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ABSTRACT 

 

Since mangrove forests around the world are declining due to human disturbances such 

as shrimp farming, agricultural expansion, urbanization, and over-harvesting for fuel-

wood, rehabilitation programs should be accelerated for mangrove conservation urgently. 

Many studies pointed out that the current popular artificial planting approach yielded an 

unsatisfactory surviving rate for extensive plantations due to the lack of a site-species 

match. Limited studies focused on natural recovery of mangrove that is an opportunity 

for mangrove rehabilitation. Hence, the present study examined natural recovery man-

grove from different abandoned shrimp ponds through spatial and species analysis. Be-

fore any restoration programs, knowing the actual distribution of regional mangrove ex-

tent is of great importance for implementation of mangrove rehabilitation and formulation 

of necessary regulations. Due to the inaccessibility of mangrove nature, remote sensing 

classification is a time and cost-effective approach to obtain reliable information of ex-

tensive mangrove forests. Although a number of studies have applied different classifi-

cation methods combining with various remotely sensed data for mangrove distribution, 

there is lack of information about the performance of artificial neural network (ANN) 

using Sentinel-2 imagery for mangrove classification. In this dissertation, artificial neural 

network was therefore employed with the combination of Sentinel-2 satellite images in 

order to propose a promising classification approach for a large extent of mangrove areas. 

This study firstly conducted two main experiments of input features and hyper-parameter 

tuning since input features play a key role to improve resultant accuracy in remote sensing 

classification as has a selection of method deployed. A basic ANN model was applied to 

the experiments of input feature selection. The most appropriate input combination for 

mangrove classification was obtained with an overall accuracy of 95.85 %. Hyper-param-

eter tuning was then explored in order to select a suitable number of hidden layers and 

neurons for the input features. The optimum design of ANN model was selected as two 

hidden layers with (544:320) neurons. Through these two main experiments, mangrove 

distribution of the study area, Wunbaik Mangrove Forest (WMF) in 2020 could be clas-

sified with overall accuracy of 95.98% and kappa coefficient of 0.92. Transfer learning 
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improved the performance of the model in classifying a new dataset in 2015 and the re-

sultant overall accuracy and kappa coefficient were 97.20% and 0.94. Secondly, the study 

fulfilled information about mangrove changes in WMF from 2015 and 2020 through post-

classification change detection. The result of change detection showed that mangrove ar-

eas in WMF slightly declined between 2015 and 2020 because of shrimp pond expansion 

for local livelihoods. Lastly, natural recovering mangrove areas from shrimp farming ac-

tivities were delineated in terms of spatial and species analysis integrating field survey 

data. As a result, the study found that mangrove forests can naturally recover around 50 % 

of a shrimp pond without any restoration effort during a short period of abandonment. 

Furthermore, recovering mangrove species are diversely distributed at different aban-

doned ponds depending on their environmental preference. Avicennia officinalis and Av-

icennia marina are dominant species with high adaptability to different salinity and ele-

vation range in the early mangrove community recovering at abandoned shrimp ponds. 

According to research findings, this study reveals that artificial neural network classifi-

cation using Sentinel-2 image produces a promising accuracy for mangrove distribution 

and integration of digital terrain and canopy height models can improve resultant accu-

racy in mangrove classification. Protection measures for existing mangrove should be 

more enhanced to prevent conversion to other land uses while natural recovery of man-

grove is supporting mangrove rehabilitation effectively. 
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Chapter 1 INTRODUCTION 

1.1. Study Background 

Mangroves are a salt-tolerant forest community which occurs especially in tropical 

and subtropical intertidal portions of the world[1]. The global mangrove area was 

137,760 km2 in 2000 [2] and less than 1% of tropical forest worldwide and 0.4% of 

the global forest estate. They however provide magnificent ecosystem services that 

are not only tangible goods such as wood and non-wood products but also intangible 

services such as protecting coastal regions from storm and wave, and acquisition of 

massive amounts of carbon dioxide[3]. 

Despite such invaluable ecosystem services, mangrove forests around the world 

were being depleted with an alarming rate year by year due to human pressures such 

as the development of aquaculture, agricultural expansion, oil plantations, and urban-

ization[4]. According to a study of FAO (2007) [5], world mangrove areas decreased 

from 18.8 million hectares in 1980 to 15.2 million hectares in 2005 as -0.66% of 

annual changes. In order to compensate for mangrove loss, restoration projects have 

been implemented primarily by means of artificial plantations. Many studies pointed 

out that plantation projects may lead to unsatisfied results with low survival rates 

when a replanted mono-species is not appropriate for a selected site. One of the op-

portunities is that mangrove possesses a high capacity of self-recovery in which man-

grove species can naturally reenter a deforested area if environmental parameters such 

as natural hydrology, salinity, and elevation of a site meet the preferences of seeds or 

propagules dispersed along with tidal flow. However, little attention has been paid to 

the natural recovery of mangrove in considering rehabilitation programs. Therefore, 

information about natural recovery of mangrove should be more provided for imple-

menting successful reforestation programs. 

The study area of this research, Wunbaik Mangrove Forest (WMF), plays a vital 

role in providing ecological, environmental, and socio-economic goods and services 

to the local community. However, due to aquaculture and agricultural expansions, 

WMF and its surrounding mangrove forest have been highly degraded since the 1990s. 
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According to FAO inventory in 2011 [6], WMF possesses a high capacity of recovery 

due to abundant seed productivity and high germination rate of mangrove species. 

Therefore, this region is suitable to explore natural recovery of mangrove from human 

disturbances. Despite such a large remnant mangrove extent, there is a prominent gap 

of information about mangrove distribution and changes after 2014. For sustainable 

mangrove management, updated and accurate information is necessary before imple-

menting any restoration efforts. 

 Being that mangroves are not only under natural and anthropogenic threats but 

also growing in remote areas, accessibility of reliable and accurate information is dif-

ficult for a large extent of mangrove[7]. With the development of technology in the 

remote sensing field, advanced approaches were improved to satellite image classifi-

cation in various disciplines. Remote sensing plays an important role in monitoring 

mangrove distribution and identifying species, and other attributes such as estimating 

tree height and biomass. Developing space technology and agencies, satellite data for 

mangrove areas around the world are accessible and helpful to overcome management 

barriers in the mangrove field. Still, the interpretation of the remotely sensed data into 

usable information is challenging due to the complexity of the targeted field. There-

fore, features acquired by the earth sensors are needed to perform a further analysis 

in order to translate into more reliable and understandable information. 

Classification is one of the important approaches, which can offer promising in-

formation of earth objects by analyzing remotely sensed data from satellite sensors. 

However, classification accuracy varies depending on not only usage of remotely 

sensed data but also choice of appropriate classifier[8]. For mangrove distribution, 

several classification approaches have been developed and explored by using differ-

ent classifiers and satellite imageries. In recent advanced classification methodologies, 

machine learning is a new emerging field and classifiers such as artificial neural net-

work (ANN), random forest (RF) and support vector machine (SVM). Among these 

different methods, ANN has become more popular and widely used in many fields by 

combining remotely sensed satellite images because of producing a promising result 

and robustness of the model [9–12].  
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Launching Sentinel-2 satellite by European Space Agency in 2015 was a great 

opportunity for the remote sensing community to develop classification approaches 

for a different variety of fields[13]. With the advantages of spectral, temporal, and 

spatial resolutions of freely accessible multispectral bands, Sentinel-2 imagery out-

performed Landsat 8 by yielding more precise results in remote sensing classifica-

tion[14–16]. Also, in mapping of mangrove extent and species, Wang et al [17] de-

scribed that Sentinel-2 sensor bested Landsat 8 by offering more accurate information 

in their research. 

Applying such benefits of ANN method and Sentinel-2 imagery, some studies 

could improve the results in their targeted fields [18–22]. Although there are limited 

studies of mangrove using ANN classification with different satellite images, due to 

the outperformance of recently launched Sentinel-2 imagery, it is worth investigating 

potential performance of artificial neural network classification in collaboration with 

Sentinel-2 imagery for mangrove distribution. Through this proposed approach, a 

promising result for mangrove classification would be achieved in order to provide 

the lack of information about mangrove changes in the WMF and assess natural re-

covery of mangrove after human disturbances. 

 

1.2. Study Objectives 

Basically, the study has three folds; (a) artificial neural network classification, (b) 

change detection, and (c) natural recovery process of mangrove after human disturb-

ances. The main objectives are mentioned as follows; 

i. To explore artificial neural network classification in collaboration with 

Sentinel-2 imagery for mangrove distribution, 

ii. To fulfill information gap of mangrove changes in the WMF between 2015 

and 2020 through post classification change detection, and  

iii. To assess natural recovery process of mangrove after human disturbances 

by comparing different abandoned shrimp ponds in terms of spatial and 

species analysis 
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1.3. Literature Review 

1.3.1. Artificial neural network for mangrove classification 

To management of mangrove forest, remote sensing contributes an essential role 

by providing reliable information for different research topics such as mangrove 

extent mapping, species classification, and estimation for above ground biomass 

[23,24]. However, the resultant accuracy varies depending on the method and the 

input features in use. Despite the cutting-edge approach in remote sensing classi-

fication, ANN was rarely used for mangrove classification but a few studies de-

scribed the performance of ANN using different remotely sensed imageries. 

Xiang Yu et al [25] applied Landsat TM5 image providing 30 m resolution 

in ANN classification to analyze land use types of mangrove region in Beihai City, 

Guangxi, P. R. China. In their study, ANN model was designed by a combination 

of input layer with band 3; red, band 4; near infrared and band 5; short wave near 

infrared, 5 hidden layers, and output layers with 5 different classes. Compared to 

other classification methods, ANN produced the highest accuracy of 86.86% in 

their research while maximum likelihood and spectrum angle approaches yielded 

50.79% and 75.39% accuracy, respectively. 

For mangrove mapping in Penang island, Ben Bo Chun et al [25] used ANN 

by combining Thailand Earth Observing System (THEOS) satellite image, which 

has 15 m resolution of multispectral bands (red, green, blue and near infrared). 

The four bands of THEOS image in an input layer, one hidden layer with 5 neu-

rons and an output layer with 5 classes were structured to create an ANN model 

in their analysis. Being achieving overall accuracy of 93.5% and kappa coefficient 

of 0.900, they revealed that ANN classification is a reliable approach for man-

grove mapping. In another analysis [27], they weighed the ANN method with the 

maximum likelihood classifier by selecting training polygons based on field ob-

servation. Their finding showed that higher accuracy of 93.5% could be obtained 

by applying the ANN classifier whereas maximum likelihood provided 91.5% ac-

curacy for mangrove mapping. 
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With the aims of distinguishing terrestrial species other than mangrove, 

Edwin Raczko and Bogdan Zagajewski compared famous three non-parametric 

algorithms; ANN, RF and SVM by using Airborne Prism Experiment (APEX) 

hyperspectral data, which contain 288 spectral bands ranging from 413 to 2447 

nm with 3.35m spatial resolution. Training and evaluating with the hyperspectral 

dataset generated from field data collection, they showed that ANN with the high-

est accuracy of 77 % outperformed the rest classifiers of SVM 68% and RF with 

62% for discriminating five different terrestrial species. They finally recom-

mended the ANN with careful selection of optimal spectral bands rather than us-

ing massive numbers of bands to improve the resultant accuracy. 

1.3.2. Mangrove forest changes 

In Asia which covers 38% of global mangrove area representing the highest 

percentage of mangrove area worldwide, the downing rate is -1.01% of mangrove 

extent from 7.8 million hectares in 1980 to 5.9 million hectares in 2005. During 

2000 to 2012, the percentage of mangrove forest loss was 2.12% in Southeast 

Asia. In Myanmar, there are three main regions; Rakhine, Ayeyarwaddy, and 

Tanintharyi where mangroves are primarily thriving along 2832 kilometers of 

coastline area. FAO stated that mangrove areas in Myanmar have declined from 

555,500 hectares in 1980 to 507,000 hectares in 2005 with annual loss rate of -

0.4 %. Between 2000-2012, Myanmar was  also the number one of top ten coun-

tries having the highest average annual mangrove deforestation rate and aquacul-

ture and agricultural conversions are regarded as the main drivers for mangrove 

area loss. 

Being that the study area, WMF is one of the largest remnant mangroves in 

Myanmar, there were substantial changes of mangrove area since the late 1990s. 

WMF plays a significant role in the livelihoods of the local community by provid-

ing ecological, environmental, and socio-economic goods and services. Main lo-

cal livelihoods are shrimp farming and agriculture in mangrove forested areas, 

especially the WMF. Due to the fact that there is insufficient electricity, lack of 
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job opportunities, and growing population in this region, overexploitation of fuel-

wood and land encroachment for local livelihoods exacerbated the status of man-

grove forest and led to converting other land-uses such as aquaculture and agri-

cultural fields over time [6]. Between 1990 and 2014, 190.98 hectares of man-

grove area was decreased to 139.47 hectares dramatically whereas other land-use 

of shrimp ponds and paddy fields increased significantly from 6.45 to 58.29 (Fig-

ure 1.1)[28]. Unfortunately, there is no updated information for this massive re-

maining mangrove area after 2014. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Land-use and land cover changes of Wunbaik Reserved Forest be-

tween 1990 and 2014 

1.3.3. Mangrove restoration programs and natural recovery process 

The 2004 Indian Ocean tsunami and the 2008 Nargis Cyclone hitting Myanmar 

alarmed international organizations to accelerate mangrove rehabilitation. To 

compensate for mangrove loss and to protect from natural disasters, mangrove 

reduced areas were implemented in rehabilitation programs whereby mangrove 

seedlings are nursed and planted. 
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As international non-governmental organizations and private donors paid at-

tention to mangrove rehabilitations, many plantations could be established to re-

gain mangrove reduced. Unfortunately, many large-scale artificial restoration pro-

jects could not achieve satisfied results because their replanted mono-species were 

not suited to selected sites. Due to abundance and accessibility of Rhizophora 

propagules than other mangrove species, direct sowing of propagules was a pop-

ular effort in mangrove restoration projects and planting campaigns. To plantation 

sites, newly formed tidal flats where soil is unstable under wave fluctuation were 

carelessly chosen with a lack of knowledge about site and species adaptation, and 

the consequence of such efforts may lead to low survival rates that cannot address 

the objectives of mangrove rehabilitation. 

Turning to the natural recovery of mangrove, Julien Andrieu at el[29] found 

that 3000 hectares of Senegalese mangrove could naturally recover from drought-

induced mortality between 2000 and 2015. They expressed their findings by com-

bining botanical field data with information derived from remote sensing classifi-

cation using k-mean algorithm and Landsat 8 imagery. 

Moreover, A. Ferreira et al [30] compared natural recovery to planted sites in 

terms of mangrove species richness and crab diversity in Brazil. According to 

their findings, although the higher crab density was found in plantation sites, nat-

ural recovered mangrove area possesses the higher tree species richness. F. Sidik 

et al [31] also analyzed planted mangrove inside the abandoned shrimp ponds and 

naturally recruited mangrove outside the pond in Perancak Estuary, Bali. They 

found that between 2001 and 2004, mangrove expanded from 20 to 65 ha in nat-

ural areas but from 20 to 50 ha in planted sites. To species analysis of their study, 

only Rhizophora species were found as planted mangrove while Sonneratia and 

Avicennia were dominant in the natural recovered community. 

1.4. Study Significance 

To my knowledge, the present study was the first effort to show the performance of 

artificial neural network classification using Sentinel-2 image for mangrove distribu-

tion despite limited studies using ANN classification with other satellite imageries. 

Unlike traditional classification applying feature extraction for training dataset, this 
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study applied a ground truth image based on field observation to neural network clas-

sification. In addition, the study analyzed two main experiments of input features and 

hyper-parameter tuning with the aims of selecting the most appropriate method for 

mangrove classification. By introducing transfer learning approach, the proposed 

method was improved and able to be applied to a new dataset in different image ac-

quisition dates of the study area. 

 Furthermore, as the updated information matter for natural resource management, 

the study fulfilled the prominent gap of mangrove distribution and changes in the 

WMF between 2015 and 2020. Despite a few studies describing comparison of natural 

recovered and planted mangrove, this study provided pure natural recovery of man-

grove at different abandoned shrimp ponds in terms of spatial and species analysis. 

Consequently, this study contributed not only a promising method in the remote sens-

ing field but also reliable findings for mangrove conservation.  
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Chapter 2 MATERIALS AND METHODS 

 

2.1. Study Site 

The study area is located between 19. 07' 0" – 19. 23' 30" North and 9.3 51' 0" – 94. 

02' 30" East in Yambye township, Kyauk Phyu district, Rakhine State, Myanmar, and 

locally known as Wunbaik Mangrove Forest (WMF) where main mangrove distrib-

uted area has been constituted as a reserved forest by Forest Department (FD) since 

1931(Figure 2.1). Wunbaik Mangrove Reserved Forest is one of the largest remaining 

mangrove communities with the extent of 22674 ha. 34 mangrove species have been 

identified by Food and Agricultural Organization (FAO) project since 2011[32]. 

Figure 2.1 Location of the study area, (a) Wunbaik Mangrove Forest (Sentinel-2 true 

color image), (b) Rakhine coastal region (Google Earth Image), and (c) Myanmar (Google 

Earth Image) 
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2.2. Field Survey 

2.2.1. Discussion with relevant officials and local community 

In order to acquire updated information about the study area, field survey was 

conducted from September 1, 2019 to October 15, 2019. During the field survey, 

township staff of FD were interviewed first to know the current status of WMF 

and mangrove restoration programs. Focus group interview was conducted with 

the local community of two local villages, Myo Chun and Yan Thit Gyi, in order 

to understand local livelihood culture and their perspective on mangrove forest.  

  

(a) (b) 

  

(c) (d) 

Figure 2.2 Interview with (a) Township Officer of FD, (b) local community, (c) and (d) 

shrimp pond owners 
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2.2.2. Collecting ground truth data 

Being a large extent and various types of land use in the study area, latitudes and 

longitudes of ground truth points of each land-use types (Table 2.1) were collected 

using a handheld GPS (GARMIN etrex 10) (Figure 2.7 (a)), which is able to ob-

tain coordinates with a horizontal accuracy of approximately 3m. Locations of the 

ground truth points are shown by matching photos takn in the field (Figure 2.3) 

and were used to create a ground truth image in ANN classification. The detailed 

GPS points were described in Appendix 1. 

 

Table 2.1 Ground location points of different land-uses 

 

 

 

 

 

 

 

 

 

  

 

Sr Land-use type Number of points 

1 Water 20 

2 Paddy field 6 

3 Shrimp pond 13 

4 Natural mangrove 30 

5 Mangrove plantation 5 

6 Other vegetation 6 

 Total 80 
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Figure 2.3 Ground location points of different land covers in the study area 

 

2.2.3. Selection for naturally recovering sites 

To explore natural recovery of mangrove from anthropogenic disturbances, firstly 

abandoned sites were selected by setting three criteria below. 

(1) The abandoned sites must be under the same abandonment year. 

(2) There are no planted mangroves in the abandoned area. 

(3) Due to the mangrove area, accessibility to the selected sites was con-

sidered. 

2.2.4. Surveying mangrove species specifications and environmental param-

eters 

Although mangrove species identification has been attempted by using freely ac-

cessible satellite images[33][34], resultant accuracies were not satisfied compared 

to the performance of commercial satellite images with very high resolution.  
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Since this study aims to identify early recovered mangrove species at a small ex-

tent of abandoned sites, field surveying was more appropriate to delineate species 

diversity rather than the application of medium resolution satellite images. 

To collect mangrove species specification, sample plots were designed 

into circular shape with 10 m diameters and subplots were established 5 m and 

3m diameter (Figure 2.4). To meet the objective of species diversity, before 

setting up sample plots, the survey team randomly checked where species types 

are diverse. Within 10 m diameter of each sample plots, every tree, which has a 

diameter breast height (DBH>3cm) was enumerated by recording species name, 

DBH (at 1.3 m ) and tree heights. Similarly, species having 1-3 cm of DBH were 

recorded within the 5 m subplot and <1 cm as seedlings in the 3 m subplot. A total 

of 50 sample plots for three abandoned ponds could be implemented during the 

field study (Figure 2.5) and their coordinate positions were also recorded as de-

scribed in Appendix 1. 

. 

 

 

 

 

 

 

 

 

Figure 2.4  Sample plot design used in the field study for surveying mangrove specifica-

tion 
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Figure 2.5 Locations of three selected abandoned sites and sample plots (Sen-

tinel-2 true color image) 

 

Figure 2.6  Surveying mangrove species specification in a sample plot 
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Because each mangrove species has its preferable salinity range, salinity 

is one of the key parameters, which can affect mangrove species distribution[35]. 

By knowing the salinity preference of recovered mangrove species, suitable spe-

cies could be selected if it is necessary to plant in certain areas of abandoned sites 

for mangrove rehabilitation. Salinity data were collected in each sample plot (Fig-

ure 2.8 (b))and surrounding water channels (Figure 2.8(a)) by using AAQ1186-H 

multi-parameter water quality meter (Figure 2.7 (b)) during high tide period. 

 

 

Figure 2.7 (a) Handheld GPS (GARMIN etrex 10) , (b) Water quality meter for 

salinity data collection 

     

Figure 2.8 (a) Measuring water salinity in a surrounding creek and (b) in a sample plot 

(a) (b) 

(a) (b) 
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Surface elevation plays an important role in the establishment of early stage 

of different mangrove[36], which is why, in order to compare the occurrence of 

recovered mangrove species depending on elevation, ground truth of topograph-

ical information was acquired in the selected recovering sites by using Post-Pro-

cessed Kinematic (PPK). In order to obtain elevation of the three selected sites, 

freely accessible different digital elevation models (DEM) were evaluated by us-

ing PPK ground truth elevation. 

PPK is an alternative way to Real-Time Kinematic (RTK) and does not require 

a correction link between base and rover (Figure 2.10). Field measurement from 

both base and rover was recorded as raw log files separately. Being the fact that 

PPK is not a real time measurement as RTK, centimeter-level accuracy can only 

be obtained through RTKLIB software in which starting and ending collection 

time were provided to conduct post-processing [37]. Since PPK provides ellipsoi-

dal height in default, geoid height calculator software was used to convert to or-

thometric values by submitting latitude and longitude information, and processed 

ellipsoidal height values [38].  

 

(a) 
(b) 

Figure 2.9 Application of PPK in the field;(a) Base station and (b) Rover position 



 17 

Figure 2.10 Configuration of PPK system 

( https://docs.emlid.com/reachrs/common/tutorials/placing-the-base/) 

 

2.3. Dataset Creation for Classification 

2.3.1. Sentinel-2 satellite imagery 

To detect mangrove changes and recovering areas of the selected abandoned sites, 

this study utilized two different dates of cloud-free Sentinel-2 images, which are 

January 21, 2020 and December 26, 2015. For creating necessary datasets for 

ANN classification, the sets of multispectral bands of Sentinel-2 satellite imagery 

were collected from the Copernicus Open Access Hub[39] by using semi-auto-

matic classification plugin (SCP) in QGIS.  

Two major products of Sentinel-2 imagery, which are Level-1 C and Level-2 

A are currently disseminated to users by the European Space Agency. Level-1 C 

provides orthorectified Top-Of-Atmosphere (TOA) reflectance while Level-2 C, 

which was extended globally in December 2018 offers orthorectified Bottom-Of-

Atmosphere (BOA) reflectance[40]. The spatial resolutions of multispectral bands 

acquired by Sentinel-2 are 10m, 20m, and 60m respectively. Detailed information 

is described in Table 2.2 [40]. This study applied only 10 bands other than band 

1, band 9 and band 10, which are poor spatial resolution with 60m and not related 

with the aim of mangrove classification. 
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Table 2.2 Specification of Sentinel-2 bands 

Bands Spectral region Central wavelength(nm) Resolution 

Band 1 Coastal aerosol 443 60 

Band 2 Blue 490 10 

Band 3 Green 560 10 

Band 4 Red 665 10 

Band 5 Vegetation Red Edge 705 20 

Band 6 Vegetation Red Edge 740 20 

Band 7 Vegetation Red Edge 783 20 

Band 8 Near Infrared 842 10 

Band 8A Near Infrared narrow 865 20 

Band 9 Water vapor 945 60 

Band 10 
Short wave infrared/ 

Cirrus 
1380 60 

Band 11 
Short wave infrared 

(SWIR1) 
1910 20 

Band 12 
Short wave infrared 

(SWIR2) 
2190 20 

 

2.3.2. Satellite image preprocessing 

Since satellites acquired remotely sensed images of earth objects from space, there 

are radiometric and atmospheric disturbances between the satellite sensor and 

earth surface[41]. As a consequence, this process may undermine image quality, 

which is why image preprocessing is necessary to overcome this problem after 

obtaining desired satellite images.  Atmospheric correction is a process by which 
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the scattering and absorption effect of gases and aerosols in the atmosphere are 

eliminated to improve reflectance values of satellite images[42].  

As aforementioned in section 2.3.1, only Level-1 C products in 2015 were 

required for atmospheric correction because Sentinel-2 images acquired in 2020 

are Level-2 A products. The multispectral bands of the 2015 dataset were there-

fore atmospherically corrected through the SCP tool in QGIS. Sentinel-2 bands 

with different resolutions were resampled to 10 m resolution through nearest 

neighbor algorithm for both 2015 and 2020[43].  

2.3.3. Spectral indices of NDVI, NDWI, and CMRI 

Apart from multispectral bands of satellite images, spectral indices are one of the 

effective features that can offer information about land-uses and land covers. 

Among various spectral indices, normalized difference vegetation index (NDVI), 

normalized difference water index (NDWI), and combined mangrove recognition 

Index (CMRI) were used as input features for training a neural network model in 

this study. 

NDVI is a global vegetation index, which provides pivotal information for 

vegetation analysis, and land-use and land cover mapping. To provide precise data 

to the neural network model, NDVI was derived from band 8 (NIR) and band 4 

(RED) of Sentinel-2 image by using Equation 1[44]. NDVI values range from -1 

to 1 and dense vegetation cover usually produces higher values while non-vege-

tative areas such as water, paddy fields, shrimp ponds and the like show low NDVI 

values. 

NDVI = NIR!RED
NIR+RED

               (1) 

 

NDWI is a widely used index, which can enhance water information in remote 

sensing images and assist in discriminating between water and other land covers, 

such as vegetation and soil[45][46]. NDWI was calculated by using band 3 

(Green) and band 8 (NIR) of satellite-2 image in Equation 2 [45]. Like NDVI, the 
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value of NDWI also ranges from -1 to 1 but water bodies have larger values while 

vegetation cover produces smaller values. 

NDWI= #$%!&'(()
#$%	+&'(()

											(2) 

With the aim of distinguishing mangrove and other vegetation, CMRI was 

developed based on NDVI and NDWI [47]. For study areas where mangrove and 

non-mangrove vegetation are mixed, CMRI produced higher accuracy than using 

NDVI and NDWI separately. CMRI can be derived by subtracting NDWI from 

NDVI values as shown in Equation 3. 

CMRI = 	NDVI − NDWI									(3) 

 

2.3.4. Topographic information 

This study applied topographic information to two sections; (1) ANN classifica-

tion and (2) discussion about environmental preference of recovered mangrove 

species. Integration of additional features, such as topographic information, into 

natural resource assessment of remote sensing approach can improve accuracy of 

classification[48].  Accurate elevation data is critically important to compare en-

vironmental preference of recovered mangrove species. It is however difficult to 

collect topographic data over the whole study area during the field trip due to the 

inaccessibility of mangrove area. Due to a lack of regional detailed elevation data, 

three global digital elevation models (DEM) were therefore explored to cover the 

study area. 

a) Shuttle Radar Topography Mission (SRTM) 

During the SRTM mission in February 2000, SRTM 1 Arc Second DEM 

was created from C-band radar data acquired by cooperation of National 

Aeronautics and Space Administration (NASA) and the National Geospa-

tial-Intelligence Agency (NGA)[49]. SRTM1 DEM provides users elevation 

values with 30 m resolution referring to the WGS84 ellipsoid as horizontal 

datum and geoid as vertical datum and can be downloaded on USGS earthex-

plorer website freely [50]. 
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b) Advanced Land Observing Satellite (ALOS) 

ALOS World 3D – 30m (AW3D30) is provided free of charge by the Japan 

Aerospace Exploration Agency (JAXA) with 30 m resolution of digital sur-

face model (DSM) generated by the PRISM panchromatic optical sensor on 

the Advanced Land Observing Satellite “DAICHI” (ALOS) launched from 

January 2006 to April, 2011 [51][52]. 

c) Multi-Error-Removed-Improved-Terrain (MERIT) 

MERIT DEM was developed with the aims of reduction in vertical errors of 

SRTM3 (90m resolution) and ALOS World 3D – 30m (AW3D30). MERIT 

DEM offers true digital terrain model (DTM) with 90m spatial resolution in 

geoid datum for global area between 90N-60S by providing significant ac-

curacy improvement in swamp forest. MERIT DEM was downloaded free 

of charge on the website of MERIT DEM: Multi-Error-Removed-Improved-

Terrain [53]. 

Since different DEMs have different pros and cons depending on the targeted 

area, these global DEMs were evaluated by using the PPK ground truth data in 

order to achieve the most appropriate one for the mangrove area. SRTM, ALOS 

and MERIT DEMs were geographically corrected by converting to WGS 1984 

UTM zone in ArcGIS. Their elevation data with the same locations of 45 ground 

truth points (See Appendix 3) were then extracted to create a dataset (Figure 2.11). 

Root Mean Square Error (RMSE) (Equation 4) was applied to achieve the most 

suitable DEM, which can provide accurate elevation values for the mangrove area 

[54]. 

 

RMSE, =	.
-
#
	∑ 0Z.(/ −	Z0012

2#
34- 						(4) 

 

In (4, N represents number of elevation points, Z.(/ is elevation values of DEM, 

and Z001 is elevation values of PPK ground data. 
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Figure 2.11 Locations of PPK ground truth points in the study area for DEM evaluation 

2.3.5. Canopy height information 

Canopy height information derived from multiple remote sensors such as LiDAR, 

SAR and unmanned aerial vehicle (UAV) has widely been used as one of the 

important features in tree species classification. Previous studies reveal that clas-

sification accuracy can be improved significantly for discriminating different 

mangrove species by incorporating canopy height features[55][56]. However, 

there is still need to explore the effectiveness of canopy height model (CHM) in 

mangrove distribution where other vegetation types are mixed other than individ-

ual tree species classification. 

 Since DEM consists of two forms that are digital surface model (DSM) as 

reflection of earth objects such as trees and building and digital terrain model 

(DTM) as true elevation values with no disturbance of earth objects[57]. To create 

CHM of the study area, SRTM 30m resolution DEM was adopted as digital sur-

face model (DSM) [58] and MERIT DEM as digital terrain model (DTM). CHM 
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could be obtained by subtracting MERIT DTM from SRTM DSM and then ap-

plied as an input feature in ANN classification (Figure 2.12). 

 

 

 

 

 

 

 

 

 

Figure 2.12 A. SRTM DSM, B. MERIT DTM and C. CHM 

2.3.6. Creation of ground truth image 

Preparing accurate ground truth data is necessary in supervised classification and 

also a major challenge for training and evaluating a neural network model. In or-

der to obtain a reliable ground truth image, location points collected in the field 

(Appendix 1) were imported to ArcGIS. Using high resolution google earth im-

agery and different combinations of Sentinel-2 satellite bands, polygons were 

drawn manually by referring to same land cover of the ground truth points. With 

the aims of accurate mangrove recovery analysis, two major classes were then 

assigned as mangrove and non-mangrove, rather than multi classification which 

may lead to massive time consuming for ground truth image and sometimes allow 

to interfere with undesired classes. Assigned polygons were converted into a ras-

ter image with the 10m resolution because of pixel based classification.  A ground 

truth image, which has assigned values of 0 and 255 for every pixel was obtained. 

The workflow of creating the ground truth image in this study was described in 

Appendix 4. 

A B C 
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In remote sensing, image enhancement is primarily intended to assist vis-

ual interpretation of users by modifying image quality and supports ability to ac-

quire more precise information for processing[41]. Among various approaches of 

image enhancement, this study conducted composite generation for Sentinel-2 

satellite images in ArcGIS. By selecting and combining desired bands simply, the 

graphical appearance of the image was changed depending on the bands in use. 

This study created three combinations of bands in which firstly band 4; red, band 

3; green and band 2; blue, which are visible wavelengths were selected. They are 

basically known as true color images in remote sensing (Figure 2.13(a)). Second 

combination using band 8; near infrared (NIR), green and red bands was analyzed 

with the aims of more distinct vegetation cover (Figure 2.13(b)). Lastly, a combi-

nation of band 12 (SWIR), band 8 (NIR) and band 3 (green) was critically effec-

tive for visual analysis of submerged mangrove, which cannot be seen in the first 

two combinations (Figure 2.13(c)). False color images provided to overcome such 

issues in manually creating an accurate ground truth image for mangrove classi-

fication. 

 

Figure 2.13 Combination of Sentinel-2 bands (a) band 4 (Red), band 3 (Green) and band 

2 (Blue), (b) band 8 (NIR), band 3 (Green) and band 4 (Red), and (c) band 12 (SWIR), 

band 8 (NIR) and band 3 (Green) 

 

(a) (b) (c) 
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2.3.7. Dataset preparation 

After image preprocessing of satellite images, a multi-spectral Sentinel-2 image 

with selected 10 bands, NDVI, NDWI, MERIT DEM, CHM and corresponding 

ground truth images were obtained for input features (Figure 2.14). Although im-

age preprocessing of all images was mentioned collectively first, reason for ap-

plying specific images will be described in each experiment since this study con-

ducted different experiments as preliminary. Being a supervised pixel-based clas-

sification, all pixels of 53939393 of which each raster images have the same width 

and height of 1914 ´ 2814 pixel with 10m resolution were counted as the dataset.  
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Figure 2.14 (a)Multispectral Sentinel-2 image, (b) NDVI image, (c) NDWI image, (d ) 

MERIT DEM image, (e ) CHM image and (f) ground truth image 

(

e

) 

(c) (d) 

(d) (e) 
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2.4. Artificial Neural Network (ANN) 

Considering the structure of the biological neural network of human nervous system, 

an ANN model primarily consists of multi-layer perceptron (MLP), which has an in-

put layer, hidden layer and output layer, and interconnected operating nodes similar 

to brain nerve cells in each layer[59]. The nodes in the input layer transfer feature 

values (𝑥5), weight information (𝑤5) and bias (𝑏) from a dataset to the hidden layer. 

In the hidden layer, data obtained from input layer are analyzed through an activation 

function in each node and convey the generated data (𝑦5) to the output layer as Equa-

tion 5 (Figure 2.15).  

 

 

 

 

 

 

 

 

 

Figure 2.15 Basic architecture of an ANN model 

 

2.4.1. Creation of a basic ANN model 

Referring to the basic model architecture, an ANN model was first created by 

using only one hidden layer with 12 neurons as a basic model in this study (Figure 

2.16). We then explored input parameter and hyperparameter tunings in which 

different experiments were conducted to obtain the most suitable combination of 

input features for mangrove classification and an optimum design of an ANN 

model by tuning number of hidden layers and neurons. 
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In case of analyzing data within a neural network, activation function in 

each hidden neuron is essential to determine the output of a neural network by 

processing input and weight  information[60]. This study employed rectified lin-

ear unit (ReLU), which is actually a non-linear function using backpropagation 

and most popular because of less computational expensive than other activation 

functions[61–63]. According to ReLU equation ((6), the function produces linear 

values if the input data is larger than 0 but 0 for negative values. Softmax function 

[64][65], normalizes output value ranging values from 0 to 1 and yields the prob-

ability of the input value as a particular class by dividing the summation (Equation 

7). Due to such normalized output, the function was usually applied for the output 

layer in the neural network and so did this study. 

𝑦5 = 	∑(𝑤5𝑥5) + 𝑏    (5) 

 

f(y3) = 	 <
y3	if	y3 	> 0	
0	otherwise

										(6) 

 

f(y3) = 	
(60(8!)
∑ (60(8!)!

														(7) 

 

 

Figure 2.16 Basic ANN model used in this study 



 29 

2.5. Artificial Neural Network Classification for Mangrove Distribution 

This section mainly focused on ANN classification in which two different 

experiments for input feature selection using a basic ANN model and hyper-parameter 

tuning for the ANN model were explored. A new dataset was then classified in order 

to propose a robust ANN model.  After classifications of two different datasets in 

2015 and 2020, natural recovery mangroves were assessed using change detection 

method. A comprehensive workflow is structured as Figure 2.17  and detailed 

explanations for each part were described in each subsection. 

After preparing necessary image dataset, preprocessing and classification were 

conducted on python (3.7 version) environment in Linux by using primarily  rasterio, 

which is effective for reading and exporting raster data with geoinformation, NumPy 

for handling satellite data as numerical values instead of graphical interface and Ten-

sorFlow for classifying dataset by building neural network model in machine learning 

approach. (See Appendix 5.) 

 

Figure 2.17 Workflow of natural recovery assessment in this study 
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2.5.1. Experimental analysis for input feature selection 

With the objectives of selecting the most appropriate input feature combination 

for mangrove distribution, the study first conducted different experimental 

classifications by using the basic ANN model in this section. The raster images of 

input features and ground truth image were converted into numerical datasets and 

were created 15 experimental datasets through different combinations. The 

datasets were then reshaped into three-dimensional form as the ANN model 

basically expected. 

The dataset was divided into three parts; (1) training data (60%), testing 

data (20%) and validating data (20%) by using preprocessing modules of scikit-

learn data processing library. The training dataset was applied to teach an ANN 

model by referring to labelled data of ground truth image while the validating 

dataset was used to watch out the behavior of the model in every epoch of training 

session simultaneously. By using cross validation method, we can verify whether 

the model is overfitting or not in which even if the accuracy of the training data 

will increase, that of the validating data will be stable or decrease during training 

time.  

The model was trained by using the training dataset with 30 epochs equally 

for all experiments and the trained model was applied to the testing dataset to 

evaluate its performance through overall accuracy and kappa index. After 

conducting classification using the trained model, the output dataset was ex-

porteded as a raster format containing geographical information. The output raster 

images were visually analyzed by using true color Sentinel-2 images and high-

resolution Google Earth imagery in ArcGIS environment.  All datasets were ana-

lyzed through the same approach to select a combination of input features, which 

can produce not only a highest accuracy but also a high qualified output map for 

mangrove classification. 
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2.5.2. Experimental analysis using hyper-parameter tuning 

Since an ANN model is composed of neurons in the multi-layer that are of great 

importance to the capacity of data analysis, the behavior of the ANN model and 

the resultant accuracy are subjected to change depending on the number of hidden 

layers and neuron insides. Based on a specific case, some studies have proposed 

various methods to meet the question, “How can the number of hidden layers and 

neurons be decided in an ANN model?”. [66–68]. Because of different complexity 

in different problems to solve, the present study decided the number of hidden 

layers and neurons by means of experimental results based on trial and error. The 

basic model was added one hidden layer in each training time and a suitable num-

ber was decided for mangrove classification. After selecting the suitable number 

of hidden layers, numbers of neurons in the hidden layers were tuned by decreas-

ing and increasing double.  Except for numbers of hidden layers and neurons, the 

model was trained with the same setting in which adaptive moment estimation 

(Adam) optimizer with learning rate 0.001 and the number of epochs 30 were 

applied. 

 

2.5.3. Accuracy assessment 

Accuracy assessment is one of the major phases in image classification to evaluate 

the performance of model and most widely used measures for assessing accuracy 

of satellite image classification are overall accuracy and kappa coefficient[69]. 

First of all, a confusion or error matrix, which represents ground truth pixel in a 

column and classified pixel in row for each class was created as shown in Table 

2.3 .  

 

 

 

 

 



 32 

 

Table 2.3 A confusion matrix for accuracy assessment of ANN classification 

 

Overall accuracy can be calculated by dividing the sum of truly classified 

pixels of each class by total number of pixels in diagonal elements of the confu-

sion matrix (Equation 8). 

Overall	accuracy = 	#"#+#$#
#

× 100		(%)								(8) 

 

Kappa coefficient has been one of the popular measures to assess classifi-

cation accuracy in remote sensing since 1983[70]. Unlike the overall accuracy, 

kappa coefficient takes not only true positive pixel and false negative pixel but 

also non diagonal elements in a confusion matrix into account by Equation 9 [71]. 

Kappa coefficient value ranges from 0 to 1 (the closer to 1, the higher accuracy of 

classification). Knowing the kappa coefficient can therefore evaluate the perfor-

mance of a classification method in remote sensing. 

 

KQ = 	#∑ ;33%
!&' !	∑ (;!(	;(!)%

!&'
#)!∑ (;!(	;(!)%

!&'
											(9) 

 In the above equation, r is number of rows and columns in the error matrix, 

N is total number of observations (N in the error matrix), Xii is observation in row 

Confusion matrix 
Ground truth pixel 

Non-mangrove Mangrove Total 

Classi-

fied 

pixel 

Non-man-

grove 
N#< N=< N#% 

Mangrove N#> N=> N=% 

Total N#? N=? N 
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i and column i (N#< + N=<),  X3+= marginal total of row i ( N#% N#? in the error 

matrix), and   X+3 = marginal total of column i (N=% N=?	in the error matrix).  

2.5.4. Post classification change detection 

Knowing accurate information about mangrove changes is crucial to mangrove 

conservation not only to figure out what happened in the past but also to imple-

ment future restoration programs and formulate necessary regulations for sound 

regional management system[72]. Among various change detection methods, this 

study conducted post classification change detection which excels by providing 

promising results based on classification accuracy[73]. The two classified images 

in 2015 and 2020 were differentiated in the post-classification change detection 

analysis. Extensive changed areas were then highlighted to know main drivers of 

mangrove dynamics and findings were clarified by using Sentinel-2 satellite im-

ages in ArcGIS (10.6 version) and high resolution google earth imagery. 

2.5.5. Assessment of natural recovery of mangrove 

Since natural recovery is one of the opportunities for mangrove conservation as 

mentioned in the introduction section, this study focused on natural recovering 

mangrove at different abandoned shrimp ponds in terms of spatially and species 

diversity. To identify naturally recovering areas for different abandoned shrimp 

ponds, three selected sites were extracted from the change detection image. Nat-

urally recovering areas were quantified based on a pixel by pixel calculation and 

then three selected recovering mangrove areas were compared. 

This study delineated species information at the three recovered sites by 

using Important Value Index (IVI) formula (Equation 10)[74], which is used to 

measure how dominant a species is in a forested area. The values of right-hand 

sided parameters, Relative Density (RD1) (Equation 11), Relative Frequency (RF) 

(Equation 12) and Relative Dominance (RD2) (Equation 13) are often expressed 

as percent. IVI, the sum of these three measures, therefore ranges from 0 to 300. 

A species, which has higher IVI value is more dominant than other species in a 

site. 
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IVI = RD1 + RF + RD2														(10) 

	

𝑅𝐷1 = No of individuals of a species
Total No. of individuals of all species 

× 100        (11) 

 

RF = No of plots containing a species 
Total of frequency of all species 

× 100																	(12) 

 

RD2 = Basal Area(BA) of a species 
Total basal area of all species 

× 100																					(13) 

 

BA = 	
@	×	(BCD 2	E ))

-FF
												(14) 

Moreover, the study explored mangrove species diversity of three 

different recovered sites by using Shannon-Weiner index (H) in Equation 15 

in which  H/G6 is maximum diversity possible or richness (Equation 16), E is 

evenness of species (Equation 17), pi  is proportion of individual of particular 

species i divided by total number of species found and  NH	represents the 

number of species [75]. Since a larger Shannon index value represents higher 

species diversity of an area, we can compare species diversity of different re-

covered sites in this study. 

 

 

H = −	∑ p3	 ln p3I
34- 							(15) 

 

 

H/G6 = 	 lnNH						         (16) 

 

 

E = 	 D
D*+,

																									(17) 
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Chapter 3 RESULTS 

3.1. Selection of DEM for Study Area 

According to RMSE analysis using PPK ground truth elevation, MERIT DEM pro-

duced a smallest RMSE value of 0.5914 m for the study while the values of SRTM 

and ALOS DEMs were 0.844 m and 2.140 m, respectively (Figure 3.1). The associa-

tion of elevation derived from these three different DEMs and PPK ground truth val-

ues was shown in Figure 3.2. Therefore, this study selected MERIT DEM as one of 

the input features in artificial neural network classification and elevation parameters 

for recovering mangrove species. 

 

Figure 3.1 Root mean square error of three DEMs for mangrove area 

Figure 3.2 Comparison of DEM values with PPK ground truth data 
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3.2. Experimental Results for Input Features Selection 

Of total 15 experiments after conducting different classifications by adjusting input 

features, the experiment 6, which contains 10 bands of Sentinel-2 image, NDVI, 

NDWI, MERIT DEM and CHM yielded not only highest accuracy but also smooth 

pixel structure of the output image for mangrove distribution. Detailed explanations 

for some experiments were expressed in forthcoming sections but the rest are 

excluded because minor changes of input features were tested to confirm the 

experiments that yielded high accuracy. However, the summary of resultant overall 

accuracy and kappa index of all experiments was described in Table 3.1. 

3.2.1. Experiment with satellite band information 

Since different bands have various spectral ranges of wavelength, their 

interpretations for earth objects are diverse depending on reflectance of the objects 

(Figure 3.3). Being a dry season of image acquisition date, January, 2020, the 

reflectance of paddy fields is more distinct than other land cover except the 

wavelength range between 740 nm and 865 nm. Within this range, also vegetation 

cover which are both mangrove and non-mangrove, become dominant but all land 

covers can be separately seen from 1610 nm to 2190 nm wavelength acquired by 

band 11 and band 12. 

 

 

 

 

 

 

 

 

Figure 3.3 Spectral reflectance of 10 bands of Sentinel-2 image on different land covers 
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Therefore, 10 bands of Sentinel-2 satellite image were applied for input fea-

tures as a first experiment in neural network classification. After training the 

model with 30 epochs and evaluation using test dataset, the experiment1 produced 

unsatisfactory accuracy of 56.39%. The dataset with only satellite bands was not 

enough to classify mangrove distribution using ANN model. The experiment 1 

was neglected to produce output image of classification result because of poor 

accuracy. 

3.2.2. Experiments adding spectral indices 

According to the result of experiment 1, more informative input features were 

required in classification and hence two spectral indices of NDVI and NDWI were 

added in experiment 2. After processing as the same procedures, the relatively 

higher accuracy of 93.43% than the experiment 1 was achieved. Since the study 

area has not only mangrove but also water, shrimp ponds, paddy fields, and other 

vegetation, detailed analysis was considered to meet such a multi- land covered 

region. Despite a satisfactory accuracy in experiment 2, the output image showed 

that this combination of input features was still not capable of distinguishing man-

grove and other vegetation area (Figure 3.4). 

In order to differentiate between mangrove and other vegetation, a new 

developed index, CMRI was applied to the experiment 3. However, there was no 

effectively changes at where other vegetation mixing areas although classification 

accuracy was improved to 94.02% (Figure 3.5). 
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Figure 3.4 (a) Sentinel-2 True color image, (b) ground truth image and (c) output image 

of experiment 2 

3.2.3. Experiments using topographic information 

In experiment 4, instead of CMRI, topographic information was considered as 

another parameter because most of the other vegetations in the study area is thriv-

ing on the upper land area. MERIT DEM was therefore applied to experiment 4 

with the objectives of removing misclassified pixel in other vegetation areas of 

experiments 2 and 3. After performing experiment 4, the other forested area mis-

classified as mangrove vegetation in the previous experiments could be converted 

into non-mangrove in the output image appreciably (Figure 3.6). Still, there were 

(

a

) 

(

b

) 

(

c

) 

(a) (b) (c) 



 39 

noisy pixels in mixed vegetation areas of the output image, which can affect clas-

sification accuracy due to the 90 m spatial resolution of MERIT DEM. Since add-

ing DEM data not only improved accuracy but also cleared misclassified pixels 

of previous experiments, the study tested experiment 5 using 10 bands and 

MERIT DEM only. However; the resultant accuracy declined to 71.05% seriously 

in the experiment 5. 

3.2.4. Experiments adding canopy height information 

The study explored the performance of CHM in this experiment 6 to classify man-

grove distribution by adding to the experiment 4. A few studies have shown that 

accuracy of individual mangrove species classification can be improved by adding 

CHM extracted from LiDAR data. The present study tried to delineate the classi-

fication of mangrove distribution by applying CHM derived from SRTM DSM 

and MERIT DTM. After conducting different combinations of DTM, DSM and 

CHM in experiments (6-9), the resultant accuracy was significantly improved to 

95.85% in the experiment 6, which integrated both DTM and CHM with Sentinel-

2 bands, NDVI, and NDWI. Furthermore, the experiment 6 could wipe off the 

noisy pixel in the output image of the experiment 4 and produced a smooth map 

of mangrove distribution (Figure 3.7).  

 

 

 

 

 

 

 

 

 

Figure 3.5 Classified image and misclassified area of the experiment 3 
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Figure 3.6 The classified image of the experiment 4 

 

 

 

  

Figure 3.7 The classified image of the experiment 6 
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Table 3.1 Experimental results of input feature test 

 

3.3. Classification through Hyper-parameter Tuning 

This section explored hyper-parameter tuning with the number of hidden layers and 

neurons by using the same dataset of the experiment 6 in the input parameter tuning 

section, which yielded the highest accuracy among 15 experiments.  

 

Experiment Combination of input features Overall accuracy 

1 
10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, 

B12) of Sentinel-2 image 
56.39% 

2 10 bands, NDVI, NDWI 93.43% 

3 10 bands, NDVI, NDWI, CMRI 94.02% 

4 10 bands, NDVI, NDWI, MERIT 95.49% 

5 10 bands, MERIT 71.05% 

6 10 bands, NDVI, NDWI, MERIT, CHM 95.85% 

7 10 bands, NDVI, NDWI, MERIT, SRTM 95.79% 

8 10 bands, NDVI, NDWI, SRTM, CHM 93.71% 

9 10 bands, NDVI, NDWI, MERIT, SRTM, CHM 95.73% 

10 10 bands, NDVI, NDWI, CHM 95.33% 

11 10 bands, MERIT, CHM 72.00% 

12 10 bands, NDVI, NDWI, CMRI, MERIT 95.70% 

13 10 bands, NDVI, NDWI, CMRI, MERIT, CHM 95.81% 

14 NDVI, NDWI, MERIT, CHM 95.76% 

15 
4 selected bands (B2, B3, B4, B8), NDVI, NDWI, 

MERIT, CHM 
95.65% 
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3.3.1. Number of hidden layers 

Firstly, one hidden layer with 10 neurons was added to the basic model used in 

the input parameter tuning. The model was not only trained and evaluated the 

accuracy but also visually checked the behavior of the model by using the vali-

dating dataset. Using two hidden layers (12:10) improved the model accuracy 

from 95.85% to 95.89% and loss was reduced slightly. Then, each one hidden 

layer was added to the model and the training process was operated as the same 

approach. After conducting hidden layer tuning, 95.89% of the model with two 

hidden layers (12:10) was the highest accuracy while the accuracy of three hidden 

layers (12:10:8) and four hidden layers (12:10:10:8) were stable at 95.76% (Fig-

ure 3.9). 

To judge the behavior of the models, accuracy and loss of training were 

compared to that of validating prediction. As shown in Figure 3.8 A, the accuracy 

and loss of the training prediction were not only less diverged but also similar 

direction with the validation along the learning time of the model with 2 hidden 

layers. In contrast, other models with 3 and 4 hidden layers showed larger gaps 

between training and validating measures and moreover, encountered overfitting 

issue in which validating losses increased significantly although training loss de-

creased at the end of the epoch (Figure 3.8 B and C). The model with 2 hidden 

layers, therefore was selected according to the evaluation of classification accu-

racy and model behavior during learning time. 
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Figure 3.8 Loss and accuracy trends of A. two hidden layers, B. three hidden lay-

ers and C. four hidden layers during training phase 

 

 

 

Figure 3.9 Evaluation results  of ANN models with different hidden layers 
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3.3.2. Number of neurons 

The neurons in the hidden layers play a key role as processing units, which ana-

lyze input data and produce output, which is why the number of neurons influence 

on the performance of an ANN model. In this section, the number of neurons in 

the two hidden layers was adjusted by reducing and adding double in each layer. 

Comparing accuracy and loss of training prediction to that of validating, overfit-

ting problem happened to the model with numbers of neurons;(48:40), (136:80) 

and (272:160) (Figure 3.10). Although there was no significant change in accu-

racy and loss, the model using (544:320) neuron set obtained the highest accuracy 

of 95.98% (Figure 3.11). Finally, the model with neurons (544:320) was selected 

to be applied in this study because of the highest accuracy, minimum error, and 

the smallest difference between training and validating predictions. After con-

ducting input feature experiments and hyperparameter tuning, the ANN model 

with two hidden layers, which have 544 and 320 neurons respectively, was se-

lected as the proposed model for the input dataset of the experiment 6 (Figure 

3.12). 

 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 3.10 Accuracy and loss trends of two hidden layers with (a) (6:3) neurons, (b) 

(12:10) neurons, (c) (24:20) neurons,   (d) (48:40) neurons, (e ) (136:80) neurons, (f) 

(272:160) neurons, (g) (544:320) neurons and (h) (1088:640) neurons 

 

 

 

 

 

 

 

 

 

Figure 3.11 Model accuracy depending on numbers of neuron in hid-

den layers 
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Figure 3.12 Proposed ANN model and input dataset for classification of mangrove dis-

tribution 

3.4. Classification Results of New Dataset 

As one of the advantages of neural network classification, once the model is achieved 

with the desired accuracy, any new dataset can be predicted without retraining the 

model. In this study, after classifying the dataset of 2020 through input parameter and 

hyper-parameter tuning, the ANN model having two hidden layers (544:320) was ap-

plied to a new dataset of the same input features in 2015. By checking the classified 

image of the new dataset via Sentinel image, despite high accuracy of 94.20%, most 

of the misclassified pixels were found in paddy fields, which reflects green cover even 

with high NDVI values almost the same as mangrove (Figure 3.15). Because, in 2015, 

the dataset is the only available satellite imagery for the study area and the selected 

three shrimp ponds were also abandoned in the same year, there were no other options 

to avoid this dataset.  

The cause of misclassification is that the model encountered a new problem 

of green paddy fields that was not learned during the training session. That is 

reasonable because every artificial intelligent model cannot outperform over in-

formation trained. The model, therefore, was not able to identify green paddy 

fields as non-mangrove but predicted as mangrove falsely. 
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3.4.1. Transfer learning 

Transfer learning is an emerging technique of machine learning field whereby 

theoretically, the model trained for a given problem was applied to a different but 

related problem. Although human beings are capable of figuring out new issues 

based on experience, artificial intelligence models cannot correctly solve prob-

lems that they have never encountered. It is even impossible to train the model in 

order to meet all real-world problems. Moreover, retraining a model whenever we 

confront a new problem in future predictions is a very time-consuming practice. 

To overcome such problems, transfer learning has become a practical and effec-

tive method in neural network classification.  

Unlike traditional machine learning classifiers, the neural network model can 

retain knowledge learned from training lessons and transfer the knowledge to 

solve a different but related problem (Figure 3.13). In the model architecture com-

posing of multi perceptron layers, by muting some layers and retraining some with 

new knowledge, the performance of the model can be improved effectively com-

pared to the original one. 

 

 

 

 

Figure 3.13 Difference between traditional machine learning and 

transfer learning 

In case of the problem in this research, the original model trained with the 

dataset in 2020 predicted green paddy fields as mangrove falsely in the new da-



 48 

taset. Among all layers in the original model, which have stored weight and fea-

ture information from the training process, the study fixed some of these layers 

with knowledge stored. Some layers were then retrained by using a few amounts 

of the new dataset, which have information of green paddy fields only (Figure 

3.14).  

All models including the original model were applied to predict a new dataset, 

which is used in the transfer learning process, and the whole dataset in 2015. Dur-

ing transfer learning, 80 % of the new dataset with corresponding ground truth 

image was utilized as training data and 20% as testing data randomly. After con-

ducting this process, the whole new dataset in 2015 was also predicted by all mod-

els. For evaluation of 2015 classification, 1000 reference points, which have geo-

graphical locations and ground truth information were generated randomly to rep-

resent the whole study area since creating ground truth images for all new projects 

is a time-consuming approach. The predicted points were then extracted from the 

classified images of 2015 by using the reference points and assessed the perfor-

mance of the models to the new dataset.  

 

Figure 3.14  Models with different fixed layers in transfer learning 
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The resultant accuracy of the models for the dataset in 2015 was described in 

Table 3.2 and the output images are shown in Figure 3.16. The original model 

encountered the misclassification issues in the paddy fields despite high accuracy 

for the whole dataset.  T12 model, which fixed the second hidden layer (layer 1) 

and output layer (layer 2), could be trained within the shortest training time of 32s 

per epoch. The model not only yielded high accuracy of 95.77% in predicting the 

transfer learning dataset but also outperformed other models with the highest ac-

curacy of 97.2% in the whole dataset. Finally, the problem this study encountered 

could be figured out by using the T12 model. 

 

Table 3.2 Transfer learning results of different models 

Models 

Transfer learning dataset 

Whole dataset 
Accuracy 

Training time 

per epoch 

original_model 72.59 - 94.5 

T0 (Model fixed layer 0) 96.09 42s 93.8 

T1 (Model fixed layer 1) 95.77 33s 95.10 

T2 (Model fixed layer 2) 96.07 40s 93.00 

T01 (Model fixed layer 0 

and 1) 
95.57 38s 94.00 

T02 (Model fixed layer 0 

and 2) 
96.04 38s 96.20 

T12 (Model fixed layer 1 

and 2) 
95.83 32s 97.20 
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Figure 3.15 A. Sentinel-2 true color image, B. classified image of original model 

and C. classified image of T12 model after transfer learning in green paddy field 

areas 
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Figure 3.16 (a) Sentinel-2 true color image and classified image of the whole 

study area by (b) original model, (c) T0 model, (d) T1 model, (e) T2 model, 

(f) T01 model, (g) T02 model, and (h) T12 model 
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3.5. Change Detection Results 

3.5.1. Spatial changes of WMF between 2015 and 2020 

To provide updated information about mangrove distribution of WRMF, this 

study examined spatial changes of mangrove between 2015 and 2020 through post 

classification change detection method. Mangrove distributed area declined from 

254.30 km to 249.83 km slightly whereas non-mangrove increased from 284.30 

km to 288.77 km between 2015 and 2020 (Figure 3.17 (b)). By differentiating 

between classified images in 2015 and 2020, changed areas were found and vali-

dated with Sentinel-2 true color images (10m resolution) and very high resolution 

(1m) Google Earth imagery. In order to focus on major causes of mangrove loss 

and gain, only extensive changed areas were paid attention rather than small 

changed dots because of the salt and pepper effect in the original classified images 

(Figure 3.17 (a)). 

 

 

 

 

 

 

 

Figure 3.17 (a) Change detection result and (b) changes in mangrove and non-mangrove 

area between 2015 and 2020 
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3.5.2. Mangrove loss and gain 

Between 2015 and 2020, mangrove losses were also detected in the study area and 

the main reasons are the expansion of shrimp ponds (Figure 3.18). There were two 

kinds of expansions as follows; 

a) new built shrimp ponds and paddy fields, and  

b) extension from existing ponds and paddy fields. 

Through detailed visual analysis in ArcGIS and Google Earth Pro software, 

mangrove loss areas were more discovered near the local villages than within the 

reserved forest. 

 

 

Figure 3.18 Expansion of shrimp ponds in WMF between 2015 and 2020 

Turning to mangrove gain, there were two ways to recover mangrove in 

the study area as follows (Figure 3.19); 

a) artificial plantations and  

b) natural recovery mangrove. 
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To compensate for mangrove deforestation, artificial mangrove planta-

tions have been established by FD yearly since 2007. Naturally recovered man-

groves were found at active abandoned shrimp ponds, abandoned sites, and tidal 

flats. Since specific spatial information of all plantations could not be acquired on 

the field, it is difficult to distinguish natural recovered mangrove and plantations 

in the whole study area by using Sentinel-2 imagery. However, locations of arti-

ficial mangrove plantations could be recognized by using high resolution google 

earth imagery and GPS points collected during the field trip.  

 

 

 

 

 

 

Figure 3.19 Mangrove gained area at A. artificial plantation site and B. 

tidal flat 
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3.6. Natural Recovery Process of Mangrove at Different Abandoned Sites 

3.6.1. Spatial analysis for recovering mangrove 

According to the interview with the local people, three abandoned shrimp 

ponds (Figure 2.5), which meet the aforementioned criteria (in section 2.2.3) were 

chosen for natural recovery analysis. These three sites were abandoned since 2015 

because seasonal flooding and high tidal wave breached embankment of the ponds, 

which were not constructed systematically during the rainy season. To delineate 

natural recovering mangrove in the study area, the selected abandoned shrimp 

ponds were extracted from the result of change detection (Figure 3.20). The re-

covering mangrove area was then evaluated and compared to the extents of aban-

doned sites in ArcGIS.  During the abandoned period from 2015 to 2020, man-

grove species recovered 49.02% of the extent site 1 as well as 55.93% of the site 

2 and 50.00% of the site 3 respectively (Table 3.3). 

 

 

Table 3.3 Naturally Recovering percentage of mangrove at different abandoned 

shrimp ponds 

Abandoned 

sites 

Site_area 

 (sq-km) 

Recovering mangrove 

(sq-km) 

Recovering 

precentage 

Site 1 1.02 0.5 49.02 

Site 2 0.59 0.33 55.93 

Site 3 0.14 0.07 50.00 
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Figure 3.20 Naturally recovering mangrove at different abandoned sites between 2015 

and 2020 

3.6.2. Species composition and diversity 

For all 50 sample plots of the three recovering sites, 12 different mangrove species 

could be identified through field inventory. Of these mangrove species recorded 

at three recovered sites, 11 mangrove species were found at site 1 while 8 and 3 

species at site 2 and 3 respectively. Through IVI analysis, Avicennia officinalis 

(Figure 3.21 (a)) was the most dominant species with highest IVI values at site 

1(Table 3.4). On the other hand, Avicennia marina ( Figure 3.21(b)) which pos-

sesses higher IVI values than other species predominated at site 2 and 3 (Table 

3.5 and Table 3.6). 
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Shannon indices expressed in Figure 3.22 inform that three recovering sites 

have different diversity of mangrove species. Shannon diversity index (H), even-

ness (E) and richness (Hmax) for site 1 were 1.19, 0.5 and 2.4 whereas 0.76, 0.37 

and 2.08 for site 2 and 0.3, 0.28 and 1.1 for site 3, respectively.  

 

Table 3.4 IVI values of recovered mangrove species at site 1 

Species 
Relative 

Frequency 

Relative 

density 

Relative 

dominance 
IVI 

Avicennia 

officinalis 
28.5714 69.4444 39.1836 137.1995 

Sonneratia 

apetala 
22.8571 10.4167 31.3693 64.6431 

Sonneratia alba 17.1429 7.2917 10.9234 35.3580 

Avicennia alba 11.4286 3.8194 11.9427 27.1907 

Avicennia marina 7.1429 2.4306 3.7594 13.3328 

Bruguiria 

gyumnoriza 
4.2857 1.3889 1.0044 6.6791 

Rizophora 

apiculata 
2.8571 0.6944 1.1826 4.7342 

Ceriops decendra 1.4286 1.0417 0.1496 2.6198 

Aegiceras 

corniculatum 
1.4286 1.3889 0.2095 3.0269 

Heritiera Fomes 1.4286 1.3889 0.1932 3.0107 

Xylocarpus 

granatum 
1.4286 0.6944 0.0822 2.2052 
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Table 3.5 IVI values of recovered mangrove species at site 2 

Species 
Relative 

Frequency 

Relative 

density 

Relative 

dominance 
IVI 

Avicennia marina  38.4615 82.3961 89.5546 210.4122 

Rizophora apiculata 21.1538 4.1565 4.7681 30.0785 

Aegialistis 

rotundifolia 
9.6154 4.6455 0.7159 14.9768 

Ceriops decendra 7.6923 4.1565 0.7423 12.5911 

Bruguiria gyumnoriza 7.6923 1.2225 0.3248 9.2396 

Avicennia officinalis 9.6154 2.4450 2.0858 14.1461 

Sonneratia apetala 1.9231 0.4890 0.6542 3.0663 

Avicennia alba 3.8462 0.4890 1.1543 5.4895 

 

Table 3.6 IVI values of recovered mangrove species at site 3 

Species 
Relative 

Frequency 

Relative 

density 

Relative 

dominance 
IVI 

Avicennia marina 52.6316 92.7835 94.5877 240.0028 

Avicennia officinalis 31.5789 5.1546 4.6917 41.4253 

Aegialistis 

rotundifolia 
15.7895 2.0619 0.7205 18.5719 
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Figure 3.21 (a) Avicennia officinalis, dominant species of site 1 and (b) Avicennia marina 

dominant species of site 2 and 3 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 Shannon’s indices of three different recovering sites 
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Chapter 4 DISCUSSION 

4.1. Artificial Neural Network Classification for Mangrove Distribution 

Remote sensing classification for mangrove fields is not straightforward since 

mangrove species are thriving at intertidal portions where other vegetations are usu-

ally mixing[76]. This nature of mangrove, therefore creates many challenges for the 

classification of mangrove distribution to produce high accuracy. To overcome such 

complex issues in mangrove classification, it is critical to choose not only the most 

appropriate method but also combination of effective input features in remote sensing 

analysis.  

4.1.1. Experiments of input features 

In the experiments of input features, although using selected 10 bands of Sentinel-

2 image showed poor accuracy, it was significantly improved by adding spectral 

indices; NDVI and NDWI, derived from specific bands of Sentinel-2 image in the 

experiment 2. For mangrove classification, such spectral indices were widely ap-

plied and the resultant accuracy was relatively higher than using band information 

alone. Since the area of other vegetations is small compared to the mangrove por-

tion in this study, the experiment 2, which used 10 bands and spectral indices 

yielded such a higher accuracy despite misclassification in other vegetation areas. 

If a targeted study area had large amounts of other vegetation, the resultant accu-

racy of the experiment 2 would decrease due to insufficient input features for such 

an area. 

In order to achieve a robust model that fits any mangrove area, the study paid 

attention to distinguishing mangrove and other vegetation. To differentiate these 

two different types of vegetations, applying a new developed spectral index, 

CMRI produced higher accuracy in the experiment 3; however, there were still 

misclassified pixels in the output map.  

4.1.2. Combination of topographic and canopy height information in man-

grove classification 

The corporation with the topographic feature in remote sensing classification gen-

erated an assured outcome for mangrove mapping in other studies [77,78]. The 
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study also achieved higher accuracy and wiped off misclassified pixels of the pre-

vious experiments by integrating topographic information derived from MERIT 

DEM. 

Applying canopy height model (CHM) obtained from differentiation of 

DTM and DSM can improve the resultant accuracy of tree species classification. 

Some studies have employed CHM obtained from multispectral and hyperspectral 

images, and LiDAR data for mangrove species classification[79,80]. Jingjing Cao 

et al showed that CHM derived from hyper spectral sensor mounted on Unmanned 

Aerial Vehicle (UAV) is useful for mangrove species discrimination[55]. How-

ever, due to limited accessibility of LiDAR data and high investment for hyper-

spectral sensors, such canopy height information was rarely deployed in remote 

sensing classification[81].  

The present study made the first attempt of exploring canopy height infor-

mation of CHM obtained from SRTM DSM and MERIT DEM, which are freely 

and globally accessible. This effort found that mangrove distribution can be more 

accurately identified with a promising accuracy by integrating both DTM and 

CHM in remote sensing classification. Of the different combinations of input fea-

tures after conducting various experiments, the combination of 10 bands of Sen-

tinel-2, NDVI, NDWI, MERIT DEM and CHM is proposed as the most appropri-

ate one in remote sensing classification for mangrove distribution. 

4.1.3. Hyper parameter tuning and transfer learning in neural network 

Turning to the performance of the ANN model, since there is no universal method 

for selecting the number of hidden layers and neurons to obtain an optimal model 

design [82,83], a systematic experimental analysis is a reliable and suitable path 

for a specific problem[84]. In this study, the basic ANN model was applied to 

preliminary analyses, and hidden layers and neurons were then adjusted by check-

ing behavior of each model via cross validation. After conducting hyper-parame-

ter tuning, the final selected model, which has two hidden layers (544:322) out-

performed other models with the highest accuracy of 95.98% whereas the basic 

model produced 95.85% with the same dataset. The result of the analyses showed 
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that the setting of method deployed is one of the pivotal factors in remote sensing 

classification as has the selection of efficient input features. Despite no sharp im-

provement in the resultant accuracy, the behavior of the model was considered 

through cross validation to avoid overfitting problems for future predictions. 

Developing advanced technologies in computer science, remote sensing 

community has improved many classification methods by applying state of the art 

approach in order to be cost and time effective computation. Transfer learning is 

one of the magnificent approaches in neural network, which is effective for future 

predictions by using a relatively small training dataset with less computational 

costs[85–87]. Guo has introduced and applied transfer learning to identifying 

buildings in rural environment in his master thesis[88]. In this study, transfer 

learning was employed by delineating different layer freezing to overcome the 

problem encountered in applying the model trained to a new dataset. As one of 

the advantages of transfer learning, the original model was retrained with a very 

small dataset by which the resultant accuracy for the whole study area was signif-

icantly improved from 94.50% to 97.20%. This study therefore proposed a prom-

ising method, which consists of the most appropriate input feature combination 

and a robust ANN model. The proposed model can also be applied to any man-

grove area in any season. 

4.2. Mangrove Forest Changes in WMF 

Under threats of human disturbances, mangrove forests in the world were being de-

clined with different rates year by year. For management of vulnerable mangrove 

ecosystems, acquiring updated information about existing mangrove distribution is 

critical before performing any restoration efforts. According to the field interview, 

Wunbaik mangrove reserved forest had been constituted since 1931; however, due to 

lack of field staff, there was no intensive management before. In the late 1990s, en-

croachments of shrimp ponds and paddy fields on the reserved forest were initiated 

by clearing natural mangrove and logging hydrological flow. In 2005, WMF was su-

pervised under township level management and then mangrove rehabilitation pro-

grams were being implemented through artificial plantation, natural mangrove con-

servation, and extension programs as an annual plan. 
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FAO [6]and Aye Saw [28] have studied mangrove forest changes in the Wunbaik 

reserved forest area and described the main drivers of mangrove loss from 1990 to 

2011 and 2014, respectively.  Despite a large remaining mangrove and a high diver-

sity of fauna and flora in WMF, there was a prominent information gap for mangrove 

distribution after 2014. 

One of the interesting findings in the change detection result is that mangrove loss 

could be more discovered near the local villages due to the expansion of shrimp farm-

ing than within the reserved forest (Figure 4.1). According to information provided 

by Forest Department, Myanmar, two public protected forests adjacent to WRMF 

could be demarcated in 2006 and 2018 with the objectives of protecting the existing 

mangrove area. Although many mangrove gain areas were found in the reserved forest, 

some shrimp ponds were still expanding between 2015 and 2020. Mangrove forests 

in Myanmar declined with an annual net reduction rate of 3.60% - 3.87% between 

1996 and 2016 and the main drivers were mentioned as agricultural fields, aquaculture, 

oil palm and rubber expansion[89,90]. Likewise, in this study, net mangrove area of 

WMF slightly decreased compared to non-mangrove portion during 2015 and 2020. 

The main reason of mangrove loss was mainly found as the expansion of shrimp 

ponds by local communities nearby whereas mangrove forests were gained by means 

of artificial plantations and natural recovery process of mangrove. This study not only 

fulfilled the updated mangrove distribution of WMF but also identified expansion of 

shrimp ponds as the current pressures for the remnant mangrove in the study area.  

4.3. Natural Recovery of Mangrove 

Since artificial plantations established by FD were the only one mangrove restoration 

project as in the WMF, other mangrove gained areas were assumed to appear by nat-

ural recovery process. Although recovering mangrove were also found at active 

shrimp ponds in WMF, those mangrove areas would be cleared if the owners wanted 

to repair or convert to paddy fields for their livelihoods. The study, therefore, high-

lighted natural recovery process at abandoned areas and the result showed that man-

grove can naturally recover about 50% of the abandoned sites during a short period 

of abandonment from 2015 to 2020.   
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Figure 4.1 Shrimp pond expansion by local villages near the WRMF be-

tween 2015 and 2020 

 

Regarding species analysis, Toe Aung[91] had described that 6 types of natural 

recovered mangrove species were found in tree form at agricultural fields in Ayeya-

waddy region, which is one of the largest remaining mangrove in Myanmar whereas 

only one mangrove species at aquaculture affected sites. In the present study, of the 

total 12 different species found at the three abandoned shrimp ponds, 11 mangrove 

species were identified at site 1 while 8 and 3 species at site 2 and 3, respectively. 

Some studies presented in the literature review section have revealed that there are 

different species between planted and natural mangrove, and shrimp ponds and paddy 

fields. The findings of this research showed that natural mangrove species are di-

versely recovered at different disused shrimp ponds during a short period of abandon-

ment. 
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4.4. Environmental Preference of Recovered Mangrove Species 

Without considering the environmental preference of mangrove species, it would 

be difficult to achieve successful mangrove plantations if there were needed to plant 

artificially at where mangrove species have no chance for natural recovery. Different 

mangrove species have different salinity preferences that would be indicator species 

with respect to salinity [35]. The recovering mangrove species were observed with 

their preference of salinity and elevation range in this study. A.officinalis and A.ma-

rina could be found at both low and high salinity range while Aegialistis rotundifolia 

is only at high salinity range (Figure 4.2). This finding is consistent with the results 

of experimental analyses in other studies [92,93] in which different mangrove species 

were tested with different salinity levels. Their experimental results also reveal that 

due to having salt-secreting glands in the leaves of A.marina, this species is more salt 

tolerant than other species. Moreover, San Win et al[94] found Avicennia species at 

both low and high salinity ranges (0.5-28.9 PSU) of the Ayeyarwaddy mangrove re-

gion, Myanmar. As A.officinalis and A.marina  were recorded at 31 and 35 out of the 

total 50 sample plots in this study (Table 4.1), these species have a high adaptivity to 

any environmental conditions at abandoned sites. 

In case of elevation range, Bruguiria gyumnoriza and Ceriops decendra were oc-

curred at only high range within the sample plots (Figure 4.3). There is however no 

significant difference of elevation among recovered species in the study area because 

the mangrove area is a flattened surface of the inland region.  

It is not straightforward to approve the determinant of the distribution of man-

grove species because there are many physical factors such as tidal inundation, source 

of seed productive trees, and seed sizes, which should be considered for seed dispersal. 

This study therefore showed the occurrence of salinity and elevation ranges in which 

each species was recorded at recovering sites during field survey. The information 

about environmental preferences of recovered species related with the abandoned 

sites should be well noted for practitioners in implementing restoration projects. By 

referring to this information, suitable mangrove species can be selected depending on 

the salinity and elevation of the restoration sites. 
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Figure 4.2 Salinity range of different recovered mangrove species 

Table 4.1 Number of sample plots at which each species was recorded at the 

three recovering sites 

 

 

 

 

No Species name 

Number of sample 

plots each species 

occurred 

1 Avicennia officinalis 31 

2 Sonneratia apetala 17 

3 Sonneratia alba 12 

4 Avicennia alba  10 

5 Avicennia marina 35 

6 Bruguiria gyumnoriza 7 

7 Rizophora apiculata 13 

8 Ceriops decendra 5 

9 Aegiceras corniculatum 1 

10 Heritiera Fomes 1 

11 Xylocarpus granatum 1 

12 Aegialistis rotundifolia 8 
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Figure 4.3 Elevation range of different recovered mangrove species 
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Chapter 5 CONCLUSION AND  RECOMMENDATIONS 

5.1. Conclusions 

To my knowledge, this research is the first study of artificial neural network classifi-

cation using Sentinel-2 image for mangrove distribution. In artificial neural network 

classification, this study presented the selection of effective input features and a suit-

able number of hidden layers and neurons for the ANN model. After conducting sev-

eral experiments for input features selection by the basic ANN model, the combina-

tion of 10 bands of Sentinel-2 image, NDVI, NDWI, MERIT DEM, and CHM out-

performed other groups of features with the highest accuracy of 95.85 %. The result 

of the basic model has increased by tuning hyper-parameters of hidden layer and neu-

ron up to overall accuracy of 95.98% and kappa coefficient of 0.92. Applying transfer 

learning improved on the performance of the ANN model for the new dataset by pro-

ducing a higher overall accuracy of 97.20% and kappa coefficient of 0.94. Conse-

quently, the proposed method achieved a promising result in mangrove classification 

and the model created in this study can be deployed to any region of mangrove around 

the world. 

 Furthermore, the information about mangrove change in the WMF could be pro-

vided through post-classification change detection. By integrating field data, the study 

found that natural recovering mangrove areas were observed around 50% of each 

abandoned site during a short abandonment period with different species diversity. 

Of a total 12 recovering mangrove species relating to their environmental preferences, 

Avicennia officinalis and Avicennia marina were found as dominant species within 

different ranges of salinity and elevation of all recovering sites. 

5.2. Recommendations 

Depending on input features and methods used, a resultant accuracy varies in remote 

sensing classification. Artificial neural network cooperating with Sentinel-2 images 

in this study can perform mangrove classifications with promising results. However, 

remote sensing classification always creates challenges and opportunities for im-

provement by considering potential features and methods. To the experiences of this 

research, the misclassification encountered in predicting the new dataset would be 
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once figured out without transfer learning if the following alternative approaches were 

applied to training sessions of future studies. 

a) Using time series data of Sentinel-2 imagery, and 

b) Fusing remotely sensed data captured by multi-sensors such as Landsat and 

Synthetic Aperture Radar (SAR) 

Due to the lack of high-resolution remote sensing data for the recovering sites, 

this study combined field survey data to delineate mangrove species diversity. Future 

studies would develop mangrove species identification if Unmanned Aerial Vehicle 

(UAV) mounting a multi-spectral camera and PPK GPS could be applied to data col-

lection of mangrove specifications. 

Turning to regional mangrove management, despite insubstantial reduction of 

mangrove during the study period, human pressures are still ongoing for existing man-

grove. In contrast, natural recovery of mangrove is a high potential for mangrove re-

habilitation at human disturbed areas. According to this finding, protection for exist-

ing mangroves should be more accelerated while natural mangroves recruit with di-

verse species at abandoned sites for mangrove rehabilitation. 

  



 70 

References 

1.  Mitra, A. Sensitivity of mangrove ecosystem to changing climate; Springer; ISBN 

9788132215097, 2013. 

2.  Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; 

Duke, N. Status and distribution of mangrove forests of the world using earth 

observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159, 2011. 

3.  Spalding, M. World Atlas of Mangroves; Earthscan, 2010. 

4.  Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. 

Conserv. 29, 331–349, 2002. 

5.  FAO The world’s mangroves 1980-2005. FAO For. Pap. 2007. 

6.  Stanley, D.O.; Broadhead, J.; Aung Aung, M.; Burma. Forest Department.; Food 

and Agriculture Organization of the United Nations. The atlas and guidelines for 

mangrove management in Wunbaik Reserved Forest. FAO-UN, Myanmar Publ. iii, 

132 p, 2011. 

7.  Giri, C. Observation and monitoring of mangrove forests using remote sensing: 

Opportunities and challenges. Remote Sens. 8, 2016. 

8.  Lu, D.; Weng, Q. A survey of image classification methods and techniques for 

improving classification performance. Int. J. Remote Sens. 28, 823–870, 2007. 

9.  Altaei, M.S.M. Satellite Image Classification Using Artificial Neural Network. Int. 

J. Res. Advent Technol. 7, 459–462, 2019. 

10.  Toshniwal, M. Satellite image classification using neural networks. 3rd Int. 

JConference Sci. Electron. Technol. Inf. Telecommun. 2005. 

11.  Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid 

desert-oasis mosaic landscape of China using remote sensed imagery: Performance 

assessment of four machine learning algorithms. Glob. Ecol. Conserv. 22, e00971, 

2020. 

12.  Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, 

a DEM from ASTER images and an Artificial Neural Network (ANN). 



 71 

Geomorphology ,113, 97–109, 2009. 

13.  European Space Agency ESA - About the launch Available online: 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-

2/About_the_launch (accessed on Jun 30, 2020). 

14.  Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 

and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. 

Environ. 223, 257–273, 2019. 

15.  García-Llamas, P.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-

García, V.; Fernández-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, 

L. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote 

sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. 

Int. J. Appl. Earth Obs. Geoinf. 80, 137–144, 2019. 

16.  Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. 

Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective 

Logging in the Brazilian Amazon. Remote Sens. 11, 961, 2019. 

17.  Connette, G.; Oswald, P.; Songer, M.; Leimgruber, P. Mapping distinct forest 

types improves overall forest identification based on multi-spectral landsat 

imagery for Myanmar’S Tanintharyi Region. Remote Sens. 8, 2016. 

18.  Morgan, R.S.; El-Hady, M.A.; Rahim, I.S. Soil salinity mapping utilizing sentinel-

2 and neural networks. Indian J. Agric. Res. 52, 524–529, 2018. 

19.  J. Mohite; N. Twarakavi; S. Pappula, Evaluating the Potential of Sentinel-2 for 

Low Severity Mites Infestation Detection in Grapes. IGARSS 2018 - 2018 IEEE 

International Geoscience and Remote Sensing Symposium, Valencia , 4655–4658, 

2018. 

20.  Pereira-Pires, J.E.; Aubard, V.; Ribeiro, R.A.; Fonseca, J.M.; Silva, J.M.N.; Mora, 

A. Semi-automatic methodology for fire break maintenance operations detection 

with sentinel-2 imagery and artificial neural network. Remote Sens. 12, 2020. 

21.  Kristollari, V.; Karathanassi, V. Artificial neural networks for cloud masking of 

Sentinel-2 ocean images with noise and sunglint. Int. J. Remote Sens. 41, 4102–



 72 

4135, 2020. 

22.  Lee, Y.S.; Lee, S.; Jung, H.S. Mapping forest vertical structure in Gong-Ju, Korea 

using sentinel-2 satellite images and artificial neural networks. Appl. Sci. 10, 2020. 

23.  Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove 

forests: 1956–2018. Remote Sens. Environ. 231, 2019. 

24.  Yoshino, K.; Pham, T.D.; Bui, D.T.; Friess, D.A.; Yokoya, N.; Bui, D.T.; Yoshino, 

K.; Friess, D.A. Remote sensing approaches for monitoring mangrove species, 

structure, and biomass: Opportunities and challenges. Remote Sens. 11, 1–24, 2019. 

25.  Yu, X.; Shao, H.B.; Liu, X.H.; Zhao, D.Z. Applying neural network classification 

to obtain mangrove landscape characteristics for monitoring the travel 

environment quality on the Beihai Coast of Guangxi, P. R. China. Clean - Soil, Air, 

Water ,38, 289–295, 2010. 

26.  Chun, B.B.; Jafri, M.Z.M.; San, L.H. Mangrove mapping in Penang Island by 

using artificial neural network technique. 2011 IEEE Conf. Open Syst. ICOS 2011, 

251–255, 2011. 

27.  Chun, B.B.; Mat Jafri, M.Z.; San, L.H. Comparison of remote sensing approach 

for mangrove mapping over Penang Island. 2012 Int. Conf. Comput. Commun. Eng. 

ICCCE 2012, 258–262, 2012. 

28.  Saw, A.A. Deforestation and Local Livelihood Strategy: A Case of Encroachment 

into the Wunbaik Reserved Mangrove Forest, Myanmar. 2017. 

29.  Andrieu, J.; Lombard, F.; Fall, A.; Thior, M.; Ba, B.D.; Dieme, B.E.A. Botanical 

field-study and remote sensing to describe mangrove resilience in the Saloum 

Delta (Senegal) after 30 years of degradation narrative. For. Ecol. Manage. 461, 

117963, 2020. 

30.  Ferreira, A.C.; Ganade, G.; Luiz de Attayde, J. Restoration versus natural 

regeneration in a neotropical mangrove: Effects on plant biomass and crab 

communities. Ocean Coast. Manag. 110, 38–45, 2015. 

31.  Sidik, F.; Proisy, C.; Rahmania, R.; Viennois, G.; Andayani, A.; Lovelock, C.; 

Prosperi, J.; Suhardjono; Widagti, N.; Subki, B.; et al. Mangrove restoration in 



 73 

abandoned ponds : natural recruitment vs . replanting. ECSA 55 Unbounded 

Boundaries Shifting Baselines . 2, 2015. 

32.  Win, M. The mangrove vegetation of Wubaik Reserved Forest. FAO-UN, 

Myanmar Publ. iii, 191 p, 2011. 

33.  Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wang, R.; Sun, F.; Wu, X. Evaluating 

the performance of Sentinel-2, Landsat 8 and Pléiades-1 in mapping mangrove 

extent and species. Remote Sens. 10, 2018. 

34.  Kamal, M.; Phinn, S.; Johansen, K. Object-based approach for multi-scale 

mangrove composition mapping using multi-resolution image datasets; Vol. 7; 

ISBN 6173346702, 2015. 

35.  Barik, J.; Mukhopadhyay, A.; Ghosh, T.; Mukhopadhyay, S.K.; Chowdhury, S.M.; 

Hazra, S. Mangrove species distribution and water salinity: an indicator species 

approach to Sundarban. J. Coast. Conserv.22, 361–368, 2018. 

36.  Kitaya, Y.; Jintana, V.; Piriyayotha, S.; Jaijing, D.; Yabuki, K.; Izutani, S.; 

Nishimiya, A.; Iwasaki, M. Early growth of seven mangrove species planted at 

different elevations in a Thai estuary. Trees - Struct. Funct. 16, 150–154, 2002. 

37.  Emlid.com How PPK works - Reach RS/RS+ docs Available online: 

https://docs.emlid.com/reachrs/common/tutorials/ppk-introduction/ (accessed on 

Jun 29, 2020). 

38.  Geoid Height Calculator | Software | UNAVCO Available online: 

https://www.unavco.org/software/geodetic-utilities/geoid-height-

calculator/geoid-height-calculator.html (accessed on Jun 29, 2020). 

39.  Open Access Hub Available online: https://scihub.copernicus.eu/ (accessed on Jun 

27, 2020). 

40.  European Space Agency SENTINEL-2 User Handbook; 2015; 

41.  Eastman, J. IDRISI Guide to GIS and Image Processing Volume 1. Clark Labs, 1, 

87–131, 2001. 

42.  Pettorelli, N. Satellite Remote Sensing and the Management of Natural Resources. 



 74 

Satell. Remote Sens. Manag. Nat. Resour. 2019. 

• 43.  Congedo, L. Semi-Automatic Classification Plugin Documentation;  
• DOI:   10.13140/RG.2.2.29474.02242/1, 2016; 

44.  Teillet, P.M.; Staenz, K.; Williams, D.J. Effects of spectral, spatial, and 

radiometric characteristics on remote sensing vegetation indices of forested 

regions. Remote Sens. Environ. 1997. 

45.  McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in 

the delineation of open water features. Int. J. Remote Sens. 17, 1425-1432,  1996. 

46.  Saravanan, S.; Jegankumar, R.; Selvaraj, A.; Jacinth Jennifer, J.; Parthasarathy, 

K.S.S. Utility of Landsat Data for Assessing Mangrove Degradation in Muthupet 

Lagoon, South India; Elsevier Inc., ISBN 9780128143513, 2018. 

47.  Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Datta Majumdar, S.; Samanta, 

S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination 

of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 

5, 1129–1139, 2018. 

48.  Hutchinson, C.F. Techniques for combining Landsat and ancillary data for digital 

classification improvement. Photogramm. Eng. Remote Sens. 48, 123–130, 1982. 

49.  USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission 

(SRTM) 1 Arc-Second Global Available online: 

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-

shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-

science_center_objects (accessed on May 28, 2020). 

50.  Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. 

Vertical accuracy evaluation of freely available latest high-resolution (30 m) 

global digital elevation models over Cameroon (Central Africa) with GPS/leveling 

ground control points. Int. J. Digit. Earth, 12, 500–524, 2019. 

51.  EORC JAXA ALOS Global Digital Surface Model ( DSM ) “ ALOS World 3D-

30m ” ( AW3D30 ) Dataset product format description. 1–11, 2020. 

52.  JAXA, J.A.E.A. ALOS Data Users Handbook. Earth Obs. Res. Appl. Cent. Japan 



 75 

Aerosp. Explor. Agency, 158, 2008. 

53.  Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, 

J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain 

elevations. Geophys. Res. Lett. 44, 5844–5853, 2017. 

54.  Weng, Q. Quantifying Uncertainty of Digital Elevation Models Derived from 

Topographic Maps. Adv. Spat. Data Handl. 403–418, 2002. 

55.  Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based mangrove species 

classification using unmanned aerial vehicle hyperspectral images and digital 

surface models. Remote Sens. 10, 2018. 

56.  Zhang, Z.; Kazakova, A.; Moskal, L.M.; Styers, D.M. Object-based tree species 

classification in urban ecosystems using LiDAR and hyperspectral data. Forests, 

7, 1–16, 2016. 

57.  Alganci, U.; Besol, B.; Sertel, E. Accuracy assessment of different digital surface 

models. ISPRS Int. J. Geo-Information, 7, 1–16, 2018. 

58.  Lee, W.J.; Lee, C.W. Forest canopy height estimation using multiplatform remote 

sensing dataset. J. Sensors , 2018, 2018. 

59.  Aggarwal, C.C. Neural Networks and Deep Learning; ISBN 9783319944623, 

2018. 

60.  Sootla, S. Artificial neural network for image classification. Computational 

neuroscience project. Univ. Tartu, 15, 2015. 

61.  Brownlee, J. A Gentle Introduction to the Rectified Linear Unit (ReLU) Available 

online: https://machinelearningmastery.com/rectified-linear-activation-function-

for-deep-learning-neural-networks/ (accessed on May 16, 2020). 

62.  Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural 

network acoustic models. ICML Work. Deep Learn. Audio, Speech Lang. Process. 

28, 2013. 

63.  Francois, C. Deep Learning with Python; Manning publication Co., ISBN 

9780996452762, 2018. 



 76 

64.  Grave, E.; Joulin, A.; Cissé, M.; Grangier, D.; Jégou, H. Efficient softmax 

approximation for GPUs. 34th Int. Conf. Mach. Learn. ICML , 3, 2111–2119, 2017. 

65.  Uniqtech Understand the Softmax Function in Minutes - Data Science Bootcamp 

- Medium Available online: https://medium.com/data-science-

bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d (accessed 

on Jun 15, 2020). 

66.  Wright, J.L.; Manic, M. Neural network architecture selection analysis with 

application to cryptography location. Proc. Int. Jt. Conf. Neural Networks 2010. 

67.  Shibata, K.; Ikeda, Y. Effect of number of hidden neurons on learning in large-

scale layered neural networks. ICCAS-SICE 2009 - ICROS-SICE Int. Jt. Conf. 

2009, Proc. 5008–5013, 2009. 

68.  Doukim, C.A.; Dargham, J.A.; Chekima, A. Finding the number of hidden neurons 

for an MLP neural network using coarse to fine search technique. 10th Int. Conf. 

Inf. Sci. Signal Process. their Appl. ISSPA , 606–609, 2010. 

69.  Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover 

Classification Using Remote Sensing and GIS. Int. J. Geosci. 08, 611–622, 2017. 

70.  Congalton, R.G. Assessing Landsat Classification Accuracy Using Discrete 

Multivariate Analysis Statistical Techniques. Photogramm. Eng. Remote 

SENSING; Vol. 49; No. 12; December 1983; pp. 1671-1678. 27, 83–92, 1983. 

71.  Cohen, J. A Coefficient of Aggrement for Normal Scales. Curr. Contents, 20, 37-

46,  1960. 

72.  Gandhi, S.; Jones, T.G. Identifying mangrove deforestation hotspots in South Asia, 

Southeast Asia and Asia-Pacific. Remote Sens. 11, 2019. 

73.  Afify, H.A. Evaluation of change detection techniques for monitoring land-cover 

changes: A case study in new Burg El-Arab area. Alexandria Eng. J. 50, 187–195, 

2011. 

74.  Cintrón, G.; Schaeffer-Novelli, Y. Methods for studying mangrove structure. In 

The Mangrove Ecosystem: Research Methods, UNESCO, Paris; 8;ISBN 

9231021818, 1984. 



 77 

75.  C. E. SHANNON A Mathematical Theory of Communication. Bell Syst. Tech. J. 

27, 379–423, 1948. 

76.  Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing 

techniques for mangrove mapping. Int. J. Remote Sens. 19, 935–956, 1998. 

77.  Alsaaideh, B.; Al-Hanbali, A.; Tateishi, R.; Nguyen Thanh, H. The integration of 

spectral analyses of Landsat ETM+ with the DEM data for mapping mangrove 

forests. Int. Geosci. Remote Sens. Symp. 1914–1917, 2011. 

78.  Alsaaideh, B.; Al-Hanbali, A.; Tateishi, R.; Kobayashi, T.; Hoan, N.T. Mangrove 

Forests Mapping in the Southern Part of Japan Using Landsat ETM+ with DEM. 

J. Geogr. Inf. Syst. 05, 369–377, 2013. 

79.  Chadwick, J. Integrated LiDAR and IKONOS multispectral imagery for mapping 

mangrove distribution and physical properties. Int. J. Remote Sens. 32, 6765–6781, 

2011. 

80.  Liu, X.; Bo, Y. Object-based crop species classification based on the combination 

of airborne hyperspectral images and LiDAR data. Remote Sens. 7, 922–950, 2015. 

81.  Liu, M.; Cao, C.; Dang, Y.; Ni, X. Mapping forest canopy height in mountainous 

areas using ZiYuan-3 stereo images and Landsat data. Forests, 10, 2019. 

82.  Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 30, 2133–

2147, 2009. 

83.  Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis 

of remotely sensed data. Int. J. Remote Sens. 29, 617–663, 2008. 

84.  Brownlee, J. How to Configure the Number of Layers and Nodes in a Neural 

Network Available online: https://machinelearningmastery.com/how-to-

configure-the-number-of-layers-and-nodes-in-a-neural-network/ (accessed on Jul 

1, 2020). 

85.  Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer 

learning and web data augmentation. Expert Syst. Appl. 95, 43–56, 2018. 

86.  Fchollet Transfer learning & fine-tuning Available online: 



 78 

https://keras.io/guides/transfer_learning/ (accessed on Jun 19, 2020). 

87.  Arrigoni, A. Transfer Learning in Tensorflow (VGG19 on CIFAR-10): Part 1 

Available online: https://towardsdatascience.com/transfer-learning-in-tensorflow-

9e4f7eae3bb4 (accessed on Jun 19, 2020). 

88.  Guo, Z. Identification of Buildings in Rural Environment based on Convolutional 

Neural Networks, Master Thesis, The University of Tokyo, 2017. 

89.  De Alban, J.D.T.; Jamaludin, J.; Wong, D. de W.; Than, M.M.; Webb, E.L. 

Improved estimates of mangrove cover and change reveal catastrophic 

deforestation in Myanmar. Environ. Res. Lett.15, 2019. 

90.  Gaw, L.Y.F.; Linkie, M.; Friess, D.A. Mangrove forest dynamics in Tanintharyi, 

Myanmar from 1989–2014, and the role of future economic and political 

developments. Singap. J. Trop. Geogr. 39, 224–243, 2018. 

91.  Aung, T.T. Resilience of the Mangrove Ecosystem and Its Restoration 

Perspectives in the Mega Delta of Myanmar, Doctral Desertation, Graduate 

School of Environment and Information Sciences, Yokoham National University, 

2012. 

92.  Clough, B.F. Growth and salt balance of the mangroves Avicennia marina (Forsk.) 

Vierh. and Rhizophora stylosa Griff. in relation to salinity. Aust. J. Plant Physiol. 

11, 419–430, 1984. 

93.  Khan, M.A.; Aziz, I. Salinity tolerance in some mangrove species from Pakistan. 

Wetl. Ecol. Manag. 9, 219–223, 2001. 

94.  Win, S.; Towprayoon, S.; Chidthaisong, A. Adaptation of mangrove trees to 

different salinity areas in the Ayeyarwaddy Delta Coastal Zone, Myanmar. Estuar. 

Coast. Shelf Sci. 228, 2019. 

 

 



 79 

Appendices 

Appendix 1 GPS points to create a ground truth image for artificial neural network 

classification 

Id Label Latitude Longitude 
1 Water 19.2653 93.8874 
2 Water 19.2987 93.9218 
3 Water 19.3228 93.9362 
4 Water 19.3494 93.9588 
5 Water 19.3826 93.9716 
6 Water 19.3869 94.0018 
7 Water 19.376 94.0156 
8 Water 19.1879 93.9267 
9 Water 19.1556 93.9372 

10 Water 19.255 93.8883 
11 Water 19.245 93.8861 
12 Water 19.2461 93.8977 
13 Water 19.247 93.9133 
14 Water 19.2571 93.9237 
15 Water 19.2581 93.8759 
16 Water 19.2541 93.8643 
17 Water 19.2468 93.8637 
18 Water 19.2395 93.8627 
19 Water 19.2296 93.8569 
20 Water 19.2217 93.8582 
21 Paddy field 19.1742 93.9622 
22 Paddy field 19.163 93.9428 
23 Paddy field 19.1576 93.9257 
24 Paddy field 19.1561 93.9441 
25 Paddy field 19.3118 94.0136 
26 Paddy field 19.216 93.8662 
27 Shrimp pond 19.2498 93.8667 
28 Shrimp pond 19.2509 93.8765 
29 Shrimp pond 19.24 93.8898 
30 Shrimp pond 19.2333 93.8621 
31 Shrimp pond 19.2372 93.8648 
32 Shrimp pond 19.2443 93.8652 
33 Shrimp pond 19.2129 93.8778 
34 Shrimp pond 19.3773 93.981 
35 Shrimp pond 19.3794 93.9852 
36 Shrimp pond 19.3439 93.9636 
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37 Shrimp pond 19.3614 93.976 
38 Shrimp pond 19.3508 93.972 
39 Other vegetation 19.1435 93.9141 
40 Other vegetation 19.1476 93.9018 
41 Other vegetation 19.1413 93.8756 
42 Other vegetation 19.1524 93.8677 
43 Other vegetation 19.1791 93.8568 
44 Other vegetation 19.1709 93.8553 
45 Natural mangrove 19.168 93.9372 
46 Natural mangrove 19.1495 93.9479 
47 Natural mangrove 19.2117 93.8714 
48 Natural mangrove 19.2184 93.892 
49 Natural mangrove 19.228 93.9147 
50 Natural mangrove 19.256 93.9291 
51 Natural mangrove 19.253 93.9217 
52 Natural mangrove 19.2601 93.8868 
53 Natural mangrove 19.2615 93.8924 
54 Natural mangrove 19.2519 93.8722 
55 Natural mangrove 19.2798 93.9151 
56 Natural mangrove 19.2857 93.9191 
57 Natural mangrove 19.295 93.9266 
58 Natural mangrove 19.3029 93.9383 
59 Natural mangrove 19.2687 93.927 
60 Natural mangrove 19.2813 93.9365 
61 Natural mangrove 19.2921 93.9483 
62 Natural mangrove 19.2973 93.9755 
63 Natural mangrove 19.3121 93.9969 
64 Natural mangrove 19.3236 94.0026 
65 Natural mangrove 19.3364 94.0111 
66 Natural mangrove 19.3437 94.0234 
67 Natural mangrove 19.341 94.029 
68 Natural mangrove 19.3675 94.016 
69 Natural mangrove 19.3758 94.0067 
70 Natural mangrove 19.3805 93.9997 
71 Natural mangrove 19.3848 93.9824 
72 Natural mangrove 19.3737 93.9777 
73 Natural mangrove 19.2168 93.8849 
74 Natural mangrove 19.2592 93.9249 
75 Shrimp pond 19.2694 93.9177 

76 Mangrove 
plantation 19.2537 93.8909 
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77 Mangrove 
plantation 19.2093 93.9999 

78 Mangrove 
plantation 19.2083 94.0055 

79 Mangrove 
plantation 19.1624 93.9481 

80 Mangrove 
plantation 19.3662 93.9961 
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Appendx 2 Spatial information of sample plots at three recovered sites 

Study sites Sample plots Latitude Longitude 

Site 1 

1 19.375533330 93.987650000 
2 19.376083330 93.985983330 
3 19.374100000 93.990400000 
4 19.373333330 93.986850000 
5 19.373933330 93.990116670 
6 19.371933330 93.986800000 
7 19.370266670 93.988366670 
8 19.369883330 93.988516670 
9 19.370900000 93.986716670 

10 19.370266670 93.987066670 
11 19.367983330 93.985650000 
12 19.367850000 93.985300000 
13 19.367933330 93.984816670 
14 19.367900000 93.984233330 
15 19.367783330 93.983550000 
16 19.367566670 93.983283330 
17 19.368166670 93.983000000 
18 19.366133330 93.980633330 
19 19.366400000 93.981500000 
20 19.365866670 93.981283330 

Site 2 

21 19.259100000 93.883750000 
22 19.258766670 93.886166670 
23 19.258433330 93.886150000 
24 19.258083330 93.882900000 
25 19.257833330 93.882500000 
26 19.257416670 93.885866670 
27 19.256666670 93.886083330 
28 19.256250000 93.886466670 
29 19.257000000 93.882333330 
30 19.255350000 93.886316670 
31 19.254683330 93.877183330 
32 19.254100000 93.882416670 
33 19.254200000 93.882766670 
34 19.254416670 93.883066670 
35 19.253500000 93.876966670 
36 19.253700000 93.876800000 
37 19.253783330 93.876500000 
38 19.254283330 93.876750000 
39 19.254216670 93.875616670 
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40 19.253916670 93.876016670 

Site 3 

41 19.248916670 93.860633330 
42 19.249383330 93.861100000 
43 19.249633330 93.861400000 
44 19.247566670 93.861800000 
45 19.247583330 93.862216670 
46 19.247616670 93.860816670 
47 19.247550000 93.860466670 
48 19.248683330 93.860550000 
49 19.248533330 93.861683330 
50 19.247116670 93.862000000 
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Appendix 3 Elevation dataset for selection of a suitable DEM 

Points Latitude Longitude PPK ALOS SRTM MERIT 

1 19.254315 93.87746 2.129 -0.310526 2.3979 1.14728 

2 19.254162 93.877279 0.907 -1.80229 2.2041 1.14728 

3 19.254229 93.876895 0.902 -2.0459 1.1389 1.14743 

4 19.254279 93.876643 0.706 -0.846617 1.6788 1.14743 

5 19.254293 93.876479 0.94 -0.037959 2.2213 1.14743 

6 19.254434 93.876454 0.894 0 1.8007 1.14743 

7 19.25445 93.876379 0.941 0 1.9653 1.14743 

8 19.254522 93.876304 0.955 0 1.6934 1.14743 

9 19.254682 93.876344 0.833 0 1.8368 1.79044 

10 19.254641 93.876235 0.656 0 1.4456 0.69018 

11 19.25464 93.876235 0.565 0 1.445 0.69018 

12 19.254662 93.876255 1.023 0 1.5181 1.79044 

13 19.25478 93.876306 1.133 0 1.7002 1.79044 

14 19.25478 93.876387 1.146 0 1.994 1.79044 

15 19.254787 93.876384 0.975 0 1.9807 1.79044 

16 19.254837 93.876357 1.048 0 1.8863 1.79044 

17 19.254836 93.876356 0.998 0 1.8808 1.79044 

18 19.254869 93.876426 1.33 -0.017133 2 1.79044 

19 19.254891 93.876476 0.613 -0.08682 2 1.79044 

20 19.254857 93.876556 0.594 -0.100393 2 1.79044 

21 19.254883 93.876654 0.989 -0.566396 2 1.79044 

22 19.254891 93.876716 0.795 -0.859957 1.8219 1.79044 

23 19.254844 93.876892 0.8 -1.61874 1.1886 1.79044 

24 19.254797 93.87699 0.769 -2.55887 1 1.79044 

25 19.253736 93.877439 1.319 -2.63507 2.2281 0.65733 

26 19.253624 93.87729 1.1 -2.78851 1.291 0.65733 

27 19.253614 93.877204 0.982 -2.70195 1.0099 0.65733 

28 19.253555 93.877153 0.867 -2.8778 1 0.65733 



 85 

  

29 19.253639 93.87711 0.767 -2.43841 1.0598 0.65733 

30 19.25365 93.877007 1.018 -2.53738 1.0311 0.62204 

31 19.253648 93.876899 1.067 -2.78673 1.0215 0.62204 

32 19.253684 93.876498 1.092 -1.12903 1.7109 0.62204 

33 19.253787 93.87641 1.333 -0.574308 1.9728 1.14743 

34 19.253793 93.87639 1.171 -0.503712 1.9987 1.14743 

35 19.253758 93.876345 1.077 -0.340524 2 1.14743 

36 19.253654 93.876261 1.101 -0.387036 2 0.62204 

37 19.253622 93.876257 0.667 -0.484776 2 0.62204 

38 19.253611 93.876311 0.936 -0.721512 1.9979 0.62204 

39 19.25347 93.876271 0.937 -1.07459 1.4901 0.62204 

40 19.253464 93.876277 1.023 -1.09878 1.4716 0.62204 

41 19.253463 93.87635 0.982 -1.36004 1.4675 0.62204 

42 19.253853 93.876492 0.981 -0.871128 1.9519 1.14743 

43 19.253903 93.876653 0.913 -1.40389 2.0026 1.14743 

44 19.25397 93.876711 0.875 -1.27548 1.8393 1.14743 

45 19.254079 93.876835 0.104 -1.29155 1.3926 1.14743 
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Appendix 4 Workflow of creating a ground truth image in ArcGIS 

1. Importing GPS points collected in the field (Appendix 1) into ArcGIS using 

Google Earth Imagery as a base map 

 

 

 

 

 

 

 

 

 

 

2. Creating true and false color maps using Sentinel-2 bands (section 2.3.6) to pro-

vide updated information and assist visualization 
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3. Drawing mangrove and non-mangrove polygons manually using polygon creation 

tools in ArcGIS 

 

 

 

4. Referring to Sentinel-2 color maps in drawing polygons 
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5. Converting polygons to raster after drawing polygons by assigning 0 for non-

mangrove and 255 for mangrove 

 

6. Saving a ground truth image labeled as 0 and 255 
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Appendix 5 Workflow of neural network classification for mangrove distribution 

Importing necessary libraries for analysis 

1. import os 
2. import rasterio 
3. import matplotlib.pyplot as plt 
4. import numpy as np 
5. import tensorflow as tf 
6. from tensorflow import keras 
7. from sklearn.metrics import accuracy_score, confusion_matrix 
8. from sklearn.metrics import classification_report 
9. from sklearn.metrics import cohen_kappa_score 

Importing images for a dataset in 2020, 2015 and transfer learning 

10. img20 = rasterio.open('10bands.tif') 
11. ndvi20 = rasterio.open('NDVI_2020.tif') 
12. ndwi20 = rasterio.open('NDWI_2020.tif') 
13. label20 = rasterio.open('TRUE.tif') 
14. dem = rasterio.open('merit.tif') 
15. dsm = rasterio.open('SRTM.tif') 
16.  
17. img15 = rasterio.open('img_15.tif') 
18. ndvi15 = rasterio.open('NDVI_15.tif') 
19. ndwi15 = rasterio.open('NDWI_15.tif') 

20. label_t=rasterio.open('transLable.tif') 
21. img_t =rasterio.open('trans_img.tif') 
22. ndvi_t =rasterio.open('trans_ndvi.tif') 
23. ndwi_t=rasterio.open('trans_ndwi.tif') 
24. dem_t=rasterio.open('trans_merit.tif') 
25. chm_t=rasterio.open('trans_chm.tif')  

Read raster image into numerical data and reshape  

1. img20=img20.read() 
2. label20=label20.read() 
3. ndvi20 = ndvi20.read() 
4. ndwi20 = ndwi20.read() 
5.   
6. img15=img15.read() 
7. ndvi15 = ndvi15.read() 
8. ndwi15 = ndwi15.read() 
9. dem = dem.read() 
10. dsm = dsm.read() 
11. img_t=img_t.read() 
12. label_t=label_t.read() 
13. ndvi_t= ndvi_t.read() 
14. ndwi_t= ndwi_t.read() 
15. dem_t = dem_t.read() 
16. dsm_t = dsm_t.read() 
17. #Reshape into 2D array 
18. img20=np.reshape(img20,(-1,10)) 
19. label20=np.reshape(label20,(-1,1)) 
20. ndvi20 =np.reshape(ndvi20,(-1,1)) 
21. ndwi20 =np.reshape(ndwi20,(-1,1)) 
22. img15=np.reshape(img15,(-1,10)) 
23. ndvi15 =np.reshape(ndvi15,(-1,1)) 
24. ndwi15 =np.reshape(ndwi15,(-1,1)) 
25. img_t =np.reshape(img_t,(-1,10)) 
26. ndvi_t =np.reshape(ndvi_t,(-1,1)) 
27. ndwi_t =np.reshape(ndwi_t,(-1,1)) 
28. dem =np.reshape(dem,(-1,1)) 
29. dsm =np.reshape(dsm,(-1,1)) 
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30. chm = dsm-dem 
31. dem_t =np.reshape(dem_t,(-1,1)) 
32. chm_t =np.reshape(chm_t,(-1,1)) 

Concatenating different features into a dataset 

33. dataset20 = np.concatenate((img20, ndvi20, ndwi20, dem, chm), axis=1) 
34. dataset15 = np.concatenate((img15, ndvi15, ndwi15, dem, chm), axis=1) 
35. dataset_t = np.concatenate((img_t, ndvi_t, ndwi_t, dem_t, chm_t), axis=1)  

Dividing dataset and ground truth data into training (60%), testing(20%), and 
validating(20%) to train an ANN model 

36. from sklearn.model_selection import train_test_split 
37. xTrain, xTest, yTrain, yTest = train_test_split(dataset20, label20, 

test_size=0.2, random_state=42) 
38. xTrain, xVal, yTrain, yVal = train_test_split(xTrain, yTrain, test_size=0.25, 

random_state=42) 
39.   
40. xTrain = xTrain / 255.0 
41. xTest = xTest / 255.0 
42. xVal = xVal / 255.0 
43.   
44. yTrain = yTrain / 255.0 
45. yTest = yTest / 255.0 
46. yVal = yVal / 255.0 
47. xTrain = xTrain.reshape((xTrain.shape[0], 1, xTrain.shape[1])) 
48. xTest = xTest.reshape((xTest.shape[0], 1, xTest.shape[1])) 
49. xVal = xVal.reshape((xVal.shape[0], 1, xVal.shape[1])) 
50. input_shape = xTrain[0].shape 

Building and training an ANN model for classification 

51. model = keras.Sequential([ 
52.     keras.layers.Dense(544, activation=tf.nn.relu, input_shape=(input_shape)), 
53.     keras.layers.Dense(320, activation=tf.nn.relu), 
54.     keras.layers.Dense(2, activation=tf.nn.softmax)]) 
55.   
56. model.compile(optimizer='adam', loss="sparse_categorical_crossentropy", 

metrics=["accuracy"]) 
57.   
58. model.summary() 
59. history = model.fit(xTrain, yTrain, epochs=30, batch_size=16, 

validation_data=(xVal, yVal), verbose=2) 

Evaluating trained model using test dataset 

60. y_pred = model.predict(xTest, verbose=0) 
61. y_class = model.predict_classes(xTest, verbose=0) 
62.   
63. y_pred = y_pred[:,0] 
64. y_class= y_class[:,0] 
65. accuracy = accuracy_score(yTest, y_class) 
66. print('Accuracy: %f' % accuracy) 
67.   
68.   
69. matrix = confusion_matrix(yTest, y_class) 
70. print(matrix) 
71. print(classification_report(yTest,y_class))  
72. kappa = cohen_kappa_score(yTest, y_class) 
73. print('Cohens kappa: %f' % kappa) 
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Saving the trained model when accuracy is satisfied 

74. model.save('o_model.h5') 
75. model.save_weights("o_model_weight.h5") 

Applying the trained model for whole datasets in 2020 and 2015, and exporting as 
raster files 

76. data20 = dataset20.reshape((dataset20.shape[0], 1, dataset20.shape[1])) 
77. data15 = dataset15.reshape((dataset15.shape[0], 1, dataset20.shape[1])) 
78. data20 = data20/ 255.0 
79. data15 = data15/ 255.0 
80. n1= 'o20_output.tif' 
81. n2 = 'o15_output.tif' 
82. img1 = rasterio.open('10bands.tif')#To use same geoinformation for output images 
83. def pred(data, name) 
84.     pred= model.predict(data) 
85.     pred= np.reshape(pred, (5385996, 2)) 
86.     pred = pred[:,1] 
87.     pred= np.reshape(pred, (img1.height, img1.width)) 
88.   
89.     #Export prediction as tiff file 
90.     output = rasterio.open(name, 'w',driver='Gtiff', 
91.                               width=img1.width, height = img1.height, 
92.                                count=1, 
93.                                crs=img1.crs, 
94.                                transform=img1.transform, 
95.                                dtype= 'float32' 
96.                               ) 
97.     output.write(pred,1) 
98.     output.close() 
99.   
100. pred(data20,n1) 
101. pred(data15,n2) 

Applying transfer learning with a new dataset since the original model produced 
misclassified pixels in the 2015 dataset 

102. xTrain, xTest, yTrain, yTest = train_test_split(dataset_t, label_t, 
test_size=0.2, random_state=42) 

103.   
104. xTrain = xTrain / 255.0 
105. xTest = xTest / 255.0 
106.   
107. yTrain = yTrain / 255.0 
108. yTest = yTest / 255.0 
109. xTrain = xTrain.reshape((xTrain.shape[0], 1, xTrain.shape[1])) 
110. xTest = xTest.reshape((xTest.shape[0], 1, xTest.shape[1])) 

Retraining some layers of the original model using transfer dataset 

111. model.layers[1].trainable = False #Fixed second hidden layer 
112. model.layers[2].trainable = False #Fixed output layer 
113. model.compile(optimizer='adam', loss="sparse_categorical_crossentropy", 

metrics=["accuracy"]) 
114. model.summary() 
115. history =model.fit(xTrain, yTrain, epochs=50, batch_size=16, verbose =2) 
116. model.save('t_model.h5') #Saving transfer learning model 
117. model.save_weights("t_model_weight.h5") 
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Loading the two models to test transfer learning dataset 

118. o_model = tf.keras.models.load_model('o_model.h5') 
119. t_model = tf.keras.models.load_model('t_model.h5') 
120.   
121. #Predict transfer learning dataset by two models and evaluate their perfor-

mance 
122. def pred(model): 
123.     y_pred = model.predict(xTest, verbose=0) 
124.     y_class = model.predict_classes(xTest, verbose=0) 
125.   
126.     y_pred = y_pred[:,0] 
127.     y_class= y_class[:,0] 
128.     accuracy = accuracy_score(yTest, y_class) 
129.     print('Accuracy: %f' % accuracy) 
130.   
131.   
132.     matrix = confusion_matrix(yTest, y_class) 
133.     print(matrix) 
134.     print(classification_report(yTest,y_class)) 
135.   
136.     kappa = cohen_kappa_score(yTest, y_class) 
137.     print('Cohens kappa: %f' % kappa) 
138.   
139. o_model_pred = pred(o_model) 
140. t_model_pred = pred(t_model) 

Predicting the 2015 dataset using transfer learning models and export a raster 
output 

141. pred(model, output) 
142. pred= t_model.predict(data15) 
143. pred= np.reshape(pred, (5385996, 2)) 
144. pred = pred[:,1] 
145. pred= np.reshape(pred, (img1.height, img1.width)) 
146.   
147. #Export prediction as tiff file 
148. output = rasterio.open(tmodel_output15, 'w',driver='Gtiff', 
149.                           width=img1.width, height = img1.height, 
150.                            count=1, 
151.                            crs=img1.crs, 
152.                            transform=img1.transform, 
153.                            dtype= 'float32' 
154.                           ) 
155. output.write(pred,1) 
156. output.close()  


