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Chapter 1

Introduction

Self-organization in a physical system is a spontaneous process caused by collective dy-

namics of elements; there is no ”blue print” of the structure to be made, but only the

rule of interactions among elements dominates the system. For a macroscopic structure to

emerge, there is a scale separation between the random motions of the elements and the

collective motion of the macro-system, which causes the spontaneous process. In other

words, apparently random motion of the elements are restricted by the conservation laws

of the macro-system, and the constraint of the macro-system causes the self-organization

process.

In this study we focus on two self-organization phenomena: zonal flow in 2D turbulence

(part I) and magnetospheric plasma (part II) which are both remarkable phenomena in the

context of plasma physics and nuclear fusion. Zonal flow, which is well known in the field

of planetary fluid mechanics, also appears in fusion plasma because of the analogy between

the geostrophic turbulence and the electrostatic turbulence of magnetized plasma. The

reason why zonal flow attracts the attention in the context of plasma physics and nuclear

fusion is that it enables us to obtain the quasi-stationary state where thermal gradient is

higher. Actually, zonal flow is predicted to be related to H-mode [1] which is well known as

a high performance confinement mode in Tokamak [2] although it is still being discussed.

On the other hand, magnetospheric plasma is a remarkable example of high-beta plasma

confinement which is realized in nature. Here, beta is the ratio of plasma pressure to

magnetic pressure which indicates the efficiency of plasma confinement and to realize the
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CHAPTER 1. INTRODUCTION

confinement of high-beta plasma is a big issue in nuclear fusion.

The central issue common to these two self-organization phenomena is how the self-

organized states are determined. Actually, the basic equations to describe the self-organization

phenomena (vorticity equation (3.6) in Chapter 3 and Grad-Shafranov equation (9.4) in

Chapter 9, respectively) have infinitely diverse solutions. Then, in reality, how the struc-

ture is determined in the process of the self-organization?

Our insight to deal with this problem is that ”the constants of motion which constraint

the possibility of motion” are the key. For example, in part I, we estimate exact lower

bounds on the ’zonal enstrophy’, which we consider to be the physical quantity character-

izing the trend of self-organization. Here, if we do not take into account any constraints,

zonal enstrophy only has trivial lower bound (i.e., zero). However, when we consider

appropriate constraint, we obtain nontrivial lower bound. Moreover, the variational prin-

ciple we formulated to estimate the lower bounds has an unusual mathematical structure

which yields nontrivial relation between the lower bound and the constrains. Similarly,

to understand the equilibrium state of magnetospheric plasma in part II, considering the

appropriate constraints is essential. Under the all degrees of freedom, entropy maximiza-

tion eliminates any inhomogeneity. Only when we consider some constraints, we obtain

nontrivial structure which is consistent with maximum entropy principle.

This paper consists of two parts. In part I, we discuss how strong zonal flow can be

in the view of variational principle. This part is based on our paper ”Lower bounds on

zonal enstrophy” [3]. In part II, which is based on our paper ”Kinetic construction of

the high-beta anisotropic-pressure equilibrium” [4], we constructed the model to describe

magnetospheric high-beta plasma.
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Part I

Lower bounds on zonal enstrophy:

Self-organization of zonal flow in

the view of variational principle
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Chapter 2

Introduction of part I

2.1 Background and purpose of part I

The creation of zonal flow in the planetary atmosphere is a spectacular example of the self-

organization in physical systems [5, 6]. There is a strong analogy between the geostrophic

turbulence and the electrostatic turbulence of magnetized plasma in the plane perpendicu-

lar to an ambient magnetic field. Because the generation of zonal flow (coherent structure)

affects the turbulent transport in magnetized plasmas, how strong it can be is of great

interest in the context of plasma confinement [7]. The aim of this work is to estimate exact

lower bounds on the “zonal enstrophy” which hence must be satisfied regardless of the

dynamics, and elucidate how the lower bounds are determined; lower bounds on the zonal

enstrophy indicates that the zonal flow must be stronger than the given value.

The inverse-cascade model explains the essence of the self-organization process. Be-

cause of the approximate two-dimensional geometry (due to the scale separation between

the shallow vertical direction and wide horizontal directions), the vortex dynamics is free

from the stretching effect. Then, the energy of flow velocity tends to accumulate into large-

scale vortices, while the enstrophy (the norm of vorticity) cascades to small scales [8]. On

a rotating sphere, the gradient of Coriolis force yields the Rossby-wave term in the vortex

dynamics equation, which brings about latitude / longitude anisotropy, and the large-scale

vorticity form zonal flow [5]. The nonlinear term driving the inverse cascade becomes com-

parable to the linear Rossby-wave term at the Rhines scale which gives a crude estimate
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CHAPTER 2. INTRODUCTION OF PART I

of the latitude size of the zonal flow [9].

While the inverse-cascade model illustrates the general tendency of nonlinear process,

the underlying mechanism requires more detailed analysis. The modulational instability

plays an essential role in exciting the energy transfer in the wave-number space [10, 11,

12]. In addition to the energy and enstrophy, another quadratic integral is known to be

an adiabatic invariant (only changes by fourth-order of perturbations) in the zonal-flow

domain of wave-number space, restricting the energy transfer there [13, 14, 15]. Various

numerical simulations have been done to demonstrate the creation of zonal flow. Two

different categories of models must be distinguished; one is the unforced, free decaying

turbulence, and the other is the forced, quasi-stationary turbulence. In the latter case,

the interaction between the mean flow and the turbulence [16, 17, 18] or inhomogeneous

vorticity mixing [19, 20] have been found as causal mechanisms of zonal flow generation.

For these forced, quasi-stationary cases, one has to include some dissipation mechanism for

large scale flows in order to remove the energy accumulating in the large scale regime by

the inverse cascade. The usual viscosity only works for short scale flows, so something like

“friction” is added to the model (however, which mechanism works in a realistic planetary

system is still controversial). For the free decaying case, early simulation results [21, 22, 23]

demonstrated the self-organization of zonal flow, and found that the scale of zonal flow

has similar scaling with Rhines’ estimate. However, the quantitative comparison between

the Rhines scale and the zonal flow scale was left unclear. On the other hand, in the

forced turbulence case, more complex relation has been found, because of the influence of

the dissipation mechanism for large scale flows; see [24, 25, 26].

In parallel with simulation studies, there have been theoretical attempts to nail down

the “target” of the spontaneous process, i.e. formulating a variational principle that reveals

what the dynamics tends to reach. This can be done by identifying the target functional

to be minimized (or maximized) as well as the constraints that restrict admissible candi-

dates. A well-known example is the entropy maximization in the microcanonical ensemble

(the constraints are total particle number and total energy), which gives the Gibbs distri-

bution. In the application to field theories, where we have to deal with infinite-dimension

phase spaces, we encounter the problem of ultraviolet catastrophe (which must be removed

by appropriate quantization [27]). Suspending such subtle problems, formal calculations
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CHAPTER 2. INTRODUCTION OF PART I

have been made to obtain the thermal equilibrium distribution of flow fields. In the con-

text of the planetary atmosphere, the statistical equilibrium state in the two-dimensional

incompressible Euler system was studied in [28, 29]. In [30], the maximum entropy distri-

bution over the ensemble constrained by total energy and circulation was compared with

the large-scale vortex structures observed on Jupiter. However, because of the essential

non-equilibrium property of turbulence (as the cascade model is based on “dissipation” in

the Kolmogorov microscales, one has to assume a “driving force” to maintain the (quasi)

stationary state, or consider a transient process of free decay), the entropy may not be an

effective tool to dictate the self-organization.

There is a different type of approach guided by the notion of selective dissipation [6].

We begin by making a list of conservation laws that apply in the ideal (i.e. dissipation-less)

model. A finite dissipation breaks most of the conservation laws. However, there may be

differences in fragility among the constants of motion. Here, fragility means the sensitivity

to small scale perturbations (effective in the Kolmogorov microscale); as the antonym, we

say robust if the constancy is unaffected by small scale perturbations. We can estimate the

fragility by counting the number of spacial derivations included in the ideal constants (see

Appendix A). If the most fragile one decreases (or increases) monotonically, we choose it

for the target functional, and the others for (approximate) constraints. The minimization

(or maximization) may parallel the relaxation process; this is, of course, a very crude

model of the complex dynamics, assuming that the chosen small-number constants only

dictates the relaxation process.

The Taylor state of magneto-fluid [31, 32] is the prototype of such a model of self-

organization, which minimizes the magnetic field energy (E = 1
2

∫
|B|2 d3x = 1

2

∫
|∇ ×

A|2 d3x, where B = ∇×A is the magnetic field) under the constraint on the magnetic he-

licity (H = 1
2

∫
A ·B d3x). The reason why E is more fragile than H is because E includes

another differential operator curl in the integrand. This model explains the relaxed states

of magnetized plasmas in various systems, ranging from laboratory experiments to astro-

nomical objects. Regarding the two dimensional turbulence in the planetary atmosphere,

the minimization of the generalized enstrophy (see Proposition 1) under the constraint on

the energy has been studied to show that the solution of the minimization problem predicts

a steady state with streamlines parallel to contours of the topography [33]. Although these
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CHAPTER 2. INTRODUCTION OF PART I

two stories, i.e. the energy-helicity relation in the magneto-fluid and the enstrophy-energy

relation in the 2D-fluid appear to be parallel (as Hasegawa[6] describes in the unified vi-

sion), there is a fundamental difference when viewed from their Hamiltonian structures,

and the latter needs a careful interpretation. In both systems, the ideal constants (the

helicity in magneto-fluids and the enstrophy in 2D-fluids) are Casimirs, by which the or-

bits are constrained on the level-sets of these constants [34]. In the magneto-fluid phase

space, the orbits converge into the equilibrium point as the energy diminishes; the min-

imum energy (Hamiltonian) state, on each level-set of the helicity, gives an equilibrium

point. In the 2D-fluid system, however, the level set of the enstrophy is not embedded

as a smooth submanifold in the topology of the energy norm (because the enstrophy is a

fragile quantity, its level-set looks like a fractal set; see Appendix A). Hence, we have to

reverse the role of the Hamiltonian (energy) and the Casimir (enstrophy), and minimize

the enstrophy for a given energy. Then, the critical point is not necessarily an equilib-

rium point. In this specific problem, however, it is happens to be so, because it is the

“maximum point” of the energy. Notice that the minimization of the enstrophy under a

constrained energy is equivalent to the maximization of the energy under a constrained

enstrophy (see Appendix A). The maximization of the energy appears to be consistent

with the inverse-cascade story. However, the simultaneous process, i.e. the forward cas-

cade of the enstrophy violates the constancy of the enstrophy. The dual aspects of the 2D

turbulence pose a paradox in the mechanical interpretation of the selective dissipation.

The target of this study is totally different. Whereas we formulate a variational prin-

ciple using the list of ideal constants of motion, the target functional is not selected from

them. We estimate the minimum of the enstrophy possibly given to the zonal component

(which we call the zonal enstrophy). Knowing how strong the zonal flow must be and

how it is controlled is an important issue in the study of turbulent transport. While the

total enstrophy is an ideal constant of motion, the zonal part alone is not. We are not

proposing that the zonal enstrophy is selectively dissipated; we never provide the target

functional with the role of dictating dissipation process Our target functional is simply

what we want to estimate. We derive an a priori estimate of the zonal enstrophy, which

must apply to every possible dynamics under a set of prescribed conditions; the ideal in-

variants are used as such constraints (we do not include the adiabatic invariant, because it
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CHAPTER 2. INTRODUCTION OF PART I

needs the wave number information that is not amenable to our formulation). The actual

dynamics is the second subject to be explored, which will be the task of Chapter 5. The

analogy of quantum mechanical energy levels may be helpful to explain our perspective.

When we want to estimate the energy of an orbital electron, the variational principle to

find the critical values of energy, for a fixed total probability, leads us to the eigenvalue

problem for the Hamiltonian. The actual energy level that a particular electron will take

is determined, for example, by the deexcitation process of emitting photons. We will find

a similar picture for the 2D-fluid turbulence; the zonal enstrophy has discrete levels of

critical values (local minimums); by emitting wavy enstrophy, the zonal enstrophy relaxes

into lower levels.

If there is no constraint on partitioning, the zonal enstrophy can be minimized to

zero (even if the total enstrophy is kept at a non-zero constant). But some constraints

prevent this to occur. We will identify the “key constraints” that determine the reasonable

estimate of the zonal enstrophy.

The reciprocal problem, which maximizes the complementary wavy enstrophy (= total

enstrophy − zonal enstrophy), was first studied by Shepherd [35] with a different motiva-

tion, i.e. to estimate upper bounds on instabilities in nonlinear regime. This is seemingly

equivalent to the minimization of the zonal component, however, the effective “constraints”

may differ (see Appendix A). The conservation of the pseudo-momentum was invoked as

the essential constraint. Improved estimates have been proposed by taking into account

more general set of invariants which are known as Casimirs [36]. In the present study of the

minimization of the zonal component, however, we invoke a different constant of motion,

the energy, as the principal constraint (in addition to other ones such as impulse). The

physical reason is clear because the self-organization is a spontaneous process in which the

redistribution of the enstrophy between the zonal and wavy components can occur only if

the energetics admits. Moreover, the energy constraint imparts a mathematically peculiar

property to the variational principle, which is the other incentive of this study.
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CHAPTER 2. INTRODUCTION OF PART I

2.2 Outline of part I

Part I is organized as follows. In the next chapter, we will start by reviewing the basic

formulation and preliminaries. Chapter 4 describes the main result. We will derive discrete

levels of the minimum zonal enstrophy. We will propose the notion of deexcitation to lower

enstrophy levels (in analogy of energy levels of quantum states); the relaxation into lower

levels corresponds to the inverse cascade. According to the conjecture of Rhines scale [9],

the inverse cascade continues until the linear Rossby wave term overcomes the nonlinear

term. In Chapter 5, we will study the relaxation process by numerical simulation. The

conventional Rhines scale will be revisited to give an improved estimate of the relaxed

zonal enstrophy level. Chapter 6 concludes part I.
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Chapter 3

Basic formulation and

preliminaries

3.1 Vortex dynamics on a beta plane

We consider a barotropic fluid on a beta-plane

M = {ξ = (x, y)T; x ∈ [0, 1), y ∈ (0, 1)}.

Here, x is the azimuthal coordinate (longitude) and y is the meridional coordinate (lati-

tude). Identifying the points (0, y)T = (1, y)T, all functions on M is periodic in x. The

boundary is ∂M = Γ0 ∪ Γ1 with

Γ0 = {ξ = (x, 0)T; x ∈ [0, 1)}, Γ1 = {ξ = (x, 1)T; x ∈ [0, 1)}.

We will denote the standard L2 inner product by ⟨f, g⟩:

⟨f, g⟩ =
∫
M
f(ξ)g(ξ) d2ξ,

and the L2 norm by ∥f∥ = ⟨f, f⟩1/2.

The state vector is the fluid vorticity ω ∈ L2(M). We define the stream function (or
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CHAPTER 3. BASIC FORMULATION AND PRELIMINARIES

Gauss potential) ψ by

−∆ψ = ω, (3.1)

where ∆ = ∂2x + ∂2y . The flow velocity is given by

v =

 vx

vy

 = ∇⊥ψ =

 ∂yψ

−∂xψ

 . (3.2)

Adding a normal coordinate z, we embed x-y plain in R3, and consider a 3-vector ṽ =

(vx, vy, 0)
T such that ∂zṽ = 0. Then, we may calculate ∇× ṽ = (0, 0,−∆ψ)T = (0, 0, ω)T,

justifying that we call ω the vorticity.

To determine ψ by (3.1), we impose a homogeneous Dirichlet boundary condition

ψ
∣∣
Γ0

= ψ
∣∣
Γ1

= 0. (3.3)

Since M is periodic in x, we have

Dψ
∣∣
x=0

= Dψ
∣∣
x=1

, (3.4)

whereD is an arbitrary linear operator. We note that (3.3) implies that the flow is confined

in the domain (i.e. n · v
∣∣
∂M

= vy
∣∣
∂M

= 0; n is the unit normal vector on ∂M), and has

zero meridian flux: ∫ 1

0
vx dy =

∫ 1

0
∂yψ dy =

[
ψ

]y=1

y=0
= 0. (3.5)

We note that a weaker boundary condition such that ψ|Γ0 = a, ψ|Γ1 = b (a and b are

some real constants) maintains vy|Γ0 = vy|Γ1 = 0, but allows a finite meridian flux (cf.

Remark 2).

We define the Laplacian as a self-adjoint operator in L2(M) by imposing the boundary

condition (3.3) to its domain. Its unique inverse K = (−∆)−1 is a compact self-adjoint

operator, by which we can solve (3.1) for ψ.

Taking into account the Coriolis force, the governing equation of ω is

∂tω + {ω + βy, ψ} = 0, (3.6)
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where {f, g} = (∂xf)(∂yg) − (∂xg)(∂yf), and β is a real constant number measuring the

meridional variation of the Coriolis force. When β = 0, (3.6) reduces into the standard

vorticity equation. A finite β introduces anisotropy to the system, resulting in creation of

zonal flow. The Rhines scale [9] speaks of the balance of the two terms {ω, ψ} and {βy, ψ},

by which we obtain the typical scale length of the zonal flow (see Sec. 4.5)

Inverting (3.1) by K = (−∆)−1, we may rewrite (3.6) as

∂tω + {ω + βy,Kω} = 0. (3.7)

We call

ωt := ω + βy (3.8)

the total vorticity, which is the sum of the fluid part ω and the ambient part βy (the latter

is due to the rotation of the system).

The following identity will be useful in the later calculations:

⟨f, {g, h}⟩ = ⟨g, {h, f}⟩, (3.9)

where f, g and h are C1-class functions in M , and either f or g satisfy (3.3).

Remark 1 (Euler’s equation with Coriolis force) The vortex equation (3.6) is de-

rived from Euler’s equation of incompressible (∇ · v = 0) inviscid flow with a Coriolis

force:

∂tv + (v · ∇)v = −∇p+ 2v ×Ω, (3.10)

where Ω is the angular velocity of rotating frame, and p is the pressure of the fluid.

Putting 2Ω = βyez (ez is the unit vector normal to the x-y plane, which we will call the

z-direction), assuming a two-dimensional flow (3.2), and operating curl on the both sides

of (3.10), we obtain (3.6) from the z-component of the equation. Notice that the Coriolis

force is directed perpendicular to v, so it does not change the energy of the flow; hence,

Coriolis force resembles the Lorentz force v ×B.

12
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3.2 Conservation laws and symmetries

Proposition 1 (constants of motion) The following functionals are constants of mo-

tion of the evolution equation (3.7):

1. Energy:

E(ω) :=
1

2
⟨ω,Kω⟩. (3.11)

By rewriting

E =
1

2
⟨(−∆ψ), ψ⟩ = 1

2

∫
M

|∇ψ|2d2ξ = 1

2

∫
M

|∇⊥ψ|2d2ξ =
1

2

∫
M

|v|2d2ξ,

we find that E evaluates the kinetic energy of the flow v.

2. Longitudinal momentum:

P (ω) :=

∫
M
∂y(Kω) d2ξ, (3.12)

We may rewrite

P =

∫
M
∂yψ d2ξ =

∫
M
vx d

2ξ

to see that P is the integral of the longitudinal momentum. By (3.5), P must be

constantly zero.

3. Circulation:

F (ω) := ⟨1, ω⟩. (3.13)

Integrating by parts, we may write

F =

∫ 1

0

[
vx

]y=1

y=0
dx,

which evaluates the circulation of the flow v along the boundary ∂M .

4. Impulse:

L(ω) := ⟨y, ω⟩. (3.14)

Integrating by parts and using the boundary conditions (3.3) and (3.4), we may

13



CHAPTER 3. BASIC FORMULATION AND PRELIMINARIES

rewrite

L =

∫
M
y(∂xvy − ∂yvx) d

2ξ =

∫
M
vx d

2ξ −
∫ 1

0

[
yvx

]y=1

y=0
dx.

The first term on the right-hand side is P , which vanishes by (3.5). Hence, L

corresponds to the impulse ξ × v averaged over the boundary.

5. Generalized enstrophy:

Gβ(ω) :=

∫
M
f(ω + βy) d2ξ, (3.15)

where f is an arbitrary C1-class function, and the argument ω + βy is the total

vorticity including the ambient term βy; see Remark 1. For f(u) = u2/2, Gβ(ω) is

the conventional enstrophy of the total vorticity.

6. Fluid enstrophy:

Q(ω) :=
1

2
∥ω∥2. (3.16)

(proof) While these conservation laws are well known, we give the proof to see how they

originate. Suppose that ω is a C1-class solution of (3.7). Rewriting (3.7) in terms of the

total vorticity ωt = ω + βy, we have ∂tωt + {ωt, ψ} = 0 (where ψ = K(ωt − βy)).

(1) Using the self-adjointness of K, we may calculate

d

dt
E = ⟨Kω, ∂tω⟩ = ⟨ψ, {ψ, ωt}⟩ = ⟨ωt, {ψ,ψ}⟩ = 0.

(2) To evaluate d
dtP =

∫
M (∂tvx) d

2ξ, we invoke the x-component of Euler’s equation

∂tv + (v · ∇)v = −∇p+ 2v ×Ω:

∂tvx = −vx∂xvx − vy∂yvx + βyvy − ∂xp.

Integrating by parts with the boundary conditions (3.3) and (3.4), we observe

d

dt
P =

∫
M
(−vx∂xvx − vy∂yvx + βyvy − ∂xp) d

2ξ

=

∫
M

[
−∂x(v2x + p) + βyvy

]
d2ξ

= −β
∫ 1

0

[
yψ

]x=1

x=0
dy = 0.
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To derive the second line, we have used ∇ · v = 0 to put ∂yvy = −∂xvx.

(3) Using (3.9), we obtain

d

dt
⟨1, ω⟩ = ⟨1, {ψ, ωt}⟩ = ⟨ψ, {ωt, 1}⟩ = 0.

(4) Similarly we obtain

d

dt
L = ⟨y, {ψ, ω + βy}⟩ = ⟨y, {ψ, ω}⟩ = ⟨ψ, {ω, y}⟩

=

∫
M
ψ ∂xω d2ξ =

∫
M
vyω d2ξ

=
1

2

∫
M
∂x(v

2
y − v2x) d

2ξ = 0.

(5) Using (3.9), we obtain

d

dt
Gβ = ⟨f ′(ωt), ∂tωt⟩ = ⟨f ′(ωt), {ψ, ωt}⟩ = ⟨ψ, {ωt, f ′(ωt)}⟩ = 0.

(6) The generalized enstrophy for f(u) = u2/2 may be written as

Gβ(ω) =
1

2
∥ω + βy∥2 =

1

2
∥ω∥2 + β⟨y, ω⟩+ β2

6

= Q(ω) + βL(ω) +
β2

6

Since Gβ(ω) and L(ω) are constants, Q(ω) is also a constant.

Remark 2 (Galilean symmetry) Notice that P ≡ 0 is an immediate consequence of

(3.5) that comes form the homogeneous Dirichlet boundary condition (3.3). However, in

the proof of the constancy of P (Proposition 1), we used only vy|Γ0 = vy|Γ1 = 0, which

may be guaranteed by a weaker boundary condition ψ|Γ0 = a, ψ|Γ1 = b (a and b are some

real constants). Hence, in a more general setting of boundary condition (or the definition

of K), P may assume a general (non-zero) constant value. Then, a question arises: Dose

the homogeneous Dirichlet condition (3.3) violates the generality of vortex dynamics? The

answer is no: The Galilean symmetry of the system subsumes the freedom of the foregoing

15
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a and b. First, the transformation ψ 7→ ψ− a does not change v = ∇⊥ψ, so we may set a

generalized boundary condition to be ψ|Γ0 = 0, ψ|Γ1 = c. With ψc := cy, we decompose

ψ = ψ0 + ψc so that ψ0 satisfies the homogenized boundary condition (3.3). We have

∇⊥ψc = c∇x, a constant velocity in the longitudinal direction, and ω = −∆ψ = −∆ψ0.

Inserting this into (3.6), we obtain

∂tω + {ω + βy, ψ0}+ c{ω, y} = 0,

The distraction c{ω, y} = c∂xω can be cleared by Galilean boost x 7→ x−ct. In the inertial

frame, we may put ψ0 = Kω to reproduce (3.7).

Evidently, we have

Lemma 1 (translational symmetry) The constants of motion E, P , F , L, Gβ, and

W are invariant against the transformation

T (τ) : ω(x, y) 7→ ω(x+ τ, y), (τ ∈ R). (3.17)

3.3 Zonal and wavy components

The phase space of the vorticity ω is

V = L2(M). (3.18)

We say that ω is zonal when ∂xω ≡ 0 in M . The totality of zonal flows deifies a closed

subspace Vz ⊂ V . The zonal average

Pzω :=

∫ 1

0
ω(x, y) dx (3.19)

may be regarded as a projection from V onto Vz. The following basic properties of the

projector Pz may be known to the reader, but we summarize them as Lemmas for the

convenience of the analysis in Chapter 4. By the orthogonal decomposition V = Vz ⊕ Vw,

16
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we define the orthogonal complement Vw, i.e., ωw ∈ Vw, iff ⟨ωw, ωz⟩ = 0 for all ωz ∈ Vz.

We call ωw ∈ Vw a wavy component, which has zero zonal average: Pzωw = 0. We will

denote

Pw = I − Pz,

which is the projector onto Vw. Now we may write

V = Vz ⊕ Vw = (PzV )⊕ (PwV ).

Being projectors, Pz and Pw satisfy PzPz = Pz, PwPw = Pw, and PzPw = PwPz = 0.

We also have the following useful identity:

Lemma 2 (commutativity) Let M be a beta-plane (which is periodic in x). For ψ ∈

K(V ), we have

Pz∆ψ = ∆Pzψ. (3.20)

For ω ∈ V , we have

PzKω = KPzω, (3.21)

PwKω = KPwω. (3.22)

(proof) By the periodicity in x, we may calculate as

Pz∆ψ =

∫ 1

0
(∂2xψ + ∂2yψ) dx =

[
∂xψ

]x=1

x=0
+ ∂2y

∫ 1

0
ψ dx = ∆Pzψ.

Putting ψ = Kω, (3.20) reads −Pzω = ∆PzKω. Operating K on both sides yields (3.21).

Using this, we obtain PwKω = (1− Pz)Kω = K(1− Pz)ω = KPwω.

The following properties are useful:

Lemma 3 (partition laws) Let us decompose ω = ωz + ωw (ωz = Pzω ∈ Vz, ωw =

Pwω ∈ Vw).

17
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1. The circulation is occupied by the zonal component ωz, i.e.,

F (ω) = F (ωz). (3.23)

2. The impulse is occupied by the zonal component ωz, i.e.,

L(ω) = L(ωz). (3.24)

3. The fluid enstrophy is simply separated as

Q(ω) = Q(ωz) +Q(ωw). (3.25)

4. The energy is simply separated as

E(ω) = E(ωz) + E(ωw). (3.26)

(proof) The first three relations are clear. The energy partition (3.26) is due to

⟨ωz,Kωw⟩ = ⟨ωw,Kωz⟩ = 0,

which follows from (3.21).

Remark 3 (stationary state) Evidently, ∂x(Kωz) = 0 for ωz ∈ Vz. Hence, {ωz +

βy,Kωz} = 0, implying that every member ωz ∈ Vz is a stationary solution of (3.7).

18



Chapter 4

Estimate of zonal enstrophy

4.1 Zonal enstrophy vs. wavy enstrophy

The aim of this work is to find the minimum of the zonal enstrophy defined by

Z(ω) :=
1

2
∥Pzω∥2. (4.1)

The complementary wavy enstrophy is W (ω) = 1
2∥Pwω∥

2. By (3.25), the total enstrophy

is

Q(ω) = Q(Pzω) +Q(Pwω) = Z(ω) +W (ω).

When the total enstrophy Q(ω) is conserved (see Proposition 1), the minimum of Z(ω)

gives the maximum of W (ω).

The simplest version of the minimization problem is to find the minimum Z(ω) under

the constraint of Q(ω) = CQ (̸= 0). Introducing a Lagrange multiplier ν, we minimize

Z(ω)− νQ(ω). (4.2)

Using the self-adjointness of Pz, we obtain the the Euler-Lagrange equation

Pzω − νω = 0. (4.3)
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Operating Pz on (4.3) yields

(1− ν)Pzω = 0.

On the other hand, operating Pw yields

νPwω = 0.

There are two possibilities of solving these simultaneous equations.

1. ν = 0: Then, Pzω = ωz = 0 and Pwω = ωw is an arbitrary function satisfying

Q(ωw) = CQ; hence, minZ(ω) = 0. (This simple exercise reveals an unusual aspect

of the present variational principle,which is caused by the non-coerciveness of the

functional Z(ω) to be minimized. Notice that the minimizer is not unique, because

Pz has nontrivial kernel, i.e. Ker(Pz) = Vw).

2. ν = 1: Then, Pwω = ωw = 0 and Pzω = ωz is an arbitrary function satisfying

Q(ωz) = Z(ω) = CQ; hence, this solution gives the “maximum” of Z(ω).

As we mentioned above, the minimizer is not unique here. To obtain a nontrivial

estimate of the minimum Z(ω), we have to take into account “constraints” posed on the

dynamics of redistributing enstrophy. Guided by Proposition 1, we start with some simple

ones.

4.2 Constraints by circulation and impulse

Let us consider the circulation and impulse as constraints.

Theorem 1 The minimizer of the zonal enstrophy Z(ω) under the constraints on the

circulation F (ω) = CF , the impulse L(ω) = CL, as well as the total enstrophy Q(ω) = CQ

is a vorticity ω such that

Pzω = a+ by, (a = 4CF − 6CL, b = 12CL − 6CF ), (4.4)

which gives

Z0 := minZ(ω) = 2C2
F − 6CFCL + 6C2

L. (4.5)
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(proof) Let us minimize

Z(ω)− νQ(ω)− µ0F (ω)− µ1L(ω). (4.6)

The Euler-Lagrange equation is

Pzω − νω = µ0 + µ1y. (4.7)

Operating Pz on both sides of (4.7) yields

(1− ν)Pzω = µ0 + µ1y. (4.8)

On the other hand, operating Pw yields

νPwω = 0. (4.9)

First, assume that 1− ν ̸= 0. Inserting Pzω of (4.8) into the definition of F (ω) = F (Pzω)

and L(ω) = L(Pzω) (see Lemma3 (1) and (2)), we determine µ0 and µ1 of to match

the constraint ⟨1, ω⟩ = CF and ⟨y, ω⟩ = CL; we obtain a := µ0/(1 − ν) = 4CF − 6CL,

and b := µ1/(1 − ν) = 12CL − 6CF . Inserting this ωz = a + by into Z(ω), we obtain

the minimum (4.5). On the other hand, (4.9) is satisfied by ν = 0 (consistent with the

forgoing assumption 1− ν ̸= 0) and an arbitrary ωw = Pwω such that

1

2
∥ωw∥2 = CQ − (2C2

F − 6CFCL + 6C2
L). (4.10)

The right-hand side is non-negative, if the constraints F (ω) = CF , L(ω) = CL and Q(ω) =

CQ are consistent. It is only when the constants CF , CL and CQ are given so that the

right-hand side of (4.10) is zero, that the other assumption 1 − ν = 0 applies; then, the

unique solution Pwω = 0 (hence, ω = Pzω) is obtained.

Notice that the minimizer is still non-unique (excepting the special case mentioned in

the proof); every a+ by + ωw (∀ωw ∈ Vw such that (4.10) holds) satisfies (4.4). However,
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the minimum value (4.5) is uniquely determined.

4.3 Constraint by energy

The situation changes dramatically, when we include the energy constraint E(ω) = CE ;

laminated vorticity distribution, epitomizing the structure of zonal flow, is created by the

energy constraint. The number of lamination (jet number) is identified by the “eigenvalue”

of the Euler-Lagrange equation, which specifies the “level” of the zonal enstrophy (in

analogy of the quantum number of discrete energy in quantum mechanics). To highlight

the role of the energy constraint, we first omit the constraints on the circulation and

impulse.

Taking into account the energy and total enstrophy constraint, we seek the critical

points of

Z(ω)− νQ(ω)− µ2E(ω).

The Euler-Lagrange equation is

Pzω − νω − µ2Kω = 0. (4.11)

Operating Pz yields (denoting ωz = Pzω)

ωz − νωz − µ2Kωz = 0. (4.12)

On the other hand, ωw = Pwω must satisfy

νωw + µ2Kωw = 0. (4.13)

Putting ωz = −∂2yψz(y) in (4.12), we obtain

∂2yψz + λ2ψz = 0, λ2 =
µ2

1− ν
. (4.14)
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The solution satisfying the boundary conditions ψz(0) = ψz(1) = 0 is

ψz = A sinλy (4.15)

with eigenvalues

λ = n1π (n1 ∈ Z).

The corresponding zonal vorticity is

ωz = Aλ2 sinλy. (4.16)

On the other hand, putting ωw = −∆ψw, (4.13) reads

∆ψw + k2ψw = 0, k2 = −µ2
ν
. (4.17)

The solution satisfying the boundary conditions ψw(x, 0) = ψw(x, 1) = 0, as well as the

periodicity in x, is given by (as the equivalent class of the translational symmetry in x;

see Lemma1)

ψw = B sin kxx sin kyy, k2 = k2x + k2y (4.18)

with eigenvalues

kx = 2n2π, ky = n3π (n2, n3 ∈ Z).

The corresponding wavy vorticity is

ωw = Bk2 sin kxx sin kyy. (4.19)

Summing the zonal and wavy components, we obtain

ψ = A sinλy +B sin kxx sin kyy, (4.20)

ω = Aλ2 sinλy +Bk2 sin kxx sin kyy. (4.21)

The two amplitudes A and B are determined by the constraints E(ω) = CE and Q(ω) =
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CQ; inserting (4.20) and (4.21) into the definitions of E(ω) and Q(ω), we obtain

CE =
A2λ2

4
+
B2k2

8
, (4.22)

CQ =
A2λ4

4
+
B2k4

8
. (4.23)

Solving (4.22) and (4.23) for A and B, and inserting the solution into the zonal enstrophy

Z(ω) and wavy enstrophy W (ω), we obtain the critical values

Zλ,ϵ =
λ2CE − ϵCQ

1− ϵ
, (4.24)

Wλ,ϵ =
CQ − λ2CE

1− ϵ
, (4.25)

where ϵ = λ2/k2, scaling the ratio of the wave length of the zonal components to that

of the wavy components. For Zλ,ϵ ≥ 0 and Wλ,ϵ ≥ 0, there are two possibilities: ϵ ≤

(λ2CE)/CQ ≤ 1 or ϵ ≥ (λ2CE)/CQ ≥ 1. Here, the former regime of ϵ is relevant, because

we assume that the wavy components have smaller scales in comparison with the zonal

component (i.e. ϵ < 1). Then, Zλ,ϵ of (4.24) increases monotonically as ϵ decreases (or k2

increases; see Fig. 4.1), and we have

lim
ϵ→0

Zλ,ϵ = λ2CE . (4.26)

Notice that this limit gives the upper bound for Z(ω) of the corresponding eigenvalue λ,

which is achieved when the wavy component has the smallest scale ϵ → 0. For actual

wavy components, Z(ω) takes a smaller value than λ2CE , i.e.

Z(ω) ≤ λ2CE . (4.27)
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Figure 4.1: The graph of Z(ω) and W (ω) given in (4.24) and (4.25).

4.4 Constraints by energy, circulation, impulse and total

enstrophy

Now we study the minimum of the zonal enstrophy Z(ω) under the all constraints of

energy, circulation, impulse, and total enstrophy. In contrast to the observation of Sec. 4.3

(where the minimum of Z(ω) is not determined by the energy CE), we will find that the

minimum of Z(ω) is determined by the circulation CF and impulse CL. In comparison

with the result of Sec. 4.2, however, we have a discrete set of enstrophy levels (each of

them corresponds to different lamination number of zonal flow). Whereas they are due to

the energy constraint, Z(ω) itself does not depend on the values of the energy CE .

Introducing Lagrange multipliers, we seek the minimizer of

Z(ω)− νQ(ω)− µ0F (ω)− µ1L(ω)− µ2E(ω).

The Euler-Lagrange equation is

Pzω − νω − µ0 − µ1y − µ2Kω = 0. (4.28)
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The solution satisfying the boundary conditions ψ(x, 0) = ψ(x, 1) = 0, as well as the

periodicity in x, is ψ = ψz + ψw with

ψz = A1 cosλy +A2 sinλy −
µ0 + µ1y

µ2
, (4.29)

ψw = B sin kxx sin kyy, (4.30)

where

λ =

√
µ2

1− ν
, k2 = k2x + k2y = −µ2

ν
, (4.31)

and

kx = 2n2π, ky = n3π (n2, n3 ∈ Z). (4.32)

The corresponding vorticities are

ωz = A1λ
2 cosλy +A2λ

2 sinλy. (4.33)

ωw = Bk2 sin kxx sin kyy. (4.34)

The zonal enstrophy Z(ω) of the minimizer is

Z(ω) =
A2

1λ
3

8
(2λ+ sin 2λ) +

A2
2λ

3

8
(2λ− sin 2λ)

+
A1A2λ

3

4
(1− cos 2λ). (4.35)

We have yet to determine the eigenvalue λ and the coefficients A1, A2 and B. Inserting

ψ = ψz + ψw and ω = ωz + ωw into the constraints F (ω) = CF , L(ω) = CL, E(ω) = CE
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and Q(ω) = CQ, we obtain

CF = A1λ sinλ+A2λ(1− cosλ), (4.36)

CL = A1(λ sinλ+ cosλ− 1) +A2(sinλ− λ cosλ), (4.37)

CE =
A2

1λ

8
(2λ+ sin 2λ) +

A2
2λ

8
(2λ− sin 2λ)

+
A1A2λ

4
(1− cos 2λ)− A1CF

2

− [A1(cosλ− 1) +A2 sinλ]CL
2

+
B2k2

8
, (4.38)

CQ =
A2

1λ
3

8
(2λ+ sin 2λ) +

A2
2λ

3

8
(2λ− sin 2λ)

+
A1A2λ

3

4
(1− cos 2λ) +

B2k4

8
. (4.39)

We may write (4.36) and (4.37) as

CF
CL

 = D(λ)

A1

A2

 . (4.40)

with

D(λ) :=

 λ sinλ λ(1− cosλ)

λ sinλ+ cosλ− 1 sinλ− λ cosλ

 . (4.41)

For given CF and CL, we solve (4.40) to determine the amplitudes of zonal vorticity:

A1 =
CF (sinλ− λ cosλ) + CL(−λ+ λ cosλ)

detD(λ)
, (4.42)

A2 =
CF (−λ sinλ− cosλ+ 1) + CLλ sinλ

detD(λ)
, (4.43)

where detD(λ) = λ(2−λ sinλ−2 cosλ). Inserting (4.42) and (4.43) into (4.35), we obtain

the zonal enstrophy evaluated as a function of λ, which we denote by Zλ. The critical

points (local minimums) of Z(ω), given by

d

dλ
Zλ = 0, (4.44)

27



CHAPTER 4. ESTIMATE OF ZONAL ENSTROPHY

determine the eigenvalues λ characterizing the enstrophy levels.

Instead of displaying the lengthy expression of Zλ, we will show its graphs for typical

choices of the parameters CF and CL. Notice that Zλ depends only on CF (circulation)

and CL (impulse); it does not contain CE (energy) and CQ (enstrophy) as parameters.

First, we pay attention to the singularities given by detD(λ) = 0, where A1 → ∞ and

A0 → ∞, hence Zλ → ∞ (there is an exception, as discussed later). We show the graph

of detD(λ) in Fig. 4.2.

Figure 4.2: The graph of detD.

There are two types of solutions:

λ =

 Λ2n = 2nπ,

Λ2n+1 = (2n+ 1)π − δn,
(n = 0, 1, · · · ),

where each δn is a small positive number such that δn → 0 as n → ∞. The minimums

of Zλ appear in every interval (Λ2n,Λ2n+1). However, if CF = 2CL, Zλ remains finite at

λ = Λ2n+1. In this special case, the minimums of Zλ appear in intervals (Λ2n,Λ2n+2).

In Fig. 4.3, we show examples of Zλ calculated for (left) CF = 0.28 and CL = 0.07,

(right) CF = 0.28 and CL = 0.14 (CF = 2CL).
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Figure 4.3: The graphs of the critical zonal enstrophy Zλ as functions of λ. The minimums

of Zλ determine the eigenvalues of λ. The points on the curve indicates the eigenvalues.

We assume (left) CF = 0.21 and CL = 0.0525, and (right) CF = 0.21 and CL = 0.105.

At λ = 0, Zλ reproduces the result of Theorem1, i.e.

lim
λ→0

Zλ = Z0 = 2C2
F − 6CFCL + 6C2

L, (4.45)

which is the absolute minimum of the zonal enstrophy under the constraints on the circu-

lation F (ω) = CF , the impulse L(ω) = CL, and the total enstrophy Q(ω) = CQ.

The role of the energy constraint E(ω) = CE is to create eigenvalues of λ at which Zλ

takes local minimum values. However, the value of CE does not influence the value of Zλ

directly. As we have seen in (4.27), it poses a constraint on the maximum:

Z(ω) ≤ λ2CE , (4.46)

in addition to the other implicit constraint Z(ω) ≤ CQ. Instead of the zonal component

ωz of (4.33), CE and CQ work for determining the complementary wavy component ωw of

(4.34). By (4.38) and (4.39), we obtain

k2 =
CQ − Zλ
CE − Ez,λ

, (4.47)

B2 =
8(CE − Ez,λ)

2

CQ − Zλ
, (4.48)
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where Ez,λ is the energy of the zonal component ωz evaluated at the eigenvalue λ. Notice

that k2B2 (∼ energy of the wavy component) is determined only by CE and Ez,λ. So,

the role of the total enstrophy constraint is to determine the wave number k of the wavy

component.

Remark 4 (trivial constraints) For the special case of CF = 0 and CL = 0, a lami-

nated zonal flow (A1 ̸= 0 and/or A2 ̸= 0) can occur only if

detD(λ) = λ(2− λ sinλ− 2 cosλ) = 0.

Then, the eigenvalues are λ = Λ2n and Λ2n+1 (n = 0, 1, 2, · · · ), the previous singular

points; see Fig. 4.2. For λ = Λ2n (λ = 0 gives the trivial solution ωz = 0),

D(λ) =

 0 0

0 −λ

 ,

hence, A2 = 0. On the other hand, for λ = Λ2n+1,

D(λ) =
1

4
λ sinλ

 4 2λ

2 λ

 ,

and then A2 = −2A1/Λ2n. In both cases, A1 is arbitrary, so we cannot determine the

amplitude of the zonal vorticity ωz. Therefore, the trivial conditions CF = 0 and CL = 0

reproduce the situation of “no-constraint” discussed in Sec. 4.3. We only have the estimate

of the maximum (4.27).

The forgoing results are summarized as:

Theorem 2 For a given set of constants F (ω) = CF , L(ω) = CL, E(ω) = CE, and

Q(ω) = CQ, the zonal enstrophy Z(ω) has a discrete set of critical (local minimum) values

quantized by the eigenvalue λ measuring the lamination period of the zonal vorticity.

1. When CF ̸= 0 or CL ̸= 0, the eigenvalue λ is given by (4.44) as a function of

CF and CL. The corresponding eigenfunction ωz, and the critical value of Z(ω) are
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determined by CF and CL; see (4.33), (4.35), (4.42) and (4.43). The other constants

CE and CQ determine upper bounds CEλ
2 ≥ Z(ω) and CQ ≥ Z(ω).

2. For the special values CF = CL = 0, additional eigenvalues λ = 2nπ and λ = Λn

(n = 1, 2, · · · ) occur. However, the eigenfunctions ωz and the critical values of Z(ω)

are no longer determined by such CF and CL; we only have estimates of upper bounds

CEλ
2 ≥ Z(ω) and CQ ≥ Z(ω).

4.5 Determination of the zonal enstrophy level

To apply Theorem2 to the estimation of attainable zonal enstrophy, we have to determine

the eigenvalue λ that identifies the zonal enstrophy level. Here, we suggest the following

method (which we will examine and improve in Chapter 5).

The self-organization of zonal flow can be seen as a relaxation process of the zonal

enstrophy level, which parallels the inverse cascade in the meridional wave number space.

Just as the transition of the quantum energy level is caused by photon emission, the relax-

ation of the zonal enstrophy level is due to the emission of wavy vorticity, which is driven

by the nonlinear coupling of the zonal and wavy components. Therefore, the relaxation

can proceed as far as the nonlinear term {ω, ψ} dominates the evolution equation (3.6).

Relative to the concomitant linear term β{y, ψ}, the nonlinear term becomes weaker as

the length scale increases (i.e., the inverse cascade proceeds). On the Rhines scale [9]

LR =

√
2U

β
, (4.49)

the linear and nonlinear terms have comparable magnitudes, where U is the representative

magnitude of the zonal flow velocity.

Since the energy is conserved, we may estimate U =
√
2CE . Hence, we have an a

priori estimate

λ ∼ π

LR
= π

√
β

2
√
2CE

. (4.50)

Notice the influence of the energy CE on the eigenvalue λ. Although each value of the

zonal enstrophy level is independent to CE , the selection of the level is made by CE .
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Chapter 5

Comparison with numerical

simulations

5.1 Simulation model

In this chapter, we compare the forgoing theoretical estimates with numerical simulation

results. With a system size L and a rotation period T , we normalize the variables as

x̌ =
x

L
, y̌ =

y

L
, ť =

t

T
, ω̌ = ωT, ψ̌ =

ψT

L2
, (5.1)

by which the vorticity equation reads

∂ťω̌ + {ω̌ + βy̌, ψ̌} = ν∇ω̌, (5.2)

where ν represents the viscosity (reciprocal Reynolds number). For simplicity, we will omit

the normalization symbol ˇ in the following description. Whereas our theoretical analysis

is based on the dissipation-free model (3.6), we add a finite viscosity ν for numerical

stability (typically, we put ν = 1.0 × 10−6). A finite viscosity is also indispensable for

the self-organization process, because the ideal (zero viscosity) dynamics is constrained by

infinite number of Casimirs (local circulations), preventing changes in streamline topology.

The theoretical model, however, ignores the dissipation by assuming the robustness of the

invariants that are used as constraints (see Proposition 1). The influence of dissipation
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CHAPTER 5. COMPARISON WITH NUMERICAL SIMULATIONS

will be examined carefully when we compare the theory and numerical simulation.

In the following simulation, we assume parameters comparable to the Jovian atmo-

sphere, where L = 4.4× 108m, T = 8.6× 105sec. The parameter β is determined as

β =
2Ω

R
(cos θ)LT,

where Ω is the angular vorticity of rotating frame and R is the radius and θ is latitude.

For L ∼ 2πR and θ ∼ 0, we obtain β ∼ 102. The jet velocity reaches U ∼ 1 × 102

m/s, which yields CF ∼ 4 × 10−1 and CL ∼ 2 × 10−1 if the jet achieves the maximum

opposite velocities on both north and south boundaries. Here we assume moderate values

CF ∼ 10−1 and CL ∼ 10−1.

Remark 5 (General aspect ratio) When we consider a rectangular domain with a

general aspect ratio α (the system size in y is L, while in x is αL, and T is a rotation

period), variables are normalized as

x̌ =
x

αL
, y̌ =

y

L
, ť =

t

T
, ω̌ =

ω

Ω
, ψ̌ =

ψ

Ψ
, (5.3)

with

Ω =
1

T
, Ψ =

L2

T
, ν̌ =

νT

L2
, β̌ = βLT, (5.4)

the governing equation (3.6) modifies as

∂ťω̌ +
1

α
{ω̌ + β̌y̌, ψ̌} = 0, (5.5)

where

−(
1

α2

∂2

∂x̌2
+

∂2

∂y̌2
)ψ̌ = ω̌. (5.6)

While α ̸= 1 changes the relation between ψ and ω, it does not influence the results of

Theorem 1 and Theorem 2, because the zonal component of the solution ωz (or ψz) of the

Euler-Lagrange equation is invariant. The Rhines scale is also independent to α. So, we

assume α = 1.
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5.2 Self-organized zonal flow

As we have seen, the theoretical estimate of the minimum Z(ω) changes dramatically

depending on whether CF and CL are finite or not (Sec. 4.4). First, we study the general

case where both CF and CL are finite (the special case of CF = 0 and CL = 0 will be

examined in Sec. 5.4). We assume an initial condition such that

ω|t=0 = 5.0 sin 15πy +
∑
m,n

αmne
imx sinnπy,

with random αmn(|αmn| ∈ [0, 50) for 5 ≤ m,n ≤ 10), which yields CE = 3.6× 10−2, CF =

0.21 and CL = 0.105.

In Fig. 5.1, we show the evolution of the “ideal” constants. The total energy CE

is well conserved. The changes in CF and CL are also tolerable. Because of a finite

viscosity (ν = 1.0 × 10−6), however, the total enstrophy CQ changes significantly. But it

is not essential for the present purpose of comparison, because the theoretical estimate of

minimum Z(ω) is independent of the CQ. As noted after (4.47)-(4.48), the total enstrophy

Q(ω) = CQ only contributes to estimating the wave number k of the wavy component

ωw. As the simulation shows, the “dissipation” of the total enstrophy is the signature

of the relaxation, when we consider a finite viscosity. We may interpret the dissipation

as the scale separation between the visible scale and micro scale; the latter is separated

from the vortex dynamics model by suppressing the amplitudes of micro-scale vortices.

This scenario is consistent with the local interaction model; the nonlinear dynamics is

dominated by interactions among similarly sized vortices (i.e., local in the Fourier space)

within the inertial range, so it is not influenced by vortices of far smaller scales.
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CHAPTER 5. COMPARISON WITH NUMERICAL SIMULATIONS

Figure 5.1: The evolution of the “ideal” constants in the simulation. Each value is nor-

malized by the corresponding initial value.

Fig. 5.2 shows the self-organized state (t = 20), where an appreciable zonal component

manifests. In Fig. 5.3, we compare the Fourier spectrum of the zonal component ωz = Pzω

in the initial and self-organized states. We find the redistribution of the spectrum into

lower λ modes (i.e., inverse cascade). A comparison with the Rhines scale will be described

later.
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Figure 5.2: Self-organization of zonal flow (color map represents to the local value of ω).

(left) Initial condition with finite circulation CF = 0.21 and impulse CL = 0.11. (right)

Creation of zonal flow observed at t = 20.
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Figure 5.3: The Fourier spectrum of the zonal vorticity ωz = Pzω in the self-organized

state (t = 20). The eigenvalue λ ∼ 5π is dominant.

To make comparison with the theoretical estimate of zonal enstrophy, we plot Zλ (the

theoretical minimum of zonal enstrophy) and CEλ
2 (the theoretical maximum of zonal

enstrophy), evaluated for the parameters determined by the given initial condition, in

Fig. 5.4. As λ = 5π is the dominant mode (Fig. 5.3), we obtain Zλ = 0.69 and CEλ
2 = 8.8.

In Fig. 5.5, we compare the simulation result and the theoretical estimates, demonstrat-

ing that the actual zonal enstrophy Z(ω) stays between the theoretical minimum and

maximum; the estimate of the lower bound is reasonably accurate.
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Figure 5.4: The graphs of Zλ and CEλ
2, evaluated for the parameters corresponding to

the simulation of Fig. 5.2. The points on the curve indicates the eigenvalues.

Figure 5.5: Evolution of the zonal enstrophy Z(ω), and its comparison with the theoretical

minimum Zλ and the maximum CEλ
2 evaluated for the self-organized state λ ∼ 5π. To

demonstrate the sensitivity of the minimum value, we also show the theoretical minimum

Zλ evaluated for λ ∼ 5π, 7π, 9π and 11π.
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5.3 Improved Rhines scale

The forgoing discussion depends on the a posteriori estimate of the eigenvalue λ. As

discussed in Sec. 4.5, however, we need an a priori estimate of λ to make the theory

useful. While the Rhines scale LR has been proposed to estimate λ ∼ π/LR, it turns

out to be too crude. Here, we propose an improved Rhines scale to make more accurate

estimate. Figure 5.6 compares the dominant scale in the final state obtained by simulation

and the Rhines scale for different values of β. It is shown that the dominant scale is

approximately 3 times of the Rhines scale.

The Rhines scale (4.49) is the length scale LR at which the magnitudes of the nonlinear

term {ω, ψ} and the linear term β{y, ψ} become comparable. However, it seems that the

function of the nonlinear term, that derives the relaxation of the enstrophy level λ, does

not end immediately at LR; the numerical experiment shows that the relaxation continues

up to ∼ 3 × LR, where the magnitude of the nonlinear term becomes about one eighth

of the linear term. Therefore, we propose to use L∗
R = 3LR for the a priori estimate

λ = π/L∗
R; modifying (4.50), we estimate

λ ∼ π

3

√
β

2
√
2CE

. (5.7)
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Figure 5.6: The comparison between the dominant scale in the self-organized state and

the Rhines scale for different values of β. L∗
R denotes the modified Rhines scale.

5.4 Degenerate case: CF = 0 and CL = 0

Finally, we examine the degenerate case of CF = 0 and CL = 0, where we cannot provide

nontrivial estimate of the minimum zonal enstrophy (see Theorem2-2). However, we

still observe self-organization of zonal flow, and the corresponding enstrophy satisfies the

maximum condition.

Figure 5.7 shows the creation of zonal flow from an initial condition

ω|t=0 =
∑
m,n

αmne
imx sinnπy,

with random αmn(|αmn| ∈ [0, 50) for 5 ≤ m,n ≤ 10) which is free from zonal component

(ωz = 0 at t = 0). The symmetry also yields CF = 0 and CL = 0, so that the special

condition of Theorem2-2 applies. We only have a nontrivial estimate of the upper bound

of Z(ω).

In Fig. 5.8, we plot the evolution of the zonal enstrophy Z(ω), and compare it with

the theoretical maximum (4.27). Here we used λ = 5π ∼ 1/L∗
R by the improved Rhines

estimate; in Fig. 5.9, we show the Fourier spectrum of ωz, which supports the choice. We
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observe that the time-asymptotic value of Z(ω) stays below the upper bound CEλ
2.

Figure 5.7: Self-organization of zonal flow (color map corresponds to the local value of ω).

(left) Initial condition with zero zonal component ωz = 0. (right) Creation of zonal flow

observed at t = 50.
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Figure 5.8: Evolution of the zonal enstrophy Z(ω) and its comparison with the theoretical

estimate (upper bound).

Figure 5.9: Fourier spectrum of the zonal vorticity in the self-organized state (Fig. 5.7

(right)).
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Chapter 6

Conclusion of Part I

We have found a discrete set of zonal enstrophy levels that are quantized by the eigen-

value λ measuring the mode number (= system size in the latitude direction / lamination

number). As shown in Fig.4.3, a finite circulation CF and/or impulse CL bring about

symmetry breaking in the eigenstates (minimizers), inhibiting even mode numbers. In

actual situation, however, the mixed state may include spectra of even mode numbers (see

Figs. 5.3). By comparing with simulation results, we verified that the theoretical value

Zλ gives a reasonable estimate of the zonal enstrophy, if we choose the relevant mode

number. We note that the enstrophy levels are determined independently of the selection

mechanism. Just as the quantum energy level of an orbital electron is lowered by photon

emission (see Fig. 6.1), the relaxation of the zonal enstrophy level proceeds by the emis-

sion of short-scale wavy vorticity. The relaxation process can be viewed as the forward

cascade of enstrophy (creation of short-scale wavy vortices) and the simultaneous inverse

cascade of the energy spectrum (deexcitation to lower zonal enstrophy states). The energy

constraint plays an essential role in selecting the level; the relaxation continues as far as

the nonlinear term, measured by the energy, dominates the evolution. The Rhines scale

estimates the balance point of the magnitudes of the nonlinear term and the linear Rossby

wave term, but we found that the nonlinear effect continues to work until it becomes about

one order of magnitude smaller than the linear term, so we propose an improved Rhines

scale.

Comparing Theorems 1 and 2, we find that the energy constraint E(ω) = CE plays
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an essential role in creating the discrete zonal enstrophy levels Zλ. Interestingly, the

value CE does not influence the value of each zonal enstrophy Zλ, which is determined

only by the other constants CF (circulation) and CL (impulse). However, in absence of

the energy constraint, we only have the “ground state” λ = 0 as given in Theorem1.

In the eigenstate of ωz (belonging to the eigenvalue λ), the zonal enstrophy Z(ωz) and

the zonal energy E(ωz) are related by Z(ωz) = λ2E(ωz). Under the energy constraint

(and a fixed λ), therefore, Z(ωz) may take a smaller value when the wavy component ωw

shares a larger energy E(ωw). The simultaneous total enstrophy constraint contributes

to determining the wave number k of the wavy component ωw. Without the symmetry

breaking constraints by the circulation F (ω) and the impulse L(ω), E(ωz) can minimize

to zero (see Fig. 4.1), and then, k → ∞ (independently of the specific value of CQ). Finite

symmetry breaking by CF and/or CL brings about a non-trivial minimum E(ωz) (and

the corresponding Z(ωz) = λ2E(ωz)). Then, the partition of the energy to the wavy

component is determined as E(ωw) = CE −E(ωz), and the wave number k is determined

by k2E(ωw) = CQ − Z(ωz). Interestingly, we may not remove the total enstrophy con-

straint from the variational principle, in order to retain a finite wavy component as the

complementary to the zonal component, while its role is limited to characterizing only the

wavy component. This unusual phenomenon in the variational principle is caused by the

non-coerciveness of the target functional Z(ω) with respect to the norm ∥ω∥.

Figure 6.1: Analogy of quantum energy levels and “deexcitation” by emitting small-scale

wavy enstrophy, which parallels the forward cascade of enstrophy.
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Appendix of part I

A The ABC of variational principle

To see the mathematical non-triviality of the variational principle for the zonal enstrophy

in Part I, we review the standard relation between the target functional and constraint.

A.1 Target functional and constraint

We start with a textbook example. The isoperimetric problem is to (1) maximize the

surface area S with a constraint on the periphery length L, or (2) minimize the peripheral

length L with a constraint on the surface area S. Both problems have the same solution,

i.e. a circular disk or its periphery. Notice that reversing the target and constraint in each

setting results in an ill-posed problem; one can make L infinitely long without changing S,

or one can make S infinitely small without changing L. Let us concentrate on minimization

problems. For a variational principle to be well-posed, the target (L) must be “fragile” and

the constraint (S) must be robust. Here the fragility speaks of the sensitivity to small-scale

perturbations. Suppose that we make pleats on a periphery; then L is increased, but S

is not necessarily changed. In analytical formalism, a fragile functional includes a larger

number of differentiations —derivatives are sensitive to small-scale perturbations. In the

forgoing example, we may formally write

S =

∫
R2

IMd2x, L =

∫
R2

|∇IM |d2x, IM (x) =

 1 if x ∈M

0 if x /∈M,

where M is a simply-connected domain ⊂ R2 that should be optimized to minimize L for

some given value of S. Including ∇ in the integrand, L is fragile.
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A.2 Coerciveness and continuity

To make the argument more precise, we introduce the notion of coercive functionals;

cf. [37, 38]. Let u be a real-valued function (state vector) belonging to a function space

(phase space) V , which is a Banach space with a norm ∥u∥. A real-valued functional G(u)

is said coercive, if

∥u∥2 ≤ cG(u), (A.1)

where c is some positive constant. On the other hand, a real-valued functional H(u) is

continuous, if

|H(u+ δ)−H(u)| → 0 (∥δ∥ → 0). (A.2)

We can formulate a well-posed minimization problem with a coercive target functional

G(u) and a continuous constraining functional H(u) (we may also consider multiple con-

straints with continuous functionals).

To see how the coerciveness and continuity influence variational principles, let us con-

sider an example with two functionals

G(u) =

∫
M

|∇u(x)|2dnx, H(u) =

∫
M

|u(x)|2dnx,

where u is a scalar function defined in a smoothly bounded open set M ⊂ Rn. We assume

that u = 0 on the boundary ∂M . Notice that H(u)1/2 is the L2 norm ∥u∥. Therefore,

H(u) is a continuous functional on the function space V = L2(M). By the Poincaré

inequality, we have

∥u∥2 ≤ c∥∇u∥2 = cG(u)

with a positive constant c. Therefore, G(u) is a coercive functional.

First, we seek for a minimizer of G(u) with the constraint H(u) = 1. This is a well-

posed problem. The minimizer is found by the variational principle

δ[G(u)− λH(u)] = 0, (A.3)
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where λ is a Lagrange multiplier. The Euler-Lagrange equation

−∆u = λu,

together with the above-mentioned boundary condition, constitute an eigenvalue problem.

We can easily show that every eigenvalue λ is positive. Let λj be an eigenvalue and φj

be the corresponding normalized eigenfunction (∥φj∥2 = 1). With setting u = aφj , and

demanding H(u) = 1, we obtain a = 1 and G(u) = λj . The smallest λj , then, yields the

minimum G(u).

The reversed problem of finding a minimizer of H(u) with the restriction G(u) = 1

is ill-posed, because the constraint is posed by a functional G(u) that is not continuous

in the topology of L2(M). Let us elucidate the pathology. The variational principle

δ[H(u) − µG(u)] = 0 (µ is a Lagrange multiplier) yields the Euler-Lagrange equation

−∆u = µ−1u. Let µ−1 = λj (an eigenvalue of −∆), and u = aφj . The condition G(u) = 1

yields a = λ
−1/2
j , andH(u) = 1/λj . Hence, the minimum ofH(u) is achieved by the largest

eigenvalue that is unbounded, viz., infH(u) = 0 and the minimizer limλj→∞ λ
−1/2
j φj = 0

is nothing but the minimizer of H(u) without any restriction. The constraint G(u) = 1

plays no role in this minimization problem.

A.3 Non-coercive target functional

Let us modify the target functional of (A.3) to a non-coercive functional. Let Vk =

span {φ1, · · · , φk}, which is a closed (finite-dimension) subspace of V = L2(M). We

denote the orthogonal complement by V ′, i.e. we decompose V = Vk ⊕ V ′. Let P be the

orthogonal projector V → V ′. Consider

G′(u) = ∥∇(Pu)∥2 =
∫
M
(−∆Pu)(Pu) dnx =

∞∑
j>k

λj(u, φj)
2,

where (f, g) =
∫
M f(x) g(x) dnx is the inner product of L2(M). Evidently, G′(u) is not

coercive. The modified variational principle

δ[G′(u)− λH(u)] = 0 (A.4)
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yields the Euler-Lagrange equation that reads, after expanding with eigenfunctions,

λ′j(u, φj) = λ(u, φj) (j = 1, 2, · · · ), (A.5)

where the “modified eigenvalues” are

λ′j =

 0 (j = 1, · · · , k),

λj (j > k).

The minimizer of G′(u) is a solution of (A.5) such that λ = 0 and

u =
k∑
j=1

ajφj ,

where constants a1, · · · , ak can be arbitrarily chosen provided that
∑k

j=1 |aj |2 = 1 in order

to satisfy the constraint H(u) = 1. We obtain minG′ = 0, but the minimizer is not a

unique function.

This prototypical example elucidates the essence of the pathology created in a varia-

tional principle with non-coercive target functional. We encounter a similar non-uniqueness

(degeneracy) problem in Sec. 4.1. Interestingly, however, the energy constraint brings

about a dramatic change in the mathematical structure, and removes the degeneracy;

Sec. 4.3.
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Part II

Kinetic construction of the

high-beta anisotropic-pressure

equilibrium in magnetosphere
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Chapter 7

Introduction of Part II

7.1 Background and purpose of part II

The magnetosphere is a naturally made system confining a high-beta plasma [39]. A similar

system may be created for fusion energy applications [40, 41]. Laboratory magnetospheres,

namely, LDX [42] and RT-1 [43], demonstrated a stable confinement of high-beta (∼ 1)

plasmas.

The aim of this study is to formulate a theoretical model of high-beta equilibrium in

the magnetosphere. Magnetized particles in an axisymmetric magnetic field have three

independent first integrals, facilitating an easy construction of the equilibrium solutions of

the drift kinetic equation. The strong inhomogeneity of the dipole magnetic field is the key

to understanding the localization of magnetized particles to the vicinity of the magnetic

dipole [40]. However, in a high-beta plasma, the magnetic field must be corrected by

considering the diamagnetic current. We observe a significant expansion of the dipole field

due to plasma pressure, which can be used to estimate the plasma pressure [44, 45]. At the

first-order level, we may invoke the Grad–Shafranov equation [46] to analyze the magnetic

field of a finite-beta plasma. However, this equation falls short of considering the strong

anisotropy of the distribution function, as the kinetic model makes predictions for the

magnetospheric system. The bounce of mirror-trapped particles introduces variations in

the velocity distribution function along the field lines. The anisotropic temperature is also

demonstrated experimentally in RT-1 [47]. Appropriate corrections can be made by using
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the extended Grad–Shafranov equation, which was developed to model the equilibrium

of mirror systems [48, 49]. In fact, each magnetic flux tube in the magnetosphere may

be viewed as a crescent-shaped mirror system. The extended Grad–Shafranov equation,

which is still a macroscopic magneto-fluid model, considers an anisotropic pressure that

is a function of the two-dimensional magnetic coordinates, namely, the flux function and

magnetic field strength. While the functional form of the pressure tensor remains arbitrary

in such a fluid model, parametric studies on the effect of anisotropic pressure have been

performed using numerical analysis [50, 51]. We have yet to build a consistent relationship

between the kinetic description and the magneto-fluid model, and to provide a physical

reason for selecting an appropriate form of the pressure tensor.

In the present study, we constructed a self-consistent model based on the idea of the

maximum entropy state in a topologically constrained phase space (or a symplectic leaf

foliated by Casimirs) [52]. In the context of magnetospheric plasma confinement, the adi-

abatic invariant acts as a topological constraint (Casimir of the noncanonical Hamiltonian

mechanics [34]). Providing the topological charge (in fact, the Casimir) with a chemical

potential, we define a grand canonical ensemble, on which we consider the Gibbs distribu-

tion. As the magnetic moment is the relevant Casimir, the pair of chemical potential and

Casimir parallels that of the magnetic field and magnetization in the well-known model

of magnetic materials. Such a “thermal equilibrium” yields the desired pressure tensor to

be used in the generalized Grad–Shafranov equation.

7.2 Outline of part II

Part II is organized as follows: In the following chapter, we review the Hamiltonian me-

chanics of magnetized particles and derive the stationary distribution function that de-

scribes the thermal equilibrium under the topological constraint given by the magnetiza-

tion. The corresponding pressure tensor is used to formulate the generalized (anisotropic

pressure) Grad–Shafranov equation in chapter 9. In chapter 10, we show examples of nu-

merical solutions, as well as some relations useful to estimate the anisotropic pressure

effect. Chapter 11 concludes part II.
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Chapter 8

Theoretical model

To construct the high-beta equilibrium of magnetospheric plasma, we combine two mod-

els: one is the kinetic model for calculating the distribution function, and the other is

the macroscopic magneto-fluid magnetohydrodynamics (MHD) model for calculating the

magnetic field. The distribution function is given as a stationary solution of the Vlasov

theory with appropriate coarse graining. Evaluating the pressure tensor using the distri-

bution function, we solve the generalized (anisotropic pressure) Grad–Shafranov equation

to determine the magnetic field.

8.1 Hamiltonian of magnetized particles in magnetosphere

In an axisymmetric magnetic field (of sufficient strength), the dynamics of a magnetized

particle consist of three different periodic motions: gyro motion, bounce motion, and drift

motion. It is then convenient to span the phase space by variables

z = (θg, µ, ; ℓ, P∥ ; θ, Pθ), (8.1)

where µ := Jgq/m is the magnetic moment (Jg is the action corresponding to the gyro

motion, q is the particle charge, and m is the particle mass), θg is the gyro angle, P∥ is

the canonical momentum parallel to the magnetic field, ℓ is the parallel coordinate that

constitutes the canonical pair with P∥, Pθ is the canonical angular momentum around the

geometrical axis, and θ is the azimuthal angle. (For convenience, we use ℓ, P∥, instead
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of the bounce action-angle pair). Neglecting the kinetic part of the canonical angular

momentum, we approximate Pθ = qψ (ψ = rAθ is the flux function in the cylindrical

coordinate system (r, θ, z), where Aθ is the θ component of the vector potential).

Here, we consider two different “reductions” for the Hamiltonian. First, the gyro

angle θg is coarse-grained and is eliminated from the Hamiltonian (such a Hamiltonian

only dictates the guiding center motion of the magnetized particle). Then, we obtain

µ̇ =
∂H

∂θg
= 0. (8.2)

Second, we assume axisymmetry so that the Hamiltonian is independent of the azimuthal

angle θ. With the approximation Pθ = qψ, we obtain

qψ̇ = Ṗθ =
∂H

∂θ
= 0. (8.3)

The two constants µ and ψ play an important role in later discussion.

The magnetic field may be written as B = ∇ψ ×∇θ (note that the toroidal magnetic

field is absent in the magnetospheric system). By adding the coordinate ℓ that measures

the arch length on each magnetic field line, we define a magnetic coordinate system (ℓ, ψ, θ).

Through the axisymmetry, we can eliminate θ.

8.2 Kinetic distribution function

8.2.1 General form of stationary distribution function

In the Vlasov theory, the stationary distribution function f is given by

{H, f∗} = 0, (8.4)

where { , } is the canonical Poisson bracket, and f∗ is the Hodge dual of f , i.e., f = f∗vol

with the phase-space volume element vol = d3xd3v. When {Gj ,H} = 0, Gj is a constant

of motion. A scalar function such as f∗(H,G1, · · · , Gn) gives a stationary distribution
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f = f∗vol, because

{H, f∗(H,G1, · · · , Gn)} =
∂f∗

∂H
{H,H}+

m∑
j=1

∂f∗

∂Gj
{Gj ,H} = 0.

Here, we use the aforementioned µ and ψ to define a stationary distribution function using

f∗ = g(H,µ, ψ), (8.5)

where g is an arbitrary function of H, µ, and ψ.

8.2.2 Thermal equilibrium with topological constraints

Although the collisionless kinetic theory leaves infinite freedom in the stationary distribu-

tion function, it provides us with the theoretical basis for statistical mechanics to define

the most probable distribution with the appropriately defined entropy, that is, the invari-

ant measure is determined by the guide of the Poisson structure pertinent to the kinetic

theory. Here, the invariant measure is given on the symplectic leaf, defined as the level

sets of the two invariants µ and ψ.

We consider the Hamiltonian

H = µB(ℓ, ψ) +
P 2
∥

2m
, (8.6)

where B is the magnetic field. Here, we consider a quasi-neutral plasma (ϕ = 0) and

neglect the kinetic energy of the toroidal drift velocity by approximating Pθ = qψ. The

first term µB may be regarded as the potential energy (µ is constant for each particle) on

each contour of ψ (i.e., magnetic field line).

Leaving only ψ as a free parameter characterizing the thermal nonequilibrium of the

system, we consider the thermal equilibrium (maximum entropy) distribution function

such that (see Appendix B)

f∗ = A(ψ) exp

(
− H

T∥0

)
exp

(
−µB0(ψ)

T∥0 − T⊥0

T∥0T⊥0

)
, (8.7)

where the two constants T∥0 and T⊥0 represent the parallel and perpendicular temperatures
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at ℓ = 0, respectively. We also define B0(ψ) := B(0, ψ), where B(ℓ, ψ) is the magnetic

field strength evaluated as a function of ℓ and ψ.

Then, by substituting (8.6) and µ =
mv2⊥

2B(ℓ, ψ)
in (8.7), we can rewrite (8.7) as

f∗ = A(ψ) exp

{
−
( mv2∥

2T∥(ℓ, ψ)
+

mv2⊥
2T⊥(ℓ, ψ)

)}
, (8.8)

where

T∥(ℓ, ψ) = T∥0, (8.9)

T⊥(ℓ, ψ) =
T∥0T⊥0

T⊥0 +
B0(ψ)
B(ℓ,ψ)(T∥0 − T⊥0)

. (8.10)

Therefore, our distribution function is a Maxwellian with varying anisotropic temperatures

(8.9) and (8.10). Multiplying the phase-space volume form, we obtain

f = f∗d3x d3v (8.11)

= f∗d3x
D(vx, vy, vz)

D(v∥, v⊥, θg)
dv∥dv⊥dθg (8.12)

= v⊥A(ψ) exp

{
−
( mv2∥

2T∥(ℓ, ψ)
+

mv2⊥
2T⊥(ℓ, ψ)

)}
d3x dv∥dv⊥dθg. (8.13)

Transforming variables in the volume form, we rewrite

f(ℓ, ψ, v∥, v⊥) = 2πv⊥A(ψ) exp

{
−
( mv2∥

2T∥(ℓ, ψ)
+

mv2⊥
2T⊥(ℓ, ψ)

)}
d3x dv∥dv⊥. (8.14)

The corresponding configuration space density is

n(ℓ, ψ) =

∫∫
f(ℓ, ψ, v∥, v⊥) dv∥dv⊥ (8.15)

= A(ψ)

(
2π

m

) 3
2

T
1
2

∥ (ℓ, ψ)T⊥(ℓ, ψ), (8.16)
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and the parallel and perpendicular components of the pressure tensor are

p∥(ℓ, ψ) =

∫∫
f(ℓ, ψ, v∥, v⊥)mv

2
∥dv∥dv⊥ (8.17)

= A(ψ)

(
2π

m

) 3
2

T
3
2

∥ (ℓ, ψ)T⊥(ℓ, ψ), (8.18)

p⊥(ℓ, ψ) =
1

2

∫∫
f(ℓ, ψ, v∥, v⊥)mv

2
⊥dv∥dv⊥ (8.19)

= A(ψ)

(
2π

m

) 3
2

T
1
2

∥ (ℓ, ψ){T⊥(ℓ, ψ)}2. (8.20)

Finally, we represent the pressures and functions of the magnetic coordinates ψ and B,

and using (8.9) and (8.10), we obtain

p∥(ψ,B) = A(ψ)

(
2π

m

) 3
2

T
5
2

∥0
T⊥0

T⊥0 +
B0(ψ)
B (T∥0 − T⊥0)

, (8.21)

p⊥(ψ,B) = A(ψ)

(
2π

m

) 3
2

T
5
2

∥0

(
T⊥0

T⊥0 +
B0(ψ)
B (T∥0 − T⊥0)

)2

. (8.22)
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Chapter 9

Finite-beta magnetic field

The anisotropic pressures (8.21) and (8.22), evaluated for the thermal equilibrium on

the symplectic leaf of the magnetic moment, can now be used in the generalized Grad–

Shafranov equation. The pressure tensor is

P = bbp∥ + (I− bb)p⊥ (9.1)

where p∥ and p⊥ are the parallel and perpendicular pressures, respectively, and b is the

unit vector parallel to B. The MHD equilibrium equations are

∇×B ×B = µ0∇ ·P, (9.2)

∇ ·B = 0, (9.3)

where µ0 is the vacuum permeability. In the axisymmetric magnetospheric system (which

has no toroidal magnetic field), we can convert the MHD equilibrium equation into a

generalized (anisotropic pressure) Grad–Shafranov equation [48, 49]:

∆∗ψ = −µ0r2
∂p∥

∂ψ

∣∣∣∣
B

− 1

σ
∇ψ · ∇σ (9.4)

∂p∥

∂B

∣∣∣∣
ψ

+
p⊥ − p∥

B
= 0, (9.5)
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where ∆∗ denotes the Grad–Shafranov operator

∆∗ := r2∇ · ( 1
r2

∇), (9.6)

and σ is defined as

σ := 1 + µ0
p⊥ − p∥

B2
. (9.7)

Note that (8.21) and (8.22) satisfy the second equation (9.5). We only need to solve (9.4)

to determine ψ.
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Chapter 10

Numerical analysis

In this chapter, we show the results of the numerical analysis conducted based on a nu-

merical code RTEQ (Ring Trap EQuilibrium) developed by Furukawa [51].

10.1 Setting and calculation model

As we assume axisymmetry, we consider the 2D-plane shown in fig. 10.1. The magnetic

field lines correspond to the ψ contour, and l = 0 on the magnetic field lines corresponds

to the point where z = 0 at the outer side of the ring current. Here, ψ1 and ψ2 denote the

magnetic field line that comes in contact with the fixed limiters that provide the boundary

of the plasma. The inertial ring current generates the vacuum magnetic field.
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Figure 10.1: Schematic of the 2D-plane considered in the calculation

Normalized with the typical length L1, magnetic field B1, pressure p1, and magnetic

flux Ψ1 := B1L
2
1, the Grad–Shafranov equation is expressed as follows:

∆̌∗ψ̌ = −βo
2
ř2
∂p̌∥

∂ψ̌

∣∣∣∣
B̌

− 1

σ̌
∇̌ψ̌ · ∇̌σ̌, (10.1)

where we apply (8.21) and (8.22) as the parallel and perpendicular components of the

pressure tensor, respectively, which are rewritten as

p̌∥(ψ, B) = p̄(ψ̌)
λ0

λ0 +
B̌0(ψ)

B̌
(1− λ0)

, (10.2)

p̌⊥(ψ, B) = p̄(ψ̌)

(
λ0

λ0 +
B̌0(ψ)

B̌
(1− λ0)

)2

. (10.3)

The boundary condition is ψ = 0 at infinity. The equation contains two parameters:

βo :=
2µ0p1
B2

1

and λ0 :=
T⊥0

T∥0
. Here, λ0 represents the temperature anisotropy on l = 0.

Moreover, p̄(ψ̌) corresponds to the normalized pressure in the isotropic case, which allows

arbitrary functions of ψ̌. Here, we assume

p̄(ψ̌) ∝ −(ψ̌ − ψ̌1)
P (ψ̌ − ψ̌2)

Q. (10.4)
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Although we can treat P and Q as parameters, we fix P = 1, Q = 1 in this study for

simplicity. Then, we obtain

p̄(ψ̌) := −4(ψ̌ − ψ̌1)(ψ̌ − ψ̌2)

(ψ̌2 − ψ̌1)2
. (10.5)

10.2 Effects of anisotropic temperature on the equilibrium

states

First, we analyze the cases where λ0 ≥ 1. We show the distributions of p∥ and p⊥ in

fig. 10.2 and those of ψp and β in fig. 10.3, which correspond to the equilibrium states

calculated for βo = 4.5× 10−5 and (top) λ0 = 1.0, (middle) λ0 = 1.5, (bottom) λ0 = 2.0.

Here, β :=
2µ0p

B2
and ψp := ψ − ψv, where ψv denotes ψ, which corresponds to a vacuum

magnetic field. As shown in fig. 10.2 when λ0 = 1, the distributions of pressure become

isotropic (p̌∥ = p̌⊥ = ¯p(ψ)). Therefore, p∥ and p⊥ are constant along the magnetic field

lines. On the other hand, when λ0 > 1, p∥ and p⊥ are higher at the outer side of the ring

current near z = 0. Moreover, as λ0 increases, the distributions are more concentrated at

the outer side of the ring current near z = 0, and the maximum local values of p∥ and p⊥

become higher. Even for ψp and β, the distributions are more concentrated at the outer

side of the ring current near z = 0, and the maximum local values become higher as λ0

increases; see fig. 10.3.
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Figure 10.2: Distributions of p∥ and p⊥, which correspond to the equilibrium states cal-

culated for βo = 4.5× 10−5 and (top) λ0 = 1.0, (middle) λ0 = 1.5, (bottom) λ0 = 2.0
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Figure 10.3: Distributions of ψp and β, which correspond to the equilibrium states calcu-

lated for βo = 4.5× 10−5 and (top) λ0 = 1.0, (middle) λ0 = 1.5, (bottom) λ0 = 2.0

Next, we analyze the cases where λ0 < 1. We show the distributions of p∥ and p⊥

in fig. 10.4 and those of ψp and β in fig. 10.5, which correspond to the equilibrium states

calculated for βo = 4.5× 10−5 and (top) λ0 = 0.50, (bottom) λ0 = 0.25. In line with the
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cases in which λ ≥ 1, p∥ and p⊥ are higher at the inner side of the ring current near z = 0.

Moreover, as λ0 becomes smaller, the distributions are more concentrated at the inner side

of the ring current near z = 0, but the maximum local values of p∥ and p⊥ become lower

(see fig. 10.4). Regarding ψp and β, the distributions are concentrated at the outer side of

the ring current, and the maximum local values become lower as λ0 becomes smaller; see

fig. 10.5.

Figure 10.4: Distributions of p∥ and p⊥, which correspond to the equilibrium states cal-

culated for βo = 4.5× 10−5 and (top) λ0 = 0.50, (bottom) λ0 = 0.25
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Figure 10.5: Distributions of ψp and β, which correspond to the equilibrium states calcu-

lated for βo = 4.5× 10−5 and (top) λ0 = 0.50, (bottom) λ0 = 0.25

Finally, we show the relations between λ0 and βo, and ψp. We can measure ψp using

flux loops that orbit at constant r and z. Therefore, we can determine βo and λ0 using

two flux loops (see fig. 10.6–10.8). Here, we set r1 = 1.01, z1 = 0.35, z2 = 0.20.
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Figure 10.6: Schematic of the flux loops

Figure 10.7: Relation between λ0 and ψp where βo = 1.2× 10−5
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Figure 10.8: Relation between βo and ψp where λ0 = 2.0
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Chapter 11

Conclusion of part II

To describe the high-beta equilibrium of a magnetospheric plasma, we need a consistent

relation between the magnetic field (to be modified by the current in the plasma) and

the phase-space distribution function (to be influenced by the magnetic field). The for-

mer is dictated by the field equation, and the latter is dictated by kinetic theory. We

can use the (generalized) Grad–Shafranov equation as the field equation that determines

the magnetic flux function for a given magnetization (diamagnetic) current. However,

the Grad–Shafranov equation has an additional (in fact, essential) implication, that is,

the internal relation between the magnetic field and the magnetization current, which is

imposed by the magneto-fluid force–balance relation. Therefore, we need to find a special

class of distribution functions that does not create inconsistencies with the macroscopic

magneto-fluid model. In the present study, we showed that the “thermal equilibrium” on

the topologically constrained phase space (foliated by the adiabatic invariant µ) is suit-

able for the generalized Grad–Shafranov equation, which is not only amenable, but also

definitive for the functional form of the pressure tensor. However, we have left the flux

function ψ as a free parameter that can control the “radial” profile of the pressure tensor.

Hasegawa [40] suggested that ∂ψf
∗ = 0, because Pθ ∼ ψ is the most fragile constant influ-

enced by low-frequency (∼ drift frequency) perturbation. In fact, we observe the “inward

diffusion” of particles, consistent with the relaxation toward ∂ψf
∗ = 0 [42, 47]. However,

in a real system, the boundaries (located both inside and outside the confinement domain)

deform the distribution from the ideal one. In the present study, we maintained ψ as an
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experimental parameter to model the nonequilibrium property.
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Chapter 12

Conclusion of the paper

In this study, we focus on two self-organization phenomena in physical system: zonal

flow and magnetospheric plasma. The central issue common to these two self-organization

phenomena is how the self-organized states are determined. We consider that the constants

of motion are the key to deal with the issue.

In part I, we estimate exact lower bounds on the ’zonal enstrophy’ under the constraints

of the constants of motion. By formulating the variational principle to estimate the lower

bounds, we have found a discrete set of zonal enstrophy levels that are quantized by

the eigen-value λ measuring the mode number, and verified that the estimated lower

bounds give a reasonable estimate of the zonal enstrophy by comparing with simulation

results. Here, the inequality of the constraints evoked by the non-coerciveness of the

target functional is the interesting aspect of the variational principle. It is well-known

that the inverse-cascade model explains the essence of the self-organization process of

zonal flow in which the enstrophy cascades to small-scale vortices, while the energy tends

to accumulate into large scales. Here, as a results of our study, we can reinterpret the

process as a relaxation process where zonal enstrophy level is deexcited by the emission

of short-scale wavy vorticity.

In part II we constructed the model to describe the high-beta equilibrium of a magne-

tospheric plasma which is consistent with the field equation ((generalized) Grad-Shafranov

equation) and the kinetic theory. Here, constraints by the adiabatic invariant µ is essential

to connect the kinetic theory to macro model described by generalized Grad-Shafranov
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equation because scale hierarchy created by the constraint characterizes the macro-system.

In this part, we showed that the“ thermal equilibrium”on the topologically constrained

phase space is suitable for the generalized Grad–Shafranov equation.
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Appendix of part II

B Grand canonical ensemble

The function form of (8.7) implicitly assumes maximum entropy states under the appro-

priate constraints formulated in [52].

When we consider the grand canonical ensemble determined by the Casimir (magnetic

moment) C =
∫
µf∗dnz in addition to the total particle number N =

∫
f∗dnz and total

energy E =
∫
Hf∗dnz, the equilibrium state in which entropy S = −

∫
f∗ log f∗dnz is

maximized is calculated as

δ(S − αN − βE − γC) = 0, (B.1)

which yields a Boltzmann distribution

f∗ = Z−1 exp(−βH − γµ), (B.2)

where Z := exp(α+ 1) is the normalized factor and α, β, γ are Lagrange multipliers.

In our formulation, we also consider ψ as a constant of motion. Then, Z, β and γ can

be the functions of ψ. However, in this study, we consider β to be a constant in (8.7) for

simplicity.

When we do not consider the magnetic moment as a constraint, the equilibrium state

obtained via entropy maximization changes drastically. The distribution function is ob-

tained as

f∗ = Z−1 exp(−βH), (B.3)
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which is equivalent to the distribution function obtained by T∥0 = T⊥0 = T0 in (8.7). The

distribution function yields the pressure as

p∥ = p⊥ = A(ψ)

(
2π

m

) 3
2

T
5
2

∥0 , (B.4)

which is isotropic and the function of ψ (not ψ and B). This simple exercise shows that

the factor that causes the nontrivial structure along the magnetic field at the same time as

entropy maximization is the constraint of the magnetic moment in the view of statistical

mechanics.

C How to solve the Grad-Shafranov equation

Here, we review how we solved the Grad-Shafranov equation in part II. Our calculation

was conducted based on a numerical code RTEQ (Ring Trap EQuilibrium) which had

been developed mainly by Professor Furukawa[51].

C.1 Implementation of the solution using Green’s function

We may rewrite eq.(9.4) as

∆∗ψ = −µ0RJt, (C.5)

where µ0RJt = µ0R
2 ∂p∥

∂ψ

∣∣∣∣
B

+
1

σ
∇ψ · ∇σ, and the boundary condition ψ = 0 at infinity

is adopted. If Jt is independent of ψ, the solution of the equation is obtained analytically

by using Green’s function as

ψ =

∫
dR′dZ ′G(R,Z|R′, Z ′)µ0Jt, (C.6)

where

G(R,Z|R′, Z ′) =
1

π

√
RR′

k2

[(
1− k2

2

)
K(k)− E(k)

]
(C.7)
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is Green’s function and

k2 :=
4RR′

(R+R′)2 + (Z − Z ′)2
, (C.8)

K(k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

(C.9)

E(k) :=

∫ π/2

0
dθ

√
1− k2 sin2 θ. (C.10)

Actually, however, Jt is a function of ψ. Thus, we have to calculate the solution

numerically using iteration procedure.

C.2 Iteration procedure of RTEQ code

We show the flowchart of RTEQ code in fig.C.1. Firstly, we start from ψ(0) which corre-

sponds to the vacuum magnetic field. Then, we iterate solving

∆∗ψ(n−) = −µ0RJt(ψ(n−1)) (C.11)

and updating ψ as ψ(n) := αψ(n−) + (1− α)ψ(n−1) until it converges. To solve (C.11), we

just have to calculate (C.6) in principle. Actually, some methods to reduce calculation

amount is applied in RTEQ code. In the evaluation of the convergence, we evaluate the

inequality ∣∣∣∣∣ψ(n−) − ψ(n−1)

ψ(n−1)

∣∣∣∣∣ < ϵ. (C.12)

In this study we set ϵ as ϵ = 10−8.
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Figure C.1: The flowchart of RTEQ code.
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