Promoters Ensure Reliable Gene Expression in

Every Cell Cycle,” Dev. Cell, vol. 18, no. 4, pp. 544–555, Apr. 2010.

[10] T. N. Mavrich et al., “A barrier nucleosome model for statistical positioning of

79

nucleosome throughout the yeast genome,” Genome Res., vol. 18, pp. 1073–

1083, 2008.

[11] T. E. Shrader and D. M. Crothers, “Artificial nucleosome positioning sequences

(chromatin/histone-DNA binding/DNA bending),” Biophysics (Oxf)., vol. 86,

no. October, pp. 7418–7422, 1989.

[12] R. K. Chodavarapu et al., “Relationship between nucleosome positioning and

DNA methylation,” Nature, vol. 466, no. 7304, pp. 388–392, Jul. 2010.

[13] Y. Zhang, H. Shin, J. S. Song, Y. Lei, and X. S. Shirley, “Identifying positioned

nucleosomes with epigenetic marks in human from ChIP-Seq,” BMC Genomics,

vol. 9, pp. 1–11, 2008.

[14] B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,”

Nature, vol. 403, no. 6765, pp. 41–45, 2000.

[15] T. Jenuwein, “Translating the Histone Code,” Science (80-.)., vol. 293, no.

5532, pp. 1074–1080, Aug. 2001.

[16] N. D. Heintzman et al., “Histone modification at human enhancers reflect global

cell-type specific gene expression,” Nature, vol. 459, no. 7243, pp. 108–112,

2009.

[17] M. Shogren-Knaak, “Histone H4-K16 Acetylation Controls Chromatin Structure

and Protein Interactions,” Science (80-.)., vol. 311, no. 5762, pp. 844–847, Feb.

2006.

[18] M. Grunstein, “EBSCOhost: Histone acetylation in chromatin structure and

transcription.,” Nature, vol. 389, pp. 349–352, 1997.

[19] T. Kouzarides, “Histone methylation in transcriptional control,” Curr. Opin.

Genet. Dev., vol. 12, no. 2, pp. 198–209, 2002.

[20] Y. Zhang and D. Reinberg, “Transcription regulation by histone methylation:

80

Interplay between different covalent modifications of the core histone tails,”

Genes Dev., vol. 15, no. 18, pp. 2343–2360, 2001.

[21] A. Shilatifard, “Molecular implementation and physiological roles for histone

H3 lysine 4 (H3K4) methylation,” Curr. Opin. Cell Biol., vol. 20, no. 3, pp. 341–

348, 2008.

[22] J. Cheng et al., “A Role for H3K4 Monomethylation in Gene Repression and

Partitioning of Chromatin Readers,” Mol. Cell, vol. 53, no. 6, pp. 979–992, Mar.

2014.

[23] B. E. Bernstein et al., “A Bivalent Chromatin Structure Marks Key

Developmental Genes in Embryonic Stem Cells,” Cell, vol. 125, no. 2, pp. 315–

326, 2006.

[24] X. D. Zhao et al., “Whole-Genome Mapping of Histone H3 Lys4 and 27

Trimethylations Reveals Distinct Genomic Compartments in Human Embryonic

Stem Cells,” Cell Stem Cell, vol. 1, no. 3, pp. 286–298, 2007.

[25] R. Nakamura et al., “Large hypomethylated domains serve as strong repressive

machinery for key developmental genes in vertebrates,” Development, vol. 141,

no. 13, pp. 2568–2580, 2014.

[26] P. J. Park, “ChIP-seq: Advantages and challenges of a maturing technology,”

Nat. Rev. Genet., vol. 10, no. 10, pp. 669–680, 2009.

[27] J. J. Infante, G. L. Law, and E. T. Young, Analysis of nucleosome positioning

using a nucleosome-scanning assay, vol. 833. 2012.

[28] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W.

Webb, “Zero-mode waveguides for single-molecule analysis at high

concentrations,” Science (80-.)., vol. 299, no. 5607, pp. 682–686, 2003.

[29] J. Korlach et al., “Selective aluminum passivation for targeted immobilization of

81

single DNA polymerase molecules in zero-mode waveguide nanostructures,”

Proc. Natl. Acad. Sci., vol. 105, no. 4, pp. 1176–1181, 2008.

[30] J. Eid et al., “Real-time DNA sequencing from single polymerase molecules,”

Science (80-.)., vol. 323, no. 5910, pp. 133–138, 2009.

[31] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognit. Lett.,

vol. 31, no. 8, pp. 651–666, 2010.

[32] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis and

display of genome-wide expression patterns,” Proc Natl Acad Sci USA, vol. 95,

no. 25, pp. 14863–14868, 1998.

[33] P. Tamayo et al., “Interpreting patterns of gene expression with self-organizing

maps: methods and application to hematopoietic differentiation.,” Proc. Natl.

Acad. Sci. U. S. A., vol. 96, no. 6, pp. 2907–12, 1999.

[34] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene expression data: a

survey,” IEEE Trans. Knowl. …, vol. 16, no. 11, pp. 1370–1386, 2004.

[35] P. D’Haeseleer, “How does gene expression clustering work?,” Nat. Biotechnol.,

vol. 23, no. 12, pp. 1499–1501, 2005.

[36] T. S. Mikkelsen et al., “Genome-wide maps of chromatin state in pluripotent and

lineage-committed cells,” Nature, vol. 448, no. 7153, pp. 553–560, Aug. 2007.

[37] N. D. Heintzman et al., “Histone modifications at human enhancers reflect

global cell-type-specific gene expression,” Nature, vol. 459, no. 7243, pp. 108–

112, 2009.

[38] P. V. Kharchenko et al., “Comprehensive analysis of the chromatin landscape in

Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 480–486, 2011.

[39] T. Consortium et al., “Identification of Functional Elements and Regulatory

Circuits by Drosophila modENCODE,” October, vol. 330, no. 6012, pp. 1787–

82

1797, 2011.

[40] L. Handoko et al., “CTCF-mediated functional chromatin interactome in

pluripotent cells,” Nat. Genet., vol. 43, no. 7, pp. 630–638, Jul. 2011.

[41] T. Liu et al., “Broad chromosomal domains of histone modification patterns in

C. elegans.pdf,” pp. 227–236, 2011.

[42] J. Ernst and M. Kellis, “ChromHMM: Automating chromatin-state discovery

and characterization,” Nat. Methods, vol. 9, no. 3, pp. 215–216, 2012.

[43] M. M. Hoffman, O. J. Buske, J. Wang, Z. Weng, J. A. Bilmes, and W. S. Noble,

“Unsupervised pattern discovery in human chromatin structure through genomic

segmentation,” Nat. Methods, vol. 9, no. 5, pp. 473–476, Mar. 2012.

[44] J. R. Dixon et al., “Topological domains in mammalian genomes identified by

analysis of chromatin interactions,” Nature, vol. 485, no. 7398, pp. 376–380,

2012.

[45] S. M. Johnson, F. J. Tan, H. L. McCullough, D. P. Riordan, and A. Z. Fire,

“Flexibility and constraint in the nucleosome core landscape of Caenorhabditis

elegans chromatin,” Genome Res., vol. 16, no. 12, pp. 1505–1516, 2006.

[46] W. Lee et al., “A high-resolution atlas of nucleosome occupancy in yeast,” Nat.

Genet., vol. 39, no. 10, pp. 1235–1244, 2007.

[47] I. Whitehouse, O. J. Rando, J. Delrow, and T. Tsukiyama, “Chromatin

remodelling at promoters suppresses antisense transcription,” Nature, vol. 450,

no. 7172, pp. 1031–1035, 2007.

[48] A. Valouev et al., “A high-resolution, nucleosome position map of C. elegans

reveals a lack of universal sequence-dictated positioning,” Genome Res., vol. 18,

no. 7, pp. 1051–1063, 2008.

[49] T. N. Mavrich et al., “Nucleosome organization in the Drosophila genome,”

83

Nature, vol. 453, no. 7193, pp. 358–362, May 2008.

[50] M. Liu et al., “Determinants of nucleosome positioning and their influence on

plant gene expression,” Genome Res, pp. 1–14, 2015.

[51] X. Wang, G. O. Bryant, M. Floer, D. Spagna, and M. Ptashne, “An effect of

DNA sequence on nucleosome occupancy and removal,” Nat. Struct. Mol. Biol.,

vol. 18, no. 4, pp. 507–509, 2011.

[52] a Whereas and A. Tlrs, “A Packing Mechanism for Nucleosome,” Science

(80-.)., vol. 332, no. May, pp. 977–980, 2011.

[53] J. Wang et al., “Sequence features and chromatin structure around the genomic

regions bound by 119 human transcription factors Repository Citation Sequence

features and chromatin structure around the genomic regions bound by 119

human transcription factors,” Genome Res., vol. 9, pp. 1798–1812, 2012.

[54] A. Kundaje et al., “Ubiquitous heterogeneity and asymmetry of the chromatin

environment at regulatory elements,” Genome Res., vol. 22, no. 9, pp. 1735–

1747, 2012.

[55] I. P. Ioshikhes, I. Albert, S. J. Zanton, and B. F. Pugh, “Nucleosome positions

predicted through comparative genomics,” Nat. Genet., vol. 38, no. 10, pp.

1210–1215, 2006.

[56] K. Ichikawa and S. Morishita, “A simple but powerful heuristic method for

accelerating k-means clustering of large-scale data in life science,” IEEE/ACM

Trans. Comput. Biol. Bioinforma., vol. 5963, no. c, pp. 1–1, 2014.

[57] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of efficient

initialization methods for the k-means clustering algorithm,” Expert Syst. Appl.,

vol. 40, no. 1, pp. 200–210, 2013.

[58] E. W. Forgy, “Cluster analysis of multivariate data: Efficiency versus

84

interpretability of classifications,” Biometrics, vol. 21, pp. 768–769, 1965.

[59] J. Macqueen, “Some methods for classification and analysis of multivariate

observations,” Proc. Fifth Berkeley Symp. Math. Stat. Probab., vol. 1, no. 233,

pp. 281–297, 1967.

[60] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,”

Theor. Comput. Sci., vol. 38, no. C, pp. 293–306, 1985.

[61] I. Katsavounidis, C. C. J. Kuo, and Z. Zhang, “A New Initialization Technique

for Generalized Lloyd Iteration,” IEEE Signal Process. Lett., vol. 1, no. 10, pp.

144–146, 1994.

[62] P. S. Bradley and P. S. Bradley, “Refining Initial Points for K-Means

Clustering,” Microsoft Res., pp. 91–99, 1998.

[63] D. Arthur and S. Vassilvitskii, “K-Means++: the Advantages of Careful

Seeding,” Proc. eighteenth Annu. ACM-SIAM Symp. Discret. algorithms, vol. 8,

pp. 1027–1025, 2007.

[64] T. Su and J. Dy, “In search of deterministic methods for initializing K-means

and Gaussian mixture clustering,” Intell. Data Anal., vol. 11, pp. 1–42, 2007.

[65] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory, vol.

28, no. 2, pp. 129–137, 1982.

[66] F. D. Gibbons and F. P. Roth, “Judging the quality of gene expression-based

clustering methods using gene annotation,” Genome Res., vol. 12, no. 10, pp.

1574–1581, 2002.

[67] F. Geraci, M. Leoncini, M. Montangero, M. Pellegrini, and M. E. Renda, “K-

Boost: A Scalable Algorithm for High-Quality Clustering of Microarray Gene

Expression Data,” J. Comput. Biol., vol. 16, no. 6, pp. 859–873, Jun. 2009.

[68] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church,

85

“Systematic determination of genetic network architecture [see comments],” Nat

Genet, vol. 22, no. 3, pp. 281–285, 1999.

[69] R. Sharan and R. Shamir, “CLICK: a clustering algorithm with applications to

gene expression analysis.,” Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp.

307–16, 2000.

[70] F. De Smet, G. Thijs, K. Marchal, B. De Moor, and Y. Moreau, “Adaptive

quality-based clustering of gene expression profiles,” Bioinformatics, vol. 18,

pp. 735–746, 2002.

[71] K. L. Clarkson, “Nearest-neighbor searching and metric space dimensions,”

Nearest-Neighbor Methods Learn. Vis. Theory Pract., no. April, pp. 15–59,

2006.

[72] C. Elkan, “Using the Triangle Inequality to Accelerate k-Means,” Proc. Twent.

Int. Conf. Mach. Learn., pp. 147–153, 2003.

[73] G. Hamerly, “Making k -means even faster,” 2010 SIAM Int. Conf. data Min.

(SDM 2010), pp. 130–140, 2010.

[74] J. Drake and G. Hamerly, “Accelerated k-means with adaptive distance bounds,”

5th NIPS Work. Optim. Mach. Learn. OPT2012, pp. 2–5, 2012.

[75] V. C. Osamor, E. F. Adebiyi, J. O. Oyelade, and S. Doumbia, “Reducing the

Time Requirement of k-Means Algorithm,” PLoS One, vol. 7, no. 12, 2012.

[76] M. H. Fulekar, Bioinformatics: Applications in Life and Environmental Science.

New York, NY, USA: Springer, 2009.

[77] M. Matsumoto and T. Nishimura, “Mersenne Twister : A 623-dimensionally

equidistributed uniform pseudorandom number generator,” Discrete Math.,

1998.

[78] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, and F.

86

Kokocinski, “GENCODE: The Reference Human Genome Annotation for The

ENCODE Project,” Genome Res, vol. 22, pp. 1760–1774, 2012.

[79] L. Sun et al., “Neuronal and glioma-derived stem cell factor induces

angiogenesis within the brain,” Cancer Cell, vol. 9, no. 4, pp. 287–300, 2006.

[80] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323,

1998.

[81] K. Ichikawa and S. Morishita, “A linear time algorithm for detecting long

genomic regions enriched with a specific combination of epigenetic states,”

BMC Genomics, vol. 16, no. Suppl 2, p. S8, 2015.

[82] B. Hendrich and S. Tweedie, “The methyl-CpG binding domain and the

evolving role of DNA methylation in animals,” Trends Genet., vol. 19, no. 5, pp.

269–277, 2003.

[83] A. Bird, “DNA methylation patterns and epigenetic memory,” Genes Dev, vol.

16, pp. 6–21, 2002.

[84] N. L. Vastenhouw and A. F. Schier, “Bivalent histone modifications in early

embryogenesis,” Curr. Opin. Cell Biol., vol. 24, no. 3, pp. 374–386, Jun. 2012.

[85] V. W. Zhou, A. Goren, and B. E. Bernstein, “Charting histone modifications and

the functional organization of mammalian genomes,” Nat. Rev. Genet., vol. 12,

no. 1, pp. 7–18, 2011.

[86] W. Xie et al., “Epigenomic Analysis of Multilineage Differentiation of Human

Embryonic Stem Cells,” Cell, vol. 153, no. 5, pp. 1134–1148, May 2013.

[87] M. Jeong et al., “Large conserved domains of low DNA methylation maintained

by Dnmt3a,” Nat. Genet., vol. 46, no. 1, pp. 17–23, Jan. 2014.

[88] O. Bogdanović et al., “Temporal uncoupling of the DNA methylome and

87

transcriptional repression during embryogenesis,” Genome Res., vol. 21, no. 8,

pp. 1313–1327, 2011.

[89] J.-L. Hu, B. O. Zhou, R.-R. Zhang, K.-L. Zhang, J.-Q. Zhou, and G.-L. Xu, “The

N-terminus of histone H3 is required for de novo DNA methylation in

chromatin,” Proc. Natl. Acad. Sci., vol. 106, no. 52, pp. 22187–22192, 2009.

[90] H. Cedar and Y. Bergman, “Linking DNA methylation and histone modification:

Patterns and paradigms,” Nat. Rev. Genet., vol. 10, no. 5, pp. 295–304, 2009.

[91] S. K. T. Ooi et al., “DNMT3L connects unmethylated lysine 4 of histone H3 to

denovo methylation of DNA,” Nature, vol. 448, no. 7154, pp. 714–717, 2009.

[92] H. K. Long et al., “Epigenetic conservation at gene regulatory elements revealed

by non-methylated DNA profiling in seven vertebrates,” Elife, vol. 2013, no. 2,

pp. 1–19, 2013.

[93] W. Qu et al., “Genome-wide genetic variations are highly correlated with

proximal DNA methylation patterns Genome-wide genetic variations are highly

correlated with proximal DNA methylation patterns,” Genome Res., vol. 22, no.

8, pp. 1419–1425, 2012.

[94] R. Lister et al.,

“HumanDNAmethylomesatbaseresolutionshowwidespreadepigenomicdifference

s,” Nature, vol. 462, no. 7271, pp. 315–322, 2009.

[95] M. Csurös, “Maximum-scoring segment sets,” IEEE/ACM Trans. Comput. Biol.

Bioinforma., vol. 1, no. 4, pp. 139–150, 2004.

[96] A. Valouev et al., “Genome-wide analysis of transcription factor binding sites

based on ChIP-Seq data,” Nat. Methods, vol. 5, no. 9, pp. 829–834, 2008.

[97] K. Ichikawa et al., “Centromere evolution and CpG methylation during

vertebrate speciation,” Nat. Commun., vol. 8, no. 1, 2017.

88

[98] H. Takeda and A. Shimada, “The Art of Medaka Genetics and Genomics: What

Makes Them So Unique?,” Annu. Rev. Genet., vol. 44, no. 1, pp. 217–241, 2010.

[99] Naruse, K., Tanaka, M. & Takeda, H. in Medaka: A Model for Organogenesis,

Human Disease, and Evolution, Springer, 2011.

[100] D. H. E. Setiamarga et al., “Divergence time of the two regional medaka

populations in Japan as a new time scale for comparative genomics of

vertebrates,” Biol. Lett., vol. 5, no. 6, pp. 812–816, 2009.

[101] Y. Takehana, N. Nagai, M. Matsuda, K. Tsuchiya, and M. Sakaizumi,

“Geographic variation and diversity of the cytochrome b gene in Japanese wild

populations of medaka, Oryzias latipes.,” Zool. Sci, vol. 20, no. 10, pp. 1279–

1291, 2003.

[102] M. Spivakov et al., “Genomic and Phenotypic Characterization of a Wild

Medaka Population: Towards the Establishment of an Isogenic Population

Genetic Resource in Fish,” G3&#58; Genes|Genomes|Genetics, vol. 4, no.

3, pp. 433–445, 2014.

[103] T. Asai, H. Senou, and K. Hosoya, “Oryzias sakaizumii, a new ricefish from

northern Japan (Teleostei: Adrianichthyidae),” Ichthyol. Explor. Freshwaters,

vol. 22, no. 4, pp. 289–299, 2011.

[104] M. Kasahara et al., “The medaka draft genome and insights into vertebrate

genome evolution,” Nature, vol. 447, no. 7145, pp. 714–719, 2007.

[105] R. Nakamura, A. Uno, M. Kumagai, S. Morishita, and H. Takeda,

“Hypomethylated domain-enriched DNA motifs prepattern the accessible

nucleosome organization in teleosts,” Epigenetics and Chromatin, vol. 10, no. 1,

pp. 1–13, 2017.

[106] K. S. Bloom and J. Carbon, “Yeast centromere DNA is in a unique and highly

89

ordered structure in chromosomes and small circular minichromosomes,” Cell,

vol. 29, no. 2, pp. 305–317, 1982.

[107] M. Fitzgerald-Hayes, L. Clarke, and J. Carbon, “Nucleotide sequence

comparisons and functional analysis of yeast centromere DNAs,” Cell, vol. 29,

no. 1, pp. 235–244, 1982.

[108] D. R. Foltz, L. E. T. Jansen, B. E. Black, A. O. Bailey, J. R. Yates, and D. W.

Cleveland, “The human CENP-A centromeric nucleosome-associated complex,”

Nat. Cell Biol., vol. 8, no. 5, pp. 458–469, 2006.

[109] P. E. Warburton, “Chromosomal dynamics of human neocentromere formation,”

Chromosom. Res., vol. 12, no. 6, pp. 617–626, 2004.

[110] E. Lieberman-Aiden and N. van Berkum, “Comprehensive mapping of long

range interactions reveals folding principles of the human genome,” Science

(80-.)., vol. 326, no. 5950, pp. 289–293, 2009.

[111] A. Koga, M. Suzuki, H. Inagaki, Y. Bessho, and H. Hori, “Transposable element

in fish,” Nature, vol. 383, no. 6595. p. 30, 1996.

[112] M. Matsuda et al., “DMY is a Y-specific DM-domain gene required for male

development in the medaka fish,” Nature, vol. 417, no. 6888, pp. 559–563,

2002.

[113] M. Kondo et al., “Genomic organization of the sex-determining and adjacent

regions of the sex chromosomes of medaka,” Genome Res., vol. 16, no. 7, pp.

815–826, 2006.

[114] T. Kimura et al., “Genetic linkage map of medaka with polymerase chain

reaction length polymorphisms,” Gene, vol. 363, no. 1–2, pp. 24–31, 2005.

[115] M. Pendleton et al., “Assembly and diploid architecture of an individual human

genome via single-molecule technologies,” Nat. Methods, vol. 12, no. 8, pp.

90

780–786, Aug. 2015.

[116] C. S. Chin et al., “Nonhybrid, finished microbial genome assemblies from long-

read SMRT sequencing data,” Nat. Methods, vol. 10, no. 6, pp. 563–569, 2013.

[117] B. J. Walker et al., “Pilon: An integrated tool for comprehensive microbial

variant detection and genome assembly improvement,” PLoS One, vol. 9, no. 11,

2014.

[118] S. S. P. Rao et al., “A 3D Map of the Human Genome at Kilobase Resolution

Reveals Principles of Chromatin Looping,” Cell, vol. 159, no. 7, pp. 1665–1680,

Dec. 2014.

