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Preface

In this thesis, we consider some particular kind of singularities of algebraic
varieties in positive characteristic, the so-called F -singularities. These singu-
larities include strongly F -regular and sharply F -pure singularities. Although
F -singularities are defined in terms of the Frobenius morphism which exists
only in positive characteristic, they have strong connections to some par-
ticular kind of singularities in characteristic 0 which arise in the minimal
model program. These connections sometimes give a new perspective on bi-
rational geometry in characteristic 0, which is one of the reasons why studies
on F -singularities are important.

The main object of this thesis is the F -pure threshold, which is defined
in terms of F -singularities and is an invariant measuring the singularities
of an ideal on a germ in positive characteristic. It is expected that F -pure
thresholds satisfy several important properties which hold for log canonical
thresholds, an invariant defined in terms of singularities in MMP. One of
such properties is the ascending chain condition (ACC in short). In this
thesis, motivated by the ACC for log canonical thresholds in characteristic 0
([HMX14]), we study the ACC for F -pure thresholds.

In Chapter 1, we state the main results of this thesis. In Chapter 2, as
preliminaries of this thesis, we recall some definitions and basic properties
about F -singularities and ultraproducts.

Chapter 3 is based on the preprint [Sat17]. In this chapter, we prove that
the set of all F -pure thresholds of all ideals on a fixed strongly F -regular
germ satisfies the ACC under some mild assumptions (Corollary C), which
gives an affirmative answer (Theorem A) to the conjecture given by Blickle,
Mustaţă and Smith ([BMS09]).

In Section 3.1, we define some variants of test ideals in terms of the
Grothendieck trace map for the Frobenius morphism and q-adic expansions
of a real number, where q is a power of the characteristic. In Section 3.2, we
consider the rationality of the limit of F -pure thresholds. Blickle, Mustaţă
and Smith proved that the limit of any sequence of F -pure thresholds of
principal ideals on a regular germ is a rational number ([BMS09]). By using
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the new ideals defined in Section 3.1, we generalize this result to the case
of non-regular germ and non-principal ideals under some mild assumptions
(Corollary 3.2.8). In Section 3.3, we verify the ACC for F -jumping numbers
with respect to a fixed m-primary ideal on a fixed germ under some mild
assumptions (Theorem B), which implies Corollary C.

Chapter 4 is based on the preprint [Sat18]. In this chapter, as an extension
of Corollary C, we verify the ACC for F -pure thresholds on sharply F -pure
germs with fixed embedding dimension (Main Theorem).

In Section 4.1, we consider the rationality of F -pure thresholds. Schwede
and Tucker proved that the F -pure threshold of any ideal on any strongly F -
regular log Q-Gorenstein pair is a rational number ([ST14]). By defining and
studying a variant of parameter test modules, we generalize this result to the
case of non-strongly F -regular pair under some mild assumptions (Theorem
E). In Section 4.2, by combining Corollary C and Theorem E, we prove the
main theorem. In Section 4.3, we prove the corollaries of the main theorem
(Corollary D), which are positive characteristic analogues of the results in
[dFEM10].
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Chapter 1

Introduction

In characteristic zero, Shokurov ([Sho92]) conjectured that the set of all log
canonical thresholds on varieties of any fixed dimension satisfies the ascending
chain condition (ACC in short). This conjecture was partially solved by de
Fernex, Ein, and Mustaţă in [dFEM10] and [dFEM11] using generic limit,
and finally settled by Hacon, McKernan, and Xu in [HMX14] using global
geometry.

In this thesis, we deal with a positive characteristic analogue of this prob-
lem. A schemeX of characteristic p > 0 is said to be F -finite if the Frobenius
morphism F : X −→ X is finite and is said to be sharply F -pure if the mor-
phism F# : F∗OX −→ OX locally splits as an OX-module homomorphism.

Suppose that X is a sharply F -pure normal variety over an F -finite field k
of characteristic p > 0. Then, for every coherent ideal sheaf a ⊊ OX , we can
define the F -pure threshold fpt(X; a) ∈ R⩾0 in terms of Frobenius splittings
(see Definition 2.3.1 below). As seen in [TW04], [MTW05] and [BS15], the
F -pure threshold itself is an interesting invariant in both algebraic geometry
and commutative algebra in positive characteristic. Moreover, recent studies
([TW04], [Tak13], [HnBWZ16]) reveal that F -pure thresholds have strong
connections to log canonical thresholds in characteristic 0. Motivated by the
ACC for log canonical thresholds, Blickle, Mustaţă and Smith conjectured
the following.

Conjecture ([BMS09, Conjecture 4.4]). Fix an integer n ⩾ 1, a prime num-
ber p > 0 and a set Dreg

n,p such that every element of Dreg
n,p is an n-dimensional

F -finite Noetherian regular local ring of characteristic p. The set

T reg
n,p,pr := {fpt(A; a) | A ∈ Dreg

n,p, a ⊊ A is a principal ideal}

satisfies the ACC.
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This problem has been partially considered by several authors ([BMS09],
[HnBWZ16] and [HnBW17]). We give an affirmative answer to this conjec-
ture in full generality.

Theorem A (Corollary 3.3.10). With the notation above, the set

T reg
n,p := {fpt(A; a) | A ∈ Dreg

n,p, a ⊊ A is an ideal}

satisfies the ACC.

In order to prove Theorem A, it is enough to show that the set of all
F -pure thresholds on a fixed F -finite Noetherian regular local ring satisfies
the ACC. We consider this problem in a more general setting.

Let (R,∆) be a pair, that is, (R,m) is an F -finite Noetherian normal local
ring of characteristic p > 0 and ∆ is an effective Q-Weil divisor on SpecR.
For a proper ideal a ⊊ R and a real number t ⩾ 0, we consider the test
ideal τ(R,∆, at), which is defined in terms of the Frobenius morphism (see
Definition 2.1.2 below). Since we have τ(R,∆, at) ⊆ τ(R,∆, as) for every
real numbers 0 ⩽ s ⩽ t, for a given m-primary ideal I ⊆ R, we define the
F -jumping number of (R,∆; a) with respect to I as

fjnI(R,∆; a) := inf{t ⩾ 0 | τ(R,∆, at) ⊆ I} ∈ R.

We also define the set of all F -jumping numbers with respect to I as

FJNI(R,∆) := {fjnI(R,∆; a) | a ⊊ R is an ideal} ⊆ R⩾0.

The following result is the main theorem of Chapter 3.

Theorem B (Theorem 3.3.9). Let (R,∆) be a pair such that KX + ∆ is
Q-Cartier with index not divisible by p, where KX is a canonical divisor of
X = SpecR and I ⊆ R be an m-primary ideal. Assume that τ(R,∆) is
m-primary or trivial. Then the set FJNI(R,∆) satisfies the ACC.

A pair (R,∆) is said to be strongly F -regular if we have τ(R,∆) = R.
We note that strongly F -regular (resp. sharply F -pure) singularities can be
viewed as an F -singularity theoretic counterpart of klt (resp. lc) singularities
and that strong F -regularity is a stronger condition than sharp F -purity.

For a strongly F -regular pair (R,∆), the F -jumping number fjnm(R,∆; a)
with respect to m coincides with the F -pure threshold fpt(R,∆; a) and the
set FJNm(R,∆) coincides with the set of all F -pure thresholds

FPT(R,∆) := {fpt(R,∆; a) | a ⊊ R is an ideal}.

Therefore, as a special case of Theorem B, we have the following result.
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Corollary C (Theorem 3.3.9). Let (R,∆) be a strongly F -regular pair such
that KX + ∆ is Q-Cartier with index not divisible by p. Then FPT(R,∆)
satisfies the ACC.

Since any F -finite regular local ring is strongly F -regular, Theorem A
follows from Corollary C.

In Chapter 4, we extend Corollary C to the case of non-strongly F -regular
pairs. Since Hacon, McKernan and Xu verified the ACC for all log canonical
thresholds on all log canonical pairs with fixed dimension ([HMX14]), it is
natural to ask whether the set of all F -pure thresholds on all sharply F -pure
pairs with fixed dimension satisfies the same property. As a partial answer
to this question, we verify the property for the set of all F -pure thresholds
on all sharply F -pure pairs with fixed embedding dimension.

Main Theorem (Theorem 4.2.5). Fix a prime number p and positive in-
tegers e and N . Suppose that T is any set such that every element of T is
an F -finite Noetherian normal local ring (R,m, k) of characteristic p with
dimk(m/m

2) ⩽ N . Let FPT(T, e) ⊆ R⩾0 be the set of all F -pure thresholds
fpt(R,∆; a) such that

• R is an element of T ,

• a is a proper ideal of R, and

• ∆ is an effective Q-Weil divisor on X = SpecR such that (R,∆) is
sharply F -pure and (pe − 1)(KX +∆) is Cartier.

Then the set FPT(T, e) satisfies the ACC.

As a corollary of Main Theorem, employing the strategy in [dFEM10], we
can also verify the ascending chain condition for F -pure thresholds on tame
quotient singularities or on l.c.i. varieties with fixed dimension.

Corollary D (Proposition 4.3.2, Corollary 4.3.4). Fix an integer n ⩾ 1 and
a prime number p > 0.

1. Suppose that Dquot
n,p is a set such that every element of Dquot

n,p is an n-
dimensional F -finite Noetherian normal local ring of characteristic p
with tame quotient singularities. The set

T quot
n,p := {fpt(R; a) | R ∈ Dquot

n,p , a ⊊ R is an ideal}

satisfies the ACC.
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2. Suppose that Dl.c.i.
n,p is a set such that every element of Dl.c.i.

n,p is an n-
dimensional F -finite Noetherian normal local complete intersection ring
of characteristic p with sharply F -pure singularities. The set

T l.c.i.
n,p := {fpt(R; a) | R ∈ Dquot

n,p , a ⊊ R is an ideal}

satisfies the ACC.

In the process of proving the main theorem, we treat the rationality prob-
lem for F -pure thresholds. In characteristic 0, since log canonical thresholds
can be computed by a single log resolution, it is obvious that the log canonical
threshold of any ideal on any log Q-Gorenstein pair is a rational number. In
[dFEM10], they use the rationality to reduce the ascending chain condition
for log canonical thresholds on l.c.i. varieties to that on smooth varieties.

However, in positive characteristic, the rationality of F -pure thresholds
is a more subtle problem. In [ST14], Schwede and Tucker proved that the
F -pure threshold of any ideal on any log Q-Gorenstein strongly F -regular
pair is a rational number. In this paper, we generalize their result to the case
where the pair is not necessarily strongly F -regular, under the assumption
that the Gorenstein index is not divisible by the characteristic.

Theorem E (Corollary 4.1.10). Suppose that (R,m) is an F -finite Noethe-
rian normal local ring of characteristic p > 0 and ∆ is an effective Q-Weil
divisor on X = SpecR such that (R,∆) is sharply F -pure and KX +∆ is Q-
Cartier with index not divisible by p. Then the F -pure threshold fpt(R,∆; a)
is a rational number for every proper ideal a ⊆ R.

Main Theorem follows from Theorem E and Corollary C.
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Chapter 2

Preliminaries

2.1 Test ideals and parameter test modules

In this section, we recall the definitions and basic properties of test ideals
and parameter test modules.

A ring R of characteristic p > 0 is said to be F -finite if the Frobenius
morphism F : R −→ R is a finite ring homomorphism. A scheme X is said
to be F -finite if for every open affine subscheme U ⊆ X, the ring H0(U,OU)
is F -finite. If R is an F -finite Noetherian normal domain, then R is excellent
([Kun76]) and X = SpecR has a dualizing complex ω•

X , a canonical module
ωX and a canonical divisor KX (see for example [ST17, p.4]).

Through this paper, all rings will be assumed to be F -finite of character-
istic p > 0.

Definition 2.1.1. A pair (R,∆) consists of an F -finite Noetherian normal
local ring (R,m) and an effectiveQ-Weil divisor ∆ onX. A triple (R,∆, at•• =∏m

i=1 a
ti
i ), consists of a pair (R,∆) and a symbol at•• =

∏m
i=1 a

ti
i , where m > 0

is an integer, a1, . . . , am ⊆ R are ideals, and t1, . . . , tm ⩾ 0 are real numbers.
When m = 1 (resp. m = 2), we simply denote the triple by (R,∆, at11 ) (resp.
(R,∆, at11 a

t2
2 )).

Definition 2.1.2. Let (R,∆, at•• ) is a triple. The test ideal τ(R,∆, a
t•
• ) (resp.

the parameter test module τ(ωX ,∆, a
t•
• )) is the unique smallest non-zero ideal

J ⊆ R (resp. non-zero submodule J ⊆ ωX) such that

φ(F e
∗ (
∏
i

a
⌈ti(pe−1)⌉
i J)) ⊆ J

for every integer e ⩾ 0 and every morphism φ ∈ HomR(F
e
∗R(⌈(pe−1)∆⌉), R)

(resp. φ ∈ HomR(F
e
∗ωX(⌈(pe − 1)∆⌉), ωX)).
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The test ideal and the parameter test module always exist ([Sch10, The-
orem 6.3] and [ST14, Lemma 4.2]). If ai = R for every i, then we write
τ(R,∆) (resp. τ(ωX ,∆)). If ai = 0 for some i, then we define τ(ωX ,∆, a

t•
• ) =

τ(R,∆, at•• ) := (0).

Remark 2.1.3. Suppose that X is an F -finite Noetherian normal scheme, ∆
is an effective Q-Weil divisor on X, ai ⊆ OX are coherent ideals and ti ⩾ 0
are real numbers.

1. ([HT04, Proposition 3.1]) Since test ideals and parameter test modules
are compatible with localization ([HT04, Proposition 3.1]), we can de-
fine the test ideal τ(X,∆, at•• ) ⊆ OX and the parameter test module
τ(ωX ,∆, a

t•
• ) ⊆ ωX .

2. ([Tak04, p.9 Basic Property (ii)]) We can extend the definitions of test
ideals and parameter test modules to the case where ∆ is not effective.

Proposition 2.1.4 ([ST14, Lemma 4.2]). Let (R,∆, at•• ) be a triple and fix
a canonical divisor KX . We consider ωX as the submodule OX(KX) of the
quotient field of R. Then we have the equation

τ(R,∆, at•• ) = τ(ωX , KX +∆, at•• )

as submodules of the quotient field of R.

Lemma 2.1.5. Let (R,∆, at) be a triple such that ∆ is Q-Cartier. Then the
following hold.

1. If t ⩽ t′, a′ ⊆ a and ∆ ⩽ ∆′, then τ(ωX ,∆
′, (a′)t

′
) ⊆ τ(ωX ,∆, a

t).

2. ([ST14, Lemma 6.1]) There exists a real number ε > 0 such that if
t ⩽ t′ ⩽ t+ ε, then τ(ωX ,∆, a

t′) = τ(ωX ,∆, a
t).

3. ([ST14, Lemma 6.2]) There exists a real number ε > 0 such that if
t− ε ⩽ t′ < t, then τ(ωX ,∆, a

t′) = τ(ωX ,∆, a
t−ε).

4. ([ST14, Lemma 4.4]) Suppose that TrR : F∗ωX −→ ωX is the Grothen-
dieck trace map ([BST15, Proposition 2.18]). Then we have

TrR(F∗τ(ωX ,∆, a
t)) = τ(ωX ,∆/p, a

t/p).

5. ([HT04, Theorem 4.2], cf. [BSTZ10, Lemma 3.26]) If a is generated by
l elements and l ⩽ t, then τ(ωX ,∆, a

tbs) = aτ(ωX ,∆, a
t−1bs).

6. ([Sch11, Lemma 3.1]) If b = (f) is a non-zero principal ideal, then we
have τ(ωX ,∆, a

tbs) = τ(ωX ,∆+ s div(f), at).
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7. For an integer r ⩾ 1, we have τ(ωX ,∆, a
rt) = τ(ωX ,∆, (a

r)t).

Proof. By Proposition 2.1.4, the assertions in (5) and (6) follow from the
same assertions for test ideals. The proof of (7) is similar to the proof of
(6).

Definition 2.1.6. Let (X = SpecR,∆) be a pair and e ⩾ 0 be an integer.
Assume that (pe− 1)(KX +∆) is Cartier. Then there exists an isomorphism

HomR(F
e
∗ (R((p

e − 1)∆)), R) ∼= F e
∗R

as F e
∗R-modules (see for example [Sch09, Lemma 3.1]). We denote by φe∆ a

generator of HomR(F
e
∗ (R((p

e − 1)∆)), R) as an F e
∗R-module.

Remark 2.1.7. Although a map φe∆ : F e
∗R −→ R is not uniquely determined,

it is unique up to multiplication by F e
∗R

×. When we consider this map, we
only need the information about the image of this map. Hence we ignore the
multiplication by F e

∗R
×.

The following proposition seems to be well-known to experts, but difficult
to find a proof in the literature.

Proposition 2.1.8. Let (R,m) and (S, n) be F -finite Noetherian normal
local rings with residue fields k and l, respectively. Let R −→ S be a flat
local homomorphism, ∆X be an effective Q-Weil divisor on X = SpecR and
∆Y be the flat pullback of ∆X to Y = SpecS. Assume that mS = n and that
the relative Frobenius morphism F e

l/k : F e
∗k ⊗k l −→ F e

∗ l is an isomorphism
for every e ⩾ 0. Then the following hold.

1. The morphism R −→ S is a regular morphism, that is, every fiber is
geometrically regular.

2. The relative Frobenius morphism F e
S/R : F e

∗R ⊗R S −→ F e
∗S is an

isomorphism for every e ⩾ 0.

3. For every e ⩾ 0, we have

HomR(F
e
∗R(⌈(pe − 1)∆X⌉), R)⊗R S ∼= HomS(F

e
∗S(⌈(pe − 1)∆Y ⌉), S).

4. Let (R,∆X , a
t•
• =

∏m
i=1 a

ti
i ) be a triple. We write (a• ·S)t• :=

∏
i(aiS)

ti.
Then we have

τ(R,∆X , a
t•
• ) · S = τ(S,∆Y , (a• · S)t•).
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5. If (pe−1)(KX+∆X) is Cartier for some e > 0, then (pe−1)(KY +∆Y )
is also Cartier and φe∆Y

: F e
∗S −→ S coincides with the morphism

φe∆X
⊗R S : F e

∗R⊗R S −→ S via the isomorphism F e
S/R : F e

∗R⊗R S −→
F e
∗S.

Proof. Since the relative Frobenius morphism Fl/k : F∗k ⊗k l −→ F∗l is
injective, the field extension k ⊆ l is separable by [Mat89, Theorem 26.4].
Then (1) follows from [Mat89, Theorem 28.10] and [And74].

We will prove the assertion in (2). Fix an integer e ⩾ 0. By (1), the
morphism R −→ S is generically separable. It follows from [Mat89, Theorem
26.4] that the relative Frobenius morphism F e

S/R : F e
∗R ⊗R S −→ F e

∗S is
injective.

We next consider the surjectivity of the map F e
S/R. We denote the ring

F e
∗R⊗R S by R′. We consider the following commutative diagram:

F e
∗S

S //

F e
S

=={{{{{{{{
R′

F e
S/R

OO

R
F e
R

//

OO

F e
∗R

OO

Since the morphisms F e
R : R −→ F e

∗R and S −→ R′ are both finite and
n ∩ R = m, every maximal ideal of R′ contains the maximal ideal F e

∗m of
F e
∗R. Therefore, I := (F e

∗m) · R′ ⊆ R′ is contained in the Jacobson radical
of R′. On the other hand, since the finite morphism F e

S : F e
∗S −→ S factors

through F e
S/R, the morphism F e

S/R is also finite. Then the morphism

F e
S/R ⊗R′ (R′/I) : R′/I −→ (F e

∗S)⊗R′ (R′/I)

coincides with the relative Frobenius morphism F e
l/k : F

e
∗k ⊗k l −→ F e

∗ l, and
hence it is surjective. Therefore, the map F e

S/R is surjective by Nakayama.

We next prove the assertion in (3). Since S is flat over R and F e
∗R(⌈(pe−

1)∆X⌉) is a finite R-module, we have

HomR(F
e
∗R(⌈(pe − 1)∆X⌉), R)⊗R S ∼= HomS(F

e
∗R(⌈(pe − 1)∆X⌉)⊗R S, S).

By (1), the flat pullback of a prime divisor on X to Y is a reduced divisor.
Therefore, the Weil divisor ⌈(pe − 1)∆Y ⌉ coincides with the flat pullback of
⌈(pe−1)∆X⌉. It follows from (2) that F e

∗R(⌈(pe−1)∆X⌉)⊗RS ∼= F e
∗S(⌈pe−

1⌉∆Y ), which completes the proof of (3).
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For (4), it follows from (3) that the test ideal τ(R,∆X , a
t•
• ) · S is uni-

formly (∆Y , (a• ·S)t• , F )-compatible and τ(S,∆Y , (a• ·S)t•)∩R is uniformly
(∆X , a

t•
• , F )-compatible. Therefore, we have

τ(S,∆Y , (a• · S)t•) ⊆ τ(R,∆X , a
t•
• ) · S and

τ(S,∆Y , (a• · S)t•) ∩R ⊇ τ(R,∆X , a
t•
• ),

which complete the proof of (4).
For (5), we assume that (pe−1)(KX+∆X) is Cartier. Since the canonical

divisor KY coincides with the flat pullback of KX ([Aoy83, Proposition 4.1],
see also [Sta, Lemma 45.22.1]), the Weil divisor (pe − 1)(KY + ∆Y ) is also
Cartier. The second assertion in (5) follows from (3).

2.2 F -singularities

In this section, we recall the definitions and some basic properties of F -
singularities.

Definition 2.2.1. Let (R,∆, at•• ) be a triple.

1. (R,∆, at•• ) is said to be sharply F -pure if there exist an integer e > 0
and a morphism φ ∈ HomR(F

e
∗R(⌈(pe − 1)∆⌉), R) such that

φ(F e
∗

∏
i

a
⌈ti(pe−1)⌉
i ) = R.

2. (R,∆, at•• ) is said to be strongly F -regular if for every non-zero el-
ement c ∈ R, there exist an integer e > 0 and a morphism φ ∈
HomR(F

e
∗R(⌈(pe − 1)∆⌉), R) such that

φ(F e
∗ (c
∏
i

a
⌈ti(pe−1)⌉
i )) = R.

Remark 2.2.2 ([Tak04, Corollary 2.10]). τ(R,∆, at•• ) = OX if and only if
(R,∆, at•• ) is strongly F -regular.

Lemma 2.2.3. Let (R,∆, at•• ) be a triple. Then the following hold.

1. If (R,∆, at•• ) is strongly F -regular, then it is sharply F -pure.

2. Suppose that 0 ⩽ ∆′ ⩽ ∆ is an Q-Weil divisor and 0 ⩽ t′i ⩽ ti are real
numbers. If (R,∆, at•• ) is strongly F -regular (resp. sharply F -pure),

then so is (R,∆′, a
t′•
• ).
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3. If (R,∆) is strongly F -regular and (R,∆, at) is sharply F -pure, then
(R,∆, as) is strongly F -regular for every 0 ⩽ s < t.

4. Let R̂ be the m-adic completion and ∆̂ the flat pullback of ∆ to Spec R̂.
Then, (R,∆,

∏
i ai

ti) is sharply F -pure (resp. strongly F -regular) if and

only if so is (R̂, ∆̂,
∏

i(aiR̂)
ti).

Proof. (1) and (2) follow from definitions. The proof of (3) is similar to that
of [TW04, Proposition 2.2 (5)].

For (4), the case of strongly F -regular triples follows from Proposition
2.1.8 (4). We consider the case of sharply F -pure triples. , we define

I :=
∑
e,φ

φ(F e
∗

∏
i

a
⌈ti(pe−1)⌉
i ) ⊆ R

I ′ :=
∑
e,ψ

ψ(F e
∗ (
∏
i

aiR̂)
⌈ti(pe−1)⌉) ⊆ R̂,

where e runs through all positive integers and φ (resp. ψ) runs through all el-

ements in Hom(F e
∗R(⌈(pe−1)∆⌉), R) (resp. in HomR̂(F

e
∗ R̂(⌈(pe−1)∆̂⌉), R̂)).

Then the triple (R,∆,
∏

i a
ti
i ) (resp. the triple (R̂, ∆̂,

∏
i(aiR̂)

ti)) is sharply

F -pure if and only if I = R (resp. I ′ = R̂). Since

HomR̂(F
e
∗ R̂(⌈(pe − 1)∆̂⌉), R̂) ∼= Hom(F e

∗R(⌈(pe − 1)∆⌉), R)⊗R R̂,

we have I ′ = IR̂, which completes the proof.

Suppose that R is a ring of characteristic p > 0, e > 0 is a positive integer
and a ⊆ R is an ideal. Then we denote by a[p

e] the ideal of R generated by
{fpe ∈ R | f ∈ a}. The following lemma is a variant of Fedder-type criteria.

Lemma 2.2.4 (cf. [Fed83], [HW02, Proposition 2.6]). Suppose that (A,m)
is an F -finite regular local ring of characteristic p > 0, a ⊆ A is an ideal and
∆ = divA(f)/(p

e − 1) is an effective Q-divisor with f ∈ A and e > 0. Then,
the triple (A,∆, at) is sharply F -pure if and only if there exists an integer
n > 0 such that

f
pen−1
pe−1 a⌈t(p

en−1)⌉ ̸∈ m[pen].

Proof. By the proof of [Sch08, Proposition 3.3], the triple (A,∆, at) is sharply
F -pure if and only if there exists an integer n > 0 and φ ∈ HomR(F

en
∗ A((pen−

1)∆), A) such that φ(F en
∗ a⌈t(p

en−1)⌉) = A. Since

(pen − 1)∆ = divA(f
pen−1
p−1 ),

the assertion follows from [Fed83, Lemma 1.6].
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Lemma 2.2.5. Let (A,∆, at) be a triple such that A is a regular local ring.

1. If (A,∆, at) is sharply F -pure, then for any rational numbers 0 < ε, ε′ <
1, the triple (A, (1− ε)∆, at(1−ε

′)) is strongly F -regular.

2. If (pe − 1)∆ is Cartier for an integer e > 0 and (A, (1 − ε)∆, at) is
strongly F -regular for every 0 < ε < 1, then the triple (A,∆, at(1−ε

′)) is
sharply F -pure for every 0 < ε′ < 1.

Proof. For (1), we assume that the triple (A,∆, at) is sharply F -pure. Since
A is strongly F -regular ([HH89]), it follows from Lemma 2.2.3 (2) and (3)
that (A, (1− ε)∆) is strongly F -regular for every 0 < ε < 1. Then applying
Lemma 2.2.3 (2) and (3) again, we see that (A, (1− ε)∆, at(1−ε

′)) is strongly
F -regular for every 0 < ε, ε′ < 1.

For (2), set q := pe and suppose that ∆ = div(f)/(q − 1) for some non-
zero element f ∈ A. Take an integer l > t such that a is generated by at
most l elements and set an := (l− t)/(qn − 1) for every integer n ⩾ 0. Since
for any triple, it is strongly F -regular if and only if the test ideal is trivial,
we have τ(A, ((qn − 1)/qn)∆/, at) = A for every integer n ⩾ 0.

Then it follows from Proposition 2.1.4 and Lemma 2.1.5 (4), (5) and (6)
that

A = τ(A, ((qn − 1)/qn)∆, at)

= TrenA (F en
∗ τ(A, f (qn−1)/(q−1)atq

n

))

= φen∆ (F en
∗ τ(A, atq

n

))

⊆ φen∆ (F en
∗ a⌈tq

n−l⌉)

⊆ φen∆ (F en
∗ a⌈(t−an)(q

n−1)⌉),

which proves that (A,∆, at−an) is sharply F -pure for every integer n ⩾ 0.
Since limn−→∞ an = 0, the triple (A,∆, at(1−ε

′)) is sharply F -pure for every
0 < ε′ < 1.

Suppose that X is an F -finite Noetherian normal connected scheme, ∆ is
an effective Q-Weil divisor on X, a ⊆ OX is a coherent ideal sheaf and t ⩾ 0
is a real number. For any point x ∈ X, we denote by ∆x the flat pullback of
∆ to SpecOX,x.

Definition 2.2.6. With the notation above, we say that (X,∆, at) is sharply
F -pure (resp. strongly F -regular) if (OX,x,∆x, a

t
x) is sharply F -pure (resp.

strongly F -regular) for every point x ∈ X.

Remark 2.2.7. Suppose that X = SpecR is an affine scheme. Then, the
above definition differs from the one given in [Sch08]. See [Sch10b].
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2.3 F -pure thresholds and F -jumping num-

bers

In this section, we recall the definitions and basic properties of F -pure thresh-
olds and F -jumping numbers.

Definition 2.3.1. Suppose that X is an F -finite Noetherian normal con-
nected scheme and ∆ is an effective Q-Weil divisor and a ⊆ OX is a coherent
ideal sheaf. Assume that (X,∆) is sharply F -pure. We define the F -pure
threshold of (X,∆; a) by

fpt(X,∆; a) := inf
{
t ⩾ 0 | (X,∆, at) is not sharply F -pure

}
∈ R⩾0 ∪ {∞}.

When ∆ = 0, we denote it by fpt(X; a). When X = SpecR is an affine
scheme, we denote it by fpt(R,∆; a).

Lemma 2.3.2. With the notation above, assume that a ̸= OX . We have
fpt(X,∆; a) = min {fpt(OX,x,∆x; ax) | x ∈ X}.

Proof. We may assume that X = SpecR. For every t ⩾ 0, we consider
It :=

∑
e,φ φ(F

e
∗ a

⌈t(pe−1)⌉) ⊆ R as in the proof of Lemma 2.2.3 (4). Then, the
set

Zt := {x ∈ X | (OX,x,∆x, a
t
x) is not sharply F -pure} ⊆ X

is a closed set defined by the ideal It. Since R is Noetherian, there exists
a real number ε > 0 such that Zt is constant for all fpt(X,∆; a) < t <
fpt(X,∆; a)+ε. Take a point x ∈ Zt for such t. Then we have fpt(X,∆; a) =
fpt(OX,x,∆x; ax), which completes the proof.

Proposition 2.3.3 (F -adjunction, [Sch09, Theorem 5.5]). Suppose that A
is an F -finite regular local ring, R = A/I is a normal ring and ∆R is an
effective Q-Weil divisor on SpecR. Assume that the pair (R,∆R) is sharply
F -pure and there exists an integer e > 0 such that (pe − 1)(KX + ∆R) is
Cartier. Then, there exists an effective Q-Weil divisor ∆A on SpecA with
the following properties:

1. (pe − 1)∆A is Cartier, and

2. Suppose that a ⊆ R is an ideal and ã ⊆ A is the lift of a. Then we
have fpt(R,∆R; a) = fpt(A,∆A; ã).

Definition 2.3.4. Let (R,∆) be a pair, a ⊆ R be a proper ideal and I ⊆ R
be an m-primary ideal.

12



1. A real number t > 0 is called a F -jumping number of (R,∆; a) if

τ(R,∆, at−ε) ̸= τ(R,∆, at),

for all ε > 0.

2. We define the F -jumping number of (R,∆; a) with respect to I as

fjnI(R,∆; a) := inf{t ∈ R⩾0 | τ(R,∆, at) ⊆ I} ∈ R⩾0.

We note that if (R,∆) is strongly F -regular, then we have fpt(R,∆; a) =
fjnm(R,∆; a).

Proposition 2.3.5 ([ST14, Theorem B]). Let (X = SpecR,∆, a) be a triple
such that KX + ∆ is Q-Cartier. Then the set of all F -jumping numbers
of (R,∆; a) is a discrete set of rational numbers. In particular, if (R,∆)
is strongly F -regular, then the F -pure threshold of (R,∆; a) is a rational
number.

2.4 Ultraproduct

In this section, we define the ultraproduct of a family of sets and recall some
properties. We also define the catapower of a Noetherian local ring and prove
some properties. The reader is referred to [Scho10] for details.

Definition 2.4.1. Let U be a collection of subsets of N. U is called an
ultrafilter if the following properties hold:

1. ∅ ̸∈ U.

2. For every subsets A,B ⊆ N, if A ∈ U and A ⊆ B, then B ∈ U.

3. For every subsets A,B ⊆ N, if A,B ∈ U, then A ∩B ∈ U.

4. For every subset A ⊆ N, if A ̸∈ U, then N \ A ∈ U.

An ultrafilter U is called non-principal if the following holds:

5. If A is a finite subset of N, then A ̸∈ U.

By Zorn’s Lemma, there exists a non-principal ultrafilter. From now on,
we fix a non-principal ultrafilter U.

13



Definition 2.4.2. Let {Tm}m∈N be a family of sets. We define the equiva-
lence relation ∼ on the set

∏
m∈N Tm by

(am)m ∼ (bm)m if and only if {m ∈ N | am = bm} ∈ U.

We define the ultraproduct of {Tm}m∈N as

ulimm∈N Tm :=

(∏
m∈N

Tm

)
/ ∼ .

If T is a set and Tm = T for all m, then we denote ulimm Tm by ∗T and call
it the ultrapower of T .

Let {Tm}m∈N be a family of sets and am ∈ Tm for every m. We denote
by ulimm am the class of (am)m in ulimm Tm. Let {Sm}m be another family
of sets and fm : Tm −→ Sm be a map for every m. We can define the map

ulimm fm : ulimm Tm −→ ulimm Sm

by sending ulimm am ∈ ulimm Tm to ulimm fm(am) ∈ ulimm Sm. If Tm = T ,
Sm = S, and fm = f for every m ∈ N, then we denote the map ulimm fm by
∗f : ∗T −→ ∗S.

Let {Rm}m∈N be a family of rings and Mm be an Rm-module for every
m. Then ulimmRm has the ring structure induced by that of

∏
mRm and

ulimmMm has the structure of ulimRm-module induced by the structure of∏
mRm-module on

∏
mMm. Moreover, if km is a field for every m, then

ulimm km is a field.

Proposition 2.4.3. We have the following properties.

1. Let R be a Noetherian ring and M be a finitely generated R-module.
Then we have ∗M ∼= M ⊗R

∗R

2. Let k be an F -finite field of positive characteristic. Then the relative
Frobenius morphism F e

∗ (k) ⊗k
∗k −→ F e

∗ (
∗k) is an isomorphism. In

particular, ∗k is an F -finite field.

Proof. For (1), we consider the natural homomorphism M ⊗R
∗R −→ ∗M .

Since the functors ∗(−) and (−)⊗R
∗R are both right exact, we may assume

thatM is a free R-module of finite rank. In this case, the assertion is obvious.
For (2), we consider the natural bijection ∗(F e

∗k)
∼= F e

∗ (
∗k). Combining

with (1), the relative Frobenius morphism F e
∗ (k) ⊗k

∗k −→ F e
∗ (

∗k) is an
isomorphism.
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Let am ⊆ Rm be an ideal for every m. Then the natural map

ulimm am −→ ulimmRm

is injective, and hence we can consider ulimm am as an ideal of the ring
ulimmRm. Let bm ⊆ Rm be another ideals. Then ulimm bm ⊆ ulimm am if
and only if

{m ∈ N | bm ⊆ am} ∈ U.

Moreover, we have the equation

(ulimm am) + (ulimm bm) = ulimm(am + bm).

Lemma 2.4.4. Let {Rm}m∈N be a family of rings, am, bm ⊆ Rm be ideals
for every m. Assume that there exists an integer l > 0 such that the number
µ(am) of minimal generator of the ideal am satisfies µ(am) ⩽ l for every m.
Then we have

(ulimm am) · (ulimm bm) = ulimm(am · bm).

Proof. Let α = ulimm am ∈ ulimm am and β = ulimm bm ∈ ulimm b. Then
we have α · β = ulimm(ambm) ∈ ulimm(am · bm). This shows the inclusion
(ulimm am) · (ulimm bm) ⊆ ulimm(am · bm).

We consider the converse inclusion. By the assumption, there exist
fm,1, . . . , fm,l ∈ am such that am = (fm,1, . . . , fm,l). Then we have am · bm =∑

i fm,i · bm, and hence we have

ulimm(am · bm) =
∑
i

f∞,i · (ulimm bm),

where f∞,i := ulimm fm,i ∈ ulimm am for every i, which complete the proof
of the lemma.

Proposition-Definition 2.4.5 ([Gol98, Theorem 5.6.1]). Let {am}m∈N be
a sequence of real numbers such that there exist real numbers M1,M2 which
satisfies M1 < am < M2 for every m ∈ N. Then there exists an unique real
number w ∈ R such that for every real number ε > 0, we have

{m ∈ N | |w − am| < ε} ∈ U.

We denote this number w by sh(ulimm am) and call it the shadow of ulimm am.

Let (R,m, k) be a local ring. Then, one can show that (∗R, ∗m, ∗k) is a
local ring. However, even if R is Noetherian, the ultrapower ∗R may not be
Noetherian because we do not have the equation ∩n∈N(∗m)n = 0 in general.
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Definition 2.4.6 ([Scho10]). Let (R,m) be a Noetherian local ring and
(∗R, ∗m) be the ultrapower. We define the catapower R# as the quotient
ring

R# := ∗R/(∩n(∗m)n).

Proposition 2.4.7 ([Scho10, Theorem 8.1.19]). Let (R,m, k) be a Noethe-

rian local ring of equicharacteristic and R̂ be the m-adic completion of R.
We fix a coefficient field k ⊆ R̂. Then we have

R#
∼= R̂ ⊗̂k(

∗k).

In particular, if (R,m) is an F -finite Noetherian normal local ring, then so
is R#.

Let (R,m) be a Noetherian local ring, R# be the catapower and am ∈ R
for every m. We denote by [am]m ∈ R# the image of ulimm am ∈ ∗R by the
natural projection ∗R −→ R#. Let am ⊆ R be an ideal for every m ∈ N.
We denote by [am]m ⊆ R# the image of the ideal ulimm am ⊆ ∗R by the
projection ∗R −→ R#.

Lemma 2.4.8. Let (R,m) be a Noetherian local ring, am, bm ⊆ R be ideals
for every m ∈ N. If we have [am]m ⊆ [bm]m, then for every m-primary ideal
q ⊆ R, we have

{m ∈ N | am ⊆ bm + q} ∈ U.

Proof. By the definition of the catapower, if [am]m ⊆ [bm]m, then we have

ulimm am ⊆ ulimm bm + (∗m)n.

for every n.
On the other hand, it follows from Lemma 2.4.4 that (∗m)n = ∗(mn).

Therefore we have

ulim am ⊆ (ulim bm) +
∗(mn)

= ulim(bm +mn),

which is equivalent to

{m ∈ N | am ⊆ b+mn} ∈ U.

This implies the assertion in the lemma.
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Chapter 3

ACC for F -jumping numbers
on a fixed germ

3.1 Variants of test ideals

In this section, we introduce some variants of test ideals by using the trace
maps for the Frobenius morphisms and the q-adic expansion of a real number
(Definition 3.1.3 and 3.1.10). We also introduce the stabilization exponent
(Definition 3.1.7).

Definition 3.1.1 (cf. [HnBWZ16, Definition 2.1, 2.2]). Let q ⩾ 2 be an
integer, t > 0 be a real number and n ∈ Z be an integer. We define the n-th
digit of t in base q by

t(n) := ⌈tqn − 1⌉ − q⌈tqn−1 − 1⌉ ∈ Z.

We define the n-th round up and the n-th truncation of t in base q by

⟨t⟩n,q := ⌈tqn⌉/qn ∈ Q, and

⟨t⟩n,q := ⌈tqn − 1⌉/qn ∈ Q,

respectively.

Lemma 3.1.2. Let q ⩾ 2 be an integer, t > 0 be a real number and n ∈ Z
be an integer. Then the following hold.

1. 0 ⩽ t(n) < q.

2. t(n) is eventually zero for n≪ 0 and is not eventually zero for n≫ 0.

3. t =
∑

m∈Z t
(m) · q−m.
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4. ⟨t⟩n,q =
∑

m⩽n t
(m) · q−m.

5. The sequence {⟨t⟩n,q}n∈Z is a descending chain which convergences to
t.

6. The sequence {⟨t⟩n,q}n∈Z is an ascending chain which converges to t.

Proof. These all follow easily from the definitions. For the assertion in (2),
we note that if t = s/qm for some integers s and m, then we have t(n) = q−1
for all n > m.

Definition 3.1.3. Let (X = SpecR,∆, at•• =
∏

i a
ti
i ) be a triple such that

ti > 0 for all i and e > 0 be an integer such that (pe−1)(KX +∆) is Cartier.
For every integer n ⩾ 0, we define

τ en+ (R,∆, at•• ) := φen∆ (F en
∗ (a

⌈t1pen⌉
1 · · · a⌈tmpen⌉m · τ(R,∆))) ⊆ R and

τ en− (R,∆, at•• ) := φen∆ (F en
∗ (a

⌈t1pen−1⌉
1 · · · a⌈tmpen−1⌉

m · τ(R,∆))) ⊆ R.

Example 3.1.4. Let (X = SpecR,∆, at) be a triple such that t > 0 and that
a is a principal ideal and let e be a positive integer such that (pe−1)(KX+∆)
is Cartier. Then it follows from [BSTZ10, Lemma 5.4] that

τ en+ (R,∆, at) = τ(R,∆, a⟨t⟩
n,q

), and

τ en− (R,∆, at) = τ(R,∆, a⟨t⟩n,q).

By Proposition 2.3.5, the sequence {τ en+ (R,∆, at)}n is an ascending chain
of ideals which converges to τ(R,∆, at) and the sequence {τ en− (R,∆, at)}n is
a descending chain of ideals which eventually stabilizes.

The following lemma is well-known to experts, but we prove it for conve-
nience.

Lemma 3.1.5. Let R be a Noetherian ring of characteristic p > 0, let a ⊆ R
be an ideal, and let a, b, n and e be non-negative integers.

1. If n > pe(µR(a)− 1), then we have

an = (a⌈n/p
e⌉−µR(a))[p

e] · an−pe(⌈n/pe⌉−µR(a)).

In particular, if b > pe(µR(a)− 1), then we have aap
e+b = (aa)[p

e] · ab.

2. Assume that there exist ideals a1, . . . , am ⊆ R and integers M1, . . . ,Mm

such that a = aM1
1 + · · · + aMm

m . Set l :=
∑

i µR(ai). If n > pe(l − 1),
then we have

an = (a⌈n/p
e⌉−l)[p

e] · an−pe(⌈n/pe⌉−l).
In particular, if b > pe((

∑
i µR(ai))−1), then we have aap

e+b = (aa)[p
e] ·

ab.
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Proof. The proof of (1) is straightforward by taking a minimal generator of
a. For (2), we first consider the case when m = 1. If M1 = 1, then the
assertion in (2) is same as that in (1). If l = µR(a1) = 1, then the assertion
holds because a is a principal ideal. Therefore, we may assume that M1 ⩾ 2
and l ⩾ 2. In this case, it follows from (1) that

an = anM1
1 = (a

⌈nM1/pe⌉−l
1 )[p

e] · anM1−pe(⌈nM1/pe⌉−l)
1

⊆ (a
M1(⌈n/pe⌉−l)
1 )[p

e] · anM1−peM1(⌈n/pe⌉−l)
1

= (a⌈n/p
e⌉−l)[p

e] · an−pe(⌈n/pe⌉−l).

We next consider the case when m ⩾ 2. Set bi := aMi
i and li := µR(ai).

Then we have

an =
∑

n1,...,nm

m∏
i=1

bni
i ,

where ni runs through all non-negative integers such that
∑

i ni = n. Fix
such integers ni and set si := max{0, ⌈ni/pe⌉ − li}. Then it follows from the
first case that bni

i = (bsii )
[pe] · bni−pesi

i for every integer i. Therefore, we have∏
i

bni
i = (

∏
i

bsii )
[pe] ·

∏
i

bni−pesi
i

⊆ (a
∑

i si)[p
e] · a

∑
i(ni−pesi),

⊆ (a⌈n/p
e⌉−l)[p

e] · an−pe(⌈n/pe⌉−l),

which completes the proof of (2).

Proposition 3.1.6 (basic properties). Let (R,∆, at•• ) and e be as in Defini-
tion 3.1.3. Then the following hold.

1. ([BSTZ10, Lemma 3.21]) The sequence {τ en+ (R,∆, at•• )}n⩾0 is an as-
cending chain which converges to the test ideal τ(R,∆, at•• ).

2. If t1 > 1, then we have

τ en+ (R,∆, at11 · · · atmm ) ⊇ a1 · τ en+ (R,∆, at1−1
1 · · · atmm ).

Moreover, if t1 > µR(a1), then we have

τ en+ (R,∆, at11 · · · atmm ) = a1 · τ en+ (R,∆, at1−1
1 · · · atmm ).

3. φe∆(F
e
∗ (τ

en
+ (R,∆, ap

e·t•
• ))) = τ

e(n+1)
+ (R,∆, at•• ), where we set ap

e·t•
• :=∏

i a
peti
i .
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Proof. The proof of (1) follows as in the case when m = 1, see [BSTZ10,

Lemma 3.21]. If t1 > µR(a1), then by Lemma 3.1.5 (1), we have a
⌈t1pen⌉
1 =

a
[pen]
1 ·a⌈(t1−1)pen⌉

1 , which proves (2). The assertion in (3) follows from the fact

that φ
e(n+1)
∆ = φe∆ ◦ F e

∗φ
en
∆ ([Sch09, Theorem 3.11 (e)]).

Definition 3.1.7. Let (R,∆, at•• ) and e be as in Definition 3.1.3. We define
the stabilization exponent of (R,∆, at•• ; e) by

stab(R,∆, at•• ; e) := min{n ⩾ 0 | τ en+ (R,∆, at•• ) = τ(R,∆, at•• )}.

Proposition 3.1.8 (basic properties). Let (R,∆, at•• =
∏m

i=1 a
ti
i ) and e be as

in Definition 3.1.3. Then the following hold.

1. If t1 > µR(a1), then we have

stab(R,∆, at11 · · · atmm ; e) ⩽ stab(R,∆, at1−1
1 · · · atmm ; e).

2. We have
stab(R,∆, at•• ; e) ⩽ stab(R,∆, ap

e·t•
• ; e) + 1.

3. If ti > µR(ai) and (pe−1)ti ∈ N for every i, then for any integer n ⩾ 0,
the inequality n ⩾ stab(R,∆, at•• ; e) holds if and only if

τ en+ (R,∆, at•• ) = τ
e(n+1)
+ (R,∆, at•• ).

Proof. The assertions in (1) and (2) follow from Proposition 3.1.6 (2) and
(3), respectively.

For (3), it follows from Proposition 3.1.6 (2) and (3) that

τ
e(n+1)
+ (R,∆, at•• ) = φe∆(F

e
∗ (τ

en
+ (R,∆, ap

et1
1 · · · apetmm )))

= φe∆(F
e
∗ (a

(pe−1)t1
1 · · · a(pe−1)tm

m · τ en+ (R,∆, at•• ))).

Therefore, if τ en+ (R,∆, at•• ) = τ
e(n+1)
+ (R,∆, at•• ), then we have

τ
e(n+1)
+ (R,∆, at•• ) = τ

e(n+2)
+ (R,∆, at•• ),

which completes the proof.

Proposition 3.1.9. Let (X = SpecR,∆, a• =
∏

i ai) be a triple, e be a
positive integer such that (pe − 1)(KX +∆) is Cartier. We define

s̃tab(R,∆, a•; e) := sup
t1,...,tm

{stab(R,∆, at•• ; e)},
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where every ti runs through all positive rational numbers such that (pe−1)ti ∈
N. Then we have s̃tab(R,∆, a•; e) < ∞. Moreover, for every integer l ⩾ 0
and rational numbers t1, . . . , tm > 0 such that pel(pe − 1)ti ∈ N, we have

stab(R,∆, at•• ; e) ⩽ s̃tab(R,∆, a•; e) + l.

Proof. By Proposition 3.1.8 (1), we have

s̃tab(R,∆, a•; e) = sup
t1,...,tm

{stab(R,∆, at•• ; e)},

where every ti runs through all positive rational numbers such that (pe−1)ti ∈
N and ti ⩽ µR(ai). Hence we have s̃tab(R,∆, a•; e) <∞.

The second statement follows from Proposition 3.1.8 (2).

We next consider the sequence of ideals {τ en− (R,∆, at•• )}n. In general,
the sequence {τ en− (R,∆, at•• )}n may not be a descending chain. In order to
make a descending chain, we mix the definitions of τ+ and τ−, and define
the new variants of test ideals as below. In fact, we later see that we can
make a descending chain by using these ideals under some mild assumptions
(Proposition 3.1.12).

Definition 3.1.10. Let (R,∆, at•• =
∏

i a
ti
i ) and e be as in Definition 3.1.3,

q ⊆ R be an ideal, and n, u ⩾ 0 be integers. We define

τn,ue,q (R,∆, a
t•
• ) := φ

e(n+u)
∆ (F e(n+u)

∗ (a
peu⌈t1pen−1⌉
1 · · · apeu⌈tmpen−1⌉

m · q)).

When q = τ(R,∆), we denote it by τn,ue (R,∆, at•• ).

Proposition 3.1.11 (basic properties). Let (X = SpecR,∆, at•• =
∏m

i=1 a
ti
i )

be a triple such that ti > 0 for every i and (q − 1)(KX + ∆) is Cartier for
some q = pe, q ⊆ R be an ideal and n, u ⩾ 0 be integers. Then the following
hold.

1. For real numbers 0 < si ⩽ ti, we have τn,ue,q (R,∆, a
s•
• ) ⊇ τn,ue,q (R,∆, a

t•
• ).

Moreover, if ⟨ti⟩n,q < si ⩽ ti for every i, then we have τn,ue,q (R,∆, a
s•
• ) =

τn,ue,q (R,∆, a
t•
• ).

2. For ideals bi ⊆ ai and q′ ⊆ q, we have τn,ue,q′ (R,∆, b
t•
• ) ⊆ τn,ue,q (R,∆, a

t•
• ).

3. If a1 ≡ b1 mod J for some ideal J and ai = bi for every i ⩾ 2, then we
have

τn,ue,q (R,∆, a
t•
• ) ≡ τn,ue,q (R,∆, b

t•
• ) mod τn,ue,J ·q(R,∆,

m∏
i=2

atii ).

If q ≡ q′ mod J for some ideals q′ and J , then we have

τn,ue,q (R,∆, a
t•
• ) ≡ τn,ue,q′ (R,∆, a

t•
• ) mod τn,ue,J (R,∆, a

t•
• ).
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4. If q = a
qu⌈tm+1qn−1⌉
m+1 τ(R,∆), then we have

τn,ue,q (R,∆, a
t•
• ) = τn,ue (R,∆,

m+1∏
i=1

atii ).

5. If t1 > 1, then we have τn,ue,q (R,∆, a
t•
• ) ⊇ a1 · τn,ue,q (R,∆, a

t1−1
1 · · · atmm ).

Moreover, if t1 > µR(a) + (1/qn), then we have

τn,ue,q (R,∆, a
t•
• ) = a1 · τn,ue,q (R,∆, a

t1−1
1 · · · atmm ).

6. φe∆(F
e
∗ (τ

n,u
e,q (R,∆, a

pe·t•
• ))) = τn+1,u

e,q (R,∆, at•• ).

7. The sequence {τn,ue (R,∆, at•• )}u∈N is an ascending chain of ideals which

converges to τ(R,∆,
∏

i a
⟨ti⟩n,q

i ).

8. If u ⩾ s̃tab(R,∆, a•; e), then we have

τn,ue (R,∆, at•• ) = τ(R,∆,
∏
i

a
⟨ti⟩n,q

i )

for every n.

9. Assume that qu−1 ⩾ µR(ai) and the n-th digit ti
(n) of ti in base q is

non-zero for every i. Then we have τn,ue,q (R,∆, a
t•
• ) = τn−1,u

e,q′ (R,∆, at•• ),

where q′ := φe∆(F
e
∗ (
∏

i a
qu·ti(n)

i q)).

Proof. The assertions in (1), (2), (3), (4) and (8) follow easily from the
definitions. The assertions in (5), (6) and (7) follow from Proposition 3.1.6.
The assertion in (9) follows from Lemma 3.1.5 (1).

Proposition 3.1.12. Let (X = SpecR,∆, at•• ) be a triple such that ti > 0
for every i and (q− 1)(KX +∆) is Cartier for some q = pe, and u > 0 be an
integer such that qu−1 ⩾ maxi µR(ai). Assume that q(q − 1)ti ∈ N for every
i. Then the sequence {τn,ue (R,∆, at•• )}n⩾1 is a descending chain of ideals.

Proof. Since q(q − 1)ti ∈ N, the n-th digit t
(n)
i of ti in base q is constant for

n ⩾ 2. By Lemma 3.1.2 (2), it is non-zero. Therefore, the assertion follows
from Proposition 3.1.11 (2) and (9).

Definition 3.1.13. Let (X = SpecR,∆, at) be a triple with t > 0, let I be
an m-primary ideal, b ⊆ R be a proper ideal, and let e be a positive integer
such that (pe − 1)(KX +∆) is Cartier. Then we define

fjnI,n,ue (R,∆, at; b) := inf{s > 0 | τn,ue (R,∆, atbs) ⊆ I} ∈ R⩾0.
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Proposition 3.1.14. With the above notation, the following hold.

1. 0 ⩽ fjnI,n,ue (R,∆, at; b) ⩽ ℓℓR(R/I) + µR(b).

2. pen · fjnI,n,ue (R,∆, at; b) ∈ Z.

Proof. By Proposition 3.1.11 (5), we have

τn,ue (R,∆, atbℓℓR(R/I)+µR(b)) = bℓℓR(R/I) · τn,ue (R,∆, atbµR(b))

⊆ bℓℓR(R/I) ⊆ I,

which proves the assertion in (1).
The assertion in (2) follows from Proposition 3.1.11 (1).

Let (R,m) be a Noetherian local ring. For an R-module M with finite
length, we denote by ℓR(M) the length of M as an R-module and define

ℓℓR(M) := min{n ⩾ 0 | mnM = 0}.

Proposition 3.1.15. Let (X = SpecR,∆) be a pair such that (pe−1)(KX+
∆) is Cartier for some positive integer e, let t > 0 be a rational number, and
let M,µ > 0 and u ⩾ 2 be positive integers. Assume that

1. q > µ+ emb(R), and

2. qm(q − 1)t ∈ N for some integer m.

Then, there exists a positive integer n1 such that for every ideal b ⊆ R, if b =
a+mM for some ideal a ⊆ R with µR(a) ⩽ µ, then we have τn,ue (R,∆, bt) =
τn1,u
e (R,∆, bt) for every n ⩾ n1.

Proof. By Proposition 3.1.11 (6), it is enough to show the assertion in the
case when t > µ+ emb(R) and (pe − 1)t ∈ N. Set n1 := ℓR(τ(R,∆)/(mM⌈t⌉ ·
τ(R,∆))). We will prove that the assertion holds for this constant n1.

Let a ⊆ R be an ideal such that µR(a) ⩽ µ and set b := a + mM .
We consider the sequence of ideals {τn,ue (R,∆, bt)}n⩾1. As in the proof of
Proposition 3.1.12, by using Lemma 3.1.5 (2) instead of Lemma 3.1.5 (1), the
sequence {τn,ue (R,∆, bt)}n is a descending chain. Moreover, since b ⊇ mM ,
we have

τn,ue (R,∆, bt) ⊇ τn,ue (R,∆, (mM)t)

⊇ τn,ue (R,∆, (mM)t)

⊇ τn,0e (R,∆, (mM)t)

⊇ mM⌈t⌉ · τ(R,∆).
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Since we have

τ(R,∆) ⊇ τ 1,ue (R,∆, bt) ⊇ τ 2,ue (R,∆, bt) ⊇ · · · ⊇ mM⌈t⌉ · τ(R,∆),

there exists an integer 1 ⩽ m ⩽ n1 such that

τm,ue (R,∆, bt) = τm+1,u
e (R,∆, bt).

On the other hand, as in the proof of Proposition 3.1.11 (5), by using
Lemma 3.1.5 (2) instead of Lemma 3.1.5 (1), we have

τm+1,u
e (R,∆, bt

′+1) = b · τm,ue (R,∆, bt
′
)

for any real number t′ > µ + emb(R). Then, as in the proof of Proposition
3.1.8 (3), we have τm+1,u

e (R,∆, at) = τm+2,u
e (R,∆, at), which completes the

proof.

3.2 Rationality of the limit of F -jumping

numbers

In this section, we give uniform bounds for the denominators of F -jumping
numbers (Proposition 3.2.1) and for the stabilization exponents (Proposition
3.2.3) of m-primary ideals with fixed colength. By using these bounds, we
will verify the rationality of the limit of any sequence of F -pure thresholds
(Corollary 3.2.8).

Proposition 3.2.1. Let (X = SpecR,∆) be a pair such that (pe−1)(KX+∆)
is Cartier for some integer e > 0 and M > 0 be an integer. Then there exists
an integer N > 0 such that for any ideal a ⊆ R, if a ⊇ mM , then any
F -jumping number of (R,∆; a) is contained in (1/N) · Z.

Proof. Set l := ℓR(R/m
M) + µR(m

M) and n := ℓR(τ(R,∆)/τ(R,∆,mMl)).
We note that the module τ(R,∆)/τ(R,∆,mMl) has finite length because the
test ideals commute with localization ([HT04, Proposition 3.1]). Let a ⊆ R
be an ideal such that mM ⊆ a and let B ⊆ R>0 be the set of all F -jumping
numbers of (R,∆; a).

Since we have µ(a) ⩽ l, it follows from [BSTZ10, Corollary 3.27] that for
every element b ∈ B ∩R>l, we have b− 1 ∈ B. It also follows from [BSTZ10,
Lemma 3.25] that for every element b ∈ B, we have peb ∈ B. Moreover, since
τ(R,∆) ⊇ τ(R,∆, at) ⊇ τ(R,∆,mMl) for every t ⩽ l, the number of the set
B∩ [0, l] is at most n. Then the assertion follows from the lemma below.
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Lemma 3.2.2. Let l, n > 0 and q ⩾ 2 be integers. Then there exists an
integer N > 0 with the following property: if B ⊆ R⩾0 is a subset such that

1. for every element b ∈ B, if b > l, then we have b− 1 ∈ B,

2. if b ∈ B, then q · b ∈ B, and

3. the number of the set B ∩ [0, l] is at most n,

then we have B ⊆ (1/N) · Z.

Proof. The proof is essentially the same as that of [BMS08, Proposition 3.8].
Set N := qn(qn! − 1), where n! is the factorial of n.

For every element b ∈ B and every integer m ⩾ 0, we define bm ∈ B∩ [0, l]
by

bm := (qmb− ⌊qmb⌋) + min{l − 1, ⌊qmb⌋}.
If b ̸∈ (1/N)·Z, then b0, b1, . . . , bn are all distinct and hence contradiction.

Proposition 3.2.3. Let (X = SpecR,∆) be a pair such that (pe−1)(KX+∆)
is Cartier for some integer e > 0 and M > 0 be an integer. Then there exists
u0 > 0 such that for every ideals a ⊇ mM , we have

s̃tab(R,∆, a; e) ⩽ u0.

Proof. Set l := ℓR(R/m
M) + µR(m

M) and take an integer n0 > 0 such that
pe(n0−1) > l. Let a ⊆ R be an ideal such that a ⊇ mM and t > 0 be a rational
number such that (pe − 1)t ∈ N.

We first consider the case when l < t ⩽ lpen0 . In this case, by Proposition
3.1.6 (1), the sequence {τ en+ (R,∆, at)}n⩾0 is an ascending chain such that

τ(R,∆) ⊇ τ en+ (R,∆, at) ⊇ τ 0+(R,∆, a
t) = a⌈t⌉ · τ(R,∆) ⊇ mlMpen0 · τ(R,∆)

for every n. Therefore, there exists an integer 0 ⩽ n < ℓR(τ(R,∆)/(mlMpen0 ·
τ(R,∆))) such that

τ en+ (R,∆, at) = τ
e(n+1)
+ (R,∆, at).

By Proposition 3.1.8 (3), we have

stab(R,∆, at; e) ⩽ n ⩽ ℓR(τ(R,∆)/(mlMpen0 · τ(R,∆))).

We next consider the case when t ⩽ l. Since l < tpen0 ⩽ lpen0 , it follows
from Proposition 3.1.8 (2) that

stab(R,∆, at; e) ⩽ stab(R,∆, atp
en0 ; e) + n0

⩽ ℓR(τ(R,∆)/(mlMpen0 · τ(R,∆))) + n0.
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Therefore, u0 := ℓR(τ(R,∆)/(mlMpen0 · τ(R,∆))) + n0 satisfies the property.

Proposition 3.2.4. Let (X = SpecR,∆) be a pair such that (pe−1)(KX+∆)
is Cartier for some integer e > 0, {am}m∈N be a family of ideals of R and
t > 0 be a real number. Fix a non-principal ultrafilter U. Let (R#,m#)
be the catapower of the local ring (R,m), ∆# be the flat pullback of ∆ to
SpecR# and a∞ := [am]m ⊆ R#. If there exists a positive integer M such
that am ⊇ mM for every m, then we have

τ(R#,∆#, a
t
∞) = [τ(R,∆, atm)]m ⊆ R#.

Proof. We first consider the case when t is a rational number. By enlarging
e, we may assume that pen(pe − 1)t ∈ Z for some integer n ⩾ 0. Take a
positive integer u as in Proposition 3.2.3. Then we have

τ(R,∆, atm) = τ
e(n+u)
+ (R,∆, atm),

for every m. By enlarging u, we may assume that

τ(R#,∆#, a
t
∞) = τ

e(n+u)
+ (R#,∆#, a

t
∞).

Since µR(am) ⩽ ℓR(R/m
M) + µR(m

M) for every m, it follows from Lemma
2.4.4 that

(a∞)s = [(am)
s]m

for every integer s > 0. Combining with Proposition 2.1.8 and 2.4.3, we have

τ el+ (R#,∆#, a
t
∞) = φel∆#

(F el
∗ (a⌈tp

el⌉
∞ · τ(R#,∆#)))

= φel∆#
(F el

∗ [a⌈tp
el⌉

m · τ(R,∆)]m)

= [φel∆(F
el
∗ (a⌈tp

el⌉
m · τ(R,∆)))]m

= [τ el+ (R,∆, a
t
m)]m ⊆ R#

for every integer l. Therefore, we have

τ(R#,∆#, a
t
∞) = [τ(R,∆, atm)]m ⊆ R#.

We next consider the case when t is not a rational number. For sufficiently
large integer n, we have

τ(R#,∆#, a
t
∞) = τ en+ (R#,∆#, a

t
∞)

= [τ en+ (R,∆, atm)]m

⊆ [τ(R,∆, atm)]m ⊆ R#.
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For the converse inclusion, by Proposition 2.3.5, we can take a rational num-
ber t′ such that t′ < t and τ(R#,∆#, a

t
∞) = τ(R#,∆#, a

t′
∞). Then, we have

τ(R#,∆#, a
t
∞) = τ(R#,∆#, a

t′

∞)

= [τ(R,∆, at
′

m)]m

⊇ [τ(R,∆, atm)]m,

which completes the proof.

Proposition 3.2.5. With the notation above, let I ⊆ R be an m-primary
ideal. Assume that mM ⊆ am ⊆ m for every m. Then there exists T ∈ U
such that for all m ∈ T , we have

fjnI(R,∆; am) = fjnI·R#(R#,∆#, a∞).

Proof. Set t := fjnI·R#(R#,∆#; a∞) ∈ R⩾0. If τ(R,∆) ⊆ I, then we have
fjnI(R,∆; am) = 0 for every m ∈ N and fjnI·R#(R#,∆#, a∞) = 0. Therefore,
we may assume that τ(R,∆) ̸⊆ I. Since a∞ ̸= (0), it follows from Lemma
2.1.5 (2) that t > 0.

It follows from Proposition 3.2.4 that we have

[τ(R,∆, atm)]m = τ(R#,∆#, a
t
∞) ⊆ I ·R#.

Since I is m-primary, it follows from Lemma 2.4.8 that there exists S1 ∈ U
such that τ(R,∆, atm) ⊆ I for every m ∈ S1. Therefore fjnI(R,∆; am) ⩽
fjnI·R#(R#,∆#, a∞) for every m ∈ S1.

On the other hand, by Proposition 3.2.1, there exists 0 < t′ < t such that
for every ideal b ⊇ mM , if t′ < fjnI(R,∆; b), then t ⩽ fjnI(R,∆; b). Since
t′ < t, we have

[τ(R,∆, at
′

m)]m = τ(R#,∆#, a
t′

∞) ̸⊆ I ·R#.

Hence, we have
ulimm τ(R,∆, a

t′

m) ̸⊆ ∗I.

Therefore, there exists S2 ∈ U such that τ(R,∆, at
′
m) ̸⊆ I for every m ∈ S2.

Then T := S1 ∩ S2 satisfies the assertion.

Lemma 3.2.6 ([BMS09, Lemma 3.3]). Let (X = SpecR,∆) be a pair such
that KX+∆ is Q-Carter, I be an m-primary ideal, a, b ⊆ R be proper ideals.
Then we have

fjnI(R,∆; a+ b) ⩽ fjnI(R,∆; a) + fjnI(R,∆; b).
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Proof. As in the proof of [Tak06, Theorem 3.1], for every real number c ⩾ 0,
we can show that

τ(R,∆, (a+ b)c) =
∑

u,v⩾0,u+v=c

τ(R,∆, aubv).

Set t := fjnI(R,∆; a) and s := fjnI(R,∆; b). Then we have

τ(R,∆, (a+ b)t+s) =
∑

u,v⩾0,u+v=s+t

τ(R,∆, aubv)

⊆ τ(R,∆, at) + τ(R,∆, bs) ⊆ I.

Theorem 3.2.7. Let (X = SpecR,∆) be a pair such that (pe− 1)(KX +∆)
is Cartier for some integer e > 0, (R#,m#) be the catapower of (R,m), ∆#

be the flat pullback of ∆ to SpecR#, I ⊆ R be an m-primary ideal, {am}m∈N
be a family of proper ideals and a∞ := [am]m ⊆ R#. Then we have

sh(ulimm fjnI(R,∆; am)) = fjnI·R#(R#,∆#, a∞) ∈ Q.

In particular, if the limit limm−→∞ fjnI(R,∆; am) exists, then we have

lim
m−→∞

fjnI(R,∆; am) = fjnI·R#(R#,∆#, a∞).

Proof. The proof is essentially the same as the proof of [BMS09, Theorem
1.2]. If τ(R,∆) ⊆ I, then the assertion in the theorem is trivial. Therefore,
we may assume that τ(R,∆) ̸⊆ I.

For every integer M > 0, we set b∞,M := a∞ + (m#)
M and bm,M :=

am +mM for every integer m. We write s := fjnI·R#(R#,∆#;m#)
By Lemma 3.2.6, we have

|fjnI·R#(R#,∆#; a∞)− fjnI·R#(R#,∆#; b∞,M)| ⩽ s/M (3.1)

for every M .
By Proposition 2.1.8 (4), we have s = fjnI(R,∆;m). Therefore, it follows

from Lemma 3.2.6 that

|fjnI(R,∆; am)− fjnI(R,∆; bm,M)| ⩽ s/M (3.2)

for every m and M .
On the other hand, since b∞,M = [bm,M ]m, it follows from Proposition

3.2.5 that there exists TM ∈ U such that

fjnI·R#(R#,∆#; b∞,M) = fjnI(R,∆; bm,M) (3.3)
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for every m ∈ TM .
By combining the equations (3.1), (3.2), and (3.3), we have

|fjnI·R#(R#,∆#; a∞)− fjnI(R,∆; am)| ⩽ 2s/M

for every m ∈ TM .
It follows from the definition of the shadow that

sh(ulimm fjnI(R,∆; am)) = fjnI·R#(R#,∆#; a∞),

which completes the proof.

Since we have fpt(R,∆; a) = fjnm(R,∆; a) for a strongly F -regular pair
(R,∆), the following is a special case of Theorem 3.2.7.

Corollary 3.2.8 (cf. [BMS09, Theorem 1.2]). With the notation above, we
further assume that (R,∆) is strongly F -regular. Then we have

sh(ulimm fpt(R,∆m; am)) = fpt(R#,∆∞, a∞) ∈ Q.

In particular, if the limit limm−→∞ fpt(R,∆m; am) exists, then we have

lim
m−→∞

fpt(R,∆m; am) = fpt(R#,∆∞, a∞).

3.3 ACC for F -jumping numbers

In this section, we introduce Condition (⋆) (Definition 3.3.2) which plays the
key role in the proof of the main theorem and we prove some properties of
Condition (⋆) (Proposition 3.3.4 and Proposition 3.3.6). By combining them
with Proposition 3.1.15 and Theorem 3.2.7, we give the proof of the main
theorem of Chapter 3 (Theorem 3.3.9).

Observation 3.3.1. LetX be a normal variety over a field k of characteristic
zero, ∆ be an effective Q-Weil divisor on X such that KX +∆ is Q-Cartier,
a ⊆ OX be a non-zero coherent ideal sheaf, t ⩾ 0 be a rational number,
x ∈ X be a closed point and mx ⊆ OX be the maximal ideal at x. We
consider the log canonical threshold

lctx(X,∆, a
t;m) := inf{s ⩾ 0 | (X,∆, atms) is not log canonical at x}.

By considering a log resolution of (X,∆), a and m, we can show that
there exist a real number t′ < t and rational numbers a, b such that

lctx(X,∆, a
s;m) = as+ b (3.4)
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for every t′ < s < t.
Assume that there exist integers q ⩾ 2 and m ⩾ 0 such that qm(q− 1)t ∈

N. Then for every n > m, the n-th digit of t in base q satisfies t(n) = l for
some constant l > 0. Set N := −al/q. Then we have

lctx(X,∆, a
⟨t⟩n+1,q ;m) = lctx(X,∆, a

⟨t⟩n,q ;m)−N/qn (3.5)

for sufficiently large n.

Motivated by the observation above, we define the following condition.

Definition 3.3.2. Let (X = SpecR,∆, at) be a triple such that t > 0 and
(pe − 1)(KX +∆) is Cartier for some integer e > 0, I ⊆ R be an m-primary
ideal and u,N ⩾ 0 be integers. We say that (R,∆, at, I, e, u,N) satisfies
Condition (⋆) if for every n ⩾ 0, we have

fjnI,n+1,u
e (R,∆, at;m) ⩾ fjnI,n,ue (R,∆, at;m)−N/pen.

Remark 3.3.3. If we have u ⩾ s̃tab(R,∆, a,m; e), then we have

fjnI,n,ue (R,∆, at;m) = ⟨fjnI(R,∆, a⟨t⟩n,q ;m)⟩n,q,

where we write q := pe. Therefore, Condition (⋆) can be regarded as an
analogue of the equation 3.5 in Observation 3.3.1. See also Corollary 3.3.5
below.

We also note that the equation 3.4 in Observation 3.3.1 may not hold for
F -pure thresholds (cf. [Pér13, Example 5.3]).

We first give a sufficient condition for Condition (⋆).

Proposition 3.3.4. Let (X = SpecR,∆, at) be a triple such that t > 0 and
(pe−1)(KX+∆) is Cartier for some e > 0, let I ⊆ R be an m-primary ideal,
let 0 < l < pe be a positive integer and let n0 ⩾ 0 and u ⩾ 2 be integers. Set

q = pe, N := qn0+3emb(R), t0 :=
q2

q − 1
, and M0 :=

(qn0+6 − 1)emb(R)

q − 1
.

Assume that

1. q > µR(a),

2. q > ℓℓR(R/I),

3. the n-th digit of t in base q satisfies t(n) = l for every n ⩾ 2, and

4. τn0+1,u
e (R,∆, alt0) +mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0).
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Then, (R,∆, at, I, e, u,N) satisfies Condition (⋆)

Proof. By induction on n ⩾ 0, we will show the inequality

fjnI,n+1,u
e (R,∆, at;m) ⩾ fjnI,n,ue (R,∆, at;m)−N/qn. (3.6)

Step.1 We consider the case when n ⩽ n0 + 2. In this case, we have

N/qn ⩾ q · emb(R) ⩾ ℓℓR(R/I) + emb(R).

By Proposition 3.1.14 (1), we have

fjnI,n,ue (R,∆, at;m) ⩽ ℓℓR(R/I) + emb(R).

Hence we have
fjnI,n,ue (R,∆, at;m)−N/qn ⩽ 0,

which implies the inequality 3.6.
Step.2 From now on, we assume n ⩾ n0 + 3. Set

r := qn · fjnI,n,ue (R,∆, at;m).

By Proposition 3.1.14, we have r ∈ Z. We first consider the case when

r ⩽ qn0 · emb(R).

In this case, we have

fjnI,n,ue (R,∆, at;m)−N/qn ⩽ 0,

which shows the inequality 3.6. Therefore, we may assume r > qn0 · emb(R).
Step.3 Set s := ⌈r/qn0⌉ − emb(R)− 1 and s′ := ⌈(s+M0)/q

2⌉.
In this step, we will show the inclusion

τn,ue (R,∆, atmr/qn) ⊆ τn+1,u
e (R,∆,atms/qn−n0 )

+ τn−n0−2,2
e (R,∆, atms′/qn−n0+2

).
(3.7)

By the assumption (3), α := tqn−n0 − lt0 = q2⌈tqn−n0−2− 1⌉ is an integer.
It follows from Proposition 3.1.11 (1), (5), and (6) that

τn,ue (R,∆, atmr/qn) = φ
e(n−n0)
∆ (F e(n−n0)(τn0,u

e (R,∆, atq
n−n0mr/qn0 )))

⊆ φ
e(n−n0)
∆ (F e(n−n0)(aαmsτn0,u

e (R,∆, alt0))).
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Similarly, we have

τn+1,u
e (R,∆, atms/qn−n0 ) = φ

e(n−n0)
∆ (F e(n−n0)(τn0+1,u

e (R,∆, atq
n−n0ms)))

⊇ φ
e(n−n0)
∆ (F e(n−n0)(aαmsτn0+1,u

e (R,∆, alt0))).

On the other hand, it follows from the definitions that

τn−n0−2,2
e (R,∆, atms′/qn−n0−2

) = φ
e(n−n0)
∆ (F e(n−n0)(aαmq2(s′−1)τ(R,∆)))

⊇ φ
e(n−n0)
∆ (F e(n−n0)(aαms+M0τ(R,∆))).

By combining them with the assumption (4), we have the inclusion 3.7.
Step.4 In this step, we will show the inclusion

τn−n0−2,2
e (R,∆, atms′/qn−n0−2

) ⊆ I. (3.8)

It follows from the induction hypothesis that

fjnI,n,ue (R,∆, at;m) ⩾ fjnI,n−n0−2,u
e (R,∆, at;m)− (

n−1∑
i=n−n0−2

N

qi
).

Therefore, we have the inequality

s′

qn−n0−2
⩾ s+M0

qn−n0
⩾ r/qn0 − emb(R)− 1 +M0

qn−n0

= fjnI,n,ue (R,∆, at;m) +
−emb(R)− 1 +M0

qn−n0

⩾ fjnI,n−n0−2,u
e (R,∆, at;m)− (

n−1∑
i=n−n0−2

N

qi
) +

−emb(R)− 1 +M0

qn−n0

> fjnI,n−n0−2,u
e (R,∆, at;m).

Since we have u ⩾ 2, It follows from Proposition 3.1.11 (7) that

τn−n0−2,2
e (R,∆, atms′/qn−n0−2

) ⊆ τn−n0−2,u
e (R,∆, atms′/qn−n0−2

) ⊆ I.

Step.5 It follows from Proposition 3.1.11 (1) that

τn,ue (R,∆, atmr/qn) ̸⊆ I.

Combining it with the inclusions 3.7 and 3.8, we have

τn+1,u
e (R,∆, atms/qn−n0 ) ̸⊆ I.
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Hence, we have

fjnI,n+1,u
e (R,∆, at;m) ⩾ s

qn−n0

⩾ r/qn0 − emb(R)− 1

qn−n0

= fjnI,n,ue (R,∆, at;m)− emb(R) + 1

qn−n0

> fjnI,n,ue (R,∆, at;m)− N

qn
,

which completes the proof of the proposition.

Corollary 3.3.5. Let (X = SpecR,∆, at) be a triple such that t > 0 is a
rational number and (pe − 1)(KX + ∆) is Cartier for some integer e > 0
and I ⊆ R be an m-primary ideal. Then, there exist integers e′, u0, N > 0
such that for every u ⩾ u0, (R,∆, a

t, I, e′, u,N) satisfies Condition (⋆). In
particular, there exists an integer N ′ > 0 such that if we write q := pe

′
, then

fjnI(R,∆, a⟨t⟩n+1,q ;m) ⩾ fjnI(R,∆, a⟨t⟩n,q ;m)−N ′/qn

for every integer n ⩾ 0.

Proof. Take an integer m > 0 such that q := pem satisfies the assumptions
(1), (2), and (3) in Proposition 3.3.4.

Set l = t(2) and t0 := q2/(q − 1). Then it follows from Proposition 2.3.5
that there exists an integer n0 > 0 such that

τ(R,∆, a⟨lt0⟩n0,q) = τ(R,∆, a⟨lt0⟩(n0+1),q).

Set e′ := em, u0 := s̃tab(R,∆, a; e′) and N := qn0+3 · emb(R). Then the
first assertion follows from Proposition 3.3.4.

Set N ′ := N + 1. Then the second assertion follows from Remark 3.3.3.

Proposition 3.3.6. Suppose that (R,∆, at), q = pe, u, and N satisfies the
conditions of Proposition 3.3.4. We further assume that q > ℓℓR(R/I) +
µR(a) + emb(R). Then for every n ⩾ 1, we have

fjnI,n,ue (R,∆, at;m) = fjnI,n,ue (R,∆, bt;m),

where b := a+mqu+2·N . In particular, for every n, we have

τn,ue (R,∆, at) ⊆ I if and only if τn,ue (R,∆, bt) ⊆ I.
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Proof. Set M := qu+2 · N , M ′ := qu+1 · N , sn := fjnI,n,ue (R,∆, at;m), and
δn := qnsn for every integer n. By Proposition 3.1.14 (2), we have δn ∈ N. It
is enough to show the following claim.

Claim. For every n ⩾ 1 and every ideal q ⊆ mmax{0,qu·δn−M ′} · τ(R,∆), we
have

τn,ue,q (R,∆, a
t) ≡ τn,ue,q (R,∆, b

t) (mod I).

In fact, if the claim holds, then it follows from Proposition 3.1.11 (4) that

τn,ue (R,∆, btmsn+ε) ≡ τn,ue (R,∆, atmsn+ε) (mod I)

⊆ I

for every real number 0 < ε ⩽ 1/qn. Therefore we have

fjnI,n,ue (R,∆, at;m) ⩾ fjnI,n,ue (R,∆, bt;m).

Similarly, if sn > 0, then we have

τn,ue (R,∆, btmsn) ≡ τn,ue (R,∆, atmsn) (mod I)

̸⊆ I,

which shows fjnI,n,ue (R,∆, at;m) ⩽ fjnI,n,ue (R,∆, bt;m). Since this inequality
also holds when sn = 0, we complete the proof of the proposition.

Proof of Claim. We use induction on n.
Step.1We first consider the case when n = 1. It follows from Proposition

3.1.11 (3) that

τn,ue,q (R,∆, a
t) ≡ τn,ue,q (R,∆, b

t) (mod τn,u
e,q·mM (R,∆)).

Since we have q ·mM ⊆ mqu⌈q(ℓℓR(R/I)+emb(R))−1⌉ · τ(R,∆), it follows from
Proposition 3.1.11 (2), (4) and (5) that

τn,u
e,q·mM (R,∆) ⊆ mℓℓR(R/I) ⊆ I.

Therefore, the assertion holds when n = 1.
Step.2 From now on, we consider the case when n ⩾ 2. Set q′ :=

φe∆(F
e
∗ (a

t(n)·quq)) and q′′ := φe∆(F
e
∗ (b

t(n)·quq)).
Then it follows from Proposition 3.1.11 (9) that

τn,ue,q (R,∆, a
t) = τn−1,u

e,q′ (R,∆, at). (3.9)
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Similarly, by using Lemma 3.1.5 (2) instead of (1), we have

τn,ue,q (R,∆, b
t) = τn−1,u

e,q′′ (R,∆, bt). (3.10)

Step.3 In this step, we will show the equation

τn−1,u
e,q′ (R,∆, at) ≡ τn−1,u

e,q′′ (R,∆, at) (mod I). (3.11)

Set J := φe∆(F
e
∗ (m

Mq)), then we have q′ ≡ q′′(mod J). By Proposition
3.1.11 (3), it is enough to show that

τn−1,u
e,J (R,∆, at) ⊆ I.

Since we have δn ⩾ qδn−1 − qN , it follows from Lemma 3.1.5 that

J ⊆ φe∆(m
quδn+M−M ′ · τ(R,∆))

⊆ m(quδn+M−M ′)/q−emb(R) · τ(R,∆)

⊆ mquδn−1 · τ(R,∆).

Therefore, it follows from Proposition 3.1.11 (2) and (4) that

τn−1,u
e,J (R,∆, at) ⊆ τn−1,u

e (R,∆, atmsn−1+(1/qn−1)) ⊆ I,

which shows the equation 3.11.
Step.4 In this step, we will show the equation

τn−1,u
e,q′′ (R,∆, at) ≡ τn−1,u

e,q′′ (R,∆, bt) (mod I). (3.12)

As in Step 3, we have

q′′ ⊆ φe∆(F
e
∗ (m

max{0,quδn−M ′} · τ(R,∆)))

⊆ mmax{0,qu−1δn−(M ′/q)−emb(R)} · τ(R,∆)

⊆ mmax{0,quδn−1−M ′} · τ(R,∆).

By induction hypothesis, we get the equation 3.12.
By combining the equations 3.9, 3.10, 3.11 and 3.12, we complete the

proof of the claim.

Corollary 3.3.7. Let (X = SpecR,∆) be a pair such that (pe−1)(KX +∆)
is Cartier for some integer e > 0, I ⊆ R be an m-primary ideal, l, n0 ⩾ 0 and
u ⩾ 2 be integers and t > 0 be a rational number such that pe(pe − 1)t ∈ N.
We set l := t(2), t0 := p2e/(pe− 1) and M0 = (pe(n0+6)− 1) · emb(R)/(pe− 1).
Then there exists an integer n1 > 0 with the following property: for any ideal
a ⊆ R such that
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1. pe > µR(a) + ℓℓR(R/I) + emb(R), and

2. τn0+1,u
e (R,∆, alt0) +mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0)

we have
τn,ue (R,∆, at) ⊆ I if and only if τn1,u

e (R,∆, at) ⊆ I

for every integer n ⩾ n1.

Proof. By Proposition 3.3.4 and Proposition 3.3.6, b := a + mqu+n0+5emb(R)

satisfies
τn,ue (R,∆, at) ⊆ I if and only if τn,ue (R,∆, bt) ⊆ I.

for every integer n.
On the other hand, it follows from Proposition 3.1.15 that there exists

an integer n1 > 0 which depends only on µ := q − emb(R) − 1, M :=
qu+n0+5emb(R), e, u, and t such that for every integer n > n1, we have

τn,ue (R,∆, bt) ⊆ I if and only if τn1,u
e (R,∆, bt) ⊆ I,

which completes the proof.

By using the method of ultraproduct, we can apply Corollary 3.3.7 to
infinitely many ideals simultaneously.

Proposition 3.3.8. Let (X = SpecR,∆) be a pair such that (pe−1)(KX+∆)
is Cartier for some integer e > 0, I ⊆ R be an m-primary ideal, {am}m∈N be
a family of ideals of R, t > 0 be a rational number, and U be a non-principal
ultrafilter. Assume that

1. τ(R,∆) is m-primary or trivial,

2. pe > µR(am) + ℓℓR(R/I) + emb(R) for every m, and

3. pe(pe − 1)t ∈ N.

Then for any sufficiently large integer u > 0, there exist an integer n1 and
T ∈ U such that

τn,ue (R,∆, atm) ⊆ I if and only if τn1,u
e (R,∆, atm) ⊆ I

for every integer n ⩾ n1 and m ∈ T .

36



Proof. Set t0 := p2e/(pe − 1). Since pe(pe − 1)t ∈ N, there exists an integer
0 < l < pe such that t(n) = l for every n ⩾ 2. By Corollary 3.3.7, it is enough
to show that for any sufficiently large integer u > 0, there exist an integer
n0 and T ∈ U such that for every m ∈ T , we have

τn0+1,u
e (R,∆, alt0) +mM0 · τ(R,∆) ⊇ τn0,u

e (R,∆, alt0),

where M0 := (pe(n0+6) − 1)emb(R)/(pe − 1).
Let (R#,m#) be the catapower of (R,m), ∆# be the flat pullback of ∆

to SpecR# and a∞ be the ideal [am]m ⊆ R#. It follows from Lemma 2.4.4
that for every integers u, n ⩾ 0 we have

τn,ue (R#,∆#, a
l·t0
∞ ) = [τn,ue (R,∆, al·t0m )]m.

By Proposition 2.3.5, there exists an integer n0 ⩾ 0 such that

τ(R#,∆#, a
⟨l·t0⟩n0,q∞ ) = τ(R#,∆#, a

⟨l·t0⟩(n0+1),q
∞ )

On the other hand, by Proposition 3.1.11 (8), there exists an integer u0
such that for every integers u ⩾ u0 and n ⩾ 0, we have

τn,ue (R#,∆#, a
l·t0
∞ ) = τ(R#,∆#, a

⟨l·t0⟩n,q
∞ ).

Therefore, we have

[τn0,u
e (R,∆, al·t0m )]m = [τn0+1,u

e (R,∆, al·t0m )]m ⊆ R#.

Since mM0 · τ(R,∆) ⊆ R is an m-primary ideal, it follows from Lemma
2.4.8 that there exists T ∈ U such that for every m ∈ T , we have

τn0,u
e (R,∆, al·t0m ) ⊆ τn0+1,u

e (R,∆, al·t0m ) +mM0 · τ(R,∆),

which completes the proof.

Theorem 3.3.9 (Theorem B, Corollary C). Let (X = SpecR,∆) be a pair
such that τ(R,∆) is m-primary or trivial and that (pe−1)(KX+∆) is Cartier
for some integer e > 0, and let I ⊆ R be an m-primary ideal. Then, the set

FJNI(R,∆) :=
{
fjnI(R,∆; a) | a ⊊ R

}
satisfies the ascending chain condition. In particular, if (R,∆) is strongly
F -regular, then the set

FPT(R,∆) := {fpt(R,∆; a) | a ⊊ R}

satisfies the ascending chain condition.
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Proof. We assume the contrary. Then there exists a family of ideals {am}m∈N
such that {fjnI(R,∆; am)}m∈N is a strictly ascending chain. Set

t := lim
m−→∞

fjnI(R,∆; am).

It follows from Proposition 2.3.5 and Theorem 3.2.7 that t ∈ Q>0.
Let U be a non-principal ultrafilter, R# be the catapower of R, ∆#

be the flat pullback of ∆ to SpecR#, and a∞ := [am]m ⊆ R#. Take ele-
ments f1, . . . , fl ∈ R# such that a∞ = (f1, . . . , fl). Since the natural map∏

m∈N am −→ [am]m is surjective, there exists fm,i ∈ am for every m ∈ N such
that fi = [fm,i]m.

Set a′m := (fm,1, . . . , fm,l) ⊆ am. Since we have [a′m]m = a∞, it follows
from Theorem 3.2.7 that sh(ulimm fjnI(R,∆; a′m)) = t. On the other hand,
since we have fjnI(R,∆; a′m) ⩽ fjnI(R,∆; am) < t, by replacing by a sub-
sequence, we may assume that the sequence {fjnI(R,∆; a′m)} is a strictly
ascending chain. By replacing am by a′m, we may assume µR(am) ⩽ l for
every m.

By enlarging e, we may assume that q = pe satisfies the following prop-
erties:

1. q(q − 1)t ∈ N and

2. q > ℓℓR(R/I) + l + emb(R).

It follows from Proposition 3.3.8 that there exist integers u, n1 > 0 and
T ∈ U such that

τn,ue (R,∆, atm) ⊆ I if and only if τn1,u
e (R,∆, atm) ⊆ I

for every integer n ⩾ n1 and m ∈ T . By enlarging u, we may further assume
that u ⩾ s̃tab(R#,∆#, a∞; e)

For every m ∈ N and for every sufficiently large n≫ 0 we have

τn,ue (R,∆, atm) ⊆ τ(R,∆, a⟨t⟩n,q
m ) ⊆ I.

Therefore we have τn1,u
e (R,∆, atm) ⊆ I for every m ∈ T .

On the other hand, since ⟨t⟩n1,q < t = fjnI·R#(R#,∆#; a∞), we have

[τn1,u
e (R,∆, atm)]m = τn1,u

e (R#,∆#, a
t
∞)

= τ(R#,∆#, a
⟨t⟩n1,q∞ )

̸⊆ I ·R#.

Therefore, there exists a set S ∈ U such that

τn1,u
e (R,∆, atm) ̸⊆ I
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for every m ∈ S. Since S ∩ T ̸= ∅, we have contradiction.

Corollary 3.3.10 (Theorem A). Fix an integer n ⩾ 1, a prime number
p > 0 and a set Dreg

n,p such that every element of Dreg
n,p is an n-dimensional

F -finite Noetherian regular local ring of characteristic p. The set

T reg
n,p := {fpt(A; a) | A ∈ Dreg

n,p, a ⊊ A},

satisfies the ascending chain condition.

Proof. We assume the contrary. Then there exists a sequence {Am}m∈N in
T reg
n,p and ideals am ⊊ Am such that the sequence {fpt(Am; am)} is a strictly

ascending chain.
Since test ideals commute with completion([HT04, Proposition 3.2]), we

may assume that Am = km[[x1, . . . , xn]] for some F -finite field km. Take an
F -finite field k such that km ⊆ k for every m. Let (A,mA) be the local
ring k[[x1, . . . , xn]]. Then it follows as in the proof of [BMS09, Theorem 3.5
(i)] that fpt(A; (amA)) = fpt(Am; am). Therefore, we have fpt(Am; am) ∈
FJNmA(A, 0) for every m, which contradicts to Theorem 3.3.9.

We conclude Chapter 3 with a natural question as below.

Question 3.3.11. Does Theorem A give an alternative proof of [dFEM10,
Theorem 1.1]? Moreover, does Theorem B imply that the set of all jumping
numbers of multiplier ideals with respect to a fixed m-primary ideal on a log
Q-Gorenstein pair over C satisfies the ascending chain condition?

We hope to consider this question at a later time.
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Chapter 4

ACC for F -pure thresholds
with fixed embedding
dimension

4.1 Rationality of F -pure thresholds

In this section, we define a variant of parameter test modules (Definition
4.1.5). By considering the jumping numbers associated to these new modules,
we prove the rationality of F -pure thresholds (Corollary 4.1.10).

Proposition 4.1.1. Let (X = SpecR,∆, at) be a triple such that ∆ = sD
for some Cartier divisor D and t = s = 1/(pe − 1) for some integer e > 0.
Then τ(ωX , (s−ε)D, at) is constant for all sufficiently small rational numbers
0 < ε≪ 1.

Proof. The proof is essentially the same as that of [ST14, Lemma 6.2]. We
may assume that a ̸= 0. Set q = pe. For every integer l ⩾ 0, we define the
l-th truncation of s in the base q by

⟨s⟩l,q :=
ql − 1

ql(q − 1)
∈ Q.

Since the sequence {⟨s⟩l,q}l∈N is a strictly ascending chain which converges to
s, it is enough to prove that τ(ωX , ⟨s⟩l,q ·D, at) is constant for all sufficiently
large l.

Take the normalized blowup π : Y −→ X along a. Let G be the Cartier
divisor on Y such that OY (−G) = a ·OY . Take the Grothendieck trace maps
Trπ : π∗ωY −→ ωX , TrX : F∗ωX −→ ωX and TrY : F∗ωY −→ ωY . As in
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[BST15, p.4], we have TrX ◦F∗(Trπ) = Trπ ◦ π∗(TrY ) and Trπ is injective. In
particular, we may consider π∗ωY as a submodule of ωX .

By [ST14, Theorem 5.1], for every integer l ⩾ 0, there exists an integer
ml such that

τ(ωX , ⟨s⟩l,q ·D, at) = TremX (F em
∗ π∗(τ(ωY , q

m(⟨s⟩l,q · π∗D + tG)))) (4.1)

for all m ⩾ ml.
By Lemma 2.1.5 (3) and (6), there exists l0 such that τ(ωY , ⟨s⟩l,q · π∗D+

tG) is constant for all l ⩾ l0. For every integer l ⩾ 0, it follows from Lemma
2.1.5 (4) that the morphism

βl := TreY : F e
∗ (τ(ωY , q(⟨s⟩l,q · π∗D + tG)))) −→ τ(ωY , ⟨s⟩l,q · π∗D + tG)

is surjective. We denote the kernel by Nl. Since Nl is constant for all l ⩾ l0
and −G is π-ample, there exists an integer m′ such that

R1π∗(Nl ⊗OY
OY (−MG)) = 0

for all integers l ⩾ 0 and M ⩾ (qm
′ − 1)/(q − 1).

Take integers m,n ⩾ 1 and consider the surjection

γn,m := TreY : F e
∗ (τ(ωX ,q

m(⟨s⟩n,qπ∗D + tG)))

−→ τ(ωX , q
m−1(⟨s⟩n,qπ∗D + tG)).

By Lemma 2.1.5 (5) and (6), γn,m coincides with βn−m⊗OY (−(qm− 1)/(q−
1)·(π∗D+G)) ifm < n and with β0⊗OY (−qm⟨s⟩n,qπ∗D−(qm−1)/(q−1)·G)
if m ⩾ n. Therefore, π∗γn,m is surjective if m ⩾ m′.

Combining with the equation (4.1), we have

τ(ωX , ⟨s⟩l,q ·D, at) = Trem
′

X (F em′

∗ π∗(τ(ωY , q
m′
(⟨s⟩l,q · π∗D + tG))))

for every l. By the definition of l0, the right hand side is constant for all
l ⩾ l0 +m′.

Corollary 4.1.2. Let (X = SpecR,∆, at) be a triple such that t ∈ Q and ∆
is Q-Cartier. Then τ(ωX , (1− ε)∆, at) is constant for all 0 < ε≪ 1.

Proof. By Lemma 2.1.5 (4) and (7), we may assume that there exists an
integer e > 0 such that (pe − 1)∆ is Cartier and t = 1/(pe − 1). Then the
assertion follows from Proposition 4.1.1.

We define the new variant of the parameter test module as the left limit
of the map s 7−→ τ(ωX , s∆, a

t) at s = 1.
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Definition 4.1.3. Let (X = SpecR,∆, at) be a triple such that t ∈ Q and
∆ is Q-Cartier. Then we define the submodule τ(ωX ,∆−0, a

t) ⊆ ωX by
τ(ωX , (1− ε)∆, at) for sufficiently small 0 < ε≪ 1.

Lemma 4.1.4. Let (X = SpecR,∆, at) be a triple such that t ∈ Q and ∆ is
Q-Cartier. Then the following hold.

1. τ(ωX ,∆−0, a
t′) ⊆ τ(ωX ,∆−0, a

t) for any rational number t < t′.

2. For any real number s ⩾ 0, there exists 0 < ε such that the module
τ(ωX ,∆−0, a

s′) is constant for every rational number s < s′ < s+ ε.

3. For any rational number s > 0, there exists 0 < ε such that the module
τ(ωX ,∆−0, a

s′) is constant for every rational number s− ε < s′ < s.

4. If a is generated by l elements and t ⩾ l, then we have τ(ωX ,∆−0, a
t) =

aτ(ωX ,∆−0, a
t−1).

5. TrX(F∗(τ(ωX ,∆−0, a
t))) = τ(ωX , (∆/p)−0, a

t/p).

6. If r∆ is Cartier, then we have

τ(ωX , (r + 1)∆−0, a
t) = τ(ωX ,∆−0, a

t)⊗OX(−r∆).

Proof. (1), (4), (5) and (6) follow from Lemma 2.1.5. (2) follows from (1)
and the ascending chain condition for the set of ideals in R.

For (3), we take a positive integer r such that rs is integer and r∆ is
Cartier. By Lemma 2.1.5 (3), there exists δ > 0 such that the parameter
test module τ(ωX , (a

rsOX(−r∆))(1−ε)/r) is constant for all rational numbers
0 < ε < δ. We denote this module by M .

It follows from Lemma 2.1.5 (6) and (7) that for every rational number
0 < ε < δ, we have

τ(ωX , (1− ε)∆, as(1−ε)) = τ(ωX , a
s(1−ε)OX(−r∆)(1−ε)/r)

= τ(ωX , (a
rsOX(−r∆))(1−ε)/r)

= M.

By Lemma 2.1.5 (1), τ(ωX , (1 − ε)∆, as(1−ε
′)) = M for every 0 < ε, ε′ < δ.

Therefore, we have τ(ωX ,∆−0, a
s(1−ε)) = M for every rational number 0 <

ε < δ.

Definition 4.1.5. Let (X = SpecR,∆, at) be a triple such that t is not a
rational number and ∆ is Q-Cartier. By Lemma 4.1.4 (2), there exists ε > 0
such that the submodule τ(ωX ,∆−0, a

s) ⊆ ωX is constant for every rational
number t < s < t+ ε. We denote this submodule of ωX by τ(ωX ,∆−0, a

t).
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We note that even if t, t′, s, and s′ are not rational, the same assertions
as in Lemma 4.1.4 (1), (2), (4), (5) and (6) hold.

Definition 4.1.6. Let (X = SpecR,∆, a) be a triple such that ∆ is Q-
Cartier. A real number t ⩾ 0 is called an F -jumping number of (ωX ,∆−0; a)
if one of the following hold:

1. for every ε > 0, we have τ(ωX ,∆−0, a
t) ⊊ τ(ωX ,∆−0, a

t−ε), or

2. for every ε > 0, we have τ(ωX ,∆−0, a
t) ⊋ τ(ωX ,∆−0, a

t+ε).

Lemma 4.1.7. Let q ⩾ 2 and l ⩾ 1 be integers and B ⊆ R⩾0 a subset. B is
a discrete set of rational numbers if the following four properties hold:

1. For any x ∈ B, qx ∈ B.

2. For any x ∈ B, if x > l, then x− 1 ∈ B.

3. For any real number t ∈ R⩾0, there exists ε > 0 such that B∩(t, t+ε) =
∅.

4. For any rational number t ∈ Q>0, there exists ε > 0 such that B ∩ (t−
ε, t) = ∅.

Proof. Let D be the set of all accumulation points of B. By [BSTZ10, Propo-
sition 5.5], we have D = ∅. This proves that B is a discrete set. If B con-
tains a non-rational number, then by the assumptions (1) and (2), we have
infinitely many elements in B∩ [l−1, l], which contradicts to the discreteness
of B.

Corollary 4.1.8. Let (X = SpecR,∆, a) is a triple such that ∆ is Q-Cartier.
Then the set of all F -jumping numbers of (ωX ,∆−0; a) is a discrete set of
rational numbers.

Proof. It follows from Lemma 4.1.4 (5) that if t is an F -jumping number of
(ωX ,∆−0; a), then pt is an F -jumping number of (ωX , (p∆)−0; a). Therefore,
we may assume that there exists an integer e > 0 such that (pe − 1)∆ is
Cartier.

Let l be the number of minimal generators of a and B be the set of all
F -jumping numbers of (ωX ,∆−0; a). Then it follows from Lemma 4.1.4 that
B, q = pe and l satisfy the assumptions in Lemma 4.1.7.

Proposition 4.1.9. Suppose that (X = SpecA,∆) is a sharply F -pure pair
such that A is regular and (pe − 1)∆ is Cartier for some e > 0, and a ⊆ A
is a non-zero proper ideal. Then the F -pure threshold fpt(A,∆; a) coincides
with the first jumping number of (ωX ,∆−0; a). In particular, it is a rational
number.
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Proof. It is enough to show the equation

fpt(A,∆; a) = sup {s ⩾ 0 | τ(ωX ,∆−0, a
s) = ωX} . (4.2)

Set t := fpt(A,∆; a). Since A is regular local, we may identify ωX with A.
By Lemma 2.2.5 (1), we have τ(ωX ,∆−0, a

t(1−ε)) = ωX for every 0 < ε < 1.
On the other hand, take any rational number s such that τ(ωX ,∆−0, a

s) =
ωX . It follows from Lemma 2.2.5 (2) that (A,∆, as(1−ε)) is sharply F -pure
for every 0 < ε < 1, which proves the equation (4.2).

Corollary 4.1.10 (Theorem E). Suppose that (R,∆) is a sharply F -pure
pair such that (pe− 1)(KR+∆) is Cartier for some integer e > 0 and a ⊆ R
is an ideal. Then the F -pure threshold fpt(R,∆; a) is a rational number.

Proof. By Lemma 2.2.3 (4), we may assume that R is a complete local ring.
By Proposition 2.3.3, we may assume that R is a regular local ring. Hence,
the assertion follows from Proposition 4.1.9.

4.2 Proof of Main Theorem

In this section, as a variant of Corollary 3.2.8, we prove that the shadow of any
sequence of F -pure thresholds of ideals on sharply F -pure pairs coincides with
the F -pure threshold on the catapower under some assumptions (Theorem
4.2.3). By combining the rationality of F -jumping numbers, we give the
proof of the main theorem (Theorem 4.2.5).

Lemma 4.2.1. Suppose that A is an F -finite regular local ring, f ∈ A is a
non-zero element, a ⊆ A is an ideal, e > 0 is an integer and t = u/v > 0
is a rational number with integers u, v > 0. Set b := f v · a(pe−1)u ⊆ A
and ∆ := divA(f)/(p

e − 1). Assume that (A,∆) is sharply F -pure. Then
t ⩽ fpt(A,∆; a) if and only if 1/(v(pe − 1)) ⩽ fpt(A; b).

Proof. We may assume that a ̸= (0). First, we assume that t ⩽ fpt(A,∆; a).
By Lemma 2.2.5 (1), the triple (A, (1− ε)∆, a(1−ε)t) is strongly F -regular for
every 0 < ε < 1. It follows from Lemma 2.1.5 (6) that (A, b(1−ε)/(v(p

e−1))) is
strongly F -regular, which proves the inequality 1/(v(pe − 1)) ⩽ fpt(A; b).

On the other hand, we assume that 1/(v(pe−1)) ⩽ fpt(A; b). By Lemma
2.2.3 (3) and (4), the triple (A, (1 − ε)∆, a(1−ε)t) is strongly F -regular for
every 0 < ε < 1. It follows from 2.2.3 (2) that the triple (A, (1−ε)∆, a(1−ε′)t)
is strongly F -regular for every 0 < ε < ε′ < 1. By Lemma 2.2.5 (2), we have
t ⩽ fpt(A,∆; a).
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Proposition 4.2.2. Suppose that A is an F -finite regular local ring, e > 0
is an integer, ∆m = divA(fm)/(p

e − 1) is an effective Q-divisor on SpecA
for every m ∈ N and am ⊆ A is a proper ideal for every m ∈ N. Fix a
non-principal ultrafilter U. Let A# be the catapower of A and a∞ := [am]m ⊆
A#. Assume that (A,∆m) is sharply F -pure for every integer m. Then the
following hold.

1. f∞ := [fm]m ∈ A# is a non-zero element.

2. Set ∆∞ := divA#
(f∞)/(pe − 1). Then, (A#,∆∞) is sharply F -pure.

3. For every rational number t > 0, we have t ⩽ fpt(A#,∆∞; a∞) if and
only if {m ∈ N | t ⩽ fpt(A,∆m; am)} ∈ U.

Proof. By Lemma 2.2.4, we have fm ̸∈ m[pe] for every m. It follows from
Lemma 2.4.8 that f∞ ̸∈ m

[pe]
∞ , which proves (1) and (2). For (3), take integers

u, v > 0 such that t = u/v and set bm := f vm ·au(p
e−1)

m for every m ∈ N∪{∞}.
It follows from Lemma 4.2.1 that {m ∈ N | t ⩽ fpt(A,∆m; am)} ∈ U if and
only if {m ∈ N | 1/(v(pe−1)) ⩽ fpt(A; bm)} ∈ U. We first assume that {m ∈
N | 1/(v(pe − 1)) ⩽ fpt(A; bm)} ∈ U. Since we have sh(ulimm fpt(A; bm)) =
fpt(A#; b∞) (Corollary 3.2.8), we have 1/(v(pe−1)) ⩽ fpt(A#; b∞). Applying
Lemma 4.2.1 again, we have t ⩽ fpt(A#,∆∞; a∞).

For the converse implication, we assume that {m ∈ N | 1/(v(pe − 1)) ⩽
fpt(A; bm)} ̸∈ U. In this case, we have {m ∈ N | 1/(v(pe−1)) > fpt(A; bm)} ∈
U and hence we have 1/(v(pe − 1)) ⩾ fpt(A#; b∞). If 1/(v(pe − 1)) =
fpt(A#; b∞) = sh(ulimm fpt(A; bm)), then by replacing by a subsequence, we
may assume that the sequence {fpt(A; bm)}m is a strictly ascending chain,
which is contradiction to Theorem 3.3.9. Therefore, we have 1/(v(pe− 1)) >
fpt(A#; b∞), which proves t > fpt(A#,∆∞; a∞).

The following result is a generalization of Corollary 3.2.8 to the case where
the pair is not necessarily strongly F -regular.

Theorem 4.2.3. With the notation above, we have

sh(ulimm fpt(A,∆m; am)) = fpt(A#,∆∞, a∞) ∈ Q.

In particular, if the limit limm−→∞ fpt(A,∆m; am) exists, then we have

lim
m−→∞

fpt(A,∆m; am) = fpt(A#,∆∞, a∞).

Proof. We first note that the shadow always exists because we have

fpt(A,∆m; am) ⩽ fpt(A;m) = dimA
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for all m. For any rational number t > 0, it follows from Proposition 4.2.2
that t ⩽ sh(ulimm fpt(A,∆m; am)) if and only if t ⩽ fpt(A#,∆∞; a∞), which
completes the proof.

Corollary 4.2.4. Suppose that e > 0 is an integer and (A,m) is an F -finite
regular local ring of characteristic p > 0. Then the set

FPT(A, e) :=

{
fpt(A,∆; a)

∣∣∣∣ (A,∆) is sharply F -pure,
(pe − 1)∆ is Cartier, a ⊊ A

}
satisfies the ascending chain condition.

Proof. We assume the contrary. Then there exist sequences {∆m}m and
{am} such that {fpt(A,∆m; am)}m∈N is a strictly ascending chain. Set t :=
limm fpt(A,∆m; am). By Corollary 4.1.10 and Corollary 4.2.3, we have t =
fpt(A#,∆∞; a∞) ∈ Q.

Since t is rational and fpt(A,∆m; am) < t for all m, it follows from Propo-
sition 4.2.2 that fpt(A,∆∞; a∞) < t, which is contradiction.

For a Noetherian local ring (R,m), we denote by emb(R) the embedding
dimension of R.

Theorem 4.2.5 (Main Theorem). Fix a prime number p and positive in-
tegers e and N . Suppose that T is any set such that every element of T
is an F -finite Noetherian normal local ring (R,m) of characteristic p with
emb(R) ⩽ N . Let FPT(T, e) be the set of all F -pure thresholds fpt(R,∆; a)
such that

• R is an element of T ,

• a is a proper ideal of R, and

• ∆ is an effective Q-Weil divisor on X = SpecR such that (R,∆) is
sharply F -pure and (pe − 1)(KX +∆) is Cartier.

Then the set FPT(T, e) satisfies the ascending chain condition.

Proof. Take an F -finite field k such that for every (R,m) ∈ T , there exists
a field extension R/m ⊆ k. Set A := k[[x1, . . . , xN ]]. Then it follows from
Lemma 2.2.3 (4), Lemma 2.2.4 and Proposition 2.3.3 that we have the inclu-
sion FPT(T, e) ⊆ FPT(A, e), which proves that the set FPT(T, e) satisfies
the ascending chain condition.

Corollary 4.2.6. Suppose that X is a normal variety over an F -finite field.
Fix an integer e > 0. Let FPT(X, e) be the set of all fpt(X,∆; a) such that
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• a is a proper coherent ideal sheaf on X and

• ∆ is an effective Q-Weil divisor on X such that (X,∆) is sharply F -
pure and (pe − 1)(KX +∆) is Cartier.

The set FPT(X, e) satisfies the ascending chain condition.

Proof. Set T := {OX,x | x ∈ X}. It follows from Lemma 2.3.2 that we have
FPT(X, e) ⊆ FPT(T, e), which completes the proof.

4.3 Proof of Corollary D

In this section, as a corollary of Main Theorem, we verify the ascending
chain condition for F -pure thresholds on tame quotient singularities or on
l.c.i. varieties with fixed dimension.

First, we recall the definition and properties of tame quotient singularities.
Let (R,m, k) be a Noetherian local ring of equicharacteristic. Then (R,m)
is said to be a quotient singularity if there exist a regular affine variety U =
SpecA over k, a finite group G with a group homomorphism G −→ Autk(U),
and a point x of the quotient V = U/G := Spec(AG) such that there exists

an isomorphism R̂ ∼= ÔV,x as rings. Moreover, if |G| is coprime to char(k),
then we say that (R,m) is a tame quotient singularity.

Lemma 4.3.1. Let (R,m, k) be a tame quotient singularity of dimension n.
Then, there exists a finite group G ⊆ GLn(k) with the following properties.

1. |G| is coprime to char(k).

2. The natural action of G on the affine space An
k has no fixed points in

codimension 1.

3. Let V := An
k/G be the quotient and x ∈ V be the image of the origin of

An
k . Then we have R̂ ∼= ÔV,x.

Proof. The proof follows as in the case when char(k) = 0 (see [dFEM10,
p.15]), but for the convenience of reader we sketch it here.

Since R is a tame quotient singularity, there exists a regular affine variety
U , a finite group G which acts on U such that |G| is coprime to char(k), and

a point x ∈ V such that R̂ ∼= ÔV,x.
Take a point y ∈ U with image x. By replacing G by the stabilizer

subgroup Gy ⊆ G, we may assume that G acts on the regular local ring
(A,mA) := (OU,y,my). Since |G| is coprime to char(k), it follows from
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Maschke’s theorem that the natural projection mA −→ mA/m
2
A has a sec-

tion as k[G]-modules. This section induces k[G]-algebra homomorphism
GrmA

(A) −→ A, where GrmA
(A) is the associated graded ring of (A,mA).

Therefore, by replacing U by Spec(GrmA
(A)), we may assume that U = An

k

and G ⊆ GLn(k).
Let H ⊆ G be the subgroup generated by elements g ∈ G which fixes

some codimension one point of U . Since |G| is coprime to char(k), it follows
from Chevalley-Shephard-Todd theorem (see for example [Ben93, Theorem
7.2.1]) that U/H ∼= An

k . By replacing U by U/H and G by G/H, we complete
the proof of the lemma.

Proposition 4.3.2 (Corollary D (1)). Fix an integer n ⩾ 1, a prime number
p > 0 and a set Dquot

n,p such that every element of Dquot
n,p is an n-dimensional

F -finite Noetherian normal local ring of characteristic p with tame quotient
singularities. The set

T quot
n,p := {fpt(R; a) | R ∈ Dquot

n,p , a ⊊ R is an ideal}

satisfies the ascending chain condition.

Proof. The proof is essentially the same as [dFEM10, Proposition 5.3]. Let
(R,m, k) be a local ring such that R ∈ Dquot

n,p and a ⊊ R be an ideal of R.
Let G, V , and x be as in Lemma 4.3.1. Consider the natural morphism
π : U := An

k −→ V . Since G is a finite group, the morphism π is a finite
surjective morphism with deg(π) coprime to char(k). Since G acts on U with
no fixed points in codimension one, the morphism π is étale in codimension
one.

Set W := Spec(R̂) and U ′ := U ×V W . Since U is a regular scheme and
W −→ V is a regular morphism, each connected component of U ′ is a regular
scheme. Fix a connected component U ′′ ⊆ U ′.

Since the morphism π̂ : U ′′ −→W is finite surjective, étale in codimension
1 and deg π̂ is coprime to p, it follows from [HT04, Theorem 3.3] that

fpt(W ; aOW ) = fpt(U ′′; aOU ′′).

On the other hand, since the test ideals commute with completion ([HT04,
Proposition 3.2]), we have

fpt(R; a) = fpt(W ; aOW ).

Therefore, it follows from Corollary 3.3.10 that the set T quot
n,p satisfies the

ascending chain condition.
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We also verify the ascending chain condition for F -pure thresholds on
l.c.i. varieties with fixed dimension.

Lemma 4.3.3 (cf. [dFEM10, Proposition 6.3]). Let (R,m) be an F -finite
Noetherian normal local ring of dimension d. If R is a complete intersection
and sharply F -pure, then emb(R) ⩽ 2d.

Proof. Set N := emb(R) and c := N − d. There exists an F -finite regular
local ring A and a regular sequence f1, . . . , fc ∈ A with fi ∈ m2 such that
R ∼= A/(f1, . . . , fc). By [HW02, Proposition 2.6], we have (f1 · · · fc)p−1 ̸∈
m[p].

Since fi ∈ m2 for every i, we have (f1 · · · fc)p−1 ∈ m2c(p−1). It follows
from the inclusion mN(p−1)+1 ⊆ m[p] that we have 2c ⩽ N , which proves
N ⩽ 2d.

Corollary 4.3.4 (Corollary D). Let p be a prime number and n ⩾ 1 be
an integer. Suppose that T is any set such that every element of T is an
n-dimensional Noetherian normal connected l.c.i. scheme of characteristic p
which is sharply F -pure. Then, the set

{fpt(X; a) | X ∈ T, a ⊊ OX}

satisfies the ascending chain condition.

Proof. It follows from Lemma 4.3.3 that emb(OX,x) ⩽ 2n for every X ∈ T
and every x ∈ X. Since every X ∈ T is Gorenstein, we apply the main
theorem.
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13 (1974), 297–307.

[Aoy83] Y. Aoyama, Some basic results on canonical modules, J. Math.
Kyoto Univ. 23 (1983) no. 1, 85–94.

[BS15] B. Bhatt and A. K. Singh, The F -pure threshold of a Calabi-
Yau hypersurface, Math. Ann. 362 (2015), no.1–2, 551–567.

[Ben93] D. J. Benson, Polynomial invariants of finite groups, London
Mathematical Lecture Note, Vol 190, Cambridge University
Press, Cambridge,1993.
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[MTW05] M. Mustaţă, S. Takagi and K.-i. Watanabe, F -thresholds and
Bernstein-Sato polynomials, European Congress of Mathemat-
ics, 341–364, Eur. Math. Soc., Zürich, 2005
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