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and the Garnier system
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By Kazuo OKAMOTO

Introduction

The present article concerns the studies on the isomonodromic de-
formation of the linear differential equation of the second order:

d'y dy -

(0.1) 7 +p(®) T +p(x)y=0,
p.(a) and p,(x) being rational functions. In the first part of this paper
(§§1.2.83), we shall mainly investigate the linear differential equation
(0.1) of the Fuchsian type, and prove that the isomonodromic deformation
of (0.1) is governed by the completely integrable Hamiltonian system
of partial differential equations. By the use of this result, Painlevé
equations will be studied and the Hamiltonian structure will be given
to Painlevé systems in the second part.

In 1907, R. Fuchs [1] considered the linear differential equation of
the Fuchsian type:

dz

0.2 22 —m(w)z,
(0.2) g p()
with the four regular singular points, =0, 1, o, ¢ and the non
logarithmic singularity, ¢=>)\. Viewing ¢ as a variable singularity, he
proved that, if and only if (0.2) has a fundamental system of solutions
whose monodromy is independent of ¢, \ satisfies as a function of ¢ the
sixth Painlevé equation, Py;. This non linear differential equation is
obtained from the complete integrability condition of the extended
system of (0.2):

o'z

=p(x)z
= p(x)

0z oz
—* =B Alr)——,
> (w)z+ Alx) =

(0.3)
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such that A(z) and B(z) are rational functions of z.

The result of R. Fuchs was generalized by R. Garnier [2] in two
different ways. The first generalization is related to the linear dif-
ferential equation (0.2) of the Fuchsian type having the N variable
singularities, z=¢; (j=1, - .-, N) and the N non logarithmic singular
points, z=x\, (k=1,---, N). He obtained from the complete integrability
condition of (0.3) the completely integrable system of non linear partial
differential equations. We write it below:

T'A)E—N) O T ()t~ O

(0.4) A(t,) at, A2 ot
. - (tf‘_‘tj)T()\,k) e N
GGl IRl N,
O

[T’(M) _1 470 }( Ny )2_[}_ T"@) _ A'() ]
TOw) 2 A0w) I\ ot 2 T'(t) A@t) 6t
1& T A" M) —2,)° (O )2
20 TOWA N0~ 0 —2r) \ 3t
(0-5) = & Lk‘_tﬁ akk ak;
D m—t)m—N\) ot ot

AR T(O) [ T0) &2 L 1) &t

=
ot: 2
._l._

™

2Tt 0w~ A )L™ " A0) N | AD) Np—1
() T’(t,-) 02 T'(t) 02—1
%‘; A(t,) A—¢; K AE) n—t, :I’

(s B =21, 4ve, N
where
T@)=a(w—1) IT 1),
N r_ d
A(ﬂ?)zklj__[l(x_kk)! ( —d_‘)’

k4 (4=0,1, o), 6; (=1, ---, N) being constants. Here we denote by
2. the sum for m=1, ..., N except for m=mn. This system will be
called in the following of this paper as the Garnier system.

The other result obtained by R. Garnier is connected to the
isomonodromic deformation of (0.2) with irregular singularities. He
showed that the other five Painlevé equations, Py, Py, Py, Pry, Py, are
obtained from completely integrability conditions of extendes systems;
however he did not mention about any monodromy property. We can
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deduce from the complete integrable system (0.3) that, if the linear
differential equation (0.2) is not of the Fuchsian type, then Stokes
multipliers given in a neighbourhood of an irregular singularity, are
independent of ¢. Therefore, (0.8) defines the isomonodromie defor-
mation of (0.2) in this meaning (cf. [6], [15], [22]).

On the other hand, L. Schlesinger [21] considered the isomonodromic
deformation of the linear system of differential equations:

0.6) %:( b ;}tn) Y,

and obtained the completely integrable system of non linear differential
equations:

OR, _ R, R,]

ot,  t.—t, im=n)
9 (< "
at"(‘n%l Rm) n 0,

where
[-Rmr R'n] :RmRﬂ — RnRﬂ!‘

Moreover, R. Garnier [3] showed that, in the case when R, (n=1, -+, 7)
are 2 x 2 matrices, the isomonodromie deformation of (0.6) can be reduced
to that of (0.2).

The purpose of this paper is to rewrite the results mentioned above
by the use of the Hamiltonian strueture, which is induced in a natural
way from the isomonodromic deformation. We shall show in the main
theorem of the present article that the Garnier system (0.4), (0.5) is
written as the Hamiltonian system

on _ 0H,
at, o
0.7) ¢
Oty _ _OH, (G k=1, ..., N),
6t§ ak’k

where /. denotes the canonical variable conjugated to )., and H, is a
rational function of ¢; (=1, -+, N), A\, 4 (k=1, -+, N). In the case
N=1, the Garnier system is reduced to the sixth Painlevé equation
Pyi, hence, it is equivalent to the Hamiltonian system.

The linear differential equation (0.1) is transformed to (0.2) by a
transformation of the form
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(0.8) y=0(x)z.

We shall prove that (0.8) induces the canonical transformation for the
Hamiltonian system (0.7) (Lemma 2.1). By considering canonical trans-
formations of the Hamiltonian structure associated with Py;, we shall
have the Hamiltonian, Hy, of Py, which is a polynomial of the two
canonical variables, » and p.

As is well-known, Py yvields the other five equations P, (J=I, ---,V)
by a process of coalescence according to the following scheme:

PI‘II

This fact stands also for the Hamiltonian Hy;. By the use of the
process of step-by-step degeneration, we shall derive from Hyi;, the
Hamiltonians H, associated with P,. This is defined by successive
canonical transformation with a parameter and carried out according
to a similar scheme to that of Painlevé equations. The Hamiltonians
H, (J=I, ---,V) thus obtained are polynomials of the two canonical
variables. We shall show that the degeneration of the Hamiltonians
causes simultaneously the confluence of singularities of linear differen-
tial equations.

It was J. Malmquist who pointed out for the first time that each
Painlevé equation can be written as a Hamiltonian system. In the
studies [13] on a system of differential equations of the form

dq
—Z.=Fta,
0t (t; 9, »)
dp

—=—=G(t; q,
0t (t; q, )

without any movable branch point, F and G being rational functions
in ¢ and p, an explicit form of a Hamiltonian function H(%; g, p), poly-
nomial in ¢ and p, is obtained for each of the Painlevé equations except
for the third one. He gave there, however, no reference to the iso-
monodromic deformation of a linear ordinary differential equation.
See also [4], [12].

The Hamiltonian structure of the Painlevé equations can be derived
in a natural way from the structure of analytic foliation associated
with the equations: cf. [16].
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In this paper, we assume that the difference, ¢, of the two exponents
at each apparent singularity of (0.1) is two. By considering the general
cases with ¢=3, 4, ---, we will obtain also a Hamiltonian system whose
Hamiltonian function is rational or algebraic in the two canonical
variables. It is known [11] that, when ¢=3, such system is reduced
to the Painlevé equation through a canonical transformation. As for
exponents at an apparent singular point, see [9].

In §1, we shall state the main theorem concerning the Garnier
system. Brief review of the theory of the isomonodromic deformation
of the linear ordinary differential equation (0.1) will be given in §1.3.
The proof of the main theorem will be completed in §2. We shall study
in §3 the correspondence between the Garnier system and the 2x2
Schlesinger system. The rest of the paper, §4, will be devoted to the
studies on the Hamiltonian structures of the Painlevé equations.

The results about the Painlevé equations have been announced in
[17]. The present article is the reformation of [19].

§1. Isomonodromic deformation of a linear equation of the second
order.

1.1. Main Theorem,

Consider the linear differential equation of the Fuchsian type:

(L.1) VY 1 (@)Lt py(m)y =0,
da dx

with the Riemannian scheme
=0, «x=1, wx=i;, x=\, =
(1.2) o a B Y (0 (4, k=1, »++, N).
at+K, otk Bi+0; 7it2 etk
We assume that none of £, (4=0, 1, «), 6; (=1, -+, N) is an integer
and make the following assumption:

(A) Nome of the singular points x=x, (k=1, --+, N) is a logarithmic
singularity.

Under this assumption, viewing

t:(tu HhEy tN)
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as a variable singularities, we shall study the following problem: (Iso-

monodromic deformation of the linear equalion (1.1)) determine the

coefficients p,(x), p.(x) of (1.1) as functions of ¢ such that (1.1) has a

fundamental system of solutions whose monodromy is 1ndependent of ¢.
Now we state the main theorem:

THEOREM. Under the assumption (A), the isomonodromic defor-
mation of the linear equation (1.1) is govermed by the completely
integrable Hamiltonian system of partial differential equations:

{ O\ _ OH;
Bt -
(H)s % 3“;
o .. coHg G k=1, » vo; N,
ot; O\
where
(1.3) H;=—Resp@) (=1, ---, N),
#=t5
(1.4) t.=Res py(x) (=1, -+, N).
EAR

This system is equivalent to the Garnier system.

In the case N=1, the Garnier system is reduced to the sixth
Painlevé equation. Then we obtain:

COROLLARY. The sixth Painlevé equation is equivalent to the
Hamiltonian system

dn _oH
dt 0
(H), : “
dpe_
dt 5’7&

which gives the isomonodromic deformation of the linear equation of
the form (1.1).

The proof of the theorem will be given in the following section.

1.2. Notations and Remarks.

The coefficients p,(x), p.(x) of (1.1) can be written as follows:"

1) In the fo}lowing of this paper, we denote by Xw (II¢w, resp.) the summation (the
produet, resp.) for n=1, --+, N, and by {3} (IL{s), resp.) that for m=1, ---, N except for
m=n.
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(1.5) D) =2 23— > b
i —  x— t m B—2y

(ao+xa) a(a+ky) K
¥ (x—1)* +m(m—1)

Po) =

BiBi+0;) _  tit;—1H;
s AR s
V(7 +2) Ml — 14 ]
(@ —Ng)’ 2(@—1)(@—N)
where

c;=1—2a,—k; (4=0,1)
e;=1—-28;,—0; (j=1, -+, N)
TS, - (k=1, -+, N)

£ = oo @0+ Fos) — o0+ Ko) — ts(Q, + )

“% 55(354‘95)“‘% V(T +2).

It is easy to see by the use of the method of Frobenius that the
assumption (A) is equivalent to the following N equalities:

A7) IO+ 78+ 7+ Vit 0 Vit 20=0 (=1, -+, N)
where

Y= ao(ao+mo)+al(a1+ﬁ31)+ K Ne— 1 ”

R Y! =1 MOw—1) M(M—l)

Bi(B;+6;) _ t;(t;—1)H;
+‘z3" w—t;) M — 1) —15) :|
G 7+2) M=)
+% (M“M)z ® MO — 1D —N) :I,

V=2t A +3, w5

' Nk 7\4‘—‘1 ) Kk—t [ }t.k—?\.;’
7 ———-V

k oo ke

Consider now a transformation of (1.1) of the form
(1.8) y=0(x)z.
Putting in (1.8)
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D(x)=w"(x—1) I (x—t,) EI} (@ —n\p)E
73}

We obtain the linear equation whose Riemannian scheme (1.2) is nor-
malized as

Q=a,=B;="7,=0 (4, k=1, vuny N )

A linear equation of this type will be called of canonical type. Fur-
thermore, if we put

¢(x)=exp(—%rpl(w)dm)

(1.1) is transformed to an equation of the form

2,
(1.9) 22 —p@,
X
where
1 1 d
.10 = N = il fe
(1.10) p(x) p(m)+4p(w)+2 dxp(m)

The equation (1.9) is said to be a SL-type equation: remark that a
monodromy of (1.9) is a subgroup of SL(2, C). The coefficient p(x) can
be written in the form:

_ @ a, 1798
p)= m2+ (x—1)° * z(x—1)

(L.11) +§ [ (mijt,-)’ - m(i;g’l)_(;)f:f,) :I
+%‘ [ 4(a:i),k)" h m(z{%f)_(_ﬂﬁl")“p;ak) il,
where
o= ——%(I—xﬁ), ;= ~—41—(1—rc§), by= *-i—(l*f’?)
(o= ~%(rz§+x?+§ ﬁi—ﬁi—l)—éN’
(1.12) 1<,-=H,-+—;—ef[f:%+ tf_‘l +:Z:E tﬁf% tjkak]’
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1 ¢ ¢ e; LY ]
1.13 Vv, =, —— I:_£_|_ oy E i ]
oy =t 2fk M M—1 E'M—tj-’-% A N
The relations (1.12), (1.13) will be used in the proof of the
theorem.
The Fuchsian relation for the linear differential equation (1.1)
reads:

(1.14) 2a0+£u+2a1+x1+2aw+xw+% (2B;+0;)+2 ZL‘, v,=1.
3 (k)

Remark that the characteristic exponents, a,, ks (4=0,1, ), B8;, 0;
(j=1, +++, N) and 7, (k=1, ---, N) remain invariant under the iso-
monodromic deformation of (1.1).

1.3. Isomonodromic deformation.

We recall some known results on the isomonodromic deformation
of the linear equation (1.1): cf. [6], [9], [15].

ProPOSITION 1.1. (1.1) has a fundamental system of solutions whose
monodromy is independent of t, if and only if there exist rational
functions of x, A;x), B;®) (j=1, -+, N) such that the extended system
of the differential equations

Y 4 @)Y+ )y =0,
ox o
(1.15) o o
LYY —p; As() 2L
=B+ A
is completely integrable.

REMARK 1.1. Under the transformation (1.8) of the linear equation
(1.1), the function A;(@) is unchanged.

REMARK 1.2. The statement of Proposition 1.1 is also valid for a
linear equation of the second order with irregular singularities, provided
that Stokes multipliers at an irregular singular point are independent
of the deformation parameters, t; (cf. [15], [22]). The general theory
of isomonodromic deformation of a linear differential system with
rational coefficients is established in [5].

The complete integrability condition of (1.15) is written as follows:
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B Shim D (pay—Ln,

or  o0xt ot;
0'B 0A; apg op, . (0°A; 0 op
1.16 2223 4p, ~d Tl 222 A L
L o’ S g ot; 291( o’ 8x( by 81},)
0B, 0B 0B;

1.17 ] A ! — i A . ,
A0 ati+ Tow ot the
(1.18) L SN (¢, g=1, +++, N).

ot, ox  ot;  ou
For each j, a function, C;(z), defined by

0C; _ op;_
0% ot;

is rational in . Consequently, if A;(x) is rational, so is the function
B;(x), which is given by

.__1_( 0A,
(1.19) Bi=—( oL+ DAy c,).

We obtained from (1.16), (1.19) the linear differential equation

3
(1.20) FAs 4p0hs 90D, 100D ¢
ox® ox o ot;
where
o 1 1 op,
=—Pt+— 1 i 2 o

Note that this relation is nothing but (1.10).
On the other hand, (1.17) is written as

0 (aA, 0A; ) ( 0 ) OA; aA,-)
i +A =\ RPN A— ’
(o:\: n) 3 Y ow/) \ow T (az,- e o

by virtue of (1.19). Then we arrive at the

PROPOSITION 1.2 (cf. [9], [14]). The isomonodromic deformation of
the linear differential equation (1.1) is reduced to that of the SL-type
equation defined by (1.10).
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PROPOSITION 1.3. The isomonodromic deformation of (1.1) is equIVQ-
lent to the existence of the rational fumctions Aix) (j=1, ---, N), satis-
Sying the system of differential equations (1.18), (1.20).

Concerning A;(z), the following result was shown by R. Garnier

[2]:
PROPOSITION 1.4. Aj;(x) can be written in the form
()= ML)
(1.21) A) =My P,
where
(1.22) T(ax)=a(x—1) H (x—t;),
(1.23) A(m)zg (®—xN)
__ A;) . d
(1.24) M=~ (T £ T).

The three propositions given above will play an important role in
the proof of the main theorem.

§2. Proof of the main theorem.

2.1. Canonical transformation.

In this section we shall give the complete proof of the theorem
by using notation of Section 1.2. At first, we show that the theorem
can be reduced to the case of the SL-type equation (1.9) with the
coeflicient (1,10).

LemMMA 2.1. The change of the variables given by (1.12) and (1.13),
O\'k! s Hj)'"_)()\'k! Vi KJ') (.?: kIl, RN N)
is @ canonical transformation of the Hamiltonian system (H)y.

Proor. By the use of (1.12), (1.13), it is not difficult to see that

Sondu=3 - 3 dn 3 125 —dg,
) 5] 2w G Ap—t;
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5Kty = 5 Hydty+ L S dt, 3% 4 g0,
@ (73] 2 G

3] t — N

where

(k)
2 3£ e log vt log(u—1)++ 3% filog(u—n) |,
0= 1 149
g 2 e ¢ log t;+¢ log(t,—1)+=>. ¢, lOg(t;-t()iI,
2 2@

d- denoting the differential with respect to N\, ¢;.

Noting
FRAS Tt e el jz-;— 5.3, fredloghu—t)
=d2,
we obtain
> 0N — 2 Kidt ;= thdn— > Hdt; —dR2
k) €3] (k) {4}
2=0,+82,+ 2,
so that

{E}a;‘ d}r’k/\dkk—§| dK:/\ dt:zg. d}uk/\dkk_g de/\dt:’.
J 7
This proves the lemma.

2.2, Hamiltonians K, H;.

In what follows we consider the isomonodromic deformation of the
SL-type equation
d2
(1.9)

Tt~ P@)2,

with the coefficient p(z) given by (1.11). It is just the case studied
by R. Garnier. However, our goal is different from his one, hence we
have to make again computations to obtain the desired results.

We determine first the Hamiltonians:

PropPOSITION 2.1. The Hamiltonians K; (j=1, -+, N) are given by
(2.1) Ki=M; Zk- [M*iv;— M"#p, — M*iU,]
k)
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where
Mk’j =_—-—-—--—-—vT(k'k) (Ar ey .d_A)
A" ) —t5) do
1)
2.2) M(M s ]) :ll;.[ O\-k_ ti)
= (k) ?
IT Ove—2)
()
o & —1) iy Dl s
2.3) Mk,,,ozz 7\4:(7\'&: MI,:+ k M:’-,:’
( @ A — D —N) M —1)
(k)
U= Uy a, + 15 357 b; 3

= o g + ,
Moo =1 MOw—1) 3 Qu—6)P ® 40—\
T(x), Alw) and M; being given by (1.22), (1.23) and (1.24) respectively.

ProoF. In this case, the relation (1.7) read:

(2.4) (7.7/;; - yi
where
” ti(t;—1K;
o — U + e g
25 ' ’ % N — L) —£5)
(2.5) 8 nOu—Dy, 20— 1

@ A — 1D —Ny) N —1) "

For the sake of obtaining K; from the linear system (2.4), we shall
compute the inverse matrix

FZ((ij))j,k=1,---,.-v
of E=((E,;)) where

1
M — DN —15) '

(2.6) E,=

Consider the auxiliary rational funections

) T(w)
S ey

(]

9.7 ts: (:C—-t;)
@7 I ()

(k)
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M*i 1 2
— :1, il ! ;
B D) mony O N
see (2.2). Since
') 1

Zit;)=

Gt —DAR)  tt—1M;
Z{t)=0  (i#7),

we have

1:% Eti(t;—1)M;M*7

0= %, Eiti(t;—1)M;M* (i#7),
which show
(2.8) Fi=t,t;—1)M;M"4,
We rewrite (2.4) as
(2.4) %‘ Bt (= 1Ks+ 3 Guvi+ U=k,
where

Gn= m(x?ﬁ;(x}lw 0,

s 2n—1
M —1)

It follows that
it~ D=3 Fu =3 Guni— U |
from which we obtain (2.1) by using (2.3), (2.8).
REMARK 2.1. We can verify
-1

det E=TI (t—t,) IT u—r)(IT T0w))

Concerning the differential equation of the canonical type, that is,
the case when in (1.5), (1.6)

al,:ap——,@,-:vk:o,
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we prove the following:

ProrosITION 2.2. The Hamiltonians H; are written as follows:

@9 wmm Fae (G T e

0;; being Kronecker’s 4.

Proor. In a way similar to the proof of the preceding proposition,
we obtain from (1.7)

Hy= My 35| M (%3 75— Moo, + 1) g

Qv —
where
1—k 11—k 1-6; & 1
Fp=——t =y ;
e Py A—1 %‘ )\.,,—t 0 Ap—NM
We claim:
1 1) 1 (k) 1
2.10 Mrio— M’”( + + - );
( ) X;v %k_l % R.r;,_‘t,; g‘ 7\:;"—'7\.;

in fact, consider the rational funetion

)= — T@
w(e—1)Z(x) (x—1t;)A(x)
=xxz—1) >, .

[0 N(M—l) L—hy

We obtain firstly by virtue of (2.3)

o L) — M*i — k0
(x(x 1Z,(x) m—x;,) =M
on the other hand
%tx(m—l)(m—xk)zj(x))[
€L z=1
_(@—M)T(@) (1 @ 1 @ 1
( (x—t;)A(x) {m = x—1 Zt‘l x—t, % 37'_7\4}) a=lp

— AR
=
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which establishes (2.10). Moreover, it is easily seen by a residue calcu-
lus for the rational function (2.7) that

M
2.11 —
( ) @& A(ve—1)

?

note that

Rjas Zx)de=—1.

2.3. System of differential equations.

Now we shall derive, from the differential equations (1.18) and
(1.20), the system of differential equations for ., v, (k=1, ---, N), by
using (1.11) and (1.21). First we rewrite (1.18) in the following form:

1 [ OA; 0A 0 3 o
2.12 : J )4 =1 A,——log A;=0 4= 7).
( ) AiAJ’\ 851 atj- ) ox ug oz 0og Aj; ( _’,')

Noting

(4)
LTI e QU 1 SR SN JD
ox w x—t, «® x—1 W x—),
0 a 1 1 oN
—log A;=— log M;— + k
ati g at‘ g ! x_ti () x—kk atl

Af(tj) =—1 ¥

we see that the left hand side of (2.12), A,(x), is a rational function
having N poles (=0, 1, {, (h+#1, 7)) and a simple zero at a=-c<>. There-
fore (2.12) is established if
A(n)=0, for k=1, ---, N,
which read as:
(2'13) A'k_tt' akk - )\ak‘“‘t’- a)\.k 3 (t?—'t.;)T(kk) o
M; at, M; ot;  Qu—t)n—E)A" (M)
(T:’ jy k:L Y N)
The differential equation (1.20) can be written as

1, 8%A; 9, o, 0D :
2.14 A LR O paty+p, 2P =0 =1, «++, N);
( ) 9 o 3 (}? .1)'+‘ i atj (.? )

let .o7;(z) be the left hand side of (2.14).
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PROPOSITION 2.3. .o7(x) can be written in the form

1.k

+Ei wa

(@)= .
(@) x—t; W a= (x—A)"

and the equation (2.14) s established if
wi;k:O; (j',k:l, mArg N} m:l, BTy 4)'

Proor. It is easy to verify that .7 (x) has the following prop-
erties:

(i) o7(x) is holomorphic at #=0, 1 and ¢, (i#7),

(ii) x=t; is a simple pole,

(iii) 2=»x, is a pole of the fourth order for each k,

(iv) 7(x) has a zero of the second order at x=-co.
The first assertion of the proposition is a consequence of (i), (ii), (iii),
and the second one follows from (iv) at once.

We compute wi* explicitly by using (2.14). Let

= M*i S B danfae 3 B
Aj(@)=M; + 2>, ME3M (e —N)" |,
€T — Ay n=0

3 Vi < i
L= - +2, %l =)
p(@) e o “Zé ink &

be local expansions of A;(x), p(x) around x=2»,, where 77, ,=7/, (see (2.5)).
We obtain the following system of differential equations:

(2.15) ?;k —M;[2M* iy, — M*9*]=0, from wi*=0,

]

(2.16) g’;" —M{M"”‘:’i/k,l—kM"'f'lvk—%M"*f'g]:0, from wi*=0,
and finally from wi*=0,

. ;s O oy, ( k, R 3 ark, )0’7\4;
2‘17 ki VS k0 Mk:.rﬂ k— M iz, M i = M i
@17 M™M= ot =i at,

The coefficient wi* vanishes identically because of the constraint (2.4):

The equation (2.17) is a repetition of (2.15), (2.16); in fact we have
from (2.4)
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0% 10 =8y, oy, )
ot; ot;

We have obtained the differential equations (2.13), (2.15), (2.16) for »,,
v, (k=1, -+, N).

We prove the following:

PROPOSITION 2.4. The system of differential equations (2.18), (2.15),
(2.16) is equivalent to the Hamiltonian system:

37\.;; = aK_,‘
at,’ oy
w
] i k=1, -+, N).
e Y )

PROPOSITION 2.5. (H)\ is completely integrable.

The theorem is established by virtue of these propositions.

2.4. Verification of Propositions.

PROOF OF PROPOSITION 2.4. The first equation of (H)% follows from
(2.1) and (2.15) immediately. To verify the second one, differentiate
the constraint (2.4)" with respect to , regarding v, - -, vy, by vy Ty
as constants. For [#k, we obtain

b

E 't_,' t""l} aK: + 8 —Vy aGH —_
:‘Sﬂ‘ watilts M 20b—N) L o

and for [=F,

oK; v
BAt—1 2 qgs 4 M .G
fzi} ka ’( ! )5‘7\,k %k‘ Lk(k.k—l)

sinece

‘?/k,lz(i(p(m)— & S ))

am 4(:3"“);;‘)2 x-—-kk 2=
/8 Y

£= D p——————,
kax,,) 5 M —1)

Here we denote by (/o) the differentiation with respect to A, regarding
tj Ky vy +++, vy as constants. It follows from (2.6), (2.8) that
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P ) L k.4 () )
= "MJ[MIM?/#,1+% %‘; e +Db{_‘_'—M : = MI"——aG‘k }:'

37\.;, T )\ak)s kko\'k = 1) W a}'k
We claim:
2.18) Wi R V(%
@ (= 7\4:)8
(2.19) Mot M s 0G|
M—1) @ o\

In fact, we have from the definition of M*d"

Mbii= ( (x(a: 1)2(‘3)_ 7;)) =1

:ﬁj‘Mi'j (%( xz(x;x—(aiixl)—xk) ))

which show (2.19). Moreover, since

e B
=2 M(e—1)

T(x)
(x—1t;)A4(x)

MY Ly BFN=]
@ o= @ aOy—1)

2(w—1)Z (@)=

b

we obtain (2.18).
The constraint equation (2.13) is deduced a priori from (2.15), which
will be easily seen by means of (2.10).

PROOF OF PROPOSITION 2.5. Put

=3 dv Adn— 23, dK; A dE .

(k) )

If we regard )\, v, and K; as functions of ¢, -+, ty, it can be written
in the form

=>, Iy ;dt, Adt;,

i<f

0K; oK oK, OK; 0 0
Ii= |: 5. 00, . OBy (N | K;— Kis
* % N O ON 0% (St) (“t,-)

where (9/0t;) denotes the differentiation with respect to #; such that
i, vy are viewed to be independent of ;.
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Note:

(2.20) or, = ;‘; — %‘:;—+ (?at‘-)xj— (';T,)K"

To verify the proposition, it suffices to show that the 2-form I is
vanished along a solution leaf of the foliation defined by the system
(H).

Let

Aj@) =M@ —t)mit+mi(x—t)+ - ),

A e
(®—t) x—1,

p(w)=

be local expansions around xz=¢; (1% ), where

mii=21 1
M, t;—t,
. Mk»:r'
mit=—> ——.
s (e —t)°

The left hand side of (2.14), .o7(x), vanishing identically, we obtain
from the identities

'—%(ti)zoy
the following differential equations:

—'2[(—"=M,v[m§"l(i+2mf"’b;-].

ot;
By using this equation, we can see that the right hand side of (2.20)
vanishes; this proves Proposition 2.5. We do not enter into details of
computation.

§3. Hamiltonian system and Schlesinger system.

3.1. Notation and results.

In this section, we shall study the correspondence between the
2x2 Schlesinger system and the Garnier system (H)y.
Consider the linear system of differential equations:
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BYs _ Ry, + ROy,

d

8.1) d‘”
2Y: — R*(x)y, + R*(@)Y.,
dx

where

Re@)=9" 4 & s " (4, p=1,2 j=1, -, N).
@ x—1 @ x—i;
Put

Qﬁz((ql}ﬂ))a,hl,z’ (A—_’ 0, 1)
Ri=((r#ep=rs  (G=1, =+, N)

and make the following assumptions:

3.2) {trace Qi=k,
trace R;=40;,
(3.3) det Q,=det E,;=0,
(3.4) J—Q+2R——(°"’ ! )
' SR - IR | T T = |

kg, 0; 0., K. being constants.

ProOPOSITION 8.1 (cf. [3]). w. verifies the linear differential equation
of the camonical type,
(8.5) i:i; + pl(x)ﬂ‘- + Do)y, =0,
do dx
having N mon logarithmic singular points, x=X\, (k=1, -+, N), m
addition to the N+38 singularities, ©=0, 1, =, t; (=1, -+, N).

This proposition assures us the equivalence between the isomono-
dromic deformation of (3.1) and that of (8.5), therefore the 2x2
Schlesinger system is reduced to the Hamiltonian system

e _ OH;
a z

(H)x ty B
dfty _ _ OH;

ot; o\
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We shall determine the explicit forms of the Hamiltonians H; and of
the canonical variables (4, by the use of the elements of @, R;.
Inversely, we shall prove the following results:

PROPOSITION 3.2. The matrices Qi R; (4=0,1, j=1, -+, N) are
determined by Ou, ) k=1, -++, N) up to the following multiplicative
quantity:

(3.6) X=q+ Xt}
&3]

PROPOSITION 3.3. X satisfies the completely integrable Pfafian
equation

(8.7) dlog X=—k. >, M;dt;,
(€3]
where M; (j=1, «++, N) are given by (1.24).

3.2, Correspondence between (3.1) and (3.5).

In this paragraph, we prove Propositions 3.1 and 3.2. The proof
of the third one will be given in the next paragraph.

PrOOF OF PROPOSITION 3.1. It is easy to see that the coeflicients
p,(@), ps(w) of the differential equation (3.5) is written as follows:

ia)= —R“(m)—Rﬂ(m)—{— log R"(z)
i

(3.8) po(x) = R (x) R*(x) — R*(x) R*(»)
+Ru(m)d—‘i log R”(w)—a%R“(m).

If we put

R*(x)=T(2)"'4"(®),

T(x)=a(x—1) :1} (x—t;)
then A(z) is a polynomial of degree N; let X\, (k=1, -++, N) be zeros
of A%(z). For each k, x=2), is a singular point of the linear differential

equation (3.5) such that the characteristic exponents are 0 and 2.
Clearly it is not a logarithmic singularity. Therefore, we can put

—
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A%(x)= X A(x),
A@)=T =),
where
X=g’+ %‘x Ze

Moreover, (3.8) can be written in the following form:

pl(x) 1— Ko -+ 1—k, +2 1_05 _'E 1 ;
3.8) z—1 G o—t; ® oM
” pi)= (= DH 5 MOu—Dh
x($ 1) [Ei] m(ﬂ?-—l)(x—t.’) (79) x(w_‘l)(x—lk)
where
b=t Ka)
11 11 11
3'9 o= ' + qi + T .
( ) e e f\'k_l % )‘k"tj
7y 1
H:: 3 B el 11_,’_?,1_1__-591;
% A —t; tj_(q‘J k] o )
+ t (qil+fr;}—xlaj)
(3.10) m:
+T}1_€i€j)
(i) tj__
+trace[R ( Q. & S )]
WER e WS

Here we have used (3.2). The proof of Proposition 3.1 is thus completed;
the explicit forms of g, H; are given by (3.9) and (3.10).

PROOF OF PROPOSITION 3.2. Since R*(zx) vanishes at x=0),, we have:

1% 12
/SRR CURRR Ty 7 HERE |
Noje '_1 {4 Kk_tj

By the use of (3.4) it can be written in the form:

X

P & B =
3 Buatity— = — =3
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E,; being given by (2.6). We obtain from this
(311) ?’}2:‘_‘M3‘X (.?:1; ttty N)!

in the same way as the proof of Proposition 2.1. Moreover, if we
define MY (4=0, 1) by

A) _ MO CMe M;
T(x) x z—1 W ax—t;

then ¢ is given by
(3.12) i=—MYX,
which is easily verified by the use of the relations:
MO +MY 3 M;=0,
[£}]
M{11+2 t5M3+1=0-
(5}
To determine ¢}, 7}, we put
(3.13) W=q'+3 tr},
3]

and rewrite (3.9) as follows:

w a
Et—ri=— " gy Qe
%;1 L2 ( ) ) E] Ne(e—1) T M N

Therefore, using (2.11), we obtain

N w
r— MIiM%i 1 _i_ﬁ'z_.
(3.14) i (’ R =1 )
=My( W:f_ W),
where
. kg e
(3.15) W=% M :(;_e,,+_;;).

On the other hand, defining W“ (4=0, 1) by
MOWO=3, (t;,—1M; W;—
¥

MY WD = 3 tM; W,
€3]
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we have:
(316) th: M{AJ(W{.{J e W).

The other elements of @, R; are given by (3.2) and (3.3); in fact
we obtain from (3.2)

(3 17) q%‘?:MU}( W__ W{AJ)+ Ed’
. rF=M(W—-Wy)+0;

and moreover, from (3.3),

(3 18) q‘j].:X—l( W— W{AJ)[MU)(W_ WUJ)-FE‘;],
' ri= X" W—W)M(W—W)+6;], (4=0,1, j=1, -++, N).
Note:
M{O) W(0]+M(l} WU}+Z MJW3+am=00
{4}
Now we can determine W by (3.18); in fact, we obtain from (3.18)
and the Fuchsian relation (1.14),
(319) W——'(Em)_l[W{m(Mm] W{U)—-Eo)‘l— WUJ(MHJ W(”‘—EL)+2 Wj(Mj Wg_"?;)]
{4}
The elements of the matrices Q,, R; have been thus determined

by means of A, f4, up to X. They are given by (3.11), (3.12), (3.14),
(3.16), (3.17), (3.18) and (3.19).

REMARK 3.1. In the case N=1, (3.19) reads:

W= —(£.) " MA— D=0 — {£,(L— 1) (A —1)
+EAO—D)F oAM=}t —ak(E—1—1)
= o:w{!fu(l-'— t— 1) + 51(7\:'_ t) i SLO\-— 1)}]!

where we omit indices.

3.3. Proof of Proposition 3.3.

For the determination of X, we consider the isomonodromic defor-
mation of the linear differential equations, (3.1) and (3.5). So, assume
that (w, ) (k=1, «+-, N) satisfy the Hamiltonian system (H)y and @,
R; (4=0,1, j=1, .-+, N) verify the Schlesinger system:



600 Kazuo OxamMoTo

0Q _ _ [QuR] 0Q _ [Q, R

3.20) ot; t; ot; 1—¢,
( " aRJ = [Rj, R;] (1:7‘__3')-
at‘ t:“_t‘

We prove the following two lemmas.

LEMMA 3.1. o=34 \; verifies the differential equation,

3.21) 90 _mj2W,—L],
at,

where

o 5!’6 i
(3.22) L=>, (e,,—aio(trl+—)—xo—2aw-xmm,

03] M,
(i)
mi =0— E t,r.,

(h)
W, being given by (8.15).
PrROOF. We obtain from (2.9) and (H)y:

N [ ‘ ‘-( K K 0,—0, ]
=My 2M* g — (B B s On0a ) |
atg "L ?\'k N R.;k_l %‘ l’k_t.ﬁ

Moreover we can verify the following formula:

M*EE Mk
Z =

T =m?
[T W ', (zk:‘ Ne—1 "
(3.23) M 5
:t s 1+mi+ ih A
W N —Ty ! M,

For example, we prove (3.23) for h=1 with the help of the auxiliary
rational funetion,
= T(x)
Zlg)=——2 |
(x"‘ti)ﬂ-d(m)
In fact, it is easy to see that:

- T(R.. ) M}c,i
Res Z (x)dx= £ =
a=2, @) =t A ) ne—t,

= T'(t,) 1
Res Z.(x)dp=-—~\bs) L1
&=ty @) A(ti) M,
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and finally
= (1) ;
Res Z (w)dae=1,—1+>, n— > =t —1+m".
=00 &) k)

Hence we have (3.23) for h=1. Note that W, can be written as:
W=3, Mty + aa—1-+m).

Now Lemma 3.1 is immediately established by virtue of the Fuchsian
relation (1.14).
LEMMA 3.2. OM,/0t;=0M,/dt,.

Proor. Note firstly that, if i+7,

(8.24) OM; :M5|:— 1 O\ 4 1 :l
ati () tj‘_‘%k at, tj’_t,-

Then we have

—oq’:‘ ~—~8f:" =(t—t)MM; > o ”ngm)t A0
ot ot; k) — 0 Rt 7] )
(3.25) ’ . ’ ’ *
- (Mi+Mj)!
4 ¥

by means of the constraint (2.13) which is written in the form:

Mj 5‘7\.;, - M{ 37\* + (ti—'ti)MiMJ'T(xk)
h:k_tj 3t5 )\'k_ti at: (Rﬂk_ti)e(%k'—tj)z/lr(xk)

The right hand side of (3.25) vanishes actually as is easily verified by
the use of the auxiliary function:

T(x)
(@—t)(@—t; Alx)

This proves the lemma.
Now we verify Proposition 3.3. The system of differential equations
(3.20) implies that, if 7547,

gry . 1
ot, t;—t,

[P+ rird —rird —rir?].

Inserting (3.11), (3.14), (3.17) in this equation, we have the differential
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equations for X:

1 .
_t [2M£( Wi_ W;)"l‘ﬁ,%—l?%]“g* 10g M:.

£ i £ ti

7]
3.26 —log X=
(3.26) o, og
We obtain firstly from (3.21)
2MA W= W)= (22 D)ot (L~ L.
i 5] £}

On the other hand, since (2.13) is written as:

Mo N _ N—t O Mt —t) M*

MM G,
M 0 Dt at, Cuty FD

it follows that

a M 0 ) [ 1 o\ M :|
=t € Vg (1, Bl RN
(at‘ M:’ 333 ( . J) %‘ Xk_tj 6‘t¢ 1%1 (kk'_tj)g

1 O\, M;
=t t'[ —_— +M:|~——‘.
( ?) % lk~t5 ati ' M"

Here the second equality is verified with the help of a residue calculus
of the rational funection,

T(e)
(@—t)(@—1t,)Ax)

Finally we can show by computations that (3.26) reads:

0
— log X=—K.M,.
ot 2 i

The complete integrability condition for (3.7) has been assured in Lemma
8.2.

§4. Painlevé equations.

4.1. Isomonodromic deformation giving Painlevé equations.

In this section we shall determine the Hamiltonian structure as-
sociated with Painlevé equations by considering the isomonodromic
deformation of linear equations of the form:
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“.1) ;’yg-wl(m) W p(@yy=0.
We shall refer to Painlevé equations as P, (J=I, -+, VI).
Consider firstly the sixth Painlevé equation Pyi:
n _1/1 1 1 dx 1 1 1 dxn
dtﬁz(ﬁx—l )(dt) ( 51—t/ ar

AMA—=1)(A—1) t ¢l tt—1)
—l———»——tz(t_l)2 I:a—i—ﬁﬁ—l—'if (x—1)3+5 (’\J_t)ﬁ:l,

where @, 8,7 and & denote constants. Since the Garnier system is
reduced to Py; for N=1, we obtain the Hamiltonian Ky; from (2.1):

_ MA—=DR—1) pg_(i_t_ 1 )y_'%- ay

tt—1) % a—=1/7" ¥ —=1p

_ @e b :I
MA—=1) =t S
For the sake of simplification of notation, we omit the indices for the
variables \, v, f, t.

The isomonodromic deformation of the linear differential equation of
the SL-type,

(4.2) 92 _ pia)e
da
such that
- aﬂ a [ b 3
0y S :
s PR)= o a1 @—tF | dm—y

we—1(@—1t) a@e—1L@—\)’

was studied by R. Fuchs [1]. We denote by SLy; the linear equation
(4.2) with (4.3). The following proposition is deduced from the main
theorem:

PROPOSITION 4.1. The isomonodromic deformation of SLy: is governed
by the Hamiltonian system

dn_ 3K
(HY dt oy
dy _ oK

dat o
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with K=Kyi. This system of differential equations is equivalent to Pyy.

REMARK 4.1. The constants a, (4=0, 1, o) and b, are related to
o, 3,7, 06 of Py; as follows:
1 1 1 1
= — —— —_— — — -—’ bl = e——— s
= 5 B 1 a, 5 o 1 5 0

am=-%(a+6~7+5—1).

Let Ly: be the canonical type equation for SLy;. We obtain from (1.5),
(1.6):

11—k, 1—k, , 1-0 1
4, Ti= ] 1 - 3
(4.4) pi(x) P 2 T + AT
4.5 = £ tE—=DHu MO —1)
(4.5) Do) o | e o + T

m:%[(x0+&+€.—l)2—rz§c].
The Hamiltonian Hy; is written as:

DO =D =) —{E (L —1) (A —1)

Hy1

__ 1
tt—1)
+ e =)+ (0, =IO =1} e+ e —1)]-

Note that Hy, is a polynomial in A, p2. We shall call Hy; the canonical
Hamiltonian assoctiated with Pyi.

REMARK 4.2. The extended system for the linear equation (4.1) is
of the form:

o'y
o’

+n(rc)%+m(m)y=0

(4.6) - i
Y — )y +A) 2L
ot on

For the canonical type equation Ly;, we have

v—t  x(z—1)

M= T o
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5= 1(_ AW yploti 1)
B(z) 2( Prai e e T

As we have mentioned in Section 1, the complete integrability
condition of the extended system (4.6) with the rational function
A®), B(z), gives the isomonodromic deformation of the linear differential
equation (4.1), even if it is not of the Fuchsian type. The isomono-
dromic deformation of (4.1) is reduced to that of (4.2). By computing
the complete integrability condition of (4.6) for the SL-type equation
(4.2), R. Garnier [2] obtained the Painlevé equations without mentioning
about the Hamiltonian structure.

In the following of this article we shall derive the Hamiltonian
structure by using a process of coalescence, and show that the canonical
Hamiltonian Hy; yields the Hamiltonian H, associated with p,. The
process of step-by-step degeneration is carried out according to the
following scheme:

HIII

Hyi—H H H
V1 V\H”/‘ n—*hp

The main result of this section is the following:

PROPOSITION 4.2. (i) The Painlevé equation P, is equivalent to the
Hamailtonian system

v _m
dt oy

H

& ae__on
it on

with the Hamiltonian H,, which is a polynomial of the two canonical
variables N, .

(ii) The system (H) with H, governs the isomonodromic deformation
of the linear differential equation L;, obtained from the canonical type
equation Ly by the process of step-by-step confluence of singularities.

We shall call L, as the canonical type equation and H, as the
canonical Hamiltonian. A result similar to Proposition 4.2 is obtained
concerning the SL-type equation SL, and the Hamiltonian K, associated
with P,. Each equation of SL,, L; (J=I, ---, VI) has a regular singu-
larity at #=>, which is not of the logarithmic type with the exponents
0,:2.
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4.2, Degeneration of Painlevé equations.

We shall recall in the following the results obtained by P. Painlevé
[20] concerning the process of step-by-step degeneration.

Pyi—Py Replace in Py, ¢ by 1+et, ¥ by —d6.67*+7,e™ and 6 by d,67* and
let ¢ tend to zero. Then we obtain the fifth Painlevé equation:

%z(i+ﬁ)(%)z_%%+ (’“;1)2 (ar+ 6)+ x+3—»7“o"_+11) \

where we replace again ¢, by ¢ and 7v,, &, by 7, §, respectively. For
the sake of simplification of notation, the replacement and the succeeding
limiting process will be written as follows:

t——1+et;
Y———6c +ve™!, 6——de7? (e—0).

Py—Piy By the use of notation as above, the degeneration from Py to
Prv is given by the following scheme:

t— 141 26t, A——S;

V2
w—ley  p—lp,
v ———g7 5—»——1—5“‘—1-&5 (e—0).

The fourth Painlevé equation is:

a1 (dx,

3., 8
N4 28— :
T dt)+ A2+ £

Py—Pm In Py, make the substitution:

?\.-_)1‘1"5“43

a—r-%e‘”')’—l——i—e“a, ,8—)——;—5“2%
1 1 2

7—>sz, 3—*§83, (e—0).

Then the limit form of the equation Py is written as:
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0
4H,’

e

1)1

("Nt a)-!—%-l—
which we denote by Pi;. Moreover the change of the variables
t—t’, A——1),
yields from Pj; the third Painlevé equation:
din 1 (dx )’

._dt_2_-i —CE —lﬂﬁ'l(alz-f'ﬁ)‘i"’/?\.s'l' )

t dt  t %

It is easy to see that the properties of Pi; are derived from these of
P);; and vice versa.
Piai—Pn  The second Painlevé equation

_—‘f;” =2+t ta

tZ
is the limit from both of Py and of Py. We obtain Py from P by:

t——1+¢%, A——1+2e)\;

fx—*’_%E'G, ,3-*—’%5“"(1—1-4&83),
7——’—1—6_ap 5——’—-}6"6, (e—0).
Py — Py Pry is reduced to Py as follows:
t—— —e (1 —27"2"),
A— & (1 +2%2%\);
a—*—%s“’a, B— ~%s‘“‘, (e—0).

P—P; We obtain from Py the first Painlevé equation

d*
dt*

by the following replacement and the passage to the limit

=6\"+1,

fey —Gs"m(l—%s”t),

A—— Y (1+e");
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a—— 4", (e—0).

4.3. The canonical Hamiltonians and the linear equations,

We shall determine in this paragraph the canonical Hamiltonians
Hy (J=I, ---, V) by the process of coalescence. First we give below
the list of H,, and then examine the degeneration of H; as well as
the step-by-step confluence of the linear differential equations L, of the
canonical type.

Table of H,
Hy=— M0 — 18— 8= 1 + 0O~ D= Dt} £ — 1],

(r=—le+00—r2),
Hry =20\ — N+ 26N+ 26} £+ 0.\,
Hir =%[>\F,uz— D\ + O\ — 7t} 12 +%m(60+6w)x],

Hm=%[2)\,2#2—{277mt>«,3+(280+ DN — 27t -+ 7. (0, 4+ 0.)EN],

L Fgs BN 4
HII——E# (X ‘]"E)‘U E-(2a+1)x,

H;=—;—#2—21\?—t7\,.

Here we denote by Hi; the canonical Hamiltonian associated with the
equation Ply.

Hyri—Hy In the Hamiltonian Hyi, replace ¢ by 1+&t Hy by e 'H(¢). This
defines a canonical transformation with the parameter . Moreover if
we substitute 7,67'+6,+1 for £, and —ne" for @, then H(e) is holo-
morphic in ¢ and H(0) gives the Hamiltonian Hy.

We express this procedure by the following scheme:

O 4 ¢, Hy) —— O\, 22, 146ty 67'Hy);
51__37‘?[5_1‘*‘6,4"1, 61__’—7?15_i, (E“*O).
This replacement and the passage to the limit cause simultaneously in

the linear differential equation Ly; the confluence of singular point z=t¢
to z=1. In fact we obtain from (4.4), (4.5),
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pl(x)z 1_1{0 + nlt + 1"—61 - 1 ,
@ (x—1®  z—1 z—>

a(z—1) B o(e—1)7 m(m—l)(:v—h.)'

This gives the linear differential equation Ly associated with Hy. The
Riemannian scheme for Ly reads:

=0 =1 T=N L=roo
O 0 0 0 —%(!su+6‘1+xw)
1
Ky 7]1t 51+1 2 _'5(50“%'91_590)-
Here, the symbol
w=4d
————
Ci; ey C}! Cé
2 GG

means the existence of formal solutions at an irregular singular point
x=4 of the form:

exp( 3 (o +00 log 0) S g0 (1=1,2)

with w=x—4 if 45 or w=2"" if 4=00.
Hy—Hry We have H,y by the eanonieal transformation:

s 2 £, Hv+!c)——>( V2, 141 2¢t, ]/—1,2_5"Hw);

£
—,
V' 2

Y—r—8, O——+20.—Ky EKs—8 (e—0).
Moreover, if we substitute ex/)/ 2 for a:

5
_:m,
V2
besides the above replacement, Ly is reduced to the linear differential
equation Ly in the limit, e—0. The Riemannian scheme of L;y is of
the form:

€Pr—
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=0 z=\

Kazuo Oxamoro

0 0 0, 0,
1
Eu 2 Z’ t!

and we obtain from (4.7)

' x 2 z—n
1 Hiv A
T) =0 — .
Pi(®) 2 2 a(x—N)

Hy—Hi: Hy degenerates to Hi by:

(K’! )“: t: Hv)_’(l‘i‘sl., S-l‘u, t’! H;II);

ey ’3_177003 A > ET]oy b, ——4,,

Eo— vwe_l = 6m1

(e—0).

Moreover, by the change of the variable x in Ly,

r—1+4ex,

(e—0),

we have the linear differential equation, Liy, associated with Hiu:

pl(x)ZE“l"l_—go_)?m_-

x* x

N+ f..) . tHio

1
r—n"
M

Do) = o

r
Himr— Hinr

B

@ o(x—n)

The Hamiltonian system with the Hamiltonian Hiy; is equiva-

lent to the other associated with Hy; by means of the canonical trans-

formation

(R'r 1"5: t! H;II)_"(tN) t_iﬁ! tzy _(HIII"I"

and by the change of the variable:

1

)

2t

x—stx,

Lix is reduced to Ly, which is of the form:

— not 1 oo 90 . t o
() T e

1
’
T—XN

Do) = %

Doo(Oo+0)t _ tHim+ A o

M

20* w(r—2N)
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The Riemannian scheme of Ly is:

=0 =N r=co
0o 0 0 0 —%(504—9@)
nt O+l 2 7t —%wo—m.

Hiur—Hu Consider the following canonical transformation:

o 2 8, Hm)-_’(l +2e\, %5"1,1‘, 1+4¢&%, E_ZHII);

1_3 1—3

7?0_—)_':1‘8 ’ j?m‘-_>—5 3

4
0, — _%s-a—za—l, 6m—>-——;—8”3,
and the change of the variable
r— 1+ 2ex, (e—0).

This gives Hy from Hyp and Ly from Lyg.
The linear differential equation Ly; is written in the form:

pi@) = —20—t——2—,
L—N
)= — @+ 1) —2Hu+—E—.
r—N
The Riemannian scheme reads:
T=N LT=oco
m——— e
0 0 00 a+l
2
2 1
2 = 0t - =,
3 g

Hiy—Hi The degeneration from H;y to Hy and the confluence from Liv
to Ly are carried out according to the following scheme:
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(%! !U, tr HIV)
—»(e-*(1+2‘3f36‘m), 2 gy, —e(1—272"), 22"36"Hu——%(2a+1)5"3);

K, >-;—a‘ﬂ, ﬁw—»—%@a—%l),
and

—— (1 2%%%), (e—0).

Hii—H: The procedure of the degeneration from H; to H; is slightly
different from the others. First Hn degenerates to H; as follows:

(,\,, .“—V—%, & Hn+l+%tﬂ)

2
(6_5(14_63%)’ s, _ss—xn(l_%ewt)’ s‘z(HI—%a‘“—gms“B));
oa—4g™", (e—0).

To obtain the linear equation L; from Ly, change the dependent variable
y of Ly as:

i T )
— expl —a*+—1tx |y,
Y p(g > Yy

and then replace x by sx-+&™%

x—ex+es

In the limit (¢—0) we have L;, given by:

1
i ) :——,
Pi(®) T

D)= — 4o — 24w —2H, + —F
x_

¢

The linear differential equation L; admit at =< formal solution of
the form:

4 -1 2 s a—
exp(ws—é”rté)é 73087
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Therefore, we write the Riemannian scheme of L; as follows:

a=x w=c(3)

00 0 —t¢

CHEERCIES
pO| pofH

REMARK 4.3. The process of step-by-step degeneration of the

Hamiltonians H; is carried out by the successive canonical transfor-
mations with parameters.

A regular singular point is said to be apparent, if it is of the
non-logarithmic type singularities with only integer characteristic ex-
ponents. The singular point z=>) of the linear differential equation
L; is an apparent singularity. Consider a linear differential equation
of the form (4.1) with N singular points, x=t¢; and N’ apparent sin-
gularities, x=),. We associate with each of z=¢; (j=1, ---,N) a
rational number r; such that the Poincaré rank of z=t; is given by

r;—1. Then we can represent such a linear differential equation by
the following symbol:

(P Fret ooy

The linear differential equation considered in the studies on the Garnier
system is of the type:

(L+14-+1)y,
""-—--——-‘.o_-—__-l
N+3

where a regular singular point is regarded as a singularity with the
Poincaré rank zero. By the use of this notation, the confluence scheme
of the linear differential equations L, (J=I, ---, VI) associated with the
canonical Hamiltonians is written in the following form:

(1+14+1+1),—(1+1+2), 34— =) -
( \(14—3)1/ (2)1

The degeneration scheme of the two-dimensional Garnier system is
studied in [8] and [10].
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REMARK 4.4. We define the r-function related to the canonical
Hamiltonian H; by:

Ha (5 M(2), ,u(t))=—6% log z,(¢),
(M(1), t4t)) being a solution of the Hamiltonian system (H). The z-
function 7,(f) has not so much as a movable pole ([18]).

Finally we prove the following result:

ProposiTiON 4.8 (ef. [5]). The third Painlevé equation Pur with
760 is equivalent to the fifth equation Py with 6=0.

PrROOF. Since Py is equivalent to Pi;, we verify this proposition
concerning Pf;. Let Hin be the canonical Hamiltonian associated with
Pii. By the assumption 760, we can put 9,=1 (4=0, <) by changing
the scales of ¢ and ), for we obtain by computations

v=47%, o0=—4n.
It follows from the Hamiltonian system (H), that

= (2\2)" (td—+x +6ux+t)
N=(2p—2p) (df" 60#+§(60+6w)).

Moreover, it is not difficult to verify, if we put

M
M=
r—1
that it satisfies the fifth Painlevé equation Py such that

?

azéwo—em)*, B:—%Wﬁﬂ?m)ﬁ, v=2, $=0.

REMARK 4.5. If v=06=0 in Pyy, substitute »* for ) and ¢ for t.
The resulting equation is:

B 1Y _1dh g 2,8
a (dt) L

Therefore, this substitution causes in Py; the change of constants:
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a—s0, B—0, 0—2a, 0—28.

4.4. Case of the SL-type equations.

We shall give below the table of the SL-type linear differential
equation SL, and the Hamiltonians K;. The process of step-by-step
confluence of SL, and degeneration of K; will be carried out in a similar
way to that of L, and that of H, respectively. The extended system
of SL; is as follows:

o'z

—-=Dp(x)2
4.8) ox
. oz__ _ 1 0A@) z+A(x)ﬂ.
ot 2 ox o

Given the rational function A(z) in the explicit form, we can verify
that the complete integrability condition of (4.8) implies actually the
Hamiltonian system (H) with the Hamiltonian K,. We do not enter
into details of computations. The list of the coefficients A(z) of (4.8)
is included in the following table; for SLyi, see (4.3) and (4.6).

Table of SL; and K;

t* .t a 3
Sbyt p)=Zo4 Gt g4 Gt 4 Be 4
GRS A o o

Ky A—1p
w(xz—12 a@—1)@—xn)"
Alx)= Av—1 a(x—1) ,
t r—XN
_x(k—l)i[ . (1 1 t, a,tt a.t e ]
Ky T2 g (g = Jp—S0— = = !
LA I (NJF?»—I)” Y=l (v=1F  (v—1p
1 1 1 1 1 3
dy=——=p—— 1:___5! = ——1, 0 — —— s
a, 2,6’ 1 a 5 @y 27 a 2(a:+;9) 1
a, K x+2t\* 3 AV
SLyv: x)=-2 T4 q, + — ;
w: P(@) w2+ 22 —l—a+( 4 ) dz—n)F  alz—>N)
2%
Alx)= :
(x) s

2 2
Kuv =2\ — 20— 230 —2@17\.—2).(—-7" :23),
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SLi:

Sl

SLir:

SLq:

Kazuo OxaMOTO

1 1
a, T e —-—._, =
0 3 3 1 a, 73
at: , ot | tKin . G 3 AV
p)=-2b 4 Qo 4 P4 B Lg. — ;
pR=—t Tt T, -y ww—n)
A
() L
K = —{ M* ),D‘E-C'T*——arﬁ-—'ﬁ'z:a)b am)\F],
% A
1. ' 1 1 , 1)
=——3, a=—=8 0Q.=—7, OGo==0
T gk 16 )
o aot‘z ﬂ',;t Ky + Ay aa:ot 2 3 AV
p)="00 4 Gt | KT M | Bub g g2t = —— =,
(@) xt ot b @ dlx—n)} al@—>N)
A@)=—222 12,
tlw—n) ¢
2 ’
Kin= l[z)&u? — 3y — EG—‘ZL— 2ad —2aLth— Zamtw}
t A A
1 & ’ 1 g, ' 1
d=——"0, =—=PB, G.=-—7, O=—C0.
SR T 5" 16 8
ple) =o' +ta* + 2an +2Kn + 3 T

da—r)? o=\

Aw)=—12,
r—N\
KH — —;—1}2_'%};4 = -%—t?\;s'_a:\..
3 Y

p(x) =4a*+ 2tx+ 2K +

4(x—\)* T

1/2
Alz)=—",
(@) e
](1=lv2-—2)\,3—t?\.
2
:HI.

REMARK 4.6 ([7]). We can obtain the Painlevé equations by con-

sidering the isomonodromic deformation of systems of differential
equations of the form:
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day _ A®)Y,
dx

where A(z) is a 2x2 matrix, rational in .
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