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Abstract

A policymaker discloses public information to interacting agents who also acquire

costly private information. More precise public information reduces the precision and cost

of acquired private information. Considering this effect, what disclosure rule should the

policymaker adopt? We address this question under two alternative assumptions using

a linear-quadratic-Gaussian game with arbitrary quadratic material welfare and convex

information costs. First, the policymaker knows the cost of private information and adopts

an optimal disclosure rule to maximize the expected welfare. Second, the policymaker is

uncertain about the cost and adopts a robust disclosure rule to maximize the worst-case

welfare. Depending on the elasticity of marginal cost, an optimal rule is qualitatively the

same as in the case of either a linear information cost or exogenous private information.

The worst-case welfare is strictly increasing if and only if full disclosure is optimal under

some information costs, which provides a new rationale for central bank transparency.
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1 Introduction

Consider a policymaker (such as a central bank) who discloses public information to interact-

ing agents (such as firms and consumers) who also acquire costly private information. The

policymaker’s concern is social welfare, including the agents’ cost of information acquisition.

When the policymaker provides more precise public information, the agents have less incentive

to acquire private information, reducing its precision and cost. This effect of public information

is referred to as the crowding-out effect (Colombo et al., 2014). Less private information can

be harmful to welfare, but less information cost is beneficial; that is, the welfare implication of

the crowding-out effect is unclear. Then, what disclosure rule should the policymaker adopt?

We address this question under two alternative assumptions. First, the policymaker correctly

anticipates the agents’ acquisition of private information. A disclosure rule is optimal if it

maximizes the expected welfare. Second, the policymaker is uncertain about the precision and

cost of acquired private information. A disclosure rule is robust if it maximizes the worst-case

welfare. This article obtains both rules and discusses the difference between them.

Our model is a three-stage game based on a symmetric linear-quadratic-Gaussian (LQG)

game with a continuum of agents, where a payoff function is quadratic and an information

structure is Gaussian. In period 1, the policymaker chooses the precision of public information.

Social welfare (i.e., the policymaker’s objective function) is a material benefit minus the agents’

information cost, and the material benefit is an arbitrary quadratic function such as the aggregate

payoff. In period 2, each agent chooses the precision of (conditionally independent) private

information. The cost of information is increasing and convex in the precision of private

information. In period 3, each agent observes private and public signals and chooses an

action. The last-period subgame is the game studied by Angeletos and Pavan (2007), and the

second-period subgame is the game studied by Colombo et al. (2014).

In our analysis, volatility (the variance of the average action) and dispersion (the variance

of individual actions around the average action) play an essential role in two ways. First, the

welfare (in the equilibrium of the second-period subgame) is represented as a linear combination

of the volatility and the dispersion minus the cost of information. Next, our key tool is marginal

welfare with respect to dispersion (MWD). The MWD is the change in the welfare resulting

from an increase in the precision of public information that induces a one-unit decrease in

the dispersion. Indeed, the dispersion decreases with public information because it equals the

difference between the variance and the covariance of individual actions, and more precise public
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information brings them closer. In contrast, the volatility increases with public information

because it equals the covariance of individual actions, and more precise public information

increases the correlation coefficient and the covariance.

The MWD has a useful representation: it equals the weighted average of the MWDs under

a linear information cost and under exogenous private information, where the relative weights

are one and the elasticity of marginal information cost, respectively. The elasticity of marginal

cost measures the degree of convexity in the cost function. It takes the minimum value of zero

when the cost function is linear, and the crowding-out effect is largest in this case (Ui, 2014).

Therefore, the social value of public information has the same sign as that under the largest

crowding-out effect if the elasticity is small enough and under no crowding-out effect if the

elasticity is large enough.

This result leads us to identify an optimal disclosure rule, which qualitatively coincides with

the case of either the largest crowding-out effect (a linear information cost) or no crowding-

out effect (exogenous private information), depending on the elasticity of marginal cost. In

both cases, the following holds. The welfare necessarily increases with public information if

the volatility’s coefficient is positive and relatively large compared to the dispersion’s one, in

which case full disclosure is optimal. On the other hand, the welfare necessarily decreases with

public information if the volatility’s coefficient is negative and relatively small compared to the

dispersion’s one, in which case no disclosure is optimal. This result is attributed to the fact that

more precise public information increases the volatility and decreases the dispersion. In other

cases, partial disclosure can also be optimal.

We next consider a robust disclosure rule. The policymaker is uncertain about the agents’

cost function and evaluates the precision using the worst-case welfare, which is the infimum

of the expected welfare over the collection of all convex cost functions. The worst-case cost

function must be linear because the total cost under a linear cost function is highest among

all convex cost functions with the same marginal cost at the same equilibrium precision of

private information. Based on this observation, we show that the worst-case welfare necessarily

increases with public information if and only if the volatility’s coefficient is positive, in which

case full disclosure is robust. This is true even when there exists a cost function such that the

welfare can decrease with public information.

One example is a Cournot game (Vives, 1988), where a measure of material benefit is the

total profit. Full disclosure is robust, whereas no disclosure can be optimal under a strictly
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convex cost. Another example is a beauty contest game (Morris and Shin, 2002), where a

measure of material benefit is the negative of the mean squared error of an action from the state.

The worst-case welfare necessarily increases with public information, whereas the welfare can

decrease under a strictly convex cost or in the case of exogenous private information (Morris

and Shin, 2002). The detrimental effect of public information in the latter case prompted the

debate on central bank transparency and has been challenged by many papers (Svensson, 2006;

Angeletos and Pavan, 2004; Hellwig, 2005; Cornand and Heinemann, 2008; Colombo and

Femminis, 2008). Our result contributes to this debate by providing a new rationale for central

bank transparency: more precise public information is beneficial to the worst-case welfare.

This paper is organized as follows. Section 2 introduces the model and discusses equilibria

in subgames. We identify optimal disclosure in Section 3 and robust disclosure in Section 4.

Section 5 is devoted to applications to a Cournot game and a beauty contest game. The last

section concludes the paper. All proofs are relegated to the appendices.

1.1 Related literature

This paper is related to two strands of the literature on Bayesian persuasion and information

design.1 The first incorporates costly information acquisition by a receiver into the Bayesian

persuasion framework (Kamenica and Gentzkow, 2011). Lipnowski et al. (2020) and Bloedel

and Segal (2020) consider a rationally inattentive receiver who can learn less information than

what a sender provides, with substantially different modeling assumptions.2 On the other

hand, Bizzotto et al. (2020) and Matysková and Montes (2021) consider a receiver who can

acquire additional information after receiving a sender’s signal, which is closer in spirit to our

model. One of their findings is that additional information acquisition can be detrimental to the

sender and the receiver. In the aforementioned papers, the sender’s payoff is independent of the

receiver’s information cost. In our paper, the sender’s concern is social welfare, including the

information cost.

The second strand of the literature incorporates the sender’s ambiguity about the receiver’s

sources of information. In Kosterina (2021), the sender and receiver have different priors, and

1See survey papers by Bergemann and Morris (2019) and Kamenica (2019) among others.
2In Bloedel and Segal (2020), a receiver learns about a state by paying costly attention to the sender’s signals.

In Lipnowski et al. (2020), a receiver acquires information about a state itself, but it is less than the information

provided by the sender in the sense of Blackwell, followed by Wei (2021) and Lipnowski et al. (2020).
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the receiver’s prior is unknown to the sender. In Hu and Weng (2021) and Dworczak and Pavan

(2020), they have a common prior, but the receiver may exogenously observe additional private

information that is unknown to the sender. Hu and Weng (2021) characterize the worst-case

optimal signals under various degrees of ambiguity. Dworczak and Pavan (2020) focus on

the case of full ambiguity and introduce a novel lexicographic approach to a robust solution

of Bayesian persuasion. The sender first identifies all signals that are worst-case optimal.

From these signals, the sender chooses the one that maximizes the sender’s payoff under some

conjecture (e.g., there is no private information). In the papers mentioned above, the receiver’s

sources of information are assumed to be exogenous. In our paper, the sender faces ambiguity

about the receivers’ costly information acquisition. Thus, not only the precision but also the

cost of private information is unknown to the sender.

While the models in the above papers are based on the Bayesian persuasion framework,

our model is an extension of a symmetric LQG game3 with a continuum of agents (Angeletos

and Pavan, 2007). Bergemann and Morris (2013) characterize the set of all Bayes correlated

equilibria in this game and advocate a problem of finding optimal ones.4 Ui and Yoshizawa

(2015) solve the problem by adopting a quadratic objective function. They also study optimal

disclosure of public information in the case of exogenous private information. On the other

hand, the present paper considers the case of endogenous private information by incorporating

the information provision stage into the model of Colombo et al. (2014), which integrates the

symmetric LQG game and information acquisition with a convex information cost. A Cournot

game with a linear cost (Li et al., 1987; Vives, 1988) and a beauty contest game with a linear

or convex cost (Colombo and Femminis, 2008; Ui, 2014) are special cases of the model in

Colombo et al. (2014). Colombo et al. (2014) compare the equilibrium precision of private

information with the socially optimal one, where the aggregate net payoff is a measure of

welfare. They show that the social value of public information is less than that in the case of

exogenous private information if and only if the equilibrium precision of private information is

inefficiently low. They also provide a sufficient condition for the social value to be positive. In

contrast, the present study gives a necessary and sufficient condition and obtains optimal and

3Its origin goes back to the seminal paper by Radner (1962). See Vives (2008).
4Ui (2020) considers information design in general LQG games by formulating it as semidefinite programming.
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robust disclosure of public information.56

2 The model

There are a policymaker and a continuum of agents indexed by i ∈ [0, 1]. The policymaker

knows a random variable θ parametrizing the underlying state and provides agents with public

information about θ. At the same time, each agent endogenously acquires private information

about θ. More specifically, we consider the following three-period setting. In period 1, the

policymaker chooses the precision of public information. In period 2, each agent chooses

the precision of private information given that of public information. In period 3, each agent

observes private and public signals and chooses an action in a symmetric linear-quadratic-

Gaussian (LQG) game.

Let y = θ + εy and xi = θ + εi be public and private signals of agent i, respectively, where

εy, εi, and θ are independently and normally distributed with

E[θ] = θ̄, E[εy] = E[εi] = 0, var[θ] = τ−1
θ , var[εy] = τ−1

y , var[εi] = τ−1
i .

We refer to τy and τi as the precision of public information and that of private information,

respectively. The policymaker chooses τy in period 1 at no cost. Agent i chooses τi in period 2 at a

cost of C(τi). We assume that C(τi) is a strictly increasing convex function: C(0) = 0, C′(τi) > 0,

and C′′(τi) ≥ 0. We denote the elasticity of marginal cost by ρ(τi) ≡ τiC′′(τi)/C′(τi) ≥ 0, which

will play an essential role in our analysis.

In period 3, agent i chooses a real number ai ∈ R as his action. We write a = (ai)i∈[0,1] and

a−i = (a j) j!i. Agent i’s payoff to a is symmetric and quadratic in a and θ:

ui(a, θ) = − a2
i + 2αai

∫ 1

0
a j dj + 2βθai + h(a−i, θ), (1)

where α, β ∈ R are constant and h(a−i, θ) is a measurable function. The best response is the

interim expected value of a linear combination of the average action and the state:

E
[
α

∫
a j dj + βθ

###xi, y
]
. (2)

5Other models of information acquisition in symmetric LQG games are studied by Mackowiak and Wiederholt

(2009), Hellwig and Veldkamp (2009), Myatt and Wallace (2012, 2015), Denti (2020), Rigos (2020), and Hébert

and La’O (2021), among others.
6Myatt and Wallace (2019) and Leister (2020) study information acquisition in network LQG games.
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This game exhibits strategic complementarity if α > 0 and strategic substitutability if α < 0.

We assume α < 1, which guarantees the existence and uniqueness of a symmetric equilibrium

in the last-period subgame when τi = τj for all i ! j. We also assume β > 0 without loss of

generality. Agent i chooses τi and ai in periods 2 and 3 to maximize the expected value of his

payoff function ui(a, θ) − C(τi).

A welfare function is given by a material benefit minus the aggregate information cost

v(a, θ) −
∫

C(τj)dj,

where v(a, θ) is symmetric and quadratic in a and θ; that is,

v(a, θ) = c1

∫ 1

0
a2

j dj + c2

(∫ 1

0
a j dj

)2

+ c3θ

∫ 1

0
a j dj + c4

∫ 1

0
a j dj + c5, (3)

where c1, c2, c3, c4, c5 ∈ R are constant. A typical case is the aggregate payoff (when h(a−i, θ) is

a quadratic function), as considered by Colombo et al. (2014). The policymaker chooses τy to

maximize the expected welfare in period 1.

The subgames

The last-period subgame has the following symmetric equilibrium (Angeletos and Pavan, 2007).7

Lemma 1. When τi = τx for all i, the last-period subgame has a unique symmetric equilibrium.

Agent i’s equilibrium strategy is σi(xi, y) = bx(xi − θ̄) + by(y − θ̄) + βθ̄/(1 − α), where

bx =
β

(1 − α)τx + τy + τθ
· τx, by =

β

(1 − α)τx + τy + τθ
·
τy

1 − α .

In a symmetric equilibrium of the second-period subgame, the precision of private informa-

tion is determined by the following first-order condition (Colombo et al., 2014).8

Lemma 2. Assume that all the opponents choose the same precision τj = τx for all j ! i

in the second-period subgame and follow the unique symmetric equilibrium strategy σj in the

last-period subgame. Agent i’s marginal benefit of choosing τi evaluated at τi = τx is

d
dτi

Eτi [ui((bri(τi),σ−i), θ)]
####
τi=τx

=
b2

x

τ2
x
=

β2(
(1 − α)τx + τy + τθ

)2 , (4)

7See Ui and Yoshizawa (2013) for the relationship between this result and the result of Radner (1962).
8Using the envelope theorem, we can ignore the change in bri(τi) in evaluating the left-hand side of (4). Thus, the

marginal benefit is reduced to the partial derivative of Eτi [ui(σ, θ)] with respect to τi holding fixed the equilibrium

strategy profileσ because bri(τx) = σi . When we regard ui(σ, θ) as a quadratic function of εi , the expected value of

the linear term equals zero. Thus, the marginal benefit equals d
dτi

Eτi [ui(σ, θ)]
!!!
τi=τx

= − d
dτi

Eτi [σ2
i ]
!!!
τi=τx

= b2
x/τ2

x .
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where bri(τi) ≡ Eτi [α
∫
σj dj + βθ |xi, y] is the best response to σ−i = (σj) j!i and Eτi is the

expectation operator when player i’s precision is τi.

By Lemma 2, the first-order condition for the precision in a symmetric equilibrium is

β2(
(1 − α)τx + τy + τθ

)2 = C′(τx). (5)

Note that the marginal benefit is strictly decreasing in τx and τy, whereas the marginal cost

is increasing in τx . Thus, the equilibrium precision is the unique value of τx solving (5) if

C′(0) < β2/(τy + τθ)2 and zero if C′(0) ≥ β2/(τy + τθ)2. We denote the equilibrium precision

by φ(τy).

If C is linear with a marginal cost c > 0, i.e., C(τx) = cτx , then φ(τy) is given by9

φ0
c(τy) ≡




(
β/
√

c − τy − τθ
)
/(1 − α) if c < β2/(τy + τθ)2,

0 if c ≥ β2/(τy + τθ)2.
(6)

If C is nonlinear, φ(τy) does not have a closed-form expression, so we will rely on its inverse

φ−1(τx) in our analysis: for τx > 0,

φ−1(τx) = −(1 − α)τx − τθ + β/
√

C′(τx). (7)

Because φ′ = (dφ−1/dτx)−1 < 0, an increase in the precision of public information results

in a decrease in the precision of private information, as shown by Colombo et al. (2014). This

effect is referred to as the crowding-out effect of public information on private information,10

which is illustrated in Figure 1. It is known that the crowding-out effect is largest when C is

linear, as stated in the following lemma (Ui, 2014).

Lemma 3. Let φ(τy) be the equilibrium precision under a strictly convex cost function. If

φ(τy) = φ0
c(τy) > 0, then dφ0

c(τy)/dτy < dφ(τy)/dτy < 0, where φ0
c(τy) is the equilibrium

precision under a linear cost function with a marginal cost c > 0.

9This expression is obtained by Li et al. (1987) and Vives (1988) for Cournot games and Colombo and Femminis

(2008) for beauty contest games.
10A similar effect is also found in Colombo and Femminis (2008), Wong (2008), Hellwig and Veldkamp (2009),

and Myatt and Wallace (2012), among others. On the other hand, Cai and Dong (2021) discuss the crowd-in effect

of public information.
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MC (convex)

MC (linear)

MB

τx

Figure 1: The marginal benefit curve and the marginal cost curve. The horizontal axis is the

τx-axis. An increase in the precision of public information shifts the marginal benefit curve

down, by which the equilibrium precision decreases.

The whole game

Given the equilibrium of the second-period subgame, the policymaker chooses the precision of

public information to maximize the expected welfare in period 1, which is calculated as

E[v(σ, θ)] − C(τx) = c1var[σi] + c2cov[σi,σj] + c3cov[σi, θ] − C(τx) + const. (8)

by (3) and Lemma 1, where τx = φ(τy).

We rewrite (8) using volatility and dispersion of actions. The volatility is the variance of

the average action
∫
σj dj, and the dispersion is the variance of the idiosyncratic difference

σi −
∫
σj dj. As shown by Bergemann and Morris (2013), the volatility equals the covariance

of actions, cov[σi,σj], and the dispersion equals the difference between the variance and the

covariance of actions, var[σi] − cov[σi,σj].

Note that the first three terms in (8) are linearly dependent because var[σi] = αcov[σi,σj]+

βcov[σi, θ] by (2).11 Hence, we can rewrite (8) as an affine function of var[σi] and cov[σi,σj],

which is also an affine function of the volatility and dispersion (Ui and Yoshizawa, 2015).

Lemma 4. When the precision of private and public information is (τx, τy) and the agents follow

the unique symmetric equilibrium in the last-period subgame, the expected welfare equals

W(τx, τy) ≡ ζD(τx, τy) + ηV(τx, τy) − C(τx) (9)

11We can obtain this by mulitplying both sides of (2) by ai and taking the expectation.
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plus a constant, where ζ = c1 + c3/β, η = c1 + c2 + (1 − α)c3/β, and

V(τx, τy) =
b2
y

τy
+
(bx + by)2

τθ
=
β2 ((1 − α)2τ2

x + 2(1 − α)τxτy + τy
(
τθ + τy

) )
(1 − α)2τθ

(
(1 − α)τx + τy + τθ

)2 , (10)

D(τx, τy) =
b2

x

τx
=

β2τx(
(1 − α)τx + τy + τθ

)2 (11)

are the volatility and the dispersion, respectively.

The policymaker maximizes W(φ(τy), τy) with respect to τy in equilibrium. Thus, optimal

disclosure is determined by the cost function C and the coefficients of volatility and dispersion

η and ζ (i.e., constants independent of τx and τy).

Using a similar representation, Ui and Yoshizawa (2015) characterize optimal disclosure

under exogenous private information in terms of the ratio of η to ζ . As will be demonstrated

in the next section, the representation (9) plays a more critical role in the case of endogenous

private information.

3 Information disclosure with known information costs

In Section 3.1, we evaluate the sign of the derivative of the expected welfare

dW(φ(τy), τy)
dτy

= ζ
dD(φ(τy), τy)

dτy
+ η

dV(φ(τy), τy)
dτy

−
dC(φ(τy))

dτy
(12)

in terms of ζ , η, and the elasticity of marginal cost ρ. This derivative is referred to as the

social value of public information. In Section 3.2, we obtain the optimal precision of public

information that maximizes W(φ(τy), τy) assuming an isoelastic cost function.

3.1 The social value of public information

Because φ does not have a closed-form expression, (12) is not easy to calculate. Thus, we divide

(12) by |dD/dτy | and evaluate its sign instead. This value is denoted by MWD(τy) and referred

to as the marginal welfare with respect to dispersion (MWD):

MWD(τy) ≡
dW(φ(τy), τy)

dτy
/
####dD(φ(τy), τy)

dτy

####.
Note that MWD(τy) and dW(φ(τy), τy)/dτy have the same sign.

To understand what MWD(τy) measures, observe that more precise public information

decreases the dispersion. This is because the dispersion equals the difference between the
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variance and the covariance of actions, and more precise public information brings the variance

and the covariance closer. Therefore, when the precision of public information increases by

|dD/dτy |−1, the dispersion decreases by one, and the welfare increases by MWD(τy). In fact,

we have

D(τx, τy) = τxC′(τx), (13)
dD(φ(τy), τy)

dτy
= (1 + ρ)C′(τx)φ′(τy) < 0 (14)

for τx = φ(τy) > 0 by (5) and (11), where ρ = ρ(τx).

If either C is linear or private information is exogenous, the MWD is directly calculated.

Lemma 5. Suppose that φ(τy) > 0. When C is linear, the MWD is a constant

MWD
0 ≡ η/(1 − α) − ζ + 1.

When τx = φ(τy) is fixed, the MWD is

MWD
∗(τy) ≡ −

∂W(τx, τy)
∂τy

/
∂D(τx, τy)
∂τy

####
τx=φ(τy)

= η
3(1 − α)φ(τy) + τy + τθ

2(1 − α)2φ(τy)
− ζ . (15)

Moreover, when C is nonlinear, the MWD is represented as the weighted average of those

in the above special cases, MWD
0 and MWD

∗(τy), where the relative weights are one and the

elasticity of marginal cost, respectively. Because the crowding-out effect is largest when C

is linear (see Lemma 3), the MWD equals the weighted average of those under the largest

crowding-out effect and no crowding-out effect.

Proposition 1. Suppose that φ(τy) > 0. Then,

MWD(τy) =
MWD

0 + ρMWD
∗(τy)

1 + ρ
,

where ρ = ρ(φ(τy)).

In summary, the social value of public information has the same sign as MWD
0 if the

crowding-out effect is sufficiently large (with small ρ) and MWD
∗(τy) if the crowding-out

effect is sufficiently small (with large ρ). In particular, when MWD
0 > 0 > MWD

∗(τy), the

sign is positive if the crowding-out effect is large enough, while negative under exogenous

private information. In other words, the crowding-out effect can turn the social value of public

information from negative to positive if and only if MWD
0 > 0 > MWD

∗(τy). Similarly, the
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crowding-out effect can turn the social value of public information from positive to negative if

and only if MWD
0 < 0 < MWD

∗(τy).

We restate Proposition 1 using (ζ, η) and

MVD(τy) ≡
dV(φ(τy), τy)

dτy
/
####dD(φ(τy), τy)

dτy

####,
which is referred to as the marginal volatility with respect to dispersion (MVD).

Corollary 2. Suppose that φ(τy) > 0. Then,

MWD(τy) = ηMVD(τy) − ζ +
1

1 + ρ
, (16)

where ρ = ρ(φ(τy)). The MVD is given by

MVD(τy) =
MVD

0 + ρMVD
∗(τy)

1 + ρ
> 0, (17)

where MVD
0 ≡ 1/(1 − α) is the MVD when C is linear, and

MVD
∗(τy) ≡

3(1 − α)φ(τy) + τy + τθ
2(1 − α)2φ(τy)

>
3

2(1 − α) > MVD
0 (18)

is the MVD when τx = φ(τy) is fixed.

According to Corollary 2, a change in the welfare is broken down into the following: when

the precision of public information increases by |dD/dτy |−1, the volatility term increases by

ηMVD(τy), the dispersion term decreases by ζ , and the information cost decreases by 1/(1+ ρ).

Note that MVD(τy) ≥ MVD
0 > 0; that is, the MVD is strictly positive. This is because more

precise public information increases the covariance of actions, which equals the volatility.

Consequently, more precise public information increases the welfare if η is sufficiently large

compared to ζ and decreases the welfare if η is sufficiently small compared to ζ .

When C is linear, the MVD is smallest, and the cost reduction 1/(1 + ρ) is largest. In other

words, the crowding-out effect induces a smaller increase in the volatility and a larger decrease

in the cost. Thus, when η > 0, the crowding-out effect can turn the sign of the social value of

public information for either of two reasons: from negative to positive due to a larger decrease

in the cost, and from positive to negative due to a smaller increase in the volatility.

As another corollary of Proposition 1, we provide the ranges of η guaranteeing MWD(τy) > 0

and guaranteeing MWD(τy) < 0, respectively, which will be used in the study of optimal

disclosure.

12



Corollary 3. Let

η(ζ, ρ) ≡ 2(1 − α) ((1 + ρ)ζ − 1)
3ρ + 2

.

For τy ≥ 0 with φ(τy) > 0, MWD(τy) > 0 if η > max{η(ζ, ρ), 0}, and MWD(τy) < 0 if

η < min{η(ζ, ρ), 0}, where ρ = ρ(φ(τy)).

3.2 The optimal disclosure of public information

We consider the optimal precision of public information in the following sense, which constitutes

a subgame perfect equilibrium of our model.

Definition 1. The precision of public information τ∗y ∈ R+ ∪ {∞} is optimal if

W(φ(τ∗y ), τ∗y ) = sup
τy

W(φ(τy), τy).

We say that full disclosure is optimal if τ∗y = ∞, no disclosure is optimal if τ∗y = 0, and partial

disclosure is optimal if τ∗y > 0 is finite.

We can obtain the optimal precision by using Proposition 1 and identifying all local optima.

To simplify the discussion, we focus on the case of an isoelastic cost function,

C(τx) = cτλ+1
x /(λ + 1), (19)

where λ = ρ(τx) ≥ 0 and c > 0 are constant. Under this assumption, the cost in the second-

period subgame is proportional to the dispersion by (13):

C(φ(τy)) = D(φ(τy), τy)/(λ + 1). (20)

Using Corollary 2, we can rewrite MWD(τy) as a linear function of MVD
∗(τy),

MWD(τy) =
ηλ

λ + 1
MVD

∗(τy) − ζ +
η/(1 − α) + 1
λ + 1

,

which depends on τy only through MVD
∗(τy). Note that MVD

∗(τy) is increasing in τy and goes to

infinity as τy goes to infinity. Thus, if η > 0, then MWD(τy) is increasing in τy and MWD(τy) > 0

for sufficiently large τy. This implies that full disclosure is optimal if MWD(0) > 0 (see Figure

2a), which is the case if η > max{η(ζ, λ), 0} by Corollary 3; otherwise, no disclosure can be

optimal (see Figure 2b). Similarly, if η < 0, then MWD(τy) is decreasing in τy and MWD(τy) < 0

for sufficiently large τy. This implies that no disclosure is optimal if MWD(0) < 0 (see Figure

13



(a) Case (i) (b) Case (ii)

(c) Case (iii) (d) Case (iv)

Figure 2: The graph of the welfare as a function of the precision.

2c), which is the case if η < min{η(ζ, λ), 0} by Corollary 3; otherwise, paritial disclosure is

optimal (see Figure 2d).

The following characterization of the optimal precision follows from the above discussion,

which is illustrated in Figure 3.

Proposition 4. Assume an isoelastic cost function (19). Then, the following holds.

(i) Suppose that η > max{η(ζ, λ), 0}. Then, dW(φ(τy), τy)/dτy > 0 for all τy. Thus, the

optimal precision is ∞.

(ii) Suppose that 0 < η < η(ζ, λ). Then, dW(φ(τy), τy)/dτy ≶ 0 for τy ≶ τ̄y, where

τ̄y ≡ φ−1(τ̄x) = τ̄z − τθ,

τ̄z ≡


β/
√

c if λ = 0,

τ̄x(1 − α)(3λ + 2)(η(ζ, λ) − η)/(ηλ) if λ > 0,
(21)

τ̄x ≡
(

βλη

2c1/2 (1 − α) ((1 − α) ((1 + λ)ζ − 1) − (1 + λ)η)

)2/(λ+2)
. (22)

Thus, the optimal precision is ∞ if τθ ≥ τ̄z and either 0 or ∞ if τθ < τ̄z.

(iii) Suppose that η < min{η(ζ, λ), 0}. Then, dW(φ(τy), τy)/dτy < 0 for all τy. Thus, the

optimal precision is 0.

(iv) Suppose that 0 > η > η(ζ, λ). Then, dW(φ(τy), τy)/dτy ≷ 0 for τy ≶ τ̄y. Thus, the optimal

precision is max{0, τ̄y}.
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(i) welafare is increasing

(iii) welfare is decreasing

(ii)

(iv)

η

ζ

Figure 3: The four cases on the ζ-η plane. The upward sloping line is the graph of η = η(ζ, λ).

Full disclosure is optimal in the region (i). Full or no disclosure is optimal in the region (ii).

No disclosure is optimal in the region (iii). Partial or no disclosure is optimal in the region (iv).

Note that, even in the case of (ii), full disclosure is optimal if τ̄y < 0. For example, this

is the case if the cost function is linear and the marginal cost is sufficiently large. Indeed,

τ̄y = β/
√

c − τθ < 0 for c > β2/τ2
θ by (21) when λ = 0. This observation is summarized in the

following result and will be used in the next section.

Corollary 5. Suppose that η ! 0. Let λ = 0 and c > β2/τ2
θ . Then, full disclosure is optimal if

and only if η > 0.

We can also consider the gross expected welfare excluding the information cost. From (20),

the gross welfare is represented as

Wg(φ(τy), τy) ≡ ζD(φ(τy), τy) + ηV(φ(τy), τy)

= (ζ + 1/(λ + 1))D(φ(τy), τy) + ηV(φ(τy), τy) − C(φ(τy)). (23)

Thus, we can use Proposition 4 by replacing ζ with ζ + 1/(λ + 1).

4 Information disclosure with unknown information costs

Assume that the policymaker does not know what cost function the agents have. Even in

this case, if the welfare increases with public information regardless of a cost function, the

policymaker prefers more precise public information. In Section 4.1, we identify the class of

welfare functions having this property. If a welfare function is not in this class, under what

condition should the policymaker provide more precise public information? In Section 4.2,
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we address this question by assuming that the policymaker evaluates the precision of public

information in terms of the worst-case welfare.

4.1 Positive (negative) social value regardless of a cost function

We identify the class of welfare functions such that dW(φ(τy), τy)/dτy > 0 regardless of

a cost function. According to Corollary 3, if η > max{η(ζ, ρ), 0} for all ρ ≥ 0, then

dW(φ(τy), τy)/dτy > 0 for an arbitrary cost function with φ(τy) > 0, which is valid for any τy.

By elaborating on this argument, we obtain the following proposition.

Proposition 6. The following three statements are equivalent.

(i) There exists τy ≥ 0 such that, for any cost function with φ(τy) > 0, dW(φ(τy), τy)/dτy > 0.

(ii) For any cost function and any τy with φ(τy) > 0, dW(φ(τy), τy)/dτy > 0.

(iii) (ζ, η) satisfies

η




≥ 0 if ζ ≤ 0,

≥ η(ζ,∞) = 2(1 − α)ζ/3 if 0 < ζ < 3,

> η(ζ, 0) = (1 − α)(ζ − 1) if ζ ≥ 3.

Similarly, the following three statements are equivalent.

(i’) There exists τy ≥ 0 such that, for any cost function with φ(τy) > 0, dW(φ(τy), τy)/dτy < 0.

(ii’) For any cost function and any τy with φ(τy) > 0, dW(φ(τy), τy)/dτy < 0.

(iii’) (ζ, η) satisfies

η



< η(ζ, 0) = (1 − α)(ζ − 1) if ζ ≤ 1,

≤ 0 if ζ > 1.

Figure 4 illustrates the classes of welfare functions identified by Corollary 6 on the ζ-η

plane. Regardless of a cost function, the welfare increases with public information if (ζ, η) is in

the upper-left area; the welfare decreases with public information if (ζ, η) is in the lower-right

area. If (ζ, η) is not in these areas, there exists a cost function such that the welfare is not a

monotone function.
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welfare is increasing

welfare is decreasing

Figure 4: The welfare effects of public information under an arbitrarily cost function.

4.2 The robust disclosure of public information

Consider a policymaker with a welfare function that does not satisfy either condition in Propo-

sition 6. Assume that the policymaker evaluates the precision of public information in terms of

the worst-case welfare, which is the infimum of the expected welfare over the collection of all

convex cost functions. We denote the collection by

Γ ≡ {C : R+ → R+ | C(0) = 0, C′(τx) > 0, C′′(τx) ≥ 0 for all τx ≥ 0}.

For each C ∈ Γ, we write φC(τy) for the precision of private information when the cost function

is C and the precision of public information is τy. We also consider the subcollection of cost

functions such that the precision of private information is less than or equal to κ ∈ R++ ∪ {∞}

for all τy, which is given by

Γκ ≡ {C ∈ Γ | φC(τy) ≤ κ for all τy} = {C ∈ Γ | C′(κ) ≥ β2/((1 − α)κ + τθ)2}.

The above equality follows from the first-order condition for the precision (5). Note that Γ = Γ∞
and Γκ ⊇ Γκ′ if κ ≥ κ′.

For each τy, let

Fκ(τy) ≡ inf
C∈Γκ

W(φC(τy), τy)

be the infimum of the expected welfare over Γκ. We consider Fκ(τy)with κ < ∞ as well as κ = ∞

for two reasons. First, the agents may not be able to acquire perfectly accurate information.

Second, F∞(τy) is constant if the marginal cost is zero and the agents choose τx = ∞ in the

worst-case scenario, i.e., F∞(τy) = W(∞, τy) < ∞, which can be the case for some welfare

functions.
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The policymaker chooses the precision of public information that maximizes the worst-case

welfare, which is said to be robustly optimal or robust for short.

Definition 2. The precision of public information τ∗y ∈ R+ ∪ {∞} is κ-robust if

Fκ(τ∗y ) = sup
τy

Fκ(τy).

We say that τ∗y is robust if τ∗y is κ-robust for all κ ∈ R++ ∪ {∞}.

A key observation is that the worst-case cost function is linear. This is because if a linear cost

function and a strictly convex cost function have the same marginal cost at the same equilibrium

precision of private information in the second-period subgame, the total cost is greater for the

former than the latter. Moreover, when the cost function is linear, the dispersion equals the cost

by (20). Therefore, the worst-case welfare has the following representation.

Lemma 6. For each τy ≥ 0 and κ ∈ R+ ∪ {∞},

Fκ(τy) = inf
τx≤κ

W0(τx, τy), (24)

where W0(τx, τy) ≡ ηV(τx, τy) + (ζ − 1)D(τx, τy) is the expected welfare when the cost function

is linear and the precision of acquired private information is τx in the second-period subgame.

By this lemma, if W0(τx, τy) is monotone in τy for each τx , then Fκ(τy) is also monotone in

τy for each κ < ∞. Thus, using the MWD in the case of exogenous private information, we can

obtain a sufficient condition for the monotonicity of the worst-case welfare and robustness of

full or no disclosure.

Proposition 7. The following holds.

(i) Suppose that η > 0 and η ≥ 2(1 − α)(ζ − 1)/3. Then, W0(τx, τy) is strictly increasing

in τy for each τx . Thus, Fκ(τy) is strictly increasing for each κ ∈ R+ ∪ {∞}. The robust

precision is ∞.

(ii) Suppose that η < 0 and η ≤ 2(1−α)(ζ −1)/3. Then, W0(τx, τy) is strictly decreasing in τy

for each τx . Thus, Fκ(τy) is strictly decreasing for each κ < ∞, while F∞(τy) is constant.

The robust precision is 0.

It is clear that the worst-case welfare is increasing if the welfare is increasing regardless of

cost functions, but the converse is not true. For example, if limλ→∞ η(ζ, λ) = 2(1 − α)ζ/3 >
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η > 2(1 − α)(ζ − 1)/3 > 0, then the worst-case welfare is increasing by Proposition 7, so

full disclosure is robust. However, no disclosure can be optimal if λ is sufficiently large by

Proposition 4. Such an example will be discussed in Section 5.1.

Similarly, the worst-case welfare is decreasing if the welfare is decreasing regardless of cost

functions, but the converse is not true. For example, if 0 > 2(1−α)(ζ−1)/3 > η > (1−α)(ζ−1) =

η(ζ, 0), then the worst-case welfare is decreasing by Proposition 7, so no disclosure is robust.

However, partial disclosure is optimal if λ is sufficiently small by Proposition 4.

Even if W0(τx, τy) is not monotone in τy, we can identify robust disclosure by directly

calculating (24).

Proposition 8. The following holds.

(i) Suppose that 0 < η < 2(1 − α)(ζ − 1)/3. Then, Fκ(τy) is strictly increasing for each

κ ∈ R+ ∪ {∞}. The robust precision is ∞.

(ii) Suppose that 0 > η > 2(1 − α)(ζ − 1)/3 and κ < ∞. Then, Fκ(τy) is strictly increasing

for τy < g(κ) and strictly decreasing for τy > g(κ), where

g(κ) ≡ −(1 − α)(3η − 2(1 − α)(ζ − 1))κ/η − τθ .

The κ-robust precision is max{g(κ), 0}, which equals 0 if g(κ) ≤ 0, i.e., κ ≤ −τθη/((1 −

α)(3η − 2(1 − α)(ζ − 1))). If κ = ∞, the following holds.

(a) If η ≤ (1 − α)(ζ − 1)/2, F∞(τy) is constant.

(b) If η > (1 − α)(ζ − 1)/2, F∞(τy) is strictly increasing. The ∞-robust precision is ∞.

In summary, full disclosure is robust if and only if η > 0, which is true if and only if

full disclosure is optimal under some linear cost function by Corollary 5. In this case, robust

disclosure is more informative than optimal disclosure. If η < 0 and η ≤ 2(1 − α)(ζ − 1)/3, no

disclosure is robust, where robust disclosure is not necessarily more informative than optimal

disclosure. If 0 > η > 2(1 − α)(ζ − 1)/3, κ-robust precision is increasing in κ, and there is no

robust precision. Figure 5 illustrates the classes of welfare functions identified by Propositions

7 and 8 on the ζ-η plane.
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worst-case welfare is increasing

worst-case welfare is decreasing

Figure 5: The effects of public information on the worst-case welfare. The worst-case welfare

necessarily increases with public information if (ζ, η) is in the upper area; it necessarily decreases

if (ζ, η) is in the lower-right area.

5 Applications

5.1 Cournot games

Consider a Cournot game with a continuum of firms. Firm i produces ai units of a homogeneous

product at a quadratic cost a2
i . An inverse demand function is θ − δ

∫
a j dj, where δ > 0 is

constant and θ is normally distributed. Then, firm i’s profit is
(
θ − δ

∫
a j dj

)
ai − a2

i ,

which is (1) withα = −δ/2 and β = 1/2. When the information cost is linear in the precision, the

second-period subgame is the game studied by Li et al. (1987) and Vives (1988). Let W(τx, τy) be

the net total profit, i.e., the expected total profit minus the information cost. Then, by Lemma 4,

W(τx, τy) has a representation (9) with (ζ, η) = (1, 1); that is, W(τx, τy) = var[σi] − C(τx).

The optimal and robust precision of public information is given by the following corollary

of Propositions 4 and 7.

Corollary 9. Consider a Cournot game with an isoelastic information cost function (19). If

λ = 0 or δ < δ∗(λ) ≡ 1 + 2λ−1, the net profit necessarily increases with public information.

If δ > δ∗(λ), the net profit can decrease with public information. Full disclosure is optimal if

δ < δ∗∗(λ) ≡ 2
√
(1 + λ−1)(1 + λ−1 + τθ/φ(0))+2λ−1, and no disclosure is optimal if δ > δ∗∗(λ).

On the other hand, full disclosure is robust for all δ > 0.

More precise public information can decrease the net profit if δ > δ∗(λ), and no disclosure

is optimal if δ > δ∗∗(λ) > δ∗(λ), where the price elasticity of demand is sufficiently small.
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A related result is reported in the case of exogenous private information by Bergemann and

Morris (2013) and Ui and Yoshizawa (2015), which corresponds to the limit as λ approaches

infinity, and the intuition behind the result is essentially the same. When δ is large, the game

exhibits strong strategic substitutability, so the ratio of the coefficient of private information to

that of public information in the equilibrium strategy, bx/by = (1 + δ)τx/τy, is large. Thus,

the dispersion term is dominant in the net profit, which is decreasing in the precision of public

information.

Note that δ∗(λ) is decreasing in λ with the supremum ∞ and the infimum 1. Thus, for any

fixed δ > 0, δ < δ∗(λ) for sufficiently small λ, and δ > δ∗(λ) for sufficiently large λ if δ > 1.

In other words, more precise public information can be harmful if λ is sufficiently large but

beneficial if λ is sufficiently small, which is attributed to a large reduction in the information

cost under the crowding-out effect, as discussed in Section 3.1.

5.2 Beauty contest games

Let α = r ∈ (0, 1) and β = 1 − r in (1). The best response is the conditional expectation of the

weighted mean of the state and the aggregate action, E[(1− r)θ + r
∫

a j dj |xi, y]. The welfare is

the negative of the mean squared error of an action from the state minus the information cost:

W(τx, τy) = −E[(σi − θ)2] − C(τx),

which has a representation (9) with (ζ, η) = (1 + r, 1 − r) by Lemma 4. This game is referred

to as a beauty contest game. It is clear that full disclosure is optimal, but more precise public

information can be harmful, as shown by Morris and Shin (2002) in the case of exogenous

private information and by Ui (2014) in the case of endogenous private information. The

following result is a special case of Proposition 4.

Corollary 10. Consider a beauty contest game with an isoelastic cost function (19). If r <

r∗(λ) ≡ (λ/2+1)/(λ+1), the welfare necessarily increases with public information. If r > r∗(λ),

the welfare can decrease with public information.

Suppose that λ > 0. Then, the welfare can decrease if r is sufficiently close to one because

r∗(λ) < 1. However, if λ = 0, i.e., the cost function is linear, then r∗(λ) = 1, so the welfare

necessarily increases for all r ∈ (0, 1), as shown by Colombo and Femminis (2008). Note that

r∗(λ) is decreasing in λ with the supremum 1 and the infimum 1/2 (see Figure 6). Thus, for any
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Figure 6: The graphs of r∗(λ) and rg(λ).

fixed r ∈ (1/2, 1), r < r∗(λ) for sufficiently small λ, and r > r∗(λ) for sufficiently large λ; that

is, more precise public information can be harmful if λ is sufficiently large but beneficial if λ is

sufficiently small.

Colombo et al. (2014) apply their result to a beauty contest game and show that the crowding-

out effect can turn the social value of public information from negative to positive, but never

from positive to negative. As discussed in Section 3.1, this is the case if and only if MWD
0 >

0 > MWD
∗(τy), and indeed, MWD

0 = 1 − r > 0 and MWD
∗(τy) < 0 for sufficiently small τy

and r > 1/2.

We also consider the gross welfare Wg(τx, τy) = −E[(σi − θ)2], which has a representation

(9) with (ζ, η) = (1 + r + 1/(λ + 1), 1 − r) by (23). The following result on the gross welfare is

a consequence of Proposition 4.

Corollary 11. Consider a beauty contest game with an isoelastic cost function (19). If r <

rg(λ) ≡ λ/(2(λ + 1)) = r∗(λ) − 1/(λ + 1), the gross welfare necessarily increases with public

information. If r > rg(λ), the gross welfare can decrease with public information.

Note that rg(λ) is increasing in λ with the infimum 0 and the supremum 1/2 (see Figure 6).

Thus, for any fixed r ∈ (0, 1/2), r > rg(λ) for sufficiently small λ, and r < rg(λ) for sufficiently

large λ; that is, more precise public information can be harmful to the gross welfare if λ is

sufficiently small but beneficial if λ is sufficiently large, which is due to a small increase in the

volatility caused by the crowding-out effect, as discussed in Section 3.1.

Finally, we consider the worst-case welfare using Proposition 7.

Corollary 12. The worst-case expected welfare necessarily increases with public information.

The result gives an alternative perspective to the debate on central bank transparency

prompted by Morris and Shin (2002). Because their finding is presented as an anti-transparency
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result, it is challenged by many papers. Svensson (2006) demonstrates that more precise public

information is harmful only in very special circumstances. Other papers extend the original

model in different directions and show that more precise public information is beneficial in

their extended models (Angeletos and Pavan, 2004; Hellwig, 2005; Cornand and Heinemann,

2008; Colombo and Femminis, 2008).12 Corollary 12 provides a new rationale for central bank

transparency: more precise public information is beneficial to the worst-case welfare. This is

because the worst-case welfare is equal to the infimum of the expected welfare over all linear

cost functions, and the expected welfare with a linear information cost necessarily increases

with public information, as shown by Colombo and Femminis (2008).

6 Conclusion

This article studies the optimal and robust disclosure of public information to agents who also

acquire costly private information. Depending on the elasticity of marginal cost, an optimal rule

is qualitatively the same as the case of either the largest crowding-out effect (a linear information

cost) or no crowding-out effect (exogenous private information). If the volatility has a positive

coefficient in the welfare, either full or no disclosure is optimal, whereas only full disclosure

is robust. Thus, a robust rule is more informative than an optimal rule, which provides an

alternative rationale for central bank transparency in the context of beauty contest games. On

the other hand, if the volatility has a negative coefficient, either no or partial disclosure is

optimal and robust, where a robust rule is not necessarily more informative.

We assume the policymaker incurs no cost in providing public information throughout the

analysis, but we can directly incorporate a cost of public information into our analysis. To study

optimal costly disclosure, it is enough to compare the marginal cost and the social value of

public information (i.e., the MWD times the absolute value of the marginal dispersion). An

optimal rule under costly provision must be less informative than the optimal rule discussed in

this paper. A detailed comparison is left for future research.

We focus on the disclosure of public information because a policymaker such as a central

bank makes a public announcement in conducting policy. However, a policymaker may also

be interested in providing private information using information technology. Building on our

12James and Lawler (2011) show that welfare necessarily decreases with public information when a policymaker

has a direct influence on payoffs as well as announces public information.
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framework, we can study an optimal combination of public and private information in the

following setting: the policymaker chooses the precision of public and private information, and

each agent determines the additional precision of private information. A study of this model is

also left for future research.

The crucial assumption in this article is the convexity of a cost function. Even in the case of

a concave cost, the MWD is represented as the weighted average of the two special cases, and we

can use it similarly to study the optimal disclosure of public information. Contrary to the case

of a convex cost, however, the elasticity of marginal cost is negative, and the crowding-out effect

is larger than the case of a linear cost. A typical concave cost is Shannon’s mutual information

used in the literature of rational inattention (Sims, 2003). In Ui (2022), we identify optimal

disclosure of public information in the case of the mutual information based on Rigos (2020)

and Denti (2020).

Appendix A Proofs for Section 3.1

Proof of Lemma 5. We can obtain MWD(τy) by calculating dV/dτy, dD/dτy, and dC/dτy.

Suppose that C is linear. Then, by (6), (10), and (11),

V(ψc(τy), τy) =
β2/τθ + c(τy + τθ) − 2β

√
c

(1 − α)2
, D(ψc(τy), τy) =

β
√

c − c(τy + τθ)
1 − α .

Thus, we have dV(ψc(τy), τy)/dτy = c/(1 − α)2 and dD(ψc(τy), τy)/dτy = dC(ψc(τy))/dτy =

−c/(1 − α), by which we obtain MWD
0.

For arbitrary C, let τx = φ(τy). Then, by (10) and (11),

−
∂V(τx, τy)
∂τy

/
∂D(τx, τy)
∂τy

=
3(1 − α)τx + τy + τθ

2(1 − α)2τx
, (A.1)

by which we obtain MWD
∗(τy). □

Proof of Proposition 1 and Corollary 2. By Lemma 5, MWD
0 = ηMVD

0 − ζ + 1 with MVD
0 =

1/(1 − α), and MWD
∗ = ηMVD

∗ − ζ with (18). Thus, Proposition 1 and Corollary 2 are

equivalent. We prove Corollary 2.

We first establish (17). Let τx = φ(τy) > 0. By plugging (7) into (10), we have

V(τx, φ−1(τx)) =
β2/τθ − (1 − α)τxC′(τx) − β

√
C′(τx)

(1 − α)2
,
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which implies

dV(φ(τy), τy)
dτy

=
dV(τx, φ−1(τx))

dτx
φ′(τy)

=

(
−C′(τx)

1 − α − τxC′′(τx)
(

1
1 − α +

β

2(1 − α)2τx
√

C′(τx)

))
φ′(τy) > 0.

By dividing this by (14) and using ρ = τxC′′(τx)/C′(τx), we obtain

dV(φ(τy), τy)
dτy

/
dD(φ(τy), τy)

dτy
= − 1

1 + ρ

(
1

1 − α + ρ
(

1
1 − α +

β

2(1 − α)2τx
√

C′(τx)

))
.

This implies (17) because MVD
0 = 1/(1 − α) by Lemma 5 and

MVD
∗(τy) =

1
1 − α +

β

2(1 − α)2τx
√

C′(τx))
, (A.2)

which we can obtain by plugging (7) into (A.1 ).

To complete the proof, it remains to show (16). By (14), we have

dC(φ(τy))
dτy

/
dD(φ(τy), τy)

dτy
= C′(τx)φ′(τy)/

dD(φ(τy), τy)
dτy

=
1

1 + ρ
,

which implies (16). □

Proof of Corollary 3. Because MVD
∗(τy) > 3/(2(1 − α)) by Corollary 2, if η > 0, then

MWD(τy) > F(ζ, η, ρ) ≡ MVD
0 + 3ρ/(2(1 − α))

1 + ρ
η− ζ + 1

1 + ρ
=

3ρ + 2
2(1 − α)(1 + ρ)η− ζ +

1
1 + ρ

.

The unique value of η solving F(ζ, η, ρ) = 0 is η(ζ, ρ). Thus, if η > max{η(ζ, ρ), 0},

then MWD(τy) > F(ζ, η, ρ) > F(ζ, η(ζ, ρ), ρ) = 0. Similarly, if η < min{η(ζ, ρ), 0}, then

MWD(τy) < F(ζ, η, ρ) < F(ζ, η(ζ, ρ), ρ) = 0. □

Appendix B Proofs for Section 3.2

Proof of Proposition 4. Corollary 3 implies (i) and (iii). We prove (ii) and (iv).

Suppose that λ = 0. Note that φ(τy) > 0 if and only if τy < β/
√

c − τθ by (6). Thus,

when τy < β/
√

c − τθ , dW/dτy > 0 if and only if MWD
0 > 0 by Lemma 5, where MWD

0 =

(η − η(ζ, 0))/(1 − α) because η(ζ, 0) = (1 − α)(ζ − 1). When τy ≥ β/
√

c − τθ , dW/dτy > 0 if

and only if η > 0 because W(φ(τy), τy) = W(0, τy) = ηV(0, τy). This establishes the proposition

in the case of λ = 0.
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Suppose that λ > 0. Plugging (A.2 ) into (17) and (16), we have

MWD(τy) = η
(

1
1 − α +

λβ

2(1 + λ)(1 − α)2φ(τy)
√

C′(φ(τy))

)
− ζ + 1

1 + λ
(A.3)

because ρ = λ. If MWD(τy) = 0 has a solution τ̄y, τ̄x = φ(τ̄y) satisfies

τ̄x
√

C′(τ̄x) = c1/2(τ̄x)(λ+2)/2 =
βλη

2 (1 − α) ((1 − α) ((1 + λ)ζ − 1) − (1 + λ)η) (A.4)

by (A.3 ), which implies (22). In addition,

τ̄z = φ
−1(τ̄x) + τθ = τ̄x

(
−(1 − α) + β/

(
τ̄x
√

C′(τ̄x)
))
= τ̄x

(1 − α)(3λ + 2)(η(ζ, η) − η)
λη

by (7) and (A.4 ), which is (21). Note that τ̄z > 0 if and only if either 0 < η < η(ζ, λ) or

0 > η > η(ζ, λ). In each case, MWD(τy) = 0 has a solution τ̄y = τ̄z − τθ if τ̄z > τθ , which

establishes (ii) and (iv). □

Appendix C Proofs for Section 4.1

Proof of Proposition 6. We prove the first half of the proposition by showing (i) ⇒ (iii) ⇒ (ii)

because (ii) ⇒ (i) is obvious. The proof for the second half is similar, so we omit it.

We show (i) ⇒ (iii). Suppose (i) holds: for τy > 0, MWD(τy) > 0 for any cost function

with φ(τy) > 0. By Proposition 1, MWD(τy) equals MWD
0 if ρ = 0, and MWD(τy) can be

arbitrarily close to MWD
∗(τy) when ρ is sufficiently large. Thus, we must have MWD

0 > 0

and MWD
∗(τy) ≥ 0 for any cost function. Note that MWD

∗(τy) ≥ 0 for any cost function if

and only if η ≥ max{2(1 − α)ζ/3, 0} = max{η(ζ,∞), 0} because the infimum of MVD
∗(τy) is

3/(2(1−α)) and the supremum is infinity by Corollary 2. Note also that MWD
0 > 0 if and only

if η > (1 − α)(ζ − 1) = η(ζ, 0) by Lemma 5. These conditions are summarized as (iii).

We show (iii) ⇒ (ii). Suppose (iii) holds. Then, MWD
0 > 0 and MWD

∗(τy) ≥ 0 by the

above argument. Thus, MWD(τy) > 0 if φ(τy) > 0 by Proposition 1, which implies (ii). □

Appendix D Proofs for Section 4.2

We first prove Lemma 6.

Proof of Lemma 6. Fix τy. Let C ∈ Γκ be such that φC(τy) = τx ∈ (0, κ]. Note that C′(τx) =

c ≡ β2/((1 − α)τx + τy + τθ)2 by (5). Define C̃ ∈ Γ by C̃(τ′x) = cτ′x for τ′x ≤ τx and
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C̃(τ′x) = C(τ′x)−C(τx)+ cτx for τ′x ≥ τx . Note that C̃′(τ′x) = C′(τ′x) for all τ′x ≥ τx . This implies

that C̃ ∈ Γκ and φC̃(τy) = φC(τy) = τx . Note that C′(τ′x) ≤ C′(τx) = c for τ′x ≤ τx since C is

convex. Thus, it holds that C(τx) =
∫ τx
0 C′(t)dt ≤

∫ τx
0 cdt = cτx = C̃(τx), and

W(φC(τy), τy) ≥ ηV(τx, τy) + ζD(τx, τy) − C̃(τx) = ηV(τx, τy) + ζD(τx, τy) − cτx = W0(τx, τy)

by (20). This holds with equality if φC(τy) = 0; that is, W(0, τy) = W0(0, τy) = ηV(0, τy) since

D(0, τy) = 0. Consequently, we have infC∈Γκ W(φC(τy), τy) = infτx≤κW0(τx, τy) because, for

each τx ≤ κ, there exists C ∈ Γκ with φC(τy) = τx . □

To prove Propositions 7 and 8, we also use the following lemma, which is calculated from

(10) and (11) (a similar result appears in Ui and Yoshizawa (2015)).

Lemma A. The following holds.

∂W0/∂τy ≷ 0 ⇔ (3η − 2(1 − α)(ζ − 1))τx + η
(
τy + τθ

)
/(1 − α) ≷ 0,

∂W0/∂τy = 0 ⇔ τy = g(τx) ≡ −(1 − α)(3η − 2(1 − α)(ζ − 1))τx/η − τθ,

∂W0/∂τx ≷ 0 ⇔ (2η − (1 − α)(ζ − 1))τx + (ζ − 1)(τy + τθ) ≷ 0,

∂W0/∂τx = 0 ⇔ τx = f (τy) ≡ −(ζ − 1)(τy + τθ)/(2η − (1 − α)(ζ − 1)).

Proof of Proposition 7. Suppose that η > 0 and η ≥ 2(1 − α)(ζ − 1)/3. Consider Fκ with

κ < ∞. By Lemma A, ∂W0/∂τy > 0. For τ0
y < τ

1
y , there exist τ0

x and τ1
x such that W0(τ0

x , τ
0
y ) =

infτx≤κW0(τx, τ0
y ) = Fκ(τ0

y ) and W0(τ1
x , τ

1
y ) = infτx≤κW0(τx, τ1

y ) = Fκ(τ1
y ) by Lemma 6 since

W0 is continuous and κ < ∞. Then, Fκ(τ0
y ) = W0(τ0

x , τ
0
y ) ≤ W0(τ1

x , τ
0
y ) < W0(τ1

x , τ
1
y ) = Fκ(τ1

y ).

Thus, Fκ is strictly increasing. Next, we consider F∞. Note that ∂W0/∂τx > 0 if and only if

τx > f (τy) by Lemma A since

2η − (1 − α)(ζ − 1) ≥



2(η − 2(1 − α)(ζ − 1)/3) > 0 if ζ − 1 > 0,

2η > 0 if ζ − 1 ≤ 0.

Thus, F∞(τy) = infτx≤∞ W0(τx, τy) < W0(∞, τy). Consequently, F∞(τ0
y ) < F∞(τ1

y ) for τ0
y < τ

1
y

because there exists κ < ∞ such that F∞(τ0
y ) = Fκ(τ0

y ) and F∞(τ1
y ) = Fκ(τ1

y ); that is, F∞ is

strictly increasing.

Suppose that η < 0 and η ≤ 2(1 − α)(ζ − 1)/3. By a similar argument, Fκ with κ < ∞ is

strictly decreasing. Consider F∞. Note that ∂W0/∂τx < 0 if and only if τx > f (τy) by Lemma A

since 2η − (1−α)(ζ − 1) < 0. Thus, F∞(τy) = min{W0(0, τy),W0(∞, τy)} = W0(∞, τy) because

we can directly verify that W0(0, τy) > W0(∞, τy). That is, F∞ is constant. □
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Proof of Proposition 8. Suppose that 0 < η < 2(1 − α)(ζ − 1)/3. Note that ζ − 1 > 0. Then,

Fκ(τy) = min{W0(0, τy),W0(κ, τy)} by Lemma A. Because

W0(κ, τy) − W0(0, τy) =
β2κ(ηκ + (ζ − 1)(τy + τθ))

(τy + τθ)((1 − α)κ + τy + τθ)2
> 0,

we have Fκ(τy) = W0(0, τy) = ηV(0, τy), which is strictly increasing in τy.

Suppose that 0 > η > 2(1 − α)(ζ − 1)/3. Note that ζ − 1 < 0. If 2η ≤ (1 − α)(ζ − 1), then

∂W0/∂τx < 0 by Lemma A. Thus, Fκ(τy) = W0(κ, τy), and F∞(τy) = W0(∞, τy) is constant.

Assume that κ < ∞. Then, ∂Fκ(τy)/∂τy = ∂W0(κ, τy)/∂τy ≷ 0 for τy ≶ g(κ) by Lemma A.

Thus, τy = max{g(κ), 0} is κ-robust.

If 2η > (1−α)(ζ −1), then ∂W0/∂τx ≶ 0 for τx ≶ f (τy) and f (τy) > 0 by Lemma A. Thus,

Fκ(τy) = W0( f (τy), τy) if f (τy) ≤ κ and Fκ(τy) = W0(κ, τy) if f (τy) > κ. By direct calculation,

we have
dW0( f (τy), τy)

dτy
=

β2(2η − (1 − α)(ζ − 1))2
4(1 − α)2(τy + τθ)2(η − (1 − α)(ζ − 1))

> 0

because η > (1 − α)(ζ − 1)/2 > (1 − α)(ζ − 1). That is, Fκ(τy) is strictly increasing if

f (τy) ≤ κ. On the other hand, f −1(κ) − g(κ) = −2κ(η − (1 − α)(ζ − 1))2/((ζ − 1)η) < 0

because (ζ − 1)η > 0. This implies that ∂W0(κ, τy)/∂τy > 0 if f −1(κ) ≤ τy ≤ g(κ) because

∂W0/∂τy ≷ 0 for τy ≶ g(τx) by Lemma A. Therefore, τy = max{g(κ), 0} is κ-robust. □

Appendix E Proofs for Section 5

Proof of Corollary 9. When (ζ, η) = (1, 1), η(ζ, λ) = (δ + 2)λ/(3λ + 2) and η − η(ζ, λ) =

(λ(1 − δ) + 2)/(3λ + 2). Thus, η > max{η(ζ, λ), 0} if and only if λ = 0 or δ < δ∗(λ), and

0 < η < η(ζ, λ) if and only if δ > δ∗(λ). In addition, W(φ(∞),∞) ≷ W(φ(0), 0) if and only if

δ ≶ δ∗∗(λ) since

W(φ(∞),∞) − W(φ(0), 0) =
φ(0)

(
−ρδ2 + 4δ + 4ρ + 8

)
+ 4(ρ + 1)τθ

(δ + 2)2(ρ + 1)((δ + 2)φ(0) + 2τθ)2
.

Finally, full disclosure is robust because (ζ, η) = (1, 1) satisfies (i) in Proposition 7. □

Proof of Corollary 10. When (ζ, η) = (1+r, 1−r), η(ζ, η) = 2(1 − r)((1 + r)λ + r)/(3λ + 2) >

0, so η > η(ζ, η) if and only if r < r∗(λ). □

Proof of Corollary 11. When (ζ, η) = (1+r+1/(λ+1), 1−r), η(ζ, η) = 2(1+λ)(1−r2)/(3λ + 2),

so η > η(ζ, η) if and only if r < rg(λ). □
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