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Chapter 1 

Introduction 

1.1 Background 

In the life sciences domain, major biological databases such as protein tertiary structures, 

amino acid sequences, and nucleic acid sequences have already been established in the 

1970s, and a culture to release research data for public use has been grown to maturity 

since then. This is the foundation for a wide range of research and development thereof 

from current basic biology to genome medical science. 

 

As the international genome project progressed in the 1990s, information science 

supporting the construction of workflows for large-scale sequence analysis greatly 

advanced. At the same time, development and sharing of software that can be freely used 

in bioinformatics along with the open source movement including the GNU project and 

Linux have become popular. 

 

Life science databases still continue to increase in quantity and variety, and theere is 

increasing necessity to integrally use these enormous datasets. However, individual 

databases have different formats, IDs and vocabulary systems, and new concepts and data 

formats are being introduced along with new technologies. 

 

For this reason, in bioinformatics research, the proportion of preprocessing such as data 

retrieval, conversion of data formats, resolving relationships between IDs and 

arrangement of meanings of data has increased, which was reported as a problem (NIH 

strategic plan for data science; https://datascience.nih.gov/strategicplanrelease) in 2018. 

To make this process efficient, it is necessary to standardize data and improve 

interoperability through international collaboration. In this research, in order to overcome 
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these problems, I developed Web services independent of the execution environment and 

constructed a genome database system integrating various data by Semantic Web 

technologies. 

 

1.2 Objectives 

1.2.1 Standardization and interoperability of database access 

In order to build workflows of genome analysis, development of bioinformatics libraries 

for each programming language such as BioPerl (Stajich et al., 2002), Biopython (Cock 

et al., 2009), BioJava (Holland et al., 2008), etc. as open source software has progressed 

since the beginning of the 2000s. Since I was working on the construction of the Kyoto 

Encyclopedia of Genes and Genomes (Kanehisa et al., 2010), which is a database of 

genome and pathway information, I have been developing the BioRuby library (Goto et 

al., 2010b) using the Ruby language in anticipation of data analysis in the post-genomic 

era. With the Ruby language, it was straightforward to achieve compatibility between 

modeling complex data such as object-oriented pathways and rapid program development 

which is a feature of scripting languages. On the other hand, in order to use libraries of 

various languages, it is necessary to install and code a program even for basic information 

processing such as data retrieval from databases, conversion of data formats, and 

construction of other workflows. Also, it took time and effort to build the environment to 

run on another computer. TogoWS (Katayama, Nakao, et al., 2010a), developed in this 

research, eliminated the necessity of installation and dependency on any programming 

language and a computer environment by converting this functionality into Web services. 

 

TogoWS supports major databases of the National Center for Biotechnology Information 

(NCBI), the European Bioinformatics Institute (EBI), the Protein Data Bank Japan 

(PDBj), the National Institute of Genetics DDBJ Center (DDBJ), the Kyoto Encyclopedia 

of Genes and Genomes (KEGG), and University of California Santa Cruz (UCSC). 

Because the methods for data retrieval provided by these centers were not unified, it was 

necessary for users to become familiar with their usage. Furthermore, the results obtained 

also varied, such as XML and original data format. In order to extract the neccessary 
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information and construct a workflow, it is necessary to develop a program to parse the 

returned information for each data. 

 

TogoWS provides APIs common to all databases for search, data retrieval, parse and 

conversion in order to treat them in a unified manner. For example, when acquiring a 

database entry, users can specify the database name and entry ID in the format of 

"/entry/DB/ID" following "http://togows.dbcls.jp". In addition, data is parsed by adding 

"/field_name" to extract subelements in the entry, and finally, the output format can be 

specified as ".xml" or ". json". These are realized by giving TogoWS server side the 

functions of BioPerl and BioRuby, so that users can obtain information without creating 

programs. In order to freely access vast genome annotation information including the 

human genome provided by UCSC, it was necessary to query UCSC's MySQL database 

in SQL. By adopting the Ruby UCSC API (Mishima et al., 2012) in TogoWS, it became 

easy to access it just by its REST API. The service of TogoWS has been used stably from 

various bioinformatics applications for more than ten years and has contributed to 

standardization and interoperability of database access. 

 

1.2.2 Standardization and interoperability of database contents 

By having unified access to the major databases with TogoWS, it became easier to 

construct a workflow to acquire and process data, but for integrated use based on the 

meaning of data, it has become clear that it is necessary to standardize and enhance 

interoperability of the database contents themselves. For this reason, it was decided to 

organize a series of international developer conference BioHackathons, where major 

database developers gather, discuss and develop new database technologies. In these 

BioHackathons, which have been held for over ten years since 2008, adoption of 

Semantic Web technologies was proposed to improve standardization and interoperability 

of data (Katayama, Arakawa, et al., 2010; Katayama et al., 2011, 2013, 2014). 

 

Semantic Web is a standard for constructing a Web of data proposed by Tim Berners-Lee 

who made the World Wide Web (WWW). In Semantic Web, we use Uniform Resource 

Identifiers (URIs) as a universal identifier that points to data. In addition, the meaning of 
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data and the relationship between data are expressed using standard vocabulary 

(ontology) defined by the Web Ontology Language (OWL). Furthermore, to model data, 

Resource Description Framework (RDF) is adopted, and the information is described by 

a combination of subject, predicate, and object (triple). Finally, SPARQL Protocol and 

RDF Query Language (SPARQL) is used for retrieval of RDF data. These are 

standardized by the WWW Consortium (W3C) and are the fundamental technology for 

providing a database that can be freely accessed on the Internet. Based on this, we 

standardized common URIs and ontologies in the life sciences and promoted the 

integration of various data by converting the contents of each database into RDF. 

 

In this research, I constructed a new genome database TogoGenome by integrating data 

on biological species, genomes, genes, phenotypes, and environments by RDF because 

genome annotation requires information integration from diverse databases. 

 

For this purpose, we first promoted the use of Identifiers.org as a standard URI by 

international collaboration, and developed the FALDO ontology (Bolleman et al., 2016) 

for expressing the genomic coordinate system as the basis of annotation. Subsequently, 

we collaborated with international researchers to develop ontologies for semantically 

describing information in the International Nucleotide Sequence Database Collaboration 

(INSDC), an ontology for species taxonomy, an ontology of microbial phenotypes, an 

ontology of habitat environments etc. Based on these, we integrated RDF data mainly 

with RefSeq for genomic information and UniProt for protein annotation and then added 

phenotypic and environmental annotations. 

 

Finally, I developed TogoStanza, which searches this information with the SPARQL 

language and visualizes the results for each biologically meaningful unit. In TogoGenome, 

optimal TogoStanza are combined depending on the context such as genes and 

environments and displayed to form a report page that summarizes relevant information. 

Also, because TogoStanza can be reused in other web-based databases, we can make 

development more efficient by mutual use of TogoStanza in multiple genomic databases 

such as MicrobeDB.jp, MBGD, and CyanoBase which were developed at the same time 
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in Japan. Through the construction of TogoGenome, RDF conversion of major databases 

in the life sciences has progressed, and standardization of database contents and 

improvement of interoperability supporting future data science could be realized. 

 

In the following chapters, I describe my research on “Standardization and interoperability 

of database access with Web services” which represents the integration of Web services 

based on my TogoWS paper (Katayama, Nakao, et al., 2010b) and “Standardization and 

interoperability of database contents with Semantic Web technologies” which illustrates 

the integration of heterogeneous genomic data from my published work on 

TogoGenome/TogoStanza (Katayama et al., 2019). 
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Chapter 2 

Standardization and interoperability of database 

access with Web Services 

Web services have become widely used in bioinformatics analysis, but there exist 

incompatibilities in interfaces and data types, which prevent users from making full use 

of a combination of these services. Therefore, I have developed the TogoWS service to 

provide an integrated interface with advanced features. In the TogoWS REST API, I 

introduce a unified access method for major database resources through intuitive URIs 

that can be used to search, retrieve, parse and convert the database entries. The TogoWS 

SOAP API resolves compatibility issues found on the server and client-side SOAP 

implementations. The TogoWS service is freely available from http://togows.dbcls.jp/. 
 

2.1 Introduction 

In the early 2000s, major bioinformatics centers have begun providing SOAP-based 

(http://www.w3.org/2002/ws/) Web services that enable users to use these database 

resources with client programs in an automated manner. These include the E-Utilities 

service (Sayers et al., 2009) provided by the National Center for Biotechnology 

Information (NCBI), Web services provided by the European Bioinformatics Institute 

(EBI) (Labarga et al., 2007; Pillai et al., 2005), the Web API for Bioinformatics (WABI) 

from the DNA Data Bank of Japan (DDBJ) (Sugawara and Miyazaki, 2003; Miyazaki et 

al., 2004; Sugawara et al., 2008; Kwon et al., 2009), the Protein Data Bank Japan’s 

(PDBj) Web services (Standley et al., 2008), and the KEGG API service from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2010). Thanks to these 

services, users can easily perform various bioinformatics tasks through their choice of 

client software and can reproduce each procedure as a workflow. 
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However, when it comes to using these services in combination, there are several 

limitations (Stockinger et al., 2008) to their interoperability and technological 

implementation. 1) There are no common ontologies for operations and objects in these 

Web services, resulting in inconsistent naming conventions and data types. 2) This 

incompatibility of data types requires format conversion of objects to use the output of 

one service as the input to the next service. 3) There are several services that require 

specific SOAP features that are not always supported in the available SOAP libraries, 

even for major programming languages. 4) The client developer needs to be aware of fail-

safe mechanisms, such as temporary downtime of the server or the network, as well as 

environmental restrictions such as the maximum size of exchanged data. 

 

To overcome these limitations (especially for 1 and 2), the BioMoby project (Wilkinson 

and Links, 2002; Vandervalk et al., 2009) was begun to provide a central registry of 

operations and objects used in public Web services, along with applicable ontologies. In 

this way, a number of BioMoby-compliant services were developed, and the BioMoby 

client can find the service that is appropriate for the given type of object. The main 

problem here is that most major bioinformatics service providers are not compatible with 

the BioMoby standard, possibly because it requires a considerable amount of server-side 

effort. Furthermore, it is also difficult to enforce a set of standard data formats for 

interoperability among these providers. 

 

To help resolve these problems, I organized DBCLS BioHackathons in 2008 (Katayama, 

Arakawa, et al., 2010) and 2009 (Katayama et al., 2011), international workshops 

focusing on Web services, drawing participants from many backgrounds, including Web 

service providers, developers of the Open Bio* libraries (Stajich and Lapp, 2006) and 

client applications, and database creators in emerging fields like glycoinformatics and 

interactomics. One interesting topic in the BioHackathon was the attempt to resolve the 

current limitations in interoperability among existing Web services. For this purpose, a 

workflow was proposed that pipelines services provided by DDBJ, PDBj and KEGG to 

find homologs using BLAST and annotate them with structural and pathway information. 

When this workflow is run in the Taverna environment (Hull et al., 2006), users again 
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encountered the essential need for data format conversion. The Open Bio* libraries, 

including BioPerl (Stajich et al., 2002), BioRuby (Goto et al., 2010b), Biopython (Cock 

et al., 2009), and BioJava (Holland et al., 2008), provide parsers for major database entry 

and software output formats such as the BLAST report. However, users are required to 

install these libraries and to write code to use their functionality.  

 

Building upon discussions from the BioHackathon, I began to develop TogoWS, an 

integrated Web service ("togo" is a Japanese word for "integration") that provides uniform 

access to database resources, parsers for database entries, and converters among major 

data formats. Bioinformatics Web services can be categorized into data-retrieval services 

and analysis services. Although both types of services can be exposed using either the 

REST (Fielding, 2000) or the SOAP architecture, REST is better suited for data-retrieval 

services and SOAP is more suitable for analysis services because the former can be easily 

mapped to resource URIs and the latter usually requires a long execution time or complex 

parameters. 

 

In a survey I conducted prior to implementation of TogoWS, I discovered that most 

existing Web services, such as NCBI’s E-utilities and EBI’s Dbfetch, are designed to 

search and retrieve database entries maintained at each institution. Therefore, in TogoWS, 

I designed a REST-based Web service for accessing database resources in a unified 

manner, with intuitive URI notation for searching, retrieving, parsing, and converting the 

database entries. Also, I developed a unified SOAP-based Web service in TogoWS that 

proxies analysis services provided by Japanese institutions to resolve several 

incompatibilities found in these services. Supplemental documents and source code in 

major programming languages (Perl, Ruby, Python, and Java) are also provided. 

2.2 TogoWS REST API 

The TogoWS REST service provides intuitive application programming interfaces (APIs) 

to search, retrieve, parse, and convert database entries. In the following sections, I will 

describe these interfaces and the internal architecture of the REST service. 
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Figure 2.1 Examples of the TogoWS URIs and their outputs. 

 

2.2.1 Database search 

TogoWS provides a uniform query interface for various databases. The result of the 

database search can be considered a resource that is relevant to the query string. Therefore, 

I determined to map each database name (DB) and query string (QUERY) to a URI by 

the following convention. 

 

 http://togows.dbcls.jp/search/DB/QUERY 

 

A list of currently available databases can be obtained by accessing the following URI 

without a database name (Supplemental Table 2.1). 

 

 http://togows.dbcls.jp/search/ 

 

As an example, a search against the UniProt database using the phrase "lung cancer" can 

be represented as follows. 

 

 http://togows.dbcls.jp/search/uniprot/lung+cancer 

 

The returned text contains matched entry IDs, one per line (Figure 2.1a). The QUERY 
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can be a simple keyword or a URI-encoded string containing a structured query with 

logical operations. The given query is translated by the TogoWS server and then sent to 

the corresponding service. 

 

2.2.2 Hit count and pagination 

A database search often returns a long list of hits. To make the TogoWS search service 

scalable, I introduced a method for counting and pagination. To count the number of hits, 

simply add "/count" to the end of the query URI. 

 

 http://togows.dbcls.jp/search/uniprot/lung+cancer/count 

 

Then, the user can retrieve any subset of the hits by indicating OFFSET and LIMIT 

numbers in the following format. 

 

  http://togows.dbcls.jp/search/DB/QUERY/OFFSET,LIMIT 

 

For example, to obtain 10 results starting from the 100th hit: 

 

 http://togows.dbcls.jp/search/uniprot/lung+cancer/100,10 

 

The user can iterate over the OFFSET value, starting from 1 and incrementing it by LIMIT 

until all hits have been retrieved. 

2.2.3 Entry retrieval 

Each database entry can be identified by a database name and a unique identifier; 

therefore, it can be easily represented as a unique URI. In the TogoWS REST API, I 

mapped database names and entry IDs to URIs by the following convention. 

 

 http://togows.dbcls.jp/entry/DB/ENTRY_ID 

 

where the "/entry" prefix indicates a REST action to retrieve the resource specified by 
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DB and ENTRY_ID, which represent the name of the database and the entry ID string, 

respectively.  

 

For example, the URI to retrieve a KEGG GENES database entry "sec:YDR074W" can 

be represented as follows, and it will return the flatfile entry as a text string, without any 

decoration. 

 

 http://togows.dbcls.jp/entry/kegg-genes/sce:YDR074W 

 

Multiple entries can be retrieved at once by concatenating entry IDs with commas. 

Therefore, PubMed entries "18077471" and "19151099" can be retrieved at a time by 

accessing the following URI. 

 

 http://togows.dbcls.jp/entry/ncbi-pubmed/18077471,19151099 

 

A list of currently available databases can be obtained by accessing the following URI 

without a database name (Supplemental Table 2.2). 

 

 http://togows.dbcls.jp/entry/ 

 

To obtain actual database entries, TogoWS internally uses existing SOAP or REST 

interfaces provided by each database (Figure 2.2). Since the TogoWS acts as a proxy to 

various data sources, the user does not need to worry about the internals of the SOAP 

messages or complex CGI parameters that each database usually requires for access. The 

TogoWS server also caches the retrieved entries for a period of time to avoid overloading 

the original servers. 
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Figure 2.2 Schematic overview of the TogoWS service. 
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2.2.4 Entry field extraction 

A unique feature of the TogoWS REST API is that it comes with built-in parsers for 

various database formats. Without this, the user will need to install a bioinformatics 

library such as BioPerl, Biopython, BioRuby, or BioJava and to write a program to extract 

the desired information from the retrieved entries. This requirement has been a bottleneck 

to the creation of an automated workflow that consumes a list of database entries and 

extracts information for the next step of the analysis pipeline. To resolve this situation, I 

embedded BioPerl and BioRuby libraries into the TogoWS server. These bioinformatics 

libraries cover a wide range of biomedical databases and provide efficient parsing 

functionality for various database entries. I extended the TogoWS REST API to support 

extraction of the field contents by adding a specific field name at the end of the URI, as 

follows 

 

 http://togows.dbcls.jp/entry/DB/ENTRY_ID/FIELD 

 

where FIELD is one of the supported field names. The list of available field names differs 

from database to database and can be obtained by accessing the following URI. 

 

 http://togows.dbcls.jp/entry/DB?fields 

 

As described in the previous section, TogoWS will retrieve specified entries from the 

original database. Then, the cached contents are internally processed by built-in parsers. 

In this manner, the user can access any field values of the given entries without 

programming. 

 

For example, a name, a molecular weight, and relevant enzymes of the KEGG 

COMPOUND entry "C01083" can be extracted by the following URIs, respectively 

(Figure 2.1b, 2.1c, 2.1d). 

 

 http://togows.dbcls.jp/entry/kegg-compound/C01083/name 

 http://togows.dbcls.jp/entry/kegg-compound/C01083/mass 
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 http://togows.dbcls.jp/entry/kegg-compound/C01083/enzymes 

 

Similarly, the authors and abstract of the PubMed entry "19151099" can be retrieved by 

 

 http://togows.dbcls.jp/entry/ncbi-pubmed/19151099/au 

 http://togows.dbcls.jp/entry/ncbi-pubmed/19151099/ab 

 

where "au" and "ab" correspond to the AU and AB lines, respectively, of the PubMed 

record in MEDLINE format. 

2.2.5 Entry format conversion 

Even though a specific field of an entry can be extracted, it is often required to convert 

the data format for further use. With the help of the built-in parsers described in the 

previous section, TogoWS provides format conversion of the entry simply by specifying 

the format as a URI suffix, analogous to the extension of a filename: 

 

 http://togows.dbcls.jp/entry/DB/ENTRY_ID.FORMAT 

 http://togows.dbcls.jp/entry/DB/ENTRY_ID/FIELD.FORMAT 

 

For example, the DDBJ entry "M13899" can be converted to the FASTA, INSDC-XML, 

and GFF formats by the following URIs, respectively. 

 

 http://togows.dbcls.jp/entry/ddbj/M13899.fasta 

 http://togows.dbcls.jp/entry/ddbj/M13899.xml 

 http://togows.dbcls.jp/entry/ddbj/M13899.gff 

 

Acceptable formats can vary according to the database and currently include XML, JSON, 

GFF version 3, FASTA, RDF/XML and Turtle. The FASTA and GFF formats are valid 

for nucleotide or peptide sequence databases, and the XML format is available if the 

original database is also provided as XML. 

 

A list of available format names differs from database to database and can be obtained by 
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accessing the following URI. 

 

 http://togows.dbcls.jp/entry/DB?formats 

 

Format conversion can also be applied to the extracted field. The following URI returns 

the associated enzymes of the KEGG COMPOUND entry "C01083" in JSON format 

(Figure 2.1e). 

 

 http://togows.dbcls.jp/entry/kegg-compound/C01083/enzymes.json 

 

The JSON format (https://tools.ietf.org/html/rfc4627) is particularly useful when this 

service is used in a Web application that retrieves relevant information on-the-fly via an 

AJAX (https://www.adaptivepath.org/ideas/ajax-new-approach-web-applications/) 

method. 

 

2.2.6 Data format conversion 

TogoWS also provides format-to-format conversion functionality. Unlike the methods 

described above, this method uses the HTTP POST protocol instead of HTTP GET. The 

end-point URI of the data format conversion service uses the following convention. 

 

 http://togows.dbcls.jp/convert/SOURCE.FORMAT 

 

For example, to convert a BLAST result to GFF format, simply POST the BLAST report 

string to the following URI. 

 

 http://togows.dbcls.jp/convert/blast.gff 

 

The Ruby program (Figure 2.3) demonstrates how to read a BLAST output and convert 

its contents into GFF format. 

 

Currently, GenBank, ENA, DDBJ, UniProt, BLAST, FASTA, GFF, GVF, PSL, Sim4, 
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HMMER, Exonerate, Wise, CSV, RDF/XML and Turtle formats are supported as source 

data types. This service is intended to be used in a workflow management software, in 

which the pipeline is often bottlenecked by incompatible data formats. TogoWS fills this 

kind of gap without requiring the user to install additional software on the local computer. 

 

A list of currently available pairs of a source data type and a converted format can be 

obtained by accessing the following URI without a database name (Supplemental Table 

2.3). 

 

 http://togows.dbcls.jp/convert/ 

 

2.2.7 Performance tuning and error handling 

 

Because TogoWS relies on external Web services, it is important to reduce unnecessary 

accesses for these servers. Therefore, I introduced a cache mechanism which stores a 

retrieved database entry and reuses the data for future accesses to the same database entry. 

This cache system works efficiently in the case of entry field extraction described in 

Section 2.2.4, because the user often accesses the same entry by specifying different fields 

to be extracted. This mechanism also improves the response time of the TogoWS service 

especially for a large database entry such as an entire chromosome from the RefSeq 

database. Additionally, users can clear cached data by adding “?clear” to the entry 

retrieval URI as in the following format in case the cached content is out dated or broken. 

 

 http://togows.dbcls.jp/entry/DB/ENTRY_ID?clear 

 

In order to avoid overload on external servers, it is important for TogoWS to comply with 

rules which are defined by these servers. For example, NCBI defines a rule that a client 

program must wait for several seconds between two or more successive accesses and the 

wait time can change depending on the time of day. TogoWS automatically applies this 

wait so that the user is not forced to write complex code to implement this wait logic in 

addition to retrieving data from these services. 
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Finally, TogoWS returns appropriate HTTP Error codes when the user’s request is invalid 

or malformed (400 Bad Request), or the specified entry is not found (404 Not Found). 

These error codes are useful when writing a client program which retrieves a number of 

database entries at once and needs to capture the failure during the retrieval. 
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#!/usr/bin/env ruby 

 

# Load libraries handling HTTP and CGI protocols and methods 

require 'net/http' 

require 'cgi' 

 

# Read the BLAST output file 

blast_output = File.read("blast_result.txt") 

 

# Convert the output into a string suitable for a CGI query 

post_data = CGI.escape(blast_output) 

 

Net::HTTP.version_1_2 

 

# Invoke HTTP connection to the TogoWS server 

Net::HTTP.start('togows.dbcls.jp') { |http| 

  # Execute the TogoWS conversion service via HTTP POST 

response = http.post('/convert/blast.gff', post_data) 

  # Print out the result of conversion 

puts response.body 

} 

 

Figure 2.3 Example Ruby program to invoke the TogoWS conversion API for 

converting a BLAST output stored in the file "blast_result.txt" into GFF format. 
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2.3 TogoWS SOAP API 

The other half of TogoWS is a SOAP-based proxy service for Japanese bioinformatics 

resources, which include DDBJ, PDBj and KEGG. In contrast to the REST service, SOAP 

is suitable for services requiring long execution time, returning structured objects, or 

expecting complex parameters in the query. The SOAP specification itself is an open 

standard and is independent of programming languages. However, its implementation in 

each programming language tends to be incomplete because of the complexity of the 

specification. Because of this, there appear to be several technical incompatibilities in 

each service. I have been collaboratively working with major institutions, including 

DDBJ and KEGG, to resolve the issues; however, there still remain problems that require 

modifications to their service specifications. These problems include the use of a MIME 

attachment for returning the results, the use of an HTTP cookie for stateful transactions, 

and different designs for asynchronous transactions, features that are not always 

supported by the SOAP library of choice. 

2.3.1 Integrated WSDL file 

Instead of asking all service providers to modify their services, I developed the TogoWS 

SOAP API, which proxies their services and thus hides the incompatibilities and 

differences between them. All services across these servers (DDBJ, PDBj, and KEGG) 

are integrated into only one WSDL file, 

 

 http://togows.dbcls.jp/soap/wsdl/togows.wsdl 

 

so that the user can use all 368 operations that were originally spread among 26 WSDL 

files. This service has been tested in several major programming languages (Perl, Python, 

Ruby, and Java), so the user can use each service in the preferred language without 

difficulty. This approach also eliminates a burden on the service providers because they 

do not themselves need to test or improve the language compatibility of their services.  

2.3.2 Sample code and documents 

The TogoWS SOAP service comes with comprehensive sample code covering all 
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operations of the DDBJ, PDBj and KEGG services written in four programming 

languages (Perl, Python, Ruby, and Java). The user can freely examine and download the 

code from the following URL and use them as references for further development. 

 

 http://togodb.dbcls.jp/togows_domestic_method 

 

Web services often lack documentation, forcing users to consult the WSDL file to learn 

what kind of operations are available, what data types are used for input and output, etc. 

However, this is not an effortless task, as the WSDL file was not designed to be read by 

a human. To remedy this problem, I have created a list of Web service operations from 

existing bioinformatics Web services worldwide. 

 

 http://togodb.dbcls.jp/togows_world_method 

 

This list contains information extracted from the WSDL files, such as the description and 

input/output data types for 4,172 operations, including services integrated in the TogoWS 

SOAP API. In addition, I also assigned a functional classification to each operation. 

2.4 Server status monitor 

Web services are often used by computer programs in a pipeline. However, it is often 

difficult to detect temporary error caused by server-side problems. I have monitored the 

availability of all operations in DDBJ, PDBj, and KEGG over the past five years. The 

result is stored and summarized in the TogoWS status report. 

 

 http://togows.dbcls.jp/monitor 

 

Since the monitoring is performed every day, these records may help the user determine 

whether the source of the problem is due to a local configuration or the remote server. 

The record also contains statistical information such as output size and response time, 

which has helped service providers to detect unexpected errors several times in the past. 
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2.5 Discussion 

In TogoWS, I proposed an integrated service focused on the interface and compatibility 

of existing bioinformatics Web services. I successfully developed a REST interface for 

accessing database resources with intuitive and persistent URIs. This normalization of 

URIs was consequently found to be suitable as a method for generating unique resource 

URIs for making RDF data. For other services, I developed an integrated SOAP interface 

supplemented by sample code and a status monitor. However, I needed to terminate the 

SOAP interface in 2012 because most major bioinformatics centers discontinued their 

SOAP services. Instead, these centers began to replace their services with REST APIs. 

Thus, I have maintained TogoWS to conform with these changes and, subsequently, the 

REST interface of TogoWS has continued to be used for the past ten years from various 

bioinformatics applications. 
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Chapter 3 

Standardization and interoperability of database 

contents with Semantic Web technologies 

TogoGenome is a genome database that is purely based on Semantic Web technologies, 

which enables the integration of heterogeneous data and flexible semantic searches. All 

the information is stored as Resource Description Framework (RDF) data, and the 

reporting web pages are generated on the fly using SPARQL Protocol and RDF Query 

Language (SPARQL) queries. TogoGenome provides a semantic faceted search system 

by gene functional annotation, taxonomy, phenotypes, and environment based on the 

relevant ontologies. TogoGenome also serves as an interface to conduct semantic 

comparative genomics by which users can observe pan-organism or organism-specific 

genes based on the functional aspect of gene annotations and the combinations of 

organisms from different taxa. The TogoGenome database exhibits a modularized 

structure, and each module in the report pages is separately served as TogoStanza, which 

is a generic framework for rendering an information block as IFRAME/Web Components, 

which can, unlike several other monolithic databases, also be reused to construct other 

databases. TogoGenome and TogoStanza have been under development since 2012 and 

are freely available along with their source codes on the GitHub repositories at 

https://github.com/togogenome/ and https://github.com/togostanza/, respectively, under 

the MIT license. Database URLs: http://togogenome.org/ and http://togostanza.org/. 

3.1 Background 

In the life sciences, genome sequences have served as a central resource like a base map 

by which essential information, such as gene structures, regulatory regions, variations, 

and their functional annotations, could be integrated. As genome projects are conducted 

on various species, the genomic sequences and gene annotations are deposited into the 

International Nucleotide Sequence Database Collaboration (INSDC) (Cochrane et al., 
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2016), which is jointly operated by the DNA Databank of Japan (DDBJ) (Mashima et al., 

2017), GenBank at NCBI (Benson et al., 2017) and ENA at EMBL-EBI (Silvester et al., 

2018). However, each genome project often constructs its own genome database to add 

and update detailed annotations. For this purpose, generic and open source genome 

database systems such as GMOD (O’Connor et al., 2008), Ensembl (Zerbino et al., 2018) 

and InterMine (Kalderimis et al., 2014) can be used. 

 

These major database systems serve genome annotations for a large number of species. 

However, because these genome databases have been monolithically constructed, it is 

difficult to reuse their components even though the represented information is very similar. 

Meanwhile, to extend a system that represents information unique to an organism, the 

inclusion of additional annotations may require the modification of the database schema 

and further significant modifications to the system. In contrast, using RDF, because any 

data can be expressed in the same format, it is possible to easily integrate a wide variety 

of data from gene annotations to phenotypes and habitat environments of organisms. Also, 

there is no limit to the type of data that can be stored in an RDF database. Each piece of 

information integrated into the RDF database is distinguished by a globally unique 

identifier in the form of Uniform Resource Identifier (URI); thus the related information 

can be seamlessly linked and traced by the URIs.  

 

Based on my experiences in the genome annotation and the construction of genome 

databases, I realized that most of the annotation information can be stylized. Therefore, 

it would be efficient to freely select the predefined modularized components for creating 

a genome database instance along with developing only new components based on 

annotations that are unique to the target organism stored as RDF data. Thus, it is expected 

that the cost required to construct a new genome database could be considerably reduced 

by managing all the annotation information in RDF and by providing the visualization 

modules for each subset of categorized annotations as reusable components. However, 

there was no precedent genome database that was purely based on RDF data; therefore, a 

demonstration was required to verify whether the use of SPARQL would be practical and 

scalable enough for a genome database. 
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3.2 Results 

I developed a purely RDF-based genome database, TogoGenome, that was primarily 

based on the RefSeq (O’Leary et al., 2016) and the UniProt (The UniProt Consortium, 

2017) data. UniProt has been publishing their data in RDF since 2008 (UniProt 

Consortium, 2008), however, there has been no RDF representation of the RefSeq 

genome annotations. Therefore, in collaboration with DDBJ, I developed a converter of 

INSDC (DDBJ/GenBank/ENA) and RefSeq entries into RDF data. With a member of 

DDBJ, I also developed ontologies for the INSDC annotated sequences and taxonomy 

(http://ddbj.nig.ac.jp/ontologies/) as well as feature locations (see the 3.3.2 TogoGenome 

datasets section). 

 

TogoGenome uses the Semantic Web technology for data integration by which all the 

data are aggregated in RDF and semantically annotated with ontologies. Therefore, in 

addition to basic keyword searches, faceted searches with various aspects based on the 

semantic hierarchy of the data can be performed. Further, all the RDF data can be freely 

accessed by SPARQL queries not only from a web interface but also from a program. 

Bioinformaticians can easily develop a program to acquire the target datasets, perform 

analyses, and develop their own summaries and visualizations according to their 

requirements. 

 

To produce reusable components, I developed TogoStanza, which is a framework for 

visualizing the result of a SPARQL query as an IFRAME or as Web Components 

(https://www.webcomponents.org/), which can be embedded into any HTML web page. 

Any number of components can be freely chosen and combined to generate a resulting 

page, which could not have been easily realized using the monolithic databases. In fact, 

TogoGenome displays various search results as a report page by combining with the 

related TogoStanza in an arbitrary context such as a gene, an organism, a phenotype, or 

an environment. 
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3.2.1 TogoGenome 

TogoGenome is a Semantic Web-based genome database in which heterogeneous 

information is compiled from various RDF data annotated with ontologies. With the RDF 

data and ontologies, TogoGenome provides several query interfaces. First, users can 

conduct a faceted search based on a combination of gene, taxonomy, phenotype, and 

environment ontologies. Second, a simple comparative genomic analysis can be 

performed among the genes of several species based on the common and unique gene 

annotations. Finally, as in the traditional genome databases, TogoGenome data can be 

searched using a free text keyword or a genomic sequence. However, dedicated text 

indexing systems are required because SPARQL queries are not efficient enough to 

perform free text search (see the 3.3.3 Development of TogoGenome section). 

 

3.2.1.1 Ontology-based faceted search 

 

One of the main interests of current biology is the relationships between genotypes and 

phenotypes. In the case of humans, the most important relation is between genes and 

diseases. In the case of crops and livestock, the genetic factors related to the aspects of 

quantity and quality, such as yield, nutritional value, and taste, are of considerable interest. 

In microorganisms, the effects of gene functions on physiology, metabolites, and 

interaction with the environment are typical examples of the subjects of research. 

 

To elucidate these relations, a bioinformatics approach is required to efficiently formulate 

hypotheses using the knowledge in the databases and to verify these hypotheses by 

performing experiments. However, the genomic and phenotypic information are scattered 

throughout the genes, pathways, literature databases, and so on. There is no efficient 

database system to search for genes of various species in combination with the 

phenotypes. 

 

As an example, suppose a scientist was attempting to verify the difference in the 

composition of cyanobacterial gene sets related to environmental responses, such as 

"histidine kinases," by comparing the gene sets of marine and freshwater living species. 
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This scientist must narrow down those genes that have the desired function by (1) 

obtaining a list of cyanobacteria from a taxonomy database, (2) selecting those species 

for which the complete genome has been decoded by searching genome databases, (3) 

identifying the growth environment of each cyanobacterium (“seawater” or “freshwater”) 

using the literature and other databases, (4) acquiring the gene set of each species, and (5) 

obtaining annotations for each gene set with the help of a gene ontology to acquire the 

intended gene set. This procedure is difficult to automate; therefore, it was necessary for 

researchers to manually investigate each database. 

 

TogoGenome provides an ontology-based faceted search interface to easily obtain such 

information. Users can select “Cyanobacteria” from “Taxonomy,” specify “protein 

histidine kinase activity” from “GO: Molecular Function,” and select “saline water” and 

“fresh water” from “Environment” to obtain the desired gene sets (Figure 3.1). 

  



 

 
Figure 3.1 TogoGenome faceted search.

TogoGenome	faceted	search		

Comparison	of	"histidine	kinase"	genes	of	"saline	water"	and	"fresh	water"	living	"Cyanobacteria"
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3.2.1.2 Semantic comparative genomics 

Because UniProt proteins are semantically annotated in RDF and because TogoGenome 

holds the links between proteins and genes that are encoded in the genome of each 

organism, UniProt annotations can be used to find a specific subset of genes by selecting 

the attributes that are common or unique to a given set of species. First, the category of 

the annotation can be selected from: protein motif, sub-cellular location, pathway, gene 

ontology, enzyme classification, and ortholog classifications. Second, a maximum of five 

species can be selected to compare gene sets. Third, a list of functional classifications that 

are common only to the selected combination of organisms is presented. Fourth, one of 

the objective classifications can be selected to obtain a corresponding list of genes in the 

target organisms. 

 

As an example, users can find genes having protein motifs unique to vertebrates by 

performing the following steps. (1) Select “Pfam motifs” as an annotation and (2) specify 

human, mouse, zebrafish, and sea squirt as the target set of organisms to perform the 

comparison. Further, users can (3a) select the combination of human ∩ mouse ∩ zebrafish 

and (4a) find the MHC domains corresponding to the adaptive immune system that are 

observed in vertebrates (therefore, not observed in sea squirts) (Dehal et al., 2002), or 

(3b) select only the sea squirt and (4b) find Vanavin-2, which is a domain that is unique 

to sea squirts for oxygen binding (Figure 3.2). 
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Figure 3.2 TogoGenome comparative genomics. 

 

Comparative	genome

Step	1	

Select	an	annotation	aspect	

(e.g.	Pfam	motifs)

Step	2	

Select	organisms	to	compare	

(e.g.	Human,	Mouse,	Zebrafish,		

	and	Sea	squirt)

Step	3	

Select	combination	of	organisms	

(e.g.	Human	∩	Mouse	∩	Zebrafish,			

	or	Sea	squirt)

Step	4	&	5	

Select	an	annotation	and	obtain	

genes	(e.g.	Vanabin)

Step	4	&	5	

Select	an	annotation	and	obtain	

genes	(e.g.	MHC_I)



 34 

 

3.2.1.3 Text index search 

 

TogoGenome also provides simple keyword and sequence search interfaces. Because the 

text search function that is implemented in the existing RDF database is inadequate, 

TogoGenome uses Apache Solr (http://lucene.apache.org/solr/) to perform keyword 

search and the GGGenome service to perform sequence search (see the Methods section). 

While performing keyword search, a list of TogoStanza, which contain the keywords, are 

presented on the basis of a free text match for gene names, species names, phenotype 

terms, and environmental terms. In a sequence search, a list of reference genomes, which 

includes a specified sequence, are exhibited with links to the TogoGenome genes, which 

reside in the overlapping or surrounding regions of the query sequence in the genome. 

3.2.2 TogoStanza 

The majority of the existing genome databases comprise typical components such as gene 

name and aliases with a brief description, chromosomal location and gene structures of 

the transcripts in a genome browser, the corresponding nucleotide sequences and amino 

acid sequences, the functional annotations of the genes and proteins, sequence variations 

and modifications, the corresponding ortholog genes in other species, relevant literature, 

and cross-references to external databases. Despite the fact that several pieces of 

information are commonly represented, they cannot be reused while developing a new 

database because most of the existing databases are monolithic. In fact, when my 

collaborators started to develop the MicrobeDB.jp (https://microbedb.jp/) and CyanoBase 

(Fujisawa et al., 2017) databases, combining their original annotations with existing 

information that was stored in the major genome databases was difficult; therefore, they 

were forced to develop their own genome databases from scratch even though some of 

the contents were imported from the existing databases. To overcome this limitation, we 

developed TogoStanza to enable database developers to reuse components of the 

TogoGenome database in their genome databases. Because the TogoStanza system is 

designed to be generic, it is not limited to genome databases and is being utilized in other 

domains, such as proteomics and glycomics databases, as well as some other web 

applications. 
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3.2.2.1 Features of TogoStanza 

 

TogoStanza is a web application framework that obtains information from a web API, 

SPARQL in particular, and visualizes the results as an IFRAME or Web Components that 

can be embedded into any web page (Figure 3.3). TogoGenome provides the report pages 

for each gene, organism, phenotype, and environment. The pages display all the 

information by combining a series of related TogoStanza. In the case of the gene report 

page, each TogoStanza takes a taxonomy ID and gene ID as its arguments, obtains 

information related to the gene using dedicated SPARQL queries, and visualizes the 

results in HTML. All technologies, such as HTTP, AJAX, HTML, CSS, and JavaScript, 

are web standards so that any web application developer can easily create or customize a 

TogoStanza for publication online, even though optimizing the performance of a 

SPARQL query may require some specialized tuning techniques based on domain 

knowledge and the RDF data. A list of currently available TogoStanza used in the 

TogoGenome database (Supplemental Table 3.1 and Appendix) can be found at 

http://togostanza.org/ where users can try out their functionality by changing the 

arguments on the fly. Additionally, NanoStanza is another form of TogoStanza that 

summarizes information at a glance in an icon-sized module (Figure 3.4). The metadata 

of each TogoStanza is written in the JSON-LD format and is used to automatically 

summarize and categorize each TogoStanza in the showcase page. 

 

To date, more than 250 TogoStanza have been developed, including those developed for 

databases other than the TogoGenome database (Table 3.1). The TogoStanza framework 

is well suited to web application development, especially for Semantic Web data in 

various life sciences and biomedical domains. In BioJS (Corpas et al., 2014), which is a 

similar web application framework, that is not specialized for the Semantic Web, 195 

components are provided. Among these components, only one module (nextprot-cli) 

seems to use SPARQL. 

 

Using TogoStanza, components that are common to several databases in the life sciences 
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and biomedical domains are successfully modularized, leading to a reduction in the 

development costs and making the resulting database extensible for new functionalities. 

 



  

 

 

 

Table 3.1 List of TogoStanza providers. 

 

 

Database Domain Number of TogoStanza URL 

TogoGenome Genome 59 http://togogenome.org/stanza/ 

MicrobeDB.jp Genome 113 http://microbedb.jp/stanza/ 

CyanoBase Genome 6 http://genome.microbedb.jp/stanza/ 

MBGD Ortholog 19 http://mbgd.genome.ad.jp/stanza/ 

GlyTouCan Glycomics 16 https://bitbucket.org/glycosw/glytoucan-stanza/ 

https://github.com/glytoucan/glytoucan-js-stanza/ 

jPOST Proteomics 15 http://tools.jpostdb.org/ts/stanza/ 

TogoVar Variation 26 https://togovar.biosciencedbc.jp/stanza 
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Figure 3.3 Embedding TogoStanza into a web page. 

Embed	TogoStanza	JavaScript	version	

<!doctype	html>	

<html>	

		<body>	

				<link	rel="import"	href="//togostanza.org/dist/example/"/>	

				<togostanza-example	ec="3.1.-.-"></togostanza-example>	

		</body>	

</html>	

Embed	TogoStanza	Ruby	version	

<!doctype	html>	

<html>	

		<head>	

				<script	src="//code.jquery.com/jquery-3.3.1.js"></script>	

				<script	src="http://togostanza.org/stanza/assets/stanza.js"></script>	

		</head>	

		<body>	

				<div	data-stanza="http://togostanza.org/stanza/protein_names"	

									data-stanza-tax-id="9606"	data-stanza-gene-id="ALDH2">	

				</div>	

		</body>	

</html>	
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Figure 3.4 NanoStanza in gene, organism, and environment report pages. 

 

NanoStanza	for	gene	
Gene	length,	Enzyme	number,	3D	structure,	Publications	per	year

NanoStanza	for	organism	
Genome	size,	Number	of	genes,	GC	content,	Cell	shape,	Growth	pH,	Pathogenicity

NanoStanza	for	environment	
Habitat,	Number	of	inhabitants,	Distribution	of	growth	temperature	and	pH	
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3.3 Methods 

3.3.1 Integration of genome annotations 

Any annotations related to genome regions, such as gene structures, regulatory regions, 

mutations, and modifications, can be located using the genomic coordinate system. This 

information can be integrated by uniquely identifying the reference sequence, specifying 

the beginning and terminating positions of the region to which the annotation is attached, 

and designating the type of the annotation. However, if the ontologies and the RDF data 

model to describe these feature locations are not standardized, a query for one genome 

database cannot be interoperable with another even if the genome annotations are 

provided in RDF. For this reason, during the BioHackathon 2013 

(http://2013.biohackathon.org/) (Katayama et al., 2014) and the RDF summit 

(https://github.com/dbcls/rdfsummit) coding events, I collaboratively developed the 

Feature Annotation Location Description Ontology (FALDO) (Bolleman et al., 2016) 

together with the UniProt, Ensembl, INSDC (DDBJ), and TogoGenome groups (Figure 

3.5). The JBrowse genome browser version 1.10.0 (Buels et al., 2016) was also developed 

to implement a SPARQL query for acquiring and visualizing the annotations expressed 

using FALDO. Traditionally, several standards, such as GFF 

(http://gmod.org/wiki/GFF3) and TrackHubs (Raney et al., 2014), have been developed 

to attach annotations to the genome coordinates. The same can be achieved in RDF using 

FALDO along with some other major ontologies such as the Sequence Ontology (SO) 

(Mungall et al., 2011) and the Semanticscience Integrated Ontology (SIO) (Dumontier et 

al., 2014). Therefore, it is possible to construct a genome browser that can be of practical 

application while ensuring compatibility of the annotation information among the 

genome datasets represented in RDF. 

  



  

 
Figure 3.5 Standardization of the genome annotation coordinate system by the FALDO ontology. 
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3.3.2 TogoGenome datasets 

On the basis of the above standardization, my collaborators and I jointly developed the 

following RDF datasets and ontologies to integrate the public resources in TogoGenome 

(Figure 3.6). 

 

Complete genomes: We selected the "reference genome" and "representative genome" 

entries from the NCBI assembly report and further extracted RefSeq and Taxonomy 

identifiers. 

 

Genome annotations: We retrieved the NCBI RefSeq entries, including entire 

chromosome sequences, via the TogoWS service (Katayama, Nakao, et al., 2010a). 

Further, each entry was converted to RDF using an in-house converter, which is based on 

the BioRuby library (Goto et al., 2010a) and represents the feature locations using 

FALDO. To semantically describe the types of annotations, we developed and 

incorporated the INSDC annotated sequence ontology (Table 3.2) along with the 

taxonomy ontology described below. This converter is now publicly available (Table 

3.2); it is used to publish the RDF version of the INSDC entries from DDBJ (Mashima et 

al., 2017) and is hosted at the NBDC RDF portal (Table 3.2). 

 

Genome sequences: We extracted the genome sequences from the RefSeq entries and 

further indexed them for the JBrowse genome browser and the GGGenome sequence 

search service. 

  



  

 
Figure 3.6 Procedure of data integration in TogoGenome. 

Filter "reference/representative

genome"
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Taxonomy: We obtained a taxonomy dump from NCBI that contained all the species 

that were recorded in the INSDC sequence archive and their taxonomic hierarchies. 

Further, using an in-house converter (Table 3.2), we converted the dump to an OWL 

ontology file. The resulting ontology is publicly available (Table 3.2) and is used in the 

INSDC (DDBJ) RDF export. 

 

Protein information: We obtained the UniProt RDF files and extracted protein entries 

belonging to species with complete genomes. Meanwhile, genes in RefSeq were mapped 

with UniProt proteins using UniProt's idmapping file. Technically, it is possible to directly 

use the UniProt SPARQL endpoint, however, the performance of SPARQL federated 

queries was not satisfactory for our purpose and we only needed a subset of the entire 

UniProt database. Therefore, we imported a portion of the relevant UniProt data into 

TogoGenome. 

 

In-house ontologies: We developed the Microbial Phenotype Ontology (MPO) for 

microbial phenotypes, Metagenome and Microbes Environmental Ontology (MEO) for 

habitat environments, Microbial Culture Collection Vocabulary (MCCV) for culture 

collections, Growth Medium Ontology (GMO) for growth media and Pathogenic Disease 

Ontology (PDO) for infectious diseases (Table 3.2). These ontologies were mapped onto 

the taxonomy ontology. 

 

Other ontologies: We used FALDO for annotation coordinates, SO and INSDC annotated 

sequence ontology for the types of annotated regions, and Gene Ontology (GO) for gene 

functions along with common ontologies such as SIO, Dublin Core terms (DC), and 

Simple Knowledge Organization System (SKOS). 

 

As of June 2018, TogoGenome has integrated 7,065 complete genome sequences of 2,196 

organisms (212 eukaryotes), which include 10,843,971 genes (4,070,521 eukaryotic 

genes), along with their corresponding UniProt protein annotations. In total, 

approximately 6.3 billion triples of RDF data are stored and updated upon every 

RefSeq/UniProt release. The RDF database system, which is a triple store, that is 
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currently being used is the Virtuoso open source version 7 (http://vos.openlinksw.com/), 

and it is scalable at least up to tens of billion triples in our experience. To improve the 

response of the SPARQL endpoint, the stored RDF data file in a single loading instance 

is copied to three backend Virtuoso instances (16GB of each of the RAMs are allocated) 

for load balancing at the Nginx HTTP server layer. With this configuration, I can 

eliminate service downtime during the update procedure by sequentially updating and 

restarting these backend servers. This SPARQL endpoint is publicly available at 

http://togogenome.org/sparql for accepting customized queries from users. 

  



  

 

 

Table 3.2 Availability of in-house converters and ontologies. 

 

 

RDF data, ontologies and converters URL 

INSDC RDF hosted at the NBDC RDF Portal https://integbio.jp/rdf/ 

INSDC annotated sequence ontology http://ddbj.nig.ac.jp/ontologies/nucleotide/ 

INSDC/RefSeq record to RDF converter https://github.com/dbcls/rdfsummit/tree/master/insdc2ttl/ 

INSDC taxonomy ontology http://ddbj.nig.ac.jp/ontologies/taxonomy/ 

NCBI taxonomy to INSDC taxonomy converter https://github.com/dbcls/rdfsummit/tree/master/taxdump2owl/ 

Microbial Phenotype Ontology (MPO) https://bioportal.bioontology.org/ontologies/MPO 

Metagenome and Microbes Environmental Ontology (MEO) https://bioportal.bioontology.org/ontologies/MEO 

Microbial Culture Collection Vocabulary (MCCV) https://bioportal.bioontology.org/ontologies/MCCV 

Growth Medium Ontology (GMO) https://bioportal.bioontology.org/ontologies/GMO 

Pathogenic Disease Ontology (PDO) https://bioportal.bioontology.org/ontologies/PDO 
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3.3.3 Development of TogoGenome 

The TogoGenome application itself has been built using Ruby on Rails 

(https://rubyonrails.org/). Functions such as faceted search, comparative genomics, and 

keyword and sequence searches, are implemented in this application layer. For the faceted 

search, we use several ontologies in combination such as (1) GO annotations imported 

from UniProt RDF for gene features, (2) NCBI taxonomy that has been converted to OWL 

and released at DDBJ for organisms, (3) MPO that has been developed for phenotypes, 

and (4) MEO that has been made for the habitat. Candidate ontology terms will be 

suggested while keywords are being typed, and the user can traverse the hierarchy of 

ontologies to adjust the granularity of classification. To improve the performance of the 

faceted search, I calculated in advance the correspondences between higher-level 

concepts in ontologies and genes that fall under the categories and stored the inferred 

relations at the time of updating the data. Additionally, the combinations of the selected 

facets are stored in a user's cookie, and the query results are cached as much as possible 

to improve response time. 

 

While SPARQL queries are suitable for semantic searches of interconnected objects in 

the RDF datasets, the efficiency of character string and regular expression searches is 

inefficient in most of the triple stores. In TogoGenome, I introduced the Apache Solr full-

text search system for indexing character strings such as names, descriptions, and other 

text-based annotations of genes and organisms. However, identifying the page on which 

a searched term is displayed without tracing the connections between triples and pages 

was still difficult. To resolve this issue, we selected the targeted fields for the text searches 

in each TogoStanza and further indexed the strings and corresponding stanzas in pairs. 

For example, in the case of a gene report page, currently seven stanzas contain literal 

annotations of a gene, each representing different aspects of the same gene. I therefore 

created an index that contains a TogoGenome gene URI and a literal string for each 

TogoStanza (Figure 3.7). In this figure, the gene URI indicated by @id and a literal string 

containing the information about IDs and annotations were used in indexing. This 

indexing procedure is iterated over all genes of each organism stored in TogoGenome. 

 



  

 

 
 

{ 

  "@id": "http://togogenome.org/gene/9606:ALDH2", 

  "gene_id": "9606:ALDH2", 

  "uniprot_id": [ "P05091" ], 

  "names": [ "Caution", "Polymorphism", "Similarity", "Subcellular Location", "Subunit" ], 

  "messages": [ 

    "Belongs to the aldehyde dehydrogenase family.", 

    "Genetic variation in ALDH2 is responsible for individual differences in responses to drinking alcohol [MIM:610251] ... ", 

    "Homotetramer.", 

    "Mitochondrion matrix", 

    "No experimental confirmation available." 

  ] 

} 

 

Figure 3.7 Correspondence of TogoGenome URI and literal strings for each TogoStanza to be indexed for text search in Apache Solr. 

(This shows an example of human ALDH2 protein annotation in the “Protein general annotation” stanza). 
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Similarly, searching for genomic regions that have a specific sequence with SPARQL is 

not efficient. Therefore, I used the GGGenome system (https://GGGenome.dbcls.jp/) API 

to obtain the corresponding chromosome and its position. Using the specified sequence 

ID and location, genomic annotations around the region can be obtained by a SPARQL 

query using the FALDO ontology. 

3.3.4 Development of TogoStanza 

Due to historical reasons, there are two branches of the TogoStanza development 

framework. TogoStanza was originally developed as a Ruby application but was later 

implemented using JavaScript. Both of these branches are able to generate template files 

for SPARQL and HTML along with the files for metadata and supporting data. 

 

The Ruby version of the TogoStanza framework was released as a RubyGems' package 

(https://rubygems.org/). Therefore, users can install it via Ruby's standard ‘gem’ 

command and further generate the TogoStanza template files using the installed 

‘togostanza’ command. After customizing the templates and developing the query and 

visualization logic, the resulting TogoStanza can be deployed at the TogoStanza server 

and embedded into any web page as an IFRAME. Because the IFRAME encapsulates its 

content, other elements on a web page, even on a classical web browser, are not affected. 

However, due to the strict isolation of IFRAME, it is difficult to make a TogoStanza 

interact with other TogoStanza even if both contain components that are embedded on the 

same page. Further, this version requires the TogoStanza process to keep running on the 

server while the SPARQL queries that are implemented inside the TogoStanza are 

executed on the server side. Therefore, a heavy load may be created while exhibiting 

exceeding accesses. This problem can be resolved in the JavaScript version of 

TogoStanza. 

 

The JavaScript version of the TogoStanza module relies only on standard web 

technologies, such as HTML, CSS, JavaScript, AJAX, and SPARQL, and generates Web 

Components as a static HTML file. This eliminates the dependency on the server side 

where the SPARQL queries are made via an AJAX call directly from the user's web 

browser to the public SPARQL endpoint. The results are rendered by the client browser. 
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Using “Web Components” technology, which encapsulates Document Object Model 

(DOM) as a shadow DOM, multiple TogoStanza can be embedded in a single DOM of a 

web page so that it is possible to implement components that react to an event that has 

been issued by another component upon a user's interaction. The current drawback is that 

the state of the browser's support, even while using a modern web browser, is not 

optimized for Web Components. Therefore, it will take a while for the transition from the 

Ruby version to the JavaScript version. Therefore, I provide a special Ruby version 

TogoStanza that wraps the JavaScript version as a temporal countermeasure. 

3.4 Discussion 

By introducing a modularized architecture for displaying SPARQL results as TogoStanza, 

I and our collaborators were able to reduce the costs of mutually constructing new 

genome-related databases in TogoGenome, MicrobeDB.jp, MBGD (Uchiyama et al., 

2015), and CyanoBase. This exchange of distributed resources could not be achieved by 

existing monolithic genome database systems. The idea of providing reusable application 

components based on standard web technology is a natural extension of the concept of 

the Semantic Web. In the Semantic Web, RDF data stored in distributed SPARQL 

endpoints are transparently accessible through the standard HTTP/HTTPS protocol 

unlike the data buried in intranet database systems. Therefore, it is possible to use 

distributed heterogeneous data on a reciprocal basis. Additionally, RDF is scalable for the 

integration of heterogeneous data types without being bound by the database schema. 

 

Traditionally, most genome databases are built on top of high-performance database 

engines such as a relational database (RDB) or key-value stores. I was unsure about the 

performance of emerging triple stores for RDF. Further, the original version of 

TogoGenome had been implemented using other triple stores or prior versions of Virtuoso 

and had not scaled enough in the beginning. However, the Virtuoso open source version 

7, released in 2013, exhibited sufficiently high practical performance for our genome 

database by making tens of real-time SPARQL queries at once against billions of triples. 

 

I have successfully demonstrated an RDF back-ended system with real-time SPARQL 
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queries that can be used for a large-scale genome database. Meanwhile, I observed that 

triple stores were not efficient for text searches. However, this is not necessarily a defect 

of the Semantic Web system. Even while using relational databases or other NoSQL 

databases, it is the norm to prepare a text search engine to perform keyword searches and 

an external application, such as BLAST, to perform sequence searches. 

 

Traditional databases required users to parse a database entry to extract information, 

forcing them to develop custom scripts with programming language-dependent open 

source libraries, such as BioPerl (Stajich et al., 2002), Biopython (Cock et al., 2009), 

BioJava (Prlić et al., 2012), and BioRuby (Goto et al., 2010a), before performing real 

bioinformatics analyses. For databases that do not publish flat file dumps, a web interface 

that can retrieve the summarized information is often provided. However, the flexibility 

and granularity of information that can be obtained by users are usually restricted by the 

capability of the provided APIs. In RDF, all the information is already parsed and 

semantically annotated. In the case of SPARQL, especially with the ontologies and 

adaptable conditions, it is relatively straightforward to obtain any aggregated information 

by filtering data. 

3.5 Conclusions 

I introduced a modularized architecture in the TogoGenome database that allowed 

database developers to reuse the typical annotations of genes and organisms in other 

organism-specific or metagenome databases as embeddable TogoStanza components 

(Supplemental Table 3.1 and Appendix). 

 

Because all the RDF data, the SPARQL endpoint, and TogoStanza components that are 

used in the TogoGenome application are publicly available, developers who intend to 

build another genome database will benefit from the usage of these resources to reduce 

the costs of application development and data management costs. 
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Chapter 4 

Discussions and conclusions 

 

In order to realize integrated utilization of life science databases, I conducted research for 

improving standardization and interoperability of database access methods and database 

contents. Since realization of such standardization cannot be achieved by a single institute, 

it was necessary to collaborate with an international community to develop systems and 

semantic datasets. 

 

Originally, I have developed the BioRuby library supporting a number of database 

formats and bioinformatics applications. This library has been used to develop a client 

program to conduct data analysis and create reproducible workflows. However, it turned 

out that a workflow which utilizes Web services faced difficulties in connecting the output 

of one service into the input of the next service because of data type incompatibility. Also, 

APIs in existing Web services vary in its form of calling APIs and accepting data formats, 

thus requiring users to consult the documentation of each service and to develop data 

conversion programs. This situation gave me the idea to standardize the APIs of these 

services and to improve the interoperability of Web services by creating a new Web 

service, TogoWS, which fills this gap of incompatibility. 

 

The mission of Database Center for Life Science (DBCLS) is to promote integrated use 

of life science databases. However, because of the exponential growth in volume of these 

databases, it is becoming hard to maintain a centralized database at a single center. Instead, 

it is more efficient and sustainable to virtually integrate distributed databases. For this 

purpose, Web services is one applicable technology, and my TogoWS development 

described above can contribute to realize this integration. During the course of 

development, I also added support for RDF conversion in TogoWS which exposes 

database contents as Linked Data. 
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By providing an RDF version of data, information retrieval and analysis based on the 

meaning of data, which was difficult with conventional databases, could be realized. 

Therefore, the next mission of the DBCLS became the advancement of standardized 

database contents in the life sciences and biomedical domains using Semantic Web 

technologies. With this shift, the possibility of new data usage which could not be realized 

by conventional technologies was greatly increased. In TogoGenome, I collaboratively 

integrated heterogeneous datasets in the genomics domain, such as organisms, genes, 

proteins, phenotypes, and environments, as RDF data and ontologies. As a result, users 

could benefit from a faceted search system using multiple ontologies in combination to 

semantically extract information of interest. This kind of information retrieval could not 

be achieved by conventional database systems thus demonstrating one of the advantages 

of Semantic Web technologies. 

 

In addition to create and maintain billions of triples in an RDF database, genomics data 

often contain tremendous volumes of raw data such as SAM/BAM sequence read 

alignments, epigenomic data and variant calling data. I realized that semantic integration 

of data is most suitable for information such as facts and annotations including gene 

structures, locations and protein functions as in the case of a gene report. In contrast, raw 

data supporting this information, which is usually displayed in a genome browser, do not 

necessarily need to be represented as RDF, because they are usually stored in an efficient 

binary format for improving read/write performance. 

 

Another improvement in TogoGenome was to introduce a modularized structure. 

TogoGenome is composed of a combination of multiple TogoStanzas, each of which 

displays an information block resulting from their respective SPARQL queries. A new 

TogoStanza is first initialized with templates including a code snippet with scaffold 

SPARQL and HTML files. The developer can override the SPARQL queries and the logic 

of data transformation for visualization. The resultant data is rendered in HTML and sent 

back to the client Web browser. A drawback of this implementation design is that useful 

SPARQL queries are buried in the existing TogoStanza instances and are not easily 
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reusable. Therefore, I started to externalize these SPARQL queries as REST APIs using 

SPARQList (https://github.com/dbcls/sparqlist), which is a new Web service I created at 

DBCLS for improving the reusability of SPARQL-based REST APIs. In SPARQList, a 

developer can describe an API itself in Markdown format with documentation, embed 

SPARQL queries, and logic to transform SPARQL results into convenient JSON data. 

The resulting API is instantly deployed and can be executed from a Web interface and 

from any Web client applications especially through an AJAX call as in TogoStanza. 

Therefore, by exposing well-developed SPARQL queries in TogoStanza as SPARQList, 

users can easily reuse complex queries for their analysis, and advanced users can test and 

modify these queries for similar purposes. 

 

For future research, I initiated the development of a human genome variation database, 

TogoVar (https://togovar.biosciencedbc.jp/), in which the human subset of TogoGenome 

is reused. Then my colleagues and I in the TogoVar project added information about 

genomic variations and allele frequencies in the Japanese population. Thanks to Semantic 

Web technologies, it is relatively easy to extend data models in TogoGenome to integrate 

new type of datasets in the TogoVar database. Therefore, I also started the Med2RDF 

project (http://med2rdf.org/) to develop RDF datasets of biomedical resources with 

colleagues, which integrates knowledge of genetic diseases, sequence and structural 

variants, cancer genomes, protein and drug interactions, and clinical significance. All the 

RDF data we developed are being accumulated and hosted in the NBDC RDF Portal 

(Kawashima et al., 2018). These resources will be essential for future data science 

research, and it is anticipated that new methods will be developed by introducing 

advanced analytical techniques such as machine learning. 
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Supplemental Figures and Tables 

Supplemental Table 2.1 List of available databases for keyword search. The first column 

represents canonical database names and the second is for aliases if defined. 

 
pdbj-pdb pdb 

kegg-compound compound 

kegg-drug drug 

kegg-enzyme enzyme 

kegg-genes genes 

kegg-glycan glycan 

kegg-orthology orthology 

kegg-reaction reaction 

kegg-module module 

kegg-pathway pathway 

ncbi-pubmed pubmed 

ncbi-protein protein 

ncbi-nuccore nuccore 

ncbi-nucleotide nucleotide 

ncbi-nucgss nucgss 

ncbi-nucest nucest 

ncbi-structure 

ncbi-genome 

ncbi-assembly 

ncbi-gcassembly 

ncbi-genomeprj 

ncbi-bioproject 

ncbi-biosample 

ncbi-biosystems 

ncbi-blastdbinfo 

ncbi-books 

ncbi-cdd 

ncbi-clone 

ncbi-gap 



 59 

ncbi-gapplus 

ncbi-dbvar 

ncbi-epigenomics 

ncbi-gene gene 

ncbi-gds 

ncbi-geoprofiles 

ncbi-homologene homologene 

ncbi-journals 

ncbi-medgen 

ncbi-mesh mesh 

ncbi-ncbisearch 

ncbi-nlmcatalog 

ncbi-omia 

ncbi-omim omim 

ncbi-pmc 

ncbi-popset 

ncbi-probe 

ncbi-proteinclusters 

ncbi-pcassay 

ncbi-pccompound 

ncbi-pcsubstance 

ncbi-pubmedhealth 

ncbi-seqannot 

ncbi-snp snp 

ncbi-sra 

ncbi-taxonomy 

ncbi-toolkit 

ncbi-toolkitall 

ncbi-toolkitbook 

ncbi-unigene 

ncbi-unists 

ncbi-gencoll 

ebi-arrayexpress-repository 

ebi-atlas-experiments 

ebi-atlas-genes 

ebi-biomodels 
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ebi-chebi 

ebi-chembl-activity 

ebi-chembl-assay 

ebi-chembl-target 

ebi-dgva 

ebi-efo 

ebi-ega 

ebi-emblnew_con 

ebi-emblnew_standard 

ebi-emblrelease_con 

ebi-emblrelease_standard 

ebi-ensemblGenomes_gene 

ebi-ensembl_gene 

ebi-epo 

ebi-genome_assembly 

ebi-go 

ebi-gpcrdb 

ebi-hgnc 

ebi-intact-experiments 

ebi-intact-interactions 

ebi-intact-interactors 

ebi-intenz 

ebi-interpro 

ebi-jpo 

ebi-kipo 

ebi-lrg 

ebi-medline 

ebi-merops_clan 

ebi-merops_family 

ebi-merops_id 

ebi-nrnl1 

ebi-nrnl2 

ebi-nrpl1 

ebi-nrpl2 

ebi-omim 

ebi-patentFamilies 
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ebi-patentdb 

ebi-pdbe 

ebi-pdbechem 

ebi-pride 

ebi-project 

ebi-reactome 

ebi-rhea 

ebi-sbo 

ebi-sra-analysis 

ebi-sra-experiment 

ebi-sra-run 

ebi-sra-sample 

ebi-sra-study 

ebi-sra-submission 

ebi-taxonomy 

ebi-uniparc uniparc 

ebi-uniprot uniprot 

ebi-uniref100 uniref100 

ebi-uniref50 uniref50 

ebi-uniref90 uniref90 

ebi-uspto 

ebi-wgs_masters 
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Supplemental Table 2.2 List of available databases for entry retrieval. The first column 

represents canonical database names and the second is for aliases. 

 
ncbi-nuccore nuccore 

ncbi-nucest nucest 

ncbi-nucgss nucgss 

ncbi-nucleotide nucleotide 

ncbi-protein protein 

ncbi-gene gene 

ncbi-homologene homologene 

ncbi-snp snp 

ncbi-mesh mesh 

ncbi-pubmed pubmed 

ebi-ena ena 

ebi-uniprot uniprot 

ebi-uniparc uniparc 

ebi-uniref100 uniref100 

ebi-uniref90 uniref90 

ebi-uniref50 uniref50 

ddbj-ddbj ddbj 

ddbj-dad dad 

pdbj-pdb pdb 

kegg-compound compound 

kegg-drug drug 

kegg-enzyme enzyme 

kegg-genes genes 

kegg-glycan glycan 

kegg-orthology orthology 

kegg-reaction reaction 

kegg-module module 

kegg-pathway pathway 
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Supplemental Table 2.3 List of available pairs of a source data type and a converted 

format. The first part before a period represents an acceptable source data type and the 

latter part shows a convertible format. 
 
genbank.fasta 

genbank.ena 

genbank.gff 

genbank.ntriples 

genbank.n3 

genbank.rdfxml 

genbank.ttl 

ena.fasta 

ena.genbank 

ena.ntriples 

ena.n3 

ena.rdfxml 

ena.ttl 

ddbj.ntriples 

ddbj.n3 

ddbj.rdfxml 

ddbj.ttl 

uniprot.fasta 

uniprot.gff 

blast.gff 

blasttable.gff 

blastxml.gff 

megablast.gff 

fasta.gff 

psl.gff 

sim4.gff 

hmmer.gff 

hmmer3tbl.rdfxml 

exonerate.gff 

wise.gff 

rdfxml.ttl 

ttl.rdfxml 
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csv.rdfxml 

csv.ttl 

gff.rdfxml 

gff.ttl 

gvf.rdfxml 

gvf.ttl 
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Supplemental Table 3.1 List of TogoStanzas developed for the TogoGenome. 
 
Genes and proteins 
 

gene_attributes: basic information of a gene 

nucleotide_sequence: nucleotide sequence of a gene 

protein_attributes: basic information of a protein 

protein_names: canonical and alternative names of a protein 

protein_general_annotation: functional annotations of a protein 

protein_orthologs: links to orthologous proteins 

protein_cross_references: cross references to other protein resources 

protein_ontologies: keywords and gene ontology annotations 

protein_references: links to literature 

protein_sequence: information and amino acid sequence of a protein 

protein_sequence_annotation: domain and functional sites of a protein 

 

Genomes 
 

genome_information: list of chromosomal sequences 

genome_cross_references: cross references to other genome resources 

genome_jbrowse: genome browser 

genome_plot: scatter plot of a distribution of genomic properties 

 

Organisms 
 
organism_names: list of organism names and synonyms 

organism_phenotype: phenotype descriptions of a organism 

organism_cross_references: cross references to organism related resources 

organism_gene_list: list of genes of a organism 

lineage_information: taxonomic lineage of an organism 

organism_habitat: list of habitats of a organism 

organism_pathogen_information: organism related pathogenic diseases 

organism_culture_collections: summary of culture collections of a organism 

organism_medium_information: medium information of a organism 

taxonomy_ortholog_profile: taxonomic profile of an ortholog group 
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Environments 
 
environment_attributes: description of an environment 

environment_environmental_ontology: hierarchical view of an environment 

environment_geographical_map: geographic locations of an environment 

environment_inhabitants: samples and cultures taken from an environment 

environment_inhabitants_statistics: number of samples and cultures 

environment_taxonomic_composition: breakdown of organisms of an environment 

 

Phenotypes 
 
microbial_phenotype_information: list of organisms of a phenotype 

microbial_phenotype_cell_shape: description of a shape of a microbial 

microbial_phenotype_environment_composition: environments and phenotype 

microbial_phenotype_genus_composition: genus and phenotype 

 
Medium 
 
gmo_applied_spices: applied species of a medium 

gmo_approximation: relevance among medium 

gmo_genus: medium based organism summary 

medium_components: components of a medium 

 
NanoStanza 
 

gene_length_nano  

gene_wikidata_nano  

protein_ec_number_nano  

protein3d_structure_nano  

protein_references_timeline_nano  

organism_gene_number_nano  

organism_genome_size_nano  

organism_gc_nano  

organism_microbial_cell_shape_nano  

organism_related_disease_nano  

organism_wikidata_nano  
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organism_ph_nano  

environment_inhabitants_statistics_nano  

environment_organism_distribution_on_ph_nano  

environment_organism_distribution_on_temperature_nano  

environment_top_level_symbolic_image_nano  

 

MetaStanza 
 

js_stanza_wrapper  
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Appendix 

TogoWS API specification 

In this section, generic functionalities and advanced features of the TogoWS APIs are 
described. 
 

TogoWS REST API conventions 

TogoWS REST API currently supports following functionalities. 
 
Entry http://togows.org/entry/database/entry_id[,entry_id2,...][/field][.format] 

Search http://togows.org/search/database/query+string[/offset,limit][.format] 

Convert http://togows.org/convert/data_source.format 

External API http://togows.org/api/service/database/table/column=value[/offset,limit][.format] 

 

Entry 

Entry retrieval REST API can be used to obtain database entries, extract a field content 
and convert the data format. 
 
• Synopsis 

o http://togows.org/entry/database/entry_id[,entry_id2,...][/field][.format] 

• Multiple entries 

o Multiple entries can be retrieved at once by concatenating identifiers with ',' (100 entries at 

maximum) 

• Options 

o List of available databases: http://togows.org/entry/ (some have alias for short in the 

second column) 

o List of available fields: http://togows.org/entry/database?fields 

o List of available formats: http://togows.org/entry/database?formats 

o Splice of a nucleotide sequence: http://togows.org/entry/database/seq/location 

• Errors 
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o 400 Bad Request (HTTP error): requested URI or the database was invalid 

o 404 Not Found (HTTP error): requested entry was not found 

 

Search 

Database search REST API can be used to obtain a list of entry identifiers or a number of 
results by a keyword search. 
 
• Synopsis 

o http://togows.org/search/database/query+string[/offset,limit][.format] 

• Query string 

o Format of the "query string" is just a simple text (spaces can be replaced with '+' or '%20') 

• Options 

o List of available databases: http://togows.org/search/ (some have alias for short in the 

second column) 

o List of available formats: http://togows.org/search/database?format 

o Limit the number of results: http://togows.org/search/database/query+string/offset,limit 

o Count the number of results: http://togows.org/search/database/query+string/count 

• Errors 

o 400 Bad Request (HTTP error): requested URI or the database was invalid 

o 404 Not Found (HTTP error): requested entry had no results 

 

Convert 

Data format conversion REST API can be used to convert file formats. 
 
• Synopsis 

o http://togows.org/convert/data_source.format 

• Protocol 

o Use the HTTP POST protocol to upload your data as a text 

• Options 

o List of available converters: http://togows.org/convert/ (description of these formats can 

be found here and here) 

• Errors 

o 400 Bad Request (HTTP error): requested URI was invalid 

o 404 Not Found (HTTP error): requested data_source.format is not supported 
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TogoWS external API 

External API is introduced to provide REST APIs for accessing non-Web service based 
external data sources, such as University of California, Santa Cruz (UCSC) databases. 

UCSC API 

UCSC API internally uses the Ruby UCSC API library which directly accesses to the 
public MySQL database provided by the UCSC. Although UCSC uses 0-based inter-base 
coordinates, TogoWS accepts biological 1-based positions (which can contain commas 
but not mandatory) and are automatically converted when accessing the UCSC database. 
 
• Synopsis 

o http://togows.org/api/ucsc/database/table/column[!]=value[;column2[!]=value2;...][/offset,l

imit][.format] 

• Options 

o List of available databases: http://togows.org/api/ucsc[.json] 

o List of available tables: http://togows.org/api/ucsc/database[.json] 

o List of available columns: http://togows.org/api/ucsc/database/table[.json] (example data 

will be shown in the second column) 

o Obtain a limited number of 

results: http://togows.org/api/ucsc/database/table/offset,limit[.json] 

• Keyword search 

o Find rows having a keyword in a given 

column: http://togows.org/api/ucsc/database/table/column=value[/offset,limit][.json] 

o Find rows not having a keyword in a given 

column: http://togows.org/api/ucsc/database/table/column!=value[/offset,limit][.json] 

o Filtering by multiple 

conditions: http://togows.org/api/ucsc/database/table/column[!]=value[;column2[!]=value

2;...][/offset,limit][.json] 

• Range search 

o Find rows within a range: http://togows.org/api/ucsc/database/table/chromosome:from-

to[.json] (default to inclusive) 

o Include rows straddle over a 

boundary: http://togows.org/api/ucsc/database/table/inclusive/chromosome:from-to[.json] 
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o Exclude rows straddle over a 

boundary: http://togows.org/api/ucsc/database/table/exclusive/chromosome:from-to[.json] 

• Gene table (refGene, knownGene, ensGene, wgEncode etc.) 

o CDS positions: http://togows.org/api/ucsc/database/refGene/name[2]=value/cds[.json] 

o Exon positions: http://togows.org/api/ucsc/database/refGene/name[2]=value/exon[.json] 

o Intron 

positions: http://togows.org/api/ucsc/database/refGene/name[2]=value/intron[.json] 

• bigWig data 

o Corresponding file name: http://togows.org/api/ucsc/database/bigWig 

o bigWigInfo output: http://togows.org/api/ucsc/database/bigWig/info 

o bigWigSummary output: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor (default to mean) 

§ Mean: http://togows.org/api/ucsc/database/bigWig/chromosome:from-to/divisor/mean 

§ Minimum: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/min 

§ Maximum: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/max 

§ Coverage: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/coverage 

§ Standard deviation: http://togows.org/api/ucsc/database/bigWig/chromosome:from-

to/divisor/std 

• bigBed data 

o Corresponding file name: http://togows.org/api/ucsc/database/bigBed 

o bigBedInfo output: http://togows.org/api/ucsc/database/bigBed/info 

o bigBedSummary output: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor (default to coverage) 

§ Mean: http://togows.org/api/ucsc/database/bigBed/chromosome:from-to/divisor/mean 

§ Minimum: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor/min 

§ Maximum: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor/max 

§ Coverage: http://togows.org/api/ucsc/database/bigBed/chromosome:from-

to/divisor/coverage 

• DNA sequence (2bit file) 

o Forward strand: http://togows.org/api/ucsc/database/chromosome:from-to[.fasta] 

o Reverse strand: http://togows.org/api/ucsc/database/chromosome:to-from[.fasta] 
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TogoWS API examples 

In this section, representative examples of the TogoWS APIs are shown. 
 

TogoWS entry retrieval API examples 
 

Retrieve a PubMed entry 20472643. 
 

% curl http://togows.org/entry/pubmed/20472643 

PMID- 20472643 

OWN - NLM 

STAT- MEDLINE 

DCOM- 20100927 

LR  - 20141203 

IS  - 1362-4962 (Electronic) 

IS  - 0305-1048 (Linking) 

VI  - 38 

IP  - Web Server issue 

DP  - 2010 Jul 

TI  - TogoWS: integrated SOAP and REST APIs for interoperable bioinformatics Web 

      services. 

PG  - W706-11 

 : 

(60 lines) 

 

Retrieve a PubMed entry 20472643 and extract authors in a JSON format. 
 

% curl http://togows.org/entry/pubmed/20472643/authors.json 

[ 

  [ 

    "Katayama, T.", 

    "Nakao, M.", 

    "Takagi, T." 

  ] 

] 
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Retrieve a UniProt entry BRCA2_HUMAN. 
 

% curl http://togows.org/entry/uniprot/BRCA2_HUMAN 

ID   BRCA2_HUMAN             Reviewed;        3418 AA. 

AC   P51587; O00183; O15008; Q13879; Q5TBJ7; 

DT   01-OCT-1996, integrated into UniProtKB/Swiss-Prot. 

DT   11-NOV-2015, sequence version 3. 

DT   12-SEP-2018, entry version 208. 

DE   RecName: Full=Breast cancer type 2 susceptibility protein; 

DE   AltName: Full=Fanconi anemia group D1 protein; 

GN   Name=BRCA2; Synonyms=FACD, FANCD1; 

OS   Homo sapiens (Human). 

 : 

(1750 lines) 

 

Retrieve UniProt entries ACT_YEAST and ACT_SCHPO in a FASTA format. 
 

% curl http://togows.org/entry/uniprot/ACT_YEAST,ACT_SCHPO.fasta 

>sp|P60010|ACT_YEAST Actin OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 

GN=ACT1 PE=1 SV=1 

MDSEVAALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGIMVGMGQKDSYVGDEAQS 

KRGILTLRYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPMNPKSNREKMT 

QIMFETFNVPAFYVSIQAVLSLYSSGRTTGIVLDSGDGVTHVVPIYAGFSLPHAILRIDL 

AGRDLTDYLMKILSERGYSFSTTAEREIVRDIKEKLCYVALDFEQEMQTAAQSSSIEKSY 

ELPDGQVITIGNERFRAPEALFHPSVLGLESAGIDQTTYNSIMKCDVDVRKELYGNIVMS 

GGTTMFPGIAERMQKEITALAPSSMKVKIIAPPERKYSVWIGGSILASLTTFQQMWISKQ 

EYDESGPSIVHHKCF 

>sp|P10989|ACT_SCHPO Actin OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 

GN=act1 PE=1 SV=1 

MEEEIAALVIDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHHGIMVGMGQKDSYVGDEAQS 

KRGILTLKYPIEHGIVNNWDDMEKIWHHTFYNELRVAPEEHPCLLTEAPLNPKSNREKMT 

QIIFETFNAPAFYVAIQAVLSLYASGRTTGIVLDSGDGVTHTVPIYEGYALPHAIMRLDL 

AGRDLTDYLMKILMERGYTFSTTAEREIVRDIKEKLCYVALDFEQELQTAAQSSSLEKSY 

ELPDGQVITIGNERFRAPEALFQPSALGLENAGIHEATYNSIMKCDVDIRKDLYGNVVMS 

GGTTMYPGIADRMQKEIQALAPSSMKVKIVAPPERKYSVWIGGSILASLSTFQQMWISKQ 

EYDESGPGIVYRKCF 
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Retrieve a RefSeq entry NC_001138 (yeast chromosome 6) in a GFF format. 
 

% curl http://togows.org/entry/nucleotide/NC_001138.gff 

##gff-version 3 

NC_001138 Genbank region 1 270161 . . .

 ID=NC_001138;Note=Saccharomyces%20cerevisiae%20S288C%20chromosome%20VI%2C%20complete%20

sequence. 

NC_001138 Genbank region 1 270161 . + .

 ID=Saccharomyces%20cerevisiae%20S288C;db_xref=taxon%3A559292;chromosome=VI;strain=S288C

;mol_type=genomic%20DNA 

NC_001138 Genbank telomere 1 5530 . - .

 ID=TEL06L%3B%20Telomeric%20region%20on%20the%20left%20arm%20of%20Chromosome%20VI%3B%20c

omposed%20of%20an%20X%20element%20core%20sequence%2C%20X%20element%20combinatorial%20repeats%2C%

20a%20stretch%20of%20telomeric%20repeats%2C%20and%20a%20short%20Y%27%20element;db_xref=SGD%3AS00

0028882 

NC_001138 Genbank gene 53 535 . + .

 ID=YFL068W;db_xref=GeneID%3A850476 

NC_001138 Genbank mRNA 53 535 . + .

 Parent=YFL068W;ID=YFL068W.t01;db_xref=GeneID%3A850476;transcript_id=NM_001179899.1;prod

uct=hypothetical%20protein 

NC_001138 Genbank CDS 53 535 . + .

 Parent=YFL068W.t01;protein_id=NP_116587.1;note=hypothetical%20protein%3B%20SWAT-

GFP%20and%20mCherry%20fusion%20proteins%20localize%20to%20the%20cytosol;codon_start=1;db_xref=Ge

neID%3A850476,SGD%3AS000001826;translation=MMPAKLQLDVLRTLQSSARHGTQTLKNSNFLERFHKDRIVFCLPFFPALFLVP

VQKVLQHLCLRFTQVAPYFIIQLFDLPSRHAENLAPLLASCRIQYTNCFSSSSNGQVPSIISLYLRVDLSPFYAKKFQIPYRVPMIWLDVFQVFFV

FLVISQHSLHS;product=hypothetical%20protein 

 : 

(4996 lines) 

 

Extract a sub-sequence that of the ACT1 gene which has two exons at 53260..54377 and 
54687..54696 on a reverse complement strand of the RefSeq entry NC_001138 (yeast 
chromosome 6). 
 

% curl 'http://togows.org/entry/nucleotide/NC_001138/seq/complement(join(53260..54377,54687.. 

54696))'  
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atggattctgaggttgctgctttggttattgataacggttctggtatgtgtaaagccggttttgccggtgacgacgctcctcgtgctgtcttccca

tctatcgtcggtagaccaagacaccaaggtatcatggtcggtatgggtcaaaaagactcctacgttggtgatgaagctcaatccaagagaggtatc

ttgactttacgttacccaattgaacacggtattgtcaccaactgggacgatatggaaaagatctggcatcataccttctacaacgaattgagagtt

gccccagaagaacaccctgttcttttgactgaagctccaatgaaccctaaatcaaacagagaaaagatgactcaaattatgtttgaaactttcaac

gttccagccttctacgtttccatccaagccgttttgtccttgtactcttccggtagaactactggtattgttttggattccggtgatggtgttact

cacgtcgttccaatttacgctggtttctctctacctcacgccattttgagaatcgatttggccggtagagatttgactgactacttgatgaagatc

ttgagtgaacgtggttactctttctccaccactgctgaaagagaaattgtccgtgacatcaaggaaaaactatgttacgtcgccttggacttcgaa

caagaaatgcaaaccgctgctcaatcttcttcaattgaaaaatcctacgaacttccagatggtcaagtcatcactattggtaacgaaagattcaga

gccccagaagctttgttccatccttctgttttgggtttggaatctgccggtattgaccaaactacttacaactccatcatgaagtgtgatgtcgat

gtccgtaaggaattatacggtaacatcgttatgtccggtggtaccaccatgttcccaggtattgccgaaagaatgcaaaaggaaatcaccgctttg

gctccatcttccatgaaggtcaagatcattgctcctccagaaagaaagtactccgtctggattggtggttctatcttggcttctttgactaccttc

caacaaatgtggatctcaaaacaagaatacgacgaaagtggtccatctatcgttcaccacaagtgtttctaa 

 

Show a list of available formats for the NCBI Nucleotide database. 
 

% curl 'http://togows.org/entry/nucleotide?formats' 

gb 

xml 

ttl 

fasta 

gff 

json 

 
Show a list of available fields for the NCBI Nucleotide database. 
 

% curl 'http://togows.org/entry/nucleotide?fields' 

entry_id 

length 

strand 

moltype 

linearity 

division 

date 

definition 

accession 

accessions 
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version 

versions 

acc_version 

gi 

keywords 

organism 

common_name 

taxonomy 

comment 

seq 

references 

features 

 

TogoWS search API examples 
 

Search the UniProt database using the phrase “lung cancer”. 
 

% curl http://togows.org/search/uniprot/lung+cancer 

KKLC1_HUMAN 

DLEC1_HUMAN 

KKLC1_MACFA 

Q7Z5Q7_HUMAN 

A0A0A8K8N9_HUMAN 

A0A0A8K9B1_HUMAN 

A0A0A8K8F0_HUMAN 

A0A0A8K8C0_HUMAN 

A0A0A8K9A6_HUMAN 

ALDOA_HUMAN 

HOP_HUMAN 

MED19_HUMAN 

RBM6_HUMAN 

S22AI_HUMAN 

S38A9_HUMAN 

 : 
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Search the UniProt database using the phrase “lung cancer” and retrieve the first five 
entry IDs. 
 

% curl http://togows.org/search/uniprot/lung+cancer/1,5 

KKLC1_HUMAN 

DLEC1_HUMAN 

KKLC1_MACFA 

Q7Z5Q7_HUMAN 

A0A0A8K8N9_HUMAN 

 

Search the next five entry IDs and return the results in a JSON format. 
 

% curl http://togows.org/search/uniprot/lung+cancer/6,5.json 

["A0A0A8K9B1_HUMAN","A0A0A8K8F0_HUMAN","A0A0A8K8C0_HUMAN","A0A0A8K9A6_HUMAN","ALDOA_HUMAN"] 

 

Search the next five entry IDs and return the results in an HTML format. 
 

% curl http://togows.org/search/uniprot/lung+cancer/11,5.json 

<!DOCTYPE html> 

<html> 

<head> 

  <meta charset="UTF-8"> 

</head> 

<body> 

<div><a href="http://togows.org/entry/uniprot/HOP_HUMAN" target="_blank">HOP_HUMAN</a></div> 

<div><a href="http://togows.org/entry/uniprot/MED19_HUMAN" target="_blank">MED19_HUMAN</a></div> 

<div><a href="http://togows.org/entry/uniprot/RBM6_HUMAN" target="_blank">RBM6_HUMAN</a></div> 

<div><a href="http://togows.org/entry/uniprot/S22AI_HUMAN" target="_blank">S22AI_HUMAN</a></div> 

<div><a href="http://togows.org/entry/uniprot/S38A9_HUMAN" target="_blank">S38A9_HUMAN</a></div> 

</body> 

</html> 

 

Count the number of search results in the UniProt database using the phrase “lung cancer”. 
 

% curl http://togows.org/search/uniprot/lung+cancer/count 

449 
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TogoWS convert API examples 
 

First, prepare a GenBank entry J00231 to be converted. 
 

% wget http://togows.org/entry/nucleotide/J00231 

 

% ls 

J00231 

 

Convert the obtained file into a GFF format via HTTP POST. 
 

% wget http://togows.org/convert/genbank.gff --post-file=J00231 -O J00231.gff 

 

% ls 

J00231      J00231.gff 

 

% head J00231 

LOCUS       HUMIGHAF                1089 bp    mRNA    linear   PRI 09-NOV-1994 

DEFINITION  Human Ig gamma3 heavy chain disease OMM protein mRNA. 

ACCESSION   J00231 

VERSION     J00231.1 

KEYWORDS    C-region; V-region; gamma heavy chain disease protein; gamma3 heavy 

            chain disease protein; heavy chain disease; hinge exon; 

            immunoglobulin gamma-chain; immunoglobulin heavy chain; secreted 

            immunoglobulin. 

SOURCE      Homo sapiens (human) 

  ORGANISM  Homo sapiens 

 

% cat J00231.gff 

##gff-version 3 

J00231 Genbank region 1 1089 . . .

 ID=J00231;Note=Human%20Ig%20gamma3%20heavy%20chain%20disease%20OMM%20protein%20mRNA. 

J00231 Genbank region 1 1089 . + .

 ID=Homo%20sapiens;map=14q32.33;mol_type=mRNA;db_xref=taxon%3A9606 

J00231 Genbank gene 1 1089 . + . ID=IGHG3 
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J00231 Genbank mRNA 1 1089 . + .

 Parent=IGHG3;ID=IGHG3.t01;product=gamma3%20mRNA 

J00231 Genbank CDS 23 964 . + .

 Parent=IGHG3.t01;protein_id=AAA52805.1;note=OMM%20protein%20%28Ig%20gamma3%29%20heavy%2

0chain;db_xref=GDB%3AG00-119-

339;codon_start=1;translation=MKXLWFFLLLVAAPRWVLSQVHLQESGPGLGKPPELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCP

EPKSCDTPPPCPRCPEPKSCDTPPPCPXCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPXVQFKWYVDGVEVHNAKTKLREEQY

NSTFRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPXXXXXXXXXXXXEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYN

TTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEALHNRYTQKSLSLSPGK 

J00231 Genbank sig_peptide 26 79 . + .

 ID=IGHG3;note=OMM%20protein%20signal%20peptide 

J00231 Genbank mat_peptide 80 961 . + .

 ID=IGHG3;product=OMM%20protein%20mature%20peptide 

>J00231 

cctggacctcctgtgcaagaacatgaaacanctgtggttcttccttctcctggtggcagc 
tcccagatgggtcctgtcccaggtgcacctgcaggagtcgggcccaggactggggaagcc 

tccagagctcaaaaccccacttggtgacacaactcacacatgcccacggtgcccagagcc 

caaatcttgtgacacacctcccccgtgcccacggtgcccagagcccaaatcttgtgacac 

acctcccccatgcccacggtgcccagagcccaaatcttgtgacacacctcccccgtgccc 

nnngtgcccagcacctgaactcttgggaggaccgtcagtcttcctcttccccccaaaacc 

caaggatacccttatgatttcccggacccctgaggtcacgtgcgtggtggtggacgtgag 

ccacgaagacccnnnngtccagttcaagtggtacgtggacggcgtggaggtgcataatgc 

caagacaaagctgcgggaggagcagtacaacagcacgttccgtgtggtcagcgtcctcac 

cgtcctgcaccaggactggctgaacggcaaggagtacaagtgcaaggtctccaacaaagc 

cctcccagcccccatcgagaaaaccatctccaaagccaaaggacagcccnnnnnnnnnnn 

nnnnnnnnnnnnnnnnnnnnnnnnngaggagatgaccaagaaccaagtcagcctgacctg 

cctggtcaaaggcttctaccccagcgacatcgccgtggagtgggagagcaatgggcagcc 

ggagaacaactacaacaccacgcctcccatgctggactccgacggctccttcttcctcta 

cagcaagctcaccgtggacaagagcaggtggcagcaggggaacatcttctcatgctccgt 

gatgcatgaggctctgcacaaccgctacacgcagaagagcctctccctgtctccgggtaa 

atgagtgccatggccggcaagcccccgctccccgggctctcggggtcgcgcgaggatgct 

tggcacgtaccccgtgtacatacttcccaggcacccagcatggaaataaagcacccagcg 

ctgccctgg 
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TogoWS external API examples 
 

Show a list of available UCSC genome databases. 
 

% curl http://togows.org/api/ucsc/ 

ailMel1 

anoCar2 

anoGam1 

apiMel2 

aplCal1 

bosTau4 

braFlo1 

caeJap1 

caePb3 

caeRem3 

calJac3 

canFam2 

cavPor3 

cb3 

ce6 

ci2 

danRer10 

danRer11 

danRer7 

dm3 

dp3 

droAna2 

droEre1 

droGri1 

droMoj2 

droPer1 

droSec1 

droSim1 

droVir2 

droYak2 
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equCab2 

felCat4 

fr2 

galGal3 

gasAcu1 

go 

hg18 

hg19 

hg38 

hgFixed 

loxAfr3 

mm10 

mm9 

monDom5 

ornAna1 

oryCun2 

oryLat2 

oviAri1 

panTro3 

petMar1 

ponAbe2 

priPac1 

proteome 

rheMac2 

rn4 

rn5 

sacCer2 

strPur2 

susScr2 

taeGut1 

tetNig2 

uniProt 

visiGene 

xenTro2 

 

Show a list of available tables in the hg38 database. 
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% curl http://togows.org/api/ucsc/hg38/ 

affyGnf1h 

affyU133 

affyU95 

all_est 

all_mrna 

all_sts_primer 

all_sts_seq 

altLocations 

altSeqLiftOverPsl 

altSeqLiftOverPslP11 

  : 

(903 lines) 

 

Show columns of the refGene table of the hg38 database with values of the first record. 
 

% curl http://togows.org/api/ucsc/hg38/refGene/ 

bin 1815 

name NR_110164 

chrom chr2 

strand + 

txStart 161244738 

txEnd 161249050 

cdsStart 161249050 

cdsEnd 161249050 

exonCount 2 

exonStarts 161244738,161246874, 

exonEnds 161244895,161249050, 

score 0 

name2 LINC01806 

cdsStartStat unk 

cdsEndStat unk 

exonFrames -1,-1, 

 

Retrieve the first five records from the refGene table of the hg38 database. 
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% curl http://togows.org/api/ucsc/hg38/refGene/1,5 

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames 

1815 NR_110164 chr2 + 161244738 161249050 161249050 161249050 2

 161244738,161246874, 161244895,161249050, 0 LINC01806 unk

 unk -1,-1, 

27 NR_110250 chr2 - 156020534 156254931 156254931 156254931 4

 156020534,156022671,156024465,156254777,

 156021899,156022817,156024607,156254931, 0 LINC01876 unk unk -

1,-1,-1,-1, 

585 NR_128720 chr16 - 17051 17119 17119 17119 1 17051,

 17119, 0 MIR6859-4 unk unk -1, 

637 NR_128718 chr21 + 6859170 6859256 6859256 6859256 1 6859170,

 6859256, 0 MIR8069-2 unk unk -1, 

689 NR_128718 chr21 + 13724188 13724274 13724274 13724274 1 13724188,

 13724274, 0 MIR8069-2 unk unk -1, 

 

Retrieve the next five records in a JSON format from the refGene table of the hg38 
database. 
 

% curl http://togows.org/api/ucsc/hg38/refGene/6,5.json 

[{"bin":585,"name":"NR_128718","chrom":"chrUn_GL000213v1","strand":"-

","txStart":25282,"txEnd":25368,"cdsStart":25368,"cdsEnd":25368,"exonCount":1,"exonStarts":"2528

2,","exonEnds":"25368,","score":0,"name2":"MIR8069-

2","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":647,"name":"NR_128717","chrom":"chr21","strand":"+","txStart":8205314,"txEnd":820540

6,"cdsStart":8205406,"cdsEnd":8205406,"exonCount":1,"exonStarts":"8205314,","exonEnds":"8205406,

","score":0,"name2":"MIR6724-4","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":647,"name":"NR_128717","chrom":"chr21","strand":"+","txStart":8249504,"txEnd":824959

6,"cdsStart":8249596,"cdsEnd":8249596,"exonCount":1,"exonStarts":"8249504,","exonEnds":"8249596,

","score":0,"name2":"MIR6724-4","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":648,"name":"NR_128717","chrom":"chr21","strand":"+","txStart":8388361,"txEnd":838845

3,"cdsStart":8388453,"cdsEnd":8388453,"exonCount":1,"exonStarts":"8388361,","exonEnds":"8388453,

","score":0,"name2":"MIR6724-4","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":"-

1,"},{"bin":1599,"name":"NR_049862","chrom":"chr9","strand":"+","txStart":132945706,"txEnd":1329
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45771,"cdsStart":132945771,"cdsEnd":132945771,"exonCount":1,"exonStarts":"132945706,","exonEnds"

:"132945771,","score":0,"name2":"MIR548AW","cdsStartStat":"unk","cdsEndStat":"unk","exonFrames":

"-1,"}] 

 

Retrieve records having a gene name UVSSA in the name2 column of the refGene table 
of the hg38 database. 
 

% curl http://togows.org/api/ucsc/hg38/refGene/name2=UVSSA 

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames 

595 NM_020894 chr4 + 1347315 1388049 1348091 1385961 14

 1347315,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347760,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2, 

595 NM_001317934 chr4 + 1347265 1388049 1348091 1385961 14

 1347265,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347609,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2, 

595 NM_001317935 chr4 + 1347555 1388049 1348091 1385961 14

 1347555,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347887,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2, 

 

Retrieve the first five records on the chromosome 13 of the hg18 database. 
 

% curl http://togows.org/api/ucsc/hg38/refGene/chrom=chr13/1,5 

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames 

0 NM_203487 chr13 - 66302833 67230336 66304654 67228440 5

 66302833,66631209,66903503,67225404,67229779,

 66305028,66631411,66903605,67228575,67230336, 0 PCDH9 cmpl cmpl

 1,0,0,0,-1, 
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0 NM_020403 chr13 - 66302833 67230336 66304654 67228440 4

 66302833,66631209,67225404,67229779, 66305028,66631411,67228575,67230336, 0

 PCDH9 cmpl cmpl 1,0,0,-1, 

0 NM_001318373 chr13 - 66302833 67230336 66304654 67228440 4

 66302833,66631209,67225404,67229779, 66305028,66631285,67228575,67230336, 0

 PCDH9 cmpl cmpl 1,0,0,-1, 

0 NM_001318372 chr13 - 66302833 67230336 66304654 67228440 5

 66302833,66631209,66903503,67225404,67229779,

 66305028,66631285,66903605,67228575,67230336, 0 PCDH9 cmpl cmpl

 1,0,0,0,-1, 

1 NM_199138 chr13 - 25161678 25172167 25169603 25171619 3

 25161678,25170838,25171912, 25170481,25171719,25172167, 0 AMER2 cmpl

 cmpl 1,0,-1, 

 

Retrieve the first five records having an allele frequency count other than 0 in the dbSNP 
version 138 for which reference allele is an adenine on the reference human chromosome 
22 of the hg19 genome build.  
 

% curl 'http://togows.org/api/ucsc/hg19/snp138/chrom=chr22;refUCSC=A;alleleFreqCount!=0/1,5' 

bin chrom chromStart chromEnd name score strand refNCBI refUCSC

 observed molType class valid avHet avHetSE func locType weight

 exceptions submitterCount submitters alleleFreqCount alleles

 alleleNs alleleFreqs bitfields 

707 chr22 16050374 16050375 rs2844882 0 + A A A/G

 genomic single by-cluster,by-2hit-2allele 0.0 0.0 0 exact 3

 0 6 BCM-HGSC-SUB,BCMHGSC_JDW,ENSEMBL,SC_JCM,SSAHASNP,WI_SSAHASNP, 1

 A, 6.000000, 1.000000,  

707 chr22 16050739 16050740 rs111307625 0 + A A -

/A genomic deletion unknown 0.5 0.0 0 exact 3 0 1

 BUSHMAN, 2 -,A, 1.000000,1.000000, 0.500000,0.500000,  

707 chr22 16051208 16051209 rs7292503 0 + A A A/G

 genomic single by-cluster,by-2hit-2allele,by-hapmap 0.5 0.0 0

 exact 1 0 4 BCM_SSAHASNP,COMPLETE_GENOMICS,CSHL-

HAPMAP,WI_SSAHASNP, 2 A,G, 1.000000,1.000000, 0.500000,0.500000,  



 86 

707 chr22 16051391 16051392 rs77125914 0 - A A

 C/T genomic single unknown 0.5 0.0 0 exact 3 0

 1 ENSEMBL, 2 C,T, 1.000000,1.000000, 0.500000,0.500000,  

707 chr22 16051452 16051453 rs143503259 0 + A A

 A/C genomic single by-cluster,by-1000genomes 0.135347 0.222159 0

 exact 1 0 2 1000GENOMES,SSMP, 2 A,C,

 2019.000000,159.000000, 0.926997,0.073003,  

 

Retrieve the dbSNP version 138 records overlapping with a region from 20,000 to 
21,000bp on the chromosome 1 of the hg19 genome build. 
 

% curl http://togows.org/api/ucsc/hg19/snp138/chr1:20,000-21,000 

bin chrom chromStart chromEnd name score strand refNCBI refUCSC

 observed molType class valid avHet avHetSE func locType weight

 exceptions submitterCount submitters alleleFreqCount alleles

 alleleNs alleleFreqs bitfields 

585 chr1 20036 20037 rs12354133 0 + A A

 A/C genomic single unknown 0.0 0.0 0 exact 3 0

 2 SC_SNP,SSAHASNP, 0     

585 chr1 20043 20044 rs75790700 0 + C C

 C/T genomic single unknown 0.5 0.0 0 exact 3 0

 1 ENSEMBL, 2 C,T, 1.000000,1.000000, 0.500000,0.500000,  

585 chr1 20127 20128 rs806718 0 - G G C/T

 genomic single unknown 0.0 0.0 0 exact 3 0 3

 KWOK,SC_JCM,TSC-CSHL, 0     

585 chr1 20127 20128 rs75128330 0 + G G

 A/G genomic single unknown 0.5 0.0 0 exact 3 0

 1 ENSEMBL, 2 A,G, 1.000000,1.000000, 0.500000,0.500000,  

585 chr1 20127 20128 rs111753557 0 - G G

 C/T genomic single unknown 0.5 0.0 0 exact 3 0

 1 BUSHMAN, 2 C,T, 1.000000,1.000000, 0.500000,0.500000,  

 : 

(116 lines)    

 

Retrieve the refGene records overlapping with a region from 1,350,000 to 1,400,000bp 
on the chromosome 4 of the hg38 genome build. 
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% curl http://togows.org/api/ucsc/hg38/refGene/chr4:1,350,000-1,400,000 

% curl http://togows.org/api/ucsc/hg38/refGene/inclusive/chr4:1,350,000-1,400,000 

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames 

595 NM_020894 chr4 + 1347315 1388049 1348091 1385961 14

 1347315,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347760,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2, 

595 NM_001317934 chr4 + 1347265 1388049 1348091 1385961 14

 1347265,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347609,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2, 

595 NM_001317935 chr4 + 1347555 1388049 1348091 1385961 14

 1347555,1348089,1349523,1351714,1353029,1354734,1355116,1366319,1375363,1376033,1380046

,1380879,1383765,1385867,

 1347887,1348189,1349854,1351835,1353413,1354847,1355245,1366431,1375508,1376168,1380230

,1380988,1383940,1388049, 0 UVSSA cmpl cmpl -1,0,2,0,1,1,0,0,1,2,2,0,1,2, 

595 NM_175918 chr4 + 1391551 1395994 1394511 1395852 1 1391551,

 1395994, 0 CRIPAK cmpl cmpl 0, 

 

Retrieve the refGene records fit within a region from 1,350,000 to 1,400,000bp on the 
chromosome 4 of the hg38 genome build. 
 

% curl http://togows.org/api/ucsc/hg38/refGene/exclusive/chr4:1,350,000-1,400,000 

bin name chrom strand txStart txEnd cdsStart cdsEnd exonCount exonStarts

 exonEnds score name2 cdsStartStat cdsEndStat exonFrames 

595 NM_175918 chr4 + 1391551 1395994 1394511 1395852 1 1391551,

 1395994, 0 CRIPAK cmpl cmpl 0, 

 

Show a summary of the wgEncodeBroadHistoneGm12878H3k27acStdSig dataset of the 
hg19 database. 
 

% curl http://togows.org/api/ucsc/hg19/wgEncodeBroadHistoneGm12878H3k27acStdSig/info 
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version: 4 

isCompressed: yes 

isSwapped: 0 

primaryDataSize: 198,894,024 

primaryIndexSize: 1,440,088 

zoomLevels: 10 

chromCount: 23 

basesCovered: 1,145,311,185 

mean: 3.163029 

min: 0.040000 

max: 223899.000000 

std: 98.594295 

 

Retrieve the first 10 records from the wgEncodeBroadHistoneGm12878H3k27acStdSig 
dataset within a region from 1,000,000 to 2,000,000 on the chromosome 1 of the hg19 
database. 
 

% curl http://togows.org/api/ucsc/hg19/wgEncodeBroadHistoneGm12878H3k27acStdSig/chr1:1000000-

2000000/10 

2.87496 4.27916 5.23061 6.17385 4.07465 6.11871 9.60933 6.95731 3.53907 3.70842 

 

Retrieve the genome sequence of a region from 12,345 to 12,500bp on the chromosome 
1 of the hg38 database in a FASTA format. 
 

% curl http://togows.org/api/ucsc/hg38/chr1:12,345-12,500.fasta 

>hg38:chr1:12,345-12,500 

TCAGACCAGCCGGCTGGAGGGAGGGGCTCAGCAGGTCTGGCTTTGGCCCTGGGAGAGCAG 

GTGGAAGATCAGGCAGGCCATCGCTGCCACAGAACCCAGTGGATTGGCCTAGGTGGGATC 

TCTGAGCTCAACAAGCCCTCTCTGGGTGGTAGGTGC 
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TogoStanza examples 

In this section, representative examples of TogoStanza are shown. 
 

TogoStanza in a gene report page 

 
Summarized information of a gene report page in TogoStanza are shown, taking the 
human “ALDH2” gene as an example. 
 
The gene report page of TogoGenome starts with a series of NanoStanza for 
“gene_length_nano”, “protein_ec_number_nano”, “protein3d_structure_nano” and 
“protein_references_timeline_nano”. 
 

 

 

In the “Protein names” section, canonical and alternative names of a protein are shown 
by the “protein_names” stanza. 
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In the “Genomic context” section, gene structures of isoforms are shown by the 
“genome_jbrowse” stanza. 
 

 

 
In the “Gene attributes” section, gene attributes such as a name, type, length and its 
location on the chromosome are shown by the “gene_attributes” stanza. 
 

 
 
In the “Nucleotide sequence” section, the spliced nucleic acid sequence of a gene is 
shown by the “nucleotide_sequence” stanza. 
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In the “Protein attributes” section, the length of the amino acid sequence and the 
evidence of protein existence are shown by the “protein_attributes” stanza. 
 

 
 
In the “Protein sequence” section, the amino acid sequence of a protein along with its 
length, molecular weight and ID is shown by the “protein_sequence” stanza. 
 

 
 
In the “Protein general annotation” section, annotations of a subunit, similarity, 
polymorphism, caution, and subcellular location are shown by the 
“protein_general_annotation” stanza. 
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In the “Protein ontologies” section, keywords given by UniProt and annotations given 
by gene ontologies are shown by the “protein_ontologies” stanza. 
 

 
 
In the “Protein sequence annotation” section, residue-based experimental information of 
a protein followed by modified residues, processing information, natural variations, 
secondary structures, frameshifts, and specific sites are shown by the 
“protein_sequence_annotation” stanza. 
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 94 
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In the “Protein orthologs” section, UniProt IDs of orthologous proteins are shown by 
the “protein_orthologs” stanza. 
 

 
 
In the “Protein references” section, a list of related literature is shown by the 
“protein_references” stanza. 
 

 

 
In the “Protein cross references” section, links to other entries of organism-specific 
databases, PTM databases, phylogenomic databases, sequence databases, genome 
annotation databases, 2D gel databases, family and domain databases, protein-protein 
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interaction databases, 3D structure databases, enzyme and pathway databases, 
proteomic databases, gene expression databases, and other databases are shown by the 
“protein_cross_references” stanza. 
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TogoStanza in an organism report page 

 
Summarized information of an organism report page in TogoStanza are shown, taking the 
“Escherichia coli O157” as an example. 
 
The organism report page of TogoGenome starts with a series of NanoStanza for 
“organism_genome_size_nano”, “organism_gene_number_nano”, “organism_gc_nano”, 
“organism_microbial_cell_shape_nano”, “organism_ph_nano”, and 
“organism_related_disease_nano”. 
 

 

 

In the “Organism name” section, scientific and alternative names of an organism are 
shown by the “organism_names” stanza. 
 

 
 
In the “Genome information” section, chromosomes and organelle genomes with 
statistics and links are shown by the “genome_information” stanza. 
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In the “Genomic context” section, genes on the genome browser are shown by the 
“genome_jbrowse” stanza. 
 

 
 
In the “Ortholog profile” section, the taxonomic profile of orthologous gene groups is 
shown by the “taxonomy_ortholog_profile” stanza (this example is taken from “E. coli 
str. K-12 substr. MG1655”). 
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In the “Taxonomic information” section, the taxonomic lineage of an organism is shown 
by the “lineage_information” stanza. 
 

 
 

In the “Culture collections” section, the related strains of an organism are shown by the 
“organism_culture_collections” stanza (this example is taken from “Nocardia 
higoensis”). 
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In the “Medium information” section, the medium of an organism is shown by the 
“organism_medium_information” stanza (this example is taken from “Nocardia 
higoensis”). 
 

 

 

In the “Phenotype information” section, the phenotypic features of an organism are 
shown by the “organism_phenotype” stanza. 
 

 
 

In the “Genomic plot” section, a scatter plot by selected features of organisms is shown 
by the “genome_plot” stanza. 
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In the “Pathogen information” section, infectious diseases of an organism are shown by 
the “organism_pathogen_information” stanza. 
 

 
 

In the “Organism cross references” section, cross references to other databases are 
shown by the “organism_cross_references” stanza. 
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In the “Genome cross references” section, cross references to genome databases are 
shown by the “genome_cross_references” stanza. 
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TogoStanza in an environment report page 

 
Summarized information of an environment report page in TogoStanza are shown, taking 
“soil” as an example. 
 
The environment report page of TogoGenome starts with a series of NanoStanza for 
“environment_top_level_symbolic_image_nano”, 
“environment_inhabitants_statistics_nano”, 
“environment_organism_distribution_on_temperature_nano”, and 
“environment_organism_distribution_on_ph_nano”. 
 

 

 

In the “Environment attributes” section, the name and description of an environment are 
shown by the “environment_attributes” stanza. 
 

 

 

In the “Inhabitants statistics” section, statistics of organisms in an environment are 
shown by the “environment_inhabitants_statistics” stanza. 
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In the “Inhabitants” section, a list of inhabitants is shown by the 
“environment_inhabitants” stanza. 
 

 

 

In the “Geographical map” section, geographical locations of inhabitants are shown by 
the “environment_geographical_map” stanza. 
 

 

 



 105 

In the “Taxonomic composition” section, the taxonomic composition of inhabitants is 
shown by the “environment_taxonomic_composition” stanza. 
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In the “Environmental ontology (MEO)” section, the hierarchical classification of the 
MEO environmental ontology is shown by the “environment_environmental_ontology” 
stanza. 
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TogoStanza in a phenotype report page 

 
Summarized information of a phenotype report page in TogoStanza are shown, taking 
“Diplococcus arrangement” as an example. 
 
In the “Genus list” section, statistics and a list of species having the same phenotype are 
shown by the “microbial_phenotype_genus_composition” stanza. 
 

 

 

In the “Environment list” section, statistics and a list of environments where inhabitants 
having the same phenotype are shown by the 
“microbial_phenotype_environment_composition” stanza. 
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In the “Shape information” section, a brief description of a phenotype is shown by the 
“microbial_phenotype_cell_shape” stanza. 
 

 
 

Synonyms can also be shown, as in the case of “Rod shape” 
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In the “Organism list” section, a list of organisms having the same shape is shown by 
the “microbial_phenotype_information” stanza. 
 

 

 


