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Abstract

Childcare in early age would bring deep influence on children’s personality.

For infants, their early education are most based on the interaction with mothers.

ALthough there have already been some studies on analyzing the interaction of

children and mothers in early-age, these researches are almost manual and there-

fore in small scale. With the great process of behavior analysis on computer version

field, we apply behavior analysis to childcare researches in purpose to make large

scale research possible. We built a dataset from large amount of video of mothers

taking care of 15 months old children, all of which are annotated with childcare

level labeled by professional analysts. We conducted experiments by our encoder-

decoder model to rate childcare level automatically, and achieved acceptably high

accuracy.
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Chapter 1

Introduction

1.1 Background

Children’s care and education are eternally important elements of the society.

For infants, their early education are most based on the interaction with mothers.

And this early-age education is critical in infants’ character formation. There have

already been some studies on analyzing the interaction of children and mothers in

early-age.

Cohn Jeffrey F and Tronick Edward [1] found quality of mother’s affective ex-

pression accounted for individual differences in the behavior of thirteen 7-month-

old infants living in multiproblem families. Especially, withdrawn or intrusive ma-

ternal affective expression, together with lacking of contingent responsiveness, may

in part be responsible for the risk-status of infants. Purhonen Maija’s group [2]

test the reaction of 4-month-old infants when hearing voice from their mothers and

other unfamiliar female. As a result, they found the behaviorally well-documented

mutual sensitization between infant and mother and the special importance of out-

put from mother is seen as an enhanced arousal to mother’s voice and as signs of

a clear memory template for own mother’s voice at very early age. Field Tiffany

M [3] focused on the reaction of infants of mothers with depressed postpartum.

They videotaped and analyzed 24 depressed and 24 non-depressed mothers in 3

face-to-face interactions with their 3-month-old infants. As a result, they found

that infants are able to detect the affective qualities of their mothers’ displays

and appropriately modify their affective displays in response. Findings also sug-

gest that depression or depressed affect emerges in infants as a function of early

1
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interactions with their depressed mothers.

In Japan, there are also lots of researches about early-age child behavior anal-

ysis. Some studies used handheld cameras to record children’s daily behavior [4].

Some studies used stationary cameras [5] but still requires significant effort for

manual analysis. Additionally, some studies considered reducing the workload of

manual analysis by attaching motion sensors to children and tracking their ac-

tions [6]. However, children may be uncomfortable with the motion sensors and

not behave as usual. Besides, such sensor systems always suffer from safety prob-

lems and battery issues.

So far these behavior analysis of mother-child interaction is manual and there-

fore in small scale, in which only dozens of mother-child participate in experiments.

Since these experiments are almost recorded in videos and the methods of behav-

ior analysis in computer vision field has made great progress in this decade, we

conducted behavior analysis on a new database of mother-child interaction auto-

matically using computer vision technologies and achieved acceptably results.

1.2 Purpose

We acquired a large amount of videos of mothers taking care of 15-month-old

children from The University of California, Davis. All of the videos are annotated

with childcare level labeled by professional analysts. However, since rating the

level of childcare requires significant manual effort for analysis, it is expected that

the techniques of video processing to this rating task.

We built a dataset from the childcare videos, and proposed an encoder-decoder

model to rate childcare level automatically. As a result, we achieved acceptably

accuracy using our encoder-decoder model.
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1.3 Organization of This Thesis

The organization of this thesis is as follows.

In Chapter 1, we introduce the importance of mother-child interaction analysis

and the necessity of importing technology of computer vision into this field. In

Chapter 2, we introduce the related work of behavior analysis. In Chapter 3, we

introduce the dataset we built from childcare videos. In Chapter 4, we introduce

the experiments based on image processing encoder. Finally, we draw conclusion

and discuss future work in 5.

In Appendix A, we introduce another work about IoT sensor application on

real estate evaluation.
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Related Work

In this section, we will introduce the related works about behavior analysis.

First, we will introduce some behavior analysis researches based on sensor

system, which can be generally divided into wearable sensor system and non-

attached sensor.

Next, we introduce image-based behavior analysis, which is the main method

in current research. Image-based methods can be divided into traditional meth-

ods and deep learning methods. Traditional methods include space-time interest

points [7] and dense trajectories [8, 9]. Meanwhile, deep learning methods con-

tain spatio-temporal convolution [10], recurrent neural network (RNN) [11], and

two-steam architectures [12].

Finally, we introduce skeleton-based behavior analysis. Also, we will introduce

the related works about the method of extract skeleton from images or videos. In

this subsection, posture estimation and object tracking are discussed.

2.1 Sensor-Based Behavior Analysis

2.1.1 Wearable Sensors

Before the dramatical improvement on computer vision, applying wearable sensors

to analyze behavior is widely used in many applications such as medical, entertain-

ment, security, and commercial fields. Wearable sensors can record the motion of

the whole body or certain parts continuously and precisely [13, 14]. Therefore, it

is believed that the smart wearable sensors will revolutionize human lifestyles and

4
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social interactions in decades. In laboratory settings, the most prevalent everyday

activities have been successfully recognized with accelerometers [15, 16, 17, 18, 19].

As for out-of-laboratory settings, Miikka Ermes et al. recognized behaviors by us-

ing a hybrid classifier. The hybrid classifier combined a tree structure containing

a priori knowledge and artificial neural networks, and also by using three refer-

ence classifiers [20]. Also, Pietro Salvo et al. proposed a sweat monitoring sensor

on the textile substrate, which made sensor system directly worn on the body

possible [21].

2.1.2 Non-attached Sensors

On the other hand, non-attached sensors systems are also developed in behavior

analysis, especially on child and elder care and security. Sensors like Microsoft

Kinect sensor [22], Leap Motion [23], body mounted camera [24], 3D laser scan-

ner [25] and infrared light source [26] can capture human poses and construct a

human skeleton based on the captured body joints. Most of the sensors can record

the deep information at same time. For example, N. Noury et al. [27] proposed a

system for remotely monitoring human behavior in daily life at home aiming to

improve safety and quality of life. Activity is monitored by infrared position sen-

sors and magnetic switches. For fall detection, they had developed a smart sensor.

Local communication was performed using RF wireless links to reduce wiring and

allowed personnel to move. And for behavior analysis on sports, in considerate

of reducing the affect from attached sensors, non-attached sensors are generally

recommended. Per Wilhelm et al. [28] combined video tracking and wireless sen-

sor and built a Sport Performance Analyzer (SPA) system that has three main

modules, namely data acquisition, tracking and analysis-visualization.
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2.2 Image-Based Behavior Analysis

2.2.1 Traditional Method

Space-time Interest Points

Ivan Laptev [7] pointed out that the key points in video images were usually the

data which changes strongly in the space-time dimension, and these data reflect

important information about the target movement. By extracting these change

data and further analyzing their location information, the data can be used to

distinguish other actions.

In the spatial domain, points with a significant local variation of image inten-

sities have been extensively investigated [29, 30, 31, 32]. In Ivan Laptev’s work, he

extended Harris [30] and Förstner [29] interest point operators and detected local

structures in space-time where the image values have significant local variations

in both space and time. After obtaining the key points, based on the one to four

partial derivatives of the points, they combined a 34-dimensional feature vector

and clustered them using k-means.

Paul Scovanner et al. [33] used 3-dimensional SIFT instead of Harris interesting

points to recognize behaviors in video. Every key point of 3D SIFT contains 3

values, amplitude and two angles. The histogram of the gradient around the key

points in space and time can be used to form feature descriptors, and then k-

means clustering is performed on all feature descriptors to divide the categories

into vocabulary "word". All the different words constitute a vocabulary, and each

video can be described by the number of words appearing in this vocabulary.

Finally, an SVM [34] or perceptron are trained for action recognition.

Dense Trajectories

The space-time interest points are to encode the video information in spatio-

temporal coordinates, and iDT (improved Dense Trajectories) [8, 9] is another

very classic method that tracks the changes of the image along a given time along

the coordinate.
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The iDT algorithm consists of three steps: (1) densely sampling feature points,

(2) feature trajectory tracking, and (3) trajectory-based feature extraction.

Dense sampling is the regular sampling of images at different scales, but not

all points are really used for tracking, because the points in the smooth area have

no tracking significance. By calculating the feature value of the autocorrelation

matrix of each pixel and setting the threshold value feature points below the

threshold are used to implement this selection.

The feature trajectory is tracked by optical flow. The optical flow rate of

the image is calculated first, and then the image motion trajectory is described

by this rate. Because the trajectory drifts over time, it may move far from the

initial position. Therefore, they limited the trajectory tracking distance spatially

and practically. If the tracked point is out of range, resampling and tracking are

performed to ensure that the trajectory density will not be reduced. In this way

they characterized the shape of behavior.

In addition to the shape, they also extracted features aligned with the trajec-

tories to characterize appearance (histograms of oriented gradients) and motion

(histograms of optical flow). Furthermore, they introduced a descriptor based on

motion boundary histograms (MBH) which rely on differential optical flow. The

MBH descriptor showed to consistently outperform other state-of-the-art descrip-

tors, in particular on real-world videos that contain a significant amount of camera

motion.

2.2.2 Deep learning Method

Before the application of Convolutional Neural Networks (CNNs) [35, 36, 37, 38],

researches on behavior analysis focus on extracting hand-crafted features to recog-

nize actions. However, with the rapid development of CNNs over the past decade,

the hand-crafted features are gradually replaced.

The successful image classification architectures have been adapted to video

processing in three ways: (1) with spatio-temporal convolutions or (2) with recur-

rent neural network, (3) by processing multiple streams such as motion represen-

tation in addition to RGB data.
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Spatio-temporal Convolutions

Learning image representation using ConvNets by pre-training on ImageNet has

proven useful in many visual understanding tasks including object detection, se-

mantic segmentation, and image captioning. Although any image representation

can be applied to video frames, a dedicated spatio-temporal representation is still

important in order to incorporate motion patterns that can only be captured by

appearance-based models.

Du Tran et al. [10, 39] proposed a simple, effective approach for spatio-temporal

feature learning using deep 3-dimensional convolutional networks (3D ConvNets).

Their finding has two points: (1) Compared to 2D ConvNets, 3D ConvNets are

more suitable for spatio-temporal feature learning ; (2) A homogeneous architec-

ture with small 3x3x3 convolution kernels in all layers is among the best perform-

ing architectures for 3D ConvNets. As a result, the feature they learned from

C3D (Convolutional 3D), with a simple linear classifier, outperformed state-of-

the-art methods in the year it proposed.

However, although spatio-temporal convolutions supply a easy way to combine

spatial information and time information, the problem is the cost of space and

time. Train a 3D CNN for a certain database would occupy lot of computing

space and take large amount of time. Also, since 3D CNN regards spatial feature

and time feature equally, it may not perform well in some specific tasks.

Recurrent Neural Networks

Recurrent neural networks (RNNs) have been explored in perceptual applications

for decades, and the results were different. Although RNNs have proven success-

fully on tasks such as speech recognition [40] and text generation [41], it may

be difficult to train them to learn long-term dynamics. That is because of the

vanishing and exploding gradients problem [42] that can result from propagat-

ing the gradients down through the many layers of the recurrent network, each

corresponding to a particular timestep.

To solve the vanishing and exploding gradients problem, Jeff Donahue et al. [11]

developed Long Short-Term Memory (LSTM), a novel recurrent convolutional
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architecture suitable for large-scale visual learning which is end-to-end trainable.

Compared with RNNs, LSTM adds cell state and imports severals gates. This cell

state carries the information of all previous states. At every new state, there are

corresponding operations to decide what old information to discard and what new

information to add. This state is different from the hidden layer state h. During

the update process, its update is slow, while the hidden layer state h is updated

quickly.

Two-stream Architectures

The two-stream method trains two independent CNNs, one using RGB data to

operate on appearance, and the other is based on optical flow image processing.

The two-stream method has shown encouraging results in different video un-

derstanding tasks like video classification [43, 12, 43], video segmentation [44, 45]

and action localization [46, 47]. In this case, the two classification streams are

independently trained and combined during testing. The first one operates on the

appearance by using RGB data as input. The second one is based on the motion,

taking the optical flow calculated using off-the-shelf methods as input [48, 49], con-

verting it to an image and stacking it over several frames. Feichtenhofer et al. [43]

trained the two streams end-to-end by fusing different levels of streams instead of

training them independently. The I3D method [50] also relies on the two-streaming

method. This architecture processes video clips through spatio-temporal convo-

lution and pooling operators, enriches them from an image classification network

with spatial convolution and pooling layers.

2.3 Skeleton-Based Behavior Analysis

2.3.1 Posture Estimation

Human pose estimation is the process of estimating the 2D or 3D human body

part positions from still images or videos. But generally, human pose estimation

aims to detect 2D key-points linked to joints. Early work used robust image
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features and sophisticated structured prediction: the former is used to produce

local interpretations, whereas the latter is used to infer a globally consistent pose.

This conventional pipeline, however, has been greatly reshaped by convolutional

neural networks.

Single-Person Pose Estimation

The work by Newell et al. [51] introduces a novel “stacked hourglass” network

design for predicting human pose. The network captures and consolidates infor-

mation across all scales of the image. Recently, many work [52, 53, 54, 55] based

on hourglass made great score on human pose estimation.

Yang et al. [53] argued that the residual unit in hourglass network can only

capture visual patterns or semantics at one scale. Therefore, in their work, they

used the proposed pyramid residual module as the building block for capturing

multi-scale visual patterns or semantics. They also use the PRM at the beginning

convolutional and max pooling layers, which are used to process features down

to a very low resolution before Hourglass Module. Furthermore, they introduce

score maps of body joint locations to produce at the end of each hourglass, and a

squared-error loss is also attached in each stack of hourglass.

The work by Ke et al. [54] was also an improvement on Hourglass Network.

Their framework, Multi-Scale Structure-Aware Network focus on the loss of Hour-

glass Network. Their work has three key points: (1) They propose the multi-

scale supervision network (MSS-net) to learn deep features across multiple scales.

(2) They use a fully convolutional multi-scale regression network (MSR-net) af-

ter the MSS-net convdeconv stacks to globally refine the multi-scale keypoint

heatmaps to improve the structural consistency of the estimated poses. (3) they

design a structure-aware loss function following a graph to model the human skele-

tal structure. Specifically, they introduced a human skeletal graph S for a visual-

ization of the human skeletal graph to define the structure-aware loss.
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Multi-Person Pose Estimation

As for multi-person pose estimation, there are mainly two kinds of approaches,

top-down approach and bottom-up approach.

The top-down approach is also known as two-step framework, is to detect the

multiple people first, get the bounding box, and then detect the key points of the

human body in each bounding box, finally connect them into a human skeleton.

It can be considered as a combination of multi-person detection and single-person

pose estimation. The most difficulty of top-down approach is that the impact

of the boundary box is too large, factors such as misalignment, Intersection over

Union (IOU) size will significantly affect the results.

Bottom-up approach is also known as part-based framework. This approach

detects all the joint points first, and then determine the attribution of each joint

point. The main difficulty of bottom-up approach is splicing different parts of

different people by one person. Newell et al. [56] integrate associative embedding

with a stacked hourglass network, which produces a detection heatmap and a

tagging heatmap for each body joint, and then group body joints with similar tags

into individual people. Openpose [57] is the first open-source realtime system for

multi-person 2D pose detection, including body, foot, hand, and facial keypoints.

Openpose uses a nonparametric representation, which referred as Part Affinity

Fields (PAFs), to learn to associate body parts with individuals in the image. This

bottom-up system achieves high accuracy and realtime performance, regardless of

the number of people in the image.

Although almost all of approaches to estimate human poses was based on joint

detection, the work by Guler et al. [58] aims at pushing further the envelope of

human understanding in images by establishing dense correspondences from a 2D

image to a 3D, surface-based representation of the human body.

2.3.2 Object Tracking

After detecting all skeleton from the videos, we need to attach IDs to these skele-

tons in purpose to divide them into different people. Applying object tracking,
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we can track the skeletons across video. In this way, we can get the behavior of

different people in one video.

In recent years, approaches to object tracking have been based on discrim-

inative correlation filters (DCFs) or convolutional neural networks (CNN). Ex-

amples of DCF based approaches include minimum output sum of squared error

(MOSSE) [59] and accurate scale estimation for robust visual tracking (DSST) [60].

CNN based approaches include TCNN [61], MDNet [62], and SANet [63]. Further-

more, there are approaches that employ both DCF and CNN such as C-COT [64]

and ECO [65]. Although CNN based approaches can obtain high accuracy while

sacrificing processing time, DCF based approaches can process quickly with rela-

tively lower accuracy.

2.3.3 Action Recognition

After obtaining the skeletons with ID attached, we can finally use the skeletons

to do behavior analysis.

There are lots of literature on behavior analysis from 3D skeleton data [66, 67,

68]. Most of these methods train a recurrent neural networks on the coordinates of

human joints. However, this requires knowing the 3D coordinates of each joint of

the actor in each frame. This does not apply to videos in the wild, which include

occlusion, truncation, and multiple human actors.

The first attempts to use 2D poses were based on hand-crafted features [69,

70, 71]. Jhuang et al. [69] encoded the relative position and movement of joints

relative to the center and scale of the human body. Wang et al. [70] proposed

to group joints on body parts (such as the left arm) and use a bag-of-words to

represent a series of poses. Xiaohan et al. [71] use a similar strategy to utilize the

hierarchy of parts of the human body.

Several approaches have been proposed to use pose to guide CNNs. Most of

them use joints to pool features [72, 73] or to define attention mechanisms [74, 75].

Chéron et al. [73] applied CNNs trained on patches around artificial joints. Cao et

al. [72] pooled features according to joint positions. Du et al. [74] combined an end-

to-end recurrent networks with a pose-attention mechanisms for behavior analysis.
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Their methods requires pose keypoint supervision in training videos. Girdhar and

Ramanan [75] proposed an attention module with a low-order second-order pooling

method and presented that intermediate supervision based on estimated poses is

helpful for behavior analysis.



Chapter 3

Dataset

The childcare level evaluation experiment is conducted in every mother-child’

house across America during 1990s. All the children in video are 15-month-old and

normally grown with ability of walking and making noise. In the video, mothers

were asked to take care of their child for 15 minutes using three tools one by one.

The tools were provided by organizers and included one book and two toys as

shown in Figure 3.1.

Although most of the videos only contained the interaction between mother

and child, because of the curiosity and vivacity of child, the observer might be

recorded in some videos when the child run around. Also, the observer might

appear in the beginning of some videos introducing the rules of the experiment to

mothers.

Further more, although mothers were told to take care of their child using

the tools provided, children of 15-month-old were unavoidably attracted by other

thing. For example, in Figure 3.1a, the child was attracted by the house audio

equipment.

In some videos like Figure 3.1b and Figure 3.1c, the timestamp was remained

at bottom left corner.

Totally, we received 1252 videos of childcare, and 1116 of them are attached

with childcare labels. All the videos are taken by hand-held cameras with image

size of 640*480 and fps (frames per second) of 29.97. Although mothers are told

to present childcare in 15 minutes, the length of videos varies from 9 minutes to

30 minutes.

14
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(a) (b)

(c) (d)

Figure 3.1: Samples of childcare videos

3.1 Label

Every video is attached to 6 labels, 4 of them are labeled by professional analysts,

and the rest 2 are calculated from the 4 existing labels. The 6 labels are SENSIO15,

F15PQ2, F15PQ3, F15PQ6, SEN_HML and Intru_R. The description of these 6

labels is shown in Table 3.1.

F15PQ2, F15PQ3, F15PQ6 and Intru_R are labeled as integer varies from 1

to 4. SEN_MHL is labeled as integer varies from 1 to 3. SENSIO15, as the sum of

F15PQ2, F15PQ6 and Intru_R, is labeled as integer varies from 3 to 12. Except

F15PQ3, the higher score in all the labels presents the higher childcare level.

These labels are also applied in other childcare researches. Some researches

compared SEN_HML of women who never reported symptoms of depression with

those who reported symptoms sometimes or chronically [76, 77]. They found
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Table 3.1: The Description of Labels

Labels Description
SENSIO15 Maternal composite sensitivity score at 15 months

(=F15PQ2+F15PQ6+Intru_R)
F15PQ2 Maternal sensitivity to non-distress
F15PQ3 Maternal intrusiveness
F15PQ6 Maternal positive regard for the child

SEN_HML Maternal sensitivity
Intru_R Maternal intrusiveness reverse coded

(=5.0 - F15PQ3)

women with chronic symptoms of depression were the least sensitive when ob-

served playing with their children from infancy through 36 months. Children

whose mothers reported feeling depressed performed more poorly on measures

of cognitive-linguistic functioning and were rated as less cooperative and more

problematic at 36 months. Belsky Jay and Fearon RM Pasco [78] focused on the

role of early experience in shaping development, and examined the hypothesis

that the most competent 3-year-olds would be those with histories of secure at-

tachment (at 15 months) who subsequently experienced (relatively) high-sensitive

mothering (at 24 months), and that the least competent children would be those

with histories of insecure attachment who subsequently experienced (relatively)

low-sensitive mothering.

3.2 Distribution and Correlation

Figure 3.2 shows the distribution of all labels (except F15PQ3, because F15PQ3 =

5.0 - Intru_R). And Table 3.2 shows the correlation of all labels (except F15PQ3

and SEN_HML).

The distribution shows the number of worst performance in every label is

extremely small. By viewing the videos, we find even the mother labeled with low

level performs well in childcare from our point of view. It is speculated that since

the mothers were told to take care of their children for a period of time and knew

that their behaviors were recorded, they would perform their best to take care of
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Table 3.2: The Correlation of Labels

F15PQ2 Intru_R F15PQ6 SENSIO15
F15PQ2 1.00 0.57 0.49 0.86
Intru_R 0.57 1.00 0.28 0.79
F15PQ6 0.49 0.28 1.00 0.73

SENSIO15 0.86 0.79 0.73 1.00

their child. Thus, the childcare level of most mother in all labels are in middle

rate or high rate.

The correlation results shows that F15PQ2 is moderately related to Intru_R

and F15PQ6, but correlation between Intru_R and F15PQ6 is low. SENSIO15,

because it is the sum of F15PQ2, Intru_R and F15PQ6, is highly related with

these three labels. Therefore, although SENSIO15 can present the integral level

of childcare, other labels still need experiments individually.

3.3 Small Scale Dataset

As described in Chapter 1.2, this work is a cooperation with The University of

California, Davis. Since the videos are recorded in 1990s and stored in discs, we

have not received all videos in the beginning. Actually, we only had 154 videos at

first, and only 30 of them were labeled. Figure 3.3 shows the distribution of labels

in the dataset. From the distribution, the number of every label is relatively

balanced except label Intru_R, in which number of level 4 is extremely large

compared with other levels.
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(a) F15PQ2 (b) Intru_R

(c) F15PQ6 (d) SEN_HML

(e) SENSIO15

Figure 3.2: Distribution of Labels in the Whole Dataset
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(a) F15PQ2 (b) Intru_R

(c) F15PQ6 (d) SEN_HML

(e) SENSIO15

Figure 3.3: Distribution of Labels in the Small Scale Dataset
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Encoder-Decoder-Based Behavior

Analysis

4.1 Encoder-Decoder Model

Figure 4.1 shows the general structure of encoder-decoder model for behavior

analysis from videos, c refers to feature extracted by encoder, and Y refers to

the classification result. First, several frames are extracted from the whole video.

Second, encoder is applied to extract feature of every frame. Finally, the decoder

do classification with the features as input.

The widely used databases for behavior analysis include HMDB-51 [79], UCF-

101 [80], Sports-1M [81], ActivityNet [82], Youtube-8M [83] and so on. However,

the classes of these datasets vary different from each other. For example, HMDB-

51 [79] has 51 classes including cartwheel, clap hands, climb, dive, fall on the floor,

run, wave. The difference between classes is easy to distinguish and the class can

be clearly divided. Similarly, UCF-101 [80] has 101 action categories varies in

five types 1)Human-Object Interaction 2) Body-Motion Only 3) Human-Human

Interaction 4) Playing Musical Instruments 5) Sports.

On the other hand, the childcare level in our dataset is hard to distinguish by

non-professional analysts. Furthermore, since the length of videos varies from 9

minutes to 30 minutes and the action of childcare is limited, the simple feature

extraction model for image classification may perform well in our case with little

difference to feature extraction model for action recognition.

20
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Figure 4.1: Encoder-Decoder Model for Behavior Analysis

Well-performed pretrained feature extraction model for image classification

includes ResNet [35], VGG [37], AlexNet [84], SqueezeNet [85], DenseNet [86],

GoogLeNet [38], MobileNet v2 [87], ResNeXt [88], Wide ResNet [89] and MNAS-

Net [90]. We conducted experiment to evaluate the performance of every feature

extraction model mentioned above on small scale dataset described in 3.3.

Empirically, we choose ResNet50 [35], VGG13 [37], AlexNet [84], and GoogLeNet [38]

as encoder in our further experiment on Dataset II.

As for decoder, we conducted experiments to evaluate full connecting layer,

LSTM [11] and attention LSTM. For full connecting layer, we test input of the

mean value of all 450 features and the concatenation of all features. The structure

of model with LSTM is showed as Figure 4.2. When using LSTM or attention

LSTM as decoder, we use the final output (Yn) of LSTM or attention LSTM as

the classification result. As a result, we selected LSTM in our further experiment

on Dataset II.
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Figure 4.2: Encoder-Decoder Model with LSTM for Behavior
Analysis

4.2 Experiment on Dataset I

4.2.1 Training Setting

Dataset I is consisted of 30 labeled videos as described in Chapter 3.3. To make

full use of Dataset I, we divide the 30 labeled video into 6 groups to conduct cross

validation. In every time of learning, one group is selected as test set and the rest

5 groups consist train set. Groups are manually divided in purpose of keeping

the balance of every label in every group. Table 4.1 shows the label distribution

in every group. According to the distribution of SENSIO15 in Dataset I 3.3e, we

redefine the level of SENSIO15 with level 1 as original level < 8, level 2 as original

level between 9 and 10, level 3 as original level = 12. Besides cross validation,

since we only have 5 data for test in every time of learning, we trained the decoder

model for 6 times to ensure universality of the results.

For every video, we extract one frame per second from 2 minutes since in

some videos observer might appear at the beginning introducing the rules of the

experiment to mothers. We extract 450 frames for every video according to the

minimum length of videos. For every experiment, we set learning rate as 0.001
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Table 4.1: The Label Distribution in Every Group

Label Level Number in Group
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

F15PQ2

1 1 1 1 0 1 1
2 1 1 1 2 0 0
3 2 2 1 1 2 2
4 1 1 2 2 2 2

Intru_R

1 0 1 1 2 1 0
2 2 1 1 0 0 1
3 1 1 1 1 0 0
4 2 2 2 2 4 4

F15PQ6

1 2 1 1 1 1 1
2 0 1 1 1 1 1
3 2 2 1 1 1 1
4 1 1 2 2 2 2

SEN_HML
1 1 2 2 2 1 1
2 3 1 1 1 2 2
3 1 2 2 2 2 2

SENSIO15
1 2 2 2 2 1 1
2 2 2 1 1 2 2
3 1 1 2 2 2 2

and number of train epochs as 200. The input images are in size of 256*192. We

use Adam [91] as optimization and softmax cross entropy loss as loss function.

According to 3.2, we test all feature extraction model listed above on SEN-

SIO15, which is the sum of F15PQ2, Intru_R and F15PQ6, and is highly related

with these three labels. Level of SENSIO15 is divided into 3 classes as described

in Chapter 3.3. Then we test 4 feature extraction model (ResNet50, VGG13,

AlexNet and GoogLeNet) on all other labels because of their high accuracy in

predicting SENSIO15. F15PQ2, Intru_R and F15PQ6 as divided into 4 classes

while SEN_HML is divided into 3 classes according to their distribution.

When evaluating the performance of encoders, we use LSTM [11] as decoder.

On the other hand, we use 4 encoders (ResNet50, VGG13, AlexNet, and GoogLeNet)

to evaluate the performance of decoders.
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Table 4.2: Experiment Result on Encoder on SENSIO15 in Small
Dataset

Feature Extract Model Accuracy
ResNet18 72.23%
ResNet34 75.0%
ResNet50 75.56%
ResNet101 75.56%
ResNet152 73.89%

VGG11 76.67%
VGG13 77.78%
VGG16 69.44%
VGG19 70.56%
AlexNet 76.1%

SqueezeNet 66.67%
DenseNet 66.11%

GoogLeNet 81.11%
MobileNet v2 71.67%
ResNeXt50 73.89%
ResNeXt101 73.33%
Wide ResNet 66.11%
MNASNet 72.22%

4.2.2 Result

Table 4.2 shows the result of experiment on all feature extraction model mentioned

above on SENSIO15 in Dataset I. We find the performances of image classification

models are already good in Dataset I with almost all accuracy reaches 70%. Es-

pecially, GoogLeNet acquires the highest accuracy over 80%. ResNet50, VGG13,

and AlexNet also acquire high accuracy in predicting SENSIO15. Therefore, we

conducted experiments on these 4 feature extraction models (ResNet50, VGG13,

AlexNet and GoogLeNet) on all other labels in Dataset I. The result is shown in Ta-

ble 4.3. We find GoogLeNet still performs best on predicting F15PQ2, Intru_R,

and F15PQ6. However, AlexNet gets the best score on predicting SEN_HML.

Also, the accuracy of predicting Intru_R using AlexNet is very close to it of

GoogLeNet.

Figure 4.3 shows the result of experiments on decoder. Except SEN_HML,

the best accuracy is acquired by LSTM using GoogLeNet as encoder. As for
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Table 4.3: Experiment Result on Encoder on Other Labels in
Small Dataset

Label Feature Extract Model Accuracy

F15PQ2

ResNet50 68.89%
VGG13 68.37%
AlexNet 66.67%

GoogLeNet 72.22%

Intru_R

ResNet50 77.22%
VGG13 74.44%
AlexNet 79.44%

GoogLeNet 80.00%

F15PQ6

ResNet50 62.22%
VGG13 64.44%
AlexNet 62.78%

GoogLeNet 74.44%

SEN_HML

ResNet50 76.1%
VGG13 80.56%
AlexNet 86.67%

GoogLeNet 81.67%

SEN_HML, the best model also using LSTM as decoder with AlexNet as encoder.

Therefore, we choose LSTM as decoder for experiment in Dataset II.

4.3 Experiment on Dataset II

4.3.1 Training Setting

Dataset II contains the whole videos with labels. Different from Dataset I, ac-

cording to the distribution of labels in Dataset II 3.2, for label F15PQ2, Intru_R,

F15PQ6 and SEN_HML, the number of videos with level valuing 1 is extremely

small. Therefore, different from the assignment in small scale dataset, we divide

the label F15PQ2, Intru_R, F15PQ6 into 3 classes ,in which level 1 and level 2

are grouped in same class. And SEN_HML is divided into 2 classes with level 1

and level 2 in same class. As for SENSIO15, in considerate of the large number of

videos in level 9 and level 10, we divide them into 4 classes with class 1 as original

level <= 8, class 2 as original level = 9, class 3 as original level = 10 and level 4

as original level between 11 and 12.
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Table 4.4: Experiment Result on the Big Dataset

Label Feature Extract Model Validation Accuracy Test Accuracy

F15PQ2

ResNet50 57% 56%
VGG13 58% 56%
AlexNet 57% 59%

GoogLeNet 61% 42%

Intru_R

ResNet50 68% 68%
VGG13 68% 67%
AlexNet 68% 68%

GoogLeNet 68% 68%

F15PQ6

ResNet50 59% 47%
VGG13 58% 47%
AlexNet 59% 53%

GoogLeNet 58% 58%

SEN_HML

ResNet50 77% 73%
VGG13 77% 65%
AlexNet 75% 73%

GoogLeNet 75% 72%

SENSIO15

ResNet50 34% 27%
VGG13 31% 31%
AlexNet 36% 33%

GoogLeNet 36% 25%

The number of labeled videos in Dataset II is 1113. For every label, we ran-

domly selected 100 videos for valuation and 100 videos for test. The rest 913

videos consist train set. The distribution of labels in test and valuation set is

same with the distribution of the in dataset. In other words, the number of every

class in train set, valuation set, and test set is not balanced.

Based on the result from preliminary experiment, we conducted experiment

in the whole dataset choosing ResNet50, VGG13, AlexNet and GoogLeNet as

encoder. As for decoder, we use LSTM to do classification. The settings of details

of experiment is same with experiment on Dataset I.

4.3.2 Result

Figure 4.4 shows the result on Dataset II. Although the accuracy seems to be

relatively high accuracy, when we refer to confusion matrix showed in Figure 4.4,

we find the model trained on Dataset II tends to classify videos to the class with
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the largest amount in dataset. And the number of prediction to the largest class

is much more than the number of truth. The result shows that the model trained

on Dataset II can not be widely used.

4.4 Analysis

As the sample showed in Figure 4.5, overfitting occurred when train the LSTM in

Dataset II. To solve overfitting, we tried several common method such as reducing

learning rate, replacing optimization with SGD, and adjusting dropout. However,

all the methods help little to solve overfitting.

Since we acquire high accuracy in Dataset I, the relatively low accuracy in

Dataset II may be caused by the unbalanced distribution. Otherwise, Dataset I

may have some noise dramatically influence the leaning process.

Focus on the results in small scale dataset as showed in Table. We find one

video V was almost predict to be level 1 while the truth is level 3 in SENSIO15.

By comparing the contain of this video and other videos which prediction is same

with truth almost in all models. We find the videos predicted to be level 1 have

high image contrast and the faces of mother and child is not clear. On the other

hand, the image of videos predicted to be level 3 are bright with clear face.

Therefore, we apply histogram equalization to the images. Figure 4.6 presents

the different before and after the application of histogram equalization. The left

images are original frames ,in which the face is not clear. And the right images

are images after histogram equalization, we can see the face much more clearly.

With the same setting to 4.2, we conducted experiment using 4 feature extraction

models as encoder and LSTM as decoder only replace the input with image after

histogram equalization.

Table 4.5 showed the result of image after histogram equalization as input

compared with result of original image. We can see the accuracy drop down

obviously in all encoders. On the other hand, the average accuracy of video V

increased from 16.67% to 91.67%. From the result, the image contrast influence

the learning process in Dataset I.
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Table 4.5: Result of Application after Histogram Equalization on
Dataset I

Feature Extract Input Image
Model before histogram equalization after histogram equalization

ResNet50 75.56% 69.68%
VGG13 77.78% 71.67%
AlexNet 76.1% 72.78%

GoogLeNet 81.11% 74.44%

Taking the particularity of our dataset into consideration, rating childcare

level is so different from action recognition that the general methods for behavior

analysis may have difficult rating the level in high accuracy.
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(a) F15PQ2 (b) Intru_R

(c) F15PQ6 (d) SEN_HML

(e) SENSIO15

Figure 4.3: Experiment Result on Decoder in Small Dataset
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(a) F15PQ2 (b) SEN_HML (c) SENSIO15

Figure 4.4: Confusion Matrix of Experiments using GoogLeNet
as Encoder on Big Dataset

Figure 4.5: Loss Curve of Training using GoogLeNet as Encoder
on SENSIO15 in Big Dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Result of Histogram Equalization
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Conclusions and Future Works

5.1 Conclusions

In this thesis, we proposed to apply behavior analysis to childcare researches which

are manual and therefore in small scale. With this attempt, we except to make

large scale research on childcare possible.

We built a dataset in two scales from large amount of childcare videos. The

videos are all annotated with childcare level labeled by professional analysts.

On Dataset I, we conducted experiments on different encoders and decoders.

For encoder, we tested lots of feature extract model of image classification and

finally selected ResNet50, VGG13, AlexNet and GoogLeNet as encoder for ex-

periments in Dataset II. As for decoder, we tested full connection, LSTM and

attention LSTM. As a result, we found LSTM performs best on our task.

On Dataset II, we use the encoder and decoder selected according to results of

experiments on Dataset I. Although we acquired acceptable accuracy, the result on

Dataset II is not as good as it on Dataset I. With analysis, we find some noise like

image contrast influence a lot on Dataset I. And the application may be limited

due to the particularity of childcare rating.

5.2 Future Works

In the future work, the current encoder-decoder method still has a lot of room

for adjustment. Since the videos are recorded in 1990s, the relatively low quality

caused by device and photography skill also have lots of direction for improvement.

32
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Figure 5.1: Result of Openpose and Tracking

In addition, as described in 2.3, the behavior analysis method based on skeleton

performances well in several general behavior analysis databases. We plan to use

skeleton-based method on our task. Actually, we have already apply Openpose [57]

to our database and achieved simple tracking as showed in Figure 5.1

Besides, we notice that the voice in video may matter to the childcare level.

In videos of low childcare level, there are behaviors such as the mother calling the

child loudly, repeating words to make child follow command. On the other hand,

in videos attached with high childcare level, mother use tools to attract attention

of children if they are appealed to cameraman or something else. Therefore, the

usage of sound feature is also a considerate direction.



Appendix A

Real Estate Evaluation on Thermal

Diffusivity and Noise Proof with

IoT Sensors

A.1 Introduction

The real estate industry takes an important part in social daily life. Millions of

people make great effort to find their suitable and contented houses or apartments.

When selecting apartments, customers generally concentrate on information such

as price, location, transportation, area size, room structure and orientation, which

are provided by real estate agents and can be evaluated quantitatively and objec-

tively.

Besides objective information, customers in current focus on information re-

lated to the house comfort, such as energy saving, noise insulation, air quality and

daylight illumination. These additional information can not only help apartment

searchers find apartments that meet their expectations, but also help owners to

advertise their apartment in proper ways. For example, people living in cold areas

may be very concerned about energy saving, and sensitive people may be strict

with the performance of noise proof.

With the increasingly complex requirements of customers, the available infor-

mation of apartments in present real estate agents is too limited to help customers

make appropriate choices. However, information such as energy saving and noise

34
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insulation is hard to quantify. To acquire the information, customers can only

ask the real estate agents or go to visit the apartments in practice. Even though,

customers can only ac-quire the information qualitatively.

We propose an approach for quantifying thermal diffusivity and noise proof

performance of real estate properties. For this purpose, we use our IoT sensor

system to collect multiple environmental data from 109 apartments in main cities

across Japan. The IoT sensor system is based on a sensor developed by our-

selves [92, 93, 94]. The self-developed sensor is also used in nursery school and

nursing home sensing [95]. Through the experiments in real estate properties,

we can quantitatively compare thermal diffusivity and noise proof of these apart-

ments.

A.2 Related Works

A smart house provides various services according to the needs of consumers by

optimally controlling home appliances and equipment. Yasumoto et al. proposed

a method to save energy by controlling home appliances while minimizing the

deterioration of comfort in smart houses [96]. In their method, the power con-

sumption of each home appliance is changed ac-cording to the situation in order

to achieve reduced consumption. For example, in the situation of reading, the

power consumption of lighting equipment is reduced, and that of air conditioning

is increased. According to their study, the comfort reduction rate could be reduced

from 44.84% to 14.47%, which achieves 20% energy savings. In contrast to the

case of smart houses, we consider the measurement of an apartment’s comfort

level with no home appliances before the home is inhabited.

The Internet of Things (IoT) enables various objects to inter-operate (connect

and exchange data) within the existing Internet infrastructure. IoT has potential

applications in a wide array of studies, therefore, it is currently receiving consider-

able attention. IoT devices are already being used in various fields, and the extent

of its application is expected to be continually in-creasing.
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IoT devices have also been developed for observing the living environment.

Examples are OMRON’s environment sensor 2JCIE-BL01 [97] and Netatmo’s

personal weather station [98]. These devices measure environmental aspects as

temperature, relative humidity, atmospheric pressure, and noise. Acer air moni-

tor [99] can measure particulate matter (PM) 2.5, PM10, total concentration of

volatile organic compounds (TVOC), CO2 concentration, temperature, and rel-

ative humidity. Furthermore, it provides a real-time indoor air quality index.

SenStick [100] has an acceleration sensor, a gyro sensor, a geomagnetic sensor, a

temperature sensor, a relative humidity sensor, an air pressure sensor, an illumi-

nance sensor, and an ultraviolet (UV) sensor. It is very small and can be mounted

on objects as small as chop-sticks, toothbrush, and glasses. Awair Glow [101] can

measure temperature, relative humidity, CO2 concentration, chemicals, and dust

in air. This device can inform the user of the quality of the environment with

different colors.

Some studies have addressed environmental issues such as air and water pol-

lution using IoT. For example, Ray proposed a novel technique to monitor the

level of PM2.5 in the atmosphere using IoT [102]. Although IoT has been used in

various fields, its application to the determination of the comfort level of houses

has not been considered.

A.3 Proposal

A.3.1 Sensor System

We proposed a sensor system based on a sensor developed by ourselves (Fig-

ure A.1). Our sensor is controlled by I2C interface with Raspberry Pi 3 Model B

and can measure temperature, humidity, illuminance, atmospheric pressure, noise,

UV intensity, acceleration and PM2.5 at the same time. We also use OMRON en-

vironment sensor 2JCIE-BL01 (Figure A.2) to consist our sensor system. Data

measured by OMRON environment sensor is collected by Raspberry Pi with Blue-

tooth. All measured data is collectively managed using Future Standard Co., Ltd.

SCORER platform. The data could be uploaded to cloud automatically in real
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Figure A.1: Proposed IoT sensor developed by ourselves

Figure A.2: OMRON environment sensor

time in an environment with the Internet. Thus, it does not require human labor

to collect data from the sensors and can keep working for a long period with power

supplement.

As we aim at quantitatively calculating thermal diffusivity and noise proof, we

need to measure temperature and noise level both inside and outside the apart-

ments as showed in Figure A.3 and Figure A.4. Therefore, we prepare at least two

sensors for every apartment. Furthermore, since the floor temperature changes

drastically outside, the sensors would lose heat faster if exposed to floor. We set

the sensor in a contain to keep it away from floor. In this way, we can also avoid

the influence of bad weather like rain and strong wind.
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Figure A.3: Sensor setting inside the apartment

A.3.2 Thermal Diffusivity

The energy saving performance of the apartment can be evaluated by the Q factor

(heat loss coefficient) and the UA (average U-value). However, in consideration of

the inadequate maintenance record and the measurement conditions required for

evaluation, it is not realistic to obtain Q or UA. Therefore, we use thermal diffusiv-

ity instead to evaluate the ability to con-serve heat. Apartments with high thermal

diffusivity are prone to transfer heat to the outside. In other words, apartments

with high thermal diffusivity would cost more on adjusting temperature.

The thermal diffusivity can be calculated as follows. Ti(t) and To(t) represent

the temperature inside and outside an apartment at time t. We define the thermal

conductivity as λ, wall thick-ness as d and heat capacity as C. The heat quantity

Q can be calculated by the following two equations.

−dQ(t)

dt
=

λ

d
(Ti(t)− To(t)), (A.1)

dQ(t)

dt
= C

dTi(t)

dt
. (A.2)



Appendix A. Real Estate Evaluation on Thermal Diffusivity and Noise Proof
with IoT Sensors 39

Figure A.4: Sensor setting outside the apartment

From these equations, we can acquire thermal diffusivity D as the following

equation.

D =
λ

dC
=

−dTi(t)
dt

Ti(t)− To(t)
. (A.3)

Due to the influence of sunlight, the varied temperature during daytime cannot

reflect thermal conductivity correctly. Therefore, we only use data after sunset to

calculate the mean value and standard deviation of D values.

A.3.3 Noise Proof

Since the noise proof performance of an apartment depends on the noise level and

type, it is difficult to generalize. Therefore, we compare and visualize the noise

level measured indoors and outdoors at same time to evaluate the noise proof

performance.

Besides the noise from outside, the noise from neighbor is also an inevitable

problem. Since the type of noise from neighbor is limited, we prepared several com-

mon noises such as instrument sounds, and loud vocals. As shown in Figure A.5,

we use speakers to play audio in one room and use a smartphone to record sound in
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Figure A.5: Equipment for neighbor noise experiment

neighbor room. To compare the sound level of speaker and receiver, we evaluated

the neighbor noise proof perfor-mance of apartments.

A.4 Experiments

A.4.1 Experiment Scale

We put our IoT sensor system in 109 apartments in Tokyo, Osaka, Fukushima,

Nagoya, Aichi, and Hokkaido. In consideration of human effect, the apartments

we selected are empty or unmanned in a period of time. For every apartment, we

collect data for at least 3 days.

The materials of apartments we investigated include wood, steel, and reinforced

concrete. In addition, age of the apartments also spread over a wide range from

several months to 50 years.

However, because of the difficulty of obtaining neighbor rooms, we only con-

ducted experiment on neighbor noise in two pairs of rooms. Every pair of rooms

is horizontally adjacent.
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Figure A.6: Thermal diffusivity of reinforced concrete frame
apartments

A.4.2 Thermal Diffusivity Result

Figure A.6 and Figure A.7 show the result of D (representing thermal diffusivity)

of apartments built by reinforced concrete and wood. Overall, thermal diffusivity

of reinforced concrete frame apartments is lower than that of wooden apartments.

Thermal diffusivity of wooden apartments is obviously influenced by the age of the

apartment. Although the age also influences reinforced concrete frame apartments,

there are several old apartments remaining low thermal diffusivity.

In Figure A.8, the left column is a lightweight steel frame apartment (1996)

and the right column is a wooden frame apartment (2015). The upper row shows

the time-series change of the temperature measured, and the lower row shows the

D value. We can see that the value of D is much smaller in the wooden house

(2015), which means the thermal diffusivity performance is better.

With the thermal diffusivity performance, the size of the room, and the air

conditioning equipment, we can set a simple indicator to describe energy saving

performance of the apartment.

A.4.3 Noise Proof Result

Figure A.9 shows the result of outdoor noise proof performance. Horizontal axis

shows indoor noise level, and vertical axis shows the outdoor noise level at the
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Figure A.7: Thermal diffusivity of reinforced concrete frame
apartments

same time. The distance from every point to the red line presents the noise proof

performance. For points above the red line, the further distance away from the

red line means the better noise proof performance. In Figure A.9a, for points

with outdoor noise level between 35dB to 45dB, the indoor noise level is almost

between 32dB to 38dB. On the other hand, in Figure A.9b, for points with outdoor

noise level between 30dB to 55dB, the indoor noise level is almost be-tween 31dB

to 35dB. Since the Figure A.9b has further average distance from the red line

and performances better with high out-door noise level, the outdoor noise proof

performance of (B) is better than (A).

Figure A.10, Figure A.11, Figure A.12, and Figure ?? show the result of neigh-

bor noise proof performance. Figure A.10 and Figure A.11 show the noise proof

performance of instrument sound. We conduct experiment on sound of piano, gui-

tar and drum. Figure A.10 is the result in new-build apartment and Figure A.11 is

the result in old apartment. In new-build apartment, the receiver room is not in-

fluence from speaker room. However, in old apartment the influence from speaker

room is obvious. Figure A.12 and Figure A.13 show the noise proof performance

of vocals. We conduct experiment on sound of cry, laugh and talk, and we test

two type of laugh sound and talk sound. Figure A.12 is the result in new-build

apartment and Figure A.13 is the result in old apartment. In both new-build

apartment and old apartment are hardly influence by vocals from speaker room.
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Figure A.8: Calculation result of thermal diffusivity

A.5 Conclusion

We focus on an IoT sensor based approach to quantify thermal diffusivity per-

formance and noise proof performance for real estate evaluation. The sensors we

developed can measure multiple environmental data such as temperature, humid-

ity, illuminance and so on. We collected large amount of data in main cities across

Japan using our sensor system.

We proposed the value D to quantitatively evaluate thermal diffusivity per-

formance of apartments. Instead of other existing factors, value the D is easy to

be acquired from inside and outside temperature change. We conduct comparison

experiments on different materials of apartments and apartments ages. As a re-

sult, the thermal diffusivity performance of reinforced concrete frame apartments

is good and is hardly influenced by building ages.

For noise proof performance, we find a way to present the outdoor noise proof

performance apartment by apartment. As for neighbor noise proof performance,

because of the difficulty of obtaining usable neighbor rooms, the experiment scale

is small. From the experiment result, new apartment holds good neighbor noise

proof performance on instrument sounds and loud vocals. Old apartment holds

good performance on insulating vocals, but is not good at insulating instrument
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(a)

(b)

Figure A.9: Outdoor Noise Proof Performance

sounds. In the future, we plan to search for cooperation to obtain more neighbor

rooms or find methods to test neighbor noise proof performance inside one room.
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Figure A.10: Neighbor Noise Proof Performance on Instrument
in New-build Apartment

Figure A.11: Neighbor Noise Proof Performance on Instrument
in Old Apartment
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Figure A.12: Neighbor Noise Proof Performance on Vocal in New-
build Apartment

Figure A.13: Neighbor Noise Proof Performance on Vocal in Old
Apartment
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