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Random Forest for Seagrass and Seaweed Habitat Mapping  

in Suo Nada, the Seto Inland Sea 
 

1 Introduction  
 

1.1 Background  

1.1.1 Importance of seagrass and seaweed  

Seagrass and seaweed (Fig.1) ecosystems act as primary producers in coastal waters, 

providing essential functions by producing and exporting organic carbon, regulating car-

bon dioxide, and storing them inside the water [1]. This means that they support the shal-

low water area through primary production, but they also play a role in mitigating climate 

change. Thus, the role of seagrass and seaweed meadows in the coastal marine environ-

ment is often compared to that of a land forest and is named by UN Environmental Pro-

gramme as Blue Carbon (BC) in comparison with terrestrial green carbon [1]. This con-

cept was introduced as a comparative metaphor to highlight that coastal ecosystems, like 

seagrass, seaweed, mangroves, and salt marshes, contribute significantly to carbon se-

questration.  
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Fig. 1 Zostera Marina beds of Futtsu tidal flat, Tokyo Bay (Source: taken by author) 

Although it is important to the environment, seagrass and seaweed are under human pres-

sure. Land reclamation, eutrophication, pollution, and other human activities damage the 

seabed ecosystems and reduce the benthic biodiversity [2]. For example, in the Seto In-

land Sea coastal areas, many tidal flats and seagrass beds that provide habitats and breed-

ing grounds for a wide variety of organisms have been lost. According to investigations 

conducted in 1989, in the 13 years since the last survey, 6,403 hectares, or 3.2% of the 

existing seagrass bed area, had disappeared [2]. It was also found that in the areas of the 

Seto Inland Sea and the sea area that may be strongly affected by the inland seawater, the 

area of the seagrass and seaweed beds that disappeared was 20.8% of the national total 
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disappeared habitats. A detailed degradation of seagrass and seaweed habitat in western 

part of the Seto Inland Sea is shown in Table 1.1 [3].     

 

Table 1.1 Seagrass and Seaweed habitat degradation 

area 
Habitat cate-

gory 

Area of seagrass and seaweed habitat (ha) 

1989-1990 2017 

4th Natural En-

vironment 

Preservation 

Survey 

Hearing 
Satellite Image 

Analysis 

Tokuyama 

Bay 

seagrass 108.2 193.8 - 

seaweed 430.0 297.1 - 

total  538.2 490.9 294.2 

Yamaguchi 

Bay 

seagrass 0.0 286.2 - 

seaweed 230.8 173.3 - 

total 230.8 459.5 570.7 

Koguchi  

seagrass 0.0 0.0 - 

seaweed 404.0 368.2 - 

total 404.0 368.2 692.9 

Kita-kyushu 

seagrass 0.0 0.0 - 

seaweed 2005.0 2013.4 - 

total 2005.0 2013.4 934.3 

Nakatsu  

seagrass 0.0 516.1 - 

seaweed 1093.9 0.0 - 

total 1093.9 516.1 210.5 

seagrass 125.5 49.0 - 
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Kunisaki is-

land 

seaweed 54.0 128.1 - 

total 179.5 177.1 95.4 

Saiki  

seagrass 0.0 0.0 - 

seaweed 220.7 242.2 - 

total 220.7 242.2 115.0 

Yawataha-

mashi  

seagrass 0.0 0.0 - 

seaweed 181.5 156.6 - 

total 181.5 156.6 29.7 

 

Taking precautions is urgent and important. According to the studies, only 5 to 10% of 

the world’s seafloor is mapped [4].  Therefore, to assist effective seagrass and seaweed 

management and conservation, mapping is the first and urgent step.    

  

1.1.2 Mapping seagrass and seaweed habitat  

To map coastal ecosystems, recent advances in technology have increased available 

tools and accuracy. Traditionally, coastal habitat information can be obtained by field sur-

veys with beam eco-sounders and side-scan sonar mounted on boats, submersible or re-

motely operated vehicles [5].     

   

Satellite-based remote sensors, both free-accessed ones like Landsat and Sentinel and 

commercial ones such as IKONOS, WorldView, and Quickbird have been successfully 

used for benthic mapping with high to moderate resolutions [6]. Other than multispectral 

satellite imageries, hyperspectral satellite images and airborne remote sensing technolo-

gies are also available in the literature [7][8]. 
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1.2  Technique for mapping  

Machine learning algorithms have been popular in classifying benthic habitat[9]. This 

kind of methods, such as Random Forest and Support Vector Machines, takes ground truth 

data as input to train the classifier and predict the whole area with the support of spec-

tral radiance or reflectance of satellite imagery.   

   

Knudby [9] investigated the ability to use satellite images to classify coastal vegetation 

of several classification methods and found out that Random Forest outperformed other 

classification algorithms. The main classification targets are fringing reef, seagrass, and 

mangrove forest. And satellite images used in this study are Landsat scenes. After pre-

processing interferences caused by the atmosphere and water column are removed and 

then 4 ensemble classification algorithms, random forest (RF), support vector machine 

(SVM), linear discriminant analysis (LDA), and penalized linear discriminant analysis 

(PLDA), are constructed and then assessed. The assessment was done by comparing 

overall accuracies that were produced using k-fold cross-validation with k=10. Among 

the four algorithms, RF yielded the highest 73.1% accuracy, while for SVM the number 

is 64.9%.   

    

Roelfsema [6] utilized different sources of commercial satellite products for seagrass 

cover and species mapping. Three high-resolution satellite sensors are investigated in this 

study: Quickbird-2, IKONOS-2, and WorldView-2. The cover and percentage cover maps 

were created using a hierarchical Object-Based-Image-Analysis approach proposed by 

Blaschke.8 Mapping results were then assessed by accuracy. The accuracy of species 

composition ranged from 68% to 83%, with a median of 77%. In terms of overall accuracy, 

it showed a median of 52% accuracy. Combined with field data, satellite imagery showed 

an excellent ability to classify coverage and species composition.   
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Other than free-access satellite images like Landsat and high-resolution commercial al-

ternatives like Quickbird, IKONOS, and Worldviews that have been researched, there is 

one new commercial product called PlanetScope that provides high-resolution with 1-day 

revisit time that shows potential in the field of coastal vegetation classification [10].   

 

1.3 Literature review  

Being one of the newest high-resolution products, PlanetScope provides 3-m resolution 

images on a daily basis [10]. Although not much, there are a few studies that use Plan-

etScope to classify seagrass habitat.     

   

Wicaksono [11] studied the possibility of using PlanetScope to map benthic habitat in In-

donesia. Random forest was chosen as the classification algorithm and applied on one 

image recorded on 18 July 2018. To train the model, training data were obtained by field 

survey conducted in the same period of satellite image acquisition time. One part of the 

training data set was used to train the classifier and the other part was used to assess the 

accuracy of classification. As a result, the overall accuracy of 60.6% and 78.6% were 

gained for the two different study sites. It mentioned that the accuracy was lower than 

other similar studies which applied random forest as the classifier, due to the reason of 

product limitation. This leaves room for improvement of utilizing PlanetScope to com-

plete the same objective.     

   

Ariasari and Wicaksono [12] made another attempt mapping both seagrass existence and 

species compositions. Random forest was also adopted this time, combined with field 
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surveys. The product used here was recorded on May 25, 2019. Kappa and overall accu-

racy were used for assessment. The highest kappa index was 0.54, and the highest overall 

accuracy is 72.09% in terms of benthic habitat mapping. This result did not change much 

in comparison with the former study. However, higher accuracy and kappa were achieved 

when mapping species composition, with a kappa value of 0.81 and accordingly overall 

accuracy value of 84.71%. It showed the potential of utilizing PlanetScope to map de-

tailed information, however, the problem of relatively lower habitat mapping accuracy 

remains the same.   

   

Munir and Wicaksono [13] changed the classification method and investigated the ability 

of PlanetScope again. Support vector machine was used in this study, and an overall ac-

curacy of 73.98% was gained.   

  

1.4 Objective  

Although few studies tried to use PlanetScope to map seagrass habitat, the accuracy was 

not satisfied. However, by reviewing the methods used in those studies, improvements 

are expected to be achieved in two ways. Hence, this study aims to improve the accuracy 

of classification of seagrass and seaweed by PlanetScope and discuss how we can make 

the best use of this new resource. To be more specific, first, multi-temporal satellite im-

ages are used as input datasets to train the machine learning algorithm followed by a 

comparison with a single image input model. Second, two new features, water depth and 

distance to coastline are added into the classifier to improve the performance.  

  

1.5 Significance and originality   

By adding more features and data, improvement can be made and methods to maximize 
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the potential of PlanetScope imagery will be proposed and discussed.    

  

Before this study, there are only very limited challenges that utilize this new satellite im-

agery and the results were not as promising as compared with other high-resolution com-

mercial alternatives. Nevertheless, by proposing two ways to realize the full potential 

of PlanetScope, it provides opportunities and directions for researchers in the same or 

similar domain to consider using this new and high-quality satellite image product.  
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2 Materials and Methods 
 

The current study involved classifying seagrass and seaweed habitat from satellite images 

using Random Forest (RF) in the Seto Inland Sea. Clear shallow water in Suo Nada was 

selected as the study area due to the wide distribution of its seagrass and seaweed beds. 

Random Forest is chosen as the classification method based on its ability to classify with 

high accuracy and functional capacity to handle noisy data. 

2.1 Study site description 

Suo Nada, located in the western part of the Seto Inland sea, has abundant tidal flats, 

seagrass and seaweeds. According to an investigation conducted in 2019 [3], there are 

1925 ha of seagrass and seaweeds in Suo Nada, with 72% of them in Yamaguchi Pref. 

This study also aims to classify seagrass and seaweed beds in Suo Nada of Yamaguchi 

Pref, as shown in Figure 2.1 [14].  
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Fig. 2.1 Location of study site, Suo Nada, the Seto Inland Sea (Date of the satellite 

image: Oct 31, 2017) (Source: PlanetScope, Planet Application Program Interface: 

In Space for Life on Earth. San Francisco, CA. https://api.planet.com) 

The study site is selected according to bathymetry and data availability. Theoretically, to 

conduct image classification through satellite imagery, the area to be classified must be 

optical shallow; hence the features are evident for the algorithm to work efficiently. Fol-

lowing the requirement, Suo nada and Hibiki nada have met the optical shallow water 

environment. However, only Hibiki nada is excluded as the study site since there is no 
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available fine-resolution bathymetry data of this area. To conclude, Suo nada is chosen as 

study site since it not only has the feature of shallow water where the seafloor is still 

adequately visible from the remote-sensing image because a 10-m mesh bathymetry data 

is available here. 

2.2 Data 

2.2.1 PlanetScope 

PlanetScope has two strengths compared with other high-resolution commercial products 

with shorter revisit time and significantly bigger cover areas [15]. A comparison is shown 

in table 2.1.  

 

Table 2.1 comparison between widely used commercial products 

Name  
Revisit frequency  

(day) 

Resolution  

(m) 

Capacity  

(million km2 /day)  

PlanetScope 1 3  340 

WorldView-2 1.1 - 3.7 1.85 1 

RapidEye 1 - 5.5 6.5 6 

IKONOS 3 3.2 0.24 

QuickBird 2 - 12 2.44 0.2 

 

In this research,  level 3B PlanetScope images recorded on October 27 and 31, Novem-

ber 2 and 5, 2017 were used, as shown in Table 2.2. 

 

Table 2.2 four images used in this study 

Image No. Date 
Recorded time 

(UTC) 

Cloud percent-

age (%) 
Satellite ID 
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1 
October 27, 

2017 
01:14:28 16 0f34 

2 
October 31, 

2017 
02:07:25 0 0f21 

3 
November 2, 

2017 
02:07:23 2 1051 

4 
November 5, 

2017 
02:07:07 0 1051 

 

PlanetScope is one of the newest high spatial resolution satellite imaging and can record 

an area of 150 million km2 per day [10]. Utilizing PlanetScope images for mapping 

coastal habitats has many advantages, especially with its 1-day revisit time strength, real-

time information can be obtained and analyzed to investigate the impacts of extreme 

events like storm surges and other disasters in the coastal area. A detailed constellation 

overview of PlanetScope is given in Table 2.3[10]. 

 

Table2.3 constellation of PlanetScope 

Mission 

characters 

International space station 

orbit 
Sun-synchronous orbit 

Max/Min 

Latitude 

Coverage 

± 52∘  

(depending on season) 

± 81.5∘  

(depending on season) 

 

Equator 

Crossing 

Time 

Variable  
9:30 – 11:30 am  

(local solar time) 

Sensor Three-band frame Imager or four-band frame Imgaer with a 
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Type  split frame NIR filter 

Spectral 

Bands 

Blue Green Red NIR 

455 – 515 

nm 
500 –590 nm  590 – 670 nm  780 – 860 nm 

Frame Size 
20 km x 12 km (approxi-

mate) 
24.6 x 16.4 km (approximate) 

Camera 

Dynamic 

Range 

12-bit 12-bit 

 

Two kinds of products are provided officially [10]: At-sensor Radiance product and Sur-

face Reflectance product. Initially, all PlanetScope satellite images are collected at a bit 

depth of 12 bits, and then radiometric corrections are applied during ground processing, 

which scales the 12-bit imagery to a 16-bit one. This scaling involves converting directly 

received Digital Numbers (DN) into at-sensor radiance, as is given by Eq. (1). 

 

RAD(i)  =  DN(i)  ∗  radiometricScaleFactor(i)                (1) 

 

where radiometricScaleFactor(i) = 0.01. 

 

By completing the radiometric correction, the product now represents the calibrated radi-

ance and this is the At-sensor product.  

 

Meanwhile, other than at-sensor radiance product, PlanetScope also provides surface re-

flectance product [10], called level 3B product. The one used in this study belongs to 

surface reflectance product that has been through radiometric correction and atmospheric 
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correction. Atmospheric correction aims to remove the interference of atmosphere and is 

processed by provider as follows. First, top of atmosphere reflectance is required by mul-

tiplying ReflectanceCoefficient provided by PlanetScope as is given by Eq. (2): 

 

REF(i) = DN(i) * ReflectanceCoefficient(i)                (2) 

 

Then, surface reflectance is determined from top of atmosphere (TOA) reflectance ob-

tained from equation (2) by performing subsequent atmospheric correction conducted by 

combining the use of atmospheric models with the use of MODIS water vapor, ozone, 

and aerosol data. This preprocessing is also conducted by PlanetScope and the surface 

reflectance data that has reliable and consistent surface reflectance scenes and is ready 

for analysis for users.  

 

2.2.2 Actual Distribution Map  

In this study, the actual habitat distribution of seagrass and seaweeds derived from a large-

scale investigation conducted by the Ministry of Environment was used as training data 

to train the machine learning classifier. This study's distribution data is named Seagrass 

and Seaweed and tidal flat distribution map of the west part (GIS data) and is part of 

the Survey on the distribution of seaweed beds and tidal flats in the Seto Inland Sea in-

vestigation and can be accessed via open database. This distribution was gained from a 

fusion method combining satellite images analysis with field survey validation. 

The actual distribution is shown in Fig 2.2. [14][16] 

 



   

 

  19 

 

 
Fig. 2.2 Distribution of seagrass and seaweed beds and tidal flat. Blue shows 

seagrass and seaweed beds and green is tidal flat. (Source: Created by processing 

the Survey on Distribution of Seagrass and Seaweed Beds and Tidal Flats in the 

Seto Inland Sea by Ministry of the Environment. 

http://www.env.go.jp/water/heisa/survey/result_setonaikai.html) 

Where green stands for tidal flat, and blue stands for seagrass and seaweed habitat.  

  

2.2.3 Water depth 

Bathymetry data [17] with 10 m mesh water depth was used. The data is named Tsunami 

fault model (5) Topographical data and is provided by Study Group on the Nankai Trough 

Giant Earthquake Model organized by the Cabinet Office. It was obtained from an open-

access website, geo-spatial data center and subsequently transferred from original ‘.dat’ 

file to 10 mesh raster file follow information provided officially. Water depth data is for-

matted in the form that value of water points is positive and for land the value is negative. 

The datum of the bathymetry data is the Tokyo Peil (T.P.). The Planar Right Angle Coor-

dinate System (JGD2000) was used as a projection method for data preparation.  
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To prepare the “.dat” data into usable raster data, two processes have been done. First, 

spatial information stored in description file was added to water depth “.dat” data. By 

doing this, each data point has its accordingly latitude, longitude and water depth. Second, 

the point data is transferred into 10 mesh raster layer data. This step enables extraction of 

water depth data to training points. These two steps were performed through Python and 

ArcGIS. 

  

2.3 Method 

2.3.1 Image standardization 

c It is a common requirement for many machine learning estimators: they might behave 

badly if the individual features do not more or less look like standard normally distributed 

data[18]. In this study, standardization was performed through Python using Numpy 

package, as is given by Eq. (3) 

 

𝑧𝑧 = (𝑥𝑥 − 𝑢𝑢)/𝑠𝑠                           (3) 

 

where u is the mean of the surface reflectance of each band and s is the standard deviation. 

 

2.3.2 Multispectral classification 

Random forest classification is an ensemble classification method consisted by many de-

cision trees [19]. The idea to combine multiple decision trees came from loss of general-

ization ability of a single decision tree model. Ho et al proposed a method[19] to construct 

tree-based classifiers, namely random forest, whose capacity can be arbitrarily expanded 

for increases in accuracy for both training and unseen data. The essence of the method is 
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to build multiple trees in randomly selected subspaces of the feature space and generalize 

their classification in complementary ways. By doing so, the combined classification pro-

duced by random forest, can be monotonically improved compared with results generated 

by decision tree model.  

 

A diagram showing how random forest works is given in Fig 2.3. After a trainings set is 

fed into the classifier, different decision trees will be generated with each only consists 

random elements from the original dataset. Subsequently, each decision tree will construct 

their own decision process and generate a result. The ultimate classification result of a 

random forest is then a combination of results calculated by each decision trees within 

this forest. 

 

 

Fig. 2.3 Mechanism of random forest 

The strength of this method comes from the high accuracy and good generalization per-

formance, but it also lies in its ability to handle noisy data. It is considered crucial in 

dealing with PlanetScope dataset because one past study suggests that the signal-to-noise 

ratio of PlanetScope is low. Hence RF is chosen as the classification method in this study. 
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The algorithm was tuned in Python and ArcGIS to find the best setting (tree number and 

training size) for classification. For the classification, sklearn, Numpy, Pandas, matplotlib 

and seaborn packages are used. The workflow of this study is shown in Fig 2.4. 

 

 

Fig. 2.4 Workflow of current study, including preprocess of satellite image and ba-

thymetry data, training of random forest algorithm, followed by application of algo-

rithm for classification  

2.3.3 Mask land area 

Land area was masked accordingly to coastline polygon data provided by ArcGIS Japan 
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and Geospatial Information Authority of Japan[20] that can be accessed and used free of 

charge. The product is called ‘National data for municipalities’ in the format of shapefile. 

Since the interest of this study is shallow water area, to avoid unnecessary computation 

time and improve classification accuracy, land area was masked out and target shallow 

water area was extracted, as shown in Fig 2.5. [14] 

 

 

 Fig. 2.5 Example of PlanetScope image before (left) and after (right) masking land 

area 

2.3.4 Create training points 

After surface reflectance product and training polygons were imported into ArcGIS, sam-

pling is then required to create training set that, although only consists a small portion of 

the study site but can be presentative enough at the same time. To achieve this purpose, 

the ‘create random points’ function was applied to generate training points for each of the 

three classes: seagrass and seaweeds, tidal flats and water. When creating, each class 

should have the same or similar amount of data points to avoid bias that generated when 

each class has an imbalanced size of data [21]. 
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For each class, 2000 points were created with consideration of model performance effi-

ciency and stability while also left room for verification. To be more specific, to assure 

all three classes have similar or same amount of input data, downsizing the majority class 

is an effective way to achieve this purpose [21]. Hence in this study, size of water pixels 

has been reduced to align with the size of minority seagrass and seaweed pixels. As a 

result, in total 6000 points were generated for one satellite imagery as shown in Fig 2.6. 

[14] 

 

 

Fig. 2.6 Random sampling of three classes 

 

2.3.5 Training 

The classifier was then trained with six input features, including four standard scaled 

bands (blue, green, red, near-infrared), water depth and distance to coastline. Distance to 

coastline was calculated in ArcGIS using “near” function for each sampling point. 
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Two classifiers were trained and tuned, namely RF-1 and RF-2. RF-1 was trained with 

only 1 imagery, recorded on October 31, 2017. when tide level was low. RF-2 was trained 

with 4 different images input as mentioned in Table 2.3 before. Imageries were chosen 

based on the assumption that during short period of time, seagrass and seaweed distribu-

tion will not change significantly and thus could be seen as constant in this short amount 

of time.  

 

Tuning process includes 2 parts, tree number adjustment and training size adjustment. 

Each setting is given in Table 2.4. 

 

Table 2.4 Tuning category 

Tree number  Training size 

for RF-1 

Training size 

for RF-2 

1 - 50 

10 - 100 

50 - 300 

100 125 500 

200 250 1000 

500 375 1500 

- 500 2000 

- 750 3000 

- 1250 5000 

- 2000 8000 

- 2500 10000 

- 3250 13000 
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- 3750 15000 

- 4500 18000 

 

Since RF-1 used only one image as input while RF-2 used 4 images, the training size 

settings for RF-1 was one fourth that of RF-2. In terms of determining the upper limit of 

training size, consideration was paid to control the overall percentage of training set to 

whole pixels of study site. If the training size was created to be too large, then verification 

stage will be weakened. However, if training set was not large enough, the model perfor-

mance will not reach the stable stage. Hence, when deciding training size, attention was 

paid to balance these two factors. To be more specific, in this study, the polygon area of 

each class has been taken into consideration to calculate the maximum possible distinctive 

number of data points. To get as many as distinctive data possible while consciously re-

main part of them for verification. As a result, the training size consists of around 2% of 

the whole study area. 

 

2.3.6 Apply random forest algorithm 

After parameter adjustment, the most efficient setting was found for each RF model. 

Among different parameter settings, the best one was chosen based on accuracy and pre-

cision of model performance and then was applied to four different dates of the same 

study area.  

 

2.3.7 Classification 

Classification was conducted for predict area. Based on the training model, it would per-

form the classification into three classes: seagrass and seaweeds, tidal flat and water. Con-

fusion matrix, accuracy, precision and kappa index were calculated for evaluation of the 

performance of prediction. 
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2.4 Assessment method for model adjustment and classification result  

2.4.1 Feature importance 

Feature importance was calculated to assess the contribution of each parameter. It is com-

puted as the (normalized) total reduction of the criterion brought by that feature, also 

known as the Gini importance [22]. In this study, feature importance was calculated in 

python with sklearn package. 

 

Compared with previous studies [11][12][13], new features that represent environmental 

conditions were added in current study and an assessment to reveal whether these new 

features are important in model construction or not. 

 

2.4.2 Confusion matrix 

Confusion matrix is often used to calculate the accuracy of classification by comparing 

the number of correctly predicted objects and wrongfully predicted ones[23]. By defini-

tion, each entry in a confusion matrix comprises the number of observations belonging to 

class S/T/W but predicted to be in the class other than the true observation. The confusion 

matrix structure when a three-class classification is conducted is given in Table 2.5 below 

where S, T, W mean Seagrass and seaweed, Tidal flat, and Water. 

 

Table 2.5 Structure of confusion matrix 

  Predicted class 

  S T W Total 

Actual 

class 

S True Positive 
False Negative  

(for S) 

False Negative 

 (for S) 
X2 

T 
False Positive  

(for S) 
True Positive 

False Negative  

(for T) 
Y2 
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W 
False Positive  

(for S) 

False Negative  

(for W) 
True Positive Z2 

To-

tal 
X1 Y1 Z1  

 

The term ‘True’ means the predicted class matches the actual class and on the contrary, 

the term ‘False’ means that the predicted category does not match the actual category. In 

terms of ‘Positive’ and ‘Negative’, they refer to the classification object, whether it is the 

target this task tends to identify or not. Hence, after understanding what these 4 terms 

stand for, it can be inferred that, whether a classification is satisfied enough can be deter-

mined by its confusion matrix. A better classification can be inferred in a manner that the 

numbers of True Positive and True Negative are dominant while the numbers of incor-

rectly predicted False Positive and False Negative are minor.  

 

2.4.3 Cohen’s kappa index 

Cohen’s kappa index [24] is a score that expresses the level of agreement between two 

annotators on a classification problem. In this case, it depicts the agreement between 

ground truth data and predicted type, as is given by Eq. (4): 

 

𝜅𝜅 = (𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒)/(1 − 𝑝𝑝𝑒𝑒)                        (4) 

 

where po is the observed agreement on the label assigned to any sample. It is calculated 

by the proportion of all classes on which predicted results and actual class agree). 

And pe is the chance agreement that originally means when both annotators assign labels 

randomly when Cohen proposed. In classification evaluation, it means the portion that 

predicted class and actual class have same value by chance. Calculation of pe is based on 

the number of observations counted in Table 2.5 and is given by Eq. (5): 
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𝑝𝑝𝑒𝑒  = 𝑋𝑋1 ∗ 𝑋𝑋2 + 𝑌𝑌1 ∗ 𝑌𝑌2 + 𝑍𝑍1 ∗ 𝑍𝑍2                (5) 

 

The reason that cohen’s kappa index was adopted as one of the evaluation methods in this 

study is due to its advantage that takes into account the possibility of the agreement by 

chance. This strength is considered more robust when assessing agreement between actual 

class and predicted class in categorical tasks. 

 

This index was introduced in this study as an overall assessment of model performance 

that can deliver a straightforward comparison between two random forest classifiers. 

 

2.4.4 Overall accuracy 

After confusion matrix is calculated, overall accuracy (OA) can be obtained subsequently. 

It is calculated by summing the number of correctly classified values and then dividing 

by the total number of values, as can be expressed in Eq. (6). The correctly classified 

values, true positive and true negative, are located along the upper-left to lower-right di-

agonal of the confusion matrix. 

 

𝑂𝑂𝑂𝑂 = (𝑁𝑁𝑇𝑇𝑇𝑇 +  𝑁𝑁𝑇𝑇𝑇𝑇) / (𝑁𝑁𝑇𝑇𝑇𝑇 +  𝑁𝑁𝑇𝑇𝑇𝑇  +  𝑁𝑁𝐹𝐹𝐹𝐹  + 𝑁𝑁𝐹𝐹𝐹𝐹)            (6) 

 

 

2.4.5 Precision 

Only using OA as an assessment can sometimes be misleading since it reveals the accu-

racy of the whole classification task rather than one single target class that we are inter-

ested in. Hence precision [25] is introduced in parameter adjustment section of this study 

to give a more detailed look about one specific class, in this study, seagrass and seaweed. 

Precision is calculated by the number of true positive dividing by total predicted positive, 
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as can be expressed in Eq. (7): 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑁𝑁𝑇𝑇𝑇𝑇 / (𝑁𝑁𝑇𝑇𝑇𝑇 +  𝑁𝑁𝐹𝐹𝐹𝐹)                 (7) 

 

The point of utilizing precision for model construction is to provide information about 

false positive predicted results and then use this piece of information to filter parameter 

settings.  

 

2.4.6 F1 score 

Although precision provides detailed information about one specific class, it only 

measures one side of a coin – the cost of false positive side. However, there is another 

side: false negative side. In the task of seagrass classification, false negative means that 

the actual seagrass pixels cannot be identified correctly. This is the case we also want to 

avoid and the index reveals this ratio is Recall [25], calculation of which is given by Eq. 

(8). 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑁𝑁𝑇𝑇𝑇𝑇 / (𝑁𝑁𝑇𝑇𝑇𝑇 +  𝑁𝑁𝐹𝐹𝐹𝐹)                     (8) 

 

However, there is often a trade-off relationship between recall and precision. To balance 

precision and recall, F1 score[25] is introduced in this study for prediction assessment. In 

sklearn, the F1 score can be interpreted as a weighted average of the precision and recall, 

where an F1 score reaches its best value at 1 and the worst score at 0. The relative contri-

bution of precision and recall to the F1 score are equal. It can be expressed as is given by 

Eq. (9): 

 

𝐹𝐹1 = 2 × (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 )
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)

                        (9) 
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3 Results  
 

3.1 Model parameter adjustment  

3.1.1 Tree number adjustment  

Fig 3.1 shows the accuracy and precision of classifiers under different tree number set-

tings. The best classifier is determined by taking both overall accuracy (OA) and preci-

sion of seagrass and seaweed into account.   
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Fig 3.1 Tree number adjustment. Horizontal axis shows the number of decision 

trees in a random forest model and vertical axis shows the overall accuracy (left) 

and precision of seagrass and seaweed class (right).  

As can be observed, compared with only 1 decision tree, all ensemble models have 

achieved higher OA and precision. For RF-1, trained with 1 imagery, the best tree number 

was 200 since it had yielded the highest OA and precision. For RF-2, the best tree number 

was 100. Hence, 200 and 100 were set to be the tree number of models.  

  

3.1.2 Training size adjustment 

Other than tree numbers, the best training size was also tested for both classifiers. Fig 3.2 

shows model performance under different training size for RF-1 and RF-2.  
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Fig. 3.2 Model performance under different training size . horizontal axis shows 

size of input training dataset and vertical axis shows overall accuracy (blue line) 

and precision of seagrass and seaweed class (orange lien) 

It can be inferred that, when data size was too small, under 500, the model performance 

was not stable, meaning that even with a larger dataset, the performance will not increase 

accordingly. The threshold for this case is 500. It implies that, for a study area with a 

similar size of this study, at least 500 training point data are needed to achieve a reasona-

ble result. 
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Second, when training size exceeded the least threshold of 500, accuracy and precision 

have increased following the increase of dataset. Follow this tendency, accuracy, and pre-

cision become stable when it reaches 3250 for RF-1 and 13000 for RF-2. After 3250 and 

13000 training sampling points, there is no apparent significant increase in accuracy or 

precision. Hence these two values were chosen for model construction. 

 

3.1.3 Feature importance  

Feature importance was calculated for each RF to check the contribution of each input 

feature. The result is shown in Fig 3.3. 
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Fig. 3.3 Feature importance. pb1_std to pb4_std stands for standardization value of 

band 1 to band4, depth stands for bathymetry, NEAR_DIST stands for distance to 

coastline. 

In this figure, pb1_std, pb2_std, pb3_std, and pb4_std stand for the standard scaled spec-

tral bands – blue, green, red, and NIR. And NEAR_DIST and depth stand for distance to 

coastline and water depth, respectively.  

  

In both models, distance to coastline and water depth have played essential roles in clas-

sification. This means that adding additional features other than the spectral band pro-

motes improvement in model construction and performance. Other than the added fea-

tures, among 4 visible bands, green band (pb2_std) and near-infrared band (pb4_std) con-

tributed more, while the blue band (pb1_std) was relatively less useful in classification.   

  

To conclude, despite some differences in the near-infrared band's contribution, these two 

models have similar feature importance in general.    
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3.2 Prediction assessment  

3.2.1 Cohen’s kappa index 

Fig 3.4 shows kappa indexes of RF-1 and RF-2 when applied to four different satellite 

images.  In this bar graph, cases 1 to 4 in the horizontal axis mean four different satellite 

images, they are October 27 and 31, November 2 and 5, 2017, respectively.  

 

 

Fig. 3.4 Kappa index of two random forest classifiers. Dard blue bar shows results 

of RF-2 (the model that took four images as input) and light blue bar shows results 

of RF-1 (the mode that took only one image as input). Horizontal axis 1 to 4 mean 

application results on four different satellite images. 

By comparing kappa between two different classifiers, we can come to two conclusions. 

First, under all four cases, RF-2 has slightly outperformed RF-1, by 0.01 to 0.06. Since 

kappa measure accuracy with consideration of the agreement by chance, it can be inferred 

that, with higher kappa value, RF-2 is more stable and generalizable than RF-1. Second, 

the extent of the difference is relatively different among the four cases. In terms of the 

possible reason behind this difference in kappa index, one possible reason is that, since 

RF-1 was trained using October 31, 2017 satellite image, the same one as case 2, hence 
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it is easier for RF-1 to perform better when applied to the same image. This leads to a 

smaller difference when applied RF-1 and RF-2 to case 2. 

 

After comparison, then, focus only on RF-2. It can be inferred that, in case 2, which is the 

prediction on 31st Oct satellite image, kappa has reached the highest level. One possible 

reason for the difference in kappa index for four different satellite images could be the 

tide level when the image was recorded. Further explanations will be provided in the 

discussion section. 

 

3.2.2 Overall accuracy 

Fig 3.5 below shows the overall accuracy when applied RF-1 and RF-2 to four different 

images. 

 

 
Fig. 3.5 Overall Accuracy. Dard blue bar shows results of RF-2 (the model that 

took four images as input) and light blue bar shows results of RF-1 (the mode that 

took only one image as input). Horizontal axis 1 to 4 mean application results on 

four different satellite images. 
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From this figure, it can be concluded that generally speaking Overall Accuracy results 

(OAs) are satisfying, with all of them over 80%, while it has reached the highest level 

under case 2, for both RF-1 and RF-2, with a value of 87.5% and 86.8% respectively.  

 

Comparing OA and kappa index, the same tendency can be observed, where case 2 has 

yielded both the highest kappa value and the highest OA with RF-1 and RF-2. It is rea-

sonable since both kappa and OA measure the overall performance of study instead of 

some specific class, and both provide a big picture for assessment.  

 

3.2.3 F1 score  

F1 scores of seagrass and seaweed class for RF-1 and RF-2 are shown in Fig 3.6.  

 

 

Fig. 3.6 F1 score. Dard blue bar shows results of RF-2 (the model that took four im-

ages as input) and light blue bar shows results of RF-1 (the mode that took only one 

image as input). Horizontal axis 1 to 4 mean application results on four different 

satellite images. 

F1 score in this figure shows the balance between precision and recall for seagrass and 
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seaweed. In general, F1 scores are around or above 60%, with the highest reaching 71.2%. 

This can seem a satisfactory result. The overall tendency of f1 score for seagrass and 

seaweed is similar to the overall performance of both classifiers, where case 2 has yielded 

the highest overall and specific class accuracy. 

 

3.2.4 Confusion matrix 

Table 3.1 and Table 3.2 show the confusion matrix of RF-1 and RF-2 under case 2 (Oc-

tober 31, 2017). 

 

Table 3.1 confusion matrix of RF-1, on October 31, 2017 

  Predicted class 

  
seagrass and sea-

weed 
tidal flat water 

Ac-

tual 

class 

seagrass and 

seaweed 
17210 1638 132 

tidal flat 2885 21190 1015 

water 5300 13174 120044 

 

Table 3.2 confusion matrix of RF-2 on October 31, 2017 

  Predicted class 

  
seagrass and sea-

weed 
tidal flat water 

Ac-

tual 

class 

seagrass and 

seaweed 
17422 1421 137 

tidal flat 3262 20837 991 

water 5852 11202 121464 
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From these two confusion matrices, we can conclude that, when RF-1 and RF-2 have both 

achieved their best performance, the confusion matrices look relatively similar. It indi-

cates that trained with one best condition satellite image can give good results in this case.  

 

However, trained with 4 images still performed better if we focus on the number of true 

positive identifications: RF-1 and RF-2 have 17422 and 17210 true positive entries re-

spectively. Other than the number of correctly predicted ones, incorrectly ones also need 

to be checked. In terms of false classification for seagrass and seaweed, RF-1 has less 

false positive entries, 8185 ( 2885 + 5300 ) while the number of RF-2 is 9114 ( 3262 + 

5852 ). Another false classification is false negative, the number for RF-2 is 1558, smaller 

than that of RF-1, 1770. 

 

3.3 Predicted map 

Fig 3.7 below shows the predicted map of RF-1 (left) and RF-2 (right) under case 1 to 4. 

Cases 1 to 4 mean different satellite images. Different colors mean different classes. Light 

blue is seagrass and seaweeds, light blue is tidal flat, and dark blue is water.08 

 



   

 

  41 

 

 
RF-1 on October 27, 2017 

 
RF-2 on October 27, 2017 

 
RF-1 on October 31, 2017 

 
RF-2 on October 31, 2017 
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RF-1 on November 2, 2017 

 
RF-2 on November 2, 2017 

 
RF-1 on November 5, 2017 

 
RF-2 on November 5, 2017 

Fig. 3.7 Predicted map. Seagrass and seaweed beds are shown in blue, tidal flats are 

shown in green.  

From the eight maps, we can come to three conclusions qualitatively.  

 

First, plots on the left side are very similar to plots on the right side. This indicates that 

there is no significant difference between these two models.  
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Second, despite similar prediction result with a general look, by focusing on the middle 

right part of the study site, plots on the right side have a better ability to identify actual 

water pixels into water pixels, while plots on the left sides have less identification ability.  

 

Last, the difference between the four applications is quite apparent. As can be observed 

by each row of this figure. The area and distribution of seagrass are relatively different 

among these four rows. Possible reasons will be discussed in the next section. 
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4 Discussion 
 

4.1 Compare RF-1 and RF-2 

From Cohen's kappa index, overall accuracy, f1 score, and confusion matrix provided in 

the previous section, we can quantitatively compare the two different classifiers. 

 

Under all conditions, RF-2 has had better performance than RF-1. Considering that RF-2 

took four images as input while RF-1 only took 1, theoretically speaking, the strength of 

RF-2 may come from both size and diversity of dataset. However, the accuracy would not 

improve significantly after a certain amount of size, even when input data size increased. 

Hence the improvement of performance yielded by RF-2 may come from the diversity of 

dataset. By saying diversity in this context, it refers to the environmental conditions of 

the time satellite images were recorded, e.g., tide level. To conclude, a more diversified 

dataset will help improve the performance of the classifier. 

 

Besides comparison within this study, whether improvement has been made was checked 

by comparing it with another study using random forest to classify seagrass with Plan-

etScope imagery by Wicaksono [12]. The two OAs obtained in the previous study were 

60.6% and 78.6% for two different study areas. However, by using multiple images as 

input data, OAs of this study have exceeded 80% under all cases, with the highest one 

reaching 87%. We are aware that a direct comparison of the current study and previous 

study will be less rationale since the study areas differ. Nevertheless, the current study 

has provided scientific evidence that using the same method and the same satellite source 

is promising to obtain high accuracy results. 
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4.2 Comparison among RF-2 application to four different images 

In this part, a detailed comparison is made to explore more about the different prediction 

results on the four images. To define more clearly, cases 1 to 4 mean the applications of 

RF-1/RF-2 to images recorded on October 27 and 31, November 2 and 5, 2017. From the 

previous section, case 2 of RF-2 has yield the highest performance, both in the meaning 

of overall performance and specific seagrass and seaweed classification. Finding out the 

reason behind the difference in performance will provide valuable information for people 

interested in using PlanetScope to extract seagrass and seaweed habitat information. One 

apparent difference among the four cases is the tide level. Tide level for each image was 

referred to tide level charts provided by Japan Meteorological Agency. The tide levels for 

four cases are 175, 111, 148, 297 cm, respectively. A line graph is created, as shown in 

Fig 4.1 to show the correlation.  

 

 

Fig. 4.1 correlation between tide level and OA, F1 score 

It can be observed that, as tide level increases, the OA and F1 score tend to decrease. This 
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phenomenon may be because when the tide level is high, the percentage of submerged 

seagrass and seaweed increases; hence, it becomes difficult for the classifier to identify 

between underwater vegetation and water. 

4.3 Observation on predict map and weak point of this model 

Qualitatively, it can be observed from the eight predict maps provided in the previous 

session that the classifier easily mistakes the middle right part of the study area. Compared 

with ground truth distribution, the actual water pixels are likely to be predicted as seagrass 

and seaweed. To find out the possible reasons, we should first quantitatively evaluate the 

features of incorrectly identified pixels. Further analysis of RF-2 application on case 2 

was conducted. From the confusion matrix provided in table 3.2, the most common clas-

sification mistake is predicted actual water pixel into seagrass and seaweed. The number 

of this false positive classification is 5852. Hence, to improve model performance, a de-

tailed analysis is needed to first deal with this false categorization. 

 

Three categories of pixels have been extracted: False Positive1 (TP1), True Positive1 

(TP1), and True Positive2 (TP2). The meaning of these three classes is given in Table 4.1. 

 

Table 4.1 meaning of FP1, TP1, TP2 

Class name Actual Predicted 

FP1 Water Seagrass and seaweed 

TP1 Water Water 

TP2 Seagrass and seaweed Seagrass and seaweed 

 

Fig 4.2 shows the distribution of FP1 pixels. From this figure, we can conclude directly 
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by observing that distances to coastline of these pixels are relatively small. This observa-

tion may lead to another discussion about the importance of distance to coastline feature.  

 

 
Fig. 4.2 Distribution of FP1 pixels. FP1 pixels are actual water pixels but were clas-

sified as seagrass and seaweed beds. 

Having been revealed in Fig. 3.3, distance to coastline is a vital feature in classification. 

However, this can also be a weak point when the model relies heavily on it. As can be 

assumed, the average distance to coastline of water pixels should be more significant than 

that of seagrass and seaweed pixels. Hence, when the distance is not long enough, it gives 

the classifier an incentive to identify the pixel with short distance as seagrass and seaweed. 

This assumption can be verified by looking at the top 3 critical features of classification 

task among the three different categories, as shown in Fig. 4.3 Only three features, dis-

tance to coastline, water depth, and green band, were chosen for comparison since they 
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are the most important ones. 
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Fig. 4.3 Comparison between False Positive 1 and True Positive 1(upper 

panel, shown in red and blue color). Comparison between False Positive 1 

and True Positive 2 (lower panel, shown in red and green color) 

 

Each color stands for one category, where red is FP1, blue is TP1, and green is TP2. From 

observation, distance to coastline of FP1 distributes between 0 to 300m, with the majority 

ranging between 50 and 200 m. However, the value for TP1, water pixels, is between 0 

to 750m, with a majority range of 50 to 600m. This confirms the assumption proposed 

above that distances of water pixels are relatively large. When the pixel with relatively 
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small distance, it is reasonable for the classifier not to treat it as water. 

 

Other than TP1, a comparison between FP1 and TP2 has been made. By observing the 

six subplots in Fig. 4.3, we can conclude that FP1 and TP2 have very similar distributions. 

This indicates that, with similar feature characteristics, the classifier is likely to identify 

these two as the same class – seagrass and seaweed. However, in actual, they are not the 

same class: red in actual is water and green in actual is seagrass and seaweeds.  

 

In order to solve this false positive classification weak point, three strategies can be 

adopted. First, more powerful features should be added to this classifier, to balance the 

weight of distance to coastline and make the classifier less reliable on one feature. Second, 

instead of using distance as a feature, an alternative usage is to apply it as a mask that 

works in a similar way to the land area mask. Last, by keeping the current model setting, 

we can improve the performance by using the best condition image – case 2 with the 

lowest tide level among the four images. 

 

The first solution, finding other valuable features, unfortunately, is not solved in the cur-

rent study. The second solution that applied a mask to the study site also failed to deliver 

a satisfactory performance compared with the original setting expressed in the methodol-

ogy section, as shown in Fig. 4.4, Specifically, a mask was created with the threshold of 

maximum seagrass and seaweed pixel distance plus one standard deviation, meaning that 

pixels with larger distances than this threshold were masked out in this analysis.  
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Fig. 4.4 Comparison of OA (upper panel) and precision of seagrass and sea-

weed (lower panel) 

 

In these two figures, green bars stand for results of solution 2, which took distance to 

coastline as a mask. As a comparison, blue bars show the results of original model setting 

that took distance to coastline as a feature. By observing, blue bars are higher than green 
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bar in most situations in the sense of general performance of specific class identification 

performance. We can conclude that, it is better to take distance to coastline as a feature 

rather than a mask.  

 

However, we find evidence to support the last solution – using better images does help 

improve performance. This can be observed by all the qualitative and quantitative anal-

yses provided in section 3 (Fig 3.4 to 3.7). When applied the same RF-1 or RF-2 to four 

different images, the best condition image has yielded the highest performance. A possible 

reason behind this may be that, with the lowest tide level, the interference is reduced to 

least, and efficiency of spectral bands reach their highest level.   
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5 Conclusion 
 

In terms of the overall objective of this study which is making improvements of Plan-

etScope imagery classification based on previous studies, we can conclude that the im-

provements have been achieved since the overall accuracy and kappa index of seagrass 

and seaweed beds classification have been improved significantly compared with previ-

ous researches of the same purpose. 

 

To be more specific, the improvements have been made in two ways, by adding new 

features and adding more diversified data to train the model. And these two methods have 

been proved to be effective in improving classification performance. In terms of new fea-

tures, environmental features that related closely to seagrass and seaweed distribution, 

such as water depth and distance to coastline, should be considered as input features since 

they provide valuable information compared with using only spectral band. In terms of 

adding more diversified data as input data, using multiple imageries increased model per-

formance compared with using only one best condition imagery, and we assume that it is 

because multiple imageries enhanced generalization ability of the model by increased 

data amount and data diversity. 

 

To summarize, it is concluded that from the results of this study, PlanetScope imagery has 

proved to be suitable for seagrass and seaweed beds classification and improvements have 

been made to realize more of its potential. 
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References of Python code 
 

1 Reading:  

1.1 Read the file prepared in ArcGIS into Python 
moba = gpd.read_file('/content/drive/Shared drives/Qin 
Xiaoyu 2017.10/west one-study-site/train whole 
study/mstudy.shp') 
moba = moba[moba['depth'] > 0] 
print(moba.shape) 
moba['labels'] = 'moba' 
 
water = gpd.read_file("/content/drive/Shared drives/Qin 
Xiaoyu 2017.10/west one-study-site/train whole 
study/wstudy.shp") 
water = water[water['depth'] > 0] 
water['labels'] = 'water' 
 
higata = gpd.read_file("/content/drive/Shared drives/Qin 
Xiaoyu 2017.10/west one-study-site/train whole 
study/hstudy.shp") 
higata = higata[higata['depth'] > 0] 
higata['labels'] = 'higata' 

 
# break down and concat  
moba.head() 
cols_name = ['NEAR_DIST',  'depth', 'b1', 'b2', 'b3', 'b4'] 
cols1 = ['NEAR_DIST',  'depth', 'b1_p1027', 'b2_p1027', 
'b3_p1027', 'b4_p1027'] 
cols2 = ['NEAR_DIST', 'depth', 'b1_p1031', 'b2_p1031', 
'b3_p1031', 'b4_p1031'] 
cols3 = ['NEAR_DIST', 'depth', 'b1_p1102', 'b2_p1102', 
'b3_p1102', 'b4_p1102'] 
cols4 = ['NEAR_DIST', 'depth', 'b1_p1105', 'b2_p1105', 
'b3_p1105', 'b4_p1105'] 
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# break down 1 
moba1 = moba[cols1] 
moba1.columns = cols_name 
moba1['labels'] = 'moba' 
water1 = water[cols1] 
water1.columns = cols_name 
water1['labels'] = 'water' 
higata1 = higata[cols1] 
higata1.columns = cols_name 
higata1['labels'] = 'higata' 
 
west1 = pd.concat([moba1, water1, higata1]) 
 
#scale. 2017-10-27 
orig_planet = rasterio.open("/content/drive/Shared 
drives/Qin Xiaoyu 2017.10/west one-study-site/pred whole 
study/whole_1027.tif") 
bband = orig_planet.read(1).ravel() 
gband = orig_planet.read(2).ravel() 
rband = orig_planet.read(3).ravel() 
nirband = orig_planet.read(4).ravel() 
 
mean1 = np.mean(bband[bband!=65535]) 
std1 = np.std(bband[bband!=65535]) 
print('mean and std of blue band is:', mean1, std1) 
mean2 = np.mean(gband[gband!=65535]) 
std2 = np.std(gband[gband!=65535]) 
print('mean and std of green band is:', mean2, std2) 
mean3 = np.mean(rband[rband!=65535]) 
std3 = np.std(rband[rband!=65535]) 
print('mean and std of red band is:', mean3, std3) 
mean4 = np.mean(nirband[nirband!=65535]) 
std4 = np.std(nirband[nirband!=65535]) 
print('mean and std of nir band is:', mean4, std4) 
 

1.2 standardization  
# The standard score of a sample x is calculated as: z = (x 
- u) / s 
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west1['pb1_std'] = west1['b1'].apply(lambda x : (x - 
mean1)/std1) 
west1['pb2_std'] = west1['b2'].apply(lambda x : (x - 
mean2)/std2) 
west1['pb3_std'] = west1['b3'].apply(lambda x : (x - 
mean3)/std3) 
west1['pb4_std'] = west1['b4'].apply(lambda x : (x - 
mean4)/std4) 

 

 

1.3 concat prepared 4 images into 1 dataframe 
west_teach = pd.concat([west1, west2, west3, west4], 
axis=0) 
west_teach = west_teach.drop(columns = ['b1', 'b2', 'b3', 
'b4']) 

2 preparation for training classifier 

2.1 create input feature 
labels = np.array(west_teach['labels']) 
features= west_teach.drop(['labels'], axis = 1) 
feature_list = list(features.columns) 
features = np.array(features) 

 

2.2 parameter adjustment : tree number 
test_oa = [] 
moba_prec = [] 
higata_prec = [] 
water_prec = [] 
sns.set_style('whitegrid') 
sns.set_palette('Set3_r') 
 
# x tress 
from sklearn.model_selection import train_test_split 
train_features, test_features, train_labels, test_labels = 
train_test_split(features, labels, test_size = 0.1) 



   

 

  59 

 

 
print('Training Features Shape:', train_features.shape) 
print('Testing Features Shape:', test_features.shape) 
 
# train 
classifier = RandomForestClassifier(n_estimators = x) 
classifier.fit(train_features, train_labels) 
 
# test 
west_pred = classifier.predict(test_features) 
 
# accuracy, feature_importance and confusion matrix 
print('accuracy is:',accuracy_score(test_la-
bels,west_pred),'\n') 
test_oa.append(accuracy_score(test_labels,west_pred)) 
 
print("confusion matrix:",'\n',confusion_matrix(test_la-
bels, west_pred, labels=['moba','higata','water']),'\n') 
 
from sklearn.metrics import precision_score 
moba_prec.append(precision_score(test_labels, west_pred, 
labels=['moba'], average=None)[0]) 
higata_prec.append(precision_score(test_labels, west_pred, 
labels=['higata'], average=None)[0]) 
water_prec.append(precision_score(test_labels, west_pred, 
labels=['water'], average=None)[0]) 
 
 
palette = sns.color_palette("mako") 
sns.set_palette(palette=palette) 
 
tree = pd.DataFrame([1,10,50,100,200,500]) # tree number 
settings of this study 
test_eval = pd.concat([tree, pd.DataFrame(test_oa),pd.Data-
Frame(moba_prec),pd.DataFrame(higata_prec),pd.DataFrame(wa-
ter_prec)], axis=1) 
test_eval.columns = 
['tree','oa','prec_m','prec_h','prec_w'] 
print(test_eval.head(),'\n') 
test_eval.to_csv("tree_eval.csv") 



   

 

  60 

 

 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,5)) 
plt.subplots_adjust(wspace=0.5) 
sns.barplot(x='tree', y ='oa',data=test_eval, ax=ax1) 
ax1.set_ylabel("Overall Accuracy") 
sns.barplot(x='tree', y ='prec_m',data=test_eval, ax=ax2) 
ax2.set_ylabel("precision of seagrass and seaweed") 
plt.suptitle('trained with 4 images') 
 

2.3 parameter adjustment : training size 
# adjust training size.   tree number fixed 
test_oa = [] 
train_size = [] 
moba_prec = [] 
higata_prec = [] 
water_prec = [] 
sns.set_style('whitegrid') 
 
# use same test dataset for each classifier 
from sklearn.model_selection import train_test_split 
Feature,TEST_FEATURES, Label, TEST_LABELS = 
train_test_split(features, labels, test_size=0.2) 
# fix this TEST_LABELS for later accuracy check  
 
# training size = y 
train_features, test_features, train_labels, test_labels = 
train_test_split(Feature, Label, train_size = y) 
train_size.append(train_features.shape[0]) 
print('Training Features Shape:', train_features.shape) 
 
# train 
classifier = RandomForestClassifier(n_estimators = 100) 
classifier.fit(train_features, train_labels) 
 
# test 
west_pred = classifier.predict(TEST_FEATURES) 
 
# accuracy, feature_importance and confusion matrix 
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print('accuracy is:',accuracy_score(TEST_LA-
BELS,west_pred),'\n') 
test_oa.append(accuracy_score(TEST_LABELS,west_pred)) 
 
print("confusion matrix:",'\n',confusion_matrix(TEST_LA-
BELS, west_pred, labels=['moba','higata','water']),'\n') 
 
from sklearn.metrics import precision_score 
moba_prec.append(precision_score(TEST_LABELS, west_pred, 
labels=['moba'], average=None)[0]) 
higata_prec.append(precision_score(TEST_LABELS, west_pred, 
labels=['higata'], average=None)[0]) 
water_prec.append(precision_score(TEST_LABELS, west_pred, 
labels=['water'], average=None)[0]) 
 
case = pd.DataFrame(np.arange(1,len(train_size)+1,1)) 
test_eval = pd.concat([case,pd.DataFrame(train_size),pd.Da-
taFrame(test_oa),pd.DataFrame(moba_prec),pd.DataFrame(hi-
gata_prec),pd.DataFrame(water_prec)], axis=1) 
test_eval.columns = 
['case','size','oa','prec_m','prec_h','prec_w'] 
test_eval.to_csv("trainsize_eval.csv") 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,5)) 
plt.subplots_adjust(wspace=0.5) 
sns.barplot(x='size', y ='oa',data=test_eval, ax=ax1) 
ax1.set_ylabel("Overall Accuracy") 
sns.barplot(x='size', y ='prec_m',data=test_eval, ax=ax2) 
ax2.set_ylabel("precision of seagrass and seaweed") 
for ax in fig.axes: 
    plt.sca(ax) 
    plt.xticks(rotation=90) 
plt.suptitle('trained with 4 images') 
 

3 train classifier with best parameter setting 

# training size = 13000 
from sklearn.model_selection import train_test_split 
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train_features, test_features, train_labels, test_labels = 
train_test_split(features, labels, train_size = 13000) 
 
print('Training Features Shape:', train_features.shape) 
print('Testing Features Shape:', test_features.shape) 
 
# train 
classifier = RandomForestClassifier(n_estimators = 100) 
classifier.fit(train_features, train_labels) 
 
# Feature Importance 
fti = classifier.feature_importances_    
imp = pd.concat([pd.DataFrame(feature_list),pd.Data-
Frame(fti)], axis=1) 
imp.columns = ['feature','importance'] 
imp = imp.sort_values(by='importance') 
sns.set_palette('summer_r') 
sns.barplot(x='feature', y='importance',data=imp) 
plt.title("feature importance when trained with 4 images") 
 

4 apply classifier to whole study site for prediction 

4.1 read satellite image, water depth and distance geotiff file into python 
band_path = '/content/drive/Shared drives/Qin Xiaoyu 
2017.10/west one-study-site/pred whole 
study/whole_1027.tif' 
wd_path = '/content/drive/Shared drives/Qin Xiaoyu 
2017.10/west one-study-site/pred whole 
study/whole_depth.tif' 
dist_path = '/content/drive/Shared drives/Qin Xiaoyu 
2017.10/west one-study-site/pred whole 
study/whole_dist.tif' 
 
nir = rasterio.open(band_path).read(4) 
wd = rasterio.open(wd_path).read(1) 
dist = rasterio.open(dist_path).read(1) 
 
cols = nir.shape[1] 
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b = rasterio.open(band_path).read(1).ravel() 
g = rasterio.open(band_path).read(2).ravel() 
r = rasterio.open(band_path).read(3).ravel() 
nir = nir.ravel() 
 
band = pd.DataFrame(np.array([b,g,r,nir]).transpose()) 
depth = pd.DataFrame(wd.ravel().transpose()) 
distance = pd.DataFrame(dist.ravel().transpose()) 
 

4.2 standardization  
image = pd.concat([distance,depth, band], axis=1) 
image.columns = 
['NEAR_DIST','depth','b1_planet','b2_planet','b3_planet','b
4_planet'] 
#image['NDVI'] = (image['b4_planet'] - image['b3_planet']) 
/ (image['b4_planet'] + image['b3_planet']) 
#image['GNDVI'] = (image['b4_planet'] - image['b2_planet']) 
/ (image['b4_planet'] + image['b2_planet']) 
#image['ratio'] = image['depth'] / image['NEAR_DIST'] 
 
orig_planet = rasterio.open("/content/drive/Shared 
drives/Qin Xiaoyu 2017.10/west one-study-site/pred whole 
study/whole_1027.tif") 
bband = orig_planet.read(1).ravel() 
gband = orig_planet.read(2).ravel() 
rband = orig_planet.read(3).ravel() 
nirband = orig_planet.read(4).ravel() 
 
# standardization pixel values 
mean1 = np.mean(bband[bband!=65535]) 
std1 = np.std(bband[bband!=65535]) 
print('mean and std of blue band is:', mean1, std1) 
mean2 = np.mean(gband[gband!=65535]) 
std2 = np.std(gband[gband!=65535]) 
print('mean and std of green band is:', mean2, std2) 
mean3 = np.mean(rband[rband!=65535]) 
std3 = np.std(rband[rband!=65535]) 
print('mean and std of red band is:', mean3, std3) 
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mean4 = np.mean(nirband[nirband!=65535]) 
std4 = np.std(nirband[nirband!=65535]) 
print('mean and std of nir band is:', mean4, std4) 
 

# The standard score of a sample x is calculated as: z = (x 
- u) / s 
image['pb1_std'] = image['b1_planet'].apply(lambda x : (x - 
mean1)/std1) 
image['pb2_std'] = image['b2_planet'].apply(lambda x : (x - 
mean2)/std2) 
image['pb3_std'] = image['b3_planet'].apply(lambda x : (x - 
mean3)/std3) 
image['pb4_std'] = image['b4_planet'].apply(lambda x : (x - 
mean4)/std4) 
 

4.3 mask land pixels 
land_idx = image[image['depth']==9999].index 
# image2: has exclude land area, hence only should contain 
water and moba.  
image2 = image.drop(land_idx) 
 

4.4 apply classifier to predict 
image2 = image2[feature_list] 
ori_idx = image2.index 
image2_pred = classifier.predict(image2) 
 

4.5 visualization 
image2_pred_df = pd.DataFrame(image2_pred, columns=['pre-
dicted']) 
image2_pred_df = image2_pred_df.set_index(ori_idx) 
 
merged = image.merge(right=image2_pred_df, left_index=True, 
right_index=True, how='left') 
 
land_condition = (merged['predicted']!='water') & 
(merged['predicted']!='moba') & (merged['predicted']!='hi-
gata') 
merged.at[land_idx,'predicted'] = 'land' 
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pred_image_3class = merged['predicted'] 
pred_image_3class = np.array(pred_image_3class) 
 
convert = np.reshape(pred_image_3class, (-1, cols)) 
 
a = pd.DataFrame(convert).replace(to_re-
place=['water','moba','higata','land'], value=[3, 2, 1, 0]) 
plt.figure(figsize = (7,7)) 
sns.heatmap(a, cmap='GnBu', cbar=False) 
plt.axis('off') 
plt.title('Planet, 4-image. 100-tree. 13000. pred on Oct 
27') 
plt.savefig("Planet, 4-image. 100-tree. 13000. pred on Oct 
27.png", dpi=600) 
 

5 evaluation of prediction 

# import ground truth data for test area 
true_h = rasterio.open("/content/drive/Shared drives/Qin 
Xiaoyu 2017.10/west one-study-site/pred whole 
study/h_whole_true.tif").read(1) 
true_m = rasterio.open("/content/drive/Shared drives/Qin 
Xiaoyu 2017.10/west one-study-site/pred whole 
study/m_whole_true.tif").read(1) 
 
trueh_rav = true_h.ravel() 
truem_rav = true_m.ravel() 
 
merged['ish'] = trueh_rav 
merged['ism'] = truem_rav 
 
merged_3class = merged[merged['predicted']!='land'] 
is_higata = merged_3class['ish'] != 9999 
is_moba = merged_3class['ism'] != 9999 
merged_3class.at[is_higata,'class'] = 'higata' 
merged_3class.at[is_moba,'class'] = 'moba' 
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merged_3class['class'] = merged_3class['class'].re-
place(np.nan, 'water', regex=True) 
 
target_names = ['moba', 'higata', 'water'] 
 
pred_cm = confusion_matrix(merged_3class['class'], 
merged_3class['predicted']) 
print(pred_cm) 
sns.heatmap(pred_cm, cmap='Blues') 
plt.show() 
 
from sklearn.metrics import cohen_kappa_score 
print(cohen_kappa_score(merged_3class['class'], 
merged_3class['predicted'])) 
pred_kappa.append(cohen_kappa_score(merged_3class['class'], 
merged_3class['predicted'])) 
 
from sklearn.metrics import classification_report 
y_true = merged_3class['class'] 
y_pred = merged_3class['predicted'] 
report = classification_report(y_true, y_pred, out-
put_dict=True) 
df1027 = pd.DataFrame(report).transpose() 
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