博士論文

Epidemiological surveillance and virological analyses of highly

pathogenic H5N1 avian influenza viruses in Indonesia.

(インドネシアにおける高病原性 H5N1 鳥インフルエンザウイルスの

疫学的調査及びウイルス学的解析)

今村剛朗

Epidemiological surveillance and virological analyses of highly

pathogenic H5N1 avian influenza viruses in Indonesia.

(インドネシアにおける高病原性 H5N1 鳥インフルエンザウイルスの

疫学的調査及びウイルス学的解析)

病因病理学専攻 ウイルス感染分野

指導教員: 河岡義裕

申請者: 今村剛朗

共同研究者: 山田晋弥、岩附(堀本)研子、 Chairul A. Nidom

ABSTRACT	3
PREFACE	5
MATERIALS AND METHODS	11
CHAPTER 1: Epidemiological surveillance and characterization of highly	pathogenic
H5N1 avian influenza viruses in Indonesia isolated between 2010 and 2016	
INTRODUCTION	20
RESULTS	24
DISCUSSION	57
CHAPTER 2: Amino acid substitutions in the PB2 protein of an H5N1 avia	ı influenza
virus enhance its replication efficiency and pathogenicity in mammalian hosts.	
INTRODUCTION	63
RESULTS	68
DISCUSSION	103
CONCLUSION	109
CONCLUSION ACKNOWLEDGEMENTS	109 110

1 Abstract

2	Highly pathogenic avian influenza (HPAI) H5N1 viruses have been circulating in
3	Indonesia since 2003, and sporadic human H5N1 cases were reported until 2017. However,
4	there are no reports on the epidemiology or virological characteristics of the currently
5	circulating HPAI H5N1 viruses, and their potential to cause a human endemic or pandemic is
6	unknown. With the aim of elucidating the characteristics of the currently circulating HPAI
7	H5N1 viruses in Indonesia, I conducted epidemiological surveillance of poultry and swine in
8	Indonesia between 2010 and 2016. Two distinct sub-clades of H5N1 viruses, clade 2.1.3 and
9	clade 2.3.2.1d, were identified, and the clade 2.3.2.1d strains appear to have recently become
10	dominant among poultry. Clade 2.3.2.1d strains showed mammalian-adaptive traits including
11	high viral polymerase activity and moderate replication capability in human lung epithelial
12	cells, and high virulence in BALB/c mice. My findings indicate that further, continuous
13	surveillance of HPAI H5N1 viruses in Indonesia is warranted in order to detect the emergence
14	of viruses with endemic or pandemic capability.
15	Among the Indonesian HPAI H5N1 viruses analyzed, I identified two genetically
16	closely related viruses with different replication efficiency and pathogenicity in mammalian
17	hosts. Further analysis of these two viruses revealed two amino acid mutations in the viral

18	PB2 protein (PB2-109A and PB2-758T) that enhanced viral replication efficiency in human
19	lung epithelial cells and pathogenicity in BALB/c mice. The mechanism by which these two
20	PB2 mutations enhance virulence in mammalian hosts has not yet been elucidated, but my
21	findings are valuable for assessing the risk of avian-to-human transmission of highly
22	pathogenic H5N1 avian influenza field isolates.
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

35 Preface

36	Influenza viruses are members of the family Orthomyxoviridae, which have a
37	negative-sense, single-stranded, segmented RNA genome [1, 2]. There are four genera of
38	influenza viruses: A, B, C, and D. Human influenza A and B viruses cause annual seasonal
39	epidemics. Wild aquatic birds are natural reservoirs of influenza A viruses, which are
40	zoonotic pathogens infecting humans as well as various other animal species. The natural
41	reservoirs of influenza B viruses are unknown. Influenza B viruses circulate mainly among
42	humans, but there have been several reports of infection in seals [3, 4]. Influenza C viruses
43	cause mild respiratory illness among humans, especially children [5-7]. Influenza D viruses
44	primarily affect cattle and their zoonotic potential has not yet been clarified [8, 9].
45	Influenza A virus is composed of eight segments of single-stranded, negative-sense
46	RNA that each encodes one or more viral proteins (Fig. 1) [1, 10, 11]. Replication and
47	transcription of viral RNA require three polymerase proteins [polymerase basic protein 2
48	(PB2), polymerase basic protein 1 (PB1) and polymerase acidic protein (PA)], which are
49	encoded by the three largest segments. The seventh and eighth segments each encode two
50	viral proteins that are essential to the nuclear export of newly synthesized viral
51	ribonucleoprotein (vRNP) complexes, virion assembly, or interactions with the host immune

52	response. The surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) are		
53	encoded by the fourth and the sixth segment, respectively. HA is critical to viral binding and		
54	internalization to the host cell, whereas NA promotes the release of viruses from the cell		
55	surface (Fig. 2).		
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			

70 Figure 1. The structure of influenza virus

- 71 Influenza A virus is composed of eight segments of single-stranded, negative-sense RNA
- 72 within a viral envelope. The viral envelope is coated with matrix protein (M1), and embedded
- 73 with surface glycoproteins HA and NA, and M2 ion-channel protein. The viral RNA
- regments are associated with nucleoprotein (NP) and three polymerase proteins (PB2, PB1,
- and PA). The figure was cited from [11].

77 Figure 2. Influenza virus life cycle

Influenza A virus binds to the cell surface and enters the cell via HA-mediated endocytosis. Then, the viral nucleoprotein (vRNP) is uncoated in the cytoplasm, and subsequently imported into the nucleus, where replication and transcription occur. After messenger RNA (mRNA) exportation and translation in the cytoplasm, newly synthesized viral proteins are transported back to the nucleus and formed into vRNP. The assembly and budding of progeny virions occur at the plasms membrane. The figure was adapted from [12].

94	On the basis of the antigenicity of the two surface glycoproteins, HA and NA,
95	influenza A viruses are classified into 18 HA subtypes (H1-H18) and 11 NA subtypes (N1-
96	N11). Wild aquatic birds are natural reservoir for most subtypes of influenza A viruses,
97	except for subtype H17N10 and H18N11 which are only found in bats [1, 2, 13, 14]. Among
98	humans, influenza A viruses of the H1N1, H1N2, H2N2, H3N2, and H3N8 subtypes have
99	established circulation at least once [2].
100	Influenza A viruses evolve via accumulation of mutations and rearrangements of
101	their viral RNA segments, which is termed reassortment [2]. These processes lead to the
102	introduction of new influenza A viruses into human populations, causing global epidemics,
103	called pandemics. Among the four recorded influenza pandemics, H1N1 Spanish influenza in
104	1918–1919, H2N2 Asian influenza in 1957, and H3N2 Hong Kong influenza in 1968 involve
105	avian influenza viruses [2, 12]. The H1N1 pandemic in 2009 originated from reassortment of
106	swine, avian, and human influenza A viruses [12].
107	Most subtypes of influenza A viruses are maintained asymptomatically in the
108	Orders Anserifomes (i.e., ducks, geese, and swans) and Charadriiformes (i.e., gulls, terns,
109	surfbirds, and sandpipers) [15]. However, there exist highly pathogenic avian influenza
110	(HPAI) viruses that cause significant mortality in chickens [16]. All HPAI viruses known to

111	date belong to either the H5 or H7 subtype. One characteristic feature of the HA of HPAI
112	viruses is the presence of polybasic amino acids at the HA cleavage site. Low pathogenic
113	avian influenza (LPAI) viruses possess a single arginine residue at the cleavage site, which
114	can be cleaved in limited organs, resulting in localized infection in the respiratory or intestinal
115	tract in poultry. In contrast, the polybasic cleavage site can be cleaved by ubiquitous
116	proteases, broadening viral tissue tropism and resulting in systemic infections and enhanced
117	virulence in poultry [2, 11, 17, 18].
118	In 1996, an HPAI virus of the H5N1 subtype was isolated from a farmed goose in
119	Guangdong province, China [19]. In 1997, an outbreak of H5N1 viruses among poultry and
120	18 cases of human infection were reported in Hong Kong [2, 20, 21]. Since then, HPAI H5N1
121	viruses have caused numerous outbreaks in poultry worldwide, especially in China, Southeast
122	Asia, and Africa [22]. Transmission of HPAI H5N1 viruses to humans has been monitored by
123	the WHO, and a total of 860 human infection cases, including 454 lethal cases, have been
124	reported as of September, 2018 [23, 24]. Thus, aside from their damage to the poultry
125	industry, HPAI H5N1 viruses pose an imminent threat to humans due to their potential to
126	cause epidemics and pandemics.
127	

128 Materials and Methods

129 Ethics and biosafety

130	All experiments with H5N1 viruses were performed in biosafety level 3 (BSL3)
131	laboratories at the University of Tokyo, which were approved for such use by the Ministry of
132	Agriculture, Forestry, and Fisheries, Japan. All experiments with mice were performed in
133	accordance with the University of Tokyo's Regulations for Animal Care and Use and were
134	approved by the Animal Experiment Committee of the Institute of Medical Science, the
135	University of Tokyo (P15-10).
136	
137	Cells
138	Madin-Darby canine kidney (MDCK) cells were cultured in minimal essential
139	medium (MEM) containing 5% newborn calf serum (NCS), vitamins, essential amino acids,
140	and antibiotics. MDCK cells expressing the PB2 protein of A/Puerto Rico/8/34 (H1N1, PR8)
141	were cultured in the same medium as MDCK cells with blasticidin supplementation. A549
142	human lung adenocarcinoma epithelial cells were cultured in Ham's F-12K (Kaighn's)
143	medium containing 10% fetal bovine serum (FBS) and antibiotics. Human embryonic kidney
144	293T cells and DF-1 chicken-embryo fibroblast cells were grown in Dulbecco's modified

145	Eagle medium (DMEM) containing 10% FBS and antibiotics. MDCK, A549, and 293T cells
146	were incubated at 37°C with 5% CO ₂ . DF-1 cells were incubated at 39°C, with 5% CO ₂ .
147	Normal human bronchial epithelial (NHBE) cells (Lonza, Walkersville, MD) were cultured
148	and differentiated in an air-liquid interface system [25, 26]. Briefly, the apical surface of the
149	cells was exposed to a humidified 95% air/5% $\rm CO_2$ environment, and the basolateral medium
150	was changed every two days.
151	
152	Sample collection and virus isolation
153	Tracheal, cloacal, nasal, or fecal swab samples were collected from poultry and
154	swine in various locations in Indonesia from 2010 through 2016 (Table 2). The collected
155	samples were inoculated into 10-day-old embryonated eggs, and the allantoic fluid was tested
156	for hemagglutination using chicken red blood cells. Hemagglutination-positive allantoic fluid
157	underwent reverse transcription PCR (RT-PCR) and direct sequencing. Sequence-confirmed
158	H5N1 samples were stored at -80° C.
159	
160	
161	

163	Viral RNA was extracted from allantoic fluid of embryonated chicken eggs by
164	using the QIAamp viral RNA minikit (Qiagen, Hilden, Germany). Extracted RNA was
165	reverse-transcribed with Superscript III (Invitrogen, Carlsbad, CA) and universal primers
166	specific for influenza A virus genes to generate cDNA. The resulting products were PCR-
167	amplified by using Phusion High-Fidelity DNA polymerase (New England BioLabs, Ipswich,
168	MA) with specific primers for each virus gene and cloned into the viral expression plasmid
169	pHH21 [27]. Mutations in the PB2 and NA genes were generated by PCR amplification of the

162 Isolation of viral RNA, RT-PCR, and generation of viruses by reverse genetics

171 listed in Table 1. All constructs were sequenced to ensure the absence of unwanted mutations.

respective construct with primers possessing the desired mutations. Primer sequences are

172 All avian, reassortant, and mutant viruses were generated in 293T cells by use of plasmid-

173 based reverse genetics, as described previously[27]. The supernatant of transfected 293T cells

174 was collected after an incubation time of less than 24 hours in order to avoid the emergence of

175 mammalian-adaptive mutations, and the supernatant was inoculated into nine- or ten-day-old

- 176 embryonated chicken eggs. After an incubation of up to 48 hours, the allantoic fluid of the
- 177 inoculated eggs was harvested and stored at -80°C. The virus titers were determined by using

178 plaque assays in MDCK, A549, and DF-1 cells, respectively.

179 Table 1. List of primers

Primer	Sequence	Description
A-u12g	5'-AGCGAAAGCAGG-3'	RT-PCR
uniPB2-1	5'-AGCGAAAGCAGGTC-3'	RT-PCR
uniPB2-2341R	5'-AGTAGAAACAAGGTCGTTT-3'	RT-PCR
uniPB1-1	5'-AGCGAAAGCAGGCA-3'	RT-PCR
uniPB1-2341R	5'-AGTAGAAACAAGGCATTT-3'	RT-PCR
uniPA-1	5'-AGCGAAAGCAGGTAC-3'	RT-PCR
uniPA-2233R	5'-AGTAGAAACAAGGTACTT-3'	RT-PCR
uniHA-1	5'-AGCAAAAGCAGGGG-3'	RT-PCR
H5-u12+20F	5'-AGCAAAAGCAGGGGTTCAATCTGTCAAAATGG-3'	RT-PCR
H5-u13+20R	5'-AGTAGAAACAAGGGIGIIIITAACTACAATCIG-3'	RT-PCR
UNINP-1		RT-PCR
UNINP-1565R		RT-PCR
UNINA-1 uniNA-1412D		RI-PCR
unina-1413K		RI-PCR
unim-1027P	5-AGCGAAAGCAGGTAG-5	RT-PCR PT PCP
WSNM-1F	5-AGCAAAAGCAAGGTAGATATTGAAAGATGAG.?'	RT-PCR
WSNM-1027R	5'-AGTAGAAACAAGGTAGTTTTTTACTCCAGC-3'	RT-PCR
uniNS-1	5'-AGCGAAAGCAGGGTG-3'	RT-PCR
uniNS-890R	5'-AGTAGAAACAAGGGTGTTTT-3'	RT-PCR
Bm-HA-1	5'-TATTCGTCTCAGGGAGCAAAAGCAGGGG-3'	pHH21 cloning
Bm-HA-u12+9F	5'-TATTCGTCTCAGGGAGCAAAAGCAGGGGTTCAATCTG-3'	pHH21 cloning
Bm-HA-u13+5R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTTTTAACT-3'	pHH21 cloning
Bm-NA-1	5'-TATTCGTCTCAGGGAGCAAAAGCAGGAGT-3'	pHH21 cloning
Bm-NA-u12+2F	5'-TATTCGTCTCAGGGAGCAAAAGCAGGAGTTC-3'	pHH21 cloning
Bm-NA-1413R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGAGTTTTTT-3'	pHH21 cloning
Bm-NA-u13+5R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGAGTTTTTTGAACA-3'	pHH21 cloning
Bm-PB2-1	5'-TATTCGTCTCAGGGAGCGAAAGCAGGTC-3'	pHH21 cloning
Bm-PB2-u12+9F	5'-TATTCGTCTCAGGGAGCGAAAGCAGGTCAAATATATT-3'	pHH21 cloning
Bm-PB2-2341R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGTCGTTT-3'	pHH21 cloning
Bm-PB2-u13+6R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGTCGTTTTTAAAC-3'	pHH21 cloning
Bm-PB1-1	5'-TATTCGTCTCAGGGAGCGAAAGCAGGCA-3'	pHH21 cloning
Bm-PB1-2341R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGCATTT-3'	pHH21 cloning
Bm-PA-1	5'-TATTCGTCTCAGGGAGCGAAAGCAGGTAC-3'	pHH21 cloning
Bm-PA-2233R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGTACTT-3'	pHH21 cloning
Ba-NP-1	5'-TATTGGTCTCAGGGAGCAAAAGCAGGGTA-3'	pHH21 cloning
Ba-NP-u12+15F	5'-TATTGGTCTCAGGGAGCAAAAGCAGGGTAGATAATCACTCAC	pHH21 cloning
Ba-NP-1565R		pHH21 cloning
Ba-NP-u13+1R		pHH21 cloning
BM-W-1 Bm M u12+25		pHH21 cloning
DIII-IVI-U 1272F		pHH21 cioning
BIII-W-1027K Bm-M-u12±2D	5-ATATCGTCTCGTATTAGTAGAAACAAGGTAGTTTTTAC.2'	pHH21 cloning
Bm-NS-1	5'TATTCGTCTCAGGGAGCAAAAGCAGGGTG.3'	pHH21 cloping
Bm-NS-890R	5'-ATATCGTCTCGTATTAGTAGAAACAAGGGTGTTTT-3'	pHH21 cloning
PB2-Clal-F-1	5'-ACAATCGATGCCGCCACCATGGAGAGAATAAAAGAA-3'	nCAGGS cloning
PB2-Clal-F-2	5'-ACAATCGATGCCGCCACCATGGAACGAATAAAAGAA-3'	pCAGGS cloning
PB2-Clal-F-4	5'-ACAATCGATGCCGCCACCATGGAGAGAATAAAAGAATTAAG-3'	pCAGGS cloning
PB2-Sph-F-1	5'-ACAGCATGCGCCGCCACCATGGAGAGAATAAAAGAAC-3'	pCAGGS cloning
PB2-Nhel-R-1	5'-ACAGCTAGCCTAATTGATGGCCATCCGAATT-3'	pCAGGS cloning
PB2-Nhel-R-3	5'-ACAGCTAGCCTAATTGGTGGCCATCCGAATTCTTTTGGTCGC-3'	pCAGGS cloning
PB2-Nhel-R-4	5'-ACAGCTAGCCTAATTGGTGGCCATCCGAATT-3'	pCAGGS cloning
PB1-Clal-F-1	5'-ACAATCGATGCCGCCACCATGGATGTCAATCCGACT-3'	pCAGGS cloning
PB1-Clal-F-8	5'-ACAATCGATGCCGCCACCATGGATGTCAATCCGACC-3'	pCAGGS cloning
PB1-Clal-F-9	5'-ACAATCGATGCCGCCACCATGGATGTCAACCCGACT-3'	pCAGGS cloning
PB1-Nhel-R-1	5'-ACAGCTAGCCTATTTTTGCCGTCTGAGCTCTT-3'	pCAGGS cloning
PB1-Nhel-R-5	5'-ACAGCTAGCCTATTTTTGCCGT-3'	pCAGGS cloning
PB1-Nhel-R-7	5'-ACAGCTAGCCTATTTTTGCCG-3'	pCAGGS cloning
PA-Clal-F-1	5'-ACAATCGATGCCGCCACCATGGAAGATTTTGTGCGACA-3'	pCAGGS cloning
PA-Clal-F-2	5'-AUAATUGATGCCGCCACCATGGAAGACTTTGTGCGACAAT-3'	pCAGGS cloning
PA-Clal-F-4	5'-AUAATCGATGCCGCCACCATGGAAGATTTTGTGCG-3'	pCAGGS cloning
PA-Clal-F-5	5'-ACAAICGATGCCGCCACCATGGAAGACTTTGTGCG-3'	pCAGGS cloning
PA-Sphi-F-1		pCAGGS cloning
PA-Nnei-R-1		pCAGGS cloning
PA-Nnel-R-2		pCAGGS cloning
PA-Nhol-R-6	5-ACAGCTAGCCCTATTTCAGTGCA-3'	pCAGGS cloning
T ATHINGTON		por ooo cioning

182 Table 1. List of primers (continued)

Primer	Sequence	Description
PA-SphI-R-1	5'-ACAGCATGCCTATTTCAGTGCA-3'	pCAGGS cloning
PA-Xhol-R-1	5'-ACACTCGAGCTATTTCAGTGCA-3'	pCAGGS cloning
NP-Clal-F-1	5'-ACAATCGATGCCGCCACCATGGCGTCTCAAGGCACCAAA-3'	pCAGGS cloning
NP-CIAI-F-Z		pCAGGS cloning
NP-Nnel-R-1		pCAGGS cloning
NP-Nnei-R-2 NP-Nhol-R-3	5-ACAGCTAGCTTAATTGTCATATTCCTCTCCCATTGTCTC-3	pCAGGS cloning
11T521-11T541-HA-I PAI-F	5-CTCAGAAATAGCCCTCAAAGAGAAACGAGAGGACTATTTGGAGC-3'	HA mutagenesis nHH21
UT521-UT541-HA-LPAI-R	5'-CCAAATAGTCCTCTCGTTTCTCTTTGAGGGCTATTTCTGAGCCC-3'	HA mutagenesis pHH21
UT14-HA-LPAI-F	5'-CACACACGTCTCTGGTCTATTTGGAGCTATAGCAGG-3'	HA mutagenesis pHH21
UT14-HA-LPAI-R	5'-CACACACGTCTCTGGACTGTTTGGAGCTATAGCAGG-3'	HA mutagenesis pHH21
UT17-HA-LPAI-F	5'-CACACACGTCTCTGTCCTCTAGTCTCTCTTTGAGGGGGCTATTTCTGAGCCCTGTCGC-3'	HA mutagenesis pHH21
UT17-HA-LPAI-R	5'-CACACACGTCTCTGTCCTCTAGTCTCTCTTTGAGGACTATTTCTGAGCCCAGTTGC-3'	HA mutagenesis pHH21
UT64-HA-LPAI-F	5'-CTCAGAAATAGTCCTCAAAGAGAGAGACAAGAGGACTGTTTGGAGC-3'	HA mutagenesis pHH21
UT64-HA-LPAI-R	5'-CAAACAGTCCTCTTGTCTCTCTTTGAGGACTATTTCTGAGCCCA-3'	HA mutagenesis pHH21
UT167-UT173-HA-LPAI-F		HA mutagenesis pHH21
U116/-U11/3-HA-LPAI-K		HA mutagenesis pHH21
NA-521-132L-F	5-GETTALAAATTGGGAACATAATCTCLTTATGGGTCAGTCAT-3 5-CCCTTTCTCAATTGAATGACTGACCCATAAGGAGATTATGT.3'	NA mutagenesis pHH21
NA-521-152L-R	5-00011010441044104010400041440040414101-5	NA mutagenesis pHH21
NA-521-N50S-R	5'-CTCAGTAAGAGGGTTTAGTATTGCTGATTGATTCAGCTTGGTGTT-3'	NA mutagenesis pHH21
NA-521-K53N-F	5'-TCAACACCAAGCTGAATCAATCAACAATACTAACCCTCTTAC-3'	NA mutagenesis pHH21
NA-521-K53N-R	5'-CTCAGTAAGAGGGTTAGTATTGTTGATTGATTCAGCTTGGTGTT-3'	NA mutagenesis pHH21
NA-521-T111I-F	5'-TCATGCTCCCACTTGGAATGCAGAATTTTCTTCTTAACTCAGGG-3'	NA mutagenesis pHH21
NA-521-T111I-R	5'-AAGGCTCCCTGAGTTAAGAAGAAAATTCTGCATTCCAAGTGGG-3'	NA mutagenesis pHH21
NA-521-L120M-F	5'-TCAGGGAGCCTTGATGAATGACAAGCACTCCAACGGAACTGTC-3'	NA mutagenesis pHH21
NA-521-L120M-R	5'-TTTGACAGTTCCGTTGGAGTGCTTGTCATTCATCAAGGC-3'	NA mutagenesis pHH21
NA-521-M143V-F	5'-GAACATTAATGAGTTGTCCTGTGGGTGA-3'	NA mutagenesis pHH21
NA-521-M143V-R	5'-AGCCTCACCCACAGGACAACTCATTAAT-3'	NA mutagenesis pHH21
NA-521-major01-F	5'-TCAATCAGCAATACTAACCCTCTTACTGAGAAAGCTGTGGCTTC-3'	NA mutagenesis pHH21
NA-521-major01-R		NA mutagenesis pHH21
NA-341-L32I-F		NA mutagenesis pHH21
NA-541-S50N-F	5-CCCTTCTOARTOARTOACTOACCOCRTATOACCATATO	NA mutagenesis pHH21
NA-541-S50N-R	5'-CTCAGTAAGAGGGTTAGTATTGTTGATTGATTGACTCAGCTTGGTGTT-3'	NA mutagenesis pHH21
NA-541-N53K-F	5'-TCAACACCAAGCTGAATCAATCAGCAATACTAAACCTCTTAC-3'	NA mutagenesis pHH21
NA-541-N53K-R	5'-CTCAGTAAGAGGTTTAGTATTGCTGATTGATTCAGCTTGGTGTT-3'	NA mutagenesis pHH21
NA-541-I111T-F	5'-TCATGCTCCCACTTGGAATGCAGAACTTTCTTCTTAACTCAGGG-3'	NA mutagenesis pHH21
NA-541-I111T-R	5'-AAGGCTCCCTGAGTTAAGAAGAAAGTTCTGCATTCCAAGTGGG-3'	NA mutagenesis pHH21
NA-541-M120L-F	5'-TCAGGGAGCCTTGCTGAATGACAAGCACTCCAACGGAACTGTC-3'	NA mutagenesis pHH21
NA-541-M120L-R	5'-TTTGACAGTTCCGTTGGAGTGCTTGTCATTCAGCAAGGC-3'	NA mutagenesis pHH21
NA-541-V143M-F	5'-GAACATTAATGAGTTGTCCTATGGGTGA-3'	NA mutagenesis pHH21
NA-541-V143M-R	5'-AGCCTCACCCATAGGACAACTCATTAAT-3'	NA mutagenesis pHH21
NA-chimera1-R		NA mutagenesis pHH21
NA-Chimeraz-F		NA mutagenesis pHH21
PD2-521-A109V-02-F	5-IAGGAAIGGGCCAACGACAAGIGCAGICCATTATCCAAAGGTTI-3	PB2 mutagenesis pHH21
PB2-521-A109V-02-K	5-GRAGACACAAATTGGTGGGACAAGAATGGTGGACATCCTTA-3'	PB2 mutagenesis pHH21
PB2-521-A292T-R	5'-GCCTAAGGATGTCCACCATTCTTGTCCCACCAATTTGTGTG-3'	PB2 mutagenesis pHH21
PB2-521-K369N-F	5'-GAGGAATTCACAATGGTTGGGCGGAATGCAACAGCT-3'	PB2 mutagenesis pHH21
PB2-521-K369N-R	5'-TTGCTTTCCTCAGGATAGCTGTTGCATTCCGCCCAA-3'	PB2 mutagenesis pHH21
PB2-521-L447Q-F	5'-CAAAAGTGCTATTTCAGAACTGGGGAATTGAACCCA-3'	PB2 mutagenesis pHH21
PB2-521-L447Q-R	5'-CAATTCCCCAGTTCTGAAATAGCACTTTTGCGTCCT-3'	PB2 mutagenesis pHH21
PB2-521-T758I-F	5'-ACAGCGACCAAAAGAATTCGGATGGCCATCAATTAGTGTCG-3'	PB2 mutagenesis pHH21
PB2-521-T758I-R	5'-AATTCGACACTAATTGATGGCCATCCGAATTCTTTTGGTCGC-3'	PB2 mutagenesis pHH21
PB2-541-V109A-F	5'-AATGGGCCAACGACAAGTGCAGCCCATTATCCAAAGGTTTAC-3'	PB2 mutagenesis pHH21
PB2-541-V109A-02-R	5-GTATGTTTGTAAACCTTTGGATAATGGGCTGCAC-3	PB2 mutagenesis pHH21
PB2-041-1292A-F	J-AGUAUAUAAATIGGIGGGGGAAGAAIGGIGGAUAICCIIA-3 5-cootaaccaatgtooaccaatgtottoocooaccaattotooo	PB2 mutagenesis pHH21
PB2-541-1252A-K	5-GAGGAATTCACAATGGTTGGGCGGAAGCCAACACCT.2'	PB2 mutagenesis pHH21
PB2-541-N369K-P	5-TTGCTTTCCTCAGGATAGCTGTTGCCTTCCGCCCAA.3'	PB2 mutagenesis nHH21
PB2-541-Q447L-F	5'-CAAAAGTGCTATTTCTGAACTGGGGAATTGAACCCA-3'	PB2 mutagenesis pHH21
PB2-541-Q447L-R	5'-CAATTCCCCAGTTCAGAAATAGCACTTTTGCGTCCT-3'	PB2 mutagenesis pHH21
PB2-541-I758T-F	5'-ACAGCGACCAAAAGAATTCGGATGGCCACCAATTAGTGTCG-3'	PB2 mutagenesis pHH21
PB2-541-I758T-R	5'-AATTCGACACTAATTGGTGGCCATCCGAATTCTTTTGGTCGC-3'	PB2 mutagenesis pHH21
PB2-chimera1-R	5'-CTTCCTCTTCCTTCGTGACGG-3'	PB2 mutagenesis pHH21
PB2-chimera2-F	5'-CAAAAGAACAAGTGGATCATCCGTC-3'	PB2 mutagenesis pHH21

184 Primers used for RT-PCR, pHH21 cloning, pCAGGS cloning, and introduction of amino acid

185 mutations are listed above.

186 Viral replication assay

187	Triplicate wells of confluent A549 cells or DF-1 cells were infected with viruses at
188	a multiplicity of infection (MOI) of 0.0002, and incubated for 1 hour. The infected virus loads
189	were calculated by using virus titers measured in the respective A549 cells and DF-1 cells.
190	The incubation temperature was set to 33° C or 37° C for A549 cells (temperatures of the
191	human lower and upper respiratory tract), and to 39° C for DF-1 cells (body temperature of
192	birds). After the 1-hour-incubation, A549 cells were further incubated in F-12K containing
193	0.3% bovine serum albumin (BSA) at 33°C or 37°C. DF-1 cells were further incubated in
194	DMEM containing 0.3% BSA at 39°C. Supernatant was harvested at 24-hour-intervals, and
195	frozen at -80°C. Virus titers in the collected supernatant at each time point were determined
196	by use of plaque assays in MDCK cells; 6- (1-tosylamido-2-phenyl) ethyl chloromethyl
197	ketone (TPCK)-treated trypsin was added for replication efficiency analysis and plaque assays
198	of reassortant virus strains possessing the HA segment of PR8 or a monobasic cleavage site.
199	
200	Mouse experiments
201	Six-week-old, female, specific-pathogen-free (SPF) BALB/c mice (SLC, Japan)
202	were used for mouse experiments. To analyze the pathogenicity of H5N1 viruses isolated

203	during surveillance activities, four to five mice/group were anesthetized with isoflurane and
204	intranasally inoculated with 1×10^3 plaque-forming units (PFU) of virus in a 50- μ l volume,
205	using virus titers measured in MDCK cells. The mice were monitored daily for clinical signs
206	of infection and changes in body weight and mortality for 12 days. To determine the dose
207	lethal to 50% of mice (MLD ₅₀), four or five mice/group were intranasally inoculated with 10^{1}
208	to 10 ⁶ PFU of virus in a 50- μ l volume. The mice were monitored and checked for changes in
209	body weight and mortality for 14 days post-infection. MLD_{50} values were calculated by using
210	the method of Reed & Muench [28]. For virus replication in mouse organs, groups of mice
211	(six mice/group) were intranasally infected with $1x10^3$ PFU of virus in a 50- μ l volume. Three
212	mice in each group were euthanized on days three and six post-infection, respectively. Organs
213	(brain, liver, kidney, spleen, colon, heart, trachea, lungs, and nasal turbinate) were collected,
214	and their virus titers were measured by use of plaque assays in MDCK cells.
215	
216	Mini-replicon assay
217	A549 cells and DF-1 cells were transfected with 0.1 μ g each of the pCAGGS
218	constructs encoding the polymerase proteins PB1, PA, nucleoprotein (NP) and wild-type or
219	mutant PB2, together with 0.1 μ g each of the pHH21 constructs encoding firefly luciferase

220	and Renilla luciferase as an internal control [29, 30]. The transfected A549 cells were
221	incubated either at 33 $^{\circ}$ C for 48 hours, or at 37 $^{\circ}$ C for 24 hours, respectively. The transfected
222	DF-1 cells were incubated at 39° C for 24 hours. After incubation, the cells were lysed and the
223	luciferase activity was determined by using the dual-luciferase system detector kit (Promega,
224	Madison, WI). The luciferase activity values were normalized to the Renilla activity.
225	
226	HA receptor binding assay
227	Virus binding to sialic acid receptors was analyzed using a solid-phase binding
228	assay with the Octet RED instrument from ForteBio (Menlo Park, CA, USA), as previously
229	described [31, 32]. The receptor analogs used were N-acetylneuraminic acid linked to
230	galactose by either an α 2,3-linkage (Neu5Ac(alpha2-3)LacNAc-PGA-Biotin) or an α 2,6-
231	linkage (Neu5Ac(alpha2-6)LacNAc-PGA-Biotin) (Tokyo Chemical Industry, Tokyo, Japan),
232	and they were loaded onto streptavidin biosensors. Replication-incompetent PB2-knockout
233	virus strains possessing the PR8 strain backbone with the HA and NA segments of the target
234	virus strains were generated by using reverse genetics. The HA cleavage site of the target
235	HPAI H5N1 virus strains was transformed from polybasic into monobasic so that the receptor
236	binding assay could be conducted in the BSL2 facility. The generated virus strains were

237	propagated in MDCK cells expressing the PB2 protein of PR8. Generated viruses were
238	concentrated by ultracentrifugation at 28000 rotations per minute (rpm) for 2 hours using a
239	25% sucrose cushion, and 5 μ g of concentrated virus was used for each receptor binding
240	assay. A/Vietnam/1203/2004 (H5N1) bound to Sia α 2,3Gal (pink), and
241	A/Kawasaki/173/2001 (H1N1) bound to Sia α 2,6Gal served as controls. An analyzed virus
242	strain that was not loaded with glycoprotein served as a baseline.
243	
244	Immunofluorescence assay
245	After viral infection or plasmid transfection, A549 cells were fixed with 4%
246	paraformaldehyde and then permeabilized with 0.2% Triton X-100 [33]. After blocking,
247	antigens were probed with mouse anti-WSN NP 3/1 monoclonal antibody, mouse anti-Aichi
248	NP 2S 347/4 monoclonal antibody, or mouse anti-PB2-18/1 monoclonal antibody, followed
249	by Alexa Fluor 488 anti-mouse IgG (Life Technologies, Carlsbad, CA, United States). Nuclei
250	were stained with Hoechst 33342 (Life Technologies, Carlsbad, CA, United States). The cells
251	were then imaged by using a laser-scanning microscope (LSM780 system, Carl Zeiss) and
252	analyzed with Zen software (Carl Zeiss).
253	

254 Chapter 1: Epidemiological surveillance and characterization of highly pathogenic 255 H5N1 avian influenza viruses isolated in Indonesia between 2010 and 2016 256 257 Introduction 258 HPAI H5N1 viruses have been circulating in poultry in Indonesia since 2003 [34-259 36]. Poultry production in Indonesia is diverse, ranging from backyard poultry farms to large 260 industrial integrated poultry farms. Uncontrolled movement of live poultry and poor 261 biosecurity practices, including trades in live bird markets, continue to be a problem, and the 262 surveillance system for HPAI is still not well organized [37]. Despite the Indonesian 263 government's attempt to eradicate H5N1 viruses through culling of infected chickens and 264 poultry vaccination, HPAI H5N1 viruses are still widely circulating in Indonesia [34, 35, 38, 265 39]. Along with the enzootic state among poultry, 200 human H5N1 cases in Indonesia, 266 including 168 lethal cases, have been reported to the WHO as of September, 2018 (Fig. 3) 267 [23]. The latest human H5N1 case in Indonesia was reported in September, 2017, which 268 resulted in a fatal outcome [40]. HPAI H5N1 viruses in Indonesia thus pose a clear and 269 present threat to humans.

Indonesian Human H5N1 cases Human H5N1 cases in the world

- 272 Figure 3. Human H5N1 cases in Indonesia
- 273 Human H5N1 cases reported to the WHO are shown. The red bar indicates human H5N1
- 274 cases detected in Indonesia, and the grey bar shows the number of human H5N1 cases
- 275 worldwide. The numbers in the figure are the numbers of Indonesian human cases reported
- each year. The data are from a WHO report released on September 21, 2018 [23].

286	Various molecular changes have been identified that facilitate avian influenza virus
287	infection of humans. Three influenza virus proteins—PB2, HA, and non-structural protein
288	(NS1)—are recognized as major determinants of virulence, pathogenicity, and host range
289	restriction [10, 41, 42].
290	The HA protein mediates virus attachment and the fusion of the viral and
291	endosomal membranes [1]. The receptor-binding specificity of the HA protein plays an
292	important role in host range restriction. In general, avian influenza viruses bind preferentially
293	to sialic acid linked to galactose by an α 2,3-linkage (Sia α 2,3Gal), whereas human
294	influenza viruses have higher affinity for Sia α 2,6Gal [43-45]. Acquisition of Sia α 2,6Gal
295	recognition capability is thought to be essential for avian influenza viruses to possess
296	pandemic potential and transmit readily among humans [46, 47].
297	The PB2 protein is a component of the viral polymerase complex along with PB1,
298	PA, and NP. Among many amino acid mutations, PB2-627, PB2-701, and PB2-591 are
299	recognized as major determinants of pathogenicity and host range restriction [48-50].
300	Despite the current circulation of HPAI H5N1 viruses among poultry in Indonesia
301	and human H5N1 cases being continuously reported until 2017, there are few epidemiological
302	reports on Indonesian HPAI H5N1 viruses. As of October, 2018, the latest efforts to

303	molecularly characterize circulating viruses were conducted on HPAI H5N1 viruses isolated
304	in 2012 and 2013 [51, 52]. Little is known about the recent Indonesian HPAI H5N1 viruses,
305	including their potential to become endemic or cause global pandemics.
306	With the aim to elucidate the current situation with respect to HPAI H5N1 virus
307	circulation in Indonesia, our lab conducted epidemiological surveillance of poultry and swine
308	in Indonesia from 2010 through 2016. We isolated HPAI H5N1 viruses from collected
309	samples and characterized them, including assessing their human epidemic and pandemic
310	potential.
311	
312	
313	
314	
315	
316	
317	
318	
319	

Results

321 Isolation of HPAI H5N1 viruses

322	From 2010 through 2016, we conducted epizoologic surveillance of HPAI viruses
323	of the H5N1 subtype among poultry and swine in Indonesia. From the 2,534 samples
324	collected, 39 HPAI H5N1 virus strains were isolated utilizing embryonated chicken eggs
325	(Table 2, Fig. 4). More than 50% of the samples were collected in East Java. To elucidate the
326	current situation regarding HPAI H5N1 virus circulation in Indonesia, we characterized 39 of
327	these HPAI H5N1 virus strains.
328	
329	
330	
331	
332	
333	
334	
335	
336	

	Year														
		2010		2011		2012		2013		2014		2015		2016	
		No. of	(H5N1												
		swabs	positive)												
		503	(11)	147	(0)	411	(5)	56	(4)	854	(6)	124	(1)	439	(12)
	Total	233	(11)	95	(0)	4	(0)	40	(4)	615	(4)	82	(1)	372	(8)
	East Java	54	(1)	0	(0)	4	(0)	40	(4)	341	(4)	82	1	332	(8)
(en	Central Java	6	(1)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	40	(0)
<u>i</u>	West Java	38	(2)	85	(0)	0	(0)	0	(0)	83	(0)	0	(0)	0	(0)
ට	Kalimantan	34	(5)	0	(0)	0	(0)	0	(0)	191	(0)	0	(0)	0	(0)
	Sulawessi	40	(1)	10	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sumatra	61	(1)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Total	9	(0)	50	(0)	2	(2)	12	(0)	214	(2)	27	(0)	55	(4)
	East Java	0	(0)	4	(0)	2	(2)	12	(0)	168	(1)	27	(0)	53	(4)
×	Central Java	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	2	(0)
) n	West Java	0	(0)	40	(0)	0	(0)	0	(0)	25	(0)	0	(0)	0	(0)
	Kalimantan	0	(0)	0	(0)	0	(0)	0	(0)	21	(1)	0	(0)	0	(0)
	Sulawessi	9	(0)	6	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sumatra	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Total	0	(0)	1	(0)	3	(3)	4	(0)	0	(0)	0	(0)	0	(0)
	East Java	0	(0)	0	(0)	5	(5)	4	(0)	0	(0)	0	(0)	0	(0)
=	Central Java	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
Sua	West Java	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Kalimantan	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sulawessi	0	(0)	1	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sumatra	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Total	0	(0)	1	(0)	0	(0)	0	(0)	25	(0)	15	(0)	12	(0)
ns	East Java	0	(0)	0	(0)	0	(0)	0	(0)	24	(0)	1	(0)	6	(0)
via	Central Java	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	6	(0)
A	West Java	0	(0)	1	(0)	0	(0)	0	(0)	1	(0)	14	(0)	0	(0)
ţ	Kalimantan	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
ō	Sulawessi	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sumatra	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Total	261	(0)	0	(0)	400	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	East Java	201	(0)	0	(0)	190	(0)	0	(0)	0	(0)	0	(0)	0	(0)
e	Central Java	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
, Mil	West Java	36	(0)	31	(0)	210	(0)	0	(0)	0	(0)	0	(0)	0	(0)
Ś	Kalimantan	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sulawessi	0	(0)	91	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)
	Sumatra	24	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)

337 Table 2. Collected field samples and HPAI H5N1 virus strains isolated from them

340 collected, as well as the HPAI H5N1 virus strains isolated from those samples.

362 Phylogenetic analysis of the HA and PB2 genes

363	The nucleotide sequences of the eight segments of the isolated HPAI H5N1 virus
364	strains were analyzed by using the Sanger sequencing. To investigate the evolution of HPAI
365	H5N1 viruses in Indonesia between 2010 and 2016, phylogenetic trees of the eight viral
366	segments' genes of the 39 strains from our surveillance were constructed by using the
367	Neighbor-Joining method and MEGA 7 (Fig. 5A-H) [53-57]. Phylogenetic analysis of the
368	HA genes revealed that the 39 H5N1 virus strains were classified into two subclades, clade
369	2.1.3 and clade 2.3.2.1d (Fig. 5A) [58, 59]. Clade 2.1.3 virus strains had been circulating in
370	Indonesia since 2003 [34, 35], and 16 H5N1 virus strains from our surveillance, which were
371	isolated between 2010 and 2013, belonged to clade 2.1.3. The remaining 23 H5N1 virus
372	strains were classified into clade 2.3.2.1d [59], which has been circulating in Indonesia since
373	2012 [51]. In our surveillance, after 2014, all H5N1 virus strains belonged to clade 2.3.2.1d,
374	and no H5N1 virus strain belonging to clade 2.1.3 was identified.
375	Phylogenetic analysis of the NA, PB1, PA, NP, M, and NS genes revealed the same
376	pattern as that observed with HA; the isolated H5N1 virus strains being classified into two
377	subgroups corresponding to either clade 2.1.3 or clade 2.3.2.1d (Fig5. B, D-H).

378	Phylogenetic analysis of the PB2 genes of our 35 H5N1 virus strains revealed the
379	formation of three distinct sub-clusters (Fig. 5C). One sub-cluster comprised clade 2.1.3
380	strains, and the other two sub-clusters contained clade 2.3.2.1d strains. One sub-cluster of the
381	clade 2.3.2.1d strains included strains isolated between 2013 and 2016, whereas the other
382	clade 2.3.2.1d sub-cluster consisted of six strains of clade 2.3.2.1d virus collected at the same
383	live bird market on the same day in March, 2016. NCBI nucleotide BLAST analysis revealed
384	that these six strains' PB2 genes were 99% identical to another three Indonesian H5N1
385	viruses isolated in 2016: A/chicken/Lamongan/04160418/2016,
386	A/chicken/Sukoharjo/04160454/2016, and A/chicken/Pati/04160433/2016. The BLAST
387	analysis also revealed that these six strains' PB2 genes were 93%-94% identical to the PB2
388	genes of the following non-H5N1 viruses: A/duck/Mongolia/47/2001 (H7N1),
389	A/duck/Shimane/188/1999 (H1N1), A/mallard/Jiangxi/7376/2003 (H6N2),
390	A/duck/Malaysia/F118-08-04/2004 (H5N2), and A/environment/Korea/W152/2006 (H7N7).
391	In the phylogenetic tree of PB2 genes, three clade 2.3.2.1d Indonesian HPAI H5N1 strains
392	with PB2 reassortment already listed above (A/chicken/Pati/04160433/2016,
393	A/chicken/Sukoharjo/04160454/2016, and A/chicken/Lamongan/04160418/2016) were
394	located in the vicinity of these six strains.

395	In addition to the 39 isolated H5N1 strains, there were several reassortant
396	Indonesian H5N1 viruses reported in the databases. Three clade 2.1.3 strains (A/muscovy
397	duck/East Java/SB29/2012, A/muscovy duck East Java/LM47/2012, and A/chicken/East
398	Java/BP21/2012) possessed reassortant PB2, PB1, and NS segments, as previously reported
399	[52]. Phylogenetic analysis also revealed that reassortment between clade 2.1.3 and clade
400	2.3.2.1d had already occurred in Indonesia in 2016, which, to our knowledge, has not been
401	reported. Two clade 2.3.2.1d strains isolated in 2016, A/chicken/Kuningan/08160178-
402	003/2016 and A/chicken/Majalengka/08160070-001/2016, possessed PB1, PA, NP, HA, and
403	NA segments belonging to clade 2.3.2.1d, but their PB2, M, and NS segments belonged to
404	clade 2.1.3.
405	These findings suggest that reassortment of viral segments has sporadically
406	occurred among both clade 2.1.3 and clade 2.3.2.1d H5N1 virus strains in Indonesia since at
407	least 2012 [52].
408	
409	
410	
411	

0.010

Clade 2.3.2.1d

Clade 2.1.3

Clade 2.1.3

425 Phylogenetic trees of the HA (A), 426 (H) gappa of Indonesian H5N1 vir	NA (B), PB2 (C), PB1 (D), PA (E), NP (F), M (G), and NS
126 (U) gapag of Indonasian USN1 vin	
τ ² υ (Π) genes of indonesian Π3Ν1 Vir	us strains were constructed by using the Neighbor-Joining
427 method and MEGA 7. The trees w	rere rooted to A/goose/Guangdong/1/1996. Virus strains
428 colored in yellow indicate strains i	isolated during our surveillance activities between 2010 and
429 2016.	
430	
431	
432	
433	
434	
435	
436	
437	
438	
440	
441	
442	
443	

444 Replication efficiency in cultured cells

445	To assess the replicative ability of the isolated viruses in human respiratory cells,
446	we compared the growth properties of 24 HPAI H5N1 viruses at an MOI of 0.0002 in A549
447	cells incubated at either 33 $^{\circ}$ C or 37 $^{\circ}$ C. The replication efficiency of the clade 2.1.3 viruses
448	differed among the strains (Fig. 6A, C). In contrast, clade 2.3.2.1d strains grew to a moderate
449	degree without significant differences in replication efficiency among the strains (Fig. 6B, D).
450	All 23 viruses replicated well in DF-1 cells incubated at 39°C (Figure 7A–C).
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	

464 Figure 6. Virus growth in A549 cells incubated at 33℃ and 37℃

A549 cells were infected with clade 2.1.3 and clade 2.3.2.1d strains at an MOI of 0.0002 and
then incubated at either 33°C or 37°C for 96 hours. The growth of clade 2.1.3 strains at 33°C

467 (A) and 37°C (C), and the growth of clade 2.3.2.1d strains at 33°C (B) and 37°C (D) are

- 468 shown. The data presented are the mean \pm s.d. of triplicate experiments. The detection limit of
- **469** this experiment is $1 \log_{10}$ PFU/ml.

473 Figure 7. Virus growth in DF-1 cells at 39°C

474 Viral growth in DF-1 cells was analyzed by infecting the cells with virus at an MOI of 0.0002

475 and then incubated them at 39° C for 96 hours. Three independent experiments were

476 conducted; shown is the growth property analysis of clade 2.1.3 and clade 2.3.2.1d strains

477 isolated between 2010 and 2015 (A), of clade 2.3.2.1d strains isolated in 2016 (B), and of

478 additional clade 2.1.3 strains isolated in 2010 (C). A/chicken/East Java/UT521/2010 was

479 included as a reference strain, which showed similar growth properties in all three

480 experiments. The data presented are the mean \pm s.d. of triplicate experiments. The detection

```
481 limit of this experiment is 1 \log_{10} PFU/ml.
```

- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490

491	We also analyzed the replicative ability of H5N1 viruses in normal human
492	bronchial epithelial (NHBE) cells (Figure 8A, B). Monolayers of NHBE cells were cultured
493	and differentiated at the air-liquid interface, and then infected with three H5N1 virus strains,
494	A/chicken/South Kalimantan/UT521/2010 (clade 2.1.3), A/chicken/East
495	Kalimantan/UT498/2010 (clade 2.1.3), and A/chicken/East Java/UT376/2014 (clade 2.3.2.1d)
496	at a viral concentration of 1000 PFU/well. A/California/04/2009 (H1N1 pdm09) virus was
497	also used as a representative human influenza virus. A/California/04/2009 replicated
498	efficiently in NHBE cells incubated at both 33° C and 37° C. In contrast, the three H5N1
499	viruses showed inferior replicative efficiency in NHBE cells compared to
500	A/California/04/2009, especially when incubated at 33°C. There was no significant difference
501	in viral replication efficiency between A/chicken/South Kalimantan/UT521/2010 and
502	A/chicken/East Java/UT376/2014. A/chicken/East Kalimantan/UT498/2010 replicated
503	similarly to A/chicken/South Kalimantan/UT521/2010 and A/chicken/East Java/UT376/2014
504	at 37°C, but little viral replication was observed at 33°C.
505	
506	

509 Figure 8. Virus growth in NHBE cells incubated at 33°C and 37°C

- 510 Differentiated NHBE cells were infected with A/chicken/East Kalimantan/UT498/2010 (clade
- 511 2.1.3), A/chicken/South Kalimantan/UT521/2010 (clade 2.1.3), A/chicken/East
- 512 Java/UT376/2014 (clade 2.3.2.1d), and A/California/04/2009 (H1N1 pdm09) at a viral
- 513 concentration of 1000 PFU/well, and then incubated at either 33° C (A) or 37° C (B) for 96
- bours. The data presented are the mean \pm s.d. of triplicate experiments. The detection limit of
- 515 this experiment is $1 \log_{10}$ PFU/ml.

516 Pathogenicity in BALB/c mice

517	To examine viral virulence in mammalian hosts, 6-week-old female BALB/c mice
518	were intranasally inoculated with H5N1 viruses at a concentration of 1×10^3 PFU, and body
519	weight changes and the mortality of the inoculated mice were recorded for 12 days (Fig. 9A-
520	D). The pathogenicity of the clade 2.1.3 viruses differed among the strains, and the mortality
521	rate of the BALB/c mice ranged from 0% to 75% (Fig. 9A, B). The clade 2.1.3 strains
522	possessing high replication efficiency in A549 cells (i.e., A/chicken/South
523	Kalimantan/UT521/2010 and A/quail/East Java/UALm01/2012) (Fig. 6A, B) also showed
524	high pathogenicity in BALB/c mice. In contrast, all clade 2.3.2.1d virus strains caused a
525	uniform decrease in body weight and a mortality rate of 100%, except for A/chicken/East
526	Java/UT167/2016 (Fig. 9C, D). A/chicken/East Java/UT167/2016 belonged to clade 2.3.2.1d,
527	but possessed a PB2 segment that is different from other clade 2.3.2.1d viruses (reassortant
528	PB2 segment from hereafter) and lacked the three PB2 mammalian-adaptive amino acids (i.e.,
529	PB2-147T-339T-588T) [60]. BALB/c mice infected with A/chicken/East Java/UT167/2016
530	showed little body weight change and their mortality rate was 25%.
531	

536 Figure 9. Pathogenicity in BALB/c mice

- 537 6-week-old female BALB/c mice were intranasally inoculated with 1×10^3 PFU/animal of
- 538 H5N1 virus strains, and their body weight change and survival rate were observed for 12
- 539 days. Body weight change (A) and survival rate (B) of mice infected with clade 2.1.3 viruses,
- 540 and body weight change (C) and survival rate (D) of mice infected with clade 2.3.2.1d viruses
- 541 are shown. The values for body weight change are the mean \pm s.d. of live BALB/c mice.

542	Mammalian-adaptive amino acid mutations in the PB2 protein of clade 2.3.2.1d strains
543	Sequence analysis of PB2 genes revealed that clade 2.3.2.1d strains possessed a set
544	of three amino acids known to increase virulence in mammalian hosts: PB2-147T, -339T, and
545	-588T [60]. These three PB2 amino acids, originally found in H5N1 strains from Viet Nam,
546	increase viral polymerase activity and replication efficiency in mammalian cells, and also
547	enhance pathogenicity in mice [60]. However, the corresponding amino acids of the six
548	strains (A/chicken/East Java/UT167/2016, A/chicken/East Java/UT167C/2016,
549	A/chicken/East Java/UT168/2016, A/chicken/East Java/UT170/2016, A/chicken/East
550	Java/UT173/2016, A/chicken/East Java/UT173C/2016) with a reassortant PB2 segment were
551	PB2-147I, 339K, and 588A. None of the isolated virus strains possessed the well known
552	mammalian-adaptive amino acid mutations PB2-591K, -627K, or -701N [48-50].
553	
554	Viral polymerase activity
555	Viral polymerase activity is an important determinant of viral pathogenicity and
556	host-range specificity. To assess the viral polymerase activity of the isolated H5N1 virus
557	strains, a mini-replicon assay in A549 cells and DF-1 cells was performed on seven H5N1
558	virus strains (three strains belonging to clade 2.1.3, and four strains to clade 2.3.2.1d).

559	A/Puerto Rico/8/34 (H1N1) (PR8) was also included in the analysis as a mammalian strain
560	(Fig. 10A-C). Among the analyzed virus strains including PR8, the difference in viral
561	polymerase activity in DF-1 cells incubated at 39° C was less than two fold. In A549 cells,
562	Indonesian H5N1 viruses possessed lower viral polymerase activity compared with that of
563	PR8, and this difference was more pronounced when the A549 cells were incubated at 33° C.
564	Clade 2.3.2.1d strains showed increased viral polymerase activity in A549 cells compared
565	with that of clade 2.1.3 strains, especially at 33°C. Among the clade 2.1.3 strains,
566	A/chicken/East Java/UT14/2013, isolated in 2013, possessed higher viral polymerase activity
567	in A549 cells than A/chicken/South Kalimantan/UT521/2010 or A/chicken/South
568	Sulawesi/UT541/2010. As to clade 2.3.2.1d strains, A/chicken/East Java/UT17/2013 and
569	A/chicken/East Java/UT64/2016 showed similar viral polymerase activity in A549 cells.
570	However, the clade 2.3.2.1d strains A/chicken/East Java/UT167/2016 and A/chicken/East
571	Java/UT173/2016, which have a reassortant PB2 segment, showed low viral polymerase
572	activity in A549 cells, similar to that of clade 2.1.3 strains.
573	
574	

577 Figure 10. Viral polymerase activity

- 579 encoding PB2, PB1, PA, NP, firefly luciferase, and Renilla luciferase. A549 cells were
- 580 incubated at 33°C for 48 hours (A), or at 37°C for 24 hours (B), and DF-1 cells were
- 581 incubated at 39°C for 24 hours (C); then, the mini-replicon assay was performed. The data
- 582 presented are the mean \pm s.d. of triplicate experiments.

⁵⁷⁸ A549 cells and DF-1 cells were transfected with 0.1 μ g each of the pCAGGS constructs

583	Amino acid mutations in the HA protein of clade 2.1.3 and clade 2.3.2.1d strains
584	Sequencing of the HA genes of the isolated viruses revealed multiple amino acid
585	mutations located around the receptor binding site. Among the clade 2.1.3 strains,
586	A/chicken/South Kalimantan/UT521/2010 and A/chicken/South Sulawesi/UT541/2010
587	possessed HA-137A and HA-193R, which are known to increase receptor binding affinity for
588	human-type sialic acid-linked galactose (Sia α 2,6Gal) [46, 61, 62]. A/chicken/South
589	Kalimantan/UT521/2010 and A/chicken/South Sulawesi/UT541/2010 also harbored unique
590	amino acid mutations (appearing in less than 40% of virus strains belonging to clade 2.1.3)
591	inside and around the receptor binding site (HA-144N, -187D, and -188A) (Fig. 11A). Clade
592	2.3.2.1d strains possessed the following previously reported mammalian-adaptive amino acid
593	mutations: HA-101N, -137A, -159N, -160A, and -193R [46, 61-64]. Clade 2.3.2.1d strains
594	also harbored unique amino acid mutations (appearing in less than 40% of virus strains
595	belonging to clade 2.3.2.1d) inside and around the receptor binding site (HA-120R, 145P, -
596	193K, and -222R) (Fig. 11B). Clade 2.3.2.1d strains have lost the glycosylation site at HA-
597	158, which is also known to increase human-type receptor binding affinity [46, 62, 65].
598	
500	

603	Figure 11. Characteristic amino acids around the HA receptor binding site on the
604	structural model of HA trimer
605	A structural model of the HA trimer was created by PyMOL using protein data obtained from
606	the Protein Data Bank (ID: 4KTH) [66]. Among amino acids of isolated Indonesian H5N1
607	viruses belonging to clade 2.1.3 (A) or clade 2.3.2.1d (B), the previously reported
608	mammalian-adaptive amino acids are colored in red, while unique amino acids are colored in
609	yellow. The amino acid HA-101N was located on the surface of internal side of HA trimer on
610	the model, thus was not shown in the figure. All the amino acids' positions are described in
611	H3 numbering.
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	

625 HA receptor binding assay

626	To evaluate the receptor binding properties of the HA of recent Indonesian H5N1
627	virus strains, I performed a receptor binding assay on seven H5N1 virus strains - three clade
628	2.1.3 strains (A/chicken/South Kalimantan/UT521/2010, A/chicken/South
629	Sulawesi/UT541/2010, and A/chicken/East Java/UT14/2013) and four clade 2.3.2.1d strains
630	(A/chicken/East Java/UT17/2013, A/chicken/East Java/UT64/2016, A/chicken/East
631	Java/UT167/2016, and A/chicken/East Java/UT173/2016). Despite amino acid mutations
632	around the HA receptor binding site, all seven Indonesian H5N1 virus strains recognized Sia
633	α 2,3Gal, but did not bind to Sia α 2,6Gal (Figure 12A-G).
634	

637 Figure 12. HA receptor binding assay

- 638 The binding of each virus strain to Sia α 2,3Gal (red) or Sia α 2,6Gal(blue) was analyzed.
- Analyzed virus strains are as follows: A/chicken/South Kalimantan/UT521/2010 (UT521)
- 640 (A), A/chicken/South Sulawesi/UT541/2010 (UT541) (B), A/chicken/East Java/UT14/2013
- 641 (UT14) (C), A/chicken/East Java/UT17/2013 (UT17) (D), A/chicken/East Java/UT64/2016
- 642 (UT64) (E), A/chicken/East Java/UT167/2016 (UT167) (F), and A/chicken/East
- 643 Java/UT173/2016 (UT173) (G). A/Vietnam/1203/2004 (VN1203) (H5N1) bound to Sia α
- 644 2,3Gal (pink), and A/Kawasaki/173/2001 (K173) (H1N1) bound to Sia α 2,6Gal (green)
- 645 served as controls. All virus strains bound to Sia α 2,3Gal, but did not bind to Sia α 2,6Gal.
- 646

647 Discussion

648	During our surveillance activities in Indonesia between 2010 and 2016, HPAI
649	H5N1 virus strains were constantly isolated from poultry and waterfowl. During this
650	timeframe, HPAI H5N1 virus strains were also listed on databases such as the influenza virus
651	research (IVR) and global initiative on sharing all influenza data (GISAID) databases.
652	Therefore, it can be stated that HPAI H5N1 viruses are constantly circulating in poultry and
653	waterfowl in Indonesia.
654	Clade 2.1.3 strains had been circulating in Indonesia since 2003 [34, 36, 38]. After
655	the emergence of clade 2.3.2.1d strains in 2012, both clade 2.1.3 and clade 2.3.2.1d strains
656	were isolated between 2012 and 2013, suggesting co-circulation of these two different H5N1
657	subclades in Indonesia during that period [51].
658	During our surveillance, only clade 2.3.2.1d virus strains were isolated after 2014.
659	As of October 29, 2018, the HA genes of 36 HPAI H5N1 virus strains, which were isolated
660	between 2014 and 2018, were listed on the IVR and GISAID databases. Of these 36 virus
661	strains, 31 were isolated from avian hosts, and five were isolated from humans. Among the 31
662	isolated from avian hosts, only two strains belong to clade 2.1.3; the latest clade 2.1.3 strain
663	was isolated in 2016, in Deliserdang, Northern Sumatra.

664	Clade 2.3.2.1d strains are suspected to have been introduced into Indonesia in 2012
665	via an unknown route [67]. In the phylogenetic tree of HA genes, Indonesian clade 2.3.2.1d
666	strains are located in close proximity to clade 2.3.2.1c strains isolated in Viet Nam between
667	2012 and 2017 (Fig. 5A). NCBI nucleotide BLAST analysis of clade 2.3.2.1d strains,
668	A/duck/East Java/UADM53/2012, and A/chicken/East Java/UT17/2013 revealed multiple
669	H5N1 strains isolated in Viet Nam in 2012 and 2013 with 99% identicality.
670	Our surveillance data and the databases possess sampling bias and, therefore,
671	cannot stand alone to make an assertive argument. That being said, the possibility exists that
672	clade 2.3.2.1d virus strains have become dominant among poultry in Indonesia since their
673	introduction to Indonesia in 2012. Our characterization analysis revealed no significant
674	difference in virus replication efficiency or in viral polymerase activity in DF-1 cells between
675	clade 2.1.3 strains and clade 2.3.2.1d strains. Our data thus cannot provide an explanation for
676	the suspected dominance of clade 2.3.2.1d strains over clade 2.1.3 strains in poultry.
677	The HA receptor binding assay showed that neither clade 2.1.3 nor clade 2.3.2.1d
678	Indonesian H5N1 viruses have acquired the ability to bind to α 2,6-linked
679	sialylglycopolymers, which is essential for efficient infection and transmission among
680	humans [44-46]. Human influenza virus strains are reported to preferentially bind to longer

681	α 2,6-linked sialylglycopolymers; however, only short unbranched sialylglycopolymers were
682	used in our HA receptor binding assay [68, 69]. Hence, we cannot exclude the possibility that
683	the HA of Indonesian H5N1 viruses has acquired some level of human-type receptor binding
684	capability. Our characterization analysis revealed that clade 2.3.2.1d strains possess high
685	pathogenicity in BALB/c mice, resulting in 100% mortality when inoculated at a viral
686	concentration of 1×10^3 PFU per animal. This high virulence likely resulted from the presence
687	of three PB2 amino acids (PB2-47T, -339T, and -588T), as previously reported [60]. The viral
688	polymerase activity of the clade 2.3.2.1d strains in A549 cells was also increased compared
689	with that of clade 2.1.3 strains. While the replication efficiency of clade 2.1.3 strains varied
690	among strains infecting A549 cells, clade 2.3.2.1d strains showed moderate replication
691	efficiency in these cells at both 33 $^\circ$ C and 37 $^\circ$ C, without significant differences among the
692	virus strains.
693	When discussing characterization differences between clade 2.1.3 and clade
694	2.3.2.1d strains, we are limited by sampling biases, especially with respect to the sampling
695	locations. The analyzed clade 2.1.3 strains were collected in various areas of Indonesia
696	between 2010 and 2013, mostly from chickens. In contrast, the analyzed clade 2.3.2.1d strains
697	were collected mostly in East Java between 2013 and 2016, and their hosts were either

698	chickens or ducks. Therefore, it is possible that the uniform viral characteristics, high
699	virulence in BALB/c mice, and moderate replication efficiency in A549 cells of the observed
700	clade 2.3.2.1d strains are limited to such strains circulating in East Java, and do not represent
701	clade 2.3.2.1d strains from other areas of Indonesia.
702	It is difficult to assess the infectivity and virulence of Indonesian H5N1 virus strains
703	in humans. Human H5N1 cases in Indonesia have been regularly reported to the WHO, but
704	the number of cases has drastically decreased since 2010; only five human cases have been
705	reported since 2014 (Fig. 3). Interestingly, among the five H5N1 virus strains isolated from
706	these human hosts, four strains belonged to clade 2.1.3, and only one strain, isolated in 2017,
707	belonged to clade 2.3.2.1d. In Viet Nam, where clade 2.3.2.1c strains are circulating, the last
708	human cases of H5N1 infection were reported in 2014.
709	Our analysis of the Indonesian clade 2.3.2.1d strains revealed that they possess
710	strong virulence in BALB/c mice and that their viral polymerase activity is higher in A549
711	cells than that of clade 2.1.3 strains. Clade 2.3.2.1d strains can replicate to a moderate degree
712	in A549 cells, but their replication efficiency was not superior to that of some clade 2.1.3
713	strains despite having higher polymerase activity in A549 cells. The dissociation between the
714	observed viral characteristics and the decrease in reported human H5N1 cases might be due to

715	the inability of clade 2.3.2.1d strains to efficiently infect human hosts. Another possibility is
716	that the clade 2.3.2.1d viruses establish subclinical or mild infections that are overlooked, and
717	the number of infected patients is actually underestimated [70-72].
718	During our surveillance, we detected HPAI H5N1 virus clade 2.3.2.1d strains with
719	reassortant PB2 segments of unknown origin. The identified reassortant virus strains did not
720	possess higher replication efficiency or pathogenicity in mammalian hosts compared to other
721	clade 2.3.2.1d strains currently circulating in Indonesia. However, the possibility of human-
722	adapted HPAI H5N1 virus strains emerging through reassortment remains. This risk warrants
723	the establishment of further surveillance of HPAI viruses in Indonesia.
724	According to reported epidemiological data, the number of human H5N1 infection
725	cases in Indonesia has remained low for the past five years, after the emergence of the clade
726	2.3.2.1d strains. The clade 2.3.2.1d strains, however, were revealed to possess moderate
727	replication capability in A549 cells, and their polymerase activity in A549 cells is high
728	compared to the previously dominant clade 2.1.3 strains. Moreover, clade 2.3.2.1d strains are
729	highly virulent in BALB/c mice. The possibility cannot be dismissed that Indonesian H5N1
730	virus strains might acquire efficient infectivity and transmissibility to humans through viral
731	reassortment and amino acid mutations. Continuation and reinforcement of HPAI surveillance

732	in Indonesia is crucial for prevention and early detection of such human-adapted HPAI H5N1
733	viruses.
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	

749	Chapter 2: Amino acid substitutions in the PB2 protein of an H5N1 avian influenza
750	virus enhance its replication efficiency and pathogenicity in mammalian hosts.
751	
752	Introduction
753	HPAI H5N1 viruses have been enzootic among poultry worldwide since 1996, and
754	860 human cases of HPAI H5N1 infection have been reported to the WHO as of October,
755	2018, with a high mortality rate [19, 22, 23]. However, so far, human HPAI H5N1 cases have
756	been limited to those with close contact with infected poultry, and it is suspected that efficient
757	human-to-human transmission of HPAI H5N1 has not yet taken place in nature. In order for
758	HPAI H5N1 viruses to overcome host range restriction and induce epidemics or global
759	pandemics, they need to acquire mammalian-adaptive qualities such as efficient infection and
760	replication in humans, human-to-human transmissibility, and evasion of human immune
761	responses to viral infection [2, 10].
762	Among the influenza A viral proteins, PB2 is considered a major determinant of
763	virulence, pathogenicity, and host range restriction [10]. The PB2 protein is an essential
764	component of the viral polymerase complex, together with the PB1, PA, and NP proteins.
765	Various mammalian-adaptive mutations of PB2 have been identified, including PB2-627K,

766	PB2-701N, and PB2-591K [48-50]. HPAI H5N1 virus strains possessing such mammalian-
767	adaptive PB2 segments are already circulating worldwide. For example, HPAI H5N1 clade
768	2.2.1 viruses currently circulating in Egypt typically possess PB2-627K [73-75]. HPAI H5N1
769	clade 2.3.2.1c viruses circulating in Viet Nam and clade 2.3.2.1d viruses currently circulating
770	in Indonesia possess three amino acids in PB2, namely PB2-47T, -339T, and -588T, which
771	together confer high viral polymerase activity and virulence in mammalian hosts [60].
772	Our characterization analysis of Indonesian HPAI H5N1 virus strains isolated
773	between 2010 and 2016 revealed two genetically closely related strains belonging to clade
774	2.1.3 with different replication efficiency and pathogenicity in mammalian hosts:
775	A/chicken/South Kalimantan/UT521/2010 (UT521) and A/chicken/South
776	Sulawesi/UT541/2010 (UT541) (Fig. 13). UT521 possessed high replication efficiency in
777	A549 cells and high pathogenicity in BALB/c mice (Fig. 6A, 6C, 9A, 9B). In contrast, UT541
778	possessed low replication efficiency and low pathogenicity. Sequencing analysis identified 36
779	different amino acids between UT521 and UT541 (Table 3). The amino acid sequences of the
780	Indonesian clade 2.1.3 strains listed in the IVR and GISAID databases were also analyzed.
781	Amino acids prevalent among more than 40% of Indonesian clade 2.1.3 strains were defined
782	as major amino acids, whereas amino acids, of which less than 10% of Indonesian clade 2.1.3

783	strains are possessed, were defined as unique amino acids. In Table 3, the unique amino acids
784	are colored in yellow. Our goal was to identify the viral factors responsible for the observed
785	differences in viral character between the two strains by using reassortant and mutant HPAI
786	H5N1 viruses.
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
799	

800 801 Figure 13. Phylogenetic tree of the HA genes of Indonesian H5N1 strains

The phylogenetic tree of the HA genes was constructed using the neighboring-joining method and MEGA 7. The tree was rooted to A/goose/Guangdong/1/96. UT521 (colored in red) and UT541 (colored in green), which both belong to clade 2.1.3, are located close together in the phylogenetic tree of the HA genes.

806

807

808

809

811 Table 3. Amino acids differences between UT521 and UT541

Vieue		HA							NA						NS1				NS2
VIIUS	86	129	140	214	373	511	528	32	50	53	111	120	143	53	126	188	207	210	36
A/chicken/SouthKalimantan/UT521/2010		L	N	Т	R	Т	Α	-	Ν	К	т	L	Μ	D	R	Q	F	S	K
A/chicken/SouthSulawesi/UT541/2010		S	S	A	κ	V	S	L	s	Ν	1	М	<	Ν	κ	R	L	Р	E
																		_	
Virus		PB2 PB1						PA						M2					
		292	369	447	758	117	331	339	294	396	535	602	20	31	58	90	95		
A/chicken/SouthKalimantan/UT521/2010	Α	A	ĸ	L	Т	Т	ĸ	V	A	D	Q	Α	I	S	Е	Υ	Е		
A/chicken/SouthSulawesi/UT541/2010	V	Т	N	0		Δ	E		р	Ν	н	v	т	G	G	н	Δ		

major amino acid unique amino acid

812

813 Nucleotide sequences were analyzed by direct sequencing. Thirty-six amino acids were

814 different between UT521 and UT541. Unique amino acids are colored in yellow in the table.

815 Both UT521 and UT541 possessed unique amino acid of PB2 at position 369, and the major

amino acid was arginine. All the amino acids' positions are described in H5 numbering.

817

818

819

820

821

822

Results

825	Generation by reverse genetics and characterization of A/chicken/South
826	Kalimantan/UT521/2010 and A/chicken/South Sulawesi/UT541/2010
827	UT521 and UT541 were generated by using reverse genetics [27]. RG1 indicates
828	the reverse genetics strain of UT521, and RG17 indicates the reverse genetics strain of
829	UT541. All virus strains with RG in the name were generated by means of reverse genetics.
830	To test whether there were any differences between the wild-type virus strains and the reverse
831	genetics-generated virus strains, their viral growth capability in A549 and DF-1 cells was
832	analyzed. There was no significant difference in replication efficiency between the wild-type
833	and reverse genetics-generated virus strains (Figure 14A-C). MLD ₅₀ values in BALB/c mice
834	were also determined; while both the wild-type and reverse genetics-generated strains of
835	UT541 had MLD ₅₀ values higher than 1x10 ⁶ PFU/animal, RG1, the reverse genetics-
836	generated strain of UT521, had an MLD ₅₀ value of $1 \times 10^{3.8}$ PFU/animal, in contrast to the
837	wild-type UT521 strain's MLD ₅₀ value of $1 \times 10^{2.8}$ PFU/animal. Together, these results
838	demonstrate that the reverse genetics-generated strains possessed similar viral properties to
839	those of the wild-type strains and were therefore suitable for further analysis.
840	

842 Figure 14. Viral replication efficiency of wild-type and reverse genetics-generated

843 viruses in A549 and DF-1 cells

The viral replication efficiency of wildtype and reverse genetics-generated strains of UT521 and UT541 was analyzed in A549 cells incubated at 33°C (A) and at 37°C (B), and in DF-1 cells incubated at 39°C (C). Wild-type virus strains are indicated as UT521 (WT) and UT541 (WT). RG1 represents the reverse genetics-generated strain of UT521, and RG17 represents

- the reverse genetics-generated strain of UT541. The data presented are the mean \pm s.d. of
- 849 triplicate experiments.
- 850
- 851
- 852
- 853

854 The effect of viral surface glycoproteins and the polymerase complex on viral replication

855	efficiency	in	A549	cells
000	cificiency	111	AUT/	cens

856	To elucidate which of the eight viral RNA segments is responsible for the
857	difference in replication efficiency between UT521 and UT541, reassortant viruses were
858	produced by reverse genetics, and their growth properties in A549 cells incubated at 33° C
859	and 37°C were analyzed.
860	First, the eight viral RNA segments were categorized into three groups: the
861	polymerase complex consisting of the PB2, PB1, PA, and NP segments; the surface
862	glycoprotein group consisting of the HA and NA segments, and the remaining group
863	consisting of the M and NS segments. Viruses with different combinations of the three groups
864	were generated by reverse genetics and their growth properties were analyzed in A549 and
865	DF-1 cells.
866	In A549 cells incubated at 37° C, viruses possessing the surface glycoproteins of
867	UT521 (RG 1, RG18, RG21, and RG22) showed high replication efficiency (Fig. 15B).
868	Among the virus strains possessing the surface glycoproteins of UT521, virus strains with the
869	polymerase complex of UT521 (RG1 and RG22) showed higher replication efficiency than
870	those with the polymerase complex of UT541 (RG18 and RG21). The enhancing effect of

871	possessing both the polymerase complex and the surface glycoproteins of UT521 was more
872	pronounced in A549 cells incubated at 33° C than at 37° C (Fig. 15A). All of the generated
873	reassortant viruses grew well in DF-1 cells incubated at 39° C (Fig. 15C).
874	
875	
876	
877	
878	
879	
880	
881	
882	
883	
884	
885	
886	
887	

890 Figure 15. Effect of the viral polymerase complex and surface glycoproteins on viral

891 replication in A549 cells

892 Viral replication efficiency of reassortant virus strains was analyzed in A549 cells incubated

893 at 33°C (A) and 37°C (B), and in DF-1 cells incubated at 39°C (C). The data presented are 894 the mean \pm s.d. of triplicate experiments.

902	When the effect of the surface glycoproteins HA and NA on viral growth was
903	analyzed, it was revealed that virus strains with the NA segment of UT541 possessed lower
904	replication efficiency in A549 cells incubated at 37° C (RG17, RG20, RG33 and RG34),
905	compared to virus strains with the NA segment of UT521 (Fig. 16A). All of the generated
906	reassortant viruses grew well in DF-1 cells incubated at 39°C (Fig. 16B).
907	The NA segments of UT521 and UT541 differ by six amino acids located at
908	positions 32, 50, 53, 111, 120, and 143 (Table 3). Viruses with single amino acid mutations
909	introduced into the NA segment were generated by reverse genetics. Viral growth property
910	analysis revealed that virus strains possessing unique amino acids of UT541 strain (RG17,
911	RG33, RG48, RG52, RG53, RG54, RG77, RG78 and RG79), namely NA-32-L, NA-111I,
912	and NA-120M, showed lower replication efficiency in A549 cells compared to virus strains
913	possessing either major amino acids or unique amino acids of UT521 strain (Fig. 17A). All of
914	the generated reassortant viruses grew well in DF-1 cells incubated at 39° C (Fig. 17B).
915	
916	

901 The effect of the NA segment on viral replication efficiency in A549 cells

920 Viral replication efficiency of reassortant virus strains was analyzed in A549 cells incubated
921 at 37°C (A) and in DF-1 cells incubated at 39°C (B). The data presented are the mean ± s.d.
922 of triplicate experiments.

926 Figure 17. Viral replication efficiency of mutant NA strains in A549 cells

927 Viral replication efficiency of virus strains with mutant NA segments was analyzed in A549
928 cells incubated at 37°C (A) and in DF-1 cells incubated at 39°C (B). Unique amino acids are

- 929 colored in yellow. The data presented are the mean \pm s.d. of triplicate experiments.
- 930

932	The growth property analysis of the reassortant viruses in A549 cells incubated at
933	33° C revealed that both the viral polymerase complex and the surface glycoproteins of
934	UT521 are required for high viral replication efficiency (Fig. 15A, B). In addition, the NA
935	segment of UT521 was found to be essential for high viral replication efficiency in A549 cells
936	(Fig. 16A).
937	When the effect of the polymerase complex (i.e., the PB2, PB1, PA, and NP
938	segments) on viral growth was analyzed, it was revealed that virus strains with the PB2
939	segment of UT521 possessed higher replication efficiency in A549 cells incubated at 33° C
940	(RG1, RG26, RG27 and RG36), compared to virus strains with the PB2 segment of UT541
941	(Fig. 18A). Viral growth property analysis of virus strains with reassortant NA and PB2
942	segments revealed that both the NA and PB2 segments of UT521 are essential for efficient
943	viral replication in A549 cells incubated at 33° C (RG1 and RG70) (Fig. 19A). All of the
944	generated reassortant viruses grew well in DF-1 cells incubated at 39°C (Fig. 18B, 19B). We
945	conducted further analysis focusing on the PB2 segment.
946	

The effect of the PB2 segment on viral replication efficiency in A549 cells

947

949 Figure 18. Effect of the PB2 segment on viral replication in A549 cells at 33°C

950 Viral replication efficiency of reassortant virus strains was analyzed in A549 cells incubated

at 33°C (A) and in DF-1 cells incubated at 39°C (B). The data presented are the mean \pm s.d.

952 of triplicate experiments.

Figure 19. Effect of the NA and PB2 segments on viral replication in A549 cells at 33°C
Viral replication efficiency of reassortant virus strains was analyzed in A549 cells incubated
at 33°C (A) and in DF-1 cells incubated at 39°C (B). The data presented are the mean ± s.d.
of triplicate experiments.

959	The PB2 segments of UT521 and UT541 differ by five amino acids located at
960	positions 109, 292, 369, 447, and 758 (Table 3). Viruses with single amino acid mutations
961	introduced into the PB2 segment were generated by reverse genetics. Analysis of the growth
962	property of the generated mutant viruses in A549 cells revealed the following findings. When
963	introduced into the polymerase complex of UT521, PB2-A109V (exchange from unique to
964	major amino acid) resulted in the greatest decrease in viral replication efficiency (RG1 and
965	RG59), followed by PB2-T758I (exchange from unique to major amino acid) (RG1 and
966	RG58) (Fig. 20A). When introduced into the polymerase complex of UT541, PB2-V109A
967	(exchange from major to unique amino acid) resulted in the greatest increase in viral
968	replication efficiency (RG18 and RG64), followed by PB2-I758T (exchange from major to
969	unique amino acid) (RG18 and RG63) (Fig. 20A). From the findings above, two unique
970	amino acids of UT521, PB2-109A and PB2-758T, were identified to confer higher replication
971	efficiency in A549 cells incubated at 33° C (Fig. 20A). Simultaneous introduction of amino
972	acid mutations into both PB2 loci revealed a synergistic effect on viral replication efficiency
973	(RG80 and RG81) (Fig. 21A). All of the reassortant and mutant virus strains produced by
974	reverse genetics replicated well in DF-1 cells incubated at 39°C (Fig. 20B, 21B).

975	When plotted in a structural model of the polymerase complex (Protein Data Bank
976	ID: 4WSB) using PyMOL (DeLano Scientific, San Carlos, CA, USA), PB2-109A was located
977	on the surface of the polymerase complex (Fig. 22). The function of PB2-109A/V has not
978	been reported and remains unknown. PB2-758T is reported to be part of the nuclear
979	localization signal (NLS), and could not be plotted on the structural model because the
980	published crystal structure of the polymerase complex did not include the NLS region [76].
981	
982	
983	
984	
985	
986	
987	
988	
989	
990	
991	

Figure 20. Viral replication efficiency of mutant PB2 strains in A549 cells

994 Viral replication efficiency of virus strains with mutant PB2 segments was analyzed in A549

995 cells incubated at 33°C (A) and in DF-1 cells incubated at 39°C (B). The data presented are 996 the mean \pm s.d. of triplicate experiments.

998 Figure 21. Effect of PB2-109A and PB2-758T on viral replication in A549 cells at 33°C
999 Viral replication efficiency of PB2 mutant virus strains was analyzed in A549 cells incubated
1000 at 33°C (A) and in DF-1 cells incubated at 39°C (B). The data presented are the mean ± s.d.
1001 of triplicate experiments.

1003	Figure 22. PB2-109A/V location on the structural model of the polymerase complex
1004	A structural model of the polymerase complex was created by PyMOL using protein data
1005	obtained from the Protein Data Bank (ID: 4WSB) [76]. The PB2 protein is colored in white,
1006	the PB1 protein in wheat, and the PA protein in black. PB2-109A/V is shown on the surface
1007	of the polymerase complex by the red spheres. PB2-758T/I could not be plotted on the model
1008	because of the model is lacking in data around the region.
1009	
1010	
1011	
1012	
1013	
1014	
1015	

1018	Viral MLD $_{50}$ values were obtained in order to evaluate the effect of two PB2 amino
1019	acid mutations on virus pathogenicity in BALB/c mice (Table 4). The introduction of the
1020	unique amino acid PB2-109A into the polymerase complex of UT541 resulted in greater
1021	enhancement of pathogenicity in BALB/c mice compared to the introduction of PB2-758T. In
1022	contrast, the introduction of either of the major amino acids PB2-109V or PB2-758I into the
1023	polymerase complex of UT521 conferred similar diminishing effects on pathogenicity in
1024	BALB/c mice. The simultaneous introduction of PB2-109A and PB2-758T into the
1025	polymerase complex of UT541, or the introduction of PB2-109V and PB2-758I into the
1026	polymerase complex of UT521 had a synergistic effect on pathogenicity in BALB/c mice.
1027	To investigate viral replication in BALB/c mice, mice were inoculated with virus at
1028	a concentration of 1x10 ³ PFU/animal, and organs were harvested on days 3 and 6 post-
1029	inoculation to determine virus titers in the organs (Table 4, Fig. 23A-I). Wild-type UT521
1030	was notable for its replication capability in both respiratory and non-respiratory organs,
1031	indicating that wild-type UT521 possesses an invasive trait. In the lungs, wild-type UT521,
1032	RG1 (UT521 reverse genetics-generated strain), RG36, and RG81 showed higher replication
1033	efficiency than the rest of the analyzed viruses, indicating that the combination of PB2-109A

1017 The effect of PB2 amino acid mutations on virus pathogenicity in BALB/c mice

1034	and PB2-758T is important for high BALB/c pathogenicity. Among the non-respiratory
1035	organs analyzed, RG1 replication was identified in the spleen and heart, RG36 in the spleen,
1036	and RG81 in the brain (Fig. 23A-I).
1037	
1038	
1039	
1040	
1041	
1042	
1043	
1044	
1045	
1046	
1047	
1048	
1049	
1050	

									BALB/c	Virus Titer in Lungs [log ₁₀ PFU/g]					J/g]
Virus	PB2	PB1	PA	NP	HA	NA	М	NS			Day3			Day6	
									[PFU/animal]	#1	#2	#3	#1	#2	#3
UT521(WT)									1x10 ^{2.8}	6.67	6.38	6.51	7.97	6.54	6.48
RG1									1x10 ^{3.8}	3.80	2.90	3.34	5.83	5.30	5.56
RG59	V								1x10 ^{4.5}	2.85	2.90	-	2.78	-	-
RG58	L.								1x10 ^{4.7}	3.93	3.15	3.40	3.00	3.15	3.18
RG80	V I								> 1x10 ⁶	2.30	2.48	2.60	2.30	3.32	2.48
RG24									1x10 ^{5.5}	3.00	-	-	-	-	3.85
RG18									> 1x10 ⁶	2.48	2.78	2.78	2.60	4.92	2.70
RG64	Α								1x10 ^{4.5}	3.34	2.78	3.04	3.58	4.61	5.78
RG63	Т								1x10 ^{6.0}	2.30	3.54	3.23	3.83	4.59	4.62
RG81	A T								1x10 ^{4.5}	4.46	4.41	3.23	5.48	4.49	5.93
RG36									1x10 ^{4.0}	5.53	5.89	5.84	6.45	6.07	6.10
RG17									> 1x10 ⁶	2.30	2.30	2.30	2.60	2.00	2.00
UT541(WT)									> 1x10 ⁶	3.04	3.11	2.90	2.95	3.43	3.43

1051 Table 4. BALB/c MLD₅₀ values for PB2 reassortant and mutant viruses

-: detection limit <2 [log₁₀PFU/g]

UT521 📃 UT541

1052

1053 MLD₅₀ values in BALB/c mice and viral growth in mouse organs were analyzed. PB2-109A

and PB2-758T conferred high virulence in BALB/c mice. Wild-type UT521 replicated well in

the lungs and in non-respiratory organs. RG1, RG36, and RG81 replicated well in the lungs.

1056 These three strains also grew in some non-respiratory organs. The detection limit was 2

 $1057 \quad \log_{10} PFU/g.$

1058

1059

- 1062 Figure 23. Viral replication in BALB/c mouse organs
- 1063 BALB/c mice were intranasally inoculated with H5N1 virus strains at a concentration of
- 1064 1×10^3 PFU/animal; organs were harvested on days 3 and day 6 post-inoculation, and a plaque
- 1065 assay was conducted in MDCK cells. The figures show virus titers in the lungs (A), nasal
- 1066 turbinate (B), trachea (C), brain (D), heart (E), liver (F), spleen (G), kidney (G) and colon (I)
- 1067 on day 3 and day 6. The detection limit was $2 \log_{10}$ PFU/g.

1068 Mini-replicon assay

1069	To evaluate the effect of the identified PB2 amino acid mutations on viral
1070	polymerase activity, a mini-replicon assay was performed in A549 and DF-1 cells. Although
1071	the viral replication efficiency in A549 cells of the virus strain possessing the polymerase
1072	complex of UT521 (RG1) was higher than that of the virus strain with the polymerase
1073	complex of UT541 (RG17), the viral polymerase activity in A549 cells was higher with the
1074	UT541 polymerase complex than with the UT521 polymerase complex (Fig. 24). The
1075	respective introduction of the unique PB2 amino acids PB2-109A and PB2-758T into the
1076	UT541 polymerase complex increased the viral polymerase activity in A549 cells. The
1077	respective introduction of the major PB2 amino acids PB2-109V and PB2-758I into the
1078	UT521 polymerase complex had little effect on the polymerase activity in A549 cells. There
1079	was no significant difference in viral polymerase activity in DF-1 cells among the evaluated
1080	viruses.
1081	
1082	
1083	
1084	

1099 PB2 nuclear localization

1100	PB2-758I is known to be a part of the NLS [77]. To evaluate the effect of PB2
1101	amino acid mutations on nuclear import, pCAGGS plasmid DNA encoding wild-type and
1102	mutant PB2 protein was transfected into A549 cells incubated at 33°C. The transfected A549
1103	cells were fixed and stained with a mouse monoclonal antibody against PB2 protein (PB2-
1104	18/1) and observed using a laser-scanning microscope. Nuclear accumulation of the PB2
1105	protein was observed from 4 hours post-transfection. There was no appreciable difference in
1106	the timing or pattern of the nuclear accumulation of PB2 protein (Fig. 25 A-F).
1107	
1108	
1109	
1110	
1111	
1112	
1113	
1114	
1115	

1119 Figure 25. Viral PB2 protein nuclear localization

- 1120 pCAGGS plasmid DNA encoding wild-type and mutant PB2 protein (0.25 μ g) was
- 1121 transfected into A549 cells incubated at 33°C (A-F). The transfected A549 cells were fixed
- 1122 and stained with a mouse monoclonal antibody against PB2 and observed by using a laser-
- 1123 scanning microscope.

- ...-

1139 vRNP intracellular localization

1140	To investigate the effect of the PB2 amino acid mutations PB2-109A and PB2-758T
1141	on viral intracellular localization, A549 cells were infected with reassortant virus strains at an
1142	MOI of 100 and incubated at 33 $^{\circ}$ C for 24 hours. The A549 cells were then fixed and stained
1143	with the mouse anti-WSN NP 3/1 monoclonal antibody, which was previously reported to
1144	recognize vRNP complexes [78]. The vRNP intracellular localization in infected A549 cells
1145	was observed by using a laser-scanning microscope. In order to conduct the experiment in the
1146	BSL2 facility, reassortant viruses possessing he HA and NA segments of PR8 and the rest of
1147	the genes from the H5N1 backbone were generated by using reverse genetics.
1148	Immunofluorescence analysis of the reassortant viruses revealed that the vRNP first
1149	appeared in the cytoplasm, then, 6 hours post-infection, nuclear localization of the vRNP was
1150	observed. Fluorescence associated with the vRNP in the cytoplasm gradually intensified, and
1151	at 24 hours post-infection, the vRNP was mostly located in the cytoplasm. No significant
1152	difference was observed between the analyzed virus strains (Fig. 26).
1153	The replication efficiency of the recombinant mutant virus strains in A549 cells
1154	incubated at 33° C was analyzed, at an MOI of 10 (Fig. 27). Although the enhancing effect of
1155	PB2-109A and PB2-758T on viral growth could still be observed, the difference in virus titers

1156	among the analyzed virus strains was small compared with the viral growth analysis of the
1157	H5N1 strains that did not bear HA and NA segments from PR8, infected at the low MOI of
1158	0.0002 (Fig. 21A, Fig. 27).
1159	
1160	
1161	
1162	
1163	
1164	
1165	
1166	
1167	
1168	
1169	
1170	
1171	
1172	
1173	

1178 Figure 26. Immunofluorescence analysis of the intracellular localization of vRNP

1179 A549 cells were infected with reassortant virus strains bearing the HA and NA segments of

1180 PR8 at an MOI of 100 and incubated at 33° C for 24 hours. The A549 cells were then fixed at

1181 different time points and stained with a vRNP-recognizing monoclonal antibody (anti-WSN

- 1182 NP 3/1) and observed by using a laser-scanning microscope.
- 1183
- 1184
- 1185
- 1186

Figure 27. Replication efficiency of recombinant mutant virus strains in A549 cells
incubated at 33℃

1190 Recombinant viruses possessing an H5N1 backbone with mutant PB2 segments and HA and

1191 NA segments from PR8 were generated by using reverse genetics. For example, the virus

1192 strain possessing the UT521 backbone with the HA and NA segments of PR8 is indicated as

1193 RG1(PR8) in the figure above. The viral replication efficiency of the generated recombinant

- 1194 mutant virus strains was analyzed in A549 cells incubated at 33°C, at an MOI of 10, utilizing
- 1195 virus titers measured in MDCK cells and supplementation with 1 μ g/mL of 6- (1-
- 1196 tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK)-treated trypsin. The data presented
- 1197 are the mean \pm s.d. of triplicate experiments.
- 1198
- 1199
- 1200
- 1201

1202 Discussion

1203	In this study, we found that two unique amino acids of the PB2 segment, PB2-109A
1204	and PB2-758T, confer high replication efficiency in A549 cells, especially at 33° C, and high
1205	pathogenicity in BALB/c mice. Although we attempted to elucidate the mechanism by which
1206	these amino acids enhance virulence, we were unable to do so.
1207	The two unique PB2 amino acids were identified and analyzed using reassortant
1208	and mutant viruses generated by reverse genetics. Although the replication efficiency in A549
1209	and DF-1 cells did not differ between the wild-type H5N1 viruses and their counterpart
1210	reverse genetics-generated viruses, a difference in pathogenicity in mice was observed
1211	between the wild-type UT521 virus and the reverse genetics-generated UT521 virus. Wild-
1212	type UT521 virus possessed higher mouse pathogenicity compared to the reverse genetics-
1213	generated strain of UT521 (RG1), as assessed by measuring MLD ₅₀ values. Moreover, wild-
1214	type UT521 showed replicative ability in non-respiratory organs, whereas the replication of
1215	RG1 was limited to the respiratory organs, heart, and spleen. Sequencing of all of the viral
1216	genomes of RG1 revealed no nucleotide mutation from wild-type UT521. The reason for this
1217	observed phenomenon remains unclear, but it has been speculated that a quasispecies state of

1218 wild-type UT521 might confer higher virulence and an invasive trait in infected BALB/c mice1219 [79, 80].

1220	Unique amino acids in the NA segment of UT541 were responsible for its low
1221	replication efficiency in A549 cells. NA-32L is located in the stalk region, and NA-111I and
1222	NA-120L are thought to be located in the head domain, based on analyses of the NA 3D
1223	model. The mechanism by which these amino acids lower the viral replication efficiency in
1224	A549 cells is unknown.
1225	Two unique PB2 amino acids of UT521, PB2-109A and PB2-758T, were found to
1226	enhance virulence in mammalian hosts. The degree of enhancement, however, differed
1227	between PB2-109A and PB2-758T. Briefly, the introduction of the unique amino acid PB2-
1228	109A conferred greater enhancement of viral replication efficiency in A549 cells incubated at
1229	33° C and of BALB/c mouse pathogenicity compared to the introduction of PB2-758T.
1230	Similarly, the introduction of the major amino acid PB2-109V resulted in greater
1231	diminishment of viral replication and pathogenicity compared to the introduction of PB2-
1232	758I, but its effect on BALB/c mouse pathogenicity was less pronounced. Together, the two
1233	amino acids had a synergistic effect.

1234	The replication efficiency in A549 cells incubated at 33° C was greater for viruses
1235	possessing the polymerase complex of UT521 compared to those with the polymerase
1236	complex of UT541. However, the mini-replicon assay revealed that the viral polymerase
1237	activity of UT521 was considerably lower than that of UT541. This inconsistency between
1238	viral replication efficiency and polymerase activity might indicate that UT521 uses a
1239	replication efficiency-enhancing mechanism that does not involve viral polymerase activity,
1240	or that UT541 is more sensitive to inhibition of viral replication. PB2-109A and PB2-758T
1241	each increased the polymerase activity when introduced into the polymerase complex of
1242	UT541, which is consistent with their enhancement of viral replication efficiency and
1243	pathogenicity. However, although the introduction of the major amino acids PB2-109V and
1244	PB2-758I into the polymerase complex of UT521 reduced the replication efficiency in A549
1245	cells and virus pathogenicity in BALB/c mice, the introduction of those major amino acids
1246	had little effect on viral polymerase activity. These findings indicate that the enhancing
1247	effects of PB2-109A and PB2-758T on viral replication efficiency and pathogenicity result
1248	from a mechanism other than viral polymerase activity modification.
1249	Since PB2-758T/I is reported to be part of the NLS, pCAGGS plasmid DNA
1250	encoding the viral PB2 protein was transfected into A549 cells for immunofluorescence

1251	analysis. The analysis of mutant PB2 protein, however, revealed no difference in nuclear
1252	localization efficiency among the analyzed PB2 protein [76]. The effect of PB2-758T/I on the
1253	observed differences in viral replication efficiency and pathogenicity could, therefore, not be
1254	attributed to the efficiency of viral PB2 protein nuclear localization.
1255	The function of PB2-109A/V has not yet been reported in the literature. PB2 is a
1256	major component of the viral polymerase complex along with PB1, PA, and NP, functioning
1257	in viral replication, cap-snatching and viral transcription, and the formation of newly
1258	synthesized vRNP complexes. Newly synthesized vRNP complexes are assembled and
1259	packaged into progeny virions [1, 76]. To evaluate whether PB2-109A/V and PB2-758T/I
1260	have any involvement in the viral replication cycle, immunofluorescence analysis of the
1261	intracellular localization of the vRNP complexes was conducted. This analysis, however, did
1262	not reveal any significant differences in the intracellular localization patterns of the analyzed
1263	PB2 reassortant viruses. I suspect that vRNP observed in the nucleus represents accumulated
1264	newly synthesized vRNP complexes. Analysis of the intracellular localization of vRNP
1265	complexes originating from infected viruses has been attempted by inhibiting new viral
1266	protein production using cycloheximide or 5,6-dichloro-1-b-D-ribofuranosyl-benzimidazole
1267	(DRB) [81-84]. In this study, the addition of cycloheximide or DRB, however, prevented the

1268	nuclear localization of the vRNP complexes and the intracellular localization of incoming
1269	vRNP complexes could not be evaluated (data not shown). In the immunofluorescence
1270	analysis of the intracellular localization of vRNP complexes, redistribution of the vRNP
1271	complexes into the cytoplasm was observed, which likely represented the nuclear export of
1272	newly synthesized vRNP complexes. No significant difference was observed at this stage of
1273	the viral cell cycle among the analyzed PB2 reassortant viruses.
1274	On a structural model of the polymerase complex, PB2-109A/V was plotted on the
1275	surface. The location of PB2-109A/V on the model was adjacent to where PB2 protein
1276	interacts with PB1 protein, so it is possible that PB2-109A/V plays a role in polymerase
1277	complex stability. PB2-109A/V might also interact with viral or host factors. The plotted
1278	location of PB2-109A/V on the polymerase complex was not in the vicinity of areas reported
1279	to be involved in cap-snatching or vRNA replication activity [76].
1280	The viral PB2 segment is also reported to interact with the host immune system [85-
1281	87]. Therefore, it is possible that PB2-109A and PB2-758T provide H5N1 viruses with the
1282	ability to escape from host immune responses, which in turn provides higher replication
1283	efficiency and pathogenicity in mammalian hosts. Measurement of interferon- β or other host
- 1284 immune system mediators would help further elucidate the functions of the amino acid
- 1285 mutations PB2-109A and PB2-758T.
- 1286

1287 Conclusion

1288	Our epidemiological surveillance of poultry and swine in Indonesia between 2010
1289	and 2016 revealed that two sub-clades of viruses, clade 2.1.3 and clade 2.3.2.1d, were
1290	circulating in Indonesia. Our data, together with information from databases, suggest the
1291	possibility that clade 2.3.2.1d strains have become dominant in Indonesian poultry.
1292	Characterization analysis revealed that clade 2.3.2.1d strains possess mammalian-adaptive
1293	traits, including high viral polymerase activity and moderate replication capability in human
1294	lung epithelial cells, as well as high virulence in BALB/c mice. Our findings support the
1295	continued surveillance of HPAI H5N1 viruses in Indonesia, in order to detect the emergence
1296	of viruses with endemic or pandemic capability.
1297	Through a virological analysis of two genetically closely related viruses with
1298	different replication efficiency and pathogenicity in mammalian hosts, we identified two
1299	amino acid mutations in the viral PB2 protein, PB2-109A and PB2-758T, that enhance viral
1300	replication efficiency in human lung epithelial cells and pathogenicity in BALB/c mice.
1301	Although the mechanism by which these two PB2 mutations enhance virulence in mammalian
1302	hosts has not yet been elucidated, our findings are of value for assessing the risk of avian-to-
1303	human transmission of highly pathogenic H5N1 avian influenza field isolates.

1304 Acknowledgements

1305	I would like to express my greatest appreciation for the keen insights and passionate
1306	instruction of Prof. Yoshihiro Kawaoka, Division of Virology, Department of Microbiology
1307	and Immunology, Institute of Medical Science, University of Tokyo and Department of
1308	Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.
1309	I am deeply grateful for the great mentorship, profound patience, and ceaseless
1310	encouragement from Dr. Shinya Yamada, Division of Virology, Department of Microbiology
1311	and Immunology, Institute of Medical Science, University of Tokyo.
1312	I would like to express my gratitude for the critical devotion to our collaborative
1313	research and warm hospitality of Prof. Chairul A. Nidom, Avian Influenza Research Center
1314	Laboratory, Professor Nidom Foundation, and Faculty of Veterinary Medicine, Universitas
1315	Airlangga, Surabaya, Indonesia.
1316	I owe my gratitude to Dr. Kiyoko Iwatsuki-Horimoto, Division of Virology,
1317	Department of Microbiology and Immunology, Institute of Medical Science, University of
1318	Tokyo, for her instruction and support both in the laboratory and in the field.

1319	I would like to thank Drs. Yuko Sakai-Tagawa, Masaki Imai, Maki Kiso, and Seiya
1320	Yamayoshi, Division of Virology, Department of Microbiology and Immunology, Institute of
1321	Medical Science, University of Tokyo for their technical assistance and advice.
1322	I would also like to express my appreciation to Dr. Reina Yamaji, World Health
1323	Organization, Geneva, and to Reviany V. Nidom, Setyarina Indrasari, Kuncoro P. Santoso,
1324	and the other laboratory staff and students of the Avian Influenza Research Center
1325	Laboratory, Professor Nidom Foundation, and Faculty of Veterinary Medicine, Universitas
1326	Airlangga, Surabaya, Indonesia for their hard work and sincere dedication to epidemiological
1327	surveillance in Indonesia.
1328	This work was supported by the NIAID-funded Center for Research on Influenza
1329	Pathogenesis (CRIP) (HHSN272201400008C).
1330	
1331	
1332	
1333	
1334	
1335	

1336 **References**

1337	1.	Shaw, M. and P. Palese, Orthomyxoviridae, p 1151–1185. Fields virology. 2013,
1338		Lippincott Williams & Wilkins, Philadelphia, PA.
1339	2.	Wright, P., G. Neumann, and Y. Kawaoka, Orthomyxoviruses. Fields Virology, eds
1340		Knipe DM, et al. 2013, Lippincott Williams & Wilkins, Philadelphia, PA).
1341	3.	Osterhaus, A.D., G.F. Rimmelzwaan, B.E. Martina, T.M. Bestebroer, and R.A.
1342		Fouchier, Influenza B virus in seals. Science, 2000. 288(5468): p. 1051-3.
1343	4.	Bodewes, R., D. Morick, G. de Mutsert, N. Osinga, T. Bestebroer, S. van der Vliet,
1344		S.L. Smits, T. Kuiken, G.F. Rimmelzwaan, R.A. Fouchier, and A.D. Osterhaus,
1345		Recurring influenza B virus infections in seals. Emerg Infect Dis, 2013. 19(3): p. 511-
1346		2.
1347	5.	Jelley, L., A. Levy, Y.M. Deng, N. Spirason, J. Lang, I. Buettner, J. Druce, C. Blyth,
1348		P. Effler, D. Smith, and I.G. Barr, Influenza C infections in Western Australia and
1349		Victoria from 2008 to 2014. Influenza Other Respir Viruses, 2016. 10(6): p. 455-461.
1350	6.	Matsuzaki, Y., K. Sugawara, C. Abiko, T. Ikeda, Y. Aoki, K. Mizuta, N. Katsushima,
1351		F. Katsushima, Y. Katsushima, T. Itagaki, Y. Shimotai, S. Hongo, Y. Muraki, and H.
1352		Nishimura, Epidemiological information regarding the periodic epidemics of
1353		influenza C virus in Japan (1996-2013) and the seroprevalence of antibodies to
1354		different antigenic groups. J Clin Virol, 2014. 61(1): p. 87-93.
1355	7.	Atkinson, K.V., L.A. Bishop, G. Rhodes, N. Salez, N.R. McEwan, M.J. Hegarty, J.
1356		Robey, N. Harding, S. Wetherell, R.M. Lauder, R.W. Pickup, M. Wilkinson, and D.
1357		Gatherer, Influenza C in Lancaster, UK, in the winter of 2014-2015. Sci Rep, 2017. 7:
1358		p. 46578.
1359	8.	Su, S., X. Fu, G. Li, F. Kerlin, and M. Veit, Novel Influenza D virus: Epidemiology,
1360		pathology, evolution and biological characteristics. Virulence, 2017. 8(8): p. 1580-
1361		1591.
1362	9.	Hause, B.M., M. Ducatez, E.A. Collin, Z. Ran, R. Liu, Z. Sheng, A. Armien, B.
1363		Kaplan, S. Chakravarty, A.D. Hoppe, R.J. Webby, R.R. Simonson, and F. Li, Isolation
1364		of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to
1365		human influenza C viruses. PLoS Pathog, 2013. 9(2): p. e1003176.
1366	10.	Neumann, G., H. Chen, G.F. Gao, Y. Shu, and Y. Kawaoka, H5N1 influenza viruses:
1367		outbreaks and biological properties. Cell Res, 2010. 20(1): p. 51-61.
1368	11.	Horimoto, T. and Y. Kawaoka, Influenza: lessons from past pandemics, warnings
1369		from current incidents. Nat Rev Microbiol, 2005. 3(8): p. 591-600.

1370	12.	Neumann, G., T. Noda, and Y. Kawaoka, Emergence and pandemic potential of
1371		swine-origin H1N1 influenza virus. Nature, 2009. 459(7249): p. 931-9.
1372	13.	Tong, S., Y. Li, P. Rivailler, C. Conrardy, D.A. Castillo, L.M. Chen, S. Recuenco,
1373		J.A. Ellison, C.T. Davis, I.A. York, A.S. Turmelle, D. Moran, S. Rogers, M. Shi, Y.
1374		Tao, M.R. Weil, K. Tang, L.A. Rowe, S. Sammons, X. Xu, M. Frace, K.A. Lindblade,
1375		N.J. Cox, L.J. Anderson, C.E. Rupprecht, and R.O. Donis, A distinct lineage of
1376		influenza A virus from bats. Proc Natl Acad Sci U S A, 2012. 109(11): p. 4269-74.
1377	14.	Tong, S., X. Zhu, Y. Li, M. Shi, J. Zhang, M. Bourgeois, H. Yang, X. Chen, S.
1378		Recuenco, J. Gomez, L.M. Chen, A. Johnson, Y. Tao, C. Dreyfus, W. Yu, R.
1379		McBride, P.J. Carney, A.T. Gilbert, J. Chang, Z. Guo, C.T. Davis, J.C. Paulson, J.
1380		Stevens, C.E. Rupprecht, E.C. Holmes, I.A. Wilson, and R.O. Donis, New world bats
1381		harbor diverse influenza A viruses. PLoS Pathog, 2013. 9(10): p. e1003657.
1382	15.	Webster, R.G., W.J. Bean, O.T. Gorman, T.M. Chambers, and Y. Kawaoka, Evolution
1383		and ecology of influenza A viruses. Microbiol Rev, 1992. 56(1): p. 152-79.
1384	16.	Swayne, D.E. and D.L. Suarez, Highly pathogenic avian influenza. Rev Sci Tech,
1385		2000. 19 (2): p. 463-82.
1386	17.	Horimoto, T. and Y. Kawaoka, Pandemic threat posed by avian influenza A viruses.
1387		Clin Microbiol Rev, 2001. 14(1): p. 129-49.
1388	18.	Horimoto, T. and Y. Kawaoka, Reverse genetics provides direct evidence for a
1389		correlation of hemagglutinin cleavability and virulence of an avian influenza A virus.
1390		J Virol, 1994. 68(5): p. 3120-8.
1391	19.	Xu, X., Subbarao, N.J. Cox, and Y. Guo, Genetic characterization of the pathogenic
1392		influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin
1393		gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology,
1394		1999. 261 (1): p. 15-9.
1395	20.	Claas, E.C., A.D. Osterhaus, R. van Beek, J.C. De Jong, G.F. Rimmelzwaan, D.A.
1396		Senne, S. Krauss, K.F. Shortridge, and R.G. Webster, Human influenza A H5N1 virus
1397		related to a highly pathogenic avian influenza virus. Lancet, 1998. 351(9101): p. 472-
1398		7.
1399	21.	Subbarao, K., A. Klimov, J. Katz, H. Regnery, W. Lim, H. Hall, M. Perdue, D.
1400		Swayne, C. Bender, J. Huang, M. Hemphill, T. Rowe, M. Shaw, X. Xu, K. Fukuda,
1401		and N. Cox, Characterization of an avian influenza A (H5N1) virus isolated from a
1402		child with a fatal respiratory illness. Science, 1998. 279(5349): p. 393-6.
1403	22.	Health), O.T.W.O.f.A., OIE Situation Report for Highly Pathogenic Avian Influenza.
1404		2018.

1405	23.	Organization), W.W.H. Cumulative number of confirmed human cases for avian
1406		influenza A(H5N1) reported to WHO. 2018 [cited 2018 25, October, 2018];
1407		Available from:
1408		https://www.who.int/influenza/human_animal_interface/2018_09_21_tableH5N1.pdf?
1409		ua=1.
1410	24.	Organization), W.W.H. H5N1 highly pathogenic avian influenza: Timeline of major
1411		events. 2014; Available from:
1412		https://www.who.int/influenza/human_animal_interface/H5N1_avian_influenza_upda
1413		te20141204.pdf.
1414	25.	Davis, A.S., D.S. Chertow, J.E. Moyer, J. Suzich, A. Sandouk, D.W. Dorward, C.
1415		Logun, J.H. Shelhamer, and J.K. Taubenberger, Validation of normal human
1416		bronchial epithelial cells as a model for influenza A infections in human distal
1417		trachea. J Histochem Cytochem, 2015. 63(5): p. 312-28.
1418	26.	Jakiela, B., R. Brockman-Schneider, S. Amineva, W.M. Lee, and J.E. Gern, Basal
1419		cells of differentiated bronchial epithelium are more susceptible to rhinovirus
1420		infection. Am J Respir Cell Mol Biol, 2008. 38(5): p. 517-23.
1421	27.	Neumann, G., T. Watanabe, H. Ito, S. Watanabe, H. Goto, P. Gao, M. Hughes, D.R.
1422		Perez, R. Donis, E. Hoffmann, G. Hobom, and Y. Kawaoka, Generation of influenza
1423		A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A, 1999. 96(16): p.
1424		9345-50.
1425	28.	Reed, L.J., A simple method of estimating fifty per cent endpoints. Am J Hyg., 1938.
1426		27 : p. 493-497.
1427	29.	Yamayoshi, S., S. Yamada, S. Fukuyama, S. Murakami, D. Zhao, R. Uraki, T.
1428		Watanabe, Y. Tomita, C. Macken, G. Neumann, and Y. Kawaoka, Virulence-affecting
1429		amino acid changes in the PA protein of H7N9 influenza A viruses. J Virol, 2014.
1430		88 (6): p. 3127-34.
1431	30.	Niwa, H., K. Yamamura, and J. Miyazaki, Efficient selection for high-expression
1432		transfectants with a novel eukaryotic vector. Gene, 1991. 108(2): p. 193-9.
1433	31.	Lin, Y.P., X. Xiong, S.A. Wharton, S.R. Martin, P.J. Coombs, S.G. Vachieri, E.
1434		Christodoulou, P.A. Walker, J. Liu, J.J. Skehel, S.J. Gamblin, A.J. Hay, R.S. Daniels,
1435		and J.W. McCauley, Evolution of the receptor binding properties of the influenza
1436		A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A, 2012. 109(52): p. 21474-9.
1437	32.	Kiso, M., K. Iwatsuki-Horimoto, S. Yamayoshi, R. Uraki, M. Ito, N. Nakajima, S.
1438		Yamada, M. Imai, E. Kawakami, Y. Tomita, S. Fukuyama, Y. Itoh, K. Ogasawara,
1439		T.J.S. Lopes, T. Watanabe, L.H. Moncla, H. Hasegawa, T.C. Friedrich, G. Neumann,

1440 and Y. Kawaoka, Emergence of Oseltamivir-Resistant H7N9 Influenza Viruses in 1441 Immunosuppressed Cynomolgus Macaques. J Infect Dis, 2017. 216(5): p. 582-593. 1442 33. Yamayoshi, S., M. Watanabe, H. Goto, and Y. Kawaoka, *Identification of a Novel* 1443 Viral Protein Expressed from the PB2 Segment of Influenza A Virus. J Virol, 2016. 1444 **90**(1): p. 444-56. 1445 34. Network, T.W.H.O.G.I.P.S., Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis, 2005. 11(10): p. 1515-21. 1446 1447 35. Lam, T.T., C.C. Hon, O.G. Pybus, S.L. Kosakovsky Pond, R.T. Wong, C.W. Yip, F. 1448 Zeng, and F.C. Leung, Evolutionary and transmission dynamics of reassortant H5N1 1449 influenza virus in Indonesia. PLoS Pathog, 2008. 4(8): p. e1000130. 1450 36. Li, K.S., Y. Guan, J. Wang, G.J. Smith, K.M. Xu, L. Duan, A.P. Rahardjo, P. 1451 Puthavathana, C. Buranathai, T.D. Nguyen, A.T. Estoepangestie, A. Chaisingh, P. 1452 Auewarakul, H.T. Long, N.T. Hanh, R.J. Webby, L.L. Poon, H. Chen, K.F. 1453 Shortridge, K.Y. Yuen, R.G. Webster, and J.S. Peiris, *Genesis of a highly pathogenic* 1454 and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 2004. **430**(6996): p. 209-13. 1455 1456 37. Wibawa, H., D. Karo-Karo, E.S. Pribadi, A. Bouma, R. Bodewes, H. Vernooij, 1457 Divantoro, A. Sugama, D.H. Muljono, G. Koch, F.S. Tjatur Rasa, and A. Stegeman, 1458 Exploring contacts facilitating transmission of influenza A(H5N1) virus between 1459 poultry farms in West Java, Indonesia: A major role for backyard farms? Prev Vet 1460 Med, 2018. 156: p. 8-15. 1461 38. Takano, R., C.A. Nidom, M. Kiso, Y. Muramoto, S. Yamada, Y. Sakai-Tagawa, C. 1462 Macken, and Y. Kawaoka, *Phylogenetic characterization of H5N1 avian influenza* 1463 viruses isolated in Indonesia from 2003-2007. Virology, 2009. **390**(1): p. 13-21. 39. 1464 Nidom, C.A., R. Takano, S. Yamada, Y. Sakai-Tagawa, S. Daulay, D. Aswadi, T. 1465 Suzuki, Y. Suzuki, K. Shinya, K. Iwatsuki-Horimoto, Y. Muramoto, and Y. Kawaoka, 1466 Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis, 2010. 16(10): p. 1467 1515-23. 1468 40. Organization), W.W.H. Influenza at the human-animal interface Summary and 1469 assessment, 25 July 2017 to 27 September 2017. 2017 25, October, 2018]; Available 1470 from: 1471 http://www.who.int/influenza/human animal interface/Influenza Summary IRA HA 1472 _interface_09_27_2017.pdf?ua=1. 41. Neumann, G. and Y. Kawaoka, *Host range restriction and pathogenicity in the* 1473 1474 context of influenza pandemic. Emerg Infect Dis, 2006. 12(6): p. 881-6.

1475 42. Neumann, G., K. Shinya, and Y. Kawaoka, Molecular pathogenesis of H5N1 1476 influenza virus infections. Antivir Ther, 2007. 12(4 Pt B): p. 617-26. 1477 43. Rogers, G.N. and J.C. Paulson, Receptor determinants of human and animal influenza 1478 virus isolates: differences in receptor specificity of the H3 hemagglutinin based on 1479 species of origin. Virology, 1983. 127(2): p. 361-73. 1480 44. Auewarakul, P., O. Suptawiwat, A. Kongchanagul, C. Sangma, Y. Suzuki, K. 1481 Ungchusak, S. Louisirirotchanakul, H. Lerdsamran, P. Pooruk, A. Thitithanyanont, C. 1482 Pittayawonganon, C.T. Guo, H. Hiramatsu, W. Jampangern, S. Chunsutthiwat, and P. 1483 Puthavathana, An avian influenza H5N1 virus that binds to a human-type receptor. J 1484 Virol, 2007. 81(18): p. 9950-5. 1485 45. Suzuki, Y., Sialobiology of influenza: molecular mechanism of host range variation of 1486 influenza viruses. Biol Pharm Bull, 2005. 28(3): p. 399-408. 1487 46. Mair, C.M., K. Ludwig, A. Herrmann, and C. Sieben, *Receptor binding and pH* 1488 stability - how influenza A virus hemagglutinin affects host-specific virus infection. 1489 Biochim Biophys Acta, 2014. 1838(4): p. 1153-68. 1490 47. Yamada, S., Y. Suzuki, T. Suzuki, M.Q. Le, C.A. Nidom, Y. Sakai-Tagawa, Y. 1491 Muramoto, M. Ito, M. Kiso, T. Horimoto, K. Shinya, T. Sawada, M. Kiso, T. Usui, T. 1492 Murata, Y. Lin, A. Hay, L.F. Haire, D.J. Stevens, R.J. Russell, S.J. Gamblin, J.J. 1493 Skehel, and Y. Kawaoka, Haemagglutinin mutations responsible for the binding of 1494 H5N1 influenza A viruses to human-type receptors. Nature, 2006. 444(7117): p. 378-82. 1495 1496 48. Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka, *Molecular basis for high virulence* 1497 of Hong Kong H5N1 influenza A viruses. Science, 2001. 293(5536): p. 1840-2. 1498 49. Li, Z., H. Chen, P. Jiao, G. Deng, G. Tian, Y. Li, E. Hoffmann, R.G. Webster, Y. 1499 Matsuoka, and K. Yu, Molecular basis of replication of duck H5N1 influenza viruses 1500 in a mammalian mouse model. J Virol, 2005. 79(18): p. 12058-64. 50. 1501 Yamada, S., M. Hatta, B.L. Staker, S. Watanabe, M. Imai, K. Shinya, Y. Sakai-1502 Tagawa, M. Ito, M. Ozawa, T. Watanabe, S. Sakabe, C. Li, J.H. Kim, P.J. Myler, I. 1503 Phan, A. Raymond, E. Smith, R. Stacy, C.A. Nidom, S.M. Lank, R.W. Wiseman, B.N. 1504 Bimber, D.H. O'Connor, G. Neumann, L.J. Stewart, and Y. Kawaoka, Biological and 1505 structural characterization of a host-adapting amino acid in influenza virus. PLoS 1506 Pathog, 2010. 6(8): p. e1001034. 1507 51. Dharmayanti, N.L., R. Hartawan, H. Wibawa, A. Balish, R. Donis, C.T. Davis, and G. 1508 Samaan, Genetic characterization of clade 2.3.2.1 avian influenza A(H5N1) viruses, 1509 Indonesia, 2012. Emerg Infect Dis, 2014. 20(4): p. 671-4.

1510	52.	Dharmayanti, N., S.W. Thor, N. Zanders, R. Hartawan, A. Ratnawati, Y. Jang, M.
1511		Rodriguez, D.L. Suarez, G. Samaan, Pudjiatmoko, and C.T. Davis, Attenuation of
1512		highly pathogenic avian influenza A(H5N1) viruses in Indonesia following the
1513		reassortment and acquisition of genes from low pathogenicity avian influenza A virus
1514		progenitors. Emerg Microbes Infect, 2018. 7(1): p. 147.
1515	53.	Kumar, S., G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics
1516		Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol, 2016. 33(7): p. 1870-4.
1517	54.	Kumar, S., M. Nei, J. Dudley, and K. Tamura, MEGA: a biologist-centric software for
1518		evolutionary analysis of DNA and protein sequences. Brief Bioinform, 2008. 9(4): p.
1519		299-306.
1520	55.	Saitou, N. and M. Nei, The neighbor-joining method: a new method for reconstructing
1521		phylogenetic trees. Mol Biol Evol, 1987. 4(4): p. 406-25.
1522	56.	Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap.
1523		Evolution, 1985. 39 (4): p. 783-791.
1524	57.	Tamura, K., M. Nei, and S. Kumar, Prospects for inferring very large phylogenies by
1525		using the neighbor-joining method. Proc Natl Acad Sci U S A, 2004. 101(30): p.
1526		11030-5.
1527	58.	World Health Organization/World Organisation for Animal, H.F. and H.N.E.W.G.
1528		Agriculture Organization, Revised and updated nomenclature for highly pathogenic
1529		avian influenza A (H5N1) viruses. Influenza Other Respir Viruses, 2014. 8(3): p. 384-
1530		8.
1531	59.	Jiang, W., G. Hou, J. Li, C. Peng, S. Wang, and J. Chen, Novel variants of clade
1532		2.3.2.1 H5N1 highly pathogenic avian influenza virus in migratory waterfowl of
1533		Hongze Lake. Vet Microbiol, 2017. 198: p. 99-103.
1534	60.	Fan, S., M. Hatta, J.H. Kim, P. Halfmann, M. Imai, C.A. Macken, M.Q. Le, T.
1535		Nguyen, G. Neumann, and Y. Kawaoka, Novel residues in avian influenza virus PB2
1536		protein affect virulence in mammalian hosts. Nat Commun, 2014. 5: p. 5021.
1537	61.	Yang, Z.Y., C.J. Wei, W.P. Kong, L. Wu, L. Xu, D.F. Smith, and G.J. Nabel,
1538		Immunization by avian H5 influenza hemagglutinin mutants with altered receptor
1539		binding specificity. Science, 2007. 317(5839): p. 825-8.
1540	62.	Wang, W., B. Lu, H. Zhou, A.L. Suguitan, Jr., X. Cheng, K. Subbarao, G. Kemble,
1541		and H. Jin, Glycosylation at 158N of the hemagglutinin protein and receptor binding
1542		specificity synergistically affect the antigenicity and immunogenicity of a live
1543		attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol, 2010. 84(13):
1544		p. 6570-7.

1545 63. Su, Y., H.Y. Yang, B.J. Zhang, H.L. Jia, and P. Tien, Analysis of a point mutation in 1546 H5N1 avian influenza virus hemagglutinin in relation to virus entry into live 1547 mammalian cells. Arch Virol, 2008. 153(12): p. 2253-61. 1548 64. Gao, Y., Y. Zhang, K. Shinya, G. Deng, Y. Jiang, Z. Li, Y. Guan, G. Tian, Y. Li, J. 1549 Shi, L. Liu, X. Zeng, Z. Bu, X. Xia, Y. Kawaoka, and H. Chen, *Identification of amino* 1550 acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog, 2009. 5(12): p. e1000709. 1551 1552 65. Imai, M., T. Watanabe, M. Hatta, S.C. Das, M. Ozawa, K. Shinya, G. Zhong, A. 1553 Hanson, H. Katsura, S. Watanabe, C. Li, E. Kawakami, S. Yamada, M. Kiso, Y. 1554 Suzuki, E.A. Maher, G. Neumann, and Y. Kawaoka, Experimental adaptation of an 1555 influenza H5 HA confers respiratory droplet transmission to a reassortant H5 1556 HA/H1N1 virus in ferrets. Nature, 2012. 486(7403): p. 420-8. 1557 66. Shore, D.A., H. Yang, A.L. Balish, S.S. Shepard, P.J. Carney, J.C. Chang, C.T. Davis, 1558 R.O. Donis, J.M. Villanueva, A.I. Klimov, and J. Stevens, *Structural and antigenic* 1559 variation among diverse clade 2 H5N1 viruses. PLoS One, 2013. 8(9): p. e75209. Sonnberg, S., R.J. Webby, and R.G. Webster, Natural history of highly pathogenic 67. 1560 1561 avian influenza H5N1. Virus Res, 2013. 178(1): p. 63-77. 68. 1562 Hidari, K.I., T. Murata, K. Yoshida, Y. Takahashi, Y.H. Minamijima, Y. Miwa, S. 1563 Adachi, M. Ogata, T. Usui, Y. Suzuki, and T. Suzuki, *Chemoenzymatic synthesis*, 1564 characterization, and application of glycopolymers carrying lactosamine repeats as 1565 entry inhibitors against influenza virus infection. Glycobiology, 2008. 18(10): p. 779-1566 88. 1567 69. Ogata, M., K.I. Hidari, W. Kozaki, T. Murata, J. Hiratake, E.Y. Park, T. Suzuki, and 1568 T. Usui, *Molecular design of spacer-N-linked sialoglycopolypeptide as polymeric* 1569 inhibitors against influenza virus infection. Biomacromolecules, 2009. 10(7): p. 1894-1570 903. 1571 70. Shimizu, K., L. Wulandari, E.D. Poetranto, R.A. Setyoningrum, R. Yudhawati, A. 1572 Sholikhah, A.M. Nastri, A.L. Poetranto, A.Y. Candra, E.F. Puruhito, Y. Takahara, Y. 1573 Yamagishi, M. Yamaoka, H. Hotta, T. Ustumi, M.I. Lusida, Soetjipto, Y.K. Shimizu, G. Soegiarto, and Y. Mori, Seroevidence for a High Prevalence of Subclinical 1574 1575 Infection With Avian Influenza A(H5N1) Virus Among Workers in a Live-Poultry 1576 Market in Indonesia. J Infect Dis, 2016. 214(12): p. 1929-1936. 1577 71. Le, M.Q., P. Horby, A. Fox, H.T. Nguyen, H.K. Le Nguyen, P.M. Hoang, K.C. Nguyen, M.D. de Jong, R.E. Jeeninga, H. Rogier van Doorn, J. Farrar, and H.F. 1578

- Wertheim, Subclinical avian influenza A(H5N1) virus infection in human, Vietnam.
 Emerg Infect Dis, 2013. 19(10): p. 1674-7.
- 1581 72. Robert, M., R. Holle du, V. Setiawaty, K.N. Pangesti, and E.R. Sedyaningsih,
- 1582 Seroprevalence of avian influenza A/H5N1 among poultry farmers in rural Indonesia,
 1583 2007. Southeast Asian J Trop Med Public Health, 2010. 41(5): p. 1095-103.
- 1584 73. Neumann, G., C.A. Macken, A.I. Karasin, R.A. Fouchier, and Y. Kawaoka, *Egyptian*1585 *H5N1 influenza viruses-cause for concern?* PLoS Pathog, 2012. 8(11): p. e1002932.
- 1586 74. Watanabe, Y., M.S. Ibrahim, and K. Ikuta, *Evolution and control of H5N1*. A better
 1587 *understanding of the evolution and diversity of H5N1 flu virus and its host species in*1588 *endemic areas could inform more efficient vaccination and control strategies*. EMBO
 1589 Rep, 2013. 14(2): p. 117-22.
- 1590 75. Arafa, A.S., S. Yamada, M. Imai, T. Watanabe, S. Yamayoshi, K. Iwatsuki-Horimoto,
 1591 M. Kiso, Y. Sakai-Tagawa, M. Ito, T. Imamura, N. Nakajima, K. Takahashi, D. Zhao,
- 1592 K. Oishi, A. Yasuhara, C.A. Macken, G. Zhong, A.P. Hanson, S. Fan, J. Ping, M.
- 1593 Hatta, T.J. Lopes, Y. Suzuki, M. El-Husseiny, A. Selim, N. Hagag, M. Soliman, G.
- Neumann, H. Hasegawa, and Y. Kawaoka, *Risk assessment of recent Egyptian H5N1 influenza viruses*. Sci Rep, 2016. 6: p. 38388.
- 1596 76. Pflug, A., M. Lukarska, P. Resa-Infante, S. Reich, and S. Cusack, *Structural insights into RNA synthesis by the influenza virus transcription-replication machine*. Virus
 1598 Res, 2017. 234: p. 103-117.
- 1599 77. Boivin, S., S. Cusack, R.W. Ruigrok, and D.J. Hart, *Influenza A virus polymerase:*1600 *structural insights into replication and host adaptation mechanisms*. J Biol Chem,
 1601 2010. 285(37): p. 28411-7.
- 1602 78. Eisfeld, A.J., E. Kawakami, T. Watanabe, G. Neumann, and Y. Kawaoka, *RAB11A is*1603 *essential for transport of the influenza virus genome to the plasma membrane*. J Virol,
 1604 2011. 85(13): p. 6117-26.
- 1605 79. Vignuzzi, M., J.K. Stone, J.J. Arnold, C.E. Cameron, and R. Andino, *Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population*. Nature, 2006. 439(7074): p. 344-8.
- 1608 80. Lauring, A.S. and R. Andino, *Quasispecies theory and the behavior of RNA viruses*.
 1609 PLoS Pathog, 2010. 6(7): p. e1001005.
- 1610 81. Banerjee, I., Y. Yamauchi, A. Helenius, and P. Horvath, *High-content analysis of sequential events during the early phase of influenza A virus infection*. PLoS One,
- **1612** 2013. **8**(7): p. e68450.

- 1613 82. Killip, M.J., M. Smith, D. Jackson, and R.E. Randall, *Activation of the interferon*1614 *induction cascade by influenza a viruses requires viral RNA synthesis and nuclear*1615 *export.* J Virol, 2014. 88(8): p. 3942-52.
- 1616 83. Amorim, M.-J., E.K. Read, R.M. Dalton, L. Medcalf, and P. Digard, *Nuclear Export*1617 of Influenza A Virus mRNAs Requires Ongoing RNA Polymerase II Activity. Traffic,
 1618 2007. 8(1): p. 1-11.
- 1619 84. Read, E.K.C. and P. Digard, *Individual influenza A virus mRNAs show differential*1620 *dependence on cellular NXF1/TAP for their nuclear export*. Journal of General
 1621 Virology, 2010. 91(5): p. 1290-1301.
- 1622 85. Iwai, A., T. Shiozaki, T. Kawai, S. Akira, Y. Kawaoka, A. Takada, H. Kida, and T.
- Miyazaki, *Influenza A virus polymerase inhibits type I interferon induction by binding to interferon beta promoter stimulator 1*. J Biol Chem, 2010. 285(42): p. 32064-74.
- 1625 86. Graef, K.M., F.T. Vreede, Y.F. Lau, A.W. McCall, S.M. Carr, K. Subbarao, and E.
- 1626 Fodor, The PB2 subunit of the influenza virus RNA polymerase affects virulence by
- 1627 *interacting with the mitochondrial antiviral signaling protein and inhibiting*
- 1628 *expression of beta interferon.* J Virol, 2010. **84**(17): p. 8433-45.
- 1629 87. Carr, S.M., E. Carnero, A. Garcia-Sastre, G.G. Brownlee, and E. Fodor,
- 1630 *Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza*
- 1631 *viruses*. Virology, 2006. **344**(2): p. 492-508.

1632