

 � �� �� �

A study on standardization and
interoperability of biological databases

 �������
�
�����
��� ����	���

�� ��

A Dissertation Presented

by

Toshiaki Katayama

Submitted to

the Department of Computational Biology and Medical Sciences of

the Graduate School of Frontier Sciences of the University of Tokyo

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

 1

Acknowledgements

In collaboration with the Database Center for Life Science, I started the work described

in this thesis when I was employed by the Human Genome Center of the University of

Tokyo. I would like to express my deepest gratitude to Prof. Toshihisa Takagi for his

continuous support on my work including the BioHackathon over the past ten years. I am

truly grateful to Prof. Minoru Kanehisa for supervising my research on the KEGG

database and its Web services. My sincere gratitude goes to Prof. Yutaka Suzuki, Prof.

Kiyoshi Asai, Prof. Kouji Kozaki, and Prof. Kiyoko F. Aoki-Kinoshita who constituted

the thesis committee with Prof. Toshihisa Takagi.

I am grateful to Dr. Mitsuteru Nakao and Dr. Naohisa Goto for developing and

maintaining the BioRuby library for years and I thank Mr. Raoul Bonnal, Dr. Pjotr Prins,

Dr. Jan Aerts, and all the contributors of the BioRuby library and the RubyGems packages.

I am also grateful to Dr. Mitsuteru Nakao for designing the TogoWS APIs, Dr. Hiroyuki

Mishima for the development of the Ruby UCSC API, Drs. Shuichi Kawashima, Shinobu

Okamoto, Yuki Moriya, Hirokazu Chiba, Yuki Naito, Takatomo Fujisawa, and Hiroshi

Mori for the fundamental design and the development of ontologies and RDF datasets for

TogoGenome. I also gratefully acknowledge Mr. Tatsuya Nishizawa for his support in the

development of the TogoWS service, Ms. Yoko Okabeppu, Mr. Akio Nagano, Mr.

Daisuke Satoh, Mr. Keita Urashima, Mr. Yoji Shidara, Mr. Naoki Nishiguchi, and the

engineers at Eiwa System Management Inc. for the software development and

maintenance of the TogoGenome and TogoStanza systems. I am thankful to Ms. Nozomi

Yamamoto, Ms. Hiroyo Nishide and the participants of the monthly SPARQLthon

meetings for fruitful discussions, contributions, and development of the ontologies and

TogoStanza in the multiomics domains.

I would also like to thank the participants of the BioHackathon series and the RDF

summits for valuable discussions on Web Services and the Semantic Web. In particular, I

would like to acknowledge Mr. Jerven Bolleman for inventing the FALDO ontology and

 2

Mr. Robert Buels for his contributions to develop support for SPARQL in JBrowse.

For fulfilling requirements of the degree, I am really grateful to Prof. Koichi Ito, Prof.

Shinichi Morishita and Prof. Masahiro Kasahara for their support and advice. I also thank

all my colleagues and staff of the Bioinformatics Center of Kyoto University, the Human

Genome Center of the University of Tokyo, the National Bioscience Database Center, and

the Database Center for Life Science. Lastly, I thank my family for their kind support and

understanding.

 3

Table of Contents

Acknowledgements ... 1�

Table of Contents .. 3�

Chapter 1 .. 5�

Introduction .. 5�
1.1 Background .. 5�
1.2 Objectives ... 6�

1.2.1 Standardization and interoperability of database access 6�
1.2.2 Standardization and interoperability of database contents 7�

Chapter 2 .. 10�

Standardization and interoperability of database access with Web Services 10�
2.1 Introduction .. 10�
2.2 TogoWS REST API .. 12�

2.2.1 Database search .. 13�
2.2.2 Hit count and pagination .. 14�
2.2.3 Entry retrieval .. 14�
2.2.4 Entry field extraction .. 17�
2.2.5 Entry format conversion ... 18�
2.2.6 Data format conversion .. 19�
2.2.7 Performance tuning and error handling ... 20�

2.3 TogoWS SOAP API .. 23�
2.3.1 Integrated WSDL file ... 23�
2.3.2 Sample code and documents ... 23�

2.4 Server status monitor .. 24�
2.5 Discussion .. 25�

Chapter 3 .. 26�

Standardization and interoperability of database contents with Semantic Web
technologies.. 26�
3.1 Background .. 26�
3.2 Results .. 28�

3.2.1 TogoGenome .. 29�

 4

3.2.1.2 Semantic comparative genomics .. 32�
3.2.2 TogoStanza .. 34�

3.3 Methods .. 40�
3.3.1 Integration of genome annotations .. 40�
3.3.2 TogoGenome datasets... 42�
3.3.3 Development of TogoGenome .. 47�
3.3.4 Development of TogoStanza ... 49�

3.4 Discussion .. 50�
3.5 Conclusions .. 51�

Chapter 4 .. 52�

Discussions and conclusions ... 52�

References ... 55�

Supplemental Figures and Tables .. 58�

Appendix ... 68�

TogoWS API specification .. 68�
TogoWS REST API conventions ... 68�

Entry ... 68�
Search ... 69�
Convert ... 69�

TogoWS external API ... 70�
UCSC API .. 70�

TogoWS API examples ... 72�
TogoWS entry retrieval API examples .. 72�
TogoWS search API examples .. 76�
TogoWS convert API examples ... 78�
TogoWS external API examples .. 80�

TogoStanza examples ... 89�
TogoStanza in a gene report page .. 89�
TogoStanza in an organism report page ... 97�
TogoStanza in an environment report page .. 103�
TogoStanza in a phenotype report page ... 107�

 5

Chapter 1

Introduction

1.1 Background

In the life sciences domain, major biological databases such as protein tertiary structures,

amino acid sequences, and nucleic acid sequences have already been established in the

1970s, and a culture to release research data for public use has been grown to maturity

since then. This is the foundation for a wide range of research and development thereof

from current basic biology to genome medical science.

As the international genome project progressed in the 1990s, information science

supporting the construction of workflows for large-scale sequence analysis greatly

advanced. At the same time, development and sharing of software that can be freely used

in bioinformatics along with the open source movement including the GNU project and

Linux have become popular.

Life science databases still continue to increase in quantity and variety, and theere is

increasing necessity to integrally use these enormous datasets. However, individual

databases have different formats, IDs and vocabulary systems, and new concepts and data

formats are being introduced along with new technologies.

For this reason, in bioinformatics research, the proportion of preprocessing such as data

retrieval, conversion of data formats, resolving relationships between IDs and

arrangement of meanings of data has increased, which was reported as a problem (NIH

strategic plan for data science; https://datascience.nih.gov/strategicplanrelease) in 2018.

To make this process efficient, it is necessary to standardize data and improve

interoperability through international collaboration. In this research, in order to overcome

 6

these problems, I developed Web services independent of the execution environment and

constructed a genome database system integrating various data by Semantic Web

technologies.

1.2 Objectives

1.2.1 Standardization and interoperability of database access

In order to build workflows of genome analysis, development of bioinformatics libraries

for each programming language such as BioPerl (Stajich et al., 2002), Biopython (Cock

et al., 2009), BioJava (Holland et al., 2008), etc. as open source software has progressed

since the beginning of the 2000s. Since I was working on the construction of the Kyoto

Encyclopedia of Genes and Genomes (Kanehisa et al., 2010), which is a database of

genome and pathway information, I have been developing the BioRuby library (Goto et

al., 2010b) using the Ruby language in anticipation of data analysis in the post-genomic

era. With the Ruby language, it was straightforward to achieve compatibility between

modeling complex data such as object-oriented pathways and rapid program development

which is a feature of scripting languages. On the other hand, in order to use libraries of

various languages, it is necessary to install and code a program even for basic information

processing such as data retrieval from databases, conversion of data formats, and

construction of other workflows. Also, it took time and effort to build the environment to

run on another computer. TogoWS (Katayama, Nakao, et al., 2010a), developed in this

research, eliminated the necessity of installation and dependency on any programming

language and a computer environment by converting this functionality into Web services.

TogoWS supports major databases of the National Center for Biotechnology Information

(NCBI), the European Bioinformatics Institute (EBI), the Protein Data Bank Japan

(PDBj), the National Institute of Genetics DDBJ Center (DDBJ), the Kyoto Encyclopedia

of Genes and Genomes (KEGG), and University of California Santa Cruz (UCSC).

Because the methods for data retrieval provided by these centers were not unified, it was

necessary for users to become familiar with their usage. Furthermore, the results obtained

also varied, such as XML and original data format. In order to extract the neccessary

 7

information and construct a workflow, it is necessary to develop a program to parse the

returned information for each data.

TogoWS provides APIs common to all databases for search, data retrieval, parse and

conversion in order to treat them in a unified manner. For example, when acquiring a

database entry, users can specify the database name and entry ID in the format of

"/entry/DB/ID" following "http://togows.dbcls.jp". In addition, data is parsed by adding

"/field_name" to extract subelements in the entry, and finally, the output format can be

specified as ".xml" or ". json". These are realized by giving TogoWS server side the

functions of BioPerl and BioRuby, so that users can obtain information without creating

programs. In order to freely access vast genome annotation information including the

human genome provided by UCSC, it was necessary to query UCSC's MySQL database

in SQL. By adopting the Ruby UCSC API (Mishima et al., 2012) in TogoWS, it became

easy to access it just by its REST API. The service of TogoWS has been used stably from

various bioinformatics applications for more than ten years and has contributed to

standardization and interoperability of database access.

1.2.2 Standardization and interoperability of database contents

By having unified access to the major databases with TogoWS, it became easier to

construct a workflow to acquire and process data, but for integrated use based on the

meaning of data, it has become clear that it is necessary to standardize and enhance

interoperability of the database contents themselves. For this reason, it was decided to

organize a series of international developer conference BioHackathons, where major

database developers gather, discuss and develop new database technologies. In these

BioHackathons, which have been held for over ten years since 2008, adoption of

Semantic Web technologies was proposed to improve standardization and interoperability

of data (Katayama, Arakawa, et al., 2010; Katayama et al., 2011, 2013, 2014).

Semantic Web is a standard for constructing a Web of data proposed by Tim Berners-Lee

who made the World Wide Web (WWW). In Semantic Web, we use Uniform Resource

Identifiers (URIs) as a universal identifier that points to data. In addition, the meaning of

 8

data and the relationship between data are expressed using standard vocabulary

(ontology) defined by the Web Ontology Language (OWL). Furthermore, to model data,

Resource Description Framework (RDF) is adopted, and the information is described by

a combination of subject, predicate, and object (triple). Finally, SPARQL Protocol and

RDF Query Language (SPARQL) is used for retrieval of RDF data. These are

standardized by the WWW Consortium (W3C) and are the fundamental technology for

providing a database that can be freely accessed on the Internet. Based on this, we

standardized common URIs and ontologies in the life sciences and promoted the

integration of various data by converting the contents of each database into RDF.

In this research, I constructed a new genome database TogoGenome by integrating data

on biological species, genomes, genes, phenotypes, and environments by RDF because

genome annotation requires information integration from diverse databases.

For this purpose, we first promoted the use of Identifiers.org as a standard URI by

international collaboration, and developed the FALDO ontology (Bolleman et al., 2016)

for expressing the genomic coordinate system as the basis of annotation. Subsequently,

we collaborated with international researchers to develop ontologies for semantically

describing information in the International Nucleotide Sequence Database Collaboration

(INSDC), an ontology for species taxonomy, an ontology of microbial phenotypes, an

ontology of habitat environments etc. Based on these, we integrated RDF data mainly

with RefSeq for genomic information and UniProt for protein annotation and then added

phenotypic and environmental annotations.

Finally, I developed TogoStanza, which searches this information with the SPARQL

language and visualizes the results for each biologically meaningful unit. In TogoGenome,

optimal TogoStanza are combined depending on the context such as genes and

environments and displayed to form a report page that summarizes relevant information.

Also, because TogoStanza can be reused in other web-based databases, we can make

development more efficient by mutual use of TogoStanza in multiple genomic databases

such as MicrobeDB.jp, MBGD, and CyanoBase which were developed at the same time

 9

in Japan. Through the construction of TogoGenome, RDF conversion of major databases

in the life sciences has progressed, and standardization of database contents and

improvement of interoperability supporting future data science could be realized.

In the following chapters, I describe my research on “Standardization and interoperability

of database access with Web services” which represents the integration of Web services

based on my TogoWS paper (Katayama, Nakao, et al., 2010b) and “Standardization and

interoperability of database contents with Semantic Web technologies” which illustrates

the integration of heterogeneous genomic data from my published work on

TogoGenome/TogoStanza (Katayama et al., 2019).

 10

Chapter 2

Standardization and interoperability of database

access with Web Services

Web services have become widely used in bioinformatics analysis, but there exist

incompatibilities in interfaces and data types, which prevent users from making full use

of a combination of these services. Therefore, I have developed the TogoWS service to

provide an integrated interface with advanced features. In the TogoWS REST API, I

introduce a unified access method for major database resources through intuitive URIs

that can be used to search, retrieve, parse and convert the database entries. The TogoWS

SOAP API resolves compatibility issues found on the server and client-side SOAP

implementations. The TogoWS service is freely available from http://togows.dbcls.jp/.

2.1 Introduction

In the early 2000s, major bioinformatics centers have begun providing SOAP-based

(http://www.w3.org/2002/ws/) Web services that enable users to use these database

resources with client programs in an automated manner. These include the E-Utilities

service (Sayers et al., 2009) provided by the National Center for Biotechnology

Information (NCBI), Web services provided by the European Bioinformatics Institute

(EBI) (Labarga et al., 2007; Pillai et al., 2005), the Web API for Bioinformatics (WABI)

from the DNA Data Bank of Japan (DDBJ) (Sugawara and Miyazaki, 2003; Miyazaki et

al., 2004; Sugawara et al., 2008; Kwon et al., 2009), the Protein Data Bank Japan’s

(PDBj) Web services (Standley et al., 2008), and the KEGG API service from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2010). Thanks to these

services, users can easily perform various bioinformatics tasks through their choice of

client software and can reproduce each procedure as a workflow.

 11

However, when it comes to using these services in combination, there are several

limitations (Stockinger et al., 2008) to their interoperability and technological

implementation. 1) There are no common ontologies for operations and objects in these

Web services, resulting in inconsistent naming conventions and data types. 2) This

incompatibility of data types requires format conversion of objects to use the output of

one service as the input to the next service. 3) There are several services that require

specific SOAP features that are not always supported in the available SOAP libraries,

even for major programming languages. 4) The client developer needs to be aware of fail-

safe mechanisms, such as temporary downtime of the server or the network, as well as

environmental restrictions such as the maximum size of exchanged data.

To overcome these limitations (especially for 1 and 2), the BioMoby project (Wilkinson

and Links, 2002; Vandervalk et al., 2009) was begun to provide a central registry of

operations and objects used in public Web services, along with applicable ontologies. In

this way, a number of BioMoby-compliant services were developed, and the BioMoby

client can find the service that is appropriate for the given type of object. The main

problem here is that most major bioinformatics service providers are not compatible with

the BioMoby standard, possibly because it requires a considerable amount of server-side

effort. Furthermore, it is also difficult to enforce a set of standard data formats for

interoperability among these providers.

To help resolve these problems, I organized DBCLS BioHackathons in 2008 (Katayama,

Arakawa, et al., 2010) and 2009 (Katayama et al., 2011), international workshops

focusing on Web services, drawing participants from many backgrounds, including Web

service providers, developers of the Open Bio* libraries (Stajich and Lapp, 2006) and

client applications, and database creators in emerging fields like glycoinformatics and

interactomics. One interesting topic in the BioHackathon was the attempt to resolve the

current limitations in interoperability among existing Web services. For this purpose, a

workflow was proposed that pipelines services provided by DDBJ, PDBj and KEGG to

find homologs using BLAST and annotate them with structural and pathway information.

When this workflow is run in the Taverna environment (Hull et al., 2006), users again

 12

encountered the essential need for data format conversion. The Open Bio* libraries,

including BioPerl (Stajich et al., 2002), BioRuby (Goto et al., 2010b), Biopython (Cock

et al., 2009), and BioJava (Holland et al., 2008), provide parsers for major database entry

and software output formats such as the BLAST report. However, users are required to

install these libraries and to write code to use their functionality.

Building upon discussions from the BioHackathon, I began to develop TogoWS, an

integrated Web service ("togo" is a Japanese word for "integration") that provides uniform

access to database resources, parsers for database entries, and converters among major

data formats. Bioinformatics Web services can be categorized into data-retrieval services

and analysis services. Although both types of services can be exposed using either the

REST (Fielding, 2000) or the SOAP architecture, REST is better suited for data-retrieval

services and SOAP is more suitable for analysis services because the former can be easily

mapped to resource URIs and the latter usually requires a long execution time or complex

parameters.

In a survey I conducted prior to implementation of TogoWS, I discovered that most

existing Web services, such as NCBI’s E-utilities and EBI’s Dbfetch, are designed to

search and retrieve database entries maintained at each institution. Therefore, in TogoWS,

I designed a REST-based Web service for accessing database resources in a unified

manner, with intuitive URI notation for searching, retrieving, parsing, and converting the

database entries. Also, I developed a unified SOAP-based Web service in TogoWS that

proxies analysis services provided by Japanese institutions to resolve several

incompatibilities found in these services. Supplemental documents and source code in

major programming languages (Perl, Ruby, Python, and Java) are also provided.

2.2 TogoWS REST API

The TogoWS REST service provides intuitive application programming interfaces (APIs)

to search, retrieve, parse, and convert database entries. In the following sections, I will

describe these interfaces and the internal architecture of the REST service.

 13

Figure 2.1 Examples of the TogoWS URIs and their outputs.

2.2.1 Database search

TogoWS provides a uniform query interface for various databases. The result of the

database search can be considered a resource that is relevant to the query string. Therefore,

I determined to map each database name (DB) and query string (QUERY) to a URI by

the following convention.

 http://togows.dbcls.jp/search/DB/QUERY

A list of currently available databases can be obtained by accessing the following URI

without a database name (Supplemental Table 2.1).

 http://togows.dbcls.jp/search/

As an example, a search against the UniProt database using the phrase "lung cancer" can

be represented as follows.

 http://togows.dbcls.jp/search/uniprot/lung+cancer

The returned text contains matched entry IDs, one per line (Figure 2.1a). The QUERY

 14

can be a simple keyword or a URI-encoded string containing a structured query with

logical operations. The given query is translated by the TogoWS server and then sent to

the corresponding service.

2.2.2 Hit count and pagination

A database search often returns a long list of hits. To make the TogoWS search service

scalable, I introduced a method for counting and pagination. To count the number of hits,

simply add "/count" to the end of the query URI.

 http://togows.dbcls.jp/search/uniprot/lung+cancer/count

Then, the user can retrieve any subset of the hits by indicating OFFSET and LIMIT

numbers in the following format.

 http://togows.dbcls.jp/search/DB/QUERY/OFFSET,LIMIT

For example, to obtain 10 results starting from the 100th hit:

 http://togows.dbcls.jp/search/uniprot/lung+cancer/100,10

The user can iterate over the OFFSET value, starting from 1 and incrementing it by LIMIT

until all hits have been retrieved.

2.2.3 Entry retrieval

Each database entry can be identified by a database name and a unique identifier;

therefore, it can be easily represented as a unique URI. In the TogoWS REST API, I

mapped database names and entry IDs to URIs by the following convention.

 http://togows.dbcls.jp/entry/DB/ENTRY_ID

where the "/entry" prefix indicates a REST action to retrieve the resource specified by

 15

DB and ENTRY_ID, which represent the name of the database and the entry ID string,

respectively.

For example, the URI to retrieve a KEGG GENES database entry "sec:YDR074W" can

be represented as follows, and it will return the flatfile entry as a text string, without any

decoration.

 http://togows.dbcls.jp/entry/kegg-genes/sce:YDR074W

Multiple entries can be retrieved at once by concatenating entry IDs with commas.

Therefore, PubMed entries "18077471" and "19151099" can be retrieved at a time by

accessing the following URI.

 http://togows.dbcls.jp/entry/ncbi-pubmed/18077471,19151099

A list of currently available databases can be obtained by accessing the following URI

without a database name (Supplemental Table 2.2).

 http://togows.dbcls.jp/entry/

To obtain actual database entries, TogoWS internally uses existing SOAP or REST

interfaces provided by each database (Figure 2.2). Since the TogoWS acts as a proxy to

various data sources, the user does not need to worry about the internals of the SOAP

messages or complex CGI parameters that each database usually requires for access. The

TogoWS server also caches the retrieved entries for a period of time to avoid overloading

the original servers.

 16

Figure 2.2 Schematic overview of the TogoWS service.

 17

2.2.4 Entry field extraction

A unique feature of the TogoWS REST API is that it comes with built-in parsers for

various database formats. Without this, the user will need to install a bioinformatics

library such as BioPerl, Biopython, BioRuby, or BioJava and to write a program to extract

the desired information from the retrieved entries. This requirement has been a bottleneck

to the creation of an automated workflow that consumes a list of database entries and

extracts information for the next step of the analysis pipeline. To resolve this situation, I

embedded BioPerl and BioRuby libraries into the TogoWS server. These bioinformatics

libraries cover a wide range of biomedical databases and provide efficient parsing

functionality for various database entries. I extended the TogoWS REST API to support

extraction of the field contents by adding a specific field name at the end of the URI, as

follows

 http://togows.dbcls.jp/entry/DB/ENTRY_ID/FIELD

where FIELD is one of the supported field names. The list of available field names differs

from database to database and can be obtained by accessing the following URI.

 http://togows.dbcls.jp/entry/DB?fields

As described in the previous section, TogoWS will retrieve specified entries from the

original database. Then, the cached contents are internally processed by built-in parsers.

In this manner, the user can access any field values of the given entries without

programming.

For example, a name, a molecular weight, and relevant enzymes of the KEGG

COMPOUND entry "C01083" can be extracted by the following URIs, respectively

(Figure 2.1b, 2.1c, 2.1d).

 http://togows.dbcls.jp/entry/kegg-compound/C01083/name

 http://togows.dbcls.jp/entry/kegg-compound/C01083/mass

 18

 http://togows.dbcls.jp/entry/kegg-compound/C01083/enzymes

Similarly, the authors and abstract of the PubMed entry "19151099" can be retrieved by

 http://togows.dbcls.jp/entry/ncbi-pubmed/19151099/au

 http://togows.dbcls.jp/entry/ncbi-pubmed/19151099/ab

where "au" and "ab" correspond to the AU and AB lines, respectively, of the PubMed

record in MEDLINE format.

2.2.5 Entry format conversion

Even though a specific field of an entry can be extracted, it is often required to convert

the data format for further use. With the help of the built-in parsers described in the

previous section, TogoWS provides format conversion of the entry simply by specifying

the format as a URI suffix, analogous to the extension of a filename:

 http://togows.dbcls.jp/entry/DB/ENTRY_ID.FORMAT

 http://togows.dbcls.jp/entry/DB/ENTRY_ID/FIELD.FORMAT

For example, the DDBJ entry "M13899" can be converted to the FASTA, INSDC-XML,

and GFF formats by the following URIs, respectively.

 http://togows.dbcls.jp/entry/ddbj/M13899.fasta

 http://togows.dbcls.jp/entry/ddbj/M13899.xml

 http://togows.dbcls.jp/entry/ddbj/M13899.gff

Acceptable formats can vary according to the database and currently include XML, JSON,

GFF version 3, FASTA, RDF/XML and Turtle. The FASTA and GFF formats are valid

for nucleotide or peptide sequence databases, and the XML format is available if the

original database is also provided as XML.

A list of available format names differs from database to database and can be obtained by

 19

accessing the following URI.

 http://togows.dbcls.jp/entry/DB?formats

Format conversion can also be applied to the extracted field. The following URI returns

the associated enzymes of the KEGG COMPOUND entry "C01083" in JSON format

(Figure 2.1e).

 http://togows.dbcls.jp/entry/kegg-compound/C01083/enzymes.json

The JSON format (https://tools.ietf.org/html/rfc4627) is particularly useful when this

service is used in a Web application that retrieves relevant information on-the-fly via an

AJAX (https://www.adaptivepath.org/ideas/ajax-new-approach-web-applications/)

method.

2.2.6 Data format conversion

TogoWS also provides format-to-format conversion functionality. Unlike the methods

described above, this method uses the HTTP POST protocol instead of HTTP GET. The

end-point URI of the data format conversion service uses the following convention.

 http://togows.dbcls.jp/convert/SOURCE.FORMAT

For example, to convert a BLAST result to GFF format, simply POST the BLAST report

string to the following URI.

 http://togows.dbcls.jp/convert/blast.gff

The Ruby program (Figure 2.3) demonstrates how to read a BLAST output and convert

its contents into GFF format.

Currently, GenBank, ENA, DDBJ, UniProt, BLAST, FASTA, GFF, GVF, PSL, Sim4,

 20

HMMER, Exonerate, Wise, CSV, RDF/XML and Turtle formats are supported as source

data types. This service is intended to be used in a workflow management software, in

which the pipeline is often bottlenecked by incompatible data formats. TogoWS fills this

kind of gap without requiring the user to install additional software on the local computer.

A list of currently available pairs of a source data type and a converted format can be

obtained by accessing the following URI without a database name (Supplemental Table

2.3).

 http://togows.dbcls.jp/convert/

2.2.7 Performance tuning and error handling

Because TogoWS relies on external Web services, it is important to reduce unnecessary

accesses for these servers. Therefore, I introduced a cache mechanism which stores a

retrieved database entry and reuses the data for future accesses to the same database entry.

This cache system works efficiently in the case of entry field extraction described in

Section 2.2.4, because the user often accesses the same entry by specifying different fields

to be extracted. This mechanism also improves the response time of the TogoWS service

especially for a large database entry such as an entire chromosome from the RefSeq

database. Additionally, users can clear cached data by adding “?clear” to the entry

retrieval URI as in the following format in case the cached content is out dated or broken.

 http://togows.dbcls.jp/entry/DB/ENTRY_ID?clear

In order to avoid overload on external servers, it is important for TogoWS to comply with

rules which are defined by these servers. For example, NCBI defines a rule that a client

program must wait for several seconds between two or more successive accesses and the

wait time can change depending on the time of day. TogoWS automatically applies this

wait so that the user is not forced to write complex code to implement this wait logic in

addition to retrieving data from these services.

 21

Finally, TogoWS returns appropriate HTTP Error codes when the user’s request is invalid

or malformed (400 Bad Request), or the specified entry is not found (404 Not Found).

These error codes are useful when writing a client program which retrieves a number of

database entries at once and needs to capture the failure during the retrieval.

 22

#!/usr/bin/env ruby

Load libraries handling HTTP and CGI protocols and methods

require 'net/http'

require 'cgi'

Read the BLAST output file

blast_output = File.read("blast_result.txt")

Convert the output into a string suitable for a CGI query

post_data = CGI.escape(blast_output)

Net::HTTP.version_1_2

Invoke HTTP connection to the TogoWS server

Net::HTTP.start('togows.dbcls.jp') { |http|

 # Execute the TogoWS conversion service via HTTP POST

response = http.post('/convert/blast.gff', post_data)

 # Print out the result of conversion

puts response.body

}

Figure 2.3 Example Ruby program to invoke the TogoWS conversion API for

converting a BLAST output stored in the file "blast_result.txt" into GFF format.

 23

2.3 TogoWS SOAP API

The other half of TogoWS is a SOAP-based proxy service for Japanese bioinformatics

resources, which include DDBJ, PDBj and KEGG. In contrast to the REST service, SOAP

is suitable for services requiring long execution time, returning structured objects, or

expecting complex parameters in the query. The SOAP specification itself is an open

standard and is independent of programming languages. However, its implementation in

each programming language tends to be incomplete because of the complexity of the

specification. Because of this, there appear to be several technical incompatibilities in

each service. I have been collaboratively working with major institutions, including

DDBJ and KEGG, to resolve the issues; however, there still remain problems that require

modifications to their service specifications. These problems include the use of a MIME

attachment for returning the results, the use of an HTTP cookie for stateful transactions,

and different designs for asynchronous transactions, features that are not always

supported by the SOAP library of choice.

2.3.1 Integrated WSDL file

Instead of asking all service providers to modify their services, I developed the TogoWS

SOAP API, which proxies their services and thus hides the incompatibilities and

differences between them. All services across these servers (DDBJ, PDBj, and KEGG)

are integrated into only one WSDL file,

 http://togows.dbcls.jp/soap/wsdl/togows.wsdl

so that the user can use all 368 operations that were originally spread among 26 WSDL

files. This service has been tested in several major programming languages (Perl, Python,

Ruby, and Java), so the user can use each service in the preferred language without

difficulty. This approach also eliminates a burden on the service providers because they

do not themselves need to test or improve the language compatibility of their services.

2.3.2 Sample code and documents

The TogoWS SOAP service comes with comprehensive sample code covering all

 24

operations of the DDBJ, PDBj and KEGG services written in four programming

languages (Perl, Python, Ruby, and Java). The user can freely examine and download the

code from the following URL and use them as references for further development.

 http://togodb.dbcls.jp/togows_domestic_method

Web services often lack documentation, forcing users to consult the WSDL file to learn

what kind of operations are available, what data types are used for input and output, etc.

However, this is not an effortless task, as the WSDL file was not designed to be read by

a human. To remedy this problem, I have created a list of Web service operations from

existing bioinformatics Web services worldwide.

 http://togodb.dbcls.jp/togows_world_method

This list contains information extracted from the WSDL files, such as the description and

input/output data types for 4,172 operations, including services integrated in the TogoWS

SOAP API. In addition, I also assigned a functional classification to each operation.

2.4 Server status monitor

Web services are often used by computer programs in a pipeline. However, it is often

difficult to detect temporary error caused by server-side problems. I have monitored the

availability of all operations in DDBJ, PDBj, and KEGG over the past five years. The

result is stored and summarized in the TogoWS status report.

 http://togows.dbcls.jp/monitor

Since the monitoring is performed every day, these records may help the user determine

whether the source of the problem is due to a local configuration or the remote server.

The record also contains statistical information such as output size and response time,

which has helped service providers to detect unexpected errors several times in the past.

 25

2.5 Discussion

In TogoWS, I proposed an integrated service focused on the interface and compatibility

of existing bioinformatics Web services. I successfully developed a REST interface for

accessing database resources with intuitive and persistent URIs. This normalization of

URIs was consequently found to be suitable as a method for generating unique resource

URIs for making RDF data. For other services, I developed an integrated SOAP interface

supplemented by sample code and a status monitor. However, I needed to terminate the

SOAP interface in 2012 because most major bioinformatics centers discontinued their

SOAP services. Instead, these centers began to replace their services with REST APIs.

Thus, I have maintained TogoWS to conform with these changes and, subsequently, the

REST interface of TogoWS has continued to be used for the past ten years from various

bioinformatics applications.

 26

Chapter 3

Standardization and interoperability of database

contents with Semantic Web technologies

TogoGenome is a genome database that is purely based on Semantic Web technologies,

which enables the integration of heterogeneous data and flexible semantic searches. All

the information is stored as Resource Description Framework (RDF) data, and the

reporting web pages are generated on the fly using SPARQL Protocol and RDF Query

Language (SPARQL) queries. TogoGenome provides a semantic faceted search system

by gene functional annotation, taxonomy, phenotypes, and environment based on the

relevant ontologies. TogoGenome also serves as an interface to conduct semantic

comparative genomics by which users can observe pan-organism or organism-specific

genes based on the functional aspect of gene annotations and the combinations of

organisms from different taxa. The TogoGenome database exhibits a modularized

structure, and each module in the report pages is separately served as TogoStanza, which

is a generic framework for rendering an information block as IFRAME/Web Components,

which can, unlike several other monolithic databases, also be reused to construct other

databases. TogoGenome and TogoStanza have been under development since 2012 and

are freely available along with their source codes on the GitHub repositories at

https://github.com/togogenome/ and https://github.com/togostanza/, respectively, under

the MIT license. Database URLs: http://togogenome.org/ and http://togostanza.org/.

3.1 Background

In the life sciences, genome sequences have served as a central resource like a base map

by which essential information, such as gene structures, regulatory regions, variations,

and their functional annotations, could be integrated. As genome projects are conducted

on various species, the genomic sequences and gene annotations are deposited into the

International Nucleotide Sequence Database Collaboration (INSDC) (Cochrane et al.,

 27

2016), which is jointly operated by the DNA Databank of Japan (DDBJ) (Mashima et al.,

2017), GenBank at NCBI (Benson et al., 2017) and ENA at EMBL-EBI (Silvester et al.,

2018). However, each genome project often constructs its own genome database to add

and update detailed annotations. For this purpose, generic and open source genome

database systems such as GMOD (O’Connor et al., 2008), Ensembl (Zerbino et al., 2018)

and InterMine (Kalderimis et al., 2014) can be used.

These major database systems serve genome annotations for a large number of species.

However, because these genome databases have been monolithically constructed, it is

difficult to reuse their components even though the represented information is very similar.

Meanwhile, to extend a system that represents information unique to an organism, the

inclusion of additional annotations may require the modification of the database schema

and further significant modifications to the system. In contrast, using RDF, because any

data can be expressed in the same format, it is possible to easily integrate a wide variety

of data from gene annotations to phenotypes and habitat environments of organisms. Also,

there is no limit to the type of data that can be stored in an RDF database. Each piece of

information integrated into the RDF database is distinguished by a globally unique

identifier in the form of Uniform Resource Identifier (URI); thus the related information

can be seamlessly linked and traced by the URIs.

Based on my experiences in the genome annotation and the construction of genome

databases, I realized that most of the annotation information can be stylized. Therefore,

it would be efficient to freely select the predefined modularized components for creating

a genome database instance along with developing only new components based on

annotations that are unique to the target organism stored as RDF data. Thus, it is expected

that the cost required to construct a new genome database could be considerably reduced

by managing all the annotation information in RDF and by providing the visualization

modules for each subset of categorized annotations as reusable components. However,

there was no precedent genome database that was purely based on RDF data; therefore, a

demonstration was required to verify whether the use of SPARQL would be practical and

scalable enough for a genome database.

 28

3.2 Results

I developed a purely RDF-based genome database, TogoGenome, that was primarily

based on the RefSeq (O’Leary et al., 2016) and the UniProt (The UniProt Consortium,

2017) data. UniProt has been publishing their data in RDF since 2008 (UniProt

Consortium, 2008), however, there has been no RDF representation of the RefSeq

genome annotations. Therefore, in collaboration with DDBJ, I developed a converter of

INSDC (DDBJ/GenBank/ENA) and RefSeq entries into RDF data. With a member of

DDBJ, I also developed ontologies for the INSDC annotated sequences and taxonomy

(http://ddbj.nig.ac.jp/ontologies/) as well as feature locations (see the 3.3.2 TogoGenome

datasets section).

TogoGenome uses the Semantic Web technology for data integration by which all the

data are aggregated in RDF and semantically annotated with ontologies. Therefore, in

addition to basic keyword searches, faceted searches with various aspects based on the

semantic hierarchy of the data can be performed. Further, all the RDF data can be freely

accessed by SPARQL queries not only from a web interface but also from a program.

Bioinformaticians can easily develop a program to acquire the target datasets, perform

analyses, and develop their own summaries and visualizations according to their

requirements.

To produce reusable components, I developed TogoStanza, which is a framework for

visualizing the result of a SPARQL query as an IFRAME or as Web Components

(https://www.webcomponents.org/), which can be embedded into any HTML web page.

Any number of components can be freely chosen and combined to generate a resulting

page, which could not have been easily realized using the monolithic databases. In fact,

TogoGenome displays various search results as a report page by combining with the

related TogoStanza in an arbitrary context such as a gene, an organism, a phenotype, or

an environment.

 29

3.2.1 TogoGenome

TogoGenome is a Semantic Web-based genome database in which heterogeneous

information is compiled from various RDF data annotated with ontologies. With the RDF

data and ontologies, TogoGenome provides several query interfaces. First, users can

conduct a faceted search based on a combination of gene, taxonomy, phenotype, and

environment ontologies. Second, a simple comparative genomic analysis can be

performed among the genes of several species based on the common and unique gene

annotations. Finally, as in the traditional genome databases, TogoGenome data can be

searched using a free text keyword or a genomic sequence. However, dedicated text

indexing systems are required because SPARQL queries are not efficient enough to

perform free text search (see the 3.3.3 Development of TogoGenome section).

3.2.1.1 Ontology-based faceted search

One of the main interests of current biology is the relationships between genotypes and

phenotypes. In the case of humans, the most important relation is between genes and

diseases. In the case of crops and livestock, the genetic factors related to the aspects of

quantity and quality, such as yield, nutritional value, and taste, are of considerable interest.

In microorganisms, the effects of gene functions on physiology, metabolites, and

interaction with the environment are typical examples of the subjects of research.

To elucidate these relations, a bioinformatics approach is required to efficiently formulate

hypotheses using the knowledge in the databases and to verify these hypotheses by

performing experiments. However, the genomic and phenotypic information are scattered

throughout the genes, pathways, literature databases, and so on. There is no efficient

database system to search for genes of various species in combination with the

phenotypes.

As an example, suppose a scientist was attempting to verify the difference in the

composition of cyanobacterial gene sets related to environmental responses, such as

"histidine kinases," by comparing the gene sets of marine and freshwater living species.

 30

This scientist must narrow down those genes that have the desired function by (1)

obtaining a list of cyanobacteria from a taxonomy database, (2) selecting those species

for which the complete genome has been decoded by searching genome databases, (3)

identifying the growth environment of each cyanobacterium (“seawater” or “freshwater”)

using the literature and other databases, (4) acquiring the gene set of each species, and (5)

obtaining annotations for each gene set with the help of a gene ontology to acquire the

intended gene set. This procedure is difficult to automate; therefore, it was necessary for

researchers to manually investigate each database.

TogoGenome provides an ontology-based faceted search interface to easily obtain such

information. Users can select “Cyanobacteria” from “Taxonomy,” specify “protein

histidine kinase activity” from “GO: Molecular Function,” and select “saline water” and

“fresh water” from “Environment” to obtain the desired gene sets (Figure 3.1).

Figure 3.1 TogoGenome faceted search.

TogoGenome	faceted	search		

Comparison	of	"histidine	kinase"	genes	of	"saline	water"	and	"fresh	water"	living	"Cyanobacteria"

 32

3.2.1.2 Semantic comparative genomics

Because UniProt proteins are semantically annotated in RDF and because TogoGenome

holds the links between proteins and genes that are encoded in the genome of each

organism, UniProt annotations can be used to find a specific subset of genes by selecting

the attributes that are common or unique to a given set of species. First, the category of

the annotation can be selected from: protein motif, sub-cellular location, pathway, gene

ontology, enzyme classification, and ortholog classifications. Second, a maximum of five

species can be selected to compare gene sets. Third, a list of functional classifications that

are common only to the selected combination of organisms is presented. Fourth, one of

the objective classifications can be selected to obtain a corresponding list of genes in the

target organisms.

As an example, users can find genes having protein motifs unique to vertebrates by

performing the following steps. (1) Select “Pfam motifs” as an annotation and (2) specify

human, mouse, zebrafish, and sea squirt as the target set of organisms to perform the

comparison. Further, users can (3a) select the combination of human ∩ mouse ∩ zebrafish

and (4a) find the MHC domains corresponding to the adaptive immune system that are

observed in vertebrates (therefore, not observed in sea squirts) (Dehal et al., 2002), or

(3b) select only the sea squirt and (4b) find Vanavin-2, which is a domain that is unique

to sea squirts for oxygen binding (Figure 3.2).

 33

Figure 3.2 TogoGenome comparative genomics.

Comparative	genome

Step	1	

Select	an	annotation	aspect	

(e.g.	Pfam	motifs)

Step	2	

Select	organisms	to	compare	

(e.g.	Human,	Mouse,	Zebrafish,		

	and	Sea	squirt)

Step	3	

Select	combination	of	organisms	

(e.g.	Human	∩	Mouse	∩	Zebrafish,			

	or	Sea	squirt)

Step	4	&	5	

Select	an	annotation	and	obtain	

genes	(e.g.	Vanabin)

Step	4	&	5	

Select	an	annotation	and	obtain	

genes	(e.g.	MHC_I)

 34

3.2.1.3 Text index search

TogoGenome also provides simple keyword and sequence search interfaces. Because the

text search function that is implemented in the existing RDF database is inadequate,

TogoGenome uses Apache Solr (http://lucene.apache.org/solr/) to perform keyword

search and the GGGenome service to perform sequence search (see the Methods section).

While performing keyword search, a list of TogoStanza, which contain the keywords, are

presented on the basis of a free text match for gene names, species names, phenotype

terms, and environmental terms. In a sequence search, a list of reference genomes, which

includes a specified sequence, are exhibited with links to the TogoGenome genes, which

reside in the overlapping or surrounding regions of the query sequence in the genome.

3.2.2 TogoStanza

The majority of the existing genome databases comprise typical components such as gene

name and aliases with a brief description, chromosomal location and gene structures of

the transcripts in a genome browser, the corresponding nucleotide sequences and amino

acid sequences, the functional annotations of the genes and proteins, sequence variations

and modifications, the corresponding ortholog genes in other species, relevant literature,

and cross-references to external databases. Despite the fact that several pieces of

information are commonly represented, they cannot be reused while developing a new

database because most of the existing databases are monolithic. In fact, when my

collaborators started to develop the MicrobeDB.jp (https://microbedb.jp/) and CyanoBase

(Fujisawa et al., 2017) databases, combining their original annotations with existing

information that was stored in the major genome databases was difficult; therefore, they

were forced to develop their own genome databases from scratch even though some of

the contents were imported from the existing databases. To overcome this limitation, we

developed TogoStanza to enable database developers to reuse components of the

TogoGenome database in their genome databases. Because the TogoStanza system is

designed to be generic, it is not limited to genome databases and is being utilized in other

domains, such as proteomics and glycomics databases, as well as some other web

applications.

 35

3.2.2.1 Features of TogoStanza

TogoStanza is a web application framework that obtains information from a web API,

SPARQL in particular, and visualizes the results as an IFRAME or Web Components that

can be embedded into any web page (Figure 3.3). TogoGenome provides the report pages

for each gene, organism, phenotype, and environment. The pages display all the

information by combining a series of related TogoStanza. In the case of the gene report

page, each TogoStanza takes a taxonomy ID and gene ID as its arguments, obtains

information related to the gene using dedicated SPARQL queries, and visualizes the

results in HTML. All technologies, such as HTTP, AJAX, HTML, CSS, and JavaScript,

are web standards so that any web application developer can easily create or customize a

TogoStanza for publication online, even though optimizing the performance of a

SPARQL query may require some specialized tuning techniques based on domain

knowledge and the RDF data. A list of currently available TogoStanza used in the

TogoGenome database (Supplemental Table 3.1 and Appendix) can be found at

http://togostanza.org/ where users can try out their functionality by changing the

arguments on the fly. Additionally, NanoStanza is another form of TogoStanza that

summarizes information at a glance in an icon-sized module (Figure 3.4). The metadata

of each TogoStanza is written in the JSON-LD format and is used to automatically

summarize and categorize each TogoStanza in the showcase page.

To date, more than 250 TogoStanza have been developed, including those developed for

databases other than the TogoGenome database (Table 3.1). The TogoStanza framework

is well suited to web application development, especially for Semantic Web data in

various life sciences and biomedical domains. In BioJS (Corpas et al., 2014), which is a

similar web application framework, that is not specialized for the Semantic Web, 195

components are provided. Among these components, only one module (nextprot-cli)

seems to use SPARQL.

Using TogoStanza, components that are common to several databases in the life sciences

 36

and biomedical domains are successfully modularized, leading to a reduction in the

development costs and making the resulting database extensible for new functionalities.

Table 3.1 List of TogoStanza providers.

Database Domain Number of TogoStanza URL

TogoGenome Genome 59 http://togogenome.org/stanza/

MicrobeDB.jp Genome 113 http://microbedb.jp/stanza/

CyanoBase Genome 6 http://genome.microbedb.jp/stanza/

MBGD Ortholog 19 http://mbgd.genome.ad.jp/stanza/

GlyTouCan Glycomics 16 https://bitbucket.org/glycosw/glytoucan-stanza/

https://github.com/glytoucan/glytoucan-js-stanza/

jPOST Proteomics 15 http://tools.jpostdb.org/ts/stanza/

TogoVar Variation 26 https://togovar.biosciencedbc.jp/stanza

 38

Figure 3.3 Embedding TogoStanza into a web page.

Embed	TogoStanza	JavaScript	version	

<!doctype	html>	

<html>	

		<body>	

				<link	rel="import"	href="//togostanza.org/dist/example/"/>	

				<togostanza-example	ec="3.1.-.-"></togostanza-example>	

		</body>	

</html>	

Embed	TogoStanza	Ruby	version	

<!doctype	html>	

<html>	

		<head>	

				<script	src="//code.jquery.com/jquery-3.3.1.js"></script>	

				<script	src="http://togostanza.org/stanza/assets/stanza.js"></script>	

		</head>	

		<body>	

				<div	data-stanza="http://togostanza.org/stanza/protein_names"	

									data-stanza-tax-id="9606"	data-stanza-gene-id="ALDH2">	

				</div>	

		</body>	

</html>	

 39

Figure 3.4 NanoStanza in gene, organism, and environment report pages.

NanoStanza	for	gene	
Gene	length,	Enzyme	number,	3D	structure,	Publications	per	year

NanoStanza	for	organism	
Genome	size,	Number	of	genes,	GC	content,	Cell	shape,	Growth	pH,	Pathogenicity

NanoStanza	for	environment	
Habitat,	Number	of	inhabitants,	Distribution	of	growth	temperature	and	pH	

 40

3.3 Methods

3.3.1 Integration of genome annotations

Any annotations related to genome regions, such as gene structures, regulatory regions,

mutations, and modifications, can be located using the genomic coordinate system. This

information can be integrated by uniquely identifying the reference sequence, specifying

the beginning and terminating positions of the region to which the annotation is attached,

and designating the type of the annotation. However, if the ontologies and the RDF data

model to describe these feature locations are not standardized, a query for one genome

database cannot be interoperable with another even if the genome annotations are

provided in RDF. For this reason, during the BioHackathon 2013

(http://2013.biohackathon.org/) (Katayama et al., 2014) and the RDF summit

(https://github.com/dbcls/rdfsummit) coding events, I collaboratively developed the

Feature Annotation Location Description Ontology (FALDO) (Bolleman et al., 2016)

together with the UniProt, Ensembl, INSDC (DDBJ), and TogoGenome groups (Figure

3.5). The JBrowse genome browser version 1.10.0 (Buels et al., 2016) was also developed

to implement a SPARQL query for acquiring and visualizing the annotations expressed

using FALDO. Traditionally, several standards, such as GFF

(http://gmod.org/wiki/GFF3) and TrackHubs (Raney et al., 2014), have been developed

to attach annotations to the genome coordinates. The same can be achieved in RDF using

FALDO along with some other major ontologies such as the Sequence Ontology (SO)

(Mungall et al., 2011) and the Semanticscience Integrated Ontology (SIO) (Dumontier et

al., 2014). Therefore, it is possible to construct a genome browser that can be of practical

application while ensuring compatibility of the annotation information among the

genome datasets represented in RDF.

Figure 3.5 Standardization of the genome annotation coordinate system by the FALDO ontology.

><%<,NNNNNNNNF;��*ME<NNNNNNNNNNNNNNNNNNNNN"%G;:��<%<N��
NNNNNNNNNNNNNNG&�G&�E�F*�&�NNNNNNNNNNNNNNNN
:!F&$&G&$<,N��

$42-,NNNNNNNNF;��*ME<NNNNNNNNNNNNNNNNNNNNN"%G;:�1<GG<%><F�42-N��
NNNNNNNNNNNNNNG"&�"G"*F�%G:F"�<;"�F&$NNNNNN
><%<,N��
NNNNNNNNNNNNNNG"&�!�G"&F;<F<;"E�F*NNNNNNNNN
E�,�N
E�,�N���N��

E�,NNNNNNNNNNG"&�!�G",�A+<NNNNNNNNNNNNNNNN
�
��.G;�"%*<><FN��
NNNNNNNNNNNNNNG"&�F<�<FG"*&NNNNNNNNNNNNNNNN
<.&%�,N��

E�,NNNNNNNNNNG"&�!�G",�A+<NNNNNNNNNNNNNNNN
�
��.G;�"%*<><FN��
NNNNNNNNNNNNNNG"&�F<�<FG"*&NNNNNNNNNNNNNNNN
<.&%�,N��

<.&%�,NNNNNNNF;��*ME<NNNNNNNNNNNNNNNNNNNNN"%G;:�..&%N��
NNNNNNNNNNNNNN��A;&�A&:�*"&%NNNNNNNNNNNNNNN
F<>"&%�,N��

F<>"&%�,NNNNNF;��*ME<NNNNNNNNNNNNNNNNNNNNN��A;&�4<>"&%N��
NNNNNNNNNNNNNN��A;&��<>"%NNNNNNNNNNNNNNNNNN
E&G"*"&%�,N��
NNNNNNNNNNNNNN��A;&�<%;NNNNNNNNNNNNNNNNNNNN
E&G"*"&%�,N��

E&G"*"&%�,NNNF;��*ME<NNNNNNNNNNNNNNNNNNNNN��A;&�..�:*3&G"*"&%�N��A;&��&F-�F;5*F�%;3&G"*"&%N��
NNNNNNNNNNNNNN��A;&�E&G"*"&%NNNNNNNNNNNNNNN���	
N��
NNNNNNNNNNNNNN��A;&�F<�<F<%:<NNNNNNNNNNNNNN
:!F&$&G&$<,N�

Genome

Regulatory region Protein coding gene rRNA gene

↑ ↑ ↑ ↑
<exon>

<gene> rdfs:subClassOf obo:SO_0000704 ;

faldo:location [...] ;
rdfs:label "geneA" ;
rdfs:seeAlso <UniProt> .

rdfs:subClassOf obo:SO_0000147 .

← FALDO locations
← Sequence ontology types

← Label of annotations
← Link to external resources

↑ ↑ ↑ ↑

INSDC/RefSeq/Ensembl RDF:

 42

3.3.2 TogoGenome datasets

On the basis of the above standardization, my collaborators and I jointly developed the

following RDF datasets and ontologies to integrate the public resources in TogoGenome

(Figure 3.6).

Complete genomes: We selected the "reference genome" and "representative genome"

entries from the NCBI assembly report and further extracted RefSeq and Taxonomy

identifiers.

Genome annotations: We retrieved the NCBI RefSeq entries, including entire

chromosome sequences, via the TogoWS service (Katayama, Nakao, et al., 2010a).

Further, each entry was converted to RDF using an in-house converter, which is based on

the BioRuby library (Goto et al., 2010a) and represents the feature locations using

FALDO. To semantically describe the types of annotations, we developed and

incorporated the INSDC annotated sequence ontology (Table 3.2) along with the

taxonomy ontology described below. This converter is now publicly available (Table

3.2); it is used to publish the RDF version of the INSDC entries from DDBJ (Mashima et

al., 2017) and is hosted at the NBDC RDF portal (Table 3.2).

Genome sequences: We extracted the genome sequences from the RefSeq entries and

further indexed them for the JBrowse genome browser and the GGGenome sequence

search service.

Figure 3.6 Procedure of data integration in TogoGenome.

Filter "reference/representative

genome"

List RefSeq IDs

Map taxonomy to

ontologies

Extract protein entries for

each organism

NCBI Assembly Report NCBI Taxonomy dump

List Taxonomy IDs

UniProt RDF

Fetch genome entries via

TogoWS

NCBI RefSeq

Convert to RDF

Convert to OWL

UniProt ID mapping

Link RefSeq genes and

UniProt proteins

RefSeq RDF data for

TogoGenome

UniProt RDF data for

TogoGenome

Genome sequence search

API

GGGenome indexing

JBrowse application

instances

JBrowse configuration

Load RDF/OWL to Virtuoso

triple store

Extract genome sequences

TogoGenome application

TogoStanza components

Solr indexingText search API

Replication servers

MEO (environment)

MPO (phenotype)

GMO (growth medium)

MCCV (culture collection)

PDO (infectious disease)

 44

Taxonomy: We obtained a taxonomy dump from NCBI that contained all the species

that were recorded in the INSDC sequence archive and their taxonomic hierarchies.

Further, using an in-house converter (Table 3.2), we converted the dump to an OWL

ontology file. The resulting ontology is publicly available (Table 3.2) and is used in the

INSDC (DDBJ) RDF export.

Protein information: We obtained the UniProt RDF files and extracted protein entries

belonging to species with complete genomes. Meanwhile, genes in RefSeq were mapped

with UniProt proteins using UniProt's idmapping file. Technically, it is possible to directly

use the UniProt SPARQL endpoint, however, the performance of SPARQL federated

queries was not satisfactory for our purpose and we only needed a subset of the entire

UniProt database. Therefore, we imported a portion of the relevant UniProt data into

TogoGenome.

In-house ontologies: We developed the Microbial Phenotype Ontology (MPO) for

microbial phenotypes, Metagenome and Microbes Environmental Ontology (MEO) for

habitat environments, Microbial Culture Collection Vocabulary (MCCV) for culture

collections, Growth Medium Ontology (GMO) for growth media and Pathogenic Disease

Ontology (PDO) for infectious diseases (Table 3.2). These ontologies were mapped onto

the taxonomy ontology.

Other ontologies: We used FALDO for annotation coordinates, SO and INSDC annotated

sequence ontology for the types of annotated regions, and Gene Ontology (GO) for gene

functions along with common ontologies such as SIO, Dublin Core terms (DC), and

Simple Knowledge Organization System (SKOS).

As of June 2018, TogoGenome has integrated 7,065 complete genome sequences of 2,196

organisms (212 eukaryotes), which include 10,843,971 genes (4,070,521 eukaryotic

genes), along with their corresponding UniProt protein annotations. In total,

approximately 6.3 billion triples of RDF data are stored and updated upon every

RefSeq/UniProt release. The RDF database system, which is a triple store, that is

 45

currently being used is the Virtuoso open source version 7 (http://vos.openlinksw.com/),

and it is scalable at least up to tens of billion triples in our experience. To improve the

response of the SPARQL endpoint, the stored RDF data file in a single loading instance

is copied to three backend Virtuoso instances (16GB of each of the RAMs are allocated)

for load balancing at the Nginx HTTP server layer. With this configuration, I can

eliminate service downtime during the update procedure by sequentially updating and

restarting these backend servers. This SPARQL endpoint is publicly available at

http://togogenome.org/sparql for accepting customized queries from users.

Table 3.2 Availability of in-house converters and ontologies.

RDF data, ontologies and converters URL

INSDC RDF hosted at the NBDC RDF Portal https://integbio.jp/rdf/

INSDC annotated sequence ontology http://ddbj.nig.ac.jp/ontologies/nucleotide/

INSDC/RefSeq record to RDF converter https://github.com/dbcls/rdfsummit/tree/master/insdc2ttl/

INSDC taxonomy ontology http://ddbj.nig.ac.jp/ontologies/taxonomy/

NCBI taxonomy to INSDC taxonomy converter https://github.com/dbcls/rdfsummit/tree/master/taxdump2owl/

Microbial Phenotype Ontology (MPO) https://bioportal.bioontology.org/ontologies/MPO

Metagenome and Microbes Environmental Ontology (MEO) https://bioportal.bioontology.org/ontologies/MEO

Microbial Culture Collection Vocabulary (MCCV) https://bioportal.bioontology.org/ontologies/MCCV

Growth Medium Ontology (GMO) https://bioportal.bioontology.org/ontologies/GMO

Pathogenic Disease Ontology (PDO) https://bioportal.bioontology.org/ontologies/PDO

 47

3.3.3 Development of TogoGenome

The TogoGenome application itself has been built using Ruby on Rails

(https://rubyonrails.org/). Functions such as faceted search, comparative genomics, and

keyword and sequence searches, are implemented in this application layer. For the faceted

search, we use several ontologies in combination such as (1) GO annotations imported

from UniProt RDF for gene features, (2) NCBI taxonomy that has been converted to OWL

and released at DDBJ for organisms, (3) MPO that has been developed for phenotypes,

and (4) MEO that has been made for the habitat. Candidate ontology terms will be

suggested while keywords are being typed, and the user can traverse the hierarchy of

ontologies to adjust the granularity of classification. To improve the performance of the

faceted search, I calculated in advance the correspondences between higher-level

concepts in ontologies and genes that fall under the categories and stored the inferred

relations at the time of updating the data. Additionally, the combinations of the selected

facets are stored in a user's cookie, and the query results are cached as much as possible

to improve response time.

While SPARQL queries are suitable for semantic searches of interconnected objects in

the RDF datasets, the efficiency of character string and regular expression searches is

inefficient in most of the triple stores. In TogoGenome, I introduced the Apache Solr full-

text search system for indexing character strings such as names, descriptions, and other

text-based annotations of genes and organisms. However, identifying the page on which

a searched term is displayed without tracing the connections between triples and pages

was still difficult. To resolve this issue, we selected the targeted fields for the text searches

in each TogoStanza and further indexed the strings and corresponding stanzas in pairs.

For example, in the case of a gene report page, currently seven stanzas contain literal

annotations of a gene, each representing different aspects of the same gene. I therefore

created an index that contains a TogoGenome gene URI and a literal string for each

TogoStanza (Figure 3.7). In this figure, the gene URI indicated by @id and a literal string

containing the information about IDs and annotations were used in indexing. This

indexing procedure is iterated over all genes of each organism stored in TogoGenome.

{

 "@id": "http://togogenome.org/gene/9606:ALDH2",

 "gene_id": "9606:ALDH2",

 "uniprot_id": ["P05091"],

 "names": ["Caution", "Polymorphism", "Similarity", "Subcellular Location", "Subunit"],

 "messages": [

 "Belongs to the aldehyde dehydrogenase family.",

 "Genetic variation in ALDH2 is responsible for individual differences in responses to drinking alcohol [MIM:610251] ... ",

 "Homotetramer.",

 "Mitochondrion matrix",

 "No experimental confirmation available."

]

}

Figure 3.7 Correspondence of TogoGenome URI and literal strings for each TogoStanza to be indexed for text search in Apache Solr.

(This shows an example of human ALDH2 protein annotation in the “Protein general annotation” stanza).

 49

Similarly, searching for genomic regions that have a specific sequence with SPARQL is

not efficient. Therefore, I used the GGGenome system (https://GGGenome.dbcls.jp/) API

to obtain the corresponding chromosome and its position. Using the specified sequence

ID and location, genomic annotations around the region can be obtained by a SPARQL

query using the FALDO ontology.

3.3.4 Development of TogoStanza

Due to historical reasons, there are two branches of the TogoStanza development

framework. TogoStanza was originally developed as a Ruby application but was later

implemented using JavaScript. Both of these branches are able to generate template files

for SPARQL and HTML along with the files for metadata and supporting data.

The Ruby version of the TogoStanza framework was released as a RubyGems' package

(https://rubygems.org/). Therefore, users can install it via Ruby's standard ‘gem’

command and further generate the TogoStanza template files using the installed

‘togostanza’ command. After customizing the templates and developing the query and

visualization logic, the resulting TogoStanza can be deployed at the TogoStanza server

and embedded into any web page as an IFRAME. Because the IFRAME encapsulates its

content, other elements on a web page, even on a classical web browser, are not affected.

However, due to the strict isolation of IFRAME, it is difficult to make a TogoStanza

interact with other TogoStanza even if both contain components that are embedded on the

same page. Further, this version requires the TogoStanza process to keep running on the

server while the SPARQL queries that are implemented inside the TogoStanza are

executed on the server side. Therefore, a heavy load may be created while exhibiting

exceeding accesses. This problem can be resolved in the JavaScript version of

TogoStanza.

The JavaScript version of the TogoStanza module relies only on standard web

technologies, such as HTML, CSS, JavaScript, AJAX, and SPARQL, and generates Web

Components as a static HTML file. This eliminates the dependency on the server side

where the SPARQL queries are made via an AJAX call directly from the user's web

browser to the public SPARQL endpoint. The results are rendered by the client browser.

 50

Using “Web Components” technology, which encapsulates Document Object Model

(DOM) as a shadow DOM, multiple TogoStanza can be embedded in a single DOM of a

web page so that it is possible to implement components that react to an event that has

been issued by another component upon a user's interaction. The current drawback is that

the state of the browser's support, even while using a modern web browser, is not

optimized for Web Components. Therefore, it will take a while for the transition from the

Ruby version to the JavaScript version. Therefore, I provide a special Ruby version

TogoStanza that wraps the JavaScript version as a temporal countermeasure.

3.4 Discussion

By introducing a modularized architecture for displaying SPARQL results as TogoStanza,

I and our collaborators were able to reduce the costs of mutually constructing new

genome-related databases in TogoGenome, MicrobeDB.jp, MBGD (Uchiyama et al.,

2015), and CyanoBase. This exchange of distributed resources could not be achieved by

existing monolithic genome database systems. The idea of providing reusable application

components based on standard web technology is a natural extension of the concept of

the Semantic Web. In the Semantic Web, RDF data stored in distributed SPARQL

endpoints are transparently accessible through the standard HTTP/HTTPS protocol

unlike the data buried in intranet database systems. Therefore, it is possible to use

distributed heterogeneous data on a reciprocal basis. Additionally, RDF is scalable for the

integration of heterogeneous data types without being bound by the database schema.

Traditionally, most genome databases are built on top of high-performance database

engines such as a relational database (RDB) or key-value stores. I was unsure about the

performance of emerging triple stores for RDF. Further, the original version of

TogoGenome had been implemented using other triple stores or prior versions of Virtuoso

and had not scaled enough in the beginning. However, the Virtuoso open source version

7, released in 2013, exhibited sufficiently high practical performance for our genome

database by making tens of real-time SPARQL queries at once against billions of triples.

I have successfully demonstrated an RDF back-ended system with real-time SPARQL

 51

queries that can be used for a large-scale genome database. Meanwhile, I observed that

triple stores were not efficient for text searches. However, this is not necessarily a defect

of the Semantic Web system. Even while using relational databases or other NoSQL

databases, it is the norm to prepare a text search engine to perform keyword searches and

an external application, such as BLAST, to perform sequence searches.

Traditional databases required users to parse a database entry to extract information,

forcing them to develop custom scripts with programming language-dependent open

source libraries, such as BioPerl (Stajich et al., 2002), Biopython (Cock et al., 2009),

BioJava (Prlić et al., 2012), and BioRuby (Goto et al., 2010a), before performing real

bioinformatics analyses. For databases that do not publish flat file dumps, a web interface

that can retrieve the summarized information is often provided. However, the flexibility

and granularity of information that can be obtained by users are usually restricted by the

capability of the provided APIs. In RDF, all the information is already parsed and

semantically annotated. In the case of SPARQL, especially with the ontologies and

adaptable conditions, it is relatively straightforward to obtain any aggregated information

by filtering data.

3.5 Conclusions

I introduced a modularized architecture in the TogoGenome database that allowed

database developers to reuse the typical annotations of genes and organisms in other

organism-specific or metagenome databases as embeddable TogoStanza components

(Supplemental Table 3.1 and Appendix).

Because all the RDF data, the SPARQL endpoint, and TogoStanza components that are

used in the TogoGenome application are publicly available, developers who intend to

build another genome database will benefit from the usage of these resources to reduce

the costs of application development and data management costs.

 52

Chapter 4

Discussions and conclusions

In order to realize integrated utilization of life science databases, I conducted research for

improving standardization and interoperability of database access methods and database

contents. Since realization of such standardization cannot be achieved by a single institute,

it was necessary to collaborate with an international community to develop systems and

semantic datasets.

Originally, I have developed the BioRuby library supporting a number of database

formats and bioinformatics applications. This library has been used to develop a client

program to conduct data analysis and create reproducible workflows. However, it turned

out that a workflow which utilizes Web services faced difficulties in connecting the output

of one service into the input of the next service because of data type incompatibility. Also,

APIs in existing Web services vary in its form of calling APIs and accepting data formats,

thus requiring users to consult the documentation of each service and to develop data

conversion programs. This situation gave me the idea to standardize the APIs of these

services and to improve the interoperability of Web services by creating a new Web

service, TogoWS, which fills this gap of incompatibility.

The mission of Database Center for Life Science (DBCLS) is to promote integrated use

of life science databases. However, because of the exponential growth in volume of these

databases, it is becoming hard to maintain a centralized database at a single center. Instead,

it is more efficient and sustainable to virtually integrate distributed databases. For this

purpose, Web services is one applicable technology, and my TogoWS development

described above can contribute to realize this integration. During the course of

development, I also added support for RDF conversion in TogoWS which exposes

database contents as Linked Data.

 53

By providing an RDF version of data, information retrieval and analysis based on the

meaning of data, which was difficult with conventional databases, could be realized.

Therefore, the next mission of the DBCLS became the advancement of standardized

database contents in the life sciences and biomedical domains using Semantic Web

technologies. With this shift, the possibility of new data usage which could not be realized

by conventional technologies was greatly increased. In TogoGenome, I collaboratively

integrated heterogeneous datasets in the genomics domain, such as organisms, genes,

proteins, phenotypes, and environments, as RDF data and ontologies. As a result, users

could benefit from a faceted search system using multiple ontologies in combination to

semantically extract information of interest. This kind of information retrieval could not

be achieved by conventional database systems thus demonstrating one of the advantages

of Semantic Web technologies.

In addition to create and maintain billions of triples in an RDF database, genomics data

often contain tremendous volumes of raw data such as SAM/BAM sequence read

alignments, epigenomic data and variant calling data. I realized that semantic integration

of data is most suitable for information such as facts and annotations including gene

structures, locations and protein functions as in the case of a gene report. In contrast, raw

data supporting this information, which is usually displayed in a genome browser, do not

necessarily need to be represented as RDF, because they are usually stored in an efficient

binary format for improving read/write performance.

Another improvement in TogoGenome was to introduce a modularized structure.

TogoGenome is composed of a combination of multiple TogoStanzas, each of which

displays an information block resulting from their respective SPARQL queries. A new

TogoStanza is first initialized with templates including a code snippet with scaffold

SPARQL and HTML files. The developer can override the SPARQL queries and the logic

of data transformation for visualization. The resultant data is rendered in HTML and sent

back to the client Web browser. A drawback of this implementation design is that useful

SPARQL queries are buried in the existing TogoStanza instances and are not easily

 54

reusable. Therefore, I started to externalize these SPARQL queries as REST APIs using

SPARQList (https://github.com/dbcls/sparqlist), which is a new Web service I created at

DBCLS for improving the reusability of SPARQL-based REST APIs. In SPARQList, a

developer can describe an API itself in Markdown format with documentation, embed

SPARQL queries, and logic to transform SPARQL results into convenient JSON data.

The resulting API is instantly deployed and can be executed from a Web interface and

from any Web client applications especially through an AJAX call as in TogoStanza.

Therefore, by exposing well-developed SPARQL queries in TogoStanza as SPARQList,

users can easily reuse complex queries for their analysis, and advanced users can test and

modify these queries for similar purposes.

For future research, I initiated the development of a human genome variation database,

TogoVar (https://togovar.biosciencedbc.jp/), in which the human subset of TogoGenome

is reused. Then my colleagues and I in the TogoVar project added information about

genomic variations and allele frequencies in the Japanese population. Thanks to Semantic

Web technologies, it is relatively easy to extend data models in TogoGenome to integrate

new type of datasets in the TogoVar database. Therefore, I also started the Med2RDF

project (http://med2rdf.org/) to develop RDF datasets of biomedical resources with

colleagues, which integrates knowledge of genetic diseases, sequence and structural

variants, cancer genomes, protein and drug interactions, and clinical significance. All the

RDF data we developed are being accumulated and hosted in the NBDC RDF Portal

(Kawashima et al., 2018). These resources will be essential for future data science

research, and it is anticipated that new methods will be developed by introducing

advanced analytical techniques such as machine learning.

 55

References

Benson,D.A. et al. (2017) GenBank. Nucleic Acids Res., 45, D37–D42.
Bolleman,J.T. et al. (2016) FALDO: a semantic standard for describing the location of

nucleotide and protein feature annotation. J. Biomed. Semantics, 7, 39.
Buels,R. et al. (2016) JBrowse: a dynamic web platform for genome visualization and

analysis. Genome Biol., 17, 66.
Cochrane,G. et al. (2016) The International Nucleotide Sequence Database

Collaboration. Nucleic Acids Res., 44, D48-50.
Cock,P.J.A. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–3.
Corpas,M. et al. (2014) BioJS: an open source standard for biological visualisation - its

status in 2014. F1000Research, 3, 55.
Dehal,P. et al. (2002) The draft genome of Ciona intestinalis: insights into chordate and

vertebrate origins. Science, 298, 2157–67.
Dumontier,M. et al. (2014) The Semanticscience Integrated Ontology (SIO) for

biomedical research and knowledge discovery. J. Biomed. Semantics, 5, 14.
Fielding,R.T. (2000) Architectural Styles and the Design of Network-based Software

Architectures.
Fujisawa,T. et al. (2017) CyanoBase: a large-scale update on its 20th anniversary.

Nucleic Acids Res., 45, D551–D554.
Goto,N. et al. (2010a) BioRuby: bioinformatics software for the Ruby programming

language. Bioinformatics, 26, 2617–9.
Goto,N. et al. (2010b) BioRuby: Bioinformatics software for the Ruby programming

language. Bioinformatics, 26, 2617–2619.
Holland,R.C.G. et al. (2008) BioJava: an open-source framework for bioinformatics.

Bioinformatics, 24, 2096–7.
Hull,D. et al. (2006) Taverna: a tool for building and running workflows of services.

Nucleic Acids Res., 34, W729-32.
Kalderimis,A. et al. (2014) InterMine: extensive web services for modern biology.

Nucleic Acids Res., 42, W468-72.
Kanehisa,M. et al. (2010) KEGG for representation and analysis of molecular networks

involving diseases and drugs. Nucleic Acids Res., 38, D355-60.
Katayama,T. et al. (2014) BioHackathon series in 2011 and 2012: penetration of

 56

ontology and linked data in life science domains. J. Biomed. Semantics, 5, 5.
Katayama,T. et al. (2011) The 2nd DBCLS BioHackathon: interoperable bioinformatics

Web services for integrated applications. J. Biomed. Semantics, 2, 4.
Katayama,T. et al. (2013) The 3rd DBCLS BioHackathon: improving life science data

integration with semantic Web technologies. J. Biomed. Semantics, 4, 6.
Katayama,T., Arakawa,K., et al. (2010) The DBCLS BioHackathon: standardization

and interoperability for bioinformatics web services and workflows. The DBCLS
BioHackathon Consortium*. J. Biomed. Semantics, 1, 8.

Katayama,T. et al. (2019) TogoGenome/TogoStanza: modularized Semantic Web
genome database. Database (Oxford)., 2019, 1–11.

Katayama,T., Nakao,M., et al. (2010a) TogoWS: integrated SOAP and REST APIs for
interoperable bioinformatics Web services. Nucleic Acids Res., 38, W706-11.

Katayama,T., Nakao,M., et al. (2010b) TogoWS: integrated SOAP and REST APIs for
interoperable bioinformatics Web services. Nucleic Acids Res., 2008, 1–6.

Kawashima,S. et al. (2018) NBDC RDF portal: a comprehensive repository for
semantic data in life sciences. Database (Oxford)., 2018, 1–11.

Kwon,Y. et al. (2009) Web API for biology with a workflow navigation system.
Nucleic Acids Res., 37, W11-6.

Labarga,A. et al. (2007) Web services at the European bioinformatics institute. Nucleic
Acids Res., 35, W6-11.

Mashima,J. et al. (2017) DNA Data Bank of Japan. Nucleic Acids Res., 45, D25–D31.
Mishima,H. et al. (2012) The Ruby UCSC API: accessing the UCSC genome database

using Ruby. BMC Bioinformatics, 13, 240.
Miyazaki,S. et al. (2004) DDBJ in the stream of various biological data. Nucleic Acids

Res., 32, D31-4.
Mungall,C.J. et al. (2011) Evolution of the Sequence Ontology terms and relationships.

J. Biomed. Inform., 44, 87–93.
O’Connor,B.D. et al. (2008) GMODWeb: a web framework for the Generic Model

Organism Database. Genome Biol., 9, R102.
O’Leary,N.A. et al. (2016) Reference sequence (RefSeq) database at NCBI: current

status, taxonomic expansion, and functional annotation. Nucleic Acids Res., 44,
D733-45.

Pillai,S. et al. (2005) SOAP-based services provided by the European Bioinformatics
Institute. Nucleic Acids Res., 33, W25-8.

Prlić,A. et al. (2012) BioJava: an open-source framework for bioinformatics in 2012.
Bioinformatics, 28, 2693–5.

 57

Raney,B.J. et al. (2014) Track data hubs enable visualization of user-defined genome-
wide annotations on the UCSC Genome Browser. Bioinformatics, 30, 1003–5.

Sayers,E.W. et al. (2009) Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res., 37, D5-15.

Silvester,N. et al. (2018) The European Nucleotide Archive in 2017. Nucleic Acids Res.,
46, D36–D40.

Stajich,J.E. et al. (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome
Res., 12, 1611–8.

Stajich,J.E. and Lapp,H. (2006) Open source tools and toolkits for bioinformatics:
significance, and where are we? Brief. Bioinform., 7, 287–96.

Standley,D.M. et al. (2008) Protein structure databases with new web services for
structural biology and biomedical research. Brief. Bioinform., 9, 276–85.

Stockinger,H. et al. (2008) Experience using web services for biological sequence
analysis. Brief. Bioinform., 9, 493–505.

Sugawara,H. et al. (2008) DDBJ with new system and face. Nucleic Acids Res., 36,
D22-4.

Sugawara,H. and Miyazaki,S. (2003) Biological SOAP servers and web services
provided by the public sequence data bank. Nucleic Acids Res., 31, 3836–9.

The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic
Acids Res., 45, D158–D169.

Uchiyama,I. et al. (2015) MBGD update 2015: microbial genome database for flexible
ortholog analysis utilizing a diverse set of genomic data. Nucleic Acids Res., 43,
D270-6.

UniProt Consortium (2008) The universal protein resource (UniProt). Nucleic Acids
Res., 36, D190-5.

Vandervalk,B.P. et al. (2009) Moby and Moby 2: creatures of the deep (web). Brief.
Bioinform., 10, 114–28.

Wilkinson,M.D. and Links,M. (2002) BioMOBY: an open source biological web
services proposal. Brief. Bioinform., 3, 331–41.

Zerbino,D.R. et al. (2018) Ensembl 2018. Nucleic Acids Res., 46, D754–D761.

 58

Supplemental Figures and Tables

Supplemental Table 2.1 List of available databases for keyword search. The first column

represents canonical database names and the second is for aliases if defined.

pdbj-pdb pdb

kegg-compound compound

kegg-drug drug

kegg-enzyme enzyme

kegg-genes genes

kegg-glycan glycan

kegg-orthology orthology

kegg-reaction reaction

kegg-module module

kegg-pathway pathway

ncbi-pubmed pubmed

ncbi-protein protein

ncbi-nuccore nuccore

ncbi-nucleotide nucleotide

ncbi-nucgss nucgss

ncbi-nucest nucest

ncbi-structure

ncbi-genome

ncbi-assembly

ncbi-gcassembly

ncbi-genomeprj

ncbi-bioproject

ncbi-biosample

ncbi-biosystems

ncbi-blastdbinfo

ncbi-books

ncbi-cdd

ncbi-clone

ncbi-gap

 59

ncbi-gapplus

ncbi-dbvar

ncbi-epigenomics

ncbi-gene gene

ncbi-gds

ncbi-geoprofiles

ncbi-homologene homologene

ncbi-journals

ncbi-medgen

ncbi-mesh mesh

ncbi-ncbisearch

ncbi-nlmcatalog

ncbi-omia

ncbi-omim omim

ncbi-pmc

ncbi-popset

ncbi-probe

ncbi-proteinclusters

ncbi-pcassay

ncbi-pccompound

ncbi-pcsubstance

ncbi-pubmedhealth

ncbi-seqannot

ncbi-snp snp

ncbi-sra

ncbi-taxonomy

ncbi-toolkit

ncbi-toolkitall

ncbi-toolkitbook

ncbi-unigene

ncbi-unists

ncbi-gencoll

ebi-arrayexpress-repository

ebi-atlas-experiments

ebi-atlas-genes

ebi-biomodels

 60

ebi-chebi

ebi-chembl-activity

ebi-chembl-assay

ebi-chembl-target

ebi-dgva

ebi-efo

ebi-ega

ebi-emblnew_con

ebi-emblnew_standard

ebi-emblrelease_con

ebi-emblrelease_standard

ebi-ensemblGenomes_gene

ebi-ensembl_gene

ebi-epo

ebi-genome_assembly

ebi-go

ebi-gpcrdb

ebi-hgnc

ebi-intact-experiments

ebi-intact-interactions

ebi-intact-interactors

ebi-intenz

ebi-interpro

ebi-jpo

ebi-kipo

ebi-lrg

ebi-medline

ebi-merops_clan

ebi-merops_family

ebi-merops_id

ebi-nrnl1

ebi-nrnl2

ebi-nrpl1

ebi-nrpl2

ebi-omim

ebi-patentFamilies

 61

ebi-patentdb

ebi-pdbe

ebi-pdbechem

ebi-pride

ebi-project

ebi-reactome

ebi-rhea

ebi-sbo

ebi-sra-analysis

ebi-sra-experiment

ebi-sra-run

ebi-sra-sample

ebi-sra-study

ebi-sra-submission

ebi-taxonomy

ebi-uniparc uniparc

ebi-uniprot uniprot

ebi-uniref100 uniref100

ebi-uniref50 uniref50

ebi-uniref90 uniref90

ebi-uspto

ebi-wgs_masters

 62

Supplemental Table 2.2 List of available databases for entry retrieval. The first column

represents canonical database names and the second is for aliases.

ncbi-nuccore nuccore

ncbi-nucest nucest

ncbi-nucgss nucgss

ncbi-nucleotide nucleotide

ncbi-protein protein

ncbi-gene gene

ncbi-homologene homologene

ncbi-snp snp

ncbi-mesh mesh

ncbi-pubmed pubmed

ebi-ena ena

ebi-uniprot uniprot

ebi-uniparc uniparc

ebi-uniref100 uniref100

ebi-uniref90 uniref90

ebi-uniref50 uniref50

ddbj-ddbj ddbj

ddbj-dad dad

pdbj-pdb pdb

kegg-compound compound

kegg-drug drug

kegg-enzyme enzyme

kegg-genes genes

kegg-glycan glycan

kegg-orthology orthology

kegg-reaction reaction

kegg-module module

kegg-pathway pathway

 63

Supplemental Table 2.3 List of available pairs of a source data type and a converted

format. The first part before a period represents an acceptable source data type and the

latter part shows a convertible format.

genbank.fasta

genbank.ena

genbank.gff

genbank.ntriples

genbank.n3

genbank.rdfxml

genbank.ttl

ena.fasta

ena.genbank

ena.ntriples

ena.n3

ena.rdfxml

ena.ttl

ddbj.ntriples

ddbj.n3

ddbj.rdfxml

ddbj.ttl

uniprot.fasta

uniprot.gff

blast.gff

blasttable.gff

blastxml.gff

megablast.gff

fasta.gff

psl.gff

sim4.gff

hmmer.gff

hmmer3tbl.rdfxml

exonerate.gff

wise.gff

rdfxml.ttl

ttl.rdfxml

 64

csv.rdfxml

csv.ttl

gff.rdfxml

gff.ttl

gvf.rdfxml

gvf.ttl

 65

Supplemental Table 3.1 List of TogoStanzas developed for the TogoGenome.

Genes and proteins

gene_attributes: basic information of a gene

nucleotide_sequence: nucleotide sequence of a gene

protein_attributes: basic information of a protein

protein_names: canonical and alternative names of a protein

protein_general_annotation: functional annotations of a protein

protein_orthologs: links to orthologous proteins

protein_cross_references: cross references to other protein resources

protein_ontologies: keywords and gene ontology annotations

protein_references: links to literature

protein_sequence: information and amino acid sequence of a protein

protein_sequence_annotation: domain and functional sites of a protein

Genomes

genome_information: list of chromosomal sequences

genome_cross_references: cross references to other genome resources

genome_jbrowse: genome browser

genome_plot: scatter plot of a distribution of genomic properties

Organisms

organism_names: list of organism names and synonyms

organism_phenotype: phenotype descriptions of a organism

organism_cross_references: cross references to organism related resources

organism_gene_list: list of genes of a organism

lineage_information: taxonomic lineage of an organism

organism_habitat: list of habitats of a organism

organism_pathogen_information: organism related pathogenic diseases

organism_culture_collections: summary of culture collections of a organism

organism_medium_information: medium information of a organism

taxonomy_ortholog_profile: taxonomic profile of an ortholog group

 66

Environments

environment_attributes: description of an environment

environment_environmental_ontology: hierarchical view of an environment

environment_geographical_map: geographic locations of an environment

environment_inhabitants: samples and cultures taken from an environment

environment_inhabitants_statistics: number of samples and cultures

environment_taxonomic_composition: breakdown of organisms of an environment

Phenotypes

microbial_phenotype_information: list of organisms of a phenotype

microbial_phenotype_cell_shape: description of a shape of a microbial

microbial_phenotype_environment_composition: environments and phenotype

microbial_phenotype_genus_composition: genus and phenotype

Medium

gmo_applied_spices: applied species of a medium

gmo_approximation: relevance among medium

gmo_genus: medium based organism summary

medium_components: components of a medium

NanoStanza

gene_length_nano

gene_wikidata_nano

protein_ec_number_nano

protein3d_structure_nano

protein_references_timeline_nano

organism_gene_number_nano

organism_genome_size_nano

organism_gc_nano

organism_microbial_cell_shape_nano

organism_related_disease_nano

organism_wikidata_nano

 67

organism_ph_nano

environment_inhabitants_statistics_nano

environment_organism_distribution_on_ph_nano

environment_organism_distribution_on_temperature_nano

environment_top_level_symbolic_image_nano

MetaStanza

js_stanza_wrapper

 68

Appendix

TogoWS API specification

In this section, generic functionalities and advanced features of the TogoWS APIs are
described.

TogoWS REST API conventions

TogoWS REST API currently supports following functionalities.

Entry http://togows.org/entry/database/entry_id[,entry_id2,...][/field][.format]

Search http://togows.org/search/database/query+string[/offset,limit][.format]

Convert http://togows.org/convert/data_source.format

External API http://togows.org/api/service/database/table/column=value[/offset,limit][.format]

Entry

Entry retrieval REST API can be used to obtain database entries, extract a field content
and convert the data format.

• Synopsis

o http://togows.org/entry/database/entry_id[,entry_id2,...][/field][.format]

• Multiple entries

o Multiple entries can be retrieved at once by concatenating identifiers with ',' (100 entries at

maximum)

• Options

o List of available databases: http://togows.org/entry/ (some have alias for short in the

second column)

o List of available fields: http://togows.org/entry/database?fields

o List of available formats: http://togows.org/entry/database?formats

o Splice of a nucleotide sequence: http://togows.org/entry/database/seq/location

• Errors

 69

o 400 Bad Request (HTTP error): requested URI or the database was invalid

o 404 Not Found (HTTP error): requested entry was not found

Search

Database search REST API can be used to obtain a list of entry identifiers or a number of
results by a keyword search.

• Synopsis

o http://togows.org/search/database/query+string[/offset,limit][.format]

• Query string

o Format of the "query string" is just a simple text (spaces can be replaced with '+' or '%20')

• Options

o List of available databases: http://togows.org/search/ (some have alias for short in the

second column)

o List of available formats: http://togows.org/search/database?format

o Limit the number of results: http://togows.org/search/database/query+string/offset,limit

o Count the number of results: http://togows.org/search/database/query+string/count

• Errors

o 400 Bad Request (HTTP error): requested URI or the database was invalid

o 404 Not Found (HTTP error): requested entry had no results

Convert

Data format conversion REST API can be used to convert file formats.

• Synopsis

o http://togows.org/convert/data_source.format

• Protocol

o Use the HTTP POST protocol to upload your data as a text

• Options

o List of available converters: http://togows.org/convert/ (description of these formats can

be found here and here)

• Errors

o 400 Bad Request (HTTP error): requested URI was invalid

o 404 Not Found (HTTP error): requested data_source.format is not supported

 70

TogoWS external API

External API is introduced to provide REST APIs for accessing non-Web service based
external data sources, such as University of California, Santa Cruz (UCSC) databases.

UCSC API

UCSC API internally uses the Ruby UCSC API library which directly accesses to the
public MySQL database provided by the UCSC. Although UCSC uses 0-based inter-base
coordinates, TogoWS accepts biological 1-based positions (which can contain commas
but not mandatory) and are automatically converted when accessing the UCSC database.

• Synopsis

o http://togows.org/api/ucsc/database/table/column[!]=value[;column2[!]=value2;...][/offset,l

imit][.format]

• Options

o List of available databases: http://togows.org/api/ucsc[.json]

o List of available tables: http://togows.org/api/ucsc/database[.json]

o List of available columns: http://togows.org/api/ucsc/database/table[.json] (example data

will be shown in the second column)

o Obtain a limited number of

results: http://togows.org/api/ucsc/database/table/offset,limit[.json]

• Keyword search

o Find rows having a keyword in a given

column: http://togows.org/api/ucsc/database/table/column=value[/offset,limit][.json]

o Find rows not having a keyword in a given

column: http://togows.org/api/ucsc/database/table/column!=value[/offset,limit][.json]

o Filtering by multiple

conditions: http://togows.org/api/ucsc/database/table/column[!]=value[;column2[!]=value

2;...][/offset,limit][.json]

• Range search

o Find rows within a range: http://togows.org/api/ucsc/database/table/chromosome:from-

to[.json] (default to inclusive)

o Include rows straddle over a

boundary: http://togows.org/api/ucsc/database/table/inclusive/chromosome:from-to[.json]

 71

o Exclude rows straddle over a

boundary: http://togows.org/api/ucsc/database/table/exclusive/chromosome:from-to[.json]

• Gene table (refGene, knownGene, ensGene, wgEncode etc.)

o CDS positions: http://togows.org/api/ucsc/database/refGene/name[2]=value/cds[.json]

o Exon positions: http://togows.org/api/ucsc/database/refGene/name[2]=value/exon[.json]

o Intron

positions: http://togows.org/api/ucsc/database/refGene/name[2]=value/intron[.json]

• bigWig data

o Corresponding file name: http://togows.org/api/ucsc/database/bigWig

o bigWigInfo output: http://togows.org/api/ucsc/database/bigWig/info

o bigWigSummary output: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor (default to mean)

§ Mean: http://togows.org/api/ucsc/database/bigWig/chromosome:from-to/divisor/mean

§ Minimum: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/min

§ Maximum: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/max

§ Coverage: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/coverage

§ Standard deviation: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/std

• bigBed data

o Corresponding file name: http://togows.org/api/ucsc/database/bigBed

o bigBedInfo output: http://togows.org/api/ucsc/database/bigBed/info

o bigBedSummary output: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor (default to coverage)

§ Mean: http://togows.org/api/ucsc/database/bigBed/chromosome:from-to/divisor/mean

§ Minimum: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor/min

§ Maximum: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor/max

§ Coverage: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor/coverage

• DNA sequence (2bit file)

o Forward strand: http://togows.org/api/ucsc/database/chromosome:from-to[.fasta]

o Reverse strand: http://togows.org/api/ucsc/database/chromosome:to-from[.fasta]

 72

TogoWS API examples

In this section, representative examples of the TogoWS APIs are shown.

TogoWS entry retrieval API examples

Retrieve a PubMed entry 20472643.

% curl http://togows.org/entry/pubmed/20472643

PMID- 20472643

OWN - NLM

STAT- MEDLINE

DCOM- 20100927

LR - 20141203

IS - 1362-4962 (Electronic)

IS - 0305-1048 (Linking)

VI - 38

IP - Web Server issue

DP - 2010 Jul

TI - TogoWS: integrated SOAP and REST APIs for interoperable bioinformatics Web

 services.

PG - W706-11

 :

(60 lines)

Retrieve a PubMed entry 20472643 and extract authors in a JSON format.

% curl http://togows.org/entry/pubmed/20472643/authors.json

[

 [

 "Katayama, T.",

 "Nakao, M.",

 "Takagi, T."

]

]

 73

Retrieve a UniProt entry BRCA2_HUMAN.

% curl http://togows.org/entry/uniprot/BRCA2_HUMAN

ID BRCA2_HUMAN Reviewed; 3418 AA.

AC P51587; O00183; O15008; Q13879; Q5TBJ7;

DT 01-OCT-1996, integrated into UniProtKB/Swiss-Prot.

DT 11-NOV-2015, sequence version 3.

DT 12-SEP-2018, entry version 208.

DE RecName: Full=Breast cancer type 2 susceptibility protein;

DE AltName: Full=Fanconi anemia group D1 protein;

GN Name=BRCA2; Synonyms=FACD, FANCD1;

OS Homo sapiens (Human).

 :

(1750 lines)

Retrieve UniProt entries ACT_YEAST and ACT_SCHPO in a FASTA format.

% curl http://togows.org/entry/uniprot/ACT_YEAST,ACT_SCHPO.fasta

>sp|P60010|ACT_YEAST Actin OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292

GN=ACT1 PE=1 SV=1

MDSEVAALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGIMVGMGQKDSYVGDEAQS

KRGILTLRYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPMNPKSNREKMT

QIMFETFNVPAFYVSIQAVLSLYSSGRTTGIVLDSGDGVTHVVPIYAGFSLPHAILRIDL

AGRDLTDYLMKILSERGYSFSTTAEREIVRDIKEKLCYVALDFEQEMQTAAQSSSIEKSY

ELPDGQVITIGNERFRAPEALFHPSVLGLESAGIDQTTYNSIMKCDVDVRKELYGNIVMS

GGTTMFPGIAERMQKEITALAPSSMKVKIIAPPERKYSVWIGGSILASLTTFQQMWISKQ

EYDESGPSIVHHKCF

>sp|P10989|ACT_SCHPO Actin OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812

GN=act1 PE=1 SV=1

MEEEIAALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHHGIMVGMGQKDSYVGDEAQS

KRGILTLKYPIEHGIVNNWDDMEKIWHHTFYNELRVAPEEHPCLLTEAPLNPKSNREKMT

QIIFETFNAPAFYVAIQAVLSLYASGRTTGIVLDSGDGVTHTVPIYEGYALPHAIMRLDL

AGRDLTDYLMKILMERGYTFSTTAEREIVRDIKEKLCYVALDFEQELQTAAQSSSLEKSY

ELPDGQVITIGNERFRAPEALFQPSALGLENAGIHEATYNSIMKCDVDIRKDLYGNVVMS

GGTTMYPGIADRMQKEIQALAPSSMKVKIVAPPERKYSVWIGGSILASLSTFQQMWISKQ

EYDESGPGIVYRKCF

 74

Retrieve a RefSeq entry NC_001138 (yeast chromosome 6) in a GFF format.

% curl http://togows.org/entry/nucleotide/NC_001138.gff

##gff-version 3

NC_001138 Genbank region 1 270161 . . .

 ID=NC_001138;Note=Saccharomyces%20cerevisiae%20S288C%20chromosome%20VI%2C%20complete%20

sequence.

NC_001138 Genbank region 1 270161 . + .

 ID=Saccharomyces%20cerevisiae%20S288C;db_xref=taxon%3A559292;chromosome=VI;strain=S288C

;mol_type=genomic%20DNA

NC_001138 Genbank telomere 1 5530 . - .

 ID=TEL06L%3B%20Telomeric%20region%20on%20the%20left%20arm%20of%20Chromosome%20VI%3B%20c

omposed%20of%20an%20X%20element%20core%20sequence%2C%20X%20element%20combinatorial%20repeats%2C%

20a%20stretch%20of%20telomeric%20repeats%2C%20and%20a%20short%20Y%27%20element;db_xref=SGD%3AS00

0028882

NC_001138 Genbank gene 53 535 . + .

 ID=YFL068W;db_xref=GeneID%3A850476

NC_001138 Genbank mRNA 53 535 . + .

 Parent=YFL068W;ID=YFL068W.t01;db_xref=GeneID%3A850476;transcript_id=NM_001179899.1;prod

uct=hypothetical%20protein

NC_001138 Genbank CDS 53 535 . + .

 Parent=YFL068W.t01;protein_id=NP_116587.1;note=hypothetical%20protein%3B%20SWAT-

GFP%20and%20mCherry%20fusion%20proteins%20localize%20to%20the%20cytosol;codon_start=1;db_xref=Ge

neID%3A850476,SGD%3AS000001826;translation=MMPAKLQLDVLRTLQSSARHGTQTLKNSNFLERFHKDRIVFCLPFFPALFLVP

VQKVLQHLCLRFTQVAPYFIIQLFDLPSRHAENLAPLLASCRIQYTNCFSSSSNGQVPSIISLYLRVDLSPFYAKKFQIPYRVPMIWLDVFQVFFV

FLVISQHSLHS;product=hypothetical%20protein

 :

(4996 lines)

Extract a sub-sequence that of the ACT1 gene which has two exons at 53260..54377 and
54687..54696 on a reverse complement strand of the RefSeq entry NC_001138 (yeast
chromosome 6).

% curl 'http://togows.org/entry/nucleotide/NC_001138/seq/complement(join(53260..54377,54687..

54696))'

 75

atggattctgaggttgctgctttggttattgataacggttctggtatgtgtaaagccggttttgccggtgacgacgctcctcgtgctgtcttccca

tctatcgtcggtagaccaagacaccaaggtatcatggtcggtatgggtcaaaaagactcctacgttggtgatgaagctcaatccaagagaggtatc

ttgactttacgttacccaattgaacacggtattgtcaccaactgggacgatatggaaaagatctggcatcataccttctacaacgaattgagagtt

gccccagaagaacaccctgttcttttgactgaagctccaatgaaccctaaatcaaacagagaaaagatgactcaaattatgtttgaaactttcaac

gttccagccttctacgtttccatccaagccgttttgtccttgtactcttccggtagaactactggtattgttttggattccggtgatggtgttact

cacgtcgttccaatttacgctggtttctctctacctcacgccattttgagaatcgatttggccggtagagatttgactgactacttgatgaagatc

ttgagtgaacgtggttactctttctccaccactgctgaaagagaaattgtccgtgacatcaaggaaaaactatgttacgtcgccttggacttcgaa

caagaaatgcaaaccgctgctcaatcttcttcaattgaaaaatcctacgaacttccagatggtcaagtcatcactattggtaacgaaagattcaga

gccccagaagctttgttccatccttctgttttgggtttggaatctgccggtattgaccaaactacttacaactccatcatgaagtgtgatgtcgat

gtccgtaaggaattatacggtaacatcgttatgtccggtggtaccaccatgttcccaggtattgccgaaagaatgcaaaaggaaatcaccgctttg

gctccatcttccatgaaggtcaagatcattgctcctccagaaagaaagtactccgtctggattggtggttctatcttggcttctttgactaccttc

caacaaatgtggatctcaaaacaagaatacgacgaaagtggtccatctatcgttcaccacaagtgtttctaa

Show a list of available formats for the NCBI Nucleotide database.

% curl 'http://togows.org/entry/nucleotide?formats'

gb

xml

ttl

fasta

gff

json

Show a list of available fields for the NCBI Nucleotide database.

% curl 'http://togows.org/entry/nucleotide?fields'

entry_id

length

strand

moltype

linearity

division

date

definition

accession

accessions

 76

version

versions

acc_version

gi

keywords

organism

common_name

taxonomy

comment

seq

references

features

TogoWS search API examples

Search the UniProt database using the phrase “lung cancer”.

% curl http://togows.org/search/uniprot/lung+cancer

KKLC1_HUMAN

DLEC1_HUMAN

KKLC1_MACFA

Q7Z5Q7_HUMAN

A0A0A8K8N9_HUMAN

A0A0A8K9B1_HUMAN

A0A0A8K8F0_HUMAN

A0A0A8K8C0_HUMAN

A0A0A8K9A6_HUMAN

ALDOA_HUMAN

HOP_HUMAN

MED19_HUMAN

RBM6_HUMAN

S22AI_HUMAN

S38A9_HUMAN

 :

 77

Search the UniProt database using the phrase “lung cancer” and retrieve the first five
entry IDs.

% curl http://togows.org/search/uniprot/lung+cancer/1,5

KKLC1_HUMAN

DLEC1_HUMAN

KKLC1_MACFA

Q7Z5Q7_HUMAN

A0A0A8K8N9_HUMAN

Search the next five entry IDs and return the results in a JSON format.

% curl http://togows.org/search/uniprot/lung+cancer/6,5.json

["A0A0A8K9B1_HUMAN","A0A0A8K8F0_HUMAN","A0A0A8K8C0_HUMAN","A0A0A8K9A6_HUMAN","ALDOA_HUMAN"]

Search the next five entry IDs and return the results in an HTML format.

% curl http://togows.org/search/uniprot/lung+cancer/11,5.json

<!DOCTYPE html>

<html>

<head>

 <meta charset="UTF-8">

</head>

<body>

<div>HOP_HUMAN</div>

<div>MED19_HUMAN</div>

<div>RBM6_HUMAN</div>

<div>S22AI_HUMAN</div>

<div>S38A9_HUMAN</div>

</body>

</html>

Count the number of search results in the UniProt database using the phrase “lung cancer”.

% curl http://togows.org/search/uniprot/lung+cancer/count

449

 78

TogoWS convert API examples

First, prepare a GenBank entry J00231 to be converted.

% wget http://togows.org/entry/nucleotide/J00231

% ls

J00231

Convert the obtained file into a GFF format via HTTP POST.

% wget http://togows.org/convert/genbank.gff --post-file=J00231 -O J00231.gff

% ls

J00231 J00231.gff

% head J00231

LOCUS HUMIGHAF 1089 bp mRNA linear PRI 09-NOV-1994

DEFINITION Human Ig gamma3 heavy chain disease OMM protein mRNA.

ACCESSION J00231

VERSION J00231.1

KEYWORDS C-region; V-region; gamma heavy chain disease protein; gamma3 heavy

 chain disease protein; heavy chain disease; hinge exon;

 immunoglobulin gamma-chain; immunoglobulin heavy chain; secreted

 immunoglobulin.

SOURCE Homo sapiens (human)

 ORGANISM Homo sapiens

% cat J00231.gff

##gff-version 3

J00231 Genbank region 1 1089 . . .

 ID=J00231;Note=Human%20Ig%20gamma3%20heavy%20chain%20disease%20OMM%20protein%20mRNA.

J00231 Genbank region 1 1089 . + .

 ID=Homo%20sapiens;map=14q32.33;mol_type=mRNA;db_xref=taxon%3A9606

J00231 Genbank gene 1 1089 . + . ID=IGHG3

 79

J00231 Genbank mRNA 1 1089 . + .

 Parent=IGHG3;ID=IGHG3.t01;product=gamma3%20mRNA

J00231 Genbank CDS 23 964 . + .

 Parent=IGHG3.t01;protein_id=AAA52805.1;note=OMM%20protein%20%28Ig%20gamma3%29%20heavy%2

0chain;db_xref=GDB%3AG00-119-

339;codon_start=1;translation=MKXLWFFLLLVAAPRWVLSQVHLQESGPGLGKPPELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCP

EPKSCDTPPPCPRCPEPKSCDTPPPCPXCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPXVQFKWYVDGVEVHNAKTKLREEQY

NSTFRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPXXXXXXXXXXXXEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYN

TTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEALHNRYTQKSLSLSPGK

J00231 Genbank sig_peptide 26 79 . + .

 ID=IGHG3;note=OMM%20protein%20signal%20peptide

J00231 Genbank mat_peptide 80 961 . + .

 ID=IGHG3;product=OMM%20protein%20mature%20peptide

>J00231

cctggacctcctgtgcaagaacatgaaacanctgtggttcttccttctcctggtggcagc
tcccagatgggtcctgtcccaggtgcacctgcaggagtcgggcccaggactggggaagcc

tccagagctcaaaaccccacttggtgacacaactcacacatgcccacggtgcccagagcc

caaatcttgtgacacacctcccccgtgcccacggtgcccagagcccaaatcttgtgacac

acctcccccatgcccacggtgcccagagcccaaatcttgtgacacacctcccccgtgccc

nnngtgcccagcacctgaactcttgggaggaccgtcagtcttcctcttccccccaaaacc

caaggatacccttatgatttcccggacccctgaggtcacgtgcgtggtggtggacgtgag

ccacgaagacccnnnngtccagttcaagtggtacgtggacggcgtggaggtgcataatgc

caagacaaagctgcgggaggagcagtacaacagcacgttccgtgtggtcagcgtcctcac

cgtcctgcaccaggactggctgaacggcaaggagtacaagtgcaaggtctccaacaaagc

cctcccagcccccatcgagaaaaccatctccaaagccaaaggacagcccnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnngaggagatgaccaagaaccaagtcagcctgacctg

cctggtcaaaggcttctaccccagcgacatcgccgtggagtgggagagcaatgggcagcc

ggagaacaactacaacaccacgcctcccatgctggactccgacggctccttcttcctcta

cagcaagctcaccgtggacaagagcaggtggcagcaggggaacatcttctcatgctccgt

gatgcatgaggctctgcacaaccgctacacgcagaagagcctctccctgtctccgggtaa

atgagtgccatggccggcaagcccccgctccccgggctctcggggtcgcgcgaggatgct

tggcacgtaccccgtgtacatacttcccaggcacccagcatggaaataaagcacccagcg

ctgccctgg

 80

TogoWS external API examples

Show a list of available UCSC genome databases.

% curl http://togows.org/api/ucsc/

ailMel1

anoCar2

anoGam1

apiMel2

aplCal1

bosTau4

braFlo1

caeJap1

caePb3

caeRem3

calJac3

canFam2

cavPor3

cb3

ce6

ci2

danRer10

danRer11

danRer7

dm3

dp3

droAna2

droEre1

droGri1

droMoj2

droPer1

droSec1

droSim1

droVir2

droYak2

 81

equCab2

felCat4

fr2

galGal3

gasAcu1

go

hg18

hg19

hg38

hgFixed

loxAfr3

mm10

mm9

monDom5

ornAna1

oryCun2

oryLat2

oviAri1

panTro3

petMar1

ponAbe2

priPac1

proteome

rheMac2

rn4

rn5

sacCer2

strPur2

susScr2

taeGut1

tetNig2

uniProt

visiGene

xenTro2

Show a list of available tables in the hg38 database.

 82

% curl http://togows.org/api/ucsc/hg38/

affyGnf1h

affyU133

affyU95

all_est

all_mrna

all_sts_primer

all_sts_seq

altLocations

altSeqLiftOverPsl

altSeqLiftOverPslP11

 :

(903 lines)

Show columns of the refGene table of the hg38 database with values of the first record.

% curl http://togows.org/api/ucsc/hg38/refGene/

bin 1815

name NR_110164

chrom chr2

strand +

txStart 161244738

txEnd 161249050

cdsStart 161249050

cdsEnd 161249050

exonCount 2

exonStarts 161244738,161246874,

exonEnds 161244895,161249050,

score 0

name2 LINC01806

cdsStartStat unk

cdsEndStat unk

exonFrames -1,-1,

Retrieve the first five records from the refGene table of the hg38 database.

 83

% curl http://togows.org/api/ucsc/hg38/refGene/1,5

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames

1815 NR_110164 chr2 + 161244738 161249050 161249050 161249050 2

 161244738,161246874, 161244895,161249050, 0 LINC01806 unk

 unk -1,-1,

27 NR_110250 chr2 - 156020534 156254931 156254931 156254931 4

 156020534,156022671,156024465,156254777,

 156021899,156022817,156024607,156254931, 0 LINC01876 unk unk -

1,-1,-1,-1,

585 NR_128720 chr16 - 17051 17119 17119 17119 1 17051,

 17119, 0 MIR6859-4 unk unk -1,

637 NR_128718 chr21 + 6859170 6859256 6859256 6859256 1 6859170,

 6859256, 0 MIR8069-2 unk unk -1,

689 NR_128718 chr21 + 13724188 13724274 13724274 13724274 1 13724188,

 13724274, 0 MIR8069-2 unk unk -1,

Retrieve the next five records in a JSON format from the refGene table of the hg38
database.

% curl http://togows.org/api/ucsc/hg38/refGene/6,5.json

[{"bin":585,"name":"NR_128718","chrom":"chrUn_GL000213v1","strand":"-

","txStart":25282,"txEnd":25368,"cdsStart":25368,"cdsEnd":25368,"exonCount":1,"exonStarts":"2528

2,","exonEnds":"25368,","score":0,"name2":"MIR8069-

2","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":647,"name":"NR_128717","chrom":"chr21","strand":"+","txStart":8205314,"txEnd":820540

6,"cdsStart":8205406,"cdsEnd":8205406,"exonCount":1,"exonStarts":"8205314,","exonEnds":"8205406,

","score":0,"name2":"MIR6724-4","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":647,"name":"NR_128717","chrom":"chr21","strand":"+","txStart":8249504,"txEnd":824959

6,"cdsStart":8249596,"cdsEnd":8249596,"exonCount":1,"exonStarts":"8249504,","exonEnds":"8249596,

","score":0,"name2":"MIR6724-4","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":648,"name":"NR_128717","chrom":"chr21","strand":"+","txStart":8388361,"txEnd":838845

3,"cdsStart":8388453,"cdsEnd":8388453,"exonCount":1,"exonStarts":"8388361,","exonEnds":"8388453,

","score":0,"name2":"MIR6724-4","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":1599,"name":"NR_049862","chrom":"chr9","strand":"+","txStart":132945706,"txEnd":1329

 84

45771,"cdsStart":132945771,"cdsEnd":132945771,"exonCount":1,"exonStarts":"132945706,","exonEnds"

:"132945771,","score":0,"name2":"MIR548AW","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":

"-1,"}]

Retrieve records having a gene name UVSSA in the name2 column of the refGene table
of the hg38 database.

% curl http://togows.org/api/ucsc/hg38/refGene/name2=UVSSA

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames

595 NM_020894 chr4 + 1347315 1388049 1348091 1385961 14

 1347315,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347760,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2,

595 NM_001317934 chr4 + 1347265 1388049 1348091 1385961 14

 1347265,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347609,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2,

595 NM_001317935 chr4 + 1347555 1388049 1348091 1385961 14

 1347555,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347887,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2,

Retrieve the first five records on the chromosome 13 of the hg18 database.

% curl http://togows.org/api/ucsc/hg38/refGene/chrom=chr13/1,5

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames

0 NM_203487 chr13 - 66302833 67230336 66304654 67228440 5

 66302833,66631209,66903503,67225404,67229779,

 66305028,66631411,66903605,67228575,67230336, 0 PCDH9 cmpl cmpl

 1,0,0,0,-1,

 85

0 NM_020403 chr13 - 66302833 67230336 66304654 67228440 4

 66302833,66631209,67225404,67229779, 66305028,66631411,67228575,67230336, 0

 PCDH9 cmpl cmpl 1,0,0,-1,

0 NM_001318373 chr13 - 66302833 67230336 66304654 67228440 4

 66302833,66631209,67225404,67229779, 66305028,66631285,67228575,67230336, 0

 PCDH9 cmpl cmpl 1,0,0,-1,

0 NM_001318372 chr13 - 66302833 67230336 66304654 67228440 5

 66302833,66631209,66903503,67225404,67229779,

 66305028,66631285,66903605,67228575,67230336, 0 PCDH9 cmpl cmpl

 1,0,0,0,-1,

1 NM_199138 chr13 - 25161678 25172167 25169603 25171619 3

 25161678,25170838,25171912, 25170481,25171719,25172167, 0 AMER2 cmpl

 cmpl 1,0,-1,

Retrieve the first five records having an allele frequency count other than 0 in the dbSNP
version 138 for which reference allele is an adenine on the reference human chromosome
22 of the hg19 genome build.

% curl 'http://togows.org/api/ucsc/hg19/snp138/chrom=chr22;refUCSC=A;alleleFreqCount!=0/1,5'

bin chrom chromStart chromEnd name score strand refNCBI refUCSC

 observed molType class valid avHet avHetSE func locType weight

 exceptions submitterCount submitters alleleFreqCount alleles

 alleleNs alleleFreqs bitfields

707 chr22 16050374 16050375 rs2844882 0 + A A A/G

 genomic single by-cluster,by-2hit-2allele 0.0 0.0 0 exact 3

 0 6 BCM-HGSC-SUB,BCMHGSC_JDW,ENSEMBL,SC_JCM,SSAHASNP,WI_SSAHASNP, 1

 A, 6.000000, 1.000000,

707 chr22 16050739 16050740 rs111307625 0 + A A -

/A genomic deletion unknown 0.5 0.0 0 exact 3 0 1

 BUSHMAN, 2 -,A, 1.000000,1.000000, 0.500000,0.500000,

707 chr22 16051208 16051209 rs7292503 0 + A A A/G

 genomic single by-cluster,by-2hit-2allele,by-hapmap 0.5 0.0 0

 exact 1 0 4 BCM_SSAHASNP,COMPLETE_GENOMICS,CSHL-

HAPMAP,WI_SSAHASNP, 2 A,G, 1.000000,1.000000, 0.500000,0.500000,

 86

707 chr22 16051391 16051392 rs77125914 0 - A A

 C/T genomic single unknown 0.5 0.0 0 exact 3 0

 1 ENSEMBL, 2 C,T, 1.000000,1.000000, 0.500000,0.500000,

707 chr22 16051452 16051453 rs143503259 0 + A A

 A/C genomic single by-cluster,by-1000genomes 0.135347 0.222159 0

 exact 1 0 2 1000GENOMES,SSMP, 2 A,C,

 2019.000000,159.000000, 0.926997,0.073003,

Retrieve the dbSNP version 138 records overlapping with a region from 20,000 to
21,000bp on the chromosome 1 of the hg19 genome build.

% curl http://togows.org/api/ucsc/hg19/snp138/chr1:20,000-21,000

bin chrom chromStart chromEnd name score strand refNCBI refUCSC

 observed molType class valid avHet avHetSE func locType weight

 exceptions submitterCount submitters alleleFreqCount alleles

 alleleNs alleleFreqs bitfields

585 chr1 20036 20037 rs12354133 0 + A A

 A/C genomic single unknown 0.0 0.0 0 exact 3 0

 2 SC_SNP,SSAHASNP, 0

585 chr1 20043 20044 rs75790700 0 + C C

 C/T genomic single unknown 0.5 0.0 0 exact 3 0

 1 ENSEMBL, 2 C,T, 1.000000,1.000000, 0.500000,0.500000,

585 chr1 20127 20128 rs806718 0 - G G C/T

 genomic single unknown 0.0 0.0 0 exact 3 0 3

 KWOK,SC_JCM,TSC-CSHL, 0

585 chr1 20127 20128 rs75128330 0 + G G

 A/G genomic single unknown 0.5 0.0 0 exact 3 0

 1 ENSEMBL, 2 A,G, 1.000000,1.000000, 0.500000,0.500000,

585 chr1 20127 20128 rs111753557 0 - G G

 C/T genomic single unknown 0.5 0.0 0 exact 3 0

 1 BUSHMAN, 2 C,T, 1.000000,1.000000, 0.500000,0.500000,

 :

(116 lines)

Retrieve the refGene records overlapping with a region from 1,350,000 to 1,400,000bp
on the chromosome 4 of the hg38 genome build.

 87

% curl http://togows.org/api/ucsc/hg38/refGene/chr4:1,350,000-1,400,000

% curl http://togows.org/api/ucsc/hg38/refGene/inclusive/chr4:1,350,000-1,400,000

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames

595 NM_020894 chr4 + 1347315 1388049 1348091 1385961 14

 1347315,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347760,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2,

595 NM_001317934 chr4 + 1347265 1388049 1348091 1385961 14

 1347265,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347609,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2,

595 NM_001317935 chr4 + 1347555 1388049 1348091 1385961 14

 1347555,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347887,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2,

595 NM_175918 chr4 + 1391551 1395994 1394511 1395852 1 1391551,

 1395994, 0 CRIPAK cmpl cmpl 0,

Retrieve the refGene records fit within a region from 1,350,000 to 1,400,000bp on the
chromosome 4 of the hg38 genome build.

% curl http://togows.org/api/ucsc/hg38/refGene/exclusive/chr4:1,350,000-1,400,000

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames

595 NM_175918 chr4 + 1391551 1395994 1394511 1395852 1 1391551,

 1395994, 0 CRIPAK cmpl cmpl 0,

Show a summary of the wgEncodeBroadHistoneGm12878H3k27acStdSig dataset of the
hg19 database.

% curl http://togows.org/api/ucsc/hg19/wgEncodeBroadHistoneGm12878H3k27acStdSig/info

 88

version: 4

isCompressed: yes

isSwapped: 0

primaryDataSize: 198,894,024

primaryIndexSize: 1,440,088

zoomLevels: 10

chromCount: 23

basesCovered: 1,145,311,185

mean: 3.163029

min: 0.040000

max: 223899.000000

std: 98.594295

Retrieve the first 10 records from the wgEncodeBroadHistoneGm12878H3k27acStdSig
dataset within a region from 1,000,000 to 2,000,000 on the chromosome 1 of the hg19
database.

% curl http://togows.org/api/ucsc/hg19/wgEncodeBroadHistoneGm12878H3k27acStdSig/chr1:1000000-

2000000/10

2.87496 4.27916 5.23061 6.17385 4.07465 6.11871 9.60933 6.95731 3.53907 3.70842

Retrieve the genome sequence of a region from 12,345 to 12,500bp on the chromosome
1 of the hg38 database in a FASTA format.

% curl http://togows.org/api/ucsc/hg38/chr1:12,345-12,500.fasta

>hg38:chr1:12,345-12,500

TCAGACCAGCCGGCTGGAGGGAGGGGCTCAGCAGGTCTGGCTTTGGCCCTGGGAGAGCAG

GTGGAAGATCAGGCAGGCCATCGCTGCCACAGAACCCAGTGGATTGGCCTAGGTGGGATC

TCTGAGCTCAACAAGCCCTCTCTGGGTGGTAGGTGC

 89

TogoStanza examples

In this section, representative examples of TogoStanza are shown.

TogoStanza in a gene report page

Summarized information of a gene report page in TogoStanza are shown, taking the
human “ALDH2” gene as an example.

The gene report page of TogoGenome starts with a series of NanoStanza for
“gene_length_nano”, “protein_ec_number_nano”, “protein3d_structure_nano” and
“protein_references_timeline_nano”.

In the “Protein names” section, canonical and alternative names of a protein are shown
by the “protein_names” stanza.

 90

In the “Genomic context” section, gene structures of isoforms are shown by the
“genome_jbrowse” stanza.

In the “Gene attributes” section, gene attributes such as a name, type, length and its
location on the chromosome are shown by the “gene_attributes” stanza.

In the “Nucleotide sequence” section, the spliced nucleic acid sequence of a gene is
shown by the “nucleotide_sequence” stanza.

 91

In the “Protein attributes” section, the length of the amino acid sequence and the
evidence of protein existence are shown by the “protein_attributes” stanza.

In the “Protein sequence” section, the amino acid sequence of a protein along with its
length, molecular weight and ID is shown by the “protein_sequence” stanza.

In the “Protein general annotation” section, annotations of a subunit, similarity,
polymorphism, caution, and subcellular location are shown by the
“protein_general_annotation” stanza.

 92

In the “Protein ontologies” section, keywords given by UniProt and annotations given
by gene ontologies are shown by the “protein_ontologies” stanza.

In the “Protein sequence annotation” section, residue-based experimental information of
a protein followed by modified residues, processing information, natural variations,
secondary structures, frameshifts, and specific sites are shown by the
“protein_sequence_annotation” stanza.

 93

 94

 95

In the “Protein orthologs” section, UniProt IDs of orthologous proteins are shown by
the “protein_orthologs” stanza.

In the “Protein references” section, a list of related literature is shown by the
“protein_references” stanza.

In the “Protein cross references” section, links to other entries of organism-specific
databases, PTM databases, phylogenomic databases, sequence databases, genome
annotation databases, 2D gel databases, family and domain databases, protein-protein

 96

interaction databases, 3D structure databases, enzyme and pathway databases,
proteomic databases, gene expression databases, and other databases are shown by the
“protein_cross_references” stanza.

 97

TogoStanza in an organism report page

Summarized information of an organism report page in TogoStanza are shown, taking the
“Escherichia coli O157” as an example.

The organism report page of TogoGenome starts with a series of NanoStanza for
“organism_genome_size_nano”, “organism_gene_number_nano”, “organism_gc_nano”,
“organism_microbial_cell_shape_nano”, “organism_ph_nano”, and
“organism_related_disease_nano”.

In the “Organism name” section, scientific and alternative names of an organism are
shown by the “organism_names” stanza.

In the “Genome information” section, chromosomes and organelle genomes with
statistics and links are shown by the “genome_information” stanza.

 98

In the “Genomic context” section, genes on the genome browser are shown by the
“genome_jbrowse” stanza.

In the “Ortholog profile” section, the taxonomic profile of orthologous gene groups is
shown by the “taxonomy_ortholog_profile” stanza (this example is taken from “E. coli
str. K-12 substr. MG1655”).

 99

In the “Taxonomic information” section, the taxonomic lineage of an organism is shown
by the “lineage_information” stanza.

In the “Culture collections” section, the related strains of an organism are shown by the
“organism_culture_collections” stanza (this example is taken from “Nocardia
higoensis”).

 100

In the “Medium information” section, the medium of an organism is shown by the
“organism_medium_information” stanza (this example is taken from “Nocardia
higoensis”).

In the “Phenotype information” section, the phenotypic features of an organism are
shown by the “organism_phenotype” stanza.

In the “Genomic plot” section, a scatter plot by selected features of organisms is shown
by the “genome_plot” stanza.

 101

In the “Pathogen information” section, infectious diseases of an organism are shown by
the “organism_pathogen_information” stanza.

In the “Organism cross references” section, cross references to other databases are
shown by the “organism_cross_references” stanza.

 102

In the “Genome cross references” section, cross references to genome databases are
shown by the “genome_cross_references” stanza.

 103

TogoStanza in an environment report page

Summarized information of an environment report page in TogoStanza are shown, taking
“soil” as an example.

The environment report page of TogoGenome starts with a series of NanoStanza for
“environment_top_level_symbolic_image_nano”,
“environment_inhabitants_statistics_nano”,
“environment_organism_distribution_on_temperature_nano”, and
“environment_organism_distribution_on_ph_nano”.

In the “Environment attributes” section, the name and description of an environment are
shown by the “environment_attributes” stanza.

In the “Inhabitants statistics” section, statistics of organisms in an environment are
shown by the “environment_inhabitants_statistics” stanza.

 104

In the “Inhabitants” section, a list of inhabitants is shown by the
“environment_inhabitants” stanza.

In the “Geographical map” section, geographical locations of inhabitants are shown by
the “environment_geographical_map” stanza.

 105

In the “Taxonomic composition” section, the taxonomic composition of inhabitants is
shown by the “environment_taxonomic_composition” stanza.

 106

In the “Environmental ontology (MEO)” section, the hierarchical classification of the
MEO environmental ontology is shown by the “environment_environmental_ontology”
stanza.

 107

TogoStanza in a phenotype report page

Summarized information of a phenotype report page in TogoStanza are shown, taking
“Diplococcus arrangement” as an example.

In the “Genus list” section, statistics and a list of species having the same phenotype are
shown by the “microbial_phenotype_genus_composition” stanza.

In the “Environment list” section, statistics and a list of environments where inhabitants
having the same phenotype are shown by the
“microbial_phenotype_environment_composition” stanza.

 108

In the “Shape information” section, a brief description of a phenotype is shown by the
“microbial_phenotype_cell_shape” stanza.

Synonyms can also be shown, as in the case of “Rod shape”

 109

In the “Organism list” section, a list of organisms having the same shape is shown by
the “microbial_phenotype_information” stanza.

