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Abstract 

 

Development of sequencing technology such as Chip-seq, MNase-seq, and Single-

Molecule Real-Time sequencing has been accelerating genome-wide chromatin 

information collections. To gain insight into biological systems from large-scale 

chromatin data, there is a pressing need to have efficient analytical methods. To 

overcome this problem, I devised two novel algorithms for processing chromatin 

information and verified the efficiency and effectiveness of my methods using real 

biological datasets. 

 One algorithm named “BoostKCP” boosts the calculation of k-means clustering in 

terms of the Pearson correlation distance, which is widely used for processing large-

scale datasets in life science. BoostKCP avoids unnecessary computation in k-means 

clustering by utilizing some heuristic properties specific to the Pearson correlation 

distance, thereby reducing the overall computational time. To demonstrate the 

usefulness of the heuristics, I compared its computational time with those of the classic 

Lloyd’s algorithm and other two relevant accelerating methods, the Elkan’s and 

Hamerly’s algorithms, using nucleosome positioning data and two other biological data. 

BoostKCP outperformed other methods in various conditions. 

 For detecting regions with a specific combination of epigenetic modifications, I 

invented “CSMinfinder” that is capable of handling large epigenetic information in time 

linear to the size of a given genome. Precisely, CSMinfinder calculates the similarity 

score between a focal combination and raw epigenetic states at each DNA position, and 

outputs an optimal set of large non-overlapping regions (longer than a threshold) that 

maximizes the sum of similarity scores. With this method, I detected large 

hypomethylated regions with H3K27me3 marks which overlapped with many 
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developmental genes in the human and medaka genomes.  

 In my efforts to achieve more precise analysis on chromatin information, I found it 

essential to use more accurate genomic sequences with a smaller number of gaps. For 

this purpose, I used chromatin conformation capture data collected by the Hi-C method, 

and constructed new medaka genomes for three inbred strains so that each genome has 

only hundreds of gaps and contains pericentromeric regions.  
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General Introduction 

 

Chromatin is a conformation in eukaryotic cell composed of DNA, proteins and RNA 

[1]. The basic unit of chromatin is a structure consisting of a segment of DNA wound 

around histone octamer composed of two copies of each of the four core histone proteins. 

In each nucleosome, approximately 146bp base pairs of DNA wrap around histone core 

particle 1.65 times in a left-handed super-helical turn [2], [3]. Fundamental structure is 

an iteration of nucleosome core particles and bare DNA sequence between nucleosomes 

called linker DNA [4], [5]. As higher order structures of chromatin DNA form 

heterochromatin or heterochromatin classified by the level of condensation [6]. In 

heterochromatin, a highly condensed chromatin forms, gene expressions are suppressed, 

conversely chromatin condensation are loosened, and gene transcriptions are activated.  

 

Gene regulation by chromatin has been widely studied in epigenetics. In chromatin 

structure, nucleosome positioning patterns are known to be one of the important factors 

regulating gene transcription [7], [8]. Especially, nucleosome positioning around 

transcription starting sites have an important role in gene expression. Nucleosomes 

downstream of promoters are called +1 nucleosomes and are known to be stably 

positioned [9]. In the S. cerevisiae genome, it has been reported the presence of 

nucleosome-depleted regions (NDRs) in upstream of promoters [10]. As the factors of 

regulating nucleosome positioning, DNA sequence [11], DNA methylation [12] and 

histone modifications [13] are thought to be important; however, the mechanism of 

nucleosome positioning have not fully understood. 

 

In addition to nucleosome positioning, histone modifications influence activation and 
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repression of gene expression [14], [15]. Histone tails which are N-terminals of histone 

proteins are likely to have chemical modifications including methylation, acetylation, 

phosphorylation and ubiquitination. Histone modifications change the chromatin 

construction and affect gene transcription in a variety of ways [16]. Histone acetylation 

is correlated with transcriptional activation [17], [18]. Acetylation reduces positive 

charge of histone and loosen the binding between nucleosome and DNA, thereby 

promoting gene expression. On the other hand, lysine methylation causes both 

transcriptional activation and suppression determined by position of residue in histone 

tail [19], [20]. Histone H3 lysine 4 (H3K4) methylation is enriched specifically in 

hypomethylated gene promoter regions and causes transcriptional activation [21], [22]. 

Conversely, in embryonic stem cells, hypomethylated regions around promoters of 

developmentally regulated genes are frequently marked with H3K27me3 which repress 

gene transcription [23], [24]. These regions are often longer than several kilo base pairs, 

and genes are stayed in “poised” state, which is not simply suppressed. Poised states are 

thought to be essential for embryonic cells to maintain pluripotency, and previous 

research in medaka genome suggested that shortening development hypomethylated 

domains with H3K27me3(K27HMD) weakens repression so that developmental genes 

are activated [25]. Large K27HMD around developmental gene promoter are often 

conserved between medaka and human, suggesting a combination of hypomethylation 

and H3K27me3 in vertebrate could be a common mechanism behind gene regulation. 

 

By the recent advances on the development of sequencing technology such as Chip-seq 

[26], MNase-seq [27], and single molecule real time [28]–[30] sequencer, genome-wide 

chromatin information can be captured at a feasible cost. To analyze such massive data 

and gain new insight, efficient methods for processing are needed. 
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In my thesis I devised two novel methods focused on accelerating k-means clustering 

using Pearson correlation distance, and detecting regions which modified by specific 

epigenomic combinations. 

 

Clustering is an unsupervised learning method to classify data into groups based on 

similarity among data. Typical clustering methods are hierarchical clustering, k-means 

clustering, self-organizing maps, and principal components analysis [31]. To process 

biological data, such as gene expression data [32]–[35], histone modifications [36]–[44] 

and nucleosome positioning [12], [45]–[54], various clustering methods are utilized to 

discover biological findings in clustered groups. Extensive research studies have been 

done to classify nucleosome positioning around transcription starting sites using 

clustering. In yeast, for example, nucleosome positioning in the regions within 800bp 

of TSSs were clustered into 4 patterns by k-means clustering, and characteristic of 

clusters were annotated according to Gene Ontology [46]. A striking example different 

from the previous research [55] was that two of four cluster were found to lack clear 

NDR. In the human genome, nucleosome patterns were classified into 17 clusters and 

roughly divided into categories which have strongly positioned nucleosomes in 

upstream of the TSS and in downstream of the TSS [54]. It was revealed by the precise 

clustering general model of nucleosome-depleted regions in upstream of promoters is 

not necessarily hold. 

 

Detecting chromatin states with distinct combinations of chromatin modification 

patterns have been also widely researched. ChromHMM [42] is a statistical method for 

classifying epigenetic modifications and dividing a DNA sequence into sub-regions of 

similar chromatin states using Hidden Markov model. In the human genome, 
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ChromHMM listed chromatin states by combinations of histone modifications, and 

identified region specific chromatin states. 

 

In my doctoral thesis, I devised two novel algorithms for processing genome-wide 

chromatin information to solve above mentioned problems. In Chapter 1, to classify 

large high dimensional biological data such as nucleosome positioning signal data, I 

invented “BoostKCP”, an accelerating method for k-means clustering using the Pearson 

correlation distance. I applied BoostKCP to human nucleosome positioning signal data 

and two other biological data, and compared the computational time with classic 

Lloyd’s algorithm, the first, simple k-means clustering, and other two accelerating 

methods, Elkan’s and Hamerly’s algorithms. In a variety of conditions, my method 

outperformed Lloyd’s, Elkan’s and Hamerly’s algorithm.  

 

In Chapter 2, I proposed a linear time algorithm for detecting regions which modified 

by specific epigenomic combinations called “CSMinfinder”. My algorithm calculates 

the similarity score between a focal combination of epigenetic modifications and raw 

epigenetic states at each DNA position, and is able to detect a set of non-overlapping 

regions which maximizes the sum of similarity scores under the constraint that the 

length of each region is greater than or equal to a given minimum threshold. Using 

CSMinfinder, I detected large hypomethylated and modified by H3K27me3 regions 

(K27HMD) which contained many developmental genes in the medaka and human 

genome.  

 

In Chapter 3, I constructed medaka draft genome using SMRT sequencing reads 

intended to make less gap genome to elucidate chromatin conformation. I used Hi-C 
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data to anchor contigs to chromosome which contained centromeric repeats that could 

not be assembled in past medaka genome. 
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Introduction 

This chapter is a modified version of my paper “A Simple but Powerful Heuristic 

Method for Accelerating k-Means Clustering of Large-Scale Data in Life Science” [56]. 

 

Nucleosome is a fundamental unit of chromatin structure in eukaryotes, which is 

composed of a segment of DNA wound around eight histone proteins core [1]. Each 

nucleosome core is consisting of 2 copies each of core histones H2A, H2B, H3 and H4 

and about 146bp of DNA are wrapped around histone octamer [2], [3]. Chromatin 

structure is composed of nucleosomes and free DNA between nucleosomes called 

“linker DNA”. Generally, existence of nucleosome prevents binding of transcription 

factor and nucleosome positioning patterns are thought to be associated with gene 

regulations [7], [8]. Especially it is known that around transcription starting sites there 

are nucleosome-free regions on the upstream of promoters, and +1 nucleosome 

downstream of promoters are stably positioned in whole genome [10]. Recent studies 

have revealed the association between nucleosome and gene regulation by clustering 

nucleosome patterns. As example, in yeast, nucleosome patterns are classified into four 

clusters and tendencies of genes in each clusters are researched [46]. In the human 

genome, nucleosome positioning around transcription starting sites were classified into 

17 clusters and asymmetric pattern which have strongly positioned nucleosomes in 

upstream of TSS [54]. Mechanism of regulating nucleosome positioning has not been 

fully understood and clustering nucleosome positioning is thought to be a useful method 

for getting new insight of chromatin structures. 

 

A variety of clustering algorithms, such as hierarchical clustering, k-means clustering, 

self-organizing map (SOM), and principal components analysis (PCA), have been used 
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for gain insights into biological systems (for review, see [31]). 

Of these, k-means clustering is the most widely used to process large-scale data sets, in 

part because the computational complexity of hierarchical clustering is quadratic or 

higher in the number of data points, while k-means clustering algorithms have lower 

computational complexity [57]. Accelerating k-means clustering algorithms is still 

necessary to process the growing volume of biological data due to the recent progress 

in data collection by next-generation sequencing. 

The basic concept of k-means clustering is simple. 

1. It first selects k cluster centroids in some manner. The behavior of the algorithm is 

highly sensitive to the initial selection of k initial centroids, and many efficient 

initialization methods have been proposed to calculate better k centroids [57]–[64]. 

In this study, I use the initialization method proposed by Bradley and Fayyad [62], 

since it consistently performs better than the other methods in terms of several 

criteria according to the recent report by Celebi et al [57].  

2. Subsequently, k-means clustering repeats the process of assigning individual points 

to their nearest centroids and updating each of k centroids as the mean of points 

assigned to the centroid until no further changes occur on the k centroids [65]. 

Quantifying the same data points is essential. Various measures are available, such as 

Euclidean distance, Manhattan distance, Pearson correlation distance, and Spellman 

rank correlation. Of these, Euclidean distance and Pearson correlation distance have 

been widely used for large-scale biological data processing [34], [35], [54], [66], [67]. 

Euclidean distance is sensitive to scaling, while correlation is unaffected by scaling. 

Precisely, given two data of high dimension such that their patterns are quite similar but 

their scales are different, Euclidean distance is not suitable for measuring the similarity. 

To avoid this problem, standardized Euclidean distance, which is not sensitive to scaling, 
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is frequently used [34], [67]–[71]. 

 

Of note, standardized Euclidean and Pearson correlation distances are equivalent in the 

sense that both yield the same k-means clustering result for identical sets of k initial 

centroids because the standardized Euclidean distance is proportional to the square root 

of the Pearson correlation distance [34], [71], and the two distances always produce 

consistent orderings. Thus, optimization methods designed to calculate one distance are 

applicable to the other. 

 

Despite the importance of the Pearson correlation and standardized Euclidean distances 

for machine learning, optimization methods customized for these distances are largely 

unexplored. In general, several efficient k-means clustering algorithms have been 

proposed for processing Euclidean distances by utilizing the triangle inequality [72]–

[74] or by analyzing the correlation coefficient between the centroids [75]. Thus, I can 

use optimization methods for the Euclidean distance to yield a k-means clustering result 

based on the standardized Euclidean distance that is in agreement with that based on the 

Pearson correlation distance [34]. 

 

I instead examined the properties of the Pearson correlation distance and devised a 

simple and novel method for avoiding unnecessary computation in order to boost k-

means clustering using the Pearson correlation distance. I demonstrate that my method 

outperforms pruning method applications using the Euclidean distance [72]–[74] 

compared with those that use the standardized Euclidean distance. My method has been 

best optimized for k-means clustering using the standardized Euclidean and Pearson 

correlation distances. 
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Methods 

 

I first introduce the definition of Pearson’s correlation coefficient. 

 

Definition.  To measure the distance between two d dimensional vectors 

 𝒙 = (𝒙[1], … , 𝒙[𝑑]), 𝒚 = (𝒚[1], … , 𝒚[𝑑]), I define Pearson’s correlation coefficient:  

ρ(𝒙, 𝒚) =
1

𝑑
∑ (

𝒙[𝑖] − �̅�

𝜎𝒙
) (

𝒚[𝑖] − �̅�

𝜎𝒚
)

𝑑

𝑖=1
, 

where �̅�  denotes the average of 𝒙[1], … , 𝒙[𝑑]   and 𝜎𝒙  is the standard deviation  

defined as √∑ (𝒙[𝑖] − �̅�)2𝑑
𝑖=1 𝑑⁄ . Let ‖𝒙‖ denote its length  defined as √∑ 𝒙[𝑖]2𝑑

𝑖=1  .  

 

Note that Pearson’s correlation coefficient ranges from −1 to 1, i.e., −1 ≤ ρ(𝒙, 𝒚) ≤

1.  The Pearson’s correlation coefficient ρ(𝒙, 𝒚) itself does not serve as a distance 

because when 𝒙 and 𝒚 are more similar to each other, ρ(𝒙, 𝒚) becomes larger and 

approaches 1 rather than 0.  

 

Definition.[76] The Pearson correlation distance 𝑑𝑖𝑠(𝒙, 𝒚) is defined as 1 − 𝜌(𝒙, 𝒚).  

 

The Pearson correlation distance approaches 0 when 𝒙 and 𝒚 are similar. In contrast, 

when 𝒙 and 𝒚 are more dissimilar, the Pearson’s correlation coefficient decreases to 

−1, and the Pearson correlation distance between 𝒙  and 𝒚  increases approaching 

2. The range of the distance is 0 ≤ dis(𝒙, 𝒚) ≤ 2 . The Pearson correlation distance 

violates the triangular inequality.  
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Example. When 𝒙1 = (9, 3, 1), 𝒙2 = (3,1, 9), and 𝒙3 = (1,3, 9), Pearson correlation 

distances are 

dis(𝒙1, 𝒙2) = 1.5, dis(𝒙2, 𝒙3) = 0.115, and dis(𝒙1, 𝒙3) = 1.846, 

which do not meet the triangular inequality: 

dis(𝒙1, 𝒙2) + dis(𝒙2, 𝒙3) ≥ dis(𝒙1, 𝒙3)      

 

I illustrate here two examples that clarify how the Pearson correlation distance differs 

from the Euclidean distance. 

 

Example. When 𝒙1 = (1, 3, 9), 𝒙2 = (0.9, 0.3, 0.1), and 𝒙3 = (0.1, 0.3, 0.9), 

𝒙1 and 𝒙3 have similar patterns, but their scales are different, while 𝒙2 and 𝒙3 have 

dissimilar patterns, yet their Euclidean distance is smaller than the distance between 𝒙1 

and 𝒙3. Indeed, we have: 

dis(𝒙1, 𝒙3) = 0 < 1.84615 = dis(𝒙2, 𝒙3),  

while 

‖𝒙1 − 𝒙3‖ = 8.58545 > 1.13137 = ‖𝒙2 − 𝒙3‖.   
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The next example illustrates the discrepancy between the Pearson correlation distance 

and the “normalized” Euclidean distance. 

 

Example. When 𝒙1 = (0.1, 0.3, 10), 𝒙2 = (0.1, 1, 10), and 𝒙3 = (0.1, 0.1, 1), 

Pearson correlation distances meet 

dis(𝒙1, 𝒙3) = 0.00016 < 0.00338 = dis(𝒙2, 𝒙3), 

implying that 𝒙3 is more similar to (correlated with) 𝒙1 than is 𝒙2. In contrast, the 

normalized Euclidean distance yields the opposite ordering: 

‖
𝒙1

‖𝒙1‖
−

𝒙3

‖𝒙3‖
‖ = 0.11304 > 0.08920 = ‖

𝒙2

‖𝒙2‖
−

𝒙3

‖𝒙3‖
‖ 

 

I next define the standardized Euclidean distance. 

Definition.  Let dis_𝑆𝐸(𝒙, 𝒚) denote 

√∑ (
𝒙[𝑖] − �̅�

𝜎𝒙
−

𝒚[𝑖] − �̅�

𝜎𝒚
)

2𝑑

𝑖=1

 

the standardized Euclidean distance between two d dimensional vectors 𝒙 and 𝒚. 

The square root of the Pearson correlation is proportional to the standardized Euclidean 

distance. 

Proposition.[34]  [71] 

√2𝑑√𝑑𝑖𝑠(𝒙, 𝒚) = dis_SE(𝒙, 𝒚) 

The Pearson correlation distance and the standardized Euclidean distance produce 

consistent orderings; namely  for any 𝒙𝟏, 𝒚𝟏, 𝒙𝟐, 𝒚𝟐,  

dis(𝒙𝟏, 𝒚𝟏)  ≤ dis(𝒙𝟐, 𝒚𝟐) 

 if and only if 

dis_SE(𝒙𝟏, 𝒚𝟏)  ≤ dis_SE(𝒙𝟐, 𝒚𝟐). 
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I note here that the Pearson correlation distance and its square root are largely different. 

For example, √𝑑𝑖𝑠(𝒙, 𝒚) = 0.4  when 𝑑𝑖𝑠(𝒙, 𝒚) = 0.16 , and √𝑑𝑖𝑠(𝒙, 𝒚) = 1.3 

when 𝑑𝑖𝑠(𝒙, 𝒚) = 1.69 . In general, two proximal (distal, respectively) points of the 

Pearson correlation distance < 1 (> 1) become more distant (closer) according to the 

square root of the Pearson correlation distance. 

 

Next, I outline Lloyd’s algorithm, which implements k-means clustering. Given 𝑛 

points in 𝑑  dimensional space, a k-means algorithm starts with selecting 𝑘  initial 

centroids, {𝒄𝑝 | 𝑝 = 1, … , 𝑘},  in some way. It then repeats the following two steps 

until no further changes occur in any of the 𝑘 centroids: 

 Assigning step: Assign each of 𝑛 points to its nearest centroid. 

 Updating step: Update each 𝒄 of 𝒌 centroids as the mean of points assigned to 

𝒄. 

 

Lloyd proposed the basic concept of the above procedure [65].  

Suppose that it takes Θ(𝑑) time to compute the distance between two 𝑑-dimensional 

points. A naïve implementation of the assigning step is to calculate the distance between 

each point and each centroid, which takes a Θ(𝑑𝑘𝑛) time in total, while the updating 

step needs a Θ(𝑑𝑛)  time. Thus, accelerating the assigning step is crucial. Here, I 

present a way of avoiding unnecessary computation in the assigning step by finding 

unchanged nearest centroids. 

 

Selecting the distance between points is crucial in k-means clustering. The Euclidean 

and Pearson correlation distances are not always consistent and may produce different 
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clustering results for an identical set of k initial centroids because during the assigning 

step, the centroid nearest to each vector can differ according to the distance selected. In 

contrast, the standardized Euclidean and Pearson correlation distances produce 

consistent orderings, and consequently the centroid closest to each vector is the same 

regardless of the distance selected. Using this property, I show that both distances yield 

the same clustering result. 

 

Proposition. For an identical set of k initial centroids  the k-means clustering algorithm 

produces the same clustering result for each of the standardized Euclidean distance as 

the Pearson correlation distance. 

 

Proof.  

I prove the inductive hypothesis stating that before each round of iteration, the set of k 

centroids for the standardized Euclidean distance is identical to that for the Pearson 

correlation distance. The hypothesis holds true before the first iteration simply because 

the same set of k initial centroids is the input for each distance. Assuming that the 

hypothesis is true before the 𝑖th iteration, after the assigning step, the centroid nearest 

to each vector is identical for each of the two distances because for any vector 𝒙 and 

any centroids 𝒄1  and 𝒄2 , 𝑑𝑖𝑠(𝒙, 𝒄1) ≤ 𝑑𝑖𝑠(𝒙, 𝒄2)  if and only if 𝑑𝑖𝑠_𝑆𝐸(𝒙, 𝒄1) ≤

𝑑𝑖𝑠_𝑆𝐸(𝒙, 𝒄2). Thus, after the updating step, the set of vectors closest to each centroid 

c is identical for the two distances, implying that the mean of the set, the revised centroid, 

is also identical. Consequently, the inductive hypothesis is true before the (i+1)-th 

iteration. 

This proposition allows us to perform k-means clustering with the Pearson 

correlation distance by using optimization algorithms developed for the (standardized) 
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Euclidean distance [72]–[74]; however, it is unclear whether methods for the Euclidean 

distance are effective for accelerating the performance when using the standardized 

Euclidean distance. I show relevant experimental results in the next section. 

 

For the following, I describe my new algorithm customized for the Pearson correlation 

distance. Centroids are updated frequently and are likely to move long distances in early 

stages of the repetitive steps. In contrast, in later steps, centroids are unlikely to move, 

and therefore, the assigning step has a tendency to reassign each point to the previous 

centroid as the nearest one, which should be avoided. Thus, we can accelerate the 

assigning step if we can test whether the nearest centroid for a point remains unchanged 

without recalculating the distances between the point and all centroids. Suppose that 

after the updating step, the centroid 𝒄𝑝 nearest to 𝒙 moves to  𝒄𝑝′ for 𝑝 = 1, … , 𝑘, 

and any other centroid 𝒄𝑞  (𝑞 = 1, … , 𝑘, 𝑞 ≠ 𝑝) moves to  𝒄𝑞′. We ask if 𝒙 is still 

closest to cluster 𝒄𝑝’ after the updating step:  

dis(𝒄𝑝′, 𝒙) ≤ dis(𝒄𝑞′, 𝒙), 

for 𝑞 = 1, … , 𝑘(𝑞 ≠ 𝑝) 

 

To check this test efficiently for any point 𝒙 without recalculating the new distances 

on both sides of the inequality, we will develop an efficient method to estimate an upper 

bound of the new distance dis(𝒄𝑝′, 𝒙) using the existing distance dis(𝒄𝑝, 𝒙): 

dis(𝒄𝑝
′, 𝒙) ≤ dis(𝒄𝑝, 𝒙) + an_upper_bound, 

where we will define “an_upper_bound(≥ 0)” shortly. 
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Similarly, we will derive a lower bound of dis(𝒄𝑞
′, 𝒙)  using the previous distance 

dis(𝒄𝑞 , 𝒙): 

dis(𝒄𝑞 , 𝒙) + a_lower_bound ≤ dis(𝒄𝑞
′, 𝒙) 

for 𝑞 = 1, … , 𝑘(𝑞 ≠ 𝑝), where a_lower_bound ≤ 0. 

 

Using these methods, we can implement a pruning procedure. If  

         dis(𝒄𝑝, 𝒙) + an_upper_bound ≤ 

dis(𝒄𝑞 , 𝒙) + a_lower_bound for 𝑞 = 1, … , 𝑘(𝑞 ≠ 𝑝), (∗) 

we can confirm dis(𝒄𝑝′, 𝒙) ≤ dis(𝒄𝑞′, 𝒙)   (𝑞 ≠ 𝑝)   without calculating the new 

distances, while retaining the final solution. In the next round of the assigning step, it 

might be necessary to calculate the new distances, but we can omit this step by 

substituting dis(𝒄𝑝, 𝒙) + an_upper_bound  and dis(𝒄𝑞 , 𝒙) + a_lower_bound  for 

new distances dis(𝒄𝑝
′, 𝒙) and dis(𝒄𝑞

′, 𝒙) respectively because this replacement does 

not violate the validity of the pruning procedure in the next assigning step. In cases in 

which the inequality (*) does not hold, we calculate dis(𝒄𝑝′, 𝒙) and dis(𝒄𝑞′, 𝒙) for 

𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝), and determine the centroid nearest to 𝒙. 

 

To facilitate the simple description of formula and derivations, I introduce a method of 

decomposing the Pearson’s correlation coefficient 𝜌(𝒙, 𝒚)  into two vectors called 

“correlation coefficient vectors.”  
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Definition. Correlation coefficient vectors are defined as  

1

√𝑑
(

𝒙[1] − �̅�

𝜎𝒙
,
𝒙[2] − �̅�

𝜎𝒙
, ⋯

𝒙[𝑑] − �̅�

𝜎𝒙
), 

1

√𝑑
(

𝒚[1] − �̅�

𝜎𝒚
,
𝒚[2] − �̅�

𝜎𝒚
, ⋯

𝒚[𝑑] − �̅�

𝜎𝒚
), 

for 𝒙 = (𝒙[1], … , 𝒙[𝑑])  and 𝒚 = (𝒚[1], … , 𝒚[𝑑]),  respectively. Let 𝐶𝐶𝒙  and 𝐶𝐶𝒚 

denote the respective correlation coefficient vectors. 

 

Note that the Pearson’s correlation coefficient ρ(𝒙, 𝒚) is equal to the inner product of 

𝐶𝐶𝒙 and 𝐶𝐶𝒚; i.e., ρ(𝒙, 𝒚) = (𝐶𝐶𝒙, 𝐶𝐶𝒚). Any correlation coefficient vector 𝐶𝐶𝒙 is 

of length 1; namely, ‖𝐶𝐶𝒙‖ = 1, and similarly, ‖𝐶𝐶𝒚‖ = 1. 

 

To facilitate the discussion of calculating better upper and lower bounds, I introduce a 

new definition.  

 

Definition.  Let 𝒄 and 𝒄′ be respective centroids before and after the updating step  

and let 𝐶𝐶𝒄 𝑎𝑛𝑑 𝐶𝐶𝒄′  be their correlation coefficient vectors. Let ∆𝑑𝑖𝑠(𝒄, 𝒄′, 𝒙) 

denote 𝑑𝑖𝑠(𝒄′, 𝒙) − 𝑑𝑖𝑠(𝒄, 𝒙)  the distance variation of point 𝒙 to 𝒄 and 𝒄′. 

 

For example, dis(𝒄𝑝
′, 𝒙) ≤ dis(𝒄𝑝, 𝒙) + an_upper_bound  can be concisely 

described by  

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) ≤ an_upper_bound. 
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Another merit of this notation is that we are able to transform the distance variation into 

an inner product of (𝐶𝐶𝒄 − 𝐶𝐶𝒄′) and 𝐶𝐶𝒙 : 

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) = 𝑑𝑖𝑠(𝒄𝑝

′, 𝒙) − 𝑑𝑖𝑠(𝒄𝑝, 𝒙) 

          = 𝜌(𝒄𝑝, 𝒙) − 𝜌(𝒄𝑝
′, 𝒙) 

                  = (𝐶𝐶𝒄𝑝, 𝐶𝐶𝒙) − (𝐶𝐶𝒄𝑝
′, 𝐶𝐶𝒙) 

            = (𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′, 𝐶𝐶𝒙) 

This inner product allows us to estimate an upper bound and a lower bound of 

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) by analyzing the two vectors independently as well as by considering 

each dimension separately. 

 

We can derive an upper bound and a lower bound that are effective for any point 𝒙 for 

which the nearest centroid is 𝒄𝑝. A simple approach is to derive two bounds from 

‖∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙)‖ = ‖(𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝

′, 𝐶𝐶𝒙)‖ 

                ≤ ‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖‖𝐶𝐶𝒙‖, 

where the inequality holds because of the Cauchy-Schwarz inequality. Because 

‖𝐶𝐶𝒙‖ = 1,  we can use ‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖  and −‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝

′‖  as upper and 

lower bounds, respectively, and I define them as follows: 

 

Definition.  

upperA(𝒄𝑝, 𝒄𝑝′) ≝ ‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖ 

 lowerA(𝒄𝑝, 𝒄𝑝′) ≝ −‖𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝
′‖ 
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These upper and lower bounds are simple formulas but effective for eliminating 

unnecessary computation. It takes Θ(𝑑𝑘)  time to calculate the lower and upper 

bounds for all k centroids, and Θ(𝑘) space to store these bounds. I also design more 

complicated bounds by taking the sum of the differences at individual coordinates. 

 

Definition.  Let 𝑆𝒄𝑝
denote the set of all points for which the nearest centroid is 𝒄𝑝 

upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) ≝ ∑ maximum (𝐶𝐶𝒄𝑝[𝑗] − 𝐶𝐶𝒄𝑝′[𝑗], 𝑆𝒄𝑝

) ,
𝑑

𝑗=1
 

where   

maximum (𝑧, 𝑆𝒄𝑝
) ≝ {

𝑧 × max {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 ≥ 0

𝑧 × min {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 < 0

 

For 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝)  define 

lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝
) ≝ ∑ minimum (𝐶𝐶𝒄𝑞[𝑗] − 𝐶𝒄𝑞′[𝑗], 𝑆𝒄𝑝

)𝑑
𝑗=1 , 

where   

minimum (𝑧, 𝑆𝒄𝑝
) ≝ {

𝑧 × min {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 ≥ 0

𝑧 × max {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} 𝑧 < 0

 

 

Proposition.  For any 𝒙 ∈ 𝑆𝒄𝑝
, 

     ∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) ≤ upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝

) and 

     lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝
)  ≤ ∆𝑑𝑖𝑠(𝒄𝑞 , 𝒄𝑞′, 𝒙)  (𝑞 ≠ 𝑝). 
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It takes Θ(𝑑𝑛 + 𝑑𝑘2)  time and Θ(𝑑𝑘 + 𝑘2)  space in order to calculate 

upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
)  and lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝

)  (𝑝 = 1, … , 𝑘, 𝑞 = 1, … , 𝑘, 𝑞 ≠ 𝑝) 

for every cluster 𝒄𝑝. 

 

Proof 

∆𝑑𝑖𝑠(𝒄𝑝, 𝒄𝑝
′, 𝒙) = ((𝐶𝐶𝒄𝑝 − 𝐶𝐶𝒄𝑝

′), 𝐶𝐶𝒙) 

      = ∑ (𝐶𝐶𝒄𝑝[𝑗]–  𝐶𝐶𝒄𝑝′[𝑗]) × 𝐶𝐶𝒙[𝑗]
𝑑

𝑗=1
 

      ≤ ∑ maximum (𝐶𝐶𝒄𝑝[𝑗] −  𝐶𝐶𝒄𝑝′[𝑗], 𝑆𝒄𝑝
)

𝑑

𝑗=1
 

      = upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) 

∆𝑑𝑖𝑠(𝒄𝑞 , 𝒄𝑞′, 𝒙) = ((𝐶𝐶𝒄𝑞 − 𝐶𝐶𝒄𝑞
′), 𝐶𝐶𝒙) 

      = ∑ (𝐶𝐶𝒄𝑞[𝑗]–  𝐶𝐶𝒄𝑞′[𝑗]) × 𝐶𝐶𝒙[𝑗]
𝑑

𝑗=1
 

      ≥ ∑ minimum (𝐶𝐶𝒄𝑞[𝑗] −  𝐶𝐶𝒄𝑞′[𝑗], 𝑆𝒄𝑞
)

𝑑

𝑗=1
 

      = lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑞
) 

 

For efficiency, I first compute the maximum and minimum of {𝐶𝐶𝒙[𝑗] |𝒙 ∈ 𝑆𝒄𝑝
} for 

each dimension 𝑗 = 1, … , 𝑑 and for each cluster 𝒄𝑝 (𝑝 =  1, … , 𝑘), and store this 

information in a table of size Θ(𝑑𝑘) . This tabulation process takes Θ(𝑑𝑛)  time. 

Looking up the table, it is possible to calculate upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) for any cluster 
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𝒄𝑝  in Θ(𝑑)  time, and lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝
)  for (𝑘 − 1)  clusters 𝒄𝑞  (𝑞 =

1, … , 𝑘, 𝑞 ≠ 𝑝) in Θ(𝑑(𝑘 − 1)) time. Repeating this calculation for each cluster 𝒄𝑝 =

𝒄1, … , 𝒄𝑘 requires Θ(𝑑𝑘2) time and Θ(𝑘2) space for storing upper and lower bounds. 

 

Using the above two calculations for upper and lower bounds, we devise the pruning 

procedure that checks 

dis(𝒄𝑝, 𝒙) + upperA(𝒄𝑝, 𝒄𝑝′) ≤ dis(𝒄𝑞 , 𝒙) + lowerA(𝒄𝑞 , 𝒄𝑞′), 

or 

dis(𝒄𝑝, 𝒙) + upperB (𝒄𝑝, 𝒄𝑝′, 𝑆𝒄𝑝
) ≤ dis(𝒄𝑞 , 𝒙) + lowerB (𝒄𝑞 , 𝒄𝑞′, 𝑆𝒄𝑝

) 

for each 𝒙  of 𝑛  points ( 𝒙 ∈ 𝑆𝒄𝑝
  for each 𝑝 = 1, … , 𝑘 ) and for each 𝑞 =

1, … , 𝑘 (𝑞 ≠ 𝑝) . If 𝒙  meets one of the inequalities, we can confirm dis(𝒄𝑝′, 𝒙) ≤

dis(𝒄𝑞′, 𝒙)   (𝑞 ≠ 𝑝)   by skipping the calculation of the new distances. The total 

computation time of checking the above inequality is Θ(𝑘𝑛). Using upperB and lowerB 

requires additional computational time Θ(𝑑𝑛 + 𝑑𝑘2) and space Θ(𝑑𝑘 + 𝑘2), which 

is constantly required to calculate the two bounds in each iteration. In contrast, 

computing upperA and lowerA needs Θ(𝑑𝑘) time and Θ(𝑘) space. 

 

For each 𝒙  that violates the above inequality, new distances dis(𝒄𝑝′, 𝒙)  and 

dis(𝒄𝑞′, 𝒙) for 𝑞 = 1, … , 𝑘 (𝑞 ≠ 𝑝) are computed to find the centroid nearest to 𝒙. 

In the best case, no calculation is needed. In the worst case, however, it is necessary to 

compute new distances dis(𝒄𝑝′, 𝒙) for 𝑝 = 1, … , 𝑘 and 𝑛 points, and the worst time 
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complexity is 𝑂(𝑑𝑘𝑛) . Recall for comparison that the assigning step of Lloyd’s 

algorithm requires Θ(𝑑𝑘𝑛) time. 

 

I have defined two heuristic algorithms: one uses upperA and lowerA, and the other 

upperB and lowerB to prune unnecessary computations when performing k-means 

clustering using the Pearson correlation distance. I call the former BoostKCP (boundA) 

and the latter BoostKCP (boundB), where BoostKCP stands for Boosting K-means 

Clustering for Pearson correlation distance. 

 

I compare the performance of Elkan’s and Hamerly’s methods, BoostKCP(boundA), 

and BoostKCP(boundB) with respect to time and space complexity. Although individual 

method accelerates Lloyd’s algorithm using lower and upper bounds to prune 

unnecessary computation, each iteration requires 𝑂(𝑑𝑘𝑛) time in the worst case. Thus, 

I summarize the overhead of computing lower and upper bounds in terms of time and 

space complexity (Table 1). The entries of “time/iteration” show the asymptotic 

overhead computation time required to calculate lower and upper bounds in each 

iteration by individual algorithms. The entries for BoostKCP have been described, while 

those for Elkan’s and Hamerly’s algorithms are detailed in [73]. Table 1 shows that the 

time and space complexity of BoostKCP(boundA) are smaller than those of the other 

methods. In the experimental results, I will show that BoostKCP(boundA) also 

outperforms the others in terms of computational performance using real biological data 

sets, confirming that BoostKCP(boundA) is a simple and powerful heuristic method for 

accelerating k-means clustering when using Pearson correlation and standardized 

Euclidean distances. 
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TABLE 1 

Comparison of the Asymptotic Overhead Spent by Calculating Lower and Upper 

Bounds in Addition to Lloyd’s Algorithm in Terms of Time and Space Complexity 

 

 time / iteration memory 

BoostKCP(boundA) Θ(𝑑𝑘) Θ(𝑘) 

BoostKCP(boundB) Θ(𝑑𝑛 + 𝑑𝑘2) Θ(𝑑𝑘 + 𝑘2) 

Elkan Θ(𝑑𝑘2) Θ(𝑘𝑛 + 𝑘2) 

Hamerly Θ(𝑑𝑘2) Θ(𝑛) 
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Results 

 

Data sets 

I generated a synthetic data set of vectors whose elements were randomly selected from 

0 to 1 using the Mersenne twister [77], a widely used pseudorandom number generator 

with an extraordinarily long cycle of 219,937 − 1. I generated data sets of 50,000 vectors 

of dimension d = 10, 20, 50, 101, 201, 501, 1,001, and 2,001. This random data set was 

an extreme example from which meaningful clusters were difficult to extract. I used 

these sets to compare the effectiveness of BoostKCP (boundA) and BoostKCP (boundB) 

for pruning unnecessary computation. 

 

In order to compare BoostKCP with other available state-of-the-art pruning methods, I 

used three different types of high-dimensional real biological data sets rather than 

random data sets. The first real data set was a set of vectors with human nucleosome 

positioning signals at genomic positions surrounding transcription start sites (TSSs). A 

nucleosome positioning signal at a genomic position is a real value and represents the 

possibility of the presence of nucleosome centers at that position. From the GENCODE 

database (version 7) [78], I obtained human nucleosome positioning signals using 

MNase-sequencing and the TSSs of the human reference genome hg19. I repeated the 

process of merging neighboring TSSs within 1,000 bp into a group, and I selected 

representative TSSs whose expression levels were maximal in individual groups. From 

the representative TSSs, I excluded those having any other TSSs within 1,000 bp on the 

reverse strand to eliminate their effect. Subsequently, from the nucleosome positioning 

signal data, I generated a base set of 56,772 vectors of dimension 2,001 (~400M bytes) 

such that their elements were real-valued nucleosome positioning signals within 1,000 
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bp around representative TSSs and more than half of the elements within 50, 100, 250, 

and 500 bp of the TSSs were nonzero. To monitor how the algorithms behave for data 

of different dimension, from the base set, I generated sets of vectors of dimension d = 

101, 201, 501, 1001, and 2001 by selecting the elements within 50, 100, 250, 500, and 

1000 bp surrounding the TSSs. The last digit “1” of dimension d indicates the TSS 

position. Because of the construction of the base set, more than half of the elements in 

each vector is guaranteed to be nonzero. For smaller dimensions d =10, 20, and 50, I 

selected every (2000/𝑑)-th element for d = 10, 20, and 50 from the base set;  e.g., 

elements at -1000, -800, -600, …, +600, and +800 bp for d=10. The second real data set 

was a typical example of gene expression data, a set of 54,613 genes from 180 glioma 

samples [79]. The third real data set was a set of 60,000 gray-level images of 

handwritten letters in the MNIST database [80]. Each image consisted of 28 x 28 pixels, 

and I set dimension d = 282 = 784. 

 

Comparison of computational performance 

I compared the following five methods: 

 Lloyd’s algorithm [65]. 

 BoostKCP (boundA). 

 BoostKCP (boundB). 

 Elkan’s algorithm [72]. 

 Hamerly’s algorithm [73], [74]. 

 

I used the first three methods to compute k-means clustering using the Pearson 

correlation distance. In contrast, since the latter two algorithms were designed to process 

the Euclidean distance, I used these to calculate k-means clustering using the 



29 

 

standardized Euclidean distance, the results of which are equal to those using Pearson 

correlation distance as described in the previous section. For any initial centroid set, the 

above five methods give the same final clustering result. 

 

Selecting the initial set of k centroids largely affects the final result, and for this purpose, 

I used Bradley and Fayyad’s method [62] because it performed better than the other 

applicable initialization methods for several criteria [57]. After selecting the initial 

centroids, I measured the elapsed time during the application of each method towards 

the same initial centroid set derived from different types of data. I excluded the time 

required to compute the initial set of centroids because it was typically much less than 

the time used to compute k-means clustering. I monitored the computational 

performance using an Intel(R) Xeon(R) CPU E5-2680 v3 processor with a clock rate of 

2.50GHz and 529 GB of main memory. 

 

I first compared the performances of BoostKCP (boundA) and BoostKCP (boundB) 

using 50,000 random vectors of dimension d = 10, 20, 50, 101, 201, 501, 1,001, and 

2,001. I calculated the average elapsed time by executing 10 trials for d = 10, 20, 50, 

101, 201, 501, but five trials for d =1,001 and 2,001, due to the large amount of 

computation. I observed that BoostKCP (boundA) outperformed BoostKCP (boundB). 

Specifically, I calculated the performance improvement by BoostKCP(boundA) as the 

acceleration rate; i.e., the elapsed time for BoostKCP (boundB) divided by that for 

BoostKCP (boundA). Fig. 1 displays the elapsed time and acceleration rate for each 

dimension and for k = 10, 20, and 30. In all cases, BoostKCP (boundA) was faster than 

BoostKCP (boundB) partly because computing lower and upper bounds for 

BoostKCP(boundA), Θ(𝑑𝑘) , is less expensive than computing those for 
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BoostKCP(boundB),  Θ(𝑑𝑛 + 𝑑𝑘2), where d is the dimension, n is the number of data, 

and k is the number of clusters (Table 1). I therefore used BoostKCP (boundA) for my 

comparisons with the other four algorithms using real data sets.   
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Fig. 1. 

Comparison between BoostKCP (boundA) and 

BoostKCP (boundB). Randomly generated 50,000 

vectors of dimension 𝑑 = 10, 20, 50, 101, 201, 

501, 1,001, and 2,001 were grouped into k ( = 10, 

20, and 30) clusters. The first y-axis and second y-

axis show the elapsed time and acceleration rate, 

respectively. 



31 

 

I next compared BoostKCP (boundA) with Lloyd’s, Elkan’s, and Hamerly’s algorithms 

using real biological data sets. For measuring the performance improvement by 

BoostKCP(boundA), I again defined the acceleration rate as the average elapsed time 

of each algorithm divided by that of BoostKCP (boundA). 

 

Fig. 2 shows the experimental results obtained by applying the four algorithms to the 

nucleosome positioning data for dimension d =10, 20, 50, 101, 201, 501, 1,001 and 

2,001 and for number of clusters k = 10, 20, and 30. I set these values for k because 

nucleosome positioning signal vectors can be categorized into 10–30 groups with 

biologically meaningful characteristics [54]. I computed the average elapsed time by 

performing 10 trials with the exception of five trials where d =1,001 and 2,001. Figs. 

2A, 2B, 2C show the BoostKCP (boundA) acceleration rates compared with those of 

the Lloyd’s, Elkan’s, and Hamerly’s algorithms. BoostKCP (boundA) clearly 

outperformed Lloyd’s and Hamerly’s algorithms for all parameter value combinations, 

and it was also faster than Elkan’s algorithm. 

 

It has been reported that Hamerly’s algorithm is often faster than Elkan’s algorithm for 

various low-dimensional (d < 50) data using the Euclidean distance [73], [74]; however, 

Hamerly’s algorithm did not work as well for nucleosome positioning data using the 

standardized Euclidean distance (Figs. 2A, 2B, 2C). I remark here that the standardized 

Euclidean distance between two points is likely to be much smaller than the Euclidean 

distance between the two points, implying that the points are densely distributed in 

standardized Euclidean space. When handling more densely distributed points, greater 

care has to be taken for pruning unnecessary computation. In each iteration, Elkan’s 

algorithm carefully maintains the lower and upper bounds for the distance between each 
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point and each centroid, while Hamerly’s algorithm considers the closest and second 

closest centroids only. For pruning unnecessary computation, put another way, Elkan’s 

algorithm requires more time and space to estimate tighter bounds than does Hamerly’s 

algorithm, allowing the former to be more effective in removing unnecessary 

computation than the latter. 

 

Figs. 2D, 2E, and 2F display the average elapsed time when using each combination of 

d and k values; however, there is insufficient information as to how these times differed, 

since the elapsed time in each trial largely depended on the selection of the initial k 

vectors. To understand this further, I investigated how the elapsed time in each trial 

changed depending on the number of iterations when I applied BoostKCP (boundA), 

Elkan’s, and Lloyd’s algorithms to the nucleosome positioning signal data of dimension 

d = 501 for k = 10, 20, and 30. I did not consider Hamerly’s algorithm because its 

performance was similar to that of Lloyd. Fig. 3A shows that how elapsed time of 

individual algorithm changes for ten different initial sets of centroids. The figure shows 

that the elapsed time of each algorithm increased in proportion to the number of 

iterations. A major difference between the three algorithms was that the elapsed time of 

Elkan’s and Lloyd’s algorithms increased for larger values of k, but that of my pruning 

method was almost independent of k, which explains why the acceleration rate increased 

for larger values of k, as seen in Fig. 2. 

 

To gain a better understanding of this, Fig. 3B presents an in-depth analysis, showing 

the elapsed time in each iteration of the three algorithms. Each iteration time for Lloyd’s 

algorithm is almost constant because the algorithm does not avoid unnecessary 

computation, while each iteration time for BoostKCP (boundA) and Elkan’s algorithm 
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for k = 10, 20, and 30 decreased markedly after the first few steps. In later steps, the 

elapsed time of BoostKCP (boundA) became almost independent of the value of k, 

giving the account that its overall elapsed time was almost proportional to the number 

of iterations but independent of k, as shown in Fig. 3A. In contrast, the elapsed time of 

Elkan’s algorithm in each iteration increased for larger values of k. This is because in 

each iteration, Elkan’s algorithm maintains a large array of lower and upper bounds for 

the distance between each ~56K points and each k centroid at an expense. In contrast, 

BoostKCP (boundA) needs to calculate only the lower and upper bounds for each k 

centroid (Table 1). 

  



34 

 

 

 

  

0

5

10

15

20

25

30

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Hamerly

Elkan

BoostKCP

0

5

10

15

20

25

30

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Hamerly

Elkan

BoostKCP

0

5

10

15

20

25

10 20 50 101 201 501 10012001

ac
ce

le
ra

ti
o

n
 r

at
e

data dimension d

Lloyd

Hamerly

Elkan

BoostKCP

Fig. 2.  

Performance improvement by BoostKCP 

(boundA) using nucleosome positioning data of 

dimension d = 10, 20, 50, 101, 201, 501, 1,001, 

and 2,001. 

(A-C) Acceleration rates by BoostKCP (boundA) 

for each of Lloyd’s, Hamerly’s, and Elkan’s 

algorithms. The lines for BoostKCP(boundA) 

show the constant rate of 1, the elapsed time for 

BoostKCP (boundA) divided by itself. 

Nucleosome positioning data were grouped into 

k clusters where k = 10 (A), 20 (B), and 30 (C). 

To make the comparison fair, I supplied all the 

algorithms with the same set of initial centroids 

that I generated using Bradley and Fayyad’s 

method. 

(D-F) The average elapsed time of BoostKCP 

(boundA), Lloyd’s, Hamerly’s, and Elkan’s 

algorithms. 

A  k =10 

 

B  k =20 

 

C  k =30 
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Fig. 3.  

In-depth performance analysis on k-means clustering of nucleosome positioning data. 

(A) Analysis of clustering nucleosome positioning data of dimension d = 501 by BoostKCP 

(boundA), Elkan’s and Lloyd’s algorithms. Hamerly’s algorithm was not considered because 

Lloyd’s and Hamerly’s algorithms performed similarly. A dot represents the number of iterations 

(x-axis) and the elapsed time (seconds) of each experiment of 10 trials for k = 10, 20 and 30.  

(B) Elapsed time of each iteration (including the assigning and updating steps) in typical trials. 

A 

 

B 

 

nucleosome positioning data (d = 501) 
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I then applied the three algorithms to the gene expression data, a set of 54613 vectors of 

dimension d = 180. Because the dimension was fixed, I grouped the data into k (= 2, 3, 

10, 20, 30, 40, 50, 60, 70) clusters of genes to determine if BoostKCP (boundA) 

achieved better performance with larger values of k. Fig. 4 shows the average elapsed 

time for ten trials and the acceleration rate of BoostKCP (boundA). The three algorithms 

used Bradley and Fayyad’s method to generate the same set of initial centroids. 

BoostKCP (boundA) outperformed Elkan’s and Lloyd’s algorithms for each k except 

for the case that the acceleration rate by BoostKCP (boundA) for Elkan’s algorithm was 

1.54 when k = 2. The acceleration rates were 1.66, 1.79, and 2.22 when k = 3, 10, and 

20, respectively. The acceleration rate increased for larger values of k, which was 

consistent with the performance improvement that I observed for the nucleosome 

positioning data in Fig. 2.  
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Fig. 4.  

Performance improvement by BoostKCP (boundA) using gene expression data of dimension d = 

180 to group the data into k (=2, 3, 10, 20, 30, . . ., 70) clusters.  

(A) Acceleration rates by BoostKCP (boundA) for each of Elkan’s and Lloyd’s algorithms. 

(B) Average elapsed time of 10 trials. 

Data dimension d = 180, Number of data n = 54,613 

A 

 

B 
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I also applied BoostKCP (boundA) and Elkan’s algorithm to a data set of handwritten 

letters (d = 784) to obtain 78 (= k) groups. The average acceleration rate of the 10 trials 

was high (4.76 – 8.16) presumably because the number of clusters was large. Fig. 5 

shows the elapsed time, acceleration rate, and number of iterations for each of the ten 

trials. The iteration numbers are likely to be smaller than those in Fig. 3A because the 

images of the handwritten letters are grouped inherently. In general, the number of 

iterations depends on individual data, and it tends to be smaller when the focal data have 

inherently discriminating groups of similar vectors that are relatively easier to 

categorize. In contrast, randomly generated data avoid this data skewness; thus, the 

algorithms spend more time searching for centroids. 
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Fig. 5.  

The elapsed time, acceleration rate, and number of iterations of each of ten attempts to cluster 

handwritten letter images of dimension 784 (=d) into 78 (=k) groups using BoostKCP (boundA) 

and Elkan’s algorithm. 
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I have so far examined situations when the number of clusters (k) ranges from two to 78 

simply because these numbers of groups are of interest in real biological applications. I 

here investigate whether BoostKCP (boundA) outperforms Elkan’s and Lloyd’s 

algorithms for larger values of k, such as k = 100 and 500. Indeed, Fig. 6 illustrates that 

BoostKCP (boundA) was the winner when the three algorithms were used to cluster the 

nucleosome positioning data of dimension d = 10, 20, 50, 101, and 201 into k = 100 and 

500 groups.  
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Fig. 6.  

Performance improvement by BoostKCP (boundA) using nucleosome positioning data of 

dimension d = 10, 20, 50, 101, and 201 to group the data into k = 100 and 500 clusters. (A,C) 

Acceleration rates by BoostKCP (boundA) for each of Elkan’s and Lloyd’s algorithms when k = 

100 (A) and k = 500 (C). (B,D) Average elapsed time of ten trials for BoostKCP (boundA), Elkan’s, 

and Lloyd’s algorithms when k = 100 (B) and k = 500 (D). 

A  k =100 

 

B  k =100 

 

C  k =500 

 

D  k =500 
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Conclusions and Discussion 

 

High-dimensional data, such as epigenome data, nucleosome positioning, and gene 

expression patterns, are quite common in biological research. K-means clustering using 

the Pearson correlation and standardized Euclidean distances has proven useful for 

obtaining novel insight from such large-scale biological data sets; however, it is likely 

to be a computationally intense task, thus demanding a method for accelerating 

computational performance for high-dimensional biological data. I have addressed the 

problem of eliminating unnecessary calculations associated with the k-means clustering 

algorithm. In this chapter, I introduced BoostKCP, a simple but powerful heuristic 

method that has proved useful for reducing the computational time. I applied BoostKCP 

to nucleosome positioning signal data sets and other two types of real biological data 

sets of dimension d = 10, 20, 50, 101, 180, 201, 501, 784, 1,001 and 2,001 to perform 

k-clustering for k = 2, 3, 10, 20, 30, 40, 50, 60, 70, 78, 100, and 500. BoostKCP 

outperformed Elkan’s, Lloyd’s, and Hamerly’s algorithms in most cases. My concept is 

also applicable to k-medians clustering, which uses the median of points in a cluster as 

the cluster representative, and this method is applied frequently to generate tight clusters. 
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Chapter 2 

 

 

A linear time algorithm for detecting long genomic regions enriched 

with a specific combination of epigenetic states 
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Introduction 

This chapter is a modified version of my paper “A linear time algorithm for detecting 

long genomic regions enriched with a specific combination of epigenetic states” [81]. 

 

Epigenetic modifications have been shown to play a vital role in regulating gene 

expression. Recent genome-wide studies have revealed that in vertebrates, although 

most CpG sites in DNA sequences are highly methylated, hypomethylated CpG islands 

proximal to genes are involved in regulating gene expression [82]. Specifically, 

hypermethylated CpG islands in promoter regions are relevant to gene silencing, while 

hypomethylated CpG islands are in an active or permissive state for transcription [83]. 

In addition to cytosine methylation of CpG sites, some histone modifications around 

promoter regions also are known to affect the regulation of gene expression [84], [85]. 

 

It was found recently that long hypomethylated regions enriched with H3K27me3 were 

likely to overlap with regions encoding key genes essential for cell development and 

differentiation in human embryonic stem cells [86], mouse hematopoietic stem cells 

[87], early Xenopus tropicalis embryos demonstrates [88], and medaka fish blastula 

(half-day) embryos [25]. Although many hypomethylated domains (HMD) are 

subjected to modification of the active histone mark H3K4me2 that promotes gene 

expression [89]–[92], it is remarkable that ~300 HMDs of length >4 kb rarely have 

H3K4me2 histone marks but have repressive H3K27me3 histone marks, and are found 

in association mostly with developmental genes [25]. Promoters in HMD with 

H3K27me3 marks (called, “K27HMD”) are in a ‘poised’ state, in which the genes are 

not simply silenced but are ready for activation immediately during cell differentiation, 

which is important for sustaining the pluripotency of pluripotent cells [23], [24]. Figure 
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7 shows four examples of long K27HMD regions that include developmental genes such 

as cbx4, cbx8, hoxa genes, six2, hnf6, and zic1/4. 

 

Thus, there has been considerable interest in long K27HMD regions with biologically 

important characteristics. However, computational methods for detecting long 

K27HMD regions are still heuristic and ad hoc, emphasizing the need to develop an 

effective algorithm from a profound background in computation theory. For example, 

to identify K27HMD, Nakamura et al. proposed a heuristic method that used certain ad 

hoc parameter settings to define hypomethylated regions and H3K27me3 peak detection 

[25]. The method is not guaranteed to output K27HMD regions longer than a given 

threshold, and it often generates regions of differing lengths. ChromHMM [42] is a 

statistical method that classifies epigenetic modifications into classes of combinations 

and divides a DNA sequence into sub-regions such that each sub-region has a uniform 

combination of epigenetic states while neighboring sub-regions have distinct 

characteristics. ChromHMM has been used successfully to partition regions 

surrounding genes into active/inactive promoters, exons, and introns by analyzing 

epigenetic codes. Although ChromHMM can be used for K27HMD detection by setting 

its parameters to find regions that are hypomethylated and marked by H3K27me3, 

ChromHMM often generates many short regions and thus is not suitable for detecting 

large K27HMD regions. Overall, these previous methods have simply not been designed 

to output regions of lengths greater than or equal to a given minimum threshold. 

 

To address this problem, I propose a linear time algorithm for calculating a set of non-

overlapping regions such that the set maximizes the score of focal combinations of 

epigenetic modifications (e.g., K27HMD) and the length of each region is greater than 
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or equal to a given minimum threshold (e.g., 4 kb). I define the score of a focal 

combination of epigenetic modifications at each DNA position as the similarity between 

the vector of focal epigenetic states and the vector of raw epigenetic states at the position. 

I then define the similarity score of a set of regions as the sum of similarity scores of all 

positions in the set. This method solves several issues in previous heuristic methods 

because it allows us to set a minimum region length for detecting ‘long’ regions of 

biological importance and guarantees the output of an optimal set of long regions that 

maximizes an objective function. 

 

I implemented the algorithm. I call the program CSMinfinder (Chromatin State with 

minimum length finder). With CSMinfinder, I identified large K27HMD regions in the 

medaka and human genomes [25], [93], [94] that overlapped many developmental genes. 

CSMinfinder can be applied to epigenetic data from other vertebrates for understanding 

cell development and differentiation. 

 

CSMinfinder runs in time proportional to the size of the genome, and it can process 

vertebrate genomes in feasible amounts of time. Although I applied CSMinfinder 

specifically to K27HMD, it can be used for the detection of regions with other types of 

epigenetic combinations by defining the vector of focal epigenetic states appropriately. 
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Fig. 7. Examples of long K27HMD regions in the medaka genome 

Examples of K27HMD regions enclosed in dashed boxes. Each screen capture shows an image in 

a medaka genome browser that displays tracks of gene structures, CpG methylation levels observed 

by bisulfite sequencing, and levels of H3K27me3 and H3K4me2 in blastula cells (half-day 

embryos). A. A K27HMD region of length ~4 kbp with cbx4, and a ~8 kbp region with cbx8. B. A 

large region of length ~90 kbp with hoxa genes. C. A ~6 kbp region with six2, and a ~14 kbp region 

with hnf6. D. A ~20 kbp region with zic1 and zic4. 
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Methods 

 

To detect long regions of focal epigenetic states, I formulated this as a problem of 

finding an optimal set of disjoint (non-overlapping) regions in a sequence that 

maximizes the sum of similarity scores in all regions. My method calculates a similarity 

score between a vector of epigenetic modifications at each position and the feature 

vector of a focal epigenetic state, such as K27HMD, and outputs the set of regions with 

the highest sum of similarity scores. 

 

Calculating a similarity vector 

I need to generate a modification vector at each position from epigenomic signal data. 

For example, to create benchmark datasets in this study, I binarized the modification 

signal level at each position using BinarizeSignal in ChromHMM [42], which classified 

the signal at each position into 0 or 1 according to a Poisson background model. 

Subsequently, I defined a modification vector as the vector with binary scores of 

modifications at each position. 

 

Definition 1. Let 𝑤1, 𝑤2 … , 𝑤𝑛 be non-overlapping windows of the same length (e.g., 

200 bp in this study) in a DNA sequence. Let 𝑠𝑖
1, … , 𝑠𝑖

𝑘 be binary or real-valued signals 

of 𝑘 modifications in window 𝑖. The modification vector of 𝑤𝑖 is defined as 𝑀𝑖 =

(𝑠𝑖
1, … , 𝑠𝑖

𝑘) . Let 𝐹  denote the feature vector of a focal modification pattern with 𝑘 

elements. The similarity score of 𝑀𝑖 and 𝐹 is defined as their inner product minus a 

given threshold 𝜏. 
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Example. Suppose that 𝑘 =  3 , 𝜏 =  1.3 , 𝐹 =  (1,1,0) , 𝑀1 = (1,1,0) , 𝑀2 =

(1,0,1) and 𝑀3 = (0,0,1). Similarity scores of 𝐹 and 𝑀𝑖 are 0.7, −0.3, and −1.3 

for 𝑖 =  1, 2, 3. 

 

When the inner product of 𝑀𝑖 and 𝐹 is positive for all 𝑖 = 1, … , 𝑛, the optimal set of 

regions that maximizes the sum of similarity scores in the regions becomes the entire 

region, [1, 𝑛], which may not be informative. If we want to select a set of regions whose 

modification vectors are closer to the feature vector 𝐹, we can set the threshold 𝜏 to 

an appropriate positive value to yield a negative similarity score for the inner product 

that is lower than 𝜏 . Positions with negative similarity scores are less likely to be 

included in the optimal set of regions. A higher threshold is likely to divide the entire 

genome into smaller regions with a higher precision, while a lower threshold yields an 

opposite trend. In this manner, for a series of windows 𝑤1, 𝑤2 … , 𝑤𝑛  in a DNA 

sequence, we generate a series of similarity scores. 

 

Detecting an optimal set of disjoint regions 

To detect regions of focal epigenetic states such as K27HMD, I present an algorithm for 

calculating an optimal set of disjoint regions in a sequence that maximizes the sum of 

similarity scores for all regions. In addition, to identify sufficiently long regions, I define 

a minimum length threshold of regions such that each region is longer than or equal to 

the minimum length. The problem can be defined as follows. 
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Definition 2. Let L ={𝐿𝑖  | 𝑖 = 1,2, … , 𝑛} be a series of real valued weights 𝐿𝑖 (e.g., 

similarity scores). Let C be a series of non-overlapping regions 𝐼𝑗  (𝑗 = 1, … 𝑘) of L 

such that the length of each 𝐼𝑗 is greater than or equal to a given minimum threshold 

𝑚1 , and the length of the interval between 𝐼𝑗−1 and 𝐼𝑗   is greater than or equal to 

another given minimum threshold 𝑚0 . That is, C is a series of regions of the form 

{[𝑎1, 𝑏1], ⋯ [𝑎𝑘 , 𝑏𝑘]} (1 ≤ 𝑎1 < 𝑏1 < 𝑎2 < 𝑏2 ⋯ < 𝑎𝑘 < 𝑏𝑘 ≤ n) such that  

1.  𝑎𝑡 + 𝑚1 − 1 ≤ 𝑏𝑡 for 𝑡 = 1, … , 𝑘 (the minimum length constraint on regions), 

2.  𝑏𝑡−1 + 𝑚0 < 𝑎𝑡   for 𝑡 = 2, … , 𝑘  (the minimum length constraint on intervals 

between regions), and 

3. 𝑎1 = 1  or 𝑎1 > 𝑚0  (the first region start at position 1 or at position 

larger than 𝑚0). 

 

Readers may find the last condition strange because it appears to disallow the situation 

that the first region starts at position 𝑎1 ≤ 𝑚0 . I used the condition to simplify the 

presentation of my linear-time algorithm, which is described later. To obtain such an 

optimal series of regions that the first region starts at 𝑎1 ≤ 𝑚0, for example, you can 

temporarily add 𝑚0 negative weights in front of L, calculate the optimal series, and 

restore the coordinate.  
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To calculate a C that maximizes the sum of weights in C, ∑ 𝐿𝑖𝑖∈𝐼∈𝐶 , I used a dynamic 

programming algorithm developed by Csurös [95]. Here, I outline the algorithm.  

 

Definition 3. I assume that all series meet the conditions given in Definition 2. Let 

𝑤(𝐶) denote the sum of weights in 𝐶, ∑ 𝐿𝑖𝑖∈𝐼∈𝐶 . I consider two cases: that in which 

the last region of 𝐶 ends at 𝑖 and that in which it does not. When the last region does 

not end at 𝑖, let 𝐶𝑖,𝑚
0  denote a series of regions that maximizes 𝑤(𝐶) among all series, 

such that the last region ends at position 𝑏𝑘 ≤ 𝑖 − 𝑚 , where 𝑚 ≥ 1 . When the last 

region ends at 𝑖, let 𝐶𝑖,𝑚
1  denote a series of regions that maximizes 𝑤(𝐶) among all 

series, such that the last region is of length ≥ 𝑚 (≥ 1); specifically, 𝑎𝑘 + 𝑚 − 1 ≤

𝑖 (= 𝑏𝑘).  

 

Example. When 𝑖 =  12, and 𝐿 =  (1, 1, −3, 1, 1, −3, 1, 1, 1, 1, −2, 1), we have 

𝐶12,1
0 = {[1,2], [4, 5], [7,10]}, 𝐶12,4

0 = {[1,2], [4,5], [7,8]}, 

𝐶12,7
1  = {[1,2], [4,12]}, 𝐶12,12

1  = {[1,12]} . 

 

According to this definition, C maximizing 𝑤(𝐶)  is either 𝐶𝑛,1
0   or 𝐶𝑛,𝑚1

1  . For 

calculating these two series, I define here 𝑤(𝐶𝑖,𝑚
0 ) and 𝑤(𝐶𝑖,𝑚

1 ) recursively for 𝑖 =

1, … , 𝑛 and 𝑚 ≥ 1. 
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Definition 4. I define the following four types of weight sums, 𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑖)  𝑊𝑙𝑜𝑛𝑔

0 (𝑖)  

𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖) , and 𝑊𝑙𝑜𝑛𝑔

1 (𝑖) , depending on whether the last region ends at 𝑖  or not 

(denoted as 1 or 0, respectively) and whether the minimum length constraint is satisfied 

or not (denoted as long or short, respectively): 

𝑊𝑠ℎ𝑜𝑟𝑡
0 (1) = 0, 𝑊𝑠ℎ𝑜𝑟𝑡

1 (1) = 𝐿1,  

𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑖) =  𝑤(𝐶𝑖,1

0 )  𝑊𝑙𝑜𝑛𝑔
0 (𝑖) =  𝑤(𝐶𝑖,𝑚0

0 )   

𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖) =  𝑤(𝐶𝑖,1

1 )  𝑊𝑙𝑜𝑛𝑔
1 (𝑖) =  𝑤(𝐶𝑖,𝑚1

1 )  

 

Csurös showed that these four types of weight sums can be calculated recursively as 

follows [95]: 

𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑖) = 𝑚𝑎𝑥 {𝑊𝑠ℎ𝑜𝑟𝑡

0 (𝑖 − 1), 𝑊𝑙𝑜𝑛𝑔
1 (𝑖 − 1)} for 𝑖 ∈ [2, 𝑛] 

𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖) = 𝐿𝑖 + 𝑚𝑎𝑥 {𝑊𝑙𝑜𝑛𝑔

0 (𝑖 − 1), 𝑊𝑠ℎ𝑜𝑟𝑡
1 (𝑖 − 1)} for 𝑖 ∈ [2, 𝑛] 

𝑊𝑙𝑜𝑛𝑔
0 (𝑖) = 𝑊𝑠ℎ𝑜𝑟𝑡

0 (𝑖 − 𝑚0 + 1) for 𝑖 ∈ [𝑚0, 𝑛] 

𝑊𝑙𝑜𝑛𝑔
1 (𝑖) = 𝑊𝑠ℎ𝑜𝑟𝑡

1 (𝑖 − 𝑚1 + 1) + ∑ 𝐿𝑗
𝑖
𝑗=𝑖−𝑚1+2  for 𝑖 ∈ [𝑚1, 𝑛] 

 

Recall that C maximizing 𝑤(𝐶) is either 𝐶𝑛,1
0  or 𝐶𝑛,𝑚1

1 . From 𝑊𝑙𝑜𝑛𝑔
1 (𝑛), I can build 

the series of regions, 𝐶𝑛,𝑚1

1  , by tracing back the process of calculating 𝑊𝑙𝑜𝑛𝑔
1 (𝑛) . 

Similarly, from 𝑊𝑠ℎ𝑜𝑟𝑡
0 (𝑛), I can obtain 𝐶𝑛,1

0 .  

 

I implemented the above idea. I call the program CSMinfinder. 
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Results 

 

Data sets 

To compare CSMinfinder with other available methods for detecting large K27HMD, I 

used real biological datasets from the medaka-fish and human genomes, each of which 

was a set of vectors of DNA methylation levels at CpG sites, determined by bisulfite 

sequencing, and H3K4me2 and H3K27me3 histone modification Chip-seq data [25]. I 

set the window size to 200 bp, normalized the data using a Poisson distribution model, 

and set the binarized score of a window to 1 if its probability was < 0.0001 and to 0 

otherwise. 

 

Detecting large K27HMD in medaka epigenomic data 

I compared CSMinfinder with ChromHMM [42] and Nakamura’s method [25].  

 Using ChromHMM, I estimated six chromatin states and divided the given DNA 

sequence into these six states. Specifically, ChromHMM asks users to input the 

number of epigenetic states beforehand. Thus, I started with inputting a small 

number into ChromHMM, increased the number gradually one by one until I found 

a state similar to K27HMD, hypo-methylated DNA modification and H3K27me3 

histone modification, and called the number sufficient. Inputting a value larger than 

the sufficient number into ChromHMM did not make much sense because it just 

output a state similar to K27HMD. The sufficient number was six. Among the six 

states, one represented hypomethylated DNA modifications and the H3K27me3 

histone modification. I therefore treated the state as K27HMD.  

 Nakamura’s method detects a hypomethylated domain on a DNA sequence that has 

more than nine contiguous CpG sites with low methylation (methylation level <0.4) 
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and no more than four contiguous highly methylated CpG sites. Parameters are 

selected heuristically. A hypomethylated domain is treated as a K27HMD if it 

contains H3K27me3 peaks detected by QuEST [96], such that each peak is more 

than three times larger than the average.  

 In CSMinfinder, I used two types of minimum length thresholds, 4 kbp and 8 kbp, 

to evaluate the effect of this constraint. I set the minimum length of any interval 

between regions to 600 bp. 

 

Comparing the performance in detection of large K27HMD around genes in the 

medaka genome 

Large K27HMD regions of length >4 kbp suppress the expression of many 

developmental genes [25]. Thus, I verified the effectiveness of CSMinfinder for 

detecting large K27HMD regions surrounding genes in the medaka genome. 

Nakamura’s method could detect 246 large K27HMD regions containing the promoter 

regions of developmental genes (e.g., hox clusters) that were relevant to transcriptional 

regulation and the developmental process. CSMinfinder detected 911 K27HMD regions, 

and of these, 386 regions contained promoter regions of >4 kbp in size and contained 

242 of the 246 regions identified using Nakamura’s method. Indeed, CSMinfinder’s 

regions covered 91% of bases in the entire regions detected by Nakamura’s method. 

Specifically, although the exact boundaries of individual regions estimated by the two 

methods were unlikely to be consistent, these regions largely overlapped each other. 

These results demonstrate the high concordance between CSMinfinder and Nakamura’s 

methods as well as the ability of CSMinfinder to identify more K27HMD regions than 

did Nakamura’s method. 
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I assessed the quality of each K27HMD region in terms of their low average DNA 

methylation level because this property is considered to be essential in maintaining the 

suppression of developmental gene expression in embryonic cells [25]. Indeed, Figure 

8 shows the tendency of the average methylation level in the vertical axis to become 

lower for a longer K27HMD region, the length of which is displayed in the horizontal 

axis. This trend was also observed with all three methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. - Lengths and average methylation levels of K27HMD regions in the 

medaka genome 

Each dot represents a region that is identified by CSMinfinder, ChromHMM, and Nakamura’s 

method in the medaka genome. The x-axis shows the length of a K27HMD region and the y-axis 

presents the average methylation level of the region. 
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I then compared the performance of the three methods by examining the length 

distributions of K27HMD regions in the medaka genome. Figure 9A shows the length 

distributions of large K27HMD regions (>4 kb in size) estimated by each of the three 

methods. Setting the minimum length threshold to 4 kbp in CSMinfinder detected more 

regions of length > 6 kbp but fewer regions of length > 7 kbp compared with 

Nakamura’s method. CSMinfinder can output longer regions by setting the minimum 

length threshold to a higher value. For example, setting the minimum length to 8 kbp, 

CSMinfinder found more regions than did Nakamura’s method (Figure 9C). 

 

Analysis of large K27HMD regions in human epigenomic data 

I also compared CSMinfinder with the other two for processing human epigenomic data. 

For ChromHMM, I calculated the sufficient number for the human data according to the 

procedure described before, and I classified epigenetic modification data into seven 

states rather than six so as to identify a state similar to K27HMD. The sufficient numbers 

of epigenetic states in the human and medaka data differed due to the difference in data 

quality. The sufficient number in the medaka data was smaller than that in the human 

data presumably because epigenetic state signals in the medaka data were clearer. 

 

In CSMinfinder, I set the minimum length threshold to 8 kbp and the interval between 

regions to 600 bp. I also searched an ideal value of threshold τ by repeated trials to 

detect large continual regions, and I set τ to 1.4 and 1.6 in the respective medaka and 

human data. 
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Fig. 9. Length distribution of large K27HMD regions in the medaka genome  

Comparison between CSMinfinder (minimum length threshold of 4 kbp), ChromHMM, and 

Nakamura’s method. The x-axis shows the minimum length of K27HMD regions, and the y-axis 

shows the accumulated number of K27HMD regions longer than or equal to the threshold in the 

x-axis. Because of the space limitations, the histogram is divided into two sub-histograms A 

(threshold is < 10 kbp) and B (threshold > 11 kbp). C. In this case, I set the minimum threshold to 

8 kbp using CSMinfinder. 

 

A 

 

B 

 

C 

 



56 

 

Because the human genome is longer than the medaka genome, I focused on large 

K27HMD regions of length > 8 kbp. Nakamura’s method detected 314 regions, and 

CSMinfinder identified 542 regions, including 291 of those found using Nakamura’s 

method. Again, there was high concordance between the results obtained by the two 

methods. Figure 10 shows examples of large K27HMD regions detected around 

developmental genes. Although CSMinfinder and Nakamura’s method yielded slightly 

different regions with distinct boundaries in the output, each created regions of similar 

sizes. In contrast, ChromHMM yielded shorter regions than the other two did. 

Specifically, I compared the length distribution of large K27HMDregions estimated by 

each of the three methods (Figure 11). I found that CSMinfinder and Nakamura’s 

method were comparable. Precisely, although the number of extremely large regions 

longer than 12 kbp is slightly smaller than the number found by Nakamura’s method, 

CSMinfinder could detect similar numbers of large regions between 8 kbp to 12 kbp. 

Later I will discuss the reason why ChromHMM were inferior to the other two methods. 
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Fig. 10. Examples of large K27HMD regions around developmental genes in the 

human genome. 

A. The figure displays large K27HMD in the human chromosome 7 around a cluster of hox genes 

that regulate the body plan of the head-tail axis. ChromHMM yielded much smaller K27HMD 

regions as output than did the other two methods. 

B. These several K27HMD on human chromosome 11 were located around pax6, a gene that 

regulates eye and brain development. CSMinfinder and Nakamura’s method detected large 

K27HMD regions of >4 kbp in size and output large regions that largely overlapped; however, 

ChromHMM divided these regions into smaller ones. 
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Fig. 11. - Length distribution of large K27HMD regions in the human genome. 

Comparison between CSMinfinder (minimum length threshold of 8 kbp), ChromHMM, and 

Nakamura’s method. The x-axis shows the minimum K27HMD region length threshold, and the y-

axis shows the accumulated number of K27HMD regions longer than or equal to the threshold on 

the x-axis. 
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Computational performance and software availability 

I observed the computational performance of CSMinfinder using Intel Xeon CPU E5-

2670 processor with a clock rate of 2.60 GHz and 66GB of main memory. The 

computation time to calculate the optimal series of regions was negligible. Figure 12 

shows that the average elapsed time was less than 2 seconds when I processed the 

epigenetic data of any of human and medaka chromosomes. Furthermore, Figure 12 also 

illustrates that the elapsed time is almost proportional to the size of each chromosome, 

thereby confirming experimentally that the worst-case time complexity of the algorithm 

is linear in the input size. CSMinfinder does not consume a large amount of main 

memory. CSMinfinder is made available at the following site: 

URL: http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/Segmentation/  
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Fig. 12. - Average elapsed time of processing human (A) and medaka (B) 

chromosomes ten times by using CSMinfinder 

The minimum threshold is set to 8 kbp for handing the human genome, and 4 kbp for the medaka 

genome. Each dot represents a chromosome, the x-axis value shows the size of the chromosome, 

and the y-axis value is the average elapsed time. 
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Conclusions and Discussion 

 

In this chapter, I proposed a method that estimates large K27HMD region [25], [86]–

[88], [92] by calculating the similarity between the vector of focal epigenetic states and 

that of raw epigenetic states at each DNA position. The advantage of this algorithm 

(CSMinfinder) is the output of an optimal series of regions while allowing us to set the 

minimum length threshold on individual regions. I estimated large K27HMD in the 

medaka and human genomes and verified that CSMinfinder was comparable to 

Nakamura’s heuristic method [25] designed to detect K27HMD and was advantageous 

over ChromHMM in terms of the lengths of K27HMD regions. 

 

For the medaka genomic data, ChromHMM performed well and could detect as many 

long regions as CSMinfinder did; however, for the human genomic data, ChromHMM 

found a smaller number of large K27HMD regions of length > 8 kbp than the other two 

methods did. This was likely due to the differences in characteristics between the 

medaka and human genomic data. In the medaka genome, the data were collected from 

an inbred stain in which the genomic differences between the two alleles were quite 

small. Thus, methylation levels were bimodal and were clearly divided into two states, 

hypomethylated and hypermethylated, making it relatively easy to identify blocks of 

hypomethylated domains. In the human genome, however, the majority of methylation 

levels were poised because the human genome is diploid intrinsically and allele-specific 

methylation is prevalent, making it more difficult to detect clear boundaries between 

hypermethylated and hypomethylated domains. Although many DNA methylation 

levels are ambiguous in the human genome, ChromHMM attempts to assign one state 

to each position. Positions with vague DNA methylation levels are assigned only a 
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single state by ChromHMM. Thus, ChromHMM is likely to output too many short 

regions. 

 

One advantage of CSMinfinder is that we can set the minimum region length for specific 

purposes. For example, in the medaka genome, using an 8-kbp minimum length 

threshold merged some of the shorter regions that were generated using a 4-kbp 

minimum threshold into a longer continuous region. Thus, we could obtain longer 

regions using a higher minimum length threshold. Similarly, we can also adjust the 

minimum threshold for defining similarity scores between modification vectors and the 

feature vector for a variety of purposes. Setting the minimum threshold to a lower value 

generates more regions that are less similar to the feature vector of interest. Having more 

than one series of regions that may overlap can be informative. We can therefore tune 

CSMinfinder easily to meet various demands.  

 

In this chapter, I demonstrated the advantages of my algorithm by detecting large 

K27HMD regions that have attracted much interest because of their importance in 

characterizing the behavior of developmental genes and confirmed the performance of 

my algorithm. CSMinfinder is not limited to the identification of large K27HMD 

regions but can be used for the detection of other large DNA regions that have different 

types of epigenetic state combinations associated with regulating gene functions. 
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Chapter 3 

 

 

De novo assembly of medaka fish genome using SMRT sequencing 

and construction of chromosome map using Hi-C data 
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Introduction 

This chapter is based on the paper “Centromere evolution and CpG methylation during 

vertebrate speciation,” in which I am the first author [97]. 

 

The medaka, Japanese killifish (Oryzias latipes) is freshwater fish distributed in East 

Asia including Japan. Medaka has many useful characters for model organism such as 

small size of whole genome sequence (~800Mb), short generation time and easiness to 

breeding, and thought to valuable for elucidating fish genome as zebrafish [98], [99]. 

Especially, some medaka inbred strains which can mate and produce healthy offspring 

under laboratory conditions established in medaka. Two medaka inbred strains HNI 

which is a medaka inbred strain from local subpopulations in north Japan, and Hd-rR 

from south japan are estimated to be diverged in ~18 million years ago (MYA) [100]. 

About 16 million SNP are discovered between Hd-rR and HNI, and it account for 3.4% 

of whole DNA sequence [100]–[102]. In spite of the higher mutation rate, Hd-rR and 

HIN can produce healthy offspring . These inbred strains are thought to be in the middle 

of speciation and research of structure variants between inbred strains are valuable for 

resolving mechanism of evolution and differentiation [103]. Sequencing whole medaka 

genome have been attempted more than ten years ago, and version 1 of the medaka 

reference genome from Hd-rR inbred strain using Sanger sequencer was reported in 

2007 [104].  

 

Past researches using chromatin information in medaka genome have revealed new 

findings in epigenetics. In human it was known that SNP rate around methylated CpG 

site is significantly higher than other regions. However, genetic variation between 

human reference genomes is not sufficiently high to analyze the relation between 
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methylation and genetic variation. Using high mutation rate between Hd-rR and HNI, 

W. Qu et al. showed that SNP rate around methylated CpG site is also high and “CGCG” 

motif possibly related to the regulation of hypomethylation [93]. Nucleosome 

positioning around promoter regions was researched and typical patterns in 

hypomethylated domains and short DNA motif which regulate nucleosome positioning 

pattern was discovered [105]. Estimation of nucleosome positioning using DNA 

sequence was worked well in yeast genome [106], [107], however in vertebrate 

sequence preference of nucleosome could not be determined. Around methylated 

transcription starting site DNase I signal have periodical pattern in 180bp interval, in 

contrast in hypomethylated domains nucleosome positioning around TSS have 200bp 

interval in medaka genome[105]. It was also revealed that in hypomethylated linker 

DNA specific 6-mer sequence exist in significantly high probability. The research of 

long hypomethylated domains with H3K27me3 marks at developmental promoter 

showed that poised state by epigenetic modifications have an important role in cell 

development and differentiation [25]. 

 

As stated above analysis of chromatin conformation in medaka genome is thought to be 

led to novel finding in epigenetics. However, in version 1 of the medaka genome 

contained low-quality regions and 97,933 sequence gaps [104], particularly assembly 

around centromere regions which contain abundant tandem repeat sequence was 

difficult by short reads in sanger sequencing. Centromere is the region of a chromosome 

where combined with spindle fiber in cell division, and have an important role in 

chromosome separation. In centromere region-specific proteins such as CENP-A are 

accumulated and construct heterochromatin [108]. Mechanism of regulating 

composition in centromere was not perfectly elucidated. In yeast specific base sequence 



65 

 

locate in centromere and guide nucleosome positioning [106], [107]. However, in 

vertebrate it was reported that neocentromeres which are regions which haven’t peculiar 

sequence work as centromere [109], and centromere are thought to be controlled by 

epigenetic structures. 

In my research I used single-molecule real-time sequencing and Hi-C data to construct 

new medaka genome containing centromere regions which could not be assembled by 

ver.1 medaka draft genome. 

 

Hi-C is a technology to capture chromatin conformations in genome [110]. In Hi-C 

method genomes are cross-linked by formaldehyde and fragmented by restriction 

enzyme. Fragments are ligated and digested. The resulting DNA fragments are 

sequenced. Hi-C data can detect the chromatin interaction in genome-wide sequence. 

Recent studies in contact genomics show that the information of chromatin contacts can 

be used to determine genomic positions and some applications for genome scaffolding 

by Hi-C data was invented. 

 

In this chapter I constructed medaka genomes of three inbred medaka strains using 

single-molecule real-time sequence technology. I utilized single nucleotide 

polymorphism genetic markers, BAC/fosmid-end pairs to anchor contigs to the 24 

medaka chromosomes. Additionally, I used Hi-C data to locate contigs which contain 

centromeric repeats but hardly to be anchored by other methods. To show the 

comprehensive ness of new draft genome I illustrate some examples, Tol2 elements 

[111], Y-specific regions [112], [113] and large structure variant [114] which could not 

be found in version 1 of the medaka genome [104]. 
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Results 

 

Generating long contigs using SMRT sequencing 

DNA was collected from adult medaka testes of the Hd-rR, HNI, and HSOK strains. A 

SMRT sequencer (PacBio RS II) was used to collect ~13.4, ~14.8, and ~5.5 million 

subreads, with average lengths of 6,519 bp, 3,575 bp, and 10,972 bp, from the Hd-rR, 

HNI, and HSOK strains, respectively. The three datasets are equivalent to coverages of 

~109-, ~66.0-, and ~75.8-fold, assuming a medaka genome size of 800 Mbp. The 

FALCON assembler [115] was used to generate contigs; the respective N50 contig 

lengths were ~2.5, ~1.3, and ~3.5 Mbp. The assembled contigs was polished by Quiver 

[116] and Pilon [117] using Illumina-derived short reads. Then, the new Hd-rR assembly 

was compared with the medaka genome version 1 that was generated by using Sanger 

sequencing technology [104], and the high-level sequence identity (99.8%) was 

confirmed. To assess the large-scale orderings of regions in the contigs, the 19,448 pairs 

of BAC-end Sanger reads was mapped approximately to the identical Hd-rR contigs in 

order. Only 0.3% of BAC-end pairs were inconsistent, confirming that the assembled 

contigs were of high quality. 

 

Chromosome map construction  

I used 2,347 single nucleotide polymorphism (SNP) genetic markers to construct a 

chromosomal map of the Hd-rR strain [104]. Assuming that genetic markers are 

distributed uniformly, a marker would be available every ~341kbp. Some 90% of 

contigs were sufficiently long to bear genetic markers; the respective N90 contig lengths 

of Hd-rR, HNI and HSOK were ~653, ~450, and ~1,102kbp. Thus, I skipped the 
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traditional step of connecting contigs into longer scaffolds, instead attempting to directly 

anchor contigs to the 24 medaka chromosomes using genetic markers (Methods).  

 

Certain contigs failed to be anchored to any chromosomes because they did not contain 

genetic markers. For Hd-rR contig anchoring, I used 48,955 BAC-end pairs and 199,657 

fosmid-end pairs that had earlier been collected [104]. By scaffolding Hd-rR contigs 

connected by multiple BAC/fosmid-end pairs, I was able to anchor additional 23 Hd-rR 

contigs to chromosomes (Methods). A total of 768 BAC-end pairs and 376 fosmid-end 

pairs linked the Hd-rR contigs. This suggests that the gaps between contigs are likely to 

be longer than fosmid clones of median length 37.5kbp, and longer reads would be 

needed to fill such gaps. I used Hi-C data to locate 11 orphan contigs which could not 

be anchored onto chromosomes (Methods). I finalized the draft genomes by inserting a 

1kbp gaps between neighboring contigs; I term these drafts version 2.2.4. In this version, 

the total numbers of bases in the contigs anchored to the Hd-rR, HNI, and HSOK 

chromosomes were ~733.5, ~677, and ~744 Mbp respectively with 491, 717 and 318 

gaps. Thus, the quantity of gaps was dramatically lower than the ~100,000 gaps in the 

previous Sanger-sequence Hd-rR genome assembly.  

 

To demonstrate the comprehensive nature of the current sequences, I examined the 

distributions of Tol2 element insertions. Tol2 is 4682bp in length, and represents an 

example of an early innate autonomous transposon in a vertebrate genome [111]. While 

the previous Sanger-sequence genome assembly had no full Tol2 matches, the new Hd-

rR, HNI and HSOK genomes bore 15, 5, and 16 full matches, respectively, in different 

positions. These occurrences were >99.4% identical to the reference Tol2 sequence, 

implying their horizontal transfer after the divergence of Hd-rR and HNI. Another 
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example is the Y-specific region carrying DMY, the male-determining gene, the first 

non-mammalian equivalent of SRY [112]. DMY had mapped to three scaffolds with gaps 

in the earlier Hd-rR genome (version 1) because of its proximal repetitive elements 

[113], but I obtained a single contig bearing DMY in the version 2.2.4. 

 

Large structural variants between strains 

Comparisons among the contigs of the three inbred strains revealed substantial numbers 

of large SVs including insertions, deletions, duplications, and inversions. The biggest 

SV is a >15-Mbp inversion in chromosome 11 (Fig. 13), which was suggested [114] but 

unclear based on the prior Sanger-sequence genome assembly [104]. In the present study, 

when I anchored contigs onto HNI and HSOK chromosome 11, I identified two pairs of 

contigs that had two sets of distal genetic markers that were separated by ~16Mb while 

I found no such pairs in Hd-rR, indicating that the inversion had occurred in the Hd-rR 

lineage. I determined the inversion breakpoints in focal HNI and HSOK contigs by 

aligning these contigs with the corresponding region of Hd-rR. Contigs surrounding the 

breakpoints of the inversion are associated with their contig identifiers (e.g., 83F and 

481F). In the HNI genome, the two breakpoints are located at 7F and 143F, whereas in 

the Hd-rR genome, one breakpoint lies between 83F and 481F, and the other is between 

240F and 138F. This is partly because the breakpoints lie in the long repetitive regions 

shown in Figure 13B.  
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Fig. 13. Large inversion in chr 11 

A. An extremely large inversion (>15 Mbp) in chromosome 11 was evident when Hd-rR and HNI 

were compared. The presence of the inversion was suggested by the Sanger-sequence genome 

assembly; however, the contigs assigned to chromosomes were not of sufficient length to reveal the 

boundaries of the inversion. 

B. Dot plots comparing the four pairs of Hd-rR and HNI regions that contain the two breakpoints 

of the inversion. The inversion was surrounded by highly repetitive regions of ~200 kb and ~10 kb 

in size, which were difficult to detect using short read sequencing technology. 

A 

 

B 
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Methods 

 

Data Availability 

I deposited the sequence data of SMRT reads and assembled genomes from Hd-rR, HNI, 

and HSOK at the NCBI SRA (BioProject Accession: PRJNA325079 for Hd-rR, 

PRJNA325193 for HNI, PRJNA325194 for HSOK), and the in-situ Hi-C reads from 

Hd-rR and d-rR at NCBI SRA (PRJNA378460 for Hd-rR, PRJNA378464 for d-rR). The 

accession number of the RNA-seq data for gene prediction is DRA005309, and the 

accession number of two RNA-seq biological replicates from blastulae of Hd-rR and 

HNI is SRP116580. The assembled genomes of the three strains, a comparative genomic 

analysis of the three strains, a medaka gene model, DNA methylation estimation from 

SMRT sequencing kinetic data, and a web browser for visualizing these datasets are 

available at http://utgenome.org/medaka_v2/ . 

 

Generating a chromosome map for each strain  

I used 2,347 SNP genetic markers to anchor contigs of the three strains to the 24 medaka 

chromosomes using the alignment software program ispcr (in-silico PCR), which is 

available at https://github.com/mkasa/klab/blob/master/script/ispcr. I ordered the 

contigs along each chromosome according to the genetic distances between markers. 

Some contigs were subsumed by other (longer) contigs; I eliminated the former 

redundant contigs. I detected 17 misassembled contigs in the Hd-rR strain, 16 in the 

HNI strain, and 8 in the HSOK strain; all contained genetic markers originating from 

two different chromosomes. I corrected these misassembled contigs by dividing them 

into two subcontigs by reference to the genetic markers, and anchored the partitioned 

(sub)contigs to their respective chromosomes. I also anchored remaining Hd-rR contigs 
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that were connected by multiple BAC/fosmid-end pairs. Specifically, after considering 

the estimated median sizes of BAC and fosmid clones (135kbp and 37.5kbp), I used 

BAC-end (fosmid-end) reads mapping to a position within 150 and 50kbp from one end 

of a contig. In contrast, for HNI and HSOK, sufficient BAC-end and fosmid-end pairs 

were unavailable and no Hi-C data were collected. I instead located 44 HNI contigs with 

no genetic markers to chromosomes by reference to their best matches to Hd-rR contigs. 

Some Hd-rR, HNI, and HSOK contigs remain unoriented because they were associated 

with only a single genetic marker, or multiple genetic markers at the same genetic 

distance apart. I attempted to determine the orientation of each unoriented contig by 

reference to the orientations of the best-matched contigs in the other strains. 

 

Collecting Hi-C reads 

In situ Hi-C was performed as previously described [118] with slight modifications. 

Samples (~2x10^6 cells of fibroblast or liver/brain from single individuals) were fixed 

with 1% (v/v) formaldehyde solution. MboI restriction enzyme (NEB) was used for 

digestion of cross-linked chromatin. After DNA shearing using the S220 Focused-

ultrasonicator (Covaris), 300-500bp fragments were selected using AMPure XP beads 

(Beckman Coulter). End-repair, adapter ligation and library amplification were 

performed using KAPA Hyper Prep Kit (KAPA BIOSYSTEMS). Libraries were 

sequenced for 101 cycles from both ends on Illumina HiSeq 1500. 
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Assembly by Hi-C data 

I used Hi-C data to locate 11 orphan contigs which contained centromeric repeats but 

failed to be anchored onto chromosomes because of the absence of genetic markers on 

them. First I trained a naïve Bayes classifier to predict the chromosome of each orphan 

contig considering its contact frequency information with individual chromosomes. For 

each orphan contig, contact frequency 𝑎𝑖 with chromosome 𝑖 was calculated by the 

number of Hi-C reads mapped between the contig and chromosome 𝑖 . The contact 

frequency variables 𝑎1, … , 𝑎24 are conditionally independent of each other given the 

chromosome 𝑖.The posterior probability of the orphan contig anchored to chromosome 

𝑐 is  

𝑝(𝑐|𝑎1, … 𝑎24) =
𝑝(𝑐) ∏ 𝑝(𝑎𝑖|𝑐)24

𝑖=1

𝑍
 

where 𝑝(𝑐) is a prior probability proportional to the number of contigs in chromosome 

c , 𝑝(𝑎𝑖|𝑐)  is a conditional probability of contact frequency 𝑎𝑖  under the condition 

that the orphan contig was anchored to chromosome 𝑐 and 𝑍 is a normalization factor. 

I verified the correctness of the above naïve Bayes classifier by checking whether 500 

contigs that were already anchored by genetic markers were also accurately classified 

to chromosomes which had the highest posterior probability. Indeed, I confirmed that 

all contigs could be correctly classified. Thus I assigned the chromosomes to eleven 

orphan contigs with centromeric repeats by using the naïve Bayes classifier.  

 

Next I predicted the precise positions and orderings of the eleven orphan contigs in their 

assigned chromosomes. To this end, I utilized the property that, along each chromosome, 

the contact frequency increased almost exponentially towards one position (Fig. 14). 

Certainly, the average contact frequency of the 1Mbp region surrounding the position 

was clearly higher than that outside. According to this property, for each orphan contig 
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that was anchored by the naïve Bayes classifier, I calculated the contact frequency 

between the orphan contig and anchored contigs in the chromosome assigned to the 

orphan contig, and located the orphan contig next to the position which had the highest 

contact frequency. 
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Fig14. - Contact frequency distribution between paired-end Hi-C reads. 
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Conclusions and Discussion 

 

In this chapter, I constructed new draft genome of three inbred medaka strains using 

single-molecule real-time sequencing. The number of gaps in version 2.2.4 medaka 

genome are 491, 717 and 318 in Hd-rR, HNI and HSOK and these are dramatically 

lower than the ~100,000 gaps in previous Hd-rR genome assembly. 

 

Long reads make it possible to assemble regions which have abundant tandem repeats 

that are hardly resolved by Sanger-sequence genome assembly and determined 

breakpoints of large inversion in chr11. Additionally, distributions of Tol2 elements in 

each strain can be identified. Copy numbers and positions in chromosomes of Tol2 

elements were highly diverged and it implies their horizontal transfer after the 

divergence of Hd-rR and HNI. 

 

I used Hi-C data to locate 11 contigs which could not be anchored on to chromosome 

by genetic markers. Assembly around centromere regions is still arduous problem even 

using SMRT sequencing, therefore to clear the centromere sequence using chromatin 

conformation data by Hi-C seq was verified as useful method.  

 

In version 2.2.4 of the medaka draft genome new insight of centromere evolutions 

become clear by the precise examination of centromere methylation in each strain. To 

achieve more precise analysis on chromatin information, our medaka draft genome is 

thought to be useful resources for future studies. 
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Concluding Remarks 

 

In my doctoral thesis, I invented two novel algorithms for processing large-scale 

chromatin information helpful for gain biological insights. 

 

In Chapter 1, I devised “BoostKCP”, an accelerating method for k-means clustering 

using the Pearson correlation distance. I applied BoostKCP and other two accelerating 

methods to human nucleosome positioning data of various dimension d =10 – 2001 to 

perform k-means clustering for k= 2-500 and compared computational time. In all 

conditions my algorithm outperformed other methods and 5-26 times faster than 

ordinary k-means clustering without boosting. My accelerating method for pruning 

unnecessary calculation is specialized to Pearson correlation distance, therefore my 

algorithm calculates faster than other boosting methods originally designed for 

Euclidean distance. My algorithm is effective in various situations, especially in high 

dimension data which take long time without acceleration. Reducing computational 

time by BoostKCP make it easy to find better clustering conditions and useful for 

grasping new knowledge from massive biological data. 

 

In Chapter 2, I presented “CSMinfinder”, a method for detecting regions which 

modified by specific epigenomic combinations. CSMinfinder calculates the similarity 

between the vector of focal epigenetic states and that of raw epigenetic states at each 

DNA position and detects an optimal set of regions that maximizes the sum of similarity. 

The minimum length threshold of each region in CSMinfinder makes it possible to 

detect continuous regions. I estimated large K27HMD regions using CSMinfinder in the 

medaka and human genome and showed that my method could detect equivalent regions 
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as Nakamura’s methods and longer regions compared with ChromHMM. My method 

could detect 242 regions containing the promoter regions of developmental genes. 

CSMinfinder is also applied to detect other combination of epigenetic modifications.  

 

In Chapter 3, I performed de novo assembly of three inbred medaka strains using Hi-C 

data. Centromeric regions could be anchored using contiguity of chromatin information 

and more precise investigation into alternation of epigenetic modifications during 

speciation appear to be possible by new medaka draft genome. 
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