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Introduction

In this thesis, we aim at new models of operads and multicategories which admit
various symmetries including those of symmetric groups, of braid groups, and of
ribbon braid groups. They are based on the idea of categories of operators pro-
posed by May and Thomason [568]. We construct a 2-category Bg for each group
operad G in the sense of Zhang [76] and show that G-symmetric multicategories
give rise to 2-categories fibered over Bg. This point of view clarifies how sym-
metries on monoidal structures are used in defining the Hochschild homology
and the homologies associated to crossed simplicial groups, which was intro-
duced by Fiedorowicz and Loday [24], of associative algebras. In other words,
we can parametrize the Hochschild homology of algebras over noncommutative
bases. We expect that these techniques admit homotopy algebraic analogues
and enables geometry of algebras over more general bases.

The central motivation lies in the geometry of higher algebras, which has
been developed based on the duality of “spaces” and “algebras.” Omne of the
most important examples of dualities was pointed out by Gelfand and Naimark
[26]; compact Hausdorff spaces corresponds in one-to-one to unital commutative
C*-algebras contravariantly. More precisely, for a compact Hausdorff space X,
it is dual to the C*-algebra C(X) = C(X,C) of complex-valued continuous
functions. The original space X is recovered as the space of maximal ideals of
C*. The point is that the duality enables us to do “geometry” not only on spaces
but in the algebra side. For instance, it is an important problem in geometry
to classify vector bundles. According to Serre-Swan Theorem [73], the category
of finite-rank complex vector bundles over X is equivalent to that of finitely
generated projective modules over C(X) for every compact Hausdorff space X.
This relates the complex topological K-theory KU of compact Hausdorff spaces
to the (0-th) K-theory Ky of commutative unital C*-algebras. We also note
that there are similar duality between affine varieties and commutative rings
and correspondence of vector bundles to projective modules; the latter is due
to Serre [69].

Connes’ noncommutative geometry [14] is one of attempts to extending the
meaning of “geometry;” namely he got rid of the assumption of the commutativ-
ity on algebras. Hochschild homology and the cyclic homology play important
roles. We here recall the description of them. For a symmetric monoidal abelian
category C, one can think of an algebra object in C as a monoidal functor

A:A=cC (0.0.1)

out of the category A of finite cardinals and arbitrary maps equipped with the
disjoint unions as the monoidal structure. Thanks to the symmetric structure



on C, the functor (0.0.1)) extends to a symmetric monoidal functor

where Ag is the free symmetrization of A by the sequence of symmetric groups
S = {G,}n. It turns out that the category Ag has Connes’ cyclic category A
as a subcategory. Using the self-duality of A pointed out in [I2], one obtains
the composition

AAP A Ag 250 (0.0.3)

As A is an extension of the simplex category A, in view of the Dold-Kan cor-
respondence [I6] [17] [44], the restriction Af|aer : AP — C corresponds to the
cyclic bar resolution of the algebra A. As a result, we obtain the Hochschild
homology and the cyclic homology of A as

HH,(A) = H,(A%|aov) , HC.(A) = H,(hocolim A) , (0.0.4)

here the homotopy colimit is taken in the derived category D(C). We are mainly
interested in the case C is the category of modules over a commutative ring.
In particular, if C is the category of vector spaces over a field k, and if A is
smooth and finitely generated over k, we have Hochschild-Kostant-Rosenberg
isomorphism [35]

Uy = HH.(A) |

here Q7% Jk is the exterior algebra of Kéhler differentials. Furthermore, in the
same situation, the comparison of the differential on €2 4/, and the “circle-action”
on HH,(A) coming from the cyclic structure on A%, one obtains an isomorphism

HCu(A) = (2 ,,/dy) © @ Hig ™ (4) -
k>1

We here also mention that there are similar isomorphisms due to [I3] for the
de Rham cohomology on a smooth manifold X and the cyclic homology of
the ring of complex-valued smooth functions. In this case, the circle-action on
Hochschild homology can be seen in the isomorphisms given by Jones [38]: for
a simply connected manifold X, we have

HH, (Qp(X)) 2 H*(LX;R) , HC.(Q4r(X)) = H*(LX /| SLR) ,

here LX is the free loop space of X, and LX // S! is its homotopy quotient by
the canonical circle action. Therefore, in noncommutative situations, we can
make use of the Hochschild homology and the cyclic homology instead of the de
Rham cohomology.

The perspective above is also convenient when the geometry of higher al-
gebras is developed; yet what are higher algebras? In order to formulate it, it
is convenient to describe algebraic structures in terms of operads. The notion
first appeared implicitly in Stasheff’s work [7I] on the homotopy associativity,
and the abstract definition was given by May in his book [57]. For a sym-
metric monoidal category V, a symmetric operad O in V consists of a family
O = {O(n)}, of objects of V together with an &,-action on each O(n) and a
composition operation

Y0 : 0(n)@O(k1)® - @ O(ky) = O(ky + -+ + k)



which is associative, unital, and compatible with &, -actions. More generally,
there is a “colored” version of operads: a V-enriched symmetric multicategory
is similarly defined while it is indexed with finite sequences of “objects” instead
of natural numbers. When V is omitted, the enrichment in sets is understood.
For example, symmetric operads can be seen as symmetric multicategories with
single objects, and every symmetric monoidal category C gives rise to a symmet-
ric multicategory C®. The latter assignment in particular defines a 2-functor
MonCatg — MultCatg from the 2-category of symmetric monoidal cate-
gories, symmetric monoidal functors, and monoidal natural transformations to
that of symmetric multicategories, symmetric multifunctors, and multinatural
transformations. Then, for a symmetric operad O and a symmetric monoidal
category C, O-algebras in C may be defined as multifunctors © — C®, which
form a category Alg,(C) := MultCatg(O,C®). If we write Assocg the sym-
metric operad with each Assoc(n) being an &,,-torsor, then Assocg-algebras
are nothing but associative algebra objects.

There are mainly two approaches to higher algebras using the theory of
operads. One uses cofibrant operads: if the enriching category V admits a
model structure in the sense of Quillen [65] which is good enough, then the
category of operads in V also admits a model structure [5]. In the case V is the
category of topological spaces or chain complexes, cofibrant replacements have
been discussed by many authors after Stasheff’s invention of the associahedra.
We would however use the other approach, namely the category of operators.
The concept was first discussed by May and Thomason [58]. We put I' the
opposite category of a skeleton of the category of finite pointed sets. Then,
categories of operators are categories fibered over I'°P with certain wuniversal
lifting properties. It was pointed out by May and Thomason, and later by Lurie
[54], that each symmetric multicategory gives rise to a category of operators
satisfying a version of Segal condition. It was shown in [B8] that, if L — T°P
and CY® — T'°P are categories of operators associated to a symmetric operad
O and a symmetric monoidal category C respectively, then O-algebras in C
correspond in one-to-one to functors X — CY® over I'°P preserving universal
liftings. According to Lurie [54], the argument actually goes well not only in
the ordinary category theory but also in the theory of quasi-categories, which
are models of co-categories, developed by Boardman-Vogt [6], Joyal [40] [41],
and Lurie [53]. In the latter situation, one obtains the notion of “co-operads”
and their “oc-algebras.”

In terms of categories of operators, Hochschild homology of algebras is given
as follows: First, in view of the representability of multicategories considered
by Hermida [33], symmetric monoidal categories correspond to Grothendieck
opfibrations over I'°P. Lurie gave a construction of a Grothendieck opfibration
Envg(K) — I'°P for every category of operators L — I'°P and showed that it is
the free symmetric monoidal category generated by the operad associated with
KC; in other words, if CY® — I'°P is a Grothendieck opfibration associated with a
symmetric monoidal category C, maps K — CV© of categories of operators corre-
spond in one-to-one to maps Enve (K) — CY® of Grothendieck opfibrations. In
particular, taking K to be the category of operators associated to Assocg, one
can regard an algebra object A in C as a functor AY : Enve (K) — CV€ over I'°P.
We denote by (1) € I'°P the object consisting of exactly one element except the
base. Then, it is verified that the fiber C<V1>6+ is identified with C itself. Moreover,



the cyclic category A admits a canonical functor A — Enve(K) 1y, - In the case
C is an ordinary category and A is an ordinary algebra, the composition

A% = A — Enve(K) 1y, — CI$, =C

coincides with the functor A? given in so that we can define the Hochschild
homology and the cyclic homology provided C is abelian. Hence, if C is a sym-
metric monoidal stable co-category in the sense in [54], we obtain the Hochschild
homology for higher algebras, and geometry of higher algebras, or the derived
algebraic geometry, is enabled. In particular, if C = Spc is the co-category of
spectra, the Hochschild homology is called the topological Hochschild homology,
which is first considered by Bokstedt [7].

In the argument above, we always assume the base category C is symmetric.
From the geometric point of view, it reflects the assumption that the base ring
of algebras is commutative. On the other hand, there are some examples of alge-
braic structures on noncommutative bases studied especially in higher algebras
and in quantum mathematics. In the first area, May [57] considered levels of
homotopy commutativity of products on spaces; namely, if E; denotes the little
k-disks operad, then an Eg-algebra in the category of topological spaces, or an
Ej-space briefly, is a homotopy associative topological monoid which is commu-
tative in homotopy k-types. For a few k, the commutativity of Eg-algebras is
classically known as below:

El — EQ — - = Eoo
associative braided e commutative

According to the stabilization hypothesis [2], which was proved in [27], for an
Ex-algebra A, modules over A form an (co-)category which is not fully symmet-
ric but E;-monoidal for some [ < k — 1. Hence, in order to consider geometry
with base A, we will need the Hochschild homology of algebras in E;-monoidal
categories. Also, in quantum mathematics, the symmetry of braid groups ap-
pears frequently. For instance, for a Hopf algebra H, the category H-Mod of
left H-modules admits a canonical monoidal structure, where algebra objects
are called H-module algebras according to [61]. It is known that symmetries on
the monoidal structure on H-Mod may be encoded as special elements of tensor
products of H. In particular, according to [11], braidings on H-Mod precisely
correspond to elements of H® H called R-matrices. A Hopf algebra H is said to
be quasitriangular if it is equipped with a fixed R-matrix. The quantum groups
Uq(g) are important examples [I8]. Thus, for quasitriangular Hopf algebra H,
geometry of H-module algebras will requires Hochschild homology with braided
base category.

Fortunately, there is a framework to define some sort of symmetries on mul-
ticategories in the realm of ordinary category theory. The key observation is
that the family & = {&,,},, of symmetric groups admits a canonical structure
of (planar) operads. Zhang introduced in his paper [76] the notion of group
operads as generalizations of the operad &, though the axioms were already
stated by Wahl [75]. An operad G is called a group operad if each set G(n) is
equipped with a structure of a group and a group homomorphism G(n) —» &,
satisfying a compatibility condition with the operad structure. The examples
include the operad B of braid groups and RS of ribbon braid groups as well as



G itself. The important feature is, as pointed out in [I5] and in [31], that each
group operad G gives rise to a notion of G-symmetries on (non-symmetric) mul-
ticategories. Namely, a G-symmetric structure on a multicategory M is given
as a right action

( H M(ag(l) . ag(n); a)) X g(n) — < H M(ag(l) ce ag(n); a))

oeS, ceES,

for objects a,aq,...,a, € M with appropriate coherence conditions. A mul-
tifunctor is said to be G-symmetric provided it preserves G-symmetric struc-
tures. We obtain a 2-category MultCatg of G-symmetric multicategories, G-
symmetric multifunctors, and multinatural transformations. Since every monoidal
category C gives rise to a multicategory C® in the same way as the symmet-
ric case, we can also consider G-symmetric structures on monoidal categories.
Thus, the notion of G-symmetric monoidal categories arises so that they form
a 2-category MonCatg with a locally fully faithful and conservative functor
(-)® : MonCatg — MultCatg.

Looking ahead to the higher algebraic analogue, we are interested in cate-
gories of operators for G-symmetric multicategories for arbitrary group operads
G, which is exactly the main theme of this thesis. We begin with the non-
symmetric case. For non-symmetric operads and multicategories, we use the
category V instead of I'°P, where V is defined such that

e objects are linearly ordered sets of the form below for n € N:
<<TL>> = {7007 17 R OO} ;

e morphisms are order-preserving maps which sends +oo to oo respec-
tively.

Since there is a canonical functor V — I'°P with ((n)) — ((n))/{xoo} = (n),, it
derives the universal lifting problems for fibrations from I'°P. In addition, since
V is isomorphic to the opposite of the simplex category A by [39], we can also
consider Segal condition on categories over V. We can then define a category
of non-symmetric operators, as an analogue of one in [58] and [54], as a functor
p : K — V such that

(i) it admits coCartesian lifts for inert morphisms in V, that is, morphisms
@ {(m) — (n) with ¢=H{1,...,n} — {1,...,n} bijective;

(ii) for the inert morphisms p; : {(n)) — (1) with p;(j) = 1 precisely when
j =1, the square below induced by coCartesian lifts p; : X — X; € K is a
pullback:

KW, X) ———[Ii, K(W. X3)

Lo
VW), (n)) —— V(p(W), (1)) "

iii) Segal condition: the functor K,y — K% induced by the coCartesian
{n )

lifts of the inert morphisms p1,...,p, : {(n)) — (1)) is an equivalence of
categories.



As a result, we can exhibit (non-symmetric) operads and multicategories as
categories fibered over V and see they form a subcategory of the slice 2-category
Cat/V.

For categories of operators of G-symmetric multicategories, we need to find
a category Bg which places the position of I'°P or V in the (&-)symmetric or
in the non-symmetric case. At this stage, things get involved with the higher
category theory. Indeed, it turns out that, if G is neither trivial nor &, Bg
becomes not an ordinary category but a 2-category actually. We denote by
Cats the 3-category of 2-categories, normalized pseudofunctors, pseudonatural
transformations, and modifications. The main results are then stated as follows.

Theorem A. Let G be a group operad. Then, there are 3-subcategories

geom

RepOperg®™ C Operg™" C CatéBg
of the strict slice over Bg with a commutative square

geom

MonCatg —— RepOperg

ol ]

MultCatg —— Oper§°™

with horizontal arrows triequivalences.

Theorem B. For every group operad G, the inclusion

geom geom

RepOper; " — Operg

admits a left adjoint

Envg(-) : Oper§®" — RepOperg™" .

As in the symmetric or non-symmetric case, our models above of categories
of operators admit straightforward higher analogue. Indeed, one can relax the
“truncatedness” in the definition of the 3-category Operg°"; cf. covering spaces
v.s. fiber bundles over BG for a group G. Furthermore, it will turn out that
it provides a coherent way to define Hochschild homology for algebras in G-
symmetric monoidal categories. Indeed, for a G-symmetric monoidal abelian
category C, the theorems above give the following sequence of biequivalences:

Alg(C) ~ MultCatg(G,C®)
~ Operéeom(gvg, (C®)VQ) (0.0.5)
~ Rlepoperéeom (EHVg(gvg)7 (C®)Vg) .

We have a canonical identification (C®)Zlg» 2 C, and the direct computation

shows that there is an ordinary category Ajig with Ean(gvg)«l» ~ £3ug.
Thus, taking the fibers over (1)) € Bg in the last term of (0.0.5)), one obtains a
pseudofunctor

(-)F: Alg(C) — Caty(Az:g,C) -



Therefore, putting Ao, the paracyclic category [23], we obtain

~ )Ex1d ~ ~
Alg(C) x Cat® (A, Ayeg) M Cat(Bysg,C) x Cat(Aoc, Ageg)

2 Cat(As, C) ~ Cat(A%,C) — Cat(A,C) ,

(0.0.6)
where Cat®/ is the 2-category of functors out of A. We note that the cyclic
category A is a quotient category of Ao, so that the self-duality A = A°P comes
from the isomorphism Ao, = A constructed by Elmendorf [23], so is
regarded as the parametrized cyclic resolution. As a result, we obtain a family
of Hochschild homologies of each algebra A in C. As for the parameter category
Cat®/ (Ao, ﬁﬁg), since A is the total category of a crossed simplicial group as
pointed out by Fiedorowicz and Loday [24], the structure of Cat®/ (A, £3ug)
is deeply related to the adjunctions in the following theorem.

Theorem C. There are adjunctions

Crs(}rp/A's @ CrsGrp/Z6 @ GrpOp

Sh

between the slice categories of crossed simplicial groups and of augmented crossed
simplicial groups over the ones consisting of the symmetric groups and the cat-
egory of group operads.

The notion of crossed groups was introduced by Fiedorowicz and Loday
[24] and Krasauskas [47] independently in the simplicial case, and it is easily
generalized over arbitrary base category. It was pointed out that the paracyclic
category A, is the total category of a crossed simplicial group Z, and we have

Cat®/ (A, Ageg) = CrsGrpa (Z,3°G) . (0.0.7)

In the case G = &, the augmented crossed simplicial group 3G is an augmented
crossed simplicial subgroup of the terminal object in CrsGrpx so the both
sides in consists of a unique element. The composition is hence
identified with a functor Alg(C) — Cat(A°P,C) which is exactly the usual cyclic
resolution . Furthermore, it is also an interesting problem to consider
maps [ : G — J9G of crossed simplicial groups for a general crossed simplicial
group G. Using the formula

CatA/(AG,AJhg) >~ CrsGrp, (G, 3°G)

analogous to , we obtain the associated homology defined in [24] as the

functor
F( )h hocolim

HG'(-): Alg(C) — Cat(Ag,C) ——— D(C)
into the derived category D(C), where the last functor takes the homotopy
colimits of diagrams. It would be an exciting problem to consider their geometric
interpretation; such as the relation to the free loop spaces described in [38] or
[52] in the commutative case. In particular the case C is the category of modules
over quasitriangular Hopf algebra, explicit computations may be possible, which
would be a future task.



We will establish the theorems above in the following way: after reviewing
in Chapter [I| the basic notions and results we need in the later sections, in
Chapter [2] we establish the basic theory of crossed groups. For a small category
A, a crossed A-group is an A-set G with a group structure on each G(a) for
a € A which is compatible in a crossed sense with the A-set structure. Note
that the notion contains A-groups in the usual sense as a subclass. In the cases
A=A, AV, we obtain the notions of crossed simplicial groups, of augmented
crossed simplicial groups, and of crossed interval groups, where the third termi-
nology is due to [3]. Although crossed simplicial groups have been investigated
by many authors after [24] and [47], the general theory of crossed groups over
arbitrary base categories seems not to be well-studied. Above all, we will ver-
ify that the category CrsGrp 4 of crossed A-groups is locally presentable and
admits all small limits and colimits for every base category A. This result has
some important consequences. First, it shows that there is the terminal crossed
A-group ¥ 4. Since the category CrsGrp 4 admits pointwise kernels and cok-
ernels, for every crossed A-group G, the unique map f : G — T4 induces a
pointwise exact sequence

* = G o G- G =«
with
e (GG"° is a (non-crossed) .A-group;
e G is a crossed A-subgroup of the terminal crossed A-group T 4.

Thus, we obtain a classification of crossed A-groups up to non-crossed ones by
computing all the crossed A-subgroups of T 4. In fact, in the simplicial case, they
were all computed in [24], and it will see that we also have the straightforward
analogue in augmented case. In addition, we will achieve the classification in
the interval case using the crossed analogue of Goursat Lemma. Second, the
local presentability enables us to use General Adjoint Functor Theorem. Hence,
we obtain the basechange adjunctions
/®*G 7 L

G $C . o G .
¢, @y : CrsGrp/y ECrsGrp% .(I)hé.

on the slice categories over Ge CrsGrprG along a faithful functor ¢ : A — A

which is stable under the action of G. Actually, we obtain not only the existence
of adjunctions but also explicit formulas. In particular, the canonical functors
A — A — V induce the adjunctions in more or less computable forms.

In Chapter [3] we will prove that the category GrpOp of group operads
can be fully faithfully embedded into the category CrsGrpy of crossed interval
groups. Moreover, The explicit computation shows that it exhibits GrpOp as
a reflective subcategory of CrsGrpy; i.e. there is a functor

CrsGrpy — GrpOp ; G+~ Og¢

which is left adjoint to the embedding. Combining with the basechange adjunc-
tions, we obtain Theorem [C]

As for the other theorems, we will prove them in the last two chapters. In
view of the results obtained in the previous chapters, we will regard a group op-
erad G as a crossed interval group throughout these chapters. Then, two models

10



of categories of operators for G-symmetric multicategories will be proposed. In
Chapter |4, we will construct a category Eg which is a quotient of the total
category Vg. It will be also seen that it is the horizontal part of the double
groupoid, or the “object” of an internal category

Gg = Eg . (0.0.8)

Then, we will define a category of algebraic G-operators as a category C over ]Eg
such that

(i) it satisfies the three conditions similar to the ones on categories of non-
symmetric operators above;

(ii) it admits a structure of an internal presheaf over the internal category
@g = I~Eg; i.e. a functor _
C X]Eg Gg —=C
which is unital and associative.

We write Oper the 2-category of categories of algebraic G- operators We will

also see that every multicategory M gives rise to a category M ZIEg over ]Eg
and that G-symmetric structures on M can be presented as internal presheaf
structures. This observation gives rise to a 2-functor MultCatg — Operalg
and we will prove it is actually a biequivalence.

On the other hand, in Chapter [f] we will construct the other model using so-
called internal Grothendieck construction. Namely, for a category of algebraic
G-operators C, the action and the projection defines a double category

Cxz,Gg=C. (0.0.9)

Notice that since the double category (0.0.8]) has the discrete vertical category,
so does . Hence, we can see ((0.0.9) as a 2-category, which we write
C /g, Gg- In particular, we put

Bg :=Eg /5, Gg ,

and we call it the classifying category of G. Using the bicategorical analogue
of the theory of coCartesian morphisms developed in [I0], one can see the
three conditions on categories of operators still make sense for 2-categories over
Bg, and we obtain the notion of categories of geometric G-operators, which
form a 2-truncated 3-category Oper&®". The 2-functor given by the internal
Grothendieck fibration causes a trlequlvalence

=) Iz, Gg : Operg — Operg®" .
Hence, we obtain a biequivalence MultCatg ~ Operg°". Moreover, we will
see the notion of representability on multicategories introduced by Hermida [33]
corresponds to the coCartesian lifting property of arbitrary morphisms, and
biequivalence above restricts to that between the 2-category RepMultCatg of
representable G-symmetric multicategories and the 3-subcategory RepOperg ™"
of Opergeo consisting of Grothendieck opfibrations over Bg. This result is
exactly Theorem |§| since MonCatg ~ RepMultCatg. This observation also

11



geom geom

provides a recipe to construct the left adjoint Envg : Operg™" — RepOper;
in Theorem [Bl

It is worth noting that, regarding models of categories of operators, we use
the terminologies algebraic and geometric in the same meaning as in the theory
of models for homotopy theories and higher categories [51] [70]. In this theory,
structures in a model are realized either as additional data or as a sort of prop-
erties. We say the medel is algebraic in the first case while geometric otherwise.
This is why we say objects in Opergg are algebraic; their symmetries associated

with G are presented in an algebraic way; i.e. by the functor C XEg @g —C. On
geom

the other hand, the G-symmetries on objects of Operg ™ are presented by the
lifting properties on the action groupoid &,, / G(n) for n € N. We also mention
that the composition structures on both models of categories of operators can
be said to be geometric in the sense above. In this point of view, our models
are compared with the one Gurski proposed in [31] as in the following table.

composition symmetry
G-symmetric algebraic algebraic
multicategory
Mnd,(Klgg) [31] algebraic geometric
Op er‘;Ig geometric algebraic
Operg°™" geometric geometric

It also shows the advantage of our models in view of higher algebras. In partic-
ular, since categories of geometric G-operators are fully geometric models, it is
expected that there are oo-categorical analogues.
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Chapter 1

Preliminaries

1.1 2-categories

In this paper, we use the notions and terminologies coming from the 2-category
theory, so we quickly review them. We essentially follow the literature [50]

Definition. A 2-category is a category enriched in the category Cat of small
categories and functors equipped with the Cartesian monoidal structure. More
precisely, a 2-category K consists of the following data

e a collection Ob K, whose members are called objects of K;

e for each pair U and V of objects of K, a small category K(U, V), whose
objects are called 1-morphisms and whose morphisms 2-morphisms;

e for each triple U, V, and W of objects of I, a functor
v K(V,W) x K(U,V) = KUW) ;

e for each object U € K, and object idy € K(U,U);
such that the diagrams

K(V,W) x K(U,V) x K(T, U) 2% (v, W) x K(T, V)

’YXId\L l'y (111)
K(U,W) x K(T,U) K(T, W)

K(U,V) x {idy} & K(U, V) x K(U,U)

NS

{idy} x K(U, V) = K(V,V) x K(U, V)

N

13



Remark 1.1.1. There is a weaker notion of 2-categories; namely bicategories. In
bicategories, the associativity of 1-morphisms holds only up to specific invertible
2-morphisms which is coherent in an appropriate sense. In fact, from the oco-
categorical point of view, many authors think of bicategories as right models
for two dimensional categories. Nevertheless, we stick to the strict notion since
it is enough for our purpose.

If U and V are objects in a 2-category K, then we represent a morphism
a: f—geK(U,V)bya “2-cel”

in a diagram or by a : f — g : U — V in one-liner. The former notation is
sometimes called the pasting diagram of the 2-morphism «.

Ezxample 1.1.2. Let C be an ordinary category. Then, we can see C as a 2-
category with only trivial 2-morphisms.

Ezample 1.1.3. We have the 2-category Cat of (small) categories, functors, and
natural transformations.

Definition. Let K and £ be 2-categories. Then, a pseudofunctor F from K to
L, written as F' : L — L, consists of data

e amap F: ObX — Ob/L;

e a functor

F:KUYV)— LFU),F(V))
for each U,V € Ob K;

e an invertible 2-morphism

F(V)
W F(g)
)‘y,f
F(U) F(@ 5 F(W)

for each 1-morphisms f:U -V and g: V — W;

e an invertible 2-morphism

for each object U € Ob K;

14



such that the following equations of 2-morphisms hold:

r) 289 px) r) 289 pxy
F(f) \ TF(h) = F(f)l // TF(h) :
l $ F(hg>\
F(V) —o= F(W) F(V) —= F(W)
F ) F ()
T N e
FU) ﬁ%ﬂw - F(U)%m F(V) = ideg
M U
F ) ()

for every l-morphisms f : U - V, g :V — W, ,and h : W — X in K.
In particular, a pseudofunctor F' : K — L is said to be normalized if the 2-
morphisms Ay are trivial. We say moreover F is a 2-functor if it is normalized
with even Ay ¢ trivial.

Definition. Let F,G : K — L be two pseudofunctors. Then a pseudonatural
transformation o from F to G, written o : F — G, consists of

e a l-morphism oy : F(U) = G(U) € L for each object U € K;

e a 2-morphism in £ depicted as

o

(U) == G(U)

—_—
F(f) U% G(f)
—_—

V)

!

ov
for each 1-morphism f:U — V € K;
satisfying the following coherence conditions:

(i) for each a: f — g € K(U, V),

F(f) F(f)
PN PN
U b vV = U b Vo
W Je@
G(9) G(g)
(ii) For every sequence of 1-morphisms U L viwe I,

F(gf) F(gf)
m /_\
Py 2L povy 29 pawy F(U) oos F(W)

o l o4 G(gf) ’
ou /UV / ow ou TM ow
GU GV G GU)—— GV GW

W) < 6V) 57 6W) ) < 6V) 57 6W)
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(iii) for each object U € K,

oy
m

F(U) Q/@ G(U) = F(dy) % F(U) _v_ G(U)

ou

We call o a 2-natural transformation if the 2-morphism oy in £ is trivial for
every l-morphism f in .

In contrast to the ordinary category theory, as for 2-categories, there is yet
another “transformation;” namely between pseudonatural transformations.

Definition. Let 0,7 : F — G : K — L be two pseudonatural transformations
between pseudofunctors. Then, a modification 6 from o to T consists of a 2-
morphism 6y : oy — 7y in L for each object U € K satisfying the following
coherence condition: for each 1-morphism f:U —V € K,

/ng\ /U\
F(U) ——~G(U) F(U) GU)
F(f) % alf = F(f)l a% lG(f)
F(V) G(V) F(V) 2 G(V)
N N

Note that 2-categories, normalized pseudofunctors, pseudonatural transfor-
mations, and modifications form a 3-category Cats; i.e. it is a category enriched
over 2-categories with respect to the Cartesian products. Hence, we have the
notion of equivalences of 2-categories. We call an equivalence in Cats a biequiv-
alence. There is a convenient criterion.

Proposition 1.1.4 (e.g. see [49]). Let F': K — L be a normalized pseudofunc-
tor between 2-categories. Then, it is a biequivalence if and only if it satisfies the
following conditions:

(i) it is essentially surjective; i.e. for every object X € L, there is an object
U € K together with an equivalence F(U) ~ X in L;

(ii) 4t is essentially fully faithful; i.e. for every objects U,V € K, the functor
F:.KUYV)— LFU),F(V))
is an equivalence of categories.

Remark 1.1.5. Actually, one can relax in Proposition [I.1.4] the assumption that
F' is normalized.

We finally discuss monads on 2-categories. Though there are several con-
ventions on the weakness, the most strict one suffices in our theory.

16



Definition. Let K be a 2-category. Then, a 2-monad on K is a 2-functor
T : K — K together with 2-natural transformations

p:ToT =T, n:ldg —-T

such that the diagrams below are strictly commutative:

ToToT - ToT TdeoT sToT <" Toldy

| NS

ToT T

Definition. Let K be a 2-category and (T, u,n) a 2-monad on it. Then, a T'-
algebra is an object A € K together with a 1-morphism 4 : TA — A such that
the diagrams below are strictly commutative:

TTA " 5>TA A—"oTA
TA—2 = A A

Remark 1.1.6. Even if T is a 2-monad on a 2-category K in the strict sense,
we can still consider the weak analogues of T-algebras; which are sometimes
called pseudo-T-algebras. As for these structures, the commutativity above are
replaced by specific coherent invertible 2-morphisms. Though we do not write
down it here, we mention it is important in the higher algebraic theory.

1.2 Unbiased monoidal categories

We next review the basic definitions of monoidal categories. Though it is com-
mon to define them as bicategories with a single object, we rather use the
unbiased convention, which is convenient to discuss higher coherence.

Definition (Definition 3.1.1 in [51]). Let C be a category. An unbiased monoidal
structure on a category C consists of a family of functors

®p:C*" = C
for n € N together with natural isomorphisms
Oks,.hn + OF by = @m0 (Qk; X -+ X B, )

such that the following diagram of natural transformations made from 6 com-
mutes:

n m;j
s sk oy, m o [[ [T &0
j=li=1
n n n m;j
Qn © H ®E B0 T Qn © H ®mj o H H ®k§j)
j=1 j=1 j=li=1 '

17



An unbiased monoidal category is a category equipped with an (unbiased)
monoidal structure. For objects aq,...,a, in an unbiased monoidal category,
we often write

a1 ® @ ap = @n(ar,...,an) .

Note that, for an unbiased monoidal category C, the category C*Y is the trivial
category, we can think of the functor ®g : * — C as an object of C, which we
call the unit object in the monoidal structure.

Definition. Let C and D be two unbiased monoidal categories. A monoidal
functor F : C — D is a functor on the underlying categories together with
natural isomorphisms

/\n:F(al)@"'@F(an) gFﬂ(al(g)"‘(@an)
for n € N which make the following diagram commute:

n
k14 —+kn 0 ki4-+kn
®k)1+~~+kn o F>< 1+ t+kn _— ®1’L o H®kl oF>< 1+ tkn

=1
Nyt ixnoni Ak . (1.2.1)

F(6 2
(6) FO®HOH®]%

i=1

F o @yt

Definition. Let F,G : C — D be two monoidal functors between unbiased
monoidal categories. A natural transformation o : F' — G is said to be monoidal
if the square

F(a1)®"'®F(an)LF(al(g)...@an)
aa1®"'®aanl laal‘g.,.@an
G(a1)®"'®G(an)LG(G1®~~®an)

is commutative for each objects aq,...,a, € C.

We denote by MonCat the 2-category of unbiased monoidal categories,
monoidal functors, and monoidal natural transformations.

Remark 1.2.1. Thanks to the Coherence Theorem (see Appendix B in [51]), the
notion of unbiased monoidal categories is equivalent to that of ordinary monoidal
categories. In fact, it is shown that the 2-category MonCat is equivalent to
that of ordinary monoidal categories, monoidal functors, and monoidal natural
transformations. It enables us to identify these two notions, and we just say a
category M is monoidal no matter whether it is unbiased or not.

There are alternative descriptions for monoidal categories based on the idea
of Segal [68]. To explain this, we define a category V so that

e objects are the totally ordered set

{(n)) :={-00,1,...,n,00}

for natural numbers n (possibly 0);

18



e morphisms are order-preserving maps which sends +oco to oo respec-
tively;

e the composition is the obvious one.

We call V the category of intervals. According to Joyal’s unpublished note
[39], V is isomorphic to the opposite of the simplex category A. Segal pointed
out that the category V classifies a certain algebraic structure in categories
with pullbacks. Fortunately, we can apply Segal’s construction to monoidal
categories.

Let C be an (unbiased) monoidal category. Note that the morphisms ¢ :
{(m)) — ((n)) € V correspond in one-to-one to (n+2)-tuples k = (k_og, k1, . . ., kn, koo)
of non-negative integers with

Feoo+ k14 e+ ki + koo =m

via the assignment ¢ — k() such that

@) . #o 5} 1<j<n,
’ #o Hj} -1 j==00.

Using the description, we define a pseudofunctor

(1.2.2)

C®:V — Cat
so that
e for each n € N, we set CO({(n))) := C*™;

e for a morphism ¢ : (m)) — (n) € V, define C®(p) : CO((m)) —
CO({(n))) to be the composition

() (@) () () *><®k§¥,)><~~><®k$f)><*
megCXk—oo chkl X‘-~XCX}€" chkoo C><n :

e for each composition ¥y in V, the functoriality natural isomorphism
CO(1h) 0 CO(p) = CO®(¢hyp) defined in terms of the associativity isomor-
phisms 6 : @k, ...qk, = @p X [[; ®%, in the obvious way.

It is clear that C® is a normalized pseudofunctor. The important observation is
that we can recover all the monoidal structure on C from the pseudofunctor C®.
Namely, we have C = C®(((1))) by definition. Moreover, writing p; : {(n)) — (1))
the morphism in V such that p;(j) = 1 precisely when ¢ = j, one can see the

functor
(COp1),---,C9(pn)) : CO((n))) = CO(L1N)*"

is an equivalence of categories (even an isomorphism in fact). This condition is
sometimes called the Segal condition. The n-fold monoidal product ®,, : C*" —
C is now identified with the composition

C©(.un)

CO((1)) ™ = CO(((n)) —=5 CO((1))

where p, @ {(n)) — (1)) is the morphism of V such that u,(j) = 1 precisely
when 1 < j < n.
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1.3 Multicategories

To review basics on multicategories, we mainly follow [33] for definitions and
results.

Definition. A multicategory M consists of
e a set Ob M, whose elements are called objects of M,

e a set M(aj...an;a) for each a;,a € Ob M, whose elements are called
multimorphisms;

e an element id = id, € M(a;a) for each a € Ob M called the identity on
a;

e a map

n

v:iM(ay ... an;a) X HM(&’(i);ai) — M@"...a";a)

i=1

called the composition operation for each a,a; € ObM and finite se-
quences @) = agz) e az) of members of Ob M, where @) ...a@" is the
concatenation of the sequences;

satisfying the following conditions

(i) associativity: for f € M(a1...an;a), fi € M(agi) e a,(ci_); a;), and fJ(i) €
M(@D;al),

=y (Fi frae B BB R

(ii) unitality: for f € M(w;a),
V(f3id, . id) = A(id; f) = f

Remark 1.3.1. In the definition above, we require the set Ob M of objects to
be actually a set, so our multicategories are sometimes said to be small. On
the other hand, one can easily relax this assumption to obtain the notion of
large multicategories. Actually, it turn out that some important examples of
multicategories are large; e.g. Example Note that, if we assume so-called
the Aziom of Universe, we can rethink of them as small ones by taking a larger
universe. In the following discussion, we hence do not really distinguish small
ones from large ones as long as it does not cause a problem.

Remark 1.3.2. In spite of the definition above, some authors assume an addi-
tional structure on multicategories, namely actions of the symmetric groups &,,.
In this convention, our multicategories and operads are called planar ones. Ac-
tually, the assumption is equivalent to saying that a multicategory is equipped
with a G-symmetric structure in the sense of Section [3.2
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Example 1.3.3. Let C be a category. Then, we can think of it as a multicategory
with the same objects, the multi-hom set

Clay,a) n=1
1o} n#1l,

C(al...an;a){

and the same composition operation.

Ezample 1.3.4. For a monoidal category C, we define a multicategory C® as
follows: the objects of C® are those of C. For X, X1,...,X,, € C, we set

CoX1.. X X)) =C(X1® - ® X, X) .
Then C® has an obvious composition operation and the unit which make C®

into a multicategory. We call C® the multicategory associated to C.

As a special case, an operad is a multicategory which has exactly one object.
If O is an operad, then there is a canonical bijection Ob O = N. Hence, it makes
sense to denote by O(n) the set of multimorphisms of arity n. Unwinding the
definition, the composition operation of an operad O is a map

n

v:0(n) x [[Ok:) = Oky + -+ + k) -

i=1

Ezample 1.3.5. We define an operad * with *(n) singleton and the obvious
composition operation. We call it the terminal operad.

Example 1.3.6. Let M be a multicategory. For each object a € M, we set

n

End,(n) := M( m;a) .

Then, the multicategory structure restricts to End, := {End,(n)}, so that
End, is an operad. We call it the endomorphism operad on a in M.

We can define multi-analogues of functors and natural transformations in
the ordinary category theory.

Definition. Let M and A be two multicategories. Then, a multifunctor F
from M to N, written F': M — N, consists of

e amap F: ObM — ObN and

e for each a;,b € Ob M, a map

F:Mlay...an;a) 5> N(F(ar) ... F(an); F(a)) ;

which satisfy the equations

FO(fsfrses fn)) = 27 (ES); E(f1)s - F(fn) (1.3.1)
id 1.3.2

F(id,) = idp(a)

for objects a € Ob M and multimorphisms f and f; whenever they make sense.
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Definition. Let F,G : M — N be two multifunctors between multicategories.
A multinatural transformation o from F to G, written « : F — G, is a family
{aa}acobm of elements a, € N(F(a); G(a)) indexed by the objects of M such
that, for every multimorphism f € M(ay ...ay;a), we have

'7(f§04a17---a04an) :7(aa;f) .

Multicategories, multifunctors, and multinatural transformations form a 2-
category MultCat; i.e. a category enriched over the category Cat of (small)
categories (with respect to the cartesian monoidal structure). Indeed, for each
pair (M, N) of multicategories, we have the category MultCat(M,N') of mul-
tifunctors from M to N and multinatural transformations between them. The
composition operations are defined in a canonical way.

Ezample 1.3.7. In the case M = C?® is a multicategory obtained from a monoidal
category C in the way of Example[1.3.4] for another multicategory N, we write

Alg,(C) := MultCat(N,C®)

and call the objects N -algebras in C.

Ezample 1.3.8. It is easily verified that the construction Example gives
rise to a 2-functor Cat — MultCat, here Cat is the 2-category of (small)
categories, functors, and natural transformations. Moreover, it is strictly fully
faithful; i.e. for every pair of categories C and D, the functor

Cat(C, D) — MultCat(C, D)

is an isomorphism of categories. Note that there is a construction in the inverse
direction; for a multicategory M, define a category M with the same objects,
the hom-sets

M(a,b) = M(a;b) ,

and the restriction of the composition operation. We call M the underlying
category of M. It easily extends to a functor MultCat — Cat which is right
adjoint to the 2-functor above.

Ezxample 1.3.9. Let F : C — D be a monoidal functor. We define a multifunctor
F® . C® — D® as follows:

e it is identical to F' on objects;

e for a multimorphism f € C®(X; ... X,,; X), we define a multimorphism
FO(f) € DP(F(X1) ... F(Xy); F(X)) = D(F(X1) @ - - © F(X,); F(X))
to be the composition

~ F(f
FX) ® @ F(Xa) S F(X1 @+ ® Xp) —2h F(X) |

The multifunctoriality is easily verified. Similarly, one can assign a multinatural
transformation to each monoidal natural transformation. These construction
defines a 2-functor

(-)® : MonCat — MultCat .
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In the rest of this section, we discuss a necessary and sufficient condition
for a multicategory to come from a monoidal category in the way of Exam-
ple It will be enable us to discuss monoidal categories inside the theory
of multicategories.

Definition (Definition 8.3 in [33]). Let M be a multicategory.

(1) A multimorphism u € M(a@; wd) is said to be strongly universal if the map
M(b (w@) &d) — M(baé: d)

induced by the precomposition with u is a bijection for every finite se-
quences b and ¢ of objects of M.

(2) M is said to be representable if every finite sequence @ of objects admits
a strongly universal multimorphism u € M(@; w@).

We note that strongly universal multimorphisms are determined by its do-
main up to unique isomorphisms; indeed, if M (a@;w@) and v’ € M(a;u|d@ are
strongly universal, then we have isomorphisms

M(ua; wa) =2 M(@; wad) =2 M(wd; wa) ,
M(wa; wa@) =2 M(@; wd@) = M(ui@; ui@) .

Chasing the elements, one can find a unique pair of morphisms 7 : wj@ — wad
and 7’ : w@ — u{d@ so that they are inverse to each other and that v = y(7;u’)
and v = vy(7';u).

Using the uniqueness of strongly universal morphisms, for each representable
multicategory M, we can endow the underlying category M with an (unbiased)
monoidal structure. For each sequence @ = a; ...a, of objects of M, choose
a strongly universal multimorphism u® € M(a@;u{a), and put ®,(a@) = ula.
We extend ®,, to a functor M*"™ — M as follows: for morphisms f; : a; — b;
for 1 < i < n, define ®,(f1,...,fn) to be the image of (fi,..., f,) under the
composition

o (u) =

Qn : HM(ai,bi) “_*> M(al . ~-an5®n( )) T M(®n(6)’®n(b)) .
i=1

The functoriality is easily verified. Moreover, the uniqueness of strongly uni-
versal morphisms implies that, for sequences @), ..., @™ of length ki,...,k,
respectively, there is a unique isomorphism

TR K (@"...a") =@, (@ @) ..., @™))

such that

g g g g(n) g g
u®k1(a )--- @k, (@ );ua )...7ua ) — (7_, & ) )

v(

It turns out that 7 defines a natural transformation so ({®,},{r}) forms a
monoidal structure on M. This construction actually supplies the inverse to
the following equivalence.

Theorem 1.3.10 (Corollary 8.13 in [33]). The functor given in Ezample[1.3.9
restricts to a biequivalence of MonCat and the 2-category of representable mul-
ticategories, multifunctors preserving strongly universal multimorphisms, and
multinatural transformations.
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1.4 CoCartesian morphisms

In this section, we review coCartesian morphisms, which are a kind of universal
morphisms. The notion is a key of the correspondence of fibered categories and
pseudofunctors into Cat, which is pointed out in Section VI.8 in [30].

Definition. Let p : C — B be a functor. A morphism f: X — Y € C is said
to be p-coCartesian if it satisfies the following condition: given commutative
diagrams in C and in B depicted as the solid part below:

X p(X)
fl X LN p(.f)l Wi
v Mt p(Y) —2>p(Z)

there is a unique morphism ¢’ : W — Y € C with g = ¢’ o f and p(g’) = ¢.

We often omit the indication of the functor p and just use the terminology
coCartesian morphisms when there is no danger of confusion.

The condition above can be rephrased as follows: for a functor p:C — B, a
morphism f : X — Y € C is p-coCartesian if and only if, for every Z € C, the
square below is a pullback:

e, 7)) —cx,2)

» - » . (1.4.1)
B(p(Y),p(2)) 2L B(p(X), p(2))

This observation leads to the invariance of coCartesian morphisms under iso-
morphisms; indeed, a morphism f: X — Y € C is p-coCartesian if and only if
it is isomorphic to a p-coCartesian morphism.

We are often interested in the lifting problem of a morphism in the base
category to a coCartesian morphism. Let p : C — B be a functor. Given a
morphism ¢ : a — b € B and an object X € C with p(X) = a, a p-coCartesian
lift of ¢ along X is a p-coCartesian morphism f : X — Y with p(f) = ¢. The
universal property of coCartesian morphisms implies that if we have another
coCartesian lift f/ : X — Y’ o ¢ along X, there is a unique isomorphism
h:Y 2Y' with f'h = f. We say p admits coCartesian lifts of a class M of
morphisms if every morphism in M admits p-coCartesian lifts along every object
in the fiber over the domain.

Lemma 1.4.1. Let p: C — B be a functor, and suppose p admits coCartesian
lifts of a morphism ¢ : a — b € B. We write

Co:=p Ha}=Cxgp{a}, C,:=p '{b}.

Then, there is a functor ¢, : C, — Cp together with a natural transformation



such that each component ¢y : X — ¢,(X) is a p-coCartesian morphism cov-
ering ¢. Moreover, the pair (v, ) is unique up to a unique coherent natural
isomorphism.

Proof. For each X € C,, choose a p-coCartesian lift of ¢ along X, and put ¢,(X)
its codomain. In other words, we have a p-coCartesian lift : X — ¢,(X) € C.
To extend ¢, to a functor, for each W, Z € C, and for each ¢ : p(W) — p(Z) € B,
we write

C(W,Z)y := C(W, Z) X ppw)p(2) {9} -
Then, the universal property enables us to consider the composition

p1: Ca(X,Y) = C(X, Vha, 25 (X, 0,(1)), (1.4.2)

It is straightforward that (1.4.2)) makes ¢, into a functor so that @ := {P}x is
a natural transformation. On the other hand, the uniqueness of the pair (¢, p)
is a direct consequence of that of coCartesian lifts. O

Although the functor ¢, : C, — Cp is not unique in the strict sense, we call
it a induced functor.

Definition. A functor p : C — B is called a Grothendieck opfibration if it admits
coCartesian lifts of all the morphisms in B.

Lemma 1.4.2. Suppose we have a pullback square below of functors

c-t.c

p’i = ip
B-2-8
such that p is a Grothendieck opfibration. Then, a morphism f': X' - Y' e€(’

is p'-coCartesian if and only if F(f") is p-coCartesian. Consequently, p' is also
a Grothendieck opfibration.

Proof. We first show that f': X’ — Y is p’-coCartesian provided its image in
C is p-coCartesian. For each Z’ € C’, consider the following commutative cube:

P e(R(xY), F(2Y))

/
B/, 5 (2) —2 (x5 (2))

Since the left and the right faces are pullbacks by the assumption, the front
face is a pullback as soon as so is the back face. The required statement then
follows.
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Conversely, consider the class S of morphisms f” in C’ with F(f’) p-coCartesian.
Since p is a Grothendieck opfibration, it is closed under composition and iso-
morphisms. Moreover, every morphism in B’ admits lifts in S along every object
in the fiber over the domain. It follows that S contains all the p’-coCartesian
morphisms, which completes the proof. O

Typical examples of Grothendieck opfibrations are given by the Grothendieck
construction for pseudofunctors into Cat. Let F : B — Cat be a pseudo-
functor with B seen as a 2-category with only trivial 2-morphisms. Then, the
Grothendieck construction for F, usually denoted by | g I, is the category such
that

e objects are pairs (a, X) with a € B and X € F(a);

e morphisms (a,X) — (b,Y) are pairs (¢, f) with ¢ : @ — b € B and
fF(e)(X) = Y;

e composition is the obvious one.

More diagrammatically, objects of [, F" are functors of the form * — F'(a) while
morphisms are 2-cells

x} F(a)

{
2~

%c F(p)
o

£(b)

*

Hence, if we write Cat*/ the weak coslice 2-category of the 2-category Cat over
the trivial category *, we obtain a pullback square

Jzs F— Cat*/

i Ml lcodomain

B . Cat

of pseudofunctors. Since the right vertical arrow is a Grothendieck opfibration
as a functor between the underlying (1-)categories, [, F' — B is a Grothendieck
opfibration. Actually, every Grothendieck opfibration can be written in this
form up to equivalences.

Proposition 1.4.3 (see Exposé VIin [30]). Let B be a small category. Then, the
Grothendieck construction gives rise to a biequivalence between the 2-category

of
e pseudofunctors B — Cat,
o pseudonatural transformations, and
e modifications;

and that of

e Grothendieck opfibrations over B,
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e functors over B preserving coCartesian morphisms, and
e natural transformations over B.

__ For a Grothendieck opfibration p : C — B, the corresponding pseudofunctor
C : B — Cat is constructed roughly as follows: for each morphism ¢ : @ — b € B,

set C() to be an induced functor ¢, : C, — Cp. Then, the uniqueness guarantees
that there is a unique natural isomorphism

Clypp) =C(¥) o C(e) -
This determines the assignments of 1- and 2-morphisms.

Remark 1.4.4. We also have the dual notions; namely, Cartesian morphisms
and Grothendieck fibrations. The dual argument shows there is a biequivalence
between 2-categories of Grothendieck fibrations over B and of pseudofunctors
B°P — Cat, which is the original statement in [30].

Remark 1.4.5. We will discuss the bicategorical analogue of the results above
in Section .3l
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Chapter 2

Theory of crossed groups

The notion of crossed groups was originally introduced in the simplicial case
by Fiedorowicz and Loday [24] and by Krasauskas [47] individually to obtain a
categorical description of the cyclic homology and its variants. It however still
makes sense in the other categories and would be an important research subject.
The goal of this chapter is to make a comprehensive understanding of crossed
groups for arbitrary base categories. In particular, we focus on the local pre-
sentability and monadicity over presheaf topoi. We will obtain explicit formulas
for limits, colimits, and even the terminal crossed group when the base cate-
gory is enough good. Furthermore, it is shown that there is a closed monoidal
structure on a presheaf topoi for which crossed groups are monoid objects. This
leads to the notion of crossed monoids and the monadicity. Combining these
results, one obtains Kan extensions along certain sorts of functors with explicit
formulas. We also prove a crossed analogue of Goursat’s lemma for the sake
of the classification of crossed interval groups, which Batanin and Markl were
concerned about in their paper.

2.1 Definition and examples

In this first section, we recall the definition and examples of crossed groups.

Notation. If A is a small category, we denote by Set 4 the category of A-sets;
i.e. presheaves over A.

Definition. Let A be a small category. Then, a crossed A-group is an A-set
G € Set 4 together with data

e a group structure on G(a) for each a € A, and

e a left action G(b) x A(a,b) — A(a,b); (z,¢) — ¢* of the group G(b) on
A(a,b) for each a,b € A;

which satisfy the following conditions:

(i) for p:a —band ¥ :b— cin A, and for z € G(c), we have

(Yo)® = ¥ @) ;
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(ii) for ¢ :a — b and z,y € G(b), we have
¢ (zy) = (@) (@)#" (y) -

We can describe two conditions and more categorically: consider a
map

crs : G(b) x A(a,b) = A(a,b) x G(a) ;  (z,0) — (¢, p*(z)) . (2.1.1)

Then, the two conditions are respectively equivalent to the commutativities of
the diagrams

(id xcrs)(crsxid)
_—

G(c) x A(b,c) x A(a,b) A(b,c) x A(a,b) x G(a)
idxcompl icompxid (212)

G(c) x A(a,c) = Ala,c) x G(a)

and

(crsxid)(id xcrs)
_—>

G(c) x G(c) x A(b, ) Ab, ¢) x G(b) x G(b)
mulxidl iidxmul . (213)

G(c) x A(b, ) crs Alb,¢) x G(b)

Lemma 2.1.1. Let A be a small category, and let G be a crossed A-group.

(1) For each a € A, the action of G(a) on A(a,a) preserves the identity
morphism; i.e. id” =id for any x € G(a).

(2) For eacha,b € A, the action of G(b) on A(a,b) preserves monomorphisms
and split epimorphisms.

(3) For every morphism ¢ : a — b € A, the map ¢* : G(b) — G(a) preserves
the units of the groups. Moreover, if ¢ is G(b)-invariant, then ©* is a
group homomorphism.

Proof. The assertions and easily follow from the conditions and

respectively of crossed groups. It remains to show It immediately fol-
lows from and the part that the action of G(a) on A(a,b) preserves
split epimorphisms. To see it also preserves monomorphisms, take an arbitrary
monomorphism 6 : ¢ — b in A, and let x € G(b). Given two morphisms
V1,92 : ¢ — a, suppose §¥p; = §%py. By the condition we have

()" 5% (x ()" 1\
§ i = 8%(g) )@ = (50T

* -1 * -1
for i = 1,2. Hence, 6*p1 = §%pq if and only if 690‘15 @7 = 54,03 @)™ Since § is
* ~1 * A
a monomorphism, this happens precisely if <,0(1S @7 _ cpg @ , or equivalently
@1 = o. This implies 0% is a monomorphism, and we obtain O

Corollary 2.1.2. Let A be a small category. If t € A is a terminal object, for
every crossed A-group G, and for each object a € A, the unique map a — t
induces a group homomorphism G(t) — G(a). Dually, if s € A is an initial
object, the unique map s — a induces a group homomorphism G(a) — G(s).
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Corollary 2.1.3. Let A be a small category, and let G be a crossed A-group.
Then, if the action G(a) on A(b,a) is trivial for each a,b € A, then G is A-
group; i.e. a group object in the category Set 4.

Remark 2.1.4. The converse of Corollary [2.1.3]holds: every A-group can be seen
as a crossed A-group with the trivial actions on each A(a,b). To distinguish
such crossed groups from the others, we often say they are non-crossed.

Definition. Let A be a small category, and let G and H be crossed A-groups.
Then, a map G — H of crossed A-groups is a map of A-sets which is a degreewise
group homomorphism respecting the actions on .A(a,b) for each a,b € A.

Clearly, crossed A-groups and maps of them form a category, which we will
denote by CrsGrp 4. Then, the following result is obvious.

Proposition 2.1.5. For every small category A, the category CrsGrp 4 admits
an initial object; mamely, the terminal A-set x with the unique crossed group
structure.

Because of the compatibility condition in the definition of maps of crossed
groups, the terminal A-set * is no longer terminal in the category CrsGrp 4 in
general. Nevertheless, for each crossed A-group G, there still exists the unique
A-set map G — *, and it makes sense to ask whether it is a map of crossed
groups or not. In this point of view, we can rephrase Corollary 2.1.3] as follows.

Corollary 2.1.6. Let A be a small category. Then, a crossed A-group G is
a non-crossed if and only if the unique A-map G — % is a map of crossed
A-groups.

We denote by Grp 4 the category of A-groups. In view of Remark 2.1.4]
there is an embedding Grp 4 — CrsGrp 4. Corollary says that it factors

through the slice category CI‘SGI‘pr{k and induces an equivalence

Grp 4 ~ CrsGer/‘{k
of categories.

In Section @ we will see the category CrsGrp 4 also admits a terminal
object, which is hard to compute in general. In particular, it does not necessarily
conincides with the initial object * € CrsGrpy, so the category CrsGrp 4
may not be pointed. Nevertheless, we can consider the notion of images and
kernels of maps of crossed groups in an intuitive way. Indeed, if ¢ : G —
H is a map of crossed A-groups, then it turns out that its degreewise image
and kernel respectively form crossed A-groups. An important consequence of
Corollary is that the kernel of a map of crossed A-groups is always non-
crosssed.

Before seeing examples, we review on three categories, which would be taken
as the base category A. The most famous one is the simplex category A, whose
objects are the totally ordered sets

[n] :=={0,...,n}

for n € N and whose morphisms are order-preserving maps. Crossed A-groups
are usually called crossed simplicial groups, and they were of central interest
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in previous works such as [47], [24], and [21I]. Next, we define a category A to
consists of the totally ordered sets

(n):={1,...,n}

for n € N as objects and order-preserving maps as morphisms. A é—set is
sometimes called an augmented simplicial set, so we call a crossed A-group
an augmented crossed simplicial group. The third category V is thecategory
of intervals, which is already given in Section [1.2l We call crossed V-groups
crossed interval groups, which is due to [3]. We have canonical functors

A—7t A Y v | (2.1.4)
(k] ——(k + 1), (1) —— (1)

The first functor is fully faithful, and the second is faithful and bijective on
objects.

Remark 2.1.7. In the cases the base category A is A, A, or V, for a crossed
A-group G, we write G,, instead of G([n]), G({(n)), or G({n))). This abuse of
notation sometimes causes a problem because of the difference of the convention
on the degree in . Hence, the reader should be careful in the following
discussion.

Now, we are giving several examples below. For this, it is convenient to use
joins of ordered sets: for two partially ordered sets P and ), we denote by P*(Q
their join. For example, there is a unique isomorphism (m) x (n) = (m + n) of
ordered sets.

Ezxample 2.1.8. We define a crossed interval group & as follows:

e for each n € N, &,, is the n-th permutation group, or the permutation
group on the set ((n)) fixing +o0o respectively;

o for ¢ : (m)) — ((n) € V, we define p* : &,, — &,, as follows: for o € &,
©*(0) is the permutation on ((m)) given as the composition

(m) = o™ H{—oo} x o {1} %+~ {n} x o~ {oo}
— @ ootk o (D)} x - ko o (n)} x o oo} = (m) |

where the first and the last maps are the unique order-preserving bijec-
tions;

e for 0 € &, the action on V({m)), (n)) is given by

7+ {(m)) = o H{—oo} x T HoT (1)} w7 o T ()} % 07 {oo}
= {00} x {1}.. . {n} x {oo} = ((n)) .

The conditions on crossed groups are easily verified. We also have similar con-
structions for braid groups, pure braid groups, and so on.

Example 2.1.9. For each natural number n, we denote by C,, the cyclic group of
order n, which is canonically embedded in the symmetric group &,,. Although
the subsets C,, C &,, do not form an interval subset of & defined in Exam-
ple one can see they actually form an augmented simplicial subset, which
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we denote by C, so C,, = Cp,. The augmented simplicial structure is explicitly
described as follows: for p: (m) — (n) € A, p* : A, — Ay, is given by

W (0)(i) =i + o(u(i)) — (i) (mod ).

Clearly C is a crossed augmented simplicial group, so it restricted to a crossed
simplicial group. Note that the category Ac defined in Proposition is
called the Connes’ cycle category after Connes’ work [I2] on the cyclic homology
and sometimes denoted by A (see Remark .

Ezxample 2.1.10. Recall that the wreath product of a group G by &,, is the group
G116, =6, xG*"
whose underlying set is &,, x G*™ with multiplication given by
(0:8)(739) = (o3 7(D) - ) ,
where, if &= (x1,...,2,) and = (y1,...,Yn),
TE) i = (T ) Y15 > Tr(m)Yn) -

In particular the case G = Cjy is the cyclic group of order 2, H,, := C31 &, is
the Weyl group of the root system B,,, which is called the n-th hyperoctahedral
group.

We claim that the family {H,}, forms a crossed interval group £). Set
H({n)) := Hy, and for ¢ : (m)) — (n) € V, we define ¢* : H, — H,,, by

p*(0;8) := (¢"(0)Bp(€); ¥7())
where
e p*(0) is the permutation on ((m)) defined in Example
e 5,(€) is the permutation given by
{(m) = ™ H{—oo}x {1} % x o7 n} x 7 {oo}
{dTIBSL IT..- 85" TTid o oo} x o {1} k- ko) o oo} = (m)

where each 3 : = 1{j} — ¢~1{j} is the order-reversing map;
o if &= (g1,...,¢,), then
¥ (E) = (o) -2 E(m))
with the assumption e, = 1.
This actually defines an interval set
$H: VP - Set .

It is moreover verified that $) together with the action of H,, on V({(m)), {(n)))
through H, — &,, is a crossed interval group, which is called the Hyperoctahe-
dral crossed interval group.
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Ezxample 2.1.11. Let G be a crossed A-group. If ¢ : A" — A is a faithful functor
such that the image of the map

o Aa,b) — A(F(a), F(b))

is stable under G(p(b))-action, then the restricted A-set ¢*(G) inherits a struc-
ture of crossed A’-groups. For example, it is verified that the canonical functors
A — A — V given in (2.1.4) pull back the Hyperoctahedral crossed interval

group $) to crossed groups on A and A respectively. We call both of them Hyper-
octahedral crossed simplicial groups. In particular, to avoid the confusion on the
degree convention, we denote by H the resulting crossed simplicial group while
we use the same notation §) for the augmented one, so we have H,, = Hy,11.
This construction is discussed in more detail in Section

We finally mention that we can associate each crossed A-group with a cat-
egory that is an extension of A. More precisely, we have the following result,
which is a direct consequence of the commutative squares and
together with Lemma [2.11]

Proposition 2.1.12. Let A be a small category. Suppose we are given an A-set
G together with a group structure on G(a) and a left action on A(b,a) for each
a,b € A. Then, G is a crossed A-group if and only if the following data defines
a category Ag:

e object: the same as A;
e morphism: for a,b e A, Ag(a,b) = A(a,b) x G(a);
e composition: given by

id x crs xid

A(b,c) x G(b) x A(a,b) x G(a) ——— A(b,c) x A(a,b) x G(a) x G(a)
comp X mul A(a7c) v G(a) 7

where the map crs is one defined by (2.1.1). In this case, the canonical map
A(a,b) = Ag(a,b) defines a functor which is faithful and bijective on objects.

The category Ag is sometimes called the total category of G.

Remark 2.1.13. If A has no non-trivial isomorphism, then for each crossed .A-
group G, and for each a € A, we have

G(a) = Aut g, (a) .

Moreover, the whole crossed A-group structure on G is recovered as follows: for
x € G(a) = Aut 4, (a) and for f: b — a € A, the composition zf : b — a € Ag
is uniquely represented by a pair (g,y) with g : b — a € A and y € G(b).
Clearly, g = f* and y = f*(z). In other words, the crossed A-group structure
on G involves the unique factorization property of the category Ag. In the case
A is the simplex category A, formal statements and proofs will be found in
[24] (Proposition 1.7). Note that, in these papers, crossed simplicial groups are
defined as extensions of the category A.

Some crossed groups have more natural descriptions in terms of total cate-
gories.
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Ezample 2.1.14. Fiedorowicz and Loday introduced in [24] a crossed simplicial
group Z, whose total category Az has the following description due to [28] and
[23] (see also Section 3 of [63]):

e the objects are natural numbers n € N;

e the hom-set A (m,n) consists of order-preserving maps f : Z — Z (with
respect to the standard linear order on the integers) such that for each
1 € Z, we have
fG+m+1)=fi)+n+1;

e the composition is the obvious one.

The category Az is often denoted by A, and called the paracyclic category.
Combining the two conditions, for every map f : Z — Z lying in Ax(m,n), we
have

fO=<fA)<--<flm) < flm+1)=f0)n+1.

On the other hand, we have group homomorphisms

Auty (n) =—=7Z
f—f(0)

(o 4+ k) <~—k

which are inverses to each other. It hence turns out that every morphism f €
Ao (m, n) uniquely factors as f = o7 with 7 € Auty__(m) and ¢ : Z — Z such
that

0<p(0)<pl)<---<pm)<n+1. (2.1.5)

Note that ¢ € A (m,n) satisfying can be seen as a morphism ¢ : [m] —
[n] in the simplex category A. Thus, in view of Remark the unique fac-
torization property exhibits {Z,, := Auta__(n)}, as a crossed simplicial group,
which is called the duplicial crossed simplicial group in [24] after the notion
introduced in [20].

2.2 Cocompleteness and completeness

We investigate elementary properties of the category CrsGrp 4 with regard to
colimits and limits. Throughout the section, we fix a small category A. Note
that the problem is not as easy as in the case of usual algebraic categories over
Set 4. For example, as pointed out in the previous section, terminal objects in
CrsGrp 4 are already highly non-trivial, and it shows that the forgetful functor
CrsGrp 4 — Set 4 does not preserve limits.

We begin with colimits since the situation is somehow easier than limits.
For a small category A, we denote by Ay the maximal discrete subcategory of
A; that is, the subcategory with the same objects and with only the identities.
Since crossed A-groups are by definition degreewise groups, we have the forgetful
functor CrsGrp 4 — Grp 4,

Proposition 2.2.1. The forgetful functor CrsGrp, — Grp,, creates arbi-
trary small colimits. Consequently, the category CrsGrp 4 is cocomplete.
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Proof. Thanks to Proposition m CrsGrp 4 has an initial object which is

still initial in Grp 4,. Thus, it suffices to show the functor CrsGrp 4 — Grp 4,

creates both pushouts and filtered colimits. The latter is obvious since only

finitely many variables appear simultaneously in the axioms of crossed A-groups.
As for pushouts, suppose we are given a span

o,

in the category CrsGrp 4. It is well-known that the pushout of the span in
Grp 4, which we write G; xg G2 to distinguish it with the pushout of the
underlying .A-sets, is given as follows: for each a € Ay, the group (G1 *xg G2)(a)
is the quotient of the free monoid over the set Gy (a) Il{.} G2(a) by the relation
~ generated by

e insertions and deletions of the unit, i.e. for x; € G1(a) Iy Ga(a),
(T1yeesn) ~ (1,0 Ty €, Tkt 1y - -+, T) 5

e multiplicativities of G1(a) and Gz(a), i.e. for z; € Gi(a) ey G2(a) with
xy and x4 lying in the common group,

(m17"'7x’ﬂ> ~ (.'1:17...,xkfl,xk;xk;+1,mk+2,-..7.'1/'71) )

e H-invariance, i.e. for z; € Gi(a) Iy G2(a) with 2 € Gj(a) and 2541 €
Gj(a), and for h € H(a),

(1, xn) ~ (X1, Th—1, a:kfj(h)fl, fir(R)Ths1, Tht2y - Tn) -

For each morphism ¢ : a — b € A, we define a map ¢* : (Gy *g Ga)(b) —
(Gy g G2)(a) inductively by

p(e) =€
O (x1, ..y xn) = (") (@1, Tpe1) " (T0) -

It is easily verified the definition is invariant under the relation above, so ¢* is
well-defined. Now, it is tedious but not difficult to see it is a unique crossed
A-group structure on Gy *g G so that both injections Gy, Gy — G xg Go are
maps of crossed A-groups, which completes the proof. O

Corollary 2.2.2. The forgetful functor CrsGrp 4 — Set 4 creates filtered col-
mats.

Proof. We have the following commutative square of forgetful functors:

CrsGrp 4 —— Set4

|

Grp 4, — Set4,

By Proposition 2.2.1] the left functor creates filtered colimits, and it is well-
known that so do the right and the bottom. Hence, the result follows. O
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We now get into a difficult part: the limits. Fortunately, it turns out that
the essential difficulty comes only from terminal objects and not from pullbacks.

Proposition 2.2.3. Let C' be a category with a terminal object. Then, the
forgetful functor CrsGrp 4 — Set 4 creates C-limits. In particular, the category
CrsGrp 4 has pullbacks which are computed degreewisely.

Proof. Put t € C a terminal object, and suppose we are given a functor G, :
C — CrsGrp 4. Taking the limit in the category Set 4, we put G« = lim¢c Go €
Set 4. Note that G, admits a unique degreewise group structure so that the
canonical A-map G, — G, is a degreewise group homomorphism for each
¢ € C. In particular, for each a € A, the group G (a) inherits an action on
A(b,a) for each b € A through the homomorphism G (a) = G¢(a). One can
then see these structures exhibit G, as a crossed A-group. O

In order to show the existence of a terminal object, we instead show the
category CrsGrp 4 is locally presentable. Indeed, it is known that, in locally
presentable categories, limits can be realized as colimits. Now, CrsGrp 4 is
cocomplete thanks to Proposition [2.2.1] Hence, in view of Corollary 2.47 in [1],
we only have to show the accessibility. For a small category C', we denote by
|C| the cardinality of the set of morphisms of C. In the rest of the section, we
are to prove the following theorem.

Theorem 2.2.4. Let A be a small category, and let k be an (infinite) regular
cardinal greater than w x |A|, here w is the smallest infinite cardinal. Then,
the category CrsGrp 4 is locally k-presentable; i.e. it is cocomplete, and every
object can be written as a k-filtered colimit of k-small objects.

Corollary 2.2.5. For every small category A, the category CrsGrp 4 is both
complete and cocomplete. In particular, it admits a terminal object.

We first give a criterion for the smallness of object in CrsGrp 4. Recall
that, for a set S, it is k-small in Set precisely if |S| < k. Thus, a key idea is
considering the functor

(-): CrsGrp, — Set ; GHQ::HG(a)

to compare smallnesses in these two categories.

Lemma 2.2.6. Let k be a regular cardinal greater than |A|. Then, a crossed
A-group G is k-small provided the cardinality of the set G is less than k.

Proof. Let G € CrsGrp 4 with |G| < k. We have to show that the functor
CrsGrp4(G, -) : CrsGrp 4 — Set

preserves k-filtered colimits. In view of Corollary 1.7 in [I], it suffices to verify
the preservation only for sequential ones. Suppose A is an ordinal of cofinality
at least k; i.e. every subset S C A\ with |S| < k has a supremum sup S € A, and
take a diagram H, : A = CrsGrp 4. Writing Hy, := colim H, for simplicity,
we show the canonical map

colig\n CrsGrp 4 (G, H,) = CrsGrp 4(G, Hy) (2.2.1)
a<
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is bijective.
Note that, by virtue of Corollary there is a canonical identification of
H, with colimq<x Hq, so we obtain a commutative square

colimy <y CrsGrp 4 (G, H,)
© i l(-) (2.2.2)

colimq< Set(G, H,) —= 5 Set(G, colimacr Hy)

CrsGrp 4 (G, Hy)

In view of the criterion of the smallness of sets, the bottom map is bijective. On
the other hand, since the functor (-) is faithful, and since filtered colimits in
Set preserves injections, the vertical maps are injective. Hence, it immediately
follows the map is injective. Moreover, for each map f : G — H
of crossed A-group, the underlying map f : G — H,, factors through a map

f:G — H,, followed by the structure map H,, — H for some ordinal

af < A. This does not imply f is an underlying map of a map of crossed
A-group. Nevertheless, there are functions

B : H A(b,a) x G(a) v H Gla =\,
a,be A acA
such that
(1) Blp,z),v(z,y) > o for each ¢ € A(a,b) and z,y € G(b);
(ii) the map Hoy — Hpp,a) identifies the elements f(p*(x)) and ¢*(f(z));

(iii) the map Hoy — H,(, ) identifies the elements fzy=") with f(z)- f(y)~ "

The set {B(p, z) | p, 2z} U{y(z,y) | z,y} is of cardinality |A| x (|A|+|G|) < &, so
the cofinality of A implies there is an ordinal ap < A with ag > B(p, x),v(z,y)
for every ¢, x, and y. Now, it is easily verified that the composition

QL Ha’o — Hao

underlies a map fy : G = H,, of crossed A-group, and the map f : G — Hy
factors through fo. In other words, f is the image of fy € CrsGrp 4(G, Hy,)-
This implies that the map (2.2.1)) is also surjective. O

Fix a regular cardinal x as in Theorem and define CrsGrp3” to be
the full subcategory of CrsGrp 4 spanned by crossed A-groups G with |G| < k.
According to Lemma all objects in CrsGrpy" is r-small in CrsGrp 4.

Lemma 2.2.7. The category CrsGrpy" is essentially small.

Proof. Since the category CrsGrp 4 is locally small, it suffices to show it has
only finitely many isomorphism classes. Notice that, for an indexed family
{X(a)}aca of sets with | X (a)| < &, a structure of crossed .A-groups can be seen
as an element of the set

I] Setx ) x ] Set(x X(a),X(a))

p:a—beA acA

X H Set AUtSet (A(bu a’)))
a,be A
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whose cardinality is bounded above by
(I{I{)lA‘ % (ann)|A| % ((‘A||A\)n)|A\><\.A| — K
Then, together with the cardinality of choices of the family {X (a)}qc.4, one can
see there are only at most k! x k% = k" isomorphism classes. O
<K

Lemma 2.2.8. The subcategory CrsGrpj” C CrsGrpy is closed under k-
small colimits.

Proof. Let G4 : C — CrsGrp3" be a diagram with |C| < k. Since the category
CrsGrp4 is cocomplete by Proposition 2.2} we put Go := colim.cc G, €
CrsGrp 4. According to Proposition [2.2. L|, for each a € A, there is a surjection

(H Gc(a)> — Gola) ,

ceC

where (-)* : Set — Set is the Kleene star, or the monad for monoids, while we

have .
(1e+)
ceC

for each a € A. Since « is regular and |A x C| < k, it follows

<wx Y |Ge(a)| < w x |C| x sup|Ge(a)]
ceC c€C

|Goo| < |A[xwx[C]x sup |Ge(a)] <r,
C

acA,ce

which shows Go, € CrsGrp3". O

Lemma 2.2.9. Let G be a crossed A-group. Suppose we are given a subset
S C G of cardinality less than k. Then, there is a crossed A-subgroup G' C G
such that S C G' and G’ € CrsGrp§”.

Proof. If S = &, the statement is obvious. In the case S is a singleton, say
S = {z} with z € G(ap), for each a € A, we set G'(a) C G(a) to be the
subgroup generated by the subset

{* (%) |e =21, p:a—ag € A} . (2.2.3)

Since G’'(a) C G(a) is clearly a subgroup, in order to see G’ actually forms a
crossed A-subgroup of G, it is enough to check it is an A-subset. Note that
since the subset is closed under inverses, every element in G’(a) can be
written as products of elements of (2.2.3). For ¢ : b — a € A, &; = +1, and
i 1 a— ap € A, we have

UH () L @ (a)) = (pr9pPR @) PR @Y (p50) () (254)

which shows * : G(a) — G(b) carries G'(a) into G'(b), and hence G' C G is a
crossed A-subgroup. On the other hand, the definition of G’ directly implies

[1¢@

acA

|G| = <wx2x|Al <k
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so G’ € CrsGrp3".

In general case, for each z € S, the proof of the singleton case implies that
there is a crossed A-subgroup G’, C G so that € G’, and G/, € CrsGrp3".
We take G’ to be the image of the map o

s v G

of crossed A-groups induced by the inclusions G < G. Clearly S C G’, and
Lemma implies that G’ € CrsGrp3”. This completes the proof. O

of Theorem 2.2} In view of Corollary 2.47 in [I], it suffices to show the cate-
gory CrsGrp 4 is accessible; i.e. there is a set S of k-small objects such that
every object in CrsGrp 4 can be written as a x-filtered colimit of objects from
S. According to Lemma Lemma and Lemma [2.2.9] we can take S
to be any skeleton of the subcategory CrsGrp3* C CrsGrp 4. O

2.3 Computation of the terminal object

In the previous section, we proved Corollary 2:2.5 that asserts the category
CrsGrp 4 has all small limits and colimits. In fact, Proposition m Corol-
lary and Proposition provide relatively practical ways to compute
colimits and limits except for the terminal object. On the other hand, as for a
few categories A, the terminal crossed A-group was constructed by hand. For
example, if A = A or A, it is precisely the Hyperoctahedral crossed group $;
see [24]. The goal of this section is to generalize their results and compute the
terminal crossed A-group for more general A including V as well as A and A.
Note that, although the arguments are highly abstract, the reader should keep
the concrete examples in the mind; such as A = A, A, or V.

Definition. Let A be a category and s € A an object. Then, an internal co-
relation on s is a tuple (S;tg,¢1) of an object § € A and a jointly-epimorphic
pair ¢g,¢1 : s = § in A. By abuse of notation, we often denote it just by s.

If 5 is an internal co-relation on s € A, for each a € A, we have a map
(15, 17)  A(8,a) = A(s,a) x A(s,a)

which is by definition injective since (tg,t1) is jointly-epimorphic. In other
words, it exhibits A(S,a) as a (binary) relation on A(s,a). Explicitly, for two
morphisms g, a1 : § = a, they are connected by the relation if and only if
there is a morphism & : § — a such that oy = atg and a; = ary. Hence, every
morphism ¢ — b € A induces a map A(s,a) — A(s,b) which preserves the
relation induced by s.

Definition. Let A be a category. An internal well-co-order on an object s € A
is an internal co-relation § on s such that the set A(s, a) is well-ordered by the
induced relation for every a € A.

Example 2.3.1. Let Ord be the category of well-ordered sets and order-preserving
maps. In particular, Ord contains all the finite ordinals n = {0,...,n—1}. We
have an obvious internal well-co-order on 1 as

o,t1:1=32.; 0—0,1
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Hence, every full subcategory of Ord containing a diagram isomorphic to the
above one, such as A and 5, 1 is an internally well-co-ordered object. Namely,
the generators [0] € A and (1) € A are canonically well-co-ordered objects.
Ezample 2.3.2. The object (1)) € V admits a canonical internal co-order:

o, (1) = (2); 1—1,2.

It is easily verified that, for each n € N, the set V({(1)), (n))) together with the
order induced by the internal co-order above is identified with the ordered set
{(n)) itself. Thus, (1)) is a well-co-ordered object.

If s € A admits an internal well-co-order s, the corepresentable functor
A(s, -) lifts to the functor

A(s,-): A— Ord .

Hence, we can make use of the following splendid property of the category Ord
through this functor.

Lemma 2.3.3. Let ¢ : A — B be an order-preserving map between well-ordered
sets such that the inverse image p~1{b} is finite for each b € B. Suppose we are
given a permutation o on A with the composition po again order-preserving.
Then, we have po = @.

Proof. Tt suffices to prove the permutation o is restricted to each A, := ¢~ 1{b}.
Suppose we have b € B with o(A4y) ¢ Ap; in particular, we may assume b is
the minimum among such elements of B since B is well-ordered. Take a € A,
such that ¢o(a) # b. Note that we have po(a) > b; otherwise, the minimality
of b implies o restricts to a permutation on A, (,). We have a ¢ A ,(q) while
o({a}UAus(a)) C Apo(a), Which contradicts to the injectivity of o since Agq(q)
is finite.

Since Aj and 0~ 1(A;) are finite sets with the same cardinality, so are two
subsets Ay \ 07(4p) and o71(A4y) \ Ay of A. The first one is non-empty, e.g.
containing a, so we can take an element a’ € 071(4;) \ 4. The minimality of
b again implies p(a’) > b = p(a) so @’ > a. We however have

po(a’) =b < po(a) ,
which contradicts to the assumption that o preserves the order. O

Corollary 2.3.4. Let A and B be finite well-ordered set. Then, the permutation
group &(B) on B admits a unique left action

S(B) x Ord(A,B) — Ord(A,B) ; (o,9) — ¢°

such that, for each o € &(B) and ¢ € Ord(A, B), ¢ is a map through which
the composition op : A — B factors after a permutation on A.

Proof. We may assume B =n = {0,...,n — 1}. Since the map o factors as
A% o O xxp T =1} T o o T Ok kT o (= 1))

the existence of ¢ follows. We show the uniqueness of 7. Say op = ¢%c’ with
o’ € 6(B), and suppose we have another factorization o = 7. Then, we have
1 = @c’T71. Since A is finite, and since both ¢ and ¢ are order-preserving,
Lemma [2.3.3] implies ¢ = ¢?. This guarantees the uniqueness of ¢?. Now, the
associativity of the action easily follows from the property of . O
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In the rest of the section, we assume A to be a category such that
(i) A is locally finite; i.e. each hom-set A(a, b) is finite;

(ii) it is equipped with a generator s € A, so the corepresentable functor
A(s, -): A — Set is by definition faithful;

(iii) s is internally well-co-ordered.
As seen in Example and Example the examples of A include A, &,

and V.

Remark 2.3.5. If A is a category satisfying the conditions above, the relation
on each A(s,a) induced by the internal co-relation s is reflexive. This means
that every morphism « : s — a determines a morphism & : s — a such that
atg = arp = «. In addition, since tg and ¢; are jointly epimorphic, such a is
unique. Hence, we obtain a unique map

refl, : A(s,a) — A(S, a) (2.3.1)

which is a common section of the precomposition maps with ¢y and ¢;. It is
easily verified that refl, is natural with respect to a € A; for every morphism
@ :a— b, we have

px(refl(a)) = refl(p.(a)) .
Yoneda Lemma thus implies we have a map § — s corepresenting refl.
For A above, note that we can think of A(a, b) as a subset of Ord(.A(s,a), A(s,b))
on which the group &(A(s,a)) acts from the left. We define a group &*(a) by
64(a) := {0 € 6(A(s,a)) | Vb€ A: o(A(b,a)) C A(b,a)} .
In particular, &4 (a) acts on A(b,a) from the left for each b € A.

Ezample 2.3.6. If A is a full subcategory of A containing (1) and (2), and if we
take (1) as the generator with the canonical co-well-order, then we have

&4((n) = S(A((1), (n))) = &" .
In particular, ~
&2((n) =6, , &%([n]) = &1 -
Example 2.3.7. In the case A = V, the evaluation map

VL), (n)) = (n) 5 a—a(l)
is bijective, so we identify the two sets by the map. We claim
&Y ({(n)) = &((n) x &({~o0,00}) (2.3.2)

for each n € N respecting the action on {(n)). Note that the action of the right
hand side group on V({m), (n}) is given as follows: for ¢ : {m)) — () € V,
() is the map

{(m) = o He(=o0)} x o o (W)} 5o o (n)} + ™ H{e(oo0)}
— {—oo}x {1} x -+ x{n} x {oo} = (n)) .
For the left-to-right inclusion of (2.3.2)), it suffices to see the subset {—o00, 00} C
{(n)) is stable under the action of &V ({(n))). This follows from the observation

that the set is the image of the unique map (0) — ((n)) € V. The other
direction is obvious, so we obtain ([2.3.2)).
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For each crossed A-group G, the action of G(a) on A(s,a) determines a
group homomorphism
R, : G(a) — 6%(a) (2.3.3)

Lemma 2.3.8. Let G be a crossed A-group. Then, the action of G(a) on each
A(b,a) in the structure of crossed A-group agrees with the one induced from
&4(a) through the group homomorphism R, given in (2.3.3).

Proof. For each z € G(a) and ¢ : b — a € A, we have the following commutative
square:

A(s, b) i>A(3,a)

f*(w)i J/sza(x) .

A(s, b) i>.A(s,a)

Hence, the uniqueness of the action of & (a) on A(b, a) given in Corollary
implies ¢® = pfta(®), O

Lemma 2.3.9. Let G be a crossed A-group. Suppose x € G(a) and o € A(s, a).
Then, for every morphism ¢ : b — a € A, the permutation

p*(x) : A(s,b) — A(s,b)

restricts to a map (x) " Ha} — (¢%)"H{a®} which is either order-preserving or
order-reversing, depending only on x and a but not on .

Proof. Let ¢ : b — a € A be an arbitrary morphism, so we have a map ¢, :
A(s,b) — A(s,a). Take any two elements 1g,11 € A(s,b) with (o) =
©.(11) = a. We may assume by < 1/, so there is a morphism v : 5 — b with
Yo = o and Yu; = . Since phrg = Y = a, we have g = refl(a),
where refl is the map defined in Remark and the following diagram is
commutative:

As, 5) —V> A(s,b) 2> A(s, a)
refl(a)*(m)l " (I)i \Lm
_ @ @7
A(s, §) — A(s,b) ——= A(s,a)

Hence, the order of two elements ¢*(x)(vo), ¢*(z)(¢)1) € A(s,b) is determined
by that of refl(a)*(x)(¢p) and refl(a)*(x)(t1). It clearly no longer depends
on ¢ nor elements ¥, 11 € (p.) "t {a}, so we obtain the result. O

We now construct a candidate for the terminal crossed A-group. For each
morphism ¢ : b — a € A, we define a map

B, : Oy A 5 &(A(s, b))

as follows: for & = (&i)icA(s,a); Bo(€) € G(A(s,b)) is the unique permutation
such that

e it preserves the fibers of the map ¢, : A(s,b) = A(s, a);
e for each i € A(s,a), the restricted map B,(€) : (p.) i} — (pu)H{i} is

either order-preserving or order-reversing depending on ¢; € Cb.
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The map S, is obviously a group homomorphism. Also, we define a map
" 6% (a) = S(A(s,b))
so that ¢*(o) is the unique permutation satisfying

(i) the square below is commutative:

A(s,b) s A(s,a)

w*(d)l J{U

A(s,b) P A(s,a)

(ii) ¢*(o) : A(s,b) — A(s, D) restricts to an order-preserving map
9" (0)  (p)THi} = (92) i}
for each i € A(s, a).

The action of G*(a) on .A(s,b) enables us to consider the semidirect product
&4(a) x C;A(s’a), which is just a cartesian product &4(a) x C;A(S’a) as a set
together with the multiplication

(r:0)(0:8) = (70:C - 0" (&) = (703 (G0 seanmy) -
We define
W (a) = {(0;5) € 64(a) x O A

Ve € A(b,a) : 9" (0)8,() € GA(1)}
(2.3.4)

Remark 2.3.10. The permutation 7 = ¢*(0)B,(€) on A(s, b) appearing in ([2.3.4)
is the permutation characterized by the following two properties:

(i) the square below is commutative:

A(s,b) —> A(s, a)

A(s,b) —> A(s, a)
(ii) the restriction 7 : (¢.) " i} — (¢2)~1{i} is either order-preserving or
order-reversing depending on ¢; € Cs.

Proposition 2.3.11. Let A be as above. Then, the subset 24 (a) C &4(a) x
CQXA(S’&) given in (2.3.4) has the following properties:

(1) WA(a) is closed under multiplication and the inverses; hence it is a sub-
group;

(2) for each morphism ¢ : b — a € A, define
©" 1 WA(a) - WAD) 5 (038) = (97(0)B,(): 07 (9)) -

Then, this defines a structure of A-sets on Q04.
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Moreover, the family {204 (a)}aca forms a crossed A-group.

Proof. We first show For each (o;&), (1;() € 24(a), and for every mor-
phism ¢ : b — a € A, we have the following commutative diagram:

A(s, b) —2> A(s, a)

w*(U)ﬂw(ai J{U
A(s,b) £>.A(s,a)

(WU)*(T)ﬁwa(f)i l‘f
A(s,b) LI A(s, a)

Verifying the conditions in Remark one will see the left vertical com-
position coincides with the permutation cp*(ra)ﬁg,(f - 0*(2)). Tt follows that
((;7)(Z:0) € WA(a). Closedness under the inverses is proved similarly.

As for the part note that the map ¢* : 204 (a) — 204(b) is actually well-
defined. Indeed, for every morphism % : ¢ — b € A, we have a commutative
diagram below.

A(s,c) v A(s,b) o A(s,a)
w*(@*(ﬂ)ﬁw(a)ﬁw(%@*(@)l lv*(ﬂ)ﬂw(g) ia
" (@B (D) o7
A(s, c) A(s, b) A(s,a)

Similarly to the part one can check the conditions in Remark to see
the left vertical arrow equals to the permutation (¢y)* (o) B,y (€), which belongs
to &% (c) since (0;8) € 24(a). This argument also shows the functoriality, so
204 is an A-set.

It remains to show 20 is a crossed A-group. However, one can notice the
proofs of and above also show 20 satisfies the two conditions on crossed
groups respectively. O

Unfortunately, for a crossed A-group G, the group homomorphism R, :
G(a) — G4(a) given in does not define a map of A-sets in general.
Nevertheless, it turns out that the only obstruction is parities, so we can put
that information on the codomain of R,. More precisely, define a map & :
G(a) — C’;A(S’a) as follows: recall that for each = € G(a) and each a € A(s, a),
the square below is commutative:

refl(o).

A(s, 5) A(s, a)
refl(a)*(m)i iw
A(s, ) ref(el), A(s,a)

We set &,(x) = (Ea(x)a)aeA(s,a) by

Eal@)a = {O refl(a)"(z)(to) < refl(w)(z)()
AT refl(a)*(2) (o) > refl(a)*(z) (1) -
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Lemma 2.3.12. Let G be as above. Then, for each a € A and x € G(a), the
pair
(Ra(z): £a(2)) € G(A(s, a)) x CFAG

belongs to the subgroup 204 (a) defined in (2.3.4). Moreover, the induced maps

R, = (Ra;ga) : G(a) - QﬂA(a)
form a map G — 4 of crossed A-groups.

Proof. Verifying the conditions in Remark[2.3.10] one can observe that, for each
x € G(a), and for each ¢ : b — a € A, we have

Ra(¢*(2)) = ¢"(Ra(x)) - By (Ea(x)) - (2.3.5)

The left hand side clearly belongs to G*(a), this implies (R, (z); &, (2)) € 24(a)
by the definition (2.3.4) of 20. On the other hand, it is also verified that

galp™(2)) = ¢"(Ea(2)) - (2.3.6)

The equation (2.3.6) and (2.3.5) imply that R, = (Rq4;&,) is natural with respect
to a € A, so it defines a map R : G — 204 of A-sets.

It is obvious that R : G — 204 respects the action on each A(a,b), so it
remains to prove it is a degreewise group homomorphism. Since the preservation
of the unit is straightforward, it suffices to show, for each a € A, R, : G(a) —
204 (a) preserves multiplications. For each z,y € G(a), and for each o € A(s, a),
we have a commutative diagram below:

refl(a).

A(s, 3)
reﬂ(a)*(w)l
A(s, 5)
reﬂ(ar)*(ml
A(s, 3)

A(s,a) (2.3.7)

refl(a®).

refl(a¥?).,
_—

One can deduce from (2.3.7) that

Ea(yl’)a = Ea(y)awga(x) )

which implies &, (yx) = Rq(2)«(€a(y))Ea(z). Thus, we obtain

so that R, : G(a) — 2*(a) is a group homomorphism. O

Theorem 2.3.13 (cf. Theorem 1.4 in [47]). Let A be a small locally finite
category equipped with an internally well-co-ordered generator s € A. Then, the
Weyl crossed A-group Q04 is a terminal object in the category CrsGrpy.
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Proof. By virtue of Lemma 2.3.12 it suffices to show that, for each crossed
A-group, the map R : G — 20 is the unique map of crossed A-group for each
G € CrsGrp 4. Since QBA(a) is, as a set, a subset of the direct product

&4 (a) x CM=
for each a € A, an A-map f : G — 204 is determined by maps

foerm 1 G(a) = &M(a) ,  fogn = (flgacasa) : Gla) = C5A

for each a € A. If f is a map of crossed A-group, the map ferm clearly has
to be the one associated to the action of G(a) on A(s,a). On the other hand,

each fs(,,z is also determined automatically thanks to the naturality of f and
Lemma It follows that R is the only map into 204. 0O

Corollary 2.3.14. Let A be as above. Suppose G is an A-set which is equipped
with a degreewise group structure. Then, the following data are equivalent:

(a) left actions of G(a) on A(b,a) for a,b € A which exhibit G as a crossed
A-group;

(b) a map G — WA of A-sets which is a degreewise group homomorphism.

Corollary 2.3.15. Let A be as above, and let G and H be crossed A-groups.
Then, a map f: G — H of A-sets which is a degreewise group homomorphism
is @ map of crossed A-groups if and only if the triangle below is commutative:

G—— 1 .5
N
QU’A

Example 2.3.16. In the case A = &, since it is a full subcategory of Ord, we
have

65«@) — Ord(A((1), (n) = &,

WA((n)) =&, x C5" = H, .

It is easily verified that these induce an isomorphism from Qﬂg to the hyperoc-
tahedral crossed simplicial group $) described in Example [2.1.11

Ezample 2.3.17. Recall that, in the case A = V, we saw in Example 2.3.7] that
SV ((n) = &((n)) x &({—00,00}). We claim that an element of &Y ({n))) x
Cy ) of the form

= ((0,0);€—c0,€1---,En,sEc0)
for (0,0) € &((n)) x &({—00,00}) and ¢; € Cy belongs to 2V ({(n))) if and only
if = e_o = €00 under the canonical identification &({—o0,00}) = Cy. For a
map ¢ : {(m)) — {(n)) € V, the permutation ¢*(x) restricts to bijections

p {00} = ¢7THO(~00)} . 7 H{oo} = T H{B(00)}

which are either order-preserving or order-reversing according to €_, and €4
respectively. On the other hand, in view of the computation of Example
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¢*(z) belongs to &Y (((m))) if and only if it preserves the subset {—oco, c}. It
is easily seen that this happens for every ¢ : ((m)) — ((n)) precisely when the
elements 6 and 4, all coincide. As a consequence, we obtain an isomorphism

WY ((n) = Hy x Cy .

We finally note that the explicit computation of terminal crossed A-group
leads to a classification.

Proposition 2.3.18 (cf. Theorem 3.6 in [24]). Let A be an arbitrary small
category. Then, for every crossed A-group G, there is a sequence

G™ — G — G (2.3.8)
of maps of crossed A-groups such that
(i) the sequence (2.3.8) is degreewisely a short exact sequence of groups;
(ii) G™ is a (non-crossed) A-group;
(iii) G'd is a crossed A-subgroup of the terminal crossed A-group.

Moreover, the sequence (2.3.8)) extends to a functor from CrsGrp 4 into the
category of degreewise short exact sequences in CrsGrp 4.

Proof. Put T4 the terminal crossed A-group, and set G™¢ to be the image of
the unique map G — ¥ 4. Then, we can define G"® by the following pullback
square:

GnC > %

|+ |
G Gred

The required properties are verified easily. O

Ezample 2.3.19. In Proposition 3.5 in [24], there is a complete list of crossed
simplicial subgroups of 20% = # as in Table

name symbol | n-th group
Trivial * 1
Reflexive Cy Cy
Cyclic c Ch+1
Dihedral D Dy
Symmetric S Gnt1
Reflexosymmetric S Ght1 x Co
Weyl (Hyperoctahedral) | 204 = H H,.1

Table 2.1: The crossed simplicial subgroups of 204

Ezample 2.3.20. We will see in Example in Section [2.5]that the embedding
A — A induces a fully faithful embedding

CrsGrpp < CrsGrpx

which sends 202 to 4. Hence, we obtain the same list of augmented crossed

simplicial subgroups of 20* as Table while the indices are shifted by 1
because of the identification [n] & (n + 1).
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In the appendix, we will compute all the crossed interval subgroups of 20V.

2.4 Crossed groups as monoid objects

We proved Theorem |T_ﬂ| that asserts the category CrsGrp 4 is locally pre-
sentable for each small category A by highly abstract argument, and it was for
the sake of the existence of terminal crossed groups. On the other hand, we also
proved the latter independently in a more explicit way in Theorem for
some special categories A. Combining this with Proposition and Proposi-
tion [2:2.3] which are proved in more or less constructive ways, one can recover
the completeness and the cocompleteness of CrsGrp , mentioned in Corol-
lary In this section, we are going further: we see the category CrsGrp 4
is even algebraic, in some sense, over a presheaf category, which guarantees the
locally presentability. More precisely, for a crossed A-group G, we have the
forgetful functor

CrsGrpr\G — Set{f (2.4.1)

between slice categories. One has the category CrsGrp 4 on the left hand side
when he takes G to be the terminal crossed A-group, say G = T 4. Note that
though the functor really forgets degreewise group structures, it remem-
bers the actions on each hom-set .A(a,b) through that of G, while the category

Setff is just a presheaf topos. This suggests that the true underlying category

of CrsGrp 4 should be not Set 4 but the slice category Setf*‘. Throughout
this section, we fix a small category A and a crossed A-group G and aim to see

(2.4.1]) has a good left adjoint.

Notation. For each object X € Set/G7 say p: X — G is the structure map, we
consider its “action” on hom-sets as

X(b) x A(a,b) = A(a,b) 5 (2,0) = " i= P
for a,b € A even though X (b) is no longer a group.
To begin with, we introduce the following construction.

Definition. For K € Set4 and X € Set/G, we define an A-set K xg X as
follows:

e for ecach a € A, we set (K xg X)(a) := K(a) x X(a);
e for each ¢ :a — b€ A, we set

p" (K xg X)(0) = (K @ X)(a) 5 (k2) = ((97)"(K), " (2)) -

Remark 2.4.1. The operation x was originally introduced by Krasauskas in
Definition 2.1 in [47] in the case A = A and G = ~.

To see K xg X above actually defines an A-set, it is convenient to consider
the map

crsx : X(b) x A(a,b) = A(a,b) x X(a) ; (x,¢) — (©°, ¢*(x)) (2.4.2)
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for each X € Setff. Similarly to the case of crossed groups, we have the
following commutative diagram:

(id xcrsx ) (crsx xid)
- >

X(c) x A(b,c) x A(a,b) A(b, ) x A(a,b) x X(a)
idxcompl lcompxid (243)

X(c) x Aa, c) o A(a,c) x X(a)

Note that the A-set structure on K x¢ X is given by
(K g X)(b) x A(a,b) = K(b) x X(b) x A(a,b)

idxcrsx
K(b b) x X
GG EE CI

K(a) x X(a)

= (K xg X)(a) .
Then, combining and , one can verify K xg X is actually an A-set.
Lemma 2.4.2. If two objects a,b € A are fized, the map crs given in is
natural with respect to X € Set{f.

Proof. Suppose f : X - Y € Setff. We have to show the square below

comimutes:
Crsx

X (b) x A(a,b) —= A(a,b) x X(a)

fxml lMXf

crsy

Y (b) x A(a,b) —— A(a,b) x Y(a)
For (z,¢) € X(b) x A(a,b), we have
(id x f) o crsx (2, ¢) = (¥", fe"(2)) ,
crsy o (f x id)(z, ) = (', 0" f(2)) .

Since f is a map of A-set over G, the actions of z and f(x) on A(a,b) agree
with each other, so the required result follows. O]

Corollary 2.4.3. The assignment (K,X) — K xg X defines a functor
X : Sety X Setff — Set 4 .

The key observation is that we can lift the functor xg to a monoidal struc-
ture on Setff. For this, note that the degreewise multiplication gives rise to an
A-map

M:(;Ng(;—>G.
Indeed, for ¢ : a — b € A, the condition on crossed groups implies the
following square is commutative:

(G %G G)(b) —= G(b)

W*i lw*

(G x¢ G)(a) —= G(a)
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Hence, we can define a functor
XaG Setff X SetJ/L‘G — Setff (2.4.5)

by
(X,Y) = (X xgY - Gxg G5 Q).

Proposition 2.4.4. The functor (2.4.5)) gives a monoidal structure on Setff
where the unit is the terminal A-set x with the unique map * — G of crossed
A-groups. Moreover, the monoidal structure is biclosed; i.e. there are functors

Homt,, Hom® : (SetJ/‘lG)OlD X Set{f — Setff
together with natural isomorphisms

Set’ (X x¢ Y, Z) = Set/ (X, HomR(Y, Z))
=~ Set/, (Y, Hom (X, Z)) .

Proof. We first show that, for XY, Z € Set/, G, the degreewise canonical iden-
tification actually gives an isomorphism

(X><1(;Y)>4(;Z§Z><1G(Y><IGZ).

Since it is clearly a degreewise bijection, it suffices to show it is actually a map
of A-sets over G. Suppose ¢ : a — b € A is a morphism in A. Then, an easy
computation shows that both maps

(p* : ((X Xa Y) Xa Z)(b) — ((X Xa Y) Xa Z)(a)
" (X g (Y 46 2))(0) = (X xg (Y %@ Z))(a)

are identified with the map ¢* : X (b) x Y (b) x Z(b) — X (a) x Y (a) x Z(a) given

by
(@, y,2) = (((¢")")" (@), (¥%)" (), 2) -

Thus, we obtain a canonical identification (X XgY)Xg Z =2 X xg (Y xg Z) as
A-sets. Actually it is an isomorphism over G; indeed, the structure maps into
G are given by the common formula

X(a) xY(a) x Z(a) = G(a)  (2,y,2) = p(a)q(y)r(z) ,

wherep: X — G, q:Y — G, and r : Z — G are the structure maps. Therefore,
we obtain an associativity isomorphism for the functor xg. The unitality of
is easily verify, so the first assertion follows.

To see the monoidal structure is biclosed, note that the category Setv/f is a
presheaf topos and so locally presentable. Hence, by General Adjoint Functor
Theorem, it suffices to show the functor x preserves arbitrary small colimits in
each variable. Notice that colimits in Setff are computed in the category Set 4
and so agree with the degreewise ones. Now, the functor x¢ is degreewisely
just the cartesian product, so the problem is reduced to the case A = * where
the result is obvious. O
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Remark 2.4.5. We have an explicit description of A-sets Hom®, (Y, Z) and Hom, (X, Z)
as follows: for each a € A, we denote by A[a] the A-set represented by a. Then,
we have
Hom&(Y, Z)(a) = [] Seta(Ala] x¢Y,2),
Ala]—-G
Homg (X, Z)(a) = [] Seta(X xq Alal,Z) .
Ala]l—»G
Remark 2.4.6. Similarly to Proposition[2.4.4] one can also prove that the functor
Xg : Sety X Setv/f — Set 4 given in Corollary defines a right action of
the monoidal category (Seth‘G7 X ) on the category Set . Note that, in the
case A = A, this functor was discussed in Section 4 and 5 in [24], where they
wrote F(X) := X xg G for X € Seta and a crossed simplicial group G.
Lemma 2.4.7. Let G — H be a map of crossed A-groups. Then, the induced
functor SetJ/L‘G — Seti‘H is monoidal with respect to monoidal structures Xg
and Xpg.

Proof. For each X,Y € Set{f, X xg Y and X xpg Y are clearly identical as
A-sets. In addition, since G — H is a map of crossed A-groups, the square

X XNgY ——X xgY
G H
is commutative. Hence, the result is obvious. O

We are interested in monoid objects in the category Seth‘G with respect to

the monoidal structure x. Recall that a monoid object in SetJ/f is an object
M equipped with two morphisms
nix— M
wiM>xgM— M
satisfying the ordinary conditions on monoids, namely the associativity and the

unitality. The next lemma shows crossed A-groups are examples of monoid
objects.

Lemma 2.4.8. Let H be a crossed A-group over G; i.e. a crossed A-group
equipped with a map H — G of crossed A-groups. Then, the maps ng : * — H
and pg - H xg H — H given by

ng :x— H(a); *+>eq
pr: (Hxg H)(a) = H(a) ; (z,y)— 2y
are maps of A-sets over G. Moreover, they exhibit H as a monoid object in
SetJ/f with respect to X¢.

Proof. The first statement follows from the assumption that the structure map
H — G is a map of crossed A-groups and the formula

pa (e (2,9)) = (¢¥)" (@) (y) = ¢*(2y) = " (nu(2,y)) .

The associativity and the unitality are obvious since H(a) is a group for each
a€A O
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We denote by Mon(SetJ/L‘G, X ) the category of monoid object in Set{f with
respect to the monoidal structure x¢g. In particular, when G is the terminal
crossed A-group ¥ 4, we write

CrsMony := Mon(Setf““, Xz ,) -

Definition. A crossed A-monoid is just an object of CrsMon 4; i.e. a monoid
object in the category Setf with respect to the monoidal structure ¢ ,. We
call maps in CrsMon 4 maps of crossed A-monoids.

Note that since every crossed A-group can be seen as one over the terminal
crossed A-group ¥ 4, we can think of it as a crossed A-monoid by virtue of
Lemma Hence, it makes sense to consider the slice category CrsMonJ/L\G.
On the other hand, in view of Lemma the map G — T 4 also induces a
functor

Mon(SetJ/f, xg) — CrsMony . (2.4.6)
It immediately follows from the definition of x & that G is itself a terminal object
in Mon(Setf“G7 X ). Thus, the functor factors through

Mon(Seth‘G7 XG) — CrsMon{f . (2.4.7)
Proposition 2.4.9. The functor (2.4.7)) is an equivalence of categories.

Proof. To see is essentially surjective, put € 4 to be the terminal crossed
A-group, and observe that we have X xg X = X xg, X as A-sets for each X €
Set{f. It turns out that a monoid structure on X with respect to X<, defines
one with respect to X« if and only if the map X — G is a monoid homomorphism

with respect to X« ,. This implies that (2.4.7) is essentially surjective. It also
follows from the similar observation that (2.4.7) is fully faithful. O

Theorem 2.4.10. Let A be a small category and G a crossed A-group. Then,

the forgetful functor CrsMoni‘G — Set{f admits a left adjoint so to form a
monadic adjunction:

Fq: SetJ/L‘G @ CrsMonfL‘G UG .

Moreover, the associated monad on Setff is finitely; i.e. it commutes with
filtered colimits. Consequently, the category CrsMonQG is locally presentable.

Proof. According to Proposition we can regard CrsMonff as the cate-
gory of monoid objects in SethG with respect to the monoidal structure xg.
Since it is biclosed by Proposition [2:4.4] we have an explicit description for the

monad TS, of free monoids; namely

00 00 n
—_—
T (X) =[] X" =[] X g xeX .
n=0 n=0

Thus, the first statement follows. To see TS . is finitely, it suffices to show
that the functor X — X*¢™ commutes with filtered colimits for each n € N.
Now, the colimits are computed degreewisely in Set 4, and X *¢" is degreewisely
nothing but the n-fold cartesian product, it follows from the same result for the

category Set. The last statement now follows from 2.78 in [I]. O
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Corollary 2.4.11. For every small category A, the category CrsMon 4 is lo-
cally presentable.

Corollary 2.4.12. The category CrsMon{f is complete and cocomplete. More-

over, arbitrary limits and filtered colimits can be computed in the category SetJ/L‘G.

We want to make use of Theorem to establish a required adjunction
between CrsGrpff and SethG. In view of Lemma , we can think of each

crossed A-group over G as an object of CrsMonﬁtG. This assignment actually
defines a functor
CrsGrpé‘G — CrsMoni‘G . (2.4.8)

Indeed, every map f: H — K of crossed A-groups over G clearly preserves the
monoid structure described in Lemma 2.4.8

Proposition 2.4.13. In the situation above, the functor (2.4.8)) is fully faithful.
Moreover, a crossed A-monoid M over G belongs to the essential image if and
only if it is a degreewise group.

Proof. Notice first that the following triangle is commutative:

CrsGrpi‘G CrsMonQG
Setff

Since both of the forgetful functors are faithful, the top one is also faithful. To
see it is also full, take two crossed A-groups H and K over GG and an arbitrary
homomorphism f : H — K of crossed .A-monoids over G. We show f is actually
a map of crossed A-groups. Since it is clearly a map of A-sets that is a degreewise
group homomorphism, it suffices to show [ respects the actions of H(a) and
K(a) on A(b,a) for each a,b € A. This follows from the observation that the
actions of H(a) and K (a) factor through G(a) and that we have a commutative
triangle below:

H{(a) ! K(a)

N7

G(a)

We finally prove the last assertion. Let M be a crossed .A-monoid which is a
degreewise group. Then, it is easily verified that the structure map M — G is
a degreewise group homomorphism. Hence, for each a,b € A, the group M (a)
inherits an action on A(b,a) from G(a). One can see this action together with
the group structure make M into a crossed A-group. In addition, M — G
is clearly a map of crossed A-groups, so that we obtain M € CrsGer/‘tG as
required. O

By virtue of Proposition [2.4.13] we may regard CrSGer/‘lG as a full subcate-

gory of CrsMonfL‘G. In fact, it is more than just a subcategory but special one.
Namely, it is both reflective and coreflective.
We just need one lemma.
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Lemma 2.4.14. Let M be a monoid object in Set{f, and let o 1 a — b € A.
Then, the map ©* : M(b) — M (a) preserves invertible elements in the monoid
structures.

Proof. If x € M(b) is invertible in its monoid structure, we can describe the
inverse of ©*(x) € M(a) explicitly as follows:

Indeed, we have

Theorem 2.4.15. Let A be a small category, and let G be a crossed A-group.

Then, the subcategory CrsGrpr\G C CrsMonfL\G is closed under arbitrary (small)
limits and colimits. Consequently, CrsGer/LlG - CrsMonJ/L‘G 1s both reflective
and coreflective as a subcategory; i.e. the inclusion admits both left and right

adjoints.

Proof. We first show CrsGrpfAG - CrsMoné‘G is coreflective. The right adjoint

functor J : CrsMonJ/L‘G — CrsGrpr\G is described as follows: for a crossed A-
monoid M over G, the underlying A-set of J(M) is degreewisely the group of
invertible elements of M (a), which actually forms an A-subset of M thanks to
Lemma It is easily verified that the composition J(M) < M — G and
the restricted operations exhibit J(M) as a crossed A-group over G. Note that,
for a crossed A-group H over G, each map f : H — M of crossed .A-monoids
preserves invertible elements so it factors through J(M) < M. Moreover, since
J(M) — M is a monomorphism, this factorization is unique. This implies we
have a natural bijection

CrsMon' (H, M) = CrsGrp/ (H, J(M)) .

Hence, J is right adjoint to the inclusion.
Next, we prove the closedness properties. As for colimits, it follows from the
coreflectivity proved above, Proposition and Corollary To see it

is also the case for limits, let Hy : Z — CrsGrpf‘lG be a functor from a small

category Z. Since the category CrsMon{f is complete by Corollary [2.4.12
we can take the limit in the category CrsMonJ/f and write Hyo := lim;ez H;.
We have to show H, is a crossed A-group. Note that H, is also the limit in

CrsMonJ/f of the extended diagram HY : I = I x {v} — CrsGrpr\G given

by
e H, ze€1
* G z=v.
In view of Corollary [2.4.12] limits of cocone diagrams in CrsMon{f are com-
puted degreewisely, so for each a € A, we have

Hoo(a) = zleirznb HE (a) .
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The right hand side is a limit of groups, so it is again a group. It follows that H.,
is a degreewise group so it belongs to CrsGer/L‘G by virtue of Proposition|2.4.13

To see the last statement, we have to show the embedding CrsGrp{f —

CrsMonJ/f admits a left adjoint. This follows from the first assertion, Propo-
sition [2.2.1] and the General Adjoint Functor Theorem. O

In summary, for every crossed A-group G, we obtain the following adjunc-
tions: L
CrsGrpi‘G C% CrsMonJ/f a Setff
11}

where the right one is monadic, and each rightward arrow creates arbitrary
limits and filtered colimits.

Remark 2.4.16. If one knows a terminal crossed A-group ¥ 4, then he can prove
Theorem [2:2.4] in a more concrete way. Indeed, it is a consequence of Theo-
rem [2.4.10] Theorem [2.4.15|above, and Corollary 2.4 in [56].

2.5 Basechange of crossed monoids

It is often the case that the category A is in nature related to another category,
say A, by a functor ® : 4 — A. Such a functor gives rise to adjunctions

N X
P, 9, : SetA<—Set;:<I> ,
~L

where @) and ®, are the left and right Kan extensions of ® respectively along
the Yoneda embedding. More generally, for an A-set S, we also have adjunctions

op, o7 Set/, <¥J_7/"/Set.'Z : (I>§ . (2.5.1)

Namely, (I>*§ is just the canonical lift of ®*, and two functors <I>!§ , <I>§ are defined

as follows: for X € Setv/f)*s7 <I>!§X := ®, X with the adjoint morphism ®; X — S,
and %X is the object in the pullback square below:

PSX — =P, X

N
S— =,

A lifts of the adjunction is the central interest in this section.

Now, fix a functor ¢ : A — .Z, and let G be a crossed .Z—group. The notion of
crossed monoids anyway arises from the monoidal structure on the category of
presheaves as mentioned in Section we investigate how the functor <I>2‘~; given
above relates monoidal structures. Notice that, for this question to make sense,
we have to give ®*G a structure of A-groups. Unfortunately, it immediately
turns out that there is no canonical way to do this, so we give up the general
cases and concentrate only on faithful functors.
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Definition. Let & : 4 — A be a faithful functor between small categories.
Then, for a crossed A—group G ® is said to be G-stable if for each a,b e A, the
image of the map

@ : A(a,b) — A(D(a), D(b))
is G(b)-stable.

For example, fully faithful functors are stable for every crossed group. The
following result is straightforward.

Lemma 2.5.1. Let ®: A — A be a faithful functor between small categories.
Suppose G is a crossed A-group such that ® is G-stable. Then, the A-set ®*G
admits a unique structure of crossed A-groups such that

(i) for each a € A, the group structure on ®*G(a) = G(®(a)) agrees with the
original one;

(ii) for each a,b € A, the map
® : A(a,b) — A(®(a), ®(b))
is ®*G(b)-equivariant.

In the following, we always regard <I>~*(~¥ as a crossed A-group with the
structure in Lemma whenever ® is G-stable faithful functor. Hence, the

monoidal structure x4, = on the category Setf*c makes sense (see Section .

Proposition 2.5.2. Let ¢ : A — A be a faithful functor between small cate-
gories which is G-stable for a crossed A- -group G. Then, the induced functor

- /G /"G
‘I’@'Se% — Set/,
is monoidal with respect to the monoidal structures Xz and X g. &

Proof. Note that, for each X Y € Set —, and for each a € A, we have a
canonical identification

(X xg 7)(a) = (X 2g 7)(@(a) = X((a)) x T(@(a))
= ®*X(a) x Y (a) = ("X 4.50Y)(a) .
On the other hand, for each morphism ¢ : a — b € A, the induced map
& X (@) x V(b)) — X (@(a)) x V(P(a))

is, no matter whether it is considered in ®*(X X5 Y) or ®*X X g & $*Y, given
by

O (z,y) = ()" (z,9) = ((2(#)")"(2), 2(¢)"(y)) = (2(¢")"(2), 2(¢)"(9)) -

Thus, we obtain a canonical identification ®* (X ><15)~/) =X xé*éfb*‘f/, which
makes ® into a monoidal functor. O
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Corollary 2.5.3. Let® : A — AandG € CrsGrp ; be as in Pmposz’tion,

Then, the adjunction (I% - ‘13*5 induces an adjunction

%G " CrsMonf*G : ‘bnG :

.
@5 : CrsMon
Proof. The statement is a consequence of Proposition and the fact that,
for a monoidal functor F : C — D, the induced functor Mon(C) — Mon(D)
admits a right adjoint as soon as so does F. The reader will find the full proof
of this in the section 2.3 in [64]. O

Note that the fact we used in the proof of Corollary not only shows the
existence of the adjunction but also provides a way to compute it. Indeed, if M
is a crossed A-monoid over G, then ®* M has a canonical structure of crossed
A-monoids in view of Proposition On the other hand, since the functor

*
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monoidal functors; namely we have ® (%) 2 x and a natural transformation

®% is right adjoint to the monoidal functor ®%, it admits a structure of lax

X x5 Y = (X x4.5Y)

subject to an appropriate coherence conditions. Then, for each crossed .A-
monoid M over ®*G, ®¢ M admits a canonical structure of crossed .A-monoids
over G as

M x5 0M L dC (M .5 M) — OFM
%= @Y (x) = M .
This actually gives the right adjoint @? in the adjunction in Corollary

Proposition 2.5.4. Let & : A — A be a Jully faithful functor, and let G be a

crossed ./Z—gmup. Then, the functor @? : CrsMon{f*G — CrsMonJ/ZG induced
by the right Kan extension of ® is fully faithful.

Proof. Since ® is fully faithful, the induced functor
P, A/(P*G) — A/G
between the categories of elements is also fully faithful. Note that we have

canonical identifications

/@G /G o
SetA ~ Set and SetJZ ~ Set

A/®*G A/G

so that the adjunction ‘I)*g o <I>§ is identified with the one obtained by the right
Kan extension of ¢ /G Since Kan extensions of fully faithful functors along the
Yoneda embedding are again fully faithful, e.g see Proposition 4.23 in [45], <I>§
is fully faithful. In other words, for each X € Setv/f*G, the counit

PraddX - X (2.5.2)

is an isomorphism. Note that if X is a crossed A-monoid over ®*G, then (2.5.2)

underlies the counit map @%@?X — X. This implies that the right adjoint <I>ﬁG
is fully faithful. O
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Ezample 2.5.5. Take A — A to be the inclusion j : A < A. The right adjoint
functor j. to the restriction j* : Set; — Seta sends each simplicial set Xq to
the augmented one j, X given by

, {pt} n=0
+X = 2.5.3
JoX () {X " (253
In particular, we have a canonical isomorphisms
A = gpA | japd = apd (2.5.4)

Now, since the functor j is fully faithful, it is QUZ—stable, so we obtain an
adjunction

Jopx + et I Set i

with j;ﬁz monoidal by Proposition @ We finally obtain an adjunction
j%: CrsMonx _L = CrsMony : jj .
Note that, thanks to the equation (2.5.4), the functor j; is also given by (2.5.3))
and fully faithful by virtue of Proposition [2:5.4]
Ezxample 2.5.6. By its construction, the category V is the Kleisli category of the
monad
J:AS A5 () (n+2) = {00} x (n)* {00} = (n) .

In view of this, one can find the right adjoint to the canonical embedding J :
A — V; namely B
U:V=A; (n)—n+2).

It turns out that the pullbacks along these functors gives rise to an adjunction
J* H4U" : Set; — Sety, and the uniqueness of right adjoints implies U* = J..
More explicitly, the right adjoint J. : Set; — Sety is given by

JX((n) = X((n+2)) .
The counit X — J,J*X is the monomorphism described as follows: consider
the map 7, : {(n + 2)) — ((n)) defined by
—00 1= —00,1
(i) =<i—-1 2<i<n+1
oo i=n-+2,00.

~

Then, each component X — J,J*X is the map induced by 7,:
7ot X({(n) = JI" X () = X ((n+2) .

In particular, as for the Weyl crossed interval group 20V, the unit map 20V —
J.3° WY exhibits WY (((n)) as a subset of WY ({(n + 2))) given by

o({l,n+2}) ={1,n+ 2} ,} .

. . Y
{(0,51,...,sn+2,9) e (n+2)) | Gt D
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On the other hand, we have
JWY =G xCy WA Xy

Since 202 is the terminal object in CrsMong, giving a map M — IV
of augmented crossed simplicial monoid is equlvalent to giving an augmented
simplicial map M — Cy which is a degreewise monoid homomorphism. Hence,

for M € CrsMon/QD *2 with associated map 0 : M — C5, we have

B M) = {o e s+ |y MO )

where we write (x;e1(2),...,ent2(2)) the image of x in WA, Tt exactly gives
the right adjoint in the adjunction

oV
3gnv3 CrsMonvﬂCrsMoném xCe Idfﬁm . (2.5.5)

Note that this adjunction extends to the right: namely, the projection WA x
Cy — WA, which is the unique map of augmented crossed simplicial groups
between them, gives rise to an adjunction

L e — -
CrsMonz ~L = CrsMonj

(M A x 02) — M (2.5.6)

(chg—mngx(b) ~— M

Combining ([2.5.5)) with (2.5.6)), we obtain an adjunction

~

CrsMonv CrsMongy : J; .

We next discuss the other adjunction @!6 B <I>*é induced by the left Kan

extension of a G-stable faithful functor ® : A — A. In contrast to the right Kan

extension, the functor <I>Ié itself does not induce any functor on the category of

monoids in general. We hence need to construct directly the left adjoint to the

functor _ ~
b /G e

(I)é : CrsMonK — CrsMon/, .

Fortunately, we can make use of the following theorem.

Theorem 2.5.7 (Adjoint Lifting Theorem, Theorem 4.5.6 in [9]). Suppose we
have a square of functors

M- N

of =y

C——D

IR

which is commutative up to a natural isomorphism, and suppose M has all
coequalizers. Then, @ has a left adjoint as soon as so does R. More precisely,
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if F H4U, GAV,and L 4 R, so FL 4 RU = VQ, then the left adjoint
K : N — M to Q is defined by the coequalizer sequence

FLVewV
FLVGV(N) ——= FLV(N)—— K(N) (2.5.7)

in M, where e : GV — 1d is the counit of the adjunction, and

anfLive cQFL
a:G— GVQFL —— QFL

a FLAVQ
w:FLva 22 prvorn =

Remark 2.5.8. One can deduce Theorem [2.5.7] from, besides the direct proof, a
more general theorem called Adjoint Triangle Theorem. We refer the reader to
[19] and [72].

We can apply Theorem in our situation, i.e. to the square

~ L e
CrsMonJ/zG — % CI‘SMOII{L? ¢

Uaj« l”m . (2.5.8)
Setf L Set/(I> G

To obtain a more explicit description, however, we need to know more about
each involved functor. In particular, since all the right adjoints just forget
structures, it is enough to care about the left adjoints. We first look at the free

functor
F& . Seth‘G — CrsMoni‘G

for a crossed A-group G. This functor is the one in Theorem [2.:4.10] and com-

puted as follows: for each X € Set/G with the structure map p: X — G, FE¢X
is, as an A-set, degreewisely the free monoid generated by X with the structure
map

p* FGX(b) — FGX(a)
T1To .. Ty > ((pp(xz)-up(xn)y(xl)((pp(xs)-up(xn))*<x2)_._(p*(xn)_

for each ¢ : a — b€ A. The map FEX — G is the induced one.
On the other hand, for a functor ® : A — A, its left Kan extension &, :
Set 4 — Set ;7 along the Yoneda embedding is realized as follows: for X € Set 4

and for @ € A, ®, X (a) is the quotient set
{(x,g.z) ] ze X(b), 3eAa,ob)) forbe A} / ~
by the equivalence relation ~ generated by
(07(z),9) ~ (z,2(0)9)

for each triples (z,,6) such that both sides make sense. We write [z,@] €
®,X (@) the equivalence class represented by the > pair (xz,p). If X is equipped
with an A-map f: X — ®* S then we have an A—map

X = 8; (1,9~ F(fla),
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which exactly gives the functor tI>!§ : Setf*s — Set/?.
Combining the observations above and Theorem@, we obtain the follow-
ing result.

Theorem 2.5.9. Let G be a crossed ./Z—gmup, and let ®: A — A be a C:i—stable

faithful functor. Then, the pullback CI% admits a left adjoint functor <I>bG so to
form an adjunction

of : CrsMon{f*G 1 CrsMon%G : q)hé :

More precisely, for each M € CrsMonf*G with the structure map p : M —

@*é, the crossed A-monoid @?M over G is given as follows: for each a € .Z, the

monoid @?M(d) is obtained as the quotient of the free monoid with generating
set

{(:v, ?) ] v € M(b), € Aa (b)) forbe A} (2.5.9)
by the congruence relation ~ generated by
(ev, @) ~ea s (2y,0) ~ (2, 0")(y, ), (07(2), @) ~ (2,2(0)9)
for a:,Ny,z,cz,G such that eacﬁ term makes sense. For each J ‘b ace j, the
map * : ®FM(a) — ®FM(b) is given by
F(21, 1) [, Bl) = [0, OB G [, §5]
Finally, @?M — @ is the one generated by [x, 3] — &*(p(x)).

Proof. We apply Theoremto the diagram ([2.5.8)). To simplify the notation,
we write G := ®*G and omit all the forgetful functors from formulas. Then,

the first thing we need is to know the two morphisms
FOoCe, w: FCOCFOM = FOOC M (2.5.10)
of for each M € Cfs(irpff. According to the discussion above, for each
a € A, the elements of FE®C FEM (a) are finite words in the quotient set
{(a:l, oz 3) | nEN, @ e M), § e A, ®(b)) for b e A} / ~
by the equivalence relation ~ generated by

(@15 s 2n; @(0) ) ~ ((6725) (21), -, 07 (2n); 9) -

We write [21, . .., Tn; @] the equivalence class represented by the tuple (21, ..., 2n; @).
On the other hand, FE®F M (a) is the set of words in the set ®&M (), which

is obtained as the quotient of the set as mentioned just before Theo-
rem m Then, the direct computation shows the two maps in are the
monoid homomorphisms generated by the maps

[T1,.. ., Tn; @)
=21, @)y [, @20 2, @]
where one multiplies x1,...,x, in M while the other distributes the brackets.
Therefore one obtains the required presentation. O
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Corollary 2.5.10. Let & : A — A be a fully faithful functor, and let G
be a crossed .Z—gmup, Then, the left adjoint functor <I>bG : CrsMonf*G —

CrsMon/? to the pullback <I>h~ s fully faithful.

Proof Suppose @ is fully faithful, so we may regard A as a full subcategory of
A. Tt suffices to show the unit M — <I>h <I>GM of the adjunction <I>G o <I>~ is an

isomorphism for each M € CrsMonJ/4 . Note that, for a € A, it is given by

M(a) — @0 M(a) = @CM(a) ; 2+ [a,id] . (2.5.11)

On the other hand, since A is a full subcategory of .Z, we have

[y, ¢l = [¢"(y).id]
for each y € M(b) and @ € A(a,b) = A(a,b). This implies that the map
2.5.11~is surjective. Moreover, the faithfulness of the left Kan extension <I>!G :

Set/(b*G — Setﬁ» implies that [z,id] = [2/,id] if and only if z = z’. Thus,
(2.5.11)) is also injective, so we obtain the result. O

Remark 2.5.11. Corollary[2.5.10]also follows from Proposition and the fact
that, for adjunctions L 4 F 4 R, L is fully faithful if and only if so is R. It
seems to be a kind of folklore while the reader will find proofs in [22] and [46].

Ezxample 2.5.12. Take ® to be the embedding j : A — A and G = Qﬁz, then
we obtain an adjunction

j, : CrsMona L~ CrsMonjy : j* (2.5.12)

by Theorem [2.5.9] Since j is fully faithful, by virtue of Corollary 2.5.10} for
every every crossed simplicial monoid M,, we have a canonical identification

Gy M((n)) = My
for each n > 1. On the other hand, since the only object (0) € A outside the
image of j is initial, for the left Kan extension jM, we have

do,d
M ((0)) = colim M, = coeq <M1 S M0> ~ 1o(M) |

where mo(M) is the set of connected components of the simplicial set M. We
claim 7o (M) inherits a structure of monoids through the quotient map My —
mo(M). Note that mo(M) is obtained as the quotient of My by the equivalence
relation ~ generated by
dol‘ ~ d1$

for each x € M;. Hence, to verify the claim, it suffices to find z,2’ € M; which
support

w-dox ~u-dix, doxr-u~dix-u
respectively for every x € M; and u € My. Actually, we can take z := sou -
and 2’ := z - spu; indeed, we have

diz = dgysou - dix = u - diz

diz' = dg i) - disot = dggu)® - u .
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It turns out that the monoid structure on mgM above makes not only the map
My — wmoM but also M,, — mM into a monoid homomorphism for arbitrary
n € N. Finally, the left adjoint functor j, in (2.5.12)) is given by

7TOM n=>0
Mn,1 nZl.

JM((n)) = {

Ezxample 2.5.13. Take ® to be the functor J : A — V. Set T to be the set of
morphisms ¢ : {(m)) — ((n)) € V such that it restricts to a bijection

e H1,...,n} = {1,....n}.

It is known that every morphism in V uniquely factors through a morphism in 7
followed by one in the image of J. This factorization gives us a nice description
of the left Kan extension functor

g Setz — Sety
as follows: for an augmented simplicial set X, J1X ({(n))) is the set
{(z,p) | keN, z € X(k), p: {(n) — (k) € T} (2.5.13)

Ff)r <pb: {(m) — {n)) € V, the induced map ¢* : JIX({(n))) — X ({m))) is
given by
"z, p) = (1" (2), pg) »

where (p, py) is the unique pair of morphisms with p € J(A), p, € Z, and
1py = pp. Thus, the left adjoint fﬁnv in the adjunction

~wY wh xc . Af
gyt CrsMon/5 *® 1 CrsMony :Jyv (2.5.14)

/WA %y
o A

mented simplicial map 6 : M — Cs, JI¥ M({(n))) is the quotient of the free
monoid over the set defined similarly to by the congruence relation

generated by

is described as follows: for M € CrsMon with the associated aug-

(@y, p) ~ (@, 0" ) (y,p) ,  (exp) ~ €n - (2.5.15)
In particular, if 8 : M — C5 is trivial, the relation (2.5.15)) gives rise to an

isomorphism
JyM({n))) = * M((k)) ,
M) E M)
where the right hand side is the free product of monoids.

To end the section, we mention crossed groups. We saw above that the Kan
extensions along stable faithful functors give rise to adjunctions between the
category of crossed monoids. Notice that all the construction can be described
as limits and colimits, at least degreewisely. On the other hand, in view of
Theorem the subcategory CrsGrp 4 C CrsMony is closed under both
limits and colimits. This implies all the discussion above restricts to crossed
groups, so we obtain the following result.
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Theorem 2.5.14. Let @ : A — A bea faithful functor, and let G be a crossed
A-group such that ® is G-stable. Then, the adjunctions

~ = 5 TN =
o, ‘I);? : CrsMoanq) ¢ L " CrsMon’’ : ®L
N A ¢

given in Corollary[2.5.3 and Theorem[2.5.9 restrict to

G &G . /@G 1N /G . gt
¢, @4 1 CrsGrp/y EchGer R
Moreover, if ® is fully faithful, so are CIJE; and <I>ﬁé even after restricted to crossed
groups.

2.6 Classification of crossed interval groups

We give a complete list of crossed interval subgroups of the terminal crossed
interval group 20V. As mentioned at the end of Section this gives us a
classification of crossed interval groups up to non-crossed parts (see Proposi-
tion . Recall that, according to the computation in Example we
have

WY ((n) = H, x Cy , (2.6.1)

where H,, is the n-th hyperoctahedral group, and Cs is the group of order 2.
At first glance, this looks pretty nice; we have an excellent theorem, namely,
Goursat’s Lemma [29] to seek subgroups of a product of groups. Unfortunately,
the “product” in is, however, not actually the product of interval sets;
the second component C5 is not really closed under the interval set structure so
that the projections H,, x Cy — H, fails to define a mapvof interval sets. This
is because of the morphisms in V outside the image of A, so we first consider
its restriction to A. Indeed, let J : A — V be the functor given by

J((n) = (n)

(see Example [2.5.6). Since J is 20V-stable faithful functor, in view of Corol-
lary 2.5.3] it induces a functor
30 CrsGrpy — CrsG"rp/g*m]v .

A good news is that the isomorphism now exhibits J¥UV as a product
WA x Cs of augmented simplicial sets, where Cy is the constant augmented
simplicial set at Cy. Note that J? is faithful so it preserves monomorphisms.
Hence every crossed interval subgroups of 20V is sent to an augmented crossed
simplicial subgroup of J#UV = 954 x C,. -

To compute all the augmented crossed simplicial subgroups of 204 x Cy, we
establish a crossed analogue of Goursat’s Lemma. This can actually be done for
general base categories A.

Lemma 2.6.1. Let A be a small category. Suppose we are given an inclusion
N < G of crossed A-groups such that N(a) C G(a) is a normal subgroup for
each a € A. Then, the family {G(a)/N(a)}q admits a unique structure of A-sets
such that the canonical map G(a) = G(a)/N(a) is a map of A-sets.
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Proof. The uniqueness follows from the surjectivity of each map G(a) — G(a)/N(a).
We show that, for each ¢ : b — a € A, the map

©* 1 G(a)/N(a) = G(b)/N(b) ; xN(a) — ¢*(z)N(b) (2.6.2)

is well-defined. Note that, since N(a) and N(b) are normal, it is equivalent
to see the same statement for right cosets. For each x € G(a) and for every
u € N(a), we have

¢ (uz) = (¢*)" (w)e*(z) -
Since N is a crossed A-subgroup of G, (¢®)*(u) € N(b) so we obtain ¢*(ux) €

N (b)p*(x). This immediately implies that (2.6.2) in fact defines an A-set struc-
ture on the family {G(a)/N(a)},. The required property is easily verified. O

In what follows, we write G/N the A-set obtained in Lemma Notice
that it admits a canonical degreewise group structure induced from G.

Similarly to the ordinary Goursat’s Lemma, we aim to present subgroups of
a product of crossed A-groups in terms of subgroups of each components. Here,
the term “product” is ambiguous; indeed, cartesian products in the category
CrsGrp, do not always agree with products of A-sets, while the latter do
not always produce crossed A-groups even if they made from crossed .A-groups.
For example, our target 20 x Cy is not a cartesian product in the category
CrsGrpyz. Hence, we need to find an appropriate notion to substitute for
products. A key observation is that, for a group G, to establish an isomorphism
G = GW x GO it suffices to find a pair (G, G?)) of subgroups of G such
that G is generated by G U G(® and

GV NG? =1¢W, P = {e},
where the middle is the commutator subgroup.

Definition. Let A be a small category. A crossed A-group G is said to be a
virtual product of crossed A-subgroups G and G2 if the following conditions
hold:

(i) the map G + G?) — @ induced by the inclusions is an epimorphism in
CrsGrp 4, where G(M) + G is the coproduct in CrsGrp 4 (see Proposi-

tion [2.2.1));
(ii) the pullback G x ¢ G is trivial; roughly, we often write GV NG = x;

(iii) for each a € A, the commutator subgroup [G(")(a),G?)(a)] C G(a) is
trivial; in other words, elements of G(!) and G(*) commute with each
other.

Lemma 2.6.2. Let A be a small category, and let G be a crossed A-group
which is a virtual product of crossed A-subgroups GV and G . Then, for
every morphism ¢ : a — b, and for each element x; € G fori=1,2, we have

(™) (21) = (1), (p")"(w2) = " (22) -

Proof. The condition on crossed groups implies

¢ (r12) = ()" (21) 9" (22) »  @"(wam1) = (™) (w2) " (1) -
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Since the commutator subgroups [GM) (a), G? (a)] C G(a) and [GM) (b), GP)(b)] C
G(b) are trivial, the elements above equal, and we obtain
P (1) TH(9"™) (1) = (™) (w2)" (w2) "

The left hand side belongs to GM)(b) while the right to G (b), so both belong
to GV (b) NG (b) = {e}. Thus, the result follows. O

Theorem 2.6.3 (Goursat’s Lemma for crossed groups). Let A be a small cat-
egory. Suppose G is a crossed A-group which is a virtual product of crossed
A-subgroups GV, G < G. Then, there is a 1-1 correspondence between the
following data:

(a) a crossed A-subgroup H of G;
(b) a quintuple (HD, HO; H® H®:y) of

(i) crossed A-subgroups H® C H® c g0 for i =1,2 so that H" (a)
is a normal subgroup in H" (a) for each a € A;

(i) a map x : HY/HO — H®/H® of A-sets which is a degreewise
group isomorphism.

Proof. We denote by Sub(G) the set of crossed A-subgroups of G and by
Gou(G™M, G?) the set of quintuples as in ForQ = (HW, HO; H®) H®): ) ¢
Gou(G™M,G?), consider the subset

H®(a) := {mlxg ‘ 1 € ﬁ(l)(a), ZTo € ﬁ@)(a), X (I1H(1)(a)> = $2H(2)(a)}

of G(a) for each a € A. We see the family H? = {H®?(a)}, forms a crossed
A-subgroup of G. Since [G(M)(a),G?(a)] = * and y is a degreewise group
isomorphism, H? is a_degreewise subgroup of G. On the other hand, for ¢ :
b—acA, Lemmaimplies that, for each 2,20 € H?(a) with z; € H® (a)
and x (z1HW(a)) = 22H?(a),

Q" (x172) = (™) (21)¢" (22) = " (21)9" (22) -
Since x is an A-map, we have
v (¢ @) HDE) = " x (0 HD (@) = ¢ (02) HD (1)

so p*(z1w2) € H?(b). Hence, HY C G is closed under both the degreewise
group structure and the A-set structure so to define a crossed A-subgroup.
Now, consider the map

Gou(GW,G?) - Sub(G) ; Q+— H? . (2.6.3)

We show it admits an inverse. Suppose H C G is a crossed A-subgroup. For
{i,7} = {1,2}, and for a € A, we define

g® (a) == {xl c G(i)(a) dz; € G(j)(a) 1Xx; € H(a)}
HY(a) = G (a) N H(a) .
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Note that the family H® = {fI(i) (a)}, forms a crossed A-subgroup of G() as
well as H® = {H"(a)},. Indeed, if (z1,22), (2}, 25) € GV (a) x GP)(a) are
pairs with 129, 2)2 € H(a), and if ¢ : b — a € A, then by Lemmam

(z12)) (w22h) = (2122) (2 25) € H(a) ,

o (1) (1) = o (a12) € H(b) . (26.4)

On the other hand, H"(a) is clearly a normal subgroup of H(a). Moreover, for
z; € HY(a), take an element x; € GY)(a) with z;2; € H(a), then

2 HY (a) = za; HY (a)x;l = (ziz; HO (a)(zi2;) a; = HD (a);

which implies H® (a) is a normal subgroup of H® (a). Hence, by Lemma [2.6.1]
we obtain two A-sets H®M/HM) and H® /H?) that are degreewise groups.
Define a map x : (HW /H®M)(a) — (H® /H®)(a) so that

Xa (le(l)(a)> = 2,H®(a)

if and only if 125 € H(a). It is easily verified that such a map x, is uniquely
determined by the crossed A-subgroup H C G. Furthermore, the formulas
[2:6.4) implies that xy? = {xX}1, defines an A-map HV/HD — H® /H?)
that is a degreewise group isomorphism. We write

QY = (ﬁ(l)’H(l);ﬁ(2)7H(2);XH)

the resulting quintuple. Then, clearly QY € Gou(G(),G®?)), and the classical
Goursat’s Lemma for groups shows that the assignment H — QF gives the

inverse of the map (2.6.3). O

In the rest, we compute all the crossed interval subgroups of 23V. To begin
with, we focus on the crossed interval subgroup $ C 20V of hyperoctahedral
groups whose structure is given in Example Since we have J*§ & 202,
crossed interval subgroups of §) are augmented crossed simplicial subgroups of
WA closed under the structure of interval sets. As a result of [24], we have a
complete list of crossed simplicial subgroups of 20° as in Table in Exam-
ple In view of Example to obtain a complete list of augmented
crossed simplicial subgroups of 204, we only have to shift the indices in Table
by 1. The result is indicated in Table It is seen that, among Table

name symbol | group at (n)
Trivial * 1
Reflexive Cs Cs
Cyclic ¢ Chn
Dihedral ) D,
Symmetric (G (G
Reflexosymmetric S S,, x Cy
Weyl (Hyperoctahedral) | 204 & § H,

Table 2.2: The augmented crossed simplicial subgroups of DI
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crossed interval subgroups of §) are precisely the trivial one *, the symmetric
one &, and the hyperoctahedral one § itself.

Now suppose H C 20V is a crossed interval subgroup. Since the augmented
crossed simplicial group J*2V = § x O, is, as suggested by the notation, a
virtual product of £ and C5, Theorem [2.6.3] implies there is an associated quin-
tuple (H(l),H(l);H@),H(z);XH) of augmented crossed simplicial subgroups
HO ¢ AW ¢ 8 HO ¢ H® ¢ ¢y, and y : AV /HO =~ GO /HO . 1y
particular, according to the proof of Theorem m HY = HN$ is an in-
tersection of crossed interval subgroups of 20V, so H( is a crossed interval
subgroup of §), which is either *, &, or §) by the argument above. On the other
hand, since H® /H® is a subquotient of the group Cs, it is, degreewisely, of
order at most 2. Thus, the isomorphism xH is, if exists, uniquely determined
by the other data (HM, HW; H®) H®)) so we can omit it in what follows. As
a result, all the possibilities of the quadruples are listed below:

(*a x5k, *) ) (67 67 *, *) ) (*67‘67 *, *) ) (*7 025 *, 02) )
(6, é7 *, 02) 3 (*7 *; 027 02) 5 (67 67 627 C?) 5 (fjaﬁy CQa 02) .
It turns out that the sixth and the seventh do not produce crossed interval

subgroups while the others do. Hence, we finally obtain the list of crossed
interval subgroups of 23V (Table [2.3).

name symbol | group at {(n)) gfggéiﬁg
Trivial * 1 (%, %5 %, %)
Reflexive Cs Cs (%, Ca; %, C3)
Symmetric S Gn (6,6;%,%)
Reflexosymmetric S G, x Cy (6, é; *,Ca)
Hyperoctahedral K5) H, (9, 95 %, %)
Weyl WY H, x Cy (9, $;C,Cy)

Table 2.3: The crossed interval subgroups of 20V
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Chapter 3

Group operads and the
embedding

In this chapter, we will establish and investigate a fully faithful embedding of
the category of group operads into that of crossed interval groups. For this, we
introduce a monoidal structure on the slice of the category of operads over the
operad of symmetric groups. Comparing with the monoidal structure on the
category of interval sets discussed in Chapter [2| we obtain a monoidal functor
connecting these two categories. It will be shown that this actually induces a
fully faithful functor on monoid objects and does not change the underlying
sets, so we obtain a required embedding. The conditions for crossed interval
groups to belong to the essential image will be proposed; namely in terms of
commutativity of certain elements. As a result, it will turn out that the group
operads form a reflective subcategory of the category of crossed interval groups.
Finally, we will discuss monoid objects in symmetric monoidal category and
Hochschild homologies on them.

3.1 Group operads

We first recall the formal definition of group operads.

Notation. (1) For each natural number n € N, write

(ny:={1,...,n}.
We often regard it as the linearly ordered set with the canonical order.

(2) If P and @ are poset, i.e. partially ordered set, then we denote by P * Q
the join of them. In other words, P*(Q is the set PII(Q together with the
ordering so that for z,y € P % Q,

(r,y) e (Px P)II(Q x Q) withz <y, or

<y <<
rePandyeq.

Hence, we have a unique isomorphism (m) x (n) = (m + n) of posets.
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For each natural number n € N, we put &(n) the n-th permutation group,
or the permutation group on the set (n) = {1,...,n}. We begin with the obser-
vation that the family & = {&(n)},, admits a canonical structure of operads.
Namely, if 0 € &(n) and o; € &(k;) for 1 < i < n, we write y(o;01,...,0,) the
permutation on (k; + --- + k) given below:

(Rp A+ oo 4 k) = (k) ek (k)
o I---Ioy, <k‘1> - <I€n>
z (ko-1(1)) * -+ * (ko-1(n))
k4 + k).
This defines a map

n

v =76 :6(n) x H@(kl) — Sk + -+ kn) .
i=1
It is tedious but not difficult to see it makes & into an operad.

Group operads are likely “generalizations” of the operad &. For the defini-
tion, we follow [I5] for conventions except the terminology.

Definition. A group operad is an operad G together with data

e a group structure on each G(n);

e amap G — G of operads so that each G(n) — &(n) is a group homomor-
phism, which gives rise to a left G(n)-action on (n);

which satisfy the identity

VG (TY; T1YLs -+ s TnYn) = V6 (T3 Ty—1(1)s - - 5 Ty—1)) VG (Y5 Y15 -5 yn)  (3.1.1)
for every z,y € G(n) and x;,y; € G(k;) for 1 <i <n.
Remark 3.1.1. Note that, in the paper [I5] the terminology “action operads”
was used there. This is probably because the name “group operads” may be
confusing with group-enriched operads or group objects in operads. Nevertheless,
we stick to the terminology in a certain reason, which will turn out later.
Ezxample 3.1.2. The operad S is a group operad with the identity map & = 6.

Ezample 3.1.3. For each n € N, denote by B(n) the braid group of n-strands.
In a similar manner to &, one can endow the family B = {B(n)}, with the
structure of operads. Then, the canonical quotient map B — & exhibits B as a
group operad. The similar argument works for pure braids, ribbon braids, and
SO on.

The reader can find more interesting examples in [76] and [3I]. We here
mention basic properties of group operads.

Proposition 3.1.4. For a group operad G, the following hold.
(1) The composition map
v:G(1) xG(1) = 6(1)

in the operad structure on G coincides with the multiplication in the group
structure. In particular, the unit e; € G(1) in the group structure is exactly
the identity of the operad G. Moreover, G(1) is an abelian group.
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(2) For each n € N, write e, € G(n) the unit in the group structure. Then,
for ki,... k, € N, we have
Y(€nsrys--r€hy) = €pitin, -

In other words, the family {e, }, determines a map * — G of operads from
the terminal (or trivial) operad *.

(3) For each n € N, the map
g(1) = G(n); x> (zien)
is a group homomorphism.
Proof. Notice that, for z,2’,y,y" € G(1), the condition (3.1.1)) on group operads
implies
Y@’ yy') = (@ y)y(sy) - (3.1.2)

Hence, the part follows from the Eckmann-Hilton argument.
To see since G(k1 + --- + ky) is a group, it suffices to see the element

v(en;€kys---,ek,) is idempotent. By the condition on group operads again, we
have
. 2 2.2 2y _ )
7(6n7ek17' o 7ekn) - FY(envek]? s 76kn) - ’Y(efwekw' o 761€n) .
This implies Y(en; €k, s - - €k, ) = €yt -

The last assertion |(3)|directly follows from the condition (3.1.1)) and the part
(@] 0

Definition. Let G and H be group operads. Then, a map of group operads is
amap f:G — H of operads such that

(i) for each n € N, the map f : G(n) — H(n) is a group homomorphism;

(ii) the triangle below is commutative:
.
6

where the vertical arrows are the structure maps.

g

Clearly maps of group operads compose so as to form a category, which
we will denote by GrpOp. One of the important results proved in [31] is the
presentability of the category.

Theorem 3.1.5 (Theorem 3.5 and Theorem 3.8 in [31]). The category GrpOp
is locally finitely presentable. Moreover, the forgetful functor U : GrpOp —

Se‘cl/\T6 into the slice category of N-indexed family of sets over the family {&(n)},
creates limits and filtered colimits.

We are here not going further with the theory of group operads. In the rest
of the section, rather than that, we aim to recover the notion of group operads
from another aspect, namely a monoidal structure.
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Definition. Let X and ) be two operads, and suppose we are given a map
p:Y — G of operads. We define an operad X x ) as follows:

e for each n € N, put (X x Y)(n) := X(n) x Y(n);

o for (z,y) € (X x Y)(n) and (z;,y;) € (X x Y)(k;) for 1 < i < n, the
composition is given by

FYXNy((I7y)7 (Ilay1)7 M (Ina yn))
= (VX('r;xp(y)’l(l)v e 7xp(y)*1(n))57y(y;yla cUn))

It is easily verified that the above data actually define an operad X x )
so that the identity is the pair idyxy = (idx,idy). Moreover, the assignment
(X,Y,p) — X x Y is functorial; indeed, if we have a map f : X — X’ and a

triangle
g V
NV
S
of operads, the maps

fxg:(XxY)(n) = (X' xY)(n); (2,9) = (f(z)9(y))

form a map X x Y — X’ x )’ of operads. In other words, if we denote by Op
the category of operads and by Op/ S the slice category over &, then we obtain
a functor

y

>4:Op><0p/6

— Op . (3.1.3)
The following result is a direct consequence of the operad structure of &.

Lemma 3.1.6. The multiplication maps
mul : S(n) x S(n) —» &(n) ; (o,7)—oT

define a map & X6 =6 of operads, here we take & x & with respect to the
identity map & — &.

Lemma offers a lift of the functor (3.1.3)) to a binary operation on
Op/ S indeed, we have the following composition

x : Op/® x Op/® = (Op x Op/®)/(6:9) 2 op/®*® b, op/® . (3.1.4)

Proposition 3.1.7. The functor (3.1.4) defines a monoidal structure on the
category Op/b so that the trivial operad x is the unit object.

Proof. Since the last statement is obvious, we have to give an associativity
isomorphism. It suffices to show that, for operads X, ), and Z over &, the
identification

(X2 ) 3 Z)(n) = X(n) x Y(n) x Z(n) = (X > (Y x Z))(n)
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is an isomorphism (X x V) x Z2 = X x (Y x Z). Actually, in either case, the
composition operation is given by

7((‘1:’ Y, Z)v (Ila Y1, Zl)a RS (xfu Yn, Z’rl))
= (V2 (@3 T (z)-1p() -1 1) - - > Tr(2) L)1 ()

Yy (U Yn() =1 (1) - s Yn(z)=1(n))s V2 (21 215 - - -1 20)
where p: Y — G and 7 : Z — & are the structure map. O

Definition. A monoid operad is a monoid object in the category Op/6 with
respect to the monoidal structure x.

We denote by MonOp the category of monoid operads and monoid ho-
momorphisms in Op/ ©. Note that a monoid operad X consists of an operad
together with data

e a monoid structure on each X (n), and
e a map X — & of operads so that X'(n) — & is a monoid homomorphism;

which satisfy appropriate conditions. Comparing it with the definition of group
operads, one may notice that a group operad G determines a monoid operad
and that it gives rise to a functor GrpOp — MonOp. The following result is
an easy exercise.

Proposition 3.1.8. The functor GrpOp — MonOp s fully faithful. More-
over, a monoid operad X belongs to the essential image if and only if for each
n € N, the monoid X(n) is a group.

3.2 Symmetries on multicategories

One of the important aspects on group operads is their actions on multicate-
gories. In this section, we see that each group operad G gives rise to the notion
of G-symmetric structure on multicategories.

The argument begin with the observation that the functor x : Op x Op/ S
Op extends to a functor

x : MultCat x Op/® — MultCat. (3.2.1)

Indeed, for a multicategory M and an operad p : X — & over &, we define a
multicategory M x X as follows:

e objects are those of M;

e for ay,...,a,,a € M, we set
Mlay ...ap;a) = {(f,x) ‘ reX(n), f € My -10) - ..ap(z)fl(n);a)} :

e the composition operation is defined so that

Ymxx ((f,2); (fr, 1), (fry 2n)
= (’YM(fa fp(a:)_l(l)v o ~7fp(x)_1(n))772((x;x1a s 7xn)) .
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It is easily checked that the composition makes sense and is associative. Note
that we have a canonical identification

MxX)3Y=Mx(XxY).

Hence, the functor (3.2.1) exhibits the category MultCat as a right Op/®-

module with respect to the monoidal structure x on Op/ S defined in Section
As a consequence, if X is a monoid operad, it gives rise to a functor

(=) X X : MultCat — MultCat .

It is actually a 2-functor: it sends a multinatural transformation o« : F' — G :
M — N to the multinatural transformation consisting of

(carer) € (N % G)(F(a); G(a) = N(F(a); Gla)) x G(1) (3.2:2)

for each a € M. Furthermore, it is easily verified that the monoid operad
structure on X makes the 2-functor (—) x X into a 2-monad: we have an obvious
2-natural isomorphism

() XX) )X ()3 (X xX)

so that we can define two 2-natural transformations
Id xmul
()RR XE ()X (X XX) —— (-)x X,

Idxunit

d2(-)xxs —— (-)x X .

Definition. Let X be a monoid operad. Then, an X -symmetric structure on
a multicategory M is nothing but a structure of a strict 2-algebra over the
2-monad (—) x X; i.e. a multifunctor

sym: M x X - M
which makes the following diagrams commute:

Id xmul Id Xunit
*

MAXX XX ———MxX Mx X

M X x —————
symxldl isym 5 \ - . (3.2.3)
M

MxX M

We say M is X -symmetric if it is equipped with an X-symmetric structure.

Example 3.2.1. If X = x is the trivial group operad, then x-symmetric multi-
categories are just multicategories.

Example 3.2.2. In the case X = & is the group operad of symmetric groups, &-
symmetric multicategories are precisely symmetric multicategories in the usual
sense.

Ezxample 3.2.3. We say a monoidal category C is X-symmetric if the multicat-
egory C® (see Example [1.3.4)) is equipped with an X-symmetric structure. For
example, G-symmetric (resp. B-symmetric) monoidal categories are nothing
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but symmetric (resp. braided) monoidal categories Indeed, in this case, for each
x € G(n) and for objects X1,..., X, € C, we set

Q)C(IH'X” XX, — Xx—l(l) [02] chfl(n)
to be the image of the pair (id, z) by the map
(C® X X)(Xl e X mel(l) (SR Xz—l(n))

ﬂ) C®(X1 .. .Xn;Xm71(1) [ ®X171(n))
=C(X1® - ® Xn;Xg;—l(l) Q- ch—l(n)) .

It is verified that the family © := {©% x }x, . x, forms a natural transfor-
mation such that ©» =id and ©*0Y = @Y. If X = & (resp. B), this natural
transformation ©7 is nothing but the appropriate composition of the braidings
in the symmetric (resp. braided) structure.

We also consider multifunctors respecting symmetries.

Definition. Let X be a monoid operad, and let M and N be X-symmetric
multicategory. Then, a multifunctor F' : M — N is said to be X-symmetric
if it is a morphism of algebras over the 2-monad (—) x X; i.e. the following
diagram commutes:

Mxx 2 vwx

syml J/sym
M—L N
We denote by MultCaty the 2-category of X-symmetric multicategories,

X-symmetric multifunctors, and transformations of morphisms. We also define
a 2-category MonCatxy to be the pullback

MonCaty := MonCat Xpuitcatr MultCat y

and call its morphisms G-symmetric monoidal functors. Note that we do not pro-
vide any special terminologies for 2-morphisms in MultCaty or in MonCat x
because of the following result.

Lemma 3.2.4. Let X be a monoid operad. Then, the forgetful 2-functor
MultCaty — MultCat

is locally fully faithful.

Proof. Take two X-symmetric multicategory M and N. Note that the category
MultCatx (M, N) is obtained as the equalizer of the parallel functors

sym,o(—)xX

MultCat (M, N) MultCat(M x X, N)

¢

sym

Thanks to (3.2.2) and (3.2.3]), both functors are identities on morphisms, so we
get the result. O

Remark 3.2.5. We are mainly interested in the case X is a group operad. In
this case, it was proved in [I5] that MultCat y is biequivalent to the 2-category
of pseudo-algebras over (—) x X.
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3.3 The embedding of pointed operads

In Section [3.1] we obtained two alternative definitions of group operads; one
is the direct definition, and the other is due to Proposition Comparing
them with Proposition the reader may have a feeling that they can be
translated to one another. The goal of this section is to make it clearer and to
establish a fully faithful embedding GrpOp — CrsGrpy.

We denote by Op*/ the category of pointed operads; i.e. the coslice category,
or the under category, on the trivial operad *. Since the set x(n) is a singleton
for each n € N, giving a map * — X of operads is equivalent to giving a family
{en}n of elements e,, € X(n) satisfying

7(en; Chysevs ekn) = €k 4 +ky - (331)

We first define a functor ¥ : Op*/ — Sety as follows: recall that mor-
phisms ¢ : (m) — (n) € V correspond in one-to-one to (n + 2)-tuples k =
(k—ooy k1, - - -, kn,y koo) of non-negative integers with k_oo +k1+- - -+kp+koo =m
via the assignment ¢ — k(@) given by . To simplify the notation, for a

pointed operad X with base points e, € X(n), we write e;“’) = €,(» for each
J

j € {(n). In this case, we define an interval set U(X) by
e for each n € N, ¥(X),, := X(n);

e for a morphism ¢ : (m)) — {(n) € V, we set

O U(X)y = V(X)) s = y(es; e(fgo,v(x; egw, .. .,e;")),eg‘g)).
(3.3.2)

Note that, by virtue of the equation (3.3.1)), for morphisms ¢ : ({(m)) — ((n)) and
P (1) — {m) in V, if o i} \ {£oo} ={i1 <+ < iy} C {(m)), we have

~(es; e(_wol, ’y(e(_WO)O; egm, ce, 61(’3(10) )) j=-—00,
egwl}) _ ’y(ey);egp),...,egil)) 1<j<n,
e e ) ) e

T
J

This and the associativity of the compositions in operads imply ¥*¢* = (pi)*
so that ¥(X) is in fact an interval set. On the other hand, if f: X — Y isa
map of pointed operads, so we have f(e,) = e,, then the maps

V() U X)n = ¥(V)n 5 x> f(2)

clearly define a map U(f) : U(X) — () of interval sets. The functoriality is
obvious so that we obtain a functor ¥ : Op*/ — Sety.
Ezample 3.3.1. Note that every group operad is by definition pointed. In par-

ticular, the operad & canonically admits the map * — & corresponding to the
unit of each &(n). The interval set ¥(&) is isomorphic to the interval set &

given in Example .
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Thinking of & as a pointed object in the category Op, we can take the slice
category (Op*/ )/ S on &. Then, one can observe that the monoidal structure
x on Op/® lifts to (Op*/)/®. Indeed, notice that there is an isomorphism
(0p*/)/® = (0Op/®)*/ so the monoidal structure x induces a functor

(0p™)/® x (0p™)/® = (0p/®)/ x (0p/®)"/
= (0p/€)()) = (0p/®)*/ = (0p*/)/® .
It is casily verified this defines a monoidal structure on (Op*/)®/ so that the
functor (Op*/)/® — Op/® is strictly monoidal.
Lemma 3.3.2. The functor
v (0p*)/® = Set/v\P(G) = Set/v6
induced by the functor ¥ defined above is strictly monoidal.

Proof. Tt is obvious that the functor ¥® preserves the unit objects, namely
US () = x with regard to the maps into ¥(&) = &. We have to show the
equation S (X x Y) = US(X) x ¥S(Y) for every pointed operads X and Y
over G. It clearly holds degreewisely, so it suffices to verify the structures of
interval sets agree with each other. Let ¢ : {(m)) — {(n)) € V be a morphism.
Say p : Y — & is the structure map, then in the interval set ¥S (X x )), the
induced map ¢* : WS (X % Y),, = ¥E(X x )),, is given by

" (@) = vany(ess e vy (@, );ef . elf)), el)
= (yx(es; 6(_900)07 Y (3 628)—1(1)7 ) 628)_1(”)), egﬁ)), (3.3.3)

yy(es; e Ay (y; el L, e®)) el))

Note that for each o € &,,, we have

e(f;) = ei@o , e;‘pﬁ) = ec(f*)l(j) for1<j<n.

Hence, the right hand side of can be written as ((¢?*))*(z), ¢* (y)), which
is exactly the image of the pair (z,y) under the map ¢* : (¥S(X)x ¥S(Y)), —
(US(X) xUS(Y)). It follows that WS (X xY) is identical to WS (X) x TS ()
as interval sets. The structure maps into & obviously coincide, so we obtain the
result. O

Theorem 3.3.3. The functor € induces a fully faithful functor
T MonOp — CrsMon/VG.

Moreover, it restricts to a right adjoint functor GrpOp — CrsGrp/vG.

Proof. Since the functor US is strictly monoidal as proved in Lemma m it
induces a functor ¥ between the categories of monoid objects. More precisely,
it sends a monoid operad X = (X,mul,e) to the interval set ¥S(X) over &
together with the structure maps

W (mul)

mul : U (X) x OO (X) = U (X x &) TS (Xx)
e =08 (x) 2 uS () .
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Hence, the monoid structure on each \TI(X)n coincides with that on X(n).
Clearly T is faithful, so we show it is also full. R

Let X and Y be two monoid operads, and suppose f : U(X) — ¥(Y) be a
map of crossed interval monoids. To see f comes from a map of monoid operads,
it is enough to show that the maps

[ X(n) =S (x), L we (), = Y(n)

form a map of operads. Since it preserves the unit elements, we have f(e,) = en;
in particular, f preserves the identities id = e; of operads. If x € X(n) =
US(X), and x; € X(k;) for 1 <i < n, the definition of monoid operads implies

7X(33§$17~-~>33n) = VX(x;ekla"wekn)
: ’VX(CB; €0, L1, 6k2+"'+kn)
Y (€35 €k s T2, Chgtoo otk ) (3.3.4)

. 'YX(‘?S; ektl-‘r----f—kn,l s Ty 60) .

Taking the unique morphism g : (k1 + -+ + kp)) — {(n)) with kgfo)o = 0 and
kU = k; for j € (n) and the morphism p; : (ky + - + ko)) — (k;)) defined by

—00 i§k1+~'~+kj_1,
pi(i) =<Si—(k1+-+kjo1) ki+- 4k 1+1<i<k+---+k,

then, by the definition (3.3.2)) of the functor ¥, we can rewrite the formula
(3.3.4)) as follows:

(@@, an) = W (@)ph (21)p3(2) . ol () -

The same formula also holds in ), and, since f is a map of crossed interval
monoids, we obtain

o (@ oy, .. an)) = f(u (@)p1(21) - - pp(2n))
= F(w* @) f(pr(21)) - - f(pn(@n))
= w (f@)p1(f(@1)) - pr(f(wn))

This implies that the maps f : X(n) — Y(n) form a map of monoid operads.
As for the last statement, it follows from Proposition[3.1.8] Proposition[2.4.13]

Theorem [3.1.5] Theorem [2.2.4] Theorem [2.3.13] Example 2:3.17] and General

Adjoint Functor Theorem (e.g. see Theorem 1.66 in [I]). O

Note that, the inclusion & — 20V of crossed interval groups induces a full
faithful functor CrsGrp/vG — CrsGrpy. Combining it with Theorem
one obtains an embedding GrpOp — CrsGrpy. Hence, in the rest of the pa-
per, we identify group operads with their images under this functor. In partic-
ular, under this convention, we have & = ¥(&), which explains the coincidence

of the notations.
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3.4 Operadic interval groups

In this section, we aim to determine the essential image of the embedding
GrpOp — CrsGrpy. Since it is fully faithful, it will provide an alterna-
tive definition of group operads. Furthermore, we will see that there is a larger
class of crossed interval groups which are associated to operads. This result
suggests an extension of the notion of group operads.

First of all, we need to know about the category V.

Definition. Let ¢ : {(m)) — ((n)) be a morphism in V.
(1) ¢ is said to be active if we have ¢ : ¢~ {£oo} — {Fo00}.

(2) ¢ is said to be dnert if the restriction ¢ : ¢~ {1,...,n} — {1,...,n} is
bijective.

Remark 3.4.1. In the paper [54], Lurie considered the notions above for mor-
phisms in the category Fin, of pointed finite sets. Actually, we have a functor

Vo Fin, s ()~ @)/ {0}
A morphism ¢ : {(m)) — {(n)) € V is active (resp. inert) if and only if so is its
image in Fin,.
The following results are easy to verify.

Lemma 3.4.2. (1) Every morphism ¢ : {(m)) — (n)) € V uniquely factors
as @ = up with p inert and p active.

(2) Ewery inert morphism admits a unique section in V.

In the following arguments, inert morphisms play distinguished roles. One
reason is the definition of the functor V; if G is a group operad, then the group
G(k) admits embeddings into G(n) provided k < n, namely the group homo-
morphisms of the form

G(k) = G(n); x— (es;ep,x,eq)

with n = k + p + ¢. In terms of the category V, they are realized as the maps
induced by inert morphisms p : {(n)) — ((k)). For example if p : {(n)) — (k) is
an inert morphism with the unique section 0 : (k) — {(n)), then the map p* :
S (k) — &(n) exhibits each permutation o on (k) as that on {6(1),...,d(k)} C
(n). This embedding is one of the characteristic properties of group operads
among general crossed interval groups.

Lemma 3.4.3. For a crossed interval group G, the following are equivalent:

(a) the unique map G — 2V of crossed interval groups factors through the
hyperoctahedral crossed interval group £ C 20V .

(b) for every inert morphism p : {(n)) — (k)), and for every x € G}, we have
Pt =p.

In the case the conditions above are satisfied, each inert morphism p : (n)) —
(kY € V induces an injective group homomorphism p* : G, — G.
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Proof. Note that, for each n € N, the subgroup ,, C (23V),, consists of ele-
ments whose actions on inert morphisms are trivial. Since the map G — 20V
respects the action on morphisms, this implies the conditions @ and @ are
equivalent.

The last statement is directly follows from the definition of crossed groups
(e.g. see Lemma [2.1.1)). O

Remark 3.4.4. The last statement in Lemma [3.4.3] is not equivalent to the two
conditions. For example, there is a crossed interval group fRefl which is the
constant presheaf at Z/27Z and the action on hom-sets “reverses the order.” This
has non-trivial actions on inert morphisms while every morphism ¢ : {(m) —
{(n)) € V induces a group homomorphism ¢* : Refl,, — Refl,,,.

The next property we discuss is the commutativity of elements with “distinct
supports.” Suppose G is a group operad, and consider two embeddings

n:Gk) = Gk+1); z— v(ez,ep),
n:G) = Gk+1) ;5 y=y(ezery) -

Then, for each z € G(k) and y € G(1), we have n(z)n'(y) = ' (y)n(x) in G(k+1).
In other words, they induces an injective group homomorphism G(k) x G(1) —
G(k+1). To formulate this phenomenon in terms of the category V, we introduce
the following notion.

Definition. We say two morphisms ¢y : (n)) — (k1)) and @5 : {(n)) — {(k2)) in
V with the same domain are dissociated if, for each morphism o : (1)) = ((n)) €
V, either of the compositions ¢« or paa factors through the object (0) € V.

Note that, in view of the identification V({(1)), (n))) = {(n)), two morphisms
1 {(n) = (k1)) and ¢y : {(n)) — {(k2) in V are dissociated if and only if, for
each i € {(n)), either 1 (i) or ¢a(i) is +00. This observation leads to the result
below.

Lemma 3.4.5. Let ¢; : {(n) — (k;)) (i =1,2) be morphisms in V.

(1) If 1 = p1p1 and wa = pops are the unique factorizations into inert
morphisms followed by active morphisms, then @1 and po are dissociated
if and only if p1 and py are so.

(2) For a morphism ¢ : {(m)) — (— {n)) € V, the compositions p1¢ and
wo) are dissociated provided so are w1 and @s2.

Lemma 3.4.6. Let G be a crossed interval group satisfying the conditions in

Lemma[3.4.3, and suppose ¢1 : (n) — (k1)) and @a : (n) — (ko)) are dissoci-
ated morphisms of V. Then, for each element x € G(k1) and every morphism

P {(m) — (n) € V, we have
2?1 = oo .

Proof. Since the unique map G — 20V factors through G — ), and since it

respects the actions on the morphisms of V, it will suffice to verify the statement

only in the case G = §). Note that, for a morphism 1 : {(m)) — {(n)) € V, and for

an element (0; &) € 9, the compositions ©091(79) is, as a map, the composition
P (o)

(m) 2 () D () D ) 22 (ko)
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If (0;€) belongs to the image of the map ¢} : 9, — $,, the dissociativity
of 1 and o implies the permutation o is the identity except on exactly one
of @5 H{—00} or v, {oo}. Hence, we have @y 0 0 = o as maps. In the same
reason, by virtue of Lemma we obtain ¢y 0 1) 0 1* ()~ = g 01p. This
completes the proof. O

Now, we formulate the “operad-like” crossed interval groups as below.

Definition. A crossed interval group G is said to be operadic if it satisfies the
following:

(i) G satisfies the equivalent conditions in Lemma [3.4.3}

(ii) if p1 : {(n)) = (k1)) and po : {(n)) — {(k2)) are dissociated inert morphisms
in V, then elements of the images p} (G, ) commute with those of p3(Gy,);
in other words, the commutator [p5(Gy, ), p5(Gk,)] C Gy, is trivial.

Ezample 3.4.7. As expected, for every group operad G, the crossed interval
group U(G) is operadic. To see this, notice that if p; : {(n) — (k1) and
pa : {(n) — {(k2)) are dissociated inert morphisms, then there are integers ki
and [ such that, for each z; € G(k;),

p;kl (:C’Ll) = 7(65; €—c0y Tiy; €l 6]67‘,2 ) 600) ) P:; (‘T’Lz) = 7(65; €—o0; Ciys €Ly Lig, 600)

for {i1,i2} = {1,2}. Hence, the condition on group operads implies these el-
ements commute with each other. In view of Lemma it follows ¥(G) is
operadic.

Ezxample 3.4.8. The crossed interval group ) is operadic. This follows from the
direct computation and that & is operadic.

Operadic crossed interval groups are actually associated with operads. To
see it, we introduce some notions for simplicity; for a sequence k = (k1,...,ky)
of non-negative integers, we put

o i (k1 + -+ kn) = {(n) € V to be the unique active morphism with
#,ulgl{j} = k; for each 1 < j < n; and
. p;k) : (k14 -+ kn) = (k) € V to be the inert morphism given by

(k1 + -+ k)
g{—OO,].,...,]i)l-|—"'-|—]{)j,1}‘k<kj>
s{ki+--+ki+1,... ki 4+ +ky, 00}

constxidxconst

{~o0}  (ky) * {00}
= ((ky)

For an operadic crossed interval group G, we define an operad Og as follows:
o for cach n € N, Og(n) := Gp;

e the composition

71 0c(n) x Og(ki) x -+ x Og(kn) = Og (k1 + - + kn)
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is given by

Y@ w1,y wn) = @) - () @) (o) (@)
where k = (k1, ..., k).

The associativity is seen as follows: let x € G,,, z; € Gy,, and zgi) S Gk“) for

1<i<mnand1l<s<Ek;, and put [ = >, k§1)7...,zs kg")) Then, we have

v(x;v(xl;xgl), .. .,m,(:l)), ... ,y(xn;xgn), . ,gc,(cln)))

— @) - (0D (1 (1) - (0 ) @) (D) @))) (3.4.1)
e D) (2 () - () @) () @)

Since G is operadic, each (pgl))* is a group homomorphism. In addition, p(l)

and p;f) are dissociated provided i # j, so by virtue of Lemma [3.4.6} the right

hand side of (3.4.1) is written as

* f * ) *
@) (g o) (@) - (o o) (2n)
;;'(1> f % ;;‘(1) f % ,g(m D s n
S oI @Y o ey Dy () p Dy (M) L (3.4.2)

Finally, using the formulas

HrpaPi™ = Pi HPgay g

ROy (@) _  (RD..kM)

Ps Pi pk1+"'+k1,71+8

with k@) .. k() = (kg), e k:l(i), e k,(cz)), (3.4.2) is furthermore equal to

Koy o (@) (05) (@1) . (0P (20))

ED kMY ., (1 ED kMY (1 ED MY . (n
- ey (o W) o) )

1 1 n
:fy('y(;v;xl,...,xn);xg )7...,33,(61),...,:3,(%)) .

Clearly, the unit e; € G; = Og(1) behaves as the identity, so O¢ is in fact an
operad.

Example 3.4.9. If G is a group operad, we have a strict identification
O4g) =9 -

In particular, O = G.

We denote by CrsOpGrp C CrsGrp/é3 the full subcategory spanned by
operadic crossed interval groups. On the other hand, we define a category Op,,
whose objects are operads O equipped with a group structure on each O(n)
and whose morphisms are maps of operads which are group homomorphisms
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levelwisely. Then, the assignment G +— Og clearly extends to a functor O :
CrsOpGrp — Op,,. By abuse of notation, we write ) = Og, so we have the
induced functor

(’){1) : CrsOpGrp — Opéf’ .

Theorem 3.4.10. The functor O?f) is a fully faithful functor.

Proof. To obtain the result, it suffices to show that, for operadic crossed interval
groups G and H, a family {f : G,, = Hp}nen of group homomorphisms forms
a map of crossed interval group if and only if it forms a map of operads. This
is verified almost identically to the first part of Theorem [3.3.3] O

Theorem 3.4.11. The subcategory CrsOpGrp C CrsGrpQ§ is reflective; i.e.
the inclusion functor admits a left adjoint.

Proof. For a crossed interval group G over §), define K(G), C G, to be the
subgroup generated by the commutators

(2)p}(w1) ' p5 (22)
(x2)p} (21 1) p5 (3 )

(1 (1), p3(22)] = pi(z1)p

*

= pi(z1)p

[NVECE VR

for dissociated inert morphisms p; : (n)) — (k;)) and x; € Gy, for i =1,2. We
assert K(G) = {K(G),}, forms a crossed interval subgroup of G. Indeed, for
a morphism ¢ : {(m)) — ((n)) € V, in view of Lemma we have

¢ ([p1(x1), p3(22)])
= (p1pPs T P52 Y% (1)) (ool (@1 P52 Y% (1)
P SN  —
(o) @) (2 (07)
* —1 * -1 * -1
= (g ) (0) (a5 ) ) (1 0)" (7 ) p20)” (23
-1 —1 - r
= ((p10)™ )" (@1)((p20) ™ )" (w2)(pr90) (21 ) (p2ep) (23 )
ik x_l *
= [((prp)™ )" (1), ((p20)™2 )" (22)] -
Using Lemma one can see morphisms (plgo)“”f1 and (pg(p)””;1 are dissoci-
ated, so (3.4.3)) is one of generators of K(G),,. Hence, K(G) is a crossed interval
subgroup of G.
Now, if H is an operadic crossed interval group, then every map f: G — H
of crossed interval groups sends the generators of K(G) to the unit. This in

particular implies the map K (G) — $ factors through the initial crossed interval
group * C £, and the unique map K(G) — * of interval sets is actually a map

(3.4.3)

of crossed interval groups. We define a crossed interval group G by the following
pushout square in CrsGrp/vﬁ :

K(G) —
|
G G

It is obvious that G is operadic. Moreover, the observation above shows that
every map G — H of crossed interval groups uniquely factors through G — G
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provided H is operadic. In other words, the assignment G G gives the
left adjoint of the inclusion CrsOpGrp — CrsGrp/vﬁ, which is exactly the
required result. O

Example 3.4.12. Recall that we have a functor
i:A=>V,; [n]— {—oc0}*[n]*x{o0} = {(n+1)

from the simplex category A. By Theorem it induces a left adjoint
functor
jf : CrsGrpy — CrsGrp/vﬁ .

According to the computations in Example and Example for a
crossed simplicial group G, the crossed interval group ij is described as follows:
for each n € N, the group (ij)n is the one generated by pairs (z, p) of an inert
morphism p : {n)) — (k)) and an element x € Gj_1, with assuming G_; = moG,
which are subject to relation

(xy,p) ~ (z,p)(y, p) - (3.4.4)

In particular, (ij)n is the free product of copies of Gi_; indexed by inert
morphisms p : {(n)) — (k) with k varying. To obtain the “operadification” of
ij, we only have to force the relation

(z1, p1) (w2, p2) ~ (22, p2)(71, p1)

for dissociated inert morphisms p; : {(n)) — ((k;)) and elements x; € G,_1 in
addition to (3.4.4)).

As seen in Example the embedding U GrpOp — CrsGrp/Vyj factors
through the subcategory CrsOpGrp — CrsGrp/vﬁ. To conclude the section,

we compute the essential image of U. This is essentially achieved by interpreting
the condition (3.1.1)) in terms of crossed interval groups.

Definition. A crossed interval group G is said to be tame if it satisfies the
following condition: for each sequence k = (k1,...,k,) and for each z € G,, and
z; € Gy, for 1 < i < n, one has

(@) - (o) (@) = (0 ) () - w(a)

-,

where we put .I*(k) = (szl(l), ey k?z—l(n))

Theorem 3.4.13. A crossed interval group G belongs to the essential image of
the functor ¥ : GrpOp — CrsGrpy if and only if it is operadic and tame and
lies over & C 20V

Proof. If G = @(g) for a group operad G, then for k = (ki,...,kp), © € Gy,
and z; € Gy, for 1 <7 <n, we have
(@) - () () = ~(a -
IU’E(J:) (pz ) (1’1) - ’Y(l’, Chyyeo s Tiyonny 6kn)
= vy(en; €y 1(yyre s Tiseos ,ekfl(n)) (x5 eky sy ek,)

5 E * *
= (o5 ) () - ()
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Hence, \T/(g) is tame as well as operadic.

Conversely, suppose G is an operadic and tame crossed interval group over &.
We assert Og is a group operad. Indeed, in view of Example the operad
O¢ admits a canonical map Og — Os = G of operads which is levelwise group
homomorphism. In addition, since G is tame, for z,y € G,, and z;,y; € G,
we have

’Y(QUZ% 1Yty - - 7xnyn) -

O @) Y 1) - (0P () (085 ()
= 2 @) @) () ()
=W ) - (0P (ya)
=@ y-101ys s Ty-1 )V Y YL -5 Un) -

This implies O¢ satisfies the condition (3.1.1]), and it is a group operad. Now,
it is clear that U(Og) = G, and this completes the proof. O

Similarly to the operadicity, for each crossed interval group G over &, one
can find a crossed interval subgroup L(G) C G so that

(i) L(G) is non-crossed; i.e. there is a map L(G) — * of crossed interval
groups;

(ii) G — L(Q) is functorial; i.e. every map f : G — H of crossed interval
groups over & restricts to L(G) — L(H);

(iii) for each n € N, L(G),, C G,, contains all the elements of the form
* E * * — T s E * —
i) - (o) (@) - (@) ™ (oS ) ()
for k = (ky,...,kp) with S k; = n, # € Gy, and ; € Gy ;

(iv) L(G) is trivial provided G is tame.

Then, the “taming” G* of G is obtained by the following pushout square in
CI’SGI’p/VG

L(G) —
[
G Gt

tame

and it gives rise to a left adjoint to the inclusion of the full subcategory CrsGrpy" C

CrsGrp/vG spanned by tame crossed interval groups. Moreover, since the op-
eradification and the taming commute with each other, the latter is restricted
so as to induce the left adjoint to the functor W:

(-)": CrsOpGrp _L ~ CrsOpGrp™™ : v,
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where CrsOpGrp"™™® = CrsOpGrp N CrsGrp@™. Note that, in view of
Theorem [3.4.13] the functor ¥ induces an equivalence (actually an isomorphism)

GrpOp ~ CrsOpGrp™™. Hence, we obtain an explicit description of the left
adjoint to ¥, which has been proved to exist in Theorem

Remark 3.4.14. Tt was proved in Theorem 3.5 in [3I] that the category GrpOp
is locally presentable. The observation above gives us an alternative proof of
this fact: in view of Theorem [3:3.3] we may regard GrpOp as a reflective
subcategory of CrsGrp/VG. It is verified that operadic crossed interval groups
and tame ones are closed under filtered colimits respectively. Then, GrpOp is

locally presentable thanks to Corollary to Theorem 2.48 in [IJ.

3.5 Associative algebras

In this final section, we give an application of the results established in the
previous sections.

We begin with the following observation. Let C be a monoidal category.
Then, the category of monoid objects of C is equivalent to the category MultCat(x,C%®)
of multifunctors from the terminal operad to the multicategory C® associated
to C (seeExample[1.3.4). We write Alg(C) := Alg, (C) (cf. Example[l.3.7). The

assignment gives rise to a 2-functor
Alg(-) : MonCat — Cat .

It was shown in Section VIL5 in [55] that the 2-functor is represented by the
category A with the join x as the monoidal structure. Indeed, as easily checked,
the following data defines a multifunctor M : x — A®:

e for the unique object * of x, we set M (x) := (1);

e for the unique operations u, € *(n), we set

M (pn) € AZ((1) (1) (1) = A((1) %+ % (1), (1)) = A({n), (1))
to be the unique morphism to the terminal object (1).

Then, the precomposition with M gives rise to a functor

~ \® _ .
MonCat(A,C) = MultCat(A%,c®) 21 Alg(C)

for each monoidal category C, which is claimed to be an equivalence.
On the other hand, if G is a group operad, then we can consider the compo-
sition
forget Alg(-)
MonCatg —— MonCat —— Cat . (3.5.1)
We discuss the representability of this 2-functor. We first have to construct a

candidate of the representing object. In view of Theorem we regard the
category CrsGrp as a full subcategory of CrsGrp/VG, so we may identify G
with its image U®(G) in CrsGrp/VG. Recall that we have a functor J : A — V
which appeared in . Hence, pulling back along J, we obtain an augmented
crossed simplicial group J “G by virtue of Theorem so as to form the total

category Ayig.
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Lemma 3.5.1. Let G be a group operad. Then, the monoidal structure on A
extends to the total category Ajig so that it is G-symmetric.

Proof. Since the inclusion A — E;,ug is bijective on objects, we have to extends
the monoidal product on morphisms. Recall that morphisms of E;,ug are of the
form (¢, 2) : (m) — (n) with ¢ : (m) — (n) € A and x € G(m). For morphisms
(piy i)+ (mi) = (n;) for 1 < i < n, we set

(1,21) %+ * (@n,Tn) == (1% * o, Y(En; 21, ..., 2T0))

The functoriality is obvious, and the strict associativity follows from those of
the join and the composition operation in the operad G.
To introduce a G-symmetric structure, note that we have

(AL % G) (k1) .- (kn); (m)) = Agag (k1 + -+ + k), () x G(n).

Then, we consider the map

(AL % G) (k1) .. (ka)i(m)) = AL (k1) ... (n); (m)

(3.5.2)
((w’x)’u) = (%3«"‘7(“;61«1’---7%”) .

Using the description of the crossed interval group & given in Example
one can check the following formula:

(vax"}/(u;eku"'aekn)) © (4101*"'*Sanvfy(en;'xlv"wxn))
= (o (Pu-1(1) % * Pu-1(m))",
(gou’l(l) koo k qufl(n))*(z) : 7(“; T1y--- 7xn)) y

which iNmplies (3.5.2) actually defines an identity—on—object multifunctor A?hg X
g — A?u g- It is obvious that it exhibits Ajig as a G-symmetric monoidal
category. [

We assert that the G-symmetric monoidal category E?ﬂg in fact represents
the 2-functor (3.5.1]). To see this, notice that, since the 2-category MultCatg

is the category of 2-algebras over the 2-monad (—) x G, we have an isomorphism
MultCat(M, ) = MultCatg(M x G, N)

of categories for each M € MultCat and /' € MultCatg. Hence, for G-
symmetric monoidal category C, we have a canonical isomorphism

Alg(C) = MultCat(*,C®) = MultCatg(G,C%) ,

here we use the isomorphism * x G = G. We define a multifunctor Mg : G —

Ajyug as follows:
e for the unique object * of G, set Mg (x) := (1);

e for each x € G(n), we put Mg(z) = (pin,z) € ngg(<n>,<1>), where

tn : {n) = (1) € A is the unique map into the terminal object in A.
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It is straightforward from the description (3.5.2)) that Mg is even G-symmetric.

Proposition 3.5.2. Let G be a group operad. Then, for every G-symmetric
monoidal category C, the functor

~ ()®
MonCatg(A~:g,C) —— MultCat A% N
g(Aj:g,C) g(A%.:C%) (3.53)

-
—%, MultCatg(G,C%) = Alg(C) ,

where the second functor is induced by the precomposition with Mg : G — &?ng
is an equivalence of categories.

Proof. We actually construct the inverse to the composition, say Mg, of the
first two functors in (8.5.3). Notice that every morphism (m) — (n) € A can
be uniquely written in the form /lkl * -+ % pu, for a sequence k= (k1y.. . kn)
with k1 +- -+ k, = m (cf. Eq. ) where py : (k) — (1) is the unique map
into the terminal object < ) in A For a G-symmetric multifunctor F : G — C®,
we define a functor Fyg : A3ug — C as follows:

e for each n € N, we set Fg((n)) := F(x)®", where * is the unique object
of the operad G;

e for each morphism (p,z) : (m) = (n) € g;jug, SAY © = gy * + Kk [k, , We
define a morphism Fyg (¢, z) : F(*)®™ — F(x)®™ to be the composition

F(eg,)®QF(ex,)

o
F(>(<)®m — F(*)®m o~ F(*)‘g’kl@- . -®F(*)®k" F(*)®” ,
where ©7 is the natural transformation given in Example [3.2.3]

The naturality of ©F implies that, if we have a sequence (ly,...,1,,), the square

below commutes in C:

F(e;)®QF(e,,
F(#)®h @ ... @ F(x)®m (er) (ctm) F(x)®m
@wi o”
F(e —1a1 )®'“®F(611_1(m))
F(*)®lz‘71(l1) ® - ® F(*)®lrl<m) : F(x)®m

Since the left vertical arrow agrees with the morphism ©7(#€1-€tm) under the
isomorphisms

F(*)®l1 R ® F(*)®lm o F(*)®(l1+"'+lm)
~ F(x)®emtun @ - - @ F(x)®k1om |

the functoriality of Fig follows. In addition, it is straightforward from the defi-
nition that Fjg is monoidal, with the comparison isomorphism

F((k1)) @ - @ F((kn))

F(*)®k1 R ® F(*)@)k
(*)®(k1+ +kn)

((F) x- % (kn))

Il

F
F
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and G-symmetric. On the other hand, note that a multinatural transformation
a:F — G:G — C? consists of a morphism « : F(x) — G(x) € C such that,
for each k € N, the square below is commutative:

Fs) 2 2 G ()

It immediately follows that, setting (ag) ) := a®k we get a natural transfor-
mation ag : Fg — Gg. Hence, the construction above defines a functor

(-)e : MultCatg(G,C%) — MonCatg(Agngyc) ‘

The composition Mg’ o (—)g is clearly identified with the identity functor

on MultCatg(G,C®). On the other hand, if F : £3hg — C is a G-symmetric
monoidal functor, it is equipped with an isomorphism

An + (MG (F))s () = M§ (F)(x)" = F((1)*" = F((n))

for cach n € N. We assert A = {\, }, forms a natural isomorphism M (-)g =
Id. Indeed, for each sequence k1, ..., k, of non-negative integers, the coherence
diagram (1.2.1)) for A guarantees the following diagram to commute:

F((1)ehe e —— F((1))*h @ @ F((1) %

,\kﬁ..%nl l/\;q@ @Ak,

F({ky + -+ k) = F((k1)) ) . (354)
lF Wiy )@ QF (pg,, )

F(pogeq %% fikey, ) l

F({n))

)\TI,

F((1)®

where py : (k) — (1) is the unique morphism to the terminal object. Notice
that, according to the description of the multifunctor F® : A?ﬂg — C® given in
Example [T:3.9] the composition of the top arrow and the right vertical arrows
exactly gives the morphism

MG (F)g (i %+ x ik, )+ MG (F)g((ky + - + k) = MG (Fg((n)) -

Hence, it follows from the commutativity of (3.5.4) that A\ is a natural iso-
morphism. Moreover, the upper half square in (3.5.4]) is precisely the coher-
ence diagram for A to be monoidal. In other words, we obtain an isomorphism

A: ME(F)g = F in the category MonCatg(A :g:C). Ifa: F - G : Ajug = C
is a monoidal natural transformation, then the coherence of « gives us the equa-
tion

)\oMg’(oz)® =aol\,
so that A actually defines a natural isomorphism Mg (-)g = 1d, which exhibits
the functor (—)g as an inverse to Mg’. O
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To conclude the chapter, we mention the relation of the category ng to the
Hochschild homologies for algebras. For this, we need to recall the paracyclic
category Ao defined in Example[2.1.14] which is the total category of the crossed
simplicial group Z. The following result is due to Elmendorf.

Proposition 3.5.3 (Proposition 1 in [23]). There is an identity-on-object func-
tor (=) : A2 — Ao such that, for f € Ao(m,n),

f:Z2—7Z; j—min{icZ|j<f@i)}.

Proof. We first verify f actually belongs to As(n,m). Clearly, it is order-
preserving. Note that, since f is order-preserving, the map f is characterized
by the following property: for every i € Z,

fO) <i = j<[f(i). (3.5.5)

Consequently, we obtain

fG+n+1)<i < j+n+1<f(3)
— j<f(i—-m-1)
—= f()+m+1<i,

which implies f(j +n+ 1) = f(j) + m + 1 so that f € A (n,m).

The functoriality of (=) is another consequence of the property (3.5.5). To
see it is an isomorphism, it suffices to show it is fully faithful. In fact, the inverse

of the map (—) : Aso(m,n) = As(n, m) is given by
g i max{j € Z|g(j) <i}] .
O

Ezample 3.5.4. Let ¢ : [m] — [n] € A be a map in the simplex category. Under
the identification of it with the image in A, the composition

{0, 5 Z LT/ (m+ DZ2H0,...,m)
is described as follows:

{0,1,...,¢(0),0(m)+1,....,n} =0,
g Hi} =
{pli—1),0(-1)+1,....90()} 1<i<m.
Hence, seeing @ as a morphism in the total category Az, we can write it as a
pair

B = (Hep(0) +n—sp(m) * (1) —(0) * ** * % Hep(m)—p(m—1), o 7™,

where x is the join of totally ordered sets, ur : [k — 1] — [0] is the unique

morphism to the terminal object in A, and 7,, € Z,, is the element corresponding
to 1 € Z under the canonical isomorphism 2Z,, = Z.
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Now, suppose C is a G-symmetric monoidal abelian category; i.e. it is abelian
and equipped with a G-symmetric monoidal structure so that the functor

®p :C*" = C

is right exact in each variable for each n € N. We denote by Ch(C) the category
of chain complexes in C. For a monoid object A € C, the Hochschild complex
Co(A) € Ch(C) (with coeflicient A) has the following construction, which is
based on the one given in [62]. By virtue of Proposition A gives rise
to a G-symmetric monoidal functor Ag : &Gug — C. On the other hand, the
embedding described in Example [2.5.5] enables us to see Z as ‘an augmented
crossed simplicial group, so we can also form the total category Az. Note that
t~he embedding Ao, = Az — Az identifies A, with the full subcategory of
Az spanned by all but the initial object. Hence, choosing a map Z — J°G of
augmented crossed simplicial groups, we obtain a paracyclic object in C:

~ ~ Ag
AP AP XA = Az — Ayg — C

where the first isomorphism is the one given in Proposition [3.5.3] Then, the
computations in Example shows that the Hochschild complex Co(A) €
Ch(C) is isomorphic to the associated chain complex of the simplicial object
A®| jop-

Remark 3.5.5. In the above construction, we chose a map Z — J'G of aug-
mented crossed simplicial groups. Note that, since Z is connected as a simpli-
cial set, so the computation in shows that for every augmented crossed
simplicial group G, maps Z — G of crossed simplicial groups correspond in
one-to-one to those of augmented ones. It follows that the Hochschild chain
Co(A) is actually indexed by the following isomorphic sets:

CrsGrp, (Z,3°G) = CrsGrpA(Z,Jhg) = CrsGrpy (3 2,9) .

Ezxample 3.5.6. Take G = B the group operad of braid groups. In this case,
there is the following canonical pullback square

Z— 3B
|
C S

in the category CrsGrp,. Hence, there is a canonical choice of a Hochschild
chain for a monoid object in a braided monoidal abelian category.
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Chapter 4

Symmetries in terms of
internal presheaves

For a group operad G, a G-symmetric structure on M is by definition a multi-
functor M x G — M. On the other hand, there is a way to exhibit multicate-
gories as fibrations over the category V. Indeed, as for a symmetric multicat-
egories, or colored operads, C, May and Thomason [58] constructed a fibration
C— Fin, over the category of pointed finite sets so that (topological) categories
over C satisfying certain conditions corresponds in one-to-one to algebras over
C. The construction has a straightforward non-symmetric analogue; if M is a
multicategory, it gives rise to a fibration MY — V. In this section, we aim
at encoding G-symmetric structures in this language. More precisely, we will
construct a counterpart of the 2-functor (=) x G on the fibration side.

4.1 Quotients of the total category

We begin with an observation that a sort of symmetries on an algebraic structure
are presented by quotients of the total category of crossed interval groups. Recall
that, as pointed out in [68], monoids are associated with functor MV : V — Set
satisfying so-called the Segal condition with MY ({0))) = x. Namely, if M is a
monoid, then

e for each n € N, MV ({(n)) = M*";

e for a morphism ¢ : (m)) — (n)) € V, the map ¢, : M*"™ — M*™ is given
by

Os(T1ye ey Ty) = H Tiyonns H ;|

w(i)=1 w(i)=n

where the products are taken in the obvious orders.

Let G be a crossed interval group. Then, the functor MY canonically extends to
the total category V. Indeed, notice that a functor X : Vg — Set determines
and determined by the data

e the restriction X|g : V — Set;
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o for cach n € N, a left G,-action on the set X ({(n))), say G, x X({(n))) —
X((n)) 5 (ux) = a2

such that, for each ¢ : (m)) — (n)) € V, z € X({(m))), and v € G,
pu(@)” = (0")u(@? ) .

Each G,, now acts on MV ({(n))) = M*" through the canonical map G, —
QY — &, and the action gives an extension My : Vs — Set. In particular,
when G = & (see Example , we assert that the monoid M is commutative
if and only if the functor M : Ve — Set factors through an appropriate
quotient category of Vg. We set u, : (n) — (1) € V with u, (i) = 1 for
1 <i<mnand p,(+oo) = too. Then, for each (z1,...,2,) € M*", and for
each o € G, we have

(/Ln,U)*(Z‘l, cen ,xn) = (Mn)*(xa*1(1)7 cee ,Z‘G—l(n)) =To-1(1) -+ - To—1(n) -

It follows that M is commutative if and only if the two induced maps (u,, o)
and (p, )« agrees with each other for every n and o; in other words, M factors
through a quotient ¢ : Ve — Q such that g(pn, o) = q(tn, €,), where e, € &,
is the unit.

More generally, we can regard any quotients of V& may present a kind of
symmetries on monoids or higher variants, and this is the main theme of this
section. In particular, we focus on the classification of quotients of the following
form.

Definition. Let G be a crossed interval group. Then, a G-quotal category is
a category Q equipped with a functor ¢ : Vg — Q satisfying the following
conditions:

(i) g is full and bijective on objects, so we may assume Ob Q = Ob V;
(i) for ¢, " € V({(m), {n)) and z,2" € G,,, the equality of morphisms
(e, 2) = q(¢’,2") : (m) — (n)) € Q
in Q@ implies p = .
Lemma 4.1.1. Let G be a crossed interval group, and let Q be a G-quotal
category with q : Vg — Q. Then, the composition
Ve Ve 5 Q (4.1.1)

is faithful and conservative.

Proof. Let us denote by e, € G, the unit of the group. Then, the composition
sends a morphism ¢ : (m)) — {(n)) € V to ¢(p, ex). Hence, the condition
on G-quotal categories directly implies is faithful.

Next, suppose ¢ : {(m)) — {(n)) € V is a morphism such that ¢(p, e,,) is an
isomorphism. Since ¢ is full, the inverse of ¢(¢p, e;,) can be written in the form
q(¢,y) with ¢ : {n) — (m)) € V and y € G,,. We have

id(my = q(¥,y) 0 q(p, em) = q(v?, 0" (y))
idgny = a(@,em) 0 q(¥,y) = a(e,y) -

By virtue of the condition on G-quotal categories, the former equation implies
id () = ¥e¥ while the latter implies id ¢,y = 1. It follows that 1 is an inverse

of v in V, so (4.1.1)) is conservative. O
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Thanks to Lemma [£.1.1] we can identify morphisms in V with their images
in a G-quotal category; namely, if ¢ : Vg — Q is a G-quotal category, then by
abuse of notation, we write ¢ = q(p, e,,) for every ¢ : {(m)) — {(n)) € V.

There is a general recipe to construct G-quotal categories. For this, we
introduce some notions.

Definition. Let G be a crossed interval group, and let ¢ : (m)) — (n) € V
be a morphism. Then, an element z € G,, is called a right stabilizer of ¢ if
for every morphism ¢ : (1)) — {(m)) € V, we have py* = ). We denote by
RStg C G, the subset of right stabilizers of .

It is obvious that, for ¢ : (m)) — {(n) € V, the subset RStg C Gy is a
subgroup.

Definition. Let G be a crossed interval group. A congruence family on G is a
family K = {K,}, indexed by morphisms in V such that, for every ¢ : (m)) —
{(n) eV,

(i) K, is a subgroup of RStg;
(ii) for every morphism x : (n)) — (k) € V, K, C Ky;

(iii) for every morphism ¢ : (1)) — ((m)) € V, the map ¢* : G, — G| restricts
to amap K, — Kyy;

(iv) for every element y € G,,, we have
P () Ky @™ (y)7 =Ko - (4.12)
Remark 4.1.2. The first three conditions above implies K = {K,}, forms a

crossed group over opTw(V) := Tw(V)°P the opposite of the twisted arrow
category of V; opTw(V) is the category such that

e the objects are morphisms of V;

e for morphisms ¢; : (m;) — {(n;) € V for i = 1,2, morphisms ¢ — 9 in
Tw(V) are pairs («, 8) of morphisms in commutative squares of the form

((ma)) —— (m2)

Wll l@z N
B

{(n1)) =—— ((n2))
e the composition is given by
(7,6) o (a, B) = (v, B9) .

The second and the third conditions imply each morphism («, ) : v1 — @2 in
opTw(V) induces a map

(o, 8)" : Ky — Kppa = Kgpya = Ko, -
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Moreover, for a morphism (a, 5) : ¢1 — @2 € opTw(V) as above, if z € G,
is a right stabilizer of @9, then the pair (a®, ) is again a morphism @1 — ¢
in opTw(V). Hence, by virtue of the first condition, this defines a left action of
K, on the set opTw(V)(¢1,p2). It is easily verified that these data actually
form a crossed opTw(V)-group structure on the family K = {K,}..

Ezample 4.1.3. The family RSt¢ = {RStg}@ is itself a congruence family. In-
deed, the first three conditions for congruence families are obvious. To verify

([1.2), observe that, for ¢ : (m)) — (n) € V, ¥ : () = (I)V, z € RStg7 and
y € G, we have

-1

gm/)so"(y)w*(y)’l — ((pww*(y)’l)y - ((ww*(y) W=t .

Note that, in view of Remark a congruence family on G is nothing but a
crossed opTw(V)-subgroup of RSt™ satisfying (4.1.2)).

Ezxample 4.1.4. Let G be a group operad. Recall that, as pointed out in Sec-
tion morphisms ¢ : (m)) — {n) € V correspond in one-to-one to tuples
@) = (k9L kPR k) with 89 4+ kP 4 k) R =l We
set a subset Decg C Gy, to be the image of the map

G(EDL) x GR) x - x G(EY) x G(RE)) — G(m)
(xfoou Tlyew- 7xn7xoo) — '7(en+2; Toos; Lly--- 7xn7xoo) '

(4.1.3)
As easily verified, the map (4.1.3) is actually a group homomorphism, and
Dec” = {Decg}w forms a crossed opTw(V)-subgroup. Moreover, for y € G(n),
we have

@*(y) . ’Y(enJrQ; .')3700,.’1,'17 AR wr’n) xOO)

= ’7(63; 1’7007’7(?4; eksﬁ)v ceey eksf))’Y(en; L1y ;xn)axoo)

= 7(63; T oo, Y(en; Ty=1(1)s- -+ xyfl(n))’)’(y; €k§¢>, cees 6,65;0)),3600)
= V(125 T 00, Ty=1(1)s -+ > Ty=1(n)) - " (¥)

which implies
¢*(y) - Decd ¢ (y) ™" = Decd, .

Thus, Dec® is a congruence family on G.

Ezample 4.1.5. For each ¢ : (m)) — ((n) € V, we set Triv, to consists of a
single element e,, which is seen as the unit of G,,, for any crossed interval group
G. Then, clearly Triv = {Triv,}, is a congruence family on G. In view of
Remark Triv is the trivial crossed opTw(V)-group.

Ezxample 4.1.6. Let K be a congruence family on a crossed interval group G.
For each ¢ : (m)) — {(n)) € V, we have a canonical group homomorphism

K, = RStS < G,, — 20, .

We put K, the kernel and claim that K’ = {K/,}, forms a congruence family.
Namely, it is an uncrossed opTw(V)-subgroup of RStY since it is the kernel of
the map RSt® — RStZ" of crossed opTw(V)-groups. This observation also

leads to the equation (4.1.2)).
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We see congruence families on a crossed interval group G are associated to
G-quotal categories. We use the following lemma.

Lemma 4.1.7. Let G be a crossed interval group, and let K = {K,}, be a
congruence family on G. Suppose ¢ : {I) — (m)) and ¢ : {(m)) — {(n) are
morphisms in V. Then, for each y € G,,, the composition

(Ky - y) xGp — GpxGpn — G
W,z) = o)z
induces a maps
{Ky -yt x (Ko\Gm) = (Kypv\Gim) -
Proof. Take x € Gy, and y € G,,. Then, for v € K, and v € K, we have

@ (vy) -z = (") () - (¥"(y) -u- 9" () ") P () . (4.1.4)

By virtue of the conditions on the congruence family K, the first term in the
right hand side of (4.1.4) belongs to Ky, while the second to Kov C Kyyu.
Hence, the result follows. O

Now, for a congruence family K on a crossed interval group G, we define a
category Q as follows: the objects are the same as V, and for m,n € N,

Qe ((m)), () = {(e. [2]) | ¢ € V((m), (n), [z] € K \Gm} -

There is an obvious map g : Vi ({m), (n)) — Q({m)), {(n))). Using Lemmal[4.1.7]
and the inclusion K, C RSt one can see the composition in the total category
V¢ induces a composition operation in Qg so that ¢ is a functor.

Proposition 4.1.8. For every congruence family K on a crossed interval group
G, the functor

q: Vg — Qk
given above exhibits Qi as a G-quotal category. Moreover, the assignment
K — Qg gives a one-to-one correspondence between congruence families on G
and (isomorphism classes of) G-quotal categories respecting the orders.

Proof. The first statement is obvious. To see the assignment is one-to-one,
suppose Q is a G-quotal category with ¢ : Vg — Q. For each ¢ : (m)) —
{n)) € V, we put

K2 :={x€Gnlqlpx)=¢}.
We assert K< = {K @Q}w forms a congruence family on G. First, clearly we have
Kg - KX%, and @[J*(Kg) CK fw whenever the compositions make sense. Next,
for ¢ : (m) — (n) and ¥ : {I)) — {(m)), and for each z € Kf, we have

o = q(p, )Y = q(pp”,¥"(x)) , (4.1.5)

here we identify morphisms in V with their images in Q. Since Q is G-quotal,
(4.1.5) implies v = p1p*, so we obtain Kg C RStg. In addition, for y € G,
and x € Kg, we have

a(e?, " (y)re*(y) )
= q(id, y)q(p, z)q(id, ¢*(y) ") = q(id, y)q(p, * (y) ") = ¥,
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which implies
) K¢t (y) =K
Therefore, K< is a congruence family.

It is straightforward that @ — K Q is an inverse assignment to K — Q.
Furthermore, if we have an inclusion K C K’ between congruence families, i.e.
K,CK ; for each morphism ¢ in V, then there is a functor Qx — Q- which
makes the following diagram commutes:

Va
Qg — Qx»

In other words, the assignment K — K’ respects the orders, and this completes
the proof. O

To end the section, we mention a closure operator on the partially ordered
set of congruence families. Recall that we mentioned two classes of morphisms in
V in Section 3.4} namely inert and active morphisms, and every morphism in V
uniquely factors through an inert morphism followed by an active one according
to Lemma [3.4.2] In other words, if we put | and A the classes of inert and active
morphisms in V respectively, then (I, A) is an orthogonal factorization system;
i.e. it satisfies the following conditions

(i) the classes | and A are closed under compositions and contains all the
isomorphisms;

(ii) every morphisms in V is of the form pp with p € | and p € A;

(iii) for every commutative square

with p € | and p € A, there is a unique diagonal y so that yp = ¢ and
px =Y.
Remark 4.1.9. The notion was first introduced by Freyd and Kelly in [25] under

the name factorization. We instead use the name above to emphasize the unique
lifting property and to distinguish it from weak factorization systems.

Let G be a crossed interval group, and let K be a congruence family on G.
Using Lemma we construct another congruence family K as follows: for
each active morphism p in V, we put K, = K. For a general morphism ¢ in
V, we set K, C RStg to consist = € RStg such that, for every morphism
with ¢ making sense and active, ¥*(z) € RStgw belongs to K oy Thanks to
Lemma this extension does not change K, for active .

Lemma 4.1.10. In the situation above, the family K = {Ii('(p}g(J forms a con-
gruence family on G.
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Proof. We first verify K, C RStg forms a subgroup. Suppose 9 is a morphism
in V with ¢¢ making sense and active. For two elements z,y € K, we have

P ly) = (7 ) (@) () - (4.1.6)

Since x,y € RStg, the composition ga@/;x_ly equals to (1, which is active. Hence,
both terms in the right hand side of belongs to K, which implies 7y €
..

Using Lemma one can verify K = {K,}, forms a crossed opTw(V)-
subgroup of RSt¢. It remains to verify the formula . Clearly, the inclusion
in one direction will suffice, so we show

e (y) Ky " (y) ' C Ky (4.1.7)

for each ¢ : (m)) — (n)) € V and y € G,,. Suppose ¢ : (I)) — (m)) € Vis a
morphism with @Y1 active. For x € K, we have

P (¢ ()2 (y)H) = (™ @) () - (O (@) - (0" (y) )
= (e @Y (y) - (F T (@) - () (yTY)  (4.18)
= (") (™) (@) (@) - (p) (v

Note that, since @i @~ = (p¥4h)¥ " is active, the middle term in the right

hand side of |i belongs to K, ,,~1. Using the formula (4.1.2)) for the
congruence family K, one gets

(@) (™)™ K gyt - (0"0) (y71) = Kooy -

This implies that ¢* (¢*(y)z¢*(y) ') € Kyuy, and the inclusion (@.1.7)) follows.
O

Lemma 4.1.11. Let G be a crossed interval group. Then, the assignment
K — K defines a closure operator on the ordered set of congruence families on

G.

Proof. The assignment K ~ K clearly respects the inclusions. Moreover, since
K, = K, for active morphisms y, we also have K, = K, for every morphism
¢. On the other hand, we have K, C RStg, and for every morphism v with
¢y making sense and active, ¥*(K,) C Kyy. This implies K, C K. Thus,
we obtain the result. O

Definition. A congruence family K on a crossed interval group G is said to be
proper if it is closed with respect to the closure operator (—) defined above in
the ordered set of congruence families on G; ie. K = K.

Every crossed interval group G admits the minimum proper congruence fam-
ily; namely the closure Triv of the trivial congruence family given in Exam-
ple We write Inr® := Triv. Hence, every proper congruence family on G
contains Inr®. Moreover, it satisfies the following properties.

Lemma 4.1.12. Let G be a crossed interval group.
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(1) If a composition oy in V is active, then the action of Inrg stabilizes .

(2) For every morphism ¢ in ¥V, the subgroup Inrg - RStg is normal.

(3) Let K be a proper congruence family on G. Then, for an active morphism
w and for an inert morphism p with pp making sense, the composition

K, " K,y — K,/ TS, (4.1.9)
is bijective.

Proof. We first show Take the factorization ¢ = pp with p inert and p
active, and let § be the unique section of p. Notice that, in view of Lemma [3.4.2]
0 is characterized by the following two properties:

(i) 0 is active;

(ii) every morphism 1 with ¢ty making sense and active uniquely factors as
1) = 61’ for a morphism '

It follows that ¢ is fixed by the action of RStg. Moreover, if ¢ is active, the
property above implies there is a morphism v’ with ¢» = 0. Then, for each
T € Inrg, we have

wx — (6¢/)z — 6m,¢/5*(m) — 5w/ — w 7
so that [(T)] follows.

Next, suppose u € Inrg and z € RStg. For every morphism ¢ with o
making sense and active, we have

* — 1k 1k * — —1ix
U (aur™h) = () (@)@ ) (W (eTh) = (@) (2)
Note that ¢y® = = o is active, so (Wfl)*(u) is the unit. Moreover, the part
implies ¢"® = . It follows that ¢*(zuz~!) vanishes, and we obtain
(2)

Finally, we show Let ¢ : {(m)) — () € V be the unique section of p.
We assert that the map 6* : K, = K, induces the inverse of (4.1.9)). Indeed,
for each u € Invfp, the definition of Invfp and the part imply 6*(u) = e
and 6" = J. Hence, for every x € K,,,, 0*(zu) = §*(z). In other words, 6* is

Invfp—invariant so that it induces a map

G
5t K,/ Inr;, — K, .

Since § is a section of p, the map is clearly a left inverse of the map . To
see it is also a right inverse, it is enough to see that, for each = € K,,,, we have
p*(0*(x))x~t € Inrfjp. Note that, by virtue of the characterization of ¢ above,
this holds if and only if the map §* vanishes the element. We have

5 (p* (8% () - 1) = (6p6° 1 )* () - 5 (x71) .

As mentioned above, § is fixed by the action of RSthjp, so we have (5,0(5””71 =9
and §*(z7!) = 6*(x)~!. Thus, 6*(p*(6*(z)) - 2~1) = e, and we conclude 6 is a

right inverse of (4.1.9)), which completes the proof. O
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4.2 Associated double categories

In the previous section, we see that congruence families are associated with
quotal categories by taking the quotients of the total category. Our problem is,
on the other hand, higher categorical so we need “higher categorical quotients”
in some sense.

Recall that a double category is a category internal to the category Cat; i.e.
a diagram

s,t
c—=B

in the category Cat of small categories together with functors
v:Exp€— € and t:B—¢C

satisfying the appropriate conditions which is imposed on ordinary categories,

where the domain of 7 is the pullback of the cospan € SBle Hence, a dou-
ble category has two kinds of compositions; namely the horizontal composition
oy, the compositions in the categorical structures of € and B, and the vertical
composition oy given by the functor . For morphisms f, g, h, k in €, we have

(fong)ov (houk) = (fovh)on(govk)

whenever both sides make sense.

Remark 4.2.1. In what follows, we will often drop the structure functors v and
¢ from the notation. For example, in the case above, we say € = B is a double
category.

Let G be a crossed interval group, and suppose we have a pair (K, L) of
proper congruence families satisfying the following conditions:

(#1) for each morphism ¢ : {(m)) — (n)) € V, the subgroup K, C Gy, is
contained in the normalizer subgroup N (L) of Ly; i.e.

N(Ly) ={x € Gm | aLya™" =Ly} ;

(#2) if ¢ is a composition of morphisms in V, for every u € L, and for each
z € K,

[p* (w)ae™(u)™'] = [2] € Inrg, \ Ky, -
In this case, we define a category Qp /x as follows:
e the objects are the same as V;

e for m,n € N, morphisms ((m)) — (n)) in Qp )k are triples (¢, [u], [z])
with ¢ € V({(m), {(n)), [u] € Inrg \K,, and [¢] € L \Gon;

e the composition is given by
(W, [], [y]) o (o, [u], [2]) = (¥, [0" (vy)ue™ (y) 1], [9™ (y)a]) -
Note that we have

e (vy)up™ (y) " = ()" (v) - " (Y)ue* (y) ",
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so the conditions on congruence families imply the element belongs to Ky,v. In

addition, in Lemma|.1.12|and the conditionguarantee that the compo-

sition does not depend on the choice of representatives. If we are given another
morphism (¥, [w], [2]) postcomposable with (v, [v], [y]), the second component
of the composition

(O [wl, [2]) o (9, [0], [y])) © (¢, [ul, [2])

is represented by the element

¢" (W (w2)vy* (2) T (2)y)ug™ (™ (2)y) ™
= (") (w2)* (vy)u (?)* ()" (v))
= (¥p¥)" (w2)@" (vy)ue™ (y) " (W¥)"(2) 7"
which also represents the second component of the other composition. Thanks

to this and the associativity of morphisms in Eq, one obtains the associativity
of the composition in Gp, ;i so that it is actually a category.

Ezxample 4.2.2. For every proper congruence family L, the pair (Ian7 L) sat-

isfies the conditions and One can verify that there is a canonical
isomorphism Qp . = Qr.

Example 4.2.3. Let G be a group operad, so we have the congruence family
Dec? given in Example For each morphism ¢ : {(m)) — ((n) € V, we set
Kecg C Dec? to be the kernel of the composition

Decg — G(m) = &(m) .

In view of Example the family Kec9 = {Kecg}yJ forms a congruence family
on G. Taking the closure in the sense of Lemma@ we obtain proper congru-
ence families Dec? and KecY. One can verify that the pair (DecY, Kec9) satisfies

the conditions and so that they give rise to a category Ggo //Decd -

The category Qp x comes equipped with two canonical functors

s,t:Qryx = QL (4.2.1)

here Q is the G-quotal category associated with L, such that

e they are the identities on objects;
e for each morphism (¢, [u], [z]) € Qr yk ({(m)), (n),

s(e, [ul, [2]) = (o, [2]) 5 e, [ul, [2]) = (o, [ua]) .

Note that the assignment ¢ does not depend on the choice of representatives
by virtue of the condition |(#1) Then, the functorialities are easily verified.
We assert that the diagram canonically admits a structure of a double
category: define functors v : Qp yx Xo, Qryx — Qryx and ¢ : Qr = Qr K
by

v (o, [ul, [w'a)), (. [, [2])) == (o, [uad'), [2]) - elep, []) == (o, [e], [])

where e is the unit in the group K. These actually define functors thanks to
in Lemma [4.1.12| and the associativity and the unitality are obvious. We
call the double category (4.2.1)) the double category associated to the pair (K, L).
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Remark 4.2.4. In the case L C K, the double category Qr,x = Qr looks
like a “homotopy quotient” of the category Qj with respect to the congruence
family K in the following sense: since the functors are the identities on
objects, one can see the double category as a 2-category, say Qr . For each
m,n € N, the category Qr/x({(m)),{n))) is a groupoid whose isomorphism
classes corresponds in one-to-one to morphisms ((m)) — ((n)) in the G-quotal
category Qg associated with K. We will make further discussions in this point
of view in Section [l

We further take a quotient of the double category Qp x = Q. using the
following general construction.

Proposition 4.2.5. Let A be a category, and let M be a left cancellative class
of morphisms in A; i.e. if a composition de belongs to M, so does §. For each
a,b € A, define a relation ~y on the set A(a,b) such that o ~y o' if and only
if, for each morphism B in A with codomain a, one has aff = /3 as soon as
either of the sides belongs to M. Then, the relation ~y is a congruence on A
in the sense in IL.8 of [53)]. Consequently, taking the quotient of each hom-set
of A by ~m, one gets a quotient category A — A/~n.

Proof. Tt is obvious that ~y is an equivalence relation on each hom-set A(a, b).
We have to show, for compositions a3y and o’y with 8 ~yv 3, we have
afy ~m afy. Suppose a composition a8y belongs to M. By virtue of the
observation above, we have 8v6 € M, so 8 ~u 3’ implies fv0 = B'~v6. Thus, we
obtain a8vd = a3’vd and conclude afy ~m af'y. O

Remark 4.2.6. Typical examples of left cancellative class of morphisms come
from orthogonal factorization systems (see the discussion in page . Suppose
(E, M) is an orthogonal factorization system on a category A. One can see that
the class M is left cancellative provided every morphisms in E is an epimorphism.
Indeed, if € = pp and du = vo are factorizations with p,v € M and p,o € E,
then the equation de o id = v o gp and the unique lifting property implies op
is an isomorphism. Since o is an epimorphism by the assumption on E, p is an
isomorphism so that € € M.

We apply Proposition Fizglto the category Q. To obtain a left cancella-
tive classes on it, in view of Remark [1.2.6] we construct orthogonal factorization
system. We define two classes I, yx and Ap,; of morphisms in Qy yx as follows:

i = (o [u), [a]) | 2 imert)

Aryr = 1{(o,[u], [2]) | ¢: active} .
We assert that (I x, AL i) forms an orthogonal factorization system on Qp, k-
In fact, if we have a composition 1p : ((m)) — ((n) € V with p active and p

inert, then for each v € K, and = € G,,, one can use in Lemma 4.1.12[ to
find a unique element % € K, so that

(MP, [’LLL [l‘]) = (/1'7 [ﬂ]v [6}) o (P, [em]v [f]) :

As easily verified, the factorization is unique up to a unique isomorphism, and
we conclude (Iz/x, ALk ) is an orthogonal factorization. Since every member
of I,y is a split epimorphism, Lemma implies Ay, is left cancellative.
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We denote by Q L)k the quotient category of Qp yx obtained by Proposi-

tion with the class Ap k. In particular, as mentioned in Example
there is an isomorphism Qp = Q //IneG - We take a quotient category Qp — Qr,
which corresponding to Q L/ through the isomorphism. To simplify the
notation, we set (lp,Ar) the orthogonal factorization system corresponds to
(IL//Ian ) AL//Ian )
Remark 4.2.7. We have a convenient criterion for the congruence ~a, .. Sup-
pose p,¢" : (m)) = (n) € V, z,2" € Gy, u € K, and v € K. Then, we
have (i, [u], [7]) ~a, (¢, [e], [2']) if and only if for every ¢ : (I)) — {(m))
with either pi® or @9 active, the following equations hold:

pU" = @0 € V() (n))
[V ()] = [¥" ()] € Lyy=\Gi
(") (w)] = (") ()] € InrGy\K gy -

Furthermore, let ¢ = up and ¢’ = u'p’ be the factorization with u, ' active
and p, p’ inert, and say ¢ and ¢’ are the unique sections of p and p’ respectively.
Then, it turns out that we only have to test the conditions above in the cases
Y =26 and ¢ = 6

Ezxample 4.2.8. Let G be a crossed interval group and L a proper congruence
family. For 1 < ¢ < n, define p; : {(n)) — (1)) to be the inert morphism such
that

-0 j<i,
o0 j>,

and put §; the unique section of p;. Then, for each x € G,,, we have

(Pa(iys [2]) ~ar (pis [7 07 (2)]) € Qr(n)), (1) - (4.2.2)
Indeed, since p}d;(z) € G,, acts trivially on active morphisms, we have

. o
Patiiatiy = idgay = pids = pidZy) = pidti )

(62 (x) = 87 (x) = 6} ((pa6:)"(2)) -

Hence, (4.2.2) follows from the argument in Remark

Ezample 4.2.9. Let G be a crossed interval group with Gg trivial, and let (K, L)
be a pair of proper congruence family on G satisfying |(#1)|and |[(#2)l We assert
that the object (0)) € 9y /K 18 a terminal object. Indeed, it is 0bV1ous that, for
each n € N| there is at least one morphism ((n)) — (0)) € @L//K. On the other
hand, for a morphism [p, u,z] : {(n) — (0) € éL//K, a composition ¢ in V is
active exactly when 1 is the unique morphism 1 : (0) — {(n)). Since ¢ is fixed
by the action of G, we have

wp =idyoy
Y (u) =™ (x) = ep .

The right hand sides depend neither on ¢, u, nor z. This implies that there is
at most one morphism {(n)) — (0)) € Qp, k.
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We can see the quotient functor Qp ,x — @L Kk transfers the orthogonal
factorization (I yx, AL k). Indeed, WritingTL//K and ,Z\L//K the images of I, x
and Apjk in @ LK respectively, we obtain the following result.

Lemma 4.2.10. Let G be a crossed interval group, and suppose (K, L) is a pair

of proper congruence families satisfying the property [(#1)| and [(#2). Then, as
for morphisms in Qp /i, the following hold.

(1) Every morphism can be written as a composition of the form
[, u, el o [p, e, ]
with p active and p inert.
(2) We have an equation
[, u, €] o [p,e,x] = [v,v,e|o[m, e, y] (4.2.3)
with p, v active and p, m inert precisely when the following two are satisfied:

(1) (. [u], [e]) = (v, [v], [e]) as morphisms in Qp

(ii) there is an element w € L, such that
oy e, p*(w)z] = [m,e,y] .

Consequently, the pair (TK JL> A K L) forms an orthogonal factorization system

on QL

Proof. The assertion directly follows from the definition of Qr i and
in Lemma |4.1.12)

As for the part the two conditions and clearly implies
Conversely, suppose [4.2.3] holds; so we have

[up, p*(u), 2] = [ym, 7 (v),y] .
Put § and ¢ the sections of p and 7 respectively, and we obtain
p=vre L Sy e L, , (W] =[(" ) r(v)] € m§\K,
v=ppe? e*(zy ) eL,, []= [(axyfl)*p*(u)] € S \K, .

By virtue of the unique factorization in V and the uniqueness of the sections of
p and 7, the leftmost equations imply 5 =¥ ' and = v. In this case, the
rightmost equations just say [u] = [v] € Inr% \ K, and the condition follows.
On the other hand, in view of Remark one can see

[, e,p" 0" (yz~")z] = [m,e,9]

which supplies the element w in the condition thanks to the middle mem-
bership relations.
We finally show the last assertion. The part precisely implies the possi-

bility of the factorization. Since the classes Ik and Ap i are clearly closed
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under compositions, it remains to show the unique lifting property. Note that
since every morphism in I, sk is isomorphic to a morphism of the form

p=p,e €]

with p being an inert morphism in V. Similarly, every morphism in A LJK 18
isomorphic to a morphism of the form

(1, u, €]

with p active. Hence, it suffices to solve the unique lifting problem on the
commutative squares of the form

Pl l[u,u,e] (424)
l

in éL//K. By the part we may put
o =[k,s,elofo,e,x], P=[\telo[rey]
with , A active and o, 7 inert. Then, the commutative square implies
[uk, k" (u)s, €] o [o,e,x] = [\ t,e]o[r,e,ylop .
By virtue of the part we have
pr =X\, [K*(uw)s] = [t] € e \K) , (4.2.5)
and there is an element w € L) such that
[0,e,2] = [T,e, 7" (w)ylop . (4.2.6)

We set
x = [k, s,w]o[r,e,y] : () = (m)) .

Then, thanks to the equations (4.2.5) and (4.2.6)), one can verify x is actually
a diagonal filler in (4.2.4)); i.e.
Xop=6o, [M;Uve]OX:"//-

In addition, since p is a split epimorphism, x is unique. It follows that the pair
(I )k ,Ary) satisfies the unique lifting property so it is an orthogonal factoriza-

tion system on Qp, sk, as required. O]

Ezample 4.2.11. As a consequence of Lemma [4.2.10] for active morphisms pu, i’ :
(m) — (n), we have (p, [ul,[z]) ~a,,, (1, [u],[z']) for two morphisms in
Qr i if and only if they are in fact equal.

Lemma 4.2.12. Let G be a crossed interval group, and let (K, L) be a pair of
proper congruence families on G satisfying |(#1)| and [(#2)l Then, the quotient
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functors Qr k. — QL x and Qp — @L derive functors s,t : QL//K = @L
from the functors (4.2.1)) so that the diagram below is commutative:
Qryx — Q1 -~ Qryx
l g i L l . (4.2.7)
éL//K I éL//K
Moreover, each square in (4.2.7) is a pullback of categories.

Proof. The first statement is straightforward. To see the last, we show that
when we fix a morphism ¢ : {(m)) — {(n)) € V and an element x € G,,, for two
elements u,u’ € K, the following three are all equivalent:

(@) (o, [uls [2]) ~ap i (s [0]; [2]) € Qryr ({(m), (n);
(b) (. [ul, [u™"a]) ~a, (o [W], [w™12]) € Qryr ((m), (n):
(c) u=tu € Inrg.

Note the equivalence of|(a)|and |(c)|implies the left square in (4.2.7)) is a pullback
while the equivalence of |(b)| and |(c)| implies the other.

Let ¢ = pp be the factorization with p active and p inert. In view of Re-
mark [42.7] the condition [(a)] is satisfied if and only if (5*( ) = ¢6*(u')_since
Inr Inr® is trivial. The latter is equivalent to in view of . in
Lemma m The same argument also completely goes well for the condi-
tion and this completes the proof. O

Proposition 4.2.13. Let G be a crossed interval group, and let K be a proper
congruence family on G. Then, the diagram

s, éL//K =%o)) (4.2.8)
admits a structure of a double category inherited from .
Proof. Tt suffices to see that the vertical composition functor
v:Qryk X, Quyx — QLK

induces a functor
v: Ok ) QL//K — QL//K .

Note that, in view of the pullback squares in (£.2.7)), we have a canonical iso-
morphism

Qryr X0, QLyx = QL X5 (QL//K X5 QL//K)
of categories, where the right hand side is the limit of the diagram

Qr

|

@L//K > Qp <" @L//K
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Thus, we have to show the composition

7:QL X5, (éL//K X3, éL//K) =9k Xo, QLK % Qryx — Q1)K

depends, with respect to the first parameter, only on the images under the
functor Qp — Qp . Since 7 is clearly the identity on objects, we concentrate
on morphisms. Note that, for a morphism (¢, [2]) of Qr, and for morphisms ¢

and 0 of éL//K with B
t(¢) = s(8) = [p, 2] € Qp , (4.2.9)

the image ¥((¢, [z]), 0, {) is given as follows: by virtue of Lemma [4.2.12} (4.2.9)

implies there are elements u,v € K, so that

¢=lp,u,uta], 0=][pv,x].

Then we have
(¢, [2]),6,€) = lp, vu,u™la] .
Now, suppose (¢, [z]) ~a, (¢, [2']), and take v/, v" € K, so that

C — [go',u’,u'_lx'] ; 0 — [(p/’v/7x/] .
We show the congruence
(o [ou), [u™a) ~a, e (9 0], [/~ 10)) (4.2.10)

’
x

Let 1 be a morphism precomposable with ¢ such that either o @ or /¢
is active. Since u and ' are right stabilizers of ¢, this implies either p® or
©'Pp* is also active. Then, in view of Remark the congruences

(907 [UL [u_lx]) ~ALyK (‘Pl’ [U/L [ul_lx/]) ) (<P, [’UL [.Z‘D ~ALy K (90/7 ['U/]v [ml])

imply ) B
pyt T=pyt T ()] = [t (u T )]

and

Thus, follows, and we obtain ¥((¢, [2]),0,¢) = F((¢', [2']),0,() as re-
quired. O

4.3 Internal presheaves over the associated dou-

ble categories
We constructed double categories Qp y = Qr, and 0 LK = Q,, for a sort of
pairs (K, L) of proper congruence families on crossed interval groups G. Recall

that, as they are internal categories in the category Cat of small categories, we
can consider the following notion on them.
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s,t
Definition (cf. [37], Definition 2.14). Let € == B be a double category. Then
an internal presheaf over it consists of the data

e a category (X — B) € Cat/B over B;

e a functor
Ay : X xp€— X

t
in Cat/?, where the domain is the pullback of the cospan X — B + €
and seen as a category over B with the composition

proj. s
XXBQ:~——>Q:—>B;

such that the diagrams below are commutative:

XxpCxpe 22 yope X xp By g
IdXX'yg\L iﬂx i \ iﬂx
X x5 € ax X X

A double category € = B gives rise to a 2-monad
Cat/® - Cat/'B; X — X xp€C.

Actually, internal presheaves over € = B are precisely (strict) 2-algebras on
it. In particular, they form a 2-category, which we denote by PSh(¢€ = B).
The 2-morphisms in PSh(¢€ = B) are, by definition, natural transformations
a:H — K : X — Y over B such that the following two horizontal compositions
coincide:

HxId
Xxp€ laxid_ Yxg€—=sy
KxId
H
XxgC— s ¥ o Y
K

One can easily prove the following result.

Lemma 4.3.1. Let € =2 B be a double category such that the functors s,t: € =
B are the identity on objects. Then, the forgetful functor

PSh(C = B) — Cat/?
is locally fully faithful; i.e. for internal presheaves X and ), the functor
PSh(¢ = B)(X,Y) — Cat/5(x,)
is fully faithful.

Suppose we are given a group operad G and a G-symmetric multicategory M.
In view of categories of operators of M with regard to G, the pair (Dec¥, Kec9)
plays the fundamental role. We will write

Gg = Qkeco ypecs » B = Oraco » Gg = Qoo ypecs » Eg '= Qoo -
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In this section, we see M gives rise to internal presheaves over the double
categories Gg = Eg and Gg = Eg given in (4.2.1)) and Proposition 4.2.13] We
need some kinds of word calculus, and the following notations are convenient.

Notation. Let S be a set and @ = a7 ...a, a word in S; i.e. a; € S.

(1) If G is a crossed interval group, then for x € G,,, we write
.73*6 = Qz-1(1) - - Qg=1(n) -

Note that it coincides with the canonical left G,-action on S*" induced
by the map G,, — 2y — &,,.

(2) Suppose ¢ : (m)) — {n)) € V is an arbitrary morphism, and say ¢~ *{j} =
{ip << ik(,)} for each 1 < j < n. Then, we write
J

—»Lp:

j Qg ...

. Zk(k{;‘) .
J
Hence, the concatenated word @y ...a7 is a subword of the original .

Lemma 4.3.2. Let S be a set and d =aq ...a,, a word in S.

(1) Suppose we are given morphisms ¢ : (m)) — (n)) and ¥ : {(n) — (p)) in
V, and say
o sy = {7 < <7}

Then, we have

S P —p
A" = Gjs - U -

(2) Let G be a crossed interval group, and write the canonical map G, —
WY = (8, x Z/27) x L./]2Z in the form

y (o%ef, ..., el 0Y) .

Then, for every morphism ¢ : (m) — ((n) € V and every y € Gy,

(o ) = pr e
where B is the order-reversing permutation.

(3) Let G be a crossed interval group. Suppose we have two morphisms p, ¢’ :
{(m) — (n)) € V and two elements x,x' € Gp,. If two morphisms
[p, 2], [¢’, 2] in Eg coincide with each other, then, for each 1 < j <mn,

(@) = (@a);

Proof. The parts is obvious. On the other hand, the part follows from
the following characterization of the permutation on ((m)) associated with ¢*(y):

(i) the square below is commutative



(i) for each j € ((n)), the bijection
P it = () HyO)}

restricting the permutation ¢*(y) either preserves or reverses the order
depending on Y.

We show[(3)] Under the identification (k) = V({(1)), (k))), the data induces
maps

{(m) i (m) = (n)

/ (4.3.1)

() = m) S ()
It is observed that if [p, x] = [¢/, '], the two maps (4.3.1)) have the same inverse
image of (n) ={1,...,n} C (n >> where they agree Wlth each other. Hence, the
required equation (a: @)y = (v} a)f follows for each 1 < j < n. O

We begin the main construction. For a multicategory M, we define a cate-
gory M Eg as follows:

e objects are finite sequences @ = ay . .. a, of objects of M;

-,

o for@=ay...am and b = by ...b,, the hom-set (M 1 Eg)(d@,b) consists of
tuples (@; f1,..., fn; [2]) of
=@ (m) = {n) €V,
— [2] € Kecg\G(m) represented by z € G(m), and
— f; € M((z,@)7;b;) for each 1 < j < n (see|(3)|in Lemma and
Lemma |4.2.12));
e for morphisms (¢; f;[z]) : a1...a; = by ...by, and (¥; 7 [y]) 1 by ... by —
cq ... cCp, the composition is given by

— —

(3 35 )0 (s Fo ) = (9% 1(015 (097w (- D25 [ ()21

The composition is in fact associative; indeed, suppose we have another mor-
phism (x; h;[2]) : @— di ...d,, and consider the equation

(CeBsle o 33 [0D) o (i fi l2]) = (e i l2D) o (3.3 ) 0 (e B 2]))
(4.3.2)
In terms of the first and the third components of the tuples, the equation clearly
holds. If we put x~'{s} = {ji < --- < j$}, then, in view of Lemma each
term of the second component in the left hand side of is given by

3 (30t (o) (5 (2. )
=7 (’Y(hs;ngl(jf)a s 7gz*1(jﬁ)); (y*f)z)—l(]f) s (y*f_")qf—l(]i))
=7 (hs;v(gz—luf); 7 ) S R (AT (y*f),‘ffl(jﬁ)))

Clearly, the last term is precisely the one appearing as a component in the
left hand side of (4.3.2)), so that the composition is associative. Note that the
identity on the object a; ...a, € M 1Eg is the tuple

(ld« » da17 e ,idan; [enD .
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Example 4.3.3. In the case M = x is the terminal operad, the resulting category
% ! Eg is nothing but the category Eg itself.

We extend the constructions M — M1 Eg to 2-functors. If F': M — N be
a G-symmetric multifunctor, then we define a functor F9 : M{Eg — N1 Eg so
that

e for each objects a; ...a,, € MU1Eg, we put

FY9(ay...am) = F(a1)...Flay) ;

o for ﬁzal...am,gzbl...b,L € M Eg, define

-, -,

F9:  (MiEg)(a@,b) —  (NU1Eg)(F9(a), F9 (b))
(o5 fr,- o fusl2]) = (@ F(f1), -, F(fa)s[2]) -

The functoriality is easily verified. In addition, if o : ' — G : M — N is a
multinatural transformation of multinatural functors, then one can check that
the morphisms

ad = (idymy; Qays -+ Xy s €m) F9(ay...am) = G%ay...am)

aq...Qm

for ay ...a, € MIEg form a natural transformation o : F9 — G9. Combining
with Example [£.3.3] we obtain a 2-functor

()1 Eg : MultCat — Cat/® . (4.3.3)

We furthermore consider a quotient of the category M ! Eg. For two mor-
phisms

(05 frs- s fs[2])s (@5 f1, s foi @) rar . cam — by .. by € MQIEg

we write (@5 fi,..., fai[z]) ~ag (@5 f1,-. .5 fhi[2']) precisely when we have
[p,2] = [¢,2'] in Eg({m)),{n))) and f; = f; for each 1 < j < n. Note
that, thanks to in Lemma [4.3.2] u the first equation implies

M((z.@)750;) = M((2L@)¢:b;)

J )

so that the latter comparison makes sense. It is straightforward that the relation
~p. is a congruence on the category M1Eg. We denote by MEg the resulting
quotient category. For each morphism (g; f1,..., fa;[2]) of M1Eg, we write
[©; f1s-- -, fn, x] its image in M ZIEg It is easily verified that the assignment
M= M ZEg also extends to a 2-functor so that the functor M Eg — M2 ]Eg
forms a 2-natural transformation. More explicitly, a multifunctor F': M — N
induces a functor F9 : M ZEg — N Eg such that

e for each object @ = ay ...anm € M1Eg, F9(a@) = F(a1) ... F(anm);

e as for morphisms, we have

FOgs fr. farz)) = [0 F(f1), ... F(fn); ] -
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On the other hand, if o : F — G : M — N is a multinatural transformation,
we have a natural transformation a9 : F9 — GY with

agl...a = [id((m»;aala sy Qg em]

m

for each ay ...an, € M ZIEg. Observing the canonical identification *? I~Eg = IEg,
we obtain a 2-functor

(-)1Eg : MultCat — Cat/E . (4.3.4)

Lemma 4.3.4. Let M be a multicategory. Then, for every group operad G, the
square below is a pullback:

MIEg —= M1 Eg

|+

Eg —Eg

Proof. The result is straightforward from the definition of the category INEg. O

We now take G-symmetries into account and see that they give rise to internal
presheaf structures on M Eg (resp. of M IEg) over the double category
Gg = Eg (resp. on Gg = ]Eg) To simplify the notation, we define categories
MU1Gg and M Gg by the pullback squares

M1Gg — M1 Eg M1Gg — M1 Eg

T R R

(Grg %Eg @g—t>Eg

Hence, the required internal presheaf structures are functors
v: Mi1Gg - MU1Eg ’y:M?@g*)MZIEg, (4.3.5)

over Eg and IEg respectively which satisfy appropriate conditions. Since the
latter may be induced from the first, we mainly discuss M { Eg. Note that
the category M Gg is described explicitly as follows: for each objects @ =
ai...am,b=by...b, € M1Gg, the hom-set (M Gg)(d,b) consists of tuples

(90; fla s 7fn; [ }7 [ ]) such that
o [u] € Inrg \Decg and [z] € Kec\Gn;
o (o5 f1,ee oy fnilux]):d— b makes sense as a morphism in M Eg;
The composition is given by
(591, g5 [, W) o (@3 fa, -, fus [u], [2])
= (¥ 9(g15 () D)5 5191 () )Y 5 [0 (v)ug™ (1) 7 [e* (w)a])
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and the structure functor M Gg — Eg is an identity-on-object functor with

(M1Gg)(ar...am,b1...bp) — Eg({m), (n))
(sp;flw-'ﬂfn;[uL[x]) = (90’ [LL'D

For the construction of a internal presheaf structure, the key is a comparison of
the category M1 Gg with (M x G) 1 Eg (see the construction in Section [1.3]).

Notation. For a morphism ¢ : (m)) — (n) € V, and for each 1 < j < n,
suppose

1 . .
— < PN < » .
e {i} {Zl U )}
In this case, we set
—00 §=-—00,
7 QKN = ) s s Qi 1<s<k L (43)

0 s =00 .

Hence, the composition <p6](-“0) factors through the map (1)) — ((n)) correspond-
ing to the element j € ((n)).

Remark 4.3.5. The morphism 5§¢) defined above is characterized by the follow-
ing two properties:

(i) the composition cpéj(ﬁa) factors through the map (1)) — {(n)) corresponding
to the element j € ((n);

(ii) if ¢ is a morphism with the previous property, then there is a unique
morphism ¢’ such that ¢ = 5](-“9)1//.

Lemma 4.3.6. Let G be a crossed interval group. Then, for every morphism
@ : (m)) = (n)), the map

B RStE = Gy % X G5 @i (3177 (@), 60 ()

is a group homomorphism. Moreover, its kernel contains the subgroup Inrg -

G
RStC.

Proof. To see each map (55—“7)* : RStg — G is a group homomorphism, it
J
suffices to show 6(¥) is invariant under the left action of RStg. This follows from

the characterization in Remark The last assertion is straightforward. O

In the case G = G is a group operad, if ¢ = pp is the unique factorization
with p active and p inert, then there are canonical identifications

GP) x -+ x G(k)) = Decd = Decd .

Put § the unique section of p, then one can see the both squares in the diagram
below are commutative:

*

g —mM > g
Decq, I ——— Decﬂ

l g E (438)

RSt 275 G(k(P)) % - x GRS
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In other words, the composition of the left and the bottom arrows in (4.3.8)
induces the inverse of the map (4.1.9) in the case K = DecY.

Theorem 4.3.7. Let G be a group operad, and let M be a multicategory. Then,
the family of maps

-,

o (M1Gg)@b)  — (M x G) 1 Eg)(d@,b)
(@3 oo fos [l ) = (03 (10077 (@) (s 080 () [o])

ford=ay...am, b=by...b, € M1 Gg form an identity-on-objects functor
D MI1Gg = (M xG)1Eg .

Moreover, ® is an isomorphism of categories which is 2-natural with respect to
M € MultCat.

Proof. First notice that, by virtue of Lemmam for each class [u] € InrJ \Dec?,
the element 5 ( ) does not depend on the choice of the representative u €

Decg for every 1 < j < n. In particular, in view of Lemma m we may take
U of the form

u = y(emt2; e(_f))o,ul, U, e$)) e Dec C G(m) (4.3.9)

with u; € g(k§¢)), where e(fo)o = e - In this case, we have 5§‘p)*(u) = u; SO

that, for each morphism in M Gg of the form (¢; f1,..., fm; [ul], [2]), we have
(I)(QO, f17 v 7fm; [u]v [!E]) = (907 (f17u1)7 ceey (fmvum); [(E]) .

Now, for every morphism (¢; g1, ..., gn; [v], [y]) in M2Gg postcomposable with
(¢; f; [u], [x]) above, the explicit formula of the composition operation in M x G
and the formulas in Lemma [£.3.2] give the equation

(43 G [v], [y]) o @ (3 f3 [u), [])

= (ve"s (aalons 81" () (e DY), 90 (01" ) i) )
-+ (aalgn; 6 w)*(v)*(y*f) ) 1605 (); (@) ) 3 [ (v)a]

- (wy; (925 (@9 F31) 96 (0" @): () )

(Y903 ()< P96 (08" ): (9D)2) ) s 0" (9)al] ) -
(4.3.10)

The comparison of (4.3.10) with the formula (4.3.6) tells us that, in order to
have the functoriality of ®, we only have to verify the equation

0 @ g ()T =2 ) (40)}) (4.3.11)

for each 1 < j < n. By virtue of Lemma the left hand side of (4.3.11)
equals

(9V8570)" () - 5570 (9" ()ue™ (1)) (4.3.12)
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Notice that there is a unique active morphism ¢ : <(k§w“0y)>) — ((kﬁw)» which
makes the square below commute:

) 2 () — (1)
53(_wsay)l J/(;J(_w) l{j} . (4.3.13)

() ———(m) ——(n)

It turns out that each square in (4.3.13) forms a pullback square of (ordinary)
maps, so one has

(@) _ (") _ (9

b= ksﬁ”)(s) B ky%(é;w)(s))

foreach 1 < s < kéw). Thus, we obtain

(£677")" () = (8"} (v)
_ (W)= . (©) (¥)
= (6] (,U)’ eyfl((;.;w)(l))’ e eyfl((;;w)(k;w)))) (4314)

=6 (8" (0): (5.6}

where /%) = Chie)- On the other hand, in view of the presentation (4.3.9)), we

have
Yk * * — Y)x
(5;1/“{7 ) ((P (y)U(p (y) 1) = 63(71199 ) ('Yg(eerQ; e(ipo)o, uy_1(1)7 .o vuy—l(m)v egﬁ))>

_ ().
=g (ej 7uy71(5;¢)(1))7 o ,Uy71(5§w)(k§w>)))

=g (eﬁ-w); (y*ﬁ)}p)
(4.3.15)

Substituting (4.3.14)) and (4.3.15)) into (4.3.12), we obtain (4.3.11)), which implies

® is actually a functor.

The 2-naturality of ® immediately follows from definition. We verify ¢ is
an isomorphism of categories. Since it is the identity on objects, it suffices to
show @ is bijective on each hom-sets. This is actually a consequence of in
Lemma, O

Corollary 4.3.8. For every group operad G, the 2-functor (=) Eg admits a lift
depicted as the dashed arrow in the diagram below:

MultCatg - = > PSh(Gg = Eg)

forgetl iforget
(-)NEg /E

MultCat ——— Cat’™¢

Proof. In view of Theorem [4.3.7] each G-symmetric multicategory M admits a
canonical functor

(MUEg) xg, Gg = M1 Gg

|

MxGNEg - M1Eg . (4.3.16)
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Lemma [£.3.6] and the direct computation shows that it is in fact a structure of
an internal presheaf over the double category Gg = Eg. Moreover, since the
isomorphism ® is 2-natural, the structure functor is also 2-natural with
respect to G-symmetric multicategories M. Therefore, we obtain the result. [

We finally obtain an analogues on quotients.

Theorem 4.3.9. Let G be a group operad, and let M be a multicategory. Then,
there is an isomorphism ® : M1Gg = (M x G) L Eg which is the identity on
objects and, on each hom-set, described as

Bl fro s Fusn ) = [ (1607 W), (6 @)ia] - (437)

Moreover, ® is a 2-natural transformation with respect to M € MultCat such
that the diagram below is commutative:

M21Gg —= (M x G) 1 Eg

l |

M1Gg —= (M x G) 1 Eg

Proof. We have the following commutative diagram of functors:

M Gg M Eg
M Gg M Eg
(4.3.18)
Gg — > Eg

A, 7

Gg ——— g

Note that, Lemmas and assert that the bottom and the right faces,
as well as the front and the back, are pullbacks. Hence, the “associativity
property” of pullbacks (e.g. see Proposition 2.5.9 in [8]) implies the other faces
are also pullbacks. In particular, we obtain isomorphisms of categories:

(MGg) g, Bg = MiGrrs — (MG)Eg & (MxG)Eg) xz, Bg (4.3.19)

The explicit computation shows that the isomorphism is induced by the
identity on Eg and an identity-on-object functor d: M Z@Q — (M % G) Z]Eg
described as . Moreover, since the functor Eg — Eg is full and the
identity on objects, the pullback along it preserves and reflects fully-faithfulness.
Thus, we conclude @ is an isomorphism of categories. The 2-naturality and the
compatibility with ® are obvious. O

Corollary 4.3.10. For every group operad G, the 2-functor (—) ZIEQ admits a
lift depicted as the dashed arrow in the diagram below:

MultCatg — — > PSh(Gg = Eg)
forget forget

MultCat — "¢ - Cat/Ee
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4.4 CoCartesian lifting properties

We investigate the image of the functor MultCatg — PSh(Gg = Eg) given
in Corollary

Definition. For a crossed interval group G, a morphism in IEG is called active
(resp. inert) if it is of the form [u,z] for p : (m)) — ((n)) € V active (resp.
inert) and arbitrary x € G,.

In particular, the functor V — ]ITZG preserves active morphisms and inert
morphisms respectively. Throughout the section, the following inert morphisms
in V play important roles: for each 1 <4 < n, we define a morphism p; : {(n)) —

(1) by

—o0 j<i,
pi(j) =41 J=1t,
o0 ji>.

By abuse of notation, we use the same notation p; to denote its image in ]Eg.

Proposition 4.4.1. Let G be a group operad, and let M be a multicategory.
Then, the canonical functor ppq : MUEg — Eg satisfies the following properties.

(1) Every inert morphism [p,z] : (m)) — {(n)) € Eg admits pq-coCartesian
lifts along any object in the fiber (M UEg)my = pai{(m)}. More pre-
cisely, if 6 : (n)) — ((m)) is the section of p, then for each @=a; ...an €
(MUEgG)ny, the morphism

o, 2]z = lp; id“mflw(l»’ T ’idarlwn));x} (4.4.1)

D1 Q7 Gg=1(5(1)) - - - Gp=1(5(n))
is pp-coCartesian.

(2) For an object @ =ay...a, € (M 21~Eg)«n», choose a paq-coCartesian lift
p; 1 d— a;- of p; along @ for each 1 < i < n. Then, for every object

beM ZIEg, the square below is a pullback:

((P1) w5 (Pn))

(M 1Eg)(b, @) [T (MEg) (b, af)
pMJ/ < lpM . (4.4.2)

Bg(paa(B), () Ll B (B), (1) %

(3) For each 1 < i < n, take a functor (p;); : (M Eg)«n» — (M ZIEg)«l»
together with a natural transformation p; : @ — (p; 1@ which is (compo-
nentwisely) p-coCartesian. Then the functor

((p1)rs - (o)1) = (MUEg) gy — (M1 Eg) Ty

is an equivalence of categories:
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Remark 4.4.2. The condition actually does not depend on the choice of
coCartesian lifts p; of p;. Indeed, if one choose another coCartesian lift p} :
d@ — a}, then the uniqueness of the coCartesian lifts implies there is a unique
isomorphism a; = af so that p; factors through p; followed by the isomorphism.
Moreover, it also gives rise to an isomorphism of squares . Thus, if
satisfied for one family of coCartesian lifts, then it is also for the other.

A similar argument shows that the condition does not depend on the
choice of the functors (p;).

Proof of Proposition[{.4.1 In order to verify it clearly suffices to consider
only the case x € Gy, is the unit. For an inert morphism p : {(m)) — (n)) € V,
set 0 to be the unique section, and suppose we have a morphism in M ZIE‘g of
the form

[op: fis - 1" ()] a1 am — b

We show it uniquely factors through the morphism

ﬁd‘ = [p, ida5(1) PR 7ida5(n) 5 €m] 1a Cl5(1) e aé(n)

Thanks to the unique factorization in V, we have

[op; f1,- - fi; 0" ()] =[5 frs -5 fr39) 0 pa (4.4.3)

so there in fact exists a factorization. Moreover, since the morphism [¢; f1, ..., fi; Y]
is uniquely determined by the underlying morphism [p, y] in Eg and the tuple
(f1,---, f1), which is determined by the left hand side. This implies the factor-
ization is unique, so pz is pag-coCartesian.

We next see For an object @ = ay...a, € (M INEg)«n», in view of
Remark we may assume the lift p; = (p;)z is the one given in the part
Suppose b = by ...by, € M1Eg, and [p, ] : (m)) — (n)) € Eg. Then, if
one has a morphism of the form

then f; € M((2,0)?;a;). On the other hand, we have (,b)%¢ = (2.b)? so that
(4.4.4) makes sense if and only if we have morphisms

[pisps fis 2] : b — a; (4.4.5)

for 1 < i < n. When we fix a morphism [p, z] in Eg, the two data and
4.4.5)) clearly correspond in one-to-one to each other. It follows that the square
4.4.2) is a pullback.

We finally show Note that, in view of Example every morphism
in (M ZIEg)«n» is of the form

[idny; f1, s fasen] a1 an — b1 by

with f; € M(a;;b;) = M(a;,b;), here M is the underlying category of M. In
other words, we have a canonical isomorphism

(MUEg) ny = M™™ = (MUEg) (T (4.4.6)
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Hence, it suffices to show the functor (p;); : (MZEQ)«n» — (MZIEQ)«l» coincides
with the projection under the isomorphism (4.4.6)). If (p;): is the one induced by
the paq- coCartesian lifts in the part . ) this follows from the correspondence of

(#.4.4) to (4.4.5) and the unique factorization (4.4.3). In view of Remark [.4.2] -

this completes the proof.
We define a 2-subcategory Oper/g C Cat/ Eg as follows:

e objects of Oper’g are those categories C over Eg that satisfy three prop-
erties in Proposition
e for C, D~€ Oper'g, the hom-category Operg(C, D) is the full subcategory

of Cat/® spanned by functors C — D over IEg which preserve coCartesian
lifts of inert morphisms in Eg.

Furthermore, we put
[
Oper3® := PSh(Gg = Eg) x

whose objects are called categories of algebmz'c G-operators, and whose mor-
phisms maps of algebraic G-operators. Thanks to Corollary £.3.10] and Propo—
sition [4.4.1} the 2-functor (— ) ! Eg induces a 2-functor MultCatg — Oper?s,

i

which we also denote by (—) ZIEg by abuse of notation. Thanks to Lemma

the forgetful functor

Operalg

— Opery
is locally fully faithful.

Ezxample 4.4.3. As we have * IEg > Eg, the identity functor Eg — Eg exhibits
Eg as a category of algebraic G-operators.

Ezxample 4.4.4. Recall that every group operad G is itself a G-symmetric mul-
ticategory with the multiplication map G x G — G (see Proposition [3.1.8). On
the other hand, in view of Theorem [.3.9] we have isomorphisms

@g%*?@g%(*xg)ZEQQQZEg.

It follows that the functor s : @g — ]Eg exhibits @rg as a category of algebraic
G-operators.

It turns out that there are free G-symmetrizations of objects in Oper’g.
Indeed, we have the following property on the free construction.

Lemma 4.4.5. For every C € Oper’g, the functor

~ Idx. ~
c=cC X]Eg Eg — C Xﬁg (Grg (4.4.7)
preserves coCartesian lifts of inert morphisms.
Proof. Note that the category C XEg @g is described as follows:

e objects are the same as C;

o for X,Y € C, the hom-set (C x_ Gg)(X,Y) consists of tuples [¢; f;u, z]

so that [p,u, ] : ¢(X) = ¢(Y) € Gg makes sense and f : X = Y € C
with ¢(f) = [, uzl;
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e the composition is given by
[Wsg:0,9) 0 s fru,a] = [We¥; g f1 0" (vy)up™(y) ™, 0" (y)a] 5
e the structure functor C X&g @g — INEg is given by
[p; fiu, 2] = [, 2] .

Suppose [p, z] : {(m)) — ((n)) € Eg is an inert morphism, and take a coCartesian
lift

pr]x: X =X eC
along X € C. The functor (4.4.7)) sends it to

[o; [p 2] xie.2] : X = X' €C xz_ Gg . (4.4.8)

To see (4.4.8) is coCartesian, consider a morphism in C X, Gg of the form

[op; fyu,z] : X = Y. In view of |(3)|in Lemma [4.1.12] there is a unique element
u € Dec{ such that [u] = [p*(a)] € Inr \Dec Which implies

[pp, uz] = [p,u] o [p,x] .

On the other hand, since [p, z] is coCartesian, there is a unique factorization
f=folpz]y with f': X" =Y covering [p, @]. One obtains

[op; fru,x] = [p; f/1 20, €] o [p; [p, 2] i€, @] (4.4.9)

Since the morphisms f/ and @ are uniquely determined by the other data, the

factorization (4.4.9)) is unique. It follows that the morphism (4.4.8]) is coCarte-

sian. O

Proposition 4.4.6. The free 2-functor
Cat/® — PSh(Gg = Eg) ; €+ Cxz, Gg

associated to the 2-monad of internal presheaves over the double category G =
Eg restricts to a 2-functor

Oper; — Opera'Ig )
Proof. Tt clearly suffices to show the composition

(=) %=

~ Gg
Oper), < Cat/* ——° ', PSh(Gg = Eg) %% Cat/®

factors through the subcategory Oper’g at the end. We have to verify it regard-
ing objects and 1-morphisms.
Let C € Operg with ¢ : C — ]Eg We verify the three conditions in Propo-

sition for C xg_ Gg Since the unit C — C XEg Gg is the identity on

objects, Lemma [4.4.5[implies C Xgg (Gg admits all the coCartesian lifts of inert

morphisms. On the other hand, according to the description of C X&g @g in the
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proof of Lemma one easily verify the property in Proposition m
To see the property |(3), observe that the category (Gg)ny consists of automor-

phisms on {(n)) in Gg of the form
[id((n»a u, en]

for u € Dec?.

iy It turns out that such morphisms vanished by the functor

t: @g — [Eg, so we obtain isomorphisms

(€ xg, Gg)ny = C Xz, (Gg)gny = Ciny * (Gg) (ny

Under the identification, it is easily verified that, for each inert morphism p; :
{(n)) — (1)), the induced functor

(o)1 (C x5, Gg)my = (C x5, Gg)quy

coincides with the one induced by

(p)1: Cmy = Cay > (pi)r 2 (Gg)my = (Gg)y -

Thus, the functor

((p1)1s- - (o)) : (€ x5, Gg)my = (C x5, o)1)

is an equivalence. _
As for 1-morphisms, suppose F' : C — D is a functor over Eg for C,D €
Oper’g. We have the following commutative square:

[ L))

ni ln . (4.4.10)

~ FxId ~
C Xﬁg (Gg ——7D XEQ Gg

In view of Lemma all the coCartesian lifts of inert morphisms in C Xfg @g

and D XEg @g are isomorphic to the images of ones in C and in D respectively

by the vertical functors. It follows that the bottom arrow in (4.4.10)) preserves
coCartesian lifts of inert morphisms as soon as so does the top. The required
result now follows immediately. O

Corollary 4.4.7. Let G be a group operad, and let C be a category of algebraic
G-operators. Then, the functor

A :C Xfg Gg —C
in the internal presheaf structure on C is a map of algebraic G-operators.

Proof. By virtue of Lemma and Proposition 4c is a 1-morphism in
the 2-category Oper’g. In addition, it is straightforward from the definition of
internal presheaves that 4c is a map of internal presheaves. Combining them,
one obtains the result. O
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4.5 The equivalence of notions

We continue the discussion on the 2-functor (~) Eg : MultCatg — Operaglg
given in Section (precisely Corollary [4.3.10). The goal of this section is to
prove the following result.

Theorem 4.5.1. Let G be a group operad. Then, the 2-functor
()1 Eg : MultCatg — OperagIg
s a biequivalence of 2-categories. In other words, the following hold.

(1) It is essentially fully faithful; i.e. for every pair (M, N) of G-symmetric
multicategories, the functor

MultCatg(M,N) — Operaglg(/\/l VEg, N 1 Eg)

Fa — F9,a9 (4.5.1)

is an equivalence of categories.

(2) It is essentially surjective; i.e. for every category of algebraic G-operators
C, there is a G-symmetric multicategory M together with an equivalence
M1Eg ~C in Operaglg,

Remark 4.5.2. Tt is known that a pseudofunctor X — L between 2-categories
admits a pseudoinverse, i.e. a pseudofunctor £ — K which is the inverse up
to natural isomorphisms, provided it is essentially fully faithful and essentially
surjective in the sense in Theorem The reader can find a sketch in Section
3.2 in [49].

In order to prove Theorem we need to observe that coCartesian lifts
of inert morphisms in M { Eg are preserved coherently by arbitrary maps of
algebraic G-operators. To simplify the notation, we use the following conven-
tion: let [p,x] : (m) — ((n)) € Eg be an inert morphism. Although we may

denote by [p, 2]y an arbitrary coCartesian lift p along an object X in a general
category of algebraic G-operators C, we always assume [p, z|; is the one in |(1)
in Proposition in the special case C = M Eg. In particular, we write

—_—

pa = [peml; , Tg:=lid,z];.
Hence, if § is the section of p, the induced functor
pr s (MUEG) gmy — (M 2Eg)(ny
coincides with the canonical projection so that p(ai ...am) = asq) - - - as(n)-

Lemma 4.5.3. Let G be a group operad, and let M and N be G-symmetric
multicategories. Suppose H : MUEg — NEg is a map of algebraic G-operators.
Then, for each @ = ay . ..am,m and each 1 < i < m, there is a unique isomorphism

Ao Hai) = (pihH(@) € (M1 Eg) iy =M
such that (p;) gy = Aa,s © H((pi)a). Moreover, the family

{Aa = [i[dgmp; Ad,1;- -5 Agmiem] |G =a1...am € M ZEQ}
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enjoys the property that, for every inert morphism [p,z] : (m) — (n) € Eg,
say ¢ is the section of p, and for each @ = ay ...a, € MU1Eg, the square below
commutes in M1 Eg:

A
H(ay)...H(am) H(ay...anm)
wmal)mmam)l iH(@a) (4.5.2)
Py

H(az-1501)) - - H(ag-16(n)) — H(az-151) - - - @z—15(n))

Proof. Since the functor H : M IEg — N I~Eg preserves coCartesian lifts of
inert morphisms, the morphism H((p;)z) : H(@) — H(a;) is coCartesian. Thus,
the first statement is obvious. As for the second, it turns out that we only have
to verify the commutativity of for inert morphisms of the forms [p, e,,]
and [id, ]. In the first case, for each 1 < j < n, we have

(Pi)m(pa) © H(pa) o Aa =

py@,j © (pé(j))H(al)...H(am)

H(pga) ° Apga © Z)\H(al)...H(am) .

In view of in Proposition , this implies H(pz)A\z = )\P!dﬁH(al)...H(am)’
and (4.5.2) is commutative.

It remains to show the commutativity of (4.5.2)) in the case p is the identity.
Similarly to the case above, we have

(i) H(a.a) © H(Za) 0 Aa = Aa.aj 0 H((Dj)w.a 0 Ta) 0 Aa (453

= As.a,j o H([pj, z]z) o Aa -

In view of , setting J; to be the section of p; for each 1 < j < m, we have

(05 2] = [Pe-1()s P2=1(j) 001 (5 ()]
= lidgay, 931y (@)] © Pa-15)

= Pa=1(j)
as morphisms in Eg since Ia:?d«l» = Kecigd<<1>> = G(1). Substituting it to (4.5.3)),
we get
(P) B (z.a) © H(Ta) o Ag = As.aj o H((Pr-1())a) © Aa
= )\m*&',] © )‘;;71(]') o (ﬁx_l(j))H(ﬁ) ° Az
= Az.,j © (Pe=1()) H(ar)...H(am)
= )‘z*ﬁ,j o [pja'r]H(al)...H(am)

= (Pi) H(w.d) © A2 © Th(ay)...H(ap) -

Hence, in Proposition again implies the commutativity of (4.5.2). O
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On the other hand, on the construction of a G-symmetric multicategories
from a category of algebraic G-operators, we need to observe how coCartesian
lifts of inert morphisms determine composition operations. Notice that, if we
denote by w, : {(n) — (1)) the active morphism with p,(+o0) = +oo and
pn(i) = 1 for 1 < i < n, then, for a multicategory M, the multihom-set
M(ay .. .an;a) is recovered from the category M1 Eg as

Mlay ... an;a) = (MZEg)(al...an,a)#n )

here the right hand side is the set of morphisms a; ...a, — a in M ZEg covering
L

Notation. Given active morphisms vy : (k;)) — (l;)) € V for 1 < i < n, we
define an active morphism vy ¢ -+ ovy : (k1 + -+ kp) = (L +---+1,) EV
to be the map

(k1 + -+ kn) = {—00} % (k1) x - - * (kp) * {00}
ST ook () e (L) {00} = (e L)

here « is the join of ordered sets and all maps are order-preserving. In particular,
we write

Hig 7= By © 700 O Lk,

On the other hand, we set pEE) s (k1 + -+ k) — (ki) € V to be the inert
morphism with

. —o ] S Zs<i kS b
), . ‘
ROEREE Disciks Dacibs <J S Xciks (4.5.4)
00 j> ngi ks .

We will identify the morphisms above with their images in IEg.

Using the notation above, one can immediately see

(Vv o-ovivy) = (oo )o(vro--ov), (4.5.5)

PP oo ov)=vop® (4.5.6)

for active morphisms v; : (k) — (&) and v/ : (L) — (ms) with k =
(Bt ko) and 1= (11, ..., L)

Lemma 4.5.4. Let C € Oper'g, and suppose we are given active morphisms
vt (k) = (li) € V for1 <i<mn. Putk = (k1,....,kn) and 1 = (l1,...,1,),
and suppose in addition (ﬁgg))x : X = X; and (ﬁgf))y :Y =Y, are coCartesian
morphisms in C covering p(E) and p@

5 ;. respectively. Then, there is a unique
bijection

n

w HC(XZ7 sz)ul — C(X7 Y)V1<>~~<>1/n

=1

such that (f)z(-f))y ow(fi,...,fn) = fio (ﬁgg)), where C(V,W), is the set of
morphisms V. — W € C covering v. Moreover, if other active morphisms
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Vi (1) — (my) € V and coCartesian morphisms (pU"™) g : Z — Z; € C
covering p\™ are given for 1 <i < n, with m = (mq,...,my), then the square
below is commutative:

n

[[cvi 2. x C(Xi, Vi), [Tcxi i,
=1 =1

wxwl J/w . (4.5.7)

I1comp

comp

C(K Z)V{omou; X C(X7 Y)V1<>~~-<>Vn

C(X> Z)(uiul)o---o(u;’yn)

Proof. The existence of @ immediately follows from the equation p;u; = pug, pgk)

and the universal property of the coCartesian morphisms. The uniqueness is
guaranteed by the property |(2)| of objects of Oper’g. To see the last statement,
take morphisms f; : X; — Y; and g; : Y; — Z; covering v; and v} respectively
for each 1 < i < n. Then, we have

m I
(™) z 091 gn) 0B (frr e fu) = 90 (B )y 0@ fry- s fu)
=gifio (3M)x |
so the uniqueness of w implies
w(gifis-- s gnfn) =w@(g1,- -5 gn) 0@ (f1, -, fn) -
Hence, the commutativity of (4.5.7) follows. O

Lemma 4.5.5. Let C be a category of algebraic G-operators, and let X € Cypy
is an object together with coCartesian morphisms

(ﬁz)XX%Xz

covering the inert morphism p; : {m) — (1)) € V for 1 <i < m. For an inert
morphism [p,x] : (n) — (n)) € Eg, say d is the section of p in V, suppose we
are given an object X' € Cyyy together with coCartesian morphisms

(P5)xr = X' = Xo-1(5(n))

covering the inert morphism p; : {(n) — (1)) for 1 < j < n. Then, there is a

unique isomorphism [p,x]y : X — X' € C covering the morphism [p, ] which
makes the diagram

—

X [Pvm]x X,
(4.5.8)
(ﬁxfl(a(j)))x (ﬁj)x’
Xe=1(5(7))

—

commutes for each 1 < j < mn. Moreover, [p,x]y is coCartesian.

Proof. According to the computation in Example [£.2.8] we have

pj o p:x] = [ps(s)» ] = pa-1(5(5))
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so that the first statement directly follows from the property of categories of
algebraic G-operators. To prove the last, take coCartesian lifts [p, z]y : X — X"
of [p,z] along X and (pj)x» : X" — X} of p; along X" for 1 < j < n.
The computation above shows the composition (p;)x» o [p, ]’y is a coCartesian

lift of py-1(5(j)), so the uniqueness of coCartesian lifts enables us to assume
X' = Xy-1(5(5)) and the following diagram commutes:

X Taly P
. (4.5.9)
(ﬁl.flw(j)))X (ﬁj)X”
Xo-1(50))

We have two cones in C below

{(B)xr: X' = Xomas) Yoy

n

{(P)xr = X" = Xoma6Gn by
both of which consist of coCartesian morphisms and lie over the cone
{pj « (n) = (L)},
in IEg. Then, the property of categories of algebraic G-operators implies
there is a unique isomorphism 6 : X" — X' € Cyyy such that (p;)x/0 = (pj)x.
In view of the uniqueness of the morphism [p, z] i, we obtain

— —
!’

00 fpaly = [p.al .

In particular, [p,z] is isomorphic to a coCartesian morphism, so it is itself

coCartesian. O
When we endow a G-symmetric structure, it is good to have transfer.

Lemma 4.5.6. Let G be a group operad. Suppose we are given a multicategory
M and a category of algebraic G-operators C together with an equivalence

H:MZEg:)C

in the 2-category Oper'g, Then, there is a unique G-symmetric structure on M
which makes H into an equivalence in Operaglg.

Proof. For each D € Operg with ¢/ : D — ]Eg, for X,Y € D, and for [p,z] :

¢(X) = ¢ (Y) € Eg, we write D(X,Y) >.z] the set of morphisms of D lying
over [y, x]. Hence, in view of Theorem we have canonical bijections

M(ay...an;a) = (MUEg)(a; . e, Q)

(4.5.10)
C(H(ay...an), H(a)),, -

R ] =
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for objects a,a; € M. On the other hand, since @g — Eg is full and the identity
on objects, the induced functor Hg_ : M1Gg — C Xfig Gg is also an equivalence

in Oper'g in view of Proposition Thus, we also have bijections

MxG)(ay...an;a)= (Mlég)(al G, Q)

e, ) (4.5.11)
2 (€ x5, C)(Hlan 00, H(@), -

Note that the internal presheaf structure 4 : C X&g @g — C is the identity on
objects; indeed, the following diagram commutes:

=~ Idxe ~
C X]Eg Eg ——C X]Eg Gg

. (4.5.12)
\ A

Combining with the isomorphisms in (4.5.10) and (4.5.11)), we now obtain a
map

Ap (M xG)(ar-..an;a) = (C x5, Gg)(H(ar .. .an), H(a)),

n

. (4.5.13)
— C(H(ay...an),H(a)),, =M(ar...an;a) .

We assert that the map (4.5.13)) gives a G-symmetric structure on M. Notice
that, the composition operation in M is recovered from C as follows: for each

a,a; € Ob M and @ = agi) e aé?7 the composition operation is given by

M(ay ...ap;a) X HM(&'(i);ai)
i=1

C(H(ay...an), H(a)),, x [[C(H@"), H(a)),u,
' i=1 (4.5.14)
S C(H - an), H(@)), x CH@EY ...a™), Hlar ... a)),

k

1

comp.

—— C(H (@Y ...a™), H(a))
~ M@ ... @™ a),

where w is the bijection in Lemma with respect to the image by H of the
standard coCartesian lifts

Hkyt-tkn

(ﬁi)a tad—a;, (Z)\gk))au)ma(n) : 6(1) ce d(n) — d(i) eM Z]EQ .
Similarly, the composition in M x G is also recovered from C X&g @g. Moreover,
thanks to the choice of the coCartesian lifts of p; and pz(-k), the square below is

commutative:

1=

wl lw

- = —(n — Ac = —(n —
(c Xy Gg)(H (@M ...a ))7H(a))uE —=C(H(aW...a )),H(a))%

kg

[T, (€ x5, Co)(H(@D), H(a:)),, —— =TT, C(H (@), H(ay),
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This together with the functoriality of 4c implies that the map actually
defines a multifunctor 4 : M x G — M. It furthermore turns out that 4
is actually a G-symmetric structure on M; the unitality and the associativity
follow from the corresponding axioms for the internal presheaf structure on C.

Finally, we see H respects the internal presheaf structures over Gg = Eg.
In view of Theorem and the property of categories of algebraic G-
symmetric operators, it suffices to show that, for each morphism [p; f1,. .., fn;u, 2] :
d'%l_)’:bl...bn iHMZIEg,We have

H((57)5) 0 H(lgs A (1,017 (w)), - .- Apa (£, 08 (w)); 7)) (4.5.15)
3

= H((p;) )OﬂcH Gesfry o faiu, 2])

for each 1 < j < n. Let ¢ = up be the factorization with p active and p inert,
$0((3)|in Lemma [4.1.12| allows us to assume u=p*(u) with @ € Decg If we put
W = pii;, then the left hand side of ( is computed as

H((p));) oH([so;Mfl,ai@*( D), At (fny 890% (u)); 2])
= H([jwy; A5, 69 @): e]) 0 HGE [py 2) (4.5.16)
= AcH, (y: £33 89 (@), ) o H(PP [p,2],)

On the other hand, according to (4.5.12)), for every standard coCartesian lift

—

[0, '] of an inert morphism in M Eg, one has

o — —

H([p',2') = AcHg ([0, 2"])

here we identify [p/’,\m’] with its image in M2 IEg using Lemma m Thus, the
right hand side of (4.5.15) is given by

H((5))g) 0 AcHz (3 fiv- - fusu, )
= AcHg_(pjzo g f1,--- o failise] 0 [0, ],) (4.5.17)
= AcHz_([ney: £330 @), €)) 0 H [p,al,) -

Now, (4.5.16]) and (4.5. 17|) give rise tot the equation (4.5.15), and it shows H is
a 1-morphism in Oper . The uniqueness is obvious by construction. O

Proof of Theorem[{.5.1l In order to show we construct an inverse © of
(4.5.1). Fix G-symmetric multicategories M and N. Suppose H : M1 Eg —
N Eg is a map of algebraic G-operators, and take the family

{A&' = [ld, )‘55,1’ sy )\E,m; em]}ﬁ:al...a,,L

of morphisms in N Eg as in Lemma Note that H induces a functor
H : M — N between underlying categories via the restriction to the fibers over
(1) € Eg. On the other hand, if f € M(a;b) is a multimorphism, we can take
a unique multimorphism H°(f) € N'(H(a); H(b)) so that

H([ptm; f5em]) = [m; H(f); €m] -
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We define a multifunctor ©(H) : M — N as follows: for each a € ObM,
we set O(H)(a) := H(a). For each @ = a; .. .a,, and each b, define
O(H): M(a;b) - N(H(ay)...H(am); H(D))
[ awH(f) Az, Aam)
Since A,1 is the identity for a € M, ©(H) preserves the identities, so we show
the multifunctoriality For fi € M(ay @ a,(c), i) for 1 < i <'m, thanks to the
commutative square , we have
(Pi) @y o H([pg: fr,- -, fmi€]) © Agar _aom
= Xai o H((pi)a o [p fis-- -5 fmi€]) © Mgy aom)
= Azi o H([pk; fisel o (5 a..aem) © Aacwy o
= Az,i © [k, H(fi)i€] 0 Agay o (ﬁgk))H(au))_.H(g(m))
= Aai © [k, s O(H)(fi); ]
= (Pi) (@) © Aa o [ug: O(H)(f1), -, O(H)(fm)s €],

which, by virtue of the property in Proposition [4.4.1} implies the square
below is commutative:

A1) | g(m)
B

H@Y)...H@).. . H(a{™) H(@m ...am)

m

[H;};@(H)(fl)a-“ve(H)(fm)?e]l iH([UIE;fla-vam?e])

H(ay)...H(am)

H(ay...am)
(4.5.18)
Therefore we obtain
[Hder 410 s YN (O(H) () O(H) (f1)5 -, O
= [m; O(H)(f); €] o [pg; ( )(f1),....©(H
= [tm; H°(f); €] 0 Az o [ug; O(H)(f1), .-, O(H)(fim); €]
ZH([Mm§f;€]O[limfhn-»fm, ])O)uz(l),..a(m)
= H([pthy+ ks YM (5 f15 5 fm)i€] 0 Agayaom)
= [yt ootk s H (VM (f5 f15 -+ fm))i €] © Az aom)
= [1ky 4tk s OCH) (Y (f5 frs -+ o5 fm))s €]

and the multifunctoriality of ©(H) follows. Furthermore, ©(H) : M — N is
G-symmetric. To see this, notice that, for f € M(z.d,b), we have

H ([t f32]) = [pams H(f); €] 0 H(Za)
= [um; H°(f); €] 0 Ap,a 0 Tr(a) oA !
= [pm; OCH)(f); 2] 0 A
= [um;w\/ (@(H)(f) Aar 1(1)7"'7)‘d,w_1(m)) ;x} .

It follows that, for the induced functor Hg : M1 Gg — N1 Gg, we have

He([pm; 33, em]) = [um;’w (9( (GRS l(m));x,em] :
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Since H is a map of internal presheaves, we obtain
H((um; 175 em]) = [smi v (OUD AL 2y ATE 1) 3€m]
= [um;w (G(H)(f)”;kg}w-,)\;m) ;em}
= [1m; O(H) ()75 em] 0 A7
and so O(H)(f*) =O(H)(f)*.

We extend © to an actual functor
O: Operalg(/\/l \Eg, N 1Eg) — MultCatg (M, N)

as follows: note that, 1n view of Lemma [4.3.1] for 1-morphisms H,K : M}
Eg — M Eg € Operg , & 2-morphism ¢ : H — K is nothing but a natural

transformation over Eg. We set

O() :={8a: H(a) = K(a)},enq - (4.5.19)
To see (4.5.19)) forms a multinatural transformation ©@(H) — ©(K), notice that,
for each d = a; ...a, € M1Eg, the naturality of £ implies the square

H(ar...an) —2> K(a ... ay)

H((ﬁi)&)l \LK((ZLL)E)

H(a;) _f K (a;)

is commutative for each 1 < i < n. Computing the compositions, one obtains

§a = )\éK) ° [id;gau o5 8ans en} o )‘(H) !
where A7) and A®) are the ones in Lemma for functors H and K respec-
tively. Then, the multinaturality of is straightforward.

We verify O is actually an inverse to the functor . fF: M—=Nisa
G-symmetric multifunctor, then the G-symmetric multifunctor G(ﬁ 9) is exactly
F itself since Az is trivial in this case. On the other hand, in view of

—~—

and (£.5.18), the family A = {\z}5 forms a natural isomorphism ©(H) = H.
The uniqueness of A implies it is natural with respect to H. Hence, (4.5.1) is
an equivalence of categories, and we have finished the proof of the par
Finally, we show the part Let ¢ : C — Eg be a category of algebraic
G-operators. By virtue of Lemma in order to see C lies in the essential
image of (—) 1 Eg, it sufﬁces to show there is a multicategory M together with

an equivalence M Eg = C in the 2- category Operg For each finite word
W =W;...W, of objects in C with, say, ¢(W;) = (k;)), the property.of cat-

egories of algebraic G-operators allows us to take an object @ (W) € Cyr,4...4k,)
together with coCartesian morphisms

) - o (W) = W,

covering the inert morphism p( o ((k +---+kp)) — (ki) € V. In the following
argument, we fix such data for each W. Note that the coincidence of the symbol
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w here and in Lemma is intentional; for V =Vi...V, with V; € C and
q(V;) = {(I;)), and for active morphisms v; : {(k;)) — (;)) € V, we have a map

n

@ [[CWi, Vi)o, = Cl@Wr.. . W), @(Vi .. Va)someon,

i=1

so that . .
B 0w fry s fu) = fio (B)yp -

Put C := Cy1y. Note that, for X@ = Xfi) e X,gz) with XJ(.i) ecC, Lemmam
asserts that there is a unique isomorphism

0 w(@XW) .. w(X™)2m(XD . XM™) e Cpppirny

which makes the square below commutes:

@(@(XW).. m(X™) —Ls m(XD Xm)
ﬁ@i \Lﬁk1+"‘+ki1+1
w(XD) l x

J

The property m also implies that, for morphisms fj@ : XJ@ — Yj(i) € C for
1<i<nandl1<j<k,, the following square is also commutative:

w(@(XD), ..., w(X™)) . w(XW . Xn)

w(w(ﬂ))w..,w(f(")))l lm Oy (45.20)
w(w(¥W), ... o ™)) —Ls (YO Ym)

In addition, the uniqueness of 6 guarantees that it makes the diagram below
commute:

w(w(XD  XEr)y | g(Xrn)))

—

S(XOD | Fr) | Four)
(4.5.21)
We now define a multicategory M¢ so that

e objects are those in C;

o for X, X1,...,X,, € C, we set

Me(Xy.. . Xy X) i =C(w( X1 ... Xon), X) o 5
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e the composition is given by

v iMe(Xy.. X X) % HMC(X(i);Xi)
i=1
n

C(@(X1... Xn), X)u, x [[C(@(XD), X)),

12

idxwo

S C(w(Xy e X)), X,
x C(w(@(XM) .. w(X™), (X ... X0))pu.

B
comp.

— C(w(w(XD) .. w(XM™)), X)

T e(w(RD L XY, X)

Hkytetkn

Hiq+-+Ekpn

in other words, we have
’Y(fvflavfn) :fow(fl,,,,’fn)0071 .

The associativity of the composition is verified as follows: take morphisms f €
Me(X1... X X), fi € Me(X{" ... X7 X5), and f17 € Me(X0); X17) for
1<i<nandl<j<k;. Then, thanks to the commutative squares (4.5.7),
(4.5.20), and (4.5.21]), we have

’7(f§’7(f1§ 1(1),-.., lgi))f"?r}/(fn; 1(”)77f]5:)))
= fow(fiow( 1(1),,._’ ;E}))0971,...,fnow( 1(n)’.”’ ’5:))0971)0971
= fow(fi,. -y fn)

ow(@(f, . S (F L ) 0w (8, ..., 0) o b
:7(f7f17?fn)ow(f1(1)’7 éi)a7f]5:))09_1
:7(7(f7f177fn)7 1(1)77.]0]&)7’]0]@?))7

which implies the associativity of the composition. The unitality is obvious so
that M is actually a multicategory.

We define a functor P : M¢Eg — C as follows: for each object X; ... X, €
M Eg, put

As for a morphism [p; f1,..., fo;2] : X1... X, — Y1... Y, taking the factor-
ization ¢ = pp with p active and p inert, we set

P& fryeeos fasal) = D(f1ye o fu) 00 0 [y, x s (4.5.22)

where WX“X”L cw( Xy X)) = w(Xp-1(1) - Xp-1(m)) 18 the coCartesian
lift of [p, z] given in Lemma The functoriality of P directly follows from
the uniqueness of each morphisms in the right hand side of . It is clear
that P preserves coCartesian lifts of inert morphisms, so P is a l-morphism
in Oper’g. In addition, the property |(3)| of categories of algebraic G-operators
implies P is essentially surjective. Hence, in order to see P is an equivalence, it

132



remains to show it is fully faithful. Consider an arbitrary morphism in C of the

form

h:w(X1...Xm) 2w(1...Y,)

covering [p, 2] : (m)) — (n) € Eg. If ¢ = pp is the factorization with p active
and p inert, say J is the section of p, the universal property of the coCartesian

morphism [p, 7]y = given in Lemma
morphism o w(X;cfl(é(l)) ce Xx*1(5(m))
that

h=Holpa]

4.5.5) implies that there is a unique
— w(Y1...Y,) € C covering p such

Jx1 X

In view of Lemma h' can be uniquely written as b’ = w(hq, ..., hy). This
implies P is fully faithful, and this completes the proof. O
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Chapter 5

Categories of operators

It turned out that the notion of categories of operators introduced by May and
Thomason [58] give a considerable advantage over the usual algebraic description
of operads or multicategories especially when we go into the higher situation. For
example, Lurie [54] defined the notion of co-operads based on the idea. Namely,
he exhibited co-operads as fibrations of co-categories over the category Fin, of
pointed finite sets together with several universal lifting properties similar to
Proposition Surprisingly, although he mainly treated symmetric operads,
there is no algebraic data; everything is encoded into the base category Fin,
and the lifting properties.

In this chapter, we will discuss a variant of them for G-symmetric multicat-
egories; we will exhibit them as a kind of fibrations over a certain 2-category
associated with G.

5.1 Internal Grothendieck construction

We first review the internal analogue of the Grothendieck construction. The
essential idea was originally proposed by Meyer [59] [60]. Though the notion
is available in general Cartesian categories, we specialize it in the case of the
category Cat.
Let X be an internal presheaf over a double category € = B, say v : €xg€ —
t:B— € and 4y : X xg € — X are the functors in the structures. Notice
that, in this case, we have the following diagram

XXBQXBQ:LXI(;XXBQ:

¢
I l
B

X xp € — X

where each square is a pullback. We write (X xg €) xx (X xp €) the pullback

of the cospan

Xxpe X x P yupe
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then we obtain two functors

Idx~y
T (X xg8) xx (X xpC) ZX xgCxgl —— X xpC€,
I X=Xx5B-Y% x¥xze.
It is easily verified that these functors makes the diagram

S:=Aax
X xpC———=zX
T:=proj

into a double category, which we call the internal Grothendieck construction for
X.

Ezxample 5.1.1. If € = B is a double category, then the category B, seen as the
terminal object of Cat/5 , admits a unique structure of an internal presheaf;
namely the identity functor

Bxge€ —=¢.

The internal Grothendieck construction for B is the double category € = B
itself.

We have a special interest in the following case.

Definition. A double category s,t : € = B is said to have vertically discrete
objects if s and t are the identity on objects.

If a double category € = B has vertically discrete objects, the functors
v:E€xg€ — €and ¢ : B — € are also the identity on objects. As mentioned
in Remark [£:24] in this case, we can see the double category as a 2-category.
Indeed, define a 2-category € i as follows:

e objects are those in B, or those in C equivalently;

for a,b € B, 1-morphisms a — b are morphisms ¢ : a — b € B;

for 1-morphisms ¢, ¥ : a — b, 2-morphisms ¢ — 1 are morphisms x : a —
b € € with s(x) = ¢ and t(z) = ¥;

the horizontal compositions are given by the compositions in 5 and ¢€;

the vertical composition is given by the functor v: € xg € — €.

Note that if X is an internal presheaf over € = BB, then the internal Grothendieck
construction X xp € = X for X has horizontally discrete objects as soon as so
does € = B. Hence, we can assign the 2-category (X Xz €)_x to each internal
presheaf X over € = B. We write & //53 € := (X x5 €) x. In particular, for
the terminal internal presheaf B over € = B, put Bg€ := B //z €. Actually, it
turns out that the assignment canonically extends to a (strict) 3-functor

(7) //B (O PSh(Q: = B) — CatéBBG 7
where the codomain is the strict slice category of the (strict) 3-category Catq

of 2-categories, normalized pseudofunctors, pseudonatural transformations, and
modifications; for these materials, the original definitions are found in [4] while
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there is a lot of literature; e.g. Chapter 7 in [8] and [49]. Note that even though
we use weak notions, for each internal presheaf X over € = B, the canonical
pseudofunctor X' //,; € — B¢ is actually a strict 2-functor. The reader might
be afraid that the appearance of the 3-category makes things unnecessarily
complicated while we have worked on 2-categories. One can, however, see that
there are not so many 2-morphisms in X' //,; € as we really have to struggle with
3-morphisms. The key is the following result.

Lemma 5.1.2. Let X be an internal presheaf over a double category € = B
which has vertically discrete objects. Suppose we are given a 2-morphism « :
@ — 1) in the 2-category Bp€ together with a 1-morphism f in X [/ 5 € which
covers . Then, there is a unique 2-morphism o' : f' — f covering c.

Proof. Let p: X — B be the structure functor of X € Cat’/B. For a 2-category
K, we denote by Mory IC the set of k-morphisms in K. Then, the canonical
2-functor gives rise to a square

Mory (X // 5 €) —— Mory(Bg€)

codi lcod . (511)
Mor, (X // 3 €) — Mor, (Bs€)

Unwinding the definition, the square ([5.1.1]) equals to the square

[T @ xs)x,y) 2= T ea,b)

X,Yex a,beB

| |

I xx,y)—— ][] Bla,b)

X, Yex a,beB

which is obviously a pullback. Hence, (5.1.1)) is also a pullback, and the result
immediately follows. O

In fact, Lemma [5.1.2] is involved with a sort of contraction of higher struc-
tures. Following the standard convention, we say a pseudofunctor F : K — L
between 2-categories locally has property P for a property P on ordinary func-
tors if, for each objects U,V € IC, the functor

F: KU, V)= L(FU),F(V))

has the property P. For example, the following is an immediate consequence of
Lemma [5.1.2)

Corollary 5.1.3. In the situation in Lemmal[5.1.3, the 2-functor
X [/ € = BC

is locally faithful and locally conservative.
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Note that every locally faithful and locally conservative normalized pseudo-
functor p : K — S exhibits K as a 1-truncated object in the (strict) slice

3-category Catés; i.e. for every 2-category q : L — S over S, the 2-category

Cat}®(£,K) := Cata(L, K) X Gaty(z.5) {4}

is biequivalent to an ordinary category. To see this, it suffices to show that, for
parallel two pseudonatural transformations

a,f:F—-G: LK

over S, there is at most one modification 6 : a — [ over S, which is, if exists,
an isomorphism. Expanding the definition, a modification 0 : &« — f over L is
an assignment of a 2-morphism

F(M) @ G(M) (5.1.2)
Bm

in K to each object M € L such that

(i) for each l-morphism h : M — N € L, the following equation of the
compositions of two 2-cells holds:

F(M) — = G(M) F(M) G(M)

F(h)i % lG(h) = F(h)l / lG(h)

F(N) G(N) F(N) —Y~ G(N)
\6/ \gay

(ii) for each M € L, the image of (5.1.2) in £ under F' : K — L, depicted
below, is trivial.

p(as)
— .,

a(M) =pF(M) _ [p05) pG(M) = (M)
p(Bs)

In particular, by virtue of the last condition the local faithfulness of p implies
there is only at most one possibility for each #,; while the local conservativity
implies it is an isomorphism.

Corollary 5.1.4. In the situation in Lemma the object X // y€ € CatéBB¢
is 1-truncated

We denote by (CatéBBC)'fc C CatéBB€ the full 3-subcategory spanned
by those objects K — Bp€ which is locally faithful and locally conservative.
Thanks to the argument above, (CatéBBC)'fc is triequivalent to a 2-category,
that is each hom-2-category is biequivalent to an ordinary category, in spite of
its notation.
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Remark 5.1.5. From a homotopical aspect of the higher category theory, one
can see that the local faithfulness and the local conservativity of a 2-functor
F : K — L are equivalent to the solvabilities of the lifting problems of the forms

(It |
S
o

respectively.
Lemma has another important consequence.

./@\*.}—uc

LF

Corollary 5.1.6. Let X be an internal presheaf over a double category € = B
which has vertically discrete objects. Then, the functor

X //5€— BgC
is a local Grothendieck fibration; i.e. for objects X,Y € X, the functor
(X /5 ©)(X,Y) > Bee(p(X),p(Y))
is a Grothendieck fibration, where p : X /| 5 € — BgC is the canonical 2-functor.

We denote by 1Fib/g,e C CatéB5€ the subcategory consisting of local
Grothendieck fibrations over Bg€, normalized pseudofunctors over Bg& pre-
serving Cartesian lifts of 2-morphisms of Bg€, and all the pseudonatural trans-
formations and modifications over Bg€ between such functors. In addition, we

set
1dFib/p,¢ :=1Fib/g e N (Catéle’i)lfc c CatéBBQ‘ .

We often think of 1dFib/p,¢ as a 2-category by taking isomorphism classes of
2-morphisms. By virtue of Corollary and Corollary the 2-functor
() // 5 € factors through the inclusion 1dFib /g,¢ — CatéBBQ.

Theorem 5.1.7. Let € = B be a double category which has vertically discrete
objects. Then, the 2-functor

(=) /g €:PSh(€ = B) — 1dFib/p ¢ (5.1.3)

is a biequivalence of 2-categories.

Proof. We first show (5.1.3) is essentially fully faithful. Let X and ) be internal
presheaves over € = 3. We have to show that the functor

PSh(¢ = B)(X,Y) = 1dFib p,¢(X /5 €,V /5 €) (5.1.4)

is an equivalence of categories. Note that, by virtue of Lemma [5.1.2] every
pseudofunctor X //,; € = Y // 5 € over BgC is in fact a strict 2-functor. Hence,
taking the pullback along the obvious inclusion B — B¢, one gets a functor

1dFib/p,¢(X /5 €,V //5 €) — Cat/P (X)) . (5.1.5)
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Notice that the composition of ((5.1.4]) and (5.1.5) is exactly the forgetful functor

PSh(¢ = B)(X,Y) — Cat/?(x,)) ,

which is fully faithful by virtue of Lemma Hence, (5.1.4) is faithful and
(5.1.5)) is full on the essential image of oreover, is also faithful.
Indeed, thanks to Lemma for functors F,G : X // 3 € = B // 5 € over BpC,
a 2-natural transformation o : F' — G over BgC is determined by the family

{ax : F(X) > G(X) €Y /5 Sy cnyne) -

Since X and X //z € have the same object set, this implies is faithful.
Using the left cancellativity of fully faithful functors, one can see is
fully faithful. To see it is also essentially surjective, observe that, in view of
Lemma a l-morphism F : X' /3 € = Y //;5 € in IdFib,/g,¢ determines
and is determined by the data

e for each object X € X, an object F(X) € ),
e for each morphism f: X — Y € X, a morphism F(f): F(X) — F(Y);
which satisfies the following conditions:
(i) F(gf) = F(g)F(f) for composable morphisms g, f in X’;
(i) F(idx) =idp(x);
(iii) for each (f,z) : (X xp €)(X,Y),

F(ax(f,z)) = ay(F(f),x) ,

where 4y and 4y are the internal presheaf structure on X and ) respec-
tively.

The above data, on the other hand, clearly equivalent to a 1-morphism X — )
in PSh(¢ = B). Hence, (5.1.4)) is essentially surjective.

It remains to show s essentially surjective. Let ¢ : K — BgC be a
locally faithful and locally conservative local Grothendieck fibration. We define
a category K as follows:

e objects are those of IC;

e for objects U,V € K, the hom-set (U, V) is the quotient of the set of 1-
morphisms U — V in K by the relation ~ such that, for h,k:a — b € I,
h ~ k if and only if there is a 2-morphism « : h — k with ¢(«) trivial in
BB(’:;

e the composition is the one inherited from K.

Thanks to the local faithfulness and the local conservativity, the data above
actually define a category K, and it is canonically equipped with a functor
g : K — B. In addition, since L — Bg€ is a local Grothendieck fibration, for
each l-morphism f : U — V € K, and for each z : ¢(U) — ¢(V) € €, we can take
a l-morphism Ai(f,x) : U — V together with a 2-morphism « : A (f,z) — f
in K covering the 2-morphism (¢(f),z) : v(¢(f),z) = ¢(f) in Bg€. The local
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faithfulness and the local conservativity again implies the morphism Ak (f, x) is
unique up to a unique isomorphism whose image is trivial in Bg€. Hence, the
morphism

[Ac(f,z)] U=V

in K represented by 4x(f,z) depends only on the morphism [f]. Moreover, by
the use of the uniqueness of Ak (f,x), one can see that it extends to a functor

ﬂK:KXBC—)K

which gives K a structure of an internal presheaf over € = B. Finally, it is not
difficult to see that the canonical functor I — K //5 € is a biequivalence. [

5.2 Review on the canonical model structure on
Cat

Before entering the discussion on coCartesian morphisms in 2-categories, we
review the canonical model structure on Cat. In fact, even when we treat with
strict 2-categories, it will turn out that the universal properties on coCartesian
morphisms are strongly involved with weak notions. Hence, the homotopical
aspect in the category theory is essentially important in the following arguments.

There are some interesting model structures constructed on the category
Cat. The one we are interested in here is the following.

Theorem 5.2.1 (folklore?, Theorem 4 in [43], Theorem 3.1 in [67]). There is a
cofibrantly generated simplicial model structure on Cat, in the sense of Quillen,
which consists of the following classes:

e weak equivalences are equivalences of categories;
e cofibrations are functors which is injective on objects;
e fibrations are isofibrations.

Moreover, the model structure is proper.

We call the model structure above the canonical model structure. In partic-
ular, every object in Cat is both fibrant and cofibrant in this model structure.

Remark 5.2.2. The properness of the canonical model structure is a consequence
of the results of [42].

Remark 5.2.3. There is another important model structure on Cat, namely
the Thomason model structure, constructed in [74], whose weak equivalences
are functors whose geometric realization is a weak homotopy equivalence in the
category of (compactly generated) topological spaces.

We are particularly interested in homotopy pullbacks in the canonical model
structure. Suppose we have a cospan

chsEp. (5.2.1)

A recipe to construct homotopy pullbacks is supplied by the Gluing Lemma
(or the Cube Lemma according to Lemma 5.2.6 in [36]). Since every object is
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fibrant in our case, it asserts that the (strict) pullback on is a homotopy
pullback provided either F' or G is an isofibration. We note that the same result
was also proved in [42] in the classical category theory. Hence, what we have
to do is to take a fibrant replacement of either F' or G. Recall that, in Cat, we
have an excellent factorization of functors.

Definition. Let F': C — S and G : D — S be functors. We define a category
F | G, called the comma category, as follows:

e objects are triples (X,u,Y) of X € C, Y € G, and an arrow u : F(X) —
GY)eS;

e morphisms (X, u,Y) — (X', «/,Y”) are pairs (f,g) of f : X — X’ € C and
g:Y — Y’ € D which make the diagram below commute:

F(X) —“~G(Y)

F(f)i lG(g) ;

FIX') —“~ Gy

e the composition is defined componentwisely.
The comma category F' | G is canonically equipped with functors

dom:F|G—=D; (X,u,Y)—Y,
cod: FlG—=C; (X,u,Y)—X,

both of which are isofibrations. In particular, if F' is the identity functor, we
write S | G :=1ds | G. In this case, we have another canonical functor

D—=SlG; Y= (GY)idgy),Y),

which is obviously fully faithful. Then, it turns out that the functor G : D — S
has the following factorization:

DSLGEN s,

Taking the essential image, say P(G), of the first embedding, one obtains a
commutative triangle

sl

which is a fibrant replacement of G : D — S. Note that P(G) coincides with the
middle term in the factorization given in part M5 in the proof of Theorem 3.1
n [67]. Finally, we obtain a homotopy pullback on (5.2.1)) as the pullback

C Xs P(G)HC




We are interested not only in computing homotopy pullbacks but also in
recognizing whether a given square in Cat is a homotopy pullback or not. In
fact, we will make use of the following criterion.

Lemma 5.2.4. Suppose we are given a commutative square

_Fo e

D
ql lp (5.2.2)

B—Lsc
of functors. Then, (5.2.2) is a homotopy pullback square in the canonical model
structure on Cat if and only if the induced functors

{0} xg D = {F(b)} x¢ €
, h N F) h
{V b} xg D= {FQV)—= F(b)} x¢ &
on homotopy pullbacks are equivalences of categories for each object b € B and
for each morphism f:b —be B.

Proof. Clearly, the former condition implies the latter, so we show the converse.
Note that we only have to prove the statement for specific homotopy pullbacks.
Hence, taking a fibrant replacements of functors, we may assume the functors
p and q in the diagram are isofibrations. Moreover, thanks to the base
change adjunction Cat/® = Cat/®, we may also assume the functor F' : B —
C is the identity functor on B. Then, the latter condition implies we have
equivalences of categories

{b} xg D — {b} xp & (5.2.3)
WLy xsD o Dby xpe (5.2.4)

for each b € B and each f : b — b € B. We have to show the functor F:D>¢&
is an equivalence of categories in this case. Considering the equivalences as in
for all the objects in B, one will see F' is an essentially surjective. To
see it is also full, suppose we are given a morphism g : F(X) — F(Y) € € with
X,Y € D. Since is essentially surjective for f = ¢(g), one can find a
morphism §' : X’ — Y’ € D together with a commutative diagram

F(X)—L=F(Y)

l F(7) ~i

F(X') == F(Y")

in & with the vertical arrows being isomorphisms covering the identities in B.
Since F' is fiberwisely an equivalence of categories by virtue of , there are
unique isomorphisms ¢ : X — X’ and @ : Y — Y’ in D with F(%) = v and
F(i) = w, and we obtain F(d~'§'#) = F(g). Hence, F is full. Similarly, It is
follows from the faithfulness of and the fullness of that F is also
faithful, which completes the proof. O
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Corollary 5.2.5. A commutative square

D——=¢&

|,

B—t.c

of functors with B groupoid is a homotopy pullback square in the canonical model
structure on Cat if and only if the induced functor

{6} x5 D = {F(b)} <2 €
on homotopy fibers is an equivalence of categories for each b € B.

Proof. Clearly the former implies the latter. To see the converse, in view of
Lemma, it suffices to show the induced functor

F
Loy <D o Py 2 Py Kb e (5.2.5)
is an equivalence of categories for each morphism f : ¥ — b € B. Since we

assumed B is a groupoid, both morphisms f and F(f) are isomorphisms. It
turns out that the functor ([5.2.5)) is equivalent to the functor

by x5 D = {F()} xh €.
The result is now obvious. O

Remark 5.2.6. Note that the geometric realization |-| : Grpd — Top, which is
a functor from the category of groupoids to that of (compactly generated) topo-
logical spaces, exactly exhibits groupoids as models for homotopy 1-types. In
this point of view, Corollary is also a consequence of Quillen’s Theorem A
[66].

5.3 CoCartesian morphisms in 2-categories

We begin to discuss the 2-analogue of coCartesian morphisms. Note that there
are some different conventions for (co)Cartesian morphisms in 2-categories. For
example, the notion appears in Definition 2.1 in [32] with more or less “strict”
flavor while we also have 2-truncated version for the corresponding notion in
(00, 1)-category theory [53]. To simplify the situation, we consider coCartesian
morphisms only for the following kind of pseudofunctors.

Definition (cf. [48]). A pseudofunctor p : K — S is called a pseudo-isofibration
if it satisfies the following two properties:

(i) for every object U € K, and for every equivalence u : S ~ p(U) in S, there
is an equivalence u : S — U € K with p(u) = u;
(ii) p is a local isofibration.

Definition (cf. Definition 3.1.1 in [I0] and Proposition 2.4.4.3 in [53]). Let
p: K — S be a pseudo-isofibration. Then, a 1-morphism f: U — V € K is said
to be p-coCartesian if, for every object W € I, the functor

KV, W) = K(U,W) Xspw)pw) S@V),q(W))

induced by p and f is an equivalence of categories.
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Since we assumed p is pseudo-isofibration above, our definition is equivalent
to Buckley’s one [I0] for fibered bicategories. The primary advantage of it over
strict variants is the following.

Lemma 5.3.1. Let p: K — S and q: L — S be pseudo-isofibrations. Suppose
we have an equivalence F : K — L in the 3-category Catés. Then, a morphism
f:U—=V eK is p-coCartesian if and only if F(f) is g-coCartesian.

Proof. Since p is a local isofibration, in view of Theorem [5.2.1] the condition for
f to be a coCartesian morphism is equivalent to that, for every object W € K,
the square

K(V,W) — kU, w)

pi ip (5.3.1)

S(p(V),p(W)) S(p(U),p(W))

is a homotopy pullback in the canonical model structure on Cat (or a bipullback

p(f)"
—_—

according to [42]). Note that, since F' : K — L is an equivalence in Catés, it
induces an equivalence from the square (5.3.1)) to

c(F(v), Fw)) L

|

S(qF(V),qF(W))

L(FU), F(W))
iq . (5.3.2)

D S(qF(U), gF(W))

Thus, (5.3.1) is a homotopy pullback if and only if so is (5.3.2). It follows
that f: U — V is p-coCartesian as soon as F(f) is g-coCartesian. To see the

converse, for an object M € L, consider the square below:

cFv), M) —L s p(pw), M)
ql \Lq . (5.3.3)
S(gF(V), q(M)) ELL S(qF(U), q(M))

Since F' is an equivalence in Catés, one can take an object W € K together

with an equivalence h : F(W) — M in £ such that g(h) : p(W) = ¢F(W) —
q(M) is the identity. The equivalence h clearly gives an equivalence between
squares and . It follows that is a homotopy pullback for
every M € L if and only if so is for every W € K. The result is now
straightforward. O

In the literature [10], the inverse to the bicategorical analogue of the Grothendieck
construction is discussed. Although we do not really need the whole construc-
tion, we here review the machinery to produce pseudofunctors from the coCarte-
sian lifting, which is well-known in the ordinary category theory.

Lemma 5.3.2. Let p: K — S be a pseudo-isofibration, and suppose f : U —V
is a p-coCartesian morphism in K. For an object W € K with p(W) = p(V),
define full subcategories IC(U, W )ppy C K(U, W) and K(V,W) C K(V,W)

idp(v)
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spanned by 1-morphisms U — W and V. — W lying over the 1-morphisms p(f)
and id,yy in S respectively. Then, the functor

F RV W)ia, e, — KU W)y

p(V)
given by the precomposition with f is an equivalence of categories.

Proof. We have the following commutative diagram in the category Cat:

KV, W)idp(v) —— KV, W) ~
KUW )p(p) ——F— KU, W)
\Lp . (5.3.4)
{idpv)} ——|—=S@(V),p(V)) P

{p(N)}

Since f is p-coCartesian, the right face of is a homotopy pullbacks in
the canonical model structure. Moreover, since p is local isofibration, in view of
[42], the front and the back faces are also homotopy pullbacks. Then, the “as-
sociativity property” of homotopy pullbacks in the right proper model category
Cat (e.g. see Proposition 13.3.15 in [34]) implies the left face is a homotopy
pullback. The required result now follows immediately. O

Let p : K — S be a normalized pseudo-isofibration. Notice that, for each
object A € S, the fiber K4 of p over A is canonically identified with the hom-

2-category Catés({A},lC) of the 3-category Catés, where {A} is the trivial
2-category together with the 2-functor {A} < S corresponding to A. Similarly,
for a 1-morphism v : A — B € S, we denote by {u} the 2-category over S given
by
{A5B}<s.

The evaluations give rise to 2-functors

eva : Catl®({u},K) — Cat,({A},K) ~ K

evy : Catl®({u},K) — Catl’({B},K) ~ Kp .

We see that if v admits all possible p-coCartesian lifts, then there is a pseudo-
functor which goes in the inverse direction to ev4. Define a 2-subcategory

Ky C Catés({u}, K) described as follows:

e objects are coCartesian 1-morphisms f : U — V in K covering u;

e the hom-category KC(,)(f,g) is the full subcategory of Catés({u}, K)(f,9)
spanned by 2-morphisms in /C of the form

with «, invertible.
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Proposition 5.3.3. Let p : K — S be a normalized pseudo-isofibration. Sup-
pose u : A — B is a 1-morphism in S such that, for each object U in the fiber
Ka C K over A, there is a p-coCartesian morphism f:U — V with p(f) = u.
Then, the composition of 2-functors

eva

K < Catl®({u}, ) =5 Ka (5.3.5)
is a biequivalence.

Proof. The assumption directly implies is essentially surjective, so it
suffices to show it is also essentially fully faithful. More precisely, taking two
p-coCartesian morphisms f: U — V and g : S — T in K covering u, we show
the functor

Kw(f:9) = Ka(U,8) = KU, S)ia, (5.3.6)

is an equivalence of categories. In view of Lemma [5.3.2] it will be enough to see
the square

K (f:9) —== K(V, T)ids
EVA\L lf* (5.3.7)
KU, 8)iq, —=— K(U,T),

is a homotopy pullback in the canonical model structure on Cat. We follow the
recipe described in Section Consider the comma category K(U,T)y  gx,
and put P(g.) the essential image of the embedding

KU, S)a, = KU,T)yd gs -
Unwinding the definition, P(g,) is the category described as follows:

e objects are triples (o, @, a’) representing invertible 2-morphisms in K of
the form

l/ ’
S——T
g

e morphisms (a,a,a’) — (3, 5,') are pairs (0,0') of 6 : @« — B and ¢’ :
o' — (' satisfying the equation of 2-morphisms:

U
P2 - IEDN
S*>T S?T

We have an obvious functor K¢, (f,g) — P(gs) so that the square below is a
pullback:

K (f,9) —2= K(V, T)ia,,
l : l PR (5.3.8)




Hence, according to the argument in Section we conclude (5.3.7)) is a ho-
motopy pullback, and this completes the proof. O

In the situation in Proposition we have a span of 2-functors

eva evp

’CA (—K(u) —>ICB s

where the left leg is a biequivalence according to Proposition[5.3.3l Thus, choos-
ing a pseudoinverse to ev4, we obtains a pseudofunctor

u!:’CA—>ICB.

Although it obviously depends on the choice of a pseudoinverse, we say uy is
a pseudofunctor induced by u as long as it is constructed in this way. Fortu-
nately, it is unique up to a pseudonatural isomorphism which is unique up to a
unique invertible modification thanks to the uniqueness of the pseudoinverses.
In particular, if K — & is 1-truncated in the 3-category Catés, the fibers K4
and Kp are biequivalent to ordinary categories. Hence, u; : 4 — Kp can be
thought of as an ordinary functor between ordinary categories rather than a
pseudofunctor.

To finish the abstract nonsense, we see the inheritance of coCartesian lifting
properties through the internal Grothendieck construction. Note that for an
internal presheaf X over a double category € = B having vertically discrete
objects, the functor X' //,; € is a local isofibration thanks to Corollary It
is moreover a 2-isofibration if and only if the functor X — B is an isofibration.

Proposition 5.3.4. Let X' be an internal presheaf over a double category € = B
which has vertically discrete objects, say p: X — B and px : X [/z € — BgC
are the structure functors. If p is an isofibration, then for a morphism f : X —
Y € X, the following are equivalent:

(a) f is p-coCartesian in the ordinary sense;
(b) f is px-coCartesian as a morphism in X [/, € in the sense above.
Proof. Since we have a pullback square
X—=X/g¢
Pi 4 lpx s
BC——— Bg¢

the statement @ clearly implies @ Conversely, suppose f : X — Y is a
p-coCartesian morphism in X'. To see it is px-coCartesian in & /5 €, it suffices
to show that, for each object Z € X', the square

(X Jg @)Y, 2) — L (X 5 O)(X, 2)

PX\L ipx (539)
px(f)”

BsC(px(Y),px(Z)) —— Bp(px(Y),px(Z))
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is actually a pullback. Suppose we have a 2-morphism

z (5.3.10)

in X' // 5 € together with a factorization of its image under px depicted as follows:

»
px(f) — >
pX(X)%pX(Y)wpx(Z) . (5.3.11)
P

Since f is p-coCartesian in X, there is a unique morphism ' : Y — Z € X
covering 1 such that h = A’f. In addition, Lemma m implies there is a
unique 2-morphism ' : ¢ — b’ : Y — Z which covers the 2-morphism (¢, z) in
(5.3.11). Now, we have the 2-morphism

XxX— 1 oy ez (5.3.12)
~_ Vv 7
h/

which covers . According to Lemma the lift is unique, so the
2-morphism ([5.3.12) equals to (5.3.10). In other words, we obtain a factoriza-

tion of ([5.3.10f) through f. Lemma 2| also guarantees the uniqueness of the
factorization. It follows that (5.3.9)) is a pullback square, which completes the
proof. O

Suppose X is an internal presheaf over a double category € = B with ver-
tically discrete objects such that X — B is an isofibration. As a consequence
of Proposition [5.34] if a morphism ¢ : a — b € B admits coCartesian lifts in
X, the corresponding 1-morphism ¢ in Bg€ also admits coCartesian lifts in
X [/ €. Moreover, we can identify the induced functor ¢ : X, — A&} with
01 (X )5 €)a = (X /5 €)p constructed the way above.

5.4 Categories of operators

Let G be a group operad. We apply the results obtained in the previous sections
to the double category Gg = [Eg, which has vertically discrete objects. Write
Bg := B@g Gg, and call it the classifying category of G. We obtain a 3-functor

(-) /)5, Gg : PSh(Gg = Eg) — 1dFib g, . (5.4.1)

Since Bg and ]Eg have the same underlying 1-category, Bg inherits the orthog-
onal factorization system described just after Remark Hence, we say a
1-morphism in Bg is inert (resp. active) if it is so in Eg. On the other hand, it
is clear that every 2-morphism in Bg is invertible, so a pseudofunctor X — Bg
is a local Grothendieck fibration if and only if it is a local isofibration.

Definition. Let G be a group operad. An object O € 1dFib g, is called a
category of geometric G-operators if it satisfies the following conditions:
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(i) for every inert 1-morphism [p,z] : {m)) — {(n)) € Bg, and for each object
X € Oy in the fiber, there is a coCartesian morphism [p,z] : X — X'
in O covering [p, z];

(i) if p; : X — X, is a coCartesian morphism in O covering the inert 1-
morphism p; : {(n) — (1)) € Bg for 1 < i < n, then for every object
W e O, say W € Oy the square

O(W,X) ((P1)ssees (P ) %) Hln:1 O(VV, XZ)

| |

B ({(k)), (n) 22 d oy, (1)<

is a homotopy pullback in the canonical model structure on Cat;

(iii) if (pi)r 2 Ony — Oyay is a pseudofunctor induced by p; : (n)) — (1)) for
1 <i < n, then the pseudofunctor

((p1)1s -+ (pn)) = Oy = Oy
is a biequivalence.

Remark 5.4.1. If O € 1dFib g satisfies the condition then the pseudofunc-
tor O — Bg is a pseudo-isofibration. Indeed, every equivalence in Bg is inert,
and it is easily seen that a morphism lying over an equivalence is coCartesian if
and only if it is an equivalence. This is why the other conditions make sense.

Definition. Let G be a group operad, and let O and P are categories of ge-
ometric G-operators. Then, a map of geometric G-operators is a normalized
pseudofunctor @ — P which is a 1-morphism in 1dFib g, and preserves co-
Cartesian lifts of inert morphisms.

We denote by Operg®" C 1dFib g, the 3-subcategory consisting of cate-
gories of geometric G-operators, maps of geometric G-operators, and all 2- and
3-morphisms between them. Similarly to 1dFib g, every object of Oper§®™ is
I-truncated, so we can regard Operg " as a 2-category by taking isomorphism

classes of 2-morphisms.

Theorem 5.4.2. Let G be a group operad. Then, the 2-functor (—) //ﬁg @g :
PSh(Eg = Gg) — IdFib g, given in (5.4.1)restricts to a biequivalence

geom

[
Oper3® — Oper§

Proof. In view of Proposition a pseudofunctor F': X' //5 Gg =Y/ g Gg
over BgG preserves coCartesian [ifts of inert morphisms if and only if so does
the underlying functor ' : X — Y. This implies that, to see the result, it
suffices to show the 2-functor (-) /z, Gg restricts to OperagIg — Oper&®"
on objects essentially surjectively. Notice that, by virtue of Lemma the
subcategory Operg " C IdFib gz, is closed under equivalences; i.e. it contains

all the (1-)equivalences, and if one has an equivalence K ~ O € 1dFib g, with
geom geo

O € Operg®", then K € Operg®". Hence, since the 2-functor (-) &g Gg
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is a biequivalence, in particular essentially surjective, the problem reduces to
showing that, for each X € PSh(Gg = Eg), we have X € Oper¢ if and
only if X //Eg Gg € Operg®". In particular, using Proposition and its
following argument, one can easily see that the coCartesian lifting problems of
inert morphisms are equivalent and that the induced (pseudo)functors

are canonically identified. Therefore, it remains to show the following statement:
if p; : X — X, is a coCartesian morphism in X covering the inert morphism
pi : (n) — (1) for 1 < i < n, then for every W € X, say W € Xy, the
following two conditions are equivalent:

(a) the square

X (W, X) [Timy X (W, X5)

J{ J{ (5.4.2)
Eg ((k), {(n) —Eg((k), (1))*"

is a pullback (of sets and maps).

(b) the square

(X [z, Co)(W, X) —=TT}_1 (X //5, Ga)(W, X,)

| e

Bg ((k), (n)) —————Bg({k)), (1)) "
is a homotopy pullback in the canonical model structure on Cat.

We first verify [(a)]implies[(b)] In fact, if (5.4.2) is a pullback, then (5.4.3) is
a (strict) pullback in Cat. Indeed, in this case, using “associativity property”
of pullbacks, one can obtain the following pullback square:

(X xz, Gg)(W, X) —TTi_, (X xg, Gg)(W, X,)

o |
Gg((k), (n)) Gg ((kD, (1h)*"

which implies (5.4.3)) is a pullback on morphisms as well as on objects. Since
X [z, Gg — Bg is a local isofibration, it follows that is a homotopy
pullback.

Conversely suppose is a homotopy pullback. To show @ it suffices
to show that the induced equivalence

n

(X [/, Gg)(W, X) = Bg ({(k), (n) Xzgqep.qpy<r | [(X V5, Ga) (W, X)

i=1
(5.4.4)
of categories is bijective on objects. It is a consequence of Lemma [5.1.2] that
(5.4.4) reflects the identities. Since (5.4.4]) is an equivalence of categories, in
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particular fully faithful, this implies is injective on objects. On the
other hand, Lemma also implies every isomorphism in the right hand side
of is determined by its domain and the image in Bg({(k)), {n))) under
the canonical projection. Since X //Eg @g — Bg is a local isofibration, it is
straightforward that ([5.4.4)) is an isofibration and, so, surjective objects. Hence,
we obtain the part ]

Combining Theorem [5.4.2] with Theorem [£5.1] we obtain a sequence of
biequivalences

(-)NEg | (*)//fg(}g
MultCatg —— Operg® ———— Operg°" .

We denote the composition by (-)79 : MultCatg — Opergeom. We here sketch
how we can recover the original G-symmetric multicategory M from the category
of geometric G-operators M9 — Bg. Since we have a canonical 2-functor
Eg — Bg, we can consider the pullback along it; namely M9 xp, Eg — Eg,
which also admits coCartesian lifts of inert morphisms. Hence, one can recover
the multicategory M in the same way as in the latter half of the proof of
Theorem It remains to give the G-symmetric structure on M. For each
n € N, we define a full subcategory BY C Bg({(n)), (1)) which is the connected
component of u, € Bg({(n)), (1))). Notice that, writing G C & the image of the
canonical map G — & of group operads, we have an exact sequence

g g
1 — Kec;, < Dec; — G, —1

since ]ﬂ:gn 2~ G(n). It then turns out that the category BY is canonically
isomorphic to the category such that

e objects are permutations o € Gy;

e for permutations 0,7 € &,,, morphisms ¢ — 7 are pairs (z,0) with « €
G(n) whose underlying permutations are 7o ~1;

e the composition is the multiplication in G(n).

Now, for aq,...,a,,b € M, consider the pullback square

MY (ay ... an,b)gg —> M"9(ay...an,b)

Lo

B ———————=Bg({(n)), (1))

Since the left vertical arrow is a discrete fibration, it is associated with a functor
leg”_amb : (BY)°P — Set. Expanding the construction, one can see it is given
as follows:

e for each permutation o € S,,,

leg...an,b(a) = M(ao_l(l) <2 Qg=1(n); b) 5
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e for (1,2):0 — 7€ BY,

=g
ay...an,b

(CC, U) : /\/l(afl(l) <o Gr—1(p); b) — M(a071(1) R (0L b)
f = o

where f? is the image of f under the action of = € G(n).

In other words, we have recovered the G-symmetric structure on M in terms of
the coCartesian lifting.

We finally mention the relation of the notions of categories of geometric
G-operators and of oo-operads introduced by Lurie [64]. Recall that Segal’s
category I' is a category such that

e objects are pointed sets (n)4 :={1,...,n,x*} for n € N;

e morphisms are, in the opposite direction, arbitrary maps preserving the
base-points.

Hence, the opposite category I'°P is a skeleton of the category of finite pointed
sets. It admits an orthogonal factorization system: a morphism ¢ : (m), —
(n)y € T°P is said to be inert if the restriction ¢~{1,....,n} — {1,...,n}
is bijective while ¢ active if ¢~ {x} = {*}. It is easily verified that the pair
({inert}, {active}) forms an orthogonal factorization system. In particular, for
each 1 < i < n, we write p; : (n)+ — (1)4 the inert morphism in I'°? with
pi(4) = lifand only if j = 4. Then, an co-operad is an “isofibration” p : £ — T'°P
which satisfies the following three conditions
(i) every inert morphism (m); — (n); € I'P admits a “coCartesian” lift
along each object in the fiber &

m)ys

(ii) if p; : X — X; € € is a “coCartesian” morphism in & for each 1 <i < n,
then for each W € &, say W € &y, the square

£(W, X) ((P1) w5 5(Pn) )

|

ToP((k)+, (n)+)

[[=, €W, X5)

|

LoP((k) 4, (1)4) "

((P1)x5+5(pn)+)

is a “homotopy pullback”;

(iii) the “functor”
((po)rs- - (o)) = Emy, = EGT,

induced by coCartesian lifts of pq, ..., p, is an equivalence of “categories.”

Note that although all the double-quoted words above are originally considered
in the co-categorical context, we here interpret them just literally. In fact, one
can regard the resulting notion as 1-truncated oo-operads. To compare it with
the notion of categories of geometric G-operators, we consider the following
functor:

V=% (k) = (k)/{—o00,00} .
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Lemma 5.4.3. The functor above extends to a locally fully faithful 2-functor
Bg — I'°P. Moreover, a 1-morphism in Bg is inert (resp. active) if and only if
so is its image in I'°P.

Proof. To see the first statement, notice that, for two 1-morphisms [p, o], [¢, 7] :
{(m) — {(n) € Bg, there is a 2-morphism [p, o] — [¢, 7] if and only if there is
an element v € Dec® such that

[, 7] = [, vo] . (5.4.5)

Since v is a right stabilizer of ¢, the equation (5.4.5) implies that, for each
a: (1) = {(m)) with pd? active, we have

<p50' — <p6’00' — 1][]57' .
In other words, the induced maps

(m) = VL), (mh) = VL), {n)) = (n) - () /{—o0, 0o}

coincide with each other. Hence, we obtain an extension Bg — I'P.

Using the equation Kec® = Inr®, one can see that the 2-category Bg allows
at most one 2-morphism between a fixed pair of a source and a target, and it
immediately implies Bg — I'°P is locally faithful. On the other hand, notice
that,ﬁ for v € Decg, (5.4.5) holds if and only if the following two conditions are
satisfied:

(i) (pvo)~H—1,...,n} = (¥7)"H{1,...,n}, or equivalently, (pvo) " {+oo} =
(Y1)~ H{Foo);

(ii) the composition
_ vt _
e L} 2 () M1}

ot _ T _
— ()M, 0} =L, n)
is an order-preserving bijection;

where we identify &,, with the subgroup of the permutation group on {(m))
consisting of the stabilizers of +oco. It follows that one can find v € Decg
satisfying (5.4.5)) provided the induced maps

((m) {00} — () /{z00}

coincide with each other. This completes the proof of the local fully-faithfulness
of Bg — I'°P.
The last assertion is straightforward. O

Remark 5.4.4. Since the 2-functor Bg — I'°P is bijective on objects, as a con-
sequence of Lemma Bg is biequivalent to a wide subcategory of I'°P.
Namely, a morphism ¢ : (m)4 — (n)4 in I'°P belongs to the image of Bg if and
only if the subset p=1{1,...,n} C {1,...,m} is consecutive.
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Thanks to Lemma [5.4.3] we have a 2-functor
1dFibpor — 1dFib 5

which sends 1-truncated oo-operads to categories of geometric G-operators. In
addition, the 2-functor (—)"® factors through it and the Lurie’s operadic nerve
functor N® : MultCatg — OpZ' (see Definition 2.1.1.23 in [54]), where the
codomain is the 2-category of 1-truncated oco-operads, so that the triangle below
commutes:

MultCatg ops!

(-)7e /

geom

Operg

This observation provides us a comparison of two models of categories of oper-
ators for symmetric multicategories.

5.5 Representability

We investigate representability of multicategories in terms of categories of oper-
ators. Recall that we defined in Section the binary operation ¢ on the active
morphisms in V.

Lemma 5.5.1. Let G be a group operad, and let M be a G-symmetric multi-
category. Then, a multimorphism u € M(a;y ...an;a) is strongly universal, in
the sense in Section if and only if, for every by,...,bg,c1...¢c; € M, the
1-morphism

[ld«k» O Uy © ld((l)) ) idbl sy idbk , U, idcl sy idcl ; ek+n+l]
(5.5.1)
tby.. . bgay...apcy...cp = by bracy ..

in M9 is coCartesian with respect to the canonical 2-functor M"Y — Bg.

Proof. Tt is a straightforward consequence of Proposition [5.3.4] that the mul-
timorphism w is strongly universal provided is coCartesian for every
bi,...,bg,c1,...,c0 € M.

Conversely, suppose u € M(aq...an;a) is a strongly universal multimor-
phism. Let us write p = id gy © pin, ©id(gy. To prove the morphism is
coCartesian, by virtue of Proposition [5.3.4] it suffices to verify it is a_coCarte-
sian morphism in the category M{Eg with respect to the functor M{Eg — Eg.
For this, take a 1-morphism in M"Y of the form

[t f1y- ooy fos ™ (@)] i by bgar .. caney ...qp = dy ... ds .
Take the factorization ¢ = vp in V with v active and p inert. We have

o k+1
[p,x]o[u;id, ..., @ ,...,id; exyni1]

Jlentiid, - ids pt (2)] p(a(k +1)) = £o0 ,

[op®;id, ..., w, ..., id; p*(x)] plx(k+1)) =i with —oc0 <i < o0 .
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In the first case, notice that the composition pu” is inert so that the presentation
[V; f1,- .-, fs; €m] makes sense as a morphism in M{Eg. Thus, we obtain a unique
factorization

lows f1,- ., fos 1™ ()]
k+1

= [V;flw"afs;ewt}O[pax}o[,u;idw") u 7"'aid;ek+n+l]
k+1
= [@,fl,,f§,$]0[ﬂ,ld,, u a"'vid;€k+n+l] .

In the other case, if ¢(z(k + 1)) = j, the multimorphism f; belongs to the
multihom-set of the form

/ / / /
MO} .. bar...anc) ... ¢ dy)

with & +n +1' = k;w ). Since u is strongly universal, there is a unique multi-
morphism f; € M(b] ...b},ac] ... cy;d;) such that

k41
fi=n(f5id, ..., w id, ... id) .

Hence, we obtain a factorization

[(Pli;f17~-~,fs§ﬂ*(m)] = [V;flv"'7fj71afg/‘>fj+1a--~7fs§e]

olpu®;id,..., u,...,id; u*(z)]
= [Soaflv"'7fj—1af]/'7fj+17"'7fs;x]

k+1
ofwid, ..., w ,...,id],

which is clearly unique. It follows that the morphism (5.5.1)) is coCartesian. [J

A pseudo-isofibration p : K — S is called a Grothendieck opfibration if it
is a local Grothendieck opfibration such that every l-morphism in S admits
p-coCartesian lifts, which is the one simply called opfibration in the literature
[10]. We write 2-opFib /s C Caté5 the 3-subcategory consisting of normalized
Grothendieck opfibrations over S, normalized pseudofunctors over S preserving
coCartesian 1-morphisms and 2-morphisms, and all the 2-natural transforma-
tions and modifications between them over §. In particular, we write

geom

RepOperg®™ := Oper#®™ x ot/ 2-opFibg, .

c
We call an object of RepOper§®" a representable categories of geometric G-
operator. On the other hand, we have the 2-subcategory RepMulCatg; C
MulCatg consisting of representable G-symmetric multicategories, G-symmetric
multifunctors preserving strongly universal multimorphisms, and multinatural
transformations.

Theorem 5.5.2. Let G be a group operad. Then, there is a square

geom

RepMulCat; —— RepOperg

|

geom

MultCatg ——— Operyg
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of 2-functors with horizontal arrows biequivalences.

Proof. The result is a direct consequence of Lemma [5.5.1] Theorem [5.4.2] and
Theorem [4.5.71 O

Corollary 5.5.3. Let G be a group operad. Then, the composition

geom

\® _yvG
MonCatg L RepMultCatg L> RepOperg

is a biequivalence.

Proof. The result immediately follows from Theorem [5.5.2] and Theorem [I.3.10]
O

For a G-symmetric monoidal category C, we obtain a normalized Grothendieck
opfibration (C®)V9 — Bg. It turns out that it coincides with the 2-categorical
analogue of the Grothendieck construction for the normalized pseudofunctor
Cg© : Bg — Cat given as follows:

e for each n € N, we set Cg(((n») =C*"

e for each l-morphism [p,z] : {(m)) — (n)) € Bg, we define the functor
Cg©([g0, z]) to be the composition

T s

c®
cm = ﬂ

C><m C><n ,

where C® : V — Cat is the normalized pseudofunctor associated with
the underlying monoidal category of C (see the construction in the end of

Section ;

e for a 2-morphism associated to a morphism [p,u, x| : (m) — (n)) in Gg,
take an element u; € Q(ky’)) for each 1 < j < n so that

[u] = [vg(ent2; el UL,y n s U, e(“’))] € Inrg \]ﬂ:g

using Lemma |4.2.12| and in Lemma [4.1.12] where
e, = epr) € Gk) .

Then, we define the natural transformation Cg®([g0,u,z]) : Cg®([<p,x]) —
Cé@([go, ux]) is the one given by

Cg©([% Z‘])(X1, s ’X’m) = (®k§¢)((x*)?)f)7 R ®k£1ff’) (($*X)£)

0"l x...x0"n - N
— (@0 (@) (@ X)), - o () (2. X))

= Cé@([go,ux})(Xl, vy Xm)

where ©“ is the natural isomorphism given in Example [3:2.3]
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Note that the assignments of 1-morphisms and 2-morphisms do not depend
on the choice of representatives thanks to Lemma The pseudofunctor
CSD : Bg — Cat satisfies the Segal condition; namely, for the inert morphisms
pi: {(n) — (1)) € Bg for 1 < i < mn, the functor

(€S (p1), -+ CG (pn))  CF () — CG((1))*"

is an equivalence of categories. More generally, as pointed out in the literature
[10], the Grothendieck construction offers a correspondence between pseudofunc-
tors into Cats and Grothendieck opfibrations. In this point of view, it turns
out that the Segal condition is the counterpart of the conditions and in
the definition of categories of geometric G-operators (cf. Proposition 2.1.2.12 in
[54] or Lemma below), and we obtain a correspondence between pseudo-
functors Bg — Cat satisfying the Segal condition and representable categories
of geometric G-operators.

Finally, we see there is a free construction for representable categories of
geometric G-operators. Fortunately, by virtue of Theorem the traditional
recipe to formally add coCartesian lifts works well. We use a factorization
system on the 2-category Bg.

Definition. Let G be a group operad. A 1-morphism in Bg is said to be purely
active if it is the image of an active morphism in V under the canonical functor
V — ]Eg — Bg.

By abuse of notation, we identify morphisms in V with their images in Bg.
Hence, purely active morphisms are always written as p using active morphisms
@ in V.

Lemma 5.5.4. Let G be a group operad.

(1) Every 1-morphism in Bg strictly factors as an inert 1-morphism followed
by a strictly unique purely active 1-morphism.

(2) the classes of inert morphisms and of active morphisms form an orthogonal
factorization system on Bg in the following sense:

(i) every l-morphism in Bg factors as an inert 1-morphism followed by
an active 1-morphism;

(ii) if p : (m) — (n)) is active and p : {k)) — {(n) is inert, then the
commutative square

Bg (1), {(m)) ——Bg((1), (n))

p*l lp* (5.5.2)

B
Bg ((k), (m)) ——Bg((k), (n))
is a homotopy pullback in the canonical model structure on Cat.
Proof. The assertions are direct consequences of Lemma O]

We almost trace the construction described in Section 2.2.4 in [564]. Consider

the 2-category Bg} := Cats([1],Bg) of normalized pseudofunctors [1] = {0 <
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1} — Bg, pseudonatural transformations, and modifications. We denote by Ag
the full 2-subcategory of B[gl ] spanned by normalized pseudofunctors [1] — Bg
corresponding to 1-morphisms in Bg of the form p = [u, €] for active morphisms
w1 in V. For a normalized 2-isofibration K — Bg, we define a 2-category Envg (K)
by the pullback square

Envg(K) ——=K

L]
Ag ———Bg

where the bottom arrow is the evaluation 2-functor at the object 0 € [1]. In
addition, we regard Envg(K) as a 2-category over Bg with the composition

Ean(’C) — Ag el) Bg .

Lemma 5.5.5. The evaluation evy : Ag — Bg at the object 1 € [1] is locally
faithful.

Proof. Let p: (m') — (n')) and v : {(n')) — {(n)) be two purely active mor-
phisms in Bg, and consider two 1-morphisms &,¢" : u — v € Ag depicted as the
2-cells below:

o

(m) —— () () — ()

A 2-morphism 0 : § — £ : p — v € Ag is nothing but a pair (8¢, 8:) of
2-morphisms

I3 &
o SRR % N 0 N e )
&o &
satisfying the equation
éo £o

s 7N
{(m") —— ()

ui / J{” - :Ii/ lu (5.5.3)

e/
{(m) {(n)) {(m) —— (n))
N N
131
of 2-morphisms in Bg. Since all the 2-morphisms in Bg are invertible with
respect to the vertical composition, the equation (5.5.3)) implies that the hori-

zontal composition id, oy 8y is determined by £, &, and 6; = evy(8). On the
other hand, since v is purely active, in view of Lemma [£.2.10] the functor

Bg({m"), (') — Bg({m'), {(n))
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given as the postcomposition with v is locally faithful. It follows that the
horizontal composition id, oy 8y even determines 8y, and the result follows. [

Lemma 5.5.6. Let p: K — Bg be a normalized 2-isofibration which admits all
coCartesian lifts of inert morphisms, and consider the normalized pseudofunctor
p' : Envg(K) — Bg. Then, a morphism in Envg(K) is p’-coCartesian if and
only if its image in K is p-coCartesian and covering an inert morphism.

Proof. We first show the “if” part of the last statement; i.e. every 1-morphism
& f):(wX)— (1Y) € Envg(K) depicted as

p(xX) 22 p(y)

I

{(m)) —— (n)

&
is p’-coCartesian provided f : X — Y € K is p-coCartesian and p(f) is inert.
To see this, for every object (A\,W) € Envg(K) with A : p(W) — (I)) € Bg,

consider the diagram

Iz

Ky, W) K(X, W)

/

D Bavg () (1 X), A W) |»

Bg (p(X), p(W))

Ag(/,&, A) A

evy Bg (p(Y)> <<l>>)

(5.5.4)
of functors which is commutative up to coherent natural isomorphisms. Since
p is a local isofibration, the upper left and right faces in are homotopy
pullbacks by definition. It is also verified that the lower left and right faces are
homotopy pullbacks by the explicit computation in Section On the other
hand, since f is p-coCartesian and p(f) is inert, the back faces in are
homotopy pullbacks by Lemma Thus, using the “associativity property”
for homotopy pullbacks, we conclude that the front faces and their composition
are also homotopy pullbacks. Since (A, W) is arbitrary, It follows that the 1-
morphism (¢, f) is p’-coCartesian.

Next, we show every p’-coCartesian morphism in Envg(K) is of the de-
scribed form. Consider the set Z of morphisms in Envg whose images in I are
inert. Clearly, Z is closed under compositions and isomorphisms. Moreover,
it is verified that, for every morphism ¢ : {(m) — ((n)) € Bg, and for every
(1, X) € Envg(K) with p(X) = ((m)), there is a morphism (¢, f) : (1, X) —
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(v, fiX) € Envg(K) which belongs to Z. In view of the uniqueness of coCarte-
sian lifts, it follows that Z contains all the p’-coCartesian morphisms, and this
completes the proof. O

Before showing Envg(K) is a category of geometric G-operators, we assert
that, for Grothendieck opfibrations over Bg, the conditions on categories of
geometric G-operators can be relaxed.

Lemma 5.5.7 (cf. Proposition 2.1.2.12 in [54]). Let p : K — Bg be a locally
faithful normalized Grothendieck opfibration. Then, to show K is a category of
geometric G-operators, it suffices to verify only the condition in the defini-
tion; i.e. the functor

((p)1s -+ (p)t) = Ky — K1),

induced by the coCartesian lifts of the inert morphisms p1,...,pn : {n)) —
(1) € Bg is an equivalence of categories.

Proof. Since p is a Grothendieck opfibration, the condition|(i)|is straightforward.
Hence, it suffices to show the condition|(ii)| follows from|(iii)|in this case. Suppose
we are given a p-coCartesian morphism p; : X — X, covering the inert morphism
pi: {(n) — (1)) for each 1 < i < n, and consider the commutative square below
for an object W € K:

((P1) wsees (P ) x)

KW, X)
pl lnp . (5.5.5)
(p1)lp):) ‘n
Bg(p(W), {(n))) ——————=Bg(p(W), (1))

We have to see ((5.5.5)) is a homotopy pullback square in the canonical model
structure on Cat. Since p is a Grothendieck opfibration and so a local isofibra-
tion, in view of Lemma it suffices to show that the induced functor

KW, X)g = [[ KW, X),.0 (5.5.6)
i=1
is an equivalence of categories for every morphism ¢ : p(W) — ((n)), where we
write

K, Z)y = {9} X551 029 £V, Z)

for objects Y,Z € K and morphisms 9 : p(Y) — p(Z) € Bg. Since p is a
Grothendieck opfibration, we can take a p-coCartesian morphism @ : W — @ W
with p(@) = . Taking also a p-coCartesian lift p; : @W — (p;)1)W covering
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p; for each 1 < i < n, we obtain a diagram

Ky (@ W, X) o)) ﬁ&u»((ﬂi)!fmm X;)
=1
n,.;f;i
K@, X ((P1)seees(P)=) f[lc(tpr,Xi)p,i
=1
2 ina*
KW, X ) —(@DrsPn)-) ﬁ,c(w? X0
i=1

which is commutative up to coherent natural isomorphisms and with all the
vertical arrows being equivalences of categories, where the top horizontal arrow
is a part of the functor K,y — IC?& induced by coCartesian lifts of the in-
ert morphisms p1,...,pn : (n) — (1)). It follows that the functor is
an equivalence of categories as soon as K,y — ICZZ{;) is essentially fully faith-
ful. Therefore, we can deduce the condition from in the definition of
categories of geometric G-operators. O

Theorem 5.5.8 (cf. Proposition 2.2.4.4 in [54]). Let G be a group operad.
Then, for a category of geometric G-operators K, the following hold.

(1) The functor Envg(K) — Bg exhibits Envg(K) as a representable category
of geometric G-operators.

(2) The normalized pseudofunctor K — Envg(K) ; X — (id, X) is a map
of geometric G-operators such that, for every representable category of
geometric G-operators L, the induced 2-functor

RepOperg " (Envg(K), £) — Operg " (Envg(K), £)

5.5.7
— Oper&°" (K, L) ( )

is a biequivalence.

Proof. We write p : K — Bg and p’ : Envg(K) — Bg the canonical pseudo-
functors. Note first that the functor Envg(K) — Ag is a pullback of a locally
faithful pseudofunctor X — Bg, so it is itself locally faithful. Combining with
Lemma [5.5.5) one can easily see p’ is locally faithful. In addition, it is also a
normalized pseudofunctor, so we have Envg(K) € 1dFib g, .

Thanks to Lemma the pseudofunctor p’ is a Grothendieck opfibration.
Hence, in order to verify Envg(K) is a category of geometric G-operators, in
view of Lemma [5.5.7] it suffices to show the pseudofunctor

((p1)1s- -+, (pn)t) : Envg (K) ny — Envg(K) 1 (5.5.8)

induced by the inert morphisms p1,...,p, : {(n)) — (1)) is a biequivalence. In
fact, it is essentially surjective: for objects (g, , X1),..., (tr,, Xn) € Envg(K) 1y
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for the purely active morphisms s, : (k;)) — (1)), the condition [(iii)|on the cat-
egory of geometric G-operators K enables us to take an object X € Ky, 4...4k,)
together with a p-coCartesian morphism

X 5 X ek

covering the inert morphism p{*) : (ky +- -+ k) = (k:)) € V given by (&5.4)
for each 1 <i <n. Put k = (k1,...,k,), and we obtain a commutative square
7))

p(x) 2P pxy)

M;;\L l#ki ’
1

(n) —"— (1)

which presents a p’-coCartesian morphism in Envg (KC) by virtue of Lemma
so the uniqueness of coCartesian lifts implies we have an equivalence

(pih(pg, X) =~ X; € Envg(K) 1y

for each 1 <4 < n. This implies the tuple (X7,..., X,,) belongs to the essential
image of the pseudofunctor (5.5.8)), and it is essentially surjective.

To see ((5.5.8) is also essentially fully faithful, take tuples k = (k1, ..., kn),l =
(I1,...,1,) of non-negative integers and objects X € Kyp, 1.4,y and Y €
Kty 41,y The category Envg (K) (ny (1, X), (up; Y')) is described as follows:

e objects are pairs (§, f) of l-morphism f : X — Y together with a 2-
morphism in Bg depicted as

p(X) %pm
W : (5.5.9)
()

e morphisms (£, f) — (¢, f’) are 2-morphisms 0 : f — f’ in K satisfying
the equation

p(f)

(X /Wp(y) p(X) % p(Y
P f/) = \\//
¢ ) Hi Ky
o) {(n))

N
(

Note that the existence of the 2-morphism (5.5.9)) implies that, for every mor-
phism (§, f) : (uz, X) — (pp, Y), € and p(f) are respectively of the forms

)

£= [ug,vg(ml, s ,xn),’}/g(ﬂil, cee 7xn)71}
p(f) = o ovn,vg(21,. .., 20)]
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with v; : (k;)) — (l;)) € V active and z; € G(k;) for each 1 <4 < n, so we have
a formula B B

I E

P\ op(f) = [,z op™ .

Taking p-coCartesian morphisms /A)Ek) : X — X; and ﬁgl) 1Y — Y, covering p

@

(F)

%

and p;’ respectively for each 1 <17 < n, we obtain a sequence of functors
(@) D))
KXY )y —— = [[k&XY),
- . (5.5.10)
()" (BN 1
e T KK e
i=1

which are equivalences thanks to the condition on the category of geometric
G-operators K. Since one can describe the functor

((pi)ts -5 (p)1) = Envg () ny (1, X), (1Y) (5.5.11)
— H Envg (K) qay ((pores» Xi)s (s, Ya))

in terms of , it turns out ([5.5.11)) is essentially surjective. Moreover,
since p : K — Bg is locally fully faithful, it follows from the direct computation
of morphisms in Bg that is even fully faithful. Therefore, the pseudo-
functor is essentially surjective and essentially fully faithful, and this
completes the proof of the part

We prove the part It is straightforward from Lemma that £ —
Envg(K) is a map of geometric G-operators. For a representable category of
geometric G-operators £, consider a map of geometric G-operators

F:K—=L.

We can extend it to F' : Envg(K) — £ as follows: for each morphism ¢ : (m)) —
{(n)) € Bg, choose an induced functor

@12 Ligmy = Liny -

We set

P, X) 1= m(F(X)) .
As for a morphism (§, f) : (4, X) = (1, Y) depicted as

#i 5‘% iu : (5.5.12)

the universal property of the coCartesian morphism f : F(X) — w(F (X))

163



implies there is an essentially unique 2-morphism

in £ covering (5.5.12)), so we put 15(57]‘) := f’. Similarly, we also obtain an
assignment on 2-morphisms. The essential uniqueness on each choice guarantees

F : Envg(K) — L is actually a pseudofunctor. In addition, since F' preserves
coCartesian morphisms covering the inert morphisms, F even preserves all the
coCartesian morphisms by construction, so F € RepOperg " (Envg(K), £). In
other words, F' : K — L belongs to the essential image of the pseudofunctor
(5.5.7)). Since F is arbitrary, it follows that is essentially surjective.

On the other hand, let F,G : Envg(K) — L be two map of geometric G-
operators preserving all the coCartesian morphisms. For each pseudonatural
transformation F' — G over Bg, and for (§,f) : (1, X) — (v,Y) € Envg(K),
consider the induced cube

G(id, f)

G(id, X) G(id,Y)
o 7 ‘ FGdf) / _
(id, X) —— = F(id, Y G(v,id)
Gl ‘d) (5.5.13)
F(p,id) G(p ( ) Y)
/ F(v,id
F X) ——ry

with each faces filled with specific 2-morphisms in £ coherently. Note that
since both F' and G preserve coCartesian morphisms, the vertical arrows in
(5.5.13)) are coCartesian. Hence, the universal property implies the top face
of (5.5.13)) actually determines the other faces essentially uniquely. In other
words, the whole pseudonatural transformation F' — G is essentially determined
by its restriction on K C Envg(K). The same argument clearly works on the
modifications, so we conclude that is also essentially fully faithful. This
completes the proof of the part O

In view of the observation that we have C & (C®)v<g» for every G-symmetric
monoidal category C, it follows from Theorem [5.5.8 and Corollary [5.5.3] that
a Grothendieck opfibration £ — Bg exhibits the ﬁber L1y as a G-symmetric
monoidal category. In particular, for every category of geometric G-operators
K,

Ean (’C) @y = ~ K XIBg (Ag)«n

is a G-symmetric monoidal category.

Remark 5.5.9. Since Envg(K) — Bg is locally fully faithful in our setting, the
fiber Envg (k) 1y is equivalent to an ordinary category by taking isomorphism
classes of 1-morphisms. This is why we called it a G-symmetric monoidal cate-
gory instead of a G-symmetric monoidal 2-category in the argument above.
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Ezample 5.5.10. Notice that we have a canonical identification Envg(Bg) = Ag.
For each n € N, there is exactly one purely active morphism i, : {(n)) — (1))
in Bg, so the objects of (Ag) 1y are denoted by ((n)) for n € N. Moreover, by
virtue of Lemma [£.:2.10] a 2-morphism in Bg of the form

is determined by the top arrow, while a 1-morphism [p,z] : (m)) — {(n)) € Bg
admits such a 2-morphism if and only if it is active. The similar argument
makes sense for 2-morphisms, one can see (Ag) 1y is equivalent to the quotient

category of the total category Aj:g of the augmented crossed simplicial group
J°G (see Example [2.5.6) by the congruence

() ~ (v,y) <= p=vand ay ! e Decg .

In other words, (Ag)(1y is equivalent to the augmented simplicial analogue of
the J%G-quotal category associated with Decg.

Ezxample 5.5.11. We assert that, for each group operad G, we have
Envg(Gg //]Eg Gg) ~ Ajig .

We have bijection on objects for the same reason as Example [5.5.10] and it is
also seen that the 1-morphisms in the left hand side are identified with active
morphisms in Gg. In addition, it follows from the structure of the double
category _ _ _
Gg X]Eg Gg = Gg
and Lemma that two 1-morphisms
[ u, 2], [v,0,9] = (m)) — (n)

in Envg (G // 7, Gg) are connected by a 2-morphism if and only if we have p = v
and uz = vy. In other words, the 2-functor

A‘wg — Ean((ég//ﬁg@g)
(n,z) = (1, e, 2]

is bijective on objects and essentially fully faithful, so it is a biequivalence.

As a consequence of Example[5.5.11] we obtain an alternative proof of Propo-
sition Indeed, let * be the trivial operad, so the category of algebras over
* in a monoidal category C can be written as

Alg(C) = Alg,(C) = MultCat(x,C%) .

In particular, if C is a G-symmetric monoidal category, we obtain a sequence of
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equivalences of categories as below:

Alg(C) ~ MultCat(x,C%)
~ MultCatg(G,C%)
o~ Operaglg(@g,c® 1 Eg)
~ Oper§®"(Gg Mg Gg, (C®)")
~ RepOper§ " (Env(Gg /5, Gg), (C®)"9)
~ MonCatg(Ag,C) .

Note that, in the article [62], Nikolaus and Scholze constructed Hochschild ho-
mology and cyclic homology for spectra using an co-analogue of the equivalence
above.

Remark 5.5.12. Although we have stuck to the lower category theory through-
out the paper, the notion of categories of geometric G-operators has a straight-
forward higher categorical analogues. Indeed, one can consider the category
InFib g, of inner fibrations of oco-categories over Bg instead of 1dFib g, in
the definition of categories of geometric G-operators. Using the Joyal model
structure on the category of simplicial sets, which is a model of the homotopy
theory for co-categories, instead of the canonical model structure on Cat, one
would obtain the notion of “co-categories of G-operators” thanks to the notions
introduced in [53]. The only reason we did not do this is because the base cat-
egory Bg does not admit satisfactorily higher structures. For example, it is an
exciting challenge to formulate the notion of “homotopy group operads.”
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