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Abstract

Machine learning is a data processing technique that automatically extracts essential infor-
mation from data to allow computers to perform intelligent tasks (e.g., regression analysis,
image classification, image generation, and decision making in non-stationary environments).
An important approach to this is approximating the probability distribution that generated
the data with the model we have in mind. In order to do so, it is necessary to define closeness
between probability distributions.

In this thesis, we deal with the optimal transport (OT) problem, which has attracted
much attention as a measure of closeness of probability distributions in the field of machine
learning. Intuitively, OT can be formulated as viewing a probability distribution as a pile of
sand and transferring one pile of sand to another pile of sand with minimal cost.

Due to the heavy computation of the ordinary OT, one of the common approaches to
accelerate the computation of OT is to regularize the ordinary OT problem with an entropic
penalty term and use the celebrated Sinkhorn algorithm to approximate the OT. However,
since the Sinkhorn algorithm runs a projection associated with the Kullback-Leibler diver-
gence; it is often vulnerable to outliers.

To overcome this problem, we propose regularizing OT with the β-potential term as-
sociated with the so-called β-divergence, which was developed in robust statistics. Our
theoretical analysis reveals that the β-potential can prevent the probability mass from being
transported to outliers. We experimentally demonstrate that the transport matrix computed
with our algorithm helps estimate a probability distribution robustly even in the presence
of outliers and can detect outliers from a contaminated dataset.
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Chapter 1

Introduction

In this chapter, we will first introduce optimal transport (OT) in the context of machine
learning (ML) field. Subsequently, we introduce the celebrated Sinkhorn algorithm, which
made OT popular in the ML field and show its vulnerability to outlier data. Finally, we will
briefly introduce our approach to approximate OT robustly.

1.1 Optimal transport in machine learning

In the machine learning field, problems are often formulated by defining a discrepancy be-
tween probability distributions [2, 3, 4]. As a major discrepancy, the Kullback-Leibler (KL)
divergence [5] has been widely used since minimizing the KL divergence of an empirical
distribution from a parametric model corresponds to maximum likelihood estimation [6].
However, the KL-divergence suffers from some problems. For instance, the KL-divergence
of p from q can not work as a discrepancy when the support of p is not completely included
in the support of q because the KL-divergence of p from q will diverge to infinity. Moreover,
the KL-divergence does not satisfy the axioms of the metrics in a probability space [7]. On
the other hand, optimal transport (OT) [8] does not suffer from these problems. OT does
not require any conditions on the support of probability distributions and thus is expected
to be more stable than the KL-divergence, which means it does not diverge to infinity. In
addition, OT of two distributions is a metric in the probability space and therefore OT
defines a proper distance between histograms and probability measures [9]. By defining the
distance structure between histograms, the barycenter of some histograms can be defined.
Applications using the barycenter of histograms have been reported in image processing [10]
and color modifications [11].

1.2 Vulnerability of optimal transport theory to outliers

Due to heavy computation of the ordinary OT, one of the common approaches to accelerate
computation of OT is to regularize the ordinary OT problem with an entropic penalty term
(Boltzmann-Shannon entropy [12]) and use the Sinkhorn algorithm [13] to approximate the
OT [14]. The entropic penalty makes the objective strictly convex, ensuring the existence
of a unique global optimal solution. The Sinkhorn algorithm projects this global optimal
solution onto a set of couplings in terms of the KL-divergence [12].
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However, the Sinkhorn algorithm is sensitive to outliers and cannot approximate OT
robustly. In our pilot study, we confirmed that the Sinkhorn algorithm cannot compute
approximate OT robustly when outliers are included in the dataset. We first computed an
approximated OT between n̂1 and n̂2, which are both sets of 500 samples drawn from N (0, 1).
The approximate OT computed with the Sinkhorn algorithm was 0.44. Subsequently, we
added 10 outliers which are all 70 to n̂2. Then, an approximated OT computed with the
Sinkhorn algorithm drastically changed to 96.37. This is due to the coupling constraint of
OT. An OT value changes drastically because probability mass has to be sent even to the
outliers. Figure 1.1 shows the heatmap of the computed transport matrix with the Sinkhorn
algorithm. We can see that it transports probability mass to the outliers.

The sensitivity of the Sinkhorn algorithm may lead to undesired solutions in probabilistic
modeling when we deal with noisy and adversarial datasets [15, 16]. In this thesis, we propose
to mitigate the outlier sensitivity of the Sinkhorn algorithm by regularizing OT with the β-
potential term instead of the Boltzmann-Shannon entropy [12]. This formulation can be
regarded as a projection based on the β-divergence [17, 18, 19], approximately satisfying
the coupling constraint. With some computational tricks, our algorithm is guaranteed not
to move any probability mass to outliers (Figure 1.2). In the same pilot study above, the
approximated OT computed with our algorithm was 0.008 before adding the outliers and
after adding outlliers, it was 0.0078. Through numerical experiments, we demonstrate that
our proposed method can be applied to estimating probability distributions ignoring outliers.
Moreover, we show several applications of the proposed method such as the estimation of
the reward distribution [20] in reinforcement learning (RL) and outlier detection.

1.3 Organization of our thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce the formulation of
continuous and discrete OT and some previous works that have studied OT’ robustness. In
Chapter 3, we introduce the framework of convex regularization of discrete OT (CROT) [12].
More specifically, we review the theoretical background of the CROT, where we introduce the
basics of convex analysis, the Bregman divergences, and the alternate Bregman projections.
Subsequently, we formulate the CROT and present some algorithms to compute the solution
to it. In Chapter 4, we first define outliers, which helps us approximate OT robustly. After
that, we propose our algorithm, which robustly approximates OT, and we show its theoretical
properties. In Chapter 5, we first show some toy experiments which demonstrate that our
algorithm robustly approximates OT. Next, we show several applications of the proposed
method, such as estimating the reward distribution [20] in reinforcement learning (RL) and
outlier detection. Finally, we conclude our thesis in Chapter 6.
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Outliers

(a) The heatmap of the transport matrix computed with the Sinkhorn algorithm.

Outliers

Inliers

(b) The magnified version of the above figure of the outlier area. We can see that probability mass are
moved to the outliers.

Figure 1.1: The heatmap of the transport matrix computed with the Sinkhorn algorithm. We
computed two sets of samples n̂1 and n̂2 which are both 500 samples drawn from
N (0, 1). One set has 10 oultliers which are all 70.
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Outliers

(a) The heatmap of the transport matrix computed with our algorithm.

Outliers

Inliers

(b) The magnified version of the above figure of the outlier area. We can see that our algorithm does not
send any probability mass to outliers.

Figure 1.2: The heatmap of the transport matrix computed with our algorithm. We computed
two sets of samples n̂1 and n̂2 which are both 500 samples drawn from N (0, 1). One
set has 10 oultliers which are all 70.
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Chapter 2

Formulation of Optimal
Transport and Previous Works

In this chapter, we first introduce the formulation of OT. Then, we present two groups of
previous studies investigating the robustness of OT. One is an approach that exploits the
duality of OT. The other is to regularize OT with a total variation norm and derive an
equivalent formulation that can be computed efficiently. Finally, we introduce a study that
presents a unified framework for convex regularization of discrete OT, on which our work is
based. We explain why this framework overcomes existing methods’ shortcomings and helps
compute OT robustly.

2.1 Formulation of optimal trasport problem

In this section, we show the continuous formulation of OT and the discrete formulation of
OT. In general, if we say continuous optimal transport, we mean the classical Kantorovich
formulation [21], a relaxed formulation of the original form introduced by Monge [22]. Since
Monge’s formulation has proved hard to study [9], we will discuss the Kantorovich formula-
tion in this thesis as many studies in the machine learning field do [23, 1, 24, 25, 26, 27].

2.1.1 Formulation of continuous OT

Continuous OT is a problem to obtain the minimum-cost way to transport a mass from a
probability distribution u on X to another distribution v on X . Formally, the Kantorovich
formulation of OT is written as follows:

W(u, v) := min
Π∈F(u,v)

EX1,X2∼Π[c(X1, X2)]

= min
Π∈F(u,v)

∫ ∫
c(x, y)Π(x, y)dxdy, (2.1)

where F(u, v) is the set of couplings between u and v (probibility distributions on X × X
whose marginals are u and v) and c is a cost function. In this thesis, we assume c(x, y) to
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satisfy the axiom of distance and non-negativity as follows:

c(x, y) = 0 ⇐⇒ x = y, (2.2)

c(x, y) = c(y, x), (2.3)

c(x, y) ≤ c(x, z) + c(z, y), (2.4)

c(x, y) ≥ 0. (2.5)

Especially, in the machine learning field, the Wasserstein distance is often used [23, 28, 29].
The p-Wasserstein distance is defined as follows:

Wp(u, v) = min
Π∈F(u,v)

(∫ ∫
||x− y||pΠ(x, y)dxdy

) 1
p

, (2.6)

where p ∈ [1,∞).

2.1.2 Formulation of discrete OT

Intuitively, discrete optimal tranport is about delivering items from m ∈ N suppliers to n ∈ N
consumers. Each supplier and consumer has supply 1

m and demand 1
n respectively. Suppose

we have two sets of independent samples drawn from two distributions Px and Py which are
defined on the same domain and let them be {xi}mi=1 and {yj}nj=1. We write the empirical

probability measures from these two samples by P̂x := 1
m

∑m
i=1 xiδxi and P̂y := 1

n

∑n
i=1 yiδyi

,
where δx is the delta function at position x. We denote a distance between samples by a
non-negative function h(xi−yj) and let γ ∈ Rm×n

+ (γij = h(xi−yj) be the distance matrix.

We also define a transport matrix by π ∈ {T |T ∈ Rm×n
+ ,T1 = 1

m ,T
⊤1 = 1

n} =: G(
1
m ,

1
n ) ,

where Rm×n
+ is a set of real numbers larger than 0 and 1 is a vector whose elements are all

1, and π⊤ is the transpose of π. Then, OT between the two empirical distributions P̂x and
P̂y is defined as follows [9]:

OT(P̂x|P̂y) := min
π∈G( 1

m , 1n )

∑
i,j

πijγij . (2.7)

In order to keep the notation concise, we denote the Frobenius inner product between two
matrices π,γ ∈ Rm×n by

〈π,γ〉 :=
∑
i,j

πi,jγi,j . (2.8)

We can say that OT is the Frobenius inner product between two matrices.

2.2 Previous works to compute approximate OT robustly

In this section, we show some previous works which have studied the robustness of OT
[30, 31, 1, 24, 25]. Some of them focused on making robust methods to compute approximate
OT that works well in machine learning applications [1, 24, 25]. Since the vulnerability is
due to the coupling constraint of the transport matrix, they all took an approach to relax
it. Balaji et al. [1] and Staerman et al. [24] have introduced methods that leverage dual
formulations of their subspecies of OT. Mukerjee et al. [25] have introduced a formulation
of OT called ROBOT (ROBust Optimal Transport), which regularizes the OT with a total-
variation norm.
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2.2.1 Methods using the dual formulation

Chizat et al. [30] have introduced the so-called unbalanced OT, which relaxes the marginal
constraint of OT. For instance, they have proposed one such relaxation using the f -divergence
on marginal distributions, which are defined as follows:

Wub(u, v) := min
Π∈Ff (ũ,ṽ)

∫
c(x, y)Π(x, y)dxdy +Df (ũ||u) +Df (ṽ||v), (2.9)

where Df is the f -divergence between distributions, defined as Df (P ||Q) =
∫
f( dPdQ )dQ.

Furthermore, Liero et al. [31] derived a dual form for the problem. Let f be a convex lower

semi-continuous function. Define r∗(x) := supa>0
x−f(a)

a . Then,

Wub(u, v) = max
f,g

∫
f(x)u(x)dx+

∫
g(y)v(y)dy (2.10)

s.t. r∗(f(x)) + r∗(g(y)) ≤ c(x, y),

where f and g are 1-Lipschitz fuctions. In practice, f and g are implemented using a neural
network and the 1-Lipschitz constraint is enforced using weight clipping [32] or a penalty on
the gradients [33]. Hence, one benefit to consider the dual problem is that one can easily
implement an end-to-end scheme in machine learning applications.

Balajit et al. [1] have shown that using the dual optimization (2.10) in large-scale deep
learning applications such as the Wasserstein GAN [23] results in poor convergence and
unstable behavior. They introduced a slightly different form of (2.9) as follows:

Wrob
ρ1,ρ2(u, v) := min

ũ,ṽ∈Prob(X )
min

π∈Π(u,v)

∫ ∫
c(x, y)π(x, y)dxdy (2.11)

s.t.Df (ũ||u) ≤ ρ1, Df (ṽ||v) ≤ ρ2.

Here, Prob(X ) denote the space of probability measures defined on X . In this formulation,
one optimizes over the couplings whose marginal constraints are the relaxed distributions
ũ and ṽ. To prevent over-relaxation of the marginals, they imposed a constraint that the
f -divergence between the relaxed and the true marginals are bounded by constraints ρ1 and
ρ2. Furthermore, they derived the dual form of this formulation as follows:

Wrob
ρ1,ρ2(u, v) = min

ũ,ṽ
max

D∈1−Lip

∫
D(x)ũ(x)dx−

∫
D(y)ṽ(y)dy (2.12)

s.t.Df (ũ||u) ≤ ρ1, Df (ṽ||v) ≤ ρ2.

Here, 1-Lip denotes the set of all 1-Lipshitz functions. However, there are still shortcomings
in this method. One has to choose hyper-parameters ρ1 and ρ2 properly to compute the OT
robustly. It can only be estimated when the proportion of the contamination data is known
[1], which is a rare case. Moreover, their method is based on the optimization package
CVXPY [34] and does not scale to large samples, which yields a serious computational
bottleneck.

Staerman et al. [24] introduced an idea to use Median-of-Means (MoM) [35, 36, 37] in
OT. Specifically, they have leveraged the Kantorovich-Rubinstein formulation [38], a dual
formulation of the 1-Wasserstein distance as follows:

W1(u, v) = sup
f∈BL

EX∼u[f(X)]− EX∼v[f(X)], (2.13)
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where BL is the unit ball of the Lipschitz functions space. Their main contribution was to
estimate EX∼u[f(X)] and EX∼v[f(X)] robustly. Given an i.i.d. sample X = {X1, . . . , Xn}
drawn from u, the MoM estimator of EX∼u[f(X)] is built as follows. First, choose KX ≤ n,
and partition X into KX disjoint blocks BX1 , . . . ,BXKX

of size BX = n/KX. Then, emprical
means are computed on each of the KX blocks and the estimator returned is finally the
median of the empirical means. Formally, the MoM estimator of EX∼u[f(X)] is given as
follows:

MoMX[Φ] = med
1≤k≤KX

{ 1

BX

∑
i∈BX

k

f(Xi)
}
. (2.14)

The same is true for estimating EX∼v[f(X)].
However, the primal optimization problem is unclear in this method and therefore hard

to interpret as OT. Moreover, it can not compute the transport matrix explicitly.

2.2.2 Regularization of OT with a total-variation norm

Mukherjee et al. [25] have proposed a formulation to allow for modifications of u in (2.1),
while penalizing their magnitude and ensuring that the modified u is still a probability mea-
sure. Their optimization problem titled ROBOT (ROBust Optimal Transport) is formally
written as follows:

minΠ,s
∫ ∫

c(x, y)Π(x, y)dxdy + λ||s||TV (2.15)

s.t.
∫
π(x, y)dy = u(x) + s(x) ≥ 0,∫

π(x, y)dx = v(y),∫
s(x)dx = 0,

where || · ||TV is the total-variation norm defined as ||u||TV = 1
2

∫
|u(x)|dx. The first and the

last constraints ensure that u+ s is a valid probability measure, while λ||s||TV penallizes the
amount of modifications in u. One can identify exact locations in u by inspecting u+ s, i.e..
if u(x) + s(x) = 0, then x is an outlier.

Since (2.15) has constraints, it is hard to compute efficiently. They introduced an equiv-
alent formulation of (2.15) to remedy this issue. The equivalent formulation is as follows:

minΠ∈F(u,v) E(X,Y )∼Π[Cλ(X,Y )], (2.16)

where Cλ is the truncated cost function defined as Cλ(x, y) = min{c(x, y), 2λ}. This formu-
lation enables one to use existing stochastic optimization algorithms to compute large-scale
OT [39, 40].

One of their main results for applications to machine learning tasks was outlier detection.
They used a small threshold to compare this to the modified mass and identify outliers.
However, this threshold can be chosen arbitrarily. We have to choose this threshold properly,
but there is no theoretical guarantee to estimate the proper value in advance.

2.3 Previous works of convex regularization of discrete
OT

No matter what algorithms one uses — the network simplex [41] or interior point methods
[42] — the cost of computing discrete optimal transport (2.7) scales at least in O(d3 log d)
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when comparing two empirical distributions of dimension d. In order to remedy this issue,
Cuturi [14] has proposed to regularize (2.7) with an entropic penalty term as follows:

min
π∈G( 1

m , 1n )
〈π,γ〉 − 1

λ
h(π), (2.17)

where λ > 0 is a hyper-parameter and h(π) := −
∑
i,j πi,j log πi,j is an entropic penalty

term. Cuturi also [14] showed that a matrix scaling algorithm named the Sinkhorn algorithm
computes the optimal solution for (2.17) with a much cheaper cost than existing methods
to compute (2.7). They showed that the Sinkhorn algorithm works well in MNIST [43]
classification tasks.

After the appearance of the Sinkhorn algorithm, Dessein et al. [12] have presented a
unified framework for smooth convex regularization of discrete OT. They showed that the
their convex regularized OT (CROT) turns out to be matrix nearness problem with respect
to Bregman divergences1 [12]. For instance, the Sinkhorn algorithm is running a projection
in a Kullback-Leibler (KL) divergence [5] space.

In this thesis, we leverage this framework. Using this framework, we can consider running
a robust projection in a certain space and obtain a transport matrix explicitly for large-scale
data. Specifically, we regularize OT with a β-potential term which enables us to run a pseudo
projection in a β-divergence [17] space. We call it pseudo because our pseudo projection
does not satisfy the coupling constraint. With some computational tricks and leverage of
the domain of the Fenchel conjugate of the β-potential, our algorithm is guaranteed not to
move any probability mass to outliers which leads to robustness in computing OT.

1In this thesis, the matrix nearness problem is defined as finding the nearest member of some given class
of matrices for any arbitrary matrix, where distance is measured with Bregman divergence. Since Bregman
divergence does not satisfy the trigonometric inequality, it cannot strictly be called a distance, but since we
only care about the relationship between two matrices, we will call it a distance here.
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Chapter 3

Convex Regularization of
Discrete OT

In this chapter, we introduce discrete OT regularized by a type of convex function called the
Legendre type [44, 12]. We first study the required theoretical backgrounds for the convex
regularized discrete OT (CROT) framework [12]. We then show the framework of CROT,
which contains the formulation of CROT and efficient algorithms to compute it.

3.1 Notations

We denote by R and N the set of real numbers and natural numbers, respectively. We
denote an arbitrary size of two-dimensional zero matrices by 0 and matrices full of ones
by 1. When the intended meaning is clear from the context, we also use 0 for a zero
vector of any dimension and 1 for a vector of any dimension full of ones. The notation ·⊤
represents the transposition operator for matrices and vectors. Functions of a real variable,
such as exponential or power functions, are considered element-wise when applied to matrices.
The max operator between matrices is also applied in an element-wise manner. Matrix
divisions are similarly considered element-wise, whereas element-wise matrix multiplications,
also known as the Hadamard or Schur product, are denoted by � to remove any ambiguity
with standard matrix multiplications. Lastly, the addition or subtraction of a scalar and a
matrix should be understood element-wise by replicating the scalar.

3.2 Theortical background

In this section, we review the theoretical background of the CROT framework [12].

3.2.1 Convex analysis

Let E be a Euclidean space with inner product 〈·, ·〉 and induced norm ‖ · ‖. We denote
the boundary, interior and relalative interior of a subset S ⊆ E by bd(S), int(S) and ri(S)
respectively. Recall that for a convex set C, we have

ri(C) = {x ∈ E | ∀y ∈ C, ∃λ > 1, λx+ (1− λ)y ∈ C}. (3.1)
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In convex analysis, scalar functions are defined over the whole space E and take values in
R∪{−∞, ∞}. The effective domain, or simply domain, of a function f is defined as the set:

dom f = {x ∈ E | f(x) < +∞}. (3.2)

Definition 1 (Closed functions). A function f : Rn → R is said to be closed if for each
α ∈ R, the sublevel set {x ∈ dom f | f(x) ≤ α} is a closed set.

If dom f is closed, then f is closed.

Definition 2 (Proper functions). Suppose a convex function f : E → R ∪ {±∞} satisfies
f(x) > −∞ for every x ∈ dom f and there exists some point x0 in its domain such that
f(x0) < +∞. Then f is called a proper function.

A proper convex function is closed if and only if it is lower semi-continuous1. Moreover,
a closed function f is continuous relative to any simplex, polytope of a polyhedral subset in
domf and a convex function f is always continuous in the relative interior ri(domf) of its
domain.

Definition 3 (Essential smoothness [45]). Suppose f is a closed convex proper function on
E with int(dom f) 6= ∅. Then f is essentially smooth, if f is differentiable on int(dom f) and

∀n ∈ N, xn ∈ int(dom f ),
xn → x ∈ bd(dom f )

}
⇒ ||∇f(xn)|| → ∞.

Definition 4 (Essential Strict Convexity [45]). Here, we denote the subgradient of f by ∂f .
Suppose f is closed convex proper on E. Then, f is essentially strictly convex, if f is strictly
convex on every convex subset of dom ∂f .

We define a set of functions called the Legendre type and Fenchel conjugate functions.

Definition 5 (Legendre type [45]). Suppose f is a closed convex proper function on E. Then,
f is said to be of the Legendre type if f is both essentially smooth and essentially strictly convex.

Definition 6 (Fenchel conjugate [12]). The Fenchel conjugate f∗ of a function f is defined
for all y ∈ E as follows:

f∗(y) = sup
x∈int(dom f)

〈x,y〉 − f(x). (3.3)

The Fenchel conjugate f∗ is always a closed convex function and if f is a closed convex
function, then (f∗)∗ = f , and f is of the Legendre type if and only if f∗ is of the Legendre
type. If f∗ is of the Legendre type, the gradient mapping ∇f is a homeomorphism2 between
int(domf) and int(domf∗), with inverse mapping (∇f)−1 = ∇f∗. This guarantees the
existence of dual coordinate systems x(y) = ∇f∗(y) and y(x) = ∇f(x) on int(dom f) and
int(dom f∗).

Finally, we say that a function f is a cofinite if it verifies

lim
λ→+∞

f(λx)/λ = +∞, (3.4)

for all nonzero x ∈ E . Intuitively, it means that f grows super-linearly in every direction.
In particular, a closed convex proper function is cofinite if and only if dom f∗ = E .

1Let X be a topological space. A funtion f : X → R∪{−∞,∞} is called lower semicontinuous at a point
x0 ∈ X if for every y < f(x0) there exists a neighborhood U of x0 such that f(x) > y for all x ∈ U .

2A function f : X → Y between two topological spaces is a homeomorphism if it has the following three
properties: (a) f is a bijection. (b) f is continuous. (c) The inverse function f−1 is continous.
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3.2.2 Bregman divergence

Let ϕ be a convex function on E that is differentiable on int(domϕ) 6= ∅. The Bregman
divergence generated by ϕ is defined as follows:

Bϕ(x|y) := ϕ(x)− ϕ(y)− 〈x− y,∇ϕ(y)〉, (3.5)

for all x ∈ domϕ and y ∈ domϕ. In this thesis, we consider so-called a separable Bregman
divergences [12]. It can be seen as an aggregation of element-wise Bregman divergences
between scalars on R:

Bϕ(π|ξ) =

m∑
i=1

n∑
j=1

Bϕij (πij ||ξij), (3.6)

ϕ(π) =

m∑
i=1

n∑
j=1

ϕij(πij), (3.7)

for all π, ξ ∈ Rm×n. Below we choose the element-wise generator ϕij to be equal for all
i = 1, . . . ,m and j = 1, . . . , n.

We have Bϕ(x||y) ≥ 0 for any x ∈ domϕ and y ∈ domϕ. If in addition ϕ is strictly
convex on int(domϕ), then Bϕ(x||y) = 0 if and only if x = y. Bregman divergences are also
always convex in the first argument and are invariant under adding an arbitrary affine term
to their generator.

Suppose now that ϕ is of the Legendre type, and let C ⊆ E be a closed convex set such
that C ∩ int(domϕ) 6= ∅. Then, for any point y ∈ int(domϕ), the following problem,

PC(y) = argmin
x∈C

Bϕ(x||y), (3.8)

has a unique solution which actually belongs to C ∩ int(domϕ). PC(y) is called the Bregman
projection of y onto C [12].

3.2.3 Alternate Bregman projections

Let ϕ be a function of the Legendre type with Fenchel conjugate ϕ∗ = ψ. In general,
computing Bregman projections onto an arbitrary closed convex set C ⊆ E such that
C ∩ int(domϕ) 6= ∅ is nontrivial [12]. Sometimes, it is possible to decompose C into the
intersection of finitely many closed convex sets:

C = ∩sl=1Cl, (3.9)

where the individual Bregman projections onto the respective sets C1, . . . , Cs are easier to
compute. It is then possible to obtain the Bregman projections onto C by alternate projec-
tions onto C1, . . . , Cs according to Dykstra’s algorithm [46].

In more detail, let σ : N→ {1, . . . , s} be a control mapping that determines the sequence
of subsets onto which we project. For a given point x0 ∈ int(domϕ), the Bregman projection
PC(x0) of x0 onto C can be approximated with Dykstra’s algorithm by iterating the following
updates:

xk+1 ← PCσ(k)
(∇ψ(∇ϕ(xk + yσ(k))), (3.10)

where the correction term y1, . . . ,ys for the respective subsets are initialized with the null
element of E , and are updated after projection as follows:

yσ(k) ← yσ(k) +∇ϕ(xk)−∇ϕ(xk+1). (3.11)
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Under some technical assumptions, the sequence of updates (xk)k∈N converges in norm to
PC(x0) with a linear rate. Several sets of such conditions have been studied [47, 48, 49].
As in the study of Dessein et al. [12], we use the conditions proposed by Dhillon et al. [47]
for the CROT framework. The convergence of Dykstra’s algorithm is guaranteed as soon as
the function ϕ is cofinite, the constraint qualification ri(C1) ∩ · · · ∩ ri(Cs) ∩ int(domϕ) 6= ∅
holds, and the control mapping σ is essentially cyclic. Here, being essentially cyclic means
that there exists a number t ∈ N such that σ takes each output value at least once during
any t consecutive input values. If a given Cl is a polyhedral set, then the relative interior
can be dropped from the constraint qualification. Hence, when all subsets Cl are polyhedral,
the constraint qualification simply reduces to C ∩ int(domϕ) 6= ∅, which is already enforced
for the definition of Bregman projections.

Finally, if all subsets Cl are further affine, then we can relax other assumptions. Notably,
we do not require ϕ to be cofinite, or equivalently domψ = E , but only domψ to be open.
The mapping need not be essentially cyclic anymore, as long as it takes each output value
an infinite number of times. Moreover, we can completely drop the correction terms from
the updates, leading to a simpler technique known as projections onto convex sets (POCS)
[50, 51]:

xk+1 ← PCσ(k)
(xk). (3.12)

3.3 Framework of CROT

In this section, we introduce the framework of CROT [12]. We begin with the formulation of
CROT. Subsequently, we set some assumptions on the regularizers for the CROT framework
to work. Finally, we introduce algorithms to compute CROT.

3.3.1 Formulation of CROT

Here, we show the formulation of CROT and show that obtaining the optimal solution of
CROT corresponds to minimizing the Bregman divergence between two certain matrices.

Suppose we want to define a distance between two empirical distributions P̂x and P̂y with
CROT. We regularize the disrete OT (2.7) with a function ϕ which is of the Legendre type:

L(π) := min
π∈G( 1m

m , 1n
n )
〈π,γ〉+ λϕ(π), (3.13)

where λ > 0 is a regularization parameter. Here, recall that γ is a distance matrix and π has
to satisfy the coupling constraint π ∈ G(1m

m , 1n

n ) = {T |T ∈ Rm×n
+ ,T1n = 1m

m ,T⊤1m = 1n

n }.
Since ϕ is of the Legendre type, there exists a dual coordinate system, ϕ and ψ, on int(domϕ)
and int(domϕ) via the homeomorphism ∇ϕ = ∇ψ−1:

π(θ) = ∇ψ(θ), (3.14)

θ(π) = ∇ϕ(π). (3.15)

If we remove the coupling constraint of (3.13), the optimization problem becomes as follows:

min
π∈Rm×n

〈π,γ〉+ λϕ(π). (3.16)

Since 〈π,γ〉 is linear and ϕ is strictly convex with respect to π, there is a global optimal
solution ξ for (3.16):

ξ = ∇ψ(−γ/λ), (3.17)
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Table 3.1: Set of assumptions for the considered regularizers ϕ.

(A) Affine constraints (B) Polyhedral constraints
(A1) ϕ is of Legendre type. (B1) ϕ is of Legendre type.
(A2) (0, 1)m×n ⊆ domϕ (B2) (0, 1)m×n ⊆ domϕ
(A3) domϕ ⊆ Rm×n

+ (B3) domϕ ⊈ Rm×n
+

(A4) dom ψ is open (B4) domψ = Rm×n

(A5) Rm×n
− ⊂ domψ.

Table 3.2: Domain of each regularizer and its Fenchel conjugate.

Regularization term dom ϕ dom ψ
β-potential (0 < β < 1) R+ (−∞, 1

1−β )

β-potential ( β > 1 ) R+ ( 1
1−β ,∞)

Boltzman-Shannon entropy R+ R
Euclidean norm R R

which can be obtained by solving the first-order optimality condition:

γ + λ∇ϕ(ξ) = 0m×n. (3.18)

We can easily confirm the following equation about ξ.

〈π,γ〉+ λϕ(π)− λϕ(ξ)− 〈ξ,γ〉 = λBϕ(π||ξ). (3.19)

Then, the following equations hold.

π∗
λ := argmin

π∈G( 1m
m , 1n

n )

L(π) (3.20)

= argmin
π∈G( 1m

m , 1n
n )

〈π,γ〉+ λϕ(π) (3.21)

= argmin
π∈G( 1m

m , 1n
n )

Bϕ(π||ξ). (3.22)

Therefore, by computing the Bregman projection of ξ onto G(1m

m , 1n

n ), we can obtain the
transport matrix which satisfies the coupling constraint and minimizes (3.13). Moreover, if
λ tends to 0, then π∗

λ converges to the optimal solution of (2.7) [12].

3.3.2 Theoretical assumptions of the regularizers

Some technical assumptions are required on the convex regularizer ϕ and its Fenchel con-
jugate ψ = ϕ∗ for the CROT framework. In the CROT framework, we need to distinguish
between situations where the underlying closed convex set can be described as the intersec-
tion of either affine subspaces or polyhedral subsets. The two sets of assumptions (A) and
(B) are summarized in Table 3.1.

First, we force the regularizer to be of the Legendre type (assumptions (A1) and (B1)).
This is required for the definition of Bregman projections (Subsection 3.2.2). In addition,
it guarantees the existence of dual coordinate systems on int(domϕ) and int(domψ) via the
homeomorphism ∇ϕ = ∇ψ−1:

π(θ) = ∇ψ(θ), (3.23)

θ(π) = ∇ϕ(π). (3.24)
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Figure 3.1: y = ψ′(θ) of the β-potential (yellow: β = 1.4, green: β = 1.8), the Boltzmann-Shannon
entropy (red) and the Euclidean norm (black).
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Table 3.3: The three divergences we are going to compare.

entropy term ϕ(π) B(π||ξ)

β-divergence (β > 0)
β -potentials

1
β(β−1) (π

β − βπ + β − 1)
1

β(β−1) (π
β + (β − 1)ξβ − βπξβ−1)

KL divergence
Boltzman-Shannon entropy

π log π − π + 1
π log π

ξ − π + ξ

Euclidean distance
Euclidean norm

1
2 (π − 1)2

1
2 (π − ξ)

2

Table 3.4: The derivative of each regularization term, the derivative of its dual function, and its
second derivative.

ϕ′(π) ψ′(π) ψ′′(θ)
β-potential

1
β(β−1) (πβ − βπ + β − 1)

1
β−1 (π

β−1 − 1) ((β − 1)θ + 1)
1

β−1 ((β − 1)θ + 1)
1

β−1−1

Boltzman-Shannon entropy
π log π − π + 1

log π exp θ exp θ

Euclidean norm
1
2 (π − 1)2

π − 1 θ + 1 1

With a slight abuse of notation, we omit the reparameterization to simply denote corre-
sponding primal and dual parameters by π and θ.

The second assumptions (A2) and (B2) imply that ri(G(1m

m , 1n

n )) ⊂ domϕ and ensure

that the constraint qualification G(1m

m , 1m

n ) ∩ int(domϕ) 6= ∅ for the Bregman projection
onto the transport polytope.

The third assumptions (A3) and (B3) separate between two cases depending on whether
domϕ lies within the non-negative orthant or not for the alternate Bregman projections
(Subsection 3.2.3). In the former case, non-negativity is already ensured by the domain of
the regularizer, so the underlying closed convex set is made of two affine subspaces for the
row and column sum constraints, and the POCS method can be considered.

The fourth assumption (A4) requires that domψ be open for convergence of this algo-
rithm. On the other hand, in the latter case, there is one additional polyhedral subset for
the non-negative constraints and Dykstra’s algorithm should be used. The fourth assump-
tion (B4) hence further requires that domψ = Rm×n, or equivalently that ϕ be cofinte, for
convergence. In both cases, we remark that we necessarily have domψ = dom∇ψ.

The fifth assumption (A5) in the affine constraints ensures that −γ/λ belongs to dom∇ψ
for definition of CROT problems, independently of the non-negative cost matrix γ and
positive regularization term λ. This is already guaranteed by the fourth assumption in the
polyhedral constraints.

In this thesis, we consider four types of regularizers (see Table 3.2). The Boltzmann-
Shannon entropy [12] associated to the Kullback-Leibler divergence and the β-potential (0 <
β < 1) [12] associated to the β-divergence are under assumptions (A). When they are chosen
as a regularizer, we employ a method called ASA (alternate scaling algorithm) [12] based
on the POCS technique, where alternate Bregman projections onto the two affine subspaces
for the row and column sum constraints are considered. On the other hand, the Euclidean
norm is under assumption (B). When this is chosen as a regularizer, we use the second
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method called NASA (non-negative scaling algorithm) [12] based on Dykstra’s algorithm,
where correction terms and a further Bregman projection onto the polyhedral non-negative
orthant are needed. Finally, when the regularizer is the β-potential (1 < β), since it is
neither under assumptions (A) nor assumptions (B), we can no longer use ASA and NASA.
Therefore, we propose another algorithm to compute CROT when the regularizer is the
β-potential (1 < β) in Chapter 4. By leveraging the domain of the Fenchel conjugate of
the β-potential (1 < β), our proposed algorithm successfully prevents any probability mass
from moving to points farther than a given distance. We show this property enables us to
compute OT robustly.

Interestingly, the β-potential tends to be the Boltzmann-Shannon entropy and the Eu-
clidean norm in the limit of β = 1 and β = 2, respectively. Therefore, the β-divergence
interpolates between the KL-divergence and Euclidean distance. As we will see in the next
section, the algorithms are running the Newton-Raphson method [52] on y = ∇ψ(θ). In
Figure 3.1, we can see an interpolation between the KL-divergence and Euclidean distance
in y = ψ′(θ) as we move β between 0 < β < 2.

The corresponding divergences for each regularization term are shown in Table 3.3. The
derivative of each regularization term, the derivative of its dual function, and its second
derivative are shown in Table 3.4.

3.3.3 Algorithms

In this subsection, we introduce algorithms to obtain π∗
λ in (3.20). To simplify the notations,

we omit the regularization parameter λ in the subscript and simply write π∗ instead of π∗
λ.

We first study the underlying Bregman projections in their generic form. The closed
convex transport polytope G(1m

m , 1n

n ) is the intersection of the non-negative orthant:

C0 = Rm×n
+ , (3.25)

which is a polyhedral subset, with two affine subspaces:

C1 = {π ∈ Rm×n|π1n =
1m
m
}, (3.26)

C2 = {π ∈ Rm×n|π⊤1m =
1n
n
}. (3.27)

We first consider Bregman projections of a given matrix π ∈ int(domϕ) onto C1 and C2.
For the projection onto C1 and C2, we can employ the method of Lagrange multipliers. The
Lagrangians with Lagrange multipliers µ ∈ Rm and ν ∈ Rn for the Bregman projections π∗

1

and π∗
2 of a given matrix π ∈ int(domϕ) onto C1 and C2 respectively write as follows:

L1(π,µ) = ϕ(π)− 〈π,∇ϕ(π)〉+ µ⊤(π1n −
1m
m

), (3.28)

L2(π,ν) = ϕ(π)− 〈π,∇ϕ(π)〉+ ν⊤(π⊤1m −
1n
n
). (3.29)

Their gradients are given on int(dom ϕ) by

∇L1(π,µ) = ∇ϕ(π)−∇ϕ(π) + µ1⊤
n , (3.30)

∇L2(π,ν) = ∇ϕ(π)−∇ϕ(π) + 1mν
⊤, (3.31)

and vanish at π∗
1,π

∗
2 ∈ int(domϕ) if and only if

π∗
1 = ∇ψ(∇ϕ(π)− µ1⊤

n ), (3.32)

π∗
2 = ∇ψ(∇ϕ(π)− 1mν

⊤). (3.33)
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Algorithm 1 Alternate scaling algorithm (ASA)

θ∗ ← −γ/λ
repeat
θ∗ ← θ∗ − µ1n⊤,where µ uniquely solves ∇ψ(θ∗ − µ1n⊤)1n = 1m

m

θ∗ ← θ∗ − 1mν
⊤ ,where ν uniquely solves ∇ψ(θ∗ − 1mν

⊤)⊤1m = 1n

n
until convergence
π∗ ← ∇ψ(θ∗)

By duality, the Bregman projections onto C1, C2 are thus equivalent to finding the unique
vectors µ, ν, such that the rows of π∗

1 sum up to 1m

m , respectively the columns of π∗
2 sum

up to 1m

n :

∇ψ(∇ϕ(π)− µ1⊤
n )1n =

1m
m
, (3.34)

∇ψ(∇ϕ(π)− 1mν
⊤)⊤1m =

1n
n
. (3.35)

Alternate scaling algorithm (ASA) [12]

Under assumptions (A) in Table 3.1, since domϕ ∈ Rm×n
+ is guaranteed, we can obtain

PC(ξ) by simply repeating projections on C1 → C2 → C1 → C2 → · · · starting from ξ =
∇ψ(−γ/λ).

Starting from ξ and writing the successive vectors µ(k), ν(k) along iterations, we have
the following sequence:

∇ψ(γ/λ) → ∇ψ(γ/λ− µ(1)1⊤
n )

→ ∇ψ(γ/λ− µ(1)1⊤
n − 1mν

(1)⊤)

→ · · ·
→ ∇ψ(γ/λ− µ(1)1⊤

n − 1mν
(1)⊤ − · · · − µ(k)1⊤

n )

→ ∇ψ(γ/λ− µ(1)1⊤
n − 1mν

(1)⊤ − · · · − µ(k)1⊤
n − 1mν

(k)⊤)

→ · · ·
→ π∗.

In other words, we obtain π∗ by scaling iteratively the rows and columns of the successive
estimates through ∇ψ. An efficient algorithm, called ASA, is to store a unique m×n matrix
in dual parameter space and update it by alternating the projections in primal parameter
space (Algorithm 1).

Alternate scaling algorithm (ASA) in the separable case

Since we are restricting ourselves to a separable Bregman divergence, we can compute the
projection step more efficiently. Due to the separability, the projections onto C1 and C2 can
be divided into m and n parallel subproblems in the search space of 1-dimension as follows:

n∑
j=1

ψ′(θij − µi) =
1

m
, (3.36)

m∑
i=1

ψ′(θij − νj) =
1

n
. (3.37)
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Here, we denote the dual coordinate of π by θ.
In order to obtain the Lagrange multipliers µi and νj , we use the Newton Raphson

method. More specifically, we eploit the following functions:

f(µi) = −
n∑
j=1

ψ′(θij − µi), (3.38)

g(νj) = −
m∑
i=1

ψ′(θij − νj). (3.39)

These functions are defined on the open intervals (θ̂i − θlimit,+∞) and (θ̌j − θlimit,+∞),

where 0 < θlimit < +∞ is such that domψ = (−∞, θlimit), and θ̂i = max{θij}1≤j≤n, θ̌j =
max{θij}1≤i≤m. We can now obtain the unique solution to f(µi) = − 1

m and g(νj) = − 1
n .

Starting with µi = 0 and νj = 0, the Newton Raphson updates:

µi ← µi +

∑n
j=1 ψ

′(θij − µi)− 1
m∑n

j=1 ψ
′′(θij − µi)

, (3.40)

νj ← νj +

∑m
i=1 ψ

′(θij − νi)− 1
n∑m

i=1 ψ
′′(θij − νi)

, (3.41)

converge to the optimal solution with a quadraitic rate. To avoid storing the intermediate
Lagrange multipliers, the updates can be directly written in terms of the dual parameters:

θ∗1,ij ← θ∗1,ij −
∑n
j=1 ψ

′(θ∗1,ij)− 1
m∑n

j=1 ψ
′′(θ∗1,ij)

, (3.42)

θ∗2,ij ← θ∗2,ij −
∑m
i=1 ψ

′(θ∗2,ij)− 1
n∑m

i=1 ψ
′′(θ∗2,ij)

, (3.43)

after initilalization by θ∗1,ij ← θij , θ
∗
2,ij ← θij . Here, θ∗1,ij and θ∗2,ij are the ith row and

jth column of θ∗1 and θ∗2 respectively. θ∗1 and θ∗2 are the dual coordinates of π∗
1 and π∗

2

respectively.
Therefore, the projections can be obtained by iterating the respective Newton-Raphson

update steps, which can be written compactly with matrix and vector operations shown in
Algorithm 2.

Algorithm 2 can be applied to CROT when the regularizer is the Boltzmann-Shannon
entropy or the β-potential (0 < β < 1). When the regularizer is the Boltzmann-Shannon
entropy, the updates in the POCS techniques can be written analytically, leading to the
Sinkhorn algorithm [14]. Specifically, the two projections amount to normalizing, in turn,
the rows and columns of π∗ so that they sum up to 1m

m and 1m

n , respectively:

π∗ ← diag
( 1m

m

π∗1n

)
π∗, (3.44)

π∗ ← π∗diag
( 1n

n

π∗⊤1m

)
. (3.45)

Here, diag(v) is an operator which transforms a vector v ∈ Rd into a diagonal matrix
π ∈ Rm×n such that πii = vi, for all 1 ≤ i ≤ d. This can be optimized by remarking that
π∗(k) after each couple of projections verifies

π∗(k) = diag(u(k))ξdiag(v(k)), (3.46)
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Algorithm 2 Alternate scaling algorithm in the separable case

θ∗ ← −γ/λ
repeat
repeat

θ∗ ← θ∗ − ∇ψ(θ∗)1m− 1m
m

∇2ψ(θ∗)1m
1⊤
n

until convergence
repeat

θ∗ ← θ∗ − 1m
1⊤
m∇ψ(θ∗)−( 1n

n )⊤

1⊤
n ∇2ψ(θ∗)

until convergence
until convergence
π∗ ← ∇ψ(θ∗)

where Λ = exp(−γ/λ) and vectors u(k), v(k) satisfy the following recursion:

u(k) =
1m

m

Λv(k−1)
, (3.47)

v(k) =
1m

n

Λ⊤u(k)
, (3.48)

with v0 = 1. This allows a fast implementation by performing only matrix-vector multipli-
cations using a fixed matrix Λ = exp(−γ/λ). We can further save one element-wise vector
multiplication per update:

u ← 1m
diag(m)Λv

, (3.49)

v ← 1m

diag(n)Λ⊤u
, (3.50)

where the matrices diag(m)Λ and diag(n)Λ⊤ are computed and stored. Here, diag(m) and
diag(n) denote a diagonal matrix whose diagonal elements are all m and n, respectively.

Non-negative alternate scaling algorithm (NASA) [12]

Under assumptions (B) in Table 3.1, we now have to consider a non-negative constraint
since domϕ ⊈ Rm×n

+ . We project ξ = ∇ψ(γ/λ) on C0 → C1 → C0 → C2 → C0 → C1 → C0 →
· · · with the non-negativity of each update guaranteed.

Let us consider the projection of given matrix π onto C0. We denote this projection
PC0(π) by π

∗
0. Then, the Karush-Kuhn-Tucker conditions [53, 54] for π∗

0 are as follows:

π∗
0 ≥ 0m×n, (3.51)

∇ϕ(π∗
0)−∇ϕ(π) ≥ 0m×n, (3.52)

(∇ϕ(π∗
0)−∇ϕ(π))� π∗

0 = 0m×n, (3.53)

where (3.51) is the primal feasibility, (3.52) is the dual feasibility, and (3.53) is the comple-
mentary slackness.

Since the non-negative orthant is polyhedral, but not affine, we also need to incorporate
correction terms ϑ, ϱ, ς for all three projections. In more detail, the projections are computed
after correction so that we do not directly project the obtained updates θ∗ but the corrected
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Algorithm 3 Non-negative alternate scaling algorithm

θ∗ ← −γ/λ
ϑ← 0m×n
ϱ← 0m×n
ς ← 0m×n
θ ← θ∗ + ϑ
θ∗ ← θ,where θ uniquely solves ∇ψ(θ) ≥ 0m×n, θ ≥ θ, (θ − θ)�∇ψ(θ) = 0m×n
ϑ← θ − θ∗
repeat
θ ← θ∗ + ϱ
θ∗ ← θ − µ1⊤

n , where µ uniquely solves∇ψ(θ − µ1⊤
n )1m = 1m

m

ϱ← θ − θ∗
θ ← θ∗ + ϑ
θ∗ ← θ,where θ uniquely solves ∇ψ(θ) ≥ 0m×n, θ ≥ θ, (θ − θ)�∇ψ(θ) = 0m×n
ϑ← θ − θ∗
θ ← θ∗ + ς
θ∗ ← θ − 1mν

⊤, where µ uniquely solves ∇ψ(θ − 1mν
⊤)⊤1m = 1m

n

ς ← θ − θ∗
θ ← θ∗ − ϑ
θ∗ ← θ,where θ uniquely solves ∇ψ(θ) ≥ 0m×n, θ ≥ θ, (θ − θ)�∇ψ(θ) = 0m×n
ϑ← θ − θ∗

until convergence
π∗ ← ∇ψ(θ∗)

updates θ = θ∗+ϑ, θ = θ∗+ϱ, θ = θ∗+ ς for the respective subsets. The correction terms
are also updated as the difference θ − θ∗ between the projected point and its projection.
Dykstra’s algorithm (3.10) for Bregman divergences with corrections (3.11) then guarantees
that the projection of ξ onto G(1m

m , 1n

n ) is obtained with linear convergence. The algorithm
is shown in Algorithm 3.

Non-negative alternate scaling algorithm (NASA) in the separable case

In case of separability, the Karush-Kuhn-Tucker conditions for projection onto C0 simplify
to provide a closed-form solution on primal parameters:

π∗
0,ij = max{0, πij}, (3.54)

where, π∗
0,ij is the element in row i and column j of matrix π∗

0. Since ϕ′ is increasing, this
is equivalent on dual parameters to

θ∗0,ij = max{ϕ′(0), θij}. (3.55)

Therefore, in the separable case, the non-negativity constraint can be obtained analytically
(3.54) and the sequence of updates greatly simplifies. Starting from ξ and writing the
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Algorithm 4 Non-negative alternate scaling algorithm in the separable case

1: θ̃ ← −γ/λ
2: θ∗ ← max{∇ϕ(0m×n), θ̃}
3: repeat
4: τ ← 0m×n
5: repeat

6: τ ← τ +
∇ψ(θ∗−τ1⊤

n )1n− 1m
m

∇2ψ(θ∗−τ1⊤
n )1n

7: until convergence
8: θ̃ ← θ̃ − τ1⊤

n

9: θ∗ ← max{∇ϕ(0m×n), θ̃}
10: σ ← 0m×n
11: repeat

12: σ ← σ +
1⊤
n ∇ψ(θ∗−1mσ⊤)−( 1n

n )⊤

1⊤
m∇2ψ(θ∗−1mσ⊤)

13: until convergence
14: θ̃ ← θ̃ − 1mσ

⊤

15: θ∗ ← max{∇ϕ(0m×n), θ̃}
16: until convergence
17: π∗ ← ∇ψ(θ∗)

successive vectors µ(k), ν(k) along iterations, we have:

∇ψ(−γ/λ) → ∇ψ
(
max{∇ϕ(0m×n), −γ/λ}

)
→ ∇ψ

(
max{∇ϕ(0m×n), −γ/λ} − µ(1)1⊤

n

)
→ ∇ψ

(
max{∇ϕ(0m×n), −γ/λ− µ(1)1⊤

n )}
)

→ ∇ψ
(
max{∇ϕ(0m×n),−γ/λ− µ(1)1⊤

n )} − 1mν
(1)⊤

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(1)1⊤

n − 1mν
(1)⊤}

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(1)1⊤

n )− 1mν
(1)⊤}+ µ(1)1⊤

n − µ(2)1⊤
n

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(2)1⊤

n − 1mν
(1)⊤}

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(2)1⊤

n )− 1mν
(1)⊤}+ 1mν

(1)⊤ − 1mν
(2)⊤

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(2)1⊤

n − 1mν
(2)⊤}

)
→ · · ·
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(k)1⊤

n − 1mν
(k)⊤}

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(k)1⊤

n − 1mν
(k)⊤}+ µ(k)1⊤

n − µ(k+1)1⊤
n

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(k+1)1⊤

n − 1mν
(k)⊤}

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(k+1)1⊤

n − 1mν
(k)⊤}+ 1mν

(k)⊤ − 1mν
(k+1)⊤

)
→ ∇ψ

(
max{∇ϕ(0m×n),−γ/λ− µ(k+1)1⊤

n − 1mν
(k+1)⊤}

)
→ · · ·
→ π∗.
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An efficent algorithm then exploits the differences τ (k) = µ(k) − µ(k−1) and σ(k) =
ν(k) − ν(k−1) to scale the rows and columns (Algorithm 4). Algorithm 4 can be applied to
CROT when the regularizer is the Euclidean norm.
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Chapter 4

Outlier robust CROT

In this chapter, we propose an algorithm to compute CROT robustly by using β-potential
(1 < β) as the regularizer.

4.1 Definition of outliers

In general, an outlier is defined as an observation that lies an abnormal distance from other
samples in data [55]. In a sense, this definition leaves it up to the analyst (or a consensus
process) to decide what will be considered abnormal. Many definitions of an outlier have
been proposed [56, 57, 58].

In this thesis, the definition outliers is defined as follows. Suppose we have two datasets
{xi}mi=1 and {yj}nj=1. We assume {xi}mi=1 are samples from a single distribution Px. Let
γ (γij = h(xi − yj)) be the distance matrix.

Definition 7. For z > 0, the indices of outliers J are defined as follows:

∀j ∈ J, ∀i ∈ {1, . . . ,m}, γij ≥ z. (4.1)

This means that any point in {yj}nj=1 that is more than z away from any point in {xi}mi=1

is considered as outliers.
Next, we define transporting no mass as follows.

Definition 8. Suppose π ∈ Rm×n
+ and a set of indices O ⊆ {1, . . . , n} satisfy the following

condition:
∀i, πij = 0 if j ∈ O. (4.2)

Then, we say π transports no mass to O.

This means that any point in {yj}nj=1 that is more than z away from any point in {xi}mi=1

is considered as outliers.

4.2 β-potential regularization

We use the β-potential ϕ(π) = 1
β(β−1) (π

β−βπ+β−1), associated with the β-divergence

(Table 3.3) to robustify the CROT. The domains of primal ϕ and its Fenchel conjugate ψ
are shown in Table 3.2.
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Algorithm 5 Non-negative alternate scaling algorithm for β-divergence when β > 1

1: θ̃ ← −γ/λ
2: θ∗ ← max{∇ϕ(0m×n), θ̃}
3: repeat

4: τ =
∇ψ(θ∗)1n− 1m

m

∇2ψ(θ∗)1n

5: τ ← max(τ , θ̂
∗
−∇ϕ(1m

m ))

6: θ̃ ← θ̃ − τ1n⊤
7: θ∗ ← max{∇ϕ(0), θ̃}
8: σ =

1m
⊤∇2ψ(θ∗)−( 1n

n )⊤

1m
⊤∇2ψ(θ∗)

9: σ ← max(σ, θ̂
∗
−∇ϕ(1n

n ))

10: θ̃ ← θ̃ − 1mσ
⊤

11: θ∗ ← max{∇ϕ(0m×n), θ̃}
12: until convergence
13: π∗ ← ∇ψ(θ∗)

Our proposed algorithm is shown in Algorithm 5. The dual coordinate of the uncon-
strained CROT solution ξ is denoted by θ̃. We execute the projections in the cyclic order
of C0 → C1 → C0 → C2 → C0 → C1 → C0 → C2 → · · · .

Lines 2, 7, and 11 in Algorithm 5 enforce the dual constraint θ∗ij ≥ 1
1−β corresponding to

domψ = ( 1
1−β ,∞) (Table 3.3). Lines 4–6 correspond to a projection onto C1 implemented on

the dual coordinate. Since the dual variable must satisfy θ∗ij ≥ 1
1−β due to domψ = ( 1

1−β ,∞),

we update the dual variable only once in the Newton-Raphson method (line 4) to meet this
constraint. Similarily, the projection onto C2 is shown in lines 8–10.

The procedure in line 5 is based on Section 4.6 in [12] which accelerates the convergence

of Algorithm 5 experimentally. Let θ̂
∗
be the m-dimensional vector whose ith element is the

largest value in the ith row of θ∗ defined as follows:

θ̂∗i := max{θ∗ij}1≤j≤n. (4.3)

For any i, we force π∗
1,ij to satisfy the following conditions:

∀j, 0 ≤ π∗
1,ij ≤ 1

m . (4.4)

Since ϕ is convex,

0 ≤ π∗
1,ij ≤ 1

m

⇐⇒ ϕ′(0) ≤ ϕ′(π∗
1,ij) = θ∗1,ij ≤ ϕ′( 1

m ) (4.5)

holds. Hence, for every i, if we lower-bound τi as

τi = max{τi, θ̂∗i − ϕ′
(

1
m

)
}, (4.6)

then, for any j,

θ̃ij − τi ≤ max{ϕ′(0), θ̃ij} (4.7)

= θ∗ij − τi (4.8)

≤ θ̂∗i − τi (4.9)

≤ ϕ′
(

1
m

)
. (4.10)
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This means that every element in the ith row of θ̃ computed in line 6 in Algorithm 5 is no
larger than ϕ′( 1

m ). After line 7, θ∗ satisfies the condition (4.4). Similarly, we force π2,ij to
satisfy the following conditions:

∀i, 0 ≤ π2,ij ≤ 1
n . (4.11)

After line 11, this condition is satisfied.

4.3 Theoretical analysis of the algorithm

Here, we will call the loop from line 3 to line 12 the outer loop. Again, suppose we want
to compute CROT (3.13) of two empirical distributions P̂x := 1

m

∑m
i=1 xiδxi and P̂y :=

1
n

∑n
j=1 yjδyj . We have the following proposition.

Proposition 1. For a given z (> λ
β−1 ), let J ⊆ {1, . . . , n} be a subset of indices which

sastisfies the following conditions:

∀j ∈ J, ∀i ∈ {1, . . . ,m}, γij ≥ z. (4.12)

Suppose we obtained a transport matrix πoutput by running the outer loop t times satisfying
the following condition:

( 1
m )β−1 + ( 1n )

β−1

β − 1
t <

1

1− β
−
(
− z
λ

)
. (4.13)

Then, we send no mass to J.

Proof. Before the outer loop starts,

− z

λ
<

1

1− β
(4.14)

holds. Since every element in θ∗ is greater than or equal to ϕ′(0) = 1
1−β , the following

inequality holds for every i in Algorithm 5:

τi ≥
1

1− β
− ϕ′

( 1

m

)
(4.15)

=
1

1− β
−

(
1

β − 1

((
1

m

)β−1

− 1

))

= − 1

β − 1

(
1

m

)β−1

. (4.16)

Therefore,

−τi ≤
1

β − 1

(
1

m

)β−1

. (4.17)

Similarly, for every j, the following inequality holds:

− σj ≤
1

β − 1

(
1

n

)β−1

. (4.18)
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Therefore, if the algorithm finished running the outer loop t times and the following inequality
holds,

− z

λ
+ t× 1

β − 1

(
1

m

)β−1

+ t× 1

β − 1

(
1

n

)β−1

<
1

1− β
, (4.19)

then,

∀i, θ̃ij <
1

1− β
if j ∈ J (4.20)

(4.21)

holds. Therefore,

∀i,πoutput
ij = 0 if j ∈ J. (4.22)

Algorithm 5 sends no mass to points in {yj}nj=1 that are more than z away from any
point in {xi}mi=1. Although we do not expect to transport any mass to outliers, the optimal
solution of the CROT must satisfy the coupling constraint and the condition (4.2) is never
satisfied. To ensure (4.2), we consider solving the CROT with only a finite number of
updates subsequently. Then, the obtained solution can satisfy (4.2) under a certain condition,
although the coupling constraint is not satisfied. This is in stark contrast to the previous
works [30, 1], which cannot avoid transporting some mass to outliers.
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Chapter 5

Experimental Results

In this chapter, we show our algorithm computes OT robustly when data are contaminated
with outliers. In toy experiment 1, we compute CROT of two sets of samples from Gaussian
distributions containing outliers. In toy experiment 2, we show that using the transport
matrix computed with our algorithm can restore the discrete distribution ignoring the out-
liers. As an application of the restoration of the discrete distribution, we apply this to a
reinforcement learning task in a noisy environment and estimate the reward distribution [59]
robustly. Finally, we use our algorithm to detect outliers in the dataset. We show that our
method outperforms the previous methods.

5.1 Experiments with synthetic data

In this section, we first show the robustness of our methods to compute CROT with synthetic
data.

5.1.1 Toy experiment 1

We compute the squared discrete 2-Wasserstein distance (γij = ||xi − yj ||22) between 2-
dimensional empirical probability distributions n̂1(x) and n̂2(x) generated from N1(x) :=
N (0, I) and N2(x) := N (5, I), respectively. Here, I is the 2-dimensional identity matrix. In
this experiment, a few samples from U{(x, y)| − 50 ≤ x, y ≤ 50} will be added to n̂2(x). We
will call this uniform distribution a contamination distribution. We look how much the CROT
value changes according to the number of samples from the contamination distribution.

First, in order to compute CROT between n̂1 and n̂2, 500 samples were generated from
each of N1(x) and N2(x). Then, we calculated the squared discrete 2-Wasserstein distance
when zero, ten, and twenty-five samples from the contamination distribution were added to
n̂2. The figure when ten samples from the contamination distribution were added to n̂2 is
shown in Figure 5.1.

The results are shown in Table 5.1. Table 5.1 shows that when the regularizer is the
Euclidean norm and β-potential term, we can successfully weaken the influence of outliers.

5.1.2 Toy experiment 2

In toy experiment 1, we confirmed both the Euclidean norm and β-potential enable us to
compute OT robustly. Next we will see how close the transport matrices computed with
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(a) When n̂1 and n̂2 are both clean data. (b) When n̂2 is polluted.

Figure 5.1: (a) 500 samples (red) are drawn from N ([0, 0]⊤, I) and 500 samples (blue) are from
N ([5, 5]⊤, I). I is the two-dimensional identity matrix. (b)The figure when n̂2 is
polluted with 10 samples from two-dimensional uniform distribution U{(x, y)| − 50 ≤
x, y ≤ 50}.

Table 5.1: The squared discrete 2-Wasserstein value with each regularizer according to the number
of outliers.

Zero outlier Ten outliers Twenty-five outliers
Boltzman Shannon entropy 53.74 92.19 138.24
Euclidean norm 50.27 49.86 49.29
β-potential (1 < β) 50.10 50.00 50.18

non-contaminated data and transport matrices with contaminated data are.

How to compare the transport matrices [60]

Let P̂x and P̂y be two 1-dimensional empirical probability measures on R, defined respectively

by their supports x = (x1, . . . , xn) and y = (y1, . . . , yn) as P̂x = 1
n

∑n
i=1 xiδxi

and P̂y =
1
n

∑n
j=1 yjδyj . We consider a non-negative function defined as (x, y) ∈ R2 7→ h(y− x) where

h : R 7→ R+ and we define the distance matrix γ as γij := (h(yj − xi))ij . Recall that the
OT problem is written as follows:

OT(P̂x|P̂y) := min
π∈G( 1

n ,
1
n )

∑
i,j

πijγij . (5.1)

We will leverage the folllowing proposition [60] to compare transport matrices.

Proposition 2 ([60]). Let y be an increasing vector1 of size n. For all strictly convex
functions h, if π∗ is an optimal solution to (5.1), then the vector S(x) which sorts x in
ascending order can be written as follows:

S(x) = nπ⊤
∗ x. (5.2)

We compare transport matrices by comparing the corresponding S(x) to x. We will call
the sorting procedures β-sorting and Euclidean-sorting using the β-potential and Euclidean
norm, respectively.

1An increasing vector yn = (y1, . . . , yn) is a vector that satisfies y1 < . . . < yn.
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Figure 5.2: 50 samples from N (0, 1), N (10, 1), N (20, 1) each and 5 outliers which are all 70.

We sorted a multimodal distribution shown in Figure 5.2. We sampled 50 samples each
from N (0, 1), N (10, 1), N (20, 1) and mixed 5 outliers which are all 70. We denote these
157 samples by x and prepare an increasing vector y = ( 1

157 ,
2

157 , . . . , 1) of size 157. We
then computed P∗ when the regularization term is the β-potential term or Euclidean norm.
The sorted vectors of β-sorting and Euclidean-sorting are shown in Figure 5.3 and Figure
5.4. They both do not contain any outlier 70 but we can say β-sorting restored the inlier
elements (samples from N (0, 1), N (10, 1), N (20, 1)) better than Euclidean sorting.

5.2 Application to reinforcement learning

We applied our algorithm to an offline reinforcement learning (RL) [61] task (Figure 5.5).
We consider an RL environment with 4 × 7 blocks RL environment shown in Figure 5.6.

The agent first collects data from running 2000 trials in the environment. In each trial,
the agent starts from block 21. The agent can move one block vertically or horizontally in
each time step. If the agent reaches block 6, it obtains a reward of 5 points and the trial
ends. In addition, if the agent reaches block 0 or block 27, it obtains a reward of 500 points
with probability 0.3 or a reward of −1500 points with probability 0.1, and the trial ends;
otherwise it does not obtain any rewards and the trial will not end. In each time step, if the
trial does not end, the agent obtains a reward of −0.05 points. If the trial does not end after
20 steps, the agent obtains a reward of 0 points, and the trial ends.

We train a policy with a distributional RL [62] approach.

5.2.1 Distributional RL

Here, we model the agent-environment interactions by a Markov decision process (MDP)
(S,A, R, P, γ) [63], with S and A the state and action spaces, R the reward, a random
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Figure 5.3: The historgram of ordinary samples (blue) and the histogram of sorted elements by
Euclidean-sorting (orange).

Figure 5.4: The histogram of ordinary samples (blue) and the histogram of sorted elements by
β-sorting (orange).
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Data collected once 
with any policy 𝐨𝐟𝐟

Buffer
𝒟

Learn

Training phase
Deployment

Figure 5.5: An illustration of offline RL. In the data collection phase, an agent in state s interacts
with the environment by commiting an action a according to a policy πoff . Each time
it makes an action, it observes the next state s′ and obtains reward r. Note that πoff

is fixed in the data collecting phase. In the training phase, we seek a good policy
πdeploy using the collected data {(si, ai, si+1, ri+1)}i=0,...,N . In the end, πdeploy will
be deployed in the test phase and the quality of the method will be evaluated by the
reward it obtained.

Note. Images are cited from https://free-icons.net/life053/ and https://threestardesign.

com/earth/.

https://free-icons.net/life053/
https://threestardesign.com/earth/
https://threestardesign.com/earth/
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Figure 5.6: The field of RL task. The agent starts from block 21 (circle). If it reaches block
6 (inverted triangle), it obtains a reward of 6 points. If it reaches block 0 or 27, it
obtains a reward of 500 points with probability 0.3 or a reward of −1500 points with
probability 0.1, and the trial ends; otherwise it will receive no rewards.

variable, P (s′|s, a) the probability of transiting from state s to s′ after taking action a, and
γ ∈ [0, 1) the discount factor. A policy π(·|s) maps each state s ∈ S to a distribution over
A.

For a fixed policy π, the discounted cumulative reward, Zπ =
∑∞
t=0 γ

tRt, is a random
variable representing the sum of discounted rewards observed along the trajectory of states
and actions while following π. Many RL algorithms [64, 65, 66] estimate the action-value
function,

Qπ(s, a) := E[Zπ(s, a)] = E
[ ∞∑
t=0

γtR(st, at)
]
= E[R(s, a)] + γEa′∼π(·|s),s′∼P (·|s,a)[Q(s′, a′))],

(5.3)

st ∼ P (·|st−1, at−1), at ∼ π(·|st), s0 = s, a0 = a.

A notion called the Bellman operator [67] is defined as follows:

T πQ(s, a) := E[R(s, a)] + γEπ[Q(s′, a′))]. (5.4)

In distributional RL, the distribution over returns (i.e.. the probability law of Zπ) plays
a central role and replaces the action-value function. The action-value distribution can
be computed through dynamic programming using a distributional Bellman operator [20]
defined as follows:

T πZ(s, a) d
:= R(s, a) + γZ(s′, a′), (5.5)

s′ ∼ P (·|s, a), a′ ∼ π(·|s′),
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Figure 5.7: The direction which has the largest median of reward for each block (left: β-sorting,
right: regular sorting). The β-sorting agent follows path 21 → 22 → 23 → 24 →
25 → 26 → 19 → 12 → 5 → 6 more often. The regular-sorting agent follows path
21 → 14 → 7 → 0 → 1 → 0 → 1 → 0 → 1 → · · · more often.

where Y
d
:= U denotes equality of probability laws, that is, the random variable Y is dis-

tributed according to the same law as U .
To make the problem setting simple, in our problem setting, we made the transition from

one state to another deterministic when making the action. For instance, if an agent takes
the action of going right in block 10, the agent will move to block 11 with probability 1 and
move to block 3, 9, or 17 with probability 0.

5.2.2 Training scheme

An agent collects data by acting a random walk on the data collection phase. Here, a random
walk is a uniformly random selection of the next block to go from one block to the next.
Suppose a trial followed a trajectory of {(s0, a0, s1, r1), . . . , (sN−1, aN−1, sN , rN )}. Then, we
used a Monte-Carlo estimation approach to approximate the reward distribution. For all
4×7 pairs of (s, a), we store the discounted reward as shown in Algorithm 6 based on (5.5).

After the data collection phase, we now have data of rewards for each pair (s, a). For
each pair (s, a), let us denote the vector of rewards and its size by xr

s,a and nrs,a. Then, we
compare two ϵ-greedy agents in the test phase to show that our proposed algorithm estimates
the inlier reward distribution robustly and leads to obtaining large reward robustly. A
regular sorting agent will sort xr

s,a for each pair (s, a) and choose the action with the largest
median with probability 0.99 and an action randomly with probability 0.01. A β-sorting
agent will sort xr

s,a using Propostion 2. Specifically, we computed CROT between xr
s,a and

an increasing vector of size nrs,a. We then used the computed transport matrix πβs,a and
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Algorithm 6 Monte-Carlo approach to approximate the reward distribution

Input: Trajectory of a trial {(s0, a0, s1, r1), . . . , (sN−1, aN−1, sN , rN )}, discount factor γ ∈
[0, 1)

1: rcurr ← rN
2: for i = 1 to N do
3: store rcurr to (sN−i, aN−i)
4: rcurr ← rN−i + γ rcurr
5: end for

Table 5.2: Comparison of the regular sorting agent and β-sorting agent.

The number of times of reaching block 6 Total reward
β sorting 199990 1000950

Regular sorting 960 70330

computed Spseudo(xr
s,a) := nrs,aπ

β
s,ax

r
s,a to pseudo sort xr

s,a. Similar to the regular sorting
agent, a β-sorting will choose the action with the largest median in each state with probability
0.99 and an action randomly with probability 0.01.

Note that, since the expected reward finishing at block 0 or 27 is 0 (=500×0.3+(−1500)×
0.1), the best strategy is to reach block 6.

5.2.3 Results

After 2000 trials in the data collection phase, we ran 200,000 trials in the test phase. We
compared the regular sorting agent and β-sorting agent (Table 5.2). In Figure 5.8, we can
see that the β-sorting agent estimates the inlier distribution ignoring the outlier distribution.

5.3 Applications to outlier detection

Our algorithm enables us to detect outliers. Let µm be a clean dataset and νn be a dataset
which is polluted with some outlier data. If we compute the transport matrix with µm and
νn and all the element in column j is 0, then the j th data in νn is an outlier.

In this experiment, we used Fashion-MNIST as a clean dataset and MNIST data as
an outlier dataset. νn consists of 9500 images from Fashion-MNIST and 500 images from
MNIST. µm consists of 10000 images from Fashion-MNIST. We computed the transport

Table 5.3: The percentage of true outliers/inliers detected as outliers/inliers over 50 experiments.

Outliers Inliers
One Class SVM 49.8 ± 1.8 % 50.0 ± 0.1 %

Local outlier factor 49.7 ± 3.8 % 99.2 ± 0.1 %
Isolation forest 50.7 ± 10.2 % 65.5 ± 4.4 %

Elliptical envelope 79.9 ± 7.0 % 80.0 ± 4.6 %
MoM-based [24] 79.7 ± 12.6 % 98.9 ± 0.7 %

Baseline technique 92.7 ± 0.4 % 92.8 ± 1.6 %
ROBOT [25] 99.5 ± 0.3 % 84.8 ± 0.5 %
Our Method 99.1 ± 0.7 % 87.3 ± 0.5 %
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Figure 5.8: Top: The histogram of xr
15,↑. Middle: The true inliers of xr

15,↑. Bottom: The his-

togram of Spseudo(xr
15,↑) = nr

15,↑π
β
15,↑x

r
15,↑.
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Table 5.4: Comparison with Balaji et al. [1] with 1000 datas

Outliers Inliers Run-time
Balaji et al. [1] 89.0 ± 16.9 % 67.0 ± 8.9 % 820 ± 17 seconds
Our Method 96.6 ± 2.0 % 88.0 ± 0.7 % 6 ± 0.2 seconds

matrix with the two datasets and identified the outlying MNIST images. We simply used
the raw data to compute the tranport matrix and defined the distance matrix as Cij =
h(xi − yj) = ||xi − yj ||22, i.e., the Euclidean norm between raw data. We compared the
proposed method with the “ROBust Optimal Transport” (ROBOT) method [25] and “MOM-
based” method [24] which are methods to compute OT robustly. We also compared our
method with a variety of outlier detection algorithms available in Scikit-learn [68]: the one
class support vector machine (SVM) [69], local outlier factor [70], isolation forest [71], and
elliptical envelope [72]. In the ROBOT method, we set the cost truncation hyperparameter to
the 99th percentile of the distance matrix in the subsampling phase [25]. Since the “MoM-
based” method does not compute the transport matrix explicitly, we used the Lipschitz
function trained as a nueral network in the dual form to detect outliers. We trained the neural
network with clean and contaminated data first to approximate the Lipschitz function and
determined data as outliers if their Lipschitz function value is less than the 2.5% percentile
or greater than 97.5 %.

Hyperparameter selection for our method.

In order to leverage the theoretical analysis, we will estimate the maximum distance between
inliers. We assume the distance between any pair of an inlier and an outlier is greater than
the distance between inliers. Therefore, if the maximum distance between inliers is z, and
run the outer loop t times and to satisfy the following inequality,

( 1
m )β−1 + ( 1n )

β−1

β − 1
t <

1

1− β
−
(
− z
λ

)
, (5.6)

then Proposition 1 holds. To estimate z, we propose the following heuristic: since we know
that µm is clean, we subsample two datasets from it and compute the distance matrix. Then,
we choose the minimum value for each row and set z with the largest value among them.
This procedure is essentially estimating the maximum distance between two samples in the
clean dataset. In order to avoid subsampling noise, we used the 95th percentile instead of
the maximum.

A natural baseline to compare with will be to identify a data point as an outlier if
the minimum distance to the clean dataset is larger than the distance computed in the
subsampling phase. We call this methond “the baseline technique”.

The results are shown in Table 5.3. One can see that our method has a high performance
in detecting not only outliers but also inliers.

Comparison with Balaji et al. [1].

Since Balaji et al. [1] is using CVXPY [34] to compute the transport matrix, their method
does not scale to large sample sizes and become extremely time consuming when the dataset
gets larger. We conducted the outlier detection experiment with 1000 data. Similar to the
previous experiments, the clean dataset µm consists of 1000 Fashion-MNIST data and the
polluted dataset νn consists of 950 Fashion-MNIST data as inliers and 50 MNIST datas as
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outliers. Table 5.4 shows the accuracy and the run-time of 10 experiment repetitions. Our
method outperforms the method by Balaji et al. not in accuracy of detecting outliers and
inliers, but also in the shortness of computation.



CHAPTER 6. CONCLUSION 39

Chapter 6

Conclusion

In this thesis, we proposed to robustly approximate OT by regularizing the ordinary OT
with the β-potential term. By leveraging the domain of the Fenchel conjugate of the β-
potential, our algorithm does not move any probability mass to outliers. Although our
algorithm violates the coupling constraint of OT, we showed it robustly approximates OT
through several numerical experiments. Specifically, we demonstrated that our proposed
method could be used to estimate a probability distribution robustly even in the presence of
outliers and detect outliers from a contaminated dataset.

Finally, let us discuss a direction for future work. One possible approach would be to
formulate a dual problem that prevents us from moving any probability mass to outliers.
Then, we can use neural networks to approximate the Lipschitz functions in the dual problem
and should be able to make many deep learning techniques such as GAN robust. Another
possible direction would be to consider a situation where both inputs contain outliers. In our
method, if both inputs have outliers and the outliers are close to each other, we cannot avoid
moving probability mass from outliers to outliers, which may ruin the robust computation
of OT.



BIBLIOGRAPHY 40

Bibliography

[1] Yogesh Balaji, Rama Chellappa, and Soheil Feizi. Robust optimal transport with ap-
plications in generative modeling and domain adaptation. In Advances in Neural Infor-
mation Processing Systems, 33, 2020.

[2] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to
direct importance estimation. J. Mach. Learn. Res., 10:1391–1445, dec 2009.

[3] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence
functionals and the likelihood ratio by convex risk minimization. 56(11):5847–5861, nov
2010.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Pro-
ceedings of the 27th International Conference on Neural Information Processing Systems
- Volume 2, NIPS’14, page 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

[5] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22:79–86, 1951.

[6] Introduction to statistical inference— stanford(lecture 16 mle under model misspecifi-
cation). 2016.

[7] Solomon Kullback. Information Theory and Statistics. Wiley, New York, 1959.

[8] Cédric Villani. Optimal transport – Old and new, volume 338, pages xxii+973. 01 2008.
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