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Abstract

The quantum spin liquid (QSL), which does not show any long-range ordering
down to the lowest temperature (T ), has attracted broad interest as a new quantum
state of matter. Recently, the Kitaev model was proposed as a canonical model
to realize QSL ground state. The model has conserved quantities whose number
is proportional to the system size, and the ground state is exactly shown to be a
QSL by rewriting the model by using Majorana fermion operators. The exact so-
lution elicits fractionalization of spin degrees of freedom into matter fermions and
Z2 fluxes. Following the prediction on the experimental realization of the Kitaev
model, tremendous efforts have been paid for the search of the Kitaev QSLs in this
decade. Theoretically, it was shown that the spin fractionalization strongly affects
the T and energy dependences of various physical properties. Such characteristic
features were indeed observed in candidate materials, such as iridium oxides A2IrO3

(A=Na, Li) and a ruthenium halide α-RuCl3. Such collaborative research between
theory and experiment has brought considerable progress in understanding of QSLs,
but the study was not extended to the spin dynamics at finite T thus far. Theo-
retical studies of dynamical properties at finite T for the Kitaev model remain a
big challenge, despite the importance for experimental identification of the Kitaev
QSL. This is because, for obtaining the dynamical spin correlations, one needs to
include the time evolution of conserved quantities, which was hard to treat in the
theoretical methods used in the previous studies.

In this thesis, we investigate spin dynamics at finite T for the Kitaev model
by developing new numerical techniques, the cluster dynamical mean-field theory
(CDMFT) and the continuous-time quantum Monte Carlo (CTQMC) method on
the basis of a Majorana fermion representation. These methods were originally
developed for correlated electron systems. We reformulate them in the Majorana
fermion representation so as to be applicable to the Kitaev model. In the CDMFT,
by introducing the cluster approximation, we can exactly take the summation with
respect to the configurations of conserved quantities. Thus, this method provides
an alternative of the quantum Monte Carlo (QMC) method developed in the pre-
vious study. The advantages of the CDMFT lie in the small calculation cost and
the exact enumeration without statistical errors. On the other hand, the CTQMC
enables us to treat the time evolution of local conserved quantities and calculate
dynamical spin correlations for each configuration of conserved quantities. By com-
bining CTQMC with CDMFT (CDMFT+CTQMC) or QMC (QMC+CTQMC), we
calculate the magnetic susceptibility (χ), dynamical spin structure factor (S(q, ω)),
and relaxation time in the nuclear magnetic resonance (1/T1) for the Kitaev models
on the 2D honeycomb and 3D hyperhoneycomb structures.

We find that the dynamical quantities show peculiar T and energy dependences
in the paramagnetic state when approaching the QSL ground state by decreasing
T . The most prominent feature is the dichotomy between static and dynamical
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spin correlations as a consequence of the spin fractionalization. At sufficiently high
T , S(q, ω) shows almost featureless spectrum around ω ≃ 0. While decreasing T
below TH, the spectral weight shifts to a high ω region, and starts to acquire small
wave number dependence. The shift corresponds to the increase of kinetic energy of
matter fermions. With a further decrease of T , a quasi-elastic peak appears around
ω ≃ 0, and rapidly grows toward TL. Below TL, the quasi-elastic peak shift to a
nonzero ω, reflecting the flux gap in the ground state. The dichotomy appears more
clearly in the increase of 1/T1 below TH where the fractionalization sets in, despite
the saturation of static spin correlations. While further decreasing T , 1/T1 shows
a peak slightly above TL, and then rapidly decreases to zero. This nonmonotonic
T dependence is a consequence of the spin fractionalization and different energy
scales of matter fermion and Z2 fluxes. Meanwhile, χ follows the Curie-Weiss law at
sufficiently high T , whereas it shows a deviation below TH. After showing a broad
peak between TH and TL, χ decreases substantially around TL, and converges to
a nonzero value in the low T limit. The decrease around TL can be ascribed to
suppression of flux excitations. The nonzero value of χ in the low T limit is generic
to the systems which do not conserve the total z component of spins. We also find
that overall T dependences of S(q, ω), 1/T1, and χ are unchanged for the 2D and
3D cases, whereas in the 3D case, a phase transition at low T brings about singular
T dependences of the dynamical quantities.

We discuss our theoretical results in comparison with other theoretical results
for the Kitaev model and experimental results for the Kitaev candidate materials.
In the comparison with the classical version of the Kitaev model, we find that the
high-T and large-ω behaviors are common to the quantum and classical cases. On
the other hand, there are significant differences in the low-T and small-ω properties,
which are associated with gap opening in the Z2 flux excitations in the quantum
case. We also compare our results with the experimental results of S(q, ω), 1/T1,
and χ for the Kitaev materials. Our results for the Kitaev model well explain
the high-T behaviors of S(q, ω) and 1/T1 in experiments. On the other hand, the
low-T features of 1/T1 and χ in our results are masked by the magnetic ordering
or modified by unknown reasons in the candidate materials. However, when the
magnetic orders are suppressed by applying the magnetic field, peculiar behaviors
are experimentally observed for S(q, ω) and 1/T1 even at low T , which are, at
least, qualitatively explained by out results for the Kitaev model at zero field. The
agreement suggests the possibility of field-induced Kitaev QSLs.

Thus, through the development of new numerical techniques, we have clarified
that the experimentally-measurable dynamical quantities of the Kitaev model show
peculiar T and energy dependences, reflecting the fractionalization of spin degrees
of freedom. Some of the peculiar behaviors are observed in the experimental results
of Kitaev candidate materials, which are supportive of the realization of the Kitaev
QSL. Our findings will significantly contribute to further exploration of the Kitaev
QSLs in collaborative research between theory and experiment.



List of publications

• J. Yoshitake, J. Nasu, and Y. Motome, Fractional Spin Fluctuation as a Pre-
cursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for
the Kitaev Model, Phys. Rev. Lett. 117, 157203 (2016).

• J. Yoshitake, J. Nasu, Y. Kato, and Y. Motome, Majorana dynamical mean-
field study of spin dynamics at finite temperatures in the honeycomb Kitaev
model, Phys. Rev. B 96, 024438 (2017).

• J. Yoshitake, J. Nasu, and Y. Motome, Temperature evolution of spin dynamics
in two- and three-dimensional Kitaev models: Influence of fluctuating Z2 flux,
Phys. Rev. B 96, 064433 (2017).

iv



Related publications

• J. Nasu, Y. Kato, J. Yoshitake, Y. Kamiya, and Y. Motome, Spin-Liquid-to-
Spin-Liquid Transition in Kitaev Magnets Driven by Fractionalization, Phys.
Rev. Lett. 118, 137203 (2017).

• S.-H. Do, S.-Y. Park, J. Yoshitake, J. Nasu, Y. Motome, Y. S. Kwon, D. T.
Adroja, D. J. Voneshen, K. Kim, T.-H. Jang, J.-H. Park, K.-Y. Choi, and S.
Ji, Majorana fermions in the Kitaev quantum spin system α-RuCl3, Nature
Physics 13, 1079 (2017).

• J. Nasu, J. Yoshitake, and Y. Motome, Thermal Transport in the Kitaev Model,
Phys. Rev. Lett. 119, 127204 (2017).

• Y. Nagai, T. Jinno, J. Yoshitake, J. Nasu, Y. Motome, M. Itoh, and Y.
Shimizu, Two-step gap opening across the quantum critical point in a Kitaev
honeycomb magnet, arXiv:1810.05379.

v



Contents

Acknowledgement i

Abstract ii

List of publications iv

Related publications v

1 Introduction 1
1.1 Quantum spin liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Kitaev quantum spin liquid . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Kitaev model and the exact solution . . . . . . . . . . . . . . 3
1.2.2 Fractional excitations and phase diagram . . . . . . . . . . . . 5
1.2.3 Kitaev interactions in real materials . . . . . . . . . . . . . . . 6
1.2.4 Stability of the Kitaev spin liquid . . . . . . . . . . . . . . . . 9

1.3 Candidate materials for the Kitaev spin liquid . . . . . . . . . . . . . 11
1.3.1 Na2IrO3, α-Li2IrO3, and H3LiIr2O6 . . . . . . . . . . . . . . . 11
1.3.2 α-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 β- and γ-Li2IrO3 . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Signatures of the Kitaev quantum spin liquid . . . . . . . . . . . . . . 14
1.4.1 Thermal fractionalization . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Dynamical spin structure factor in the ground state . . . . . . 18
1.4.3 Raman scattering . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Purpose of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.6 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Model 25
2.1 Jordan-Wigner transformation . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Majorana fermion representation . . . . . . . . . . . . . . . . . . . . 27

3 Method 29
3.1 Quantum Monte Carlo method . . . . . . . . . . . . . . . . . . . . . 29
3.2 Cluster dynamical mean-field theory . . . . . . . . . . . . . . . . . . 31
3.3 Continuous-time quantum Monte Carlo method . . . . . . . . . . . . 34
3.4 Maximum entropy method . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Physical quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



Contents vii

4 Results by CDMFT + CTQMC method 41
4.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 CDMFT method . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 CDMFT+CTQMC method . . . . . . . . . . . . . . . . . . 43

4.2 Dynamical spin structure factor . . . . . . . . . . . . . . . . . . . . . 45
4.3 NMR relaxation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Korringa ratio　 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Effect of the Z2 variables {ηr} on the dynamical properties . . . . . . 60
4.7 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Results by QMC + CTQMC method 65
5.1 Results for 2D honeycomb structure . . . . . . . . . . . . . . . . . . . 66

5.1.1 Magnetic susceptibility and NMR relaxation rate . . . . . . . 66
5.1.2 Dynamical spin structure factor . . . . . . . . . . . . . . . . . 68

5.2 Results for 3D hyperhoneycomb structure . . . . . . . . . . . . . . . 72
5.2.1 Magnetic susceptibility and NMR relaxation rate . . . . . . . 72
5.2.2 Dynamical spin structure factor . . . . . . . . . . . . . . . . . 73

5.3 Comparison between 2D and 3D results . . . . . . . . . . . . . . . . . 76
5.4 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Discussion 78
6.1 Comparison with theoretical results . . . . . . . . . . . . . . . . . . . 78

6.1.1 Classical Kitaev model . . . . . . . . . . . . . . . . . . . . . . 78
6.1.2 Other calculations for the quantum Kitaev model . . . . . . . 81

6.2 Comparison with experimental results . . . . . . . . . . . . . . . . . . 83
6.2.1 Dynamical spin structure factor . . . . . . . . . . . . . . . . . 83
6.2.2 NMR relaxation rate . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.3 Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Summary of this chapter . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 Summary 92

A Kitaev Hamiltonian in reciprocal space 96

B Plots of 1/T1 and χ in the T -linear scale 98

C Benchmark of the maximum entropy method 102

D Low-T behavior of χ 106

E Convergence of the hybridization expansion in QMC+CTQMC cal-
culations 108





1
Introduction

1.1 Quantum spin liquids

Matter can exist in one of three states: solid, liquid, or gas. Solid breaks a
translational or rotational symmetry. Meanwhile, both liquid and gas preserve the
translational and rotational symmetries, and hence, they are distinguished from solid
by phase transitions with symmetry breaking. While there is also a phase transition
between liquid and gas, the two states can be connected adiabatically by bypassing
the end point of the transition line because they share the same symmetry.

We can conceive analogs of the three states of matter in spin states of magnetic
materials. A spin-disordered paramagnetic state at sufficiently high temperature
(T ) corresponds to gas, as it preserves all the symmetries of the system. At low
T , most magnets exhibit magnetic orders, such as ferromagnetic (FM) and antifer-
romagnetic (AFM) orders. Such ordered phases are regarded as solid, as it breaks
some symmetries of the system, e.g., time reversal symmetry. The two states, the
paramagnetic and ordered states, are distinguished by a phase transition, similar to
gas and solid in conventional matters.

Then, what is the spin state corresponding to liquid? Is there a spin state which
is distinguished from the paramagnetic state but still preserves all the symmetries of
the system? The answer is yes. Such a state is called a quantum spin liquid (QSL).
The concept of the QSL was first introduced by P. W. Anderson [1]. As an example
of the QSL, he introduced the resonating valence bond (RVB) state as a possible
ground states for two-dimensional (2D) quantum spin systems. The RVB state is
defined by a superposition of all possible valence bond states (direct products of
spin-singlet dimers), which preserves all the symmetries of the system.

The QSLs cannot be distinguished from the paramagnetic state by the conven-
tional symmetry argument. This has stimulated the development of new concepts to
characterize the apparently featureless QSLs. One is the topological order [2–4]. It
is distinct from the conventional orders defined by local order parameters, and able
to characterize the topological nature of the system dictated by long-range quan-
tum entanglement and nontrivial ground-state degeneracy. A well-known example
of the topological order is found for the fractional quantum Hall states [4–6]. An-
other new concept is fractional excitations [7]. In the QSLs, the elementary spin
excitations can be fractionalized into new quasiparticles. For example, in the RVB
state, spin excitations are fractionalized into emergent quasiparticles called spinons
and visons [8, 9]. The spinon is a particle-like excitation carrying no charge but
spin S = 1/2. Meanwhile, the vison is a topological excitation characterized by the
parity of broken singlet pairs by its trace.
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2 1 Introduction

Owing to the exotic nature, the QSLs have been long sought since the proposal by
Anderson. In particular, the possibility of the RVB ground state has been intensively
studied, since it was considered to have relevance to high-temperature superconduc-
tivity [10]. Through the studies for decades, there have been found several candi-
date materials for QSLs, especially in the systems on triangular-based lattice struc-
tures [11,12]. A typical example is an organic Mott insulator κ-(ET)2Cu2(CN)3 with
a quasi-2D structure of triangular layers. The material exhibits no magnetic order-
ing even at tens of mK, which is four orders of magnitude lower than the energy scale
of the dominant exchange interactions [13]. Other examples are found in another
organic material EtMe3Sb[Pd(dmit)2]2 with similar triangular layers [14], copper
oxides with layered kagome structures, e.g., Cu3V2O7(OH)2·2H2O, ZnCu3(OH)6Cl2,
and BaCu3V2O8(OH)2 [15–17], and an iridium oxide Na4Ir3O8 with the so-called
hyperkagome structure [18]. In these triangular-based lattice systems, the AFM
exchange interactions compete with each other, which prevents the systems from
magnetic ordering. These are called geometrically frustrated magnets. On the the-
oretical side, the QSLs in such geometrically frustrated magnets have long been
studied by many different theoretical methods [19, 20]. Despite the tremendous ef-
forts, it remains elusive whether the QSLs like the RVB state are realized in realistic
Hamiltonians relevant to the experiments. This is mainly because of the keen com-
petition between energetically-degenerate states and the difficulty in the application
of reliable theoretical methods.

Another route to the QSLs has been studied in magnets with the frustration
between directionally-dependent exchange interactions [21–25]. Such directional de-
pendence originates from the coupling between the spin and orbital degrees of free-
dom, via the relativistic spin-orbit coupling and the spin-orbital coupled exchange
interactions under strong electron correlations. In contrast to the geometrical frus-
tration, the frustration from the directionally dependent interactions may arise even
on geometrically nonfrustrated lattice structures.

In 2006, A. Kitaev proposed a simple spin model [26], which brought a break-
through in the research of QSLs. The model belongs to the second category of
the frustrated magnets: it is defined on a nonfrustrated honeycomb structure with
directionally-dependent exchange interactions. What distinguishes this Kitaev model
from others is twofold. One is that the model has an exact solution for the ground
state and it is a QSL [26]. The exact solution allows us to clarify the nature of
the QSL without any approximation, not only in the ground state but also at finite
T , by treating the fractional excitations explicitly. The other distinguished aspect
is that the model gives a good description for some magnetic materials [27]. This
allows us to study the QSL through the cooperative studies between theories and
experiments. These virtues will be reviewed in the following sections.
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Figure 1.1: Schematic picture of the Kitaev model on the 2D honeycomb structure.
The blue, green, and red bonds represent the x, y, and z bonds in Eq. (1.1), re-
spectively. The magenta hexagon represents a conserved quantity Wp defined by a
product of spin operators on the vertices of the hexagon; see Eq. (1.2). The black
and white circles denote the sites j and j′ in Eq. (1.10), respectively. They also
correspond to b and w in Eq. (2.13).

1.2 Kitaev quantum spin liquid

1.2.1 Kitaev model and the exact solution

The Kitaev model is a quantum spin model on a 2D honeycomb structure, whose
Hamiltonian is given by [26]

H = −Jx
∑
⟨j,j′⟩x

Sx
j S

x
j′ − Jy

∑
⟨j,j′⟩y

Sy
j S

y
j′ − Jz

∑
⟨j,j′⟩z

Sz
jS

z
j′ , (1.1)

where Sγ
j represents the γ component of the S = 1/2 spin operator (γ = x, y, z)

defined by the Pauli matrix σγ
j as Sγ

j = 1
2
σγ
j , and ⟨j, j′⟩γ represents the nearest-

neighbor (NN) bonds in three different directions, as shown in Fig. 1.1. In this
model, although the lattice structure is bipartite (no geometrical frustration), there
is severe frustration arising from competition between the three bond-dependent
Ising-type interactions. Indeed, the classical analog of this model leads to macro-
scopic degeneracy in the ground state. Nonetheless, the quantum version is exactly
solvable [26] and the obtained ground state is a QSL (see Sec. 1.2.2).

A key aspect of the model for obtaining the exact solution is the existence of the
macroscopic number of conserved quantities. The conserved quantity is defined by



4 1 Introduction

a product of six Pauli matrices for each hexagonal plaquette p as

Wp = σx
0σ

y
1σ

z
2σ

x
3σ

y
4σ

z
5, (1.2)

as shown in Fig. 1.1. Wp commutes with not only the Hamiltonian in Eq. (1.1) but
also Wp for other plaquette, namely,

[Wp,H] = 0 for all p, (1.3)

[Wp,Wp′ ] = 0 for p ̸= p′. (1.4)

Besides, Wp satisfies W 2
p = 1. Hence, Wp can be diagonalized simultaneously with

the Hamiltonian, and the eigenvalue takes ±1, which is called a Z2 flux. The exis-
tence of the conserved quantities Wp allows us to solve the problem in each subspace
specified by the eigenvalues of Wp as shown below.

The ground state of the model in Eq. (1.1) is exactly obtained by introducing
Majorana fermion operators. Following the seminal paper by Kitaev [26], we in-
troduce four Majorana fermion operators, cj and bγj with γ = x, y, z, for each spin
operator. Thus, in this representation, the Hilbert space in the original spin repre-
sentation, 2N , is extended to 4N(N is the number of spins). The Majorana fermion
operators satisfy the following anticommutation relations:

{cj, cj′} = 2δj,j′ , (1.5)

{bγj , b
γ′

j′ } = 2δj,j′δγ,γ′ , (1.6)

{cj, bγj′} = 0. (1.7)

Then, when one introduces an operator S̃γ
j = i

2
bγj cj in the extended Hilbert space,

it satisfies the relation

S̃x
j S̃

y
j S̃

z
j =

i

8
bxj b

y
j b

z
jcj =

i

8
Dj, (1.8)

where Dj = bxj b
y
j b

z
jcj. This is similar to the relation for the spin S = 1/2 operators

Sγ
j , except for the factor of Dj. Thus, if we restrict ourselves to the subspace in

which all the eigenvalues of Dj are 1, S̃
γ
j can be regarded as the spin operator Sγ

j (the
restricted subspace is called the physical subspace). Note that we can diagonalize
Dj for all j simultaneously with the Hamiltonian and that the eigenvalues of Dj

take ±1, as Dj commutes with the Hamiltonian and other Dj′ and as D2
j = 1.

This Majorana representation allows us to solve the problem by considering the
Hamiltonian in the extended Hilbert space instead of that in the original Hilbert
space by replacing Sp

j by S̃p
j ; the physical solution is given by projecting the obtained

eigenstates to the physical subspace. The projection is executed by multiplying the
projection operator

P =
∏
j

Dj + 1

2
, (1.9)

to a state in the extended Hilbert space.
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The benefit to consider the extended Hilbert space is that the Hamiltonian is
easy to handle. In the extended Hilbert space, the Hamiltonian in Eq. (1.1) is
written as

H̃ = i
Jx
4

∑
(j,j′)x

ux
j,j′cjcj′ + i

Jy
4

∑
(j,j′)y

uy
j,j′cjcj′ + i

Jz
4

∑
(j,j′)z

uz
j,j′cjcj′ , (1.10)

where the sum over (j, j′)γ is taken for the NN sites on a γ bond with j ∈ b and
j′ ∈ w (see Fig. 1.1); uγ

j,j′ = ibγj b
γ
j′ is defined on each γ bond connecting j and j′

sites, and it satisfies uγ
j,j′ = −uγ

j′,j.
In Eq. (1.10), uγ

j,j′ can be treated as a Z2 variable taking ±1, as uγ
j,j′ commutes

with the total Hamiltonian as well as with other uγ′

k,k′ and as (uγ
j,j′)

2 = 1, similar
to Wp. Thus, the model in Eq. (1.10) describes itinerant free Majorana fermions
{cj} (called matter fermions) coupled to the Z2 variables uγ

j,j′ . The Hamiltonian in
Eq. (1.10) can be diagonalized in each subspace specified by the eigenvalues of uγ

j,j′ ,
in the same manner by Wp. In fact, there is a relation between uγ

j,j′ and Wp: Wp is
given as a product of uγ

j,j′ on the six edges surrounding the plaquette. For instance,

Wp = uz
0,1u

x
1,2u

y
2,3u

z
3,4u

x
4,5u

y
0,5, (1.11)

for the example shown in Fig. 1.1.
For a given set of uγ

j,j′ , {u
γ
j,j′}, it is easy to obtain the lowest-energy state in the

subspace specified by {uγ
j,j′}, as it is a noninteracting one-body fermion problem.

Then, the ground state of the model in Eq. (1.10) is the one with the lowest energy
E0({uγ

j,j′}) among all possible {uγ
j,j′}. According to Lieb’s theorem [28], one can

show that the lowest-energy state is given by {uγ
j,j′} with all uγ

j,j′ = 1 for j ∈ b and
j′ ∈ w (see Fig. 1.1), when, at least, two of Jγ are equal (the model is symmetric with
respect to mirror reflection). To obtain the physical solution, one needs to project
the obtained solution in the extended Hilbert space to the physical subspace, as
described above. For the eigenvalue, the multiplication of the projection operator
P in Eq. (1.9) does not change the result as P commutes with the Hamiltonian.
Meanwhile, the projection of the eigenstate does not result in a null vector and
gives the ground state. This is guaranteed by the facts that Dj anticommutes with
uγ
j,j′ and that all uγ

j,j′ = 1 for the ground state before the projection.

1.2.2 Fractional excitations and phase diagram

There are two types of elementary excitations from the ground state. One is an
excitation of matter fermions {cj}, which does not change {Wp}, and the other is
given by flipping Wp. Thus, the spin excitations in the Kitaev model are fractional-
ized into the excitations of matter fermions and Z2 fluxes.

The excitation spectrum of the matter fermions is obtained by solving the free
fermion problem for the subspace of all Wp = 1. The result is given by gapless or
gapped excitations depending on the parameters of the model, Jx, Jy, and Jz, as
shown in the phase diagram in Fig. 1.2 [26]. The gapless phase appears around the
isotropic point with Jx = Jy = Jz, whereas the gapped phases exist in the regions
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Figure 1.2: Phase diagram of the Kitaev model. The triangle is the section of the
positive octant (Jx, Jy, Jz ≥ 0) by the plane Jx + Jy + Jz = 1. The figure is taken
from Ref. [26].

with strong anisotropy. On the other hand, the the spectrum for excitations by
flipping Wp is always gapped.

Both gapless and gapped phases in Fig. 1.2 are shown to be QSLs with extremely
short-range spin correlations: the spin correlations are nonzero only for the NN
bonds as well as the same site [29]. This peculiar nature comes from the conservation
of the fluxes {Wp}. For any operator, the expectation value vanishes when it changes
the configurations of Wp. The spin correlation is defined by a product of two spin

operators, Sγ
j S

γ′

j′ . It conserves all Wp only if γ = γ′ and j and j′ are on a NN γ bond,
which is confirmed by the definition of Wp in Eq. (1.2). This means that, in addition
to the trivial nonzero component for the same site with j = j′, the spin correlations
remain nonzero only for ⟨Sγ

j S
γ
j′⟩ with j and j′ on a γ bond at all temperatures,

including the ground state.

Although the original work by Kitaev was done for the model on the honeycomb
structure, all the procedures for obtaining the exact solution are common to ex-
tensions of the model to other tricoordinate structures where similar three types of
bond-dependent interactions can be defined. Such extensions have been studied in
both two and three dimensions [30–37].

1.2.3 Kitaev interactions in real materials

As shown in Eq. (1.1), the Kitaev model has the Ising-type anisotropic interac-
tions that depend on the bond directions. In the pioneering work, Kitaev wrote “it
would be interesting to find a solid state realization” of such interactions [26]. This
interesting possibility was theoretically studied by G. Jackeli and G. Khaliullin; they
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showed that the bond-dependent Ising interactions can be realized in Mott insula-
tors with the strong relativistic spin-orbit coupling [27]. We will briefly review their
arguments below.

We start from an isolated magnetic ion with five d electrons in the t2g manifold
under an octahedral crystal field, which comprises the low-spin (t2g)

5 configuration.
The spin-orbit coupling splits the sixfold degeneracy of the one-body t2g states into
lower-energy fourfold states with the total angular momentum jeff = 3/2 and higher-
energy twofold states with the total angular momentum jeff = 1/2, as shown in
Fig. 1.3(a). In the (t2g)

5 case, the fourfold jeff = 3/2 states are fully occupied, and
the twofold jeff = 1/2 states are occupied by the rest one electron, resulting in half
filling of the jeff = 1/2 states. This situation is realized in some 4d and 5d ions, such
as Ru3+, Ir4+, and Rh4+ surrounded by octahedral ligands.

The spin-orbital entangled states with jeff = 1/2 are described by coherent su-
perpositions of different orbital and spin states as [27]∣∣∣∣jzeff = ±1

2

⟩
=

1√
3

(
−
∣∣∣∣sz = ±1

2
, lzeff = 0

⟩
+

∣∣∣∣sz = ∓1

2
, lzeff = ∓1

⟩)
. (1.12)

Here, |sz = ±1
2
⟩ represent the states with spin sz = ±1

2
, and |lzeff = 0,±1⟩ represent

the states with the effective orbital angular momentum lzeff = 0,±1, which are related
with the t2g orbital basis as

|lzeff = 0⟩ = |xy⟩, (1.13)

|lzeff = ±1⟩ = − 1√
2
(i|zx⟩ ± |yz⟩). (1.14)

The jeff = 1/2 states in Eq. (1.12) comprise a time-reversal Kramers pair. This
allows us to treat them as the isospin states with the effective magnetic moment of
1/2.

When the magnetic ions are aligned periodically to form a crystal, they start to
interact with each other. If the Coulomb repulsion is strong enough, the half-filled
jeff = 1/2 states give rise to a Mott insulating state. This is called the spin-orbit
Mott insulator [38]. In this case, we can derive the effective magnetic interactions
between the localized jeff = 1/2 isospins, by taking into account the electron hopping
as a perturbation.

To derive the effective magnetic interactions, let us consider two octahedra of
ligands, each of which capsules a magnetic ion in the jeff = 1/2 state. Suppose the
two octahedra are connected with sharing one ligand edge on the xy plane, as shown
in Fig. 1.3(b). In the perturbation theory, we consider an indirect electron hopping
between the two magnetic ions via one of the shared ligands, which we call the d-p-d
hopping. In the case of the ideal octahedra, from the symmetry, the d-p-d hopping
has nonzero matrix element only between the zx and yz orbitals or the yz and zx
orbitals via the pz orbital of the ligand; see Fig. 1.3(b). The hopping Hamiltonian
is described as

Ht = −t
∑
σ

(c†0,zx,σc1,yz,σ + c†0,yz,σc1,zx,σ + h.c.), (1.15)
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(a)

(b)

(c)

pz

pz

dzx

dzx

dyz

dyz

Figure 1.3: (a) Schematic picture of the energy splitting of the sixfold t2g states
into the fourfold jeff = 3/2 states and the twofold jeff = 1/2 states. (b) Schematic
pictures of edge-sharing octahedra with two different d-p-d hopping processes in
Eq. (1.15). Magnetic ions locate at the centers of each octahedron, whereas ligands
locate at the vertices of the octahedra. The red and green ovals represent the d and p
orbitals indicated in the figures, respectively. (c) Schematic picture of a honeycomb
network composed of edge-sharing octahedra.

where c†j,µ,σ (cj,µ,σ) is a creation (annihilation) operator for µ = yz, zx orbital at site
j = 0, 1 with spin σ =↑, ↓.

In this setup, we consider the second-order perturbation in terms of Ht. As the
intermediate states in the perturbation, all (t2g)

4 and (t2g)
6 states are taken into

account. The resulting effective Hamiltonian is given in the form of [27]

Heff = −JSz
0S

z
1 . (1.16)

Thus, the effective magnetic interaction has Ising-type anisotropy. Note that the
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result in Eq. (1.16) is derived for the two octahedra sharing the edge on the xy plane.
For edge-sharing on a different plane, we obtain a similar Ising-type interaction with
a different spin component.

Therefore, if the crystal is composed of a honeycomb network of the edge-sharing
octahedra as shown in Fig. 1.3(c), the effective magnetic interactions between the
jeff = 1/2 isospins are of Ising type with the x, y, and z component for three different
bond directions. This is nothing but the Kitaev model in Eq. (1.1).

In the arguments above, only the d-p-d hopping for the ideal octahedra is taken
into account. In reality, there are additional contributions from other hopping pro-
cesses like the d-d direct hopping and the distortions of the octahedra [39–43] .
These lead to another types of magnetic interactions, e.g., the isotropic Heisen-
berg exchange interaction [Eq. (1.18)] and the symmetric off-diagonal interaction
[Eq. (1.19)]. As will be seen in the next subsection, however, the Kitaev spin liquid
remains stable against such additional interactions when they are small.

Although the arguments above are for the (t2g)
5 systems, there were also several

theoretical studies which predict another platform to realize the Kitaev-type interac-
tions. One possibility is the high-spin (t2g)

5-(eg)
2 systems, where similar jeff = 1/2

states appear in the presence of the strong spin-orbit coupling [44, 45]. Another
candidates are studied for f -electron compounds [46–48] .

1.2.4 Stability of the Kitaev spin liquid

In real materials, as discussed above, there might be subdominant interactions
in addition to the Kitaev-type interactions. To clarify the effect of such additional
interactions, several extensions of the Kitaev model have been studied. For instance,
the model which includes all the symmetry-allowed magnetic interactions for nearest-
neighbor spins has been intensively studied; the Hamiltonian is given by

Htotal = HKitaev +HHeisenberg +HΓ (1.17)

where HKitaev is the Kitaev Hamiltonian in Eq. (1.1),

HHeisenberg = −JHeisenberg

∑
⟨j,k⟩

Si · Sj, (1.18)

HΓ = −
∑

γ=x,y,z

Jγ
Γ

∑
⟨j,k⟩γ

(Sα
j S

β
k + Sβ

j S
α
k ). (1.19)

Here, Eq. (1.18) describes the isotropic Heisenberg exchange interactions, and Eq. (1.19)
represents the symmetric off-diagonal interactions, where α and β denote the two
spin components besides γ.

The ground state of the model in Eq. (1.17) has been studied by many theoretical
methods, e.g., the exact diagonalization method, the density matrix renormalization
group method, and the tensor-network method [49–54].

A representative result obtained by the exact diagonalization for a 24-site cluster
is shown in Fig. 1.4 [50]. Here, HΓ in Eq. (1.19) is omitted, and the model is called
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Figure 1.4: Phase diagram of the Kitaev-Heisenberg model obtained by the exact
diagonalization for a 24-site cluster of the honeycomb structure. The result contains
two spin liquid regions and four magnetically-ordered phases, whose ordering pat-
terns are shown schematically in the figure (the black and white circles represent up
and down spins, respectively). The gray lines inside the circle connect the points
related by unitary transformations (see Ref. [50]). The figure is taken from Ref. [50].

the Kitaev-Heisenberg model. In this study, the Kitaev interaction is taken to be
isotropic, Jx = Jy = Jz = JKitaev, and the coupling constants are parametrized as

JKitaev = −2Asinφ, (1.20)

JHeisenberg = −Acosφ. (1.21)

The result in Fig. 1.4 indicates that the Kitaev spin liquid remains stable around
the pure Kitaev case with JHeisenberg = 0, for both the FM (JKitaev > 0) and AFM
(JKitaev < 0) cases. The region is substantially wider for FM than AFM. When the
Heisenberg interaction becomes larger, several different types of magnetic orderings
appear, as shown in Fig. 1.4.

Effects of the JΓ term in Eq. (1.19) were also studied for the full Hamiltonian in
Eq. (1.17). The phase diagram obtained by the exact diagonalization for a 24-site
cluster is shown in Fig. 1.5 [51]. In this study, the Kitaev and Heisenberg interactions
are parametrized in a different way from Eqs. (1.20) and (1.21) as

JKitaev = −sinϕ, (1.22)

JHeisenberg = −cosϕ, (1.23)

and the radial direction represents the strength of JΓ = Jx
Γ = Jy

Γ = Jz
Γ: the cir-

cumference of the phase diagram corresponds to the Kitaev-Heisenberg model with
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(a) (b)

Figure 1.5: Phase diagram of the model in Eq. (1.19) for (a) JΓ < 0 and (b)
JΓ > 0 obtained by the exact diagonalization for a 24-site cluster of the honeycomb
structure. The result contains two spin liquid regions and several magnetically-
ordered phases. The figures are taken and modified from Ref. [51].

JΓ = 0, whereas the center of the phase diagram corresponds to the model with the
JΓ term only. The result indicates that the Kitaev spin liquid also remains stable
against both the FM and AFM JΓ, as shown in Figs. 1.5(a) and 1.5(b), respectively.
For nonzero JΓ, several magnetic orderings appear in addition to the ordered states
in the Kitaev-Heisenberg case in Fig. 1.4.

1.3 Candidate materials for the Kitaev spin liquid

Along with the theoretical arguments in Sec. 1.2.3, a lot of efforts have been
made for exploring candidate materials for the Kitaev model. The requisites are
(i) Mott insulators with spin-orbital entangled Kramers doublet and (ii) quantum
interference between different perturbation processes. To date, the possibility has
been mostly pursued for materials with 4d and 5d electrons with the low-spin (t2g)

5

configurations, such as A2IrO3 (A=Na, Li) and RuCl3. In this section, we briefly
review the candidate materials and their properties.

1.3.1 Na2IrO3, α-Li2IrO3, and H3LiIr2O6

Na2IrO3 and α-Li2IrO3 have been studied as Kitaev candidate materials since
the early stage of the research. The prefix α for Li2IrO3 indicates the existence
of polytypes as introduced in Sec. 1.3.3. The possibility of the dominant Kitaev
interactions in these materials was already predicted in the theoretical paper by G.
Jackeli and G. Khaliullin introduced in Sec. 1.2.3 [27].

These materials have quasi-2D lattice structures. Each layer is composed of
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a honeycomb network of edge-sharing IrO6 octahedra, as schematically shown in
Fig. 1.3(c). Na and Li ions are located between the layers as well as the centers of
hexagons in the honeycomb layer.

Mott insulating nature and the validity of jeff = 1/2 description in these materials
have been confirmed through many experiments, such as the electronic conductiv-
ity [55, 56], photoemission spectroscopy [57], magnetic susceptibility [55, 56], and
resonant inelastic X-ray scattering [58]. In addition, the predominant Kitaev-type
bond-dependent interactions between jeff = 1/2 were confirmed by the X-ray scat-
tering [59]. Also, the peculiar electronic and magnetic properties have been further
supported by first-principles calculations [39–41,43].

Despite the dominant Kitaev interactions, both two materials show magnetic
ordering at low T . Na2IrO3 shows a zigzag order below TN ≃ 15 K (see Fig. 1.4)
[56,60,61] , while α-Li2IrO3 shows a spiral magnetic order with an incommensurate
wave number below TN ≃ 15 K [62]. Thus, the lowest-T states in these materials are
not the Kitaev spin liquid. However, the estimated entropy per spin at just above
TN is about 15% and 20% of kBln2 for Na2IrO3 and α-Li2IrO3, respectively [55,56].
Such small entropy suggests strong frustration and possible proximity to the Kitaev
spin liquid state.

Very recently, another iridium compound was synthesized in the form of H3LiIr2O6 [63].
In this compound, the interlayer Li ions in α-Li2IrO3 are all replaced by H, which
presumably enhances the two-dimensionality of the system. Notably, no magnetic
order was found down to as low as 0.05 K [63]. Theoretically, the relevance of ran-
domness has been discussed for explaining the absence of magnetic ordering [64–66].

1.3.2 α-RuCl3

α-RuCl3 is also a quasi-2D material, composed of honeycomb layers of edge-
sharing RuCl6 octahedra. In contrast to the iridates above, the honeycomb layers are
weakly coupled by the van der Waals force. In this compound, the Mott insulating
nature with the isospin jeff = 1/2 was also confirmed experimentally [67–69], and
supported by first-principles calculations [67–69].

α-RuCl3 shows a magnetic order at low T [70–73]. The order pattern is zigzag
type, but the interlayer stacking pattern depends on samples [71–73]. The transition
temperature TN varies depending on the stacking of the honeycomb layers from∼ 7 K
to ∼ 14 K [70–73], and is reported as 6.5 K in a high quality sample almost free
from stacking fault [74].

From the experimental point of view, there are several advantages in this com-
pound, compared to the iridates. One is that the neutron scattering experiments can
be performed easily compared to the iridates in which Ir ions are neutron absorbers.
Another advantage is that the van der Waals material can be exfoliated to atomically
thin films [75,76]. In addition, the magnetic order can be suppressed by applying an
in-plane magnetic field [77–85]. Because of these advantages, a tremendous number
of experiments have been performed for this compound. We will overview some of
them in comparison with theoretical results in Sec. 1.4. We will also discuss the
experimental results in comparison with our theoretical calculations in Chap. 6.
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(a)

(b)

Figure 1.6: Schematic picture of (a) hyperhoneycomb and (b) stripy-honeycomb
structures composed of edge-sharing octahedra.

1.3.3 β- and γ-Li2IrO3

As mentioned in the end of Sec. 1.2.2, the Kitaev model can be straightforwardly
extended to other tricoordinate structures, even in three dimensions. Surprisingly,
two different types of such three-dimensional (3D) tricoordinate structures are re-
alized in β- and γ-Li2IrO3 [86, 87]. These are polytypes of α-Li2IrO3 introduced
in Sec. 1.3.1. In these polytypes, the edge-sharing IrO6 octahedra form the so-
called hyperhoneycomb and stripy-honeycomb structures, as shown in Figs. 1.6(a)
and 1.6(b), respectively. Both materials show complex incommensurate magnetic
orders at low T at the transition temperature TN ≃ 38 K for β-Li2IrO3 [86, 88] and
TN ≃ 39.5 K for γ-Li2IrO3 [89].

As will be introduced in Sec. 1.4.1, 3D Kitaev models may exhibit interest-
ing finite-T phase transitions from high-T paramagnet to low-T QSL phases. In
addition, many different types of topology appear in the excitation spectrum of
matter fermions, such as the Fermi node, Fermi surfaces, nodal lines, and Weyl
nodes [32, 33, 35]. Thus, the 3D candidate materials have attracted much attention
from these theoretical interests.
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1.4 Signatures of the Kitaev quantum spin liquid

Owing to the solvability of the Kitaev model, many theoretical predictions have
been made for experimentally capturing the signatures of the Kitaev QSL. As dis-
cussed in the previous section, most of the candidate materials exhibit a magnetic
long-range order at low T , and hence, the ground state is not the QSL. Nevertheless,
the signatures of the QSL could be observed as the proximity effect to the QSL, if
the Kitaev interaction is predominant over other exchange interactions that cause
the parasitic long-range order. Such signatures would be observed, e.g., in the para-
magnetic state above the Néel temperature and in the high-energy excitations even
at low T . In this section, we introduce some of the examples in comparison with
available experimental results.

1.4.1 Thermal fractionalization

Although the exact solution for the Kitaev model is limited to the ground state as
introduced in Sec. 1.2.1, thermodynamic properties at finite T are obtained numer-
ically. This has been done by using a quantum Monte Carlo (QMC) method based
on the Majorana fermion representation, which will be reviewed in Chap. 3 [90,91].

The representative results are shown in Fig. 1.7 for the isotropic case with Jx =
Jy = Jz = 4/3 in Eq. (1.1). As shown in Fig. 1.7(a), the specific heat shows two
peaks at T ≃ 0.50 and T ≃ 0.016. Both are crossovers, and we call the crossover
temperatures TH and TL. Associated with these two crossovers, while decreasing T ,
a half of the total entropy of ln 2 per site is released at T ∼ TH, and the rest half
at T ∼ TL, as shown in Fig. 1.7(b). This successive release of the entropy is the
signature of fractionalization in the Kitaev QSL. Indeed, as shown in Fig. 1.7(b),
the thermal average of Wp, W = ⟨Wp⟩, grows rapidly at T ∼ TL, suggesting that
the entropy release at TL comes from the Z2 fluxes. On the other hand, as shown in
Fig. 1.7(c), the spin correlations grow rapidly at T ∼ TH and are almost saturated
below TH. As the spin correlations correspond to the kinetic energy of matter
fermions, their rapid growth is interpreted as the “Fermi degeneracy” of the matter
fermions. This suggests that the high-T crossover at TH is associated with the matter
fermions. Thus, the two peaks in the specific heat and the successive release of the
entropy are the signatures of the peculiar property of the QSL, the fractionalization
of spins. This is called thermal fractionalization [91].

The signature of the thermal fractionalization was tested by the specific heat
measurement for Na2IrO3 and α-Li2IrO3 [92], and α-RuCl3 [70, 74]. For example,
Fig. 1.8 shows the specific heat divided by T , Cmag/T , and the entropy Smag mea-
sured for α-RuCl3 [70]. The broad maximum observed around 85 K is similar to
the peak around TH obtained in theoretical results for the Kitaev model as shown in
Fig. 1.7(a). Furthermore, the entropy per site below the peak around TH is roughly
half of ln2 (≃ 2.88 J/mol·K), which also well corresponds to the theoretical predic-
tion. On the other hand, the broad peak in the low-T side in Fig. 1.7(a) is replaced
by the sharp peak, reflecting the magnetic ordering at the transition temperature.

Another signature was discussed in the optical conductivity measurement for α-
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(b)

(c)

Figure 1.7: QMC results at finite T for the Kitaev model on the 2D honeycomb
structure with the isotropic interactions with Jx = Jy = Jz = 4/3 in Eq. (1.1) for
several different sizes of clusters N = 2L2. T dependences of (a) the specific heat per
site, Cv, (b) the entropy per site, S, and the thermal average of the flux W = ⟨Wp⟩ ,
and (c) the equal-time spin correlations, Szz and Sp = (Sxx +Syy)/2; Sγγ is defined
as Sγγ = ⟨Sγ

j S
′γ
j ⟩ with j and j′ are NN sites on a γ bond . The horizontal line

in (b) denotes the half of ln 2. In (c), the horizontal line represents the value at
T = 0 which is calculated analytically [29], and the dashed-dotted curve represents
the high-T Curie behavior Szz ∼ Jz/4T . The figures are taken from Ref. [91].

RuCl3 [93]. As shown in Fig. 1.9(a), the optical conductivity exhibits several peaks.
Among them, the low-energy peak around 1.2 eV denoted as α in the figure shows
strong T dependence compared to other peaks. The integrated intensity of the peak
α, Wα(T ), is plotted as a function of T in Fig. 1.9(b). As the optical response
originates from the kinetic energy of electrons, which corresponds to the magnetic
exchange energy in Mott insulators [94], Wα(T ) is ascribed to spin correlations [93].
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Figure 1.8: T dependence of the specific heat divided by T (open circles) and the
entropy (solid curve) in α-RuCl3. The figure is taken from Ref. [70].

(a) (b)

Figure 1.9: (a) Real part of the optical conductivity measured at several T obtained
for α-RuCl3. (b) T dependence of the spectral weight Wα(T ) normalized by the
value at 4 K. The magnetic ordering temperature TN and the crossover scale TH are
indicated in the figure. The figures are taken and modified from Ref. [93].

As shown in Fig. 1.9(b), the T dependence of Wα(T ) appears to be consistent with
the theoretical result on the spin correlations for the Kitaev model in Fig. 1.7(c).
From the comparison of the characteristic T for the saturation, the Kitaev interac-
tion is estimated as 8 meV [93], which is in good agreement with the estimates in
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Figure 1.10: QMC results at finite T for the Kitaev model on the 3D hyperhoney-
comb structure with the isotropic interactions with Jx = Jy = Jz = 4/3 in Eq. (1.1)
for several different sizes of clusters N = 4L3. (a) T dependence of the specific heat
per site, and (b) the enlarged view in the vicinity of the low-T peak. The figures
are taken and modified from Ref. [90].

other experiments [95–97].

Interestingly, the spatial dimension of the system matters to the thermodynam-
ics. Figure 1.10 shows the T dependence of the specific heat obtained for the Ki-
taev model on the 3D hyperhoneycomb structure with the isotropic interactions
Jx = Jy = Jz = 4/3. The specific heat has two peaks similar to the 2D case in
Fig. 1.7(a), but the low-T peak shows substantial dependence on the system size:
the peak height becomes higher and the width gets narrower while increasing the
linear dimension of the system, L, as shown in Fig. 1.8(b). This behavior sug-
gests that the 3D Kitaev model exhibits a finite-T phase transition, instead of the
crossover in 2D. This phase transition separates the high-T paramagnetic state and



18 1 Introduction

the low-T QSL connected to the exact solution at T = 0. The existence of the
phase transition was further supported by the simulation for much larger sizes up
to L = 24 for an effective model in the anisotropic limit [31]. The presence of the
phase transition is ascribed to the constraint on the Z2 fluxes Wp [31,90]. In the 3D
case, Wp cannot be flipped independently because of the constraint for each closed
volume imposed by the algebra for the Pauli matrices, and consequently, the flipped
Wp always form closed loops. Thus, the phase transition can be interpreted as a
confinement-deconfinement transition of the loops. In contrast, in the 2D case, Wp

can be flipped independently, and such particlelike excitaions do not lead to a phase
transition but just a crossover.

1.4.2 Dynamical spin structure factor in the ground state

As explained in Sec. 1.2.1, we can obtain the ground state and the excitations in
the Kitaev model exactly. Nevertheless, it is not straightforward to calculate the spin
dynamics in general. The difficulty comes from the time evolution of Wp including
the flipping processes. For example, to calculate the dynamical spin structure factor
S(q, ω), which is measured by the inelastic neutron scattering and defined as

S(q, ω) =
∑
γ

∑
j,j′

eiq·(rj−rj′ )Sγ
j,j′(ω), (1.24)

where

Sγ
j,j′(ω) =

∫ ∞

0

dteiωt−δt⟨Sγ
j (t)S

γ
j′⟩, (1.25)

we need to calculate dynamical spin correlations ⟨Sγ
j (t)S

γ
j′⟩ in Eq. (1.25), which

include the flipping processes of Wp by the spin operators in the time evolution.
The difficulty was solved by mapping the problem to the X-ray edge problem

and using the suitable expression for numerical evaluation developed in the field [98].
Similar to the case of static spin correlations, nonzero contributions to the dynamical
spin structure factor come from Sγ

j (ω)S
γ
j′ for j and j′ on a same γ bond (including

the onsite contributions), due to the conservation of Wp.
The representative results are shown in Fig. 1.11. The most characteristic feature

is that the dynamical spin structure factor exhibits a broad continuum in a wide
range of energy with less q dependence. This is distinct from the magnetic excitation
spectrum in conventional magnets, where sharp dispersive modes show up from
magnon excitations.

Another characteristic feature is the spin gap. In both isotropic and anisotropic
cases, the dynamical spin structure factor shows a gap at low energy, while the gap
for the continuum becomes larger for larger anisotropy. This originates from both
the gap in the flux excitations discussed in Sec. 1.2.2 and the gap in the matter
fermion spectrum in the anisotropic region, as the spin-flip excitation is a composite
of the flux excitation and the matter fermion excitation. In addition, for sufficiently
anisotropic cases, the spectrum has a δ-function contribution in addition to the
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(a)

(b)

(c)

(d)

Figure 1.11: Exact results for the dynamical spin structure factor [Eq. (1.24)] of
the Kitaev model on the 2D honeycomb structure for (a) the isotropic case with
Jx = Jy = Jz and (c) an anisotropic case with Jx = Jy = 0.15Jz. Corresponding
data at the Γ point (q = 0) are shown in (b) and (d), respectively. The inset in (b)
represents the density of states for matter fermions. The hatched areas in (c) and
(d) represents the δ-function contribution (see the text). The figures are taken and
modified from Ref. [90].

(a) (b)

Figure 1.12: Inelastic neutron scattering data for α-RuCl3 at (a) T = 5 K (below
TN) and (a) T = 15 K (above TN). The figures are taken and modified from Ref. [96].
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broad continuum. This originates from different parity between the ground state
and the first excited state.

Inelastic neutron scattering experiments were performed for powder samples of
α-RuCl3 [96, 99]. Figure 1.12 displays the representative data [96]. As shown in
the figures, the spectra show a broad continuum up to ∼ 8 meV. In particular, the
incoherent weight around 6.5 meV does not change below and above TN, as shown in
Figs. 1.12(a) and 1.12(b), respectively, and persists at least up to ∼ 70 K [96]. The
broad feature and the T dependence of the incoherent spectra are distinct from the
typical behavior of spin waves in conventional magnets. Instead, the broad contin-
uum up to the order of the Kitaev interaction is in agreement with the theoretical
results shown in Fig. 1.11. Thus, these experimental results were reasonably inter-
preted as the proximity effect to the Kitaev spin liquid. Further analyses including
experiments for single crystals will be discussed in comparison with our theoretical
results in Chap. 6

1.4.3 Raman scattering

The Raman scattering experiment is another important probe for the spin dy-
namics. For the Kitaev model, the Raman scattering intensity was computed for
both the ground state and at finite T as follows. By using the Loudon-Fleury for-
malism [100,101], the Raman scattering intensity is calculated as [102]

I(ω) =

∫ ∞

−∞
dteiωt⟨R(t)R(0)⟩, (1.26)

where the Raman vertex operator R for the Kitaev model is given by

R =
∑
γ

∑
⟨j,j′⟩γ

(ϵin · dγ)(ϵout · dγ)JγSγ
j S

γ
j′ . (1.27)

Here, ϵin and ϵout are the polarization directions of incoming and outgoing light,
respectively, and dγ denotes the direction of the γ bond. In the Kitaev model, since
R commutes with the Z2 fluxes, it is much easier to compute the Raman intensity
I(ω), compared to the dynamical spin structure factor in the previous section. The
calculations were first done exactly for the ground state [102], and later, numerically
at finite T [97] by using the same QMC method used in Sec. 1.4.1.

Figure 1.13 shows the Raman intensity for the Kitaev model and the Kitaev-
Heisenberg model on the honeycomb structure at T = 0 [102]. The result for the
Kitaev model is calculated exactly, and that for the Kitaev-Heisenberg model are cal-
culated by treating the Heisenberg coupling as a perturbation. The Raman intensity
exhibits a broad continuum, which reflects the density of states of itinerant matter
fermions. This is understood by considering the Majorana fermion representation
of the Raman vertex operator R in Eq. (1.27), which is given as

R̃ =
∑
γ

∑
⟨j,j′⟩γ

(ϵin · dγ)(ϵout · dγ)
Jγ

4
uγ
j,j′cjcj′ . (1.28)
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Figure 1.13: Raman scattering intensity calculated for the Kitaev model (green) and
the Kitaev-Heisenberg model (black) on the honeycomb structure at T = 0. The
calculation is performed for Jx = Jy = Jz = 4JK in Eq. (1.1), and JHeisenberg = Jγ/10
in Eq. (1.18). The figure is taken from Ref. [102].

Because all uγ
j,j′ and R commute with all Wp, the operation of R to a state excites

matter fermions without changing fluxes. On including a weak Heisenberg interac-
tion by which the system remains in the Kitaev spin liquid phase, the broad feature
of the Raman intensity almost does not change. Similar broad continua were also
predicted for the 3D hyperhoneycomb and stripy-honeycomb structures [103].

Figure 1.14: Raman scattering intensity for α-RuCl3 at T = 5 K. The strong peak
around 14 meV and 20 meV comes from phonon contributions. The shaded blue
region is a guide to the eye for the continuum contribution. The figure is taken and
modified from Ref. [95].
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The Raman scattering experiment was performed for α-RuCl3 [95]. The data at
T = 5 K is shown in Fig. 1.14. The scattering intensity extends over a broad energy
range. This is consistent with the theoretical prediction shown in Fig. 1.13, which
suggests that the magnetic excitation of α-RuCl3 is well described by the Kitaev
model.

In the experiment, the T dependence of the incoherent intensity was also studied,
as plotted in the inset of Fig. 1.15. The data do not follow conventional bosonic
behavior expected for magnon and phonon excitations. This peculiar T dependence
was explained by a theoretical calculation by using the Majorana QMC method [97].
The comparison between theory and experiment is shown in the main panel of
Fig. 1.15; the experimental data are well fitted by the summation of the theoretical
result for the Kitaev model and a bosonic background. As shown in the figure, the
theoretical result is well described by (1−f)2 (f is the Fermi distribution function),
reflecting the fact that the continuum is dominated by pair creation or annihilation
of matter fermions [97]. Thus, the good agreement between theory and experiment
strongly suggests that α-RuCl3 locates near the Kitaev QSL with fractionalized
fermionic excitations, although it shows a long-range magnetic order at low T . In
addition, the result also indicates that the effect of fractionalization can be observed
in a wide T range of the order of the Kitaev interaction.

The Raman scattering experiments were also performed for 3D Kitaev candidate
materials, β- and γ-Li2IrO3 [104]. Similar incoherent continua and fermionic T
dependences are seen for these materials.

1.5 Purpose of this thesis

As discussed in the previous sections, the Kitaev model has brought about many
significant breakthroughs in the study of quantum spin liquids. In particular, the
exact solution enables us to treat the fractionalization of spins explicitly, which has
been very difficult since the fractionalization is a direct consequence of quantum
many-body effects. As discussed in Sec. 1.4, several consequences of the fraction-
alization were theoretically obtained for the temperature and energy dependences
of the physical observables, and they have been tested for the candidate materi-
als. The critical comparisons between theories and experiments have promoted the
understanding of the quantum spin liquids.

On the other hand, it remains a challenge to compute the spin dynamics at finite
T even for the exactly-soluble Kitaev model. This is because such calculations need
to handle the dynamical spin correlations in the presence of thermally-excited Z2

fluxes. Note that the calculation of the dynamical spin structure factor in Sec. 1.4.2
was limited to the ground state because of this difficulty. Nonetheless, such finite-T
dynamical properties are crucial for identifying the proximity to the Kitaev quan-
tum spin liquid in the candidate materials, as they are also expected to reflect the
fractionalization. We also note that such calculations are necessary to compute the
magnetic susceptibility, which is a fundamental quantity for magnets. It is highly
desired to invent new theoretical methods and to compute the finite-T spin dynamics
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Figure 1.15: Comparison between the numerical results and the experimental data
for α-RuCl3. Main panel: blue circles represent QMC data for a L = 20 cluster for
the integrated Raman intensity in the middle energy range Imid. Red squares are
the experimental data in the energy window from 5 meV to 12.5 meV, from which
the nonmagnetic background is subtracted. Green dashed lines represent the fitting
by aM [1 − f ]2 + bM . In calculating Imid, J is taken as J = 10 meV and integral
energy range are set to corresponds to the one used for experimental data. Inset: red
squares show the experimental raw data and the orange curve indicates the bosonic
background. The figure is taken from Ref. [97].

for further understanding of the physics of quantum spin liquids.

The aim of this thesis is to solve this difficulty and clarify the spin dynamics
at finite T of the Kitaev model. For this purpose, we develop new numerical tech-
niques to calculate the dynamical spin correlations. The most important technique
is the continuous-time quantum Monte Carlo method (CTQMC) on the basis of
the Majorana fermion representation. This allows us to compute the dynamical
spin correlations for any flux configuration at any T . Another new technique is the
cluster dynamical mean-field theory (CDMFT) also based on the Majorana fermion
representation. This provides a concise alternative of the QMC method described in
Sec. 1.4.1, and furthermore, it might be applicable to the extended Kitaev models
with additional interactions described in Sec. 1.2.4, for which available numerical
techniques are limited. We combine the two methods (CDMFT+CTQMC) to cal-
culate the spin dynamics of the Kitaev model in a wide T range down to just above
TL where the mean-field nature of the CDMFT leads to an artificial phase transi-
tion. To access all T regions including much lower T than TL, we also combine the
CTQMC method with the QMC method (QMC+CTQMC). By using these tech-
niques, we compute the physical observables reflecting the spin dynamics, such as
the magnetic susceptibility, the dynamical spin structure factor, and the NMR re-
laxation rate 1/T1. We find that the T dependences of all these quantities show
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distinct features from those for conventional magnets, which can be a smoking gun
of the fractionalized excitations in the Kitaev quantum spin liquid. We compare the
results with experimental data to identify such signatures.

1.6 Organization of this thesis

The organization of this thesis is as follows. In Chap. 2, we introduce a Majorana
fermion representation of the Kitaev model used in this thesis. In Chap. 3, we
describe the method that we use in this thesis: QMC, CDMFT, CTQMC and the
maximum entropy method (MEM). In Chaps. 4 and 5, we present the numerical
results of S(q, ω), 1/T1, and χ for the Kitaev model. We show that these dynamical
quantities exhibit distinct behavior from conventional magnets. In Chap. 4, the
results obtained by CDMFT+CTQMC are presented for the 2D honeycomb case. In
Chap. 5, we present the results obtained by QMC+CTQMC for both 2D honeycomb
and 3D hyperhoneycomb structures. In Chap. 6, we discuss our theoretical results
in comparison with other theoretical results for the Kitaev model and experimental
results for the Kitaev candidate materials. Chapter 7 is devoted to summary and
perspectives.
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Model

In this chapter, we introduce a Majorana fermion representation of the Kitaev
model, which is suitable for the numerical simulations at finite T . The Hamiltonian
of the Kitaev model is given by

H = −Jx
∑
⟨j,j′⟩x

Sx
j S

x
j′ − Jy

∑
⟨j,j′⟩y

Sy
j S

y
j′ − Jz

∑
⟨j,j′⟩z

Sz
jS

z
j′ , (2.1)

as already introduced in Eq. (1.1). In Sec. 1.2.1, we discussed the exact solution of
the ground state by introducing a Majorana fermion representation with four Ma-
jorana operators per spin. In this chapter, we introduce another Majorana fermion
representation, which uses two Majorana operators for representing each spin. This
is suitable for numerics as it does not extend the Hilbert space and as the projection
to the original Hilbert space is not needed. In Sec. 2.1, we rewrite the Hamiltonian
in Eq. (2.1) by replacing the spin operators by fermion operators via the Jordan-
Wigner transformation. Then, in Sec. 2.2, we further rewrite the Hamiltonian by
introducing the Majorana fermion operators.

2.1 Jordan-Wigner transformation

The spin operators at the same site satisfy the anticommutation relations:

{S+
j , S

−
j } = 1, {S+

j , S
+
j } = 0, {S−

j , S
−
j } = 0, (2.2)

where S+
j = Sx

j + iSy
j and S−

j = Sx
j − iSy

j . The relations are similar to those for
fermion operators, which infers the possibility of representing the spin operators by
fermion operators. On the other hand, the spin operators at different sites satisfy
the commutation relations,

[S+
j , S

−
j′ ] = 0, [S+

j , S
+
j′ ] = 0, [S−

j , S
−
j′ ] = 0, (2.3)

instead of the anticommutation relations. Hence, for representing the spin operators
by fermion operators, we need to modify the commutation relations to the anticom-
mutation ones. This is achieved by considering new operators a†j and aj defined
as

a†j =

j−1∏
j′=0

(−2Sz
j′)S

+
j , aj =

j−1∏
j′=0

(−2Sz
j′)S

−
j . (2.4)
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Then, the operators satisfy the fermionic anticommutation relations for arbitrary j
and j′ as

{a†j, aj′} = δj,j′ , {a†j, a
†
j′} = 0, {aj, aj′} = 0. (2.5)

By using these new operators, the spin operators are represented as

S+
j =

j−1∏
j′=0

(−2Sz
j′)a

†
j, (2.6)

S−
j =

j−1∏
j′=0

(−2Sz
j′)aj, (2.7)

Sz
j = a†jaj −

1

2
= nj −

1

2
, (2.8)

where nj is the number operator defined by nj = a†jaj. This is called the Jordan-
Wigner transformation.

In order to apply the Jordan-Wigner transformation to the Kitaev model in
Eq. (2.1), we regard the whole lattice as a one-dimensional chain composed of the
x and y bonds (see Fig. 2.1). Then, interaction terms in the Hamiltonian are trans-
formed as

Sx
j S

x
j+1 =

1

4
(a†j − aj)(a

†
j+1 + aj+1), (2.9)

Sy
j S

y
j+1 =

1

4
(a†j + aj)(−a†j+1 + aj+1), (2.10)

Sz
jS

z
j′ =

(
nj −

1

2

)(
nj′ −

1

2

)
, (2.11)

where j runs along the xy chains, and j, j′ in Eq. (2.11) are the NN sites on a z
bond connecting the xy chains.

Note that, in the Jordan-Wigner transformation, an additional nonlocal contri-
bution arises from the boundary when the chain form a closed loop. For instance,
when the sites 0 and j(̸= 1) at the both ends are connected by the x bond, the
additional contribution is written in the form of

Sx
0S

x
j =

1

4
(a†0 − a0)

j−1∏
j′=1

(−2nj′ + 1)(a†j + aj). (2.12)

In the QMC calculation in previous studies [90, 91], whose results are used in this
thesis, the lattices are broken up into one-dimensional chain(s) with open boundary
condition(s) so as to avoid the boundary contributions. In the CDMFT calculations
in Chap. 4, we will consider periodic boundary conditions and neglect such a nonlocal
term in Eq. (2.12), assuming that the lattice is sufficiently large and the boundary
contributions do not affect the results.
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Figure 2.1: Example of site assignment to form a one-dimensional chain in the
Jordan-Wigner transformation. The dotted lines connect the sites at the boundaries.

2.2 Majorana fermion representation

We further rewrite the fermion representation by using Majorana fermion oper-
ators defined by

cw = (aw − a†w)/i, c̄w = (aw + a†w), (2.13)

cb = (ab + a†b), c̄b = (ab − a†b)/i, (2.14)

where b(w) represents a site index for even(odd) number sites (see Figs. 1.1 and 2.1).
By using these operators, the Hamiltonian is written in the form

HKitaev = i
Jx
4

∑
(j,j′)x

cjcj′ − i
Jy
4

∑
(j,j′)y

cjcj′ − i
Jz
4

∑
(j,j′)z

ηrcjcj′ , (2.15)

where the sum over (j, j′)γ is taken for the NN sites on a γ bond with j < j′;
ηr = ic̄j c̄j′ is defined on each z bond connecting j ∈ b and j′ ∈ w sites. Since
ηr commutes with the Hamiltonian as well as other ηr′ and since η2r = 1, {ηr} are
conserved quantities whose eigenvalues take ±1. Thus, the model in Eq. (2.15)
describes the itinerant Majorana fermions {cj} coupled to the Z2 variables ηr = ±1.
Note that {ηr} are related with the conserved quantities {Wp} in Eq. (1.2) as Wp =∏

r ηr, where r are the z bonds included in the plaquette p.

We note that the transformation from Eq. (2.1) to Eq. (2.15) is performed by
introducing the Majorana operators that do not extend the original Hilbert space.
This is in contrast to the Majorana fermion representation used in Sec. 1.2.1. Hence,
in the present formalism via the Jordan-Wigner transformation, we do not need a
projection for calculating physical quantities.
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For a given {ηr} configuration, the Hamiltonian in Eq. (2.15) is written in the
matrix form

HKitaev({ηr}) = H
{ηr}
j,j′ cjcj′ , (2.16)

with a pure-imaginary Hermitian matrix H{ηr}. For a nonzero eigenvalue and the
corresponding eigenvector of H{ηr}, from the eigenvalue equation H{ηr}tλ = ϵλtλ,
we obtain H{ηr}t∗λ = −ϵλt

∗
λ by taking the complex conjugate. This means that

t∗λ is another eigenvector of H{ηr} with eigenvalue −ϵλ. Thus, nonzero eigenvalues
appear in pair as ±ϵλ. On the other hand, when the eigenvalue is zero, namely
H{ηr}t̃λ′ = 0, we can take the corresponding eigenvector as real, since H{ηr} is pure
imaginary. Then, we can set the eigenvectors tλ′ = 1√

2
(t̃λ′ + it̃λ′′) by using two

real eigenvectors for the zero energy, t̃λ′ and t̃λ′′ , so that tλ′ and t∗λ′ are orthogonal.
Thus, we can diagonalize H{ηr} by a unitary matrix U as

U †H{ηr}U = diag(ϵ0,−ϵ0, ϵ1,−ϵ1, ...), (2.17)

where U has the form of U = [t0, t
∗
0, t1, t

∗
1, ...]. Note that in Eq. (2.17) some of ϵλ

can be zero. On the other hand, when we define the operators f̃ as

f̃j = 2
∑
j

(U †)j,kck, (2.18)

they satisfy the relations:

f̃2j+1 = f̃ †
2j, (2.19)

{f̃2j, f̃2j′+1} = δj,j′ , {f̃2j, f̃2j′} = 0, {f̃2j+1, f̃2j′+1} = 0. (2.20)

As f̃2j and f̃2j′+1 satisfy the fermionic anticommutation relations, we can regard
them as the fermion operators:

fλ = f̃2λ, f †
λ = f̃2λ+1. (2.21)

By substituting these relations to Eq. (2.16), we finally obtain the diagonal form of
the Hamiltonian for a given {ηr} as

HKitaev({ηr}) =
∑
λ

ϵλ(f̃2λ+1f̃2λ − f̃2λf̃2λ+1)

=
∑
λ

ϵλ

(
f †
λfλ −

1

2

)
. (2.22)

Thus, the Hamiltonian is diagonalized in the subspace for a given {ηr}. It is straight-
forward to calculate physical quantities, such as the internal energy and spin corre-
lations, by using U and {ϵλ}, as will be illustrated in Chap. 3.



3
Method

In this chapter, we describe the details of the methods used in this thesis, the
Majorana QMC, CDMFT and CTQMC methods. The latter two, CDMFT and
CTQMC, were newly developed by the author and coworkers. By using the Majo-
rana fermion representation of the Kitaev model introduced in Sec. 2.2, we describe
the framework of the Majorana QMC in Sec. 3.1 and the Majorana CDMFT in
Sec. 3.2. In the Majorana CDMFT, the impurity problem is solved exactly by enu-
merating all the configurations of the Z2 variables {ηr}. In the two methods, all
{ηr} are treated as classical variables. Hence, these enable us to compute the quan-
tities which preserve {ηr} in the imaginary-time evolution. In Sec. 3.3, we introduce
the CTQMC method which is applied to Monte Carlo samples of {ηr} obtained
by the Majorana QMC method or to all {ηr} configurations which appear in im-
purity problem in the Majorana CDMFT method. In the CTQMC method, the
imaginary-time evolution of ηr is treated by a Monte Carlo technique developed for
interacting fermion systems. Hence, by the combined methods, CDMFT+CTQMC
or QMC+CTQMC, we can compute dynamical spin correlations as functions of
the imaginary time. In Sec. 3.4, we also introduce the maximum entropy method
(MEM) used for obtaining the dynamical spin correlations as functions of the real
frequency. In Sec. 3.5, we present the definitions of the physical quantities that we
measure by the numerical methods in the following chapters.

3.1 Quantum Monte Carlo method

As explained in Secs. 2.2, the Kitaev model in Eq. (1.1) is mapped to a model
with free Majorana fermions coupled to Z2 variables {ηr} as shown in Eq. (2.15). In
the ground state, particular configurations of {ηr} which minimize the energy are
selected (there are many configurations of {ηr} because of the gauge redundancy
depending on the boundary conditions). On the other hand, to obtain thermody-
namical properties of the model at finite T , we need to consider thermal fluctuations
of the Z2 variables. This has been achieved by using Monte Carlo sampling of the
configurations of {ηr} [90, 91]. Since a part of the calculations in this thesis relies
on the results obtained by the QMC method, we briefly review the framework.

The partition function of the model is given by

Z = Tre−βH =
∑
{ηr}

Trce
−βH{ηr}

=
∑
{ηr}

Z{ηr}, (3.1)

where

Z{ηr} = Trce
−βH{ηr}

. (3.2)
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Here, Trc represents the trace for the c operators in a sector specified by {ηr}. By
using the expression of the Hamiltonian in Eq. (2.22), Z{ηr} is given as

Z{ηr} =
∑
λ

e−βϵ
{ηr}
λ . (3.3)

The thermal average of an operator A is computed by

⟨A⟩ = 1

Z
Tr[Ae−βH] (3.4)

=
1

Z

∑
{ηr}

Trc[A
{ηr}e−βH{ηr}

] (3.5)

=
1

Z

∑
{ηr}

⟨A⟩{ηr}Z{ηr}, (3.6)

where A{ηr} = P{ηr}AP{ηr} [P{ηr} is the projection operator to a sector specified by

{ηr}, and ⟨A⟩{ηr} = Trc[A
{ηr}e−βH{ηr}

]/Z{ηr} is the average of the operator A in the

sector of {ηr}. If A{ηr} is given in the form of A{ηr} =
∑

j,j′ A
{ηr}
j,j′ cjcj′ , it can be

rewritten by using Eq. (2.18) as∑
j,j′

A
{ηr}
j,j′ cjcj′ =

∑
j,j′

Ã
{ηr}
j,j′ f̃j f̃j′ , (3.7)

where

Ã
{ηr}
j,j′ =

1

4

∑
k,k′

U †
j,kA

{ηr}
k,k′ Uk′,j′ . (3.8)

Then Trc[A
{ηr}e−βH{ηr}

] is given as

Trc[A
{ηr}e−βH{ηr}

] =
∑
λ

Ã
{ηr}
2λ,2λ + e−βϵ

{ηr}
λ Ã

{ηr}
2λ+1,2λ+1

1 + e−βϵ
{ηr}
λ

. (3.9)

Thus, to calculate ⟨A⟩, we first solve the free Majorana fermion problem with the
Hamiltonian H{ηr} to obtain Z{ηr} and ⟨A⟩{ηr}, and then calculate the average of
⟨A⟩{ηr} with respect to {ηr} with the weight given by Z{ηr}.

The number of configurations of {ηr} grows exponentially with respect to the
system size. In the QMC method, the summations in Eqs. (3.1) and (3.6) are
computed by the Monte Carlo sampling technique, as

ZMC =
2N/2

NMC

∑
{ηr}∈MC samples

Z{ηr} (3.10)

and

⟨A⟩MC =

∑
{ηr}∈MC samples A

{ηr}Z{ηr}∑
{ηr}∈MC samples Z

{ηr}
, (3.11)

respectively. Here, Z{ηr} is the Monte Carlo weight of a state specified by {ηr}; N
is the system size (the number of sites), and NMC is the number of Monte Carlo
samples generated with the weight Z{ηr}. This Majorana QMC method is free from
minus sign problem as Z{ηr} is positive definite.
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(a) (b)

Figure 3.1: (a) Schematic picture of the honeycomb structure with shifted periodic
boundary condition used in the QMC+CTQMC calculations. L = 5 (50 sites) in this
example. Note that the interaction on x bond connected to the lower-left and the
upper-right sites are omitted to avoid the nonlocal term in Eq. 2.12. (b) Schematic
picture of the 26-site cluster mainly used in the CDMFT calculations (dashed oval).
r0 represents the z bond on which dynamical spin correlations are calculated in the
CDMFT+CTQMC calculations.

3.2 Cluster dynamical mean-field theory

In this section, we introduce another way to handle the summation over {ηr} in
Eqs. (3.1) and (3.6). As the Majorana Hamiltonian in Eq. (2.15) is formally similar
to the Falicov-Kimball model or the double-exchange model with Ising localized
moments, we can apply the DMFT framework for the double-exchange model to
the Kitaev model [105]. As shown in the previous study by the real-space QMC
simulation [91] and introduced in Sec. 1.4.1, spatial correlations between ηr (or Wp)
develop at low T . To take into account such spatial correlations, we adopt a cluster
extension of DMFT, called the cluster dynamical mean-field theory (CDMFT) [106].

In the CDMFT, the summation with respect to {ηr} is taken only within a cluster
of the lattice sites, and the configurations of {ηr} outside the cluster are taken into
account at the mean-field level, as described in details below. In other words, the
CDMFT method replaces the lattice problem by an impurity problem for the cluster
with a small number of sites. This reduces the computational cost. Moreover, this
method can possibly be applied to extended Kitaev models with other interaction
terms and a magnetic field, which are difficult to handle by the QMC method in the
previous section because they violate the conservation of {ηr}.

In the CDMFT, we regard the whole lattice as a periodic array of clusters. The
Hamiltonian in Eq. (2.15) is rewritten into the matrix form of

H =
∑

ζ,ζ′,j,j′

1

2
H0

ζ,j;ζ′,j′cζ,jcζ′,j′ +
∑
ζ,j,j′

1

2
H{ηr}

j,j′ cζ,jcζ,j′ , (3.12)

where ζ and ζ ′ are the indices for the clusters, and j and j′ denote the sites in each
Nc-site cluster. The coefficient 1/2 in Eq. (3.12) is introduced to follow the notation
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in Ref. [107]. In Eq. (3.12), the first term corresponds to the first and second terms
in Eq. (2.15), while the second term is for the third term. We here take the shape
of the cluster so that both two sites on a z bond belong to the same cluster, as
exemplified in Fig. 3.1(b). Then, the two-body interactions in the second terms in
Eq. (3.12) do not bestride between different clusters. Green’s function for Eq. (3.12)
is formally written as

G(k, iωn) = (iωn − 2H0(k)− Σ(k, iωn))
−1, (3.13)

where ωn = (2n+ 1)πT is the Matsubara frequency (n is an integer, and the Boltz-
mann constant kB and the reduced Planck constant ℏ are set to unity), Σ(k, iωn) is
the self-energy, and H0(k) is the Fourier transform of H0

ζ,j;ζ′,j′ in Eq. (3.12) given
by the matrix:

H0
j,j′(k) =

∑
ζ

H0
ζ,j;0,j′e

−ik·rζ , (3.14)

where rζ is the coordinate of the cluster ζ. Note that the wave number k is defined
for the superlattice composed of a periodic array of the clusters.

Following the spirit of the DMFT [108, 109], we omit the k dependence of the
self-energy: Σ(k, iωn) = Σ(iωn). In this approximation, local Green’s function is
defined within a cluster as

Gj,j′(iωn) =
1

N ′

∑
k

[
(iωn − 2H0(k)− Σ(iωn))

−1
]
j,j′

, (3.15)

where N ′ is the number of clusters in the whole lattice (N = NcN
′), and j and

j′ denotes the sites in the cluster. The Weiss function is introduced to take into
account the correlation effects in other clusters as

G0
j,j′(iωn)

−1 = Gj,j′(iωn)
−1 + Σj,j′(iωn). (3.16)

In order to take into account the interactionH{ηr} in Eq. (3.12) within the cluster
that we focus on, we consider the impurity problem for the cluster described by the
effective action in the path-integral representation for Majorana fermions [107]. The
partition function is given by

Z =
∑
{ηr}

Z{ηr}, (3.17)

where

Z{ηr} =

∫
Dχexp(−S{ηr}

eff ). (3.18)

Here, the sum of {ηr} in Eq. (3.17) runs over all possible configurations of {ηr}
within the cluster, and Dχ =

∏
j,n dχj,ωn in Eq. (3.18); χj,ωn is the Grassmann
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number corresponding to the Majorana operator cj (more precisely, cj/
√
2 following

the notation in Ref. [107]). The effective action is given by

S{ηr}
eff = −T

∑
j,j′,n≥0

χj,−ωn(G0(iωn))
−1
j,j′χj′,ωn + 2T

∑
j,j′,n≥0

χj,−ωnH
{ηr}
j,j′ χj′,ωn . (3.19)

For a given configuration of {ηr}, the impurity problem defined by Eq. (3.18) is
exactly solvable because it is nothing but a free fermion problem. Green’s function
is obtained as [

(G{ηr}(iωn))
−1
]
j,j′

=
[
(G0(iωn))

−1
]
j,j′

− 2H{ηr}
j,j′ . (3.20)

Then, local Green’s function for the impurity problem is calculated by

Gimp
j,j′ (iωn) =

∑
{ηr}

P ({ηr})G{ηr}
j,j′ (iωn), (3.21)

where P ({ηr}) is the statistical weight for the configuration {ηr} given by

P ({ηr}) = Z{ηr}/
∑
{ηr}

Z{ηr}. (3.22)

Z{ηr} is obtained from Green’s functions as

Z{ηr} =
∏
n≥0

det[−G{ηr}(iωn)]. (3.23)

We note that Gimp(iωn) in Eq. (3.21) is obtained exactly by computing G{ηr}(iωn)
and P ({ηr}) for all 2Nc/2 configurations of {ηr} in the Nc-site cluster [110]. The
self-energy for the impurity problem is obtained as

Σj,j′(iωn) =
[
(G0(iωn))

−1
]
j,j′

−
[
(Gimp(iωn))

−1
]
j,j′

. (3.24)

In the CDMFT, the above equations, Eqs. (3.15), (3.16), (3.21), and (3.24), are
solved in a self-consistent way. The self-consistent condition is given by

G(iωn) = Gimp(iωn), (3.25)

namely, the calculation is repeated until local Green’s function in Eq. (3.15) agrees
with Green’s function calculated for the impurity problem in Eq. (3.21).

The Majorana CDMFT framework provides a concise calculation method for
T dependences of static quantities of the Kitaev model, such as the specific heat
and the equal-time spin correlations ⟨Sγ

j S
γ
j′⟩. It is worth noting that the CDMFT

calculations can be performed without any biased approximation except for the
cluster approximation: the exact enumeration for all the 2Nc/2 configurations in
Eq. (3.21) enables the exact calculations for the given cluster. Furthermore, the
cluster-size dependence is sufficiently small at all the T range above the critical
temperature for the artificial phase transition due to the mean-field nature of the
CDMFT, as demonstrated in Chap. 4. On the other hand, for obtaining dynamical
quantities, such as the dynamical spin correlations ⟨Sγ

j (τ)S
γ
j′⟩ (τ is the imaginary

time), we need to make an additional effort beyond the exact enumeration in the
CDMFT, as discussed in the next section. In the CDMFT+CTQMC calculations in
Chap. 4, we mainly present the results for the 26-site cluster shown in Fig. 3.1(b).
We also examine the dependence on the cluster size as well as shape in Chap. 4.
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3.3 Continuous-time quantumMonte Carlo method

In order to calculate the dynamical spin correlations ⟨Sγ
j (τ)S

γ
j′⟩, we need to take

into account the imaginary-time evolution of the operators {c̄} that compose the
conserved quantities {ηr}. This is because the spin operators include {c̄}, e.g.,
Sz
j (τ) = ±iχj(τ)c̄j(τ)/

√
2; the sign depends on the sublattice of site j, b or w in

Eqs. (2.13) and (2.14). We need to calculate ⟨Sγ
j (τ)S

γ
j′⟩ only with j and j′ on a same

γ bond, since other components are zero as introduced in Sec. 1.2.1. For this purpose,
we combine the CTQMC method based on the strong coupling expansion [111] with
Majorana QMC (QMC+CTQMC) and Majorana CDMFT (CDMFT+CTQMC). In
the CDMFT+CTQMC, ⟨Sz

j (τ)S
z
j′⟩ on a z bond r0 is calculated as

⟨Sz
j (τ)S

z
j′⟩ =

∑
{ηr}′,ηr0=±1

P ({ηr}′, ηr0)⟨Sz
j (τ)S

z
j′⟩{ηr}

′
, (3.26)

where {ηr}′ represents the configurations of ηr except for ηr0 on the bond r0. P ({ηr}′, ηr0)
is obtained from the converged solution of the Majorana CDMFT in Sec. 3.2.
⟨Sz

j (τ)S
z
j′⟩{ηr}

′
is the dynamical spin correlation on the bond r0 calculated by the

CTQMC method for each configuration {ηr}′. The sum of {ηr}′ runs over all possi-
ble configurations of {ηr}′ within the cluster. Note that Eq. (3.26) is derived from
the fact that Sz

j commutes with ηr in {ηr}′, whereas it does not commute with ηr0 .
Similarly, in the QMC+CTQMC, ⟨Sz

j (τ)S
z
j′⟩ on a bond r0 is calculated as

⟨Sz
j (τ)S

z
j′⟩ =

1

NMC

∑
{ηr}′∈MC samples

⟨Sz
j (τ)S

z
j′⟩{ηr}

′
, (3.27)

by using the {ηr}′ configurations obtained in the Majorana QMC calculations.
Thus, for a given {ηr}′, the interaction lies only on the bond r0, and hence, it is

sufficient to solve the two-site impurity problem in the CTQMC calculations. The
two-site impurity problem is defined by the integration in Eq. (3.18) on χj,ωn whose
j does not belong to the bond r0. Then, we obtain

S{ηr}′
eff = Slocal + S{ηr}′

hyb , (3.28)

where

Slocal =
∑
j,j′

∫ β

0

dτχj(τ)

(
δj,j′

2

∂

∂τ
+H{ηr}

j,j′

)
χj′(τ), (3.29)

S{ηr}′
hyb =−

∑
j,j′

∫ β

0

dτ

∫ β

0

dτ
′
χj(τ)∆

{ηr}′
j,j′ (τ − τ

′
)χj′(τ

′
), (3.30)

and j, j′ in Eqs. (3.29) and (3.30) are the sites on the bond r0; β = 1/T is the inverse

temperature. In Eq. (3.30), the hybridization function ∆
{ηr}′
j,j′ (τ) is calculated from
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G
{ηr}
j,j′ (iωn) in the converged solution of CDMFT as follows. Let us define the matrix

G̃{ηr}(iωn) as a 2× 2 submatrix of G{ηr}(iωn), as

G̃
{ηr}
j,j′ (iωn) = G

{ηr}
j,j′ (iωn). (3.31)

Then, the hybridization function is given as a function of the Matsubara frequency
in the form

∆
{ηr}′
j,j′ (iωn) = [G̃{ηr}(iωn)]

−1
j,j′ − (iωn − 2H{ηr}

j,j′ ). (3.32)

Note that ∆
{ηr}′
j,j′ (iωn) does not depend on ηr0 , which is straightforwardly shown

by the matrix operations in the right hand side. Converting Eq. (3.32) to the
imaginary-time representation, we obtain

∆
{ηr}′
j,j′ (τ) =

T

2

∑
n

e−iωnτ∆
{ηr}′
j,j′ (iωn). (3.33)

Given Eqs. (3.28)-(3.29), the partition function of the system is expanded in terms

of S{ηr}′
hyb as

Z

Zlocal

=

∫
Dχe−S{ηr}′

hyb e−Slocal∫
Dχe−Slocal

= ⟨e−S{ηr}′
hyb ⟩local

=
∑

d,i0,...,i2d−1

∫ β

0

dτ0...

∫ β

0

dτ2d−1
2d

(2d)!
⟨χi0(τ0)...χi2d−1

(τ2d−1)⟩local

× Pf(∆̂{ηr}′(d, i0, τ0, ..., i2d−1, τ2d−1)), (3.34)

where Zlocal =
∫
Dχe−Slocal is the partition function for the two sites described by

Slocal, and ⟨A⟩local represents the expectation value in the two-site problem as

⟨A⟩local =
∫
DχAe−Slocal∫
Dχe−Slocal

. (3.35)

In the second line of Eq. (3.34), d is the order of S{ηr}′
hyb in the expansion of e−S{ηr}′

hyb ,

Pf(M) is the Pfaffian of skew-symmetric matrixM , and ∆̂{ηr}′(d, i0, τ0, ..., i2d−1, τ2d−1)
is a 2d× 2d matrix, whose (m,n) element is given by

∆̂{ηr}′(d, i0, τ0..., i2d−1, τ2d−1)m,n = ∆
{ηr}′
im,in

(τm − τn). (3.36)

We note that this is the first formulation of the CTQMC method with using the
Pfaffian in the weight function to our knowledge, whereas a QMC simulation in the
Majorana representation has been introduced for itinerant fermion models [112].

In the CTQMC calculation, we perform MC sampling over the configurations
(d, i0, τ0, ..., i2d−1, τ2d−1) by using the integrand in Eq. (3.34) as the statistical weight
for each configuration. In each MC step, we perform an update from one con-
figuration to another; for instance, an increase of the order of expansion d as
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(d, i0, τ0, ..., i2d−1, τ2d−1) to (d+1, i0, τ0, ..., i2d−1, τ2d−1, i2d, τ2d, i2d+1, τ2d+1) by adding
(i2d, τ2d), (i2d+1, τ2d+1). To judge the acceptance of such an update, we need to cal-
culate the ratio of the Pfaffian. This is efficiently done by using the fast update
algorithm, as in the hybridization expansion scheme for usual fermion problems
(for example, see Ref. [113]). For the above example of increasing d, the ratio is
calculated by adding two rows and columns in the matrix ∆̂{η}′ as

Pf(∆̂{ηr}′(d, i0, τ0, ..., i2d−1, τ2d−1))

Pf(∆̂{ηr}′(d+ 1, i0, τ0, ..., i2d+1, τ2d+1))
, (3.37)

whose calculation cost is in the order of d2 by using the fast update algorithm. On
the other hand, in Eq. (3.34), ⟨Tτχi0(τ0)...χi2d−1

(τ2d−1)⟩local is obtained as the average
in the two-site problem, which can be calculated by considering the imaginary-time
evolution of all the four states in the two-site problem. Then, the dynamical spin
correlation for the configuration {ηr}′, ⟨Sz

j (τ)S
z
j′⟩{ηr}

′
in Eqs. (3.26) and (3.27), is

calculated as

⟨Sz
j (τ)S

z
j′⟩{ηr}

′
=

Zlocal

Z

∑
d,i0,...,i2d−1

∫ β

0

dτ0...

∫ β

0

dτ2d−1

× 2d

(2d)!
⟨χi0(τ0)...χi2d−1

(τ2d−1)S
z
j (τ)S

z
j′⟩local

× Pf(∆̂{ηr}′(d, i0, ..., i2d−1, τ0, ..., τ2d−1)). (3.38)

For the MC sampling, we need to evaluate

⟨Tτχi0(τ0)...χi2d−1
(τ2d−1)S

z
j (τ)S

z
j′⟩local

⟨Tτχi0(τ0)...χi2d−1
(τ2d−1)⟩local

. (3.39)

This is again calculated by considering the imaginary-time evolution of all the four
states in the two-site problem. In the isotropic case with Jx = Jy = Jz, ⟨Sγ

j (τ)S
γ
j′⟩ for

γ = x(y) on a x(y) bond is equivalent to ⟨Sz
j′′(τ)S

z
j′′′⟩ on a z bond. Meanwhile, for the

anisotropic case, we compute ⟨Sγ
j (τ)S

γ
j′⟩ for γ = x, y by the same technique described

above with using the spin rotations {Sx, Sy, Sz} → {Sy, Sz, Sx} or {Sx, Sy, Sz} →
{Sz, Sx, Sy}.

In the CTQMC part of the CDMFT+CTQMC calculations in Chap. 4, for each
configuration {ηr}′, we typically perform 5 × 105 measurements at every 20 MC
steps, after 105 MC steps for the initial relaxation. We compute the dynamical
spin correlations on the bond in the center of the cluster, as exemplified by r0 in
Fig. 3.1(b) for the case of 26-site cluster.

Meanwhile, in the CTQMC part of the QMC+CTQMC calculations in Chap. 5,
for each configuration {ηr}′, we typically perform 5× 103 measurements at every 20
MC steps, after 105 MC steps for initial relaxation. The number of {ηr}′ configura-
tions, NMC, is typically the order of 104. The CTQMC calculations are performed
for the z bonds, sufficiently far from the open boundaries. Typically, we select 60
(16-18) bonds in the 2D (3D) case near the central region of the lattice (in order of
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larger Manhattan distances from the open boundary), and average the results over
the selected bonds. In the 2D case, the results for different system sizes well agree
with each other, suggesting that the finite-size effect is negligible. In the 3D case,
the results for χ and 1/T1 show small system size dependence at low T , in addition
to those in the T derivatives of χ and 1/T1 reflecting the phase transition at Tc [90].

3.4 Maximum entropy method

By using the CDMFT+CTQMC or QMC+CTQMC method, we can numeri-
cally estimate the dynamical spin correlations as a function of the imaginary time,
⟨Sγ

j (τ)S
γ
j′⟩. To obtain the physical observables, such as the dynamical spin struc-

ture factor and the NMR relaxation rate, which are given by the dynamical spin
correlations as functions of real frequency ω, we need to inversely solve the equation
given by the generic form g(τ) =

∫
dωρ(ω)e−ωτ . In our problem, g(τ) and ρ(ω) cor-

respond to the dynamical spin correlations as functions of imaginary time τ and real
frequency ω: g(τ) = ⟨Sγ

j (τ)S
γ
j′⟩ and ρ(ω) = Sγ

j,j′(ω). In the following calculations,
we utilize the Legendre polynomial expansion following Refs. [114,115]:

gm =
√
2m+ 1

∫ β

0

dτPm(x(τ))g(τ), (3.40)

where Pm(x) is the mth Legendre polynomials and x(τ) = 2τ/β − 1. Then, the
inverse problem is given by

gm =

∫
dωρ(ω)Km(ω), (3.41)

where

Km(ω) =
√
2m+ 1

∫ β

0

dτPm(x(τ))e
−ωτ . (3.42)

In the present CDMFT+CTQMC and QMC+CTQMC calculations, we obtain
⟨Sγ

j (τ)S
γ
j′⟩ at a discrete set of the imaginary time τ distributing with an equal

interval. The number of the discrete points of τ is taken as 4192 at high T and
as larger than 75β at low T , by which we confirm that the discretization error in
the integration is negligible compared with the Monte Carlo error for the range of
m used in the following calculations. We compute the Legendre coefficient, gm in
Eq. (3.40), by using the Romberg integration method (for example, see [116]) .

For solving the inverse problem, we adopt the maximum entropy method (MEM) [117].
The following procedure is the standard one, but we briefly introduce it to make the
thesis self-contained. In the MEM, we discretize ρ(ω) to ρl = ρ(ωl), and determine
ρl to minimize the function

F =
1

2

∑
m,n

(gm − g̃m)ζ
−1C−1

m,n(gn − g̃n)− δ
∑
l

[
ρl − ρ

(0)
l − ρlln

(
ρl

ρ
(0)
l

)]
, (3.43)
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where ζ and δ are the coefficients described below, and C is a variance-covariance
matrix of gm; g̃m =

∑
l ∆ωρlKm(ωl). We use the Legendre polynomial up to 100th

order for T ≤ 0.006 in 3D case, while we expand up to 50th order for higher T as
well as for the 2D case. In Eq. (3.43), ρ

(0)
l is the advance estimate of ρl, which we

set to be a constant in this study.

Once neglecting the second term in the right hand side of Eq. (3.43), the mini-
mization of F is equivalent to the least squares method. The least squares method
is unstable, as gm is rather insensitive to a change of ρl. The second term, called
the entropy term, stabilizes the minimization process. In the following calculations,
we set ζ = 625 to sufficiently take into account the effect of the entropy term, where
the value of δ is determined self-consistently in each MEM calculation based on the
maximum likelihood estimation, called the classical MEM [117] (typically, δ ≃ 1-
10). We note that the deviations of g̃m from gm are typically comparable to the
statistical errors in the CTQMC calculations. In the following results, we estimate
the errors of ρ(ω) by the standard deviation between the data for ζ = 100, 625 and
10000 in the range where the MEM retains the precision.

In the MEM, ρ(ω) should be positive for all ω. In our problem, the onsite
correlation Sγ

j,j(ω) satisfies this condition automatically, whereas Sγ
j,j′(ω) for the NN

sites j, j′ on a γ bond, which is denoted by Sγ
NN(ω) hereafter, can be negative. (Note

that all the further-neighbor correlations beyond the NN sites vanish in the Kitaev
model [29].) To obtain Sγ

NN(ω) properly, we calculate Sγ
j,j(ω) + 2Sγ

j,j′(ω) + Sγ
j′,j′(ω),

which is positive definite for all ω, and subtract the onsite contributions [118]. The
accuracy of Sγ

j,j′(ω) obtained by the MEM are examined in Appendix C in the one-
dimensional limit with Jz = 0, where Sγ

j,j′(ω) can be calculated without using the
MEM.

3.5 Physical quantities

In the following chapters, we calculate the dynamical quantities by the CDMFT+CTQMC
and QMC+CTQMC methods for the Kitaev models on the 2D honeycomb (Fig. 1.1)
and 3D hyperhoneycomb structures (Fig. 3.2). We calculate the dynamical spin
structure factor S(q, ω) by

S(q, ω) =
∑
γ

Sγ(q, ω), (3.44)

Sγ(q, ω) =
1

3N

∑
j,j′

eiq·(rj−rj′ )Sγ
j,j′(ω), (3.45)

where Sγ
j,j′(ω) is obtained by the MEM described in Sec. 3.4 from the imaginary-

time correlations ⟨Sγ
j (τ)S

γ
j′⟩ by CDMFT+CTQMC or QMC+CTQMC. We present

the results of S(q, ω) on the symmetric lines shown in Fig. 3.3.

We also compute the NMR relaxation rate 1/T1. 1/T1 in the magnetic field
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Figure 3.2: Schematic picture of the Kitaev model on the 3D hyperhoneycomb
structure. The blue, green, and red bonds represent the x, y, and z bonds in
Eq. (1.1), respectively. The magenta plaquette represents a conserved quantity Wp

defined by a product of spin operators on the vertices of the plaquette; see Eq. (1.2).
The black and white circles denote the sites j and j′ in Eq. (1.10), respectively. They
also correspond to b and w in Eq. (2.13).

(a) (b)

X1

Y

T

X

AZ

L

K2Γ

M1
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K1

Figure 3.3: The first Brillouin zones for (a) the 2D honeycomb and (b) 3D hyper-
honeycomb lattices. The red lines represent the symmetric lines used for plotting
the dynamical structure factors S(q, ω) in Chaps. 4 and 5.

applied to the z direction, which is denoted by 1/T z
1 , is given by

1/T z
1 ∝ T

∑
q

|Aq|2
Imχ⊥(q, ω0)

ω0

. (3.46)

Here, Aq is the hyperfine coupling constant, χ⊥(q, ω) is the dynamical susceptibility
for the spin component perpendicular to the magnetic field direction, and ω0 is
the resonance frequency in the NMR measurement. The dynamical susceptibility
χ(q, ω) is related with the dynamical spin structure factor through the fluctuation-
dissipation theorem, as

S(q, ω) =
1

π(1− e−βω)
Imχ(q, ω). (3.47)



40 3 Method

In the NMR experiments, ω0 is in general negligibly small compared to the typical
energy scale of the system, J . Thus, by taking the limit of ω0 → 0 in Eq. (3.46) and
using Eq. (3.47), we obtain

1/T z
1 = a0S

x
j,j(ω = 0) + a1S

y
j,j(ω = 0) + a2S

x
NN(ω = 0) + a3S

y
NN(ω = 0), (3.48)

where the coefficients a0, a1, a2, and a3 are determined by Aq. Similar equations
are obtained for 1/T x

1 and 1/T y
1 by the cyclic permutation of x, y, z (1/T x

1 = 1/T y
1

for the present cases from the symmetry). Because Aq depends on the details of
the system, we here compute the onsite and NN-site components of 1/T1 separately
with omitting the coefficients: the onsite components are calculated as

1/T z
1 = Sx

j,j(ω = 0) + Sy
j,j(ω = 0), (3.49)

1/T x
1 = Sy

j,j(ω = 0) + Sz
j,j(ω = 0), (3.50)

while the NN-site ones are

1/T z
1 = ±(Sx

NN(ω = 0) + Sy
NN(ω = 0)), (3.51)

1/T x
1 = ±(Sy

NN(ω = 0) + Sz
NN(ω = 0)), (3.52)

where the sign is +(−) for the FM (AFM) case. Note that 1/T x
1 = 1/T y

1 in the
following results where we take Jx = Jy. In the anisotropic cases Jx = Jy ̸= Jz,
the NN-site 1/T x

1 is not simply given by the sum in Eq. (3.52): it will be given by
a linear combination of Sy

NN(ω = 0) and Sz
NN(ω = 0) with appropriate coefficients

determined by Aq. Such a linear combination, however, can be constructed from
our data for Eqs. (3.51) and (3.52) by noting that 1/T z

1 = 2Sy
NN(ω = 0) for Jx = Jy.

Hence, we present the results by Eqs. (3.51) and (3.52) for simplicity.
In addition, we calculate the magnetic susceptibility χ. χ for the magnetic field

applied in the p direction, which we denote χγ, is obtained by

χγ =
1

N

∑
j,j′

∫ β

0

dτ⟨Sγ
j (τ)S

γ
j′⟩. (3.53)

Note that this is obtained directly from the dynamical spin correlations without the
MEM.
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Results by CDMFT + CTQMC

method

In this chapter, we present the results obtained by the CDMFT+CTQMC meth-
ods. Before going into the main results, we present the benchmark of the CDMFT
and CDMFT+CTQMC methods in Sec. 4.1. By comparing the results with those
by the QMC method [91], we confirm that the CDMFT is valid in the T range above
the artificial critical temperature close to the low-T crossover. Then, in Secs. 4.2,
4.3, 4.4, and 4.5, we present the CDMFT+CTQMC results for dynamical quanti-
ties, i.e., S(q, ω), 1/T1, χ, and the Korringa ratio K, respectively, in the qualified T
range. In Sec. 4.6, we examine how the dynamical properties are affected by the Z2

variables {ηr}. Section 4.7 is devoted to the summary of this chapter.

For all quantities, we presents the results for the cases with both isotropic and
anisotropic Jx, Jy, and Jz. In this chapter, we set the energy scale as

∑
γ |Jγ| = 3 (the

average of Jγ is set to 1) in Eq. (2.1), and parametrize the anisotropy of the exchange
coupling constants by using a parameter α as Jx = Jy = ±α and Jz = ±(3 − 2α),
where + and − correspond to the ferromagnetic (FM) and antiferromagnetic (AFM)
cases, respectively. The results are presented for α = 1.0 (Jx = Jy = Jz = ±1.0),
α = 0.8 (Jx = Jy = ±0.8 and Jz = ±1.4) and α = 1.2 (Jx = Jy = ±1.2 and
Jz = ±0.6). We note that the FM and AFM cases are connected through unitary
transformations [26].

4.1 Benchmark

4.1.1 CDMFT method

Figure 4.1 shows the benchmark of the Majorana CDMFT method. We compare
the specific heat Cv and equal-time spin correlations for NN pairs on the γ bonds,
⟨Sγ

j S
γ
j′⟩NN, obtained by the Majorana CDMFT, with those by QMC in Ref. [91].

The data are calculated for the FM case. While the data of Cv are common to
the FM and AFM cases, the sign of ⟨Sγ

j S
γ
j′⟩NN is reversed for the AFM case. As

indicated by two broad peaks in the specific heat in the QMC results, the system
exhibits two crossovers owing to thermal fractionalization of quantum spins [91];
the crossover temperatures were estimated as TL ≃ 0.012 and TH ≃ 0.375 in the
isotropic case. In the anisotropic cases, the low-T crossover takes place at a lower
T , i.e., TL ≃ 0.0052 for α = 0.8 and TL ≃ 0.0075 for α = 1.2, while the high-T one
is almost unchanged, i.e., TH ≃ 0.375. These behaviors are excellently reproduced
by the Majorana CDMFT, except for the low-T peak; the CDMFT results show a
sharp anomaly at T̃c ≃ 0.015 for α = 1.0, T̃c ≃ 0.0063 for α = 0.8 and T̃c ≃ 0.013 for

41
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Figure 4.1: The specific heat Cv and equal-time spin correlations for the NN sites,
⟨Sz

jS
z
j′⟩NN and ⟨Sx

j S
x
j′⟩NN, obtained by the Majorana CDMFT method for the FM

case at (a) α = 1.0, (b) α = 0.8, and (c) α = 1.2. Note that ⟨Sx
j S

x
j′⟩NN = ⟨Sy

j S
y
j′⟩NN =

⟨Sz
jS

z
j′⟩NN for α = 1.0 and ⟨Sx

j S
x
j′⟩NN = ⟨Sy

j S
y
j′⟩NN for α = 0.8 and 1.2, from the

symmetry. QMC data in Ref. [91] are plotted by gray symbols for comparison.

α = 1.2. This is due to a phase transition by ordering of ηr, which is an artifact of
the mean-field nature of CDMFT. On the other hand, the QMC results for the NN
spin correlations are also precisely reproduced by the Majorana CDMFT in the wide
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(a) (b)

Figure 4.2: Schematic pictures of the different types of clusters used in the bench-
mark of CDMFT. The color of the bonds are common to Fig. 1.1.

T range above the artificial phase transition temperature T̃c. Although they appear
to be reproduced even below T̃c, there is a small anomaly at T̃c associated with
the artificial transition, while the QMC data smoothly change around TL. (note
that the appropriate sum of the NN spin correlations is nothing but the internal
energy, and hence, the T derivative corresponds to the specific heat.) Thus, the
comparison indicates that the Majorana CDMFT gives quantitatively precise results
in the wide T range above the artificial transition temperature T̃c: in the present
cases with α = 1.0, 0.8 and 1.2, the CDMFT is reliable for T ≳ 0.016, T ≳ 0.007
and T ≳ 0.014, respectively. As discussed in the previous study [91], the thermal
fractionalization of quantum spins sets in below T ≃ TH, which is well above T̃c.
Thus, the T ranges qualified for the CDMFT include the peculiar paramagnetic
state showing the thermal fractionalization.

4.1.2 CDMFT+CTQMC method

Figure 4.3 shows the cluster size dependence of χγ and 1/T γ
1 obtained by the

CDMFT+CTQMC calculations for three different types of clusters shown in Figs. 3.1(b),
4.2(a), and 4.2(b). In each type, we change the cluster sizes in the width in the xy-
chain direction while keeping that in the z-bond direction. This is because the width
in the xy-chain direction is rather relevant compared to that in the z-bond direction
in the present CDMFT, presumably due to the Majorana representation based on
the Jordan-Wigner transformation along the xy chains. Hereafter, we define the size
of the cluster by the average width in the xy-chain direction: for instance, 4.3 for
the cluster in Fig. 3.1(b), while 4 and 5 for Figs. 4.2(a) and 4.2(b), respectively.

As shown in Figs. 4.3(a)-4.3(j), the CDMFT+CTQMC results for χγ show quick
convergence with respect to the cluster width for all the cluster types. Even close
to the artificial critical temperature T̃c, the results for the width larger than 4 are
almost convergent to the large width limit for all types of the clusters: the remnant
relative errors are ≲ 5%. Note that T̃c ∼ 0.014 for α = 1.0, T̃c ∼ 0.0063 for α = 0.8,
and T̃c ∼ 0.013 for α = 1.2 (for the rotated lattice coordinate used to calculate
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Figure 4.3: Cluster-size dependences of the magnetic susceptibility χγ for (a)-(e)
the FM case and (f)-(j) the AFM case, and (k)-(o) the onsite component of the
NMR relaxation rate 1/T γ

1 : (a)(f)(k) α = 1.0, (b)(c)(g)(h)(l)(m) α = 0.8, and
(d)(e)(i)(j)(n)(o) α = 1.2. The data for two different T are plotted in each case.
In (a)(f)(k), the data are common to p = z and x. Calculations are performed for
the cluster series denoted in (A) Fig. 3.1(b), (B) Fig. 4.2(a), and (C) Fig. 4.2(b).
Symbols in (a)-(e) are common for the same parameters in (f)-(o).
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⟨Sp
j (τ)S

p
j′⟩ for p = x, y, T̃c becomes slightly lower: T̃c ∼ 0.0052 for α = 0.8 and

T̃c ∼ 0.0094 for α = 1.2).

On the other hand, as shown in Figs. 4.3(k)-4.3(o), the cluster-size dependences
of 1/T1 remains up to relatively higher T than χγ. But the remnant relative errors
are ≲ 10% for the cluster width larger than 4, which are sufficiently small to observe
the characteristic T dependences of 1/T1 as shown in Figs. 4.11.

In the following sections, we apply the CDMFT+CTQMC method in these qual-
ified T ranges to the study of spin dynamics, which was not obtained by the previous
QMC method [91]. Comparisons with the QMC+CTQMC results will be given in
Sec. 5.1.

4.2 Dynamical spin structure factor

Figure 4.4 shows the dynamical spin structure factor S(q, ω) [Eq. (3.44)] at
several T for the FM case with α = 1.0, 0.8, and 1.2. The results are obtained
by the CDMFT+CTQMC method supplemented by the MEM. The Brillouin zone
and symmetric lines on which S(q, ω) is plotted are presented in Fig. 3.3(a). We
show the data at four temperatures: T ≃ 2TL,

√
TLTH, 0.64TH, and 6.4TH. note

that TL ≃ 0.012, 0.0052, and 0.0075 for α = 1.0, 0.8, and 1.2, respectively, while
TH ≃ 0.375 for all the cases.

As shown in Fig. 4.4, at sufficiently high T than TH, S(q, ω) does not show
any significant q dependence for all α studied here; S(q, ω) shows only a diffusive
response centered at ω ∼ 0, as shown in Figs. 4.4(j)-4.4(l). When lowering T
below TH, the diffusive weight is shifted to the positive ω region ranging up to
above ω ∼ J for all the cases, as shown in Figs. 4.4(g)-4.4(i). Simultaneously,
a quasi-elastic component grows gradually at ω ∼ 0. Both the inelastic and the
quasi-elastic components show a discernible q dependence; in particular, the latter
increases the intensity around the Γ point reflecting the FM interactions. Overall T
and ω dependences in the anisotropic cases are not much different from those in the
isotropic case in the T range. Reflecting the anisotropy, we note slight modulation
in the q dependences: while S(K1, ω) = S(K2, ω) and S(M1, ω) = S(M2, ω) for
α = 1.0 from the symmetry, the quasi-elastic response is small (large) around the
M1-K1 line compared to that around the M2-K2 line for α = 0.8 (1.2) because of the
anisotropy.

When further lowering T and approaching TL, the quasi-elastic component in-
creases its intensity, while the inelastic response at ω ∼ J does not change substan-
tially, as shown in Figs. 4.4(a)-4.4(f). In this T region, we find distinct behavior
between different α. In the case of α = 1.0, as shown in Figs. 4.4(a) and 4.4(d), the
quasi-elastic component of the S(q, ω) grows and sharpened but converges on the
peak with finite width in the T = 0 solution [98]. The results for α = 1.2 are qual-
itatively similar to those for α = 1.0 in Figs. 4.4(a) and 4.4(d), except for different
q dependence mentioned above.

On the other hand, in the case of α = 0.8, as shown in Figs. 4.4(b) and 4.4(e),
the quasi-elastic component is sharpened and develops to a δ-function like peak,
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Figure 4.4: Dynamical spin structure factor S(q, ω) obtained by the Majorana
CDMFT+CTQMC method for the FM case with (a)(d)(g)(j) α = 1.0, (b)(e)(h)(k)
α = 0.8, and (c)(f)(i)(l) α = 1.2: (a)(b)(c) T ≃ 2TL, (d)(e)(f) T ≃

√
TLTH, (g)(h)(i)

T ≃ 0.64TH, and (j)(k)(l) T ≃ 6.4TH. Here, TL ≃ 0.012, 0.0052, and 0.0075 for
α = 1.0, 0.8, and 1.2, respectively, while TH ≃ 0.375 for all the cases.

and in addition, the broad incoherent weight splits from the coherent peak. These
behaviors are again consistent with the result at T = 0 [98]. Note that the δ-function
peak at T = 0 appears due to the change of the parity between the ground state and
the flux-excited state [98] (for the δ-function peak, see also Fig. C.2 in Appendix C).

Figure 4.5 shows the results for the AFM case. The overall ω dependence of
S(q, ω) is similar to that for the FM case at all T : the diffusive response centered at
ω ∼ 0 for T ≳ TH [Figs. 4.5(j)-4.5(l)], the shift of the diffusive weight to the region of
ω ∼ J and the growth of a quasi-elastic component at ω ∼ 0 below TH [Figs. 4.5(g)-
4.5(i)], and the δ-function like peak for α = 0.8 while approaching to TL [Figs. 4.5(e)
and 4.5(b)]. The similarity between FM and AFM cases is partly understood by
the relation 2S(K1, ω)FM+S(K2, ω)FM = 2S(K1, ω)AFM+S(K2, ω)AFM, which holds
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Figure 4.5: Dynamical spin structure factor S(q, ω) obtained by the Majorana
CDMFT+CTQMC method for the AFM case. The values of α and T are com-
mon to Fig. 4.4.

for Jx = Jy [S(q, ω)FM and S(q, ω)AFM are S(q, ω) for the FM and AFM cases,
respectively]. On the other hand, the q dependence is in contrast to the FM case:
while the weight of the quasi-elastic response almost vanishes around the Γ point,
those on the zone boundary are enhanced in an almost opposite manner to the
FM cases. In addition, the incoherent weight at ω ∼ J also shows the opposite q
dependence to the FM case: the weight is stronger around the Γ point than that on
the zone boundary. The opposite q dependences between the FM and AFM cases
directly follow from the relation S(q, ω)AFM = −S(q, ω)FM + (2/3)

∑
γ S

γ
j,j(ω).

In order to show the T dependences of S(q, ω) more explicitly, we present in
Figs. 4.6-4.10 the T -ω plot of S(q, ω) at q = Γ, K1, and K2 with the intensity
profiles for the same set of T used in Figs. 4.4 and 4.5. Figure 4.6 shows the result
for for both FM and AFM cases at α = 1.0. Note that S(q, ω) at q = K1 and
q = K2 are equivalent at α = 1.0, and S(K, ω) is same for the FM and AFM cases
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Figure 4.6: (a) S(Γ, ω) for the FM case, (c) S(Γ, ω) for the AFM case, and (e)
S(K, ω) for both the FM and AFM case with α = 1.0 at several T . Note that
S(K, ω) is equivalent for the FM and AFM case. The corresponding contour plots
in the T -ω plane are shown in (b)(d)(f). The arrows indicate the temperatures used
for the data in (a)(c)(e), while the white and gray dotted lines indicate TH and
TL, respectively. Note that the T set is common to that used in Figs. 4.4 and 4.5.
The dashed curve in (b) represent the average frequency of S(Γ, ω) (see the text for
details). In (a)(c)(e), the errorbars are shown for every ten data along the ω axis.

by symmetry. In the FM case, S(Γ, ω) and S(K, ω) show qualitatively similar T -ω
dependence, as shown in Figs. 4.6(a)(b) and 4.6(e)(f); the inelastic response at ω ∼ J
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Figure 4.7: (a) S(Γ, ω), (c) S(K1, ω), and (e) S(K2, ω) for the FM case with α =
0.8 at several T . The corresponding contour plots in the T -ω plane are shown in
(b)(d)(f). The notations are common to those in Fig. 4.6.

appears below TH, and the quasi-elastic one at ω ∼ 0 rapidly grows as approaching
TL. On the other hand, in the AFM case, the strong quasi-elastic intensity at low T
is absent, while the inelastic response at ω ∼ J arises below TH, as in the FM case,
as shown in Figs. 4.5(c)(d).

Figure 4.7 shows the result for the FM case at α = 0.8. The overall weight
of S(q, ω) shifts from ω ∼ 0 to a large-ω region when the system is cooled down
below T ∼ TH. Below TH, quasi-elastic response gradually grows and develops to
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the δ-function like peak. The peak intensity in S(Γ, ω) and S(K2, ω) is larger than
that for S(K1, ω), reflecting the anisotropy of the interaction.
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Figure 4.8: (a) S(Γ, ω), (c) S(K1, ω), and (e) S(K2, ω) for the AFM case with
α = 0.8 at several T . The corresponding contour plots in the T -ω plane are shown
in (b)(d)(f). The notations are common to those in Fig. 4.7.

Figure 4.8 shows the corresponding plot for the AFM case at α = 0.8. In
contrast to the FM case, the strong quasi-elastic response is seen for q = K1, which
develops to the δ-function like peak at low T . We note that the dip and shoulder like
structures around ω = 0 in the intermediate T for the result at q = K2 may be an
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artifact originating from low precision in the MEM for this AFM case because of the
following reason. As described in Sec. 3.4, we calculate Sγ

j,j′(ω) for the NN bonds by
subtracting the onsite component Sγ

j,j(ω) from Sγ
j,j(ω) + Sγ

j,j′(ω), both of which are
obtained by the MEM. In the present case, as both of Sz

j,j(ω) and Sz
j,j(ω) + Sz

j,j′(ω)
become large around ω = 0 due to the development of the δ-function like peak, the
relative error becomes large for S(K2, ω ∼ 0), which may lead to artificial structures.
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Figure 4.9: (a) S(Γ, ω), (c) S(K1, ω), and (e) S(K2, ω) for the FM case with α =
1.2 at several T . The corresponding contour plots in the T -ω plane are shown in
(b)(d)(f). The notations are common to those in Fig. 4.7.
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Figure 4.10: (a) S(Γ, ω), (c) S(K1, ω), and (e) S(K2, ω) for the AFM case with
α = 1.2 at several T . The corresponding contour plots in the T -ω plane are shown
in (b)(d)(f). The notations are common to those in Fig. 4.7.

Figures 4.9 and 4.10 show the results at α = 1.2. As observed in Figs. 4.4 and
4.5, S(q, ω) for both the FM and AFM cases behave similarly to those at α = 1.0.
In the anisotropic cases, however, the difference between S(K1, ω) and S(K2, ω) is
obvious: the quasi-elastic peak for S(K1, ω) is larger (smaller) than that for S(K2, ω)
in the FM (AFM) case.

There is a relation between the static spin correlation and the average fre-
quency of S(Γ, ω), ω̄ ≡

∫
ωS(Γ, ω)dω/

∫
S(Γ, ω)dω, originating from the sum rule
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for S(q, ω). T dependences of ω̄ are shown by white dashed curves in Figs. 4.6(a),
4.6(b), 4.7(b), 4.8(b), 4.9(b), and 4.10(b). In all cases, ω̄ is nearly zero for suffi-
ciently high T , but it grows at T ∼ TH and becomes almost independent of T for
T ≲ TH. These T dependences are similar to those of the static spin correlation
between the NN sites shown in Fig. 4.1.

4.3 NMR relaxation rate

Figure 4.11 shows the NMR relaxation rate 1/T1 obtained by the CDMFT+CTQMC
method supplemented by the MEM [see Eqs. (3.49)-(3.52)]. As shown in Fig. 4.11,
for all cases, the onsite component of 1/T γ

1 is nonzero and almost T independent
above T ∼ TH, as expected for the conventional paramagnets [119]. On the other
hand, the NN-site component is zero in the high-T limit and increases as de-
creasing T . This behavior corresponds to the development of NN-site static spin
correlations shown in Sec. 4.1.1, as they have a relation through the sum rule,∫
Sγ
j,j′(ω)dω = ⟨Sγ

j S
γ
j′⟩.

Below TH, however, 1/T
γ
1 at α = 1.0 for both onsite- and NN-components in-

crease and show a peak at slightly above TL, despite the saturation of equal-time
correlations. The pronounced peak is regarded as the consequence of thermally ex-
cited fluxes above TL, as the suppression of 1/T1 for T ≲ TL is due to the formation
of the flux gap in the low-T limit [26].

In the case for α = 0.8, the increase of 1/T x
1 below TH is substantial, as shown

in Fig. 4.11(b). The enhancement is much larger than the case of α = 1.0 in
Fig. 4.11(a). This is due to the evolution of the δ-function like peak in Sz(q, ω)
discussed in Sec. 4.2. In contrast, Sx(q, ω) and Sy(q, ω) do not develop such δ-
function like peaks, and hence, 1/T z

1 does not show enhancement unlike 1/T x
1 . While

further decreasing T , 1/T x
1 shows a peak slightly above TL. The decrease at low T

reflects a spin gap originating from the nonzero flux gap in the ground state as in
the case of α = 1.0 [26]. On the other hand, the onsite and NN-site components of
1/T z

1 are both suppressed below T ∼ TH, after showing a plateau and broad peak,
respectively. The suppression of 1/T z

1 is due to an increase of energy cost for a spin
flip on the strong z bond under the well-developed static spin correlations between
NN sites in this T range. Actually, the energy cost is represented by the average
frequency of Sx

j,j(ω) as there is a relation

ω̄x
onsite =

∫
ωSx

j,j(ω)dω∫
Sx
j,j(ω)dω

=

∑
m,n e

−βEn(Em − En)|⟨m|Sx
j |n⟩|2

1
4

∑
n e

−βEn
. (4.1)

On the other hand, ω̄x
onsite is also written as ω̄x

onsite = (Jy⟨Sy
j S

y
j′⟩NN + Jz⟨Sz

jS
z
j′⟩NN)/2

by the sum rule [120]. Thus, the energy cost becomes large below TH according to
the growth of ⟨Sz

jS
z
j′⟩NN.

In contrast, as shown in Fig. 4.11(c), T dependence of 1/T γ
1 at α = 1.2 is similar
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Figure 4.11: T dependences of the NMR relaxation rate 1/T γ
1 (γ = z, x) at (a)

α = 1.0, (b) α = 0.8, and (c) α = 1.2. note that 1/T z
1 = 1/T x

1 for α = 1.0 and
1/T x

1 = 1/T y
1 for all the cases from the symmetry. The vertical dotted lines indicate

TL and TH for each α.

to that at α = 1.0 in Fig. 4.11(a). Reflecting the asymmetry, however, 1/T z
1 is larger

than 1/T x
1 .

Although the system is described by free Majorana fermions coupled to local-
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ized Z2 variables {ηr}, the NMR relaxation rate does not obey the Korringa law,
1/(T1T ) ∼ constant, which is expected for free fermion systems. This is natural
because the spin-flip excitation in the NMR process is a composite of both itinerant
matter fermions and localized Z2 variables {ηr}. Nonetheless, for comparison to
forth-coming experiments, we plot the Korringa ratio as a function of T in Sec. 4.5.

4.4 Magnetic susceptibility

Figures 4.12 and 4.13 show the T dependences of the magnetic susceptibility χγ

for the FM and AFM cases, respectively, calculated by Eq. (3.53). In all the cases,
at sufficiently high T compared to the dominant Jγ, χ

γ obeys the Curie-Weiss law,

χγ
CW =

1

4T − Jγ
, (4.2)

which is obtained by the standard mean-field approximation in the original spin
representation. While decreasing T , χγ shows a suppression from χγ

CW below T ∼ Jγ,
despite the enhancement of 1/T γ

1 except for the case of α = 0.8 and γ = z.

Among the results, χx for the FM case and χz for the AFM case at α = 0.8 show
peculiar T dependences at low T . The former largely deviates from the Curie-Weiss
behavior and saturates to a small nonzero value, as shown in Fig. 4.12(b) [121].
Meanwhile, the latter shows a broad hump at T ∼ TH and decreases as lowering
T , as shown in Fig. 4.13(b). These T dependences are qualitatively understood by
considering a two-site dimer model on the z bond obtained by setting Jx = Jy = 0.
The dimer model gives the analytical forms for the magnetic susceptibility as

χz
dimer =

β

2

exp(βJz/4)

exp(βJz/4) + exp(−βJz/4)
, (4.3)

χx
dimer =

1

Jz
tanh

(
β
Jz
4

)
. (4.4)

The results are plotted by the dashed-dotted curves in Figs. 4.12(b) and 4.13(b).
χx
dimer for the FM case almost saturates around T ∼ Jz/4, as the dominant Jz

interaction suppresses the magnetization in the x direction. This accounts for the
behavior of χx in Fig. 4.12(b) qualitatively. Meanwhile, χz

dimer also well reproduces
a hump at T ∼ 0.5 in χz for the AFM case in Fig. 4.13(b); χz remains nonzero down
to low T as nonzero Jx and Jy smear out the dimer gap.

In the case of α = 1.2, T dependences of χγ shown in Figs. 4.12(c) and 4.13(c)
are similar to those for α = 1.0 shown in Figs. 4.12(a) and 4.13(a), respectively;
The effect of anisotropic Jγ, however, is clearly observed: the stronger interactions
on the x, y bonds than the z bond result in larger (smaller) χx than χz in the FM
(AFM) case. In addition, the temperature of the broad peak of χz (χx) in the AFM
case shifts to a lower (higher) T than that for α = 1.0.
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Figure 4.12: T dependences of the magnetic susceptibility χγ (γ = z, x) at (a)
α = 1.0, (b) α = 0.8, and (c) α = 1.2 for the FM case. The dashed curves represent
χγ
CW in Eq. (4.2). The red and black dashed-dotted curves in (b) represent χγ

dimer for
γ = z [Eq. (4.3)] and γ = x [Eq. (4.4)], respectively. Note that χz = χx for α = 1.0
and χx = χy for all the cases from the symmetry. The vertical dotted lines indicate
TL and TH for each α.

4.5 Korringa ratio　

Figures 4.14 and 4.15 display the T dependences of the Korringa ratio defined
as

Kγ =
1

T γ
1 T (χ

γ)2
, (4.5)
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Figure 4.13: T dependences of the magnetic susceptibility χγ (γ = z, x) at (a)
α = 1.0, (b) α = 0.8, and (c) α = 1.2 for the AFM case. The notations are common
to those in Fig. 4.12.

which is computed by using the NMR relaxation rate 1/T γ
1 and the magnetic sus-

ceptibility χγ obtained in Sec. 4.3 and 4.4. Interestingly, as shown in Fig. 4.14(a),
Kγ for the isotropic FM case is almost constant close to 1 for TL ≲ T ≲ TH, which
is apparently consistent with the behavior expected for free electron systems. This
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Figure 4.14: T dependences of the Korringa ratio Kγ = 1/(T γ
1 T (χ

γ)2) for the FM
case at (a) α = 1.0, (b) α = 0.8, and (c) α = 1.2 (γ = z, x). Note that Kz = Kx for
α = 1.0 and Kx = Ky for all the cases from the symmetry. The vertical dotted lines
indicates TL and TH for each α.

is also the case for the x component for the FM case with α = 1.2, as shown in
Fig. 4.14(c). However, the suggestive behavior is presumably superficial, as the re-
sults for the AFM cases as well as for α = 0.8 behave differently with substantial T
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dependence.
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4.6 Effect of the Z2 variables {ηr} on the dynami-

cal properties

As pointed out in the previous section, a remarkable feature in the Kitaev model
is the dichotomy between the dynamical and static spin correlations; namely, the
NMR relaxation rate 1/T γ

1 and the magnetic susceptibility χγ, both of which re-
flect the dynamical spin correlations, show substantial T dependences below TH

(Figs. 4.11-4.13), even though the static spin correlations ⟨Sγ
j S

γ
j′⟩NN almost saturate

to the T = 0 values (Fig. 4.1). The dichotomy is unconventional behavior hardly
seen in conventional insulating magnets. This might be a signature of the fraction-
alization of quantum spins, as TH is the temperature where the fractionalization sets
in as indicated in the specific heat and entropy [91].

To examine the dichotomy in more detail, we calculate the T dependences of
⟨Sγ

j S
γ
j′⟩NN, 1/T

γ
1 , and χγ for two extreme cases by assuming the configuration of

{ηr} by hand. One is the flux-free state with all ηr = +1, which is realized in the
ground state. The other is the state with completely random {ηr}, corresponding
to the high-T limit. For this purpose, we regard a single z bond r0 as the cluster
in CDMFT, and take P (ηr0 = 1) = 1 and P (ηr0 = −1) = 0 for the former uniform
state, while P (ηr0 = 1) = P (ηr0 = −1) = 1/2 for the latter random state, in
Eq. (3.21) of the self-consistent equation of CDMFT [122].

Figure 4.16 shows the results. In all cases for α = 1.0, 0.8, and 1.2, ⟨Sγ
j S

γ
j′⟩NN for

both uniform and random {ηr} shows almost similar T dependence to the CDMFT
results, as shown in Figs. 4.16(a)-4.16(c). However, 1/T γ

1 and χγ exhibit considerably
different T dependence. For instance, in the isotropic case with α = 1.0, although
1/T1 is almost T independent for T > TH for both uniform and random {ηr} similar
to the result by the CDMFT+CTQMC method shown in Fig. 4.11(a), it shows
different behavior below TH between the two cases, as shown in Fig. 4.16(d). For
the case with uniform {ηr}, 1/T1 decreases to zero after showing a small hump. The
suppression at low T reflects the flux gap ∆ ≃ 0.065J in the flux-free state [26, 98]
in the ground state. On the other hand, for the case with random {ηr}, 1/T1

monotonically increases while decreasing T in the calculated T range. Similar T
dependences of 1/T γ

1 are obtained for 1/T x
1 at α = 0.8 and 1/T x,z

1 at α = 1.2, as
shown in Figs. 4.16(e) and 4.16(f), respectively. We note that 1/T z for α = 0.8
behaves differently; we will comment on this point in the end of this section.

Similar behavior is observed in the magnetic susceptibility χ, as shown in Figs. 4.16(g)-
4.16(l). In this case, we note that, even for the uniform {ηr}, χ is not strongly
suppressed by the spin gap at low T , as the present system does not conserve the
z component of total spin. Nonetheless, similar crossover from the random {ηr} to
the uniform {ηr} is observed while approaching TL.

The results clearly indicate that the peculiar T dependences of 1/T1 and χ found
in the CDMFT+CTQMC results are closely related with fluctuations of the Z2 vari-
ables {ηr} composed of localized Majorana fermions {c̄} emergent from the spin
fractionalization. As seen in the equal-time spin correlations shown in Figs. 4.16(a)-
4.16(c), itinerant matter fermions develop their kinetic energy to the saturation at
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Figure 4.16: (a)(b)(c) 4⟨Sγ
j S

γ
j′⟩NN for the FM case, (d)(e)(f) the onsite components

of 1/T γ
1 , and χγ for the (g)(h)(i) FM and (j)(k)(l) AFM cases (γ = z, x) calculated

by setting all ηr = 1 (uniform) and all ηr being random (random) in the CDMFT
calculations: (a)(d)(g)(h) α = 1.0, (b)(e)(h)(k) α = 0.8, and (c)(f)(i)(l) α = 1.2.
The data in (h) are multiplied by 0.25 and 3 for γ = z and x, respectively. For
α = 1.0, the results are equivalent for γ = x, z. For comparison, we plot the data in
Figs. 4.1 (CDMFT), 4.11 , 4.12, and 4.13 (CDMFT+CTQMC). The vertical dotted
lines represent TL and TH for each α.

T ∼ TH (the equal-time spin correlations correspond to the kinetic energy of matter
fermions). Due to the fractionalization, however, the localized Z2 variables {ηr} are
still disordered even below TH [91], which results in the similar T dependences of
1/T1 and χ to those for the random {ηr}, as indicated in Figs. 4.16(d)-4.16(l). When
approaching TL, {ηr} are aligned in a coherent manner [91], and hence, both quan-
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tities rapidly crossover to the behavior for the uniform {ηr}. Thus, The crossover
occurs well below TH and close to TL. Of course, as the original quantum spin is a
composite of itinerant matter fermions and localized Majorana fermions, the spin
excitation is a composite excitation of the fractional degrees of freedom. Neverthe-
less, our results indicate that the peculiar T dependences of dynamical quantities,
such as 1/T1 and χ, are dominated by the emergent Z2 variables {ηr} from the
fractionalization.

As noted above, 1/T z
1 for α = 0.8 behaves differently from others: 1/T z

1 for
the random {ηr} is smaller than that for the uniform {ηr} at low T , as shown in
Fig. 4.16(e). This is presumably because of the peculiar T dependence of the density
of states (DOS) for the itinerant matter fermions at α = 0.8. In the gapless QSL
region for 0.75 ≤ α ≤ 1.5 but close to the gapless-gapful boundary at α = 0.75, the
DOS opens a gap as {ηr} are thermally disordered by raising T [91]. Thus, the DOS
for matter fermions is gapless for the uniform {ηr}, while gapped for the random
{ηr}. As spin excitations by Sx

j and Sy
j are composite excitations of both itinerant

matter fermions and localized Z2 variables {ηr}, the gap in the DOS for matter
fermions suppresses 1/T z

1 for the random case compared to the uniform one. Since
{ηr} are aligned uniformly below TL, we expect that 1/T

z
1 shows an abrupt increase

while decreasing T through TL. This indicates that while a rapid change of 1/T1

when approaching TL is yielded by the coherent alignment of {ηr}, either increase
or decrease of 1/T1 at TL may be affected by the itinerant matter fermions. We note
that χz for α = 0.8 in the AFM case also behaves differently, which is presumably
by the same mechanism although it is less clear since χ does not reflect the spin gap
directly as mentioned above.

Finally, let us discuss the crossover behavior from the viewpoint of spatial cor-
relations for the Z2 variables {ηr}. Figure 4.17 shows the T dependences of the
correlation functions ⟨ηrηr′⟩. We plot the data for different distances |r − r′| in the
horizontal direction [see the inset of Fig. 4.17(a)]. Note that all ⟨ηrηr′⟩ vanish for
different rows above the artificial phase transition temperature T̃c. We find that the
lateral correlations develop below TH, which accounts for the deviations of 1/T1 and
χ from those calculated for the random {ηr}. In particular, we observe that the
development of the correlations for |r − r′| = 2 appears to well coincide with the
deviations. The reason is as follows. When Sz

j is operated at a site j on a z bond
r0, two Z2 fluxes Wh and Wh′ are flipped on the hexagons sharing ηr0 . Hence, such
an operation affects two ηr defined on the other side z bonds of Wh and Wh′ [see
the inset of Fig. 4.17(a)]. Thus, the correlations ⟨ηrηr′⟩ with |r − r′| = 2 are likely
to play a dominant role in the spin dynamics.

We note that the spatial correlations of {ηr} decays quickly as a function of the
distance in the T range discussed in the present calculations, as shown in Fig. 4.17.
This supports the validity of the cluster approximation in the CDMFT. Indeed, the
convergence with respect to the cluster size (width) is sufficiently quick: the clusters
with the width of 4 are enough to guarantee the precisions that we need as shown
in Sec. 4.1.2.
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4.7 Summary of this chapter

In this chapter, we have presented numerical results for spin dynamics of the
Kitaev model with and without the anisotropy in the bond-dependent coupling
constants. We calculated the experimentally-measurable quantities, the dynamical
spin structure factor S(q, ω), the NMR relaxation rate 1/T1, and the magnetic
susceptibility χ, in the wide T range including the peculiar paramagnetic region
where quantum spins are fractionalized. We also confirmed the Majorana CDMFT
is precise enough in the range of T and anisotropy that we investigated in the present
study.

We found that the Kitaev model exhibits unconventional behaviors in spin dy-
namics in the finite-T paramagnetic state in proximity to the QSL ground state. The
prominent feature is the dichotomy between static and dynamical spin correlations
as a consequence of the spin fractionalization. The dichotomy appears clearly in the
increase of 1/T1 below TH where the fractionalization sets in, despite the saturation
of static correlations. Our results suggest that the dichotomy is found universally in
the fractionalized paramagnetic region irrespective of the anisotropy in the system.

On the other hand, we also clarified interesting behaviors that depend on the
anisotropy at low T . When one of the three bond-dependent interactions is stronger
than the other two, the spin dynamics shows peculiar T and energy dependences
distinct from those in the isotropic coupling case as follows. As lowering T , S(q, ω)
develops a δ-function like peak, which is well separated from the incoherent contin-
uum. 1/T1 monotonically decreases in the spin component for the stronger bond.
χ increases and saturates to a nonzero value for the spin component for the weaker
bonds, while it shows hump and then decreases for the stronger-bond component
in the antiferromagnetic case. We also showed that the peculiar T dependences of
χ are qualitatively explained by the two-site dimer model. In contrast, when the
anisotropy is opposite, i.e., when the two types of bonds become stronger, the re-
sults are qualitatively unchanged from those for the isotropic case, while the effect of
anisotropy is obvious in the q dependence in S(q, ω) and the different components
in 1/T1 and χ.
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5
Results by QMC + CTQMC method

In Chap. 4, we have investigated the behavior of the dynamical properties for
the Kitaev model on 2D honeycomb structure. Despite the successful calculations
of dynamical quantities, the applicable T range of the CDMFT+CTQMC method
is limited. This is due to the occurrence of phase transition at T ∼ TL as an artifact
of the mean-field approximation in the CDMFT. Moreover, the CDMFT+CTQMC
method is not suitable for the Kitaev model on 3D lattice structures by the following
reasons. One is that a larger cluster is necessary in the CDMFT, as the unit cell,
or more strictly speaking, the smallest loop of lattice sites, for which the conserved
Z2 flux is defined, becomes larger for 3D than 2D in general. Another reason is
that the 3D extensions of the Kitaev model may cause a phase transition, which
might be hard to capture by the CDMFT. For instance, the Kitaev model on a 3D
hyperhoneycomb structure exhibits an unconventional phase transition triggered
by proliferation of loops composed of thermally excited Z2 fluxes [31, 90]. The
cluster approximation in the CDMFT is not suitable to describe such a topological
transition characterized by global quantities beyond the cluster. An alternative
method is desired to study the spin dynamics, including the low-T behavior.

Besides such a theoretical demand, it is crucial to clarify the spin dynamics of
the Kitaev model in the whole T range also from the experimental point of view. As
introduced in Chap. 1, many candidates have been explored recently in both quasi-
2D and 3D materials [55,56,67,86,87]. Some indications of the fractionalization were
observed, for instance, in the specific heat [92], magnetic Raman scattering [95,104],
inelastic neutron scattering [74, 96, 99], and thermal transport [78, 123]. However,
such indications are for rather high-T features, corresponding to the theoretical
predictions around and below TH associated with itinerant matter fermions [91, 97,
120, 124, 125]. It is highly desired to experimentally capture another indications
dominated by thermally excited Z2 fluxes at lower T . Although all the candidate
materials exhibit a magnetic order at low T , several efforts have been made for
suppressing the order, e.g., by external pressure [86,126], magnetic field [79,82,127],
and chemical substitution [128]. Given such an upsurge of interest, it is highly
important to clarify the dynamical behavior of the 2D and 3D Kitaev models down
to the lowest T .

In this chapter, we present the results obtained by the QMC+CTQMC method,
in order to fulfill such a requirement. This QMC+CTQMC method is fully unbiased
and enables us to investigate the low-temperature spin dynamics dominated by
thermally excited Z2 fluxes, including the unconventional phase transition caused by
Z2 flux loops in three dimensions, which was unreachable by the CDMFT+CTQMC
methods. We apply this technique to the Kitaev model in both two and three

65
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dimensions. We presents the results for the isotropic case with Jx = Jy = Jz = J =
±1.0; J = +1 corresponds to the FM case, while J = −1 corresponds to the AFM
case.

In Sec. 5.1, we present the results for the 2D honeycomb case. By comparing the
data of χ, 1/T1, and S(q, ω) by the CDMFT+CTQMC and QMC+CTQMC meth-
ods, we show that although the former works quite well above the fictitious critical
temperature, only the latter can give reasonable results at lower T . In Sec. 5.2, we
present the results for 3D hyperhoneycomb case. We present the QMC+CTQMC
results for χ and 1/T1 in Sec. 5.2.1, and S(q, ω) in Sec. 5.2.2. From the comparison
between the 2D and 3D results, we clarify the signatures arising from the differ-
ence of the system dimension. While everything changes smoothly through the
crossover at T = TL in the 2D honeycomb case, the dynamical quantities exhibit
singular behaviors in the 3D hyperhoneycomb case at the phase transition caused
by the topological nature of excited Z2 flux loops. Thus, the QMC+CTQMC is
applicable to the unconventional phase transition in 3D, which is not accessible by
the CDMFT+CTQMC method. Our results show that the dynamical properties
at low T depend substantially on the system dimension, despite almost dimension-
independent behavior of the static spin correlations. This is the low-T aspect of the
dichotomy between static and dynamical spin correlations, which was found in the
intermediate T region presented in Chap. 4. Section 5.4 is devoted to the summary
of this chapter.

5.1 Results for 2D honeycomb structure

5.1.1 Magnetic susceptibility and NMR relaxation rate

Figure 5.1 displays the QMC+CTQMC results for the magnetic susceptibility χ
and the NMR relaxation rate 1/T1. χ is calculated from the imaginary-time spin
correlations as shown in Eq. (3.53).

As shown in Figs. 5.1(a) and 5.1(b), the results for different system sizes L = 12
and 20 agree with each other (N = 2L2), indicating that the QMC+CTQMC results
well converge with respect to the system size. In the figures, the CDMFT+CTQMC
results in Figs. 4.11(a), 4.12(a), and 4.13(a) are also plotted by gray symbols for
comparison. In the CDMFT+CTQMC method, as mentioned above, the cluster
mean-field approximation leads to a fictitious phase transition at T̃c ≃ 0.014, and
hence, we plot the data above T̃c. We find that the QMC+CTQMC results well
agree with the CDMFT+CTQMC ones for T ≳ T̃c, which supports the validity
of the latter for T ≳ T̃c. While such validity was shown for the static quantities
in Sec. 4.1.1, the present results demonstrate it explicitly for the dynamical quan-
tities. The present QMC+CTQMC method enables us to study the low-T region
around and below the low-T crossover temperature TL ≃ 0.012, beyond T̃c in the
CDMFT+CTQMC result. TL is the temperature where the localized Z2 fluxes Wp

begin to be frozen into the flux-free state while decreasing T [91]. Thus, our results
show how the dynamical properties are affected by thermally excited Z2 fluxes. Fig-
ure 5.1(a) indicates that, while decreasing T around TL, χ decreases slightly and
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Figure 5.1: QMC+CTQMC results for the 2D honeycomb Kitaev model with
isotropic Jγ: (a) the magnetic susceptibility χ and (b) the NMR relaxation rate
1/T1. In (a), FM and AFM denote the ferromagnetic case with Jγ = J = 1 and
the antiferromagnetic case with Jγ = J = −1, respectively. While the onsite com-
ponent of 1/T1 is common to the FM and AFM cases, the NN-site component for
the AFM case is obtained by changing the sign of the FM data plotted in (b).
For comparison, we plot the CDMFT+CTQMC results in Figs. 4.11(a), 4.12(a),
and 4.13(a) by gray symbols. The vertical dotted lines indicate TL ≃ 0.012 and
TH ≃ 0.375 (see Ref. [91]). In (a), the dashed curves represent the Curie-Weiss
behaviors, χCW = 1/(4T − J).
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changes the curvature from upward to downward convex, for both the FM and
AFM cases. While further decreasing T , χ appears to converge to a nonzero value,
as expected for the system which does not conserve the z component of total spin.
The asymptotic value is almost one order of magnitude larger for the FM case than
the AFM case. On the other hand, as shown in Fig. 5.1(b), 1/T1 decreases below
the peak slightly above TL as partly seen in the CDMFT+CTQMC results [120],
and continues to decrease around TL reaching to almost zero below T ∼ 0.005. The
low-T suppression is due to a nonzero flux gap required to excite the Z2 fluxes from
the flux-free ground state [26], and the decay is expected to be exponential.

We also compute the T derivatives of χ and 1/T1, as shown in Figs. 5.2(a) and
5.2(b), respectively. Both derivatives show a peak around TL, but change smoothly
without showing any singularity. For comparison, we also compute the thermal
fluctuation of Z2 fluxes Wp by the QMC method, defined by

∆Wp =
1

NpT 2

(⟨(∑
p

Wp

)2⟩− ⟨∑
p

Wp

⟩2)
, (5.1)

where Np is the number of plaquettes in the system. Note that ∆Wp corresponds to
the specific heat in the anisotropic limit (toric code), where the effective Hamiltonian
is given in the form H ∝

∑
pWp [26]; hence, ∆Wp measures the energy fluctuation

related to the Z2 fluxes. As shown in Fig. 5.2(c), ∆Wp also shows a broad peak
around TL, similar to the T derivatives of χ and 1/T1. All these smooth changes
with broad peaks are consistent with the fact that TL is not a phase transition but
just a crossover in the 2D case [91]. Furthermore, the similar behavior between three
quantities in Fig. 5.2 suggests that the T derivatives of χ and 1/T1 provide good
probes for the fluctuations of Z2 fluxes. Interestingly, dχ/dT behaves differently
between the FM and AFM cases, as shown in Fig. 5.2(a): it is negative for TL ≲
T ≲ TH and changes the sign to positive just above TL for the FM case, while mostly
positive in the same T range for the AFM case. The qualitative difference will be
useful for identifying the sign of the dominant Kitaev interactions in candidate
materials.

5.1.2 Dynamical spin structure factor

The dynamical spin structure factor S(q, ω) defined by Eq. (3.44) obtained by the
QMC+CTQMC method for the 2D case are shown in Figs. 5.3(a), 5.3(c), 5.3(e),
5.3(g), and 5.3(i) for the FM case and in Figs. 5.3(b), 5.3(d), 5.3(f), 5.3(h), and
5.3(j) for FM case. The corresponding results by the CDMFT+CTQMC method
above TH are shown in Figs. 4.4(a), 4.4(d), 4.4(g), and 4.4(j) for the FM case and
Figs. 4.5(a), 4.5(d), 4.5(g), and 4.5(j) for the AFM case, for the slightly different
T set. As confirmed for χ and 1/T1 in Sec. 5.1.1, the CDMFT+CTQMC results of
S(q, ω) above TL also agrees well with QMC+CTQMC results (see Fig. 5.4). S(q, ω)
below TL, shown in Figs. 5.3(a) and 5.3(b), does not change much at large ω region
(ω ≳ 0.5) compared with S(q, ω) just above TL, shown in Figs. 5.3(c) and 5.3(d).
On the other hand the peak around ω ≃ 0 becomes shaper and gap opens as shown
in Figs. 5.1(a) and 5.1(b), corresponding to the decay of 1/T1 below TL.
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Figure 5.3: QMC+CTQMC results of the dynamical spin structure factor for the 2D
honeycomb Kitaev model with isotropic Jγ. The data are calculated for L = 20 (800
sites) and plotted along the symmetric lines indicated in Fig. 3.3(a). (a)(c)(e)(g)(i)
are for the FM case and (b)(d)(f)(h)(j) are for the AFM case: (a)(b) T = 0.009,
(c)(d) T = 0.01725, (e)(f) T = 0.09441, (g)(h) T = 0.28476, and (i)(j) T = 2.590575.
Note that TL ≃ 0.012 and TH ≃ 0.375 [91].
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Figure 5.4: Comparison between CDMFT+CTQMC and QMC+CTQMC results
of the dynamical spin structure factor at Γ point S(q,Γ) for the 2D honeycomb
Kitaev model with isotropic Jγ. The data are calculated for L = 12 (288 sites)
for QMC+CTQMC results. (a)(c)(e) are for the FM case and (b)(d)(f) are for the
AFM case: (a)(b) T ≃ 0.0237, (c)(d) T ≃ 0.237, (e)(f) T ≃ 2.37.



72 5 Results by QMC + CTQMC method

5.2 Results for 3D hyperhoneycomb structure

5.2.1 Magnetic susceptibility and NMR relaxation rate
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Figure 5.5: QMC+CTQMC results for the 3D hyperhoneycomb Kitaev model with
isotropic Jγ: (a) the magnetic susceptibility χ and (b) the NMR relaxation rate
1/T1. The vertical dotted lines indicate Tc ≃ 0.014 and TH ≃ 0.375 [90]. Other
notations are the same as those in Fig. 5.1.

Figure 5.5 shows the QMC+CTQMC results of χ and 1/T1 obtained for the
Kitaev model on the 3D hyperhoneycomb structure, shown in Fig. 3.2. The system
size is given by N = 4L3: 256, 500, and 864 sites for L = 4, 5, and 6, respectively.
Note that in the hyperhoneycomb structure the z bond is not equivalent to the x
and y bonds from the lattice structure symmetry; we compute χ by Eq. (3.53) and
1/T1 by Eqs. (3.49)-(3.52) with replacing ⟨Sγ

j (τ)S
γ
j′⟩ (γ = x, y) by ⟨Sz

j (τ)S
z
j′⟩ for

simplicity. The overall T dependence is similar to the 2D results as follows. The
high-T behaviors above TH are almost unchanged from the 2D cases, presumably
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because the bandwidth of matter fermions is independent of the dimensionality.
With a decrease of T , χ begins to deviate from the Curie-Weiss behavior below
T ∼ TH and converges to a nonzero value after showing a peak, while 1/T1 increases
below TH and strongly suppressed due to the flux gap after showing a peak at a low
T . Nonetheless, there are quantitative differences. For instance, the peak of χ for
the FM case is more than twice larger that that for the 2D case. Simultaneously,
the change at low T is much steeper in 3D than 2D. Similar behaviors are also seen
in 1/T1. We will briefly comment on the quantitative differences in Sec. 5.3

However, we also find a qualitative difference between 3D and 2D in the low-
T behavior. The 3D hyperhoneycomb model exhibits a phase transition at Tc ≃
0.0039 [90]. The phase transition takes place between the high-T paramagnet and
the low-T QSL, driven by the proliferation of loops composed of the localized Z2

fluxes Wp. Thus, the transition is of topological nature, not characterized by local
spin operators contrary to conventional magnetic ordering [90]. Nevertheless, we
find singular behaviors in both χ and 1/T1, as more clearly seen in the T derivatives
shown in Figs. 5.6(a) and 5.6(b). Both T derivatives show a sharp peak at T ≃ Tc,
which becomes sharper for larger system sizes. We also plot the thermal fluctuation
of Z2 fluxes ∆Wp in Eq. (5.1) in Fig. 5.6(c). In this 3D case, ∆Wp shows a similar
sharp peak to dχ/dT and d(1/T1)/dT . All these behaviors are in stark contrast to
the 2D case, where the crossover at TL leads to smooth T dependence as shown in
Fig. 5.2. The low-T behaviors of the dynamical quantities are substantially different
from those in 2D, not only in the critical behavior associated with the phase transi-
tion but also the larger T dependence. This clear difference depending on the spatial
dimension is rather surprising when considering that the static spin correlations are
not much different between 2D and 3D in the whole T range [90, 91]. In Chap. 4,
we have unveiled a prominent feature of the Kitaev QSL, the dichotomy between
static and dynamical spin correlations, from the T dependence of the static spin
correlations for NN sites and 1/T1. The significant dimensional dependence at low
T found here is another aspect of the dichotomy. We note that the difference of the
sign of dχ/dT between the FM and AFM cases for Tc ≲ T ≲ TH is also seen in the
3D case, as shown in Fig. 5.2(c). We also note that the behavior of dχ/dT is similar
to that found in the effective model in the anisotropic limit Jz ≫ Jx, Jy [90].

5.2.2 Dynamical spin structure factor

The QMC+CTQMC results for the dynamical spin structure factor S(q, ω) for
the 3D case are shown in Fig. 5.7. S(q, ω) is defined as

S(q, ω) =
1

N

∑
j,j′

eiq·(rj−rj′ )Sz
j,j′(ω), (5.2)

where rj represents the position vector for site j. As noted above, we set Sγ
j,j′(ω) =

Sz
j,j′(ω) for γ = x, y. The results are plotted along the symmetric lines in the first

Brillouin zone shown in Fig. 3.3(b). The overall T and ω dependence is similar
to the 2D case presented in Secs. 4.2 and 5.1.2: almost q-independent incoherent
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Figure 5.6: (a) and (b) T derivatives of the data in Fig. 5.5. (c) plots the thermal
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Figure 5.7: QMC+CTQMC results of the dynamical spin structure factor for the
3D hyperhoneycomb Kitaev model with isotropic Jγ. The data are calculated for
L = 5 (500 sites) and plotted along the symmetric lines indicated in Fig. 3.3(b).
(a)(c)(e)(g)(i) are for the FM case and (b)(d)(f)(h)(j) are for the AFM case: (a)(b)
T = 0.002475, (c)(d) T = 0.005955, (e)(f) T = 0.01185, (g)(h) T = 0.18825, and
(i)(j) T = 1.185. Note that Tc ≃ 0.0039 and TH ≃ 0.375 [90].
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response around ω = 0 for T ≳ TH, growth of the incoherent spectra around ω = |J |
below TH, and a rapid increase of the quasi-elastic response while approaching Tc.
Also, as in the 2D case, the difference in the sign of J appears in the q dependence
of the spectral intensity. We note that the lowest-T data below Tc in Fig. 5.5(a)
agree well with the previous T = 0 result [129].
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Figure 5.8: Comparison of the low-ω behaviors of S(Γ, ω) = S(q = 0, ω) between
the 3D and 2D cases at low T . (a) Contour plot of S(Γ, ω) around Tc for the 3D case
and (b) the ω profiles. (c) and (d) display the corresponding 2D results around TL.
The data for the 3D and 2D cases are calculated for L = 6 (864 sites) and L = 20
(800 sites), respectively. The white dotted lines in (a) and (c) indicate Tc and TL,
respectively.

5.3 Comparison between 2D and 3D results

In this section, we compare the results in 2D and 3D case with attention to
behavior of dynamical quantities, S(q, ω) and 1/T1, around TL in 2D case and Tc in
3D case.

Figures 5.8(a) and 5.8(b) display the low-ω part of S(Γ, ω) = S(q = 0, ω) around
Tc for the FM case on the 3D hyperhoneycomb structure. Qualitatively similar
behaviors are also seen for S(q, ω) near the zone boundary for the AFM case. With
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a decrease of T across Tc, the quasi-elastic peak near ω = 0 shifts to a slightly
higher ω, leading to the opening of the flux gap below Tc. The peak height is almost
unchanged across Tc. The corresponding data for the 2D honeycomb case around
TL are shown in Figs. 5.8(c) and 5.8(d). In the 2D case, the peak above TL is much
broader with a lower peak height compared to the 3D case. When lowering T across
TL, the peak becomes sharper with a shift of the peak position to a higher ω. These
differences between 2D and 3D are closely related with the quantitatively different
behaviors of χ and 1/T1 observed in Figs. 5.1 and 5.5 as follows. The sharper peak of
S(Γ, ω) near ω = 0 already existing above Tc in 3D corresponds to much larger values
of χ and 1/T1 just above Tc compared to the 2D results above TL. Furthermore, the
shift of the peak across Tc in Fig. 5.8(b) is related with the steep changes of χ and
1/T1 around Tc.

5.4 Summary of this chapter

In this chapter, we have studied the spin dynamics of the Kitaev models by com-
bining the QMC and CTQMC methods. The QMC+CTQMC method overcomes
the shortcoming in the CDMFT+CTQMC method, and enables us to investigate
the very low-T region where the Z2 fluxes play a role. The experimental observation
of the Z2 fluxes is one of the open issues in the Kitaev-type QSLs, and hence, the
theoretical results obtained by the QMC+CTQMC method provide the references
for the experiments in candidate materials.

We have applied the QMC+CTQMC method to the 2D and 3D Kitaev models.
Calculating the magnetic susceptibility, the NMR relaxation rate, and the dynamical
spin structure factor, we discussed the influences of thermally fluctuating Z2 fluxes,
with focusing on the differences arising from the spatial dimensions. In the 2D hon-
eycomb case, everything changes smoothly while lowering T , reflecting the crossover
associated with particlelike Z2 flux excitations. In contrast, in the 3D hyperhoney-
comb case, the system exhibits a phase transition by the proliferation of looplike Z2

flux excitations, which leads to singular behaviors in the dynamical properties. We
found that the dichotomy between static and dynamical spin correlations, which be-
gins below the high-T crossover associated with itinerant matter fermions, persists
down to the low-T region, in a more peculiar form reflecting thermally excited Z2

fluxes; while the dichotomy in the higher-T region is rather universal independent
of the spatial dimension, the low-T one appears differently between 2D and 3D, re-
flecting the different nature of the localized Z2 flux excitations. We showed that the
T derivatives of the magnetic susceptibility and the NMR relaxation rate provide
good probes for fluctuating Z2 fluxes in both 2D and 3D.
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Discussion

In this chapter, we discuss our theoretical results obtained in the previous chap-
ters in comparison with other theoretical results for the Kitaev model in Sec. 6.1
and with experimental results for the Kitaev candidate materials in Sec. 6.2. In
Sec. 6.1.1, we compare our results with those for the classical version of the Ki-
taev model, and discuss the common and distinct dynamical features between the
quantum and classical cases. In Sec. 6.1.2, we compare our results with those for
the quantum version obtained by other methods. In Sec. 6.2, we show that our
theoretical results well explain the data obtained in recent experiments for S(q, ω)
(Sec. 6.2.1), 1/T1 (Sec. 6.2.2), and χ (Sec. 6.2.3).

6.1 Comparison with theoretical results

6.1.1 Classical Kitaev model

A classical version of the Kitaev model, in which the spin 1/2 operators in
Eq. (1.1) are replaced by classical vectors, were studied theoretically [130–132]. The
ground state of the classical Kitaev model has massive degeneracy. A part of the
degenerate states are dubbed the Cartesian (CN) ground states. They are com-
posed of different dimer coverings of the honeycomb structure, whose number grows
exponentially with the system size. Different CN ground states are continuously
connected with each other by appropriate spin rotations, which form the degenerate
manifold. The classical Kitaev model has symmetry corresponding to the conserved
quantities {Wp} in the quantum case; for instance, π rotations of spins at 0, 1, 2, 3,
4, and 5 in Fig. 1.1 around the x, y, z, x, y, and z axis, respectively, do not change
the energy. This means that spin correlations in the classical Kitaev model are also
short-ranged, similar to the quantum case; ⟨Sγ

j S
γ
j′⟩ becomes nonzero only for NN γ

bonds as well as the same site.
The dynamical spin structure factor S(q, ω) was computed for the classical Ki-

taev model by using the Landau-Lifshitz dynamics method for the samples generated
by a classical Monte Carlo simulation. The results at T = 0 are shown in Figs. 6.1
in comparison with the results for the quantum case [132]. S(q, ω) for the classical
case shares several features with the quantum case: a broad incoherent response
extending to the high-ω region and a strong intensity in the low-ω region. The
high energy response has a large weight around the Y (Γ) point for the FM (AFM)
case, whereas the low energy one becomes large around the Γ (Y) point. On the
other hand, in contrast to the quantum case in which S(q, ω) shows a flux gap,
S(q, ω) in the classical case does not show any gap, but instead has a singularity at

78
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Figure 6.1: S(q, ω) for T = 0 for the (a)(b) classical and (c)(d) quantum Kitaev mod-
els for the (a)(c) AFM and (b)(d) FM cases. The figures are taken from Ref. [132].

ω = 0 [132]. This singularity is a consequence of the continuous degeneracy of the
ground states [132].

Further analyses were performed from the viewpoint of magnon excitations from
the CN ground states. For the CN ground states, within the linear spin-wave theory,
the spin wave can propagate only along one-dimensional path which is composed
of unsatisfactory bonds of dimer covering [130]. The density of states of the one-
dimensional magnon band has a broad spectrum, which is reflected in the broad
continuum of S(q, ω). Furthermore, the one-dimensional magnon band has a van-
Hove singularity at the upper edge of the band, which results in the peak around the
Y (Γ) point for the FM (AFM) case. As the one-dimensional magnon decomposes
into a pair of spinons on including quantum fluctuations, it was discussed that
the peculiar magnon excitations can be considered as a precursor of the Majorana
excitations found in the quantum case [132].

T evolution of S(q, ω) for the classical Kitaev model is shown in Fig. 6.2. The
corresponding results obtained by our numerical calculations for the quantum case
are shown in Figs. 4.4(a)(d)(g)(j), 4.5(a)(d)(g)(j), and 5.4. For T > TH, S(q, ω)
shows almost featureless response independent of q around ω = 0, as shown in
Figs. 6.2(d) and 6.2(h). On decreasing T below TH, S(q, ω) gradually acquires q
dependence, and develops a weight in the high-ω region and a peak around ω =
0. This T dependence is more clearly seen in the T -ω plot of S(q,Γ) shown in
Figs. 6.2(i) and 6.2(j). The broad weight around ω ≃ 0 at high T is shifted to
ω ≃ 1.5 below TH for the AFM case, whereas the strong peak appears around ω ≃ 0
below TH for the FM case. As in the T = 0 case, S(q,Γ) does not show a gap around
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Figure 6.2: S(q, ω) for several T for the (a)-(d) AFM and (e)-(h) FM cases. (i) and
(j) display T dependences of S(q, ω) for the AFM and FM cases, respectively. The
dashed line in (i) represents the position of the high-energy peak. The figures are
taken from Ref. [132].

ω ≃ 0 at low T .

The lack of the gap is a clear difference between the classical and quantum
cases. This difference will be reflected to 1/T1, although the calculations have not
been done for the classical case. Note that the onsite (NN site) component of 1/T1

is proportional to S(q, ω = 0)FM + (−)S(q, ω = 0)AFM. Although the results in
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Figs. 6.2(i) and 6.2(j) suggest that 1/T1 for the classical case increases below TH

in accordance with the quantum case, 1/T1 will not show a rapid decrease below
TL in contrast to the quantum case. Thus, several features at rather high T in the
quantum case are reproduced in the classical correspondences, but the low-energy
properties related to the Z2 flux at low T are specific to the quantum Kitaev model.

6.1.2 Other calculations for the quantum Kitaev model

Figure 6.3: Inverse susceptibility 1/χ for the Kitaev-Heisenberg model obtained by
the PF-FRG approach. The result at α = 1.0 corresponds to the pure Kitaev model.
The figure is taken from Ref. [133].

Prior to our study, the magnetic susceptibility χ for the Kitaev-Heisenberg
model was calculated by using a pseudofermion functional renormalization group
(PF-FRG) approach [133,134]. In the study, the Kitaev-Heisenberg Hamiltonian is
parametrized as

HKitaevHeisenberg = (1− α)
∑
⟨j,j′⟩

Sj · Sj′ − 2α
∑
⟨j,j′⟩γ

Sγ
j S

γ
j′ . (6.1)

In the PF-FRG approach, the ground state properties are explored by solving the
coupled differential equations for one-particle irreducible m-particle vertex functions
of pseudofermions with a positive integer m. The equations are solved with respect
to the infrared frequency cutoff Λ for the free propagators of pseudofermions, start-
ing from Λ = ∞ toward Λ = 0. At the end of the flow at Λ = 0 where the theory
becomes cutoff free, the exact vertex functions are obtained if the equations are
solved exactly [134]. In practice, up to two-loop contributions are taken into ac-
count [133]. In this method, finite-T properties are obtained by regarding Λ as T .
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This is based on the assumption that T also works as an infrared cutoff, as the
Matsubara frequency for T > 0 is discrete and the minimum value is nonzero. This
scheme gives qualitatively correct results despite quantitative uncertainties [133].

The results of χ obtained by the PF-FRG approach for the Kitaev-Heisenberg
model with several α are shown in Fig. 6.3. Here we concentrate on the case of
the Kitaev model (α = 1). χ for the Kitaev model obeys the Curie-Weiss form
χ ∝ 1/(T −TCW) at high T , and starts to deviate while decreasing T . This behavior
is consistent with our results shown in Figs. 4.12(a) and 5.2(a). However, there
are quantitative differences between PF-FRG results and our results. For example,
TCW ≃ 0.22 in the PF-FRG results in the scale of Eq. (6.1) with α = 1 [133],
whereas TCW = 0.5 in our results [rescaled in accordance with the definition of the
Hamiltonian in Eq. (6.1)]. This difference might comes from the identification of T
and Λ in the PF-FRG approach as noted above. In addition, the low-T behaviors
of χ obtained in our results, a peak at slightly above TL and substantial decrease
around TL, are not captured in the PF-FRG results.

After our study, χ for the Kitaev-Heisenberg model was calculated by a high-T
series expansions method [135]. The results were obtained for T > 0.1, which are
consistent with our results.

Recently, a numerical method named the finite-T shifted Krylov subspace method
for simulating spectra (FTKω) has been developed [136]. This method is based on
the typicality approach and the shifted Krylov subspace method [136]. FTKω was
applied to the Kitaev model on a 24-site cluster. The results for S(q, ω) are com-
pared with our CDMFT+CTQMC results in Chap. 4, as shown in Fig. 6.4. Note
that S(q, ω) shown in Figs. 6.4 and 6.5, including the CDMFT+CTQMC results,
are multiplied by three compared to those in Eq. (3.44), due to the definition used
in Ref. [136]. Overall, the results agree between two methods. However, there are
small but non-negligible quantitative differences, which could be attributed to the
finite-size effect in FTKω and the resolution of the MEM in CDMFT+CTQMC.
Note that the effect of the cluster approximation in the latter is small, as discussed
in Sec. 5.1.2.

q dependences of S(q, ω) for the AFM Kitaev model with the isotropic inter-
actions Jx = Jy = Jz obtained by FTKω and CDMFT+CTQMC are compared in
Fig. 6.5. Despite the discreteness in momentum space in FTKω, the results of FTKω
and CDMFT+CTQMC are qualitatively consistent with each other. At T = 0.1,
S(q, ω) has a small (large) weight around the Γ point for small (large) ω, and it is
almost independent of q in the intermediate-ω region. While increasing T , the over
all tendency is the same but q dependence become weaker.

Very recently, another new method has been developed, which enables to cal-
culate the real-time dynamical spin correlations ⟨Sγ

j (t)S
γ
j′⟩ for the Kitaev model at

finite T [137]. The method has an advantage as it does not require the analytical
continuation to obtain dynamical quantities as a function of real frequency, such as
S(q, ω).
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Figure 6.4: Comparison of S(q, ω) at the Γ and M points for the AFM case with the
isotropic interactions Jx = Jy = Jz between the FTKω results for a 24-site cluster
and the CDMFT+CTQMC results supplemented by MaxEnt. The figures are taken
from Ref. [136].

6.2 Comparison with experimental results

6.2.1 Dynamical spin structure factor

As introduced in Sec. 1.4.2, inelastic neutron scattering experiments were per-
formed for powder samples of α-RuCl3 [96]. The obtained spectra show a broad
continuum up to ∼ 8 meV. In particular, the incoherent weight around 6.5 meV
does not change below and above TN, as shown in Figs. 1.12(a) and 1.12(b), re-
spectively, suggesting that the response originates from not the interactions causing
the magnetic order but the predominant Kitaev interactions. The incoherent re-
sponse survives up to ∼ 70 K, well above TN. These results are considered as a sign
of fractionalized spin excitations in α-RuCl3 as the proximity effect to the Kitaev
QSL [96].

Subsequently, inelastic neutron scattering experiments were performed also for
single crystal samples of α-RuCl3 [74,99,138,139], and S(q, ω) are closely examined
including the q dependence. In these studies, the continuum was clearly observed
and the Kitaev interactions are again considered to be crucial to explain it. Never-
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Figure 6.5: q dependence of S(q, ω) for the AFM Kitaev model averaged between
the ω window of (a-1) [0.0, 0.1], (a-2) [0.2, 0.3], (a-3) [0.4, 0.5], (a-4) [0.6, 0.7], (a-5)
[0.8, 0.9], (a-6) [1.0, 1.1], (a-7) [1.2, 1.3], and (a-8) [1.4, 1.5], and similarly for (b)-(f),
at (a)(b) T = 0.5, (c)(d) T = 0.2, and (e)(f) T = 0.1. The results in (a)(c)(e) are
obtained by FTKω and (b)(d)(f) by CDMFT+CTQMC. The figures are taken and
modified from Ref. [136].

theless, the proper form of the Hamiltonian including the interactions beyond the
Kitaev type, which reproduces the fine details of the results, is still controversial,
even including the sign of the Kitaev interactions.

We here present an example of close comparison between our theoretical results
and experimental data [74]. The comparison is shown in Fig. 6.6. In the experiment,
the raw data includes phonon contributions in addition to magnetic contributions.
To subtract the phonon contributions, the data at T = 290 K with the Bose factor
correction are subtracted from the data at lower T in Fig. 6.6. Although our theory
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Figure 6.6: (a) Experimental results of S(q, ω) for α-RuCl3 at T = 16, 75, 125, and
240 K, respectively. (b) Our theoretical results for the Kitaev model in the FM case
with isotropic interaction at T = 0.09, 0.375, 0.69, and 1.32, which correspond to
the T sets in (a) by assuming J = 16.5 meV. (c) and (d) display the T dependences
of S(q, ω) at the Γ point in the experiment and our theory, respectively. The figures
are taken from Ref. [74].

does not include the phonon contributions, the same procedure is applied also to
the theoretical results. As shown in Fig. 6.6(a), the experimental result of S(q, ω)
shows a broad incoherent response centered at the Γ point. While increasing T to
T = 75 K and T = 125 K, the weight gradually decreases without notable change
in the q and ω dependence, and the weight vanishes for higher T . These features
of T , q, and ω dependence are all consistent with our theoretical results, by taking
J = 16.5 meV, as shown in Fig. 6.6(b). The T dependences of S(q, ω) at the Γ point
are more closely compared in Figs. 6.6(c) and 6.6(d). The results clearly show that
the incoherent weight grows below ∼ 125 K in a similar fashion in both experimental
and theoretical results.

Recently, inelastic neutron scattering experiments were performed for α-RuCl3
under a magnetic field [139]. At zero field, the spectrum below the Néel temperature
has relatively sharp dispersions originating from magnon excitations in addition to
the incoherent response, but the dispersions disappear above the Néel temperature,
leaving the incoherent response [74, 96,99, 138,139]. A similar change was observed
while suppressing the magnetic order by the magnetic field, instead of increasing T .
The result is interpreted as a signature of the field-induced Kitaev QSL [139].
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6.2.2 NMR relaxation rate

NMR measurements have been done for α-RuCl3 by several groups [80, 81, 140,
141]. Although the dichotomy between static and dynamical spin correlations might
be blurred by additional interactions to the Kitaev model, we expect that the in-
crease of 1/T1 without magnetic ordering can be a signature of the fractionalization
in the Kitaev QSLs. In all results, peculiar behavior of 1/T1 was observed: 1/T1

increases while decreasing T and turns to decrease at a lower T without show-
ing magnetic ordering. However, the estimate of the spin gap from the low-T be-
havior is controversial. Under the magnetic field, both gapless [81] and gapped
QSLs [80, 140, 141] were reported. The gapless QSL behavior is not expected for
the Kitaev model as well as its extensions [81]. Meanwhile, the gapped behavior is
interpreted in line with the proximity to the Kitaev QSL [80,140,141], but the field
dependences of the gap are scattered among the studies.

(a) (b) (c)

Figure 6.7: (a) Our theoretical results of 1/T1 for the Kitaev model with isotropic
interactions. The solid curve represents the fitting to the results by Eq. (6.2). The
left inset shows the goodness of fitting, χ2, obtained by changing the parameter p in
the equation, 1/T1 ∝ T pexp(−n∆/T ). As shown in the inset, χ2 takes a minimum
almost at p = −1 [140]. The right inset shows the ln(T−1

1 T ) as a function of 1/T
for the same data with the main panel, to demonstrate the linear dependence of
ln(T−1

1 T ) on T−1. (b) and (c) Experimental results of 1/T1 for α-RuCl3 obtained
by changing the magnetic field strength and the direction of the field, respectively.
θ represents the angle of the magnetic field measured from the honeycomb plane.
The solid curves shows the fitting by Eq. (6.2). The arrows indicate the magnetic
transition temperatures, and the purple regions represent the T ranges used for
fitting. The insets in (b) and (c) show the ln(T−1

1 T ) as a function of 1/T , similar to
the right inset in (a). The figures are taken and modified from Ref. [140].

We here introduce a recent NMR study in which the experimental results are
closely compared with our theoretical results [140]. In this study, it was pointed
out that the T dependence of 1/T1 obtained in our study is well reproduced by the
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empirical expression

1/T1 ∝
1

T
exp

(
−n∆

T

)
, (6.2)

as shown in Fig. 6.7(a). The fitting by setting the spin gap ∆ at the two-flux
gap gives n = 0.67. By fixing n = 0.67, the experimental results while varying the
magnetic field were fitted by using Eq. (6.2), for the T range by excluding the critical
region associated with the magnetic ordering. All the experimental results obtained
for different magnetic field strengths and directions are well fit by Eq. (6.2), as shown
in Figs. 6.7(b) and 6.7(c). In particular, in the cases for which the magnetic field
suppresses the magnetic transition, the experimental data are excellently reproduced
by the fitting down to the lowest T measured. Note that the change of the field
direction corresponds to a change of the field strength effectively, as the g-factor
is different for the in-plane and out-of-plane magnetic field. The fitting results
indicate that the spin gap appears to be proportional to the cubic of the magnetic
field strength except for the constant term. Note that the cubic dependence was
predicted for the gap in the Majorana excitations by the perturbation theory [26],
while the relation to the spin gap remains elusive beyond the perturbation.
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Figure 6.8: Fitting to our QMC+CTQMC results of 1/T1 by using Eq. (6.2). The
data are same with those in Fig. 5.1(a). The solid (dotted) lines are for the onsite
(NN site) component, whereas the gray (pink) lines are for L = 12 (L = 20). The
vertical dotted lines represent 1/TH and 1/TL respectively.

Stimulated by this experimental study, we test the empirical formula in Eq. (6.2)
for our numerical data. In Fig. 6.7(a), the data used for the fitting were those for
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Figure 6.9: Semilog plots of the QMC+CTQMC results for (a) 1/T1 and (b) T/T1 for
the 2D honeycomb Kitaev model with the isotropic interactions, plotted as functions
of 1/T . The data are same with those in Fig. 5.1(a). The vertical dotted lines
represent 1/TL.

TL < T < TH obtained by QMC+CTQMC. Here, we try the fitting by using the
data for the entire T range below TH including the data at much lower T than in
Fig. 6.7(a). As shown in Fig. 6.8, the overall T dependence of 1/T1 is reproduced
by Eq. (6.2), even down to the lowest T well below TL. However, we note that it
is difficult to conclude the precise form of the low-T asymptotic behavior of 1/T1.
For example, if 1/T1 at asymptotically low T is given by Eq. (6.2), log T/T1 is
given by a linear function of 1/T . Meanwhile, if we assume simply the form of
1/T1 ∝ exp (−n∆/T ), log 1/T1 is linear to 1/T . But our theoretical results do not
have sufficient precision at low T to tell which is plausible, as shown in Fig. 6.9.

Very recently, the NMR experiment was conducted also for a newly-found mate-
rial H3LiIr2O6 [63]. 1/(T1T ) measured for 7Li and 1H show different T dependences
at high T . 1/(T1T ) for

7Li shows a dip around T = 50 K, whereas that for 1H shows
a monotonic increase while decreasing T in the same T range. The difference was
interpreted by the different form factors for 7Li and 1H. The increase of 1/T1 for
1H appears to be consistent with our theoretical results, but the T range is nar-
rower than the theory. The dip of 1/(T1T ) for

7Li was ascribed to spin correlations
beyond nearest-neighbor pairs, which vanish in the Kitaev model. While further
decreasing T , 1/(T1T ) for

7Li and 1H show qualitatively the same T dependences;
1/(T1T ) only weakly depends on T below T ≃ 20 K. The 1/(T1T ) constant behavior
is not predicted for the Kitaev model where 1/T1 decays exponentially. At lower T ,
1/(T1T ) starts to decrease below T ≃ µBB/kB, where µB is the Bohr magneton and
B is the strength of the magnetic field. In addition, 1/T1 as a function of T/B for
several B and for both 7Li and 1H almost collapse onto a single curve at low T , with
multiplication of appropriate constant factors. Many causes have been discussed
for the peculiar behavior at low T : for instance, effects of randomness or defects,
such as stacking fault and randomness in the bond-dependent interactions, magnetic
anisotropy, and additional interactions [63–65,142].
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6.2.3 Magnetic susceptibility

(a) (b)

(c) (d)

Figure 6.10: T dependences of the magnetic susceptibility χ of (a) α-RuCl3, (b)
Na2IrO3, and (c) β-Li2IrO3, and (d) the Knight shift of H3LiIr2O6. The result in
the magnetic field parallel (perpendicular) to the honeycomb plane is represented
as χab (χc) in (a) and (b), and as ∥ (⊥) in (d). χpoly in (b) represents the data
for a polycrystalline sample. The solid lines in (a) and (b) and the inset of (c)
represent the Curie-Weiss fit to χ at high T . The figures are taken and modified
from Ref. [55, 63,71,86].

Fig. 6.10 summarizes the T dependences of the magnetic susceptibility χ of α-
RuCl3, Na2IrO3, and β-Li2IrO3 and the Knight shift K of H3LiIr2O6 [55,63,71,86].
K provides a measure of the magnetic susceptibility, avoiding extrinsic effects, such
as magnetic impurities. χ and K both obey the Curie-Weiss law at high T , and
start to deviate from it between 100 K and 200 K. As introduced in Sec. 1.3, these
materials show magnetic orders at low T except for H3LiIr2O6. α-RuCl3 shows
the magnetic phase transition at 7 K (or 10-15 K depending on samples), which
corresponds to the peak of χ [71]. Na2IrO3 and β-Li2IrO3 show the magnetic phase
transitions at 15 K and 38 K, respectively. In the case of Na2IrO3, χ shows a peak
at T ≃ 23 K and then decreases on lowering T even above the Néel temperature, as
shown in the inset of Fig. 6.10(b).
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Compared to S(q,Γ) and 1/T1, it is rather difficult to find clear indication of the
proximity to the Kitaev QSL solely by χ. For S(q,Γ) and 1/T1, we found peculiar
behaviors associated with the Kitaev QSL in the wide energy and T ranges. On the
other hand, in the same T region, χ shows just a deviation from the Curie-Weiss
behavior, which is commonly seen in frustrated magnets and not characteristic to
the Kitaev model. The most characteristic feature of χ in our numerical results for
the Kitaev model is the rapid decrease of χ around TL (Tc) in the 2D honeycomb
(3D hyperhoneycomb) case, as shown in Chap. 5. However, such behavior at very
low T might be affected by other interactions, or hidden by magnetic orders in the
real materials. For Na2IrO3 in Fig. 6.10(b), even though the peak and subsequent
decrease of χ at low T on decreasing T is observed above TN, it is difficult to interpret
it as a sign of the proximity to the Kitaev QSL, as similar behavior is also widely seen
in frustrated magnets associated with the growth of short-range spin correlations.

We note that, in Figs. 6.10(a), 6.10(b), and 6.10(d), for which the data were
measured for single crystal samples, a rather strong magnetic anisotropy is observed
between the in-plane and out-of-plane magnetic fields. Such an anisotropy is not
understood by the pure Kitaev model. The magnetic anisotropy in the candidate
materials were examined by comparing the observed magnetic order and theoret-
ical prediction of the magnetic order for an extended Kitaev model [143]. The
anisotropy of χ for α-RuCl3 was also used to estimate the parameters of the ef-
fective Hamiltonian, by comparing it with the theoretical estimate obtained by a
high-T expansion [144].

6.3 Summary of this chapter

In this chapter, we have discussed our theoretical results obtained in the previous
chapters in comparison with other theoretical results for the Kitaev model and
experimental results for the Kitaev candidate materials. In the comparison with
the classical version of the Kitaev model, we found that the high-T and large-ω
behaviors are common to the quantum and classical cases. On the other hand, there
are significant differences in the low-T and small-ω properties, which are associated
with gap opening in the Z2 flux excitations in the quantum case. Meanwhile, in
the comparison with other theoretical results for the quantum version, we found
that our results for χ, which are exact within the statistical errors, show not only
quantitatively but also qualitatively different behavior compared to those obtained
by the previous PF-FRG study. On the other hand, the overall behaviors in our
results for S(q, ω) are well reproduced by the FTKω calculations for a 24-site cluster.

We also compared our results with the experimental results of S(q, ω), 1/T1, and
χ for the Kitaev materials. Our results for the Kitaev model well explain the high-T
behaviors of S(q, ω) and 1/T1 in experiments. On the other hand, the low-T features
of 1/T1 and χ in our results are masked by the magnetic ordering or modified by
unknown reasons in the candidate materials. However, when the magnetic orders are
suppressed by applying the magnetic field, peculiar behaviors were experimentally
observed for S(q, ω) and 1/T1, which are, at least, qualitatively similar to out results
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for the Kitaev model at zero field. The agreement suggests the possibility of field-
induced Kitaev QSLs. For further comparison, it is highly desired to obtain reliable
theoretical results in a magnetic field for the pure and extended Kitaev models.



7
Summary

In this thesis, we have theoretically clarified spin dynamics at finite T of the
Kitaev model, which serves as an important clue on experimental identification of
the Kitaev QSL behavior in real materials. To achieve this, we have developed new
numerical techniques, the CDMFT and CTQMC methods, based on the Majorana
fermion representation. We computed the dynamical spin structure factor S(q, ω),
the NMR relaxation rate 1/T1, and the magnetic susceptibility χ for the Kitaev
models on both 2D honeycomb and 3D hyperhoneycomb structures. We found that
the fractionalization of spin degree of freedom into matter fermions and Z2 fluxes
strongly affects the T and energy dependence of the dynamical quantities through
the different energy scales of the fractional excitations. These characteristic features
are not seen in conventional paramagnets, and hence, they will be useful for the iden-
tification of the Kitaev QSL behavior in candidate materials. We also clarified that
the effects of fractionalization are commonly seen in both 2D and 3D cases, except
for the low-T behavior corresponding to the freezing of Z2 fluxes; dynamical quan-
tities show critical behaviors associated with the peculiar phase transition between
the high-T paramagnetic and low-T QSL phases in the 3D case, while they show
just crossover behaviors in the 2D case.

In Chap. 1, we gave an overview of previous efforts to search for QSLs both
experimentally and theoretically. After briefly discussing the previous studies for
general QSLs, we reviewed the recent intensive studies for the Kitaev model as a
new and attractive route to realize QSLs in real materials. Clarifying open problems
through the review, we also presented the purpose of this thesis.

In Chap. 2, we introduced the Kitaev model and a Majorana fermion represen-
tation used in the following numerical calculations.

In Chap. 3, we introduced numerical methods used in this thesis. Among them,
Majorana CDMFT and Majorana CTQMC were newly developed in this thesis and
applied to the Kitaev model. We showed how to compute the dynamical spin correla-
tions by combining Majorana CDMFT and Majorana CTQMC (CDMFT+CTQMC)
and Majorana QMC and Majorana CTQMC (QMC+CTQMC). We also introduced
the MEM to compute the real-frequency dependence.

In Chap. 4, we presented the results obtained by the CDMFT+CTQMC method
for the Kitaev model on the 2D honeycomb lattice. First, we performed benchmark
of the CDMFT method in comparison with the QMC. We confirmed that the results
by CDMFT precisely reproduce the results by QMC down to just above the low-T
crossover temperature TL where the CDMFT results show an artificial phase transi-
tion because of its mean-field nature. We also presented the cluster size dependence
of the CDMFT+CTQMC results. Next, on the basis of the benchmark, we applied
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the CDMFT+CTQMC method in the qualified T range above TL. We calculated
the experimentally-measurable quantities, S(q, ω), 1/T1, and χ. Our main finding
is that all these dynamical quantities show peculiar behavior reflecting the fraction-
alization of spin degree of freedom. The most prominent feature is the dichotomy
between static and dynamical spin correlations as a consequence of the spin frac-
tionalization. The dichotomy appears clearly in the increase of 1/T1 below TH where
the fractionalization sets in, despite the saturation of static spin correlations. We
find similar contrasting behavior also in the T and energy dependence of S(q, ω):
While incoherent response around ω ∼ J appears below TH, a quasi-elastic peak of
S(q, ω) around ω = 0 rapidly grows toward TL. Meanwhile, χ deviates from the
Curie-Weiss law below TH, despite the growth of the 1/T1. Our results suggest that
these peculiar behaviors are found universally in the fractionalized paramagnetic
region irrespective of the anisotropy in the system. On the other hand, we also
clarified interesting behaviors that depend on the anisotropy at lower T . When one
of the three bond-dependent interactions is stronger than the other two, the spin dy-
namics shows peculiar T and energy dependences distinct from those in the isotropic
case as follows. The most characteristic behavior is that as lowering T below TH,
S(q, ω) develops a δ-function like peak, which is well separated from the incoherent
continuum. We also showed that the strong suppression of χ at low T are qualita-
tively explained by the two-site dimer model on the strong bond. In contrast, when
the anisotropy is opposite, i.e., when the two types of bonds become stronger, the
results are qualitatively unchanged from those for the isotropic case, while the effect
of anisotropy appears in the q dependence in S(q, ω) and the different components
in 1/T1 and χ.

In Chap. 5, we presented the results by the QMC+CTQMC method for the
Kitaev models on the 2D honeycomb and 3D hyperhoneycomb structures. We in-
vestigated the behavior of S(q, ω), 1/T1, and χ of the Kitaev model in all T including
below TL, where the CDMFT is not applicable. We found that 1/T1 shows a peak
slightly above TL and decays to zero on further decreasing T , reflecting the gap open-
ing in the flux excitations. We also revealed that the quasi-elastic peak of S(q, ω)
becomes shaper and shifts to a nonzero ω corresponding to the gap opening below
TL. χ also shows a peak slightly above TL followed by a substantial decrease around
TL, and finally converges to a nonzero value as T → 0. We discussed the influence
of thermally fluctuating Z2 fluxes, with focusing on the differences arising from the
spatial dimensions. In the 2D honeycomb case, everything changes smoothly while
lowering T , reflecting the crossover associated with particlelike Z2 flux excitations.
In contrast, in the 3D hyperhoneycomb case, the system exhibits a phase transition
by the proliferation of looplike Z2 flux excitations, which leads to singular behaviors
in the dynamical properties. We found that the dichotomy between static and dy-
namical spin correlations, which begins below the high-T crossover at TH associated
with itinerant matter fermions, persists down to the low-T region, in a more peculiar
form reflecting thermally excited Z2 fluxes; while the dichotomy in the higher-T re-
gion is rather universal independent of the spatial dimension, the low-T one appears
differently between 2D and 3D, reflecting the different nature of the localized Z2

flux excitations. We showed that the T derivatives of the 1/T1 and χ provide good
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probes for fluctuating Z2 fluxes in both 2D and 3D cases.

In Chap. 6, we discussed our theoretical results obtained in Chaps. 4 and 5 in
comparison with other theoretical results for the Kitaev model and experimental
results for candidate materials. First, by comparing our results with the results for
the classical version of the Kitaev model, we found that the high-T and large-ω
properties obtained in our results are commonly seen in the classical counterpart.
On the other hand, the low-T and small-ω properties mainly related to the Z2 flux
are specific to the quantum case. Next, we showed a comparison with the results
for a 24-site cluster obtained by FTKω, which reproduce well our results despite
the discreteness in momentum space. In comparison with experiments, we found
that our theoretical results well explain the available data of S(q, ω), 1/T1, and χ
for the Kitaev candidate materials. We showed that the peculiar behavior we found
for S(q, ω) and 1/T1, the appearance of the broad incoherent response centered at
the Γ point and the increase of 1/T1 below TH, are indeed observed experimentally
in the paramagnetic state above the critical temperature for magnetic ordering. We
also discussed several recent experimental efforts to find the Kitaev QSL behavior
by suppressing the magnetic orders by a magnetic field. For instance, we introduced
an experimental study of 1/T1 under the magnetic field, which shows good agree-
ment down to the lowest T measured with our theoretical results at zero field. This
appears to support the realization of the field-induced Kitaev QSLs. T dependence
of χ obtained in our theoretical results are also observed in experiments, at least,
qualitatively. The deviation from the Curie-Weiss law at high T is commonly ob-
served among candidate materials, and the decrease of χ at low T is observed in
some materials. Nevertheless, it is difficult to interpret these behaviors as the sign
of the Kitaev QSL, as they are commonly seen in frustrated magnetic systems.

The outcomes of this thesis will bring about a great impact on understanding
of the Kitaev QSL both theoretically and experimentally. Our findings of peculiar
behavior of experimentally measurable quantities, S(q, ω), 1/T1, and χ, will stimu-
late experimental exploration of Kitaev QSLs. Indeed, after our theoretical studies,
several experiments have been performed, e.g., for S(q, ω) and 1/T1, and the data
have been analyzed in comparison with our results. The comparisons suggest the
proximity effects to the Kitaev QSL, as discussed in Chap. 6. Similar collaborative
studies between theory and experiment are in progress, and we believe that our
findings will significantly contribute to future development in this rapidly growing
field.

Finally, let us discuss remaining issues. An important open problem is to clar-
ify the behavior of the Kitaev model in an applied magnetic field. As discussed in
Chap. 6, the possibility of the Kitaev QSLs in an applied magnetic field has been
intensively explored for the candidate materials. In addition to the experiments
discussed in Chap. 6, very recently, a thermal transport measurement for α-RuCl3
also suggested that the Kitaev QSL with peculiar topological properties is realized
under a magnetic field [145]. Nevertheless, the nature of the field-induced disordered
state is unclear thus far. In this situation, theoretical studies of the Kitaev model
in a magnetic field are of great importance, but they are not easy since the exact
solution is no longer available for nonzero fields. The Majorana CDMFT method
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newly developed in this thesis provides a framework which enables to incorporate
the external magnetic field to the Kitaev model beyond the exact solvability. An-
other important issue is to consider the effect of additional interactions to the Kitaev
ones existing in real materials. There have been many theoretical studies for such
extended Kitaev models, but the unbiased results were limited to those obtained by
the exact diagonalization on small clusters. It may also be intriguing to study the
Kitaev models with impurities and randomness in the exchange couplings, for ex-
ploring the origin of the peculiar behaviors found in H3LiIr2O6. It will be interesting
to extend the CTQMC method for the applications to such extended models.



A
Kitaev Hamiltonian in reciprocal

space

In this Appendix, we discuss the eigenstates of the flux free state in the Majorana
fermion representation of the Kitaev model in Eq. (1.10). In Eq. (1.10), the flux free
state is given by taking all uγ

j,j′ = 1 for j ∈ b and j′ ∈ w; namely, the Hamiltonian
is given as

Hflux free
Kitaev = i

Jx
4

∑
(j,j′)x

cjcj′ + i
Jy
4

∑
(j,j′)y

cjcj′ + i
Jz
4

∑
(j,j′)z

cjcj′ (A.1)

=
1

4

∑
j,j′

Hj,j′cjcj′ , (A.2)

where Hj,j′ is a pure-imaginary Hermitian matrix. This Hamiltonian has transla-
tional symmetry, and hence, Hj,j′ depends only on the relative position of the sites
j and j′. By Fourier transformation, we obtain

Hflux free
Kitaev =

1

4

∑
s,s′,m,m′

Hm,m′(s, s′)cs,mcs′,m′

=
1

2

∑
m,m′,k

H̃m,m′(k)d−k,mdk,m′

=
∑

m,m′,k

′
H̃m,m′(k)

(
d†k,mdk,m′ − 1

2
δm,m′

)
. (A.3)

In the first line of Eq. (A.3), instead of the site index j, we use the unitcell index s
and the sublattice index m. A schematic picture of the unitcell is shown in Fig. A.1.
In the second line, H̃m,m′(k) and dk,m are defined as

H̃m,n(k) =
∑
s

Hm,m′(s, 0)e−ik·rs , (A.4)

dk,m =
1√
2N

∑
s

e−ik·rscs,m, (A.5)

respectively, where N is the number of sites. H̃m,m′(k) is a 2× 2 matrix of the form

H̃m,n(k) =

(
0 a(k)

a(k)∗ 0

)
(A.6)
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unit cell

Figure A.1: Schematic picture of a unitcell and the lattice translation vectors of the
honeycomb lattice.

with

a(k) =
i

2
(Jxe

−ik·n1 + Jye
−ik·n2 + Jz), (A.7)

where n1 and n2 are the lattice translation vectors shown in Fig. A.1. In the third line
of Eq. (A.3), the sum

∑′ is taken for either one of k and −k. Note that H̃m,m′(k) =

−H̃m′,m(−k) and d−k,m = d†k,m. By diagonalizing Eq. (A.6), the eigenvalue is given
as

ϵ(k) = ±|a(k)|. (A.8)

ϵ(k) can be zero if Jγ satisfies the following three relations simultaneously:

|Jx| ≤ |Jy|+ |Jz|, (A.9)

|Jy| ≤ |Jz|+ |Jx|, (A.10)

|Jz| ≤ |Jx|+ |Jy|. (A.11)

In this case, the Majorana spectrum ϵ(k) has gapless excitations. Otherwise, it is
fully gapped in the entire Brillouin zone. The results is summarized as the phase
diagram in Fig. 1.2.



B
Plots of 1/T1 and χ in the T -linear

scale

In Chaps. 4 and 5, we show the NMR relaxation rate 1/T1 and the magnetic
susceptibility χ as functions of lnT in Figs. 4.11, 4.12, 4.13, 5.2, and 5.6. For
convenience, we present them in the T -linear scale in Figs. B.1-B.5.
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Figure B.1: The same plots as Fig. 4.11 in the main text in the T -linear scale. The
vertical dotted line indicate TH which is common for each α.
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Figure B.2: The same plots as Fig. 4.12 in the main text in the T -linear scale. The
vertical dotted line indicate TH which is common for each α.
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Figure B.3: The same plots as Fig. 4.13 in the main text in the T -linear scale. The
vertical dotted line indicate TH which is common for each α.
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Figure B.5: The same plots as Fig. 5.5 in the main text in the T -linear scale. The
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C
Benchmark of the maximum entropy

method

In Chaps. 4 and 5, we calculate Sγ
j,j′(ω) from ⟨Sγ

j (τ)S
γ
j′⟩ by the MEM introduced

in Sec. 3.4. In this Appendix, we examine the accuracy of the MEM by comparing
Sγ(Γ, ω) at sufficiently low-T with the analytical solution in the ground state. We
also examine the accuracy in the limit of decoupled one-dimensional chains, i.e.,
α = 1.5 (Jz = 0), where Sγ

j,j′(ω) can be obtained directly without the MEM.
First, we examine the accuracy of the MEM for the data at sufficiently low T in

comparison with the analytical solution in the ground state [98]. Figure C.1(a) shows
Sz(Γ, ω) obtained by the Majorana QMC+CTQMC method for the FM case with
α = 1.0 at T ≃ 0.0053. The QMC+CTQMC result agrees well with the analytical
solution in the ground state shown in Fig. C.1(b). In particular, the QMC+CTQMC
result reproduces the characteristic features of the ground-state result; the two flux
gap ∆ ≃ 0.065, the sharp peak at ω ≃ 0.1, and the broad incoherent response
extending to ω ≃ 1.5.

Figure C.2 shows Sz(Γ, ω) obtained by the Majorana CDMFT+CTQMC method
for the FM case with α = 0.8 at T = 0.003. In the ground state, the energy required
to flip a single ηr is ∆ ≃ 0.042 at α = 0.8. Reflecting the flux gap, Sz(Γ, ω)
at low T has a δ-function like peak at ∆ ≃ 0.042 [98]. As shown in Fig. C.2,
our CDMFT+CTQMC result shows a peak at this energy, which is considered to
precisely reproduce the low-energy structure of the dynamical spin structure factor.

Next, we show the comparison in the limit of decoupled one-dimensional chains,
i.e., α = 1.5 (Jz = 0). In this limit, the Kitaev Hamiltonian in Eq. (1.1) is written
only by itinerant matter fermions {c}, in the form of Eq. (1.10) with Jz = 0. In
this noninteracting problem, following Ref. [146], we can calculate Sx

j,j′(ω) by con-
sidering the real-time evolution (RTE) of ⟨Sx

j (t)S
x
j′⟩, instead of the imaginary-time

correlation ⟨Sx
j (τ)S

x
j′⟩, as

Sx
j,j′(ω) =

∫ ∞

−∞
dteiωt−ϵ|t|⟨Sx

j (t)S
x
j′⟩. (C.1)

We call this method as the RTE in the following. In the RTE calculations, we
consider an xy chain with 600 sites under the open boundary condition and take a
sufficiently small ϵ = 0.04 in Eq. (C.1).

On the other hand, Sz
j,j′(ω) has a nonzero value only for the onsite component,

which is given by 4⟨Sz
j (τ)S

z
j ⟩ = ⟨cj(τ)cj⟩. Hence, Sz

j,j(ω) is obtained as

Sz
j,j(ω) =

1

2(1 + e−βω)
D(ω), (C.2)
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Figure C.1: (a) Sz(Γ, ω) obtained by the QMC+CTQMC method for the FM case
with α = 1.0 at T ≃ 0.0053. (b) Analytical result of Sz(Γ, ω) for the FM case with
α = 1.0 in the ground state (solid curve in the main panel). In (b), the value of x(y)
axis is multiplied by 4(12π) compared to that in (a) due to the different definition.
The figure in (b) is taken from Ref. [90].

where D(ω) is the DOS for itinerant matter fermions in the one-dimensional limit:

D(ω) =
1

π
√
1.52 − ω2

. (C.3)

We call this method to estimate Sz
j,j(ω) the exact-DOS in the following.

Figure C.3 shows the results of Sγ
j,j′(ω) obtained by the MEM, RTE, and exact-

DOS methods for the FM case with α = 1.5 (Jx = Jy = 1.5 and Jz = 0). We
present both onsite and NN-site components for Sx

j,j′(ω), while only the onsite one
for Sz

j,j′(ω). We find that overall ω dependence of Sγ
j,j′(ω) is well reproduced by the

MEM. In particular, the agreement is excellent in the low ω region; the growth of
Sx
j,j′(ω = 0) on decreasing T , which contributes to 1/T1, is well reproduced by the

MEM. On the other hand, the relatively sharp structures at ω ∼ 1.5 are blurred
in the MEM results for both γ = x and z, presumably because ⟨Sγ

j (τ)S
γ
j′⟩ is more

insensitive to Sγ
j,j′(ω) in the larger ω region. Nevertheless, as shown in Figs. C.3(e)

and C.3(f), the MEM results reproduce the broad incoherent peak of Sx
j,j(ω) −

Sx
NN(ω).
From these observations, we consider that the MEM results for S(q, ω) and 1/T1

in Chaps. 4 and 5 are accurate enough to discuss the T and ω dependences.
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Figure C.2: Sz(Γ, ω) obtained by the Majorana CDMFT+CTQMC method for the
FM case for α = 0.8 at T = 0.003. Vertical line at ω ∼ 0.042 represents the value
of flux gap of the ground state calculated exactly.
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D
Low-T behavior of χ

In this Appendix, we examine the low-T asymptotic behavior of the magnetic sus-
ceptibility χ for the Kitaev model. In the gapped phase with the strong anisotropy
of the interactions (see the ground-state phase diagram in Fig. 1.2), χ is expected to
converge to the T = 0 value exponentially as both the flux and Majorana excitations
are gapped. In fact, such behavior was analytically obtained in the anisotropic limit
(the so-called toric code model) [31]. On the other hand, in the gapless phase where
the anisotropy of the interactions is weak, gapless Majorana excitations possibly re-
sults in polynomial T dependence of χ at low T . As the dispersion of the Majorana
fermions have Dirac cones, it is expected that the energy develops with T 3 at low
T in the gapless phase. As χγ is given by Eq. (3.53), it is plausible that χγ has also
T 3 dependence up to a constant.

To confirm the low-T asymptotic behaviors, we here numerically calculated χ in
the subspace of {ηr = 1}′, χ{ηr=1}′ , on the periodic lattice composed of 2402 two-site
unit cells in Fig. A.1. As the flux excitations are exponentially suppressed at low T ,
it is sufficient to consider only the subspace of {ηr = 1}′ for the current purpose.

Figure D.1 shows the result with the isotropic interactions Jx = Jy = Jz = ±1.
For both FM and AFM cases, χ{ηr=1}′ converges to a nonzero value as T → 0
below T ≃ 0.02. The convergence reflects the exponential suppression of the flux
excitation of ηr0 = −1 for T < ∆, where ∆ ≃ 0.065 is the two-flux excitation gap
in the ground state [26, 98]. When examining the low-T data more closely, χ{ηr=1}′

for the FM case shows a peak at T ≃ 0.0012 and turns to decrease, as shown in
Fig. D.1(b). The decrease at low T is expected to be associated with the Majorana
excitations in the flux-free ground state. We test the least-square fitting by assuming
χ{ηr=1}′ = C0 + C1T

p with p = 1, 2, and 3 for the data at T < 0.009 where the
contribution from the state with ηr0 = −1 is sufficiently small. Although the fitting
with p = 3, which is expected from the above argument, appears to reproduce well
the results, we cannot exclude the possibility of p = 1 and 2, as shown in Fig. D.1(b);
root mean squares of the differences between the numerical results and fittings are
0.00039, 0.00031, and 0.00027 for p = 1, 2, and 3 respectively. For the AFM case,
we only observe monotonic decrease of χ{ηr=1}′ in the low-T region as shown in
Fig. D.1(c). In this case, the similar power-law fitting for the data at T < 0.009
does not reproduce the results for all p, as shown in Fig. D.1(c). The reason is not
clear, but we may need further lower-T data for the analysis.
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E
Convergence of the hybridization
expansion in QMC+CTQMC

calculations

In this Appendix, we discuss the convergence of the QMC+CTQMC calculations
with respect to the expansion order d in Eq. (3.34). For this purpose, we examine the
histogram of d obtained in the QMC+CTQMC calculations. We calculate the his-
togram P (d) by taking the Monte Carlo average of P (d){ηr}

′
, which is the histogram

obtained in the CTQMC calculation for a given {ηr}′, as

P (d) =
1

NMC

∑
{ηr}′∈MC samples

P (d){ηr}
′
, (E.1)

where NMC is the number of the Monte Carlo samples. Note that P (d) are normal-
ized so that

∑
d P (d) = 1.

Figure E.1 shows the results of the histograms. While P (d) is localized around
d = 0 at sufficiently high T ≃ 0.94, it shifts to a larger d region on decreasing T . At
each T , P (d) has a single peak structure, and decays quickly away from the peak.
The maximum values of d appearing our CTQMC sampling are d = 5, 15, 37, and
66 for T ≃ 0.94, 0.094, 0.019, and 0.0083, respectively. In the CTQMC calculations,
as described in Sec. 3.3, we set the cutoff for d as dcutoff = 25+1.125∗β. The results
above indicate that the cutoff values are large enough to ensure the convergence of
the CTQMC calculations.

In the hybridization expansion, the Monte Carlo average of the expansion order
is related with the kinetic energy connecting the impurity sites and bath [147]. In
the present case for the Kitaev model, for each CTQMC calculation for a given
{ηr}′, we obtain

2⟨d⟩{ηr}′ = β(Jx(⟨Sx
j S

x
j′′⟩{ηr}

′
+ ⟨Sx

j′S
x
j′′′⟩{ηr}

′
)

+Jy(⟨Sy
j S

y
j′′′′⟩

{ηr}′ + ⟨Sy
j′S

y
j′′′′′⟩

{ηr}′)), (E.2)

where j and j′ are the sites on the z bond r0, whereas j′′(j′′′′) and j′′′(j′′′′′) are
the neighboring sites of j and j′ connected by the x (y) bond, respectively. When
the negative sign problem is negligible, the Monte Carlo average of the expansion
order ⟨d⟩{ηr}′ coincides with the center of mass of the histogram

∑
d dP (d){ηr}

′
. In

the calculations in Fig. E.1, the negative sign is almost negligible; the ratio of the
negative sign is less than 10−5 for T ≃ 0.083 and T ≃ 0.019, and practically zero for
T ≃ 0.94 and T ≃ 0.094. Thus, we replace ⟨d⟩{ηr}′ in Eq. (E.2) with

∑
d dP (d){ηr}

′
,
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Figure E.1: Histogram of the expansion order d in the QMC+CTQMC calculations.
The results for Eq. (E.1) are shown for several T . The arrows indicate the values of
right hand side of Eq. (E.3) at each T .

by neglecting the negative sign problem. Then, we obtain∑
d

dP (d) = β(Jx⟨Sx
j S

x
j′⟩NN + Jy⟨Sy

j S
y
j′⟩NN). (E.3)

This relation is readily seen in Fig. E.1; the values of the right hand side of Eq. (E.3)
are indicated by the arrows, whose locations well coincide with the peak positions
of the histograms P (d).
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[134] J. Reuther and P. Wölfle, Phys. Rev. B 81, 144410 (2010).

[135] R. R. P. Singh and J. Oitmaa, Phys. Rev. B 96, 144414 (2017).

[136] Y. Yamaji, T. Suzuki, and M. Kawamura, arXiv:1802.02854.

[137] M. Udagawa, Phys. Rev. B 98, 220404 (2018).

[138] K. Ran, J. Wang, W. Wang, Z.-Y. Dong, X. Ren, S. Bao, S. Li, Z. Ma, Y.
Gan, Y. Zhang, J. T. Park, G. Deng, S. Danilkin, S.-L. Yu, J.-X. Li, and J.
Wen, Phys. Rev. Lett. 118, 107203 (2017).



118 REFERENCES

[139] A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A. A. Aczel, B. Winn, Y.
Liu, D. Pajerowski, J. Yan, C. A. Bridges, A. T. Savici, B. C. Chakoumakos,
M. D. Lumsden, D. A. Tennant, R. Moessner, D. G. Mandrus, and S. E.
Nagler, npj Quantum Materials 3, 8 (2018).
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Biffin, C. Rüegg, and M. Klanǰsek, Nature Physics 14, 786 (2018).

[141] Y. Nagai, T. Jinno, Y. Yoshitake, J. Nasu, Y. Motome, M. Itoh, and Y.
Shimizu, arXiv:1810.05379.

[142] Y. Li, S. M. Winter, and R. Valent́ı, Phys. Rev. Lett. 121, 247202 (2018).

[143] J. Chaloupka and G. Khaliullin, Phys. Rev. B 94, 064435 (2016).

[144] P. Lampen-Kelley, S. Rachel, J. Reuther, J.-Q. Yan, A. Banerjee, C. A.
Bridges, H. B. Cao, S. E. Nagler, and D. Mandrus, Phys. Rev. B 98, 100403
(2018).

[145] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K. Sugii, N. Kurita,
H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda, Nature 559,
227 (2018).

[146] O. Derzhko, T. Krokhmalskii, and J. Stolze, Journal of Physics A: Mathemat-
ical and General 33, 3063 (2000).

[147] K. Haule, Phys. Rev. B 75, 155113 (2007).


