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Chapter 1

Introduction

1.1 Purpose of the thesis

The purpose of this thesis is to study five problems related to evolution equations in a
curved thin domain or on a moving surface. They are completely independent and studied
separately in each chapter. References are listed at the end of each chapter and cited only
in that chapter. Also, notations are different from chapter to chapter.

In Chapters 2-5 we consider parabolic equations in curved thin domains degenerating into
stationary or moving hypersurfaces. Partial differential equations (PDEs) in thin domains
appear in many problems of natural sciences such as solid mechanics (thin elastic bodies)
and fluid mechanics (lubrication, meteorology, ocean dynamics). In the mathematical study
of PDEs in thin domains we are mainly interested in two problems. One problem is to
investigate the relation between the existence, uniqueness, and long time behavior of solutions
to PDEs and the smallness of the width of thin domains. For example, in the study of the
Navier—Stokes equations in a three-dimensional thin domain we expect to show the global-in-
time existence of a strong solution for large data, since a three-dimensional thin domain with
very small width can be considered almost two-dimensional. Another problem is a singular
limit problem for a PDE in a thin domain as it degenerates into a lower dimensional set.
We are concerned with derivation of a limit equation on the limit set and comparison of the
original and limit equations. Such problems were first studied by Hale and Raugel [6, 7], who
considered damped wave and reaction-diffusion equations in a flat thin domain degenerating
into a lower dimensional domain. Since then, many researchers have studied PDEs, mainly
a reaction-diffusion equation and the Navier—Stokes equations, in flat thin domains. In the
case of curved thin domains whose limit sets are a lower dimensional manifold, there are
several works on the asymptotic behavior of eigenvalues of the Laplacian on a curved thin
domain around a hypersurface (see [9] and the references cited therein). However, evolution
equations in curved thin domains have not been studied well, except for a few works on a
reaction-diffusion equation in a curved thin domain [17] and the Navier—Stokes equations in
a thin spherical shell [20]. It is also important to consider PDEs in moving thin domains for
applications in physical problems and a few researchers have studied them. We refer to [5]
for the study of a diffuse interface model in a moving thin domain for an advection-diffusion
equation on a moving surface and to [16] for the study of a singular limit problem for a
reaction-diffusion equation in a moving thin domain degenerating into a lower dimensional
stationary domain. However, there is no literature that derives an unknown limit equation
of a PDE in a moving thin domain whose limit set also moves in time, even in the case of a
linear diffusion equation. The difficulties in the analysis of PDEs in curved or moving thin
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domains arise from the geometry and motion of the boundary of the thin domains and their
limit sets. Our purpose in Chapters 2-5 is to provide mathematical methods for dealing with
such difficulties and to investigate the effects of the geometry and motion of the curved thin
domains and their limit surfaces on the original and limit equations.

In Chapter 6 we study the first order Hamilton—Jacobi equation on a moving surface.
PDEs on moving surfaces arise in many applications in biology, fluid mechanics, and material
sciences as frequently as those in thin domains. For example, an advection-diffusion equation
on a moving surface describes transport of surfactants on the interface between two fluids.
They provide mathematically interesting problems such as the well-posedness, numerical
analysis, and interaction between the evolution of a surface and the behavior of a solution
to a surface PDE. Many researchers have studied various kinds of PDEs on moving surfaces
in recent years. We refer to [4] and the references cited therein for the mathematical and
numerical study of PDEs on moving surfaces and its applications. In this thesis we consider
the Hamilton—Jacobi equation as a new kind of PDE on a moving surface. Our goal is to
establish the existence and uniqueness of a viscosity solution as well as to provide a numerical
scheme with an error bound.

1.2 Introduction to Chapter 2

In Chapter 2 we study a singular limit problem for the heat equation in a moving thin domain.
We consider the Neumann type problem of the heat equation in a moving thin domain that
degenerates into a closed moving hypersurface as the width of the domain tends to zero.
Here the Neumann type boundary condition is imposed to make the total amount of heat in
the moving thin domain conserved in time.

Our purpose in Chapter 2 is to investigate the behavior of a solution to the heat equation
as the width of the thin domain tends to zero and to derive a limit equation on the moving
surface. To this end, we use a change of variables formula (a co-area formula) to transform
an integral over the thin domain into integrals over the limit surface and its normal direction,
and analyze the weighted average in the thin direction of a variational solution to the heat
equation. Then, under suitable assumptions, we prove the weak convergence of the weighted
average of a solution in an appropriate function space on the limit surface. Moreover, we
show that the weak limit is a unique variational solution to a limit equation on the moving
limit surface, which is a linear diffusion equation involving the mean curvature and normal
velocity of the surface. We also estimate the difference between a solution to the heat
equation and a solution to the limit equation. This is the first result that derives an a priori
unknown limit equation of a PDE in a thin domain whose limit set evolves in time.

Chapter 2 is based on the work [13].

1.3 Introduction to Chapter 3

The subject of Chapter 3 is nonlinear diffusion equations of porous media type in a moving
thin domain and on a moving surface. After a brief review of the transport equations, we
consider the thin width limit of a nonlinear diffusion equation in a moving thin domain that
consists of the transport equation, Darcy’s law, and the boundary condition corresponding
to the situation that there is no exchange of mass between the domain and its surroundings.
Under the assumption that the moving thin domain shrinks to a moving closed hypersurface
as its width tends to zero, we formally derive a limit nonlinear diffusion equation on the
moving surface based on calculations of the Taylor series for bulk quantities with respect
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to the signed distance from the limit surface. In particular, we see that in the thin width
limit the transport equation and Darcy’s law in the moving thin domain become those on
the moving surface. We also show that the thin width limit of the energy law for the
nonlinear diffusion equation in the moving thin domain is that for the limit equation on
the moving surface. Then we discuss an energetic variational approach to derivation of
nonlinear diffusion equations in a moving domain and on a moving surface, and observe that
the energetic variation commutes with the thin width limit.
Chapter 3 is based on the joint work [15] with Yoshikazu Giga and Chun Liu.

1.4 Introduction to Chapter 4

Chapter 4 is devoted to formal derivation of and discussions on singular limit equations of
the incompressible Fuler and Navier—Stokes equations in a three-dimensional moving thin
domain. For a given closed moving surface, we define a moving thin domain as its tubular
neighborhood of small radius. We consider the Euler equations with impermeable boundary
condition and the Navier—Stokes equations with Navier’s perfect slip boundary conditions
in the moving thin domain. Then we formally derive their limit equations on the moving
limit surface by calculations of the Taylor series for the bulk velocity and pressure with
respect to the signed distance from the surface. Our limit equations are basically the same
as incompressible fluid equations on a moving surface derived from local conservation laws
of mass and linear momentum for a surface fluid [10] and by a global energetic variational
approach [12]. We also observe that in the thin width limit the energy identities of the Euler
and Navier—Stokes equations in the moving thin domain become those of the corresponding
limit equations on the moving surface.

The limit equations on the moving surface involve the first and second order derivatives of
tangential and normal vector fields on the surface. To understand the structure of the limit
equations, we give several formulas on the derivatives of vector fields on an embedded surface
in the three-dimensional Euclidean space. We use them to show that our limit equations are
the same as the Euler and Navier—Stokes equations on a manifold introduced by Arnold [1,2]
and Taylor [19] when the limit surface is stationary.

Chapter 4 is based on the work [14].

1.5 Introduction to Chapter 5

In Chapter 5 we study the three-dimensional Navier—Stokes equations in a stationary curved
thin domain, which is defined as a region between two very close parametrized surfaces of
a given two-dimensional closed surface. Under the assumption that the curved thin domain
degenerates into the given surface as its width tends to zero, we consider the Navier—Stokes
equations with Navier’s slip boundary conditions.

The Navier—Stokes equations in thin domains have been studied in the case of a flat thin
product domain [18], a flat thin domain whose top and bottom boundaries are given by the
graph of functions on a two-dimensional domain [8], and a thin spherical shell given as a
region between two concentric spheres of near radii [20]. Our goal is not just to generalize
the results in the previous works, but to study the effect of the curvatures of a general limit
surface on the bulk and limit equations.

The first result in Chapter 5 is the global-in-time existence of a strong solution to the
Naiver—Stokes equations. Under suitable assumptions on the limit surface and friction co-
efficients appearing in the slip boundary conditions, we establish the global existence and
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uniform estimates of a strong solution for very large data according to the smallness of the
width of the thin domain. Main tools for the proof of the global existence are an average
operator in the normal direction of the limit surface and an extension of a surface vector
field to the thin domain that satisfies the impermeable boundary condition. Using them, the
slip boundary conditions, and Sobolev type inequalities on the thin domain and the surface
we derive a good product estimate for the inertial and viscous terms in the Navier—Stokes
equations. A key idea is to decompose a vector field on the thin domain into the average
part, to which we can use a product estimate for a function on the thin domain and that on
the surface, and the residual part, to which a good L*-estimate is applicable.

The second result is concerning a singular limit problem for the Navier—Stokes equations
as the curved thin domain degenerates into the closed surface. We show that, under suitable
assumptions on given data, the averaged tangential component of a strong solution to the
bulk Navier—Stokes equations converges weakly in an appropriate function space on the
limit surface, and that the weak limit is a unique weak solution to limit equations, which
are the damped and weighted Navier—-Stokes equations on the limit surface with viscous
term involving the Gaussian curvature of the surface and the functions that parametrize the
boundaries of the thin domain. To prove these results, we approximate a weak formulation
for the bulk equations by that for the averaged tangential component of a strong solution
and derive its energy estimate. In approximation of the weak formulation, we use the average
operator and change of variables formulas for integrals over the thin domain and its boundary.
We also employ the impermeable extension of a surface vector field and a uniform estimate for
the gradient part of the Helmholtz—Leray decomposition on the thin domain to construct an
appropriate test function for the bulk equations from a test function for the limit equations.
To derive the energy estimate for the averaged tangential component of a strong solution
to the bulk equations, we would like to take it as a test function for its weak formulation.
However, it is not allowed since the averaged tangential component is not in the space of
test functions for the limit equations, which is a weighted solenoidal space on the surface.
To overcome this difficultly, we use the weighted Helmholtz—Leray projection on the surface.

Besides the weak convergence and characterization of the limit, we estimate the difference
between a strong solution to the Navier—Stokes equations and a weak solution to the limit
equations. It is worth noting that the normal derivative (with respect to the surface) of a
strong solution to the Navier—Stokes equations is compared with a surface vector field given
by a weak solution to the limit equations and the Weingarten map (or shape operator) of
the surface. In particular, it is not necessarily small even though the thin domain and its
limit surface are stationary.

1.6 Introduction to Chapter 6

In Chapter 6 we consider the first order Hamilton—Jacobi equation on a moving closed surface
in the three-dimensional Euclidean space. One motivation for considering such an equation
is to describe the motion of a curve on an evolving surface. The aim of Chapter 6 is to study
the well-posedness as well as to provide a numerical scheme and an error bound.

We first extend the definition of viscosity sub- and supersolutions to a moving surface by
using the material and tangential derivative operators. Here the material derivative is the
time derivative along the total velocity of the surface, which consists of the outward normal
velocity and a given tangential velocity. Then we prove a comparison principle by a standard
doubling of variables method that yields the uniqueness of a viscosity solution.

To establish the existence of a viscosity solution as well as to give a numerical scheme, we
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consider discretization of the Hamilton—Jacobi equation in space and time. We approximate
the smooth moving surface by a triangulated surface with moving vertices. Then, following
the idea of the work [11] in the case of a flat stationary domain, we introduce a finite volume
scheme based on the viscous approximation and discretization of surface integrals, and prove
its monotonicity and consistency. We point out that to prove the monotonicity and consis-
tency we require only the regularity of the triangulation. In particular, it is not necessary
to assume that the triangulation is acute, which is very important for implementation of the
numerical scheme.

Using the monotonicity and consistence of our scheme, we prove the existence of a viscos-
ity solution by the half-relaxed limits method. Moreover, by a doubling of variables method
we establish an error bound between a viscosity solution and a numerical solution of the
same order as in the case of a flat stationary domain.

Chapter 6 is based on the joint work [3] with Klaus Deckelnick and Charles M. Elliott.
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Chapter 2

Zero width limit of the heat
equation on moving thin domains

2.1 Introduction

For t € [0,T], T > 0, let Q.(¢) be a moving thin domain in R, n > 2, with width of order
e > 0 that converges to an evolving closed hypersurface I'(t) as ¢ — 0. We consider the
Neumann type problem of the heat equation of the form

8tu5 —Auf =0 in Qs,Ta
Op.uf +ovNuf =0 on Q. 1, (H:)
u®(0) = ug in Q:(0).

Here Qc1 := Uy (o,1) (1) X {t}, 0eQer 1= Uye(o,1) 092 (t) x {t}, and ve, v are the unit out-
ward normal vector field of 992, (t) and the outer normal velocity of 0€2.(t), respectively. The
term v¥u® in the boundary condition is added so that the total amount of heat st oL dx
is conserved, see the beginning of Section 2.3. Also, if u® denotes the concentration of some
chemicals, the boundary condition says that chemicals near the boundary move along it and
do not go into and out of the moving thin domain.

We are interested in the behavior of a solution u® to (H;) as ¢ — 0. Our goal is to
characterize its limit as well as its convergence. Let us explain the simplest case when Q. ()
is the set of all points in R™ with distance less than € from I'(¢) so that the width of Q.(¢) is
2¢. Let v be the unit outward normal vector field of I'(t) and Vi = vXv + Vi be the total
velocity of T'(t), where v¥ and V{7 are the outer normal velocity of I'(¢) and a given tangential
velocity field. Then our main result formally implies that, under suitable assumptions on
the initial data u§ of (Hc), the limit v is a solution to

9°v — v Hv — Appv=0 on Sr. (2.1.1)

Here St := U0 I'(t) x {t} and 0°v = Opv + vy - Vo is the normal time derivative of
v. (The notation 0° is used in [2,5]. We refer to [3] for the normal time derivative.) Also,
H = —divpyv and Apg) := divp) V() are the mean curvature of I'(¢) and the Laplace—
Beltrami operator on I'(t), where divp;) and Vi) are the surface divergence operator and
the tangential gradient on I'(¢), respectively (see Section 2.2 for their definitions). We will
give a heuristic derivation of the limit equation (2.1.1) in Appendix 2.A. The equation (2.1.1)
is equivalent to

0%v + (din(t)VF)’U - Ap(t)v - diVF(t) (UVIT) =0 on ST, (2.1.2)
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which we will actually derive in Section 2.6. Here 9°v = 0°v + VFT - Vv denotes the
material derivative of v (see Section 2.4 for its precise definition). Note that the equation
(2.1.1) is independent of the tangential velocity VFT . In other words, the evolution of the
limit v is not affected by advection along I'(¢). Such a phenomenon does not occur in an
advection-diffusion equation widely studied in recent years [2,4-9,19, 28]:

0%v + (diVF(t)VF)'U — Ap(t)v =0 on S7. (2.1.3)

This equation is derived from a conservation law such that

4 vdH" ! = —/ q-pdH"?
dt M(t) OM(t)

for an arbitrary portion M(t) of I'(t), where H* is the k-dimensional Hausdorff measure for
k € N, p is the co-normal to the boundary dM(t), and ¢ is the surface flux, see [4, Section
3] and [5, Section 3.1] for details.

Partial differential equations on thin domains are studied over the years [12-16,20-24,
26,27], and many researchers deal with a nonmoving thin domain of the form

Q. ={(z',2,) ER"I xR |2’ €w, ego(a) <z, <egi(2))}, €>0, (2.1.4)

where w is a domain in R*~! and go, g1 are functions on w. In their pioneering works [12,13],
Hale and Raugel compared the dynamics of reaction-diffusion equations and damped wave
equations on €. of the form (2.1.4) (with go = 0 and slightly modified ¢g;) and that of
corresponding limit equations on w by the scaling argument. They transformed the equations
on Q. into scaled equations on a fixed reference domain g = w x (0,1) by the change of
variables, and formally derived the limit equations on w by letting ¢ — 0 in the scaled
equations on )y and omitting divergent terms. Then they compared the dynamics of the
scaled equations on 2y and that of the limit equations on w by analyzing weighted bilinear
forms that appear in variational formulations of the scaled equations and the limit equations.
Their scaling argument is applicable to more general thin domains such as a thin L-shaped
domain [14] and a moving thin domain of the form (2.1.4) where go = 0 and g¢; depends
on time [20]. Prizzi and Rybakowski [22] generalized the scaling argument in [12,13] to
study reaction-diffusion equations on a (nonmoving) thin domain with holes around a lower
dimensional domain. The generalized scaling argument in [22] is also valid for a (nonmoving)
thin domain with holes around a lower dimensional manifold [21,23]. We refer to [24] and
references therein for other examples of thin domains.

In contrast to the above papers, the limit hypersurface I'(¢) of our thin domain Q.(¢)
evolves. Such a situation has been considered only in the paper [8], which deals with a
diffuse interface model for the advection-diffusion equation (2.1.3). See also [9] for numerical
computations of the advection-diffusion equation (2.1.3) based on the diffuse interface model.
In [8], however, the limit equation (2.1.3) on the evolving surface is given and a bulk equation
on the moving thin domain involves a weight function that vanishes on the boundary of
the domain. Therefore, there is no literature on initial-boundary value problems of partial
differential equations on moving thin domains around evolving surfaces whose limit equations
are unknown in advance, even in the case of the heat equation.

The difficulty caused by the evolution of the hypersurface I'(¢) is in transforming equa-
tions on Q. () and I'(¢) into equations on fixed (in time and width) domain and hypersurface.
In particular, transformations of differential operators on I'(¢) into those on a fixed hyper-
surface is so complicated that we can hardly find a limit equation on the fixed hypersurface
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and convert it into an equation on I'(¢), see [7] for the actual transformations of differential
operators.

To avoid this difficulty, we employ another method that does not require transformations
of Q.(t) and I'(t). Let us explain our idea of derivation of a limit equation on I'(t). We
start from a variational formulation of (H.) (see (2.3.2)) that consists of integrals over the
noncylindrical domain Q. of a variational solution u® to (H.) and a test function defined
on Q. 7. In this variational formulation, we take a test function independent of the normal
direction of I'(¢) and apply the co-area formula (see (2.5.1)) and a weighted average operator
M. (see Definition 2.5.1) to get a variational formulation (with some residual term) of the
average M.u® (see (2.6.1)) that consists of integrals over the space-time manifold St of
M_.uf and a test function defined on S7. Then we obtain a variational formulation of a limit
equation on I'(t) (see (2.6.13)) by omitting the residual term in the variational formulation
of M.u®. Moreover, we prove that M_u® converges weakly in a function space on St as e — 0
and that the limit is a unique variational solution to the limit equation (see Theorem 2.6.9),
and estimate the L?(Q. r)-norm of the difference between variational solutions to (H.) and
the limit equation (see Theorem 2.6.12). These results indicate that our limit equation on
I'(t) derived as above is indeed the “limit” of (H.).

In our derivation of a limit equation, Lemma 2.5.6 and Lemma 2.5.13 play an important
role. In Lemma 2.5.6 we approximate an H!-bilinear form on Q.(t) for each t € [0,7]
by that on I'(¢) with the tangential gradient of the average M.u of a function u on .(t).
The proof of Lemma 2.5.6 is based on simple representations of the gradient in R™ and the
tangential gradient on I'(t) under a special local coordinate system for each fixed point on
I'(t). On the other hand, Lemma 2.5.13 gives an integral formula that formally represents
a relation between the weak time derivative of a function u on Q.7 and the weak material
derivative of its average M.u (in fact, we do not explicitly deal with the time derivative of
u). Lemma 2.5.13 essentially follows from Lemma 2.5.11, which gives a relation between the
time derivative and the material derivative of functions defined on St.

Average operators in the thin direction were originally introduced by Hale and Raugel
[12,13], but they took the average of functions on the scaled domain 9 = w x (0, 1). Average
operators on actual thin domains (). appears in the study of the Navier-Stokes equations
on three-dimensional thin domains [15,16,26,27]. Temam and Ziane [26,27] first employed
them to study the global existence of strong solutions to the Navier—Stokes equations for
large initial data and external forces and the behavior of solutions as € — 0 when (). is a
three-dimensional thin product domain Q. = w x (0,¢) with a bounded domain w in R? and
a thin spherical domain Q. = {z € R? | a < |z| < (1+¢)a} with a constant a > 0. In [15,16],
average operators were employed to study the dynamics of the Navier—Stokes equations on
Q. of the form (2.1.4). In particular, the authors of [16] compared the dynamics of the
Navier—Stokes equations with that of limit equations by estimating the difference of the
average of solutions to the Navier—Stokes equations and solutions to the limit equations.

We point out that our weighted average operator given in Definition 2.5.1 is a generaliza-
tion of average operators given in [15,16,26] and that its weight function is different from that
of an average operator given in [27]. In fact, the weight function of our average operator is a
Jacobian that appears when we change variables of integrals over a tubular neighborhood of
I'(t) in terms of the normal coordinate system around I'(¢). Our choice of the weight function
enables us to avoid including the material derivative of a test function in the estimate for the
residual term in the variational formulation of the average of a variational solution to (H;),
which is essential for derivation of its energy estimate, see Lemma 2.5.13 and Remark 2.5.14.
We also note that, contrary to our case, Kublik, Tanushev, and Tsai [17] employed the same
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Jacobian and co-area formula to transform integrals over boundaries of domains into those
over their tubular neighborhoods. Based on this transformation, they proposed a new ap-
proach to numerical computations of boundary integrals without explicit parametrizations
of boundaries and a simple formulation for constructing boundary integral methods to solve
Poisson’s equation. Their method of the numerical computations of boundary integrals is
also applicable to integrals over nonclosed manifolds of higher codimension, such as curves
in R? with different endpoints, see [18] for details.

Finally we mention variational formulations of partial differential equations on evolving
surfaces. There are several kinds of variational frameworks for equations on evolving surfaces,
mainly the advection-diffusion equation (2.1.3), see [4,19, 28] for example. In addition,
Alphonse, Elliott, and Stinner [1,2] proposed an abstract variational setting with evolving
Hilbert spaces and applied it to some equations on moving domains and evolving surfaces.
Among these variational frameworks, we adopt the one introduced by Olshanskii, Reusken,
and Xu [19]. Their variational formulation is imposed on function spaces on Sp, which is
suitable for our calculation of bilinear forms on function spaces on St and Q. r performed
in Section 2.5 and Section 2.6.

This chapter is organized as follows. In Section 2.2 we introduce notations related to the
evolving surface I'(t) and define the moving thin domain Q.(¢). In Section 2.3 we define a
variational solution to (H.) and prove its existence and uniqueness. We also derive an energy
estimate of a variational solution to (H.) with a constant independent of . In Section 2.4
we define function spaces on Sp introduced in [19] and give their properties. In Section 2.5
we define the weighted average operator M. and establish estimates and formulas related to
M.. In Section 2.6 we derive a limit equation on I'(¢) of the form (2.1.2) via its variational
formulation and prove our main theorems (Theorem 2.6.9 and Theorem 2.6.12). In Appendix
2.A we give a heuristic derivation of the limit equation (2.1.1) when () is the set of all
points in R™ with distance less than € from I'(¢). In Appendix 2.B we give complete proofs of
some results in Section 2.4 related to integrals over I'(¢). In Appendix 2.C we show detailed
calculations in proofs of some lemmas in Section 2.5 involving the differential geometry of
tubular neighborhoods of T'(¢).

2.2 Evolving surfaces and moving thin domains

For each t € [0,T], let I'(t) be a closed (that is, compact and without boundary), connected
and oriented smooth hypersurface in R”. We set 'y := I'(0) and define a space-time manifold
Sy C R" as Sy = Useo,m T'() x {t}. We assume that each point y on I'(¢) evolves with
velocity Vi(y,t), which is not necessarily normal to I'(t), and the velocity field Vy-: Sy — R”
is smooth. Let ®(-,t): T'o — I'(¢) be the flow map of Vr, that is, ®(-,¢) is a diffeomorphism
from [y onto I'(t) with its inverse ®~1(-,¢) for each t € [0, 7] and satisfies

0P

Y.0)=Y,

(Y, t) = Vp(®(Y,t),t) forall Y €Ty, te]l0,T].
We assume that ® and ®~! are smooth on Ty x [0,7] and St, respectively. Due to this
assumption, St is a compact smooth manifold in R?*1.

Let v : S — R™ be the unit outward normal vector field of T'(t). The velocity Vi is
decomposed into Vp = v{y v+ VFT , where va : St — R is the outer normal velocity and
VFT : St — R is a tangential velocity field. Note that to describe the geometric motion of
I'(t) it is sufficient to prescribe the normal velocity. However, to describe a limit equation
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on I'(t) we will derive in Section 2.6, we also need to consider a tangential velocity, which
represents advection along I'(#).

For each t € [0,T], let d(-,t) be the signed distance function from I'(¢) that increases
in the direction of v(+,t). By the smoothness (in space and time) and compactness of I'(t),
there is an open set N(t) in R™ of the form N(t) = {x € R" | —=§ < d(z,t) < 0} for each
t € [0,T], where 6 > 0 is a constant independent of ¢, that satisfies the following conditions:

e The signed distance function d is smooth on Nr, where

Np:= | N(@) x{t} cR""".
te(0,T)

e For each (z,t) € N, there is a unique point p(z,t) € T'(¢) such that
L= p(aj‘, t) + d(l‘, t)l/(p(gj, t)a t)v Vd($7 t) = l/(p(IL‘, t)a t)'

The set N(t) is called a tubular neighborhood of I'(t). Based on the above equality, we
extend the outward normal v to Np by setting v(z,t) := Vd(z,t) for (x,t) € Ny. Then,
by the smoothness of d, the extended outward normal v and the projection mapping p are
smooth on Np. Also, the normal velocity v of I'(t) is given by v¥ = —9;d on St.

Next, we give definitions of differential operators on evolving surfaces. For a function v

and a vector field F' on S, we define the tangential gradient of v and the surface divergence
of F as

vl"(t)v(yv t) = [In - V(yv t) ® V(yv t)]V§(y7 t),
divp) F(y,t) := trace[{I, — v(y,t) @ v(y,t)}VE(y,t)]

for (y,t) € Sr. Here I, is the identity matrix of size n and v ® v := (y;14);; is the tensor
product of v. Also, v and F' are the constant extensions of v and F' in the normal direction
of I'(t) given by

v(x,t) :=v(p(z,t),t), F(x,t):=F(p(x,t),t), (x,t) € Np.

By definition, v - Vpv = 0 holds. Hereafter we use the same notations for functions and
vector fields on I'(t) with each fixed t € [0, T.

Finally, we define a moving thin domain. Let gy and g; be smooth functions on Sr. We
assume that there is a constant ¢ > 0 such that

g(y.t) == g1(y,t) — go(y,t) > ¢ forall (y,t) € Sr. (2.2.1)

Then we define a moving thin domain Q. (t) C R" as

Qe(t) :={y +pv(y,t) |y €T(1), ego(y,t) < p<eq(y,t)}, t€[0,T],e>0

and a space-time noncylindrical domain Q.7 C R""! as Q.1 := Ute(()’T) Q.(t) x {t}. Note
that €.(¢) does not necessarily include I'(¢), since we do not assume that gg is negative
and g7 is positive. Since gg and g1 are smooth and thus bounded on the compact manifold
St, there is a positive number gy such that Q.(t) C N(t) for all € € (0,&¢) and ¢t € [0,T].
Hereafter we assume that € € (0,¢p).
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2.3 Heat equation on moving thin domains

In this section, we consider the initial-boundary problem (H.) of the heat equation on the
moving thin domain .(¢). First we show that the boundary condition of (H.) yields the
conservation of the total amount of heat. Suppose that u° satisfies the heat equation in Q. 7.
By the Reynolds transport theorem and Green’s formula (see [10, Appendix C]) we have

4 / utdr = / O’ dx + / N dHm !
dt Jo. () (1) 00 ()

= Au® dx + / N dH !
Q. (t) 09 (1)

= / (O uf +oNuf) dH L.
99 (t)

Hence if u® additionally satisfies the boundary condition of (H.), then % er ) u® dx = 0 for
all t € (0,T), that is, the total amount of heat st ®) uf dx is conserved.

Next, we give a definition of a variational solution to (H.). For each € > 0, we define a

function space L%Il(a) on (). r and an inner product on leql(a) as

Lo = {u € L*(Qer) | Vu € L*(Q=1)},

T (2.3.1)
(Ul, UQ)LQ = / / (U1UQ + Vuq - VUQ) dx dt.
Hl(e) 0 (1)

The space L12L11(a) is a Hilbert space endowed with the above inner product. Let || - ||z
H? (e)

denote the norm of L2H1(5) induced by the inner product (-,-);2 .
H1l(e)

Definition 2.3.1. Let u§ € L?(€:(0)). A function u® € qul(e) is said to be a variational
solution to the initial-boundary value problem (H.) if it satisfies

T
/ / (—ufOpw + Vu© - Vw) dx dt — / ugw(0) dz =0 (2.3.2)
0o Ja.@) Q.(0)
for all w € CY(Qc.r) with w(T) = 0 in Q(T).

The variational formulation (2.3.2) is derived as follows. Suppose that u® is a classical
solution to (H.). We multiply both sides of the heat equation in Q). 7 by an arbitrary function
w € CHQe7) with w(T) =0 in Q. (T) and integrate them over Q. r to get

T
/ / (O — Au®)wdx dt = 0.
0 JQe(t)

We calculate the left-hand side of the above equality. By the Reynolds transport theorem
and the conditions u®(0) = uf in Q.(0) and w(T) = 0 in Q. (T), we have

T T
/ / (Opuf)w dx dt = — / / uOpw dx dt
o Ja.w 0 Jo.

T
- / / oNuFwdH 1 dt — / ugw(0) dz.
o Joa.(r) Q.(0)
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On the other hand, by integration by parts,

Vu® - Vwdx — / (O uf)wdH" L,

—/ (Au)wdx dt =
Qe (t) 00 ()

Q:(t)

Hence it follows that

T T
/ / (—ufdw + Vu© - Vw) dx dt — / / (D uf + vNu)w dH" L dt
0 JQ(t) 0 JoQ.(t)

- / ugw(0)dz =0
<(0)

and we obtain (2.3.2) by applying the boundary condition of (H.) to the second term of the
left-hand side in the above equality.

Our goal in this section is to obtain a unique variational solution to (H.) that satisfies
an energy estimate with a constant independent of €. To this end, we transform (2.3.2) into
a variational formulation of some equation on the fixed (in time) domain Q.(0) with the aid
of a suitable diffeomorphism between §2.(0) and Q.(¢).

Lemma 2.3.2. For each t € [0,T], there exists a diffeomorphism ¥.(-,t): Q.(0) — Q(t)
with its inverse WZ1(- t): Qc(t) — Q:(0) such that U. and W1 are smooth on Q:(0) x [0, T]
and Qe 1, respectively, and V.(-,0) is the identity mapping on Q:(0). Moreover, there exists
a constant ¢ > 0 independent of € such that

0%0F V(X 1) <, |090FU (z,t)] <c (2.3.3)
for all (X,t) € Q.(0) x (0,T), (z,t) € Qer, and |o] +k <2, k=0,1,2.
Proof. We observe that for each X € Q.(0) there is a unique 6 € (0, 1) such that
X =p(X,0) +{(1 = 0)go(p(X,0),0) + 091 (p(X,0),0) }v(p(X, 0),0), (2.3.4)
that is, X divides the line segment AgA; internally in the ratio 8: 1 — 8, where
A; :=p(X,0) +¢egi(p(X,0),0)r(p(X,0),0), ¢=0,1.
Based on this observation we define ¥, (X, t) € Q.(t) as
Ve(X,t) := ®(p(X,0),t)
+e{(1 = 0)go(2(p(X,0),2),t) + 691 ((p(X, 0), 1), 1) }v(R(p(X, 0), 1), 1), (2.3.5)
that is, U, (X, t) divides the line segment ByB; internally in the ratio #: 1 — 6, where
Bi := ®(p(X,0),1) +eg:(®(p(X, 0), 1), )v(®(p(X, 0), 1), 1), i=0,1L

To eliminate # in (2.3.5), we take the inner product of both sides of (2.3.4) and the vector
v(p(X,0),0). Then

{X = p(X,0)} - v(p(X,0),0) = e{(1 = 0)g0(p(X,0),0) + 091 (p(X,0),0)}.
Since {X — p(X,0)} - v(p(X,0),0) = d(X,0) and g1 — gg = g > 0, it follows that

d(Xa 0) — 590(p(X7 0)) O)

O T L (X,0).0)
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Hence, by substituting this for # in (2.3.5), we obtain
Ve (X, 1) = @(p(X, 0), 1) + {d(X, 0)91(X, 1) + eha(X, 1)} (D(p(X, 0), 1), 1) (2.3.6)
for X € Q-(0) and t € [0,T], where

9(2(p(X,0),1),t)
9(p(X,0),0)

Similarly we define a mapping U-! as
U, t) o= 7 (p(a, 1), t) + {d(x, )3(,t) + eda(a, )} (@ (p(x, 1), 1),0)  (2.3.7)
for (x,t) € Q. 1, where
9(@ " (p(z,1),1),0)
9(p(z,t),t)

By definition, W.(-,¢): Q.(0) — Qc(#) is a bijection with its inverse W7 1(-,t): Qc(t) — Q:(0)
for each t € [0,T]. Also, since ®(-,0) is the identity mapping on I'g, we have ¢1(X,0) = 1,
¢$2(X,0) = 0 and thus

¢1(X7t) = ¢2(X7 t) = gO(Q(p(Xv 0)7t)7t) - ¢1(X7 t)QO(p(X’ 0)70)

¢3($at) = ) ¢4($at) = go(q)_l(p(l’,t),t),(]) - ¢3($at)90(p($7t)7t)'

U.(X,0) = p(X,0) + d(X,0)v(p(X,0),0) = X forall X e Q.(0),

that is, W.(-,0) is the identity mapping on €.(0). Due to the smoothness of ®, ®~! d,
P, go, and gi, the right-hand sides of (2.3.6) and (2.3.7) are smooth on the compact sets
N(0) x [0,T] and N7, respectively, and thus bounded independently of ¢ along with their
derivatives. From this fact and the inclusion Q.(t) C N(¢) for each ¢ € [0,T7, it follows that
U, and ¥_! are smooth on m x [0,7T] and QTj, respectively, and that the inequalities
(2.3.3) hold with a constant ¢ > 0 independent of €. In particular, U.(-,¢): Q2.(0) — Q.(¢) is

a diffeomorphism for each ¢ € [0, 7. O

Let W, and W21 be the mappings given by Lemma 2.3.2. In (2.3.2), we set
Us(X,t) :=u" (Ve (X,1),t), W(X,t):=w(V(X,1),t), (X,t)e€Q(0)x(0,7T).

Then, by the change of variables © = VU.(X,t), we transform (2.3.2) into

T
/0 {=(U°(), JFO)OW (1)) 2 + (A°(() VU (t) — U (£) B*(t), VW (1)) 2 } dit
— (ug, W(0))r2 =0. (2.3.8)
Here (-, )72 denotes the inner product of L?(€.(0)) and

JE(X,t) := |det VI (X, )| € R,
AS(X,t) := J5(X, ) VUL (W (X, 1), ) [VEZH (P (X, 1), 1)]T € R™",
BE(X,t) == J°(X, )0,V (W (X,1),t) € R"

for (X,t) € Q:(0) x (0,7T), where

V= ; : for W71 =
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and [VU¥21]7T denotes the transposed matrix of V&2 1. Note that the vector field B* comes
from the differentiation of w(z,t) = W (¥ 1(z,t),t) with respect to t holding = € Q.(t) fixed:

ow(z,t) = oW (U (z, 1), ) + 0,V (2, ) - VW (U (x, 8),1).

Since w(T') = 0 in Q. (T) and ¥.(-,0) is the identity mapping on §2.(0), we have W (T) = 0
and J¢(0) = 11in Q.(0). Thus, by integration by parts with respect to ¢, we further transform
(2.3.8) into

/OT{(Hl)f@tUa(t)a JEOW @) + (U (1), W ()0:J%(8)) 12
+ (A°()VUS(t) = US(t)B*(t), VW (t)) 2} dt = 0. (2.3.9)
Here (g1y(-, ) 1 is the duality product between H1(9:(0)) and its dual space (H*(2(0)))".
Theorem 2.3.3. For every uf € L*(Q:(0)), there exists a unique function
U € L™(0,T; L*(9.(0))) N L2(0,T; H'(Q.(0))) with 8;U° € L*(0,T; (H'(Q:(0))))
that satisfies (2.3.9) for all W € L*(0,T; H'(2(0))) and U¢(0) = u§ in L*(Q:(0)). More-

over, there exists a constant ¢ > 0 independent of ug, U®, and € such that

T
e 10Oz . oy +/0 VU200 0y U < elluplzago oy (2.3.10)
(0,

Proof. Fori,j =1,...,n, let Aj; be the (i, j)-entry of A® and B; be the i-th component of
B#. Suppose that there is a positive constant C independent of € such that

CTl<U(X,t) < C, (2.3.11)
IVIEX ) <O, |0 J°(X,8)]| <O, [AGX )] <O, |Bi(X, 1) < C, (2.3.12)
AS(X, )¢ - ¢ > CI¢? (2.3.13)

for all (X,t) € Q.(0) x (0,7), ¢ € R", and 4,j = 1,...,n. Then the theorem is proved by
a standard Galerkin method and Gronwall argument, see [10, Section 7.1] for details. In
particular, the constant ¢ in (2.3.10) depends only on the above C' and thus it is independent
of e.

Let us prove (2.3.11), (2.3.12), and (2.3.13). The inequalities (2.3.12) and the right-hand
inequality of (2.3.11) immediately follow from (2.3.3). For all (X,t) € Q.(0) x (0,7) since
VUL (W (X, 1), 1) VU (X, t) = I, it follows that

|det VIZH (W (X, 1), 8)|J5(X,t) =1, [VU (X, )T VIV (X,1),1)]T = L.

The first equality yields the left-hand inequality of (2.3.11) because |det VW] is bounded
on Q. 1 independently of € by (2.3.3). Moreover, the above equality and (2.3.3) imply that,
for all (X,t) € Q.(0) x (0,7) and ¢ € R,

€[ = [[VW(X, )T [V (P (X, 1), )] ¢
< |V (P(X, 1), 1) T
:c{VlII ( <X7 )7 )[VII/ 1( 7t)7t)]TC}'C

:c|detV‘I/ (\IIE( ) )70"4 (Xat)CCSCAa(Xat)CC

with a constant ¢ > 0 independent of . Thus (2.3.13) follows. O
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Now we can show the existence and uniqueness of a variational solution to (H.) and its
energy estimate with a constant independent of ¢.

Theorem 2.3.4. For every u§ € L*(Q(0)), there exists a unique variational solution u® to
(H.). Moreover, u® satisfies that u®(0) = u§ in L*(Q:(0)) and

T
S 1w (117200, 1)) +/0 VU () 720 4y 4t < ellud e, o)) (2.3.14)
(0,

£

with a constant ¢ > 0 independent of ug, u®, and €.

Proof. For each u§ € L%*(Q(0)), let U be the unique function given by Theorem 2.3.3 and
we set

u(z,t) == U (W (z,t),1), (,t) € Qer.

Since W.(+,0) is the identity mapping on Q.(0) by Lemma 2.3.2 and U?(0) = u§ in L*(£2(0))
by Theorem 2.3.3, we have u®(0) = u§ in L*(Q.(0)). Let us show that u® satisfies (2.3.2) for
all w € CH(Q.r) with w(T) = 0 in Q.(T). Since V. is smooth on Q.(0) x [0, 7], a function

W(X,1) = w(0(X,1),8), (X,t) € Q(0) x [0, ]

is in C1(9.(0) x [0,7]) and satisfies W(T) = 0 in Q.(0). Hence we can substitute it for
W in (2.3.9) and integrate by parts with respect to ¢ to get (2.3.8). By changing variables
X = U_(z,t) in (2.3.8), we obtain (2.3.2).

Next we prove the energy estimate (2.3.14). By the change of variables x = ¥_(X,t) we
have

/ |u€(x,t)|2da;=/ |U(X,1)|?|det VU (X, )] dX,

Qc(t) Q:(0)

/ Vus(a:,t)\de:/ VUL (W (X,1),1)]T VU (X, 1)]?|det VI (X, 1) dX
Qe (t) Q:(0)

for all t € [0,T]. Hence the inequalities (2.3.3) yield

Hua(t)H%?(QE(t)) = C”Ue(t)H%%QE(o))’ ||Vu6(t)||%2(§2€(t)) < C||VU€(75)”%2(QE(0))

with a constant ¢ > 0 independent of €. By these inequalities and (2.3.10), we obtain (2.3.14)
and thus u® € L%I(E)' Hence v® is a variational solution to (H,).

Finally, the uniqueness of a variational solution to (H.) follows from that of a function
given by Theorem 2.3.3. The proof is complete. O

Remark 2.3.5. Let u® be the unique variational solution to (H.) with initial data uf €
L?(92:(0)). Then it immediately follows from (2.3.14) that

fulsz, ., < ellulezion o (2.3.15)

where ¢ > 0 is a constant independent of ug, u®, and €. We will use this inequality in Section
2.6.
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2.4 Basic function spaces on evolving surfaces

In this section, we define function spaces on the space-time manifold Sp introduced by
Olshanskii, Reusken, and Xu [19] and give their properties. These spaces will give an appro-
priate variational formulation of a limit equation on I'(¢) we will derive in Section 2.6. All
results in this section are originally obtained in [19] for the three-dimensional case. They
can be easily extended for arbitrary dimensions and we give proofs of them for the readers’
convenience.

For each fixed T > 0, we define a function space Hr and an inner product on Hr as

Hy = {v € L*(Sr) | Vv € L*(St)},

T (2.4.1)
(v1,v2) y = /0 . ){Ul(yi)vz(y’t) + Vrwui(y,t) - Vv (y, £)} dH" ™ (y) dt.
t
This inner product induces the norm || - ||z, that is equivalent to the one induced by the
inner product fST{Ul(U)U2(U) + Vrwvi(o) - Vigvz(o)} dH™ (o), since the identity
T
| [ swnawe-wi= [ s @) P are) @42
0 '(t) St

holds and v{ is bounded on Sr. This identity is stated in [19] without proof. We give
the proof of (2.4.2) in Appendix 2.B for the readers’ convenience. If 77 < T3, then Hrp, is
continuously embedded into H7, just by restricting elements of Hp, on St,.

Next we define an auxiliary space. Let H'(TI'g) := {V € L*(Ty) | Vr,V € L*(To)}
with the inner product (V4, Vz)Hl(FO) = fFO(V1V2 +Vr,Vi-Vr,V2) dH" !, where Vr, is the

tangential gradient on I'y. Then we define a Hilbert space Hy as
R T
iy = OTHAT0), (ViVa)g, = [ (A0, Va(®)imry de
0

and let || - || 7, denote the norm of Hr induced by the inner product )y
Let ®(-,t): Tg — T'(t) be the flow map of Vi and ®~1(-,#) be its inverse mapping (see

Section 2.2). For a function V on I'g x (0,7), we define a function v = LV on St as
v(y,t) = V(@ (y,t),t), (y,t) € Sp. (2.4.3)
Also, for a function v on S7, we define a function V = L~'v on 'y x (0,T) as
V(Y,t) :=v(®(Y,t),t), (Y,t)eTyx(0,T).

Clearly L and L' are linear mappings and satisfy L='(LV) = V and L(L~'v) = v for all
functions V on I'g x (0,7) and v on St.

Lemma 2.4.1. The linear mapping L given by (2.4.3) defines an isomorphism between fIT
and Hrp.

A short proof is given in [19]. We give a detailed proof in Appendix 2.B for the com-
pleteness.

Let C3(Sr) be the space of all functions in C'(S7) with compact support in Sr. That
is, each function in C}(Sr) vanishes near t =0 and ¢t = 7.
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Lemma 2.4.2. The space Hr is a Hilbert space and C’&(ST) is dense in Hrp.

Proof. Since ﬁT is a Hilbert space, Lemma 2.4.1 implies that Hy is a Hilbert space. Also,
since C§(Ty x (0,T)) is dense in Hr (see [19, Lemma 3.1]) and C3(Sr) includes L[CZ(Ty x
(0,7))], Lemma 2.4.1 again implies that C}(Sr) is dense in Hr. O

The space Hr is continuously embedded into L?(St). Moreover, Hr is dense in L?(Sr)
since it includes a dense subspace C}(S7) of L?(Sr). Hence we have continuous and dense
embeddings Hy < L%(St) < H}., where H, is the dual space of Hr.

For v € C1(St), we define its (strong) material derivative 9®v as

O*0(D(Y, 1), 1) = %(U(@(Y, 0,1), (Y,t) €T x (0,T). (2.4.4)
From the Leibniz formula (see [4, Lemma 2.2])
4 vdHV ! = / (0% + vdivppy Vr) dH" !, v e C'(Sr),
dt Jr() r(t)

we have the integration by parts identity
T
/ / (Uza.vl 4+ v10%v9 + V109 diVF(t)VF) dHn_l dt
o Jrw)
_ / 01 (T)os(T) dHP" — / 01 (0)ua(0) AP (2.4.5)
r(T)

r'(0)

for all vy,v9 € C 1(ST). Based on this identity, we define the weak material derivative of
v € Hr as a functional 9°v such that

T
(0%, V)p = — /0 /F (i Ve 4t € ClSr) (2.4.6)

If v € C(S7), then its weak material derivative agrees with the strong one. We set

[ ] 8.1]7
0%y = sup O

WYOUYIT e Hy.
veck(spnfoy 1¥ller

If ||0%|| m, is finite for some v € Hrp, then 9*v can be extended to a bounded linear functional
on Hyp because C3(S7) is dense in Hy (see Lemma 2.4.2). In this case, we say that 9% is in
HY. and we define a function space Wy and its norm as

. ! 2 o (12 1/2
Wy = {ve Hr |0 e Hp}, Jollwy = (ol + 100l ) (24.7)

For Ty < Ty, the space Wr, is continuously embedded into Wy, since C}(St,) C C&(STQ)
and Hr, is continuously embedded into Hr,.
To investigate properties of Wz, we define an auxiliary Hilbert space and its norm as

— ~ N 1/2
Wr:={V eHr|oV e}, |Vig,=(IVI5, +lovIy,) "
Here fI{F is the dual space of ﬁT and 9,V is the weak time derivative of V € ﬁT defined as

T
[0,V, U]p := —/ / Vo,wdH ™ dt, W e Ci(Ty x (0,T)),
0 To

and we say 0;V € fI’T if H8tV||ﬁ,T 1= SUPy el Iy x (0,7))\{0} [0V, ]r /|| ¥, is finite.
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Lemma 2.4.3. The linear mapping L given by (2.4.3) defines an isomorphism between I//I\/T
and Wr.

A proof for the three-dimensional case is given in [19] and easily extended for arbitrary
dimensions. We give a complete proof in Appendix 2.B for the readers’ convenience.
Lemma 2.4.3 shows that W has similar properties to those of Wr.

Lemma 2.4.4. The space Wy is a Hilbert space and Cl(ST) is dense in Wp. Moreover, the
trace operator v — v(t) from CY(St) into L*(T'(t)) for each t € [0,T] can be extended to a
bounded linear operator from Wr to L*(T'(t)) and there exists a constant ¢ > 0 such that

max, vl 20y < cllvllwy

for all v € Wr.

Proof. Since /V[7T is a Hilbert space, Lemma 2.4.3 implies that W is a Hilbert space. For
the rest of the proof, see [19, Theorem 3.6]. O

Finally we show an integration by parts formula which we will use in Section 2.6.

Lemma 2.4.5. For all vi,v9 € Wy, we have
T
<aovl, U2>T + <8'1}27 U1>T + / / V1V2 din(t)Vp d?—[”fl dt
0o Jr@e

= / v1(T)vo(T) dH" ! — / v1(0)va(0) dH" 1. (2.4.8)
(T) Lo
Note that, by Lemma 2.4.4, v;(0) and v;(T), i = 1,2, are well-defined as functions in
L*(Ty) and L?(I'(T)), respectively.

Proof. For v € C1(S7), its weak material derivative agrees with the strong one. Thus we
have

T
° _ ° n—1 1
(0%, ) = /0 /F(t)(a O dH ™V dt, e CL(Sr).

Moreover, since C}(Sr) is dense in Hr (see Lemma 2.4.2), the above equality holds for
all ¢ € Hrp and thus (2.4.8) follows from (2.4.5) when vy,vy € C*(Sr). Since C1(Sr) is
dense in Wr (see Lemma 2.4.4), a density argument shows that (2.4.8) holds for general
v1,v2 € Wr. ]

2.5 Average operator

2.5.1 Definition and basic properties of the average operator

In this section we define and investigate a weighted average operator. Lemma 2.5.6 and
Lemma 2.5.13 are fundamental to derivation of a limit equation of (H.) in Section 2.6.
Other results in this section are also useful themselves.

For (y,t) € St, let k1(y,t),. .., kn_1(y,t) be the principal curvatures of I'(t) at y (see [11,

Section 14.6]). We define a function J on Sp x (—d,0) as

n—1

J(y,t,p) == [[{1 = pri(y, 1)}, (y,t) € S1, p € (=5,0).
i=1
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Here 6 > 0 is a half of the width of the tubular neighborhood N(t) of I'(t), which is in-
dependent of t € [0,T] (see Section 2.2). The function J is the Jacobian appearing in the
transformation formula

Egl(y’t)
[ a@de= [ [ v 0) It dpdt ) @25)
Qs(t) F(t) 590(y’t)

for a function u on Q.(t) with each fixed ¢ € [0, 7], see (14.98) in [11]. This formula can be
viewed as a co-area formula. Based on this formula, we define a weighted average operator
M, as follows.

Definition 2.5.1. For a function u on (). 7, we define its weighted average M.u as
1 €91(y,t)
Mayt) = —e [ Nl ol 0.0t ) o, €S (252)
€9(Y,1) Jego(y.t)

We use the same notation M.u for the average of a function w on Q.(t) with each fixed
t € [0,7).

Before starting to derive properties of the average operator, we give inequalities which
we use throughout Section 2.5 and Section 2.6. Since k1, ..., kn,_1 are smooth on Sz, they
are bounded on Sy along with their derivatives. Hence, by taking 6 > 0 sufficiently small,
we may assume that there exists a constant ¢ > 0 such that

¢t <1 —pri(y,t) <c forall (y,t)€Sr,p€(—6,6),i=1,...,n—1. (2.5.3)
Then J is smooth and bounded on St x (—4d,d) along with its derivatives and satisfies
< J(y,t,p) <c forall (y,t) € Sr, pe€(=5,0). (2.5.4)

Moreover, since J(y,t, p) is of the form

n—1
J(,t,p) =1—p>_ ki(y.t) + p*P(k1(y, 1), ., kn1(y, 1), p),
i=1
where P(z) is a polynomial in z = (21,...,2,) € R", we have
oJ
1= J(y,t,p)| < ey |Vrwd(y,t,p)| < ce, afp(yﬂf,p) <c (2.5.5)

for all (y,t) € Sy and p € (ego(y,t),€91(y,t)) with a constant ¢ > 0 independent of ¢.
Now let us derive properties of the average operator M,. For a function u on Q. 1, we
set

Wy, t,p) =u(y+ pv(y,t),t),  (y,t) € S, p € (ego(y, 1), 291 (y. 1)) (2.5.6)

For simplicity, we omit arguments of functions unless we need to specify them. For example,
the co-area formula (2.5.1) is referred to as

€91
/ udr = / / utJ dpdH" .
Qe (t) F(t) €90

Throughout the rest of this subsection and the next subsection, we fix ¢t € [0, 7] and omit it.
For example, we refer to I'(t) as I'. Also, let ¢ denote a general positive constant independent
of t.
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Lemma 2.5.2. If v € L*(T'), then its constant extension v in the normal direction of T is
in L*(Q.). Moreover, there exists a constant ¢ > 0 independent of € such that

1/2

191l 2.y < ce” [l L2y (2.5.7)

Proof. By the co-area formula (2.5.1) and (2.5.4),

€90
s = [ [ BT dpan < [ eqluPan < el
I'Jeg: r
Thus (2.5.7) follows. 0
Lemma 2.5.3. If u € L?(5).), then M.u € L*(T') and
Mol ey < e== Y2 ull gy (2.5.8)

with a constant ¢ > 0 independent of €.

Proof. By Holder’s inequality, (2.5.4), (2.2.1), and the co-area formula (2.5.1),

€91 €91
/ |Mu)? dH" ! < /(Eg)_2 </ Jdp) (/ \uﬁQJdp> dH™!
r r €90 €90

€91
< c/(sg)l/ Wb 12T dp dH" ™ < csl/ lu|? d.
r €90 Qe

Thus (2.5.8) follows. O

By Lemma 2.5.2 and Lemma 2.5.3, the constant extension of M u in the normal direction
of T is in L%(€) for all u € L?(€.). Let us estimate the difference between v and M.u in
L2(9.).

Lemma 2.5.4. There exists a constant ¢ > 0 independent of € such that

H’U,—MEU

‘LQ(QE) < cellull ) (2.5.9)

for all u € HY(Q.). Here M.u is the constant extension of M.u in the normal direction of

r.

Proof. For y € T and p € (g90(y),€91(y)), we set

1 €g1(y)
hmm:w@L%wmwm—um>wr

! eg1(y) i
I (y) = ) /690@) u*(y,r){1 — J(y,r)} dr.

Then we have uf(y, p) — Mu(y) = I1 (y, p) + I2(y). Let us estimate I; and 5. Since

[ (y, p) — ut(y,r)| =

/Tp C;;(U(y +nv(y))) dn‘

€g1(y)

p
/ v(y) - VU(y+nV(y))dn' S/ [(Vu)* (y,m)| dn

g0(y)
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for all p,r € (eg0(y),£91(y)) and the right-hand side of the above inequality is independent
of r,

eg1(y)

Ly, p)] < / (V) ()] dn.

g90(y)
On the other hand, by (2.2.1) and (2.5.5) we have

eg1(y) i
L) < ¢ / iy, )| dr-
ego(

Y)
These inequalities and Holder’s inequality yield
€g1(y)

[ (y, p) — Meu(y)| < [Ii(y, p)| + [2(y)| < C/ w (i (y, m)| + [(Vu) (y, r)]) dr
€gol\y

eg1(y) 1/2
<c (eg(y)/ ([u(y, ) + (V)i (y, 7)) d?“) -

g0(y)

Here the last term is independent of p. Hence by the co-area formula (2.5.1) and (2.5.4) we
obtain

eg1(y
- 2 n—1
HU Meu L2(Q:) //E ”U, Y, p au(y)‘ J(y,p) dde (y)
= C/{SQ(W}Q/ (0. 0) + (VP )P dr a3y
€90(y)
<e? [ / (1 )2+ ()b, )T () dr a3
= C€2HUHH1(QE)-
Thus (2.5.9) follows. -

2.5.2 Tangential gradient of the average operator

In this subsection, we investigate relations between the usual gradient operator in €. and
the tangential gradient operator on I'. We first establish estimates for the gradient of the
constant extension of a function on I' in the normal direction of T'.

Lemma 2.5.5. If v € HY(T), then its constant extension v in the normal direction of T is
in H'(Q.). Moreover, there erists a constant ¢ > 0 independent of € such that

1950 220, < 21V rellpaqey, || Vo - VFUHLQ(Q < 2| Vol ey (25.10)

Proof. The first inequality of (2.5.10) and Lemma 2.5.2 imply v € H!(Q.) for all v € H}(T).
The inequalities (2.5.10) follow from the co-area formula (2.5.1), (2.5.4), and the inequalities

IVo(y + pr(y))| < c|Vro()l, [VO(y + pr(y)) — Vrv(y)| < ce[Vro(y)| (2.5.11)

for all y € I" and p € (ego(y),€91(y)). We prove (2.5.11) in Appendix 2.C. Here we give
the main idea for the proof. We fix each yg € I'. By a rotation of coordinates, we can take
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a smooth function f: U — R with an open set U in R"™! such that I is described as the
graph of f near yo and

V'f(s0) =0, (V')2f(s0) = diag[r1(y0)s - - -+ kn—1(¥0)],

where yo = (s, f(s0)) with s € U and V' is the gradient in s € R"! (see [11, Section 14.6]).
Then (2.5.11) at yp is proved by direct calculations under this local coordinate system. [

Next we approximate an H'-bilinear form on €2, by that on I with the tangential gradient
of the weighted average of a function on ..

Lemma 2.5.6. For u € C®(Q) N HY(Q:) and ¢ € HY(T), let
INu,):= | Vu-Vedr — 5/ gVrM.u - VrpdH" b (2.5.12)
Qe r

Then there exists a constant ¢ > 0 independent of u, @, and & such that
11 (u, )] < ce®||ull g1 () | Vel L2(ry- (2.5.13)

Remark 2.5.7. The bilinear form I'(u,¢) is well-defined for u € C*°(2.) N H'() and
o € HY(T), since p € H'(Q.) by Lemma 2.5.5 and M.u is smooth on T' and thus in H(T)
by the compactness of I'. We will observe later that I}(u, ) is well-defined and (2.5.13)
holds for all uw € H'(Q.) and ¢ € H!(T'), see Remark 2.5.9.

Proof of Lemma 2.5.6. By (2.5.1) we have I} (u, ) = [ I(y) dH" '(y), where

€g1(y)
I(y) :=/ " (Vu)*(y, p) - (V) (y, p)J (y, p) dp — eg(y) Ve Meu(y) - Vrg(y).

Here we used the notation (2.5.6). Suppose that there is a constant ¢ > 0 independent of &
such that

()

1(y)] < e Vrep(y) ( .+ (T ) (2.5.14)
£go\y

for all y € I'. Then, by (2.5.14), Holder’s inequality, and (2.5.4) we have

€g1
o) < ee [ Vool [ ]+ (0w dpar!
€90

<ol oot o) L[ @it an) oe)

9 2 2 1 1/2
< el Vroll ( Lo [P 417y dp e )
€90

< CES/QHVFSOHL?(F)||u||H1(Q€)-

Hence (2.5.13) holds. The inequality (2.5.14) is proved by direct calculations under the
local coordinate system we took in the proof of Lemma 2.5.5. We give a complete proof in
Appendix 2.C. O

Lemma 2.5.6 gives an estimate for the L?(T")-norm of VrM.u for u € H'(£2,.).
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Lemma 2.5.8. If u € H'(S.), then M.u € HY(T') and
IV Meul 2y < ce ™2 ull g any (2.5.15)
with a constant ¢ > 0 independent of €.

Proof. First, we show (2.5.15) for all u € C*®(.) N H(.). For such u, its average M.u
is smooth on I' and thus in H'(T') by the compactness of I'. We substitute M.u for ¢ in
(2.5.12), (2.5.13) to get

/g|VpMau\2 dH" P =¢7t (/ Vu - VMoudx — I (u, Mau)>,
T Qe
|12 (u, Mew)| < c2||ul| g o) | Ve Met]| 2y

Hence, by (2.2.1), Holder’s inequality, and (2.5.10) we obtain
IVeMealaey < ¢ [ glVrdaf® an!

VM.u

<o (uwnpm I M€u>|>

< ce (e + &) ull g oy | Ve Meul 12y
1/2

L2(Q

< ce” A ull o) lIVe Meul g2y

and thus (2.5.15) follows when u € C°°(Q.)NH(£2.). Since €. is bounded, C*(Q.)NH! ()
is dense in H'(€2.), see [10, Section 5.3.2] for the proof. Hence a density argument together
with Lemma 2.5.3 yields that M.u € H'(T') and (2.5.15) holds for all v € H'(€2.). O

Remark 2.5.9. By Lemma 2.5.5 and Lemma 2.5.8, the bilinear form I’(u,¢) given by
(2.5.12) is well-defined for all u € H'(2.) and p € H*(T'). Moreover, since C*(2.) N H(€2,)
is dense in H'((2.), a density argument implies that (2.5.13) also holds for all u € H'(£)
and ¢ € HY(T).

2.5.3 Material derivative of the average operator

Now let us return to the evolving surface I'(¢). Recall the function spaces L?ﬂ(e) and Hr

given by (2.3.1) and (2.4.1), respectively. By Lemma 2.5.3 and Lemma 2.5.8 we immediately
get the next lemma.

Lemma 2.5.10. Ifu € L%,l(g), then M.u € Hp and

—-1/2
IMoulrg < ce™ Pl

with a constant ¢ > 0 independent of €.

Lemma 2.5.10 enables us to consider the weak material derivative of M.u € Hyp for
u € LJQLI1 - Our goal in this subsection is to give a relation between the weak time derivative
of u and the weak material derivative of M u. To this end, we show an auxiliary statement
about the material derivative of a function on St.
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Lemma 2.5.11. Let ¢ € C1(S7) and B be its constant extension in the normal direction of
I'(t). Then

0*p(p(x,t),t) = 0p(z,t) + {Vr(p(z,t),t) + a(z, )} - VE(z,t) (2.5.16)
holds for all (xz,t) € N with a vector field a : Ny — R™ given by
a(z,t) = d(z,t){0w(p(z,t),t) + Vv(p(z,t),t)Vr(p(z,t),t)}. (2.5.17)
Here Vv := (0v;/0x;); j is the gradient matriz of v.
Proof. For X € N(0) and t € (0,7) we set
U(X,t) :=®(p(X,0),t) + d(X,0)v(P(p(X,0),1),1),

where ®(-,t): T'g — T'(¢) is the flow map of Vp (see Section 2.2). By the definition of the
constant extension @ and the formula p(V(X,t),t) = ®(p(X,0),t) we have

E(Q(Xv t)? t) = (p(q)(p(X, 0)7 t)’ t)

for all X € N(0) and ¢t € (0,7). Differentiating both sides with respect to ¢ and observing
that each © € N(t) is represented as * = W(X,¢) with a unique X € N(0), we get the
formula (2.5.16). For detailed calculations, see Appendix 2.C. O

Remark 2.5.12. Let ¢ € C'(St). Since p(y,t) = y and d(y,t) = 0 for all (y,t) € St, we
have

=00+ -Vo=0p+ovrv-Vo+ W -Vryp on Sp

by Lemma 2.5.11. Here the last equality follows from the fact that Vi is tangent to I'(t).
Based on this equality, the material derivative operator acting on functions on I'(¢) is formally
represented as 9° = O, + V¢ -V =0, +vfv - V+ V- V-

Using Lemma 2.5.11, we derive an integral formula related to the weak time derivative
of a function u € L%-Il(a) and the weak material derivative of its average M.u € Hr.

}I;emma 2.5.13. Let u € L%{1(5)7 ¢ € CL(ST), and P be its constant extension. Then we
ave

T T
/ / uwoipdr dt = —e(0°* M.u, gp)1 — 6/ / (0°g + g divr Vi) (Meu)p dH™tdt
o Ja. o Jrw
T
—5/ / g(Mu)Vi - Vo dH™ dt + I2(u, 0;T). (2.5.18)
o Jrw
Here I2(u, p; T) is a residual term that satisfies

T
|2 (u, ; T)| < 053/2/0 1wl L2 (0. (0) V@ e (Ol L2y dt (2.5.19)

with a constant ¢ > 0 independent of u, ¢, and €.

Note that the tangential velocity VFT appears instead of the total velocity Vr in the third
term of the right-hand side of (2.5.18), see Remark 2.5.15 below.
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Proof. By (2.5.16), we have 0°¢ = 0, + (Vi +a) - V@ on N, where a is the vector field on
Nt given by (2.5.17). Hence if we set

12(u,0:T) - / / a-V¢+W- <V¢—Vp(t)gp>}dmdt,
then we have
T T -
/ / uOypdr dt = / / u(@‘gp —Vr- Vp(t)ng) dx dt + I (u, o; T). (2.5.20)
0 <(t) 0 =(t)

Let us compute the first term of the right-hand side of (2.5.20). By the co-area formula
(2.5.1) and the definition of the weighted average M.u (see (2.5.2)),

g1(y,t)
/ o u(@, £)0%p(x, t) dv = / / u(y + pr(y,t),t)0%(y, t)J (y,t, p) dp dH" ' (y)
= /F L9 t)MsU(y, 00"y, 1) AH™ (1)
t
for all t € (0,7"). On the other hand, since the weak material derivative is given by (2.4.6),
(0° Mcu, go)r / / {(M-w)d* () + (Mcu)gep divp) Vr} dH" " dt
_ / / o (@9 + g ive V) (Ve + g (M)} ap ™ .
0o Jr(
Thus it follows that
T —_
/ / ud®edxr dt = —(0° Meu, gp)r
0 Ja.(
T
— 5/ (0°g + g divrp Vi) (Meu)p dH™tdt. (2.5.21)
I'(t)

Since Vr = vfyy + VFT and v - Vpy)p = 0, we have Vp - Vpy)p = VFT - V@) on St. This
equality together with the co-area formula (2.5.1) yields

(T
591 y7 1
/ / aly + (), V(. 1) - Vegy e, 1) (. t.p) dp dH (1)
r(t) Jego(y,t)
—e /F DMy O (:0) - Tl ) 1)
t
for all t € (0, 7)) and thus

/ / Vp Ve )d:cdt_a/ / g(Mo)VE - Vg dH" L dt. (2.5.22)

Substituting (2.5.21) and (2.5.22) for (2.5.20), we obtain the equality (2.5.18).
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Let us show the inequality (2.5.19). In (2.5.17), the first-order derivatives of v are
bounded on Np and Vr is bounded on Sp. Hence there is a constant ¢ > 0 independent of
such that

la(z,t)| < c|d(z,t)] < cemax sup |gi(y,7)| < ce
1=1,2 -
’ (sz)EST

for all (z,t) € Q.. By this inequality, Holder’s inequality, and (2.5.10) we obtain

T
2w < e [ T (V6000 + 790 - Trow@]| ., ) o
0 L2(Q:(1))
T
< e [ ulOllgo. ol Vel Lo
Thus (2.5.19) holds. O

Remark 2.5.14. If M_.u is in the Hilbert space Wrp given by (2.4.7), then the right-hand
side of (2.5.18) is well-defined for ¢ € Hr since C3(S7) is dense in Hy (see Lemma 2.4.2).
In particular, we can substitute M.u for ¢ in the right-hand side of (2.5.18). This fact
is essential for derivation of the energy estimate for the weighted average of a variational
solution to (H.) (see Lemma 2.6.4). If we replace M, in (2.5.18) by a usual unweighted
average operator

Mty t) = —— [ w1, 04
uy,t ::/ uy—l— Vy7t7t 9
: eg(y,1) ego(y,t) ’ g

then the estimate for the residual term becomes

T
112 (u, 0, T)| < 053/2/0 w220 ) <||Vr(t)80(t)||L2(r(t)) + H3°80(75)||L2(r(t))) dt.

Because of the term [|0°¢(t)||12(r()) in the above inequality, the right-hand side of (2.5.18)
with M. replaced by M. is not well-defined for ¢ € Hp. Therefore we can not derive the
energy estimate for the unweighted average of a variational solution to (H.).

Remark 2.5.15. Let I' C R" be a closed, connected, and oriented smooth hypersurface.
Then, since ' = (), the integral formula (see [25, Section 7.2])

/dierdH”1 = —/(V V) H dH™
r

r
holds for smooth vector fields V: I' — R™. Here v is the unit outward normal vector of T’
and H := —divpv is the mean curvature of I'. This formula yields the equality

/v VrpdHn = — /{diVFV (V) H g dHm!
I I

for smooth functions ¢ on I'. In this equality we decompose V = v¥v 4+ V7 into the normal
component vY :=V - v and the tangential component V7 := V — (V - v)v. Then, since
v-Vre =0, divp(vVv)=Vro! v +oVdivpy =040V - (-H) = —(V - v)H,

we obtain a usual integration by parts formula
/ V. VrpdH 1 = —/ odivpVT dH™ 1, (2.5.23)
r r

which we will use to recover a limit equation on I'(¢) from its variational formulation. This
is the reason the tangential velocity VFT appears in (2.5.18) instead of the total velocity Vp
of I'(¢).
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2.6 Convergence and characterization of the limit

2.6.1 Variational formulations of the average of solutions to the heat equa-
tion

Let us return to the initial-boundary value problem (H.) of the heat equation. By Theorem
2.3.4, for every u§ € L%*(Q-(0)) there exists a unique variational solution u® € L%'—Il(a) to (He).

Let M. be the weighted average operator defined in Definition 2.5.1. Our goal in this
subsection is to derive a variational formulation of M u®.

Lemma 2.6.1. Let u§ € L?(Q:(0)) and u® € L%-Il(s) be the unique variational solution to

(H.) given by Theorem 2.3.4. Then M.u® € Hp and it satisfies
T
(0° M.uf, go)r + / /( )(3'9 + g divpy Vi) (Meu®)p dH" " dt
o Jr

T
+ / / 9{VreyMeu® + (Mouf)VE '} - Vrwey dH" tdt = L (uf,;T) (2.6.1)
o Jro
for all o € C}(St). Here I.(u®,;T) is a residual term that satisfies

T
(L (uf, 0 T)| < 081/2/0 [u* ()Nl 1 0. () Ve @y ()| 202y dit (2.6.2)

with a constant ¢ > 0 independent of u®, v, and €.

Proof. Since uf € L%,l(g), we have M.u® € Hr by Lemma 2.5.10. For each ¢ € C§(Sr), its

constant extension @ is in C*(Q-7) and satisfies (0) = 0 in Q.(0) and B(T) = 0 in Q(T).
Thus, by substituting @ for w in the variational formulation (2.3.2) we obtain

T
/ / (—u0sp + Vu' - V@) de dt = 0. (2.6.3)
o Ja.w

Moreover, from Lemma 2.5.6 and Lemma 2.5.13 we have

T T
/ Vu® - Vodrdt = 5/ / gV Meu® - Ve dH" 7Vt + TN, ;) (2.6.4)
0 JQ(t) 0 JIr(@)

and
T T
/ / u Opdrdt = —E(@'Mgus,gcp)T—e/ / (0°g+g divp) V) (Meu®)p dH" 1 dt
0 JQe() 0 Jr@)

T
o Jrw
where I (u®, ; T) and I2(u, ¢; T) satisfy

T
|[IE(u, ;7| < 063/2/0 [ (Ol 1.0 Ve el 2@y dt, - k= 1,2, (2.6.6)

with some constant ¢ > 0 independent of e. Hence, by substituting (2.6.4) and (2.6.5) for
(2.6.3) and dividing both sides by ¢, we obtain (2.6.1) with the residual term

L, o:T) = e H{IZ2(u", o T) — Iz (u", ;. T) },
which satisfies (2.6.2) because I!(u®, p;T) and I%(u®, p; T) satisfy (2.6.6). O
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2.6.2 Estimates for the average M.« in the space Wy
In this subsection, we estimate M u® in the Hilbert space Wr given by (2.4.7).

Lemma 2.6.2. Let u§ € L?(Q:(0)) and u® € L%'—Il(a) be the unique variational solution to

(H.) given by Theorem 2.8.4. Then M.u® € Wy and there exists a constant ¢ > 0 independent
of u® and e such that

10° Mo 1, < eI Met 1y M0z, ). (2:6.7)

Proof. Let ¢ be an arbitrary function in C}(S7). By substituting g~1p € C3(Sr) for ¢ in
(2.6.1), we obtain (0*M.u®, ) = I(u®, ) + I.(uf, g~ 1p; T), where

T
I(uev 90) = /O /F( ){g—l(VrT . Vr(t)g _ 8._9) _ din(t)Vr}(Mgug)god/H"_l dt
t
T
- / ( )WF(t)Meua + (M)} Vg dH" ! dt
0 I'(t

/ / "(Vrwg - Vg Meu®)p dH" ! dt.

Since g and Vi are smooth on S7, they are bounded on S7 along with their derivatives.
Moreover, g~! and VI are bounded on Sy. Thus we have |I(u,¢)| < ¢|Mou|| my ||l 2y
with a constant ¢ > 0 independent of u®, ¢, and €. Also, by (2.6.2),

T
[I.(uf, g7 ' T)| < 661/2/0 [0 ()]l 711 (0. o) | Ve (97 0) ()| 20 dt

T
< e’ [ 1Ol .o (I0Olmey + IVroeOllee) d

< oe1/2)|,€
<y, el

with some ¢ > 0 independent of u®, ¢, and €. Hence we obtain
[(0° M @)r] < (10 0)| 4 |1, g7 s 7)) < e Mo g+l gz, )l

for all ¢ € C}(St), which implies M.u® € Wr and the inequality (2.6.7). O

Remark 2.6.3. Since M.u® € Wy and C}(S7) is dense in Hr (see Lemma 2.4.2), the
equality (2.6.1) also holds for all ¢ € Hy. Moreover, since Wy, is continuously embedded
into Wp, when T1 > T5, we have M.u® € W, for each 7 € [0,7]. Hence (2.6.1) and (2.6.2)
with T replaced by each 7 € [0, 7T are also valid for all ¢ € H,.

Lemma 2.6.4. Let ug and u® be as in Lemma 2.6.2. Then there exists a constant ¢ > 0
independent of ug, u®, and € such that the energy estimate

HMEUE(T)H%%F(T)) +/0 ”vf(t)MeuE(t)H%‘Z(r(t))dt
< c(I1Mets 2y + el 22(0,0)) (268)

holds for all T € [0,T).
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Proof. As we mentioned in Remark 2.6.3, the equality (2.6.1) holds with T replaced by each
7 € [0,T]. Hence, by substituting g~!M.u® € H, for ¢ in (2.6.1) with T replaced by 7, we
obtain

(O M)+ [V Mo (1) e
+ / / {971 (0% — Vi - Vryg) + divp Vi Meu®|? dH" 1 dt
o Jrw
+/ / Muf(VE — gilvp(t)g) - Ve Meu® dH" tdt = I (uf, g~ " M.u®; 7).
o Jr
Moreover, from (2.4.8) with T replaced by T,
1 T
(0°*M.uf, Mou®), = —/ / | M u?|? divp Vr dH™ 1 dt
2Jo Jre

1 2 1 2
+ S IMew (D)2 0y — 5 I1Mew (0 Iz2(ry)-

Applying this equality and the relation u#(0) = u§ in L?(Q:(0)) (see Theorem 2.3.4) to the
above equality, we have

S () ey + [ 170 Mt ) e
= %HMEUEH%%FO) + I (1) + (1) + L(uf, g ' M.uf;7), (2.6.9)
where
Ii(7) = _% /OT /F(t){291(3°g — Vi Vig) + divee Vo Mew® [ a1 d,

I(7) == — /0 - Mo (VF = g7'Vrwg) - Vg Mou® dH™ dt.

Since ¢ and Vp are smooth on S7, they are bounded on Sr along with their derivatives.
Also, g~! and Vl:f are bounded on S7. Thus it follows that

|hhﬂ§c/|ﬂﬂwum;@myw
0 (2.6.10)
|bcﬂ|s(5£ 1M ()] 2 ey IV ey Mt () 2oy .

On the other hand, the inequality (2.6.2) with T replaced by 7 yields

e (u, g™ Meu®s 7)| < 651/2/0 1 () 2 0o (1) I V) (97 Meu®) () 220y dt

< 081/2/0 Hug(t)HHl(Qs(t))(HMEuE(t)HLZ(F(t)) + HVF(t)MEUE(t)HLQ(F(t))) dt. (2.6.11)
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Thus, by applying (2.6.10) and (2.6.11) to (2.6.9), we obtain

1 T
IV Oy + [ 190 Mot Ol
1
< Gy + 5 [ 1700 Met Oy
o [ (100 @) + <10 Ol o)

We multiply both sides by two and subtract [ HVp(t)MEug(t)H%Q(F(t)) dt to get

I (1) 220y + / 9 Mets® (8) 2 1
< Iy + < | (I @ + el 0o o) o
Hence Gronwall’s inequality implies
M ey + [ 1900 Mot Ol roy e < (1Mt + i, )

for all 7 € [0,7], and we obtain (2.6.8) by applying (2.3.15) to the second term of the
right-hand side of the above inequality. O

Lemma 2.6.5. Let ug and u® be as in Lemma 2.6.2. Then there exists a constant ¢ > 0
independent of uj, u®, and € such that

Ml < eI Moz + €28 L2 o))- (2.6.12)
Proof. Tt follows from (2.6.8) that
10 sy < (1Moo + 2 20,00 )
Moreover, by applying this inequality and (2.3.15) to (2.6.7) we have
19° Moy, < el Mew iy + €2z, ) < e(IMetsLaqry) + 26 1200p)-
Thus we obtain (2.6.12). O

2.6.3 Limit equation on evolving surfaces and weak convergence of M_u®

Assume that I.(u, ¢; T) = 0 holds for all ¢ € C}(Sr) and v = M.u® is independent of € in
the variational formulation (2.6.1). Then v satisfies

T
(0%v, go)r +/ / (8°g + gdivpp V)v e dH" " dt
0o Jr@

T
o Jr
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for all p € C}(S7). In addition we assume that v is sufficiently smooth. Since vector fields
goV{ and gVrev are tangent to I'(t) for each t € [0,7], we can apply the integration by
parts formula (2.5.23) to obtain

T
(0%, gp)r + /0 /F( ){(a'g + g divp Vr)v — divrgy [9(Vieg v + UVFT)] } @dH" L dt = 0.
t

Since this equality holds for all ¢ € C}(Sr), we conclude that v satisfies
0°(gv) + (g divp) Vr)v — divpg, [g(VF(t)v + UVFT)] =0 on Sr.

This is the limit equation of (H.). To justify the above argument, we employ a variational
framework introduced by Olshanskii, Reusken, and Xu [19].

Definition 2.6.6. Let vy € LQ(FO). A function v € Wy is said to be a variational solution
to the initial value problem

(Ho)

9*(gv) + (g divpp Vr)v — divpe [9(Vrgv + oV )] =0 on Sy,
’U(O) =0 on FO:

if v satisfies (2.6.13) for all ¢ € Hr and v(0) = vg in L?(Ty).
Note that the condition v(0) = vg in L?(I'g) makes sense for v € Wy by Lemma 2.4.4.

Remark 2.6.7. Suppose that v € Wr is a variational solution to (Hp). Then we have
v € W, for each 7 € [0, T] since Wr is continuously embedded into W,.. Moreover, by taking
test functions ¢ from C}(S;) we observe that v is a variational solution to (Hp) with T
replaced by 7.

We first prove the uniqueness of a variational solution to the initial value problem (Hy).
Lemma 2.6.8. For each vy € L*(Ty), there is at most one variational solution to (Hy).

Proof. Since (Hy) is linear, it is sufficient to show that if v € Wy is a variational solution to
(Hp) with zero initial data then v = 0.

Let v be a variational solution to (Hp) with v(0) = 0 in L?(T). For each 7 € [0,T], we
substitute g~'v € H, for ¢ in (2.6.13) with T replaced by 7 and compute as in the proof of
Lemma 2.6.4 (replace M u® by v and omit I.(u®, p;7)). Then we have

o) Bz ey + /0 IV e ()13 dt < 00022y, + /0 () 12 -

Since v(0) = 0 in L%(T), the above inequality yields

”U(T)H%z(p(q_)) S/O ||’U(t)||%2(l"(t)) dt.

Hence by Gronwall’s inequality we obtain v(7) = 0 in L?(I'(7)) for all 7 € [0, T]. O

Now let us show that {M.u®}. converges weakly in Wr and that the limit is a unique
variational solution to the initial value problem (Hp).

Theorem 2.6.9. Let uf € L*(Q.(0)) and u® € leql(g) be the unique variational solution to
(H.) given by Theorem 2.3.4. Suppose that the following two conditions are satisfied:
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(a) There exist c > 0 and v € (0,1/2) such that ||ug|| 2. o)) < ce™” for all e > 0.
(b) There exists vy € L*(Ty) such that {M.ug}. converges weakly to vy in L*(Tg) ase — 0.

Then {Mcuf}e converges weakly in Wr as € — 0. Moreover, the weak limit v € Wr of
{M_.uf}. is the unique variational solution to (Hy) with initial data vy.

Proof. By the condition (b), {M.u§}. is bounded in L?(I'y). From this fact, the inequality
(2.6.12), and the condition (a) it follows that

| M|y < c(HMsuBHLm) + 51/2”“6“L2(Qg(0))> <e(l+e 72 < (2.6.14)

with some constant ¢ > 0 independent of €. Here the last inequality follows from the
condition v € (0,1/2). Hence {M.u®}. is bounded in the Hilbert space W and there exist
v € Wr and a sequence {ey}, of positive numbers with limy_, e = 0 such that { M, u®* }4
converges weakly to v in Wr as k — oc.

Let us show that v is the unique variational solution to (Hp) with initial data vg. First
we show that v satisfies the variational formulation (2.6.13) for all ¢ € Hp. To this end, we
return to the variational formulation (2.6.1) of M., u®*:

T
(0°Me, ur, gp)r + /0 /F( )(8'9 + g divp) Vi) (M, u™) ¢ dH" ! dt
t
T
+ / / 9V M, u* + (Mo u)VE} - Virwe dH"tdt = I, (u®*, o; T). (2.6.15)
o Jre

Let k — oo in (2.6.15). Since {M;, u®*}, converges weakly to v in Wr as k — oo and g, Vr
are bounded on St along with their derivatives, the left-hand side of (2.6.15) converges to

T
<3'v,gs0>T+/ / (8°g + g divpyVr)ve dH™ 1 dt
o Jre

T
+ / / g(Vp(t)v + ’UVIT) . Vp(t)(p dH" 1 dt.
o Jrw

On the other hand, it follows from (2.6.2) and (2.3.15) that

T
1/2
e, (u, 3 T)| < ce)/ /D [w* @m0, @) Vrw el L2y dt
1/2 1/2
<o 2utllpe Nellme < e 2luit sz, o llel
H=(ep)
with a constant ¢ > 0 independent of €;. This inequality and the condition (a) imply that

L, (u, ;T < ce. " | @lliy = 0 as k— oo, (2.6.16)

since v € (0,1/2) and c is independent of ;. Hence v satisfies (2.6.13) for all ¢ € Hp.
Next we show that v(0) = vg in L?(Tg). Let n € C*°([0,T]) satisfy 7(0) = 1 and n(T") = 0.
We take an arbitrary g € C*°(Tg) and set ¢(y,t) := o(®~(y,t))n(t) for (y,t) € St, where
®~1(-,t) is the inverse mapping of the flow map ®(-,¢): Iy — I'(¢) (see Section 2.2). Due
to the smoothness of ®~!, the function ¢ is smooth on Sz and thus ¢ € Wy. Moreover, it
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satisfies ¢(0) = g on 'y and ¢(T) = 0 on ['(T). Substituting g~l¢ for ¢ in (2.6.13) and
(2.6.15), we have

T
@opr+ [ [ (710 dive Voo de
o Jr
g T
+ / / 9(Vr@v +oVp ) Vre (gilcp) dH" L dt =0
o Jre
and
T
(0° M, v, ) + / / (g710%g + divp Vi) (M, u®*) @ dH" L at
0 JT(t)
T
+ /0 /F( )g{Vp(t)ZMgku‘E’C + (M, u ) VE Y- V) (g7 o) dH™ dt = I, (u*, g p; T).
t
Since ¢, v, and M, u®* are in Wp, we can apply the identity (2.4.8) to get

T
(0%, @) = — (0%, V)1 — / w(0) 0 A" — / / v divi Ve a1 dt
To 0 I'(¢)

and the same identity for M., u®*. Here we used the conditions ¢(0) = ¢g onI'gand (1) =0
on I'(T"). Thus we have

T
—(0%p, )T +/ / g 1O g)vpdH L at
0o Jr)

T
+/O /1“( )Q(Vr(t)v + vVFT) . Vr(t)(g—lw) AN dt = /F v(0)po dH™™ ! (2.6.17)
! 0

and

— (0%, M., u* T—I—/ / Lo*g) (M, u® Mo dH L dt
+/0 /F(t) 9V Meu* + (M u )V} - Vi (g7 ) dH" ! dt
~ [ Ofuiyodr™ + Lt g i T). (260.15)
0
Let k — oo in (2.6.18). Since {M.u§}. converges weakly to vy in L*(Tg) as & — 0,
lim M, ug* ©o dH" ! = /F vo o dH L.
0

k—o00 T'o

Moreover, since { M, u®* }; converges weakly to v in Wr as k — oo and (2.6.16) holds with
¢ replaced by ¢!y, both sides of (2.6.18) converge to

0°p,v T+/ / Lo g)wodH ™ dt
I'(t)

+ / / 9(Vr@v + oV - Vi) (g ro)dH 1 dt = / vo o dH™ 1. (2.6.19)
0 JI(¢) Lo
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Comparing (2.6.17) and (2.6.19), we obtain
/ v(0)pg dH L = / vo o dH™ 1 for all g € C™(T).
Ty o

Since C*°(T'g) is dense in L?(T'), it follows that v(0) = vg in L?(T). Hence v is the unique
variational solution to (Hp) with initial data vy. Here the uniqueness follows from Lemma
2.6.8.

Finally, using the boundedness of {M.u®}. in Wr (see (2.6.14)) and the uniqueness of a
variational solution to (Hy) (see Lemma 2.6.8), we can prove by contradiction that the full
sequence {M.uf}e converges weakly to v in Wy as € — 0. The argument is standard and
thus we omit the details. O

Corollary 2.6.10. For every vg € L?(Ty), there exists a unique variational solution to (Hp).

Proof. For each ¢ > 0, we define a function uj on Q.(0) as

T vo(p(X,0))
u§(X) = J(p()(‘io)’o’d(x’o)), X € Q.(0).

Clearly M.uf = v holds on I'g. Moreover, by the co-area formula (2.5.1) and (2.5.4) we

have

eg1(Y,0) . . 1/2

8 220 (/ L o) v,0,0) ™ dpare- <Y>)
T'o Jego(Y,0)

1/2
<o [ cotrolwmP awr ) < el o
o

with a constant ¢ > 0 independent of e. Hence uj € L?(€:(0)) and u§, vy satisfy the
conditions (a) and (b) of Theorem 2.6.9. Thus the corollary follows from Theorem 2.3.4 and
Theorem 2.6.9. O

Remark 2.6.11. Let H = —divp(yv be the mean curvature of I'(t). Since the material
derivative operator is formally of the form 0°® = &; +vv-V+ VL - Vi@ (see Remark 2.5.12)
and the formula din(t)(vﬁv v) = —vl H holds (see Remark 2.5.15), the limit equation (Hy)
is formally equivalent to

9°(gv) — v Hgv — divpy (9Vrev) =0 on  St.

Here 9° = 0; + v¥v - V is the normal time derivative (see [2,3,5]). This equation depends
on v{y , v, and H, which represent the geometric motion of I'(¢). On the other hand, it is
independent of the tangential velocity VFT , which represents advection along I'(t). Hence,
as we mentioned in Section 2.1, the evolution of the limit v given by Theorem 2.6.9 is not
affected by advection along I'(¢), but the geometric motion of I'(¢).

2.6.4 Estimates for the difference between solutions to the heat equation
and the limit equation

Let us estimate the difference between variational solutions to (H.) and (Hp). For a function
v on St, let T be its constant extension in the normal direction of I'(). For a function u on

Q:1, we set
T 1/2
lullz2o, oy = (/ / luf? da dt) .
0 (1)
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Theorem 2.6.12. Let u§ € L*(Q.(0)) and u® € leql(s) be a unique variational solution to

(He). Also, let vg € L*(T'g) and v € Wr be a unique variational solution to (Hy). Then
there exists a constant ¢ > 0 independent of ug, u®, vo, v, and € such that

= ¥l z2(@. 1) < ¢(lluf = Tl 2 o)) + 2 lvollaqry )- (2.6.20)
In particular, for each o € [0,3/2) we have
;l_r}(l) EiaHUE — EHLQ(QE,T) =0 pm’uided ;1_)1’% €7aHU/6 - FOHLZ(QE(O)) = 0.
We first estimate the difference between M. u® and v in the space Wrp.

Lemma 2.6.13. Let ug, u®, v, and v be as in Theorem 2.6.12. Then there exists a constant
¢ > 0 independent of ug, u®, vo, v, and € such that

IMet vl < e I1Metsh — voll ey + £l (2.6.21)

In particular, if lim. ||M5u6—v0HL2(FO) =0 and lim._,o /2

converges strongly to v in Wp.

45l 2. (0)) = 0, then {Mcu®}e

Proof. For each 7 € [0,T], we subtract both sides of (2.6.13) with T" replaced by 7 from
those of (2.6.1). Then we have

(0°(Mou® — v), g)r + /O / (9 g Vo) (Mo — )b
t
4 / / Ve (Mt —0) + (Mot — 0)ViT} - Vi dH™ dt = L (%, 5 7)
o Jre

for all ¢ € H;. Hence, by calculating as in the proof of Lemma 2.6.2, Lemma 2.6.4, and
Lemma 2.6.5 (replace M u® by M.u® — v), we obtain (2.6.21). O

Proof of Theorem 2.6.12. First we show the inequality
Ju® =l L2(q..r) < 061/2(HM5U8 —wvollz2(ry) + 51/2||U6HL2(QE(0)))- (2.6.22)

To this end, we use the triangle inequality

+ HMEu€ — 6‘

I =l 2@ ) < ||u° — Mew?

L2(Q£,T) L2(Q6,T)

and estimate the right-hand side of the above inequality. By (2.5.9) and (2.3.15), we have

with a constant ¢ > 0 independent of €. On the other hand, by (2.5.7) and (2.6.21),

u® — M.us

< & < 2
gy Sz, | < eellulia. o)

| 5]

vy S =AM il < 22 (Mg — voll ey + Nz )
e, T

Hence (2.6.22) follows.



2. Zero width limit of the heat equation on moving thin domains 37

Next we estimate the right-hand side of (2.6.22) to get (2.6.20). We use the notation
(Wg) (Y, p) := ug(Y + pr(Y,0)), Y €T, p € (eg0(Y,0),01(Y,0)),
and omit the variables Y, p, and t = 0. We set

o= [ e =2 [ -1
1= — ug)* — v p, Ip:=— —1)dp.
€9 Jegy " eg

€90

Then M.u§ —vo = I1 + I on I'g. By Hoélder’s inequality and (2.2.1), (2.5.4), we have

2 1 o e\t 2 72 -1 o e\t 2
[L|” < — [(up)* —vol"J"dp < ce [(ug)* — wol™J dp-
€

€9 Jego €90

On the other hand, (2.5.5) yields |I2| < ce|vg|. Hence

IMeaf — w22y < / (NP + | 1) !

To
€91
< ([ 10 - i dp+ unf ) ane
1) €90
= C(é‘*lHug — ?T()H%z(gs(o)) + EQHUOH%%FO))'

Here we used the co-area formula (2.5.1) in the last equality. The above inequality is equiv-
alent to

||M5u6 — UOHLQ(FO) < C(g*l/QHUS - UT)”L2(QE(O)) + €HUOHL2(FO)> . (2.6.23)
Moreover, by the triangle inequality and (2.5.7),

145 20 0)) < l1wg — ol 2. 0)) + D0l 2 (2. (0))

< 10~ Tl (a0 + e ol -
Finally, by applying (2.6.23) and (2.6.24) to (2.6.22), we obtain
|u® =0l r2(q..r) < C€1/2(HM8U8 —voll2(rg) + 51/2““8||L2(Qg(0))>
< e 2((e72 4 212) | — Tl (e 0y + el )
< C(Huﬁ — 00l 2 (0. 0)) + €3/2HUOHL2(FO)>
with a constant ¢ > 0 independent of €. Hence (2.6.20) holds. O

2.A Heuristic derivation of the limit equation

Let us give a heuristic derivation of the limit equation (2.1.1) from (H.) when Q.(%) is of the
form Q.(t) = {x € R" | —e < d(z,t) < €}. In this case, the unit outward normal vector field
ve of 0Q.(t) and the outer normal velocity v of 9§ (t) are of the form

ve(z,t) = v (p(x,t),t), vév(x,t) = :tvljﬂv(p(@t),t), (x,t) € 0uQe 1,
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according to d(x,t) = e (double-sign corresponds). Thus we start from the heat equation
O (z,t) — Au(z,t) =0, (x,t) € Qe
with the boundary condition
v(p(z,t),t) - Vus (2, 1) + ol (p(z, t), t)uf (z,t) = 0, (,t) € Qe (2.A.1)
To derive the limit equation, we make the following assumptions:

(1) The signed distance d(z,t) of z € Q.(t) is negligible (d(z,t) ~ 0), although the quantity
e~ ld(x,t) is not negligible.

(2) The relation v (p(z,t),t) ~ —dd(z,t) holds for all (z,t) € Qe 1.
(3) The boundary condition (2.A.1) also holds in the noncylindrical domain Q. 7.

These assumptions come from the smallness of the width 2e of Q.(¢). Taking the third
assumption into account, we consider the two equations

ous (z,t) — Auf(x,t) =0, (2.A.2)
v(p(z,t),t) - Vus (z,t) + vl (p(z,t), t)uf (z,t) = 0 (2.A.3)
for (z,t) € Qs 1. Recall that each x € Q.(t) is represented as
x = p(x,t) +d(z, t)v(p(x,t),t), Vd(z,t)=v(z,t)=v(p(x,t),t).
First, we consider the gradient matrix of the projection p(z,t) onto I'(t) given by

81291 . 3n]91 b1

VP: : . for p=

Opn ... Oppn Pn

By differentiating both sides of z = p(z,t) + d(z,t)v(x,t) and using Vd(x,t) = v(x,t), we
have

I, = Vp(z,t) + v(z,t) @ v(z,t) + d(z, t)Vi(z, t).
According to the assumption (1), the above equality reads
Vp(x,t) = I, —v(z,t) @ v(z,t) = I, — v(p(z,t),t) @ v(p(z,t),t). (2.A.4)
We define a function v: S x (—1,1) - R as
v(y,t,r) :=u(y +erv(y,t),t), (y,t) € Sp, re(—1,1).
Then u® is represented by v as
uf(z,t) = v(p(x, t),t, e td(z,t), (z,t) € Qer. (2.A.5)

For abbreviation, we write p and d for p(x,t) and d(x,t) in arguments of functions unless we
would like to emphasize them. For example, we write v(p,t) for v(p(x,t),t) and v(p,t,e " d)
for v(p(z,t),t,e td(x,t)). By the chain rule of differentiation we have

Vu (z,t) = [Vp(z, )T Vo(p, t,e1d) + e Ldu(p, t, e 1d)Vd(x, t).
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By (2.A.4) and Vd(z,t) = v(p(x,t),t), this equality reads
Vuf(x,t) ~ Vp(t)v(p,t,afld) + e 10,v(p, t, e td)v(p, t). (2.A.6)

Here we abused the definition of the tangential gradient V) = (I, — v @ v)V. Applying
(2.A.6) to (2.A.3) and observing that v(p,t) - Vppv(p, t,e~'d) = 0, we obtain

e 1ou(p,t,e d) ~ —vljﬂv(p,t)v(p,t,sfld) (2.A.7)
and thus (2.A.6) becomes
Vu(x,t) ~ Vp(t)v(p,t,e_ld) — v{y(p,t)v(p,t,5_1d)1/(p,t). (2.A.8)
Next we compute Au® = div Vu®. For a vector field F' on €. (t) with each fixed ¢t € [0,T7,

div F(z) = trace|VF(z)]
= trace[{I, — v(z,t) @ v(z,t)} VF ()] + trace[v(z,t) @ v(z,t)VF(z)]
= divp) F(z) +v(,t) - 0, F ()

holds since v ® v is a projection matrix onto the v-direction. Hence we have
div [VF(t)U(pa t, g_ld)] = divF(t) [vf(t)v(pa t, e_ld)] + V($’ t) Oy [vf(t)v(pa t 6_1d)] :

Moreover, since p(x + hv(z,t),t) = p(z,t) and d(z + hv(z,t),t) = d(z,t) + h for sufficiently
small h € R, it follows that

vF(t)v(p(x + hl/(w, t)a t)7 t 8_1d($ + hl/(:{j, t)v t)) = VF(t)U(p(.TJ, t)a t, 6_1d(l’, t) + 5_1h)
and thus
Oy [VF(t)U(p> i 6_1d)} = 6_187" [VF(t)U(p7 t 5_1d)]

by the formula 0, f(x) = limp_o{f(z + hv(x,t)) — f(x)}/h for functions f on Q.(t) with
fixed ¢t € [0,T]. Hence we obtain

div[Vrpo(p t,e'd)] = divrg) [Vrgv(p, t.e ' d)] + e 'v(,t) - 0, [Vrgv(p, t,e'd)].
Similarly we have
div[vf (p, t)o(p, e~ d)v(p,1)]

= divry [of (p, )o(p,t, e d)v(p,t)] + v(z,t) - {e o (p.t)Orv(p t, e d)v(p, t)}
~ divpg) [of (p, Do(p, e d)v(p, )] — {of (p, 1)} v(p, t, e~ d).

Here the last approximation follows from v(x,t) = v(p(z,t),t) and (2.A.7). Hence, by
(2.A.8),

A’U,E(x, t) ~ diVF(t) [VF(t)v(pa L, Eildﬂ + 8711/(‘7"7 t) - Oy [VF(t)U(p, L, Eild)]
- diVF(t) [Uf‘v(pv t)U(p7 t, 6_1d)V(p, t)] + {U%‘V(Z% t)}2 U(p, t, 6_1d)' (2A9)
On the other hand, we differentiate both sides of (2.A.5) with respect to t to get

O (z,t) = Oyp(x,t) - Vo(p,t,e 1) + dpv(p, t, e 1d) + e 10yd(x, t)Drv(p, t, e d).
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To this equality we apply (2.A.7) and
atp(x7 t) = _atd(m? t)U(IE, t) - d(.’E, t)aty(xv t) ~ U%V(pv t)lj(p, t),

where the last approximation follows from the assumptions (1), (2), and v(z,t) = v(p(z,t),t).
Then we have

ot (z,t) = v (p,t)v(p,t) - Vo(p,t,e 1d) + dw(p,t, e 1d) + {v¥ (p, )} v(p, t, e 1d).
(2.A.10)

Substituting (2.A.9) and (2.A.10) for the equation (2.A.2), we obtain
O (p,t,e'd) + o (p, (. ) - Vo(p,t,e7"d) + diveg [vf (b, Do, e~ d)v(p, 1)]
— divp [Vp(t)v(p, t, 5_1d)] — e lu(z,t) -0, [Vp(t)v(p, t, 5_1d)] =0.

Now let us make an additional assumption: the function v(y,t,r) is independent of the
variable r. Then, the above equation reads

Oo(y, ) +vr (v, vy, 1) - Vo(y, £) + divee [vf (v, Doy, vy, 1)]
— divp) [Vegv(y,t)] =0
with y = p(x,t) € T'(t). Finally we observe that
divp (vavy) = Vru (v{yv) ‘v 4+ vav divpgyry =0+ UJFVU (—H) = —vI]va,

where H = —divp()v is the mean curvature of I'(¢), to obtain

&w(y, t) + ,Ul]ﬂv(:% t)V(y, t) ’ V’U(y, t) - UIN<y7 t)H(ya t)v(y, t) - AF(t)'U(y, t) =0

for (y,t) € Sp. This is the limit equation (2.1.1) we mentioned in Section 2.1.

2.B Elementary facts on integrals over evolving surfaces

In this appendix we give complete proofs of several facts on integrals over evolving surfaces
which are essentially known or easily proved but there is no detailed proof for the readers’
convenience. We first show the transformation formula (2.4.2).

Proof of (2.4.2). By a localization argument with a partition of unity of S, it is sufficient
to show

// f(y,t) d?-["_l(y) dt = / flo)(1+ |U1]~V(U)|2)_1/2 dH" (o), (2.B.1)
IJu(U)

CUXI)

where I is an open interval in (0,7), U is an open set in R"~!, y;: U — T'(¢) is a smooth
local parametrization of I'(¢) for each ¢ € I, and (: U xI — St is given by ((s,t) = (pu(s), ).
Moreover, by rotating coordinates and taking I sufficiently small, we may assume that there
exists a smooth function h on U x I such that pu(s) = (s,h(s,t)) for all s € U and t € I.
Then ((s,t) = (s, h(s,t),t) and the outward normal velocity v of I'(t) is given by

Bh(s,t)

V1+|V'h(s, t)?

o (e (s),t) = (s,t) €U x I. (2.B.2)
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Here V' is the gradient in s € R~ and we assume that the n-th component of the normal
v is positive on (U x I). For t € I the Riemannian metric on I'(¢) is locally given by
Out 8/% oh oh

s) - 5 (s) = dij

t t 0,7 =1,... -1
0s; 0s; +8sz(s )8sj(8) s€U,b] AL )

where §;; is the Kronecker delta. Hence the left-hand side of (2.B.1) is

// f(y,t) dH" 1 (y) dt = //fut t)\/1+ |V'h(s,t)|2 ds dt. (2.B.3)
pe(U)

On the other hand, since the Riemannian metric on St is locally given by

9¢ ¢ . Oh  Oh
851( t)'aitgj(‘s?t)_&lj_'_as (S t)as (S t)

ac a¢ oh,  oh a¢ a¢

o (st) (1) = o= (s, 1) 5 (s:1), o (s,8) 5 (s,) = 1+%(st)2
0s; ot 0s; ot ot ot ot

forseU,tel,and i,j =1,...,n — 1, the right-hand side of (2.B.1) is

/ F0) (1 + [0l (o)) /2 aH (o)
(UxI)
= Flue(s), ) (1 + [0 (ue(s), 1) >) "2\ /det A(s, t) ds dt. (2.B.4)
UxI

Here A is a matrix of the form

A (T +Vh&V'h V'
U ah(V'R)T 1+ |0h)?

where (V’h)7 is the transpose of the column vector V’h. By elementary row operations we
have

(T 4 {1 R/ PRS0
det A = det < Oh(V'h)T 1 4 |0;h2
— (1 oyt [ 1+ (1 2PN g o

— t n—1 1+ |ath’2

=1+ ohH) 1+ (1- 1O IV'h|?
B k 1+ |0;:h2

|04 [? 112
=(l+—F——5 (1 h|?).
< +1+|V’h|2 (1+[VAF)

Hence, by (2.B.2),
det A(s, ) = (1+ [of (e (s), D) (1 + [V'h(s, )[2).

Substituting this for the right-hand side of (2.B.4) and applying Fubini’s theorem, we get
the right-hand side of (2.B.3) and thus conclude that (2.B.1) holds. O

Next we give complete proofs of Lemma 2.4.1 and Lemma 2.4.3. Before starting to prove,
let us construct a partition of unity of I'(¢) by that of I'y. Since I'y is compact, we can take a
finite family {Uk}fc\;l of open sets in R®! and smooth local parametrizations ulgz Ui — T,
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k=1,...,N such that {u&(Uy)}2_, is an open covering of I'g. Let {1/§}_; be a partition
of unity of I'y subordinate to the covering {u§(Ug)}&_,. For k=1,...,N and t € [0,T] we
set

i (s) = ®(uk(s),1), s€ Uy, F:=vkouko(uf)™, (2B.5)

where ®(-,t): I'g — I'(¢) is the flow map of Vi (see Section 2.2). Then for each k =1,..., N
the mapping uf : Uy — L'(t) is a local parametrization of I'(t) and {uf (Uy)}&_, is an open cov-
ering of I'(t). Moreover, {¢F}I¥_| is a partition of unity of I'(£) subordinate to {uf(Uy) ;.
We use these partitions of unity to localize integrals over I'(¢).

Proof of Lemma 2.4.1. Let V be a function on I’y x (0,7) and v := LV. Our goal is to show

cllV(Ollizee) < lv@)llzzray < c2llVE)llzzry),
Ve V(Ollz2ro) < Ve v 2y < c2llVrg VOl L2

for all t € (0,7) with some positive constants ¢, c2 independent of ¢. These inequalities
yield e1f|V[| 5 < [[vl|a, < e2f|V]| 5., which means that L is an isomorphism between Hrp and
Hp. By a localization argument with the partitions of unity given by (2.B.5), it is sufficient
to show that

01/ V()2 dH" ! g/ lo(t)[* dH™ ! g@/ [V (@)|? dH™ 1, (2.B.6)
po(Q) pe(Q) po(Q)
01/ |V, V(t)[* dH" ! g/ Vr@v®)? dH" gcQ/ |V, V(t)[* dH™ !
po(Q) p(Q) po(Q)
(2.B.7)

for all t € (0,7) and all V' supported in po(Q) x (0,7). Here pug: U — I'y be a smooth
local parametrization of I'y with an open set U in R*~!, @ is a compact subset of U, and
wue: U — T'(t) is the local parametrization of I'(t) given by p(s) := ®(uo(s),t) for s € U.
Note that in this case v = LV is supported in Ute(o,T) e (Q) x {t}. Let 6 = (614)i; be a
matrix given by

oy O O L N
O:4i(s) := 25, (s) 9, (s), (s,t)eUx][0,T],4,j=1,...,n—1, (2.B.8)

and 0; 1 = (9? )ij be the inverse matrix of §;. By the definition of integrals over hypersurfaces,
/ VY, 02 dH (V) = / |V (1o(s), t)|*\/det 6o (s) ds,
ro(Q) Q
[ o O 070 = [ etuts). 0 V05 s
Ht

Since y/det 6;(s) is continuous and does not vanish as a function of (s,¢) on the compact set
@ x [0,T7], there is a constant ¢ > 0 such that

¢l < \/detb(s) <c forall (s,t)e@x[0,T]. (2.B.9)

Moreover, by the definitions of L and uy,

v(pe(s),t) = V(q)_l(ﬂt(s)v t),t) = V((I)_I(CI)('LLO(S), t),t),t) = V(po(s),t) (2.B.10)
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for all (s,t) € U x [0,T]. Hence (2.B.6) follows. Similarly, by (2.B.9) and the equality
/ |VF0V(Y7 t)’ZdHn 1 / ’VFO (o(s | v det by (s) ds,
1o(Q)
/(Q) ]Vp(t)v(y,t)|2 dH"1( / [Vr@yv(pe(s t)[2\/det 0;(s) ds,
Lt

it is sufficient for (2.B.7) to show that

c1| VoV (po(s), )2 < [Vrgyvlpe(s), ) < e2| ViV (po(s), £) (2.B.11)

for all (s,t) € Q x [0, T]. The tangential gradients Vr,V and Vv are locally expressed as
(see [6, Section 2.1 and Section 2.2] for example)

Ve Va6 = 3 68 (9 50-(V (). ) G2 5),
ij=1 ’

Vo =S 09 ) (o (s).0) ot o)
ij=1 !

for (s,t) € U x [0,T] and their Euclidean norms are

90,V o). 7 = 37 05 ) 5=V o (s). ) 5 (Vo). 1),
ij=1 t
n—1 . 9 9

V(e (s), t)* = Z 0; (S)g( v(pe(s), ))aisj(v(ut(s)vt))'
i,j=1

Then, by (2.B.10), it is sufficient for (2.B.11) to show
ey (s)a-a <07 (s)a-a <cfy (s)a-a forall (s,t,a)€Qx[0,T] xR (2.B.12)
To this end, we consider a real-valued function
F(s,t,a) :==0; (s)a-a, (s,t,a) € Q x[0,T] xR

It is continuous on @ x [0, 7] x R"~! and satisfies F(s,t,a) = |B(s,t,a)|?, where

a#t

sta:

(5), b= (b1,...,by_1):=0;"(s)a.

Z

For a # 0 we have b # 0 and thus B # 0. Hence F' does not vanish on the compact set
Q x [0,T] x S"~2, where S"~2 is the unit sphere in R"~!. From this fact and the continuity
of F there is a constant ¢ > 0 such that ¢™' < F(s,t,a) < cfor all (s,t,a) € Q x[0,T] x S"2
and thus

¢ Hal®> <07 (s)a-a < cla|* forall (s,t,a) €@ x[0,T] xR

This inequality yields (2.B.12) and we conclude that (2.B.7) is valid. O
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Proof of Lemma 2.4.5. First we give transformation formulas of integrals over I'g and I'(¢).
Let U be an open set in R"™' and p: U — Ty be a smooth local parametrization of I'y.
Moreover, let p;: U — T'(t) be the local parametrization of I'(t) given by p(s) := ®(uo(s), ).

We set
det ;(s) det fp(s)
=\ =\ T T
det Oy (s)’ Alpe(s det 0;(s)’ (s:8) €U [0, T),

where 6; = (6;,;); is given by (2.B.8). We can show that the right-hand sides of the above
definitions are independent of the ch01ce of the local parametrization pg. From this fact and
the smoothness assumption on ®, the functions A and A are well-defined and smooth on
the compact manifolds T'g x [0, 7] and Sz, respectively. In particular, they are bounded on
I x [0,7] and St along with their derivatives. Moreover, by a localization argument with
the partitions of unity given by (2.B.5), we get the integral transformation formulas

/ o(y, ) dH L (y) = / VY DAY, ) dHm 1Y), (2.B.13)
T'(t) To
/ V(Y. 4) dHm (V) = / oy DAy, £) dH" L (y) (2.B.14)
To I(t)

for all functions V on 'y x (0,7) and all t € (0,7T), where v = LV
Now let us prove the statement of Lemma 2.4.3. For V€ Wy we set v := LV. Then
Lemma 2.4.1 yields v € Hy and [[v|lm, < c[|V|g,. We next show that 0%v € H’. and

0%, < CHVHWT' Let v € C3(Sr). Then ¥ := L % is in C}(Ty x (0,T)) and
0*Y(®(Y,t),t) = 0,¥(Y,t) for all Y € T'g. Hence (2.B.13) yields
(0%v, ) / / (vO*Y + vy divpg) Vi) dH" ' dt
I'(t)
—/ /(V@t\IJJrV\I!F)Ad’H”‘Idt,
To
where F := L™ (divp)Vr) € C*°(Ig x [0,T]). Moreover, since WA € Cg (Lo x (0,T)),

T T
—/ / VAU dH" ™ dt = [0,V \I/A]T+/ / VU A dH L dt
To 0 o

by the definition of the weak time derivative 9,V. From these formulas and the boundedness
of Frand A on I'g x (0,t) along with their derivatives, it follows that

T
(0%, ¥)r] = [0V, WA]r + /0 [

< c(loV g, 1WAl g, + VI W1 5,) < ellViig, 1]

(VU A — VIUAF) dH" ! dt’

with a constant ¢ > 0 independent of V' and ¢, which implies 0*v € H7. and [|0°0] gy, <
CHVHWT‘ Hence v = LV is in Wy and ||v|jw, < CHV”WT for every V € Wr.
Similarly, by (2.B.14) and the smoothness of A on St we can show that V := L~!v is in

Wr and ||VHI7V\T < c||v||w, for every v € Wp. Hence L is an isomorphism between Wr and
Wr. O
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2.C Calculations involving the differential geometry of tubu-
lar neighborhoods

The purpose of this appendix is to show detailed calculations in the proofs of Lemma 2.5.5,
Lemma 2.5.6, and Lemma 2.5.11. We fix ¢ € [0, 7] and omit it until the end of the proof of
Lemma 2.5.6.

The proofs of Lemma 2.5.5 and Lemma 2.5.6 involve calculations of the usual gradient
in N and the tangential gradient on I' under a local coordinate system. Let pu: U — IT" be a
local parametrization of I' with an open set U in R"~!. We set

8u ou

0;;(s) == 881 aSj(s), seUi,j=1,...,n— 1.

Then, the tangential gradient of a function v on I' is locally expressed as

n—1
Vru) = 3 05 (T, y = ) € D), 2.0)
i,5=1 t

where 0(s) := v(u(s)) and 1 = (%), ; denotes the inverse matrix of = (6;;); ;. We define
a mapping M: U x (—0,8) = N as M(s,p) := p(s) + pv(u(s)) for (s,p) € U x (=4,6) and
set

oM oM .
©i;(s,p) == g(s,p) . g(s,p), (s,p) €U x (=6,0),4,j=1,...,n,
i J

where s, := p. Then the gradient (in R™) of a function u on N is locally expressed as

Vu(e) = 3 09(s,0) o (5,0) oo (s,p), w = Ms,p) € MU x (-6,0)), (20

3,j=1 % 5

where u(s, p) := u(M(s,p)) and ©~! = (©Y), ; is the inverse matrix of © = (0;;); ;.
Let v be a function on I' and 7 be its constant extension in the normal direction of T
Then their local representations v := v o u and T := v o M satisfy

(s, p) = B(p(M (s, p))) = v(u(s)) =0(s), (s,p) €U x (=4,6).
Hereafter we use this fact without mention.
Proof of Lemma 2.5.5. Let v € HY(T'). Our goal is to show the inequalities
IVo(y + pr(y)l < c|Vro(y)l,  [Vo(y + pr(y)) — Veo(y)| < ce[Vrv(y)] (2.C3)

for all y € T and p € (ego(y),e91(y)) with a constant ¢ > 0 independent of y, p, and e.
For each fixed yg € I, by a rotation of coordinates we can take an open set U in R"~! and
a local parametrization p: U — I' such that yo = u(sp) with s9 € U and pu is of the form
wu(s) = (s, f(s)) with a smooth function f on U satisfying

V/f(SO) = 0, (V,)2f(80) = diag[m, ey anl], (2.0.4)
where V' is the gradient in s € R"™! and &; := ;(yo) for i = 1,...,n — 1 (see [11, Section
14.6]). We set the direction of v(yp) in the positive direction of the x,-axis to get

—V'f(s),1
vu(s)) = LDy

1+ [V'f(s)]?
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Then we have v(yg) = v(1(so)) = en and

L) =i o (vln(s))

= —kKie;, 1=1,....,n—1 (2.C.5)

s=s0
by (2.C.4), where {e;}}" is the standard basis of R"”. This equality yields

oM oM

8781'(807;)) = (]' - p”i)ei) v = ]-a ceey N — 17 TP(SOJ)) = V(ILL(SO)) = Cn. (206)

Hence we have 0(sg) = I,—1, O(s0, p) = diag[(1 — pr1)?, ..., (1 — prp_1)?,1], and
071(80) = In—1, 671(507/)) = dla'g[(]' - pﬁ1)727 ceey (1 - pﬁn—1)727 1] (207)

Applying (2.C.5), (2.C.6), and (2.C.7) to (2.C.1) and (2.C.2) with u = v, we obtain

n—1 A~ n—1 ~
ov . 0v

Vro(yo) = Y 55, (s0)ei Vulyo + pr(yo)) = > (1= pri) 138. (s0)ei
i=1 " i—1 v

and thus (2.5.3) implies that

n—1 ~ 2 n—1 ~ 2
V(0 + ()P = (1= )2 (5o s0)) < e X (5o0)) = Trolum)
i=1 ! i=1 k

which yields the first inequality of (2.C.3) with y replaced by yo. Moreover, by (2.5.3) we
have

(1= pri) ™t = 1] = |prs(1 — prg) | < ce
for all p € (eg0(y0),€91(v0)) and i =1,...,n — 1 and thus
= ov, \?
90+ ) = Vieolw)l? = 341 = pr) ™ = 12 (5 (o0)) < 2 Trotao)P
i=1 i
Hence the second inequality of (2.C.3) with y replaced by yo is valid. O

To prove Lemma 2.5.6, we need a differentiation formula of the average operator un-
der a local coordinate system. Let U be an open set in R*! and pu: U — T be a local
parametrization of I'. The weighted average of a function u on ). is locally expressed as

= —= S S d seU 2.C.8
(\4Eu S ~(S) (o) u\s, p s, P)ap, y

where m(s) = Mcu(u(s)), u(s,p) = u(M(s,p)), and

n—1
T(s,p) = J(p(s), p) = [ {1 — pri(u(s))}- (2.C.9)
=1
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Lemma 2.C.1. Let u € HY(Q.). Then

OM.u 1 o0 fou, - N
881' (S)_(ﬁ((g)/ggo(s) {%(Sap)‘](sap)+u(sap)8$z(8)p)} dp

L[ fou, s 07
+ == —(s,p)J(s,p) +u(s, p)5=(s, i(s,p)dp (2.C.10
69(3)/850(3) {8p( p)J(s,p) + u( p)ap( p)}x( p)dp ( )

forallse U andi=1,...,n— 1, where

1

N N P
o) i= =5 {0 = D G 6) + (le) = 00} (2.0.11)

Proof. For simplicity, we set 0; = 0/0s; and 0, = 0/dp. For each i = 1,...,n — 1, we
differentiate both sides of (2.C.8) with respect to s; to get

oiiu— L 09 /g Fao+ = [ (@mT vy a (2.012)
VU = — — —==5 ud dp+ — iw)J + u(0; 0, 2.C.12
‘ €g 5(§>2 €90 &g )

where I = I(s) is given by

I(s) := €0ig1(s)u(s,eq1(s))J (s,€91(s)) — €0igo(s)u(s,eg0(s))J (s,€90(s))-

Since I = [u(p)J(p)xi(p)] 2. = f%g;l ﬁp(ﬂin) dp and O0px; = 0;g/g, we have

p=¢€do
I i g 1 [e9 o~
o= ) /550 uJ dp + 5 . {(0pu)J +u(0,J)}x: dp. (2.C.13)
Substituting (2.C.13) for (2.C.12), we obtain (2.C.10). O

Proof of Lemma 2.5.6. As in the proof of Lemma 2.C.1, we write 0; = 9/0s; and 0, = 0/0p.
Let u € C®°(Q.) N HY (), ¢ € HY(T), and

eg1(y)
I(y) ;:/ " (Vu)(y, p) - (V) (y, p)J (y, p) dp — eg(y) Vr Meu(y) - Vre(y).
£goly

Here we used the notation (2.5.6). Our goal is to show

(v)

(y)| < celVre(y)l gg:) ([u(y. )| +1(Vu)*(y, p)]) dp (2.C.14)
€goly

for all y € I' with a constant ¢ > 0 independent of y and €. As in the proof of Lemma 2.5.5,
we fix yo € I" and take a local parametrization u(s) = (s, f(s)) of I near yo = u(so), so € U,
where U is an open set in R"~! and f is a smooth function on U satisfying (2.C.4). We set
the direction of v(yp) in the positive direction of the x,-axis. Then by (2.C.5), (2.C.6), and
(2.C.7) we have

n—1 n—1
(Va)H(yo, p) = Y (1 — pri) ™ diii(s0, p)es + Dpi(s0, p)en,  VrMeu(yo) = Y dMu(so)e;,
=1 i=1

n—1 n—1

(V@) (yo, p) = Y (1= pri) ' 0iB(s0)eis  Vro(yo) = > 9i@(s0)ei,

i=1 i=1
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where {e;}? ; is the standard basis of R" and k; := ki(yo), ¢ = 1,...,n — 1. Hereafter we
omit the varlables p and sg unless we need to specify them. The above equality yields

i
L

(Vu) (o, p) - (V) (w0, p) = Y (1 — pri) 20U i, (2.C.15)
1

..
I

n—1

eg(u0)VrMeu(wo) - Vro(uo) = Y <g(0:Meu) 03
1

1

Moreover, (2.C.10) implies that
__ g1 - ~ ~ ~
G(000) = [ {0+ 70T) + (0,)Txi + WO, ) d,
do

where x; is given by (2.C.11), and thus

eq ~n—l o €1 ~n—1 -
eg(yo)VrMeu(yo) - Vro(yo) = /~ Jzaiu Oipdp + /~ UZ&-J Oipdp
€90 i=1 €90 =1
= n—1
+ {(au)JwLuaJ}le 0;p dp.
€90 i=1

From this equality and (2.C.15), we obtain I(yo) = I1 + I> + I3 with

€41 ~n—1
I = / T {1 = pri) 7 = 1}0:u 03 dp,
€do i—1

ehn n—1 _ ehn _ _ n—1
L= /~ @S 0 J0Fdp, Iy =— /~ {O,)T + 50,1} S xi B3 dp.
€90 i=1 €go =

Let us estimate these integrals. By the definition of J (see (2.C.9)), we have

Vrd(yo, p Z@J 50, P)€i Z@J 50, p)0ip(s0) = Vrd(yo, p) - Vre(yo).
Hence I5 is of the form

g1 (yo)
== [ 0, Ve 0. p) - Veo(un) do
ego(yo)
and by applying (2.5.5) to the right-hand side we obtain
g1(yo) i
L2 < ce[Vro(yo) [u* (o, )| dp- (2.C.16)
€go(yo)

Next we estimate I5. By the definitions of @, .J, and x; (see (2.C.9) and (2.C.11)),
apa<307 P) - V(ZUO) : (vu)ﬁ(y07 P)7 8pj(807 P) - apj(y07 p)7

ZXZ 50, £)9iP(s0) = Xe(Yo, p) - Vre(yo),
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where

(p —€90(y0))Vrg1(yo) + (91(¥0) — p)Vrgo(yo)
9(yo)

Xe (Yo, p) =

Hence I3 is of the form
€g1(yo) ‘ i
I3 = —/ " xXe (o, p) - Vre(yo){v(yo) - (Vu)* (o, p)J (yo, p) + w* (yo, p)0pJ (o, p)} dp.
€90 Yo

Since Vrgo, Vrg: are bounded and g1 — gg = g,

[Vrgo(yo)| + [Vrgi(yo)|
9(yo)

Ixe(y0, p)| < {(p—eg0(v0)) + (eg1(yo) — p)} < ce

for all p € (90(y0),€91(yo)). This inequality together with (2.5.4) and (2.5.5) yields
£91(vo) i i
[13] < ce[Vre(yo)l " (Iu*(yo, p)| + | (Vu)* (%o, p)I) dp- (2.C.17)
€90(Yo

Let us estimate I;. For all p € (ego(yo),£91(y0)) and i =1,...,n — 1, we have
(1= pri) ™2 = 1] = [prs(2 — pri) (1 — pry) 2| < ce

by (2.5.3). From this inequality, Holder’s inequality, and (2.5.3),

n—1 1/2 /p—1 1/2
<ce (Z(am?) (Z(aw)

n—1
> {1 = pri) 7 — 1}0iu 0 G
=1

i=1 i=1
S 1/2 /p_1 1/2
< ce (Z(l - Pﬁi)_2(8i5)2> < (51'%5)2>
i=1 =1
< ce| (V) (yo, p)l|Vre(yo).
Using this inequality and (2.5.4) we obtain
€91 (%o) ’
[I1] < cg[Vre(yo)l |(Vu)* (yo, p)| dp. (2.C.18)
€go0(yo)

By (2.C.16), (2.C.17), and (2.C.18) we conclude that (2.C.14) with y replaced by yo holds. [
Finally we give the complete proof of Lemma 2.5.11.

Proof of Lemma 2.5.11. Let ®(-,t): Ty — T'(¢) be the flow map of Vi and ®~1(,¢) be its
inverse mapping (see Section 2.2). For X € N(0) and ¢t € (0,T) we set

U(X,t) = P(p(X,0),t) +d(X,0)v(P(p(X,0),t),1). (2.C.19)

For each ¢t € (0,T) the mapping ¥(-,t): N(0) — N(t) is a bijection whose inverse is given
by

Uz, t) .= Y (p(x, t),t) + d(z, ) v(® Y (p(z,1),1),0), (x,t) € Nr.
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Let » € C1(S7) and % be its constant extension in the normal direction of I'(t). By the
definition of @ and the formula p(V(X,t),t) = ®(p(X,0),t) we have

P(U(X,1),t) = p((p(X,0),1),1),  (X,t) € N(0) x (0,T).

We differentiate both sides with respect to t. The time derivative of the left-hand side is

Op(¥(X,t),t) + 0V (X,t) - Vo(¥(X,1),1).
On the other hand, the time derivative of the right-hand side is

P p(®(p(X,0),1),t) = p(p(¥ (X, 1),t),1)
by the definition of the strong material derivative (see (2.4.4)). Hence

P e(p(¥(X,1),1),1) = 0 p(V (X, 1),t) + O W (X, 1) - V(¥(X, 1), 1)
for all (X,t) € N(0) x (0,T). Substituting ¥~!(z,¢) for X in this equality we further get
O°o(p(x,t),t) = 0;p(x,t) + 0, (U™ (x,1),t) - VB(z,t) (2.C.20)

for all (z,t) € Np. Let us show

(U (x, ), 1) = Vo(p(a,t),t) + alz, t), (2.C.21)

where a(z,t) is given by (2.5.17). We differentiate both sides of (2.C.19) with respect to ¢
to get

8V (X, t) = 9, (p(X,0),1)
+ d(X7 0){8tV(q)(p(X7 0)7 t)v t) + VI/(@(p(X, 0)7 t)? t)atq)(p(X7 0)7 t)}

for (X,t) € N(0) x (0,T"). Moreover, since
d(X,0) = d(¥(X,1),), @(p(X,0),t) = p(¥(X,1),1),
9 @(p(X,0),t) = Vr(2(p(X,0),1), 1) = Ve (p(V(X, 1), 1), 1),

it follows that

ath(Xa t) = VF(p(\II(X7 t)a t)v t)
+ d(¥(X, 1), ){ 0 (p(¥ (X, 1), 1), t) + Vv (p(¥(X,1),1), ) Ve (p(V (X, 1), 1),1)}.

Substituting ¥~ (z,t) for X in this equality we obtain (2.C.21). Finally, the formula (2.5.16)
follows from (2.C.20) and (2.C.21). O
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Chapter 3

An energetic variational approach
for nonlinear diffusion equations in
moving thin domains

3.1 Introduction

In this chapter, we are interested in deriving diffusion equations on a moving surface, by
regarding it as a thin width limit of the problem in a moving thin domain around the
moving surface.

Let us begin with an equation of the conservation of mass p with velocity u in a moving
domain Q(t), t € (0,7") in R"”, n > 2 of the form

Op +div(pu) =0 in Q(t), t € (0,7), (3.1.1)

which represents the local conservation of mass. Considering the situation that there is no
exchange of mass on the boundary, i.e.

u-vo=VY on 9Q(t),te (0,1), (3.1.2)

where V' is the normal velocity of the boundary 9€(t) in the direction of the outward
normal vector field vg of 9€(t). Similar conservation law of mass 1 with velocity v on a
moving surface I'(t) can be derived from the local conservation of mass. It turns out (see
Section 3.3) that, when the normal component of v is equal to the outward normal velocity
ViV of the moving surface T'(¢), the resulting equation is of the form:

0°n — V¥ Hn + dive(mT) =0 on T(t), t € (0,T), (3.1.3)

where 0° = 0y + VFN vp - V is the normal time derivative, vr is the outward normal vector
field of I'(t), H is the (n — 1 times) mean curvature of I'(¢), divr is the surface divergence
operator on I'(¢), and v? is a tangential vector field satisfying v = VFN vr +vT. Note that
this equation is obtained as the zero width limit of the corresponding equation (3.1.1) in a
moving thin domain Q.(¢) defined as the set of all points in R™ with distance less than e
from I'(¢) (see Remark 3.4.2).

The conventional diffusion equations, or even the porous-media equations, can be viewed
as the combination of incompressible fluids with the damping in the form of Darcy’s law.
Take the usual Darcy’s law for the velocity v in the moving thin domain Q.(t):

—pu=Vp(p) in QI(t),te(0,T), (3.1.4)

92
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where p is the pressure, then we can prove (see Theorem 3.4.1) that the zero width limit of
the diffusion equations (3.1.1) and (3.1.4) yields diffusion equations on the moving surface
I'(t): (3.1.3) and Darcy’s law

—ml =Vrp(n) on T(t),te (0,T). (3.1.5)

Here vT is the tangential component of the velocity v and Vr is the tangential gradient
operator on I'(t).

The diffusion equations (3.1.1), (3.1.4) and (3.1.3), (3.1.5) possess specific energy identi-
ties. It can be easily proven (see Section 3.5) that for p and w satisfying (3.1.1) and (3.1.4)
the energy identity

a

w(p)dx = —/ plul? dz — / p(p)VE aH™ ! (3.1.6)
Q) 290(1)

holds. Here w is a function satisfying p(p) = w'(p)p — w(p). Similarly, for n and v satisfying
(3.1.3) and (3.1.5) we have

d

— w(n) dH" :—/ anPdH"1+/ p( VY HdH™ 1, (3.1.7)
dt I'(t) T'(t) I'(t)

where H"~! is the (n — 1)-dimensional Hausdorff measure. Fortunately, the energy identity
(3.1.7) on the moving surface can be derived as the zero width limit of the energy identity
(3.1.6) in the moving thin domain (see Theorem 3.5.3).

With the results from this chapter, we can also note that the passing of zero width limit
commutes with an energetic variational approach originated from the works of Lord Rayleigh
[24] and Onsager [16,17] and developed by Liu and others [3,12,25] (see Section 3.6). In
summary, we show that the diagram below is commutative.

integration
s . b t . .
Diffusion equation Y Darts Energy identity
in Q(t) energetic in Q.(1)
variation
e—0 e—0
integration
s . b t . .
Diffusion equation _Dy patts Energy identity
on F(t) energetic on F(t)
variation

A standard approach for finding the limit of a thin domain problem is a rescaling argu-
ment: one transforms a partial differential equation in a thin domain into that in a fixed in
width reference domain by the change of variables and then gets a limit equation by assuming
that a rescaled solution is independent of variables in thin directions. In our case where the
thin domain and the surface both move, one may transform the moving thin domain into a
fixed in time and width reference domain. However, it yields tedious calculations because of
the geometry of the limit moving surface and it is difficult to bring a limit equation obtained
on a stationary reference surface back to an equation on the original moving surface. One
other method is to rescale the width of the moving thin domain without fixing time, which
is used in [15] to find the limit of the Neumann type problem of the heat equation (equations
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(3.1.1), (3.1.2), and (3.1.4) with p(p) = p) in moving thin domains. However, it is still
complicated and requires a questionable assumption that the boundary condition holds in
a middle of the moving thin domain. It is also artificial in the sense that we have to make
rescaled solutions constant in the thin direction at an “appropriate” point to derive the limit
energy identity and if we take a wrong point then we get a wrong limit (see Remarks 3.5.5).

To derive a thin width limit with more straightforward calculations we consider the Taylor
series of a function on Q.(t) in powers of the signed distance from I'(¢). We assume that
Q.(t) admits the normal coordinate system around I'(t), i.e. for each z € Q.(t) there exists
a unique point w(z,t) € I'(t) such that

x = 7(x,t) + d(z, t)vp(n(z,t),t),

where d is the signed distance function from I'(¢) increasing in the direction of vr. Based on
the normal coordinate system we consider expansions of

p(z,t) = p(m(z,t) + d(z, e (r(z,t),1),1),
u(m(z,t) + d(x, t)vr(m(x, t), t),t)

in powers of the signed distance d(z,t):

(3.1.8)

plz,t) = n(n(z,t),t) + dz, t)n'(x(x,t),t) + d(z, )2 (7 (2, 1), ) + -,

u(x,t) (m(z,t),t) + d(x, )t (n(z, 1), 1) + d(z, t)*0* (n(x,t),t) + - - -

In these expansions we assume that 7, v, and the coefficients of the powers of d(z,t) are
functions on I'(¢) and independent of £ (note that the functions p and w on Q.(¢) depend
on ¢). Under this and other suitable assumptions, we obtain the limit equations (3.1.3)
and (3.1.5) as the zeroth order terms of expansions in powers of d(z,t) (or €) of the bulk
equations (3.1.1), (3.1.2), and (3.1.4) by differentiating (3.1.8) and substituting them for
(3.1.1), (3.1.2), and (3.1.4) (see Section 3.4). Note that, if we take the average of (3.1.8) in
the normal direction of I'(t), then we get

1 3
28/ p(y + rvr(y,t),t) dr = n(y,r) + (higher order terms in €), y € I'(¢)
—€

and a similar equality for w. Thus, formally speaking, we derive the limit equations (3.1.3)
and (3.1.5) as equations on I'(¢) satisfied by the limit as € — 0 of the averages of p and u in
the thin direction.

The idea mentioned above also applies to derivation of the energy identity (3.1.7) on the
moving surface from that in the moving thin domain (3.1.6) (see Section 3.5). To get the
limit energy identity we use integral transformation formulas from surface integrals over the
level-set surfaces {x € R" | d(z,t) = r} (—e < r < ¢) into that over the zero level-set surface
['(t) (see Lemma 3.5.4).

There is a long history in the study of partial differential equations in thin domains, such
as the pioneering work by Hale and Raugel [8,9], where they investigated damped hyperbolic
equations and reaction-diffusion equations in a flat stationary thin domain of the form

Q. ={(2,2,) eR" |2 €ew, 0 <z, < eg(2))}, (3.1.9)

where w is an open set in R"~! and ¢ is a function on w. There is also a large number of
the literature on reaction-diffusion equations in various types of thin domains such as a thin
L-shaped domain [10], a moving flat thin domain of the form (3.1.9) with g time-dependent
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[18], and flat and curved thin domains with holes [19-21] (here a curved thin domain is
a thin domain degenerating into a lower dimensional manifold). A main subject in the
above literature is to compare the dynamics of equations in thin domains with that of limit
equations in their limit sets rather than to find the limit equations of the original equations
in the thin domains, since their limit sets are stationary and thus the rescaling argument
works well for finding the limit equations. The Navier—Stokes equations in thin domains has
been also studied well [11, 13,23, 26, 27| since fluid flows in thin domains often appear in
natural sciences like the flow of water in a large lake, geophysical flows, etc. Researchers are
especially interested in the relation between the smallness of the width of thin domains and
the large time behavior of solutions to the Navier—Stokes equations in thin domains. We refer
to [22] and references therein for other types of thin domains degenerating into stationary
sets and mathematical analysis of partial differential equations in such thin domains.

In the case where the limit set of a thin domain moves, derivation of the limit of a partial
differential equation in the thin domain is more complicated since the geometry of the limit
set changes as it moves. Such a problem was first considered in [15] where the author derived
both formally and rigorously the limit equation of the Neumann type problem of the heat
equation (equations (3.1.1), (3.1.2), and (3.1.4) with p(p) = p) in a moving thin domain
degenerating into a closed smooth moving surface. He also found that the normal velocity
and the mean curvature of the degenerate moving surface affects the limit equation, which
is not observed in the case where the limit set of a thin domain does not move.

The rest of this chapter is organized as follows. In Section 3.2, we fix notations on
various quantities related to the moving surface. In Section 3.3, we briefly observe that the
transport equations in the moving domain and the moving surface are equivalent to the local
mass conservation. In Section 3.4, we derive the limit equations (3.1.3) and (3.1.5) on the
moving surface from the diffusion equations (3.1.1), (3.1.2), and (3.1.4) on the moving thin
domain by means of expansion in terms of the signed distance. In Section 3.5, we derive
the energy identities (3.1.6) and (3.1.7) from corresponding diffusion equations and then
show that the energy identity (3.1.7) on the moving surface is the zero width limit of the
energy identity (3.1.6) on the moving thin domain. In Section 3.6, we apply an energetic
variational approach to the energy identities (3.1.6) and (3.1.7) to obtain Darcy’s laws (3.1.4)
and (3.1.5).

3.2 Quantities on a moving surface

We start with several notations for a moving surface. Let I'(t), t € [0,7] be an (n — 1)-
dimensional closed (that is, compact and without boundary), connected, oriented and smooth
moving surface in R"™ with n > 2. Also, let

Sri= |J T@® x{t} cR"™!
te(0,7)

be a space-time hypersurface associated with the moving surface I'(¢). For each ¢t € [0,T] we
write vr(-,t), Vi~ (-, ), and d(-,t) for the unit outward normal vector field of I'(t), the scalar
outward normal velocity of I'(¢), and the signed distance function from I'(t), respectively.
Note that to describe the evolution of a closed surface it is sufficient to give the normal
velocity. Since the smooth closed surface I'(¢) varies smoothly in time, the principal curva-
tures k1(+,t),...,kn—1(-,t) of T'(t) are bounded uniformly in ¢ € [0,7]. Then there exists a
constant 6 > 0 independent of ¢ such that for each ¢ € [0,7] the tubular neighborhood of
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['(t) of the form
N(t) .= {x € R" | dist(z,T'(¢)) < 0}
admits the normal coordinate system
x =m7(x,t) +d(x, t)vp(m(x,t),t), =€ N(t), (3.2.1)

where 7(z,t) is the closest point on I'(t) to x (see [6, Section 14.6] for example). For each
t € [0,T] we suppose that d(-,t) increases along the direction of vp(-,¢). Then we have

Vd(z,t) = vp(m(z,t),t), (x,t) € N(t), (3.2.2)
Od(y,t) = Vi (y,1),  (y,t) € T(1),
Moreover, differentiating both sides of
d(z,t) ={z —n(z,t)} - Vd(z,t), d(w(x,t),t)=0
with respect to t we easily obtain
od(z,t) = dpd(n(x,t),t) = =V (n(z,t),t), (z,t) € N, (3.2.3)

where Np := U0 NV (8) x {t}.
Next we fix ¢t € [0,7] and give differential operators on the surface I'(t). We define the
orthogonal projection onto the tangent plane of I'(t) by

Pr(y,t) := I, —vr(y,t) @vr(y,t), yeT(t).

Here I,, denotes the identity matrix of size n and a ® b = (a;b;); ; is the tensor product of
two vectors a = (ai,...,a,) and b = (by,...,b,) in R™. For a function f: I'(t) — R and a
vector field F': T'(t) — R™ we define the tangential gradient of f and the surface divergence
of F' as

Vif(y) = Pr(y, )V (), diveF(y) = tr[Pr(y,t)VE(y)], yeT().

Here f and F are extensions of f and F to N(t) satisfying f=fand F=Fon I'(t). Also,
tr[M] denotes the trace of a square matrix M and we use the notation

61G1 e 81Gn
Ve=|
0nG1 ... OnGjp

for the gradient matrix of a vector field G = (G, ..., G,). Note that the tangential gradient
of f and the surface divergence of F' do not depend on a choice of extensions (see e.g. [5,
Lemma 2.4]). Moreover, for any function f on I'(¢) we easily see that

Vrf(y) vr(y,t) =0, yeT(t). (3.2.4)
We define the (n — 1 times) mean curvature H of I'(¢) as

H(y,t) := —divrer(y,t), y € T(t). (3.2.5)
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Note that the mean curvature is equal to the sum of the principal curvatures:

n—1

H(y,t) = ki(y,t), yeT(t). (3.2.6)

=1

Finally, for a function f on the space-time hypersurface St we define the normal time
derivative (the time derivative along the normal velocity) as

aof(y7 t) = atf(y’ t) + VF(y> t)l/l"(ya t) ’ vf(yv t)’ (y7 t) € St.

Here f is an extension of f to Ny satisfying f = f on Sp. Note that the value of 8°f does
not depend on a choice of an extension of f and the formula

O Fyt) = 5 (Frln,0),0). (1) € Sr (327)

holds (see [2, Section 3.4] for details).

3.3 Transport equation in a moving domain and on a moving
surface

In this section we give the transport equation for a scalar quantity in a moving domain and
on a moving surface. We use some of the same terminology and techniques as in [14]. We
first consider transportation of a scalar quantity in a bounded moving domain Q(t) in R™.
Let p(z,t) and u(z,t) be the density and the velocity field of the scalar quantity at = € Q(t),
respectively. Our starting point is the local mass conservation

d

— pdx =0 3.3.1

for any portion U(t) (relatively open set) of §(¢) moving with velocity u(-,t) and whose
closure (in R™) is contained in (t). Since the left-hand side is equal to [, U t){atp+div(pu)} dx
by the Reynolds transport theorem [7] and the divergence theorem, the condition (3.3.1) for
any U (t) is equivalent to the transport equation

Op +div(pu) =0 in Qr:= U Qt) x {t}. (3.3.2)
te(0,T)

To make the total mass fQ( n pdx conserved, we impose the boundary condition

u-vg=VY on 9,Qr:= |J 09t) x {t}, (3.3.3)
te(0,T)

where vqo(+,t) and V' (-,¢) are the unit outward normal vector field and the scalar outward
normal velocity of 0€2(t), respectively. The boundary condition (3.3.3) physically means that
the quantity in (¢) moves along the boundary of Q(¢) and it does not go into and out of
Q(t).

Next we give the transport equation for a scalar quantity on a moving surface. Let T'(¢)
be a closed, connected, oriented moving surface in R™. As in Section 3.2, we write vp(-, 1)
and Vp(+,t) for the outward normal vector field and the scalar outward normal velocity of
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I'(t), respectively. Suppose that for each ¢t € (0,7) a scalar quantity on I'(¢) has the density
n(y,t) at y € I'(t) and moves with velocity

U(:U?t) = Vr(y,t)l/r(y,t) +UT<y7t)a RS F(t)7

where v7 (-, t) is a given tangential velocity field on I'(¢). Then its local mass conservation is
expressed as

/ ndH" ' =0 (3.3.4)
Ut)
for any portion U(t) (relatively open set) of I'(¢) moving with velocity v(-,¢). The Leibniz

formula [4, Lemma 2.2] yields

4 ndH" ! = / {0°n — V¥ Hny + divp (o)} dH™ L.
dt Ju) o0)

From this formula, the condition (3.3.4) for any U(t) is equivalent to
0°n — V¥ Hn + divp(pT) =0 on  Sy. (3.3.5)

This is the transport equation on the moving surface I'(¢).

3.4 Zero width limit for nonlinear diffusion equations

Let us consider nonlinear diffusion of a scalar quantity in Q(¢) with density p and velocity u.
Suppose that the diffusion process is described by the transport equation (3.3.2) and Darcy’s
law —pu = Vp(p), where

p(p) = ' (p)p — w(p) (3.4.1)

is the pressure with a given function w(p), p € R. We impose the boundary condition (3.3.3).
Hence the nonlinear diffusion equations we deal with are

Op + div(pu) =0 in Qr, (3.4.2)
—pu=Vp(p) in Qr, (3.4.3)
u-vo = VY on 0,Qr. (3.4.4)

We consider these equations in a moving thin domain. For sufficiently small € > 0, we define
a moving thin domain Q.(t) as the set of all points in R™ with distance less than ¢ from the
moving surface I'(¢):

O.(t) := {z € R" | dist(z, [(t)) < &} (3.4.5)

We write Q. 7 and 0yQ. 1 for Qr and 9,Qr with Q(t) = Q.(t). Our goal in this section is to
find the limit equations of (3.4.2)—(3.4.4) in Q.(t) as € goes to zero, that is, the moving thin
domain €. (t) degenerates into the moving surface I'(¢). According to the normal coordinate
system (3.2.1), we expand p and u in powers of the signed distance d(x,t) as

p(z,t)
u(x,t)

n(n(xz,t),t) + d(z, t)n* (r(z,t),t) + R(d(z,1)?), (3.4.6)
v(m(x,t),t) + d(z, t)v (n(z, t),t) + R(d(z,t)?)
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for (x,t) € Q.7 and assume that 7, v, and the coefficients of d(x,t)* for each k € N in
(3.4.6) and (3.4.7) are independent of . Here R(d(z,t)*) (k € N) is the sum of the terms of
order equal to or higher than k with respect to small d(x,t). In particular, R(f(z,t)) for a
function f(z,t) can be of the form

R(f(x7t)) = f(a:,t)g(a;,t)

with some (bounded) function g(z,t). Note that we can differentiate R(d(z,t)*) and its
j-th order derivative is of the form R(d(z,t)*=7) for j < k although we cannot differentiate
O(d(x,t)*) since it only represents a quantity whose absolute value is bounded above by
|d(z,t)|*¥. Also, since d(z,t) is of order € on Q. r, we have R(d(z,t)¥) = O(e*) for (,t) €
Q-7 and k € N .

Under the expansions (3.4.6) and (3.4.7), the limit equations of (3.4.2)—(3.4.4) in Q.(¢)
as £ goes to zero are given as equations on I'(¢) satisfied by n and v.

Theorem 3.4.1. Let p and u satisfy the equations (3.4.2)—(3.4.4) in the moving thin domain
Q(t) = Q(t) given by (3.4.5). Also, let n and v be the zeroth order terms in the expansions
(3.4.6) and (3.4.7) of p and u, respectively. Then v is of the form

v=Vvr+0l on Sr (3.4.8)
with some tangential velocity field vi on T'(t), and n and v satisfy the equations

0°n — Vi Hny + divp (o) = 0 on Sr, (3.4.9)
—nqvl =Vrp(n) on Sr. (3.4.10)

Proof. For the sake of simplicity, we use the abbreviations
flmt) = f(m(z,t),1), R(dk) = R(d(:v,t)k) (3.4.11)

for a function f on St, (z,t) € Q. 1, and k € N. We also abbreviate the product of several
functions with the same argument like

[ur - us](z,t) = ui(z,t) - ua(x,t) (3.4.12)

for vector fields u; and ug on Q. 7. First we show that v is of the form (3.4.8). By the
definition (3.4.5) of the moving thin domain €. (), the unit outward normal vector and the
outward normal velocity of its boundary are given by

vo(z,t) = +vp(m,t), V& (x,t) = £V (n,1) (3.4.13)

for (x,t) € 04Qer with d(z,t) = e (double-sign corresponds). Hence the boundary condi-
tion (3.4.4) reads

u(x,t) - vp(m,t) = V& (n,1),  (2,t) € Qe 1.
We substitute (3.4.7) for w in the above equality. Then

[v-v](m,t) £ e[vt - v](m,t) + O(?) = V& (m, 1).
Since v, v!, vr, and VFN are independent of ¢, it follows that

[v-V](m(x,t),t) = Vi(n(z,t),t), [v'-v](x(z,t),t) =0
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for all (z,t) € 0,Qc 7, which imply that

[v-vl(y,t) = Vi (y, 1), (y,t) € Sr, (3.4.14)
[0" - V](y,t) =0, (y,t) € Sr. (3.4.15)

Hence v is of the form (3.4.8) with some tangential velocity field v on T'(¢).
Next we derive the equations (3.4.9)-(3.4.10). Let (z,t) € Q.. We differentiate both
sides of (3.4.6) with respect to ¢ and apply (3.2.3) and (3.2.7) to get

dip(x,t) = 8°n(m,t) — [V nH(m, t) + R(d). (3.4.16)

Let us compute the divergence of pu. We differentiate n(z,t) = = — d(z,t)vr(nw,t) with
respect to x and apply (3.2.2) to get

Vr(z,t) = Pp(m, t) + R(d). (3.4.17)

From the expansions (3.4.6) and (3.4.7),

[pu](z,t) = V(m,t) + d(z,t)V (7, t) + R(d?), (3.4.18)

where
V(m,t) := [npu](m,t), (3.4.19)
Vi(m,t) := [pol](r, t) + [ntv](x, t). (3.4.20)

We differentiate both sides of (3.4.18) with respect to . Then by (3.2.2) and (3.4.17),

[V(pw)](z,t) = Va(z,t)VV (7, t) + Vd(x,t) @ V(7 t) + R(d)
= [PrVV](m,t) + [vr @ VY(7,t) + R(d).

From this formula and tr[vr ® V1] = vp - V1, the divergence of pu is
[div(pu))(z,t) = divpV (7, t) + [vr - V(7,t) + R(d).
Since v is of the form (3.4.8) and V' is given by (3.4.19),

divrV = divr [n(VFNVp + UT)] = Vp(nVﬁV) “ur + nVFNdinVp + divp (m}T)
= V¥ H + divp (v’

on St by (3.2.4) and (3.2.5). We also have
e - V() = ' Vi¥](m, 1)
by (3.4.14), (3.4.15), and (3.4.20). Therefore,
[div(pu))(z,t) = — [V Ha)(m, ) + [dive (no")](7,8) + [0 ViV (7, 8) + R(d).  (3.4.21)
Substituting (3.4.16) and (3.4.21) for (3.4.2), we obtain
o°n(m, t) — (Vi Hyl(m, 1) + [dive (")) (7, t) = R(d).
Here each term on the left-hand side is independent of d = d(z,t). Hence

o°n(n(z,t),t) — [Vi¥ Hn)(r (2, 1), 1) + [dive (no")](n (2, 1),1) = 0
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for all (z,t) € Q..r, which shows that 7 and v = V¥ vp + o1 satisfy (3.4.9) on S7.
Let us derive (3.4.10). We expand the pressure p(p) in d(z,t) as

p(p(x,t)) = p° (7, t) + d(x, t)p* (7, t) + R(d?), (x,t) € Q1. (3.4.22)
Then it follows form the expansions (3.4.6) and (3.4.22) that
P (n(z, 1), 1) = p(n(r(z, ), 1))
for all (z,t) € Q. 7, which implies that
Py, t) = p(n(y,1),  (y:t) € Sr. (3.4.23)
Moreover, differentiating (3.4.22) in x and applying (3.2.2) and (3.4.17) we get

Vp(p(z,t)) = Va(z, t) VP (m,t) + p'(x, t)Vd(z, t) + R(d)
= Vrp®(m,t) + [plvr](r, t) + R(d).

for (x,t) € Q- 7. We substitute this for (3.4.3) and apply (3.4.8). Then we have
— [T (7, t) — Vi urp] (7, t) + R(d) = Vrp°(m,t) + [pter](r, t) + R(d).

Since all terms except of R(d) are independent of d = d(z,t) and the vectors v? and Vrp°
are tangential to I'(t), it follows that

_[an] (ﬂ'(‘% t)? t) - VFPO(T"(xa t)7 t)? _[nVIN] (71'(.%', t)? t) = pl (71'(‘737 t)? t)

for all (z,t) € Q. 1. Therefore, we get

—["1(y,t) = Vep'(y, 1), (y,t) € S, (3.4.24)
Vi, t) =p'(y,1),  (y,1) € Sr. (3.4.25)
By (3.4.23) and (3.4.24) we conclude that n and v satisfy (3.4.10) on St. O

Remark 3.4.2. By the proof of Theorem 3.4.1 we observe that the transport equation
(3.3.5) on the moving surface I'(¢) can be derived as the limit of the transport equation
(3.3.2) in the moving thin domain Q(t) = Q.(¢) with the boundary condition (3.3.3) as ¢
goes to zero.

3.5 Energy law

The subject in this section is the energy law for nonlinear diffusion equations (3.4.2)—(3.4.4)
and (3.4.9)—(3.4.10). As in Section 3.4, the pressure p(p) is given by (3.4.1) with a given
function w(p).

Proposition 3.5.1. Assume that p and u satisfy (3.4.2)—(3.4.4). Then

d/ w(p)de = / plul? dzx / p(p)VE dH™ 1. (3.5.1)
dt Jo) Q(t) a(t)
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Proof. By the Reynolds transport theorem,
d
— w(p)dH" ! = / Oww(p) dx —i—/ w(p) VY aH™ L.
dt Jo) Q(t) o9(t)

Since dww(p) = w'(p)dip and the transport equation (3.4.2) is satisfied,

dw(p) = —w'(p)div(pu) = —div(w'(p)pu) + V' (p) - (pu).
Hence the divergence theorem and (3.4.4) yield

/ Oww(p) dz = —/ W (p)pVE dH L + V' (p) - (pu) dz.
Q) 20(t) Q)

Using this formula we get

A ) de = (o) - (o) dae — e o N
dt Jo (o) d /Q(t)v (p) - (pu)d /<99(t){ (p)p—w(p)}Vy dH" .

The energy law (3.5.1) follows from this equality, (3.4.1), and

e e ()

by (3.4.1) and (3.4.3). O

Proposition 3.5.2. Suppose that n and v of the form (3.4.8) satisfy (3.4.9) and (3.4.10).
Then

d
— w(n) dH™ 1 :—/ an\QdHnl—i—/ p()ViNH dH™ . (3.5.2)
dt Jre r() G
Proof. By the Leibniz formula [4, Lemma 2.2],
d

wn)dH" =1 —/ wn)ViNH dH™ 1,

dt I(t) I(t)

where
j / (0Pw(n) + dive (w(n)v?)} dHrL.
()

Since 0°w(n) = w'(n)0°n, the transport equation (3.4.9) implies that
0°w(n) = ' ({VN Hy — dive (no")} = o' (n) V¥ Hy + Vrw'(n) - (") — dive (' ()i0”).

Hence

= [ WV Hy+ Ve ) "} ane [ divel(wln) - o ) dHe
I(t) I'(t)

The second integral on the right-hand side vanishes by the Stokes formula and the fact that

vT is tangential and I'(t) has no boundary. Therefore,
d _ _ _
— | wydH = Ve (n) - (o) dHTT | {w () — w(n) VN H A
dt Jr) r(t) (t)
Applying
\Y%
'UT - _ Ff;(n) — _vrw/(n)’

which follows from (3.4.1) and (3.4.10), to the first term on the right-hand side and (3.4.1)
to the second term, we get the energy identity (3.5.2). O
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Next we derive the energy law (3.5.2) as a limit of the energy law (3.5.1) with the moving
thin domain Q(t) = Q.(t) when € goes to zero. As in Section 3.4, we expand p and u in
powers of the signed distance as (3.4.6) and (3.4.7) and determine an equality satisfied by 7
and v.

Theorem 3.5.3. Let p and u satisfy the energy law (3.5.1) in the moving thin domain
Q(t) = Qc(t) given by (3.4.5). Also, let n and v be the zeroth order terms in the expansions
(3.4.6) and (3.4.7) of p and u, respectively. Assume that v is of the form (3.4.8) with some
tangential velocity field vT on T'(t) and Darcy’s law (3.4.3) holds in Q.(t). Then n and v
satisfy the energy law (3.5.2).

We give change of variables formulas for integrals which we use in the proof of Theorem
3.5.3. For y € T'(t) and p € [—¢, ] we set

n—1
J(y,t,r) == {1 = resly, 1)}, (3.5.3)
=1

where K1(-,t), ..., kn—1(-,t) are the principal curvatures of I'(t). It is the Jacobian that
appears when we change variables of integrals over a tubular neighborhood {x € R" | —r <
d(z,t) <r} (r > 0)of I'(t) and a level-set surface {z € R" | d(z,t) = s} (s € R) in terms
of the normal coordinate system around I'(¢) (see [6, Section 14.6] for example). The first
formula in Lemma 3.5.4 is often called the co-area formula.

Lemma 3.5.4. For functions f on Q.(t) and g on 0Q.(t) we have
€
| t@do= [ [ form@oeanaaetey @5
Q. (t) T(t) J e
and

/ o(x) dH Y (z) = / 9y + evr(y, ) (. 1. €) dHL(y)
00 (t) r'(t)

4 / oy — evr(y, D) (0., —€) AHL(y). (3.5.5)
r(t)

Proof of Theorem 3.5.3. As in the proof of Theorem 3.4.1, we use the abbreviations (3.4.11)
and (3.4.12). Let us calculate each term of (3.5.1). We expand w(p) in powers of the signed
distance d(z,t) as

w(p(z, 1) = w(n(m, b)) +d(z, )’ (1,t) + R(d*),  (z,t) € Qe

Here the zeroth order term is w(n(m,t)) since the zeroth order term of p(x,t) is n(w,t). We
divide the integral of w(p) over Q.(t) as

/ w(p(z,t))de =1 + I + I,
Qe (t)

where

I = / wn(m, ) de, Ih:= / d(z, t)w' (7, t) dz, I := / R(d(x,t)?) da.
Q- (t) Q- (t) Q:(t)
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By the co-area formula (3.5.4) and the fact that J(y, ¢, r) is a polynomial in r with J(y,t,0) =
1 whose coefficients are polynomials in the principal curvatures, we have

I = /F(t) /ZW(n(y,t))J(yyt, r)dr dH" ! (y) =2€/ w(n(y, t)) dH 1 (y) + 2 f1(e, 1),

I(t)
where fi(e,t) is a polynomial in & with time-dependent coefficients. Therefore,

ﬂ — i n—1 2
=2 F(t)w(y,t)dH (y) + O(?). (3.5.6)

Similarly we have
>
I :/ / rw(y, 1) (y,t,r) dr dH" " (y) = £ fale, 1)
() J—e

with a polynomial fa(e,t) in € with time-dependent coefficients and thus

dly

o O(e?). (3.5.7)

We apply the Reynolds transport theorem to the time derivative of I3. Then, since the time
derivative of R(d(x,t)?) is R(d(z,t)), we have

E - . 2 OV (2 n—1(,
dt_/ge(t) R(d(z,1))d +/8M) R(d(z, )V (2, 1) dH"(2).

Since J(y,t,r) is bounded independently of €, the co-area formula (3.5.4) yields

/ Rd(x, 1)) dz — / "RV, 1) dr dH M () = O(ED).
Q:(1) () J—e

Moreover, applying (3.4.13) and (3.5.5) to the integral of R(d(x,t)?)VY (z,t) over 0Q.(t)
and observing that R(d(z,t)?) = R(c?) holds for z € 9Q.(t) we have

/ Rd(z, )WV (2, ) dH™ () = O(&2).
90 ()

Thus, we get the estimate

% — 0(2). (3.5.8)

Since the integral of w(p) over Q.(t) is the sum of I, I, and I3, it follows from (3.5.6),
(3.5.7), and (3.5.8) that
d

S oty dr = 22X [ by 1) dH1 () + O(2). (3.5.9)
Qc(t)

dt F(t)

Next we calculate the first term on the right-hand side of (3.5.1). From the expansions
(3.4.6) and (3.4.7), the product p|u|? is of the form

[olul?)(z,t) = [nlvP)(m, t) + R(d), (2,t) € Q=1
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Hence, by (3.5.4),

[ plPi@ide= [ [ {nloPi.0) + ROt dr air

v R (3.5.10)

=2 [ ol aH ) + O,
T(t)

Let us compute the last term on the right-hand side of (3.5.1). We expand the pressure p(p)
in d(z,t) as (3.4.22). Then, by the assumption that v is of the form (3.4.8) and Darcy’s law
(3.4.3) holds, we get (3.4.23) and (3.4.25) as in the proof of Theorem 3.4.1 and thus we can
write

p(ﬁ('% t)) = p(U(Wa t)) - d(l‘, t)[nVPN](ﬂ-v t) =+ R(d2)7 (I‘, t) € Qs,T-
Therefore, by (3.4.13) and (3.5.5),

z,t) dH" N (z) = J1 4 Jo + O(e?),

o))
o)
o

where

r( [p ){J(yat 5) J(y7ta _5)}dHn_1(y)a

)
Jo = —5/ VN Py, ) (y,t,€) + T (y, 8, —€)} dH" ().
(1)

By (3.5.3) and (3.2.6) we have

J(y,t,e) — J(y,t,—) = —2cH(y,t) + O(£?),
J(y,t,e) + J(y,t,—¢) =2+ O(e).

Hence it follows that

2 / (Vi H)(y, ) dH" () + O(=?),
r(t)

25/ IV )y, £) dH" () + O(e?)
r(t)

and the integral of p(p)V¥ over 0Q(t) becomes
[ bVl dn @) = -2 [ )V g an )
00 (t) I'(t)
22 [ VP a0 ) + 0. (3511)
T(t)
Finally, substituting (3.5. 9) (3.5.10), and (3.5.11) for (3.5.1), dividing both sides by 2e, and
observing that |v]? = [V¥|2 + |[vT|? we obtain

d

- w n—1 _ UTQ .
i | comm e == [ b P o

+ / (Vi H)(y £) dH™ () + O(e).
T(t)

In the above equality all terms except for O(e) are independent of €. Hence we conclude
that n and v satisfy the energy law (3.5.2). d



3. Energetic variational approach for nonlinear diffusion in moving thin domains 66

Remark 3.5.5 (A failure of a simple rescaling argument for a moving surface). It is possible
to derive the limit energy identity by a rescaling argument. However, derivation by a rescaling
argument is somewhat misleading. Let p and u satisfy the energy identity (3.5.1) in the
moving thin domain Q(¢) = Q.(t). We set

77(3/, ta T) = p(y + 5TVF(y7 t)a t)) U(y7 tv T) = U(y + 5TVF(y7 t)) t)

for (y,t) € St and r € (—1,1). Then by (3.4.13) and the integral transformation formulas
(3.5.4) and (3.5.5) we can write (3.5.1) in terms of n and v as

d 1 .
“at /F(t) /1 Wy, 7)) (y,er) dr dH" ™ (y)
1
S— /F(t) /_1[77|1;|2](y,r)J(y, er) dr dH"(y) — /F(t)p(n(y’ MV () I (y, &) dH" (1)
+/ p(n(y, —D)VN () J (y, —€) a1 (y). (3.5.12)
r()

Here we used the abbreviation (3.4.12) and suppressed the argument ¢ of functions.

In formal derivation of a thin width limit by a rescaling argument we usually assume that
rescaled functions are independent of the thin direction to get limit relations on a limit set.
However, making the assumption at an inappropriate point may result in a wrong limit. To
see this, let us assume that 1 and v are independent of the variable r in (3.5.12). Then since

J(y,e) — J(y,—e) = —2cH(y) + O(?)

by (3.5.3) and (3.2.6), it follows that

d n— _ n—
ey [ O ) = 2 [ el e w)

+%/ (V¥ H)(y) dH™ () + O(2).
T(t)

Dividing both sides by 2¢ and taking the principal term we obtain

d
/ w(n) dH" ! :—/ n]v|2d7-l”_1+/ p() VN H dH™ .
dt Jr (1) (1)

In this equality v should be of the form v = VFN vr + o7 with some tangential velocity field
vT, since it is the velocity of a substance on the moving surface I'(t) with normal velocity

VFN . Hence we get

d

— | wm)dH" =— /
it Ja (n)

(VN2 + [o7[2) di ! + / PV H
N0

()

which includes an additional term fp(t) n|Vi&¥|?2 dH"~! compared to the limit energy identity
(3.5.2). This improper term appears because we ignore the difference between p(n(y,t, 1))
and p(n(y,t,—1)) in (3.5.12) by assuming that 7 is independent of the variable r. Of course
it vanishes if the shape of the surface does not change, i.e. VFN = 0. This is the reason why
this simple rescaling argument is popular to derive a thin width limit problem in a formal
level when the limit set of a thin domain does not change its shape.
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Remark 3.5.6 (Corrected rescaling argument). To obtain the correct limit (3.5.2) we should
take into account the difference between p(n(y,t,1)) and p(n(y,t,—1)) in (3.5.12). Let us
rewrite the sum of the last two terms in the right-hand side of (3.5.12) into the sum of

h:—/ {p(1(5. 1)) — p(n(y, ~D))}V () dH (),
r(t)

L=¢ F(t){p(n(y, 1)) + p(n(y, —1))} Vi H](y) a1 (y),

and a residual term O(g?) and calculate them properly (here we again suppressed the argu-
ment ¢ of functions). For I, we merely assume that 7 is independent of r to get

b—%/ (Vi H) (y) M (y). (3.5.13)
r(t)

For a proper calculation of I; we need to impose Darcy’s law (3.4.3) in Q.(¢) and describe
it in terms of the rescaled functions. By the definition of 7,

plp(z)) = p(n(n(z),e 7 d(@))), @€ Q(t).
We differentiate both sides in  and use (3.2.2) and (3.4.17). Then
Vp(p(@)) = Vrp(n(m, e d)) + ™ drp(n(m, e d))vr(m) + Ofe),

where we abbreviate 7(z) and d(x) to 7 and d in the right-hand side. Substituting this for
(3.4.3) and taking the normal component of the resulting equation we obtain

Orp(n(y,m)) = —e[nv)(y, 7) - vr(y) + O(*) (3.5.14)
fory € I'(t) and r € (—1,1). We apply the mean value theorem and (3.5.14) to the difference
between p(n(y,1)) and p(n(y, —1)). Then

p(n(y, 1)) — p(n(y, 1)) = 20:p(n(y,0)) = —2e[nv](y,0) - vr(y) + O(?)

with some 6 = 0(y,t) € (—1,1). Hence I; is expressed as
f=2e [ e, 0)- )V ) 1)+ OC)
Now we assume that 1 and v are independent of the argument r. Then we have
f =2 | o -0V )) a1 (9) + O(E). (3.5.15)

We substitute (3.5.13) and (3.5.15) for (3.5.12), assume that the rescaled functions are con-
stant in the variable r for the left-hand side and the first term on the right-hand side, and
divide both sides by 2¢ after calculations. Then the principal term on the resulting equation
is

d n— n—
G| wmant = [P
T(t) I(t)

+/ n(u-up)VngH"1+/ p() VN H dH™ .
r(t) I(t)

Finally we suppose that v is of the form v = VFN vr 4+ vT with some tangential velocity
vT', which is natural since it is the velocity of a substance on the moving surface T'(t) with
normal velocity VFN as we mentioned in Remark 3.5.5. Then we obtain the proper limit
energy identity (3.5.2) from the above equality.
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3.6 Energetic variation for derivation of Darcy’s law

In this section we discuss the energetic variational approach [3,12,25] for nonlinear diffusion
equations in a moving domain and on a moving surface. For a general non-equilibrium
thermodynamic system, if the system is isothermal, then the combination of the first and
second laws of thermodynamics yields
iEtotal _ W _A
dt ’
where Ettl — I 4 F is the sum of the kinetic energy K and the Helmholtz free energy
F, A is the entropy production, and W is the rate of change of work done by the external
environment. If the system is closed, i.e. W = 0, we further get the energy dissipation law
iEtOtal = _9D
dt ’
where D = A/2 is sometimes called the energy dissipation. For a conservative system
(A = 0), the principle of least action (LAP) [1] states that the variation of the kinetic and
the free energies with respect to the flow map in Lagrangian coordinates yield the internal
force F; and the conservative force F.. Formally it can be written as

5</0T1Cdt> —/OT/(Fi-dx)d:rdt,
5(/0T.7-"dt> —/OT/(FC-éx)da:dt,

where J represents the procedure of variation. Sometimes such a calculation is also referred to
as the principle of virtual work. Based on the LAP, the equation of motion for a conservative
system is described by balance of forces:

F,=F,.

For a dissipative system, we use the maximum dissipation principle (MDP) [16,17] to the
dissipative force Fy: by taking the variation of the dissipation with respect to the velocity
in Eulerian coordinates, we have

5D:Fd-5u.

When all forces are derived, the equation of motion for a dissipative system is formulated as
balance of forces (Newton’s third law):

F, = F. + F.

Let us apply the above energetic variational framework to the energy laws (3.5.1) and (3.5.2).
For (3.5.1) we have

K =0, .7-":/ w(p)dz,
Q)
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Let z: ©(0) x [0,7] — R™ be the flow map of the velocity field u, i.e. for each ¢t € [0, 7] the
mapping z(-, t) is a diffeomorphism from ©(0) onto Q(t) and

z(X,0) = X, %x(X, t) =u(x(X,t),t), (X,t)eQ0)x(0,T).

0
We write F for the deformation matrix of x:
ox
F(X7t):87X(X7t)a (Xat)EQ(O)X (OaT)

The MDP gives the dissipative force

0D

Su =P (3.6.1)

On the other hand, the LAP shows that the conservative force is given by the gradient of
the pressure.

Lemma 3.6.1. Suppose that p and u satisfy the transport equation (3.3.2). Then

OF
- = .6.2
O nle) (362
where p(p) is given by (3.4.1).

Proof. Throughout the proof we use the notation
FAX 1) = f@(X,),),  (X,t) € Q0) x (0,7)

for a function f on Qp. Since the transport equation (3.3.2) is satisfied, the density p is
given by

p(a(X, 1), 1) = LX)

= Ttrx g K E0)x0.1) (3.6.3)

with the initial density pg and thus the free energy F(z) = F(x(-,t)) is of the form

_ o [ PoX) o
Fla) = /Q ) <det b t)) det F(X,t)dX, te (0,T). (3.6.4)

Let {z°}. be a family of flow maps and u® = 9z°/0t such that

z°(-,0) = x(-,0), 2°(-,T)==x(-,T) forall e,

xs('vt”&:o = .f(',i), us(.’ t)|8:0 = u('7t)7 %xg(‘vt) = w(a:(-,t),t)

e=0

with any given vector field w: Q7 — R". We write F* for the deformation matrix of z°.
Suppose that p® and u® satisfy the transport equation (3.3.2) with the same initial density
po. Then the relation (3.6.3) with p, z, and F replaced by p°, %, and F*© holds and by
(3.6.4) the free energy F with respect to the perturbed flow map 2 is given by

€y _ Po €
F(af) = /Q(O)w (det F) det F* dX. (3.6.5)
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Note that the argument ¢ € (0,7") is suppressed in the above equality. We differentiate
fOT F(zf) dt with respect to ¢ at € = 0. Since F¢|.—o = F and

dFe
de

0 dzf

_ 0 B owt
c—0 - 0X de

o 0X’

3

the derivative of the determinant of F'® with respect to € at ¢ = 0 is

d
— det F*
de ¢

F&
—tr <(F€)1dd6 > det F*©
e=0 e=0 (3.6.6)

:
— tr <F—1§)”() det F' = (div w)f det F,

where F~! and (F¢)~! are the inverse matrix of F' and F¢, respectively. We differentiate
the integrand of (3.6.5) at ¢ = 0 and apply (3.6.3), (3.6.6), and F¢|.—o = F' to obtain

a po N ()0 + (o) Y (div w)t
e (w <det FE) det F ) T {='(p")p* + w(p®) H(div w)* det F.
Therefore,
A ! oMot w( o) Y (div w)!
— [ F(z°)dt = {=W'(p")p* + w(p?) }(divw)* det F dX dt
de Jo e=0 0 JQ0)
T
:/ / {=d'(p)p + w(p)divw dz dt
o Jow
T
—/ / VW' (p)p — w(p)] - wdz dt
o Jow
and (3.6.2) follows. O

By (3.6.1), (3.6.2), and K = 0, the balance of forces

3K _oF 6D
ox  dx ou
is of the form

0= Vp(p) +pu, ie —pu=Vp(p),

which is exactly Darcy’s law in a moving domain. Combining this with the transport equation
(3.3.2), we obtain the nonlinear diffusion equations

Owp + div(pu) =0, —pu = Vp(p)

in the moving domain §(t), where p(p) is given by (3.4.1).
From the above discussion, we expect that the energetic variational approach for (3.5.2)
yields Darcy’ law (3.4.10) on a moving surface. For (3.5.2) we have

K =0, ]—":/ w(n)dH" 1,
I(t)

D—l/ nloT |2 dH" 1, W—/ p()HVE dH™ .
2 Jra) r(t)
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The variation of D with respect to the total velocity v = VFN v+ T gives

6D P
S0 = (3.6.7)

since vT' = Ppv. Let us apply the LAP to the free energy F.

Lemma 3.6.2. Suppose that n and v of the form (3.4.8) satisfy the transport equation
(3.3.5). Then
OF

LAt (3.65)

where p(n) is given by (3.4.1).

We localize integrals over I'(t) with a partition of unity of I'(¢) as in [14, Section 2.4]
and take the variation of F with respect to a flow map in “local Lagrangian coordinates.”
Let U be an open set in R*1. We call a mapping y: U x [0,T] — R™ the flow map of the
velocity v = Vpur + o7 in local Lagrangian coordinates if y(-,t): U — I'(t) is a smooth local
parametrization of I'(¢) for each ¢t € [0,7] and

aaty(Y, t)=v(yY,t),t), (Y,t)eU x (0,T). (3.6.9)

We consider a localized surface integral

y(Y,0) € I'(0),

Fly) = Fly(-1)) = / e (3.6.10)
y(U,t

and take its variation with respect to y. Let {y°}. be a family of flow maps in local Lagrangian
coordinates and v® = Jy® /0t such that

ys(_?o) = y('70)7 y€<'7T) = y(-,T) for all g,

d

Yo () e=0 = y(-, 1), (-, t)|e=0 = v(-, 1), £y5(-,t) (3.6.11)

e=0

with any given vector field w: Sy — R™ such that w(-,t) is tangential on T'(¢) for each
t € (0,T). For a function f on S7 we use the notation

FAY ) = Fly(Yot),0), (Y1) €U x (0,7). (3.6.12)
Lemma 3.6.3. Let g = (gij)i,; be a matriz given by

oy Oy .
- = =1,...,n—1 3.6.13
gz] 8]’1 8]}7 (2W) ) y ( )

and g° = (gfj)m be a matriz given as above with y replaced by y°. Then

d
—+/det g¢

e = (divrw)*y/det g. (3.6.14)

e=0

Proof. Since ¢°|.—o = ¢g and

£

d g __ £ —ldg
I det g° = tr ((g ) R

) det ¢°,
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where (¢°)~! is the inverse matrix of ¢°, we have
d 1 dg®
—+/det g¢ = —tr <glg
de =0 2 de
where ¢! = (¢%/); j is the inverse matrix of g. Moreover, since

(D o o 0 dy
—og \0Yi de 0Y; 09Y; 0Y; de

> Vdet g, (3.6.15)

e=0

_out oy | oy out
o 0Yi dY;  9Y; aY;

e=

1

for each 7,7 = 1,...,n — 1, where we used the notation (3.6.12), and g~ is symmetric,

n—1

_1dg°® . Owt oy y owt

¢ 199~ _ ij - it

r(g dz :0) Py <8Yi oy, "oy, oy
€ i,7=1

5 ol i dw? Jy d 4

= ijZ:1 g 8Y; aY ( IVF'U})

Substituting this for (3.6.15), we get (3.6.14). O

Proof of Lemma 3.6.2. We first express the free energy F in “local Lagrangian coordinates.”
Let U be an open set in R”~! and y: U x [0,7] — R™ be the flow map of the velocity
v = Vrup + 07T in local Lagrangian coordinates. Also, let g = (9i5)i,; be the matrix given by
(3.6.13). For every open subset U’ of U the integral

/ nmw&W%wz/ ) AetgVDdY  (U'(t) = y(U, 1))
U/ (t) !

is constant in ¢, since n and v satisfy the transport equation (3.3.5) and U’(t) moves with
velocity v. Hence for (Y,t) € U x (0,T") we have

n(y(Y,t),t)\/det g(Y,t) = n(y(Y,0),0)+/det g(Y,0) (3.6.16)

and the localized surface integral (3.6.10) is expressed as

ﬂmzﬁwmmxmm¢@wmww’
) Vdetg(Y,t)dY,

(3.6.17)

/Uw (x/detg(Yt

where 19(Y) is given by the right-hand side of (3.6.16).

Next we take a variation of F with respect to the flow map y. Let {y°}. be a family of
flow maps in local Lagrangian coordinates satisfying (3.6.11) with v® = 9y¢/dt. Also, let
g° = (gfj)i’j be given by (3.6.13) with y replaced by y°. Suppose that n° and v satisfy the
transport equation (3.3.5) and 7°|¢=0 = n|t=0 holds on y*(U,0) = y(U,0). Then the relation
(3.6.16) with n®, 3, and ¢° holds and by (3.6.17) the free energy F with respect to the
perturbed flow map ¥° is given by

f@ﬂzﬁw<(mg>¢%de
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Here the the argument ¢ € (0,7') is suppressed. Note that the right-hand side of (3.6.16)
with 7, ¥°, and ¢° is equal to 79(Y") since 7°|i=0 = 1]i=0, ¥°|t=0 = Ylt=0, and ¢°|t=0 = g|i=o0-
We differentiate the integrand of the right-hand side with respect to € at ¢ = 0. Then by
(3.6.14), (3.6.17), and ¢°|.—o = g we get

iz ( (o ) v397)

Here we used the notation (3.6.12). Hence
d T T
dg/ F(y°)dt —/ /{—w’(nﬁ)nﬂ+w(nﬁ)}(divo)”\/detngdt
0 o Ju

T
=[]+ wm)divew aie
o Juw

= {—w/ (17" + w(n®) }divrw)*/det g.

e=0

e=0

T
—// Vrlw'(n)n — w(n)] - wdH" " dt,
o Juwe

where U(t) = y(U, t) and the last equality follows from the Stokes theorem and the fact that
the vector field w is tangential on I'(¢). (Note that we may assume that «'(n)n — w(n) has a
compact support in U(t) since we localize the surface integral by using a partition of unity

of T'(t).) Since w is an arbitrary tangential vector field on I'(¢), we conclude from the above
equality that (3.6.8) holds. O

By (3.6.7), (3.6.8), and K = 0, the balance of forces
oK 6F oD

5y "oy e
is of the form
0=Vrp(n) +m’, ie. —n’ =Vrp(n),

which is Darcy’s law on a moving surface as we expected. Finally, combining this with the
transport equation (3.3.5) we obtain the nonlinear diffusion equations

0°n — VFNHn + divr(an) =0, —m)T = Vrp(n)

on the moving surface I'(t), where p(n) is given by (3.4.1).
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Chapter 4

On singular limit equations for
incompressible fluids in moving
thin domains

4.1 Introduction

Fluid flows in a thin domain appear in many problems of natural sciences, e.g. ocean
dynamics, geophysical fluid dynamics, and fluid flows in cell membranes. In the study of the
incompressible Navier—Stokes equations in a three-dimensional thin domain mathematical
researchers are mainly interested in global existence of a strong solution for large data since
a three-dimensional thin domain with sufficiently small width can be considered “almost
two-dimensional.” It is also important to investigate the behavior of a solution as the width
of a thin domain goes to zero. We may naturally ask whether we can derive limit equations
as a thin domain degenerates into a two-dimensional set and compare properties of solutions
to the original three-dimensional equations and the corresponding two-dimensional limit
equations. There are several works studying such problems with a three-dimensional flat
thin domain [15,16,29,33] of the form

Q. ={x=(a,23) € R3 |2 € w, ego(z’) < 3 <egqi(2))}

for small € > 0, where w is a two-dimensional domain and gy and ¢; are functions on w,
and a three-dimensional thin spherical domain [34] which is a region between two concentric
spheres of near radii. (We also refer to [28] for the strategy of analysis of the Euler equations
in a flat and spherical thin domain and its limit equations.) However, mathematical studies
of an incompressible fluid in a thin domain have not been done in the case where a thin
domain and its limit set have more complicated geometric structures. (See [27] for the
mathematical analysis of a reaction-diffusion equation in a thin domain degenerating into a
lower dimensional manifold.)

In this chapter we are concerned with the incompressible Euler and Navier—Stokes equa-
tions in a three-dimensional thin domain that moves in time. The purpose of this chapter is
to give a heuristic derivation of singular limits of these equations as a moving thin domain
degenerates into a two-dimensional moving closed surface. We also investigate relations be-
tween the energy structures of the incompressible fluid systems in a moving thin domain and
the corresponding limit systems on a moving closed surface.

Here let us explain our results on limit equations and strategy to derive them. Let I'(¢) be
an evolving closed surface in R? and V' (-,t) and v(-,t) its (scalar) outward normal velocity
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and unit outward normal vector field, respectively. We assume that I'(t) does not change its
topology. Also, let €.(¢) be a tubular neighborhood of I'(t) of radius ¢ in R? with sufficiently
small € > 0. We consider the Euler equations

Ou+ (u-V)u+Vp=0 in Qt),te(0,T), (4.1.1)
divu =0 in QHt),te(0,T), (4.1.2)
uw-ve=VN on 9Q.(t), te(0,T) (4.1.3)

and the Navier—Stokes equations with (perfect slip) Navier boundary condition

O+ (u-V)u+Vp=poAu in Q. (t), t € (0,T), (4.1.4)
dive =0 in Q.(t), t € (0,T), (4.1.5)

u-ve=VN on 00(t),te(0,T), (4.1.6)

[D(u)ve|tan = 0 on 00(t),te (0,T). (4.1.7)

Here v and V¥ denote the unit outward normal vector field and the (scaler) outward normal
velocity of 9Q.(t). Also, pg > 0 is the viscosity coefficient and D(u) := {Vu + (Vu)T}/2 is
the strain rate tensor with (Vu)? the transpose of the gradient matrix Vu. We suppose that
Q. (t) admits the normal coordinate system z = 7(z,t) + d(x,t)v(n(z,t),t) for z € Q(t),
where 7(-,t) is the closest point mapping onto I'(t) and d(-,t) is the signed distance from
I'(t) increasing in the direction of v(-,t). Based on the normal coordinates, we expand the
velocity field u(x,t) on Q. (t) in powers of the signed distance d(z,t) as

u(z,t) = v(n(x,t),t) + d(z, )t (r(z,t),t) + -, x € Qe(t) (4.1.8)

and the pressure p(z,t) similarly. We substitute them for the equations in Q.(¢) and de-
termine equations on I'(¢) that the zeroth order term v in (4.1.8) satisfies. Then we obtain
limit equations of the Euler equations (4.1.1)—(4.1.3):

Xv+Vrqg+qg'v=0 on TI(t),tec(0,T), (4.1.9)
divrv =0 on I'(t),te(0,7), (4.1.10)
v-r=VE on I(t),te(0,T). (4.1.11)

Here ) = 0;+wv-V is the material derivative along the velocity field v and V and divr denote
the tangential gradient and the surface divergence on I'(t), respectively (see Section 4.2 for
their definitions). Similarly, we get limit equations of the Navier—Stokes equations (4.1.4)—
(4.1.7):

% + Vrq + ¢'v = 2uodivp (Pr D' (v)Pr) on T'(t), t € (0,T), (4.1.12)
divrv =0 on I'(t),te(0,T), (4.1.13)
v-v =V on TI'(t),te(0,T). (4.1.14)

Here D'"(v) := {Vrv + (Vrv)'}/2 and Pr is the orthogonal projection onto the tangent
plane of I'(t). Note that if we take the average of (4.1.8) in the normal direction of I'(¢) then

— / u(y + pv(y,t),t)dp = v(y,t) + (higher order terms in ¢), y € T'(¢).

Therefore, formally speaking, our limit equations are equations satisfied by the limit of the
average in the thin direction of a solution to the original Fuler or Navier—Stokes equations in
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Q.(t) as € goes to zero. (The above method is also applied in [23] to derive a limit equation
of a nonlinear diffusion equation in a moving thin domain.)

In the equations (4.1.9) and (4.1.12) the scalar function ¢!, which comes from the normal
derivative of the bulk pressure p (see the expansion (4.3.5) of p and (4.3.17) in the proof of
Theorem 4.3.1), is determined by the normal component of (4.1.9) and (4.1.12). Therefore,
the limit Euler system (4.1.9)—(4.1.11) is intrinsically equivalent to

Protv+Vrq=0, divpo=0, v-v="V (4.1.15)
and the limit Navier—Stokes system (4.1.12)—(4.1.14) is equivalent to
Pp&jv + qu = 2/10PFdiVF(PFDmn(U)PF), diVFU = 07 vV = VI{V (4.1.16)

We note that these tangential surface fluid systems were also derived in [17, 18] recently.
The derivation of the Navier-Stokes equations on a moving surface in [17] is based on local
conservation laws of mass and linear momentum for a surface fluid. On the other hand,
the authors of [18] applied a global energetic variational approach to derive several kinds of
equations for an incompressible fluid on an evolving surface.

The viscous term 2ugdivy (PrD" " (v)Pr) in the momentum equation (4.1.12) of the limit
Navier—Stokes system appears in the Boussinesq—Scriven surface fluid model which was first
described by Boussinesq [7] and generalized by Scriven [30] to an arbitrary curved moving
surface (see also [1, Chapter 10] for derivation of the Boussinesq—Scriven surface fluid model).
In [4] the Boussinesq—Scriven surface fluid model was considered to formulate a continuum
model for fluid membranes in a bulk fluid, which contains equations for a viscous fluid on a
curved moving surface, and study the effect of membrane viscosity in the dynamics of fluid
membranes. It was also studied in the context of two-phase flows [5,6,25] in which equations
for a surface fluid are considered as the boundary condition on a fluid interface.

Since we consider an incompressible fluid on a moving surface or in its tubular neighbor-
hood, some constraints on the motion of the surface are necessary. For the existence of a
surface incompressible fluid it is required that the area of the moving surface is preserved in
time. To consider a bulk incompressible fluid in the e-tubular neighborhood of the moving
surface for all € > 0 sufficiently small, we need another constraint on the moving surface
besides the area preserving condition. However, it is automatically satisfied by the Gauss—
Bonnet theorem and the assumption that the moving surface does not change its topology.
See Remark 4.3.3 for details.

When the surface does not move in time, our tangential limit system (4.1.15) of the Euler
equations is the same as the Euler system on a fixed manifold derived by Arnol’d [2,3], who
applied the Lie group of diffeomorphisms of a manifold (see also Ebin and Marsden [12]).
Also, for a stationary surface our tangential limit system (4.1.16) of the Navier—Stokes equa-
tions is the same as the Navier—Stokes system on a manifold derived by Taylor [31], although
the authors of [18] claim that (4.1.16) is different from Taylor’s system (see Remark 4.4.3).
For detailed comparison of our limit systems and the systems derived in previous works see
Remarks 4.3.2 and 4.4.2. We further note that the function ¢! in the limit momentum equa-
tions (4.1.9) and (4.1.12), which is determined by the normal component of these equations,
does not vanish even if the surface is stationary. See Remarks 4.3.2 and 4.4.2 for details.

Finally we note that our results are based on formal calculations and thus mathemat-
ical justification is required. There are a few works that present rigorous derivation of
limit equations in the case where a limit set is a hypersurface or a manifold. Temam and
Ziane [34] derived limit equations for the Navier—Stokes equations in a thin spherical domain
by characterizing the thin width limit of a solution to the original equations as a solution
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to the limit equations. In [27], Prizzi, Rinaldi, and Rybakowski compared the dynamics
of a reaction-diffusion equation in a thin domain and that of a limit equation when a thin
domain degenerates into a lower dimensional manifold. Recently, the present author derived
a limit equation of the heat equation in a moving thin domain shrinking to a moving closed
hypersurface by characterization of the thin width limit of a solution [22]. Although there
are several tools and methods introduced in the above papers, it seems that mathematical
justification of our results is difficult because of the nonlinearity of the equations and the
evolution of the shape of the limit surface, and that we need some new techniques.

This chapter is organized as follows. In Section 4.2 we give notations and formulas on
quantities related to a moving surface and a moving thin domain. In Sections 4.3 and 4.4 we
derive the limit equations of the Euler and Navier—Stokes equations in a moving thin domain,
respectively. In Section 4.5 we derive the energy identities of the Euler and Navier—Stokes
equations and the corresponding limit equations and investigate relations between them. In
Appendices 4.A and 4.B we give proofs of lemmas in Section 4.2 involving the differential
geometry of a surface embedded in the Euclidean space.

4.2 Preliminaries

We fix notations on various quantities of a moving surface and give formulas on them. All
functions appearing in this section are assumed to be sufficiently smooth.

Lemmas in this section are proved by straightforward calculations. To avoid making
this section too long we give proofs of them in Appendix 4.A, except for the proofs of
Lemmas 4.2.4 and 4.2.5. Also, a proof of the formula (4.2.15) in Lemma 4.2.4 is given in
Appendix 4.B. Although we are concerned with a two-dimensional surface in this chapter,
all notations and formulas in this section apply to hypersurfaces of any dimension with easy
modifications.

4.2.1 Moving surfaces and moving thin domains

Let I'(t), t € [0,7] be a two-dimensional closed (i.e. compact and without boundary),
connected, and oriented moving surface in R3. The unit outward normal vector and the
(scalar) outward normal velocity of I'(t) are denoted by v(-,t) and Vi (-,t), respectively.
Also, let St := g0, T'(t) x {t} be a space-time hypersurface associated with I'(¢). We
assume that I'(¢) is smooth at each ¢ € [0,7] and moves smoothly in time. In particular,
I'(t) does not change its topology. By the smoothness assumption on I'(¢), the (outward)
principal curvatures k1(-,t) and ka(-,t) of T'(t) are bounded uniformly with respect to t.
Hence there is a tubular neighborhood

N(t) := {z € R®| dist(z,T'(t)) < &}
of radius § > 0 independent of ¢ that admits the normal coordinate system
x=m(x,t) +d(x, t)v(n(x,t),t), =€ N(t), (4.2.1)

where 7(+, t) is the closest point mapping onto I'(¢) and d(-,t) is the signed distance function
from I'(t) (see e.g. [11, Lemma 2.8]). Moreover, the mapping 7 and the signed distance d are
smooth in the closure (in R?*) of a space-time noncylindrical domain Ny := Useo,r) N (t) %
{t}. We assume that d(-,t) increases in the direction of v(-,¢). Therefore,

Vd(z,t) = v(m(z,t),t), (x,t) € Np, (4.2.2)
od(y,t) = V& (y,1), (y,t) € Sr. (4.2.3)
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Moreover, differentiating both sides of
d(z,t) ={z —nm(z,t)} - Vd(z,t), d(m(x,t),t)=0
with respect to ¢ and using (4.2.2) and (4.2.3) we easily get
Oyd(x,t) = Oyd(m(z,t),t) = —Vi¥ (n(x,t),t), (x,t) € Ny. (4.2.4)
For a sufficiently small € > 0 we define a moving thin domain Q. (¢) in R? as
Q.(t) := {x € R? | dist(z,T'(t)) < €}

and a space-time noncylindrical domain Q. 7 and its lateral boundary 0,Q. 1 as

Qe,T = U Qe(t) X {t}7 OZQE,T = U an—:(t) X {t}

te(0,T) t€(0,7)

Since () is a tubular neighborhood of I'(¢), the unit outward normal vector ve(-,t) and
the outward normal velocity V2V(-,t) of its boundary are given by

_Jv(r(z,t),t) i d(z,t) =,
ve(x,t) = {_V(W(x D1) i dt) = . (4.2.5)
Ny YV (e t),t) i d(xt) =«
Vel t) = { VN (r(z,t),t) if d(z,t) = —e. (4.2.6)

4.2.2 Notations and formulas for quantities on fixed surfaces

In this subsection we fix and suppress the time ¢ € [0,7]. Hence I" denotes a two-dimensional
closed, connected, oriented and smooth surface in R3. Let us give notations and formulas
for several quantities on the fixed surface I'. (In the sequel we use the same notations given
in this subsection for the moving surface I'(¢).) Let Pr be the orthogonal projection onto
the tangent plane of I' at each point on I' given by

Pr(y) =13 —v(y)@v(y), yerT,

where I3 is the identity matrix of three dimension and a ® b for a,b € R? denotes the tensor
product of a and b given by

a1b1 a1b2 a1b3
a®b:=|asby agby agbs |, a= (al,ag,ag), b= (bl,bg,bg).
a3b1 a3b2 a3b3

For a function f on I' we define its tangential gradient Vrf as
Vrfly) == Pr(y)Vi(y), yel.

Here f is an extension of f to IV satisfying f Ir = f. Note that the tangential gradient of f
is independent of the choice of its extension (see e.g. [11, Lemma 2.4]). Also, it is easy to
see that Vrf-v =0 and PrVrf = Vrf hold on I'. The tangential derivative operators are
given by

" f(y) Z{% W} fly), i=1,2,3
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so that Vp = (90", 9ken, 94™), which are again independent of the choice of an extension f
of f. For example, we may take the constant extension in the normal direction of I' given
by f(x) := f(n(x)) for x € N.

For vector fields F' = (Fy, Fy, F3) on N and G = (G1,G2,G3) on I', we define the gradient
matrix and the divergence of F' as

OF1 OiFy OF3 3
VE:=|0F 0,F, &F|, divF:=> 0F,
83F1 83F2 83F3 i=1

and the tangential gradient matrix and the surface divergence of G as

8{‘1”6!1 8{“”672 8§QRG3 3
VrG =[0Gy 0Gy OnGs |, diveG =) 0i"G;.
8§anG1 8§“"G2 8§anG3 i=1

These notations are consistent with the formula VG = PFVGY on I', where G is an arbitrary
extension of G to N with éh" = G. For a function f on I' we denote by V%f the tangential
Hessian matrix of f whose (i, j)-entry is given by 8f“”6§‘mf (1,7 =1,2,3). Let M bea3x3
matrix-valued function defined on IV or on I' of the form
My Myy Mis
M = (M;j;)i; = | M1 My Mo
Mz Msy Mss

We define the divergence div M on N or the surface divergence divpM on I' as a vector field
whose j-th component is given by

3 3
[diV M]j = Z(%Mw or [diVFM]j = Z@f“”sz, ] = 1,2,3.
=1 =1

Finally we set

3
A= —VFI/ = (—(%aan)Z"j, AF = dinVr = Z(af‘m)z,
i=1
H = —divrv = tr[A], K := Kk1ke
and call them the Weingarten map of T', the Laplace—Beltrami operator on I', (twice) the
mean curvature of I', and the Gaussian curvature of I, respectively. The usual Laplacian A

and the Laplace—Beltrami operator Ar acting on vector fields are understood to be compo-
nentwise operators.

Lemma 4.2.1. For ally € I' we have

A(y)v(y) =0, (4.2.7)
Ay)Pr(y) = Pr(y)Aly) = Ay), (4.2.8)
Aly) = =V2d(y). (4.2.9)

By (4.2.7) we see that A has the eigenvalue 0. Note that the other eigenvalues of A are
k1 and k2 (see e.g. [19, Section VIL.5]) and thus

H(y) = ki(y) + r2(y), yeTl. (4.2.10)
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Also, A is symmetric (i.e. 9!""v; = 8;1“”%) and H = —Ad holds on I" by (4.2.9).
The tangential derivatives 9/°" (i = 1,2, 3) are noncommutative in general. An exchange
formula for them includes the unit outward normal of the surface.

Lemma 4.2.2. Let f be a function on I'. For each i,j = 1,2,3 we have
85“"8;-“"]” - a;anafa"f = [AVr fliv; — [AVr £,V (4.2.11)
Here [AVr f]; denotes the i-th component of the vector field ANV f.

The next formula is a consequence of (4.2.11), which we use in Section 4.4 to express
a viscous term of limit equations of the Navier—Stokes equations in terms of the Laplace—
Beltrami operator. For a vector field v on I' we set

_ Vv + (VFU)T
A S

The matrices D'"(v) and PrD'"(v)Pr are called a tangential strain rate and a projected
strain rate in [18], respectively.

D™ (v) (4.2.12)

Lemma 4.2.3. Let v be a (not necessarily tangential) vector field on I'. Then
2divy (PrD""(v) Pr) = 2tr[AVro]v + Pr(Arv) + Vr(divre) + H(Vro)y (4.2.13)
holds on T' (note that (Vrv)v = Pr(Vrov)v on the right-hand side is tangential).

To compare our limit systems with the incompressible fluid systems on a fixed manifold
derived by Arnol'd [2,3] and Taylor [31] we need formulas on the Levi-Civita connection.
Let V be the Levi-Civita connection on I' with respect to the metric on I' induced by the
Euclidean metric of R? (see e.g. [9, Section 2.3] and [24, Sections 3.3.1 and 4.1.2] for the
definition of the Levi-Civita connection). Hence for tangential vector fields X and Y on I’
the covariant derivative of X along Y is denoted by Vy X, which is again a tangential vector
field on I'. The Levi-Civita connection is considered as a mapping

V:C®(IT) —» C®(T' T ®TT), X — VX,

where TT and T*I" are the tangent and cotangent bundle of I', respectively, and for a vector
bundle E over I' we denote by C*°(F) the set of all smooth sections of E. (Hence C*°(TT)
denotes the set of all smooth tangential vector fields on I'. We refer to [20, Chapter 10] for
the definitions of a vector bundle and a section.) Also, for a tangential vector field X on I'
the notation VX stands for a mapping Y + Vy X from C°°(TT) into itself. Then we write
V' C®(T*TQTT) — C°°(TT) for the formal adjoint operator of V (see [24, Section 10.1.3])
and set Ap := —V V. The operator Ag: C®(TT) — C°°(TT) is called the Bochner
Laplacian (note that there is another definition of the Bochner Laplacian where the sign is
taken opposite).

Lemma 4.2.4. Let X and Y are tangential vector fields on I'. Then
(Y-V)X = VyX + (AX - Y)p, (4.2.14)
ApX = Pp(ArX) + A2X (4.2.15)

hold on T. Here X is an extension of X to N with )Af]p =X and (Y - V))A(i denotes the
directional derivative of X along Y in R3, i.e.

3 3 3
¥V = (z T I A zmﬁcg> |
=1 =1 =1

Also, the left-hand side of (4.2.14) is independent of the choice of the extension X.
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The formula (4.2.14) is well-known as the Gauss formula (see e.g. [9, Section 4.2] and [19,
Section VII.3]) and we omit its proof. Note that (Y - V)X = (Y - Vp)X on I since Y is
tangential. Hence the Gauss formula (4.2.14) is also expressed as

(Y -Vp)X =VyX+(AX-Y)yr on T (4.2.16)

for tangential vector fields X and Y on I'. We also call (4.2.16) the Gauss formula.

A proof of the formula (4.2.15) is given in Appendix 4.B. Note that (4.2.15) is useful
by itself since it gives a global expression under the fixed Cartesian coordinate system of
the Bochner Laplacian acting on tangential vector fields on I', which is originally defined
intrinsically and represented under only local coordinate systems.

Combining Lemmas 4.2.3 and 4.2.4 we get the following formula on the surface divergence
of the projected strain rate, which is crucial for comparison of our limit Navier—Stokes
system and the incompressible viscous fluid system on a manifold derived by Taylor [31] (see
Remark 4.4.2).

Lemma 4.2.5. For a tangential vector field v on I' satisfying divprv = 0 we have

2 Prdivp (Pr D" (v)Pr) = Agpv+ Kv on T, (4.2.17)
Proof. Let v be a tangential vector field on I satisfying divrv = 0. Then

(Vro)v =Vr(v-v) — (Vrv)v = Av
by v-v =0 and —Vrrv = A. Applying this and
Pr(tr[AVrolv) = tr[AVro|Prv =0,  divro =0
to the formula (4.2.13), and observing that (Vrv)r = Av is tangential, we have
2Prdivy (PrD""(v)Pr) = Pr(Arv) + H Av. (4.2.18)

Moreover, since A is symmetric and has the eigenvalues 0, k1, and ko, where the eigenvector
corresponding to the eigenvalue 0 is v (see Lemma 4.2.1), for each y € I' we can take an
orthonormal basis {e1, ea} of the tangent plane of " at y such that Ae; = k;e;, i = 1,2. (The
vectors e; and eg are called the principal directions at y. See e.g. [19, Section VIL5] for
details.) Expressing the tangential vector v as a linear combination of e; and ey and using
H = k1 + ke and K = k1Ko we easily obtain HAv = Kv + A?v. Applying this and (4.2.15)
to (4.2.18) we obtain (4.2.17). O

Besides derivation of limit equations, we are also interested in thin width limits of energy
identities for the Euler and Navier—Stokes equations. To derive limit energy identities we give
change of variables formulas for integrals over level-set surfaces and tubular neighborhoods
of I'. For y € I' and p € [—¢, €] we set

J(y,p) = {1 — pr1 (y) {1 — pra(y)} = 1 — pH(y) + p° K (y). (4.2.19)

Here the second equality follows from the definition of the Gaussian curvature and (4.2.10).
The function J is the Jacobian appearing in the following change of variables formulas
(see [13, Section 14.6] or Appendix 4.A).
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Lemma 4.2.6. For a function f on Q. we have

flaydo = | " Fyt or() T (9. p) dp dH2(y) (4.2.20)
Qe I''J—e

and

f () dH2 (x) = / F(y + ev(y)) T (g, €) dH2(y)
r

0

T / fly — ev(y) Iy, —e) dH2(y). (4.2.21)
T

Here H? denotes the two-dimensional Hausdorff measure.

When we use Lemma 4.2.6 with the moving surface I'(t) we write J(y, t, p) for the Jaco-
bian given by (4.2.19).

4.2.3 Material derivatives and differentiation of composite functions with
the closest point mapping

Now let us return to the moving surface I'(¢). We first give a material time derivative of a
function on Sp. Let v be a vector field on Sp with v - v = VFN. Suppose that there exists
the flow map ®, of v, i.e. ®,(-,¢): ['(0) — R3 is a diffeomorphism onto its range for each
t €[0,7] and

do,

3,(Y,0) =Y,
(Y,0) =

(Y, ) = v(®,(Y, ), t) for (Y,t)€T(0)x (0,T).

Note that ®,(-,¢) is a diffecomorphism from I'(0) onto ®,(I'(0),¢) = I'(¢) for each t € [0, 7]
since the normal component of v is equal to the outward normal velocity VFN of the moving
surface I'(t), which completely determines the change of the shape of I'(t). We define the
material derivative of a function f on Sp along the velocity field v as

d

ij(cI)v(Y,t),t) = %

(f(@u(Y51),1)), (Y.t) € D(0) x (0, 7).
By the chain rule of differentiation it is also represented as

where f is an arbitrary extension of f to Ny satisfying f ls; = f. We write 0° for 93 with
v = VFN v and call it the normal time derivative. Note that the normal time derivative of a
function f on St is equal to the time derivative of its constant extension f in the normal
direction, i.e.

O Fyt) = 0T, 1) = 5 (Fr(s).0), (5,1) € 5.

Also, for a tangential vector field v* on Sp the material derivative of f along the velocity
field of the form v = VFN v+ T is expressed as

Nf=0f+vl -Vrf on S (4.2.23)



4. Singular limit equations for incompressible fluids in moving thin domains 84

by (4.2.22) and vT - Vf = o7 - Vpf on St since v” is tangential. See also [8, Section 3] for
the time derivative of functions on a moving surface.

In the following sections we frequently differentiate the composition of a function on I'(t)
and the closest point mapping 7 (-,¢). To avoid repetition of the same calculations we give
several formulas on derivatives of composite functions with .

Let f(z,t) be a function on Q. r. Based on the normal coordinate system x = m(x,t) +
d(z,t)v(m(z,t),t) for x € Q(t), we expand f(z,t) in powers of the signed distance d(x,t):

f(z,t) = g(n(x,t),t) + d(z, ) g (7 (x,t),t) + - .

Here g, g', and the coefficients of higher order terms in d(x,t) are considered as functions
on St. Also, for k € N we write R(d(z,t)¥) for the terms of order higher than k — 1 with
respect to small d(z,t), i.e.

f(x7 t) = g(T('(LU, t)a t) +ooet+ d(LU, t)kilgkil(ﬂ-(xa t)) t) + R(d(LU, t)k)’

R(d(z,t)F) = d(z,t)*¢"(r(,1), 1) + d(z, )" L gF (w2, £),£) + - - - (4.2.24)

In the sequel, we also use Landau’s symbol O(g¥) (as ¢ — 0) for a nonnegative integer
k,ie. O(e¥) is a quantity satisfying |O(e¥)| < Ce* for small € > 0 with a constant C' > 0
independent of £. Note that, contrary to O(e"), we may differentiate R(d(z,t)¥) with respect
to x and ¢ since it just stands for the higher order terms in the expansion (4.2.24) with respect
to small d(x,t), and the I-th order derivative of R(d(z,t)*) is R(d(z,t)*~!) for I < k. Also,
R(d(x,t)*) = O(e¥) for (z,t) € Qe and k € N by |d(x,t)| < € on Q.. We use the same
notations on the expansion (4.2.24) for functions on €.(t) with each fixed ¢ € [0, 7.

Lemma 4.2.7. Let f be a scalar- or vector-valued function on Sp. The derivatives of the
composite function f(mw(x,t),t) with respect to = and t are of the form

V(f(m,t)) = Vrf(m,t) + d(z, t)[AVr (7, t) + R(d(z,1)?), (4.2.25)
O (f(m,t)) = 0°f(m,t) + d(z, )[(VrVE - Vi) f](7, t) + R(d(z,1)?) (4.2.26)
for (x,t) € Qc . Here we abbreviate m(z,t) to 7.

We also give an expansion formula for the divergence of a matrix-valued function which
we need to derive limit equations of the Navier—Stokes equations.

Lemma 4.2.8. Let S and S* be 3 x 3 matriz-valued functions on T'(t) with each fired
t € (0,T). For xz € Q(t) we set

D(z) = S(n(x,t)) + d(z,t)S* (n(x,t)) + R(d(z,t)?).
Then we have
div D(z) = divrS(n(z, ) + (S (n(x, 1)) v(m, 1) + R(d(x, t)). (4.2.27)
for x € Q.(t). Here (SY)T denotes the transpose of the matriz S*.

4.3 Limit equations of the Euler equations

We consider the incompressible Euler equations in Q. (t):
ou+ (u-V)u+Vp=0 in Q.r, (4.3.1)
divu =0 in Qcr, (4.3.2)
U- Ve = V€N on 0pQe 1. (4.3.3)
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Here u = (u1,ug,us) is the velocity of a bulk fluid and p is the pressure. The goal of this
section is to derive limit equations of the Euler equations as € goes to zero. According to
the normal coordinate system (4.2.1), we expand u and p with respect to the signed distance
d(z,t) as

u(z,t) = v(n(x,t),t) + d(z, t)vl (n(z,t),t) + R(d(z,t)?), (4.3.4)
p(x,t) = q(m(z,t),t) +d(x, t)q" (7(x, ), t) + R(d(z,1)?). (4.3.5)

Here we used the notation (4.2.24). The limit equations are given as the principal term in
the expansion with respect to d(x,t) of the Euler equations in Q.(t).

Theorem 4.3.1. Let u and p satisfy the FEuler equations (4.3.1)—(4.3.3) in the moving thin
domain Q(t). Then the normal component of the zeroth order term v in the expansion
(4.3.4) is equal to the outward normal velocity of the moving surface I'(t), i.e. v-v = V.
Moreover, v and the zeroth order term q and the first order term q' in the expansion (4.3.5)
satisfy

v+Vrqg+q'v=0 on Sr, (4.3.6)
divrv =0 on Sr. (4.3.7)

Before starting to prove Theorem 4.3.1 we give remarks on the limit equations (4.3.6)—
(4.3.7) and necessary conditions on the motion of I'(¢) for the existence of incompressible
fluids in I'(¢) and Q.(¢) for all € > 0.

Remark 4.3.2. Let us explain how the limit equations (4.3.6) and (4.3.7) determine v,
g, and ¢'. As stated in Theorem 4.3.1, the normal component of v is equal to the outward
normal velocity of the moving surface. The tangential component of v and the scalar function
q are determined by the equations

Praz’l) +Vrq=0, divpv=0 on Sp. (4.3.8)

Finally the scalar function ¢! is given just by the inner product of (4.3.6) and v:

¢' =—-9%-v on Sr. (4.3.9)
Note that ¢' comes from the normal derivative of the pressure p of the bulk fluid in the
moving thin domain (see (4.3.17) below).

The system (4.3.8) is the same as the incompressible Euler system (II) in [18] with the
constant density. When the surface I'(¢) = T is stationary, the limit velocity v is tangential
(v-v=V =0) and Pr{(v-V)v} = V,v holds on T' by the Gauss formula (4.2.14), where

Vv is the covariant derivative. From this and the fact that Pr is independent of the time
it follows that

Profv = Prow + Pr{(v-V)v} =0w +V,w on T. (4.3.10)
Hence the tangential limit system (4.3.8) becomes
0w+ Vyw+Vrg=0, diviv=0 on I x(0,7),

which is the same as the Euler system on a manifold derived by Arnol’d [2,3] (see also Ebin
and Marsden [12]). Also, applying v - v = 0, (4.2.14), and the fact that v is independent of
time to (4.3.9) we obtain

¢t =-0-v=—-0(v-v)—{(v-V)v} v=—Av-v, (4.3.11)

which does not vanish in general even if the surface is stationary.
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Remark 4.3.3. For the existence of a surface incompressible fluid obeying (4.3.7) it is
required that the area of the moving surface I'(¢) is preserved in time. Indeed, by the
Leibniz formula (see [10, Lemma 2.2]) with a velocity field v on St satisfying v-v = V{ and
(4.3.7) we have

d d / 2 / . 2
—|'(t)| = — 1dH” = divpo dH* = 0, 4.3.12
=g [ divr (4312

where |I'(¢)| is the area of I'(t). Similarly, when the moving thin domain Q.(¢) is filled with
an incompressible fluid satisfying (4.3.2) and the impermeable boundary condition (4.3.3),
its volume |2 (¢)| must remain constant by the Reynolds transport theorem (see e.g. [14]):

d d
|Qe(t)]:/ 1dx:/ V;ch?:/ u-ysdHQZ/ divudz = 0.
dt dt Jo. ) 090 (t) 09 (t) Q(b)

By the change of variables formula (4.2.20) the volume of .(t) is expressed as

€ 2
1Q:(1)| = / ldz = / J(y,t,p)dpdH? = 2¢|T(t)| + 83/ K dH>.
Qo (t) NOP A 3 Jre
Hence we need to assume

d d
—|0(t)| = — K dH? =
ST =0, — /F o dH? =0

for the existence of an incompressible fluid in the e-tubular neighborhood Q.(t) of I'(¢) for
all £ > 0. However, by the Gauss—Bonnet theorem we have

/ K dH? = 2y (D (1)),
()

where x(I'(t)) is the Euler characteristic of I'(¢) (see e.g. [32, Section C.5]). Since the Euler
characteristic is a topological invariant and the moving surface I'(t) does not change its topol-
ogy, the integral of the Gaussian curvature K over I'(¢) is constant in time. Therefore, only
the area preserving condition (4.3.12) on I'(¢) is necessary for the existence of incompressible
fluids on I'(¢) and in Q.(¢) for all ¢ > 0. Note that this assertion is valid only for a moving
surface in R? or a moving hypersurface in R*. Indeed, when I'(t) is a moving hypersurface
in R"™ with n > 4, the Jacobian J(y,t, p) is a polynomial in p of degree greater than three
(see e.g. [13, Section 14.6] and [22, Section 5.1]) and thus we need more constraints on the
motion of I'(t).

Proof of Theorem 4.3.1. For the sake of simplicity, we use the abbreviations
flmt) = fr(w,6),8),  R(d") = R(d(x,)") (4.3.13)

for a function f on Sy and k € N. Since v. and V¥ are given by (4.2.5) and (4.2.6), the
boundary condition (4.3.3) reads

u(z,t) - v(mt) = V¥ (m,t), x € d0(t).
We substitute (4.3.4) for v in the above equality. Then

v(m,t) - v(mt) £evi(mt) - v(m, t) + 0O@?) = V& (1)
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when d(x,t) = +e (double-sign corresponds). Since v(r,t), v!(m,t), v(m,t), and V{¥(,t)
are independent of ¢, it follows from the above equation that

v(m,t) - v(mt) = V& (x,t), (4.3.14)

vl(m,t) - v(m,t) = 0. (4.3.15)

The first statement of the theorem follows from the equality (4.3.14). Let us write v =

ViVv 4+ o7 with a tangential velocity field v? on I'(t) and derive the equations (4.3.6) and
(4.3.7). By (4.2.2) and (4.2.25) we have

Vu(z,t) = V(v(m,t)) + Vd(z,t) @ v' (7,t) + R(d)

= Vrpo(r, t) + v(m,t) @ v (r, 1) + R(d) (4.3.16)
and
Vp(z,t) = Vrq(r,t) + ¢* (7, t)v(m, t) + R(d). (4.3.17)
Also, by (4.2.4) and (4.2.26),
Ou(z,t) = Oy (v(m, 1)) + dpd(z, t)v' (m,t) + R(d) (43.18)

= 0°v(m,t) — V¥ (mr, t)vl(m, t) + R(d).
From (4.3.16) the gradient of the j-th component of u is
Vuj(z,t) = Vpvj(m,t) + ’Ujl-(ﬂ', t)v(m,t) + R(d).

We take the inner product of this equation and (4.3.4), and then apply (4.3.14) and v-Vrv; =
vl Vrv; to get the j-th component of the inertia term

u(zw,t) - Vuj(z,t) = vl (m,t) - Vro;(m, ) + Vi (x, t)v]l (m,t) + R(d).
Hence the inertia term (u - V)u is of the form
[(u- V)u)(z,t) = [T - Vp)v](m, t) + Vi (7, t)ol (7, 1) + R(d). (4.3.19)
Substituting (4.3.17), (4.3.18), and (4.3.19) for (4.3.1) and applying (4.2.23) we obtain
Otv(m,t) + Vrg(m,t) + ¢' (7, t)v(m, t) = R(d).

In this equation, each term on the left-hand side is independent of d. Therefore, the equation
(4.3.6) should be satisfied.
Finally, by (4.3.15) and (4.3.16) we have

divu(z,t) = tr[Vu(z, t)] = divpo(n, t) + v(x,t) - vl (7, t) + R(d) = divpo(n, t) + R(d)

and thus the equation (4.3.2) reads divpu(w,t) = R(d). Since the left-hand side is indepen-
dent of d, we conclude that v satisfies the equation (4.3.7). O
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4.4 Limit equations of the Navier—Stokes equations
In this section, we consider the incompressible Navier—Stokes equations in Q. (¢):

Ou+ (u-V)u+Vp=pAu in Q.r, (4.4.1)
divu =0 in Q:r. (4.4.2)

Here u = (u1,u2, ug) is the velocity of a bulk fluid, p is the pressure, and ;¢ > 0 is the viscosity
coefficient. On these equations we impose the (perfect slip) Navier boundary condition of
the form

U Ve = VEN on 0yQe ), (4.4.3)
[D(u)ve|tan =0 on  0pQe - (4.4.4)

Here [a]an denotes the tangential component to 9Q.(t) of a vector a € R? and D(u) is the
strain rate tensor given by

u UT
D(u) = Y4 VW) +2(V iy

where (Vu)7 is the transposed matrix of V.
In order to derive limit equations of the Navier-Stokes equations (4.4.1)—(4.4.4) we ex-
pand the velocity field v with respect to the signed distance d(x,t) as

u(w,t) = v(r(z,t),t) + d(z, ) (7(z, ), t) + d(z,t)*0* (7 (2, t), 1) + R(d(z,t)*)  (4.4.5)

and the pressure p as (4.3.5). We need to expand u up to the second order term in d(z,t)
since the momentum equation (4.4.1) has the second order derivatives of u.

Theorem 4.4.1. Let u and p satisfy the Navier—Stokes equations (4.4.1)—(4.4.4) in the
moving thin domain Qc(t). Then the normal component of the zeroth order term v in the
expansion (4.4.5) is equal to the outward normal velocity of the moving surface T'(t), i.e.
vV = VFN. Moreover, the velocity field v and the zeroth and first order terms q and q* in
the expansion (4.3.5) satisfy

% + Vrq + ¢'v = 2uodivy (Pr D™ (v)Pr)  on  Sp, (4.4.6)
divrv =0 on Sr.

Here D' (v) is the tangential strain rate given by (4.2.12).

Remark 4.4.2. As in Remark 4.3.2, the normal component of v is equal to VFN , the tan-
gential component of v and the scalar function ¢ are determined by

Prov + Vrq = 2uoPrdivr (Pr D™ (v)Pr), divrv =0 on St, (4.4.8)

and the scalar function ¢! is given by the normal component of (4.4.6). The tangential
system (4.4.8) is the same as the tangential incompressible Navier-Stokes—Scriven—Koba
(NSSK) system in [18] with constant density (see (4.4) in [18]).

When I'(t) =T is fixed in time, the tangential system (4.4.8) is the same as the incom-
pressible Navier—Stokes system on a fixed manifold derived by Taylor [31]

O + Vv + Vrq = po(Agv + Kv), divpv=0 on T x (0,7) (4.4.9)
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for a tangential velocity field v on T', although the authors of [18] claim that the system
(4.4.8) on the stationary surface I' is different from Taylor’s model (4.4.9) (see Remark 4.4.3
below). Indeed, when the surface I' is stationary, i.e. VFN = 0, the velocity field v in the
system (4.4.8) is tangential and by applying (4.3.10) to the left-hand side of the first equation
in (4.4.8) we obtain

O + Vv + Vrq = 2uo Prdive (Pr D' (v)Pr), divrv=0 on T x (0,7).

Moreover, since v is tangential and satisfies divpv = 0, the right-hand side of the first
equation in the above system is the same as that in Taylor’s system (4.4.9) by (4.2.17).
Hence the tangential incompressible Navier—Stokes system (4.4.8) on the stationary surface
I agrees with the system (4.4.9) given by Taylor.

As in the case of the Euler equations (see Remark 4.3.2), when the surface is stationary
the function ¢! in (4.4.6) is given by

q' = {020 + 2uodivp (Pr D" (v) Pp)} - v = —Av - v + 2uotr[AVTo)],

where the second equality follows from (4.2.13) and (4.3.11). From this formula we observe
that ¢' does not vanish in general even if the surface is stationary.

Remark 4.4.3. The authors of [18] argue that the tangential incompressible Navier—Stokes
system (4.4.8) on a stationary surface I' is different from the Navier-Stokes system (4.4.9)
on a manifold given by Taylor [31], which is inconsistent with our argument in Remark 4.4.2.
Unfortunately, there seems to be a flaw in derivation of Taylor’s system (4.4.9) in [18, Sec-
tion 5]. The authors of [18] applied an energetic variational approach with the dissipation
energy given by the tangential strain rate D'"(v) = {Vrv+ (Vrv)T}/2 to obtain (4.4.9). In
their derivation of (4.4.9) they claim that Pprdivp (PrD'"(v)) = Apv+ Kv holds on I' when
I" is stationary and v is tangential and satisfies divpv = 0 (see the argument after [18, The-
orem 5.1]). However, we have

2Ppdivy (P[‘Dmn(v)) = Apgv+ Kv — A%y

for any tangential vector field v on I' satisfying divrv = 0, since the sum of the first two
terms on the right-hand side is equal to 2Pprdivp(PrD'"(v)Pr) by (4.2.17) and

2Prdivy (PrD""(v)) — 2Ppdive(Pr D' (v) Pr) = 2Ppdivy (Pr D" (v) (v @ v)) = —A%v

holds by the same calculations as in the proof of Lemma 4.2.3 (see Appendix 4.A).

It seems that their choice of the dissipation energy for derivation of (4.4.9) comes from
a subtle misunderstanding of the strain rate tensor in Taylor’s model, which is called the
deformation tensor in [21,31]. Taylor [31] defined the deformation tensor Defv for a tan-
gential vector field v on I' as a symmetric tensor field of type (0,2) on the manifold I" (see
e.g. [20, Chapter 12] for tensor fields) satisfying

1, -
(Defv)(X,Y) = 5(vxv Y4 X VYU), X,Y € C*(TT), (4.4.10)

where C*°(TT) is the set of all smooth tangential vector fields on I'. (See also (2.3) in [21].
Note that (2.3) in [21] is a formula for one-forms on I' and here we identify tangential vector

fields on I' with one-forms on I' via raising and lowering indices.) Let us show that the
right-hand side of (4.4.10) is equal to {D""(v)X} - Y. By the Gauss formula (4.2.16) and

the fact that the covariant derivative V xv is tangential,

Vxv=P{(X-Vr)v}=P(Vrv)'X on T,
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where the second equality just follows from our notation on the tangential gradient matrix
(see Section 4.2). From this formula and the facts that Pr is symmetric and that Y is
tangential it follows that

Vxv-Y ={P(Vro)' X} Y = {(Vro)' X} - (PrY) = {(Vro)T X} - V.
Similarly we have X - Vyv = X - {(Vrv)TY} = {(Vrv)X} - Y and thus
%(ﬁxv Y+ X vyv) - %({Vrv + (VFU)T}X> Y = D)X} - Y.
Therefore, for any X, Y € C*°(TT) the equality
(Defv)(X,Y) = {D""(v)X}-Y (4.4.11)

holds. Therefore, the deformation tensor Def v can be identified with the restriction on
C®(TT) x C*°(TT) of the symmetric bilinear map

Tptan(y: C(T)? x C®(T)? = C=(T), (F,G)— {D""(v)F}-G.

Here C°°(T") denotes the set of all smooth functions on I and C*°(I")3 is the set of all smooth
three-dimensional vector fields on I' not necessarily tangential. However, it does not mean
that Def v can be identified with the matrix D'"(v). Since Def v is a tensor field of type
(0,2) on the manifold T, for any X € C°°(TT) the mapping

(Defv)(X,-): C®(TT) — C®(I), Y s (Defv)(X,Y)

is a linear map from C*°(7TT) into C*°(T"), i.e. a one-form on I'. By identifying one-forms
on I' with tangential vector fields on I' via raising and lowering indices, we may consider
(Defv)(X, ) = (Def v) X as a tangential vector field on I'. On the other hand, for a tangential
vector field X on I' the vector field D" (v)X is not tangential in general, even if v is
tangential to I'. Indeed, since (Vrv)'v = (Vrv)T Prv = 0 and (Vro)r = —(Vrv)v = Av,
where the second relation follows from the fact that v is tangential, we have

D () = L{(Veo)y + (Vro) v} = 2 Av.

From this equality and the symmetry of the matrix D!"(v) it follows that

1
D™ ()X - v =X - D" (v)v = §X - Av

for any tangential vector field X on I'. The last term does not vanish and thus the vector
field D' (v)X is not tangential on I' in general.

To give a proper interpretation of the deformation tensor as a matrix, we observe that
in (4.4.11) the vector fields X and Y are tangential to I' and thus

(D" ()X} Y = {D""(v)Pr X} - (PrY) = {Pr D" (v)Pr X} - Y
by the symmetry of the orthogonal projection Pr. Then (4.4.11) becomes

(Defv)(X,Y) = {PrD""(v)Pr X} -Y
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for all tangential vector fields X and Y on I'. Moreover, the matrix PrD'"(v) P is symmetric
and for any X € C*°(TT) the vector field PrD'"(v)PrX is tangential to I'. Therefore, we
may identify the deformation tensor

Defv = TDtan(U)|Coo(TF)XCoo(TF): COO(TF) X COO(TF) — COO(F)

with the symmetric matrix PrD'"(v)Pp.

The matrix PrD'"(v)Pp is called a projected strain rate in [18] and employed to define
the dissipation energy in their energetic variational method for derivation of the incompress-
ible NSSK system on the moving surface (see [18, Lemma 3.4 and Section 4]). Therefore,
the strain rate tensor in Taylor’s system (4.4.9) is the same as that in the tangential incom-
pressible Navier—Stokes system (4.4.8).

Proof of Theorem 4.4.1. As in the proof of Theorem 4.3.1 we use the abbreviations (4.3.13).
Due to the first boundary condition (4.4.3) we have

o(m, t) - v(m,t) = V& (r, t), (4.4.12)
vl(m,t) - v(m,t) =0, (4.4.13)
v (m,t) - v(m,t) =0 (4.4.14)

and the surface divergence-free condition (4.4.7) for v by the same argument as in the proof
of Theorem 4.3.1. Moreover, we already calculated the expansion of the left-hand side of
(4.4.1) in the proof of Theorem 4.3.1:

Ou(z,t) + [(u- V)u](z,t) + Vp(x,t)
= 0%(m,t) + Vrq(m, t) + ¢  (z, t)v(r, t) + R(d). (4.4.15)
Let us show that the expansion of the viscous term Aw is of the form
Au(z,t) = 2[divp(Pr D" (v) Pp)](x, t) + R(d). (4.4.16)

Since Au = 2div D(u) holds by the divergence-free condition (4.4.2), we consider the expan-
sion in powers of d of the strain rate tensor D(u). We differentiate both sides of (4.4.5) with
respect to x and apply (4.2.2) and (4.2.25) to get
Vu(z, t) = Vro(m, t) + v @ v'](m, )
+d(z, ) {[AVrv](m,t) + Vrol(m,t) + 2[v ® v*](m,t)} + R(d*). (4.4.17)

Hence the strain rate tensor of u is expressed as

D(u)(z,t) = S(m,t) + d(z,t)S (,t) + R(d?), (4.4.18)
where
1,1
S = plan(y) + L2 ;” oy (4.4.19)
T
Sti= AVrv +2(AVFU) + DY r v @ v P Q. (4.4.20)

Let us write the second boundary condition (4.4.4) in terms of S and S!. By (4.2.5) and
(4.2.6) the boundary condition (4.4.4) reads

Pr(m,t)D(u)(x, t)v(m,t) =0, x € 90(t).
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We substitute (4.4.18) for the above D(u)(x,t) to obtain
Pr(m, t)S(m, t)v(m,t) + ePp(m, t) S (m, t)v(m,t) + O(e*) = 0

according to d(x,t) = #e (double-sign corresponds). Since the matrices S(m,t), S*(m,1),
Pr(m,t), and the vector v(m,t) are independent of €, we have

Pr(m,t)S(m, t)v(m,t) =0 (4.4.21)
Pr(m,t)SY (7, t)v(m,t) = 0. (4.4.22)
Substituting (4.4.19) for S in (4.4.21) and observing

vouyy=@w =0 @ovw=@w vw=v, Po'=uv

1
by (4.4.13) we get
vl(m,t) = —2Pp(m,t) D" (v) (7, t)v(r, ). (4.4.23)
Moreover, we multiply v by S! given by (4.4.20) and apply
(AVr) v = (Vio)TAv =0,  (VroH)Tv = (Vo )T Prv =0
by the symmetry of A and Pr, Vr = PrVr, and (4.2.7), and then use (v ® v?)v = 0 and
(v? @ v)v = v? by (4.4.14) to obtain
Sty = %(Avrv + Vroh)y + 2. (4.4.24)
It is tangential to I'(¢) by Vr = PrV, (4.2.7) and (4.4.14). Hence (4.4.22) yields
St(m, t)v(r,t) = 0. (4.4.25)

Now we apply the formula (4.2.27) to the expansion (4.4.18). Then by the symmetry of S*
(see (4.4.20)) and the equality (4.4.25) we get

div D(u)(z,t) = divpS(7, t) + R(d). (4.4.26)
Let us write S in terms of v. Substituting (4.4.23) for (4.4.19), using the formulas
(Ma)®@b=M(a®b), a® (Mb)=(a@b)MT

for a square matrix M of order three and three-dimensional vectors a and b, and observing
(Ptha"(v))T = D'"(y)Pr by the symmetry of Pr and D""(v), we have

S = D'"(v) — (v ® v)D""(v)Pr — PrD""(v)(v ®@ v)
= PrD""(v)Pr + (v @ v) D" (v) (v @ v).

Here the second term on the last line vanishes by (v ® v)Vrv = (Vro)T (v ® v) = 0. Hence
it follows that

S(m,t) = Pr(m,t) D" (v)(m,t) Pr(m,t) (4.4.27)

and we obtain (4.4.16) by applying (4.4.26) and (4.4.27) to Au = 2div D(u). Finally, we
substitute (4.4.15) and (4.4.16) for the momentum equation (4.4.1) to get

8%0(r, 1) + Vrq(m, 1) + ¢ (m, H)v(m, 1) + R(d) = 2uo[divr(Pr D' (v) Pr)](m, ) + R(d).

Since all terms except for R(d) are independent of d, we conclude that the equation (4.4.6)
should be satisfied. O
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Remark 4.4.4. We may replace the perfect slip condition (4.4.4) by the partial slip condition

[D(u)velian + k(u" —vh) =0 on  9Qer,
where ul = (I3 — v ® v.)u, k > 0 is a constant, and v} (-, t) is a given tangential velocity
field on 090 (t). However, it makes the limit velocity overdetermined. Indeed, suppose that
vg is given by

T2 t) Vouter(7(x,t),t) if d(x,t) =e¢,
v (x,t) =
@ Vipner (7 (2, 1), t) if d(x,t) = —e¢,

where vouter(+,t) and vinner(+,t) are given tangential velocity fields on I'(¢). Then the same
calculations as in the proof of Theorem 4.4.1 yield

Uouter 1 Vinner

U:VFNV+ 2

Hence the limit velocity v is completely determined by given velocities while it should satisfy
similar equations to (4.4.6) and (4.4.7).

Remark 4.4.5. In the proof of Theorem 4.4.1 we obtained the expansion (4.4.16) of the
viscous term Awu by using the expansion of the strain rate tensor D(u). Here let us expand
Auw by direct calculations. In what follows, we abbreviate 7(x,t) and R(d(x,t)) to m and R(d)
for z € Q.(t) and suppress the argument ¢. By (4.4.17) the gradient of the j-th component
ofu(j=1,2,3) is

Vu;(z) = Vs () + vj(m)v(r) + d(z) Fj(r) + R(d?), (4.4.28)

where F; = AVrv; + Vrv} + 21)321/. We differentiate both sides of (4.4.28) with respect to x
and apply (4.2.2), (4.2.25), and Vrv = —A to get
Viuj(z) = Viv;(m) + [vajl- Q@ v|(r) — fujl (m)A(m) + [v @ Fj|(7) + R(d).

Taking the trace of both sides and observing AVrv; - v = vajl- -v = 0 we obtain

Auj(xz) = Arvj(m) — U]1~ (m)H (7) + 21)]2(77) + R(d)
for each j = 1,2,3 and thus
Auj(z) = Arv(m) — H(m)v (1) + 2v%(7) + R(d).

Let us express v! and v? in terms of v. The first order term v! is given by (4.4.23), Vp =
PrVr, and (Vro)Tv = (Vo) Prv = 0:

v! = —2Pr D' (v)y = —(Vro)r.
By (4.4.24) and (4.4.25) we can represent v? in terms of v and v! as
1
v = —§(AVFU + Vo).

From this it follows that v? = 0 since v! = —(Vrv)v is tangential and thus

(Vrohy = Vp(o! - v) — (Vrv)o! = Av! = —A(Vro)w.
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Hence we obtain another expansion formula of the viscous term
Au(z) = Arv(r) + [H(Vro)v|(m) + R(d). (4.4.29)
Comparing the expansions (4.4.16) and (4.4.29) we expect that the equality
2divp(Pr D" (v)Pr) = Arv + H(Vro)v (4.4.30)

holds for the limit velocity v. Let us prove this equality. By the formula (4.2.13) for the
left-hand side, the proof of (4.4.30) reduces to showing

Vr(divpv) =0, 2tr[AVru] = (Aro) - v. (4.4.31)

The first equality follows from the surface divergence-free condition (4.4.7) for the limit
velocity v. To obtain the second equality we need to observe the expansion of the divergence-
free condition (4.4.2) in powers of the signed distance d up to the first order term. Taking
the trace of (4.4.17) and using v! - v = 0 and v? = 0 we have

divu(z) = divro(n) + d(z){tr[AVrv](7) + divro' (1)} + R(d?).

Since the left-hand side vanishes for all z € Q.(t) by (4.4.2), observing the first order term
in d(z) on the right-hand side we obtain

tr[AVrv] + divpe! = 0. (4.4.32)
To the second term on the left-hand side we apply v! = —(Vrv)v. Then since
divp[(Vro)v] = (divr Vo) - v + tr[(Vrv) T Vi,
= (Arv) - v — tr[AT Vo]
and the Weingarten map A is symmetric, the equality (4.4.32) becomes
2tr[AVro] — (Arv) - v = 0.

Hence the second equality in (4.4.31) holds and (4.4.30) follows.

4.5 Energy identities

The purpose of this section is to find a relation between energy identities of the Euler and
Navier—Stokes equations in the moving thin domains and those of the limit equations on the
moving surface. We first derive the energy identities from the equations and then show that
the energy identities of the limit surface equations are also derived as thin width limits of
those of the original bulk equations.

4.5.1 Euler equations

Lemma 4.5.1. Let u and p satisfy the Euler equations (4.3.1)—(4.3.3) in the moving thin
domain Qc(t). Then we have

d [ |

dx:—/ pV N dH2. 4.5.1
dt Jo.@ 2 00.(1) (#51)
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The identity (4.5.1) means that the rate of change of the kinetic energy of the incom-
pressible perfect fluid in a moving domain is equal to the rate of work done by the pressure
caused by the motion of the boundary.

Proof. By the Reynolds transport theorem (see [14]) and (4.3.1),

2 2
4 Jul® de = / u - Opudr + / ﬁVeN dH? (4.5.2)
dt Ja.@) 2 Q-(t) 09:(t) 2
2
:/ u-{—(u.V)u—vp}daz+/ MVENdHQ.
Q. (t) 00.(1) 2

By integration by parts and the equations (4.3.2) and (4.3.3) we have

/ u-(u-V)udwz/ |u|2(u-1/€)d7-[2—/
Qe (t) 00 (1) Qe

= / lu2VN dH? — / u- (u-V)ude.
99 (t) Qe (t)

{u-(u-V)u+ |uf*divu} de
(t)

Therefore,

2
/ u-(u-Vude = / ﬁVaN dH>. (4.5.3)
Q. (t) 99.(1) 2

On the other hand, by integration by parts

/ u-Vpdr = / (u-ve)pdH? — / (divu)pdz
Q. (t) 99 (1) Q. (t)

and we apply (4.3.2) and (4.3.3) to the right-hand side to get

/ u-Vde::/ pVN dH?. (4.5.4)
Qe (t) 00 ()

Substituting (4.5.3) and (4.5.4) for (4.5.2) we obtain the energy identity (4.5.1). O

Lemma 4.5.2. Let v, q, and q* satisfy the limit equations (4.3.6) and (4.3.7) of the Euler
equations. Suppose that the normal component of v is equal to the outward normal velocity
of (t), i.e. v-v = V. Then we have
d % 2 _ NN 3942
dH* = (qH — ¢ )Vp' dH”. (4.5.5)
dt Jry 2 r()
The right-hand side of (4.5.5) represents the rate of work done by the moving surface
to the fluid. Note that it contains the scalar function ¢!, which corresponds to the normal
derivative of the surface pressure.

Proof. By the assumption we can write v = VFN v+ ! with a tangential velocity field v* on
['(t). We apply the Leibniz formula (see [10, Lemma 2.2]) with v = V;¥v +v” to the integral
of [v|?/2 over T'(t). (Note that the tangential velocity v’ does not affect the change of the
shape of I'(¢).) Then we have

2 2 2
4 lvl® dH? = / {a; <‘U|> + Mdivw} dH?

2
—/ v-a;vdH2+/ @divwd%?
r(t) r 2
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To the last line we apply the equations (4.3.6) and (4.3.7). Then

d 2
Jol® dH? = / v- (Vrq+ ¢'v) dH>. (4.5.6)
dt Jogy 2 I ()

For the first term on the right-hand side,
v - Vrq = divp(qu) + gdivro = —gHVY + divp(qv?)

by v = VFNI/ + T, V[‘(QVFN) v =0, divpy = —H, and (4.3.7). Moreover, the integral of the
surface divergence of the tangential vector field qu’ over T'(t) vanishes by Stokes’ theorem
since I'(t) is closed. Hence we have

/ v-VrqdH? = —/ qHVE dH>. (4.5.7)
0(t) 0(t)
For the second term we have
/ v (¢'v)dH? = / ¢ Vi dH? (4.5.8)
(1) I'(t)
by v-v = V{¥. The energy identity (4.5.5) follows from (4.5.6), (4.5.7), and (4.5.8). O

Let us show that the energy identity (4.5.5) on the moving surface can be derived as a
thin width limit of that in the moving thin domain (4.5.1). As in Section 4.3 we expand the
velocity u and the pressure p in powers of the signed distance d as (4.3.4) and (4.3.5) and
determine the zeroth order term in € of the energy identity (4.5.1).

Theorem 4.5.3. Let u and p satisfy the energy identity (4.5.1). Then the zeroth order term
v in the expansion (4.3.4) and the zeroth and first order terms q and q* in the expansion
(4.3.5) satisfy the energy identity (4.5.5).

Proof. From the expansion (4.3.4) we have

w(z. t)? v(m(z 2
| (ét)\ _lo( <72t)at>! +d(a, )V (n(z,),t) + R(d(z,)%)

for x € Q.(t), where V := v - v!. Using this expansion we write

t 2
/ CE0) R A A
SONENE

where

2
I = / Md%
-(t) 2

= T w(x T = x,t)?) dz.
I ._/E(t)d( AV (r(z,t),t)dz, Iy /Qg(t)R(d( 4)7)d

To I and Iy we apply the change of variables formula (4.2.20) to get

/ /5 oty DI J(y,t, p) dpdH?(y) :25/ WdHQ(y)Jr&Qfl(&t)v

I(t)

= /r(t) / PV (Y ) (y,t, p) dp dH>(y) = €2 fa(e, 1),
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where f; and fo are polynomials in ¢ with time-dependent coefficients. (Note that the
Jacobian J(y,t,p) given by (4.2.19) is a polynomial in p and the principal curvatures of
I'(t).) Hence

dl d vy, ) 2 2y Al 2
o e /F(t) 5 H=(y) + O(e%), o O(e?) (4.5.9)

For I3, using the Reynolds transport theorem and observing that the first order time deriva-
tive of R(d(z,t)?) is R(d(w,t)) we have

dy

= T T T 2 Nl’ 2([‘.

09 (t)

We apply the change of variables formula (4.2.20) to the first term on the right-hand side
of the above equality. Then by R(d(x,t)) = R(p) = O(e) and J(y,t,p) = O(1) for d(z,t) =
p € (—e,e) with x € Q.(t) to get

[ maeoyae= [ [ R0 dpare) = 06,
Qe(t) ) J—e

Moreover, by R(d(x,t)?) = O(e?) for x € 0Q.(t) and
VY (2, 6)] = VN (n(a,1),0)] = O(1), = € 9Q:(1),

which follows from (4.2.6) and the fact that Vi is independent of e, and the change of
variables formula (4.2.21) and J(y,t, £¢) = O(1), we have

[ RtV e i@ = 3 [0t dHE ) = OE)
0Qe(t) p==e I'(t)

Hence dI3/dt = O(g?). From this estimate and (4.5.9) it follows that

2
j/ W’t)'dxzj(11+lg+13)
Paw 2 ' (4.5.10)

d ’/U(ya t)|2 2 2
= 2e— — L dH + O(e*).

Let us expand the right-hand side of the energy identity (4.5.1) in €. By the expansion
(4.3.5) of the pressure p, the relation (4.2.6), and the formula (4.2.21),

/ (e, )V (2, ) dH2 () = Jy + e + O(2), (4.5.11)
0 (t)
where

Jy = /F(t) a(y. OV (y, ){ I (y, t.€) — T (y. t, =)} dH?(y),

J2 = /F(t) ql(y7 t)VIN(:% t){J(ya t? E) + J(y7 t? _5)} dHZ(y)'

From (4.2.19) we have

J(y,t,e) — J(y,t,—e) = —2cH(y,t) + 0(52),
J(y,t,e) + J(y,t,—) = 2+ O(e?).
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Hence
Jy = ¢ /F T DH O .0 ),
t
Jy =2 / 0O ) )
I(t

and applying them to the right-hand side of (4.5.11) we get

/ p(a, )V (2, 1) dH2 ()
89 (t)

= 2 F(t){Q(y,t)H(yjt) — ¢ (y, IVP (3. 1) dH?(y) + O(%).  (4.5.12)

Finally, we substitute (4.5.10) and (4.5.12) for (4.5.1) and divide both sides by 2 to obtain

d [ @ e i N )
o 5 M (y) {a(y, ) H(y,t) — ¢ (y, )}V (y,t) dH*(y) + O(e).
I(t) I(t)

Since the left-hand side and the first term on the right-hand side are independent of &, we
conclude that the identity (4.5.5) should be satisfied. O
4.5.2 Navier—Stokes equations

Lemma 4.5.4. Let u and p satisfy the Navier—Stokes equations (4.4.1)—(4.4.4) in the moving
thin domain Q.(t). Then we have

d 2

— [ul” g — —2u0/ |D(u)|? dz +/ (ove - v )V dH>. (4.5.13)
dt Jo.@ 2 Q:(t) 00 (1)

Here o := 2ugD(u) — pI3 denotes the Cauchy stress tensor.

The first term on the right-hand side of (4.5.13) represents the energy dissipation by
viscosity and the second term stands for the rate of work done by the normal component of
the stress vector ov, on the moving boundary.

Proof. By the Reynolds transport theorem (see [14]) and the equation (4.4.1),

2 2
% |“2‘da;:/ u-@tudm—l—/ |u2|V€NdH2
Qs(t) Qs(t) 8QE(t) 2 (4514)
:/ u-{—(u~V)u—Vp+quu}dac+/ MVENd”;’-lQ.
Q. (t) 00.(t) 2

We already computed the integrals of u - (u - V)u and u - Vp over Q.(t) in the proof of
Lemma 4.5.1, see (4.5.3) and (4.5.4). Let us calculate the integral of u - Au. Since Au =
2div D(u) by the divergence-free condition (4.4.2),

/ u-Audx:Z/ w - div D(u) dx
Qe (t) Qe(1)

= 2/ u-D(u) v, dH? — 2/ Vu : D(u)dz,
994 (¢) Qe (1)
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where I : G := tr[FTG] for square matrices F' and G of order three. In the last line we use
the symmetry of the strain rate tensor D(u) and the boundary conditions (4.4.3) and (4.4.4)
to get

u-Dw) v = (u-v.)(Dw)v: - v.) = VN (D(u)v: - ;)

on 09 (t). Also, we easily observe that
3
Vu: D(u) = (Vu)" : D(u) = [D(w)P [ = ) [DW)];

Here [D(u)];; is the (i, j)-entry of D(u), i.e. [D(u)];; = (Oju; + 0ju;)/2. Hence
/ w- Aude = 2/ (D(u)ve - ve) VN dH? — 2/ |D(u)| de. (4.5.15)
Qe (1) 90 (t) Qe (t)

Finally we substitute (4.5.3), (4.5.4), and (4.5.15) for (4.5.14) to obtain (4.5.13). O

Lemma 4.5.5. Let v, q, and ¢* satisfy the limit equations (4.4.6) and (4.4.7) of the Navier—
Stokes equations. Suppose that the normal component of v is equal to the outward normal
velocity of T'(t), i.e. v-v = V. Then we have

2
d/ [vf* A2 = zuo/ | Pr DY (v) Pp|? dH? +/ (¢H — MV dH?.  (4.5.16)
dt I(t) 2 I'(t) r(t)

The first and second terms on the right-hand side of (4.5.16) correspond to the energy
dissipation of the surface fluid by viscosity and the rate of work done by the moving surface,
respectively.

Proof. As in the proof of Lemma 4.5.2 we use the Leibniz formula [10, Lemma 2.2] with
velocity field v and the equations (4.4.6) and (4.4.7):

2 2
% 02|d7-l2 —/ v - v dH? +/ ’1}2|divrv dH?
I(t) (1) () (4.5.17)

= / v - {—qu — qlu + 2M0diVF(PFDt(m<’U)PF)} d'H2.
L)
The first two terms in the last line were calculated in the proof of Lemma 4.5.2; see (4.5.7)
and (4.5.8). For the viscous term,
v - divp(Pr D" (v) Pr) = divy(PrD'""(v) Prv) — Vv : PrD " (v) Pr.

The integral of the first term on the right-hand side over I'(¢) vanishes by Stokes’ theorem
since T'(t) is closed and PrD'""(v)Prov is a tangential vector field on I'(¢). Also, since the
matrix PprD'"(v)Pr is symmetric,

VI"U : Ppo”(v)Pp = (VF’U)T : Pthan(U)PF = Dtan(v) : PrDtan(U)Pr.

Moreover, by the formulas P2 = PIT =Prand E: FG = FTE : G = EG" : F for square
matrices F, F, and G of order three we obtain

Vrov : PrD""(v)Pr = D'"(v) : PpD""(v)Pr = |PrD!"(v) Pp|?.
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Hence the integral of the inner product of v and divp(PrD'"(v)Pr) is

/ v - divp(Pr D' (v) Pr) dH? = — /
I'(¢)

| PrD'" (v) Pr|? dH2. (4.5.18)
I(t)

Applying (4.5.7), (4.5.8), and (4.5.18) to (4.5.17) we obtain (4.5.16). O

As in the case of the Euler equations, the energy identity (4.5.16) on the moving surface
can be derived as a thin width limit of that in the moving thin domain (4.5.13). Let us
expand v and p in powers of d as (4.4.5) and (4.3.5) and determine the zeroth order term in
e of the energy identity (4.5.13).

Theorem 4.5.6. Let u and p satisfy the energy identity (4.5.13). Suppose that the velocity
field u satisfies the boundary conditions (4.4.3) and (4.4.4). Then the zeroth order term v in
the expansion (4.4.5) and the zeroth and first order terms q and q' in the expansion (4.3.5)
satisfy the energy identity (4.5.16).

Proof. The remaining part of the proof is to show that

/ ID(w) (2, 1) di = 2 / (PeD (o) Pr) (3, )2 dH2(y) + O(?)  (4.5.19)
Qc(t) I'(¢)
and
/ (D(w)ve - v )V (2, 1) dH2(z) = O(2) (4.5.20)
99 (1)

since we already computed other terms in the proof of Theorem 4.5.3, see (4.5.10) and
(4.5.12). By (4.4.18) and (4.4.27) in the proof of Theorem 4.4.1 we have

D(u)(z,t) = (PrD' (v) Pp)(r(x, 1), t) + d(z, t)S (n(, t), t) + R(d(z, t)?)

for z € Q.(t) (Note that to get (4.4.27) we only need the boundary conditions (4.4.3)
and (4.4.4) for the Navier-Stokes equations. See the proof of Theorem 4.4.1.) Using this
expansion and the change of variable formula (4.2.20) we obtain (4.5.19) as

| Dt Pde= [ (D) (0.0 + Rid(e.6)} da
Qc(t)

Q:(t)

:/F(t) E{I(PFDtan(U)PF)(y,t)F—i—R(p)}J(y?t?p) dpdH2(y)
= 28/ ‘(PFDtan(U)PF)(y,t)Fd?‘[2(y) _|_O(52)
I'(t)

Let us show (4.5.20). By (4.2.5) we have
(D(u)v.)(x,t) = £(PrD"™(v) Prv)(n(z,t),t) + e(S'v) (n(xz,t),t) + O(e?).

for x € 09.(t) according to d(z,t) = +e (double-sign corresponds). Moreover, the first two
terms on the right-hand side vanishes since Prv = 0 and S'v = 0 on I'(t) by (4.4.25). (Note
that, similarly to the proof of (4.4.27), only the boundary conditions (4.4.3) and (4.4.4) are
necessary to show (4.4.25). See the proof of Theorem 4.4.1.) Hence D(u)v. = O(g?) on
09Qc(t). Applying this estimate and

e(z, )] =1, V()] = [V (n(2, 1)) = O(1), € I (t),
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where the second relation follows from (4.2.6) and the fact that Vi is independent of ¢, to
the left-hand side of (4.5.20), and then using the change of variables formula (4.2.21) and
J(y,t,£e) = O(1), we obtain (4.5.20) as

/ (D) - v )V, 1) dH2 () = 3 Tyt p) dH2(y) = O(2).
0 (t) p==e F(t

Now we substitute (4.5.10), (4.5.12), (4.5.19), and (4.5.20) for the energy identity (4.5.13)
and divide both sides by 2¢ to obtain

d v(y,t)? an
o[ MO ) = —op [ (D) P 0 @)
dt Jray 2 r(t)
# [ @ =)0 0 8 ) + 0
t
Since all terms except for O(e) are independent of £, we conclude that the energy identity
(4.5.16) must be satisfied. O

Remark 4.5.7. The assumption in Theorem 4.5.6 that the boundary conditions (4.4.3) and
(4.4.4) are satisfied is necessary to deal with integrals including the strain rate tensor D(u).
Note that, contrary to the case of the Navier—Stokes equations (Theorem 4.5.6), we do not
need even the impermeable boundary condition (4.3.3) to derive the thin width limit of the
energy identity of the Euler equations in the moving thin domain, see Theorem 4.5.3.

4.A Elementary calculations of various quantities on surfaces

In this appendix we prove elementary facts on various quantities and differential operators
on a surface given in Section 4.2. Until the end of the proof of Lemma 4.2.6 we fix and
suppress t € [0, 7.

Proof of Lemma 4.2.1. Since |v|?> =1 on T, we have
0=Vrlv|? =2(Vrv)y = —24v on T,

which implies (4.2.7). The formula (4.2.8) is an immediate consequence of (4.2.7). Now let
us prove (4.2.9). Let 7 be an extension of v to N. By (4.2.2) and 7|r = v we have

Vid(z) = Va(z)(VD)(n(x)), x € N. (4.A.1)
Moreover, we differentiate both sides of (4.2.1) and apply (4.2.2) to get
Vr(x) = Pr(n(z)) — d(z)Vr(x) (VD) (rm(z)), x € N.

In particular, if z =y € I' then d(x) = 0, 7(z) = y and thus Vn(y) = Pr(y). Applying this
formula to (4.A.1) with z = y € I we obtain (4.2.9). O

Proof of Lemma 4.2.2. Let f be a function on I and f its extension to N satisfying f|p =f
For j =1,2,3, by (4.2.2) and the definition of the tangential derivative operators we have

05" £ (y) Z{ Y)ad(y)}oif(y), yeT.
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From now on we suppress the argument y. By the above formula we have
3 ~
85“"8§a"f = Z {6it, — (0;d)(Ord) } Ok | {01 — (0;d)(O1d) YO f | = a1 + a2 + a3
k=1
for 4,5 =1,2,3, where

3
ari= 3 {6 — (@) Hoz — (0;0)(91d)}0kdLT,
k=1

3
= > {0 — (0:d)(94d) H(040;d) (D d) D1
k=1

3
== > {0k — (0:d) (9xd) }(9;d) (1) D f
k=1

Similarly, we have 8;“"8;5“” f = p1+ B2+ B3, where

By = Z{aﬂ (9;d)(9yd) Y {0k — (i) (Oxd) } D1k f,
k=1

3
B ==y {8 = (9;d)(01d) }(0,0id) (O d) Dy ]

k=1

3
By = — Y {8 — (9;d)(01d) }(9id) (D0 d) Oy f-

k=1

From 8;0,f = 9,0, f it immediately follows that ay = f31. Since O0x0;d = 00y d,
) 3
—(Vd-VJ) {aiajd Z Od)(D;0,d) }

=1
—(Vd- V) {aiajd ,d)0; <|w‘2>}
= —(Vd - V£)9;0;d.

Here the last equality follows from |[Vd|> = 1 on N. By the same calculation we have
52 = —(Vd . Vf)aj@d Hence a9 = ,32 by 8,8]d = 8]8Zd For as and ,83,

_ [Pp(v%z)v 7 ] id = [AVr flw;,
ﬁg = — [PF(VQd)VfL@d = [AVFf]jI/i

by (4.2.2), (4.2.8), (4.2.9), and the definition of the tangential gradient operator. (Note that
we calculate values of functions at y € I'.) Therefore, we obtain

D91 f = OO f = (a1 + a2 + a3) — (81 + B + ) = [AVeflavy = [AV S,

that is, the formula (4.2.11) holds. O
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Proof of Lemma 4.2.3. Let v be a general vector field on I which may have a nonzero normal
component. Since PrVrv = Vv and (Vro)T Pr = (Vrv)? we have

2divp (PrD'"(v)Pr) = divy ((Vro) Pr) + dive (Pr(Vro)T). (4.A.2)
Let us calculate each term on the right-hand side. For ¢, j = 1,2, 3 the (4, j)-entry of (Vpv)Pp

is of the form

3
[ VFU PF Z 6“" I/jl/k).
k=1

Thus the j-th component of divr((va)Pp) is
3

[diVF((VFU)PF)L =Y O [(Vro)Pr],; = a1+ az + ag,

i=1
where
3
ari= Y {0 2ok Ok — vimi),
ik=1
3 3
az == Y (O"0) O vy)v = Y (O vp) Ay,
i,k=1 k=1
3
az = — Z (0L v ) (D2 vy ) = (07" vg)vj A
ik=1 ik=1

Here Ajj is the (4, j)-entry of the Weingarten map A = —Vrv. By the definitions of Ar and
Pr we have ap = [Pp(Arv)] where Ar applies each component of the vector field v. Also,
since A is symmetric,

3
az =Y A0 vp)vy, = [A(Vro)v]..
i,k=1

Similarly, we have ag = tr[AVov]y;. Therefore, the equality

[din((Vrv)Pp)]j = [PF(AFU)]j + [A(Vrv)l/]j + tr[AVroly;

holds for each j = 1, 2,3, which means that
divp ((Vrv)Pr) = Pr(Apv) + A(Vro)v + tr[AVio]w. (4.A.3)
Calculations of the second term divp (Pp(va)T) are more complicated. Since

3
[Pf‘ VF'I} :| Z V’LVk‘ 8tan k>
Ot
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we have [divr (PF(VFU)T):| = (1 + B2 + B3, where
j

3
Bl I Z (a;'tan Vkatcm Z A“Vkatom
i,k=1 i,k=1
3
By i=— Y w0 )0 v = Y viApd oy,
ik=1 ik=1

3
By =Y (8 — vivi) O} i vy,

ik=1

By the definition of the mean curvature,

3
Z (85 v )vg = H [(Vro)v] ..

k=1
Since A;r = Ay; and Av =0,
3
52 — Z (8§a”vk)Akiui = — [(VFU)AV]]. =
ik=1
For B3 we have
3 3
By = 01l — Y " wp{v - V(91 vp) }-
i=1 k=1

The second term on the right-hand side vanishes since v - Vr (8;“”1%) = 0 for each j and k.
We apply (4.2.11) to the first term to get

3 3 3

B3 = Z a;ﬁ.anafa”w + Z[Avai]il/j — Z[Avl"vi]jyi
=1 i=1 i=1

= 8§an(divrv) + tr[AVoly; — [A(Vro)y] .

Therefore, it follows that

[divr (Pp(vpv)T)L = 9" (divrw) + [(HIs — A)(Vro)v], + tr[AVroly,

for each j = 1,2,3 and thus
divr (Pr(Vro)!) = Vr(divre) + (HIz — A)(Vrv)v + tr[AVio]v. (4.A.4)
Substituting (4.A.3) and (4.A.4) for (4.A.2) we obtain the formula (4.2.13). O

Proof of Lemma 4.2.6. For p € [—¢,¢] let T, := {x € R? | d(x) = p} be a level-set surface of
I'. Suppose that the change of variables formula

o) dH3(z / Fy + pr())J (y, p) dH2 () (4.A.5)
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holds for each p € [—¢,¢]. Then (4.2.20) and (4.2.21) follow from this formula and

NECS | ( / 56 cm2<z>> dp.

which is the well-known co-area formula (see e.g. [11, Theorem 2.9]), and

fl@)di(x) = | f(2)dH(z) + | f(z)dH(2).

Qe I'e I_.

Let us prove (4.A.5). Since I' is compact, we may take finitely many open subsets Uy of
R? and local parametrizations pg: Uy — I (K = 1,...,N) such that {ug(Ug)}_, is an
open covering of I'. Let {cpk}]kvzl be a partition of unity of I' subordinate to the covering
{1 (Uy) 1., and for each p € [—¢,e] and k =1,..., N set

i (s) = p(s) + pr(ur(s)),  ©n(pp(s)) == or(ur(s)), s € Us.

Then ui: Uy — I'y is a local parametrization of I', whose domain is the same as that
of py, and {uf(Uy) Y, is an open covering of I',. Moreover, {¢}};—1 is a partition of
unity of I', subordinate to the covering {/LZ(Uk)}]kvzl. By these partitions of unity and the
definition of integrals over a surface, the proof of (4.A.5) reduces to showing that, for any
local parametrization p: U — T’ with an open subset U of R? and u?: U — I', given by
P (s) = p(s) + pr(u(s)), s € U, the formula

\/det 0°(s detf(s), seU (4.A.6)

holds. Here @ is a square matrix of order two given by 6 := V'u(V'p)”, where

O Ofpe 3'#3) < 0 )
Vip:=[.1 1 ! o=,
a <6éﬂl Dopa Otz b 0si

and 67 := V' (V'p?)T. We define square matrices M and M” of order three as

M) = ([V(V;fgfffﬁ)  MMe)= (ﬁ"épi‘if )

Here we see v(u(s)) as a three-dimensional column vector. In the following argument, we
sometimes suppress the argument s and abbreviate v(u(s)) to v. For i = 1,2 the i-th
component of V’u(s)v(u(s)) € R? is 9;u(s) - v(u(s)) = 0 since 9;u(s) is tangent to I at p(s).
Therefore, (V/'u)v = 0 and

- (RS )69

which implies det = det(MM7) = (det M)?. On the other hand, since
P (s) = p(s) + pv(p(s)) = pu(s) + pVd(u(s))
by (4.2.2) and thus

Vi (s) = V'u(s){Ls + pV2d(u(s))} = V'u(s){Is — pA(uls))}



4. Singular limit equations for incompressible fluids in moving thin domains 106

by (4.2.9), we have V/u?(s)v(u(s)) = 0 by V'u(s)v(u(s)) = 0 and (4.2.7). Hence as in the
case of § and M we have det 0” = (det M*)%. Moreover, by (4.2.7) and the symmetry of the
matrix Iz — pA,

we = (VIBZPD) (V) (1= p) = b1(1a = pa),

Hence we get
det 0” = (det M*)? = {det M - det(I3 — pA)}% = {det(I3 — pA)}* det .
Finally we observe that the Weingarten map A has the eigenvalues 0, 1, and ko and thus
det{l3 — pA(u(s))} = 1- {1 = pra(u(s))} - {1 — pra(u(s))}
= J(u(s),p) (>0 for sufficiently small p)
to obtain the formula (4.A.6). O

Now let us return to the moving surface I'(¢) and prove Lemmas 4.2.7 and 4.2.8.

Proof of Lemma 4.2.7. As in the proof of Theorem 4.3.1 we use the abbreviations (4.3.13).
Let f be a function on Sy and f an arbitrary extension of f to Np satisfying f|s, = f. For

(x,t) € Qe we have f(m,t) = f(m,t) by m = w(x,t) € I'(t) and thus
V(f(ﬂ',t)) = Vﬂ'(l’,t)Vf(ﬂ', t),
O (f(m,t)) = 0uf(m,t) + (Oym(,t) - V) f(m,1).
Hence it is sufficient for (4.2.25) and (4.2.26) to show that
Vr(z,t) = Pr(m,t) + d(z,t)A(m, t) + R(d?), (4.A.7)
o (x,t) = V& (m, t)v(m,t) + d(z, t) VeV (m, 1) + R(d), (4.A.8)
since
AVf = APV f = AVr/f,
of + (Vv -V f=0f, (Ve - V)f = (Ve - Vi) f

on I'(t) by the definition of the tangential gradient, (4.2.8), and (4.2.22) with v = V{¥v. By
m(x,t) =z — d(z,t)Vd(x,t) and (4.2.2) we have

Vr(z,t) = I3 — Vd(x,t) @ Vd(z,t) — d(z,t)Vd(z,t)
= Pr(m,t) — d(x,t)V3d(z,1t).
Also, we expand V2d in powers of d and apply (4.2.9) to obtain
V2d(z,t) = V2d(m,t) + R(d) = —A(m,t) + R(d).

Hence (4.A.7) follows. Similarly, we differentiate n(z,t) = x — d(x,t)Vd(z,t) with respect
to t and apply (4.2.2) and (4.2.4) to get

oym(x,t) = V& (m, t)w(m, t) — d(z, )0, Vd(z,t).
Moreover, by 0;Vd = Void, (4.2.4), and (4.A.7),
8 Vd(z,t) = —V (V¥ (m,t)) = —~Vr(z, ) VI (m,t) = =Vr V¥ (m,t) + R(d),

where VFN is an extension of VFN to Nr with ‘~/FN ls; = VFN . Applying this to the above
equality for Oy we obtain (4.A.8). O
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Proof of Lemma 4.2.8. We use the abbreviations (4.3.13). For 4,j = 1,2,3, let M;; be the
(i,j)-entry of a square matrix M of order three. We differentiate both sides of D;j(x) =
Sij(m) + d(z, t)S,}j(ﬂ) + R(d?) with respect to x; and apply (4.A.7) to get

0;Dyj(x) = 0" Si;(m) + Si;(m)dd(x, t) + R(d).

Therefore, the j-th component of div D(z) is

3

[div D(z)]; = Z 9;Dij(x Z{awns” Si(m)0id(x,t)} + R(d(x, t))
= [divpS(m)]; + [(Sl(w)) Vd(:v,t)L + R(d)

and (4.2.27) follows by (4.2.2). O

4.B Comparison of vector Laplacians

The purpose of this appendix is to give a proof of the formula (4.2.15) in Lemma 4.2.4. Main
tools for the proof are the Gauss formula (4.2.14) and

2
ApX =tV'X =3 (ViViX - Vg, X) on T (4B.1)
=1

for any tangential vector field X on I', where {e;, ea} denotes a local orthonormal frame of
TT (i.e. an orthonormal basis of the tangent plane of I' defined on a relative open subset of
I') and V; := V,, (for a proof of (4.B.1) see [26, Proposition 34] and [32, Proposition 2.1 in
Appendix CJ). Hereafter all calculations are carried out on the surface I'.

We fix coordinates of R® and write x; (j = 1,2,3) for the j-th component of a point
x € R3 under this fixed coordinates. Let X = (X1, Xa, X3) be a tangential vector field on I'
and {ei, ea} be a local orthonormal frame of TT. For i = 1,2, by the Gauss formula (4.2.16)
and the fact that V;X is tangential we have

ViX = (e;- V)X — (AX - e;)v = Pr{(e; - Vr)X}.
Here the second equality follows from Prv = 0. Hence

V V X = Pp [(ez . VF){(QZ . VF)X — (AX . 601/}]
= PF [(62 : Vr){(ez . VF)X}] — (AX . ei)Pp{(ei . VF)V},
where we used Prv = 0 again in the second equality. By setting e; = (ell, es, 61) the j-th
component of the vector (e; - Vr){(e; - Vr)X} (j = 1,2,3) is of the form

3
Z kamn( éaltaan) — Z{ekelamnatanX +€ (8tan l)altanX }
k=1 k=1

= tr[(e; ® €;)VEX;] + {(e; - Vr)e;} - VX

Also, by the symmetry of the Weingarten map A = —Vrpv,

3

[ €; VI‘ ] = Z kc‘)t‘m Zei'cAkj = —[Aei]j.

k=1
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By these equalities and (4.2.8) the j-th component of V;V; X is

l_|

3
Vx| = 3Pk (br[(ei @ ) VEXR] + {(ei - Vr)ei} - ViXp)
A
+ (AX - e;))[Ae];. (4.B.2)

On the other hand, ﬁﬁ- X I8 of the form

Voo X = Pe{ (Vie:- Vo) X } = Po([{Pr(e: - Vr)ei} - Vi) X)

and, since {(PrF) - Vr}G = (F - Vr)G holds for (not necessarily tangential) vector fields F'
and G on I' we have

{ Viei } 23: Pr] Jk( €i- Vr)ei} - VFXk>- (4.B.3)
k=1

Applying (4.B.2) and (4.B.3) to (4.B.1) we get

2
ABX Z <Z PF ]ktr (6, &® eZ)VFXk} (AX . e,)[Aez]]> .

i=1 \k=1

Furthermore, since e; and es form an orthonormal basis of the tangent plane of I' it follows
that Z?zl(ei ® e;) = Pr and thus

2
Ztr [(62 ® ez)V%Xk] = tr[Prv%Xk] = tI‘[V%Xk} = ArX;
=1

for each £ =1,2,3 by PrVr = Vr, and
2 2

D (AX -ei)Ae; =Y Ale; @ e) AX = APpAX = A’X
=1 =1

by (AX -e;)Ae; = (Ae; ® €,)AX = A(e; ® €;)AX and (4.2.8). Therefore,
3
ABX Z Pp ]kAer + [A X]j = [PFAFX] [AQX]J'
k=1
for each j = 1,2, 3, which yields the formula (4.2.15).
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Chapter 5

Navier—Stokes equations in a
curved thin domain

5.1 Introduction

We consider the three-dimensional Navier—Stokes equations
Ot + (uf - V)u® —vAu® +Vp® = f°, dive® =0 in Q. x (0,00)
imposed with Navier’s slip boundary conditions
u®-ne =0, [o(u",p")neltan +7eu° =0 on T x (0,00)
and initial condition
Um0 = ug, in Q..
Here ). is a curved thin domain in R3 of the form

Qe ={y+rmy) lyel,re(eg(y)en(y)}, e€(0,1),

(5.1.1)

(5.1.2)

(5.1.3)

(5.1.4)

where I" denotes a two-dimensional closed (i.e. compact and without boundary), connected,
and oriented surface in R® with unit outward normal vector field n, and gy and g; are
functions on I' such that g := g1 — go is bounded from below by a positive constant. We
denote by I'. and n. the boundary of 2. and its unit outward normal vector field. The

boundary T is the union of the inner and outer boundaries I'? and T} given by

Il = {y+egq(ynly) |yel}, i=0,L

Also, v > 0 is the viscosity coefficient independent of € and 7. > 0 is the friction coefficient

which takes different values on the inner and outer boundaries, i.e.
Ve 1= *yé on I‘é, 1=0,1,
where 70 and 7! are nonnegative constants. We further write

o(u®,p%) :=2wD(u") = pl3,  [o(u”, p°)necltan = Pelo(u”, p°)ne]

for the stress tensor and the tangential component of the stress vector on I's, where

_VuE + (Ve

D(u®) : 5 ,

P. =135 —n.®n;

111
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are the strain rate tensor and the orthogonal projection onto the tangent plane of I'.. Note
that [o(u®, p°)neltan = 2vP.D(u®)n. does not depend on p° and the slip boundary conditions
(5.1.2) can be expressed as

u®n. =0, 2vP.D(u’)n.+~vu"=0 on I x(0,00).
In what follows, we mainly refer to these conditions as the slip boundary conditions.

Partial differential equations in thin domains appear in many applications in solid me-
chanics (thin elastic bodies), fluid mechanics (lubrication, meteorology, ocean dynamics),
etc. They have been studied for a long time since the pioneering works [16,17] by Hale
and Raugel on damped wave and reaction-diffusion equations. In the study of the three-
dimensional Navier—Stokes equations in thin domains we expect to show the global-in-time
existence of a strong solution for large data according to the smallness of the width of thin
domains, since a three-dimensional thin domain with very small width can be considered al-
most two-dimensional. Raugel and Sell [53] first established the global existence of a strong
solution to the Navier—Stokes equations with purely periodic or mixed Dirichlet-periodic
boundary conditions in the thin product domain Q. = Q2 x (0,e) with a rectangle Q2 and
sufficiently small e > 0. Later, Temam and Ziane [65] generalized the results in [53] in the
case of the thin product domain Q. = w x (0,¢) with a bounded domain w in R? and other
boundary conditions which are combinations of the Dirichlet, free, and periodic boundary
conditions. We refer to [23-25,44,45] and the references cited therein for further generaliza-
tion and improvement on the results in [53,65].

The above cited papers deal with thin product domains whose boundaries and limit
sets are both flat, but there are various kinds of nonflat thin domains in physical problems
(see [54] for examples of nonflat thin domains). A nonflat thin domain was first considered
by Temem and Ziane [66], who studied the Navier-Stokes equations with free boundary
conditions in a thin spherical shell

Q. ={zcR|a<|z|<a+ac}, a>0

to give a mathematical justification of derivation of the primitive equations for the atmo-
sphere and ocean dynamics (see [38-40]). Another generalization of the shape of a thin
domain was made by Iftimie, Raugel, and Sell [26], who studied the Navier—Stokes equations
in a flat thin domain with a nonflat top boundary

Q. ={x=(2",23) €R® |2/ € (0,1)%, 0 < w3 < eg(2)}, ¢:(0,1)> =R

with periodic boundary conditions on the lateral boundaries and Navier’s slip boundary
conditions on the top and bottom boundaries. Their result was extended by Hoang [20] and
Hoang and Sell [21] to a flat thin domain both of whose top and bottom boundaries are not
flat (see also [22] for the study of two-phase flows in a flat thin domain with nonflat top and
bottom boundaries).

The slip boundary conditions were proposed by Navier [47], which state that the fluid
slips on the boundary with velocity proportional to the tangential component of the stress
vector. They arise in the study of the atmosphere and ocean dynamics [38-40] and the
homogenization of the no-slip boundary condition on a rough boundary [18,27]. We observe
in Remark 5.1.7 that the slip boundary conditions give a “proper” viscous term in the sense
of [12,62] in surface fluid equations derived as the thin width limit of the Navier—Stokes
equations in a curved thin domain.

In this chapter, we establish the global existence of a strong solution to the Navier—Stokes
equations (5.1.1)—(5.1.3) in the curved thin domain €. given by (5.1.4) for large data of order
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=42 Our result is basically the same as those in [20,21,26], but an additional assumption
is required (see Assumption 2 and Remark 5.1.5).

Another subject of this chapter is a singular limit problem for the Navier—Stokes equations
(5.1.1)—(5.1.3) when the curved thin domain 2. degenerates into the closed surface I' as
€ — 0. We are concerned with derivation of limit equations on I' and comparison of solutions
to the bulk and limit equations. There are several works on the asymptotic behavior of
eigenvalues of the Laplacian on a curved thin domain around a hypersurface (see e.g. [29,
34,57]), but a singular limit problem for evolution equations in curved thin domains has not
been studied well. Temam and Ziane [66] first considered this problem for the Navier—Stokes
equations in the thin spherical shell and proved the convergence of the average in the thin
direction of a solution towards a unique solution to the Navier—Stokes equations on a sphere
in R3. Prizzi, Rinaldi, and Rybakowski [51] studied a reaction-diffusion equations in a curved
thin domain degenerating into a lower dimensional manifold and compared the dynamics of
the original and limit equations (see also [52]). Later, the present author considered the
heat equation in a moving thin domain and derived a limit diffusion equation on its limit
evolving surface [42]. In the recent work [43], he also formally derived limit equations of
the Navier—Stokes equations in a moving thin domain that is a tubular neighborhood of an
evolving closed surface. The purpose of this chapter is to give a mathematical justification
(and generalization) of the result in [43] in the case of the stationary curved thin domain of
the form (5.1.4).

To state our main results let us give several notations and assumptions. Let P. be the
Helmholtz-Leray projection from L?(£2.)? onto the solenoidal space

L2(Q) = {ue L*(Q.)? | divu =0in Q, u-n. = 0 on Q.}.

We denote by A. the Stokes operator on L2().) associated with slip boundary conditions
and write D(A.) for its domain (see Section 5.5.2). With these notations the problem
(5.1.1)—(5.1.3) is formulated as an abstract evolution equation

O + Au® +P.(u - V)u® =P f°,  u®li=0 = ug.

We refer to [8, 10,61, 64] and the references cited therein for the study of this abstract
evolution equation. For a function ¢ on €. we define its average in the thin direction by

1

eg1(y) p
M = / +rn T, erl.
©(y) 90 L oy (¥)) Yy

Also, by M,;u := PMu we denote the averaged tangential component of a vector field u on
Q., where P := I3 — n ® n is the orthogonal projection onto the tangent plane of ' (see
Section 5.6.1). For a vector field v on I" we define the surface strain rate tensor

Dr(v) = P <VF”+2(VF”)T> P,

where Vi := PV is the tangential gradient operator on I', and set
K(T):={ve H(T)?> |v-n=0and Dr(v) =0 on I'}. (5.1.5)

A vector field X € K(T) satisfies Vy X - Z +Y - VzX = 0 for all tangential vector fields
Y and Z on T, where Vy X := P(Y - Vr)X is the covariant derivative of X along Y (see
Appendix 5.C). Such a vector field generates a one-parameter group of isometries of I" and
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is called a Killing vector field. It is also known that /C(I") is finite dimensional. For details
of Killing vector fields, we refer to [30,50,63].

In the proofs of our main results we need the uniform boundedness and coerciveness in &
of the bilinear form corresponding to the Stokes operator A. on Ve := L2(Q.)NH(Q:)? (see
Lemma 5.5.4). To establish them we make the following assumptions on the surface and the
friction coefficients.

Assumption 1. There exists a constant ¢ > 0 such that
i <ee, i=0,1. (5.1.6)
Assumption 2. Either of the following conditions is satisfied:
(A1) There exists a constant ¢ > 0 such that
max AL > ce. (5.1.7)
(A2) The function space
Ky(T) :={veI)|v-Vrg=0onT} (5.1.8)
contains only a trivial vector field, i.e. K4(I') = {0}.

Assumptions 1 and 2 are imposed in Section 5.5 except for Section 5.5.1 and Sections 5.7,
5.8, and 5.10.

Now let us give the main results of this chapter. The first result is the global-in-time
existence of a strong solution for large data.

Theorem 5.1.1. Let Q. be the curved thin domain given by (5.1.4). Suppose that
o the closed surface I' is of class C°,
e go,q1 € CHT) satisfy g = g1 — go > ¢ on T with some constant ¢ > 0, and
o Assumptions 1 and 2 are satisfied.
Then there exist constants €g,co € (0,1) such that the following statement holds: for each
e € (0,20) if given data u§ € V. and f¢ € L°°(0, 00; L?(2:)?) satisfy
IAY 4§13 200 + 1P 117 (0 00i22(00))
+ |’MTU8||%2(F) + ||MT]P)£f€||%00(07T;H—1(F7T1“)) <coe”!, (5.1.9)
then there exists a global-in-time strong solution
u® € O([0,00); V) N L, ([0, 00); D(A:)) N Hioo ([0, 00); LE(€22))
to the Navier—Stokes equations (5.1.1)—(5.1.3).
In (5.1.9) we write H~1(I', 7T) for the dual space of
HYT,IT) :={ve H'T)® |v-n=0onT}.

Note that V. = D(A;/ 2) and the L?(.)-norm of A;/ %y for u € V. is uniformly equivalent in
e to the canonical H!(.)-norm of u (see Lemma 5.5.5). We also establish several estimates
for a strong solution in terms of €.
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Theorem 5.1.2. Let c1, co, a, and B be positive constants. Then, under the same assump-
tions as in Theorem 5.1.1, there exists €1 € (0,1) such that the following statement holds:
for e € (0,e1) if u§ € Vz and f¢ € L*(0, 00; L*(Q:)3) satisfy

IAY 24§ |72 (00 + 1P f G e (0r00r2 () < €167, (5.1.10)
Mg |72y + | Mo PefE oo 0,001 )y < €267,
then there exists a global-in-time strong solution u® to (5.1.1)—(5.1.3) satisfying
[u* ()17 2.y < e + ),
¢ , 1 (5.1.11)
|16 B ds < clet e+ )0+ ),
0
and
[ ()70 < c(e™H 67140,

(5.1.12)

t
/ ()22, s < e+ + e7HB)(1 1)
0

for allt > 0, where ¢ > 0 is a constant independent of €, u®, and t.

The proofs of Theorems 5.1.1 and 5.1.2 are given in Section 5.8.

Next we give results on a singular limit problem for the Navier—Stokes equations (5.1.1)—
(5.1.3) as the curved thin domain 2. degenerates into the closed surface I'. We define function
spaces of tangential vector fields on I’

L*(D,TT) :={v e L*(T)®* |v-n=0o0n T},
L2, (T, TT) := {v € L*(I, TT) | divp(gv) = 0 on I'},

and Vj := wa(f‘, TT)N HY(T',TT), where divr is the surface divergence operator on I' (see
Sections 5.2 and 5.9).

Theorem 5.1.3. For e € (0,1) let u§ € V2 and f¢ € L*(0,00; L*(Q:)3). Under the same
assumptions as in Theorem 5.1.1, suppose further that the following conditions are satisfied:

(a) There exist ¢ > 0, g5 € (0,1), and o € (0,1) such that

IAY*u§ 3200 + 1P FllGoe (00022 (02 < 07 F

for all e € (0,e2).
(b) There exist vg € L*(T',TT) and f € L*°(0,00; H-Y(T, TT)) such that
lim Myu§ = vy weakly in  L*(T,TT),
e—0

lirr(l)MTIP’ng: f weakly-x in  L>(0,00; H-Y(I',TT)).
E—

(c) Fori=0,1 there exists v* > 0 such that lim._,ge~19i = 4"
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Then there exists €3 € (0,1) such that the Navier-Stokes equations (5.1.1)~(5.1.3) admit a
global strong solution u® for each e € (0,e3) and

lim Mu®-n =0 strongly in C([0,00); L*(T)).

e—0

Moreover, there exists a vector field

loc

v € C([0,00); L, (T, TT)) N L, ([0, 00); V) N H, ([0, 00); H (T, TT))
such that, for each T >0,

lim M,u® =v  weakly in  L*(0,T; H (T, TT)),

e—0

lir% O Mu = 0w weakly in  L*(0,T; H (T, TT)),
E—

and v 1s a unique weak solution to the equations

g(@tv + ﬁw) —2v {Pdivr [¢Dr(v)] — ;(Vpg ® Vpg)v}
+ (P 4+ +gVrg=gf on T'x(0,00) (5.1.13)
and

divp(gv) =0 on T x (0,00), v|tmo=1v9 on T (5.1.14)

with an associated pressure q.

We give the definition of a weak solution to (5.1.13)—(5.1.14) and prove Theorem 5.1.3
in Section 5.10.5 (see also Lemma 5.10.21 for construction of an associated pressure). Here
Vv = P(v-Vr)v is the covariant derivative of v along itself. Note that we do not divide
(5.1.13) by g since they correspond to the weighted Helmholtz—Leray decomposition

U =g + gvaa v E L2<F7TF)7 Vg € LZO'<P7TF)7 ngq € LEU(F7TF)L7

which we derive in Section 5.9.3. We also point out that the weak limit vy of M;ug actually
belongs to L?]U(F, TT), while M;uf does not so in general (see Lemma 5.10.22).

If the weak and weak-+ convergence of M,ug and M, PP, f¢ are replaced by the strong
convergence, then we get the strong convergence of M uf.

Theorem 5.1.4. For ¢ € (0,1) let ui € Vz and f¢ € L°°(0,00; L?(Q%)3). Suppose that the
assumptions in Theorem 5.1.8 are satisfied with the condition (b) replaced by the following
condition:

(b’) There exist vg € L*(T',TT) and f € L*>(0,00; H~Y(T,TT)) such that
lim M,u§ =wvo strongly in  L*(T,TT),
e—0
Iir% M,P.f¢ = f strongly in L*°(0,00; H YT, TT)).
E—

Then the statements in Theorem 5.1.3 hold. Moreover, for each T > 0 we have

lim Myu =v  strongly in  C([0,T); L>(T, TT)) N L?(0, T; H*(T',TT)).

e—0
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We give an estimate for the difference between M, u® and v (see Theorem 5.10.23) and
prove Theorem 5.1.4 in Section 5.10.6. Moreover, we estimate the difference between a
strong solution u® to (5.1.1)—(5.1.3) and a weak solution v to (5.1.13)—(5.1.14) in . (see
Theorem 5.10.25). It is worth noting that the normal derivative (with respect to I') of u® is
compared with a surface vector field of the form

1

{v(y,t) - Vrg()in(y), (y,t) €T x(0,T),

where W = —Vpn is the Weingarten map (or shape operator) of ' (see Theorem 5.10.26).
Therefore, the normal derivative of u® is not necessarily small even though the curved thin
domain €). and the limit surface ' are stationary.

Let us explain the idea of the proofs of our main results. In the proof of the global
existence of a strong solution (Theorem 5.1.1) we follow the arguments in [20,21] to show that
the H'-norm of a strong solution is bounded uniformly in time by a standard energy method.
By the same arguments we also get uniform estimates for a strong solution (Theorem 5.1.2).
The main tools for the proof are an extension of a surface vector field to 2. that satisfies the
impermeable boundary condition (the first equation in (5.1.2)) given in Section 5.3.3 and
average operators in the thin direction defined and investigated in Section 5.6. Using them,
the slip boundary conditions, and Sobolev type inequalities on 2. and I', we derive a good
estimate for the trilinear term

((u - V)u, Agu)L2 u € D(A;)

Q)
in Section 5.7. A key idea for the proof is to decompose a vector field on €). into the average
part, which is almost two-dimensional, and the residual part, which satisfies the impermeable
boundary condition (see Section 5.6.3). Such decomposition enables us to apply a product
estimate for a function on 2. and that on I' to the average part (see Corollary 5.6.19) and a
good L*>-estimate following from the Agmon and Poincaré inequalities to the residual part
(see Lemma 5.6.22).

For the proof of the global existence and uniform estimates of a strong solution, we also
require the uniform equivalence of the norms

CilHUHHl(QE) < ”A;/2UHL2(QE) < cllull g1

forueV, = D(A;/Q) with a constant ¢ > 0 independent of ¢ (see Lemma 5.5.5). It follows
from the uniform boundedness and coerciveness of the bilinear form corresponding to the
Stokes problem in €. with slip boundary conditions, for which the uniform Korn inequalities
on (). established in Section 5.4.1 and Assumptions 1 and 2 are essential (see Lemma 5.5.4).
It is more difficult to show the uniform equivalence of the H?-norms

¢ HNullgz. < 1Acullr2.) < clullr o,

for u € D(A:) (see Lemma 5.5.11). The right-hand inequality follows from a uniform L2-
estimate for the difference between the Stokes and Laplace operators (see Lemma 5.5.8). To
prove the left-hand inequality, we derive a uniform a priori estimate for the vector Laplacian
with slip boundary conditions, which involves calculations of covariant derivatives on the
boundary I'. (see Section 5.5.4).

To prove Theorems 5.1.3 and 5.1.4 on a singular limit problem, we proceed as in [42]
to transform a weak formulation for the Navier-Stokes equations (5.1.1)—(5.1.3) into that
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for the averaged tangential component of a strong solution to (5.1.1)—(5.1.3) with residual
terms (see Section 5.10.2). For this purpose, we approximate the bilinear and trilinear forms
in the weak formulation for (5.1.1)—(5.1.3) by those in the weak formulation for (5.1.13)—
(5.1.14) by using the slip boundary conditions and the average operators (see Section 5.6.4).
Moreover, we need to construct an appropriate test function for (5.1.1)—(5.1.3) from a test
function for (5.1.13)—(5.1.14), which is a weighted solenoidal vector field on I'. To this end,
we use the impermeable extension of a surface vector field to €. (see Section 5.3.3) and a
uniform H!-estimate for the gradient part of the Helmholtz-Leray decomposition on €2, (see
Lemma 5.5.1).

After transformation of the weak formulation, we derive the energy estimate for the
averaged tangential component of a strong solution by using its weak formulation in Sec-
tion 5.10.3. In derivation of the energy estimate, we cannot substitute the averaged tangential
component itself for its weak formulation since it is not weighted solenoidal on I' in general.
To overcome this difficulty, we employ the weighted Helmholtz—Leray projection on I' (see
Section 5.9.3) to replace the averaged tangential component with its weighted solenoidal
part. Then we derive the energy estimate for the weighted solenoidal part by substitut-
ing it for its weak formulation and apply an estimate for the gradient part of the weighted
Helmholtz—Leray decomposition on I' to obtain the energy estimate for the original aver-
aged tangential component of a strong solution, which enables us to show that the averaged
tangential component converges weakly as € — 0 and that the limit is a weak solution to
the limit equations (5.1.13)—(5.1.14) (see Section 5.10.5). We also derive an estimate for the
difference between the averaged tangential component of a strong solution to (5.1.1)—(5.1.3)
and a weak solution to (5.1.13)—(5.1.14) by using their weak formulations in Section 5.10.6.
Here we again use the weighted Helmholtz—Leray projection on I' to take the difference of
the solutions as a test function in the weak formulations.

Now let us give remarks on Assumption 2 and the limit equations (5.1.13)—(5.1.14).

Remark 5.1.5. In the case of the perfect slip boundary conditions, i.e. the boundary
conditions (5.1.2) with 7. = 0, we need to assume that the condition (A2)

KyT)={ve H(T)*|v-n=0, Dr(v) =0, v -Vrg=0onT}={0}

in Assumption 2 is satisfied. This assumption is also made in [20]. On the other hand, the
authors of [21,26] consider the Navier—Stokes equations in

Q. ={z=(2/,23) eR® |2’ € T?, ego(2') < 23 <eg1(2))}, ¢g0,91: T> = R

with perfect slip boundary conditions on the top and bottom boundaries without assuming
that K,(T?) = {0} (here T? is the flat torus). When I' = T?, we have

Kg(T?) = {(a,0) € R?® | a € R? a-Vag = 0 in T?},
where g = g1 — go and V3 is the gradient operator in 2’ € R?. Assuming that
Kg(T?) = {(a,0) € R® | a € R? a - Vago = a- Vags = 0 in T?}

in [21,26] (in fact go = 0 in [26]), the authors get K, (T?) C L2(Q:), i.e. any vector in Ky(T?)
satisfies the divergence-free condition and the impermeable boundary condition. Based on
this fact, they decompose

LQ(QE)Q = EE(QE) @ ICQ(TQ) ® G2(QE)7
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where (we denote by K,(T?)% the orthogonal complement of Ky4(T?) in L?(£.)3)
L2(Q:) = L3(Q:) NKy(T?),  GH(Q) = {Vg e LX) | g € H'(Q)},
and study the abstract evolution equation
Ot + At + Po(uf - V)us =Pof,  uflimo = uf (5.1.15)

in Eg(Qs), where P, is the orthogonal projection from L2(€2.)3 onto EE(QE) and A, is the
Stokes operator on Eg(Qg) associated with perfect slip boundary conditions. The reason
why they consider (5.1.15) in L2(€).) is that they prove the uniform coerciveness in ¢ of
the bilinear form corresponding to A, on V. = L2(€2.) N H'(€:)? (see [21, Proposition 4.12]
and [26, Theorem 2.2]).

In this case, however, we need to be careful about recovery of the original Navier—Stokes
equations. By (5.1.15) with a strong solution

u € C([0,00); V2) N LE,0([0,00); D(AL)) N Hpb ([0, 00); L2 (922)),
we a priori get
Opu® — vAUE + (uf - V)u® + Vp° +a = f°

in L?(Q.)3 with some function a = a(t) € Ky4(T?), but it vanishes if we assume that f(t) €
ICg(’]I'Z)J- for all t > 0. Indeed, noting that dyus, Vp® € K,(T?)L we take the inner product
of the above equation with a to get

la* dz = v Aua-ad:ﬂ/ (u® - V)u® - ade.
QE QE €

By integration by parts (see (5.5.13)), the divergence-free and perfect slip boundary condi-

tions on u, and D(a) = 0 (note that a € K,(T?) is independent of ) we have

Auf-adr=-2 | D) : D(a)dx =0. (5.1.16)
Q. Qe
Moreover, by integration by parts, the impermeable boundary condition on ¢, and diva = 0
we see that

1
/ (u® - V)u® dor = —2/ |u®|? div a dz = 0. (5.1.17)

€

By these equalities we obtain ||a(t)H%2(QE) =0, i.e. a(t) =0 for all t > 0, and the original
Navier—Stokes equations are properly recovered.

These arguments are not applicable to our case. To prove the uniform coerciveness in ¢
of the bilinear form corresponding to the Stokes problem in the curved thin domain €2, given
by (5.1.4) with perfect slip boundary conditions, we need to work on the space

L2(Q0) = {u € L2(Q:) | (u,0)12(0,) = 0 for all v € Ky(T)},

where ¥ is the constant extension of v: I' — R3 in the normal direction of I' (see Lemmas 5.4.3
and 5.4.5). In this case we have a decomposition

LX(Q:) = L) @ [L3(2:) NE,(D)] @ G2(Q:),  Ky(T) = {o | v € K,y(T)}-
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Here we note that we do not know whether or not K, (I') C LZ(€2.). For o € K,4(I') we have
divo = 0 in Q. (see Lemma 5.B.1), but for x = y + £g;(y)n(y) € T with y € T, i = 0, 1,

(z) - na(a) = (~1)ie ﬁ)‘(gﬂ (i) = 1Ts — eq: ()W (@)} Vrail)

does not vanish in general just by v - Vrg = 0 on I' (here W is the Weingarten map of T,
see Lemma 5.2.10). If we solve the abstract evolution equation (5.1.15) in L2(£).) to obtain
a strong solution u*, then we have

Opu® — vAUE + (u® - V)u® + Vp° + 0 = f°©

in L2(Q:)? with some U = ¥(z,t) € L2(Q:) N Ky(T). However, we cannot get v = 0 even if
we assume that f¢ € K, (), since the equality (5.1.16) with a replaced by @ is not valid in
general. Indeed, by (5.2.12) we have

D(v)(x) = 5 |{Is =W (y)} 'Vro(y) + {Vro)} {I —rW(y)} |,

r=y+rn(y) €Q,yel,re(ego(y),cq(y)),

DO | —

which does not vanish just by Dr(v) = 0 on I'. (The equality (5.1.17) is still valid for v
since divo = 0 in §2..) To avoid this difficulty in recovery of the original Navier—Stokes
equations we assume ICy(I") = {0} in the case of the perfect slip boundary conditions. This
assumption is also essential for derivation of an estimate for the difference between the Stokes
and Laplace operators (see Remark 5.5.9).

Remark 5.1.6. As we mentioned in Remark 5.1.5, the assumption Ky (I") = {0} is necessary
for our results in the case of the perfect slip boundary conditions, i.e. the boundary conditions
(5.1.2) with 7. = 0. A typical example violating this assumption is the thin spherical shell

c={zeR¥|1<|z] <1+¢}, (5.1.18)

whose limit surface is the unit sphere S? in R3. In this case Vrg = 0 on S? and the restriction
on S? of u(z) = e3 x &, * € R® with e3 = (0,0, 1) is a Killing vector field on S?, and thus
Kq(S?) = K(5%) # {0}. Hence our results do not cover the case of the thin spherical shell
with perfect slip boundary conditions.

The Navier—Stokes equations in the thin spherical shell was studied by Temam and
Ziane [66]. They imposed the Hodge (or de Rham) boundary conditions

u-ne =0, curluxn.=0 on 0,

which is called the free boundary conditions in [66]. It is mentioned in [66] that the Hodge
boundary conditions are equivalent to the perfect slip boundary conditions, but it is not true
for the thin spherical shell given by (5.1.18). Indeed, for u(x) = e3 x = we easily see that
D(u) = 0 and curlu = 2e3 in R?. Hence on the inner boundary S? with unit outward normal
ne(z) = —x we have

u-ne=—(e3xz)-x=0, P.D(u)n.=0, curluxn,=—2e3xzx

for z € S? and the last vector does not vanish in general. More generally, the Hodge boundary
conditions are equivalent to the perfect slip boundary conditions only when a boundary is
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a part of a plane. For example, on the plane {(2',0) | 2’ € R?} these boundary conditions
reduce to

uz(z',0) =0, dzuy(a’,0) = duz(2’,0) =0, 2z’ €R>

The difference between the Hodge and perfect slip boundary conditions is due to the curva-
ture of a boundary. It also appears in limit equations on a limit surface of the Navier—Stokes
equations in a curved thin domain (see Remark 5.1.7 below).

Remark 5.1.7. If g = 1 and 7° = 4! = 0, the limit equations (5.1.13)—(5.1.14) become
O + Vv — 2vPdivp[Dr(v)] + Vrg = f, diviv=0 on T x (0,00).
In [43, Lemma 2.5], it is shown that

2Pdivr[Dr(v)] = Apv+ Kv on T

for a tangential vector field v on I" satisfying divrv = 0 on I', where Ap = —V*V is the
Bochner Laplacian (see Appendix 5.C) and K is the Gaussian curvature of I' (see Sec-
tion 5.2.1). Hence the above equations are of the form

O+ Vv —v(Apv+ Kv)+Vpqg=f, diviv=0 on T x (0,00). (5.1.19)

These equations are called the “proper” Navier—Stokes equations on a Riemannian manifold
in [12,62] and were studied by Mitrea and Taylor [41], Nagasawa [46], and Taylor [62].
Note that Kv = Ric(v) for a tangential vector field v on the embedded surface I' in R3,
where Ric is the Ricci curvature. Also, the Bochner Laplacian is related to the Hodge
Laplacian Ap = —(drdj. +df.dr) with the exterior derivative dr by the Weitzenbéck formula
Ap = Ap — Ric. For details, see e.g. [30,50].

On the other hand, Temam and Ziane [66] derived the limit equations

O+ Vv —vAgv+Vrg=f, div;v =0 on S%x (0, 00)

from the Navier—Stokes equations in the thin spherical shell given by (5.1.18). Here Agv =
PA® is the tangential vector Laplacian of a tangential vector field v on S?, where 7 is the
constant extension of v in the normal direction of S? (see [66, Appendix]). In terms of our
notations given in Section 5.2.1 it is expressed as

Agv = PAT = PArv = Agv—W? on §?

by Lemmas 5.2.3 and 5.C.5. Moreover, when I' = S§? we have W = —P and thus W?2v = v
for the tangential vector field v. Thus, the limit equations in [66] become

o + Vv —v(Agv —v) +Vrg=f, divrv=0 on 52 x (0,00). (5.1.20)
Since K = 1 for the unit sphere S? our limit equations (5.1.19) are formally of the form
O+ Vv —v(Apv+v) + Vrg=f, diviv=0 on 52 x (0,00).

(Note that our results do not cover the case of the thin spherical shell given by (5.1.18)
with perfect slip boundary conditions.) The sign of v in the viscous term of this system is
opposite to that of (5.1.20), which produces different structures of the limit equations such
as the stability of a solution. As we mentioned in Remark 5.1.6, this is due to the difference
between the Hodge and perfect slip boundary conditions on a curved boundary.
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This chapter is organized as follows. In Section 5.2 we introduce notations for surface
quantities and function spaces on a closed surface and give the definition and basic properties
of a curved thin domain. We present in Section 5.3 fundamental formulas and inequalities
for functions on the surface and thin domain. In Section 5.4 we prove the uniform Korn
inequalities on the thin domain and the Korn inequalities on the surface. We define the
Stokes operator on the thin domain with slip boundary conditions and show its uniform
norm equivalence in Section 5.5. Also, we give a uniform estimate for the gradient part of
the Helmholtz—Leray decomposition on the thin domain, which is used in the study of a
singular limit problem. In Section 5.6 we define average operators in the thin direction and
derive several estimates for the average of functions on the thin domain. The main purpose of
Section 5.6 is to give decomposition of a vector field on the thin domain into the average and
residual parts and to establish useful estimates for them. We also use the average operators
to approximate bilinear and trilinear forms for functions on the thin domains by those for
functions on the limit surface. In Section 5.7 we prove a good estimate for the trilinear term,
i.e. the L2-inner product of the inertial term and the Stokes operator. The main ingredients
for the proof are the estimates for the Stokes and average operators given in Sections 5.5
and 5.6. Using the estimate for the trilinear term, we establish the global existence and
uniform estimates of a strong solution (Theorems 5.1.1 and 5.1.2) in Section 5.8. The last
two sections are devoted to the study of a singular limit problem when the curved thin domain
degenerates into the closed surface. In Section 5.9 we deal with weighted solenoidal spaces
on a closed surface. We give characterization of the annihilator of a weighted solenoidal
space and prove the weighted Helmholtz—Leray decomposition on the surface with several
estimates for the gradient part. In Section 5.10 we investigate the behavior of the average
in the thin direction of a strong solution to the Navier—Stokes equations in the curved thin
domain. Our goal is to show the convergence of the average towards a weak solution to
the limit equations on the limit surface (Theorems 5.1.3 and 5.1.4). In Appendix 5.A we
fix notations on vectors and matrices. We also prove some lemmas by elementary vector
calculus. In Appendix 5.B we give the proofs of lemmas in Section 5.2 involving calculations
of surface quantities of the surface and the boundary of the thin domain. We introduce
the Riemannian connection on a surface and show formulas for the covariant derivative of a
tangential vector field in Appendix 5.C.

5.2 Preliminaries

In this section we give notations and formulas on several quantities for a two-dimensional
closed surface and a thin domain in R3. Some lemmas in this section are proved just by direct
calculations involving differential geometry of surfaces. We give their proofs in Appendix 5.B
to avoid making this section too long.

Throughout this chapter we denote by ¢ a general positive constant independent of the
parameter €. Also, we fix a coordinate system of R? and write x;, i = 1,2,3 for the i-th
component of a point z € R? under the fixed coordinate system. For a vector a € R? we
denote by a;, i = 1,2, 3 the i-th component of a. Sometimes we write a’ or [a]; instead of a;.
Also, for a matrix A € R3*3 and 4,7 = 1,2,3 we denote by A;; or [A];; the (i,j)-entry of A.
Other notations and basic formulas on vectors and matrices are given in Appendix 5.A.
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5.2.1 Closed surface

Let T' be a two-dimensional closed (i.e. compact and without boundary), connected, and
oriented surface in R3. We assume that T is of class C* with £ > 2. By n and d we denote
the unit outward normal vector field of I' and the signed distance function from I' increasing
in the direction of n. Also, let k1 and k9 be the principal curvatures of I'. By the regularity of
I' we have n € C*~1(I")3 and k1, ke € C72(T). In particular, x; and kg are bounded on the
compact set I'. Hence we can take a tubular neighborhood N := {z € R? | dist(z,T") < 4},
d > 0 of I' such that for each z € N there exists a unique point 7(z) € I' satisfying

r=m(x)+d(z)n(r(x)), Vd(x)=n(r(x)). (5.2.1)

Moreover, d and 7 are of class C* and C*~! on N (see [15, Section 14.6] for details). By the
boundedness of k1 and k9 we also have

' <1—rri(y)<c forall yeT,re(=40),i=12 (5.2.2)

if we take 0 > 0 sufficiently small.
Let us define differential operators on the surface I'. For y € I' we set

P(y) =13 —n(y) @n(y), Qy):=n(y)@n(y).
By the definitions and the regularity of I we have P,Q € C*~1(I")3*3 and
I3i=P+Q, PQ=QP=0, P'=P2=P, Q"=Q*=Q on T.

The matrices P and () are the orthogonal projections onto the tangent plane and the normal
direction of T'. In particular, we have |P| = |Q| = 1 on . For n € CY(T") we define the
tangential gradient and the tangential derivatives of n as

Ven(y) == P(y)Vil(y), Dm(y) =Y _ Py)d;ily), yeTl,i=1,2,3
j=1

so that Vrn = (Dyn, Dyn, D3n). Here 7 is a C'-extension of  to N with 7j|r = 7. We easily
see that

PVrn=Vrn, n-Vrp=0 on I. (5.2.3)

Note that the values of Vrn and D,n are independent of the choice of an extension 7 (see
e.g. [11, Lemma 2.4]). In particular, the constant extension 77 := n o7 of n in the normal
direction of I' satisfies

Vﬁ(y) = an(y)v azﬁ(y) = Qin(y)v yel,i=1,2,3 (5'2'4)

since Vrr(y) = P(y) for y € I' by (5.2.1) and d(y) = 0. In what follows, a function 77 with an
overline always stands for the constant extension of a function 7 on I' in the normal direction
of I'. The tangential Hessian matrix of n € C?(I') and the Laplace-Beltrami operator are
given by

3
Vin = (D;D;n)ij, Arn:=tr[Ving] =Y Din on T.
=1
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For a (not necessarily tangential) vector field v = (v1,v2,v3) € C1(I')3, we define the tan-
gential gradient matrix and the surface divergence of v by

Dyvi Dyvy Djyvg 3
Vrv = | Dyv; Dyvy Dyvs |, divpv = tr[Vrv] = Z 0, on T
231)1 231)2 QgU:S 1=1

Note that Vv = PV% on I for any Cl-extension 9 of v to N with 9|p = v. When v € C?(T)3
we write

|VFU|2 Z ‘D D Uk‘ AFU = (Arvl,Apvg,Apvg) on I.

i,j,k=1
For a matrix-valued function A € C*(T")3*3 of the form
Ayp A Agg
A= (Aij)z‘,j = A21 A22 A23
A3z Az Asz

we define the surface divergence of A as a vector field on I with j-th component
[divr Al ZD Ay, j=1,2,3.

Next we give surface quantities on I'. We define the Weingarten map W, (twice) the mean
curvature H, and the Gaussian curvature K of I' by

W :=—-Vrn, H:=tr[W]=—divprn, K:=rkik2 on TI. (5.2.5)

Note that W, H, and K are of class C*~2 by the smoothness of I'.

Lemma 5.2.1. The Weingarten map W is symmetric and satisfies
Wn=0, PW=WP=W on T. (5.2.6)
We also have
divrP = Hn on T. (5.2.7)

Proof. For y € T we have W(y) = —Va(y) = —V2d(y) by (5.2.1) and (5.2.4). Hence W
is symmetric. Taking the tangential gradient of |n|?> = 1 on I' we get the first relation of
(5.2.6). Also, the second relation immediately follows from the first one. For j = 1,2,3 the
j-th component of divpP is of the form

3
— nmj) = Z(WMTL] + WZ]TLZ) = HTLj + [WTTLL'
=1

leFP

IIMw

by (5.2.5) and thus divpP = Hn + W7'n on I'. Applying W7 = W and Wn = 0 to this
equality we obtain (5.2.7). O
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By (5.2.1) the Weingarten map W has the eigenvalue zero associated with eigenvector
n. Note that the other eigenvalues of W are the principal curvatures 1 and ko (see e.g. [15,
Section 14.6] and [33, Section VIL.5]) and thus H = k1 + ko on T.

When we calculate the derivatives of the constant extension of a function on I'; the inverse
matrix of I3 — rW(y) for y € I and r € (—0,0) appears.

Lemma 5.2.2. The matriz I3 — rW (y) is invertible and we have
{Is =W ()}~ P(y) = Py){Is — rW(y)} (5.2.8)
for ally €T and r € (—0,0). Moreover, there exists a constant ¢ > 0 such that

¢ Hal < [{Is —rW(y)Yra| < clal, k=1, (5.2.9)
I = {I; —rW(y)} | < elr (5.2.10)

forally €T, r € (—=6,6), and a € R3.
Lemma 5.2.3. For all x € N we have
Vr(z) = {Is — d(z)W(z)} " P(a). (5.2.11)
Therefore, the constant extension i =non of n € CH(T') satisfies
Vi(z) = {Is — d(@)W(z)} ' Vrn(z), zeN (5.2.12)
and there exists a constant ¢ > 0 independent of n such that

! [Ven(@)| < [Va(@)] < e[ Vrn(a)]. (5.2.13)
V() — Ven(@)| < e|d() V() (5.2.14)

for allz € N. If T is of class C® and n € C?(I"), then we have
V()| < ¢ ([Vrn(@)] + ‘V%n(m)‘) . zeN. (5.2.15)
Moreover, A7 = Arn on T.

We give the proofs of Lemmas 5.2.2 and 5.2.3 in Appendix 5.B.
Since n = Vd in N by (5.2.1), we use (5.2.12) and W = —Vpn on I' to obtain

Va(z) = V2d(z) = — {Is — d(z)W(z)} ' W(z), z€N. (5.2.16)
If T is of class C3, then n € C?(I')? and thus
|Va(z)| <e¢, |V*a(z)|<e¢, z€N (5.2.17)

with some constant ¢ > 0 by (5.2.12) and (5.2.15).
Let us define the weak tangential derivatives of a function on I' and the Sobolev spaces
on I'. For a vector field v € C'(T")? we have

/divrvd?'-[2 :/din(Pv) d’H2+/divr[(U~n)n] dH?
r r r
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by the decomposition v = Pv+ (v-n)n, where H? is the two-dimensional Hausdorff measure.
The first integral on the right-hand side vanishes by the Stokes theorem, since Pv is tangential
on the closed surface I'. Moreover, to the second integral we apply divp(én) = Vré - n +
¢divpn = —¢H for € € CY(T"). Then we get

/dinv dH? = — /(v -n)H dH?
r T

for all v € C1(T")3. In particular, for n,¢& € CH(T) we set v = née; in the above formula,
where {e1, e, e3} is the standard basis of R3, to obtain

I r

Based on this identity, for p € [1,00] and i = 1, 2,3 we say that n € LP(T") has the i-th weak
tangential derivative if there exists 7; € LP(I") such that

[ mean? =~ [ wng+ tny an® (5.2.19)
I I

for all ¢ € CH(T). In this case we write D,n = n; and define the Sobolev space
WP(I) := {n € LP(I") | D;n € LP(T) for all i = 1,2, 3},

1/p
(I iy + 19 0mIG, ) i p € [1,00),

H77||W17P(F) = _
9/l Lo 0y + Vo0l oo 1) if p=ooc.

Note that W'P(T') is a Banach space. In particular, H'(I') = W2(T') is a Hilbert space
equipped with inner product (1,&) g1y := (1,€) 2y + (Vrn, Vré) p2ry. We also define the
second order Sobolev space

W2(T) = {5 € W'(T) | DD, € LP(T) for all i,j = 1,2,3},

1/p
S (I + 193005 0)) i p e [1,00),

HU”WZP(F) : )
Inllw ooy + IVEN Lo (1) if p=oo.

Then W?2P(T) is again a Banach space and H?(I') = W22(T') is a Hilbert space. In what
follows, we write WO?(T') = LP(T") for p € [1, o0].

Lemma 5.2.4. Let p € [I,00) and m =0,1,...,¢. Then C*(T) is dense in W™P(T).

We prove Lemma 5.2.4 in Appendix 5.B by standard localization and mollification argu-
ments. As in the case of a flat domain, Poincaré’s inequality holds on T'.

Lemma 5.2.5. Let p € [1,00). There exists a constant ¢ > 0 such that

17l ey < ellVenllLer) (5.2.20)
for alln € WHP(T) satisfying [mdH?* = 0.

We refer to [11, Theorem 2.12] for the proof of Lemma 5.2.5. Note that the proof given
there applies to a closed, connected, and oriented hypersurface of class C2.
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Let X(T") be a function space on I' like C™(T"), LP(T"), and W™P(T"). We define the space
of all tangential vector fields on I' whose components in X' (T") by

X[, TT) :={v € X(T)®|v-n=0o0nT}

Note that WP (T, TT) is a closed subspace of W™P(I")3, and thus a Banach space. Moreover,
an element of W™P(I', TT') with p # oo can be approximated by smooth tangential vector
fields on T'.

Lemma 5.2.6. Let p € [1,00) and m = 0,1,...,¢ — 1. Then C*~ (T, TT) is dense in
WMP(T, TT) with respect to the norm || - [|ym.»(r)-

Proof. Let v € W™P(T',TT) C W™P(T')3. By Lemma 5.2.4 we can take a sequence {0y},
in CY(I")? that converges to v strongly in W™P(I")3. For each k € N we set vy, := Piy, €
C*~ (', TT) (note that P is of class C*~! on T'). Then since v is tangential on T', we have
v — vy = P(v — 1) on I'. By this equality, P € C*~1(I")3%3, and the strong convergence of
{0132, to v in W™P(T')? we see that

||v — Uk||Wm,p(l") S C”U — @kHWm,p(F) -0 as k— oo.
Hence {vy}32, converges to v strongly in W™P(I', TT") and the claim is valid. O

Let H~1(I") be the dual space of H'(I") and (-, -)r be the duality product between H~1(I")
and H'(T'). We consider n € L?(T") as an element of H~1(I") by setting

(n,&r = (1.8 2y, €€ HI(T) (5.2.21)

to get the compact embeddings H*(T') < L?(T') — H~Y(T'). For n € Wh(T'), ¢ € H-Y(I),
and ¢ € H(T') we see that

(€ medel < €l =y lmell ) < cllmllwroe @ Ella= oy el ),

where ¢ > 0 is independent of 7, £, and (. Hence we can define n¢ € H-1(T") by

(né, )r = (&,np)r, € H'(T). (5.2.22)
Similarly, for n € L?(T') we can define D;n € H-1(T'), i = 1,2,3 by
(Din, &)1 := —(n, D€ + EHny) ro(ry, € € HY(T) (5.2.23)

since n and H are bounded on I'. Based on this definition we consider the weak tangential
gradient V7 of n € L?(T) as an element of H~!(T)? satisfying

(Vrn,v)r = —(n,divro + (v-n)H) 2y, vE€E HY(T)3. (5.2.24)
Also, the surface divergence of v € L?(I")? is given by
(divrv,mr = —(v, Ven +nHn)2(ry, 1€ HYT). (5.2.25)

Let H-1(I',TT) be the dual of H(T', TT') and [-, -]7r the duality product between H (', TT)
and H'(T,TT). It is homeomorphic to a quotient space of H~1(I")3.

Lemma 5.2.7. For f € H-Y(T') we define an equivalence class
] = {f e BN | Pf = PF in HO(T)PY.
Then the quotient space Q := {[f] | f € H~Y(I')3} is homeomorphic to H~(T,TT).
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Note that Q is a Banach space equipped with norm ||[f]|lo = inffe[f} ”f~HH71(F) (see
e.g. [56] for details).

Proof. Let f1,fo € H-YT)3. If Pfy = Pfy in H-YT)3, then (f1,v)r = {(fo,v)r for all
v € HYT,TT) by (5.2.22) and Pv = v. Hence we can define a linear operator L from Q to
H~Y(T,TT) by [L[f],v]rr := (f,v)r for [f] € Q and v € H'(I', TT), where f is any element
of [f]. By this definition we also see that

ILIf M- ,rry < inf HJEHH—l(F) = I[f1lle-
felf]

Hence L is bounded. Moreover, if L[f1] = L[f2] in H~*(I',7T), then

(Pf1,v)r = {f1, Pv)r = [L[f1], Pv]rr = [L[f2], Pv]rr = (f2, Pv)r = (P f2,v)r

for all v € HY(T') and thus Pf; = Pfy in H-Y(T)3, which means that [f;] = [f2] and L
is injective. To show its surjectivity, let ' € H~Y(I',TT'). Since HY(I',TT) is a Hilbert
space equipped with inner product of H!(T')3, by the Riesz representation theorem there
exists vy € H'(T',TT) such that [F,v]rr = (vp,v) gy for all v € H(T,TT). Then setting
fri=vp -3 | D?vp € H-*(I')® we observe by (5.2.21), (5.2.23), and 3>, n;D,v}, = 0 in
L2(T) for j =1,2,3 that

[, v]rr {0}, v7) 2y + (Divh, Div?) 2y }

Il
ﬁMw

1

27]

(v}, — D3l v\ = (fr,v)r = [LIf#], vlzr

I
™M

1

]

for all v € HY(T',TT), i.e. F = L[fr] in H YT, TT). Hence L: Q — H YT,TT) is a
bounded, injective, and surjective linear operator. Since its inverse is also bounded by the
open mapping theorem, Q is homeomorphic to H~!(T',7T). O

In what follows, we identify L[f] € H~Y(I',7T) in the proof of Lemma 5.2.7 with equiv-
alence class [f] for f € H~1(T')3. We further identify [f] with its representative Pf and
write [Pf,v]rr = (f,v)r for v € HYT,TT). When Pf = f in H }(T)3, we take f as a
representative of [f] instead of Pf. For example, if n € L?(T), then

(Vrn,v)r = —(n, divro + (v -n)H) p2r) = —(n,divr(Pv))LQ(F) = (PVrn,v)r
for all v € HY(T')? and thus PVrn = Vry in H-}(T)3. In this case we have
[Vrn, vlrr = —(n,divev) ey, n € L*(T), v € HY(I,TT). (5.2.26)
For n € WHo°(T') and f € H-Y(T',7T) we can define nf € H-Y(T',7T) by
nf,vlrr == [f,nv]rr, v e HYT,TT) (5.2.27)

since nv € HY(I',TT) and Imvll gy < clnllwree @ llvllgr@y- In Section 5.9 we give the
characterization of the annihilators in H~!(T')® and H~!(T,TT) of solenoidal spaces on T.
Since I' is not of class C*°, the space C*°(I") does not make sense and we can not consider

distributions on I'. To consider the time derivative of functions with values in function spaces
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on I', we introduce the notion of distributions with values in a Banach space (see [37,61,64] for
details). For T' > 0 and a Banach space X we define D’'(0,T'; X') as the space of all continuous
linear operators from C2°(0,T), the space of all smooth and compactly supported functions
on (0,7), into X. Here we say that f: C°(0,7) — X is continuous if { f(¢xr)}5>, converges
to f(gp) strongly in X when ¢, € C°(0,T), k € N are supported in the same closed
interval [a,b] C (0,T) and {0}py}32, converges to dly uniformly on [a,b] for all I > 0. We
consider L2(0,T; X) C D'(0,T; X) by identifying f € L?(0,T; X) with

T
f(o) == /0 SB[t dt e X, peC0,T).

For f € D'(0,T;X) we define the time derivative 0;f € D'(0,T;X) by 0cf(¢) == —f ()
for p € C2°(0,T). When f € L?(0,T; X), we have

O f(p) = —f(Orp) = / o) ft)dt € X, ¢ e C(0,T). (5.2.28)

If there exists & € L?(0,T; X) such that

T T
af(p) = E(p). ie — /0 Drp(t) £ (t) dt = /0 p(DEM dE (in X)

for all p € C2°(0,T), then we write 0;f = & € L?(0,T; X) and define
HY0,T;X) := {f € L*(0,T; X) | &, f € L*(0,T; X)}.

When ¢ € L%(0,T; L*T)), we can consider the time derivative of Vg as an element of
D'(0,T; HY(T,TT)). Let us show that the time derivative commutes with the tangential
gradient in an appropriate sense.

Lemma 5.2.8. Let g € L?(0,T; L*(T")). Then
Vr[da(e)] = [0:(Vra)l(p) in HY(T,TT)
for all ¢ € C°(0,T).

Proof. For all v € HY(T',TT) we observe by (5.2.24) and (5.2.28) that

Velda(o)l, elrr = (a(@r), diveo) pagr / Bup(1)(a(t), divev) s ry dt

—/OT Oyp(t)[Vra(t), v]rr dt = [[at(VFQ)](SO)W o

Hence the claim is valid. O

Let ¢ € L*(0,T; L?(T")). Based on Lemma 5.2.8, we consider the tangential gradient of
0yq € D'(0,T; L*(T)) as an element of D'(0,T; H~(T', TT)) given by

[Vr(0:9)](¢) := Vrl(0q) ()] = [0:(Vrg)l(p) € H (I, TT) (5.2.29)

for ¢ € C2°(0,T). We use this relation in construction of an associated pressure in the limit
equations (see Lemma 5.10.21).
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5.2.2 Curved thin domain

From now on, we assume that the closed surface T' is of class C° (except for Section 5.9).
Let go, g1 € C*(T) such that

9() :==g1(y) —go(y) 2 ¢ forall yel (5.2.30)

with a constant ¢ > 0. For ¢ € (0,1) we define a curved thin domain €. in R? as

Qe :={y+rn(y) |y eT, egly) <r <egny)} (5.2.31)

We write I'c for the boundary of €).. It is the union of the inner boundary I'? and the outer
boundary T'! given by

Fi ={y+egi(ynly) |lyel}, i=0,1

Since go and g; are bounded on T', there exists £ € (0, 1) such that Q. C N for all € € (0, €).
Replacing gg and g1 by égg and £g; we may assume € = 1. Note that the boundary I'. is of
class C* since I is of class C°, n € C*(T")3, and go, g1 € C*(I'). We use this fact in the proof
of a uniform a priori estimate for the vector Laplacian (see Section 5.5.4).

Let us give surface quantities on I'.. We define vector fields 7¢ and n’ on T' as

7i(y) == {Is — egi(v)W ()} ' Vrgi(y), (5.2.32)

ni (y) 1= (—1y+1 ) = =T () (5.2.33)

: VAR O]

for y € T and i = 0,1. Note that 7¢ is tangential on I by n - Vrg; = 0 and Wn = 0. Also, 7¢
and n’ are bounded on I' uniformly in ¢ along with their first and second order tangential
derivatives.

Lemma 5.2.9. There exists a constant ¢ > 0 independent of € such that

W) < e, Dyt <, |DDpri(y)| < e (5.2.34)

72 (y) = Vrgi(y)l < ee,  |Vrri(y) — VEgi(y)| < ce (5.2.35)
forallyel',i=0,1, and k, 1 =1,2,3. We also have

nil =1, [Deni(y)| <e,  |DDni(y)| <c, (5.2.36)

n2(y) +ne(y)| <ce,  |Venl(y) + Veni(y)| < ce (5.2.37)

forallyel,i=0,1, and k, 1 =1,2,3.

Let n. be the unit outward normal vector field of I'.. For i = 0,1 the direction of n. on
I'’ is the same as that of (—1)"*!n since the signed distance function d from T increases in
the direction of n.

Lemma 5.2.10. The unit outward normal vector field n. of Iz is given by
ne(zr) =nl(x), xze€Tli i=0,1. (5.2.38)

Here il = nl o1 is the constant extension of the vector field nt given by (5.2.33).
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The proofs of Lemmas 5.2.9 and 5.2.10 are given in Appendix 5.B.

As in the case of the surface I', we use n. to define the orthogonal projections P. :=
I3 —n. ® n. and Q. := n. ® n. onto the tangent plane and the normal direction of I';, and
the tangential gradient and the tangential derivatives

3
Vr.p:=P.Vp, Dip:=> [Pijo;¢ on T. i=1,2,3
j=1

for ¢ € C1(T'.), where ¢ is an arbitrary C'-extension of ¢ to an open neighborhood of T'.
with @|r. = ¢. For u € C1(I'.)® we define the tangential gradient matrix and the surface
divergence of u as

Diuy Djuz Diug
Vr.u:= | D5u; D5us DSus |, divp.u:=tr[Vpr_ u] E Diu; on T..

£

D3uy  D3uz  D3us
The Weingarten map W, and (twice) the mean curvature H. of I'. are given by
W, :=-Vr.n., H.:=—divp.n. =tr[W,] on T..
Note that, as in the case of I', the matrices P;, ), and W, are symmetric and
Vr.u=PFP.Vu, PW.=W.P.=W., on I, (5.2.39)

for u € C*(I'.)3, where @ is an arbitrary C'-extension of u to an open neighborhood of T'.
with @|p, = u. We also define the weak tangential derivatives of functions on I'; and the
Sobolev spaces W™P(T',) for m = 1,2 and p € [1,00) as in Section 5.2.1.

Since the unit outward normal n. to I'c has the expression (5.2.33), we can compare the
surface quantities on I'; with those on I'.

Lemma 5.2.11. There exists a constant ¢ > 0 independent of € such that

Ine(z) — (-1 {n(z) — eVrg(z) }| < ce?, (5.2.40)

|P-(z) — P(z)| < ce, \QE( — Q)] < ce, (5.2.41)

[We(z) = (-1 W(z)| < ce, |He(z)— (- )’“H( )| < ee, (5.2.42)
|D5W(z) — (-1)""'D,W W (z)| < (5.2.43)

forallz €T, i=0,1, and j = 1,2,3.

From Lemma 5.2.11 it immediately follows that W., H., and DEWE, 73 = 1,2,3 are
uniformly bounded in € on I'z (note that [n.| = |P.| =|Q:] =1on T ) Moreover, we can
compare the surface quantities on the inner and outer boundaries.

Lemma 5.2.12. There exists a constant ¢ > 0 independent of € such that

[Fo(y +eq1(y)n(y)) — Fe(y +ego(y)n(y))| < ce, (5.2.44)
IGe(y +eg1(y)n(y)) + G=(y + ego(y)n(y))| < ce (5.2.45)

for all y € ', where F. = P.,Q. and G = Wg,Ha,QiVVE with 7 =1,2,3.
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The proofs of Lemmas 5.2.11 and 5.2.12 are given in Appendix 5.B.
Next we give transformation formulas of integrals over ). and I'.. For functions ¢ on €.
and 7 on I':, i = 0,1 we use the notations

P (y,r) = oy + raly)), y €T, 7€ (eg0(y),c01(y)), (5.2.46)
i (y) =y +eg:(y)n(y), yeT, (5.2.47)
Let J = J(y,r) be a function given by
J(y,r) = det[l3 —rW(y)] = {1 —rr1(y) {1 — rra(y)} (5.2.48)
for y € T and r € (=4,0). By (5.2.2) and k1, k2 € C3(I') we have

oJ

< Jy,r)<e, |Vrdy,r)| <ec, ‘ar(y, )| <c (5.2.49)

for ally € I" and r € (—0,9) (here VrJ stands for the tangential gradient of J with respect
toy €I'). Also, we easily observe that

|J(y,7) — 1| <ce forall yeTl,releg(y),eq(y)] (5.2.50)

The function J is the Jacobian appearing in the change of variables formula

/ 2) dz = / / Y ()T (y.r) dr ) (5.2.51)

for a function ¢ on Q. (see e.g. [15, Section 14.6]). The formula (5.2.51) can be seen as a
co-area formula. From (5.2.49) and (5.2.51) it immediately follows that

eg1(y
el //g " P dr dH?(y) < ellell g (5.2.52)
0

for all p € [1,00) and ¢ € LP(£).), where we used the notation (5.2.46). We frequently use
this inequality in the sequel.

Lemma 5.2.13. Let n be a function on " and 1) := nom its constant extension in the normal
direction of I'. Thenn € LP(T'), p € [1,00) if and only if 1 € LP(§2.). Moreover, there exists
a constant ¢ > 0 independent of € and n such that

Pl ey < 0llLegny < cePlnlle - (5.2.53)
Also, n € WHP(T) if and only if € WHP(2.) and we have
Pl < IVl < IVl (5.2.54)
and therefore

L P Il < llwirg.) < 2P lnllwsm)- (5.2.55)

Proof. The change of variables formula (5.2.51) implies that

. eg1(y) )
il 0y = [ In0) / J(y,r)dr | dHA(y).
ego(y)

Hence the inequality (5.2.53) follows from (5.2.30) and (5.2.49). Similarly, we get (5.2.54)
by (5.2.13), (5.2.30), (5.2.49), and (5.2.51). O
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Lemma 5.2.14. For p € [1,00) let n € W2P(T'). Then ij :==non € W*P(Q,) and

17llw2p@.) < Cél/pHnszp(r) (5.2.56)
with a constant ¢ > 0 independent of € and 7.

Proof. From (5.2.15) and (5.2.53) it follows that

2= X 2., 1
9%l o) < ¢ (HVrnHmE) +||9) m)) < e Plnllwes.

Combining this inequality with (5.2.55) we obtain (5.2.56). O
We also give a change of variables formula for integrals over I'..

Lemma 5.2.15. For ¢ € LY(T%), i = 0,1 let cpg be given by (5.2.47). Then

/F o(x) dH*(z) :/Fapg(y)J(y,sgi(y)) 14 e2|7i(y)|? dH3(y), (5.2.57)

where 7! is given by (5.2.32). Moreover, if ¢ € LP(T%), p € [1,00) then go? € LP(T') and there
exists a constant ¢ > 0 independent of € such that

i
€

Mol < Iekllry < cllellzor.- (5.2.58)

Proof. In Lemma 5.B.2 we show a change of variables formula

/F () A2 () = / )T (0 ) VT F ()P dH2(y)

r

for an integrable function ¢ on a parametrized surface I'y, := {y + h(y)n(y) | y € I'}, where
h € CY(T') satisfies |h| < 6 on I' and

H(y) =y +hy)n(), () = {Is—hy)W(y)} Vrh(y), yeT.

Setting h = £g;, i = 0, 1 in the above formula we obtain (5.2.57). Also, (5.2.58) follows from
the formula (5.2.57) and the inequalities (5.2.34) and (5.2.49). O

5.3 Fundamental tools for analysis

5.3.1 Sobolev inequalities

Let us give several Sobolev inequalities on I' and .. First we prove Ladyzhenskaya’s in-
equality on the two-dimensional closed surface I'.

Lemma 5.3.1. There exists a constant ¢ > 0 such that

Il sy < ellnll i Il ey (5.3.1)

for alln € HY(T).
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Proof. Since I' is compact and without boundary, by a standard localization argument with
a partition of unity of I' it is sufficient to prove

1/2

1/2
1l s ey < el ot Il ey (5.3.2)

for a bounded open set U in R?, a local parametrization u: U — T', and n € H'(T') compactly
supported in p(U). For such 7, the function 7 := oy is in H'(R?) and compactly supported
in U. Hence Ladyzhenskaya’s inequality on R? (see [35, Lemma 1 in Chapter 1, Section 1.1])
yields

1 2
il sy < V2l e IVl 157 (5.3.3)

where V is the gradient operator in s € R2. To deduce (5.3.2) from (5.3.3) we set

Dsipi1 O pi2 s Ms) T
Vi = ! ! ! , 0:=V,u(Vs
a <682,u1 852,[12 882:u3 Iu( M)

and recall that integrals over the surface are given by

sy = [, VPVAeEDds p=2.4
IV e oy = /U (Ven) o u*Vast 8 ds.

Since p is of class C° (note that T is of class C°), the determinant of @ is continuous and does
not vanish on U. In particular, it is bounded from above and below by positive constants on
the support of 7 since it is a compact subset of U. Hence

Ml oy < illee@y < elnllzeguoy, p=2.4 (5.3.4)

with a constant ¢ > 0. Also, differentiating both sides of 7(s) = n(u(s)) = 7(u(s)) with
respect to s;, i = 1,2 and using (5.2.4) (note that pu(s) € I') we get

05;71(8) = 05, p1(s) - Vii(pu(s)) = Os,pa(s) - Ven(u(s)), s € U.

From this equality and the fact that p is of class C° and the determinant of @ is bounded
from below by a positive constant on the support of 77 we deduce that

IVl < /U (V) o 2 ds < lIVEnlaguony.

Applying this inequality and (5.3.4) to (5.3.3) we obtain (5.3.2). O

Next we give Poincaré type inequalities on the curved thin domain .. By 0,, we denote
the directional derivative in the normal direction of I, i.e. for a function ¢ on 2. and x € €.
we set

Oup(r) = () - V)pla) = (o +rnl)| _ =r@eD).  (535)

r

r=d(z)

Note that for the constant extension of a function n on I' we have

Oni(z) = (n(z) - V)n(z) =0, z€ Q.. (5.3.6)
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Lemma 5.3.2. Let ¢ € WHP(Q,) with p € [1,00). There ezists a constant ¢ > 0 independent
of € such that

Ielzr@n) < ¢ (710l oqs) + lOnpllineny) i =0,1, (5.3.7)
Ipllrsy < e (e

gl + N0l s ), i =01 (5.3.8)

Proof. We show (5.3.7) and (5.3.8) for ¢ = 0. Their proofs for i = 1 are the same. We use the
notations (5.2.46) and (5.2.47). Let y € T and r € (go(y),91(y)). Since dpt/0r = (9,0)*
by (5.3.5), we have

T

PHy.r) = Py, eg0(y)) + / (On)o(y. 7) dF. (5.3.9)
ego(y)

From (5.3.9) and Holder’s inequality it follows that
eg1(y)

(w1 < lb()] + / |(Ouip) (7| dF

ego(y)

eg1(y) 1/p
i 1-1/p i S\ P g
< |G ()] + e ( / |(On) (. 7)] dr) .

g0(y)

Here gog( ) = ©*(y,e90(y)). Noting that the right-hand side is independent of r, we integrate
the p-th power of both sides of the above inequality with respect to r to get

591(21) ﬁ 891(3/)
/ Wy, )P dr < [ elph ()P + & / (D)t (y, )P | (5.3.10)
15

g0(y) ego(y)

Hence the inequalities (5.2. 52) and (5.3.10) yield that

eg1(y
oy < | / DI drdi2(w) < ¢ (<lhl2 0 + 10010, )
Eg

Applying (5.2.58) to the first term on the right-hand side we obtain (5.3.7).
Next let us prove (5.3.8). From (5.3.9) we deduce that

4 , . eg1(y) i » b1 eg1(y) ,
lpoW)IP <cle l*(y, )P dr + ¢ |(On)* (y, 7)|P dF
ego(y) ego(y)

as in the proof of (5.3.10). This inequality and (5.2.52) imply that

bl Loy < (5_1/p||50||m(95) + 51_1/])”87190”LP(95)) :
Hence we apply (5.2.58) to the left-hand side of the above inequality to get (5.3.8). O

We also show Agmon’s inequality on ()., which gives an estimate for the L% (2.)-norm
of a function in H?(€.) with explicit dependence on ¢ of a bound.

Lemma 5.3.3. There exists a constant ¢ > 0 independent of € such that

1/4 1/2
el oyl oy

1/4
% (Il 2y + €10npll 2y + 21020l 20n) ™ (5.3.11)

lollpe o) < es™H?

for all p € H?*(9.).
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Proof. We use the anisotropic Agmon inequality (see [65, Proposition 2.2])

1/4
L2(v) |

)

1/4
(1 L2y + 10:® ] 2y + 107D 21)) (5.3.12)
1

3
19| oo vy < cf| @]
for ® € H?(V) with V = (0,1)3. To this end, we localize ¢ by using a partition of unity on
I' and transform it into a function on V. Since I' is compact, we can take a finite number

of open sets U in R? and local parametrizations py: Up — I, k = 1,...,ky such that
{,uk(Uk)}l,zO:l is an open covering of I'. Then setting

Cr(s) = p(s') +e{(1 = s3)g0(1e(s")) + 5391 (e () In(1a(s))

for s = (s, 83) € Vi := Ui x (0,1) we see that {Ck(Vk)}Z"Zl is an open covering of .. Let
{nk}],zozl be a partition of unity on I' subordinate to the covering {,uk(Uk)}zozl and 7 1= ngom
the constant extension of 7. Then {ﬁk}i(’zl is a partition of unity on ). subordinate to the
covering {Ck(Vk)}Zozl Hence to prove (5.3.11) it is sufficient to show

1/4

1/2 1/2
Pllonll e, vy 128 2 vy

okl Loo(cu(vi)) < e
x (lpxll +¢||0 + £2)|92 Y4 (5313
PrIL2(¢h (Vi) ell nSDk:HLQ(Ck(Vk)) el nSDkHLZ’(ck(Vk))) (5.3.13)

for each k = 1,..., kg, where @i := 7 (note that O,pr = MpOne by Onir = 0). Let us
prove (5.3.13). Hereafter we suppress the index k. By taking the open subset U of R? small
and scaling it, we may assume U = (0,1)? and V = (0,1)3. Since I' is of class C®, the local
parametrization p is of class C° and thus the mapping

C(s) = () +e{(1 = s3)g0(1u(s)) + s3gn(u(s) }n(u(s")), s=(s',s3) €V

is of class C* by go,1 € C*T) and n € CHT')? (here g; = g;om and 7 = nom). We
differentiate ((s) and apply (5.2.4) and (5.2.16) with y = u(s’) € T to get

9, C(5) = [Is — e{ (1 — s3)go(p()) + 5391 () } W (1(')] Doy ()
+ 0 uls) - (1= 53)Vrgo(u(s) + s3Vrgr(u(s)In(u(s)),  (5.3.14)
Ds(5) = eg(p(s)n(u(s'))

for s = (s',s3) € V and i = 1,2. From these formulas it follows that
det V((s) = eg(u(s')J(u(s'), he(s))\/det O(s"), s=(s',s3) €V, (5.3.15)
where V¢( is the gradient matrix of ¢ in s and

he(s) = e{(1 — 53)g0(1(s)) + s391 (1(s"))},

Osi 1 Os o Osy 13
0(s") := Vyu(s\Veu(sht, Vg ::<Sl o1 51 )
(s') s (s ) V(s =N s Oops Oupis
(We give detailed calculations for (5.3.15) in Appendix 5.B.) Let ®(s) := ¢({(s)) for s € V.
Since ¢ is localized by the constant extension of a cut-off function on I'; the function ® is
supported in K x (0,1) with some compact subset L of U. Then the determinant of 6 is
bounded from below by a positive constant on K since it is continuous and does not vanish on
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U (note that the local parametrization y is of class C°). By this fact, (5.2.30), and (5.2.49)
we have

det V((s) > ce, se€ K x(0,1) (5.3.16)

with a constant ¢ > 0. Since ® = ¢ o ( is supported in K x (0,1) and ¢ is bounded on
K x (0,1) along with its first and second order derivatives (note that ¢ is of class C* on V
and depends linearly on s3), we observe by the change of variables formula

/ () dy = / B(s) det Vo (s) ds, (5.3.17)
() v

the inequality (5.3.16), and p € H?(€).) that ® € H*(V) and

@[l zoe vy = l@llrocvy, N1l < e 2 ll@ll 2oy (5.3.18)

Moreover, by the chain rule of differentiation we have

05, 0(s) = 3314(8) - Veo(C(s)),
92,2(s) = 95.C(s) - Veo(((5)) + 05,C(s) - VE(((5))Ds,C(5),
853‘1>(8)=€g(u(8’))8n90(C(8))7 02,®(s) = e%g(u(s)*0p0(¢(5))

for s = (s',s3) € V and i = 1,2, where the last two equalities follow from (5.3.14) and
On = (n-V)p. To the above equalities we apply the boundedness of g on I' and that of the
first and second order derivatives of ¢ on K x (0,1) to get

105, @ ()] < c|Vep(C())],  102,2(5)] < e([Vp(C()] +[VZ(C(5))), =12,
05,2 ()| < "0k (C())l, k=1,2

for s € K x (0,1). Noting that ® = ¢ o { is supported in K x (0,1), we deduce from the
above inequalities, (5.3.16), and (5.3.17) that

105 @l 1207y < e Pl mrevyys 105 @llzzan < e 210kl 2 (v (5.3.19)

for i,k = 1,2. Finally, applying the anisotropic Agmon inequality (5.3.12) to ® € H?(V)
and using (5.3.18) and (5.3.19) we obtain (5.3.13). O
5.3.2 Consequences of the boundary conditions
In this subsection we derive several properties from the boundary conditions
u-ne =0, (5.3.20)
2uP.D(u)ne: + vy:u =0, (5.3.21)

where D(u) =: (Vu)s = {Vu + (Vu)?}/2 is the strain rate tensor. First we consider vector
fields satisfying the impermeable boundary condition (5.3.20).

Lemma 5.3.4. Fori=0,1 let u € C(T%)? satisfy (5.3.20) on I'L. Then
w-n=cu-7., |u-n|<celul on T (5.3.22)

£

where 7! is given by (5.2.32) and ¢ > 0 is a constant independent of ¢ and u.
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Proof. The first equality of (5.3.22) is an immediate consequence of (5.2.33), (5.2.38), and
(5.3.20) on I'.. This equality and the first inequality of (5.2.34) implies the second inequality
of (5.3.22). 0

As a consequence of Lemma 5.3.4 we derive Poincaré’s inequalities for the normal com-
ponent (with respect to I') of a vector field on €.

Lemma 5.3.5. Let p € [1,00). There exists ¢ > 0 independent of € such that
[w -l e,y < cellullwir.) (5.3.23)
for all uw € WHP(Q.)3 satisfying (5.3.20) on T'? or on L. We also have
| PV (u- ﬁ)HLP(QS) < cellullwzr (o) (5.3.24)
for all w € WP(Q.)? satisfying (5.3.20) on T or on T'L.

Proof. Let u € W1P(Q.)3. We may assume that u satisfies (5.3.20) on T'Y without loss of
generality. By (5.3.6) and (5.3.7) with i = 0,

Ju-7flpo.) < c <€l/pHU + 7| po(roy + €||5nu||Lp(Qg)> : (5.3.25)

Moreover, we apply the second inequality of (5.3.22) and then use (5.3.8) with i = 0 to the
first term on the right-hand side of (5.3.25) to get

- 7ll ocroy < cellullpogrey < ce' P ullwrso)- (5.3.26)

Combining (5.3.25) and (5.3.26) we obtain (5.3.23).
Next suppose that u € W2P(£2,)3 satisfies (5.3.20) on I'?. Noting that

Dy [?V(u . ﬁ)} ‘ < o|Vu| + [V2u]) in Q.
by (5.2.17) and (5.3.6), we apply (5.3.7) with i = 0 to get
1PV (- )| gy < € (27 [PV ) oo + lillivesn) ) (5.3.27)

Since the tangential gradient on I'. depends only on the value of a function on I';, we see by
(5.2.39) and the first equality of (5.3.22) that

PV(u-n) =Vr.(u-n)+ (F - PE)V(u +n) = eV, (u-70) + (ﬁ - P€>V(u )
= eP.V(u-70) + (F - PE>V(u 1)
on I'Y. By this formula, (5.2.13), (5.2.17), (5.2.34), and (5.2.41) we have
|PV(u-n)| < ce(lul + |Vu|) on .
From this inequality and (5.3.8) it follows that
[PV (u- ﬁ)HLP(Fg) < ez (lullpoiroy + Vull oqroy) < e P Jullwzn(q.)-

Applying this inequality to the right-hand side of (5.3.27) we obtain (5.3.24). O
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The next lemma gives an expression for the normal component of the directional deriva-
tives on I'; for vector fields satisfying the impermeable boundary condition in terms of the
Weingarten map of I'..

Lemma 5.3.6. Let i =0,1. For uj,us € C*(Qe)? satisfying (5.3.20) on Tt we have
(up - V)ug - ne = Weuy -ug = up - Weug  on Fé. (5.3.28)
Proof. The equality u; - n. = 0 on 'Y means that u; is tangential on T'.. Hence
(ug - V)ug - ne = (ug - Vr)ug - ne = uy - Vr,_(ug - ng) — ug - (ug - V,)ne

on I'Y. The first term on the right-hand side vanishes by ug - n. = 0 on I'Y (note that
the tangential gradient on I'. depends only on the values of a function on I'Y). Also, by
—Vr.n. =W, = WET we have

(’U,l : Vrs)ng = —WaTul = _Wgul on Fé.
Combining the above two equalities we obtain (5.3.28). O

Note that (uj - V)ug - ne can be expressed without using the derivatives of u; and uy by
(5.3.28). We use this fact in the analysis of boundary integrals, see Lemma 5.4.1.

Next we prove formulas for vector fields satisfying the slip boundary conditions (5.3.20)—
(5.3.21).

Lemma 5.3.7. Let i =0,1. For u € C%(Q.)3 satisfying (5.3.20)~(5.3.21) on T we have

gm,vm:—ww—%m on T (5.3.29)
ne X curlu = —n, X {n8 X (2W5u + %u)} on Fé. (5.3.30)

Proof. Applying the tangential gradient operator Vr, to u-n. = 0 on I'. we have
(Vr.u)ne = —(Vr.no)u = Weu on T%. (5.3.31)
From this equality, (5.3.21), and
2P.D(u)n. = PA(Vu)n. + (Vu) ' n} = (Vr.u)ne + Pe(ne - V)u
by (5.2.39) we deduce that

P.(ne - V)u=—(Vr u)n: — Jeo = —Weu — Yoy on Fé.
v v

Hence (5.3.29) holds. To prove (5.3.30) we observe that the vector field n. x curl u is tangential
on I'’. By this fact, (5.2.39), (5.3.29), and (5.3.31) we have

ne x curlu = P.(ne x curlu) = P.{(Vu)n. — (Vu)Tn}
= (Vr.u)ne — Pe(ne - V)u = 2Wou + %u
on I'L. The equality (5.3.30) follows from this equality and the identity
ax (axb)=(a-ba—|a*, a,beR?

with @ = n. and b = 2W.u + v~ 'y.u since n. - u =0, n. - Weu =0, and |n.|> =1 on L. [



5. Navier—Stokes equations in a curved thin domain 140

Let us derive an estimate for the LP(Q.)-norm of the tangential component (with respect
to I') of the stress vector D(u)n. It is used in the study of a singular limit problem for
(5.1.1)—(5.1.3) as € tends to zero.

Lemma 5.3.8. Suppose that Assumption 1 is satisfied, i.e. the inequality (5.1.6) holds and
let p € [1,00). Then there exists ¢ > 0 independent of € such that

[PD(u ”HLp Q) = cellullwzr.) (5.3.32)

for all uw € WP(Q.)3 satisfying (5.3.21) on T? or on T'L.

Proof. We proceed as in the proof of Lemma 5.3.5. Let u € W2P(€,)3 satisfy (5.3.21) on I'
for i =0 or ¢ = 1. By (5.3.6) and the boundedness of n and P we have

n[ﬁD(u)ﬁH <c|V?ul in Q..
Hence we use (5.3.7) to get
|[PD(u) nHLP @) = c( VP |[PD(u) nHLP riy T ellullns Q€)> - (5.3.33)
Moreover, since u satisfies (5.3.21) on I'L, we have
PD(u)a = (—1)""'P.D(u)n. + P.D(u){n — (1) n.} + (F — PE)D(u)fL

(- 1)1'275 u+ P.D(u){7n —(—1)i+1n5}+<F—PE>D(u)ﬁ

on I'. Applying (5.1.6), (5.2.40), and (5.2.41) to the last line of this equality and noting
that P. is bounded uniformly in € we deduce that

|PD(u)n| < ce(lu| + [Vu|) on TL.
By this inequality and (5.3.8) we get
[PD()i iy < e (lullos) + I Vull o) < e’ Pllullwzo.).
We apply this inequality to (5.3.33) to conclude that (5.3.32) is valid. O

Finally, we compare the tangential component (with respect to I') of the normal derivative
of a vector field u on Q. with —Wu.

Lemma 5.3.9. Under Assumption 1, there exists ¢ > 0 independent of € such that

| Ponu + WUHLP(QE) < cellullw2r(q.) (5.3.34)
for allu € W2P(Q.)? with p € [1,00) satisfying the slip boundary conditions (5.3.20)—(5.3.21)
on TY or on T'L. Here O,u is the normal derivative of u given by (5.3.5).

Proof. For i =0 or i = 1 let u € W?P(Q,)3 satisfy (5.3.20)-(5.3.21) on I'.. By (5.3.6) and
the boundedness of n, P, and W on I we have

n[Pow -+ Wl | < e(vul +19%u) i 0.
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We apply (5.3.7) and the above inequality to get
PO+ Wl g < € (17| P+ Wl| ) + ellullwesga,) ) - (5.3.35)
Moreover, since d,u = (7 - V)u and u satisfies (5.3.20)—(5.3.21) on ',
Pou = (1) P(ne - V)u+ Pol{f — (—=1)"n} - V]u+ (F - P€> (i V)u
= (~1)i*! (—Wau - %u) + P — (—1)"n) - Vu+ (F - Pg) (- V)u
on I': by (5.3.29). Hence by (5.1.6) and (5.2.40)—(5.2.42) we get
|POu + Wu| < [Wu — (—1)i+1W5u‘ + ce(Jul + |Vul) < ce(|ul + |Vul)
on ', which together with (5.3.8) implies that
|| P u +W“HLP(F§) < ce (lull o(riy + IVull o(riy) < Cglfl/pHuHWZp(Qg)-
Applying this inequality to (5.3.35) we obtain (5.3.34). O

5.3.3 Impermeable extension of surface vector fields

In the analysis of integrals over (). involving a vector field on I' it is convenient to consider
its extension to {). satisfying the impermeable boundary condition on I'c. Let 70 and 7} be
the vector fields on I" given by (5.2.32). We define a vector field ¥, on N by

U (z) = {(d(z) - 6go($))7_'81 (z) + (eqa(z) — d(:):))?f(:n)}, x € N. (5.3.36)

By definition, ¥, = 7% on I'%, i = 0,1. Let us give several estimates for U..
Lemma 5.3.10. There exists a constant ¢ > 0 independent of € such that
|U,.| <ce, |VU.|<e¢ [V <c in Q.. (5.3.37)

Moreover, we have

|PVV,| < ce,

11—
O V. — =Vryg
g

<ce in Q.. (5.3.38)

Proof. Applying (5.2.34) and
0 <d(xz)—ego(x) <eg(z), 0<egi(zr)—d(z)<eg(x), =€ (5.3.39)
to (5.3.36) we get the first inequality of (5.3.37). Also, by Vd =7 in N we have

1
VU, = g{ﬁ @ (-7 +F.} in N, (5.3.40)

where F; is a 3 X 3 matrix-valued function on N is given by

Foi=-VgoU.+e(Vi @7 — Vi@ 7)) + (d — €go) V7! + (eg1 — d)V7.
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By (5.2.30), (5.2.34), and |n| = 1 on I we see that the first term on the right-hand side of
(5.3.40) is bounded on N uniformly in e. Moreover, from (5.2.13), (5.2.30), (5.2.34), the first
inequality of (5.3.37), (5.3.39), and go, g1 € C*(I") we deduce that

|Fe] <ce in Q.. (5.3.41)

Hence the second inequality of (5.3.37) follows. Similarly, differentiating both sides of
(5.3.40) and using (5.2.13), (5.2.15), (5.2.34), the first and second inequalities of (5.3.37),
and go, g1 € CHT) we can derive the last inequality of (5.3.37).

Let us prove (5.3.38). First note that

P (7 =) = (Pr)® (r} = 78) = 0,
((rd =2 @ nln = nf*(rd ) = 72 7!

on I'. These equalities and (5.3.5) imply that

_ 1— 1
PV, = -PF., 0,V.= (V¥ ) n==(r -7 +Fla in N.
g g

Hence we see by (5.2.30), (5.3.41), and |P| =1 on I that
‘?V\PE‘ < c‘ﬁFg‘ <c|Fe| <ce in Q..

Also, applying (5.2.30), (5.2.35), and (5.3.41) to the equality for 9, U, we obtain

< i Z ‘?; — Vrgi‘ +|F|<ce in Q..
i=0,1

1—
8n\:[15 — EVFQ

Hence (5.3.38) is valid. O
For a tangential vector field v on I' (i.e. v-n =0 on I') we define
E.v(z) :=v(z) + {v(x) - Y. (x)}n(z), x€ N, (5.3.42)

where v and 7 are the constant extensions of v and n. By the definition of ¥, we easily see
that E.v satisfies the impermeable boundary condition on I';.

Lemma 5.3.11. For allv € C(I',TT) we have Ecv -n. =0 on ;.

Proof. For i = 0,1 we observe by (5.2.33), (5.2.38), and v-n =0 on I" that

_ . v T _ (—1)7+t :
v-ne=(-1)——, fA-n.=-——= on I
OV eRr T Vi )

From these equalities and ¥, = 7! on I'! by (5.3.36) we get E.v-n. =0 on I'.. O

Also, it is easy to show that E.v € W™P(),) for v € W™P(I',TT).

Lemma 5.3.12. There exists a constant ¢ > 0 independent of € such that
| E<v|lwmn(a.) < ce'/2|v]lwmar (5.3.43)

for allv e W™P(I',TT") with p € [1,00) and m = 0,1, 2.
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Proof. By (5.2.13), (5.2.15), and (5.3.37) we have

|Ecv| < clv], |VEwv| <c (\17| + ‘Vrv

), V20| < ¢ (ol + [Vro| + |VEo|)
in .. These inequalities, (5.2.53), (5.2.55), and (5.2.56) imply (5.3.43). O
If Qa is a flat thin domain of the form
Q. = {2 = (2/,23) € R® |2/ € w, efio(a') < 5 < e (2)},

where w is a domain in R? and §o and §; are functions on w, then we have

div(E.v)(x) = div(gv)(2'), == (2",23) € Qe (§:= g1 — Jo)

1
g(z')
for v: w — R? (see [21, Lemma 4.24] and [26, Remark 3.1]). This is not the case for the
curved thin domain €. given by (5.1.4) because the principal curvatures of the surface I'

do not vanish in general. However, we can show that the difference between div(E.v) and
g~ ldivr(gv) is of order € in €.

Lemma 5.3.13. There exists a constant ¢ > 0 independent of € such that
1 N .
’VEE’U — {Vrv + 5(5 . Vpg)QH <ce (o] +|Vro]) i Qo (5.3.44)
for all v € CY(T', TT). Moreover, we have

< ce (|o] 4 |Vrv|)  in Q. (5.3.45)

1—
div(E.v) — Edivr (gv)

Proof. From (5.3.42), @ =n®n, and (n ® Vrg)v = (v- Vpg)n it follows that
VE.v =Vu 4 [(V0)V. 4+ (VY. )v] @70 + (v V) Vn,
s [ )] o
in N. Hence

'VEsv — {va+ ;(q‘; - Vpg)QH < |Vo = Vro| + {(V0)¥} @ n| + | (- ) Vil

1 -
(70 vy o] @a

Since VU, = PVV, + QVVY,. = PVV, + 7 ® 9,V., by (5.3.38) we get

< |[PVY, |+

1 -
’V\If€ — -n® Vrg
g

11—
ne (&L\I/e - Vrg>‘ <ece in Q..
g

Applying this inequality, (5.2.13), (5.2.14), (5.2.17), (5.3.37), and |d| < ce in Q. to the
right-hand side of (5.3.46) we obtain (5.3.44). Also, since tr[Q] =n-n =1,

1 1 1
tr [va + ;(v . Vrg)Q} = divrv + g(v -Vrg) = gdivr(gv) on TI.

Hence the inequality (5.3.45) follows from (5.3.44). O
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As a consequence of Lemma 5.3.13 we have the LP-estimate for div(E.v) on (..

Lemma 5.3.14. Let p € [1,00). There exists ¢ > 0 independent of € such that
Idiv(Eoo) | oy < =7 (dive(go) ey + ellellwroq) (5.3.47)
for allv € WYP(T,TT). In particular, if v satisfies divr(gv) = 0 on T, then
Idiv(E-0) || o) < e P [ollwrnr).- (5.3.48)
Proof. By (5.2.30) and (5.3.45) we have

Idiv(E.v)| < c{

divr(gv)‘ +e (o] + \VTU\)} i Q..

The inequality (5.3.47) follows from this inequality and (5.2.53). O

5.4 Korn inequalities on a thin domain and a surface

In this section we establish the Korn inequalities on ). and I', which play a fundamental
role in the study of the Stokes operator on ). associated with slip boundary conditions and
the corresponding limit operator on I'.

5.4.1 Uniform Korn inequalities on a thin domain

For the proof of the global existence of a strong solution to (5.1.1)—(5.1.3), it is essential that
the bilinear form corresponding to the Stokes operator on ). with slip boundary conditions
is uniformly coercive in ¢ (see Section 5.5.2). To show the uniform coerciveness of the bilinear
form, let us prove the uniform Korn inequalities on €).. First we give an estimate for the
L?-norm of the gradient matrix of a vector field on ..

Lemma 5.4.1. There exists a constant cx,1 > 0 independent of € such that
IVulZaq0, < 41D g, + erallulZaa, (5.4.1)
for all e € (0,1) and v € H*(Q.)? satisfying (5.3.20) on T-.
Let us prove an auxiliary density result.

Lemma 5.4.2. Letu € H'(Q.)? satisfy (5.3.20) onT.. Then there exists a sequence {uy}52
in C?(Q:)® such that uy, satisfies (5.3.20) on T for each k € N and

li — =0.
Jim lu =gl o)

Proof. We follow the idea of the proof of [8, Theorem IV.4.7], but here it is not necessary to
localize a vector field on .. For x € N we define

n(zx) = — {(d(az) — 5@0(::;))73;(95) + (Egl(x) — d(:c))ﬁg(x)},

where nl and n! are given by (5.2.33) and 77 = 7 o 7 denotes the constant extension of a
function n on I'. Then 72 € C%(N) by the regularity of ', go, and g;. Moreover, 7 = n. on I'.
by Lemma 5.2.10. Hence if u € H*(Q.)3 satisfies (5.3.20) on ', then we have u-7 € H}(£.)
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and w = u — (u-n)i € H'(Q:)3. Since I'; is of class C!, there exist sequences {pr}2, in
C>(Q:) and {wg}2, in C°°()?3 such that

Jim Jlu- = opll e, = lim w = wilmq, =0.

Here C2°(€.) is the space of all smooth and compactly supported functions on 2.. Therefore,
setting ug := opft + wi — (wy, - 7)A€ C?(€2.) we see that

Up-Ne =ux-n=pr=0 on I,

for each k € N and (note that u = (u-n)n +w and w-n =0 in Q)
lu = ukllmro,y = (w7 = @p)it + (w — wi) = {(w — wk) - 72370 10,
<c(llu-n—orllpon + lw —willgra,y) =0

as k — oc. O
Proof of Lemma 5.4.1. By Lemma 5.4.2 it is sufficient to show (5.4.1) for all u € C?(Q.)3
satisfying (5.3.20) on I'.. Since 2|D(u)|? = |Vu|* + Vu : (Vu)T,

2 _ 2 ) T

2D ()20, = [ Vullsa + [ Vu: (V)T de

To the second them on the right-hand side we apply integration by parts twice (note that u
is of class C2 on ) and then use (5.3.20) on T to get

/ Vu: (Vu)! do = / (divu)?de + / (u-V)u-n. dH?.
Qe Qe

€

Here the first them on the right-hand side is nonnegative. Therefore,
IVullZ20.) < 21D 72, + ‘/F (u-V)u-ne dH?‘- (5.4.2)

Let us estimate the integral over I'c in (5.4.2). Since u satisfies (5.3.20) on I'c, we can apply
(5.3.28) to the integrand of the boundary integral to get

/ (u-V)u-n. dH? :/ u-WeudH? = Z / w- WeudH?. (5.4.3)

i=0,1

To estimate the right-hand side we set

Fiy) == \/1+ )P WE(y), i=0,1,
Fv.r) = = o) o) ~ en) = 1) Folw) ). (540

o(y,r) = uﬁ(y, r) - F(y,r)uﬁ(yjr)J(y,r)

for y € T and r € [ego(y),e91(y)]. Here and in what follows we use the notations (5.2.46)
and (5.2.47), and we sometimes suppress the arguments y and r. By (5.4.4) we observe that

[w- Weuli(y)\/1 + 2|71 () 12T (y,e0:(y)) = (=)o (y,eqi(y)), yeT,i=0,1
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From this relation and (5.2.57) we deduce that

¥ [ e Wl @) 320 = [ et 20000) = ot 20000) 352

1=0,1
£g1(y)
/ / agp r)dr dH2(y).

To estimate the integrand on the last line, we use (5.2.49) to get

8 < e L (171 + | 22N 2 + il vy (546)
) 0

By (5.2.34) and the uniform boundedness in € of W, on I'. we observe that F and F} are
bounded on I' uniformly in . Thus we have

[F(y,r)| < {(r—cgo)) + (eqr(y) — )} =c (5.4.7)

(5.4.5)

e9(y)
for y € T and r € [ego(y),e91(y)]. Also, by OF/0r = (eg) 1 (F} + Fp) and (5.4.4),

OF _ :
98] <ot (Wt Wi+ T (Vi e - 1) ). sag)

i=0,1

By the mean value theorem for the function /1 + s, s > 0 and (5.2.34) we have

2
: €%
(0<) /1 +e2ri(y))2-1< 5|T€(y)|2 <ce?, yel. (5.4.9)

We apply this inequality, (5.2.45) with G- = W, and the uniform boundedness in ¢ of W,
to the right-hand side of (5.4.8) to obtain
‘8F

W(?/,T) <c forall yeT,rcleg(y) eq(y). (5.4.10)

From (5.4.6), (5.4.7), and (5.4.10) we deduce that

< eIy ) 2 + [V | (9.1)) (5.4.11)

d¢
)

for all y € I' and r € [ego(y),€91(y)], where ¢ > 0 is a constant independent of . Applying
(5.4.5) and (5.4.11) to (5.4.3) and using (5.2.52) and Holdor’s inequality we see that

€g1
/ (u-V)u-ng d’Hz‘ < c/ / <\uﬁ]2 + ]uﬁH(Vu)ﬁ\) dr dH?
I' Jego

€

(5.4.12)
< ¢ ([ullfeqq,) + lullzzion IVull 20, ) -

By (5.4.2), (5.4.12), and Young’s inequality we obtain
IVl 2.y < 201D(W)[[ 2. + ¢ (HUH%%QE) + HUHL2(QS)HVUHL2(QS)>
1
< 2|D(w) 720, + cllull7zg,) + §||VUH%Q(QE)'

Hence (5.4.1) follows. O
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Next we show a uniform H'-estimate for a vector field w on Q. with w - n. = 0 on I'.
by the L?-norm of the strain rate tensor on .. To this end, we need to impose another
condition on u (see (5.4.14) and Remark 5.4.6).

Lemma 5.4.3. For given o > 0 and 8 € [0,1) there exist constants
EK = EK(avﬂ) S (07 1)7 CK,Q - CK,Q(Q75) >0

independent of € such that

lullF2(.) < allVulZaq) + cx2l D(w)l7zq,) (5.4.13)

for alle € (0,ex) and u € H' ()3 satisfying (5.3.20) on T and

|(u,17)L2(QE) < 6||UHL2(QE)H6||L2(QS) forall v e ICg(F) (5414)
Here K4(I') is the function space given by (5.1.8) and v =vom.

To prove Lemma 5.4.3 we use a change of variables formula to transform integrals over
). into those over the domain 2y with fixed width (note that we assume 7 C N by scaling
go and g1). Define a mapping ®.: Q1 — Q. by

O (X)) :=m(X)+edX)n(X), X e€Q. (5.4.15)
We easily see that ®. is bijective and its inverse ®-1: Q. — € is given by
O () = 7(x) + e Yd(z)n(z), z€Q..

Also, by (5.2.6), (5.2.11), and (5.2.16) we have
__\—1 J —
Vo, = (13 . dW) (13 . 5dW)P +eQ on Q.

Hence taking an orthonormal basis of R? that consists of n and the other eigenvectors of W
we get

det VO (X) = eJ(n(X),d(X)) I (n(X),ed(X)), X e
and the change of variables formula
/ o(z) dz = ¢ /Q (D (X)) (r(X), d(X)) LI (n(X), 2d(X)) dX (5.4.16)
e 1
for a function ¢ on Q.. In particular, by (5.2.49) we have
ce ol Ty < llp o @clZaiqyy < e el o, (5.4.17)
for o € L%*(€.), where ¢ and ¢ are positive constants independent of €. By (5.4.17) and

direct calculations of matrices we can show the following auxiliary inequalities for the proof
of Lemma 5.4.3 (for a proof, see Appendix 5.A).
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Lemma 5.4.4. For u € H(Q.)? let U := uo ®.. Then
eVl = ¢ ([PYU o) + e 21000 1220, ) (5.4.18)

with a constant ¢ > 0 independent of € and u, where 0,U = (n-V)U is the normal derivative
(with respect to I') of U. We also have

. = =12 . _
e ID(W) |20, > ¢ (HPFE<U>SPHL2(91) +e 2|9 (U - n)lliz(gl)) , (5.4.19)
where F.(U)s = {F.(U) + F.(U)T}/2 is the symmetric part of the matriz
_\ -1 _
F.(U) = <13 - de) (13 - dW) vU. (5.4.20)

Proof of Lemma 5.4.3. Following the idea of the proof of [21, Lemma 4.14] we prove (5.4.13)
by contradiction. Assume to the contrary that there exist a sequence {ej}72, of positive
numbers with limyg_, e, = 0 and vector fields uy € H'(Q.,)? satisfying (5.3.20) on T'.,,
(5.4.14), and

Huk”%Q(ng) > @\|Vuk”%2(95k) + kHD(uk)H%Q(Q%)v keN. (5.4.21)

For each k € N let Uy, := uj, o &, € H'(Q;)3. Dividing both sides of (5.4.21) by &, and
using (5.4.17), (5.4.18), and (5.4.19) we get

1UkI220) > e ([ PYUR o) + 25 20000k )
o+ ck (|[PFo (U) 5P| gy + 52100 (Uk - ) 320 )

where F;, (Ug)s is the symmetric part of the matrix F;, (Uy) given by (5.4.20). By this
inequality we have Uy # 0 and thus we may assume

Ukl 20y =1, k€N (5.4.22)
by replacing Uy, with Uy /[|Uk||12(q,)- Then we get
IPVUL| 20, + 5 210nTk 120y < e, (5.4.23)
| PE.,, (U SP}|L2 +5k2]|8 Uk - )72,y < k™1 (5.4.24)
From (5.4.22), (5.4.23), and
= 2 oY 2 oy _
VU = [PVU|" + [QVUL|",  [@VU| = [n® 0,Uk| = |0,Us]

it follows that {U}72, is bounded in H'(£21)3. Hence there exists a subsequence of {U}3;,
which we refer to as {Uy}2° , again, that converges to some U € H'()? weakly in H*(Q;)3.
By the compact embedding H'(Q1) < L?() we also see that {Uy}?, converges to U
strongly in L2(Q)? and thus

Ul z20) = Jim [[Ukllz20) =1 (5.4.25)
by (5.4.22). Our goal is to show U = 0 on 21, which contradicts with (5.4.25). Since
A ([0,Ukllz2(0,) = 0 (5.4.26)
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by (5.4.23) and {Uy}72, converges to U weakly in H'(£2)3, it follows that 8,U = 0 on )y,

i.e. U is independent of the normal direction of I'. Hence setting

V(y) =Uy+gny), yel

we can consider U as the constant extension of V, i.e. U =V on Q. Moreover, from (5.3.8)
with e =1 and 9,V = 0 on ©; we deduce that

HUk _VHL2(F1) sc <HUk - VHL2(QI) + HanUkHL2(Ql)> :
Thus, by the strong convergence of {Uy}32, to V = U in L%*(€2;)% and (5.4.26),

Jim ([U = V[ 2,y = 0. (5.4.27)

Now let us prove that V € K, (I'). Since V = U € H*(Q:)3, we have V. € HY(I')? (see
Lemma 5.2.13). To show that V is tangential on I' we recall that the vector field uy, satisfies
(5.3.20) on I';,. Hence we can use (5.3.22) to get

lug - | < ceglug] on Tg,, ie. |Ug-n|<cex|Ug| on Iy
From this inequality and (5.3.8) with e = 1 it follows that
1Uk - 2ll 20y < cerllUkllzry) < cellUkllan,) — 0 as kb — oo (5.4.28)
since {Ug}72; is bounded in H!()3. Combining this with (5.4.27) we get V -7 = 0 on I'y,

which implies that V -n =0on I',; i.e. V is tangential on I'.
Next we show that Dp(V) =0 on I'. To this end we observe that

-1 _
F. (Uy) = (13 - z—:de) (13 - dW)VUk
converges weakly to ViV in L?(21)3*3. Indeed, by (5.2.10) and |d| < ¢ on €y,
‘13 — Iy - ekd(X)W(X)}_1’ <cepld(X)| <czp =0 as k— oo

for all X € Qy, and thus (I3 — £,dW)~! converges uniformly to I3 on Q. By this fact, the
weak convergence of {Ux}22, to U =V in H'()3, and (5.2.12) we get

khm F., (Ug) = <I3 — dW) VV =VrV weakly in  L?(€;)3%3.
—00
and thus
lim PF, (Uy)sP = P(ivrv) P =Dr(V) weaklyin 12(21)"°.
—00

From this fact and

i [PFL(U05P] 0, =0

by (5.4.24) it follows that Dpr(V) =0 on Q, i.e. Dp(V)=0onT.
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It remains to prove V - Vrg = 0 on I'. In what follows, we use the notations (5.2.46) and
(5.2.47) (with € = 1). Since uy, satisfies (5.3.20) on I';, , we see by (5.3.22) that

uk-? =& Yup-m on I‘Ek, 1 =0,1.
By this equality we get Uy - ?gk = a,:lUk -7 on Fﬁ, 1 = 0,1, or equivalently,
Ufw)-7i () = 5 UE(y) -nly), yel,i=0,L.
Hence
HUkl Ts UkO Tsk”L2 < € 1||U/<;1 n— U}i,o : nHL2(F)- (5.4.29)

Moreover, since 72 (y,r) = n(y) for y € T and r € (go(y), 91(y)), we have

91(y) 91(y)
Uk o) - Wy ) = [ 2 (W) dr = [ 0, 0. ) dr.

90(y) go(y)

Hence by Holder’s inequality, (5.2.52), and (5.4.24),

91(y) 2
U= Uk nlffary = [ ( | ) dr) dH>(y)
' \/90(v)
< ellon (U - W) 72(ay) < ezik ™
Applying this inequality to the right-hand side of (5.4.29) we get
Uy 7t = U o ey S ck™/2 =0 as k— . (5.4.30)
Also, by (5.2.34), (5.2.35), and (5.2.58),
10878 =V Irgilla) < N = V) 7 ey + 1V - (2, = Vrg) 2y
<c (||U;§,i — Vg2 + 5k:HV||L2(F))
=¢ (HUk - VHLZ(FZD + EkHVHL?(F)) :
Since the right-hand side tends to zero as k — oo by (5.4.27), we get
Jm UF ;-7 =V - Vrgilla@y =0, i =0, 1.
Combining this equality with (5.4.30) we obtain
V- Vrgr =V - Vrgol L2y = 0,

i.e. V- Vpg =0 on I'. Therefore, the vector field V' is in Ky(T").
Finally, we recall that uy € H' (€, ) satisfies (5.4.14) and thus

‘(Uk,v)LQ(st)] < Blurlzzny V] e (5.431)
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with 8 €[0,1) by V € Ky(I"). Let us express this inequality in terms of Uy, and send k — oo.
Noting that V(®., (X)) = V(X) for X € Q1 by 7(®., (X)) = 7(X), we use the change of
variables formula (5.4.16) to get

v = V. X
(1.7) g, = 5 [, iV,

1

where ¢p(X) := J(7(X),d(X)) 1 J(7(X),erd(X)) for X € ;. Here Uy converges strongly
to U =V in L?(21)? as k — oo. Moreover, for all X € Q; we see by (5.2.49) and (5.2.50)
that

lor(X) — J(m(X),d(X)) ™Y <cer, -0 as k— oo
and thus ¢y converges uniformly to J(7(-),d(:))~! on ;. Hence we obtain
7 . 94 7|2 -1
li =1 dX = ), d(- dX.
S it () 1, = i, UVordX = [ V1 0,d0)

By the change of variables formula (5.2.51) the last term is of the form

/ / @RIy () dr a2 y) — / o)V )2 dH ().

Therefore,

i _a1/272
kli)m € <uk’v>L2(st) =g VlIz2r)- (5.4.32)
By the same arguments we also have
. 1 2 . -1 (|77||12 1/2y/12
dim et furlZaqg,,) = lim et |Vl ) = 1972V Iz (5.4.33)
Now we divide both sides of (5.4.31) by e, send k — oo, and use (5.4.32) and (5.4.33). Then

we obtain
9"V 1720y < Blg* V112 (ry

Since 8 < 1, we observe by this inequality and (5.2.30) that V' = 0 on I". This shows
U =V =0 in Qy, which contradicts with (5.4.25). Hence (5.4.13) is valid. O

Lemma 5.4.5. For given § € [0,1) there exist eg € (0,1) and cg > 0 such that
lull o, < sl D)2, (5.4.34)
for all e € (0,e5) and u € H (Q.)? satisfying (5.3.20) on T. and (5.4.14).

Proof. Let ¢k 1 > 0 be the constant given in Lemma 5.4.1. Also, let e € (0,1) and cx2 > 0
be the constants given in Lemma 5.4.3 with a := 1/2cf ;. For € € (0,ex) let u € H(Q)?
satisfy (5.3.20) on I'; and (5.4.14). By (5.4.1) and (5.4.13) we have

IVulZ20.) < (4 + criex2) D)2, + el Vull7zq,)
Since a = 1/2¢k 1, the above inequality implies that
||Vu||i2(QE) < 0571||D(u)||i2(95), cg1=2(4+ cr1cK2)- (5.4.35)
From this inequality and (5.4.13) we further deduce that
||u||%2(95) < 0572||D(u)||%2(95), cg2 = 2(20;(711 +cK2). (5.4.36)
By (5.4.35) and (5.4.36) we get (5.4.34) with eg := ek and cg :=cg1 + ca,2. O
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Remark 5.4.6. The uniform Korn inequality (5.4.34) was proved by Lewicka and Miiller un-
der a slightly more general assumptions on the curved thin domain €, see [36, Theorem 2.2].
Here we gave another proof of the same inequality.

Lewicka and Miiller also proved that (5.4.34) is not valid if we drop the condition (5.4.14).
In the proof, they used a nontrivial Killing vector field in Iy (I") to construct a vector field
ve € H'(.)? satisfying v. - n. = 0 on I but

vas”%2(gs) > CE, HD(’UE)”%%QE) < 053'

See [36, Section 4] for details.

5.4.2 Korn inequalities on a surface

In this subsection we prove the Korn inequalities on I', which are used in the study of a
singular limit problem of the Navier-Stokes equations (5.1.1)—(5.1.3) as 2. degenerates into
T.

Lemma 5.4.7. There exists a constant ¢ > 0 such that
IVrvlZaqy < e (IDr@) 22y + lollfeqr) (5.4.37)
for allv e HYT,TT). Here Dr(v) is the surface strain rate tensor given by

Vrv + (VFU)T

Dr(v) := P(Vrv)sP, (Vrv)s = 5

(5.4.38)

Proof. For sufficiently small ¢ > 0 let N, := {z € R® | —e < d(z) < ¢} be the tubular
neighborhood of T such that N. C N. As in the proof of Lemma 5.4.1 we can show that

IVullZzn.y < 4IDW)[72 . + cllullZzn, (5.4.39)

for all u € H*(N.)? satisfying u - ny, = 0 on N, where ¢ > 0 is a constant independent of
e and ny_ is the unit outward normal vector field of the boundary ON;. Let v = vom be the
constant extension of v € HY(I',7T). By Lemma 5.2.13 we see that v € H*(N.)3. Moreover,
since . is the tubular neighborhood of I', the unit outward normal ny_ is given by

() = {ﬁ(x) if d(z)=e,
: —n(x) if d(z)= —e

for x € ON,. By this fact and v-n =0 on I' we see that v-ny. = 0 on ON.. Hence we can
apply (5.4.39) to v to get

19512y < D@,y + elolagn, (5.4.40)
Let us derive (5.4.37) from (5.4.40). By (5.2.53) and (5.2.54) with Q. replaced by N,
IVol|72(ny = cellVeollTamy,  10ll720vy < cellvllZzqry. (5.4.41)
To estimate the L?(N.)-norm of D(9) we see by (5.2.14) and |d| < € in N, that

D)~ (Vo) | <|Vo- Vo[ <ee[Vro| i N (5.4.42)
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Moreover, by Is = P+ @, Vrv = PV,
(Vro)Q ={(Vru)n} ®n={Vr(v-n) = (Vr)v} @n=(Wv)®n on T,
which follows from v-n =0 and —Vrn = W, and (5.2.6) we have
Vrv = P(Vrv)P + P(Vrv)Q = P(Vro)P + (Wv)®@n on T.
Hence (Vrv)s = Dr(v) + [(Wv) @ n]g on I'. From this equality, (5.4.42), and
[(Wo) @nls| <[(Wov) @n| = [Wo[ln| <clo] on T

by |n| =1 and the boundedness of W we deduce that

1D(®)| < ‘(vpv)s‘ + ‘D(ﬁ) - (ivpv)s‘ < ‘Dp(v)‘ +c (1o + ¢ [Vro|)
in N,. This inequality and (5.2.53) show that

IDE) s < e (1D0@)Raqey + [0l2aqr) + 2 1Vr0laqr)) - (5.4.43)
Now we apply (5.4.41) and (5.4.43) to (5.4.40) and then divide both sides by ¢ to get

IVevlEa) < e1 (D0 @) ey + 10132 + €I VrvlFa)

with some constant ¢; > 0 independent of . We take € > 0 so small that ¢;e2 < 1 /2 in the
above inequality to obtain

1
IVrvlZeqy < e1 (1D 2y + 012y ) + 5100l 2qry-
Hence the inequality (5.4.37) follows. O

Lemma 5.4.8. For given § € [0,1), there exists cg > 0 such that

Iy < e (IPE@Ieqey + - Irgla) (5.4.44)
for allv e HYT,TT) satisfying
‘(U,’LU)LQ(F)‘ < Blvllzmyllwllpz@y  for all w € Ky(T), (5.4.45)
where KCy(I') is the function space given by (5.1.8).

Proof. We prove the inequality
[ol22r) < ¢ (IDE@ ey + o - Vegliagr)) - (5.4.46)
Assume to the contrary that for each k € N there exists vy € H1(I',TT) such that

o3y > b (IDe @) By + o - Frgl2aqr))

and vy satisfies (5.4.45). Since vy # 0, we may assume ||v||z2r) = 1 by replacing vy with
vk/||vk|l2(ry- Then by the above inequality we have

1

1Dr @)1 720y + ok Vrgllzzqy < 1 (5.4.47)
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By [[vgll2qry = 1, (5.4.37), and (5.4.47), the sequence {vz}32, is bounded in H'(I',TT).
Hence, using the compact embedding H*(I',7T) «— L?(I', TT), we can take a subsequence of
{vg}72,, which we denote by {v;}72, again, that converges to some v € H(T',TT) weakly
in HY(I', TT) and strongly in L?(T',7T), and thus

[vllz2y = lim fJogllzery = 1. (5.4.48)
Moreover, since {Dr(v)}32, and {v; - Vrg}p, converge to Dr(v) and v - Vpg weakly in
L*(T)3%3 and L?(T'), we send k — oo in (5.4.47) to get
Dr(v) =0, v-Vpg=0 on I, ie wveyI).

Now we recall that vy, satisfies (5.4.45). Hence by [Jvg|[z2r) = 1 and (5.4.48) we have

| (g, v) 2y | < Bllokll 2y loll 2y = 8 forall ke N.

We send k& — oo in the above equality and then use the strong convergence of {v;}2°, to v
in L2(T,TT) and (5.4.48). Then we have 1 < 3, which contradicts with 8 € [0,1). Hence
(5.4.46) holds and we get (5.4.44) by combining (5.4.37) and (5.4.46). O

5.5 Stokes operator with slip boundary conditions

In this section we prove inequalities for the Helmholtz—Leray projection on 2. and the Stokes
operator associated with slip boundary conditions. We use the inequality (5.5.1) given in
Section 5.5.1 for the study of a singular limit problem and inequalities and formulas in other
subsections for the proof of the global existence of a strong solution.

5.5.1 Helmholtz—Leray projection on a thin domain

Let L2(€) be the closure of the space C5%(Q:) := {u € CX(Q)? | divu =0in Q} in
L%(Q.)3. Tt is well-known (see e.g. [8,14,64]) that L2(€2.) is characterized by

L2(Q) = {u e L*(Q.)? | divu=0in Q, u-n. =0 on .}
and the Helmholtz-Leray decomposition L?(.)3 = L2(Q.) @ L2(9.)* holds with
L2(Q:)" ={Vpe L*()° |pe H' ()}

Let P. be the Helmholtz—Leray projection from L?(£2.)% onto L2(€).). It is given by P.u =
u — Vi for u € L?(2)3, where ¢ € H(.) is a weak solution to the Neumann problem of
Poisson’s equation

9p
one

Ap=divu in €, =u-n. on I..

Moreover, by the elliptic regularity theorem (see [13,15]) we have P.u € H'(Q.)? when
u € HY(Q:)3. Our aim is to give a uniform estimate for the H!(£2.)-norm of the difference
u — Peu for u € HY(Q.)? satisfying u-n. =0 on I'..

Lemma 5.5.1. There exist constants e, € (0,1) and ¢ > 0 such that
o — Peul o, < elldival 2, (5.5.1)

for all e € (0,e,) and u € H'(Q.)3 satisfying u-n. =0 on I'..
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To prove Lemma 5.5.1 we first derive the uniform Poincaré inequality for ¢ € H(Q.)
whose integral over (). vanishes.

Lemma 5.5.2. There exist constants 5 € (0,1) and ¢ > 0 such that

lellzz.) < ellVell 2. (5.5.2)
for all € € (0,e,) and p € HY () satisfying fﬂs odx = 0.

Proof. As in the proof of Lemma 5.4.4, we prove (5.5.2) by contradiction. Assume to the
contrary that there exist a sequence {ej}7°, of positive numbers that converges to zero and
o € H(Q,) such that

loxl3m.,) > IV erBa,) [ erdz=0, keN. (5.5.3)
€k

For each k € N let ®., be the bijection from €; onto (), given by (5.4.15) and define
& = @ o @, € HY(Q). We divide both sides of the first inequality of (5.5.3) by &; and
apply (5.4.17) and (5.4.18) to u = (¢, 0,0) and U = (&,0,0) to get

”fk”%mzl) > ck (HPkaHizml) + 51;2”8”&“%2(91)> ’

where 0p&, is the normal derivative of §x given by (5.3.5). Since [|§k[|r2(q,) > 0, we may
assume that [|§x||z2(q,) = 1 by replacing & with & /(x| £2(,)- Then by the above inequality
we get

= 2 _ _
[PVE| 20y < ck7h 10n&hllagq,) < csfk ™ (5.5.4)

By these inequalities, [|§x[|z2(q,) = 1, and

IVé? = | PV + |Qve|?

,|QVE| = 11 ® Onk| = 0n&kl,

we observe that {£,}3°, is bounded in H'(4). From this fact and the compact embedding
HY(Qy) < L*(Q;) we deduce that there exists a subsequence of {£;}?°;, which we denote by
{&,}52 , again, that converges to some £ € H'(Qy) strongly in L?(€21) and weakly in H! ().
Hence

1€l z2(uy = Hm [I&llz2r) = 1. (5.5.5)

By the weak convergence of {£}5° ; to & in H'(Q;) and (5.5.4) we have PVE = 0 and 9,€ = 0
in Q. For y € T let n(y) := &(y + go(y)n(y)). Then by 9,§ = 0 we see that £ = 77 is the
constant extension of 1, and thus n € H*(T') by £ € H'(€;) and Lemma 5.2.13. Moreover,
by PVE =0, (5.2.3), (5.2.8), and (5.2.12) we have

F(Ig - dW) T = (13 - dW)_lan —0 in O

which implies that Vi = 0 in €4, i.e. Vrp =0 on I'. Hence setting

1
fi=n—— [ ndH?> on T,
T Jr
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where |I'| is the area of ', we can apply Poincaré’s inequality (5.2.20) to 7 to get

190l 2y < ellVrillzzey = el Venll 2y =0
and thus 7 = 0 on I, i.e. n = || [LndH? is constant. Now we return to the second

equality of (5.5.3) and use the change of variables formula (5.4.16) to get

[ 6200 (r(2X), d(X) 7 ((X), 24 (X)) dX =0,

Let k — oo in this equality. Then since J(7(-),erd(-)) converges to one uniformly in €; as
k — oo by (5.2.50) and {&}32, converges to & = 7] strongly in L?(Q1),

/Q n(x(X))J (m(X), d(X))" dX = 0.

Moreover, by the change of variables formula (5.2.51) and the fact that 7 is constant on T,
we obtain

91(y)
n/r/go(y) J(y,r) " I (y,r) dr dH?(y) In/rg(y) dH?(y) =0,

which together with (5.2.30) yields that » = 0. Hence

1€l 2200y = [I7llL2() = 0,
which contradicts with (5.5.5). Therefore, the uniform inequality (5.5.2) is valid. O

Next we consider the Neumann problem of Poisson’s equation

Oy

Ap=-§ in Q, .
€

=0 on I, (5.5.6)

for £ € H~1(Q.) satisfying (£, 1)q. = 0, where (-, -)q. denotes the duality product between
H71(Q.) and H'(Q.). By the Lax-Milgram theory there exists a unique weak solution
© € HY(9Q.) satisfying

(Vo VO 12, = (€.Q)a, forall ¢ e HY(Q:), / pdr = 0. (5.5.7)

Moreover, by the elliptic regularity theorem, if ¢ € L?(€).) then we have ¢ € H?(€.) and
there exists a constant c. > 0 depending on ¢ such that

Il m2 o) < cellélliz.)- (5.5.8)

In this case, the equation (5.5.6) is satisfied in the strong sense. Let us show that we can
take a constant ¢ in (5.5.8) independently of .

Lemma 5.5.3. Let €, be the constant given in Lemma 5.5.2 and € € (0,e,). Suppose that
¢ € L?(9.) satisfies er &dx = 0. Then there exists a constant ¢ > 0 independent of € and &
such that

el g2 < clléllzz . (5.5.9)

for a unique solution ¢ € H*(Q.) to the problem (5.5.6).
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Proof. Setting ( = ¢ in (5.5.7) and using (5.5.2) we immediately get

lellar o < Illa—1.) < 1€z

Hence it is sufficient to show that

V%0l 200y < ¢ (180l 20 + N1l o)) = ¢ (1€l + lellmi@.)) (5.5.10)

with some constant ¢ > 0 independent of ¢ (note that Ay = £ a.e. in €,).
Since C2°(€2,) is dense in L?(£2.), we can take a sequence {&;}72; of functions in CZ°(.)
that converges strongly to & in L?(€2.). For each k € N let

&) = 60) — 157 | G weo.

and ¢ € H'(Q.) be a unique weak solution to (5.5.6) with & replaced by &, (note that
(& Do, = (&, 1)r2(q.) = 0). Since &, € C°(Q,) and T is of class C*, the elliptic regularity
theorem yields that ¢y € H3(€.). Moreover, by the strong convergence of {££}%°, to ¢ in
L?(£2) and

lim/ fkda;—hm({k, D2y = (6 D20 /ﬁda:—O

k—o0
/ § dx

Since ¢ — ¢y, is a unique solution to (5.5.6) for the source term & — &, by (5.5.8) and the
above convergence we obtain

we observe that

—0 as k — oo.

1€ = &kll 20 < 1€ — &kl + o ’1/2

e — erllmzi.) < cell€ — &llrz.) = 0 as k — occ.

(Note that the constant ¢. does not depend on k.) Hence we can derive (5.5.10) by showing
the same inequality for ¢ and sending k£ — oc.
From now on, we fix and suppress the subscript k. Hence we suppose that ¢ is in H3(.)
and satisfies (5.5.6) in the strong sense. In particular, we have
¢

V- -n. = . 0 on TI.. (5.5.11)
€

By the regularity of ¢ we can carry out integration by parts twice to get

IV20ll720.) = 1A¢l 720, + /F {(Ve- V)V n. — (Vo - no)Ap} dH?

(5.5.12)
= ”ASDH%2(Q€) +/F (Vo - V)V - n.dH>.

Here we used (5.5.11) in the second equality. Moreover, based on (5.5.11) we can show as in
the proof of Lemma 5.4.1 (see (5.4.12)) that

< ¢ (IVel22(0,) + 190l 2200 1920l 1201 ) -

/ (Vo - V)V - ne dH>

£

Applying this inequality to (5.5.12) and using Young’s inequality we obtain

1
IV20ll720.) < 180l 20, + Vel e,y + §”V2<P||L2(Qs)7
which yields (5.5.10). Hence the inequality (5.5.9) follows. O
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Now let us derive the uniform estimate (5.5.1) for the difference u — P.u.

Proof of Lemma 5.5.1. Let €, be the constant given in Lemma 5.5.2 and € € (0,&,). Suppose
that u € H'(Q)? satisfies u - n. = 0 on .. Then for £ := —divu € L?(€2.) the divergence
theorem implies that

<€,1>Q€=/ﬂ £dx:—/r e dH2 =0,

The Helmholtz-Leray projection of u is given by P.u = u — Vg, where ¢ € H(€,) is a
unique weak solution to (5.5.6) with & = —divu. Since ¢ € L?(€2.), Lemma 5.5.3 yields

lu = Peull o) = IVellm.) < cléllzze.) = clldivul 2.

with a constant ¢ > 0 independent of . Hence (5.5.1) is valid. O

5.5.2 Definition and basic properties of the Stokes operator
Let us define the Stokes operator associated with slip boundary conditions and give its basic

properties. For u; € H?(Q.)3 and us € H'(£.)?3 integration by parts yields

/ {Au; + V(divuy)} - ugde = —2/ D(uy) : D(uz) dz + 2/ [D(u1)ne] - ug dH2.
Qe Qe

>

(5.5.13)
Hence if w1 and wuo satisfy divuq = 0 in ). and
up-ne =0, 2vP-D(up)n: +7:u1 =0, wuz-n.=0 on Tk,

then from the above identity we have

v Aug - usdr = —2v D(u1) : D(ug) dx — Z 72 / uq - ug dH2.

Qe Qe i=0,1 ¢

Based on this observation we define a bilinear form

ac(ui,ug) :=2v [ D(uy): D(ug)dx + Z 72/ u - up dH? (5.5.14)

Qe i=0,1 :

for u1,us € H'(Q.)3. By definition, a. is symmetric on H'(Q.)3.
Lemma 5.5.4. Under Assumptions 1 and 2, there exist €9 € (0,1) and ¢ > 0 such that
cHullt ) < as(u,u) < cllullfpq, (5.5.15)
for all e € (0,20) and u € HY(Q.)? satisfying (5.3.20) on T..
Proof. Let u € H'(2.)3. By (5.1.6) in Assumption 1 and (5.3.8) we have
il ey < o (M ullEagq,) + llOnulia,) ) < elullf,,

for ¢ = 0,1. Combining this with

1
||D(U)||%2(QE) =3 (HVU’%Z(QE) +/ Vu: (Vu)" dw) < ”V“H%Q(QE)
Qe
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by Hélder’s inequality we get the right-hand inequality of (5.5.15).

Let us prove the left-hand inequality of (5.5.15). First we assume that the condition
(A1) in Assumption 2 is satisfied. Without loss of generality, we may assume that 70 =
max;—q1 7. For u € H'(:)? we use (5.3.7) with i = 0 to get

e,y < e (ellulifere) + €I Vuliaq,)) -

To the right-hand side we apply (5.1.7) and (5.4.1). Then

lull3a,) < e (Whull3aqee + 2ID@ I3, + ¥ lulEzqa,))

< crae(u, u) + e8?|Jul|72 (g

with positive constants ¢; and co independent of e. We set €1 := 1/+/2¢2 and take € € (0,e1)
in the above inequality to get

Jul22 0, < 2exa(u, )
Moreover, from this inequality and (5.4.1) it follows that
IVullfagq,) < cae(u,u).

By the above two inequalities we see that the left-hand inequality of (5.5.15) is valid.

Next we suppose that the condition (A2) in Assumption 2 holds. In this case the condition
(5.4.14) is automatically satisfied for any 8 € [0,1). We fix g € [0, 1) and apply Lemma 5.4.5
to obtain

ullFr .y < cal D(W)lI72(0.) < cpae(u, u)

for all € € (0,e5) and u € H'(2)? satisfying (5.3.20) on I'z, where eg € (0,1) and cg > 0
are the constants given in Lemma 5.4.5. Hence the left-hand inequality of (5.5.15) holds and
we conclude that the lemma is valid with ¢ := min{e1,eg}. O

Throughout the rest of this section (except for Lemmas 5.5.6 and 5.5.7) we suppose that
Assumptions 1 and 2 are satisfied and fix the number ¢y € (0,1) given in Lemma 5.5.4. For
e € (0,e0) we define a function space

Vo= L2(Q) N HY(Q.)? = {u e H'(Q)? | divu=0in Q, u-n. =0 on T'.}.

By Lemma 5.5.4 the bilinear form a. restricted to V. x V. is continuous, coercive, and
symmetric on the Hilbert space V. (equipped with H!(Q.)-inner product). Hence the Lax—
Milgram theorem yields that there exists a bounded linear operator A, from V. into its dual
space V/ such that

vi(Acur, uz)v. = ac(u,uz), ui,ug € Vg,

where v (-, )y, stands for the duality product between V! and V. (see e.g. [8]). We consider
A. as an unbounded operator on L2(£).) with its domain

D(As) = {u eVe | Acu € Lg(Qs)}'
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Then from the Lax—Milgram theory it follows that A, is a positive self-adjoint operator on
L2(Q.). Moreover, by a regularity result on the Stokes problem with slip boundary conditions
(see [5,60]) we know that

D(A.) = {u e V.nH*(Q.)? | 2vP.D(u)ne + vou = 0 on I'.},
Acu = —vPAu  for ue D(AL).

Here P. is the Helmholtz—Leray projection (see Section 5.5.1). Note that D(A;/ 2) =V, and

(Aeur, u2)r2(0.) = (AY?ur, AY?u2) 120y (5.5.16)
for all u; € D(A;) and ug € V.. Moreover, the identity
|AY2ul 2 = as(u,w) = 20 D) By + A ulageey + 2By (5:5.17)
holds for all u € V.
Lemma 5.5.5. There exists a constant ¢ > 0 independent of € such that
cHMullmq.y < 1AY2ull2q.) < cllullmq.) (5.5.18)
for all e € (0,e9) and u € V.. Moreover, if u € D(A;), then we have
IAY 2|20, < el Acullz2(q,)- (5.5.19)

Proof. The inequality (5.5.18) is an immediate consequence of (5.5.15) and (5.5.17). To
prove (5.5.19) we see by Holder’s inequality that

1AY 2132 .y = (u, Acw) 20y < Nlull 2ol Acul 2.

for u € D(Ac). Applying [[ul|r20.) < C”A;/QUHLQ(QE) by (5.5.18) to the right-hand side we
obtain (5.5.19). O

5.5.3 Uniform regularity estimates for the Stokes operator

In this subsection we estimate the difference between the Stokes and Laplace operators and
show the uniform equivalence of the norms [|A-ul|r2(q,) and [Jul|g2(q,) for u € D(A:).

First we give an integration by parts formula for the curl of a vector field on €2.. For
x € N we set

ine) = = {(dle) — (o)) ~ (o) — do) o)}

1 0
nig(z) = sgix) {(d(:ﬁ) —ego(z))=nl(z) + (e (z) — d(x))%ﬁg(:n)} ,
W (0) 1=~ { (o) — o) W) ~ (eae) — ) W2(a)

Where nt, i = 0,1 is given by (5.2.33) and
Wi(z) == —{I3 — 7' (z) @ 7' (x)}Val(z), z€N,i=0,1.
By definition it immediately follows that

i = (=1)"ne, ﬁzzljna, W= (=1)"'"W. on TL i=0,1. (5.5.20)
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Lemma 5.5.6. For a vector field u: Q. — R? define G(u) := G1(u) + Gao(u), where
Gi(u) := 2y x Wu, Go(u) =g xu in .. (5.5.21)
Then, under Assumption 1 that (5.1.6) is valid, there exists ¢ > 0 independent of & such that
G| < clul, VG| < cllul+[Vu]) in Q. (5.5.22)
Proof. By (5.2.13), (5.2.15), (5.2.36), and go, g1 € C*(T") we see that
097l (x)] <e¢, [0%Gi(x)] <e, z€N,i=0,1,al=0,1,2, (5.5.23)

where 0§ = 07705205° for a = (a1, 2,03) € 7Z? with a; > 0,7 =1,2,3and ¢ > 0 is a
constant independent of €. From this it also follows that

Wiz)| <ec, |OpWiz)|<c¢, z€N,i=01,k=123. (5.5.24)
By (5.1.6), (5.3.39), (5.5.23), and (5.5.24) we have
7| <ec, |fig] < ez, ‘W‘ <c¢ in Q.. (5.5.25)

Thus the first inequality of (5.5.22) is valid. To prove the second inequality of (5.5.22) we
need to estimate the first order derivatives of 11, 119, and W. Asin the proof of Lemma 5.3.10,
by direct calculations with Vd = 7 in N and the inequalities (5.2.30), (5.3.39), (5.5.23), and
(5.5.24) we observe that

I P S S e P
Vin=—n® (n;, +n;)+ fi, Vie=—n®|(-=n.—=n; |+ fo,
g g v v

1
W = ;gﬁk(wf +WH+F, k=123

in Q., where fi, fa, and Fj are bounded on 2. uniformly in e. We apply (5.2.37) to Vny,
(5.1.6) and (5.2.36) to Vng, and use (5.2.30) to show that

0 1
M +f2] <e (5.5.26)
€9

Vil < jal + il + |l S e |Viia| <
in €. To estimate the first order derivatives of W we see by (5.2.12) that
W2+ Wl ={+al)onl —al o @+ ﬁg)}(Ig - dW)AW
~ (=t @nl)(Is - a) - (Vonl + Vend)
in N. Hence we get [W0 + W1| < ¢z in N by (5.2.9), (5.2.36), and (5.2.37) and
‘akVT/‘ < QWQ YWt R <e in Q.. (5.5.27)

Applying (5.5.25), (5.5.26), and (5.5.27) to the gradients of G; and G2 given by (5.5.21) we
obtain the second inequality of (5.5.22). O
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Lemma 5.5.7. We have the integration by parts formula

/ curlcurlu - @ dr = —/ curl G(u) - @ dx +/ {curlu + G(u)} - curl®dx  (5.5.28)
€ £ QE

for all w € H*(Q)? satisfying the slip boundary conditions (5.3.20)—(5.3.21) on T. and
® € L3(Q.)? with curl ® € L2(.)3, where G(u) is given in Lemma 5.5.6.

Proof. By standard cut-off, dilatation, and mollification arguments, we can show as in the
proof of [64, Chapter 1, Theorem 1.1] that for ® € L2(9:)? with curl® € L?(Q.)? there
exists a sequence {®;}2°, of vector fields in C*°(€2,)3 such that

lim [|® — Okl|12(0) = lim [lcurl @ — curl @412,y = 0.
k—o00 k—o00

Thus, by a density argument, it is sufficient to prove (5.5.28) for all ® € C>(€2,)3.
Let u € H?(.)3 satisfy (5.3.20) and (5.3.21) on I'; and ® € C*(Q.)3. Then

/ curlcurlu - @ dr = / (ne x curlu) - ® dH? + / curlw - curl ® dz (5.5.29)

€ € €

by integration by parts. To the boundary integral we apply

ne X curlu = —ng X {na X <2Wgu + ku)}
v
= —n. X (2751 X Wu—l—ﬁg X u) = —ne X G(u)

on I'; by (5.3.30), (5.5.20), and (5.5.21), and then use integration by parts to get

/ (ne x curlu) - ® dH? = —/ {ne x G(u)} - ® dH?
Ie

€

= [ {G(u)- curl® — curl G(u) - } dx.
Qe

Substituting this for (5.5.29) we obtain (5.5.28) O

Using the formula (5.5.28), we derive an estimate for the difference between the Stokes
and Laplace operators as in [19, Theorem 2.1].

Lemma 5.5.8. There exists a constant ¢ > 0 independent of € such that
[Acu + vAu|[ 20,y < cllullma.) (5.5.30)
for all e € (0,e0) and v € D(A,).

Note that the H!(£2.)-norm of u appears in the right-hand side of (5.5.30) instead of its
H?(Q)-norm.

Proof. Let u € D(A.). Since A.u = —vP.Au € L2(Q.), there exists ¢ € H'(f).) such that
Acu+vAu = Vq. Then by A.u € L2(Q.) and Vg € L2(Q.)" we get

HAgu + l/AuH%Q(QE) = (Agu’ Vq)L2(QE) + (uAu, VCI)LQ(QE) = (VAU, Vq)Lz(QE).
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Moreover, noting that
curl Vg =0, Awu= —curlcurlu in £,
by divu = 0, we apply (5.5.28) with & = —Vq to the last term to get

(vAu, V)12, = v(curleurlu, =Vq) 12(q.)

v(curl G(u), V@) 2.
= v(curl G(u), Aeu + vAu) 12(q,)-

where G(u) is given in Lemma 5.5.6. From this equality and (5.5.22) we deduce that
| Acu + I/Au|]%2(ﬂs) < v|ewrl G(u)[ 2.l Acu + vAu| 120,
< cl|ull g1y | Aew + vAul| L2,
with some constant ¢ > 0 independent of €. Thus (5.5.30) follows. O

Remark 5.5.9. In the proof of Lemma 5.5.8, Assumption 2 is essential since it enables us
to consider the Stokes operator A. on the usual solenoidal space L2 () and thus the curl
of Acu+ vAu = Vq vanishes. If we drop Assumption 2 and consider the Stokes operator A,
on

L3(0) = L (@) NKy(T)", Ky(D) = {o] v € Ky(D)},
where ICy(I") is given by (5.1.8) and ¥ = v o 7 is the constant extension of v, then

Au+vAu=Vqg+0, geH'(Q),veL2(Q)NEK,T)

~

for u € D(A.). In this case, however, we cannot prove a similar inequality to (5.5.30)
since the curl of ¥ does not vanish in general. This difficulty does not occur in the proof
of [19, Theorem 2.1] since in that case ICy(I") reduces to

Ky(T?) = {(a,0) € R? | a € R?, a - Vag = 0 in T?}
and the curl of the constant (a,0) € Ky(T?) automatically vanishes.

Next we show that for u € D(A:) the norm || Acul|z2(q,) is bounded from above and
below by the canonical H2(Q.)-norm of u with constants independent of .

Lemma 5.5.10. There exists a constant ¢ > 0 independent of € such that

lull 200y < ¢ (1AUll 2.y + llull g o) (5.5.31)
for all e € (0,20) and u € H?(2)? satisfying (5.3.20) and (5.3.21) on T-.

The proof of Lemma 5.5.10 is similar to that of Lemma 5.5.3, but we need to carry out
calculations a lot and use some formulas for the Riemannian connection on I';. We give it
in the next subsection.

Using Lemmas 5.5.8 and 5.5.10 we prove the uniform equivalence of the L?(€2.)-norm of
Acu and the H?(Q.)-norm of u € D(A.).
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Lemma 5.5.11. There exists a constant ¢ > 0 independent of € such that
¢ Hullgzo. < [Acull 2. < cllullm . (5.5.32)
for all e € (0,e0) and u € D(Ag).
Proof. By (5.5.30) and (5.5.31) we have
lull 2.y < e (1Au]l 200 + lullgro.))
< c ([ Acull 20,y + [Acu + vAul| 2. + llull g o,))
< (lAcull 2.y + lullmie.y) -

Applying (5.5.18) and (5.5.19) to the second term on the right-hand side we obtain the
left-hand inequality of (5.5.32). Also, from (5.5.30) and [[ul|g1(q.) < [[ul|g2(0.) we deduce
that

[Acullz2(0.) < [|[Aeu + vAul[ 20, + VAUl L2(q,) < cllullpzq.)-
Hence the right-hand inequality of (5.5.32) holds. O

As a consequence of Lemmas 5.5.5 and 5.5.11, we obtain an interpolation inequality for
a vector field in D(A;).

Lemma 5.5.12. There exists a constant ¢ > 0 independent of € such that

1/2 1/2

for all e € (0,e0) and u € D(A,).
Proof. Let u € D(A.). From (5.5.16) and (5.5.18) it follows that

lullFr o,y < el A ull o,y = e(Acu,u) 20, < el Aeull 2o lull 202 -

Applying (5.5.32) to the right-hand side of this inequality we get

lullF o,y < ellull 2o llull 2 (0. -
Hence (5.5.33) is valid. O

5.5.4 Uniform a priori estimate for the vector Laplacian

The purpose of this subsection is to give the proof of Lemma 5.5.10. First we give an
approximation result of a vector field in H?(Q.)? satisfying the slip boundary conditions.
Let us consider the equilibrium equations of linear elasticity with slip boundary conditions

{Au+ V(divu) = f in Qg

(5.5.34)
u-n. =0, 2vP.D(u)n.+vu=0 on T

where f: Q. — R? is an external force (and we artificially impose the slip boundary condi-
tions). By the identity (5.5.13) and the slip boundary conditions we observe that the bilinear
form corresponding to the problem (5.5.34) is a. given by (5.5.14). Thus, under Assump-
tions 1 and 2, Lemma 5.5.4 and the Lax-Milgram theory show that for each f € H~1(£.)3
there exists a unique weak solution u € H 1(Qg)?’ satisfying v -n. = 0 on I'z and

as(u, ®) = (f,®)q. forall & e H'(Q.)3,
where (-,-)q. stands for the duality product between H~'(Q.) and H'(Q.).
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Lemma 5.5.13. Letu € H'(Q.)? be a unique weak solution to the problem (5.5.34). Assume
that f € L*(Q.)3. Then u € H*(Q:)? and it satisfies (5.5.34) a.e. in Q. and on T..
Moreover, there exists a constant c. > 0 depending on € such that

[ull 200y < cell fllL2 .- (5.5.35)
If in addition f € H*(Q.)3, then u € H3(.)3.

Proof. The inequality (5.5.35) and the H2-regularity of u are proved by a standard local-
ization argument and a method of the difference quotient. Here we omit their proofs since
they are the same as those of [5, Theorem 1.2] and [60, Theorem 2], which establish the
H?-regularity of a weak solution to the Stokes problem with slip boundary conditions.
Also, the H3-regularity of v is proved by induction and a localization argument as in the
case of a general second order elliptic equation. For details, see [13, Theorem 5 in Section 6.3].
(Note that the C*-regularity of the boundary I'. is required for the H3-regularity of u, see
Section 5.2.2 and the proofs of [5, Theorem 1.2] and [60, Theorem 2].) O

Based on Lemma 5.5.13 we show that a vector field in H?(£2.)? is approximated by those
in H3(Q.)? under the slip boundary conditions.

Lemma 5.5.14. Let u € H?(2.)3 satisfy the slip boundary conditions (5.3.20)-(5.3.21) on
I'.. Then there exists a sequence {uy}32, in H>(Q)? such that uy, satisfies (5.3.20)—(5.3.21)
on Iz for each k € N and limy_, o ||lu — uk”HQ(QE) =0.

Proof. Let u € H?*(Q.)? satisfy (5.3.20)-(5.3.21) on I' and f := Au + V(divu). Since
f € L*(Q:)3, there exists a sequence {f;}22, in C°(Q:)3 that converges to f strongly in
L?(92.)3. For each k € N let u; be a unique weak solution to the problem (5.5.34) with
external force fi. Then since f, € C°(Q.)3, we see by Lemma 5.5.13 that u, € H3(€.)3
and it satisfies (5.3.20)—(5.3.21) on I'.. Moreover, by (5.5.35) and the fact that u — ug is a
unique weak solution to (5.5.34) with external force f — fi, we have

lu —ukll 20 < cellf — frllze.)-

Letting k — oo in this inequality and using the strong convergence of { fx}2°, to f in L?(2.)?
we obtain limg o [|u — ug | g2(0.) = 0 (note that the constant c. does not depend on k). [

Now let us show Lemma 5.5.10. As in Section 5.2.1 we denote by
H™T.,TT.) :={uec H"T.)* |u-n.=0onT.}, m=0,1,2

the space of all tangential vector fields on T of class H™ (here we write H° = L?). For
uw € HY(T'.,TT.) and v € L?(I'., TT.) we define the covariant derivative

Vou:=P.(v-V)i=P.(v-Vr.)u on I,

where 1 is any H!-extension of u to an open neighborhood of I'c with @|r. = u. We use the
formulas for the covariant derivatives given in Appendix 5.C.

Proof of Lemma 5.5.10. Let u € H%(.)? satisfy (5.3.20)—(5.3.21) on I'.. Since

lullFr2.y = Nl + IV2ull72.):



5. Navier—Stokes equations in a curved thin domain 166

it is sufficient for (5.5.31) to show that
1920,y < e (1800, + lull3na,)) (5.5.36)

Moreover, by Lemma 5.5.14 we may assume that u € H3(:)3, and thus its trace on I'; is in
H?(T.,TT.) (note that u satisfies u-n. = 0 on I';). For such u we can carry out integration
by parts twice to get

||V2u|\%2(95) = ||Au!|%2(95) +/ Vu : {(n. - V)Vu — n. ® Au} dH>. (5.5.37)
Ie

Here (n. - V)Vu denotes a 3 x 3 matrix whose (3, j)-entry is given by
[(ne - V)Vulij := (ne - V)Ou,, 4,5 =1,2,3.

Let us estimate the boundary integral in (5.5.37). Since u satisfies the slip boundary condi-
tions (5.3.20)—(5.3.21) on I';, we see by Lemma 5.3.7 that

(ne - Vu=—-Weu—Fu+En. on I (5.5.38)

where 7. := 7. /v and & = (n. - V)u-n. = Vu : Q. (note that u and W u are tangential on
I'2). The first step is to show that

4
Vu: {(ne - V)Vu —n. @ Au}dH?* = Z/ o dH?, (5.5.39)
Le k=1v"¢

where
o1 :==2{Vr. W, - u+ (Vu)W; +7:Vu} : P.(Vu)PFx,
w9 = W.Vu : (Vu)P:
—2(u - divp, We +2Vu : W) (Vu : Q.) + H.(Vu : Q.)?, (5.5.40)
3 = —(Wlu = HWZu) -,
P4 = f’yE(Qqu —2H.W.u — A:H.u) - u.

In (5.5.40) we used the notation Vi_W; - u for the 3 x 3 matrix given by
3
(Ve We - uliy = > (DS [Weljn)u, 1,5 =1,2,3. (5.5.41)
k=1

Using a partition of unity of I'. we may assume that u|p, is compactly supported in a
relatively open subset U of I'. on which we can take a local orthonormal frame {71, 72} (see
Appendix 5.C). Since {71, 72,n.} is an orthonormal basis of R?,

3
Vu : {(n. - V)Vu —n. @ Au} = (Vu)T : [{(n. - V)Vu}T — Au@n.] = Z i (5.5.42)
i=1

on U, where

ni = (Vu)Ir; - [{(ne - V)Vul'n — (Au®@n)m)], i=1,2, (5.5.43)
n3 = (Vu) ne - [{(ne - V)Vu}Tn. — (Au® n)ng]. (5.5.44)
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In what follows, we carry out calculations on U. By (5.C.2) and 7; - n. = 0,

(VU)TTZ' =(r-V)u= V?u + (Wew - 73)ne,

5.5.45
(Au @ n:)1; = (13- ne)Au = 0, ( )

where v VT, 1 =1,2. Writing Tij and ng, j =1,2,3 for the j-th component of 7; and
ne, we see that the j-th component of {(n. - V)Vu}T7; is of the form

3 3
Z Ne 8k81uj ’7’ = Zn Ti * V)(@kuj) = ang(n : VFE)(akUj)

k=1 k=1 k=1

Z T3 * VFE n 8ku]) (TZ‘-VFETL];)(‘?]C’U,J’}

/-\

Ve ){(ne - V)ust = {(7i - Vo )ne - Viu;.

(Note that 7; is tangential on I'c and the tangential derivatives depend only on the values of
functions on T';). Therefore,

{(ne - V)Vu}Tr; = (15 - Vo) {(ne - V)u} — {(7 - V. )ne - Viu.
By (5.5.38), (5.C.2), WX = W, and
(Ti . VFs)ng = (Vpana)TTi = —WgTi = —WaTZ‘, (5546)

we further observe that

{(ne - V)Vu} 'y = =V, (Weu) — 3. Viu + Vi u — EWery
+ {(—FWeu + Vi &) - 7idne. (5.5.47)

Note that the first four terms on the right-hand side of (5.5.47) are tangential on I'c. From
(5.5.43), (5.5.45), and (5.5.47) we deduce that

N = —vju . {ﬁf(WEu) + ﬁgvfu - ﬁi‘/&ﬁu + fgWETi} + Weu - m){(=3Weu + V. &) - T3 }

for i = 1,2. Hence by (5.C.9)—(5.C.13) and the fact that {7, 7} is an orthonormal basis of
the tangent plane of I'. we obtain

m +mn2 = —{Vr.(Weu) + 3. Vr.u — W.Vr_u} : (Vp u)P:
—&(Vrou: We) + Weu - (—3:Weu + Vi &), (5.5.48)

To calculate 773 we observe that the j-th component of {(n. - V)Vu}Tn. is given by

3
nF (0o )nt = tr[Q:-V>u;] = tr[V2u;] — tr[P-V2u,]
k=1
= Auj — Z PE(V2uj)TZ~ ST — PE(VQU)nE e
i=1,2

= Au]' — Z (Ti . V)VU] * Ty
i=1,2
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for j = 1,2, 3. In the last equality we used PET = P., P.; = 7;, and P.n. = 0. For the second
term on the last line we further see that

(Ti . V)Vu] Ty = (Ti . VFE)VUJ' T = (Ti . VFE){(Ti . V)uj} - {(TZ . VFE)Ti . V}u]

From these equalities and (Au ® n.)ne = (n. - n.)Au = Au it follows that

{(ne - V)Vu}n. — (Au® ne)n,.
=- Z (75 - Ve ){(ri - V)u} — {(7s - V)7 - V}Iu]. (5.5.49)

i=1,2
By (5.5.38), (5.5.46), and (5.C.2) we have
(7 V) {(r:- Vb = (13- Vi) {Vou + (Weu - ).}
= ﬁfﬁfu — (Weu - 1) Wer; + {Wgﬁfu 7+ 7 - Ve, (Weu - TZ)} Ne
and

{(Ti . VFE)Ti . V}u = L{ﬁfﬂ + (WETi . Ti)ng} . V] U

= Voo, u— (Weri - 1) (Weu + Feu) + (Wew - Vi1 + EWeri - 73) ne.

We substitute these expressions for (5.5.49) and use

> Wew-m)Wer = Y We(ri @ 73)Weu = WeP.Weu = Wlu
i=1,2 i=1,2

by P. = Zi:m 77 and P.W, = W,,

Y {n Vr.(Wew- 1) = Weuw - Viri} = Y Vi (Weu) - 73 = divr, (Wew)
i=1,2 i=1,2

by (5.C.5) and (5.C.9), and the formulas (5.C.8) and (5.C.10) to deduce that

{(ne - V)Vu}n. — (Au®@n.)n, = — Z (ﬁfﬁ?u — ﬁ%jﬂ_u> + W2u — H-Wou — 4. Hou
i=1,2
—{Vr.u: We +divp,(Weu) — {Hodne. (5.5.50)

Hence we take the inner product of (5.5.38) and (5.5.50) to obtain

N3 = Z (vjviu — V%;Tiu) - (Weu + Feu) — (qu — H.Wou — 3. Hou) - (Weu + F.u)
i=1,2
— &{Vr.u: We + dive, (Wew) — &He}. (5.5.51)

Now we observe by (5.2.39) and direct calculations that
Vr.u: (Vru)P. = P.(Vu) : P.(Vu)P. = Vu : PTP.(Vu)P..
Since PI' = P2 = P., the above equality implies that

Vr.u: (Vr,u)P. = Vu: P.(Vu)P-.. (5.5.52)
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By the same calculations and (5.2.39) we have

Vr.(Weu) : (Vru)Pe = {Vr We-u+ (Vrou)We} : (Vpou)P:

5.5.53
={Vr. Wz -u+ (Vu)W.} : P.(Vu)Px, ( )
where the matrix Vr_W, - u is given by (5.5.41), and
W.(Vr.u) : (Vr.u)Pe = Wo(Vu) : (Vu)P., Vpu:W.=Vu:W,. (5.5.54)
Also, it is easy to see that
WEU : VF€€5 = leFe (§EW€U) - EEdiVFs(qu)7 (5555)

divp, (Weu) = w - divp, We + Vp u : W, = w - divp_ W, + Vu : W-.
Hence we deduce from (5.5.42), (5.5.48), (5.5.51)—(5.5.55), and W2 = W. that
Vu : {(n. - V)Vu —n. @ Au} dH>
Ie
= Z (ﬁjﬁju - ﬁ%fnu) - (Weu + Feu) dH?
r

i=1,271

4
1
+/ <2<p1+ E gok> d?—[2+/ divr, (§Weu) dH?,
FE k:2 FE

where ¢1, ..., ¢4 are given by (5.5.40). The last integral on the right-hand side vanishes by
the Stokes theorem since {.W.u is tangential on I'c. Moreover, applying (5.C.15) to the first
term and then use (5.C.12), (5.5.52), and (5.5.53) we observe that

—ETE =€ ~ 1
> / (ViViu— Veru) - (Weu + Fou) dH? = 2 / p1 dH2.
i=1,271e Pe

Hence the equality (5.5.39) follows.
The second step is to show that

/ or dH?
I

‘/F On d?—[2’ < cllullfngy, k=34 (5.5.57)

< (Il + lullm @)Vl e, ), k=1,2, (5.5.56)

with a constant ¢ > 0 independent of €. The estimate (5.5.57) for k = 4 is an easy conse-
quence of (5.1.6), (5.3.8), and the uniform boundedness in € of W, and H. on I'.:

\ [ e d%?\ < cellulZa,) < cele lulagq) + elOnulag,) < cllulZiq,)

Let us prove the estimate (5.5.56) for & = 1. We proceed as in the proof of Lemma 5.4.1.
In what follows, we use the notations (5.2.46) and (5.2.47) and sometimes suppress the
arguments y and r. For y € T', r € [ego(y),£91(y)], and j, k, 1 = 1,2,3 we set

F(y,r) == Egty){(r — o)) WEL () — (g1 (w) — )W)},
Gyly.r) = egtw {(r = 90(0)) (D5 Welin) () — (91 (w) — ) (D5 Wl )50}
) = ——{(r — g0 ()72 — (ear(y) — )30,

eg(y)
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where 4% :=~%/v, i = 0,1. Then we have

(Ve We - u+ (V)W + 3. Val (y)
= (—=1)™G - uf + (VW) F +3(Vu)|(y,eg:(y)), yeT,i=0,1, (5.5.58)

where G - u* denotes a 3 x 3 matrix whose (4, k)-entry is given by

3
Gl =Y Ghul, g k=1,2,3.
=1

Moreover, by (5.1.6), (5.2.45) for W, and D;W, with j = 1,2,3,
Ir —egi(y)| <egly) <ce, yel,relegly)en(y)i=0,1, (5.5.59)

and the uniform boundedness in ¢ of W, and Q§W<S on I'; we have

o
() + [ 57

for all y e T and r € [ego(y), eg1(y)] with a constant ¢ > 0 independent of £. We also define
matrix-valued functions R and S by

L {(r = 200(0) P4 (9) + (201 () — ) Po()}

Bly.r) = eg(y

~—

for y e T and r € [ego(y),e91(y)], and
Si(y) == /1 +2|mi(y) |2 Pﬁ,i(y), 1=0,1,

S(y,r) == {(r —eg0(y))S1(y) + (e91(y) — 7)So(y) }-

eg(y)

Then we easily observe that
1+ 22|7i(y) 2 [P-(Vu) PJi(y) = [R(V)*S)(y,9:(y)), y €T, i=0,1. (5.5.61)

Moreover, from (5.2.44) for P;, (5.4.9), and (5.5.59) we deduce that

o
)]+ G )

for all y € I" and r € [ego(y),e91(y)] with a constant ¢ > 0 independent of . Now let us
define a function ®; = ®;(y,r) for y € I' and r € [ego(y),e91(y)] by

By (y,r) = =2[{G - u* + (Vu)*F + 5(Vu)*} : R(Vu)S](y,7)J(y,r).

Then by the change of variables formula (5.2.57) and the equalities (5.5.58) and (5.5.61) we
observe that

Jr o

Z/zwl ) = [ (B1(020100) — 1)} )

1=0,1

Egl
/ / y, ) dr dH?(y).
€90(y)
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Furthermore, the inequalities (5.2.49), (5.5.60), and (5.5.62) imply that

09,

o | < Al P+ (V) + (o] + (Ve DIV}

with some constant ¢ > 0 independent of ¢ (here we also used Young’s inequality). From the
above relations, (5.2.52), and Hoélder’s inequality it follows that

/ @1 dH>

(Note that [lullz2a.) < |lullg1(q.)-) Thus, the inequality (5.5.56) for k& = 1 holds. By the
same arguments we can show (5.5.56) for k = 2 and (5.5.57) for k = 3.
Finally, from (5.5.39), (5.5.56), and (5.5.57) we deduce that

< c/F agl{|uﬂ\2 + ‘(VU)M? + (‘uﬁ| + |(VU)M)|(V2U)ﬁ\}drdH2

€90

< ¢ (Iull3 ) + Nullm oo V%l 2, ) -

Vu: {(ne - V)Vu —n. @ Au} dH>
Ie

< ¢ (Jlullp ) + Nullm o) 1%l 2,y ) -
We apply this inequality to (5.5.37) and then use Young’s inequality to obtain
192l 20, < AulZaq0,) + ¢ (Il + Tl @) IVl 2.
< 18wz, + 3 IV%ulag0, + el o,

which yields (5.5.36). Hence the inequality (5.5.31) is valid. O

5.6 Average operators in the thin direction

5.6.1 Definition and basic inequalities of the average operators

In this section we investigate average operators in the thin direction and establish several
inequalities related to them, which are useful in the analysis of the Navier—-Stokes equations
in the curved thin domain Q.. Throughout this section we assume ¢ € (0, 1).

Definition 5.6.1. We define the average operator M in the normal direction of I' as

p(y) == ply+rn T, € 5.6.1
(y Eg(y) /ago(y) Y Y Y )

for a function ¢ on §.. The operator M is also applied to a vector field u: Q. — R? and we
define the averaged tangential component M, u of u by

€g1(y)
Mu(y) := P(y)Mu(y) = Egty) / . Py)u(y +rn(y))dr, yeT. (5.6.2)

For the sake of simplicity, we denote the tangential and normal components (with respect
to the surface I') of a vector field u: Q. — R3 by

ur(z) = P(x)u(z), un(x):={u(x) nlx)}n(x), =€, (5.6.3)
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where P and 7 are the constant extensions of P and n in the normal direction of I', so that
u = ur + uy and u; - u, = 0 (note that w, is a vector field). Also, we use the notations
(5.2.46) and (5.2.47) and sometimes suppress the arguments of functions. For example, we
write

1 €91 1 €91
Mgoz/ oF dr, MTu:/ ugdr.
€g €90 €9 €90

Let us derive basic inequalities for the average operators M and M,. First note that for
a vector field u on Q. we have M;u = Mu, by (5.6.2) and (5.6.3). Hence the following
inequalities for M are also valid for M.

Lemma 5.6.2. Let p € [1,00). There exists ¢ > 0 independent of £ such that

1Moy < e Pl o) (5.6.4)
1Mo 1oy < clleliae.) (5.6.5)

for all p € LP(Q.). Here My := (M) o7 is the constant extension of M.

Proof. By Holder’s inequality and (5.2.30),

1 /691 (v) ) d
Y \y,Tr)ar
€9(Y) Jego(w)

|Mp(y)[P =

eg1(y)
<=t [ i ar
ego(y)

for all y € I". Integrating both sides of the above inequality over I' and using (5.2.52) we
obtain (5.6.4). The inequality (5.6.5) follows from (5.2.53) and (5.6.4). O

Lemma 5.6.3. Let p € [1,00). There exists ¢ > 0 independent of € such that

HSO - Mi@HLP Q < CEHOn(tOHLP(QE)a (566)
(€2)
H‘P - Mi@Hy(pg) < Cglil/pHanSOHLp(QE)a i1=0,1 (5.6.7)

for all o € WHP(R.), where O, is the normal derivative of ¢ given by (5.3.5).

Proof. For y € T and r € (ego(y),e91(y)) we have

) _ 1 Egl(y)ﬁr—ﬁr §
@ (y,r) — Mp(y) =000 /Ego(y) {P*(y,r) — ¢ (y,71)} dry. (5.6.8)

Since 9t /Or = (Ope)f by (5.2.46) and (5.3.5),

o
/r1 87,2(&(?/,7“2)) dro

Noting that the right-hand side is independent of 1, we apply the above inequality to the
right-hand side of (5.6.8) to get

eg1(y)
) — Py )] = < / (Bn)t(y, 7)) drs.

go(y)

eg1(y)

G (y.r) — Mop(y)]| < / PGS (5.6.9)



5. Navier—Stokes equations in a curved thin domain 173

for all y € T and r € (ego(y),£91(y)). We use Holder’s inequality to (5.6.9) to get

€g1(y) 1/p
[P (y, 1) — Mp(y)| < ce'=1/P (/ (On) (y,72) [P dm) :

go(y)

forally € I"and r € (¢go(v),€91(y)). Note that the right-hand side is independent of r. The
above inequality and (5.2.52) imply that

591
o= Ml < [ / — M(y)P dr dH2(y)
. eq1(y) )
<o / co(y) [ =P / ((0np)t(y, )P dra | dH2(y)
r ego(y)

< 2?00l .-

Hence (5.6.6) holds. We also have (5.6.7) by applying (5.3.8) to ¢ — My and using (5.3.6)
and (5.6.6). O

Lemma 5.6.4. Let p € [1,00). There exists ¢ > 0 independent of € such that

|Mu - nlloy < ' Pllullwrn) (5.6.10)
for all uw € WHP(Q.)? satisfying u-n. =0 on T or on TL.
Proof. Applying (5.6.4) to Mu-n = M (u-n) and using (5.3.23) we obtain (5.6.10). O

Unlike the case of a flat thin domain, the constant extension of the average operator
on L?(£).) is not symmetric because the Jacobian J(y,r) appears in the change of variables
formula (5.2.51). However, its skew-symmetric part is small of order &.

Lemma 5.6.5. There exists a constant ¢ > 0 independent of € such that

‘(M@,f)ﬂ o)~ (PE) (Qg)] < cellell o el 2 (5.6.11)

for all o, & € L?(.).
Proof. By (5.2.51) and (5.6.1) we have

(%), = e ([, 7)o
=e(Mp,gME&)2(r /Mso </ & -1) d7~> dH?

and

(ga,m) poiy = SOMe ME)12r) +/F </:gl oH(J —1) dr) Me dH2.

90
Since (M@, gM¢&) r2ry = (gM @, M) 12(r), We see by (5.2.50) that

(77:6) g, = (778)

<cg{/\Mg0] </ gﬁ\dr> dH? + /F(/E: wdr) ]Mf\de}. (5.6.12)
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Moreover, applying Holder’s inequality twice and using (5.2.52) and (5.6.4) we get

g €91 1/2
e ([ e ) are < aslia { [Loo ([ R ar ) e}
€90

< cllellr2)lléll L2 0.

and a similar inequality for the second term on the right-hand side of (5.6.12). Hence (5.6.11)
follows. H

Now let us consider the time derivative of the average operator.

Lemma 5.6.6. Let o € H'(0,T;L?(52)), T > 0. Then
dMp = M(dyp) € L*(0,T; L*(T))
and there exists a constant ¢ > 0 independent of € and ¢ such that
[0:M el L2 (0,7;22(r)) < 6571/2HatSOHL?(O,T;LQ(QS))' (5.6.13)

Proof. First note that M (dy¢) € L*(0,T; L*(T")) by drp € L?(0,T; L*(Q:)) and (5.6.4). The
relation O, My = M (0,p) is formally trivial since go, g1, and the surface quantities on I" are
independent of time. To prove it rigorously we show that

/ o4t M (1) /‘5 M(9w))(t)dt i LA(T)

for all £ € C°(0,T). Since L(T) is a Hilbert space, this is equivalent to

T
/0 AHE()(Mp(t),n) L2y dt = / E@)([M(9ep))(t), ) L2y dt (5.6.14)

for all £ € C°(0,T) and n € L*(T). We define a function 7 on 2. by
n(w(x))
eg(n(x))J (m(x), d(x))’

Then by (5.2.30), (5.2.49), and (5.2.53) we see that 77 € L?(f).). Also, by the change of
variables formula (5.2.51) and the definition (5.6.1) of M we have

x € Q..

() =

w0 May = [ (5 [ S0 ) nar = aro0.mioey (5.6.15)

for all ¢ € (0,7). Hence

T T
A 8t§(t)(M80(t),T])L2(F) dt = /0 8t§(t)(g0(t),f])L2(Qs) dt. (5616)

Moreover, since ¢ € H'(0,T; L*(€2.)) and 7 € L?(€.) is independent of time,

T T
/ &) (1), M) r2(0.) dt = —/ §()(Orp(t), 1) 12(q.) dt.
0 0

Applying this equality to the right-hand side of (5.6.16) and using (5.6.15) with ¢(t) replaced
by O:p(t) we obtain (5.6.14). Hence the relation 0; My = M (0yyp) is valid and the inequality
(5.6.13) follows from (5.6.4). O
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5.6.2 Tangential derivatives of the average operators

Let us give several formulas and inequalities for the tangential derivatives of the average
operators.

Lemma 5.6.7. For ¢ € C1(€.) we have
ViMe = M(BVy)+ M((Onp)p:) on T, (5.6.17)
where the matriz-valued function B and the vector field 1. are given by

B(z) = {I5 — d(x)W(z)} P(x),
1 (5.6.18)

velw) = 23 {(d(z) = ego(2)) Vrgr(2) + (eg1(x) — d(x)) Vrgo(x) }

for x € N. Here the functions on the right-hand sides of (5.6.18) except for d(x) are the
constant extensions of the functions on I.

Proof. The constant extension of My is given by

L 1 egi(x) B
Myp(z) = ) /ago(z) o(m(z) + ra(x))dr, = € N.

We differentiate both sides of this equality with respect to x € N and set x = y € I'. Then
by (5.2.4), (5.2.6), (5.2.11), and (5.2.16) with d(y) = 0 we get

_I(y) 1 eg1(y) . o r) dr
VeMol) = s+ s [ s WP (T d (65619)

for y € I'. Here and hereafter we use the notations (5.2.46) and (5.2.47) and set

~ Vrg(y)
9(y)

eg1(y)
/ P ) V0 w) — ) Troo)
ggoly

I(y) :==

To the right-hand side we apply

£91(y) eq(y) H
A ) Vem () — b0 Vranlw) = [0 < o o) dr

and the equalities Op?/0r = (9,p)* and 8¢g/8r = Vrg/g by

iy, r) = g(ly){(T —e90(y))Vra1(y) + (eg1(y) — ) Vrgo(y) }-

Then we have
eg1(y) ¢
I(y) = / (@) e = <o) M (Gnge)) )
€goly

for all y € T. Applying this and {I3 — W (y)}P(y) = B¥(y,r) to the right-hand side of
(5.6.19) we obtain (5.6.17). O
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Remark 5.6.8. By (5.3.39) and (5.6.18) there exists ¢ > 0 independent of ¢ such that
|IB| <e¢, || <ece in Q.. (5.6.20)

Also, from (5.2.13), (5.2.30), and Vd = n in N it follows that
1
IVB| <e¢, |Vye| <e, [V — gﬁ ®Vrg| <ce in Q.. (5.6.21)

Lemma 5.6.9. Let m = 1,2 and p € [1,00). For o € W™P(Q.) we have

[Melwmary < C5_1/p||50||WmvP(Qg)a (5.6.22)
M|y < ellellwmaa.) (5.6.23)

with some constant ¢ > 0 independent of € and p.

Proof. Let ¢ € W1P(Q.). From (5.6.4) and (5.6.17) it follows that

IVeM el nry < e (1M BV oy + 1M (0n0)2) | o ey
< ce P (IBV@ o) + 11(0n@) el Loa.)) -
Here B and 1. are bounded on €. uniformly in € (see Remark 5.6.8). Hence
IV Mol ory < ce 2|Vl o,y < ce VP llollwia,) (5.6.24)

Combining (5.6.24) with (5.6.4) we obtain (5.6.22) with m = 1. When ¢ € W?P(Q.), we
apply (5.6.24) with ¢ replaced by BV and (0p¢)1e. Then by (5.6.20)—(5.6.21) we see that

IVeM(BYQ) | o(ry + |VeM (0n0)ve) | oy < e P llellwen(a)-
Therefore, applying Vr to (5.6.17) and using the above inequality we get

HVIQ“M‘P”LP(F) < Cg_up”@”wlp(ﬂa)

and (5.6.22) with m = 2 follows from this inequality, (5.6.4), and (5.6.24). The inequality
(5.6.23) is an immediate consequence of (5.2.55), (5.2.56), and (5.6.22). O

Lemma 5.6.10. There exists a constant ¢ > 0 independent of € such that
[PV = Vel o 0,y < cellolivarian (5:6.29
[PVe - m“m(rg) = Cgl_l/pr”Wlp(Qg)’ 1=0,1 (5.6.26)
for all o € WP (Q,) with p € [1,00).
Proof. By (5.6.17) and (5.6.18) we have PV — VrM¢ = u + v in €., where
u(e) == P(x)Ve(a) — |M(PVe)| (n(a)), e,
o(y) = [M(dWVe) | () = [M(@up)) ). yeT.

We apply (5.6.6) to u and use (5.3.6) to get

< cellellwer(a.)- (5.6.27)

lull o) < ce ‘ On (?mp) Hm

()
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Also, from (5.6.5) and
AWV | < ce|Vgl, [(Onp)te| < e[V in Qo

by (5.6.20) and |d| < ce in Q) it follows that

ol < ¢ (197V0] o) + 1O Wellina) < Vol (5:628)
Combining (5.6.27) and (5.6.28) we obtain
[PV — WHLP(QE) < Nullpr.y + 10llr .y < cellellwzea.)-
Hence (5.6.25) holds. Also, (5.6.26) follows from (5.3.6), (5.3.8), and (5.6.25). O
Lemma 5.6.11. There exists a constant ¢ > 0 independent of € such that
|Mu - nllgny < VP lulwas, (5.6.29)
for all u € W*P(Q.)3, p € [1,00) satisfying u-n. =0 on T? or on T'L.

Proof. The estimate for the LP(I")-norm of Mwu - n is given in Lemma 5.6.4. Let us consider
the tangential gradient of Mu-n = M(u-n). By (5.6.17),

Vir(Mu-n)=VpM(u-n) =M(BV(u-7)) + M(On(u-n)ip:) on T.
To the right-hand side we apply (5.6.4) and

|BV(u-n)| <c ’PV(U - n)

, On(u-n)e| < celVu| in Q.
by (5.2.9), (5.3.6), and (5.6.20) to get
Ve < e (1M BV ) | ey + 1M @nle- 200 o)
< ce P (I BV (u- )| ooy + 100 (- )| (o)
<c(VP|PY (7)o + a“/pHVuuLp(m)) -
Applying (5.3.24) to the first term on the last line we obtain
IVe(Mu-n)| Loy < ee' VP ullwano,).
Hence (5.6.29) follows. O

Next we establish estimates for the weighted surface divergence of the average of a
solenoidal vector field on €2.. They are useful for the proof of the global existence of a
strong solution as well as the study of a singular limit problem for (5.1.1)—(5.1.3).

Lemma 5.6.12. Let p € [1,00). There exists ¢ > 0 independent of € such that
[dive(gMu)l| oy < e VP )lull o) (5.6.30)

for all w € WHP(Q.)3 satisfying divu = 0 in Q. and v -n. = 0 on I'.. If in addition
u € W2P(Q.)3, then we have

|divr (gMu)|wiery < e ||ullyza .- (5.6.31)
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Proof. As in the proofs of the previous lemmas we use the notations (5.2.46) and (5.2.47).
Let u € WHP(Q,)? satisfy divu = 0 in Q. and u - n. = 0 on I'.. First we show that

4
divp(gMu) = Zr}j on T, (5.6.32)
j=1
where 11, ...,n4 are functions on I' defined by
n = Z (—1)i(ug — Mu) - Tgi, N2 = Z (—1)'Mu - (Té — Vrgi),
i=0,1 i=0,1 (5.6.33)

ns = —gM (dtx[WVu] ), nai= gM (O )

with 72, 7 = 0,1 given by (5.2.32). By (5.6.17) and (5.6.18) we have
gdivp(Mu) = gtr[VrMu] = gM (tr[BVu]) + gM (tr[1). ® Opul)
=gM (tr [FVUJD + N3+ M
on I'. Moreover, since divu =0 in €, and (n ® n)Vu = n ® dyu,
tr [FVU} =divu —tr[(n ®n)Vu] = —n - Opu in Q..

By these equalities and divp(gMu) = Vrg - Mu + gdivp(Mu) we get

divr(gMu) = Vrg- Mu — gM(Opu-n)+mn3+mns on T (5.6.34)

Let us calculate the second term on the right-hand side. Since

O () = o (w-F (1), YT, € (cgoly). c0r ()

by 0,7 = 0 in ., we have

eg1(y)
s @) = ¢ [ (e m ) dr
€goly
1

= 1l ) (y, e01(y)) — (u- 1) (y,290(y))}
for y € I'. Moreover, since u - n. = 0 on I';, we use (5.3.22) to get
(u- 1) (y,20i(y)) = e(u - 7)(y, i (y)) = e(uf - ) (y), yeT.
Hence
gM(Opu -n) = u’i - ug 70 =Vrg-Mu—mn —n2 on T. (5.6.35)

Combining (5.6.34) and (5.6.35) we obtain (5.6.32). Let us estimate the LP-norms of the
functions 7n1,...,n4 on I'. By (5.2.34), (5.2.58), and (5.6.7),

Imllzoy < ¢ Y JJu—Mul| ) < €' Pllullprng.). (5.6.36)
i=0,1
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The first inequality of (5.2.35) and (5.6.4) imply that
2l Loqry < cell Mullpoqry < e ||ull 1o (q.)- (5.6.37)
To n3 and 74 we apply (5.6.4) and
‘dtr[WVu” < ce|Vul|, [Opu-te| <ce|Vu| in Qe
by (5.6.20), |d| < ce in €2, and the boundedness of W to get

Im3ll ey < ce /P Hdtr [WVU} ‘ < cel_l/pHVuHLp(Qg),

Lr(Qe) (5.6.38)
M4l ey < e P Opu - YellLr) < CEl_l/pHvu”LP(QE)-

Applying (5.6.36), (5.6.37), and (5.6.38) to (5.6.32) we obtain (5.6.30).
Now we suppose u € W2P(€,.)3 and estimate the LP-norms of Vr#y,...,Vrns on I'. By
(5.2.47) and

Vr(y +egi(y)n(y)) = P(y) + {Vrai(y) @ n(y) — g:;(y)W(y)}, yeTl
we have Vpug =(P+ EGi)(VU)g on I', where

Gi(y) = Vrgi(y) @n(y) — g:(y)W(y), yel,i=0,1
Hence

Ve = Y (=1){(Vru} — VeMu)r! + (Vrrl)(uf — Mu)}
1=0,1

= > (P} = VM) +Gi(Vu)l i + (Vrrd) (uf — Mu)
i=0,1

on I'. Since Gy and G are bounded on T', we see by (5.2.34) that

Vrm| < e > (IP(Vu)i — VeMul| + e[ (Vw)f| + [uf — Mul) on T.
i=0,1

From this inequality and (5.2.58) we deduce that

IVemliom) < e > (IP(V0)f = VedMulloy + el (Vu)llo + luf = Mullpor))
i=0,1

=c Z (HFV“ - VFM“HLP(FQ) +elVulleri) + [Ju — mHLp(F@)) :
i=0,1

To the right-hand side we apply (5.3.8), (5.6.7), and (5.6.26) to obtain
Ve oy < e P |lullem .- (5.6.39)
Next we estimate the LP-norm of Vrny on I'. Since

Vere = 3 (=){(VeMu) (7} = Vrg:) + (Vrrl — Vigi)Mu} on T,
i=0,1
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it follows from (5.2.35) that [Vrna| < ce(|[Mu| + |VrMu|) on I'. By this inequality and
(5.6.22) with m = 1 we get

IV en2ll oy < el Mullwiom) < ce' P lullwinq.)- (5.6.40)

Let us consider the tangential gradient of n3 = —gM (d¢), where ¢ := tr[WWVu]. By (5.6.17)
we see that

Vi = —M(d$)Vrg — g{M(¢BVd) + M(dBV¢) + M (0n(dd)e) }

on I'. Moreover, since BVd = 0 in . by Vd =7 in . and Pn = 0 on I, the second term
on the right-hand side vanishes. These facts and (5.6.4) imply that

Vel oqey < ¢ (IM(d8)rce) + MBS oy + 1|M (0n(d6)02) | o ey
< eV (ldél| Loy + 14BVSl o) + |10n(dd) el riey)

To the second line we apply

|de| < ce|Vul,  |dBV@| < ce(|Vul + [V2ul),  |0n(de)ve| < ce(|Vul + [V2ul)
in Q. by (5.6.20), |d| < cg in Q, and d,d =n-Vd = |a|> =1 in N to obtain

IVensll oy < ce P lullen .- (5.6.41)
Let us estimate the LP(I')-norm of Vrny. Setting £ := 0,u - 1. we have
Vi = (M&)Vrg + g{M(BVE) + M((0ng)te)} on T

by (5.6.17). From this equality and (5.6.4) we deduce that

193] zoqry < ¢ (IMEN ey + IMBIE Loy + |M(On€) | ey )

< e P (Jélloa) + IBVEl| o) + 11(0n€) el Lo (a.)) -
We apply (5.6.20) and (5.6.21) to & = dpu - e and (9,&)Ye to obtain

(5.6.42)

1€l zr(e.) < cellVullLe@.),
1(0n&) el Loa.) < e (IVull .y + IV?ull Lo(n)) -
Moreover, by (5.6.21) and P(n ® Vrg) = (Pn) ® Vrg =0 on I' we see that

(5.6.43)

|PVi.| = ‘P (wg — ;n ®Vrg> ‘ <ce in Q..
Using this inequality and (5.6.20) to BVE = B{V(0,u) }1. + B(Vi:)Opu we get
IBVE| o,y < ce (IVull oo,y + 1IVull ooy - (5.6.44)
From (5.6.42), (5.6.43), and (5.6.44) it follows that
IVl o (s < et TP ullwana,). (5.6.45)
Finally, from (5.6.32), (5.6.39), (5.6.40), (5.6.41), and (5.6.45) we deduce that

4

Ve (dive (9Mw) || oy < D IVER ey < ' P lullwr o
j=1

and conclude that (5.6.31) is valid. O
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Lemma 5.6.13. There exists a constant ¢ > 0 independent of € such that
[dive(gMrw) || oy < e 7P lullwr . (5.6.46)

for all w € WHP(Q.)3, p € [1,00) satisfying divu = 0 in Qe and uw-n. = 0 on .. If in
addition v € W?P(Q.)3, then we have

ldive(gMru) oy < == ullwzoga,). (5.6.47)
Proof. Let ¢ := g(Mu-n). Then
divp(gMru) = divp(gMu) — divp(en) = divr(gMu) + oH
by Vre-n =0 and divpn = —H. Hence

|divp (gMru)| < e(|divp(gMu)| + [Mu - nl),
IV (divp(gMru))| < ¢ (|Vr(dive(gMu))| + [Mu - n| + |Vr(Mu - n))|)

on I'. These inequalities, (5.6.10), and (5.6.29)—(5.6.31) imply (5.6.46) and (5.6.47). O

As a consequence of Lemmas 5.6.10 and 5.6.12, we get a relation for the normal derivative
(with respect to I') of a vector field on €. and its averaged tangential component.

Lemma 5.6.14. Let p € [1,00). There exists ¢ > 0 independent of € such that

< cellullwzr () (5.6.48)
LP(Q)

1
Optt - — =M u-Vrg
g

for allu € W2’p(Q£)3 satisfying divu = 0 in Q. and u-n. =0 on I'c. Here O,u is the normal
derivative of u given by (5.3.5).

Proof. Since Q=n®mn, I3 =P+ Q onT and d,u = (n-V)u = (Vu)'7n in Q,
Opu - 1 = tr[n ® Opu] = tr [@VU] =divu — tr [FVU} in Q..
Also, since Vrg is tangential on I,
1 1 1., . 1.
EMTU -Vrg = gMu -Vrg = ;lep(gMu) — divp(Mu) = gdwp(gMu) — tr[VrMu]

on I'. From these equalities, divu = 0 in €, and (5.2.30) we deduce that

Applying (5.2.53), (5.6.25), and (5.6.30) to the right-hand side we obtain (5.6.48). O

1 _
Opu-n— =M u-Vrg
g

< HFVU - VFMUHLP(QE) +c Hdivr(gMu)H

LP(QL) Lr(2e)

When u € L%(.)3, we can consider the weighted surface divergence of M,u as an element
of H=1(I"). In particular, if u € L2(£).) then we have an estimate for its ! (I")-norm similar
to (5.6.46).

Lemma 5.6.15. There exists a constant ¢ > 0 in dependent of € such that
Idive (M)l sy < e ul 2 (5.6.49)

for all w € L2(9Q).
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Proof. We use the notation (5.2.46) and suppress the arguments of functions. Let 7 be an
arbitrary function in H'(T'). By (5.2.25) we have

(ive(ghtru) e == [ oMo Tegdr? — [ g0t i aw®
T I

The second term on the right-hand side vanishes by M u-n =0 on I'. To estimate the first
term, we observe by M,u - Vrn = Mu - Vprn and (5.6.1) that

€91
/ gMou - VrndH? =e! / / ut - Vi dr dH2.
r I' Jego
From this equality and the change of variables formula (5.2.51) it follows that

<e (I + D),

6_1/ u~V17da:—/gMTu-Vpnd’H2
. r

where 7 = n o 7 is the constant extension of  and

/ u- (Vﬁ—an)dx

€

Il = s 12 =

€91
// (uf - Vrn)(J — 1) dr dH?|.
I' Jego

To I we apply (5.2.14) with |d| < ce in €., Holder’s inequality, and (5.2.53) to get

3/2

I < cellull g2 [[Venl| 2o,y < e lull 2 IVrnll 2.

We also have the same inequality for Iy by (5.2.50), (5.2.52), and (5.2.53). Hence

<e ML +1p) < CEl/QHUHL?(QE)HVFUHL2(F)'

6_1/ u'Vﬁd:):—/gMTu-VpndHZ
. r
Here st u-Vidr =0 by u € L2(Q.) and Vi € L2(9.)*. Therefore,

aive (.| = | [ o3t Fenan?] < Pl |9l

Since this inequality holds for all n € H'(T'), the inequality (5.6.49) is valid. O

5.6.3 Decomposition of vector fields into the average and residual parts

In the study of the Navier—Stokes equations in a thin domain it is convenient to decompose
a three-dimensional vector field into an almost two-dimensional vector field and its residual
term and analyze them separately. Moreover, we can derive a good L°-estimate for the resid-
ual term if it satisfies the impermeable boundary condition. To give such a decomposition
we use the impermeable extension operator E. given by (5.3.42) in Section 5.3.3.

Definition 5.6.16. For a vector field u on ). we define

u(z) == E-Myu(z) = Myu(z) + {Myu(z) - Vo(z)} i(z), €N, (5.6.50)

where WU, is the vector field given by (5.3.36) and M, u is the averaged tangential component
of u given by (5.6.2). Also, we denote by u" := u — u® the residual part of w.
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From Lemmas 5.3.12, 5.6.2, and 5.6.9 we observe that if u € H™(Q.)3, m = 0,1,2, then
u® and u” are in the same space (here we write H? = L?).

Lemma 5.6.17. For u € H™(Q:)% with m = 0,1,2 we have u®,u" € H™(.)3 and
[ lm .y < cllullam@ny, 1w llamon < cllullam@.) (5.6.51)
with a constant ¢ > 0 independent of € and wu.

Since the average part u® can be seen as almost two-dimensional, we expect to have a
good L2-estimate for the product of u® and a function on Q.. Indeed, we can apply the
following product estimate of functions on I' and €2 to u®.

Lemma 5.6.18. There exists a constant ¢ > 0 independent of € such that
1/2

1/2 1/2 1/2

17l 20y < elnll gz Inll e el 2o 1ol g, (5.6.52)

for alln € HYT) and ¢ € H* (), where fj := no 7 is the constant extension of 1.

Proof. Throughout the proof, we use the notation (5.2.46) and suppress the arguments of
functions. By (5.2.52) and (5.6.1) we have

£g
76l << | |n|2(/ PR dr) a1 = ce [ giPar(loR) dre

Noting that g is bounded on I', we apply Holder’s inequality to the last integral to get
1701720,y < cellnlFaqy 1M (el L2 (r)- (5.6.53)

Here the L*(T")-norm of 7 is estimated by Ladyzhenskaya’s inequality (5.3.1). To estimate
the L2(T')-norm of M(|¢|?) we see that M(|¢|?) € WHL(T) for p € H'(€.). Indeed, by
(5.2.30) and (5.2.52) we have

1 €g
M ey = [ = ( / 2 dr) IH? < e plage (5.6.54)

£g
Also, by (5.6.17), (5.6.20), and V(|¢|?) = 2¢V¢ we have
VM ()| < [M(BV(02) | + 1M (0u(1P)e) | < eM(¢Vel) on T.
Hence from (5.6.4) and Hoélder’s inequality we deduce that

IV M (o) r o <C||M(|‘PVSO|)HL1(F < e eVl

(5.6.55)
< ce ellrzn Vel 2@.)-

Now we observe that the Sobolev embedding W (T') «— L?(T') is valid since I' C R? is a
two-dimensional compact surface without boundary (see e.g. [3, Theorem 2.20]). By this
fact, (5.6.54), (5.6.55), and |||l r2(q.) < [l g1 (0.) We obtain

1M (|l 2y < el M o) llwrary < e Hlelzzollela o)
Finally, we apply the above inequality and (5.3.1) to (5.6.53) to get

17011720y < clnllzz@y Il el 2@ llell r o)
(2)
which shows (5.6.52). O
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Corollary 5.6.19. For ¢ € H'(.), u € H ()3, and u® given by (5.6.50) we have

a — 1 2 1/2 1/2 1/2
1] @]l 2,y < e 2ol o 19l i Tl o Il e, (5.6.56)

with a constant ¢ > 0 independent of €, @, and u. If in addition u € H*(Q)3, then

1/2 1/2 1/2 1/2
[ o [ e [ [t (5.6.57)

Proof. By (5.3.37) and |M,u| = |PMu| < |Mu| on I" we have

| V] 90HL2(QE) <ce !

[u| < (1 +|9.|) [Mru| < c|Mu| in Q..

We apply this inequality and (5.6.52) with = |Mu| to the L?-norm of |u®|¢ on €. and
then use (5.6.4) and (5.6.22) to obtain (5.6.56).
Let us prove (5.6.57). We differentiate both sides of (5.6.50) to get

Ve = V(M) n [{V(W) } U+ (V\Ifg)m] R+ (m \I/s)Vﬁ
in Q.. To the right-hand side we apply (5.2.13), (5.2.17), and (5.3.37) to get
IVu®| < ¢ (|Mru| 4+ |[VeMru|) < ¢(|Mu] + |[VeMu|) in Q..

Here the second inequality follows from M,u = PMu and P € C*T')3*3. Applying the
above inequality and (5.6.52) with = |Mu| and n = |VrMu| to the L?>-norm of |Vu?| ¢ on
Q. and then using (5.6.4) and (5.6.22) we obtain (5.6.57). O

Next we show Poincaré type inequalities for the residual part v = u—u®. For any vector
field v on . we have u®-n. = 0 on I' by Lemma 5.3.11. Hence v" - n. = 0 on I'; if u
itself satisfies the same impermeable boundary condition, which is essential for derivation of
Poincaré type inequalities.

Lemma 5.6.20. Let u € Hl(QE)3 satisfy w - n. = 0 on I'c. Then there exists a constant
¢ > 0 independent of € and u such that

"2 < celldnel2gon) (5.6.58)
for u" = u — u®, where O u” is the normal derivative of u” given by (5.3.5).

Proof. We use the notation (5.6.3) for the tangential and normal components (with respect
to I') of a vector field on Q.. Since u = u; — M u in Q. by (5.6.50) and M;u = Mu, on T,
we use (5.6.6) to get

lurllz2 0. = HUT - MUTHLQ(QE) < cgl|Onur| 2 (a.) = cellOnuzlr2(a.)
Here the last equality follows from (5.3.6) with 7 = M, u. From this inequality and

107220 = [ PO oy < 10w 122000

|2
by u” = Pu" and 9, P = 0 in Q. we deduce that
I 2.y < 2t 2(0n)- (5.6.59)

To estimate the L?(£2.)-norm of u’, we see that u" satisfies u” - n. = 0 on I'. since u and u®
satisfy the same boundary condition. Hence we can apply (5.3.23) to get

lun 2.y = v - Al 2.y < cellOnu’| L2

Combining (5.6.59) and the above inequality we obtain (5.6.58). O
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Lemma 5.6.21. Suppose that Assumption 1 is satisfied, i.e. the inequality (5.1.6) is valid.
Let u € H*(Q.)? satisfy divu = 0 in Q. and the slip boundary conditions (5.3.20)—(5.3.21)
onc.. Then u" = u — u® satisfies

IVu" [l 120 < ¢ (ellullmz,) + lullz2e.)) - (5.6.60)
Here ¢ > 0 is a constant independent of € and u.

Proof. As in the proof of Lemma 5.6.20, we use the notation (5.6.3). Based on the equalities
u” =u” +u” and I3 = P + Q we split the gradient matrix of u” into

Vu" = PVul + QVul + PVul +QVu! in Q. (5.6.61)

and estimate the L?(£).)-norm of each term on the right-hand side.
First we derive an estimate for PVu’. We differentiate u” = u, — Mu, and use (5.2.8),
(5.2.12), and PV = Vr to get

pvu::(pvuT_va)_{zg_(Ig_dw)‘l}vpm n Q.

Hence by (5.2.10) with |d| < ce in g, (5.2.53), (5.6.22), and (5.6.25) we see that

[PVurll 2, < [[PVur — VeMu- + ce ||[VrMu,

HL2(95) HLQ(QE)

(5.6.62)
< cellurll 20,y < cellullg2(q.)-

Next we deal with QVu”. By v = Pu — M,u and (5.3.6),
|QVUL| = |n @ Ouul| = |Opul| = |F8nu‘ in Q..

Since we suppose that Assumption 1 is satisfied and that u satisfies (5.3.20)—(5.3.21) on I,
we can use (5.3.34) to get

HQVUZHLQ(QE) = H?&%“HH(QE) < |[POnu +WUHL2(QE) + HWUHB(QE) (5.6.63)
< ¢ (ellullpzy + llullr2q.)) -
Let us estimate the L2(€.)-norm of PVu”. Since «/, = (u" - 1) we have
PVul = [?V(u” : ﬁ)} @n— (u-n)PVn in Q..
By this formula, (5.2.13), (5.2.17), and |n| = |P| =1 on T,

[P a0y < € (IPVG a0y + 107 a2ce) -

Here u" satisfies u” - n. = 0 on I'. since u satisfies the same boundary condition. Thus, we
can apply (5.3.24) and (5.6.58) to the above inequality to get

||ngHL2(QE) < cellull g2(q.)- (5.6.64)

Now let us consider QVu!, = 7i ® d,ul,. Since

=" -n)n= (u - — Myu - \Ifg)n, Opu;, = (anu “n— Myu - 8n\115)ﬁ
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by (5.3.6) and (5.6.50), we have
‘@Vum = |Onu,,| = ‘anu -n— M- 8,}115‘

< |Opu-n — ;MTu -Vrg| + ‘MTU‘

1—
oV, — ivFg
g

in Q.. By this inequality, |M;u| < |Mu| on T', (5.3.38), (5.6.5), and (5.6.48) we see that

HQVUZHLQ(QE) <

1
Optt - — =Mru - Vrg
g

+ee Hmup(ﬂs) < ce|ullg2(a.)- (5.6.65)
L2(Q)

Here we used the fact that u satisfies divu = 0 in 2. and (5.3.20) on I'; to apply (5.6.48).
Finally, applying (5.6.62)—(5.6.65) to the right-hand side of (5.6.61) we obtain (5.6.60). [

As a consequence of Lemmas 5.6.20 and 5.6.21, we obtain a good L*°-estimate for the
residual term u” on 2.

Lemma 5.6.22. Under Assumption 1, let u € H?(2.)3 satisfy divu = 0 in Q. and (5.3.20)-
(5.3.21) on I'c. Then there exists a constant ¢ > 0 independent of € and u such that

r 1/2 1/2
[ o0y < e (2wl 20y + el e, 1l e, ) (5.6.66)

for u" = u — u®, where u® is given by (5.6.50).
Proof. Since u" € H?(2.)3, we can use Agmon’s inequality (5.3.11) to get

e 0 N [ s

I H2(Q2)

[u"{| Lo,y < ce
X (Il 20y + llOw” 20 + 210307 | p20)
To the right-hand side of this inequality we apply
1876 ([ L2y < ellw” 20, < cllull .,
[u" |l 2.y < cell@nt” |l 20y < e (X lull 2o,y +ellull 2 @))
by (5.6.51), (5.6.58), and (5.6.60) to get
I ey < e (llull e,y + llullzn) "l

1/2

2 |lull g, -

= ¢ (ellull 2.y + llullL2a.))
Using (a + b)'/? < a'/? 4 b'/2 for a,b > 0 to this inequality we obtain (5.6.66). O

Finally, let us estimate the L?(Q.)-norm of u ® u and (u - V)u by using the product
estimate for the average part and the L*°-estimate for the residual part.

Lemma 5.6.23. Under Assumption 1, let u € H?(Q.)? satisfy divu = 0 in Q. and (5.3.20) -
(5.3.21) on I'z. Then there exists a constant ¢ > 0 independent of € and u such that

lu @ ullzz, < e (=72l 2o el o)

3/2 1/2
e 2 ull 2 ull ey + ot Il ) (5:6.67)
and

I Vyullzz.) < e (2l + 2 ulm,) ) el a2, (5.6.68)
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Proof. Let u® be the average part of u given by (5.6.50) and u" = u — u® the residual part.
Since u € H%(Q.)? satisfies divu = 0 in 2. and (5.3.20)—(5.3.21) on I'. we have

lu® @ ull 2.y < e |lull 2o lull o).

r 1/2 1/2
WL®meaSWﬂhwmﬂﬂmmgSC@U%MMMH+WWémJWM&mDHWmma

by (5.6.56) and (5.6.66). Applying these inequalities to the right-hand side of
|u®ull 2. < lu® @ ullp2.) + [v" @ ull L2,

we obtain (5.6.67). To prove (5.6.68) we observe by (5.5.33) and (5.6.56) that

1/2 1/2

—1/2| —1/2|

I ullizgan < e 2Nl 20 lullm ool Y., < c™2lull 2 lulliean)-

Also, by (5.5.33) and (5.6.66) we get
1(u" - V)ull 20,y < el|u”ll Lo o) VUl 20,

1/2 1/2
< o (2 ull .y + lull 5o, el 2, ) Tl .y

Y2l g o Il 20 )

= (Il 5o el ol + 2
< c(Jlullae.) +

We use these two estimates to the right-hand side of
[(u - Vull 20,y < (- V)ull 2. + 1@ - Vull 2,

and note that 1 < e~ %/2 by € < 1 to obtain (5.6.68). O

P2 ull e ) il 2oy

5.6.4 Average of bilinear and trilinear forms

We consider approximation of bilinear and trilinear forms for functions on ). by those for
functions on I' and the average operators. The results in this subsection are fundamental
for the study of a singular limit problem for the Navier-Stokes equations (5.1.1)—(5.1.3).
Throughout this subsection, we denote by 77 = nom the constant extension of a function 7 on
I' in the normal direction of I". We also use the notations (5.2.46) and (5.2.47) and suppress
the arguments of functions.

First we consider the L?-inner products on €2, and Fé, 1=0,1.

Lemma 5.6.24. There exists a constant ¢ > 0 independent of € such that

| onda =< [ garomar’
. r
for all p € L*(Q.) and n € L*(T).

Proof. By the change of variables formula (5.2.51) and the definition (5.6.1) of the average

operator,
€91
/ cpndx—s/g(Mgp)nd’H2:// o' n(J — 1) dr dH>.
Qe r I' Jego

We apply (5.2.50), (5.2.52), Holder’s inequality, and (5.2.53) to the right-hand side to get

< 653/2”90”L2(Qg)H77”L2(F) (5.6.69)

1
o'n(J — 1) dr dH?| < ezl 2 1l 220y < ™2l L2 1l L2y

' Jego

Hence we obtain (5.6.69). O
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Lemma 5.6.25. There exists a constant ¢ > 0 independent of € such that
/Fé pidH? — /F(Mso)n dH?| < e2lloll o lnllz@y, i=0,1 (5.6.70)
for all o € HY () and n € L*(T).
Proof. Using the change of variables formula (5.2.57) we have
/Fi i dH? — /F(Mgo)n dH? =1, + I, (5.6.71)

where

I = /FsO% <J§j 1+ &2 — 1> dH?, I := /F(wf—Mw)Wd#-

Here we use the notation (5.2.47) and Jf(y) = J(y,egi(y)) for y € I'. By (5.2.34), (5.2.50),

and (5.4.9) we observe that

‘Jf\/l + 2|72 — 1‘ <P =1\ /14|72 + <\/1+52\rg‘12 — 1) <ece

on I'. From this inequality, (5.2.58), and (5.3.8) it follows that

Y2110l 1 gy 11l 2 -

1] < celloflayllnllzzry < cellellzsInll e < ce
Also, by (5.2.58) and (5.6.7) we have

1I2] < Ik — Mol p2ylInll 2y < elle - M| iy Il 2y < ce'/?

Applying these two estimates to (5.6.71) we obtain (5.6.70).

Next we deal with bilinear forms including the strain rate tensor

u u T
D(u) = (Vu)g = Vu+ (Vu)”

for a vector field u on ..

Lemma 5.6.26. There exists a constant ¢ > 0 independent of € such that

Qe
for all w € HY(2.)3 and A € L*(T)>*3 satisfying
u-ne.=0 on I'e;, PA=AP=A on T.

Here Dp(M;u) is the surface strain rate tensor given by (5.4.38).

el @) Il 2

).

O]

D(u) : Adx — S/FQDI‘(MTU) CAdH?| < 083/2||u||H1(QE)||A||L2(1“) (5.6.72)
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Proof. Since PA = AP = A and P" = P on I, we have
PM(D(u))P:A=M(D(u)): A on T.

From this equality, (5.6.69), and ||D(u)||z2(q.) < cllullg1(q.) it follows that

< & 2||ull g IAll 2y (5.6.73)

/ D(u) : Adx — 5/ gPM (D(u))P : AdH?
Qe r

By (5.6.17), (5.6.18), (5.6.20), and |d| < ce in §2. we have
VrMu — PM(Va)| < ‘M(dWVu)‘ 4 M (9. ® Opu)| < ceM([Vu|) on T.  (5.6.74)
Noting that PVrMu = VrMu and P is bounded on I', we deduce from (5.6.74) that
|Dp(Mu) — PM(D(u))P| < c{VrMu— PM(Vu)}P| < ceM(|Vu|) on T.

By this inequality, the boundedness of g on I', and (5.6.4) we see that

/QDF(MU) P AdH? - / gPM (D(u)) P : AdH?| < ce| M(IVul)| 20yl All L2
r r (5.6.75)
1/2

< e lull g |All L2y
Moreover, by the decomposition Mu = (Mu-n)n+ M,u and —Vrn =W we get
VeMu=Vr(Mu-n)®n— (Mu-n)W +VrM;u on T.
Since (a ®n)P = a ® (Pn) = 0 for any a € R3 by PT = P and Pn =0,
P(VrMu)P — P(VrM;u)P = —(Mu-n)PWP = —(Mu-n)W on T,
where we used (5.2.6) in the last equality. By this equality and the boundedness of W on T,
|Dr(Mu) — Dp(Mru)| < |P(VrMu)P — P(VrM u)P| < c¢|Mu-n| on T.

Hence by (5.6.10) we have

<c[[Mu-n| 2| Al L2(ry

/ gDr(Mu) : AdH? — / gDr(Mou) : AdH?
I N

< el g ) | All 2(ry-
Combining this inequality, (5.6.73), and (5.6.75) we obtain (5.6.72). O

Lemma 5.6.27. There exists a constant ¢ > 0 independent of € such that

< Cffg/?HUHHl(QE)HUHL?(F) (5.6.76)

/ (D(u) : @)ﬁda: - 5/F(MTu - Vrg)n dH?

for all uw € HY ()3 satisfying u-n. =0 on e and n € L*(T).
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Proof. First note that, by the change of variables formula (5.2.51), the inequalities (5.2.50),
(5.2.52), and (5.2.53), and |Q| = |n| = 1 we have

/E<D( w): 0 nda:—/(/ D(u er)ndH2

Let us calculate the integral of D(u)f(y,r) : Q(y) with respect to r. Since Q = n ® n is
symmetric, we have

D(u)(y +rn(y)) : Qy) = Vuly +rn(y)) : n(y) @ n(y) = [(n(y) - V)ul(y +rn(y)) - n(y)
=2 (gt rm)) - nto

for all y € T and 7 € (eg0(y),€91(y)), i.e. D(u)f : Q = (Ou?/Or) - n. Hence

cg1 eg1 Gy b
/ D(u)ﬁ:er—</ audr)-n—u%-n—ug-n on T. (5.6.78)
€90 € 0

g0

< & |ull g o 10l L2 (ry- - (5.6.77)

Here and hereafter we use the notation (5.2.47). Since u satisfies v -n. = 0 on I,
()"0 = uf - {(=1)™ (0~ eVrgi) = nf )+ (1)l - Vg,
on I' for ¢ = 0,1. From this equality and g = g1 — gg it follows that

ug-n—ug-n: Z(—l)”lug-n

i=0,1
= Z u; D (n —eVrg) —ng_l}
1=0,1
+e Z ”1 — Mu) - Vrg; +eMu - Vrg
1=0,1

on I'. Applying (5.2.40) to the second line we get
](ug “n— ug ‘n) —eMu-Vrg| < ce Z (alug\ + \ug — Mu|) on T. (5.6.79)
i=0,1
Combining (5.6.78) and (5.6.79) and using Holder’s inequality we see that

/ ( Eng(u)“ : er) ndH? —e/(Mu-Vrg)ndH2
r r

€90

<= 3 (e + e = Mullyaqey) 1l z2qry-
i=0,1

Moreover, by (5.2.58), (5.3.8), and (5.6.7),
EH“?HL%F) + Hug — Mul|2qry < ¢ <5HU||L2(F§,) + ||u _me(pé)) < 651/2||UHH1(QE)~

From the above two estimates we deduce that

£g1
/ ( D(u)* : er> ndH?* — 8/(Mu - Vrg)n dH?
r r

€90

S/QHUHHl(QE)HnHL2(F)- (5.6.80)

Finally, we combine (5.6.77) and (5.6.80) and note that Mw - Vrg = M;u - Vrg by the fact
that Vg is tangential on I' to obtain the inequality (5.6.76). O

< ce
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Lemma 5.6.28. Suppose that Assumption 1 is satisfied, i.e. the inequality (5.1.6) holds.
Let u® € H?(Q.)? satisfy (5.3.21) on TY or on T} and v € L*(T,TT). Then we have

D(u) : o @ dz| < c®?||ul g2 |Vl z2(r), (5.6.81)

Qe
where ¢ > 0 is a constant independent of €, u, and v.

Proof. Since v is tangential on I,
D(u):5@7 =tr[D(w) ! (t®na)] = (Dw)'s) =15 (D(u)a) =0 PD(u)n

in .. Hence by (5.2.53) and (5.3.32) we see that

D( ) U®nd$ < CHPD TLHLQ(Q ||’l_}HL2(QE) S 663/2HUHH2(QE)”UHLQ(F).

Qe
Here we used Assumption 1 and the condition on u to apply (5.3.32). O

Now let us derive estimates for trilinear forms. The main tools for the estimates are the
product estimate (5.6.52) for functions on I' and . and the L*-estimate (5.6.66) for the
residual part of a vector field on 2.

Lemma 5.6.29. Let u; € H*(Q.)3, us € HY(Q:)3, and A € L*(T)3*3. Under Assumption 1,
suppose further that uy satisfies divu; = 0 in Q. and (5.3.20)—(5.3.21) on I'c and that A
satisfies PA= AP = A onI". Then

< CRE(ul,UQ)HAHL2(F), (5.6.82)

/ up @us : Adr — 5/ g(Mruy) @ (Mrug) : A dH?
r

€

where ¢ > 0 is a constant independent of €, uy, us, and A and

Re(u1,uz) := ellut | g luell g1 a.)

1/2 1/2

+ (el + &2l g It llfa,) ) 2l 2.y (5.6.83)

Proof. We use the notations (5.6.3) for the tangential and normal components (with respect
to I') of a vector field on §.. Since PA = AP = A and PT = Pon T,

u1®u2:A:F(’ul@uQ)F:A:uLT@uQJ:A in ..

Using this equality we decompose the difference

/ up @us : Adr — 5/ g(Muy) @ (Mrug) : AdH?: =1, + I (5.6.84)
r

€

into

~

1= / ui,r & U2, - Adr — / (MTUI) 029 U r - de7
Qe e

I = / <M7u1> ®ug ., Adr — 6/ g(Mruy) @ (Mrug) : AdH?.
r

€
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Let u{ be the average part of u; given by (5.6.50) and uf := u; — u{. Since
— Myu; = Puy — Puf = Pu}, wus,=Puy in Q. |Pl=1 on T,

where the first equality follows from (5.6.50), we have

1| = } /Q (Put) @ uzr : Ada| < el oy luzlizzon) [ Al 2, -
We apply (5.2.53) and (5.6.66) to the right-hand side to obtain
1/2
1] < e (ellut =gy + 2l oo Il 2,y ) luellzan ANy (5.6.85)

Here we used Assumption 1 and the conditions on u; to apply (5.6.66).
Let us estimate I». Noting that M;us = Mug, on I', we use the change of variables
formula (5.2.51) and the inequalities (5.2.50), (5.2.52), and

|Mrui| = |[PMuy| < |Muy| on T, |ug,| <l|ug| in Qf

to deduce that

£g1
L2 = ’/(Mful)@) (/ u (J - 1)dr> : AdH?
r €90

< ce/ ‘MTul‘ |ug, | ‘Z! dx
QE

< ce || [Mun] Jual || 2o 1] 200
Moreover, from (5.6.4), (5.6.22), and (5.6.52) it follows that
3] ual | oy, < ell M| ot [ M |77 oy iz | ot lua

1/2 1/2 1/2

See 2(Q. )HulHHl(Q Hu2||L2 )”uQHHl(QE)'

[l 2

We apply this inequality and (5.2.53) to the above estimate for I3 to get

1/2

1/2 1/2
(| < cellunl gl lE ) ol ot el ) 1Al 2y

(5.6.86)
< CgHulqu(QE)HUQHHl(QE)HAHLQ(F)

By (5.6.84), (5.6.85), and (5.6.86) we conclude that the inequality (5.6.82) is valid with
R.(u1,u9) given by (5.6.83). O]

Lemma 5.6.30. Let uy,us € H'(Q.)3 and v € HY(T')3. Suppose that uy satisfies us -ne. = 0
on Fg or on F;. Then there exists a constant ¢ > 0 independent of €, uy, ue, and v such that

/ UL Quo 0 R@ndr
Qe

< cglluall g lluzll g o) 10l ) (5.6.87)

Proof. Since w1 ® uz : v @ n = (u1 - v)(ug - n), we use (5.3.23) and (5.6.52) to get

/ UL PQuy 0 R ndx
Qe

< lua - 9l g2 luz - 2l L2(q.)

1 1/2 1/2 1/2
< celun ot e ) 10l g 10 e ol e

< 05”“1”Hl(ﬂg)||u2HH1(Q5)”UHHl(F)

Thus, the inequality (5.6.87) holds. O
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5.7 Estimate for the trilinear term

The purpose of this section is to give an estimate for the trilinear term, which is essential
for our proof of the global existence of a strong solution. Throughout this section we impose
Assumptions 1 and 2 and let €y be the positive constant given in Lemma 5.5.4.

Lemma 5.7.1. For any o > 0 there exist ¢ > 0 independent of € such that

Oé’Oé

‘((u - V)u, Acu) 1o ‘ < (oz+ cae P lull mrq. ) lullr2 g,
+ & (10l ) + < ol b)) (571

for all e € (0,20) and u € D(A.). (In fact, ¢l does not depend on a.)

The main tools for the proof of Lemma 5.7.1 are the estimates given in Sections 5.5.3
and 5.6.3. We also use the following inequality for the tangential component (with respect
to I') of the curl of the average part u® (for a proof, see Appendix 5.A).

Lemma 5.7.2. For u € C1(Q.)3 let u® := E.M,u be given by (5.6.50). Then
lﬁcurlu“‘ <c (‘M‘ +e ’VFMUD in Qg (5.7.2)
where ¢ > 0 is a constant independent of € and u.

Proof of Lemma 5.7.1. For u € D(A;) let u® be given by (5.6.50), v" := u — u®, and w :=
curlu. Since (u-V)u = w x u+ V([u*)/2 and (V(Ju|?), Acu)2(q.) = 0 by Acu € L2(9:)
and V(|u|?) € L2(9.)*, we have

((u -V)u, Aau) = (wxu, Acu)r2) = I + I + I,

L2(Qe)
where

I]_ = (W X uT7AEu)L2(Qa)’
Iy = (w x u® Acu + VAU)L2(QE), I3 == (w x uf, _VAU)LQ(Qe)'

Let us estimate Iy, I2, and I3 separately. By (5.5.32) and (5.6.66),
(1] < fJu"[[ oo o) lwll 20 [[Aeull 120

1/2 1/2
< ¢ (V2 ullmaqen) + lull Yo lulg2 s ) Tl ar oy el

1/2 3/2

= e |lull sl gy + ellull gl o Tl g -

To the second term we apply Young’s inequality ab < aa/? 4 cob* to get

1] < (@ + e ullmian) Iz, + callulFa, lullf g, (5.7.3)

(Note that the constant ¢ in the above inequality does not depend on a.)
Next we deal with I5. By (5.6.56) we have

1/2

2wl o s 1l ot Tl iy

lw x w2,y < ce™ Flwll

1/2 (5.7.4)

*“ﬂmumdHuqumE)HuuHQ(QE).

< ce
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From this inequality, (5.5.30), and (5.5.33) it follows that

[Io| < lw x u®||2q.) [ Acuw + vAul| 2(q,)

—1/2| 1/2 1/2

< e P2 ull o el ooyl 72

< ce 2 |ull 2y el gy 1l 22 oy -

Applying Young’s inequality ab < aa® + cob? to the last line we further get
|2 < OCHUH%IE(QE) + Ca5_1||u”%2(95)HUH%{WQE)- (5.7.5)
The estimate for I3 is more complicated. Setting ® := w x u® we have
Iy = —v(Au, @) 2. = v(curlw, @) 12,

by divu = 0 in .. Here ® is in H'(Q.)? since w € H' ()3, u® € H?(2)3, and the Sobolev
embeddings H'(Q.) < L*(€.) and H?(Q.) — L>*(.) hold (see [1]). Hence we can apply
the identity (5.5.28) to get

I3 = —v(cwrl G(u), @) r2(q,) + v(w + G(u), curl @) 12 ) = J1 + J2 + Js,
where G(u) is given in Lemma 5.5.6 and
J = _I/(CurlG(u)7®)L2(Q€),
Jo = v(G(u), carl @) 12y,  J3 1= v(w,curl @) r2(q,).

From (5.7.4) and (5.5.22) we deduce that

_ 1/2 1/2
] < el VG 2 1@l 2 < e 2lull g, el g lull g, )

Then using (5.5.33) and Young’s inequality ab < aa? + c,b® we get

1] < a2 |lul| oo lull e oy el 22 000

! (5.7.6)
< 04||U||%{2(QE) t Cak 1|’UH?:2(QE)||U||§{1(QE)'

Let us estimate Jo. By (5.5.22),

|curl @| < ¢ |Vw||u?| + |w]|Vu?]) < c(|ua\|V2u\ +|Vu®|Vul) in €,

and Holder’s inequality we have
o] < 0/ Jul(Ju? [ V2u] + [Vu?||Vul) de
Qe

< e (I ul || 20 V2 ull 20, + HVa ] || 200 VUl r2@.) -
To the last line we apply (5.6.56) and (5.6.57) to obtain
_ 1/2 1/2
el < ™2 (full ol s el + Tl N2l 2

< ce ™ 2 ull 2ol ooy el 12 02
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where the second inequality follows from (5.5.33). Hence Young’s inequality yields
2] < allullyzq,y + cos™ Nl 2z lullZs .- (5.7.7)
To derive an estimate for J3 = v(w, curl ®)2(q_) we observe that
curl ® = (u” - V)w — (w - V)u® + (divu®)w — (divw)u®.

Moreover, divw = divcurlu = 0 and

1
/ w- (u* Vwdr = —2/ (divu®)|w|? dz

€ €

by integration by parts and u® - n. = 0 on I'c (see Section 5.6.3). Therefore,
Js =v(w, (U V)w — (w- V)u" + (divu®)w) r2(q,)
V. a “ (5.7.8)
= §(leU 7|W\2)L2(Q€) —v(w, (w- V)u )LZ(QE)-

Noting that u® = E.M;u is given by (5.6.50), we split the first term into

R
: a 2 _ - . 2
(divu®, |w[) r2(q.) —/Q 7 (lep(gMﬂL)) |w|* dx

1—
+/ <div(E8MTu) — din(gMTu)> |w|? dz.
Qe g
Applying (5.2.30), (5.3.45), and Hélder’s inequality to the right-hand side we have
|(divu®, [w*) r2(0,)| < (K1 + eKy + e Ks)|wll 220,
where

Ky o= || [@ve (o) o

L2(Q.)’
Ko i= || (3] fol ooy Ko o= | [Vedeal ol 20,

To K1 we apply (5.6.52) and then use (5.6.46) and (5.6.47) to get

. 1 1/2 1/2 1/2
Ky < elldive (gMyu)| fagp I dive (gMra) | 17 o lll ot Il 17
< e[l o llull 2.y < C€1/2”“Hf12(96)'

Similarly, applying (5.6.52) to K2 and K3 and noting that

1M gy < ell Mul| ey < ce™ 2 Jull grq.),

IV e Mzl e <CHMUHHk+1(r)<CE 2 ull gre o)

for k = 0,1 (with H® = L?) by Myu = PMu on T, P € C*(T')®>*3, (5.6.4), and (5.6.22) we
obtain

1/2

1/2 _
K < e Pful| ot ull i 2 g, ) < 2™/

20
—1/2

K3 < ce™ 2 |lull s o Il 2o, < e luldega, .



5. Navier—Stokes equations in a curved thin domain 196

From these inequalities and [|w||2(q.) < cl|ull g1(q.) we deduce that

(div e, |w]?) x| € e + ek + eKs) w2y < e ull i [l (5:79)

Let us estimate (w, (w - V)u?)p2(q,). Using w = curlu” + curlu® we have
(0 (@ V)u) a0y = (@, (curl e - V)u) o + (w0, (curl u? - V)ud) g
The first term on the right-hand side is bounded by
(@, (curl” - V)u) ooy | < el 0 2| V) o] 20

To the right-hand side we apply (5.6.60) and

1/2 1/2 1/2 1/2

—1/2
/ L2(QE)HwHHl(QE)Hu||H1(Qs)Hu||H2(QE) (5.7.10)

HVulwl 2@, < ce™ lw]]

< ce 2l g oy 1l 20

by (5.6.57). Then we get
(@, curlu” - 9)u) oo |
<c (81/2”“HH1(QE)Hu\|12r{2(95) + 571/2”“”L2(Q£)||u”H1(Qg)||u”H2(QE)> . (5.7.11)
Also, we decompose (w, (curlu® - V)u®)2(q,y into the sum of

L= (w, ((Fcurl u®) - V)ua) Ly = (w, (curlu® - ﬁ)anua)ﬂ(ﬂs)'

L2(Q.)°

To L; we apply (5.7.2) and Holder’s inequality to get

|Li| < c/ |w| (|Mu| + & |[VrMu|) |Vu®| dx
Qe
< of[ Vel |w] 22 (a.) (HmHLQ(QS) te HVFMUHLQ(QE)> :

Hence from (5.6.5), (5.6.23), (5.7.10), and |ul| g1(a.) < [Jullg2(q.) it follows that

1L1| < ce 3 ull g oy lull 2y (lll 2o + ellwll mo.y)

-1/2

<c (51/2”””1{1(95)||U|MQH2(QE) +e HUHLZ(QE)HUHHl(QE)”uHHz(QE)) :

To estimate Lo we see by the definition (5.6.50) of u®, (5.3.6), and (5.3.37) that

|Opu®| = ‘m 8n‘115‘ < C‘MTU‘ = c‘PMu} < c}Mu! in Q..

We apply this inequality and |curlu® - | < ¢|Vu®| to Ly and use (5.6.5) and (5.7.10). Then
we have

|Lsy| < C/Q jwl[ V| [Mu| dz < c|| [Vu'| ] |20, [[Mul| 2,

< el g2 lull e o) 1l 12 00 -
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Applying the above inequalities to (w, (curlu® - V)u?)r2(q.) = L1 + L2 we obtain

[(w, (curlu® - V)u®) 2(q,)|

2 ul o Il o el 20 )

< ¢ (e ull o lulihaqa,) +
From this inequality and (5.7.11) we deduce that
(W, (w- V)u) 20| < [(w, (curlu” - V)u®) 2, + [(w, (carlu® - V)u®) 12, )|

1/2

<c (51/2||u||H1(QE)HUH%{?(QE) t+e HUHLQ(QE)HUHHl(QE)HUHHQ(QE)) .

Since Young’s inequality implies that
e 2\l 2y el i o el 2 () < llulFea,) + cae™ M lull 2o Ul g,y
we further get

|(w, (curl u® - V)UG)LQ(QE)| < <a + 051/2”u”H1(QE)) HUH%Q(QE) + cag—l”u‘|%2(95)||u||§{1(95).

We apply this inequality and (5.7.9) to (5.7.8) to show that

3] < e ([(divu?, [w]?) 2 (o] + |(w, (curlu® - V)u®) 12(q,))

1/2 2 12 9 (5.7.12)

< c(a+eulm, ) lulde,) + cas™ lullfa@,) el -

Since I3 = J; + Jo + J3, we see by (5.7.6), (5.7.7), and (5.7.12) that
[I5] < c (a + 51/2”“’\}11(95)) HUH%{%QE) + Cag_lHUH%Q(QE)HUH%{HQE)
and this inequality combined with (5.7.3) and (5.7.5) yields
‘((U -V)u, AEU)LQ(QE)‘ < L]+ L] + |13
1/2

< (cra+ e llullin o, ) lulde,)

+ ca (lulz(q el o) + e el )

with positive constants c¢1, co, and ¢, independent of . Replacing cia by « in the above
inequality we obtain (5.7.1). O

Finally, we fix a and write (5.7.1) in terms of the Stokes operator A..
Corollary 5.7.3. There exist di,ds > 0 independent of € such that

1
’((u-V)u, Agu)LQ(QE)’ < <4 +d151/2‘|A;/2u||L2(Q€)> |]A6u||%2(96)
+ dy (HUH%Q(QE)”A;/%LH%Q(QE) + 571”“”%2(95)”A;MUH%Q(Qa)) (5.7.13)
for all e € (0,e0) and u € D(A,).
Proof. Applying (5.5.18) and (5.5.32) to the right-hand side of (5.7.1) we get
(- Py, Act) | < (o + a4 2u) 2y ) [ AculiZage,

& (JlullF o, 142 2l 2o, + el e 142 2ull )

with positive constants ¢, d,, and d? independent of . We take a = 1/4c in the above
inequality to obtain (5.7.13). O
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5.8 Global existence and uniform estimates of a strong solu-
tion

Based on the estimate (5.7.13) for the trilinear term and the inequalities given in the previous
sections we prove Theorems 5.1.1 and 5.1.2. As in Section 5.7 we suppose that Assumptions 1
and 2 are satisfied and let ¢y be the positive constant given in Lemma 5.5.4.

First we recall the well-known result on the local-in-time existence of a strong solution
(see e.g. [8,10,61,64]).

Theorem 5.8.1. For given u§ € V. and f¢ € L>(0, 00; L*(Q:)3) there exist Ty > 0 depending
on Qg, v, uy, and f¢ and a strong solution u® to the Navier-Stokes equations (5.1.1)~(5.1.3)
on [0,To) satisfying

uf € C([0,T]; Vo) N L2(0,T; D(A.)) N HY(0,T; L2(Q.)) for all T € (0,Tp).
If u® is mazimally defined on the time interval [0, Tyax) and Tmax is finite, then

lim [ AY?4 (8)]| p2 0.y = 0.
— r;ax
To establish the global-in-time existence of a strong solution u® we show that the L?(£2.)-

norm of A;/ 2u5(t) is bounded uniformly in ¢t. We argue by a standard energy method and
use the uniform Gronwall inequality (see [59, Lemma D.3]).

Lemma 5.8.2 (Uniform Gronwall inequality). Let z, £, and { be nonnegative functions in
L} ([0,T);R), T € (0,00|. Suppose that z € C(0,T;R) and

%(t) <&(t)z(t) +¢(t) for a.a. te(0,T).
Then z € Lj3.(0,T;R) and

/th(s)ds+ ’ (s)ds) exp< t2§(s)ds>

t1 t1 t1

2(t2) < (

to — t1
for all t1,ty € (0,T) with t; < ta.

We also use an estimate for the duality product between a vector field on 2. and the
constant extension of a tangential vector field on I'.

Lemma 5.8.3. There exists a constant ¢ > 0 independent of € such that

@) 20| < e Ploll -y lull mr . (5.8.1)

for allv € LT, TT) and u € HY(Q:)3, where v := v o 7 is the constant extension of v in
the normal direction of I'.

Proof. For the sake of simplicity, we use the notations (5.2.46) and (5.2.47) and suppress the
arguments of functions. By the change of variables formula (5.2.51),

€91
(0,u)2(0,) = / v </ uﬁjdr> dH? = (v, 1) L2(1y, (5.8.2)
I €

90
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where the vector field : I' — R3 is given by
91 (y) i
ww) = [ eI yer.
€90 (y)
Let us estimate the H'(I')-norm of 1. By (5.2.49), Holder’s inequality, and (5.2.52),
2 R 2 2
iy < fea ([ 1P ar) ane < cefuli, (583
r €90
Moreover, by the same calculations as in the proof of Lemma 5.6.7 we see that
€91 0
Vrn = / { (Jwg ® uﬂ) + J(BVu)* + VrJ ® uﬁ} dr
cgo L OT

on I', where B and . are given by (5.6.18). To the right-hand side we apply the inequalities
(5.2.49), (5.6.20), and (5.6.21) to obtain

€g1
|[Vry| < c/ (|uﬁ] + |(Vu)ﬁ\)d7“ on T.
€90

Hence Holder’s inequality and (5.2.52) imply that

€g1
IVenla < c [ e ( [ vw dr) I < clul g, (5.8.4)
€90

By (5.8.3) and (5.8.4) we get n € H'(I')? and thus Pn € H' (I, TT"). Moreover,

1 Pnll ey < ellnllar oy < 651/2||UHH1(QE)' (5.8.5)

Now we observe that

(0,u) 200,y = (v, M) 20y = (v, Pn)2ry = [v, Pnl7r

by (5.8.2), the fact that v is tangential on T', and Pn € HY(T',7T). Hence

|(,4) 120y | = |[v, Prlre| < ol g—1o ) 1Pl )
and we obtain (5.8.1) by applying (5.8.5) to the right-hand side of this inequality. O

Now we are ready to establish the global-in-time existence of a strong solution to the
Navier—Stokes equations (5.1.1)—(5.1.3).

Proof of Theorem 5.1.1. We follow the idea of the proofs of [20, Theorem 7.4] and [21, The-
orem 3.1]. In what follows, we use the notation (5.6.3) for the tangential and normal com-
ponents (with respect to I') of a vector field on .. We also write ¢ for a general positive
constant independent of €, ¢y, and Tiax.

Let u§ € V and f € L>(0, 00; L?(€2:)3) satisfy (5.1.9) with

d? d? 1
co = min{1,j,4ca}, ds == — (5.8.6)
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where d; is the positive constant given in Corollary 5.7.3 and dy4 is a positive constant given
later. Noting that Mruf = Mug, on I' and

g _ ,,€ £ [ _ £ = :
ug = ug,, + (uoﬁ — MUSJ) + Mrug, |ug,|=|ug-n| in Q,

we apply (5.2.53), (5.3.23), and (5.6.6) to the right-hand side of

_ |2 T E2
72y < € (Hus Az + 16 =I5 g+ HMTuSHLQ(QE))

L2(0.
and then use [|ug . || g1(q.) < cllugllaro.) and (5.5.18) to get
g7z, < ¢ (52’\14;/2“8“%2(95) + EHMrUf)HQm(F)) : (5.8.7)
Hence from (5.1.9) and ¢ < 1 it follows that
Hu%”%g(ga) <ecco <ec. (5.8.8)
Let u® be a strong solution to the Navier—Stokes equations (5.1.1)—(5.1.3) defined on the

maximal time interval [0, Thyax). First we derive estimates for

(1)) A () By ds, £ € 0,T,
L2(Q:)’ ] e U'\S L2(Q.) 5, E[, max)

with explicit dependence of constants on . Taking the L?(f2.)-inner product of
Ot 4+ Acu® +Po(u® - V)uF =P.f° on (0, Tmax) (5.8.9)
with ©® and using

(P (u® - V)UE,US)LQ(QE) = ((u‘E . V)us,ua) =0

L2(Qe)
by integration by parts, divu® = 0 in ., and u® - n. = 0 on I'; we get
1d
2dt
We split the right-hand side into the sum of

I = <]P’6f5,u5 —W>L2(QE), Iy = (IPefE,W)LQ(QE).

HUE”%%QE) + HA;/%EH%?(QE) = (Pef*,u") 2.y on (0, Thax)- (5.8.10)

Applying (5.3.23) and (5.6.6) to u® — Myu® = uf, + (us — MuZ) we get
Hua - MT'UJEHL2(QE) < ||u‘e ) ﬁHL2(Q€) + Hui - Mu?’”[p(gg) < C‘SHUEHHl(QE)

(Note that [[uz]|g1(q.) < cl|u®]|g1(q.).) This inequality and (5.5.18) show that

[ < P f¥]| 2.

To I we use (5.6.11) and (5.8.1) to get

|u® — MTUEHLQ(QE) < C€|’Pef€\|L2(QE)HA;/ZUEHL%QS)-

|I2‘ < ‘ (Mrpsfev UE)

+ ‘(Pst,MTuE) - (MPFE )

L2(Qe)
<c (51/2HMTPEfEHH*1(F,TF)HUEHHl(QE) + 5HPefEHL2(QE)HUEHLQ(Qs)) :

L2(Q) L2(%)
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Applying these estimates to (P f¢, u®)2(q.) = I1 + I2 and using the inequality
1l 2@ < 0l < el AY?uf| L2, (5.8.11)

by (5.5.18) and Young’s inequality we obtain

£ 1> 1 1> € £
|(Pefeu) 20| < 5”14;/2“ 72 +e (52”]P’ef 72y + el M- P f H%{‘HF,TP)) :

From this inequality and (5.8.10) we deduce that

4
dt
on (0, Tynax)- By (5.8.11) we further get

11220, + 14720 220, < 0 (IR f Bage) + MRS sy ) (5:812)

d 1
@HUEH%%QE) + ;1|’u8|’%2(95) <c (52\\P5f5||%2(95) + €HMTP8f€H12LI—1(F,TF)> (5.8.13)

on (0, Tax) with some constant a; > 0 independent of ¢, ¢y, and Tihax. For each ¢ € (0, Tinax)
we multiply both sides of (5.8.13) at s € (0,t) by e(*=9/@1 and integrate them over (0,t).
Then we have

1 )12, < e uflIZq,
+car(1— et (52”Pé:fEH%OO(O,oo;LQ(QE)) + EHMTPEfE‘|%°°(0,00;H*1(F,TF))> - (5.8.14)

Also, integrating (5.8.12) over (¢, ts) with ¢, := min{t 4+ 1, Tryax} we deduce that

tx
| 1AV @ s s < el
+c <€2”IPEfEH%OO(D7oo;L2(Qs)) + €HMTIP’afEH%oo(opo;H—l(r,Tr))) - (5.8.15)

Hence we apply (5.1.9) and (5.8.8) to the right-hand sides of (5.8.14) and (5.8.15) to get
ts
Hua(t)H%Q(Qs) —i—/t HA;/Qua(S)H%Q(QE) ds < cco forall t€ [0, Tiax). (5.8.16)

Next we prove the uniform boundedness of HA;/ U (t) z2(0.) in t € [0, Tinax). Our goal is to
show that

1
e 2| AY 20 (1) || 120,y < d3 = i for all ¢ € [0, Tiax)- (5.8.17)

If (5.8.17) is valid, then Theorem 5.8.1 implies that Ty x = 00, i.e. the strong solution u®
exists on the whole time interval [0, 00). First note that (5.8.17) is valid at ¢t = 0 by (5.1.9)
and (5.8.6). Let us prove (5.8.17) for all ¢ € (0,Tmax) by contradiction. Assume to the
contrary that there exists T' € (0, Tyax) such that

V2| AY2uf (1)) 20y < ds forall te[0,T), (5.8.18)
2| AVPuE ()| 2, = ds. (5.8.19)



5. Navier—Stokes equations in a curved thin domain 202

(Note that u® € C([0, Tmax); V=) and thus HA;/Qua(t)HLQ(QE) is continuous in ¢.) We consider
(5.8.9) on (0,7] and take its L?(€2.)-inner product with A.u® to get

1d

2 dt ||A;/2u6||%2(95) + ||A€ua||%2(§25)

< ]((uf V), Aeua)pmg)‘ + (P, Acuf) g,y |- - (5.8.20)

on (0,7]. To the first term on the right-hand side we apply (5.7.13) and (5.8.18)—(5.8.19).
Then noting that ds = 1/4d; we see that

1
(0 V), Acw®) o | < 51407 BB
+ d (120 14E 20 2 ) + 7 2, 1AY 20 B )
n (0,7]. Also, Young’s inequality yields that
13 g 1 g €
|(Bef®, Aeu®) 2(00)| < [ Acu 720 + IPe S22,
Applying these inequalities to the right-hand side of (5.8.20) we obtain
d 1
£||A;/2u6”%2(95) + §||Asua||%2(ng) < 5”‘4;/2“6”%2(95) +¢ on (0,7, (5.8.21)

where the functions £ and ( are given by

£(t) = 2da [ ()| 720, | A2 20" ()12
-1y,,& 2 1/2, ¢ 2 € 2 (5.8.22)
¢(t) =2 (d25 [ ()72 1A v (O 220y + IPf (t)”LQ(QE))
for t € (0,T]. By (5.8.16), (5.8.18), and (5.8.19) we see that
¢ <cas™, ¢ (e AV 0 Faq) + IP S 3qy)  om (0,7

Applying these inequalities to (5.8.21) we have

d 1 _

%HA;/QUgH%z(QE) + §||A€U€H%2(Q€) <c (COE A2 g, + H]Pef€||i2(szs)) (5.8.23)
on (0,7]. From (5.5.19) and (5.8.23) we further deduce that

d 1 _ <
@”A;/Qusﬂiz(gs) + CTZHA;QUEH%?(QE) <c <00€ 1’\14;/2“5”%2(95) + |P=f H%Q(QE)>

with a constant as > 0 independent of €, ¢y, and Tyyax. For t € (0, 7] we multiply both sides
of the above inequality at s € (0,t) by e(*~9/92 and integrate them over (0,t) to get

t
14220 (1) 720,y < €AV Pu5) T 0, +00051/0 e AL (8) |72, ds

+ caz(1— e ) [P f 7 oo 0 mos2(nyy. (5:8:24)
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When ¢ < T := min{1,T}, we apply (5.1.9) and (5.8.16) to the right-hand side of (5.8.24)
and use ¢ < 1 by (5.8.6) to deduce that

1AL 208 ()] 720, < cco(1+co)e™ < ccoe™ forall ¢ € (0,T.]. (5.8.25)
Now we suppose that 7" > 1 and estimate ||A3:/2U€(t)||L2(QE) for t € [1,T]. Since
d
%HA&/QUEH%%QE) < 5\\14;/2“8”%2(95) +¢ on (0,7]

by (5.8.21), we can use Lemma 5.8.2 with z(t) = HA;muE(t)H%Q(QE) to obtain
t t t
|]A;/2u€(t)”%2(ﬂg) < </t 1 HA;/2U€(S)H2L2(QE) ds + - ¢(s) ds> exp ( t 15(5) ds> (5.8.26)

for all t € [1,T]. Moreover, the functions £ and ¢ given by (5.8.22) satisfy

t t
[ s <o [ 1AV a5 <

t t
- C(S) ds <c <CO€_1 /t_l ||A;/2u8(8)||%2(95) ds + |P5fa||%°°(0,oo;L2(QE))> < CCO(‘:_1

by (5.1.9), (5.8.16), and ¢y < 1. Using these inequalities and (5.8.16) to (5.8.26) we have
IAY 20 ()12 .y < cooe™" for all ¢ € [1,T]. (5.8.27)
Now we combine (5.8.25) and (5.8.27) to observe that
IAY 20 ()15, < dacoe™" for all ¢ € (0,7

with some constant ds > 0 independent of ¢, ¢o, and T. Hence if we define ¢y by (5.8.6),

then by setting ¢ = T in the above inequality we get

d3e~!
4

. d
, le. 51/2HA;/2U6(T)||L2(QE) < ?3 < ds,

IAY 20 (T)|3 20 <

which contradicts with (5.8.19). Therefore, the inequality (5.8.17) is valid and we conclude
by Theorem 5.8.1 that Tiax = 00, i.e. the strong solution u® to (5.1.1)—(5.1.3) exists on the
whole time interval [0, c0). O

Using the inequalities given in the proof of Theorem 5.1.1, we can also show the uniform
estimates (5.1.11) and (5.1.12) for a strong solution.

Proof of Theorem 5.1.2. Let €g,co € (0, 1) be the constants given in Theorem 5.1.1. Since «
and [ are positive, we can take €1 € (0,e9) such that

c1e® < co, c® <y forall ee(0,e).

Hence, for ¢ € (0,¢1) if the initial velocity uf and the external force f¢ satisfy (5.1.10), then
they also satisfy (5.1.9) and Theorem 5.1.1 implies that there exists a global strong solution
u® to (5.1.1)—(5.1.3).
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Let us derive the estimates (5.1.11) and (5.1.12) for the strong solution u°. Hereafter we
denote by ¢ a general positive constant independent of . First note that

4120, < e+ + &) (5.528)
by (5.1.10) and (5.8.7). We apply this inequality and (5.1.10) to (5.8.14) to get
Hua(t)H%g(QE) < (e 4Py forall t>0. (5.8.29)

Also, integrating (5.8.12) over [0, ¢] and using (5.1.10) and (5.8.28) we have
t
/ HA;/QUE(S)H%z(Qe) ds < c(e"t +£7)(1+1t) forall t>0. (5.8.30)
0

Combining (5.8.29) and (5.8.30) with (5.5.18) we obtain (5.1.11).
Next let us prove (5.1.12). We use (5.1.10) and (5.8.28) to (5.8.15) to deduce that

t+1
/ JAY202(5) |23, ds < e +27) forall £ 0. (5.8.31)
t
(Note that t, = min{t + 1, Thax} =t + 1 in (5.8.15) since Tax = 00.) Since (5.8.17) and
(5.8.29) are valid for all ¢ > 0, as in the proof of Theorem 5.1.1 we can show that (5.8.24)
holds for all ¢ > 0. When ¢ € [0, 1], we apply (5.1.10) and (5.8.30) to the right-hand side of
(5.8.24) to obtain

A28 ()]0, < ele 0 +e74F) forall € 0,1]. (5.8.32)

Let t > 1. In (5.8.26) the functions & and ¢ given by (5.8.22) satisfy

t t
Hg(s) ds < c/t1 1AL ()12 ds < c,

t t
C(s)ds <c(et [ A2 (5) 72 @5 + P2 SN F o (000200 )
t—1 t—1

< c(e7e 4 g7 1Hh)

by (5.1.10), (5.8.16), and (5.8.31). Applying these inequalities and (5.8.31) to (5.8.26) we
get

IAY2uE ()72 < cle™ T +e71HP) forall > 1, (5.8.33)

By (5.5.18), (5.8.32), and (5.8.33) we obtain the first inequality of (5.1.12). To derive the
second inequality we observe that (5.8.23) is valid for all s > 0 since (5.8.16) and (5.8.17)
hold on the whole time interval [0, 00). Hence for each ¢ > 0 we integrate (5.8.23) over |0, t]
and use (5.1.10) and (5.8.30) to get

t
| 146 g ds < ol e 140

This inequality combined with (5.5.32) yields the second inequality of (5.1.12). O

For the study of a singular limit problem in Section 5.10 we need estimates for the tensor
product and the time derivative of a strong solution with 5 = 1. Let us derive them by using
the inequalities given in Lemma 5.6.23.
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Theorem 5.8.4. Let ¢y and cy be positive constants, o € (0,1], and B = 1. Under the
same assumptions as in Theorem 5.1.1, let €1 be the constant given in Theorem 5.1.2. For
e € (0,e1) suppose that u§ € V. and f¢ € L?(0,00; L?(2)3) satisfy (5.1.10). Then there
exists a global strong solution u® to (5.1.1)~(5.1.3) such that

t
Ju ()]22(q < e, Aum@@mmw3m0+m

5.8.34
(0 210 < e, Aww@@mmwa*Wu+w o
for allt >0, and
/Ot I[u® ® uE](s)H%z(QE) ds < ce(1+1t), (5.8.35)
/Ot 105u% (8) 172y ds < e (1 + 1) (5.8.36)

for allt > 0, where ¢ > 0 is a constant independent of €, u®, and t.

Proof. A global strong solution u® exists by Theorem 5.1.2. Also, we have (5.8.34) by (5.1.11)
and (5.1.12) since f=1land e <e* by a<1lande < 1.

Let us derive (5.8.35). Hereafter we suppress the argument s of integrands. Noting that
uf € L? ([0,00); D(A,)) satisfies the conditions in Lemma 5.6.23, we use (5.6.67) to get

loc
¢ 2 1 ! 2 2
[u® @ u [z ds < el e | ufllizonlullfn o) ds
0 0
t t
+e/0 w1172 (o) 15|72y A +/0 w1132 oy 1%l 22 02 ds> (5.8.37)
for all t > 0. By (5.8.34) we have
t
120 o 10| 21 oy dis < ce2(1 4 1), (5.8.38)
; (@) ()
t
W e e s < 1+ ). (5.8.39)
Also, Hélder’s inequality and (5.8.34) imply that
i 2,41/2 ! 2 12 1 2
Auwﬁmmmwm@wwuﬁu/(Anmmmm%> < e OP(14t). (5.8.40)

Applying (5.8.38)(5.8.40) to (5.8.37) and noting that £, /2 < 1 we obtain (5.8.35).
Next we prove (5.8.36). We take the L?(£2.)-inner product of d;u® with

Ot + Auf + Pef(u® - V)u'] =P.f¢ on (0,00)

and then integrate it over (0,¢) with ¢ > 0 and use Young’s inequality to get
! 2 1/2 2
| 100 By s+ 14220 0

t
<A ey e [ (I V) + 1B S aga,) ds. (5541
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Let us estimate the integral of (u® - V)u®. By (5.6.68) we have

t t
|l Vg s <o [ (5 1 e + el o) e i ds

To the right-hand side we apply (5.8.39) and
T
10 Bl ds < 7272014 (5.8.42)

by (5.8.34), and then use € <1 by ¢ < 1 to deduce that
t
/ II(uf - V)uEHig(QE) ds < ce 11 4 1).
0

Applying this inequality and (5.1.10) to (5.8.41) we obtain (5.8.36). O

5.9 Weighted solenoidal spaces on a surface

In the study of a singular limit problem for the Navier-Stokes equations (5.1.1)—(5.1.3) we
deal with a weighted solenoidal space of the form

H,,(T,TT) = {v € H'(I',TT) | divp(gv) = 0 on T'}.

The purpose of this section is to establish several properties of weighted solenoidal spaces on
a surface. Throughout this section we assume that I is a two-dimensional closed, connected,
and oriented surface in R? of class C?. We use the notations for the surface quantities on T’
given in Section 5.2.1.

5.9.1 Necas inequality on a surface

Let ¢ € L?(T"). We consider ¢ and its weak tangential gradient as elements in H~!(T") and
H~YT,TT) given by (5.2.21) and (5.2.26). By these equalities we easily get
lgllz-1(ry + IVrallg-1rry < cllallzzm)-

For bounded Lipschitz domains in R™, m € N the inverse inequality is also valid and known
as the Necas inequality (see [48, Chapter 3, Lemma 7.1]). Let us show the Necas inequality
on the surface I'.

Lemma 5.9.1. There exists a constant ¢ > 0 such that

lqllr2ry < ¢ (||QHH*1(F) + HVFQ|’H*1(F,TF)) (5.9.1)
for all g € L*(T).

In the proof of Lemma 5.9.1 we use the Nacas inequality on the whole space

13l 2wy < e (Gl -1 g2y + 1 V5@l -1 (R2)) (5.9.2)
for § € L*(R?), where H~1(R?) is the dual space of H*(R?) (via the L?(R?)-inner product).
Also, § € H™'(R?) and V.G € H~'(R?)? are given by

(@, 9r> = (0, ) 2m2), (Vs p)r2 = —(q, 05,1 + Os,02) 12(R2)

for ¢ € HY(R?) and ¢ = (p1,¢2) € H(R?)2, where (-, )g2 is the duality product between
H~'(R?) and H'(R?). The inequality (5.9.2) follows from the characterization of the L2-
Sobolev spaces on R? by the Fourier transform. See the proof of [48, Chapter 3, Lemma 7.1]
for details.
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Proof. First we note that it is sufficient to show (5.9.1) when ¢ is compactly supported in a
relatively open subset of I' on which we can take a local coordinate system. To see this, let
q € L*(T') and n € C*(T). For ¢ € HY(T') we have

[(ng; &)rl = (@ n&)r] < llall -1 @)lnéllm @y < cllnllwreomllallm-1@ €]z @),
where ¢ > 0 is a constant independent of ¢, n, and &. Also,
[Vr(nq), vlrr = —(ng, divrv) p2ry = = (, dive(m0)) 2y + (¢, Ven - 0) g2 r)
= [Vrg, nv]rr + (¢, Vrn - v)r

for all v € HY(T',TT) by (5.2.26) (note that nu € H(I',TT)) and thus

[[Vr(ng), vlre| < IVegll -1 rrylinoll g ey + gl g1 IVen - vl gy

< cllnllwzeery (lal -1y + 1Vrall z-1 o)) 0lla .-
From the above inequalities it follows that
Inall -1y < cllnllwreemllallz-1r),
HVF(WQ)HH*(F,TF) < CH77HW21°°(F) (HQHH*(F) + HVFQHH*(F,TF)) .

By these inequalities we can get (5.9.1) for ¢ if we localize it by a partition of unity of I'
consisting of functions in C?(I") (we can take such functions since I' is of class C?) and prove
(5.9.1) for each localized function.

From now on, we assume that ¢ € L?(I') is compactly supported in a relatively open
subset u(U) of I', where U is an open subset of R? and u: U — R? is a local parametrization
of T'. (Note that p is of class C? on U since I is of class C2.) Let § := qo u on U and K be
the support of ¢, which is a compact subset of U. The Riemannian metric § = (6;;); ; of I'
is locally defined by

0ij(s) 1= 05, 1u(s) - Os,pu(s), s€U, i,j=1,2.

We write §=1 = (%), ; for the inverse matrix of §. Since p is of class C?, there exists a
constant ¢ > 0 such that

0Su(s)| <ec¢, sek,|al=1,2, (5.9.3)

where 05 = 051052 for a = (a1,a2) € 7Z? with a; > 0, i = 1,2. By this inequality and the
formula 95,071 = —071(95,0)0~! we also have

0(s)| < ¢, [07s)| <e¢, 10s,0(s)<c, |0,07'(s)<ec, s€K,i=1,2. (5.9.4)

Moreover, since the determinant of 6 is continuous and does not vanish on U, there exists a
constant ¢ > 0 such that

cl<det(s)<e, sek. (5.9.5)

We extend ¢ to R? by setting zero outside of U. Then by (5.9.5) we get

ol = [ 1aPVaBds < clilage) = el
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and we apply the inequality (5.9.2) to the last term to obtain

lall 2y < e (1l p-1@e) + IVl m-1(r2)) - (5.9.6)

Let us estimate the right-hand side of (5.9.6) by that of (5.9.1). To this end, we first consider
the duality product (g, )r2 = (§,§)r2(r2) for an arbitrary £ € H 1(R?). Since § is supported
in K, we may assume that ¢ is also supported in K. We define a function n on u(K) C T' by

o &(s)
n(u(s)) :== Jaet6i)

and extend it to I' by setting zero outside of (k). Then we have

o A _ )
(@,6)r2 = (4, ) 2(m2) = /’Cq <\/m> Vdet 6 ds /M(IC) qndH=. (5.9.8)

Let us show n € H!(T). Since 7 is supported in u(K), we see by (5.9.5) that

sek (5.9.7)

I3y = /,< In o u2Vaetfds < cllél|Zage) = ez ), (5.9.9)

To estimate the L?(I')-norm of the tangential gradient of 1, we differentiate both sides of
(5.9.7) with respect to s;, i = 1,2 and use (5.9.4) and (5.9.5) to get

|0, (n o p)(s)] < e(l€(s)] +105,£(s)]), s € K.

2

Since the norm of (Vrn)opu =37, 4 0% 0, (n o j1)0s, pu is given by

2
(Ven) o ul® = 090,,(nop)ds,(nop) in K,
ij=1
we apply the above inequality and (5.9.4) to the right-hand side to get
[(Vrn) o uf? < e(jf” +|V£[?) in K,

where V is the gradient operator in s € R%. Noting that 1 and ¢ are supported in ;(K) and
IC, respectively, we use this inequality and (5.9.5) to obtain

IV = /}C (V) o pl?VdetBds < el = elElZn ey

By this inequality and (5.9.9) we have n € H'(T') and ||| g1y < ¢l[€]l g1 (r2). Hence

(G, €)me —/ qndH? = (¢,n)2r) = (¢, M1
w(K)

by (5.9.8) and the above inequality implies that

(@ O)rez| = [{@:mr] < llglla-—1wlInll oy < cllalla-r ) 1€l @)
for all £ € H'(R?). Therefore,

lallz-1®2) < cllallz-1(r)- (5.9.10)
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Next let ¢ = (¢1,92) € H'(R?)? and we consider the duality product

(Vsq, 0)r2 = —(q, 05,01 + 0s,02) 12(m2)-

We may assume again that ¢ is supported in K since ¢ is so. To express this product in
terms of an integral over I', we recall that the surface divergence of a tangential vector field

X(u(s)) = 37 Xi()0s,u(s), s € K is given by

dive X (u(s)) = det 0(s )) s€eK.

WZ%K

Based on this formula, we define a tangential vector field ® on u(K) by

D(u(s)) = sek (5.9.11)

\/detH Z%

and extend it to I' by setting zero outside of 1(K). Then we have

a51 ¥1 (S) + 852302(8)
det 0(s)

divr®(p(s)) = sek

and thus we get (note that § = ¢ o 4 and ¢ are supported in K)

<v3(}, (10>R2 = _((ja a51 p1+ aSQSOQ)LQ(RQ)

~((Osi01 + 652s02> Jdetd / , ) (5.9.12)
= - —_— detfds = — divp® dH”.
/IC K < Vdet 6 g 1(K) AT

Let us estimate the H!(T')-norm of ®. By (5.9.4), (5.9.5), and (5.9.11) we have

2
1 .
"I’ ou’Q = 7det6 Z Hij(pi(pj S C’(p|2 1n /C

Since ® is supported in pu(K), the above inequality and (5.9.5) imply
912 = [ 180 uPVaBds < cliplage, = clelfogeey (5.9.13)

where the last equality follows from the fact that ¢ is supported in . To estimate the
tangential derivatives of ®, let {e1, ez, e3} be the standard basis of R® and ®, := ® - ¢, for
k =1,2,3. Then @ is supported in p(K) and

2
1
i) 8)) = ——— i(8)0s.14(8) - ex, se€K.
f(1) = s ;%( )0s; 1(s) - e,
We differentiate both sides with respect to s; and use (5.9.3), (5.9.4), and (5.9.5) to get
|05 (1 0 p)(s)| < c(lp(s) + [Vsp(s)]), sek,i=1,2.

From this inequality and (5.9.4) we deduce that

2
(Vr®i) o pf? = Y 0905, (R 0 p1)ds, (R 0 1) < cl|of® + |Vaipl?)
ij—1
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in K for k =1,2,3, and thus [(Vr®) o u|? < c(|p|> + |Vsp|?) in K. Noting that ® and ¢ are
supported in p(K) and K, respectively, we use this inequality and (5.9.5) to observe that

V0|2 ) = /K |(Ve®) o Vet fds < cllolZn ) = clliol g,

From this inequality and (5.9.13) it follows that ® € H*(T', TT') and

1Pz (ry < el (rey- (5.9.14)

Now we return to (5.9.12) and use (5.2.26) to get

(Vs p)pe = — /(K) gdivr® dH? = —(q,divr®) 2(r) = [Vrg, ®)rr.
I

Hence by (5.9.14) we obtain
(Vs 0)rz| = |[Vrg, @lrr| < IVrallp— oy @l mr iy < ellVrallm— o rm el @z

for all o € H'(R?)?, which implies that

Vsl 12y < cllVrallg—orr)-

Finally, we apply this inequality and (5.9.10) to (5.9.6) to conclude that the inequality (5.9.1)
is valid. O

Next we prove Poincaré’s inequality for ¢ € L?(T) based on the Necas inequality (5.9.1).
We first show that the tangential gradient of ¢ vanishes in H—*(I',7T) if and only if ¢ is
constant on T.

Lemma 5.9.2. Let g € L?(T"). Then
Vrq=0 in H YT,TT)
if and only if q is constant on T.

Proof. Suppose first that ¢ is constant on I'. Then for all v € H'(I', TT) we have
[Vrq,v]rr = —q/ divpvdH? =0
r

by (5.2.26) and the Stokes theorem. Hence Vrq = 0 in H (T, TT).

Conversely, assume that Vpg = 0 in H }(I',7T). We first prove ¢ € HY(T). For
n € CYT) and i = 1,2,3 we set v := nPe;, where {ey, ez, e3} is the standard basis of R3.
Then v € HY(T', TT) since P is of class C*. Moreover,

divpv = Vrn - Pe; + n(divpP - ¢;) = D;n+nHn; on T
by PT = P, (5.2.3), and (5.2.7). From this equality we deduce that

0= [Vrg,v]rr = — (¢, divrv) 2(ry = —(¢, Dyn + nHni) p2(r)
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for all n € C1(T'). Hence by the definition of the weak tangential derivative in L?(T") (see
(5.2.19)) we get D,q = 0 in L?(T') for i = 1,2,3, which shows that ¢ € H(I') and Vrq =0
in L*(T)3. Now we set

. 1 2
g:=q— = [ gdH” on T,
Tl Jr

where |T'| is the area of I'. Then we have § € H*(T') and frddﬂz = 0. Hence we can apply
Poincaré’s inequality (5.2.20) to ¢ to get

dll2ry < ellVrdlrzry = cllVrgl L2y = 0,
i.e. =0 on I', which implies that ¢ = |T'|~} fr qdH? is constant on I'. O
Next we estimate ¢ € L2(T') in H~(T) by its tangential gradient.

Lemma 5.9.3. There exists a constant ¢ > 0 such that

el < (\ /F g dH?

4 HVFQHHl(F,Tr)> (5.9.15)

for all g € L*(T).

Proof. We prove (5.9.15) by contradiction. Assume to the contrary that for each k£ € N there
exists qx € L?(I") such that

gl -1y >k <‘/I;Qk dH?

Replacing i with qi/|gk||fr-1(r) we may assume that

+ ||VFCJkHH—1(F,TF)) :

larll -y = 1, ’/ qe AH? | + [ Voarl g qorry <k (5.9.16)
r
From the second inequality it follows that
lim qk dH2 = lim (qk, 1)L2(1") = O, lim HVFQI€||H*1(F,T1") =0. (5.9.17)
k—oo Jp k—o00 k—o00

By (5.9.1) and (5.9.16) the sequence {gx}?%, is bounded in L?*(T'). Hence there exists a
subsequence of {q;}7°, which is referred to as {qx}3°, again, that converges to some ¢
weakly in L?(T). Since the embedding L?(I") < H (T is compact, by taking a subsequence
we may assume that {gx}3°, converges to ¢ strongly in H!(I'). Hence by the first equality
of (5.9.16) we have

lallz-1r) = klgl;o gkl -1y = 1. (5.9.18)

By (5.2.26) and the weak convergence of {gz}72; to ¢ in L*(I") we see that {Vrg;}3,
converges to Vrq weakly in H~1(I', TT"). Hence by (5.9.17) we get

/quHQ =(¢, D2y =0, [[Vrgllg-1(r) = 0.

By these equalities and Lemma 5.9.2 we find that ¢ = 0 on I" and thus [|¢|| 7-1(ry = 0, which
contradicts with (5.9.18). Hence (5.9.15) is valid. O
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Combining (5.9.1) and (5.9.15) we obtain Poincaré’s inequality for ¢ € L?(T).

Lemma 5.9.4. There exists a constant ¢ > 0 such that

gl < e (\ / Wz’ ; ||vrq|H1<p,m) (5.9.19)
for all g € L*(T).

5.9.2 Characterization of the annihilator of a weighted solenoidal space

Let g € C1(I') satisfy g > ¢ on I" with some constant ¢ > 0. We define a weighted solenoidal
space of tangential vector fields

H,,(I',TT) := {v € H'(,TT) | divr(gv) = 0 on I'},
If ¢ € L*(T), then (5.2.26) and (5.2.27) imply that

[9Vrq, v]rr = —(q,divr(gv)) ;» =0 forall ve H,,(L,TT).

Let us prove the converse of this statement for an element of H~!(I', 7T), which is a weighted
version of de Rham’s theorem.

Theorem 5.9.5. Suppose that f € H-Y(T',TT) satisfies
[f,vlrr =0 for all v € Hy (T, TT).

Then there exists a unique q € L*(T) such that
f=gVrq i H YD,TD), / qdH?=0.
r

Moreover, there exists a constant ¢ > 0 independent of f such that
lallzzery < el fllg-1 @ rr)- (5.9.20)
We give auxiliary lemmas for Theorem 5.9.5.

Lemma 5.9.6. There exists ¢ > 0 such that

MNVrall g1y < l9Vrdll -y <l Vedllg-1 e (5.9.21)
for all g € L*(T).
Proof. Since g € C(T) is bounded from below by a positive constant, we have

[Vrg,vlrr| = |[9Vrg, g vlrr| < gVl g-r@rrylla™ ollm
< cllgVral g rollvll g

for all v € HY(I',TT). Hence the left-hand inequality of (5.9.21) holds. Similarly, we can
show the right-hand inequality of (5.9.21). O

Lemma 5.9.7. The subspace
X :={gVrqe H'(I',IT) | g € L*(I")} (5.9.22)

is closed in H=Y(T',TT).
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Proof. Let {q}3>, be a sequence in L*(T') such that {gVrgx}3o, converges to some f
strongly in H~'(I',TT). For each k € N we subtract the average of g, over I' from g
to assume [ gr dH? = 0 without changing gVrgy (see Lemma 5.9.2). Then by (5.9.19) and
(5.9.21) we see that

gk — aill 2y < cllgVrax — 9Vrallg— @) =0 as k1 — oo

Hence {q;}?2, is a Cauchy sequence in L?(I') and converges to some g strongly in L?(T').
Then by (5.2.26) and (5.2.27) we easily see that

l9Vrq — gVraellg-—1 o) < cllg — allp2qry = 0 as k — oo.

Since {gVrqx}$2, converges to f strongly in H—1(I', TT), we conclude by the above conver-
gence that f = gVrq € X. Therefore, X is closed in H (T, TT). O

To prove Theorem 5.9.5 we use basic results of functional analysis. Let B be a Banach
space. For a subset X of B we define the annihilator of X by

Xt.={feB |plf,v)s=0foralve X},
where B’ is the dual of B and g/ (-, )3 is the duality product between B’ and B.
Lemma 5.9.8. Let X and Y be subsets of B. If X C Y in B, then yicxtltinB.
Lemma 5.9.9. If B is reflexive and X is a closed subspace of B, then (X+)+ = X.

Lemma 5.9.8 is an immediate consequence of the definition of the annihilator. Also,
Lemma 5.9.9 follows from the Hahn-Banach theorem, see e.g. [56, Theorem 4.7].

Proof of Theorem 5.9.5. Since H*(T',TT) is a Hilbert space, its dual H~ (I, TT) is also a
Hilbert space and thus reflexive. Let X be the subspace of H~!(T', TT') given by (5.9.22) and
ve X+ c HY(T,TT). Then for all ¢ € L*(T") we have

0= [QVFQ7 U]TF = _(qadiVF(gU>)L2(F)

by gVrq € X, (5.2.26), and (5.2.27) and thus divr(gv) =0on I, ie. v € H;U(F,TF). Hence
xtc H,,(T,TT) in H(T,TT) and by Lemma 5.9.8 we have

H,),(T,TT)*" = {f € H '(I,TT) | [f,v]rr = 0 for all v € H,(T,TT)} C (X*)*.

Since X is closed in H~Y(I',TT) by Lemma 5.9.7, we have (X+)X = X by Lemma 5.9.9.
Hence Hgla(F,TI‘)J- C X, ie. for f € ]'{;U(I‘,TF)l there exists ¢ € L?(T') such that f =
gVrq in H=Y(T,TT). Moreover, subtracting the average of ¢ over I' from ¢ we may assume
frqal’l-[2 = 0 without changing gVrq (see Lemma 5.9.2). Therefore, the existence part of
the theorem is valid. To prove the uniqueness, suppose that q1,ga € L?(T") satisfy

9Vra1 = gVrqgx in H YT, TT), /Q1 dH?* = / qadH* = 0.
r r

Then V(g1 — q2) = 0 in H YT, TT) by (5.9.21) and thus q; — g2 is constant on I' by
Lemma 5.9.2. Since [.(q1 — ¢2) dH? = 0, the constant ¢ — go is equal to zero, i.e. ¢1 = qo
on I'. Hence the uniqueness is also valid. Finally, the estimate (5.9.20) follows from (5.9.19)
with [.gdH?* =0 and (5.9.21). O
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5.9.3 Weighted Helmholtz—Leray decomposition of tangential vector fields

The aim of this subsection is to establish the weighted Helmholtz—Leray decomposition of
L?(I,TT) and give estimates for the gradient part of the decomposition. For v € L?(T")3
we consider divp(gv) as an element of H—(T) given by (5.2.25). We define a subspace of
L*(T,TT) by

L2,(T,TIT) := {v € L*(T,TT) | divp(gv) = 0 in H~'(")}.
By (5.2.25) and g € C1(T") we easily deduce that
[divr(gv)|g-1ry < ellvlp2qy for all v e LA(I)3.

Hence L7, (I',TT) is closed in L*(T,TT) (note that L*(I',TT) is closed in L*(T")). Let
L2,(T,TT)* be the orthogonal complement of L2 (I, TT) in L*(T',TT).

Lemma 5.9.10. The orthogonal complement of L;U(F,TF) s of the form
L, (T, TT)" = {gVrq € L*(I,IT) | ¢ € H'(I')}.
Proof. Let X :={gVrq € L*(T,TT) | ¢ € HY(T')}. By (5.2.25) we have
(v,9Vrq)r2(ry = (9v, Vrq) p2(ry = —(divr(gv),¢)r =0

for all v € L2, (I,TT) and ¢ € H'(T'), which shows X C LEU(F,TI‘)J—. Conversely, let
fe LgU(F,TF)l. We consider f = Pf in H-1(I',TT) (see Section 5.2.1) to get

[f.vlrr = (f,0)p2qy =0 forall ve H),(I',TT) C L,(I',TT).

Hence by Theorem 5.9.5 there exists ¢ € L?(I") such that f = gVrqin H~}(I',TT). To prove
q € HY(T') let {e,e2,e3} be the standard basis of R? and v := g~ 'nPe; for n € C1(I') and
i=1,2,3. Then v € H'(I',TT) since P and g are of class C' and g > ¢ > 0 on I'. Moreover,

divp(gv) = Vrn - Pe; + n(divpP - ¢;) = D;n+nHn; on T
by the symmetry of P, (5.2.3), and (5.2.7). Hence we get
_(QaQZT] + ani)LQ(F) = - (Q7 diVF(gU))L2(F) = [QVFQ7 U]Tl—‘
= [f,vlrr = (f,0) 2@y = (97 fosm) 12

for all € C(T"), where f; is the i-th component of f (note that f is tangential on I'). From
this equality and the definition of the weak tangential derivative in L*(T) (see (5.2.19)) it
follows that D,q = g~ ' f; € L*(T") for i = 1,2,3. Hence we get ¢ € H'(I') and f = gVrq € X,
and the inclusion L2 (I, TT)* C X holds. O

For q1,q2 € H'(T') we have gVrqi = gVrge on I if and only if ¢; — go is constant on
I’ by (5.2.30) and Lemma 5.9.2. By this fact and Lemma 5.9.10 we obtain the weighted
Helmholtz—Leray decomposition of tangential vector fields on I'.

Theorem 5.9.11. For each v € L*(T',TT) we have the orthogonal decomposition
v=v,+9Vrq, wvg€ L2 (T,TT), gVrqe L2, (T, TT)" .

Here ¢ € H(T") is uniquely determined up to a constant.
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Note that here we derived the weighted Helmholtz—Leray decomposition without intro-
ducing the notion of differential forms. When g = 1 it is also proved in the recent work [55]
without calculus of differential forms, where the solenoidal part is further decomposed into
the curl of some function and a harmonic field whose surface divergence and curl vanish.

Next we consider approximation of surface solenoidal vector fields. In general, for v €
L*(T, TT) satisfying divpv = 0 in H~1(T") and € C1(T), the surface divergence divr(nv) =
Vrn - v does not vanish in H~(T"). Hence standard localization and mollification arguments
with a partition of unity of I' do not work on approximation of surface solenoidal vector
fields by smooth ones. Instead, we use a solution to Poisson’s equation on I'.

Lemma 5.9.12. For each n € H YT satisfying (n,1)r = 0 there exists a unique weak
solution g € HY(T) to Poisson’s equation

Arg=-n on T, /qd?—[2 =0 (5.9.23)
r

in the sense that

(Vrq, Vil rery = (0,1 for all €€ HY(T). (5.9.24)

Moreover, there exists a constant ¢ > 0 such that

lall iy < cllnllz-1(r)- (5.9.25)

If in addition n € L*(T'), then q € H*(T') and

gl z2(ry < cllnllL2(ry- (5.9.26)

The existence and uniqueness of a weak solution to (5.9.23) and the estimate (5.9.25)
follow from Poincaré’s inequality (5.2.20) and the Lax-Milgram theorem. Also, the H?2-
regularity and (5.9.26) are proved by a standard localization argument and the elliptic reg-
ularity theorem. For details, see [11, Theorems 3.1 and 3.3].

Lemma 5.9.13. The space H;J(F,TF) is dense in LgU(F,TI‘).

Proof. Let v € L2, (I',TT). By Lemma 5.2.6 we can take a sequence {0} }72 in C'(I',TT)
that converges to v strongly in L?(T',TT). For each k € N we have

ldive (990) -1y = Idivelg(@e — )] la-1r) < ell — vllz2qo (5.9.27)

by divr(gv) = 0in H~(T) and (5.2.25). We consider Poisson’s equation (5.9.23) with source
term 7, := —divr(gix) € L*(T'). By Lemma 5.9.12 there exists a unique solution g, € H?(T)
to (5.9.23). Moreover, by (5.9.25) and (5.9.27) we have

gkl ey < ellmill -1y = elldive (i)l z-1 @y < ellv — gl L2y
Hence vy, := 0, — ¢~ 'Vrq € Hglo(F,TF) and
o = vkl ey < o — ikl ey + ellaellimgey < ello = gy — 0

as k — oo by g > ¢ > 0 on I and the strong convergence of {7} | to v in L*(T', TT), which
shows that H,,(I',TT) is dense in L2 (T, TT). O
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Let P, be the orthogonal projection from L?(I',7T) onto L;U(F,TF). We call it the
weighted Helmholtz—Leray projection. In the study of a singular limit problem for (5.1.1)—
(5.1.3) we need to estimate the difference v — Pyv for v € L?(I',TT).

Lemma 5.9.14. There exists a constant ¢ > 0 such that

v = Pgvllr2ry < clldive(gv)||lz-1(r) (5.9.28)
for allv € L*(T,TT). If in addition v € H'(T',TT), then Pyv € Hy, (I, TT) and

v =Pyl gy < elldivr(gv)|l2(ry- (5.9.29)
Proof. Let v € L*(T,TT) and n := —divr(gv) € H71(T'). Since v is tangential on T, we see

by (5.2.25) that

(n, r = (gv, Hn) 21y = /Fg(v -n)H dH? = 0.

Hence by Lemma 5.9.12 there exists a unique weak solution ¢ € HY(T') to (5.9.23) with
n = —divr(gv). Then since v — g~ 'Vpq € L?IU(F,TF), we have Pyv = v — g~ 'Vrq by the
uniqueness of the weighted Helmholtz—Leray decomposition. Moreover, since

gl ey < ellnllg-1@y = clldive(go)llg-1r)

by (5.9.25) and g € C1(I") is bounded from below by a positive constant, we obtain

o~ Bgollzaey = o™ Frallzaqey < ellallmry < clldive(go)lz-so)

Hence the inequality (5.9.28) holds.
Next suppose that v € H'(I',7T). Then since n = —divr(gv) € L*(I') Lemma 5.9.12
implies that that ¢ € H*(I') and thus Pgv = v — g~ 'Vrq € H,,(I',TT). Moreover, since

lall 2y < ellnllzzy = clldive(gv)llz2r
by (5.9.26) and g € C!(T") is bounded from below by a positive constant,
lv = Bgvll gy = llg™" Veallmry < cllgllazry < cldive(go)lzzr)
i.e. the inequality (5.9.29) is valid. O

Corollary 5.9.15. There exists a constant ¢ > 0 such that
1Pyl e ry < cllvllmnery (5.9.30)

for allv € H*(T,TT), k = 0,1 (note that H® = L?).

Proof. If k = 0, then (5.9.30) holds with ¢ = 1 since P, is the orthogonal projection from
L*(D,TT) onto L2, (I, TT). Moreover, the inequality (5.9.30) for k = 1 follows from (5.9.29)
and ||d1VF(gU)”L2 < cl|vll g O

Next we consider the time derivative of v — Pyv. We derive an estimate for the time
derivative of a weak solution to Poisson’s equation (5.9.23).
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Lemma 5.9.16. Let T > 0. Suppose that n € H'(0,T; H-(T')) satisfies
(nt),Hhr =0 for all te0,T).

For each t € [0,T] let q(t) € H'(T) be a unique weak solution to (5.9.23) with source term
n(t). Then q € H'(0,T; H'(T')) and there exists a constant ¢ > 0 such that

19eqll 20,711 () < cllOnll L2011 (1) (5.9.31)

Moreover, for a.a. t € (0,T) the time derivative 9yq(t) € HY(T) is a unique weak solution to
(5.9.23) with source term O¢n(t).

Note that, when n € HY(0,T; H-1(T")), n(t) € H~Y(T') is well-defined for each t € [0, T
since H(0,T; H~1(T)) is continuously embedded into C([0, T]; H~*(T)).

Proof. First note that ¢ € L?(0,T; H*(T)) by (5.9.25) and € L?(0,T; H-(T")). Let us

prove d;q € L*(0,T; H(T')) by means of the difference quotient. Fix § € (0,7/2) and

h € R\ {0} with |h| < 6/2. For t € (6,7 — ) we define
_alt+h) —qt)

Dag(t) i= =——————"¢€ HYT), Dpn(t) := W

Note that these definitions make sense since ¢t + h € (6/2,T — 6/2). Moreover,

c H ().

/ Dhq(t) dHQ =0, (Dhn(t), 1>F =0, te (5,T — 5)
r

since q(t) and 7(t) satisfy the same equalities for all ¢ € [0,T]. For ¢ € H*(T') we subtract
(5.9.24) for ¢(t) from that for ¢(t + h) and divide both sides by h to get

(VrDrq(t), Vré) r2ry = (Dan(t), Er- (5.9.32)

Since this equality holds for all ¢ € H!(T), the function Djq(t) is a unique weak solution to
(5.9.23) with source term Dpn(t). Hence by (5.9.25) we have

[Dra®) gy < ellDan)lg-1ry, t € (6,1 —9).

Note that the constant ¢ > 0 in this inequality does not depend on ¢, §, and h. From this
inequality it immediately follows that

1 DnallL2s.0—s:m1.(ry) < el DnnllLesr—s,m-1(r))-
Moreover, since n € H'(0,T; H~1(T')), we have
I Danll s r—s:m-1 )y < cllOnll L2 o,mm-1(0y)

with a constant ¢ > 0 independent of h and ¢ (see [13, Section 5.8, Theorem 3 (i)]). Com-
bining the above two estimates we obtain

I Dnallz2s.0—s:m1 () < cllOenll L2051 (1))

for all h € R\ {0} with |h| < 6/2. Since the right-hand side of this inequality is independent
of h, it follows that dyq € L?(6,T — §; H*(T')) and

10eall 25,75, () < cllOmll 20,051 (1))
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for all 0 € (0,7/2) (see [13, Section 5.8, Theorem 3 (ii)]). In particular, we have Oxq(t) €
HY(T') for a.a. t € (0,T). Since the right-hand side of the above inequality is independent
of §, the monotone convergence theorem yields

19eall 20 51 (ry) = Wi [1Beq| 257502 () < €llOenll 2 0,m:m-1(ry)

and thus dyq € L*(0,T; HY(T')) and (5.9.31) is valid.

Next we show that 0yq(t) is a unique weak solution to (5.9.23) with dyn(t) for a.a. t €
(0,T). Let £ € HY(T) and ¢ € C°(0,T). Suppose that ¢ is supported in (6,7 — &) with
d € (0,7/2). We extend ¢ to R by setting zero outside of (0,7"). For h € R\ {0}, |h| < /2
we multiply both sides of (5.9.32) by ¢(t), integrate them over (,7 — ¢), and make the
change of a variable

T—6 T—6+h

Bt + () dt = / B(s)p(s — h) ds

0 0+h

for ¢(t) = (Vrq(t), Vr&) 2(ry, (n(t), r to get

T T
- /0 (Vra(t), Vi) 120y Dnip(t) di = — /0 (n(t), v Dno(t) dt,

where D_pp(t) := {o(t—h) —¢(t)}/(—h) (note that ¢ is supported in (6,7 —9)). Let h — 0
in this equality. Then since D_jp converges to 0, uniformly on (0,7),

T T
—/0 (Vra(t), V&) p2r)Oup(t) dt = —/0 (n(t),&)rop(t) dt
for all ¢ € C2°(0,T). By this equality, ¢ € H'(0,T; HY(T")), and n € H'(0,T; H~1(I")),

(IVr(0](t), Vr&) 2y = (9en(t), )r

for all ¢ € HY(T') and a.a. t € (0,T). Here we note that 9;(Vrq) = Vr(dq) a.e. on T x (0,7)
by ¢ € H'(0,T; H'(T)). In the same way we can show [ 8yq(t) dH? = 0 for a.a. ¢ € (0,T)
since ¢(t) satisfies the same equality for all ¢ € [0,7]. Hence 0;q(t) is a unique weak solution
to (5.9.23) with 9yn(t) for a.a. t € (0,T). O

Based on Lemma 5.9.16 we give an estimate for the time derivative of v — Pyv.

Lemma 5.9.17. Let v € H'(0,T; L*>(T,TT)), T > 0. Then
Pgv € H'(0,T; L2, (T, TT))
and there exists a constant ¢ > 0 such that
100w = OPgv|| L2 (0,7,22(r)) < clldive(90¢v)l|L2(0,7,m-1(r))- (5.9.33)
Proof. Let n := —divp(gv). Since v € H(0,T; L*(T',TT)), we have
ne HY0,T; HY(I)), om= —divr(gdw) € L*(0,T; HX(T)).

Here the second relation is due to the fact that g and P are independent of time (note that
P appears in the definition of the tangential derivatives). For each t € [0, T let ¢(t) € HY(T)
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be a unique weak solution to (5.9.23) with 7(t) = —divp[gv(t)], which satisfies (n(t), 1)r =0
as in the proof of Lemma 5.9.14. Then Lemma 5.9.16 implies that ¢ € H'(0,7; H*(T)) and

10eql 20,711 (1)) < cllOnll 20,151 (r)) = clldive(90ev)|| L2 0,751 (1))

Moreover, for a.a. t € (0,T) the time derivative d;q(t) € H'(I') is a unique weak solution to
(5.9.23) with 9yn(t) = —divr[gdsv(t)]. By these facts and

Pyv=v— ¢ Vg, OPyv = Opv — g 'Vr(dq) ae on I'x(0,7)
we observe that Pyv € H(0, T} LgU(F,TF)) and
10w — 0Pyl L2 (0,752(ry) = 197" V() 20,7502y < cllOedll 20,0 ()
< c||divr(g9v) || L2 0,7, 1(1))

where we also used the inequality ¢ > ¢ > 0 on I'. Hence the lemma is valid. O

5.9.4 Solenoidal spaces of general vector fields

In this subsection we briefly investigate solenoidal spaces of general (not necessarily tangen-
tial) vector fields on I'. Although the results of this subsection are not used in the sequel,
we believe that they are useful for the future study of surface fluid equations including fluid
equations on an evolving surface (see e.g. [28,31,32,43]). For the sake of simplicity, we
only consider the case g = 1 and give a remark on the case of general g at the end of this
subsection.

Let ¢ € L3(T). By (5.2.21) and (5.2.24) we have

(Vrq+ qHn,v)r = —(q,divrv) 2 (5.9.34)
for all v € HY(T')3. Hence (Vrq + ¢Hn,v)r = 0 for all v in the solenoidal space
HNT) := {v e HYT')? | divrv = 0 on T}.

Our goal is to prove that each element of the annihilator of H1(T") is of the form Vrq+qHn.
To this end, we give two properties of a functional of this form.

Lemma 5.9.18. Let ¢ € L*(T'). Then
Vrq+qHn=0 in HYI)3
if and only if g =0 on I.
Proof. We first note that for all ¢ € L?(T") we have
IVrgllg-1rry < IVrg + gHnll g1y (5.9.35)

since [Vrq, v]rr = (Vrq + gHn,v)r for all v € HY(I',TT) (see Section 5.2.1).

Suppose that Vrg+qHn = 0in H~Y(T')3. Then Vrqg = 0in H~1(I',TT) by (5.9.35) and
thus ¢ is constant on I' by Lemma 5.9.2. To prove ¢ = 0, we set v := &n in (5.9.34) for an
arbitrary ¢ € H'(T') (note that n is of class C! on T') to get

0= (Vrq+q¢Hn,v)r = q/ EH dH>.
r
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Since H € C(T') ¢ L*(T") and H'(T') is dense in L?(T") (see Lemma 5.2.4), we observe by the
above equality and a density argument that

q / H?*dM?* = 0.
r
Moreover, for the compact surface I' in R? it is known (see e.g. (16.32) in [15]) that
1 / H?dH? > 4.
4 Jr
(Note that in our definition H is not divided by the dimension of I".) Hence g = 0.
Conversely, if ¢ = 0 on T, then Vpq + ¢Hn =0 in H- (') by (5.9.34). O
Lemma 5.9.19. There exists a constant ¢ > 0 such that
lqllz2ry < el Vrg + qHnl| g-1(r (5.9.36)
for all ¢ € L*(T).
Proof. By the Necas inequality (5.9.1) and (5.9.35) it is sufficient to show that
lgll -1y < cllVrg + qHnl| g1 (5.9.37)
for all ¢ € L*(T"). Assume to the contrary that there exists g, € L?(I") such that

laxll -1y > kIIVrae + geHnll g r (5.9.38)

for each k& € N. Since ||qx||g-1(r) # 0, we may assume that [|gx||g-1q)y = 1 for all k € N
by replacing g with qi/|gk[| -1 (r)- Then we observe by (5.9.1), (5.9.35), and (5.9.38) that
{qx}%2, is bounded in L?(T"). By this fact and the compact embedding L*(T') — H ()
we can take a subsequence of {g;}7°;, which we denote by {qx}72; again, that converges to
some ¢ € L?(T") weakly in L?(T") and strongly in H~*(I'). Moreover, the weak convergence
of {qr}32, to ¢ in L*(T') and (5.9.34) imply that

klim (Vrqe + qHn) = Vg + gHn  weakly in - H—H(T')3.

—00
By this fact, (5.9.38), and ||qx||z-1(r) = 1 we have

IVra + gHn| g-1(ry < liminf [Vrg, + gpHn| g-1(r) = 0.

Hence Vrq + qHn = 0in H~(T') and ¢ = 0 on I' by Lemma 5.9.18. However, the strong
convergence of {g;}?°; to ¢ in H~(T') implies that

lall zr-1(ry = klgglo gkl -1y = 1, (5.9.39)
which contradicts with ¢ = 0. Therefore, the inequality (5.9.37) is valid. O

Now we prove de Rham’s theorem for the annihilator of H(T).

Theorem 5.9.20. Suppose that f € H-1(T')? satisfies
(fy)r =0 forall ve HYT).
Then there exists a unique q € L*(T) such that
f=Vrg+qHn in H TP, |allzz@ < el flla—m

with a constant ¢ > 0 independent of f.
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Proof. Using (5.9.36) we can show as in the proof of Lemma 5.9.7 that the subspace
X :={Vrq+qHnc H ()| q € L*()}

is closed in H~1(I")3. Moreover, by (5.9.34) we easily observe that X+ c HX(T) in H'(I")3.
Noting that the dual H~(T")? of the Hilbert space H*(T)? is reflexive, we use Lemmas 5.9.8
and 5.9.9 to obtain

HXD)r ={fe H YD) | (fyu)r=0forallve HI)} c (xH)t =x

in H—1(I")3. Hence the existence part of the theorem is valid. Also, the uniqueness and the
estimate immediately follow from Lemma 5.9.19. O

Next we derive the Helmholtz—Leray decomposition of general vector fields on I'. We
define a subspace of L?(I")? by

L2(T) := {v € L*(T)? | divpv = 0 in H1(T)}.

By (5.2.25) we have ||divrv||g-1(r) < ¢llvl| g2y for all v € L*(I')?. Hence LZ(T') is closed in
L?(')3. Let us give the characterization of the orthogonal complement of L2(T") in L?(T)3.

Lemma 5.9.21. The orthogonal complement of L2(T) in L*(T')? is of the form
Ly ()" = {Vrq+qHn € L*(T)* [ ¢ € H'(D)}.

Proof. The proof is similar to that of Lemma 5.9.10. By (5.2.25) we immediately get Vg +
qHn € L2(T)* for all ¢ € H'(T). Conversely, let f € L2(T')*. Then we have (f,v)r = 0 for
allv € HX(T') € L2(T') by (5.2.21). Hence by Theorem 5.9.20 there exists a unique ¢ € L*(T")
such that f = Vrq+ ¢Hn in H-Y(T)3. To prove ¢ € HY(T) let v := ne; for n € CY(T) and
i = 1,2,3, where {e1,e,e3} is the standard basis of R3. Then since v € H(I')® and
divrv = D;n, we have
—(¢,D;n) p2(ry = —(g,divrv) 2 = (Vrq + ¢Hn,v)r
= (f,v)r = (f,v) 2y = (fis M2

where f; is the i-th component of f. From this equality we deduce that

—(q,Dyn +nHni)p2ry = (fi — ¢Hni,n) 2y for all ne CH(I).

This means that D,q = f; —qHn; € L*(T) by the definition of the weak tangential derivative
in L%(T) (see (5.2.19)). Hence we obtain ¢ € H(T') and f = Vrq + qHn in L?(T')3. O

The result of Lemma 5.9.21 was given in [31, Lemma 2.7] (see also [32, Theorem 1.1]).
Here we gave another proof of it. By Lemmas 5.9.18 and 5.9.21 we obtain the Helmholtz—
Leray decomposition of vector fields in L?(I')® with uniqueness of the gradient part.

Theorem 5.9.22. For each v € L*(T")® we have the orthogonal decomposition
v=1v,+Vrq+qHn, wv, € L:(T), Vrq+qHn € L2(I')*.
Here g € HY(T) is uniquely determined.

The Helmholtz—Leray decomposition in Theorem 5.9.22 was already stated in [32] without
an explicit formulation (see a remark after [32, Theorem 1.1]).
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Remark 5.9.23. Theorem 5.9.22 applied to a tangential vector field on I' does not imply the
tangential Helmholtz—Leray decomposition (with g = 1) given in Theorem 5.9.11 in general.
To see this, suppose that I' is strictly convex and thus the mean curvature H of I' does not
vanish on the whole surface. Let v € L?(T',TT') be a tangential vector field on T' such that
divrv # 0 in H7Y(T'). By Theorem 5.9.22 we get the orthogonal decomposition

v =1, +Vrq+qHn, v, € Li(T), Vrq+qHn € LZ(T)*
with a unique ¢ € H'(I'). Since v is tangential on T,
O0=wv,-n+qH, ie. v, -n=-—-qH on T.

Moreover, g # 0 in H*(T") by divpv # 0in H~1(T'). By this property and the fact that H does
not vanish on the whole surface I' by the strict convexity of I' we see that v, -n = —qH # 0
in L?(T"). Hence the solenoidal part v, of v given by Theorem 5.9.22 is not tangential on T,
while the solenoidal part v, (with g = 1) of the same v given by Theorem 5.9.11 must be
tangential on I'.

The vector field Vpg+ gHn appears in the interface equations of two-phase flows [4,6,49]
as well as the Navier—Stokes equations on an evolving surface [28,31]. By (5.2.7) we observe
that the surface divergence of ¢P is of this form:

divp(¢P) = PVrq+ qdivp P = Vpq + qHn.
The tensor ¢P is a part of the Boussinesq—Scriven surface stress tensor [2,7, 58]
St ={q+ (As — ps)divpv} P + 2us Dr(v).

Here ¢ is the surface tension, A is the surface dilatational viscosity, us is the surface shear
viscosity, v is the total velocity of surface flow, and Dr(v) is the surface strain rate tensor
given by (5.4.38).

Finally, we give a remark on the case of general g. Let g € C'(T") be bounded from below
by a positive constant. We define weighted solenoidal spaces

L2, () :={v € L*(T)® | divp(gv) = 0 in H~1(I")},
H,,(T) :={ve H(I')? | divr(gv) = 0 on T'}.
By (5.2.22), (5.2.24), and (5.2.25) we have
<g(vl—‘q + an)7v>F = _((Ldivl—‘(gv))LQ(F)a qe LQ(F>7 v E Hl(r)?)’
<diV1"(QUI),T]>1" = —(W,Q(VFU + an))Lz(F)’ w e L2(F)37 ne Hl(r)

Using these formulas and applying Theorem 5.9.20 or Lemma 5.9.21 to g~ ' f for f in HglU(F)L
or wa ()%, we can show the following weighted version of the main results in this subsection.

Theorem 5.9.24. Suppose that f € H-1(I')3 satisfies
(f,v)r=0 forall ve H;U(I‘).
Then there exists a unique q € L*(T) such that
f=9(Vrq+qHn) in H D), alzw) < clfllg-m

with a constant ¢ > 0 independent of f.
Theorem 5.9.25. For each v € L*(T')? we have the orthogonal decomposition

v=uvy+9g(Vrq+qHn), wvg€ Lgo(l“)7 9(Vrq+qHn) € LSG(F)L.
Here ¢ € HY(T") is uniquely determined.
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5.10 Singular limit problem on degeneration of a thin domain

In this section we study a singular limit problem for the Navier-Stokes equations (5.1.1)—
(5.1.3) as the curved thin domain 2. degenerates into the closed surface I'. Our goal is to
derive the limit system on I' of (5.1.1)—(5.1.3) and compare it with the bulk system.

Throughout this section we impose Assumptions 1 and 2 and let 1 and &, be the positive
constants given in Theorem 5.1.2 and Lemma 5.5.1, respectively. We assume that ¢ € (0,¢})
with €} := min{e1,&,} and the assumptions in Theorem 5.8.4 are satisfied. Also, we denote
by 7 = n o7 the constant extension of a function 1 on I' to the normal direction of T

5.10.1 Weak formulation for the bulk system

Our ansatz is a weak formulation for (5.1.1)—(5.1.3) satisfied by a strong solution. Let
uF € C([0,00); V2) N L2,([0, 00); D(A2)) 1 Hb, ([0, 00); T2(02))

be the global strong solution to (5.1.1)—(5.1.3) given by Theorem 5.8.4. It satisfies

T T
| 100 o)y + aclu o) + bl i o)t = [ Bf it (5.10)
0 0

for all T > 0 and ¢ € L?(0,T;Vz), and uf|—o = u§ in V.. Here a. is the bilinear form given
by (5.5.14), i.c.

az(uy,ug) = 21// D(uy) : D(ug) dx + Z ’y;f/ uq - us dH?
Qe i=0,1 Fé
for uy,us € HY(Q)3 and b, is a trilinear form defined by

be(u1, ug, us) := / w1 ® uo : Vugdr (5.10.2)

€

for w1, uz, uz € H'(Q.)3. Note that, if u; € Vz, then we have
/ (uy - V)ug - ug der = b(uy, uz, u3)
Qe

by the integration by parts formula

/ (uy - V)ug - us dx :/ (ug -me)(ug-us) dH? — {(divuy)(uz-ug) +uy @ug : Vuz} dz
€ € QE

and the conditions divu; = 0 in €, and uy - n. =0 on I'..
Our goal is to derive the limit of the weak formulation (5.10.1) as well as to show the
convergence of the average of the strong solution u® as ¢ — 0.

5.10.2 Average of the weak formulation

The first step is to derive a weak formulation satisfied by the averaged tangential component
of the strong solution u®, in which we take a test function from the weighted solenoidal space

Vy = H,o(I,TT) = {v € H'(I', TT) | divp(gv) = 0 on I'}.

Since the constant extension of a vector field in V; is not in V., we need to construct an
appropriate test function in V. from a weighted solenoidal vector field on I'. To this end,
we use the impermeable extension operator E. given by (5.3.42) and the Helmholtz—Leray
projection P, onto L2 ().
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Lemma 5.10.1. Forn €V, let n. := P.E.n. Then n. € V; and

Ine = Al + |V = F)| . < el (5.10.3)
17 = 7l 2r.) < cellnllm ), (5.10.4)
where ¢ > 0 is a constant independent of € and n, and
1
F(n):=Vrm+ 5(77 -Vrg)Q on T. (5.10.5)

Proof. Since n € HY(T')3, we have E.n € H'(9.)? by Lemma 5.3.12 and thus 7. € V.. Let
us derive the estimates (5.10.3) and (5.10.4). By the definition (5.3.42) of the extension E.n
and the inequalities (5.2.53) and (5.3.37) we have

1E-n = 7ill 20 < celliillreo) < e nll 2y (5.10.6)
Also, from (5.2.53) and (5.3.44) it follows that

forn- 7

Loy = (\Iﬁ\lp(gg) + HVTnHLQ(QE)) < ce*2||n) g1 (ry- (5.10.7)

Since E.n € H'(.)? satisfies E.n-n. = 0 on I'. (see Lemma 5.3.11), we can apply (5.5.1)
to u = F.n and P.u = . to get
e = Eenllg o) < clldiv(Een) | z2(q.)-

Moreover, noting that n € V; satisfies divp(gv) = 0 on I', we use (5.3.48) to the right-hand
side of the above inequality to observe that

210l 1 - (5.10.8)

By (5.10.6)—(5.10.8) we obtain (5.10.3). To prove (5.10.4) we use (5.3.8), (5.10.3), and
On7 =0 in € to get

M — E877HH1(§25) < ce

In = ll ey < e (=72n = All 20 + 72110 = Ouillp2(e))
< c (el + e Inellme.)) -
(Recall that 0, = n- V is the directional derivative in the normal direction of I'). Moreover,

from (5.3.43) and (5.10.8) we deduce that

1/2

1Ml 00y < Bl mrn) + 11 — Eanllarony < e/ lInll gy

Therefore, the inequality (5.10.4) follows. O

Next we approximate the bilinear and trilinear forms a. and b. by bilinear and trilinear
forms for tangential vector fields on I'. Let 4° and ! be nonnegative constants. For vy, vy €
HYT,TT) we define

ag(vi,v2) = 21// {gDF(vl) : Dp(vg) + ;(vl -Vrg) (v - Vrg)} dH?

r

+ (7" +71)/01 ‘vg dH?, (5.10.9)
r
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where Dr(v1) is the surface strain rate tensor given by (5.4.38). Also, we set
bg(’l)l,’l)z,’l)g) = — / g(vl & ’UQ) : Vrus dHZ (5.10.10)
r

for vy, ve,v3 € HY(T,TT). Let us give their basic properties.

Lemma 5.10.2. There exists a constant ¢ > 0 such that
IVrolam < e {ag(v,0) + o2 } (5.10.11)

for allv e HYT,TT).
Proof. By (5.2.30) and the Korn inequality (5.4.37) we have

IVe0122 0y < € (IPR@)3aqry + 012 ) < ¢ (209" 2D0@) 220y + 101220y
< c{ag(v,0) + 032r) }
for all v € HY(I', TT). Hence (5.10.11) holds. O

Lemma 5.10.3. There exists a constant ¢ > 0 such that

1/2 1/2 1/2

[bg (v1, v2, v3)] < clloal iy lloall gy vzl 2 HvzH oy lvsll (v (5.10.12)
for all v,vy,v3 € HY(I',TT). Moreover,
by(v1,v2,v3) = —bg(v1,v3,v2), by(v1,v2,v2) =0 (5.10.13)

for all vy € V; and vy, v3 € HY(I,TT).

Proof. The inequality (5.10.12) follows from Hoélder’s inequality and Ladyzhenskaya’s in-
equality (5.3.1). Let v1 € V,; and vo,v3 € HY(I',TT). For a € R3 and i = 1,2,3 we denote
by a’ the i-th component of a. Since

g(v1 ® v2) : Vrug = Z guiv) ID; v3 Z {D, 9111021)3) - U2U3D (gvt) — gvlng v2}
7] 1 ,] 1

= divp[g(vy - v3)v1] — (ve - v3)divp(gv1) — v1 @ v3 1 Vv

on I and divr(gvy) = 0 by v1 € V,, we have

bg(v1,v2,v3) = / divp[g(vg - v3)v1] dH? — by(v1,v3,v2).
N

Here the first term on the right-hand side vanishes by the Stokes theorem, since g(vy - v3)vq
is tangential on the closed surface I'. Hence the first equality (5.10.13) follows. We also get
the second equality by setting vo = v3 in the first one. O

Now let us approximate the bilinear and trilinear forms a. and b. by a4 and by.
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Lemma 5.10.4. Let u € H?(2.)3 satisfy the slip boundary conditions (5.3.20)~(5.3.21) on
I.. Also, let n € Vy and n. := P.E.n. Then

lac(u, ) — eag(Myu,n)] < R il . (5.10.14)

where ¢ > 0 is a constant independent of €, u, and n, and

Re(w) = &¥||ull g2y + €2 lull 2y 3 79— . (5.10.15)
i=0,1

Proof. Let F(n) be the matrix given by (5.10.5) and
1= (D), D.)) o, — (D(w), F))
Jz = (D(u), F))

We also define

£2(9)’

L2(0) - € { (gDF(MTu)7 Dr(n))L2(F) + (Mru - Vpg,g_ln . VFQ)LQ(F)} )

Kyi= Y {(wme) 2y — (w2 b
1=0,1

Ky =Y 4w, Moy — Mrun)reey s Ks= Y (v — ey (Mru,n) 2y
i=0,1 i=0,1

so that
ac(u,me) — eag(Mru,n) =2v(J1 + J2) + K1 + Ko + K3.
Let us estimate each term on the right-hand side. Since D(u) is symmetric,
D(u) : D(n;) = D(u) : Vi in Q..

By this equality and (5.10.3) we have

[Ji| < ID(u)|l L2 (q.)

Ty 3/2
Ve = F)| o < =l Il (5.10.16)
Next we deal with J5. Since I3 = P+ Q, Vrn = PVrn, and nn-n = 0,

Vrn = (Vrn)P + (Vrn)Q = P(Vrn)P 4+ {(Vrn)n} @ n,
(Vrn)n = Vr(n-n) — (Vrn)n = Wn

on I'. From these relations we deduce that F(n) = A+v®n+ £Q on I', where
A:=P(Ven)P, v:=Wn, &:=g 'n-Vrg.
Moreover, by the symmetry of Dr(M;u) we see that
Dr(M;u) : Dr(n) = Dr(M;u) : P(Vrn)P = Dr(M;u) : A

on I'. Hence we have Jo = J3 + J2 + J3, where
1._ T
7= (D). 4) . —eloDr(Mrw), A)aqry,

J3 = <D(U),@> —&e(Mru-Vrg,§)r2r)s J5 = (D(u),v ®n)r2(0.)-

L2(9)
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Since u and A satisfies the conditions in Lemma 5.6.26, we can apply (5.6.72) to J3 to get
|31 < e full o 1Al 2y < e 2lull o Inllan )

Also, since u satisfies u - n. = 0 on I'z, we use (5.6.76) to deduce that
151 < e 2|[ull o Il 2y < e llull i an Inll 2y

To estimate .J3, we note that v = Wn € H'(I',7T) and u satisfies the boundary condition
(5.3.21) on I'c. Hence the inequality (5.6.81) implies that

| J5] < C€3/2HUHH2 @) llvllz2y < 053/2Hu||H2(QE)H77||L2(F)
From the above three estimates it follows that
ol < 131+ 131 + 131 < e ull g Il i oy, (5.10.17)
Now let us estimate K, Ko, and K3. To K; we apply (5.1.6), (5.3.8), and (5.10.4) to get

3/2

[Ko| < eellull a2 lne =l 2(r.y < ce”llull @) 10l - (5.10.18)

Also, since n is tangential on I', we have M, u-n = Mu-7n on I' and thus

Kol < ce > () p2sy — (Mu, ) rary| < ee®2|ull oy Inll 2y (5.10.19)
i=0,1

by (5.1.6) and (5.6.70). To K3 we just use (5.6.4) to obtain

K| < ce ™2l g Inll 2y Y e =&y
i=0,1

Y2l g2 Inllzewy Y leME =]
1=0,1

(5.10.20)
= c¢g

Finally, we deduce from (5.10.16)—(5.10.20) that
|ac(u, ne) — eag(Mru, )| < c(|i] + [ o] + [K1| + K| + [K3]) < eRE(w) |0l g (ry

where RZ(u) is given by (5.10.15). Hence (5.10.14) is valid. O

Lemma 5.10.5. Let ug € H?(2)3, us € H ()3, n € Vg, and ne := P.E.n. Suppose that
uy satisfies divuy = 0 in Q. and (5.3.20)~(5.3.21) on T. and that us satisfies (5.3.20) on I'2
or on TL. Then

|be (w1, uz, n:) — ebg(Myur, Mruz,m)| < eRE(ur, us)||nl| g (ry- (5.10.21)

Here ¢ > 0 is a constant independent of €, u1, us, and n, and

Rb(uy,us) = &%2||luy @ ual r2(.) + ellunll g oo vzl mo,)

1 2 1/2
( ellull 2. +€1/2||U1|| / N 1||Ifz (e ) uzll2(0.)-  (5.10.22)
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Proof. Let F(n) be the matrix given by (5.10.5). By (5.10.3) we see that

’V% _W)

be(u1, uz, me) — (Ul ® ug, F(77)>L2(Q€)‘ < Jlur ® uall 20, L22)  (5.10.23)

< ce®?|uy @ uzl| 2. Il m1(r)-
Since 7 is tangential on I', we have
Ve = (Ven)P +{(Vrnyn} @n = P(Ven) P+ (Wn) ®@n on T
as in the proof of Lemma 5.10.4. Based on this formula, we decompose
Fin)=A+v®n, A:=PNrmP, v:=Wn+g '(n-Vrgn on T.

Then since u; and A satisfies the conditions in Lemma 5.6.29, we can use (5.6.82) to get

(@ w4 |, = elg(Mrm) © (Mrw), A) o) | < eRe(ur, u) |4l 2

(5.10.24)
< eRe(u1, u2)||nll gy,

where R.(u1,ug) is given by (5.6.83). Also, since v € H*(T")? and uy satisfies (5.3.20) on I'Y
or on I'l, the inequality (5.6.87) yields that

[(u1 @ u2,0 @ 7)) 20| < celluall g oo lluzll g o llvll e

(5.10.25)
< cellunll g ooy lluzll oy Il 2 -

Noting that F(n) = A+ v®n on I' and R.(uj,u2) is of the form (5.6.83), we combine
(5.10.23), (5.10.24), and (5.10.25) to obtain

| (w1, ug,me) — e(g(Mrur) @ (Myug), A) p2(ry| < eR2(ur, ug)||nll (). (5.10.26)
where R?(u1,us) is given by (5.10.22). Finally, we observe that

(Mruy) ® (Myug) : A= (Myuy) ® (Mrug) : Vry on T
by A = P(Vrn)P and the fact that M;u; and M;uy are tangential on I'. Therefore,
(9(M7ur) ® (Mruz), A)p2ry = bg(Mru1, Mrug,n)

and the inequality (5.10.21) follows from (5.10.26). O

Now let us derive a weak formulation for the averaged tangential component of u® from
(5.10.1).

Lemma 5.10.6. Suppose that the assumptions in Theorem 5.8.4 hold. For e € (0,&}) let u®
be the global strong solution to (5.1.1)—~(5.1.3) given by Theorem 5.8.4. Then

M.uf € C([0,00); HY(T', TT)) N H. ([0, 00); L*(T', TT))
and for allm € L*(0,T;V,), T > 0 we have

T
/o {(90e M7, m) p2(ry + ag(Mru,m) + bg(Mru, Mru,n)} dt

T
= /0 (gMTPafE, n)LQ(F) dt + R; (77) (51027)
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Here the residual term RL(n) satisfies
[REm)| < e | e+ Y e A=A | L+ D)2 Inll 2o (ry) (5.10.28)
i=0,1
with a constant ¢ > 0 independent of e, u®, n, and T.

Proof. The space-time regularity of M, u® follows from that of u® and Lemmas 5.6.2, 5.6.6,
and 5.6.9. Let us show that M,u¢ satisfies (5.10.27). For n € L%(0, T Vy) we set 1. := P E.n.
Then 7. € L*(0,T;V.) by Lemma 5.10.1 and thus we can substitute it for ¢ in (5.10.1):

T T
/ {(8tuaa77€)L2(QE) + ac(u®,ne) + be(u®, u®,me) } dt = / (Pefaans)LQ(QE) dt.
0 0

We divide both sides of this equality by € and replace each term by the corresponding term
of (5.10.27). Then we get (5.10.27) with R!(n) := e 1(I1 + I> + I3 + I4), where

T T
Il = / (atu57 n&)LQ(Qs) dt — 8/ (gatMT'LLE, n)LQ(F) dt’
0 0
T T
I := / ae(u®,ne) dt — 8/ ag(Mzu, n) dt,
0 0
T T
I3 := / be(u, us,me) dt — 5/ bg(Mru®, Mru®,n) dt,
0 0

T T
Iy = / (Pef%me) 20 dt — 5/ (gM:P. f<,n) 21y dt.
0 0
Let us estimate these differences. First note that

(gatMTUEaU)H(F) = (QMT(f?tus)m)m(r) = (QM(@uE)m)m(r)

by Lemma 5.6.6 and the fact that 7 is tangential on I". Thus, by (5.6.69) and (5.10.4),

(O, 776)L2(QE) — (9o Mruf, 77)L2(F)’
< (0", )20y — (@M (Oru®),m) L2yl + |00 || L2y 1M — 7l L2

< c23/2)|0® | L2 10l 2 ) -

From this inequality, Holder’s inequality, and (5.8.36) it follows that

L] < 053/2HatUEHL2(0,T;L2(Qs))HUHL2(0,T;L2(F))

(5.10.29)
< e (1 + )2l 20 12 )

In the same way, we apply (5.6.69) and (5.10.4) to I4 and then use (5.1.10) to get
14| < e 2TV 0| 20 7,120 - (5.10.30)

Next we deal with I. By (5.10.14) we see that

T 1/2
L] < ( /0 RO (uf)? dt) P
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where RZ(uf) is given by (5.10.15). Moreover, by (5.8.34) we have

T T T
| R se (s [ 1B, o @? [ 1B, )
0 0 0
< ee?{e* +9()° 1+ 1),
where y(g) == 32, le~14% — 4%|. Therefore,
|Io| < ce{e™? +~(e)}(1 + T)1/2H77HL2(0,T;H1(F))- (5.10.31)

Now let us estimate I3. By (5.10.21) we have

T 1/2
L] < c ( | ® u>2dt) T —

where RY(u,u) is given by (5.10.22). To estimate the right-hand side, we see that

T T
/0 HUH%II(QS) dt S ( sup Hua(t)”%[1(95)> / HUEH%P(QE) dt S Cga(l + T)
te(0,T) 0

by (5.8.34). Using this inequality, (5.8.35), (5.8.39), and (5.8.40) we deduce that
T T T
| Rt < (@ [ ol o2 [ el
0 0 0

vt [ o 0 s i+ 2 / T dt)
<22 4+ )1 +T) < 214 7).
Hence we obtain
| I5] < et/ (1 + T)1/2H77HL2(0,T;H1(F))- (5.10.32)
Finally, by (5.10.29)-(5.10.32) we observe that
4
’R;(Tl)‘ <e ! Z ;] < C{Ea/4 +e? 4 y(e) (1 + T)1/2H77HL2(0,T;H1(F))
j=1
and thus (5.10.28) holds by v(e) = >, le 1yt — 4| and /2 < go/4, O
Remark 5.10.7. By u € L? ([0,00); D(A:)) and Lemma 5.6.9 we also have
M € 13,((0, 00); H3(T, TT)).

We do not use this property in the sequel.
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5.10.3 Energy estimate for the average of a solution

Next we prove the energy estimate for the averaged tangential component of the strong
solution u®. We would like to take the averaged tangential component M, u® as a test
function of the weak formulation (5.10.27), but it is not allowed since M u® is not in Vi, i.e.
the surface divergence of gM,u® does not vanish in general. To overcome this difficulty, we
use the weighted Helmholtz—Leray projection Py onto Lga(f‘, TT) given in Section 5.9.3 and
replace M-u® in (5.10.27) with P,M u®.

Lemma 5.10.8. Let u € L2(Q.). Then PyM.u € L2,(I',TT) and

[Mru — BoMeu|| oy < c'/2[|ull p2(o) (5.10.33)
where ¢ > 0 is a constant independent of €. Also, if u € V;, then PgMru € Vy and

M — Py Mol ey < c'/2(|ull o). (5.10.34)

Proof. Let w € L2(). Since Myu € L*T,TT) by Lemma 5.6.2, we have P,M,u €
L2,(T,TT). Moreover, from (5.6.49) and (5.9.28) it follows that

Mt =Py Mol g2y < clldive(gMrw)| -1y < ™ |lull 120,

Hence (5.10.33) is valid. If uw € V, then M,u € HY(I',7T) by Lemma 5.6.9 and thus
Lemma 5.9.14 shows that PyM;u € V,. Also, we deduce from (5.6.46) and (5.9.29) that

IMrw = By M| gary < el|dive(gMru) | 2y < e |ull g1q.).
Thus, the inequality (5.10.34) holds. O
Lemma 5.10.9. For T > 0, let u € H*(0,T; L2(S)). Then
PyMru € H'(0,T; L, (T, TT))
and there exists a constant ¢ > 0 independent of € and u such that
10:Myu — 0Py Myl 207,22y < ce'?||0ul 20,7220 (5.10.35)

Proof. By the space-time regularity of v and Lemmas 5.6.2 and 5.6.6 we see that M, u is in
H'(0,T; L*(I',TT)). Hence PyM,u € H*(0,T; L2, (I',TT)) and

HatM»,-u — 8tPgM’ruHL2(O,T;L2(F)) S C”diVF(Q@tMTU)HLZ(OVT;H—l(F))

by Lemma 5.9.17. Since 0; M,u = M, (0yu) in L?(0,T; L*(T, TT)) by Lemma 5.6.6, we further
observe by dyu € L?(0,T; L2(9.)) and (5.6.49) that

[ dive (90 Mow) | L2 0.7,y = Idive[gMe(0ew)]|| 2o mr-1(ry) < 22100l r2(0,7:12 (00 )
Combining the above two inequalities we obtain (5.10.35). O

Using Lemmas 5.10.8 and 5.10.9 we derive a weak formulation for P, M u.



5. Navier—Stokes equations in a curved thin domain 232

Lemma 5.10.10. Let u® be as in Lemma 5.10.6. Then
v® =Py Myt € C((0,00); V) N Hype ([0, 00), L, (T, TT))
and there exists a constant ¢ > 0 independent of € and u® such that

t
| Mru®(t) — vs(t)H%Q(F) < ce?, /0 | Mru(s) — vs(s)H%ﬁ(F) ds < ce?(1 +1) (5.10.36)

for all t > 0. Moreover, for alln € L*(0,T;V,), T > 0 we have

/(]T{(gawgﬂ?)L?(F) + ag(v°,m) + bg(v:, 0%, 1)}t dt
= /0 C(GMB ) ey di-+ Rn)+ B2, (5.1037)
where RL(n) is given in Lemma 5.10.6 and R%(n) satisfies
[RZ()| < ee2(1+ 1) |10l 20 o vy (5.10.38)

with a constant ¢ > 0 independent of €, v°, n, and T'.

Proof. By Lemmas 5.10.6, 5.10.8, and 5.10.9 we obtain the space-time regularity of v¢. Also,
the inequalities (5.10.36) immediately follow from (5.8.34), (5.10.33), and (5.10.34). For
n € L*(0,T; V) let

T T
I ::/ (90 Mru®,m) 21y dt—/ (90rv°,m) L2(r) dt,
0 0

o

T T
B TR
0 0
T T
I3 ::/ bg(Mru®, Mru®,n) dt—/ bg(v®, 0%, 1) dt.
0 0

Then by (5.10.27) we obtain (5.10.37) with R2(n) := I + I> + I3. Let us estimate Iy, I5, and
Is. By (5.8.36) and (5.10.35) we have

|| < cl|O:Mru® — 0pv®|| 20,720yl L2 (0,752 (1))
< e |0t 20512000 Il 22 0522 (5.10.39)
<c(l+ T)1/25a/2H77HL2(0,T;L2(F))-

Also, we use (5.2.30) and (5.10.36) to get
(2| < || Mru® — v || 20,1 m (o)) 0l 22 0,750 () < (1 + T)1/2€||77||L2(07T;H1(F))- (5.10.40)

Now let us consider I3. Using Holder’s inequality twice we have

’bg(MTuEa MT'UJE777) - 59(05706777)’
< || Mru® — v || pary (IMrof || pary + 105 aey) 1Vl 2y
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Moreover, by (5.3.1), (5.6.4), (5.6.22), (5.9.30), (5.10.33), and (5.10.34) we observe that

_ 1/2 1 2
lwllpay < e 2l g I g,y w = Mo of,
1/2 1/2
M = 0| pagry < ce2|lu| gy, o] HG(QS

Hence
|bg(Mru®, Mru®,n) — bg(v:,v°,n)| < cllu®|| g2 1u | 5 o0 191 71

and we use (5.8.38) to get

T 1/2
3] <c </0 HUEH%‘A’(QE)”UEH%ﬂ(QE) dt) 71l £2(0,7; 1 (1Y) (5.10.41)
<ecg(l+ T)1/2||77||L2(0,T;H1(F))-
By (5.10.39), (5.10.40), (5.10.41), and ¢ < £%/? we obtain (5.10.38). O

Based on (5.10.37) we prove the energy estimate for v = Py M u®.

Lemma 5.10.11. Let u® be as in Lemma 5.10.6 and v = PyM,u®. Then

T
2
e [0y + [ 1900 @y de < or (5.10.42)

for all T > 0, where cp > 0 is a constant depending on T and independent of €.

Proof. Fort € [0,T] let 1p4: R — R be the characteristic function of the time interval [0, ¢].
Since v® € C([0,00); V), we can take 1 := 1jg4yv° as a test function in (5.10.37). Then using
(5.10.13) we obtain

t
/o {(g0sv°, v%) p2(ry + ag (v, v°)}ds
t
_/ (gMoP. f2,0%) o(ry ds + BL(v%) + R2(v%), (5.10.43)
0

where R!(v®) and R%(v®) satisfy (5.10.28) and (5.10.38), respectively. Since g is nonnegative
(see (5.2.30)) and independent of time,

t . . L [fd 1 e
; (g0sv®,v )L2(r)d8= 5 A *Hg v%[| 72 r)ds

*||91/2 "7 — *||91/2 )72y

(5.10.44)

Also, we see by (5.10.11) that

t t
/0 HVFUEH%z(F) ds < c/o {ag(vs,vs) + HUEH%Q(F)} ds. (5.10.45)
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For the right-hand side of (5.10.43), we consider M P.f¢ = PM,.P.f¢ as an element of
H~YT,TT) (see Section 5.2.1). Then we have

t t
/(ngpefgavs)L2(F) ds_/ (M P f¢, gv°lrr ds
0 0

t

< C/O [ M Pe f2] =1 0,00y | 90° | 11 (1) ds (5.10.46)
t

<e / IV o ozl L oy .

To estimate the residual terms, we note that e 7192 and e 714! are bounded by (5.1.6). Hence
we see by (5.10.28) and (5.10.38) (with T replaced by t) that

t 1/2
R+ R < i+ ([ Bas) . Gaoan)
Now we deduce from (5.10.43)—(5.10.47) that
t
9" 20" D720y + [ Vv (72 () ds

0
< 1/2, ¢ 0 2 ! €12 M-P- £l 1 € d
< cqllg "o (0) |72y + ; 10720y + IMePef* | -1 oy [V | 20 1) ) ds

t 1/2
be(L+ Y2 </0 o120 ds> .

Noting that HUEHJqu(r) = HUSH%Q(F) + ||Vrv5H2L2(F), we apply Young’s inequality to the last
two terms of the above inequality to get

t
gV ()2 + /o 1900 22 0 ds
t
< c{ngl/%f(mnizm T / (I9122ey + 1B ey ) s+ 1+ t}
t
—1—1/ V0|25 ds.
2 Jo L2(I)

Then we make the integral of || Vpv® H%Q(F) on the right-hand side absorbed into the left-hand
side and use the inequalities (5.1.10) with g =1, (5.2.30), and

1920 (0)]| L2y < €llv®(0)|| 2(ry < el Mruf (0)|| 2y = el| Mru|| Loy
by (5.9.30) with & = 0 (note that v* = PyM,u®) and u®(0) = ug in V. to obtain

t t
IOl + [ 1900 gy ds < (1404 [ 1071y as) (5.10.45)
0 0

for all ¢ € [0,T]. From this inequality we deduce that

t
IOy + 1 {1+ [ (17l + 1) s} 1€ o]
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and thus Gronwall’s inequality yields
||va(t)||%2(r) +1<ce <cet, tel0,T].
Applying this inequality to (5.10.48) with ¢t =T we also get
T
/0 HVFUEHQLQ(F) dt <c(1+T +eT).
Hence we conclude that (5.10.42) holds with ¢z := ¢(1 + T + eT), where ¢ > 0 is a constant
independent of £ and T'. O

As a consequence of (5.10.36) and (5.10.42) we obtain the energy estimate for M u.

Corollary 5.10.12. Let u® be as in Lemma 5.10.6. Then

T
2 2
s (1M (0 ey + /0 VMo (1) [y dt < e (5.10.49)

for oll T > 0, where e > 0 is a constant depending on T and independent of .

5.10.4 Estimate for the time derivative of the average

By the energy estimate (5.10.49) we observe that (a subsequence of) M u® converges weakly
in an appropriate function space. However, to show the convergence of the trilinear term in
(5.10.27) we also require the strong convergence of M u®, which is proved by the Aubin—Lions
lemma. For this purpose, let us estimate the time derivative of M, u®. We first construct an
appropriate test function.

Lemma 5.10.13. For each w € H'(I',TT) there exist n € V, and ¢ € H*(T') such that
w = gn+gVrq and

10l ry < ellwll gy, (5.10.50)
where ¢ > 0 is a constant independent of w.

Proof. Let w € H'(I',TT) and ¢ := —divrw € L?*(T"). Since w is tangential on the closed
surface I, the integral of £ over I' vanishes by the Stokes theorem. Also,

lall 2y < el Vralzm) < cllg"*Vrall 2 (5.10.51)

for all ¢ € H'(T') with [.qdH? = 0 by Poincaré’s inequality (5.2.20) and (5.2.30). Hence
the Lax—Milgram theorem shows that the problem

divp(gVrq) = = on T, /qd’H2 =0
r

admits a unique weak solution ¢ € H'(T) in the sense that

(9Vra, Vre) 2y = (§,¢) 2@y forall e HY(T). (5.10.52)

From this equality with ¢ = ¢ and (5.10.51) we deduce that

gl 1y < cllélle@y = elldivrw|| 2y < cf|wl| g (5.10.53)
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Moreover, replacing ¢ by g~ in (5.10.52) we get
(Vrg, Vro) 2y = (g Y€+ Vrg - Vrq), @)rery forall pe HY(T),
which combined with (5.2.20) shows that ¢ is a unique weak solution to

Artp = —g Y€+ Vrg - Vrq) € L*(T /wdHQ—O

(Note that the integral of the source term over I" vanishes by (5.10.52).) Hence Lemma 5.9.12
and the inequalities (5.2.30) and (5.10.53) imply that ¢ € H?(T') and

lgll 2y < ellg™ (€ + Vrg - Vea)l 2y < ellwllm - (5.10.54)

Now let 7 := g~'w — Vpq on I'. Then by ¢ € H*(T') and divr(gVrq) = divrw on ' we have
n € Vy. Moreover, from (5.2.30) and (5.10.54) it follows that

9l 20y < e (lwlla ey + 1IVrall g @) < ellwllm
Hence we obtain w = gn 4+ gVpq and (5.10.50). O

As in the previous section, we estimate the time derivative of v and then derive an
estimate for the time derivative of M, u® by using a difference estimate.

Lemma 5.10.14. Let u® be as in Lemma 5.10.6 and v¢ = PyM u®. Then

10w | 20,71 (0 7)) < O (5.10.55)
for all T > 0, where cp > 0 is a constant depending on T and independent of €.

Proof. Let w € L*(0,T; HY(T',TT)). By Lemma 5.10.13 we can take n € L?(0,T;V,) and
q € L?(0,T; H*(T)) such that w = gn + gVrq. Since d,v°(t) € L?]J(F,TI‘) and gVpq(t) €
L!QM(I‘,TF)L for a.a. t € (0,7)) by Lemmas 5.9.10 and 5.10.10,

T
/ (0%, gVrq) L2(ry dt = 0.
0
By this equality and gn = w — ¢Vrq we have

T T T
/0 (90w, m) L2y dt :/0 (0%, gn) 2y dt :/0 (O, w) 21y dt.

We substitute n = g~'w — Vpq for (5.10.37) and use this equality. Then

T T T
/0(8tv€,w)Lz(F)dt:—/0 ag(ve,n)dt—/o by (v, v%,m)dt

T
4 /0 (M B f*, ) 2y dt + BA(5) + R2(n), (5.10.56)

where R!(n) and R2?(n) are given in Lemmas 5.10.6 and 5.10.10. To the first term on the
right-hand side we apply (5.2.30), (5.10.42), and (5.10.50) to get

T
/0 ag(v®,n) dt‘ < cl|v®l| 20,11 oy 1l 200,11 (0)) < erllwll L2078 (1))
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Here and in what follows we denote by c¢r a general positive constant depending on 7" and
independent of . Also, by (5.10.12), (5.10.42), and (5.10.50) we see that

T T
] [ bt dt‘ < [ I ol ol

< cf|v®|| peo 0,12 (o)) 1V L2 0,1 0 (0 1] 22 0,752 (1))

< er|lwll 20,711 (1))

For the other terms we proceed as in the proof of Lemma 5.10.11 (see (5.10.46) and (5.10.47))
and use (5.1.10) with § =1 and (5.10.50). Then we get

T T
/o (gM: P f€,m) 121y dt‘ < C/O | MPe <N -1 (0 oy 19 1y

< CT1/2||77”L2(0,T;H1(F)) < CT1/2HU1||L2(0,T;H1(F))

and

[RE| + [RZ()| < e(1+T)2nll 2o, (ryy < €1+ T)Y2[[wl| 20,7201 (1) -

Applying these inequalities to the right-hand side of (5.10.56) we obtain

T
/O (Opv®, w) 2y dt| < er||wlp207;m1(r))

for all w € L?(0,7; H(T',TT)) (note that w is not necessarily a weighted solenoidal vector
field). Hence (5.10.55) holds. O

Corollary 5.10.15. Let u® be as in Lemma 5.10.6. Then
|0 M| 20,1 (0 77)) < O (5.10.57)
for all'T > 0, where cy > 0 is a constant depending on T and independent of €.

Proof. Let v® = PyM:u®. Noting that |[v| g-1(rrry < ||v]|2r) for v € LT, TT), we see by
(5.8.36) and (5.10.35) that

|0 Mru® — atUEHB(o,T;Hfl(F,Tr)) < 51/2HatusHL2(O,T;L2(QE))
< ee?(14+T)Y2 < (14 T)V2

Combining this inequality and (5.10.55) we obtain (5.10.57). O

Remark 5.10.16. In construction of a weak solution to the Navier—-Stokes equations, we
usually estimate the time derivative of an approximate solution in the dual of a solenoidal
space. However, in Lemma 5.10.14 we proved an estimate for d;v° in H~!(I', TT'), not in the
dual V; of V. This is because we multiply d;v° by g in (5.10.37). When f € V, we can
not define a functional gf: v — Vg’< f,gv)y, for v € V; since gv is not in Vj in general (here
Vg/<', -)v, stands for the duality product between Vg’ and Vj). Since this issue does not occur
for a functional in H~*(T, TT) (see (5.2.27)), we consider 9;v° and 9, M,u¢ in this space.
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5.10.5 Weak convergence of the average and characterization of the limit

The goal of this subsection is to prove Theorem 5.1.3. We proceed as in the case of the
two-dimensional Navier—Stokes equations (see e.g. [8,10,61,64]). First we give a definition
of a weak solution to the limit equations (5.1.13)—(5.1.14) based on (5.10.27).

Definition 5.10.17. Let T > 0, v € L2,(I',TT), and f € L*(0,T; H '(I',TT)). We say
that a vector field

ve L=(0,T;L2,(T,TT)) N L*(0,T;Vy) with dw € L'(0,T; H (T, TT))

is a weak solution to the equations (5.1.13)—(5.1.14) on [0,T") if it satisfies

T T
/(; {[gatvvaF +ag(v777) +b9(vvvan)}dt = /0 [gf7 n]TF dt (51058)

for all n € C.(0,T;V,) and v|t—g = vo in H- YT, TT).

Definition 5.10.18. Let vg € L2, (I',TT) and f € L} ([0, 00); H (I, TT)). We say that v
is a weak solution to (5.1.13)—(5.1.14) on [0, 00) if it is a weak solution to (5.1.13)—(5.1.14)
on [0,T") for all T > 0.

For T' > 0, a weak solution to (5.1.13)—(5.1.14) on [0, T") is continuous on [0, T'] with values
in H=1(T', TT) and thus the initial condition makes sense. In fact, it becomes a continuous
function with values in L?(T, TT).

Lemma 5.10.19. Let T > 0 and f € L*(0,T; H-Y(TI',1T)). Suppose that
ve L>(0,T;L2,(T,TT)) N L*(0,T;Vy) with 9y € L'(0,T; H (T, TT))
satisfies (5.10.58) for all mn € C.(0,T;V,). Then
v e C([0,T); L2, (T, TT)), 0w € L*(0,T; H XTI, TT)),
and (5.10.58) is valid for alln € L*(0,T;V,).
Note that here the initial condition v|;—¢ = vg in H~'(I', TT") is not imposed.

Proof. We estimate 0;v as in the proof of Lemma 5.10.14, where we used the fact that
0t (t) € L?JU(F, TT) for a.a. t € (0,T). This is not valid for v, but we have

[Ov(t), gVrglrr =0 for all ¢ € H*(T) and a.a. t € (0,T). (5.10.59)
Indeed, for all £ € C2°(0,T") we have

/ £(t)[0pv(t), gVrq]rr dt = / 0 (t)[v(t), gVrq]rr dt

/ DUE(H) (v(), gVra) paqry dt = 0
by v(t) € L2, (I, IT) for a.a. t € (0,T) and gVpq € LZ,(I',TT)* (see Lemma 5.9.10).

Hence (5.10.59) is valid. Now let w € C.(0,7; H*(T,TT)). By Lemma 5.10.13 we can take
n € C.(0,T;Vy) and q € C.(0,T; H*(I")) such that w = gn + gVpq. Moreover,

T T T
/ [Orv, w]rr dt = / ([Oev, gnlrr + [Ov, gVrql7r) dt = / [90¢v, n]7r dt
0 0 0
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by (5.10.59). We substitute 1 for (5.10.58). Then using the above equality, (5.10.50), and

T
/0 bg(v,v,m) dt‘ < cllvllzoso.rrz ey vl L2 o.rm oy 1l 20,710 () (5.10.60)

by (5.10.12) we calculate as in the proof of Lemma 5.10.14 to get

T
/ [Opv, w]TT dt‘ < cwlp20,r;m1ryy for all w e Cc(0,T5 HYT',TT)).
0

Since C.(0,T; HY(I',TT)) is dense in L?(0,T; H*(T, TT)), this inequality implies
ow € L*(0,T; H YT, TT)). (5.10.61)
Combining this property with
v e L*(0,T;V,) c L*0,T; H(T,TT))

we apply the interpolation result of Lions—-Magenes [37, Chapter 1, Theorem 3.1] (see also [64,
Chapter ITI, Lemma 1.2]) to v to get

v e C([0,T]; L*(T,TT)).

Moreover, since v € L>(0,T; LEU(F,TF)), the vector field v(t) is in LgG(F,TF) for a.a.
t € (0,7) and, in particular, for all ¢ in a dense subset of [0,7]. Thus, by the continuity of
v(t) on [0,T] in L*(T', TT) and the fact that L2, (T, TT) is closed in L*(I',TT), we observe
that v(t) € L2, (I, TT) for all t € [0,T] and

v e C([0,T); L, (T, TT)).

Finally, since C,(0,T};V,) is dense in L?(0,T;V,) and both sides of (5.10.58) are linear and
continuous for n € L%(0,T;V,) by (5.10.60) and (5.10.61), the equality (5.10.58) is also valid
for all n € L*(0,T; V). O

By Lemma 5.10.19 the value of a weak solution to (5.1.13)—(5.1.14) at ¢ = 0 is well-defined
as a vector field on I'. Hence we can consider the initial condition v|;—o = vg as an equality
for vector fields on I'. Let us show the uniqueness of a weak solution to (5.1.13)-(5.1.14) and
the existence of an associated pressure.

Lemma 5.10.20. For given vy € L2,(U,TT) and f € L*(0,T; H (T, IT)), T > 0 there
exists at most one weak solution to (5.1.13)—(5.1.14) on [0,T).

Proof. Let v1 and va be weak solutions to (5.1.13)—(5.1.14) and w := v; — ve. Then
w e C([0,T); L*(I',IT)), dmw € L*(0,T; HY(I',1T)) (5.10.62)

by Lemma 5.10.19 and w|;—o = 0 on I". Moreover, subtracting the weak formulation (5.10.58)
for vg from that for v; we get

T
/ {lg0vw, e + ag(w, n) + bg(w, vi,n) + by(va, w,n)} ds = 0 (5.10.63)
0
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for all n € L*(0,T;V,). For each ¢ € [0,T] let 5(s) := 1j 4(s)w(s), s € [0,T], where 11 is
the characteristic function of the time interval [0,¢]. Since n € L?(0,T;V,) we can substitute
it for (5.10.63). Then we use

t 1 [td /2,112
/0 905w, wlrr ds = 2/0 Nl P wlLa g ds
1 1
_ ngl/zw(t)Hiz(F) = L9 2w(0) 22 (5.10.64)

> ¢ (Jlw(®) 220y — [wO)F2qr))

by (5.10.62) and the fact that g is bounded on I" from above and below by positive constants
(see (5.2.30)), the inequality (5.10.11), and

N

[bg(w, v1, w)| = [bg(w, w, v1)| < eflwl L2y [wll g ) V1l ey

and bg(ve,w, w) = 0 by (5.10.12) and (5.10.13) to obtain
t
oIy + [ IVrwlzap ds
SR A (™)

t
< c{uwm)n%m + [ (10l + ol llolng o) ds} |

We further apply Young’s inequality to the last term to get
2 ! 2
s + | I1Vrwlag ds

t 1 t
< {0+ [ (14 1By ol dsh + 5 [ 190w ds

Then we subtract the half of the integral of ||Vpwl|%, (ry from both sides and use Wli=o = 0
on I to find that

t
s e [ (14 101l ol ds forall te0.7]

Here we omit the integral of ||[Vrwl2, on the left-hand side.) Since 1 + |v1|%,
LA(T) HY(I)

is integrable on (0,7"), we can use Gronwall’s inequality to the above inequality to get
Hw(t)||%2(r) =0 for all ¢ € [0, T]. Hence vq = vs. O

Lemma 5.10.21. Let v be a weak solution to (5.1.13)—(5.1.14) on [0,T), T > 0. Then there
exists a unique § € C([0,T); L*(T")) such that [4(t)dH?* =0 for all t € [0,T] and

— 1
g(@tv + Vw) —2v {Pdivr[gDp(v)] - ;(Vpg ® Vpg)v}
+ (" + v +9gVrg=gf in D'(0,T;H (T, TT)) (5.10.65)
with q := 0,g € D'(0,T; L*(T")) (see Section 5.2.1).

Here V,v = P(v - Vr)v is the covariant derivative of v along itself (see Appendix 5.C).
Also, recall that we identity H—1(I',TT) with quotient space

Q={[fl| fe H '™}, [fl={feH T)*|Pf=Pfin H(T)}

and take Pf (or f when Pf = f in H~!(TI')?) as a representative of the equivalence class [f]
to write [Pf,v]rr = (f,v)r for v € HY(I',TT) (see Section 5.2.1).
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Proof. Let A € L*(T')?*® and n € HY(I',TT). If AT = A and PA= AP = A on T, then by
(5.2.23) and An = APn = 0 we see that

3

(9A7DF(77))L2(F) = (9A, V1) 2(r) = Z (9Aij, Dimj) 2 ()
52

= - Z {{D;(gAij),nj)r + (gAijHni, nj) r2(ry }
i,7=1

= — {(divr(gA), n)r + (gHAn,n) 12y } = —[Pdivr(gA), n]rr

Also, for v € V; and n € HY(T, TT) we use (5.10.13) and v ® 1 : Vrv = (v - Vr)v -7 to get

by(v,v,m) = —by(v,1,v) = (9(v - Vr)v,1) 12y = (9P (v - Vr)v,0)L2(r) = (gﬁvv,n) Ly

Let v be a weak solution to (5.1.13)—(5.1.14) on [0,7'). We apply the above equalities with
A= Dr(v) and (v-Vrg)(n-Vrg) = (Vrg ® Vrg)v-n to (5.10.58) to obtain

T T
/0 (lg0ww, nlrr + [Agv, nlrr + [By(v,v),nlrr) ds = /0 l9f,nrr ds (5.10.66)

for all n € L?(0,T;V,) (see Lemma 5.10.19), where By(v,v) := gV,v and
1
Agv = —2v {Pdin[gDp(v)] - E(Vrg ® Vrg)v} + (7 + . (5.10.67)

Since Agv, By(v,v), f € L*(0,T; H~(I', TT)) by Definition 5.10.17, the functions

~ ~

Ao(t) ;:/0 Ayo(s)ds, By(v,0)(t) ::/0 By (u(s), v(s)) ds,

/f t e [0,T]

are continuous with values in H~Y(I",7T). For each t € [0,7] and £ € V, we take a test
function n(s) := 1 4(s)§, s € [0,T] in (5.10.66), where 1 ,: R — R is the characteristic
function of [0,¢]. Then since ¢ is independent of time,

ve H'(0,T; H (T, TT)) C C([0,T); H~'(T, TT)),
and v|;—op = vo in H (I, TT), we have [F(t),&]rr = 0 for all £ € V,, where
F :=gv—guvo+ ggv + Eg(v,v) —gfec(o,T); HL(, TT)).

Hence by Theorem 5.9.5 there exists a unique ¢(t) € L*(T) such that
F(t) = —gVr4(t) in H\D,TT), / §(t) dH2 = 0
r

for all ¢ € [0, 7). Moreover, by (5.9.20) and F € C([0,T]; H~*(T',TT)) we see that

g € C([0,T); L*(I")) € L*(0,T; L*(I))
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and thus q := 8¢ € D'(0,T; L*(T)) is well-defined. Now we have

0=-— /OT Op({F(t) + gVrd(t)} dt = /OT ({0 F (1) + 90, (Vrg)(t)} dt
in H-Y(T, TT) for all ¢ € C°(0,T), which means that
O F(t) + g0:(Vrg)(t) =0 in D'(0,T; H Y, TT)).
Moreover, 0;(Vrq) = Vrq by (5.2.29) and
O F = gOyw + Agv + By(v,v) — gf = g(@tv + ﬁw) + Agv—gf
with Agv given by (5.10.67). Hence (5.10.65) is valid. O

Before starting the proof of Theorem 5.1.3, we give an auxiliary statement on the weak
limit of the averaged tangential component of a vector field in L2(£.) as ¢ — 0.

Lemma 5.10.22. For ¢ € (0,1) let u® € L2(S). Also, let v € L*(T,TT). Suppose that
M,u® converges to v weakly in L>(T,TT) as € — 0 and

Hua”%%QE) < ce MY for sufficiently small € € (0,1)

with some ¢,o > 0. Then v € LEO(F, 7).

Proof. By (5.2.25) and the weak convergence of {M,u}. to v in L?(T,TT) we see that
divp(gM,u®) converges to divr(gv) weakly in H1(T') as ¢ — 0. Moreover, by (5.6.49) and
the assumption on the L?(Q.)-norm of u we have

1/2

[ dive (gMruf) || -1 ry < e[ uf]| 2.y < e/

for sufficiently small € € (0,1) with @ > 0. Hence
[divr(gv) | g-1r) < hg(f)lf |divr (g M7u®)|| -1y = 0
and divr(gv) = 0 in H~(T), which means that v € L?U(I’, TT). O
Now we are ready to prove Theorem 5.1.3.

Proof of Theorem 5.1.3. For ¢ € (0,1) suppose that the initial velocity uf and the external
force f¢ satisfy the assumptions of Theorem 5.1.3. Then {M;uj}. and {M P.f¢}. are
bounded in L?(T',TT) and L*(0,00; H-Y(T',TT)), respectively, by the condition (b). By
this fact and the condition (a) we see that the inequalities (5.1.10) hold with 8 = 1 for
e € (0,e2). Hence Theorem 5.8.4 implies that there exists a global strong solution u® to
(5.1.1)—(5.1.3) satisfying (5.8.34)—(5.8.36) for each € € (0,e3) with €3 := min{e), e}, where
e] = min{e1,e,} with £; and &, given in Theorem 5.1.2 and Lemma 5.5.1. Moreover, by
(5.6.10) and (5.8.34) we have

sup [[Mus(t) - nllr2m) < ce'/? sup w510 < ce®/? 50
t€[0,00) t€[0,00)

as ¢ — 0. Hence {Mu® - n}. converges to zero strongly in C([0, 00); L%(T)).

Now let us consider the averaged tangential component M,u®. First note that the
weak limit vy of {Mruf}e is in L2,(I',TT) by the condition (a), the inequality (5.5.18),
and Lemma 5.10.22. Since all results in the previous subsections apply to u®, for fixed T' > 0
we see by (5.10.49) and (5.10.57) that
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o {M,uf}. is bounded in L°°(0,T; L*(I",TT)) N L*(0,T; HY(T,TT)),
o {0;M,u}. is bounded in L?(0,T; H- (T, TT)).
Hence there exist e € (0,e3), k € N and
ve L0, T; L3(T,TT)) N L2(0,T; HY(I',TT)) with dw € L*(0,T; H~Y(I",IT))
such that limy_,,, ¢ = 0 and

lim M,u* =v  weakly-x in L°°(0,T; L*(T,TT)),

k—o0
klim Mu* =v  weaklyin  L*(0,7; HYT,TT)), (5.10.68)
—00

Jim 9y My = v weakly in L*(0,T; H- (T, TT)).

—00

Moreover, by the Aubin-Lions lemma (see e.g. [8, Theorem II1.5.16]) there exists a subse-
quence of { M uk}2° |, which we denote by {M,u*}?° | again, such that

lim M,u®* =v strongly in L?(0,T;L*(T,TT)). (5.10.69)

k—o0

Then v(t) € L2, (T, IT) for a.a. t € (0,T) by (5.8.34) and Lemma 5.10.22. Hence
v e L™(0,T; L2, (I, TT)) N L*(0,T; Vy).

Let us show that v satisfies (5.10.58) for all n € C.(0,T; V). In what follows, we write ¢ for
a general positive constant that may depend on v and 7 but is independent of ¢, and u®k.
We consider the weak formulation (5.10.27) for M u®k:

T
/ {l90eMzu mlrr + ag(Mru™,n) + by(Mru, Myu,n)} dt
0
T
= [ loM o f e di+ R (). (510,70
0
Here 0; M,u* and M,P,, f¢+ are considered in H1(I',TT) (see Section 5.2.1). Let k — oo

in this equality. Noting that [gF,w]|rr = [F, gw]rr for F € H-YT,TT) and w € H (T, 1T)
(see Section 5.2.1), we deduce from the assumption (b) and (5.10.68) that

T T
lim (9O Mu®*  m]rr dt = / (g0, n)7r dt,
T T
lim ag(Mru,n)dt = / ag(v,n) dt, (5.10.71)
T T
lim [gM; P, [, nlTr dt = / lgf, n]rr dt.

Also, by (5.10.28), the assumption (c), and o > 0 we have

a/d -1 1 i
IRE < e |+ 3 e, =41 | A+ D2l 2o rmey =0 (5.10.72)

i=0,1



5. Navier—Stokes equations in a curved thin domain 244

as k — oo. To show the convergence of the trilinear term, we set

T T
If = / bg(MTUEkv M, n)dt — / bg(vv Mrutt,n)dt,
0 0
T T
i [ o= [ oo d
0 0

Since [|n(t)|| g1 (ry is bounded on [0, 7] by 1 € Cc(0,T;V,), we see by (5.10.12) that

T
1/2 1/2
< [ It = ol gy M = ol M s ol

1/2

< cliMrutt M = vl oo o oy I 20,23 (r)-

1/2
~ vz o)

Applying (5.10.49) and (5.10.69) to the last line we obtain

IF| < || M,us* —~0 as k— oo. 5.10.73
1

1/2
= vl 02wy

For I}, we consider the linear functional

T
8= [ be&md €€ L20.TH T,TD))
0
By (5.10.12) and the boundedness of |[7(¢)||z1(r) on [0, T] we get

|D(E)] < clnll Lo 0,711 (o 101 220,710 (o)) 1€l L2 0,7 E71 (1))

for all ¢ € L?(0,T; HY(I',TT)). Hence ® is bounded on L?(0,T; H(I',7T)) and the weak
convergence (5.10.68) in L2(0,T; H'(I',7T)) implies that

lim I§ = Jim {S(Mru) — D(v)} = 0.
—00

k—o00
Combining this equality with (5.10.73) we obtain

T T
lim by (Mru*, Mru®, n)dt = / by(v,v,n)dt. (5.10.74)
0

k—o00 0

We send k — oo in (5.10.70) and apply (5.10.71), (5.10.72), and (5.10.74) to show that v
satisfies (5.10.58) for all n € C.(0,T"; V). Moreover, by Lemma 5.10.19 we see that

v e C([0,T), L2, (I, TT)), 9w € L*(0,T;H (I, TT))

and (5.10.58) is valid for all n € L%(0,T; V).

To show that v is a weak solution to (5.1.13)—(5.1.14) on [0,7") we also need to verify
the initial condition. Let £ € V; and ¢ be a smooth function on [0,7] such that ¢(0) =1
and (T) = 0. We define n € L%(0,T;Vy) by n(t) := ¢(t)¢ for t € [0,T] and substitute it for
(5.10.58) and (5.10.70). Then we carry out integration by parts for d,v and 9; M,u® and use
©(0) =1 and ¢(T") = 0 to get

(9v(0), &) r2r) = Joor  (gMrug®, &) 20y = Ji, (5.10.75)
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where

T T T
Joo 1= _/0 orp(gv, &) r2(r) dt—i‘/o {ag(vvﬁ)‘i'bg(vﬂhﬂ)}dt—/o lgfnlrr dt

and
T T
Jy = —/ Orp(gMru, &) 2y dt +/ {ag(Mru,n) + bg(Mru, M u*,n)}dt
0 0

T
- /0 [gMP., f, nlrr dt — RL (n).

We send k& — oo in the second equality of (5.10.75). Then the left-hand side converges to
(9vo, &) r2(ry by the assumption (b). Also, we use (5.10.71), (5.10.72), (5.10.74), and

k—o0

T T
lim / Op(gMru™, &) L2y dt = / p(gv, &) Lo(ry dt
0 0

by the strong convergence (5.10.69) to find that limy_,o Jx = Joo (note that in the proof of
(5.10.74) we only used the boundedness of ||n(t)|| g1 (ry on [0,7]). Hence

(9v(0),8) r2(r) = Joo = (gv0,&) 2y for all & € V.

Since Vj is dense in L;U(I‘, TT) (see Lemma 5.9.13), the above equality is also valid for all
e L;a(F,TF). Thus, setting £ := v(0) — vy we get

(9{v(0) = w0}, v(0) = v0) r2(ry = llg"/*{v(0) — w0} |72y = O,

which combined with (5.2.30) shows v|;—g = vg on I'. Therefore, v is a unique weak solution
to (5.1.13)—(5.1.14) on [0,T") (here the uniqueness follows from Lemma 5.10.20).
Let us prove the convergence of the full sequence
lim M,u® =v  weakly in  L*(0,T; H (T, TT)),
o0 o . (5.10.76)
gl_% OMru® = 0w weakly in  L*(0,7;H (I, TT)).
By the boundedness of { M u®}. and {9, M u}. (see (5.10.49) and (5.10.57)) and the unique-
ness of a weak solution to (5.1.13)—(5.1.14) (see Lemma 5.10.20) we can show as above that
for any sequence {51}1021 of positive numbers convergent to zero there exists its subsequence
{er}72, such that {Mru*}7°, converges to v in the sense of (5.10.68) and (5.10.69). This
proves (5.10.76).
Since the strong solution u® to (5.1.1)—(5.1.3) exists globally in time for € € (0,e3), by
the above arguments we get a unique weak solution

vr € C([0,T); L, (T, TT)) N L*(0,T; Vy) N H'(0,T; H (T, TT))

to (5.1.13)—(5.1.14) on [0,T) satisfying (5.10.76) for all T > 0. Moreover, if T < T then
vp = vy on [0,T] by the uniqueness of a weak solution. Hence we can define

loc

v € C([0,00); L2, (I, TT)) N L7, ([0, 00); Vy) N H, ([0, 00); H (I, TT))

by v := vy on [0,T] for each T' > 0, which is a unique weak solution to (5.1.13)—(5.1.14) on
[0,00) and satisfies (5.10.76) for all T' > 0. O
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As a consequence of Theorem 5.1.3, we obtain the existence of a weak solution to
(5.1.13)—(5.1.14) for the initial velocity vy and the external force f given by the weak
and weak—x limit of Mu§ and M,P.f¢, respectively. For general vy € L2,(I',TT) and
f € L2 ([0,00); H-YT,TT)) we can construct a global weak solution to (5.1.13)—(5.1.14)
by the Galerkin method as in the case of the Navier—Stokes equations in a two-dimensional
bounded domain (see e.g. [8,10,64]). Here we just give the outline of construction of a weak
solution by the Galerkin method.

Countable basis of V. If Assumption 2 and the condition (c) in Theorem 5.1.3 are
satisfied, we have Ky(I') = {0} or max;—g17" > 0. By this fact and the Korn inequalities
(5.4.37) and (5.4.44) the bilinear form a4 given by (5.10.9) is coercive (and bounded) on Vj
and thus induces a linear homeomorphism A, from V; onto Vg’ by the Lax—Milgram theorem.
We consider A, as an unbounded operator on LgU(F, TT') equipped with inner product

(v1,v2) p2(r) == (9"%v1, 9" %v2) poqry,  v1,v2 € L2,(T,TT),

which is equivalent to the canonical L?(I')-inner product by (5.2.30). Then we can show as
in the case of the Stokes operator on a bounded domain (see [8, Theorem IV.5.5]) that there
exists a sequence {wy}7°, of eigenvectors of A, that is an orthonormal basis of LZJ(F ,TT)
equipped with inner product (-,-) £2(r) as well as an orthogonal basis of Vj equipped with
inner product ag4(+,-). In particular,

1 if i=j,

T (5.10.77)
0 if i+#j.

(gwi, wj)r2ry = (wi, ;) r2r) = {

Note that, even if K, (I') # {0} and 7 = 4! = 0, we can take such a sequence by replacing
ag with ag(vi,ve) := ag(vi,v2) + (v1,v2)r2(r), Which is coercive and bounded on V; (see
Lemma 5.10.2).

Approximate problem. For k € N we seek for an approximate solution

k
/Uk(yat) = Zgz(t)wl(y)v (TS F’ te [07T] (T > 0)
i=1
that satisfies
(90wvk(t), i) 2(r) + ag(vi(t), i) + bg(vi(t), vi(t), mk) = [g.f(t), mi]rr (5.10.78)

for all ny, € ng and t € (0,7) (with initial condition), where ng is the linear span of {w;}¥_;.
(In fact, we need to approximate f(t) by a continuous function.) This problem is equivalent
to a system of ordinary differential equations of the form

k
dg; .

E (gwiywj)ﬂ(r)*dgt (t) =P;i(&®) + [gf (), wjlrr, j=1,....k

=1

with polynomials Py,..., Py of £ = (&1, ...,&k). Applying (5.10.77) to the left-hand side we
see that this system reduces to d§;/dt = P;(&) + [gf, wj]rr, which we can solve locally by
the Cauchy—Lipschitz theorem. Using (5.10.77) we can also derive the energy estimate for
v and show its global existence.

Estimate for the time derivative of the approximate solution. As in Lemma 5.10.14 (see
also Remark 5.10.16), we estimate the time derivative of vy in H~1(I',TT). To this end, we
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take w € H'(I',TT') and apply Lemma 5.10.13 to get w = gn + gVrq with n € Vy satisfying
(5.10.50) and ¢ € H*(T'). Since {wy}$, is an orthogonal basis of V equipped with inner
product ag4(-,-), which is equivalent to the canonical H'(T)-inner product,

JR— ~. ~. 3 ~4 - —_ wi
n= Zag(n,wl)wl in V,, w;:= 7%(%’%)1/2.

Then we set ny := Zle ag(n, W)Wy, € ng to get

1l ey < ellnll oy < ellwllmry

by (5.10.50) and

(901vk, k) £2(ry = (99¢vk, M) L2(r) = (Oevks 91) L2(1)
= (Orvr, w — gVrq) r2ry = (Orvk, w) r2(ry),

where we used (5.10.77) in the first equality and dsvy, € L +(I,TT) and ¢Vrg € L L0, TT)+
in the last equality (note that here we take the canonical LZ( )-inner product). Hence substi-
tuting ny, for (5.10.78) and using these relations, we can show as in the proof of Lemma 5.10.14
that

100k W)l -0y < ¢ { (1 + ol 2ry) okl @y + 1 Ol p-10 o)

for all t € [0,T]. By this inequality and the energy estimate for vy we obtain the boundedness
of {Owg}52, in L?(0,T; H~1(T', TT)) and we can prove the convergence of {vj,}32, to a weak
solution to (5.1.13)—(5.1.14) as in the proof of Theorem 5.1.3.

5.10.6 Strong convergence of the average and error estimates

In this subsection we show the strong convergence of the averaged tangential component of a

strong solution to the Navier—Stokes equations (5.1.1)—(5.1.3) towards a weak solution to the

limit equations (5.1.13)—(5.1.14). We also estimate the difference between a strong solution
0 (5.1.1)—(5.1.3) and a weak solution to (5.1.13)—(5.1.14).

Theorem 5.10.23. Suppose that the assumptions in Theorem 5.8.4 are satisfied. For ¢ €
(0,e1) let u® be the global strong solution to (5.1.1)—(5.1.3) given by Theorem 5.8.4. Also, let
v € Lz, (T,TT), f € L*®(0,00; H"Y(I',TT)), and v be a weak solution to (5.1.13)~(5.1.14)
on [0,00). Then for all T > 0 we have

T
2 2
e M () = o0 ey + [ 190D (0) = Tro) gy

< or {8(2)? + 1Mt = w22y + IMAPof* = f 2o 1oy o (5:10.79)

where cr > 0 is a constant depending only on T and

S(e) =+ > e - (5.10.80)
1=0,1

As in Section 5.10.3, we first compare the auxiliary vector field v* = Py M, u® with a
weak solution to (5.1.13)-(5.1.14) and then derive (5.10.79) by using the estimate for the
difference between v* and M, uf.
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Lemma 5.10.24. Under the same assumptions as in Theorem 5.10.23, we have

T
2 2
e [0°(t) = v(@)I72(r) +/O [Vrv®(t) = Veo@) |72y dt

<cr {5(8)2 +[[v7(0) = wolFar) + M P-f* — fH%oo(o,oo;Hfl(r,Tr))} (5.10.81)

for allT > 0, where v = PgM,u is given in Lemma 5.10.10, cr > 0 is a constant depending
only on T, and §(¢) is given by (5.10.80).

Proof. For the sake of simplicity, we set
w® =" —v, wy:=0°(0) —vg =PyMrug—wvy, F°:=MP.f*—Ff.
Let T'> 0. We subtract both sides of (5.10.58) from those of (5.10.37) to get

T
/O ([90st0®, e+ ag(wF, 1) + by (w®, o°, 7) + by (v, w*, )} ds

T
—/0 [gF®, nrr ds + RL(n) + R2(n)

for all n € L?(0,T;V,) (see also Lemma 5.10.19), where R!(n) and RZ%(n) are given in
Lemmas 5.10.6 and 5.10.10. For each t € [0,T], let 1jg4: R — R be the characteristic
function of [0,t]. We substitute n = 1 jw® for the above equality and calculate as in
the proofs of Lemmas 5.10.11 and 5.10.20 by using (5.10.11)—(5.10.13), (5.10.28), (5.10.38),
(5.10.64), and Young’s inequality. Then we get

t
o @y + | 1900 ey ds
2 ! 2 2
< c{IuBlay + [ (14 107 ey ) gy

t
+ / ||Fa||§{1(F’Tr)ds—|—5(5)2(1+t)} (5.10.82)
0

for all ¢ € [0,T]. Here 6(¢) given by (5.10.80) comes from (5.10.28) and (5.10.38) (note that
£%/2 < /%), This inequality implies that

£t) < {0+ [ (#6160 + 1P O s} foral 1€ f0.7)

where £(t) = 6(e)? + ng(t)HQLQ(F) and ¢(t) = 1+ Hvs(t)H%p(F). Hence by Gronwall’s
inequality we have

t t
f0 < c (€0 + [ 1R qmas) oo ([ pas). reT)
From this inequality and the estimate (5.10.42) for ||v€||§{1(r) we deduce that

||w6(t)||%2(r) <ecr {5(5)2 + ||w8||%2(r) + ||F€”%°°(O,oo;H*1(I‘,TF))}

for all t € [0,T], where cp > 0 is a constant depending only on 7. Applying this inequality
and (5.10.42) to (5.10.82) we also get the same estimate for the time integral of HVFwEH%Q(F).
Therefore, the inequality (5.10.81) is valid. O
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Proof of Theorem 5.10.23. Let v® = PyM,u®. Since vy € LEU(F,TF) and P, is the orthogo-
nal projection from L?(I",TT) onto L;U(F, TT),

[0°(0) = voll L2(ry = [[Pg(Mrug — vo)ll2(ry < [|M7ug — voll2(r)-
By this inequality, (5.10.36), and (5.10.81) we obtain (5.10.79) (note that €2 < 6(¢)?). O
Now we see that Theorem 5.1.4 is an immediate consequence of Theorem 5.10.23.

Proof of Theorem 5.1.4. The condition (b’) implies the condition (b) in Theorem 5.1.3.
Thus, the statements in Theorem 5.1.3 are valid. Also, for each T" > 0 the right-hand
side of (5.10.79) converges to zero as € — 0 by (5.10.80), a > 0, and the conditions (b’) and
(c). Hence M,uf converges to v strongly in C([0,7]; L*(I',TT)) and L?(0,T; HY(T',TT)) as
e — 0. O

Next let us estimate the difference between a strong solution to (5.1.1)-(5.1.3) and a
weak solution to (5.1.13)—(5.1.14) in Q.. Recall that we denote by 77 = 1 o 7 the constant
extension of a function n on I' in the normal direction of T.

Theorem 5.10.25. Under the same assumptions as in Theorem 5.10.23, we have

T
€ = 2 D € X~ 2
ma [0 = 00y + [ [PV ) = V00 g,

< cre {5(5)2 + [ Mruf — vol[F2py + | MoP-f* — f”%oo(o,oo;Hfl(r,Tr))} (5.10.83)
for all'T > 0, where cy > 0 is a constant depending only on T'. In particular,

1’ =0

. - _n2 . —1 17 =2
lim e lu® = Blléo 11200 )) = e {|[PVUE = Vool Lo g0,y
for all T > 0 provided that lim. e~ 1y =~ fori = 0,1 and

lim || M7 ug — vollZa(ry = lim [ M- P f° — FII7 oo 0,00 111 (1)) = O-

Proof. For the sake of simplicity, we denote by I. the right-hand side of (5.10.79). Also, we
fix T'> 0 and suppress ¢ € [0,7]. Let us estimate u® — v. Since

u— 7= (uf —W) + (Wﬁ)ﬁ+ (W—@) in Q.
we apply (5.2.53), (5.6.6), and (5.6.10) to the right-hand side to get
= 51220, < e (ellupagay + 1M = ollEaqr))
Hence we see by (5.8.34), (5.10.79), and (5.10.80) that
|lu®(t) — 17(15)”%2(95) <ece(e*+ 1) <cel. forall tel0,T]. (5.10.84)

Next we consider the second term on the left-hand side of (5.10.83). Let

= [PV~ Vob gy o= [rlOw ]

9

Q) L2(9)

Js o= ||VeMeu® = Vo] o,y -
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By (5.2.53) and (5.6.25) we have
Ji < celluf | gy, Js < eV Meu — Vvl e .
Also, the inequalities (5.2.53) and (5.6.29) imply that
Jo < ce' || Muf - nl gy < cel|uf|| p2 o)
From these inequalities we deduce that
[PV = Vo o) < i+ T2+ J5 < ce'/? (51/ZHUEHH2(QE) + Ve Mru® — VFUHB(F)) :

Thus, by (5.8.34) and (5.10.79) we have

T T
D € 12 € €
/ R A ca/ (sHu 22,y + IV Mru —vpvuizm) dt
0 0
<ece{e*(1+T)+ L} <ce(1+T)I..
Combining this inequality and (5.10.84) we obtain (5.10.83). O

We can also compare the normal derivative (with respect to I') of a strong solution to
(5.1.1)—(5.1.3) with a weak solution to (5.1.13)—(5.1.14).

Theorem 5.10.26. Under the same assumptions as in Theorem 5.10.23, we have

2
dt
L?(Q)

< cre {5(5)2 + 1 Mrug — vol 2apy + | M P f5 — fH%OO(O’OO;HA(RTF))} (5.10.85)

T
_ __ 1 _
/ (HP@nua(t) + Wv(t)HiQ(QE) + ||Opus (t) -7 — 51‘)(15) -Vryg
0

for all T > 0, where Op,u = (n-V)u is the normal derivative of u given by (5.3.5) and cp > 0
is a constant depending only on T'. Hence, setting

1
Vi=-Wu+ g(v -Vrg)n on T x(0,00)
we have (note that Wv is tangential on I')

lim e* H(?nuE—VHiQ( =0

e—0 0,T5L2(Q%))
for all T > 0 provided that lim._,ge 1y =~ fori = 0,1 and
Jimm | M2ty = vollLaqry = N [1MrPef* = fIEoe 0,001 ey = O
Proof. We fix T > 0 and suppress t € [0,7T]. Let
Ji = Hﬁanus +WUEHL2(QS) ,  Joi= HVVMu‘E _WUEHL2(QS) )
Jg = HWU — WM“EHB(QE) .

We apply (5.3.34) to J; and (5.6.6) to Jo to get

Ji < cellu|mz,  J2 < cellut||mia,)-
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Also, noting that WMu® = WM, u® on I" by (5.2.6), we use (5.2.53) to get
Jy < e W — WMl || pary < ee'/?]jo — Mpws || pary.-
From these inequalities we deduce that
PO + W0 gy < 1+ o+ Ty < e/ (2] gagy + M = llpaqry )

We also observe by (5.2.30), (5.2.53), and (5.6.48) that

1 N
(9nu€ -n— gﬁvrg

L*(Qe)

1
Opu® - — =M uf - Vrg
g

S ‘

[yt )

L2(%) L2(%)

< ce'/? <€1/2HU€HH2(98) + | Mru® — U||L2(r)> :

Hence, as in the proof of Theorem 5.10.25, we integrate the square of the above inequalities
over (0,7) and then use (5.8.34) and (5.10.79) to obtain (5.10.85). O

Remark 5.10.27. In the estimate (5.10.85) the Weingarten map W represents the curva-
tures of the limit surface I'. On the other hand, the functions gg and g; with ¢ = g1 — go
are used to define the inner and outer boundaries of the curved thin domain €).. Therefore,
roughly speaking, the tangential component (with respect to I') of the normal derivative 0, u®
of the bulk velocity depends only on the shape of I', while the geometry of the boundaries
of Q. affects only the normal component of 0, u¢.

5.A Notations and basic formulas on vectors and matrices

We give notations and basic formulas on vectors and matrices, and use them to prove Lem-
mas 5.4.4 and 5.7.2.

For a matrix A € R3*3 we denote by AT and Ag := (A + AT)/2 the transpose and
the symmetric part of A, respectively. We define the tensor product of vectors a € R! and
b€ R™ with [,m € N as

a1b1 albm
a®b:= : : , a=(at,...,a7),b=(b1,...,bp).
albl albm

Also, for a vector field u = (u1,us2,u3) on an open subset of R? we write

61u1 (9171,2 81u3 3 P
Vu:= | Oyu; Oquy ous |, |Viu|? = Z 10;0;up,|? (ai = )
83'&1 83U2 83U3 1,5,k=1

We define the inner product of matrices A, B € R3*3 and the norm of A as

3
A:B:=tr[ATB] =) Ae;-Be;, |Al:=VA:A,

i=1
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where {e1,e2,e3} is an orthonormal basis of R3. Note that A : B does not depend on a
choice of an orthonormal basis of R3. In particular, taking the standard basis of R? we see
that

3
A:B=Y AyB;=B:A=A":B", AB:C=A:CB"=B:A"C
ij=1
for A, B,C € R33. Also, for a,b € R we have |a ® b| = |al|b].

Lemma 5.A.1. Let ng € R3 and Ay € R3*3 satisfy |ng| = 1 and A1b-ng =0 for all b € R3.
Then for a matriz B := Ay + ng ® a with a € R? we have

|B|? = |A1|* + |a]?. (5.A.1)
Also, let 11,72 € R? and Ay € R3*3 satisfy
no-mm=ng-12=0, Amy=0, Asb-ng=0 forall beR>.
Then for a matriz C := Ay + 1 @ ng + ng @ T2 + cng ® ng with ¢ € R we have
C? = |Aa)® + |11 |* + |72 + |cf”. (5.A.2)

Proof. We take an orthonormal basis {e1, ez, e3} of R3 with e3 = ng. Then since (ng ® a)b =
(a-b)ng, A1b-ng =0 for any b € R3 and |ng| = 1,

|Bei\2 = |Aje; + (a- ei)n0|2 = |Alei|2 + (a- ei)Q, 1=1,2,

|Bng|?® = |A1ng + (a - no)nol® = |Aing|* + (a - no)?.

Applying these equalities to |B|? = |Be1|? + | Bea|? + |Bng|? we get
1B = (|Are1]? + [Area|* + [Aino[?) + {(a - €1)* + (a - €2)* + (a - n0)?} = [A1]* + |a]*.

Thus (5.A.1) is valid. Next we prove (5.A.2). Since e; - ng = 0 and Ase; - ng = 0,

|Cei* = |Age; + (12 - €i)nol® = |Asei* + (12 - €)%, i =1,2.
Also, by Aang =0, |ng| =1, and 71 - ng =0,

|Cnol? = |11 + enol? = |71)? + |c|?.

Hence |C|? = |Ce1|? + |Cea|? + |Cng|? is of the form

IC1P =" (142eil® + (72 €0)) + [ + |,
i=1,2
Here the first two terms on the right-hand side are equal to |As|? and |m3|? since Aang = 0
and 72 - ng = 0. Hence (5.A.2) follows. O

Based on the formulas (5.A.1) and (5.A.2) we prove Lemma 5.4.4.
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Proof of Lemma 5.4.4. Let u € H ()3 and U := uo @, where ®.: Q; — (. is given by
(5.4.15). The inverse map of @ is of the form

O (z) := m(x) + e ld(zx)n(x), =€ Q.
Then by (5.2.6), (5.2.11), (5.2.16), and Vd = 71 we have

Ve (@) = {Is — d@)W(2)} " {Is - = 'd(@)W ()} Pla) + &' Q(x)
for z € Q.. We set 2 = ®.(X) with X € Q; in this equality and use

d(Pe(X)) = ed(X), 7(P(X)) = m(X)
to get VO H(®.(X)) = Ac(X)P(X) + e 1Q(X), where
A(X) = {I3 — ed(X)W (X))} {Is —d(X)W(X)}, X €.
From this formula and
Vu(®:(X)) = VO, 1(2-(X))VU(X), Q(X)VU(X) =a(X)® dU(X)

it follows that

Vu(®.(X)) = A:(X)P(X)VU(X) + e 'a(X) ® 0,U(X), X € .
Hereafter we refer to this equality as

(Vu)o®. = A.PVU +e 'a®0,U in Q. (5.A.3)

Since A.P = PA. by (5.2.6) and (5.2.8), we have (A.PVU)b-n = 0 for any b € R3. Hence
we can use (5.A.1) with ng =7, Ay = A.PVU, and a = ¢ 19,U to get

(V) 0 b.|* = [APVU|* + e 20,U* > ¢ (\?VUF + 5_2|8nU]2) in Qi
where the second inequality follows from (5.2.9). By this inequality and (5.4.17),

e VUl = el (V) 0 @e 22, > (HPVUH;(Ql) + e*2|yanUH§2(Ql)) .
Hence (5.4.18) is valid. To prove (5.4.19) we observe by I3 = P + @ and (5.3.6) that

PVU = P(VU)P + P(VU)Q = P(VU)P + [?(VU)ﬁ} ® 7,
U = 0y, [PU + (U - ﬁ)ﬁ] = PO,U + {0,(U - n)}n.
We apply these equalities to (5.A.3) and use A.P = PA. by (5.2.6) and (5.2.8) to get
(V) 0 b, = PA.(VU)P + [ﬁAg(VU)ﬁ] ®n
+ela® (PanU) + e Ho,(U-a)ln®@n in Q.

Hence D(u) o ®. = {(Vu) o . + (Vu)T o ®.}/2 is of the form

Du)od, =Ay+700+nQ7+e H0,(U-n)}m®n in Q
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where F.(U) := A.VU is the matrix (5.4.20) and
_ 1_
Ay = PE(U)sP, 7:= ;P{A(VU)n+ e 1o,U}.

(Note that F.(U)g is the symmetric part of F.(U).) By the above definitions it is obvious
that 7.7 = 0, Agf = 0, and Agb- 7 = 0 for all b € R3. Therefore, we can apply (5.A.2) to
C = D(u) o &, to obtain

[D(w) 0 @cf? = [Aaf? + 2|7 + €700 (U - 0)* > |A2|* + e 7%|0u(U - 1) ?

in 5. From this inequality and (5.4.17) we deduce that

e D) 72,y = ellD(u) 0 @72,y = ¢ (HAQH%Q(QQ +e72|0n(U - ﬂ)H%%QI)) :

Hence (5.4.19) is valid (note that Ay = PF.(U)sP). O
Next we give a formula on the curl of a vector field and show Lemma 5.7.2.

Lemma 5.A.2. Let U be an open set in R® and Ey, Es, and E3 vector fields on U such that
{E (), E5(x), E3(x)} is an orthonormal basis of R® for each x € R? and

E1><E2:E3, EQXE3:E1, E3><E1:E2 m Ul
Then for u € C1(U)? we have

curlu = {(Ey-V)u- E3 — (E3-V)u- Ex}Eq
+{(E3-V)u-E; — (E1-V)u- E3}Ey
+{(E1-V)u-BEy— (By-V)u-E1}E; in U. (5.A.4)

Proof. By the assumption, curlu = Zg’:l(curlu - E;)E;. Since Fy = Ey x Es,

curlu - By = curlu - (B2 X E3) = Ey - (E3 X curlu)
=Ey - {(Vu)E3 — (Vu)TEg}
= (Vu)T By - B3 — (Vu)TE3 - By

=(E2-V)u-E3— (Es3- V)u - Es.
Calculating curlu - Ej;, i = 2,3 in the same way we observe that (5.A.4) holds. O

Proof of Lemma 5.7.2. Let u € C1(Q:)? and u® := E.M,u be given by (5.6.50). Since the
surface I' is compact, we can take finite relative open sets Oy of I' and pairs of tangential
vector fields {7f,75} on Oy, k = 1,..., ko such that I' = U';iil Oy, the triplet {7F 75 n}
forms an orthonormal basis of R? on Oy, and

Fxmh=n, hxn=1F, nxtf=18 on O

for each K =1,...,ky. Then since . = UZOZI U}, where

Uk = {y—l—rn(y) | Y€ Ok? re (€go(y),€g1(y))}, k= 17 s ak07
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it is sufficient to show (5.7.2) in Uy, for each k = 1,..., ko. From now on, we fix and suppress
k. We use (5.A.4) to u® with Ey := 7y, Fy := 79, and F3 := n. Then since P1; = 7, i = 1,2
and Pn =0,

Peurlu® = {(7 - V)u*-n— (n-V)u® - R}r +{(A-V)u® -7 — (71 - V)u* -a}7 in U.
From this equality, (7 - V)u® = 0,u?, and |11| = |2| = |n| = 1 we deduce that
|Peurlu®| < ¢ (|0pu®| + |(71 - V)u® - 0| + |(F2 - V)u® - @1[) in U. (5.A.5)

Let us estimate each term on the right-hand side. By (5.3.6), (5.3.37), and (5.6.50),

|Opu®| = ‘m 871\115‘ < C‘MTU‘ = c‘PMu| < c|Mu‘ in U. (5.A.6)

To estimate the other terms we set

ul = Pu® = Myu, ul:=(u® n)i= (W \If€>ﬁ
so that u* = u? +u?. Let ¢ = 1,2. Since v -n =0 in U, we have
(7i - V)ug-n=(7-V)(uy-n)—us-
Hence by (5.2.17) and |7;| = 1 we get
(7 - V)uld - ii| < clud| < c|Mu| in U,i=1,2. (5.A.7)

Also, by 7; = P7;, P = PT, and |7;| = 1 we see that

(7 - V)ul| = [(Vul) Pry| = ’ [F(vug)rﬂ

< [P(Vul)| in U
Moreover, by u¢ = (M,u - ¥.)fi we have
P(Vut) = [{Fv (m) } U, + (Fv\h)m} Q7+ (m : qf€>ﬁvn

and thus the inequalities (5.2.13), (5.2.17), and (5.3.37) imply that

‘?(Vu%)‘ < ce (‘MTU‘ + ‘VFMTUD < ce (|M‘ + }m‘) in U.
Here the last inequality follows from M,u = PMu and P € C*(I")3*3. Therefore,
[(7i - V)ug - 0| < ce (|Mu| + |[VrMu|) in U,i=1,2. (5.A.8)
Noting that u* = u? + u, we apply (5.A.6), (5.A.7), and (5.A.8) to the right-hand side of
(5.A.5) to conclude that the inequality (5.7.2) is valid in U. O
5.B Calculations involving differential geometry of surfaces

The purpose of this appendix is to give the proofs of the lemmas in Section 5.2 and related
results, which involve calculations of the surface quantities on I, Fg, and F}:. We also show
the formula (5.3.15) in the proof of Lemma 5.3.3.

First we assume that the closed surface I is of class C* with ¢ > 2 and prove the lemmas
given in Section 5.2.1 and a few results on I
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Proof of Lemma 5.2.2. Since W has the eigenvalues zero, k1, and kg,
det[Is —rW(y)] = {1 —rr1(y) {1 — rr2(y)} >0, yeT,re (=409

by (5.2.2). Hence I3 — rW(y) is invertible. Also, the equality (5.2.8) follows from (5.2.6).

Let us prove (5.2.9) and (5.2.10). For the sake of simplicity, we fix and suppress the
argument y € I". Since W is real and symmetric by Lemma 5.2.1 and has the eigenvalues
K1, K2, and zero with Wn = 0, we can take an orthonormal basis {71, 72, n} of R3 such that
Wt = ki, i = 1,2. Then we have

Is—rW)ri=(1—rki)r, Uz—rW)n=mn
for r € (=6,6) and i = 1,2, and thus
(Is — W)l = (1 —re) ", (I3 — W) ln =n. (5.B.1)
Since {71, 72,n} is an orthonormal basis of R3, these formulas imply that

(I3 —rW)ka = Z (a-1)Is — rW)*r + (a - n) (I3 — rW)*n
i=1,2

= (a-7)(1 —rw)*m + (a-n)n
i=1,2

for all @ € R? and k = +1. Hence

(s —rW)al* = 3 (@ m)*(1 = rse)™ + (a- n)?
i=1,2

and (5.2.9) follows from (5.2.2) and |a|? = (a-71)% + (a - 72)% + (a - n)?. Also, from (5.B.1),
71| = |72l =1, and |1 — (1 — r&;) 7Y < |rki(1 — 76;) 7L < || by (5.2.2) we deduce that

—112 —
I — (I — W) "= > 1= (1—rk) P < cfr].
i=1,2

Hence (5.2.10) is valid. O

Proof of Lemma 5.2.3. By (5.2.1) and n(w(z)) = a(r(z)) we have
m(x) =z —d(z)n(r(z)), x € N.
We differentiate both sides in  and then use Vd = n and
—Vi(r(x)) = —Vrn(n(z)) = W(n(z)) = W()
by (5.2.4) (note that 7(z) € T') to get
Vr(z) = I3 — i(z) @ n(z) — d(z)Vr(z)Vi(r(x)) = P(z) + d(z)Vr(z)W (z)
for x € N, which implies that

m(z) {I3 — d(z)W(2)} = P(z), =€ N.
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Since I3 — d(z)W (z) is invertible for x € N by Lemma 5.2.2, the equality (5.2.11) follows
from this equality and (5.2.8). Also, by (5.2.11) and PVrn = Vrnon I' we get (5.2.12). The
inequalities (5.2.13) and (5.2.14) follows from (5.2.9), (5.2.10), and (5.2.12).

Now suppose that T is of class C? and let us prove (5.2.15). For n € C%(T') and i = 1,2,3
we differentiate both sides of (5.2.12) with respect to z; to get

8iVij = {ai (13 - dW>_1} Vi + <13 - dW>_16i (W) i N. (5.B.2)
To estimate the right-hand side we differentiate both sides of
(I — d(2)W(2)} " {Is—d(x)W(z)} = I3, z€N
with respect to x; and use Vd = n to get
0, (13 - dW>_l - (13 - dW>_l (mW + d@iW> (1'3 - dW>_1 in N (5.B.3)

Here the right-hand side is bounded on N by (5.2.9), (5.2.12), and the Cl-regularity of W
on I' (note that T is of class C?). Using this fact and (5.2.9) to (5.B.2) we obtain

0l < ¢ ([Von| + [VEn|) i Ni=1,23

which shows (5.2.15). Moreover, by (5.2.4), (5.B.2), (5.B.3),and d=0on T,

3
0V =n,WVrn+ D;(Vrn), ie 00,1 =n;i» WirDyn+ D;Djn
k=1
on I' for 4,5 = 1,2, 3, which implies that
3 3
A=Y "0n="> (nWuDyn+Din) = W"n-Vrn+ Apn.
i=1 ik=1
Since WTn = Wn = 0 by Lemma 5.2.1, we obtain A7j = Arn on I O

Using the orthonormal frame {71, 72, n} given in the proof of Lemma 5.2.2 and the formula
(5.2.12), we can express the divergence of the constant extension of a surface vector field in
terms of the surface quantities on I'.

Lemma 5.B.1. Forv € CY(T')? let © = v o be its constant extension. Then

dive = = dm)l(l i {(1 - dﬁ)divw v d(vpv : W)} in N. (5.B.4)

Moreover, divo = 0 in N provided that Dr(v) = 0 on I, where Dr(v) is the surface strain
rate tensor given by (5.4.38).

Proof. Let © = y+rn(y) € N with y = n(z) € I and r = d(x) € (—9,d). In what follows,
we suppress the argument y for functions on I'. As in the proof of Lemma 5.2.2, we take
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an orthonormal basis {71, 72,n} of R3 such that Wr; = ;7; for i = 1,2. Then by (5.2.12),
(5.B.1), and the symmetry of W we have

div o(z) = tr[Vo(x)] = tr[(I3 — rW) V]
Z Iy —rW) Y (Vro)r -1 + (I3 — vW) Y (Vro)n - n
Z VFU

1—7%1) 7i + (Vpo)n

Here (Vrv)n-n = P(Vrv)n-n = 0. Hence

(1 =rk2)(Vro)m - 11+ (1 — rr1) (Vro)me - 12

divo(z) =
(1 —rk1)(1 —rka) (5.B.5)
. {1—T(I€1+I€2)}11+T‘IQ e
N (1 —7k1)(1 —7K2)
where
I = Z (Vro)i - 7i, Z Vo) i - KiT;.
i=1,2 i=1,2
Since (Vrv)n-n =0 and {7(, 72, n} is an orthonormal basis of R3,
Il = Z (VFU)Ti © T —+ (VFU)TL n = tr[vrv] = diVFU. (5B6)

i=1,2
Also, since Wr; = k;7; and Wn = 0,
I = Z (Vrv)r - Wt + (Vpo)n - Wn = Vo : W.

i=1,2

We apply these equalities, k1 + k2 = H, and r = d(x) to (5.B.5) to get (5.B.4).
Now let v satisfy Dr(v) =0 on I'. Since {71, 72, n} is an orthonormal basis of R?, 71 and
To are tangent to I' (at y). Hence Pr; = 7; for i = 1,2 and

0=tr[Dr(v)] = > P(Vrv)Pri- 7+ P(Vrv)Pn-n= > (Vrv)n -7 = divpv
i=1,2 i=1,2

by PT = P, Pn =0, and (5.B.6). Moreover, by (5.2.6) and the symmetry of W,
Vrv: W = P(Vpv)P: W = Dr(v) : W = 0.
Applying these equalities to (5.B.4) we observe that divo =0 in N. O

Let us prove the density result on the Sobolev space on T'.

Proof of Lemma 5.2.4. Here we only show the density of CY(I') in W™P(T) in the case
¢=m=2and p € [1,00). The assertion in other cases are proved similarly.

Let n € W2P(I'). By a standard localization argument with a partition of unity of T
(note that I' is compact), we may assume that there exist an open set U in R? and a local
parametrization p: U — I" such that 7 is supported in u(K), where K is a compact subset
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of U. Since I is of class C?, the local parametrization y is of class C? on U and thus there
exists a constant ¢ > 0 such that

Osp(s)| < ¢, [0s,05;1(s)| < ¢, s€K,i,j=1,2 (5.B.7)
We denote by 6 = (6;5);,; the Riemannian metric of T'. It is locally given by
0ij(s) := Os,uu(s) - Os;u(s), seU, i,j=1,2.

Since the determinant of 6 is continuous and does not vanish on U, it is bounded from above
and below by a positive constant on K:

cl<det(s)<e, sek. (5.B.8)

Let 6= = (6%), ; be the inverse matrix of §. Since 6;; and its first order derivatives are
bounded on K by (5.B.7) and 9,,0~1 = —071(9,,0)0~1, we have

09 (s)] < e, [05,07(s)| <e¢, s€K,i,j k=12 (5.B.9)
Moreover, there exists ¢ > 0 such that
c a2 <67 (s)a-a < cla)?’, sek,acR (5.B.10)

To see this, let X(s,a) := Z” 107 (5)a;i0s;pu(s) for s € U and a = (ay,a2) € R?. Since
0s, 1t(s) and O, pu(s) are linearly independent, X (s, a) vanishes if and only if

> 09(s)ai= > 09(s)a; =0 for j=1,2, ie. 0 '(s)a=0.

i=1,2 i=1,2

(Note that ! is symmetric since @ is so.) By this fact we observe that X (s,a) = 0 if and
only if a = 0 and the function

2

|X(s,a)* = Z 0 (s)aia; = 0~ (s)a - a

ij=1

is continuous for (s,a) € U x R? and does not vanish for a # 0. In particular, it is bounded
from above and below by positive constants on the compact set K x S, where S! is the unit
circle in R?. Hence (5.B.10) follows.

For s € U let 7(s) := n(u(s)). We show that there exists ¢ > 0 such that

MNillwze @y < Inllw2eguey) < cllillwzew)- (5.B.11)

By the definition of an integral over a surface,

/ In(y)|P dH?(y) /In |Py/det 0(s) ds.
w(U)

Noting that n is supported in p(K), we use (5.B.8) to the this equality to get

Ml oy < Il e uwyy < ellfillLe@)- (5.B.12)
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Next we compare the first order derivatives of 7 and 7. Since

2
Ven(u(s)) = > 07(5)05,7i(s)0s; u(s),
Ve (5.B.13)
Vrn(p Z 0% (5)05,71(5)0s,71(s) = 07" (5)Vsil(s) - Viii(s)
4,j=1

for s € U, where V is the gradient operator in s € R?, by (5.B.10) we have
¢ HVsi(s)] < [Ven(u(s))| < e|Vsi(s)], s € K.

We apply this inequality and (5.B.8) to
/ IV rn(y) [P dH?(y / IVrn(u(s))[Py/det (s) ds
w(U)

(note that n is supported in p(K)) to obtain
“HIVsiillzo@y < IVrnlloguy) < ellVsil o (5.B.14)

Let us consider the second order derivatives of n and 7. For s € U and k = 1,2,3 we set
Mk (s) == Dyn(1(s)). Then by the right-hand inequality of (5.B.14) we see that

IVeDenll ey < cllVsiikll e

Moreover, since D1 = V7 - ex, where {e1, ez, e3} is the standard basis of R3,

2
i(s) = Vrn(u(s) -ex = Y 07()05,(s)0s,1(s) -ex, s €U

i,j=1

by (5.B.13). Thus, applying Vg to both sides and using (5.B.7) and (5.B.9) we get
Vsiin(s)| < e([Vsii(s)] + [V3i(s)]), s €K.
Since 7 is supported in p(K), we find by the above inequalities that

IV Dl e (uwy) < ellVsiikllwr @y < el Vsillwr
for k = 1,2,3. Therefore,

VRN Lo (ury) < clliillwze - (5.B.15)

To estimate the LP(U)-norms of the second order derivatives of 7, we take the inner product
of the first equality of (5.B.13) with 05, uu(s), kK =1,2,3 to get

2
Vrn(u(s)) - Os,pul(s) = Y 07(5)0;k(5)0s,7i(5) = D, ii(s), s €U.

ij=1

Since u(s) € I', we have Vrn(u(s)) = Vrn(u(s)), where the right-hand side stands for the
constant extension of V7 in the normal direction of I'; and thus

0y (Ven(u(s)) = 0 (Ven(u(s))) = [V (Vrn) | (u(s)2un(s)
= Vin(u(s))ds,pu(s), 1=1,2,3
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by (5.2.4). Hence for s € U and k,l = 1,2,3 we have

02y 02y (5) = 0, (Von(u(s)) - Dy a(s) )
= VEn(1(5))9s,1(5) - Osyopa(s) + Vrn(u(s)) - 85, 0s,als)

and by applying (5.B.7) to the last line we deduce that

IVEn(s)] < e(|Ven(u(s)] + [VEn(u(s))), s € K.

Noting that 7 is supported in u(K) and
[ I¥taP ) = [ )i i s, k=12
wU)

we use the above inequality and (5.B.8) to the LP(U)-norm of V27 to get

V3l ey < ellnllw2ruwy)- (5.B.16)

By (5.B.12), (5.B.14), (5.B.15), and (5.B.16) we obtain (5.B.11).

Now we observe by n € W2P(T') and the left-hand inequality of (5.B.11) that 7 is in
W2P(U). Since it is also supported in the compact subset X of U, by a standard mollification
argument (see e.g. [1, Lemma 3.16]) we can take a sequence {7, }32, in C°°(U) that converges
to 7 strongly in W2P(U). Hence the right-hand inequality of (5.B.11) yields that

17— mllw2ruwy) < el — llwer@wy =0 as &k — oo,

where 13 (y) := (" (y)) for k € Nand y € I'. Since the local parametrization p: U — T is
of class C?, we have n, € C%(u(U)) for each k € N. Hence C?(T') is dense in W2P(T) (recall
that we localized 1 by using a partition of unity of T). O

Next we give a change of variables formula for an integral over a parametrized surface.
Let h € C1(T) satisfy |h| < § on T'. We define a parametrized surface

T = {y+hlynly) |y T} C R (5.B.17)

Note that 'y, C N by |h| < § on I' (see Section 5.2.1). For y € I' we set

m(y) = {Is — h(y)W(y)} ' Vrh(y), naly) = W (5.B.18)

Here the vector field 7 is tangential on I". We assume that the orientation of I'j, is the same
as that of I'. Then as in the proof of Lemma 5.2.10 below we can show that the constant
extension ny := np o w gives the unit outward normal vector field of I'y,.

For ¢ € C1(I'),) we define the tangential gradient Vr, ¢ as

Vr,p(z) == {Iz — np(r) @ np(2)}VP(z), €T,

where ¢ is an arbitrary extension of ¢ to N satisfying @|r, = ¢. Let us give a change of
variables formula for integrals over I'y,.



5. Navier—Stokes equations in a curved thin domain 262

Lemma 5.B.2. Suppose that ' is of class C? and h € CY(T') satisfies |h| < on T. Let T,
be the parametrized surface given by (5.B.17). For ¢ € L'(T'},) we have

/F () dH(x) = / )T (9 BN+ @) P dHE (), (5.B.19)

r
where ©F(y) := @(y + h(y)n(y)) fory €T and J and 11, are given by (5.2.48) and (5.B.18).

Before starting to prove Lemma 5.B.2 we give a remark on a partition of unity of I',. Since
the surface I' is compact, we can take finite open subsets U, of R? and local parametrizations
pk: U, — T, k=1,... ko such that {uk(Uk)}Zozl is an open covering of I'. Let {nk}llzozl be
a partition of unity of I" subordinate to the covering {,u,k(Uk)}f,ZO:1 Then setting

1y (s) = pi(s) + h(pw(s))n(pe(s)),  mi(ug(s) = n"(u"(s)), s €Uy

we observe that uﬁ: U, — I'y, k= 1,...,ky are local parametrizations of I'j, such that
{,uﬁ(Uk)}I,zO:l is an open covering of I',, and that {n,’i}]zozl is a partition of unity of I'j
subordinate to the covering {MZ(Uk)}Zozl. Using these local parametrizations and partitions
of unity we can localize integrals over I' and I'j, and express them as integrals over the same
domains Uy, k =1,..., ko.

Proof. Let U be an open subset of R? and p: U — T be a local parametrization of I. The
Riemannian metric of ' is locally given by 6 = V u(Vu)? on U, where

Osi 11 Osy 2 Os M3>
Vo = (osh Osibiz Guipia)
s <882:ul aSQNQ 882M3

Note that Vu(s)n(u(s)) =0 for s € U since Oy, p1(s) and Os,pu(s) are tangent to I' at pu(s).
Using 4 we give a local parametrization up: U — I'p, and the Riemannian metric 6, of 'y,
by

un(s) = p(s) + hu()n(u(s)),  On(s) == Voun(s){Von(s)}7, s €U,

Hereafter we use the notation n%(s) := n(u(s)), s € U for a function n on T' and suppress
the argument s € U. Then by a localization argument with partitions of unity of I' and I'p,
mentioned above, the proof of (5.B.19) reduces to show

Vdet b, = J(p, hﬁ)\/(l + ]72\2) detd on U. (5.B.20)
We prove (5.B.20) in two steps. First we show the equality
(1= |(Vp,h) o up|?) det 0, = J(u, h¥)2detd on U, (5.B.21)

where h := hor is the constant extension of A in the normal direction of T'. We differentiate
both sides of iy, = p + hint in s and use

Vint(s) = Vi (i(u(s))) = Vsp(s)Vi(u(s)) = =Vsu(s)W (u(s))
by (5.2.4) (note that pu(s) € I'). Then

Vspn = V(I3 — hﬂWﬂ) +Vhiont on U
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Also, noting that W is a symmetric matrix we get
(Voun)" = (Is = FW*#)(Vop) + nf @ VohE on UL
From these equalities, (Vou)nf = 0, Win# = 0, and
(Vsh? @ n®)(n @ Vih?) = [nf]PV i @ VhF = Vb @ Vi
we deduce that
On = Vopn(Vspn)' = V(I3 — BWHA(Veu) " + Vhf @ Vbt
and thus
det(0y — Vsh? @ Vh?) = det[Vou(ls — BPWH3(Veu)'] on U. (5.B.22)
The formula det(I; +a®b) = 1+ a - b for a,b € R? yields
det(0y, — Vsh* @ Vht) = det[I3 — (0, 'Vsh*) @ Vsh¥] det 6y,
= {1 — (6, Vh*) - Vh*} det 0.
To calculate the right-hand side of (5.B.22) we set

(). (4

Here we see nf € R3 as a column vector. Then by (Vsu)nﬁ =0, Win! = 0, and the symmetry
of the matrix W* we have Aj, = A(I3 — h*IW#) and

r_ (0 0 7 _ (Vsu(ls = BWH (V)T 0
AA_<01,AhA_ . 1)

From these equalities and det(I3 — hfW*) = J(u, h¥) it follows that
det[Vou(Izs — BWH2(Vu) 7] = det[A, AL] = det[A(I3 — RFIWH)2AT)
= det[(I3 — h*W*)?] det[AAT] (5.B.23)
= J(u, h*)% det 6.
(Note that A and I3 — R*W* are 3 x 3 matrices.) Hence (5.B.22) reads
{1— (6, 'Vh?) - Vsh*} det ), = J(u, h¥)*detd on U. (5.B.24)
Now we recall that the tangential gradient of h on I'y, is locally expressed as

2 _
Ve () = 3 06 T o), sev.

i,7=1

Here 9? is the (7, j)-entry of 0, '. Since h = hor is the constant extension of h and
7(1(5)) = p(s), we have h(un(s)) = h(ju(s)) = h¥(s) and thus

2
(Vryh)oun =Y 07(s,h%)0s, 1,

ij=1

2
(V) o pnl” = 3 07 (06, h%) (s, 1) = (0, 'V h) - V.
ij=1



5. Navier—Stokes equations in a curved thin domain 264

Applying this equality to the left-hand side of (5.B.24) we obtain (5.B.21).
Next we show that

1

_ 2
L= Ve hly + @) = 3o

yel, (5.B.25)

where 7, is the tangential vector field on I' given by (5.B.18). For the sake of simplicity,
we set a := /1 + |7,|? and sometimes suppress the argument y € T of functions on I'. By
(5.2.12) and d(y + h(y)n(y)) = h(y) we have

VA(@) o=y h(yint) = {13 = L)W ()} Vrh(y) = m(y)-

Since Vr,h = (I3 — Ay, ® np)Vh on Ty and ny = a~t(n — 7,) on I, we see by the above
equality that

Vr, h(y + h(y)n(y) = {Is —a (0 — 1) @ (n — )} = o {|mn + (0® — |7[*) 7}
From this equality, n - 7, = 0, and o = 1 + |7;,|> we deduce that
- 2 _ _
L= |V, hly +h(y)n@)]" =1 - o (ml +ml?) = 1 — a7 *

Since a2 = (1 + |m,|?)~!, the above equality implies (5.B.25). Finally, we conclude by
(5.B.21) and (5.B.25) that (5.B.20) is valid. O

Now we assume that I' is of class C° and prove the formulas and inequalities in Sec-
tion 5.2.2 for the surface quantities on the boundary I'; of the curved thin domain.

Proof of Lemma 5.2.9. First note that, since I' is of class C°, the Weingarten map W €
C3(I")3*3 and the functions gg,g1 € C*(') are bounded on I' along with their first and
second order tangential derivatives.

Let 7¢ and ni, i = 0,1 be the vector fields on I given by (5.2.32) and (5.2.33). Then the
first inequalities of (5.2.34) and (5.2.35) immediately follow from (5.2.9) and (5.2.10). To
show the second inequalities of (5.2.34) and (5.2.35) we set

Ri(y) :={l; —egi(y)W(y)} ', yel
and apply Dy, k = 1,2,3 to both sides of Ri(I3 —eg;W) = I3 on I to get
DyR. = eR{(Dyg:)W + g:DyW}RL on T. (5.B.26)
Then by (5.2.9) we see that there exists a constant ¢ > 0 independent of € such that
|ID R <ce on T. (5.B.27)
Applying (5.2.9), (5.2.10), and (5.B.27) to D,7! = (D, R.)Vrg; + R.(D,Vrg) we obtain
D7l < e, |Dyri = DyVrgl < (DR Vgl + |(RL — 13)(Dy Vrg)| < ce

on I" for all £ = 1,2,3. Hence the second inequalities of (5.2.34) and (5.2.35) follows. We
further apply D), [ = 1,2,3 to both sides of (5.B.26) and use (5.2.9) and (5.B.27) to get
|D; DRt < ce on T'. From this inequality, (5.2.9), (5.B.27) we deduce that

1D, D, 7l < |(D;Dy R Vrgi| + |(DyRL) (D V)|
+ (D, R2) (D Vrgi)| + |R:(D; Dy Vrg:)| < c.
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Hence the third inequality of (5.2.34) is valid.

Now let us prove the inequalities for ni. The first equality of (5.2.36) is a direct con-
sequence of (5.2.33). Also, the other inequalities of (5.2.36) follow from (5.2.34). To prove
(5.2.37) we see that nl + n! = p.n + e7., where

1 1 7'51 7'60
e 1= - y o Te i = + .
VI+EmP I+ 2P VISP 2P

From (5.2.34) it follows that

[7e| <e¢, [Vre|<ec on T (5.B.28)

with a positive constant ¢ independent of . Let us estimate (. and its tangential gradient.
By the mean value theorem for the function (1 + 5)~1/2 s> 0 and (5.2.34).

2
loe| < %UTQP — 792 <e? on T. (5.B.29)

Also, since

1 2 V AP
Vil — | = _ S \VITe)Te ( QFT,E);-Z 39 1=0,1,
V1 e (1+e2|7g[2)%/

we use (5.2.34) to get
|Vrge| <ecg? on T. (5.B.30)

Applying (5.B.28), (5.B.29), and (5.B.30) to nl + nl = p.n +e7. and its tangential gradient
matrix we obtain (5.2.37). O

Proof of Lemma 5.2.10. We take an open subset U of R? and a local parametrization pu: U —
I'". Then for ¢ = 0,1 the mapping

pt(s) == p(s) +egi(p(s))n(u(s)), seU

defines a local parametrization pt: U — T'L and the pair {0, ut(s), Os,1ut(s)} is a basis of
the tangent plane of I'C at ut(s). Hence if we show

AL (1l (s)) - Ospii(s) =0, seU k=12

then n! is normal to I'Y and thus n. = 7% on 'L, since |n| = 1 and both n. and 7t have the
direction of (—1)""'n. Moreover, since n’(ul(s)) = ni(u(s)) is given by (5.2.33) (note that
7(ut(s)) = p(s)), the above equality reduces to

n((5)) - Dttt () = eri(us)) - Duupills), s € Uy kb =1,2. (5.B.31)
To prove (5.B.31) we differentiate both sides of
pe(s) = uls) +egi(p(s))n(u(s)), seU

with respect to si, k = 1,2 and use (5.2.4) (note that u(s) € I') to get

Ds, 2 (s) = {13 — egi(u(s)) W (11(5))} 0, 11(5) + €s i) - Vrgi(u(s))n(pa(s))-
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Here the first term on the right-hand side is tangent to I" at x(s) since u is a local parametriza-
tion of I' and W = PW on I'. Hence

n(p(s)) - D pi(s) = €0sul(s) - Vrgi(uls)).
Also, since 7! = (I3 — eg;W ) 1Vrg; is tangential on I' and W is symmetric,

el (1u(s)) - Ospi(s) = e(Is — egiW) ' Vrgi(u(s)) - (I3 — egiW)Ds pa(s)
= 0, 1(s) - Vrgi(i(s)).

Here we suppressed the argument p(s) of the function Is — eg;WW. Therefore, we obtain
(5.B.31) and conclude that the assertion n. =l on I'L, i = 0, 1 is valid. O

Proof of Lemma 5.2.11. For i = 0,1 let 72 and n! be given by (5.2.32) and (5.2.33) and
xTr) .=
#e(@) V14 e2|7i(z)]?

By direct calculations and the inequalities (5.2.13), (5.2.15), and (5.2.34) we see that

-1, xze€N.

|0%p% ()| < ce? forall x€ N, |a|=0,1,2, (5.B.32)

where 02 = 07195205 for a = (aq,a2,a3) € Z3 with a; > 0, j = 1,2,3 and ¢ > 0 is a
constant independent of €. Since n. = n. on I't by Lemma 5.2.10,

ne = (1) (7~ Vrgr) = (-1l (n - e7) — (<1 e (7 - Vrgi)

on I't. Applying (5.2.34), (5.2.35), and (5.B.32) to the right-hand side we obtain (5.2.40).
Also, the inequalities (5.2.41) immediately follow from (5.2.40).
Let us prove (5.2.42). For x € N we set

Bi(z) = (-1) {wi(w)n(x) N e } .

Then we observe by direct calculations, (5.2.13), (5.2.15), (5.2.34), and (5.B.32) that
000! (z)| < ce forall z €N, |a|=0,1,2. (5.B.33)
We differentiate ni(x) = (—1)"a(z) + ®L(z), * € N and apply (5.2.16) to get
Val(z) = (=113 — d(z)W ()} 'W(z) + V&' (z), =z € N.

Since 7! is an extension of n. (on I'Y) to N, the Weingarten map of It is given by W, =
—P.Val on I'.. Thus, the above equality yields that

W.(z) = P.(x) {(—1)i+1§§(x)W(x) - vq>g(a;)} , zel, (5.B.34)
where R. := (I3 —eg;W)~! on I'. By this equality and (5.2.8) we observe that

W. = (1)1 W| < | (P. - P)RW| + | (R~ Is)W| + |[P.V@L| on T
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and thus we obtain the first inequality of (5.2.42) by applying (5.2.9), (5.2.10), (5.2.41), and
(5.B.33) to the right-hand side of the above inequality. The second inequality of (5.2.42)
follows from the first one since H = tr[W] and H, = tr[W,].

Finally, let us show the inequality (5.2.43). Based on (5.B.34) we define an extension of
the Weingarten map W, (on I'Y) to N by

Wiw) i=PL(x) { (1) Re@)W(2) - VOL(@)}, w e N,
where P! := I3 —ni®@n’ on . For x € N let
Ei(2) i= (~1)" {Pi(2) - P(a) } Bela)W (@),
Fi(x) = (~1)"'P(e) {Be(2) - B} W(z), GL(x) = —PL(x)VeL(x)
so that Wi = (—1)™ W + Ef + Fi + G in N by (5.2.6). Hence by (5.2.12) we get

S -1 . , .
@WQ = Z( )Hrl |:<I3 — dW) :| D.W + 6jE§ + 8]‘F€Z + @G; (5.B.35)
k=1 jk

in N for j = 1,2,3. To estimate the derivatives of E, F!, and G, we observe by the equality
= (- 1)Z+1n + ®% on N and the estimate (5.B. 33) that

e
\P; —F‘ < ce, \aﬁ; - ajﬁ\ <ce in N
From these inequalities, (5.2.10), (5.2.13), (5.B.27), and (5.B.33) we deduce that
|0;EL < ce, |0;F| <ce, [0;GL <ce in N.
Applying (5.2.10) and the above inequalities to (5.B.35) we get
O, Wi(x) — (—1)i+1QTW(x)‘ < c(ld(z)| +¢), =€ N. (5.B.36)

Now we recall that W/ is an extension of W. (on I'!) to N. Hence

3
:Z ]kakW( ), xGFé
k=1

and from PVr = Vr it follows that

o= 3 ([ 7],

k=1

+‘P]k{8kW (—1)*' D, W W}D

on I'.. Applying (5.2.41) and (5.B.36) with |d| = ¢|gi| < ce on I'? to the right-hand side we
conclude that (5.2.43) is valid. O

Proof of Lemma 5.2.12. Since
P(y +ego(y)n(y)) = Py +eqi(y)n(y)) = P(y), yeT,

we observe that
IP(y+q1(u)n(v)) = Poly + go(mn@)] < D | [P = Py + eqi(w)n(y)|.
1=0,1

Applying (5.2.41) to the right-hand side we obtain the inequality (5.2.44) for F, = P.. The
other inequalities are proved by (5.2.41)—(5.2.43) in the same way. O
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Finally, let us prove the formula (5.3.15) in the proof of Lemma 5.3.3.

Proof of (5.3.15). In the proof of Lemma 5.3.3 we consider the mapping
C(s) = p(s") +e{(1 = s3)g0(1e(s")) + s3g1(pu(s")) }n(uals))

for s = (s',s3) € (0,1), s € (0,1)%, where u: (0,1)> — T is a local parametrization of T.
Differentiating ¢ in s we get (5.3.14), i.e

00i(5) = {5 — hels)W () }Os,ps(s") + mi(s)mlu(s), i =1,2,
055 (s) = eg(p(s'))n(u(s"))
for s € (0,1)3, where
he(s) = e{(1 — s3)g0(u(s")) + s391(u(s))},
1(s) i= 85, u(s') - {(1 = 83)Vrgo(u(s')) + s3Vrgr(u(s)}, i=1,2.

For the sake of simplicity, we use the notation &*(s") := &(u(s")), s’ € (0,1)2 for a function &
on I' and suppress the arguments s and s’. Hence we refer to (5.B.37) as

(5.B.37)

05, = (I3 — he W0, + nin®,  94,¢ =egfn® on (0,1)3,i=1,2. (5.B.38)
By (5.B.38) we observe that the gradient matrix of ¢ is of the form

asl Cl 681 CQ 681 C3 f #
Vau(ls — hWH) + 1.
VsC = 8szCl 852C2 882C3 = ( Iu( ’ z—:gﬂ(nﬁ))T K ! > :

a83 Cl a83 C2 a83 C3

Here we consider nf € R? as a column vector and define
0 H1 as H2 as M3> <771>
\VTRE e ! ! , =1"5]).
i <3szu1 Dsytiz Dsypi3 I n?
Since p is a local parametrization of I', the vectors Js, ;1 and Oy, it are tangent to I' and thus
(Vsu)n® = 0. Also, we have W¥n¥ = 0, (n. @ n*)n* = |n¥|?n. = 7., and
(ne ® nﬁ)(nﬁ ®ne) = |nﬁ|277€ X Ne = Ne @ Ne.

From these equalities and the symmetry of the matrix W# it follows that

Veu(ls — hoeWH2(Ve)T + 1. ® egt
Vi(vio)t = (Ve m R ek e ).

Therefore, by elementary row operations we have

det[vsg(vSC)T] — det (VSM(IB - hEW:—.)qu%gs,u)T + Ne @ Ne Ei.?;?§2>
. t< sl = h W) 0 )
eghnl e?(gh)?
= 2(gM2 det[Vou(ls — he WH) (Vo) T]
= (ﬁ) J (1, he)? det 6,
where 6 := Vu(Vsu)? and the last equality follows from the same calculations as in (5.B.23).

Since det V¢ = \/ det[V((Vs¢)T], we conclude by the above equality that the formula
(5.3.15) is valid. O
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5.C Riemannian connection on a surface

In this appendix we introduce the notion of the Riemannian (or Levi-Civita) connection on
a surface in R3 and give several formulas for the covariant derivatives.

Let I be a two-dimensional closed, connected, oriented, and sufficiently smooth (at least
of class C?) surface in R3. We use the same notations on the differential operators and the
surface quantities on I' as in Section 5.2.1. For X € CY(I',TT) and Y € C(T,TT') we define
the covariant derivative of X along Y as

VYX::P{(Y-V))?} on T. (5.C.1)

Here X is a C'-extension of X to an open neighborhood of ' with Xh‘ = X. Note that,
since Y is tangential on T', we have (Y - V)X = (Y - V)X and thus the value of Vy X
does not depend on the choice of an extension of X. The directional derivative (Y - V)X is
expressed in terms of the covariant derivative and the Weingarten map.

Lemma 5.C.1. For X ¢ CY(I',TT") and Y € C(I', TT") we have
Y -V)X= V)X =VyX+ (WX -Y)n on T, (5.C.2)
where X is any C'-extension of X to an open neighborhood of T satisfying )?]r = X.
Proof. Since X -n=0and —Vrn=W on I,
Y -Vp)X-n=Y -Vp(X-n) =X -Y-VP)n=X-(-Vrm)TY =X -WIY =WX .Y
on I'. Combining this with (5.C.1) we obtain (5.C.2). O

The formula (5.C.2) is called the Gauss formula (see e.g. [9, Section 4.2] and [33, Sec-
tion VIL.3]). Let us prove fundamental properties of V.

Lemma 5.C.2. The following equalities hold:
e For X e CY(I',TT"), Y, Z € C(I,IT), and n,¢ € O(T),
vnerng =nVyX +&VzX on T (5.C.3)
e For X ¢ CY(',IT), Y € C(T,TT), and n € C}(T),
Vy(nX) = (Y V)X +9VyX on T. (5.C.4)
e For X,Y € CY(I',1T) and Z € C(T',TT),
Z-Vr(X-Y)=VzX-Y+X -VzY on T. (5.C.5)
e For X,Y € CY(T',IT) and n € C?*(T),

X Vp(Y - Ven) =Y - Vr(X - Vin) = (VxY = Vy X) - Ven. (5.C.6)
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Proof. The identities (5.C.3) and (5.C.4) immediately follow from the definition (5.C.1) of
the covariant derivative. Also, applying (5.C.2) and X -n =Y -n =0 on I to the right-hand
side of

Z-Vpr(X-Y)=(Z-Vp)X Y +X-(Z-V)Y
we get (5.C.5). To prove (5.C.6) we use the formula (see e.g. [43, Lemma 2.2])
DiDjn—D;Dym = [WVrnling — [WVrnljn; on TI',ij=1,23. (5.C.7)
The left-hand side of (5.C.6) is of the form

3
> {X:D,(Y;Dyn) — YiDy(X;D;m)}

ij=1
3 3
= > (XiD,Y; = V;D;X;)Din+ > (X;Yj — X;Yi)D;Dn.
i,j=1 t,5=1
By (5.C.2) and Vrn-n =0 on I', we have
3
> (XiD;Y; = YiDXj)Dyn = {(X - V)Y — (X - Vi) X} - Vi
ij=1

- (VXY _ va) v

Also, using (5.C.7) and noting that X -n =Y -n =0 on I we observe that

3 3
> (XiY; - X,;Y;)D;Dyn =Y X;Y;(D;D;n — D;D;n)
,j=1 i,j=1
3
=) XiY((WVnling — [WVrnln)
ij=1
= (X -WVm)(Y -n)— (X -n)(Y-WVrn) =0.
Combining the above three equalities we obtain (5.C.6). O

By Lemma 5.C.2 we observe that the assignment V: (X,Y) — Vy X defines the Rie-
mannian (or Levi-Civita) connection on I' (see e.g. [9,30,50] for the definition of the Rie-
mannian connection). Note that the formula (5.C.6) represents the torsion-free condition
[X,Y] =VxY —VyX for X,Y € C{(T',TT), where [X,Y] = XY — Y X is the Lie bracket
of X and Y (see e.g. [63]).

Let U be a relatively open subset of I and 71 and 75 be C'! tangential vector fields defined
on U such that the pair {71(y), 2(y)} is an orthonormal basis of the tangent plane of I" at
each y € U. (Since T is at least of class C3, we can take such vector fields for sufficiently
small U.) We call the pair {71, 72} a local orthonormal frame of the tangent plane of I" on
U. Note that

H = tr[W] = Z Wri-m on U (5.C.8)
i=1,2

since {71, 72, n} is an orthonormal basis of R3 and Wn = 0. Let us express several quantities
related to the tangential gradient matrix of tangential vector fields on I' in terms of the
covariant derivatives and the local orthonormal frame.
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Lemma 5.C.3. Let {71, 72} be a local orthonormal frame of the tangent plane of T’ on a
relatively open subset U of T'. For X,Y € CY(TI',TT') we have

diveX = Y VX -7, (5.C.9)
i=1,2
VeX W=>Y VX Wr=>Y WV,X-7, (5.C.10)
i=1,2 i=1,2
VX :VrY = Y VX -V,Y + WX - WY, (5.C.11)
i=1,2
VrX : (ViY)P = ) VX -V, (5.C.12)
i=1,2
WVLX : (ViY)P =) Vy, X VY (5.C.13)
i=1,2

on U, where V; :=V,, fori=1,2.

Proof. Throughout the proof we carry out calculations on U. First note that
(VX)) = (- VD)X =ViX + WX -1)n, i=1,2, (5.0.14)

(VrX)"'n=(n-Vr)X =0

by (5.C.2) and n- VprX; =0 for j = 1,2,3. Since {7, 72, n} forms an orthonormal basis of
R3, we have

dive X = tr[VeX] = Y (Vo X) -7+ (Ve X) 0 n.
i=1,2

The equality (5.C.9) follows from the above equality and (5.C.14). We also get (5.C.10) by
using (5.C.14), WT = W, and Wn = 0 to the right-hand side of

VX W =(VeX)" W = (Ve X) - W+ (Ve X) - Whn,
i=1,2

Let us prove (5.C.11). By (5.C.2) and V;X -n = V;Y -n =0,

VrX VY = (VeX)T - (VeY)T = ) (veX) s - (VeY) T + (VeX)Tn - (VrY)Tn

1=1,2
— ViX+ (WX -m)np - sViY + (WY - 7;)n
> o }
= VX ViV 4 3 (WX - m)(WY 7).
i=1,2 i=1,2

Here the second term on the last line is equal to WX -WY , since WX and WY are tangential
vector fields on I'" and {7y, 72} is an orthonormal basis of the tangent plane of I". Hence
(5.C.11) is valid. Also, noting that P = P, WT = W, and

P(VrY) s = P{ﬁ»y (WY - Ti)n} — VY,
(VrX)ITWri = Wr - V)X = Vi, X + (WX - Wr)n

by (5.C.2), Pn = 0, and the fact that V;Y is tangential on T, we can prove (5.C.12) and
(5.C.13) by the same calculations as above. O
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Next we give an integration by parts formula for integrals over I' of the covariant deriva-
tives along vector fields of a local orthonormal frame.

Lemma 5.C.4. Let {11, 2} be a local orthonormal frame of the tangent plane of I' on a
relatively open subset U of T and V; := V., fori = 1,2. Suppose that X € C*(T',TT) and
Y € CY(T', TT) are compactly supported in U. Then we have

> /(V,-VZ-X —ﬁgmx) YdH =- ) /ViX-VinHQ. (5.C.15)
i—1,27T i=1,271

Proof. The proof is basically the same as that of [50, Proposition 34]. We define a tangential
vector field Z on I' by

Z (ﬁiX . Y)Ti on U,

Z = i=12
0 on T\U.

Since X € C?(I',IT) and Y € CY(T,TT) are compactly supported in U, we have Z €
CH(I',TT). Moreover, since {1, 72} forms an orthonormal basis of the tangent plane of T,
we see by (5.C.3) that Z-V = Vy X -Y on I for all V € C(I',TT). From this fact and
(5.C.5) we deduce that

ViZ mi=7-Ve(Zom) = 2 Vit =7 Vo (ViX V) = Vg, X ¥
on U for i = 1,2. Applying (5.C.5) again to the first term on the right-hand side we get
ViZ mi= (ViViX = Vg, X) Y +V,X - ViY on U,
By this equality and (5.C.9) we see that

diveZ = Y {(ViViX = Vg, X) - Y + V,X - Viv'} on U, (5.C.16)
i=1,2

Since X, Y, and Z are supported in U, we may assume that (5.C.16) holds on the whole
surface I'. Thus, integrating both sides of (5.C.16) over I" and noting that the integral of
the surface divergence of Z over I' vanishes by the Stokes theorem (note that Z is tangential
and I" has no boundary), we conclude that the formula (5.C.15) is valid. O

The formula (5.C.15) gives a relation between two Laplacians acting on tangential vector
fields on T'. For X € C*(I,1T), Y € CYT,TT), and Z € C(I',TT), the second covariant
derivative is defined as

72 [ — J—
VZ,YX = VZVYX - vﬁZYX
The trace of the second covariant derivative is called the connection Laplacian, i.e.

VX =Y Vi, X=Y (Vﬁix - ﬁﬁmx), X € CX(T, TT).
i=1,2 i=1,2
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Here {71, 72} is a local orthonormal frame and V; = V,, for i = 1,2. On the other hand,
the Bochner Laplacian AgX of X € C%(I',1T) is defined as a tangential vector field on T’
satisfying

/ABX-Yd’H2 == /ViX~Vin?{2 (5.C.17)
r i=1,27T

for all Y € CY(T',TT), where we assume that X and Y are appropriately localized by a
partition of unity of I'. (Note that there are other definitions of the connection and Bochner
Laplacians in which one takes the opposite sign.) Then by (5.C.15) we observe that these
two Laplacians agree, i.e.

VX = ApX, X € C%(T,TT).

When the surface I' is embedded in R3, we can also consider the Laplace-Beltrami operator
acting on each component of a vector field X = (X7, X2, X3) on I':

3
ArX = (ArX1, ArXs, ArX3), ATZZEE:Lﬁ-
=1

Let us give a relation between the two Laplacians Ag and Ar.

Lemma 5.C.5. For X € C*(I',1T) we have
ApX = PArX + W?X on T. (5.C.18)

Proof. The relation (5.C.18) is proved in [43, Appendix B|. Here we give another proof of
it. By a localization argument with a partition of unity of I', it is sufficient to show (5.C.18)
on a relatively open subset U of I' on which we can take a local orthonormal frame {7y, 72}.
Let Y € C1(I', TT) be an arbitrary vector field compactly supported in U. By (5.C.11) and
(5.C.17) we have

/ABX-Yd’}-L2 =) /VZ-X-VZ-Yd”HZ
r i=12YT
, (5.C.19)
:—/VFX:VFYdH2+/WX~WYd”H2.
N I

To the first integral on the last line we use (5.2.18) to get

3
/VFX VY dH? =) /(DZ-X]-)(DZ-YJ')dH2
T I

ij=1

3
== /F{(DfXj)Yj + (D;X;)Y;Hn;} dH?
ij=1

:—/AFX-YdHQ—/{(n-Vp)X-Y}HdHZ.
r r

Noting that the second integral on the last line vanishes by (n - Vp)X = 0, we apply this
equality and W7 = W to (5.C.19) to obtain

/ABX'Yd’HQ = /(AFX+W2X)-Yd’H2.
r r
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Now we set Y := Pv in this equality with v € C*(T")3 compactly supported in U. Then since
ApX and W2X are tangential on I' (note that PW = W), we have

/ABX-vdH2 :/(PAFX+W2X)-vdH2
r r

for all v € CY(I')? compactly supported in U. Hence by the fundamental lemma, of calculus
of variations we conclude that (5.C.18) holds on U. O

Note that the normal component of Ar X does not vanish in general even if X is tangential
on I'. Indeed, using X -n =0 and —Vrn = W we observe by direct calculations that

ArX -n=divi(WX)+ W :VpX =divpW - X +2W : VrX on TI.

When T is a flat domain in R?, we have W = —Vrn = 0 by n = (0,0, 1). Hence the normal
component of ArX vanishes and ApX = ArX reduces to the usual Laplacian on R? acting
on each component of X = (X1, X»).

Remark 5.C.6. By Lemma 5.2.6 the function space C?(I',TT) is dense in H™(T,TT),
m = 0, 1,2. Hence the formulas given in this appendix are also valid (a.e. on I') if we replace
C™(T,TT), m = 0,1,2 with H™ (T, TT).
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Chapter 6

Hamilton—Jacobi equations on an
evolving surface

6.1 Introduction

In this chapter we are concerned with the existence, uniqueness and numerical approximation
of Hamilton—Jacobi equations on moving hypersurfaces. Let I'(¢), ¢t € [0,7T] be a family of
smooth, closed, connected and oriented hypersurfaces in R? and Sy := Useo,ry T(8) x {t}.
We consider the following Hamilton-Jacobi equation on the evolving surfaces I'()

0*u+ H(z,t,Vru) =0 on Sr. (6.1.1)

In the above, 0°u = us + vr - Vu denotes the material derivative, vr denotes the velocity of
a parametrisation of I'(t), and Vru = (I3 — v ® v)Vu the tangential gradient of u, where
v is a unit normal field of I'(¢) respectively. The precise definitions and assumptions on
H: St x R? — R will be given in Sections 2 and 3. The well-posedness theory is developed
using the concept of viscosity solutions and existence is achieved through finite volume
discretisations on evolving triangulations.

6.1.1 A motivating example

It is the purpose of this chapter to study the natural development of a theory of viscos-
ity solutions to first order equations on evolving surfaces. One motivation for considering
Hamilton—Jacobi equations of the form (6.1.1) is the following application. Consider the
motion of a closed curve y(t) C I'(t) according to the evolution law

Vi(z,t) = F(x,t) + B(x,t) - p(z, t), x € v(t), (6.1.2)

where V, denotes the velocity of v(t) in the direction of the conormal p and F: Sp —
R, and B: St — R? are a given function and vector field. Let us assume that

V() = {(z,t) € St | u(z,t) = r}

for some r € R with a function u: Ny — R satisfying Vru(-,t) # 0 on ~(t), where Np is
an open neighbourhood of Sy. Choosing parametrizations (-, t): St — R3 of v(t) we have
that u(p(s,t),t) = r for s € S1,t € (0,T). If we differentiate both sides with respect to ¢ we
obtain

ut(@(svt)a t) + ‘pt(sat) : VU(QD(Svt)>t) =0,

278
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or equivalently

0= 8.u(90(5’ t)v t) + ((,Ot(S, t) - UF(QDt(Sa t)’ t)) ’ VU(SO(Sa t)? t)
= 0%u(p(s,t),t) + (npt(s,t) - vp(got(s,t),t)) -Vru(p(s,t),t),

since ¢(s,t) € I'(t) implies that (¢¢(s,t) — vr(p(s,t),t)) - v(e(s,t),t) = 0. Using that
= Vru/|Vru| we obtain from (6.1.2) that at x = (s, t)

B o VFU(.%',t)
Fa,t) 4+ B(x,t) - p(x, t) = Vi(@,t) = u(s,t) - [Vru(z, )]

__Gu@t) oy, Yru@t)

= Wrate 0 T Srate o)

Formally the above calculations then show that the level sets of a solution w of (6.1.1) with

H(Jj,t,p) = F(xvt) |p’ —l-,B(l‘,t) "D — Ur(ﬂfat) "D (613)

evolve according to the evolution law (6.1.2).

6.1.2 Background

Partial differential equations on time evolving hypersurfaces arise in many applications in
biology, fluids and materials science, for example see [6,12,13,16] and the references cited
therein. The theory of parabolic equations has been considered in [2,3,9,26]. Existence and
uniqueness of first order scalar conservation laws on moving hypersurfaces and Riemannian
manifolds has been proved in [11,20]. Viscosity solutions of Hamilton—-Jacobi equations on
Riemannian manifolds are considered in [24]. See [7] and [23] for level set approaches to the
motion of curves on a stationary surface. Numerical transport on evolving surfaces by level
set methods was considered in [1,27]. The numerical analysis of advection diffusion equations
on evolving surfaces via the evolving surface finite element method began in [9], see also
[10,19]. Finite volume schemes for diffusion and conservation laws on moving surfaces have
been considered, respectively, in [21] and [14]. Another approach is to use diffuse interfaces,
see [25].

6.1.3 Outline

The paper is organized as follows. We begin in Section 2 by establishing some notation
and concepts relating to moving surfaces. In Section 3 we generalise the classical definition
of viscosity solution (see e.g. [4,5,15]) to moving curved domains using surface derivative
operators instead of the usual derivatives. In this setting we show that a comparison principle
holds which yields uniqueness of a viscosity solution. As in the seminal work [8] we approach
existence via a discretisation in space and time. To do so, we approximate the moving surfaces
by triangulated surfaces so that we need to formulate our numerical scheme an unstructured
meshes. Numerical schemes for Hamilton—Jacobi equations on unstructured meshes on flat
domains have been proposed in [18] and [22]. In order to guarantee monotonicity of their
schemes the authors in [18], [22] have to assume that the underlying triangulation is acute,
which is a rather strong requirement and difficult to realise in the case of moving surfaces
where the triangulation will vary from time step to time step. In order to address this issue
we construct in Section 4 a finite volume scheme by adapting an idea introduced by Kim
and Li in [17] to the case of evolving hypersurfaces. With this construction we are able
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to prove monotonicity and consistency assuming only regularity of the triangulation. In
Section 5 we prove that the sequence of discrete solutions obtained via our scheme converges
to a viscosity solution if the discretization parameters tend to zero. At the same time this
gives an existence result for the Hamilton—Jacobi equation. Finally, we prove in Section 6
an O(v/h) error bound between the viscosity solution and the numerical solution extending
well-known error estimates for the flat case to the case of moving hypersurfaces.

6.2 Preliminaries

6.2.1 Tangential derivatives of functions on fixed surfaces

Let T' be a smooth, closed (i.e. compact without boundary) and orientable hypersurface in
R3 with outward unit normal field v. For a differentiable function f on I' we define the
tangential gradient by

Vrf(z) := Pr(z)Vf(z), zeT, (6.2.1)

where f is a smooth extension of f to an open neighbourhood N of I' satisfying f = f on
N NI and Pr(x) := Is — v(z) ® v(x) is the orthogonal projection onto the tangent plane of
I' at . Here I3 is the (3 x 3) identity matrix and v ® v = (v;1/); ; is the tensor product of v.
It is well-known that Vp f(z) is independent of the particular extension f . Furthermore, we
define by Arf := V- Vpf the Laplace-Beltrami operator of f. We denote by d the signed
distance function to I' oriented in such a way that it increases in the direction of v. There
exists an open neighbourhood U of I' such that d is smooth in U and such that for every
x € U there exists a unique n(z) € I with

x=m(x)+dx)v(r(z)) and Vd(z)=r(r(x)). (6.2.2)

For a given function f : I' — R we can define f, : U — R via f.(x) := f(w(x)), which extends
f constantly in the normal direction to I'. It is not difficult to verify that

Vf(x)=Vrf(zx), zeT, (6.2.3)
IV fellBay < cllVrfllBm, (6.2.4)
IV fellpy < ¢ (Ve f sy + IVEfIlBT)) - (6.2.5)

provided that the derivatives of f exist. Here, || f||g(p) := sup,ep [f(@)]-

6.2.2 Time dependent surfaces

Let us next turn to the case of time dependent surfaces and assume that I'g is a closed,
connected, oriented and smooth hypersurface in R?®. We consider a family {T'(¢)}ep0.7;
T > 0 of evolving hypersurfaces given via a smooth flow map ®: Ty x [0, T] — R3 such that
®(-,t) is a diffeomorphism of I'y onto I'(¢) satisfying

0P

E(X’ t) =wvr(®(X,t),t), @(X,0) =X, (6.2.6)
for all X € T'g,t € (0,T"). Here we say that vr is the velocity field of I'(¢). Let d(-,t) be the
signed distance function to I'(f) increasing in the direction of v(-,t), where v(-,t) is the unit
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outward normal of I'(t). For each t € [0, T] there exists a bounded open subset N(t) C R3
such that d is smooth in Ny := {Uye (o) (N(t) x {t}) and such that for every x € N(t) there
exists a unique 7(x,t) € I'(t) satisfying (6.2.2).

Next, for a differentiable function f on St, the material derivative of f along the velocity vr
is defined as

0" F(B(X,0),1) = - (F@®(X,0),1)), (X,t) €T x (0,7).

The material derivative is also expressed as
O°f(x,t) = & f(x,t) +vr(z,t) - Vf(z,t), (x,t)€ St, (6.2.7)

where f is an arbitrary extension of f to Np satisfying f ls; = f-

6.2.3 Triangulated surface

In order to approximate the evolving surfaces I'(t) we choose a family of triangulations
(Tu(t))o<n<no of I'(t) and set

T (t) = K(#) and hi= h
() U K@ e wefo.1] Kerm KO

where hp ) = diam K (t) for each triangle K(t). We assume that there exists a constant
~ > 0 such that

Wt e [0,TIVE(t) € Th(t)  hx < 10K, (6.2.8)

where pg(y) is the radius of the largest circle contained in K(t). We denote by vp(-,t) the
unit normal to I'y(¢) oriented in the direction in which the signed distance d(-,t) increases.
It is well-known that for all K(t) C T',(t)

Chi 1y (6.2.9)
Chi ), (6.2.10)

ld(- Ol B(re(2))

<
i@ — v DB @E) <

where we can think of v(-,t) as being extended to a neighbourhood of I'(¢) via v(x,t) =
Vd(z,t) (cf. (6.2.2)).

We assume that the vertices of the triangulation are advected with the velocity vr and thus
the number of the vertices, which we refer to as M € N, is fixed in time. Fori =1,..., M we
call the i-th vertex simply i and write z{ € I'(0) for its point at ¢t = 0. By the assumption on
the motion of the vertices, the position of i at time t € [0, 7] is given by z;(t) = ®(a9,t) € T'(¢)
so that the triangulated surfaces I'y () are interpolations of I'(¢). In particular, T'y(t) C N ()
if hg is sufficiently small and we assume that mp(-,t) := 7(-,?)|r, () is a homeomorphism of
T',(t) onto T'(t) for each t € [0,7]. Writing 7, (-, ¢) for the inverse map, we define the lift of
a function n: I'y(¢) — R onto I'(¢) by

W) = (e o 0), @ € T().
For each t € [0,T] we introduce the finite element space

Vi(t) = {u, € COT1(1)) | up| g (r) is linear affine for each K (t) € Tp(t)}
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together with its standard nodal basis x1(-,t),..., xam(+,t), where x;(-,t) € Vj(t) satisfies

Xi((t),t) = dij.
For a function n € CY(T'(¢)) we define the linear interpolation Ifn € Vj,(t) by

Ihn 277 1131 Xz € t) S Fh(t>'

Lemma 6.2.1. Suppose that n: T'(t) — R, t € [0,T)] is Lipschitz continuous, i.e. there erists
a constant Ly > 0 such that

In(z) = n(y)| < Lvlz —yl, =,y eT(). (6.2.11)

Then we have
In = [T sy < Ch. (6.2.12)

Proof. Fix © € T'(t). Then there exists & € I',(t) such that © = m,(Z,t), say & € K(t) for
some K (t) € Tp(t). Assuming for simplicity that the vertices of K(t) are x(t),z2(t) and
x3(t) we may write

3 3

n(x) — i)' (@) = n(@) = > n@O)xa(@, ) =Y (n(x) = n(@i(t))) (@ 1),

i=1 i=1

since 3%, xi(#,t) = 1. Combining this relation with the fact that x;(&,t) > 0, (6.2.11),
(6.2.2) and (6.2.9) we deduce that

[n(z) — [Thn)! ()] < [max [n(z) —n(zi(t))]

< _ — _
Ly Hllagig\x z;i(t)| = Ly ma2X3|7r(x t) — x;i(t)]

< Ly max (17— ai(t)] + |d(7, 1))

< Ly (kg + Chf((t)) < Chg < Ch.

O
6.3 Viscosity solutions: Uniqueness
We consider the Hamilton—Jacobi equation
8.1,&(.%,75) +H($7t7 VFu(xvt)) = 07 (xvt) € ST» (6 3 1)
u(z,0) = up(z), x € I'(0). o

Here H: S7 x R® — R is a Hamiltonian and ug: I'(0) — R is an initial value. Throughout
this chapter we suppose that there exist positive constants Ly 1 and Lg 2 such that

H(z,t,p) — H(y5,p)| < Lira(jz —y] + [t — s(1+ [p]), (63.2)

for all (x,t), (y,s) € St and p,q € R3. Furthermore, we assume for the velocity field that
vr € CY(S7). Note that the Hamiltonian in (6.1.3) satisfies the above conditions provided
that F and 3 are Lipschitz on Sy.

For I' = I'(t) with each fixed t € [0,7] or T = Sr, we denote by USC(T) (resp. LSC(T))
the set of all upper (resp. lower) semicontinuous functions on I'. In what follows we shall
work in the framework of discontinuous viscosity solutions.
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Definition 6.3.1. Let ug be a function on I'(0). A locally bounded function v € USC(Sr)
(resp. u € LSC(S7)) is called a viscosity subsolution (resp. supersolution) of (6.3.1) if
u(r,0) < ug(x) (resp. u(x,0) > ug(x)) for all z € I'(0) and, for any ¢ € C1(St), if u — ¢
takes a local maximum (resp. minimum) at (zg,t9) € St with to > 0, then

0*p(xo,to) + H(zo,to, Vre(xo, to)) <0 (resp. >0). (6.3.4)
If u is a sub- and supersolution, then we call u a viscosity solution to (6.3.1).

By the definition above, a viscosity solution is continuous and satisfies u(z,0) = ug(x), = €
I'(0). In Section 6.5 we prove that the upper and lower weak limits of a sequence of approxi-
mate solutions are a subsolution and supersolution, respectively, and then obtain a viscosity
solution by showing that the upper weak limit agrees with the lower weak limit. For this
argument and the uniqueness of a viscosity solution the following comparison principle is
crucial.

Theorem 6.3.2. Let u be a subsolution and v be a supersolution of (6.3.1). Suppose that
u(-,0) <v(-,0) on I'(0). Then u <v on St.

Proof. We essentially use a standard argument that is e.g. outlined in [5, Section 5]. Let us
define for n > 0 the function u,(z,t) := u(z,t) — nt. Clearly, u, € USC(Sr) and u,(-,0) <
v(+,0) on I'(0). Since v € LSC(St) we have u, —v € USC(Sr) so that o, := maxg—(uy —v)
exists. Let us suppose that o, > 0. We use the doubling of variables technique and define
for0<ax1

|z —y|> + [t — s
B} )

Uo(z,t,y,s) = uy(z,t) —v(y,s) — (z,t,y,s) € Sy x St.

Q@
The function V¥, is upper semicontinuous on Sr x Sr and hence attains a maximum at
some point (Z,t,7,5) € Sy x Sp, where we suppress the dependence on «. It is shown in
[5, Lemma 5.2] that

T—gl 5P

2 ’ 052

— 0, as a — 0, (6.3.5)
>0, for small o > 0. (6.3.6)

a

We define for (z,t), (y,s) € R* the functions

|z — > + |t — 5

1z —y|* + ]t —s?
o? '

gOl(x,t) = v(y,s) o

SD (ya = uﬁ ﬂ

Clearly, the restriction of ¢?, i = 1,2 to St belongs to C*(S7). Since u is a subsolution to
(6.3.1) and u(z,t) — (Y@, t) + nt) = (uy — ¢")(z,t) = Vo(z,t,7,5) takes a maximum at
(z,t) = (z,t) € Sp with t > 0, we have

0! (z, 1) + H(Z,1, Vre' (7,1) < —

Observing that by (6.2.1) and (6.2.7)

Vgl (1) = P, ) (a ), % (1) = 5t~ 5) + —ger(e 1) - (x—9)

we deduce
ﬂf—g)
)

vp(Z, 1) - ( —i—H(xt—prﬂx—’)g—n. (6.3.7)
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Since v is a supersolution and (v — ¢?)(y,s) = —V¥4(7,%,y, s) takes a minimum at (y, s) =
(7,5) € Sy with 5 > 0, it follows that

0°¢"(9,5) + H(5,5, Ve (7.5)) 2 0
and we obtain similarly as above

2(5_2 e %vr(ﬂ, 5)- (T —gy) - H(y,3, %Pr@, 5)(z —y)) <0. (6.3.8)

a

We deduce from (6.3.7) and (6.3.8) that
_ 2 3 o L
A= @{vr(xat_) - vr(y78)} ’ (‘T - y)
_ 2 2
v (08 SR —0) -1 (1.5 5REE-0) < -1 (639
Since vr, Pr are smooth on St we obtain with the help of (6.3.2), (6.3.3) and (6.3.5)
_ 2 _ o B o B B
|A| < ﬁ(wr(xva - UF(% S)| + LH,2|PF(‘T7t_) - PF(y7 S)’)|(IJ‘ - y|

+ Luallo =g+ -5 (14 SR @ - 9))

+oz2—>0, a—0

contradicting (6.3.9). Hence, o, < 0, so that u, < v on Sp. The result now follows upon
sending n — 0. O

Corollary 6.3.3 (Uniqueness of a viscosity solution). For any initial value uy € C(I'(0))
there exists at most one viscosity solution to (6.3.1).

6.4 Finite volume scheme

Let us next turn to the approximation of (6.3.1). As mentioned already in the introduction,
our scheme is based on the finite volume scheme for Hamilton—Jacobi equations in a flat and
stationary domain introduced by Kim and Li in [17].

Let N be a positive integer, 7 := T/N a time step, t" = nr,n = 0,...,N and 2] =
zi(t"), V' = Vip(t"). In order to derive our scheme we start from the following viscous
approximation of (6.3.1)

0%u(x,t) + H(z,t,Vru(x,t)) = eAru(z,t), (z,t) € St, (6.4.1)

where 0 < e < 1. Let us fix i € {1,..., M} and consider a time-dependent set V;(t) C I'(¢)
centered at z;(t). Integrating (6.4.1) for ¢ = " over V;(¢") we find that

/ 6'ud7-12+/ H(-,t", Vru) dH? _5/ ArudH?. (6.4.2)
vi(tm) vitr) Vi(tn)

Here, H" is the n-dimensional Hausdorff measure. Let us consider the first term on the
left-hand side of (6.4.2). Using the transport theorem (see e.g. [10, Theorem 5.1]) and
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approximating fVi(t) wdH? by u(zi(t),t)|Vi(t)| (|Vi(t)] = H2(Vi(t))) we obtain

/ O*udH? = d/ wdHfy_pn —/ Vr - vr udH?
Vi(tm) dt Jv ) Vi(tn)
n+l yn+tl (gn+1\| _ n 4n - (an
-~ u(zy T ) V()] — (el )| Vi(t")] / V- op udH?.
T Vi(t")

Since %]Vi(t)] = f%(t) Vr - vr dH? we may approximate

Vit =~ [Vi(e)] + 7 / Vr - op di?

Vi(tm)
so that ot
bl gty (2
/ O*udH? ~ wlay ™, 1) — ulad, ) [Vi(t"™)].
Vi(tn) T

Finally, after applying the Gauss theorem for hypersurfaces to the integral on the right-hand
side of (6.4.2) we obtain

M(t”)|+/ H(-,t", Vru) d?—[2z5/ @d’Hl, (6.4.3)
Vi(en) ovi(em) O

u(af ) —u(af, )

T

where p denotes the outer unit conormal to dV;(¢"). In order to turn (6.4.3) into a numerical
scheme we construct a suitable discrete version V™ C T',(#") of Vi(t"). Let p; € N be the
number of triangles that have the common vertex ¢, which is independent of n. The other
vertices of the triangles with common vertex ¢ are denoted by i;, j = 1,..., u;, which we
enumerate in clockwise direction. We write T;” € Tn(t") for the triangle with vertices i, i},
and 4,41 and Ejm, Ejm for the edges of T;”’ connecting the vertices 7 and ¢; and the vertices
ij and @11, respectively (see Figure 6.1, left).

Lj+1

j+1

Figure 6.1:

Let d;”’ be the length from the vertex i to the contact point on E]m of the inscribed circle
of T;"" and d™' := min{d}" | j = 1,...,1;}. We define the volume V™' C T1(t") as a
polygonal region surrounded by line segments perpendicular to each edge E;-” and whose

distances from the vertex i are all equal to d™'. The parts of the edge of vt perpendicular
to B and lying in T;"'} and T,"" are denoted by e?’i and e?’;{ with their length h?i and
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h? Ilg, respectively (see Figure 6.1, right). Note that in view of (6.2.8) there exist constants

0 < a1 < ag and C > 0 such that
hl + By .
L IR <y b < CAM (6.4.4)
|En,Z| Tj
J

o <

foralln=0,1,...,.N,i=1,... M,and j =1,..., ;.
If we look for a discrete solution of the form wj = Zf\il ul'xi(-,t") € V;*, then (6.4.3)
motivates the following relation:

U?+1 ) i S 1 n,i n 4n n n - UZ B u? n,i n,i
f\v |+ VT H (%wt 7VFhuh’T]nvi> =€ ZW(hj7L+hj,R)
j=1 Jj=1 J

for suitably chosen €' > 0. Here, Vr,u" = (I3 — 1/ '® 1/ )Vuz with yjm = v, +ni. Note

hiTr
n,t . mn, .
that v; and hence Vr,u" is constant on Tj ‘. To summarize, our numerical scheme for the

Hamilton—Jacobi equation (6.3.1) looks as follows. For a given ug: I'(0) — R, set

M
u) = IPug = Zu?xz'(-,O) e VP, i=ug(z?). (6.4.5)
i=1

Forn=0,1,...,N —1,if u} = Zf\il ul'xi(+,t") € V" is given, then we define

M
uptt = Sp(uf) = Z ul T () e vt (6.4.6)
i=1
where
wf T = [Sp(up))i o=l — THM(ulul sup, ), i=1,..., M. (6.4.7)
Here H*(uf, (P ,ug‘w) is the numerical Hamiltonian given by
HP (uf )
|[Vmin T" o uy

- Z |VT”| H (xl " thuh|T7”> ‘Vn z| Z Z] nz h;llz/ h?,’}lz) (648)

Let us derive several properties of the finite volume scheme (6.4.5)—(6.4.8). It is easy to see
that the scheme is invariant under translation with constants, i.e.

Sh(up +¢) = Sp(up) + ¢ (6.4.9)
for any uj € V;* and ¢ € R. We proceed by proving that the scheme is montone.

Lemma 6.4.1 (Monotonicity). There exist positive constants C1 and Cy depending only on
v and Lo such that, if

el = max thn,i, T < Cy mljn B} d (6.4.10)

and ul, vy € Vi satisfy ul} < v on Tp(t"), then SP(ult) < SP(vl) on Tyt t).



6. Hamilton—Jacobi equations on an evolving surface 287

Proof. Let u, vy € V;* be of the form

M M
upp = D uixi( ), v =3 o) on Tt
=1 i=1

Note that u} < v on I'y(t") is equivalent to u] < v for all ¢ = 1,..., M since the nodal
basis functions y; are piecewise linear affine and satisfy x;(x;(t),t) = d;;. By the same reason
it is sufficient to establish that

[SE(up))i < [Sp(vp)]i forall i=1,...,M (6.4.11)

in order to prove our claim. For i =1,..., M, by (6.4.7) and (6.4.8) we have

[SE (o)) = [SH(up))i = vt — ul + 7(I1 + T2 + I3), (6.4.12)
where It + Iy + I3 = —H]' (v], AR )—i—H”( ul', ?1""7“?“-) with
i ‘Vn,i mTTl,i
P J n . n )
Il = - ]gl W {H (Vrhvh’T;,z) - H (vr‘huh|T]'_n,z>} N
I = Z' —I— R ,
L

fo S =) i (1 + )
) ]:1 |E;L,’L‘

In the definition of I} we suppressed z}' and t" of H. Let us estimate I, I2, and I3. By
(6.3.3) and an inverse inequality

)H (VphUZ|Tn,i) —H (Vphuan,i) < Lpus ‘VphvﬁT@i — VFhUZ|T@,i
j J J
< CIV 0}~ ) ol < CLEP|™ g~

< CIEM ™M) =) + (] —uf) + (of,, —uf, )},

15 1541 Ji+1

: n ,n : n, n n : Hi n,t n,i n,g|
since uy, vy are linear on 77" and vy — up > 0. Using that } 0%, [V NI /[V™]| =1 as
well as

|yt mT;“\ = dm(hj,; + hJHL) < \E’”\ mathm, j=1,..., 1, (6.4.13)
we get
|| < W(vy —ul) + P max W (W —ui). (6.4.14)
J 7 7j=1

Next, from (6.4.4) and the fact that uZ < fufj for j =1,..., u; we infer that

Oé16
\Vm| Z v —uf). (6.4.15)
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In view of the relation [V = 37¥* %dm(hm h?;z) and (6.2.8) we obtain
ih?£+h]R< 1 1 i(h"’i+h”’i)— 2 1
\V"ZI |ET V™ ming [ 2R d ming | BT
C < cCy 1
~ max; thn,i min; [E7] € min; B

where we used (6.4.10) in the last step. Hence

cc

Iy> - (0 —ull). (6.4.16)
min; |[E;”|

From (6.4.12), (6.4.14), (6.4.15), and (6.4.16) it follows that

[k (vr)i =[Sy (up)li

TC(1+Ch) 1 -
> (11— ——) (v —uj') + —— (e} — Cmaxhn,i v — g
ing ) T ) 2( o
which yields (6.4.11) if we choose C; = C'/a; and Cy = 1/C(1 + C4) in (6.4.10). O

In what follows we write I}’ instead of I,tlngo, ie.

I = Z%xz, YEVE, o =i, t").

Lemma 6.4.2 (Consistency). Suppose that (6.4.10) is satisfied. Then there exists a constant
C3 > 0 depending only on vy, Lo such that

o — [SiUR )i
T

—{0%p(af' ") + H(zf, 1" er(fﬂ?vtn))}'

< ot (I¥rollngsp) + 1930 ey + 10" elagem) (6:417)

for all o € C*(S7), n=0,1,...,N —1, andi=1,..., M. Here, (0°)%p is the second-order
material derivative of .

Proof. Using (6.4.7) and (6.4.8) we have

o = [Sppe)l _ e —

+ Hi (@fs #iys - 05, )-

T T
Let us set
n+1 o
= e GO
Hi ‘Vn,z N T”J‘
I = Z WH(JU?J”, VFH}?@’TJM) — H (a7, t", V(i t")),
j=1

el 901 i
I3 = J + B
3 “/nz|JZI ‘Enz ]R)
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so that
R SO /%) P
(101 [ h( h@)] o {a s0(

T

2 ) + H(z™, ", Vgt ")y =T + b+ I3 (6.4.18)

and estimate Ij, I, and I3 separately. From ¢I' = @(z7,t") = o(®(z,¢"),t") and the
definition of the material derivative it follows that

n+1 n+1
QO?+1 . t d t

AL et ds= 1 [ otetetade, s ds

T Jn
Applying the definition of the material derivative again we obtain

1 tn+l

I = / {0%(D(a7, 5), 5) — O (®(x(, "), ") }ds

T Jin
tn+1

_ i/tn /t:(a')%(@(x?,g),g) d3 ds.

Since ¢ € C?(S7), the second-order material derivative (0°)%¢ is bounded on S7. Hence by
the above equality, t"*! — " = 7, and (6.4.10) we obtain

(thrl — tn)Z o\ 2 o\2 o\2
10" ¢llpy) = TI(0*) @l gy < CRIO*) @l psr)- (6.4.19)

Next we estimate I». From now on, we suppress " in all functions and 2" in the Hamiltonian.
Clearly,

i Vn,i ) Tﬁ,z‘
I = Zl ”VW {H (Vphlg@bjp,i) — H(V[‘(,D(J}?))} . (6.4.20)
j=

For each j =1,..., u;, the inequality (6.3.3) yields

)H (vphfgw\T;,Q - H(Vpcp(x?))’ < Lus ‘vphf;;gayTJn,i ~ Ve, (6.4.21)

Abbreviating ¢! (z) := ¢(m,(2)), 2 € T}, we may write

Ve, [ plgns — Vro(al)
J
= (Ve il = Vi, (@) + (Ve (a]) - Vrp(al)) = A+ B, (6422)

-l

M,
7

Since I,’anlT;l,i is the linear interpolation of ¢ we obtain

|A] < Ch||V12“h9071||B(T]7L,i) < Ch(IVrél per + IVE@l pisr))- (6.4.23)

On the other hand, we infer from (4.18) in [10] and the relations mp(z]) = «?,d(z]) =
0, v(z]') - Vro(z]) = 0 that

B = (I - v} @ v}")Vrp(a]) = Vre(a}) = (v(a]) ® v(}) — v)" ©v]") Vre(]),
so that by (6.2.10)

1BI < 20y = il e | V10l ) < CHIV L@ s, (6.4.24)
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Combining (6.4.20)—(6.4.24) we obtain

1] < Ch (900l p(s) + IVEelpn) ) - (6.4.25)
Finally, let us write
I3 = Hfifl”(ah + J2), (6.4.26)

where

)22 h?£+hnl . . . N n
Ji = — T{(%’j — i) = Vrep(ay) - (zf, — =)},
— |E
j=1 J
Hi n xz _x:b n,i n,%
Joi= = | Vep(ai) - BRI (5L + hj’R)-
J

Jj=1

(6.4.27)

Extending ¢ constantly in normal direction via ¢, and recalling (6.2.3) we have
Ol — @l — Vrg(al) - (o) — a7) = pelaly) — pelal) — Vipela?) - (&) — )

’ 1
- / [Voela? + 5(z — al)) — Vipo(al)}ds - (2! — 27)

/ (/ Vipe(a) + 3(af — af))(af )ds> ds- (af —a7).

Thus, we deduce from (6.2.5) and (6.4.4) that

Hi
|| <C (HVFSOHB(E) + ||V12“90HB(§)) Z |E;L’Z|2- (6.4.28)
j=1

To estimate Jy we observe that

1223
0= / dive,pdH? =Y / divp, pdH? (6.4.29)
n,i ]:1 ‘/'7'1,7.'(7’_'[}”1Z

for the constant vector p = Vrp(z?) € R3. For each j=1,.. . V¥ T]m is a flat

quadrilateral whose sides consist of the edges e’ R, e

1L and

St = EP 0oV nT),  Shy = BNy oVt N T,

The unit outward co-normal u;” to (V™ N TJT”) (i.e. the unit outward normal to 9(V"™ N

T]m) that is tangent to T]’”) is given by

n,t n,t
“g B N CR
’I'L ¥
nyi _ :“g+1,E on g+1 L
luj - n,t Sn,z
KL on Oy

n,i
b

Tt on S™
Hit1,Rr 5,R
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tj
1j_1
Q
7
j+1
i ?
Figure 6.2:
where (see Figure 6.2)
{C—
ng 15 ? ng . N, n,t ng o N n,.
i = [ and  pip = vt X g, R = SV X (6.4.30)
'lj (2

Here, x denotes the vector product in R?. Using the divergence theorem for integrals over
a flat quadrilateral we have

/ .divde:/ .p-u?’éd%1+/ P pdH!
Vn,imTjT‘vZ e;’}; ’ et ’

J1,L
+/ .p-uﬁfdﬂl+/ D g dH
s s

o n,g  n,i n,t n,t Mg ([, Tyl n,i
= A rigp 0 b e + A (g + gl R

since \e?”ﬁ = hZ’é, ]e?jﬁLL\ = h?_fl ;, and ]S;ILz\ = \S;l;%] = d™* by the definition of the volume
V™%, Summing up both sides of the above equality over j = 1, ..., u; we obtain from (6.4.29)
0="2 (- wm)(Wp +hyg) +d™ Y p- (W7 + uip)
=1 j=1
i A A
= —Jy+d" Y Vrp(a}) - (U] + uip).
j=1

Here the last line follows from p = Vro(z}'), (6.4.30), and (6.4.27). Hence

1253

| Ja| = |d™ > " Vrp(a}) - ()] + 15 p)| < Cd™IVre| g max w57 + gl (6:431)

j=1
Note that, contrary to the case of a flat stationary domain considered in [17], the equality
,u?i = — uy’é does not hold in general because the triangles 7;"') and T;"" do not lie in the

same plane. Instead we deduce from (6.4.30) and | ,u?é =1

n,i

R n,i
|y + 145k

= (" = V) X il < = v

g - (6.4.32)
< vt = v )|+ (ef ) = V)] < Ch
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by (6.2.10). Inserting (6.4.28), (6.4.31) with (6.4.32) into (6.4.26) and taking into account
(6.4.4) as well as (6.4.10) we derive

n

i
1] < Ot | S IEPP + v | (1900l pgm) + 1V3¢l s )
V] ; J (51) (57) (6.4.33)
< (IVroll ) + V3ol ngem) ) -
The result now follows from (6.4.18) together with (6.4.19), (6.4.25) and (6.4.33). O

6.5 Convergence to viscosity solutions

The purpose of this section is to prove that the approximate solution generated by the
scheme (6.4.5)—(6.4.8) converges to a viscosity solution of the Hamilton-Jacobi equation
(6.3.1) providing at the same time an existence result for this problem. We start with a
technical result that compares the nodal values of a solution of the scheme with those at the
initial time, see Lemma 2.3 in [17] for a similar result in the flat case.

Lemma 6.5.1. Suppose that v} = M urx (1) € Vi is a solution of vt = SP(vl),n =
0,...,N—1 with initial data v} (z9) = vo(a?),i =1,..., M, where vy : T'(0) — R is Lipschitz
continuous with constant Lo. If (6.4.10) holds, then there exists a constant Cy > 0 depending
on v, H and Ly such that

max_[of —0?| < Cyt", n=0,1,...,N. (6.5.1)

i=1,...,.M

Proof. Let us denote by Ug the push-forward of vy i.e. vg(x,t) = vo(® (1)), (z,t) € St
and by I,’;vg € V}" its interpolant. Since z? = ®(z?, ") we have

[Tiofls = Tivb(ar) = of(af ") = vo(@ ' (2], ") = vo(a?), i =1,...,M.  (65.2)

Note that the right-hand side is independent of n. We claim that there exists a constant
R > 0 such that
\VIjvgl < R on T'p(t"). (6.5.3)

To see this, let us fix a triangle K (t") C I',(t") whose vertices are denoted for simplicity by
x}, x and z%. By transforming onto the unit triangle, using (6.5.2), the Lipschitz continuity
of vg and ®~! as well as (6.2.8) we obtain

C
VIt | < max | Ik (27) — Mok (27)] = max |vg(z?) — v (2
VI S e g ) — T = - masoofed) —vofaf)
CL CL
< — max|af — 2] = —— max |0 (2, t") — & (2], 1")]
pK(tn) 7/12,3 pK(tn) 21273
CL
< =% max|z} — 2}| < CLyy = R
pK(tn) 1=2,3

proving (6.5.3). Recalling the definition (6.4.8) of the numerical Hamiltonian we deduce with
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the help of (6.5.3) and (6.4.10) that

[ ([T (TRofliys - TR, )
e Vi T CER | U e URT I PR
J # n,i n,i
< 2 e [ (a7, Ve, T )| + Vm| Z ’Em’ (B2 + )
max; (R
< max |H(z,t,p)| +C ——2 " <:Cy (6.5.4)
(#,t)€57,[pl<R 1464

where Cy4 can be chosen independently of ¢ and n.
Now let us show by induction with respect to n =0,1,..., N that

P < Il + Cut™ forall i=1,..., M. (6.5.5)

Since v = vo(2y) = [I}?vg]i the inequality (6.5.5) holds for n = 0. Let us assume that
(6.5.5) is true for some n € {0,1,..., N — 1} so that v} < Iﬁvg + Cyt™ on T, (). Applying
Lemma 6.4.1 together with (6.4.9) we infer that

vt = S (o) < S(Ijvh + Cat™) = Sp(Iivh) + Cat”
on I'y, (t"*1), and hence by (6.4.7), (6.4.8), and (6.5.4)
ot < (SRR + Cat™ = [Iof]s — THP (IR, (TR - [[hvo}zu ) + Cut”
< [IP0f)s + Cur + Ct™ = [T 0f]; + Cut™!
foralli =1,..., M, where we used (6.5.2) in the last step. Hence we see by induction that
(6.5.5) holds for alln = 0,1,..., N. By the same argument we can show that [I”UO] —Cyt" <

ol forallm=0,1,...,N and i=1,..., M. Finally, (6.5.2), (6.5.5), and the above inequality
yield (6.5.1). 0

Let us denote by u} = Zf\il ul'xi(tn) € V', n = 0,1,..., N the finite element function
on I'y(t,) given by the numerical scheme (6.4.5)—(6.4.8). Now we define an approximate
solution uil : St — R by

Zu Xi(x,t), te [t "), z e (1) (6.5.6)
forn=0,1,...,N—1 (we include t = tN =T whenn = N — 1), where wy is a given function
on I'(0). For (x,t) € St set

a(z,t) ;= limsup wb(y,s), wu(x,t):= liminf u}(y,s). (6.5.7)
h—0 _ h—0
S13(y,s)—(x,t) ST3(y,s)—=(2,t)

It follows from [4, Section V.2.1, Proposition 2.1] that @ € USC(St) and u € LSC(St).
Our aim is to show that % (resp. u) is a subsolution (resp. supersolution) to (6.3.1). As a
first step we prove

Lemma 6.5.2. Let u and u be given by (6.5.6)—(6.5.7). Assume that (6.4.10) is satisfied
and that ug € C(I'(0)). Then u(-,0) = u(-,0) = ug on I'(0).
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Proof. Fix zp € I'(0). By (6.5.7) it immediately follows that u(zg,0) < @(xo,0). Therefore,
if the inequality

(xo,0) < up(xg) < u(xo,0) (6.5.8)

holds, then we get @(zg,0) = u(zg,0) = up(xp). Let us prove (6.5.8). Since I'(0) is compact
in R3, the function ug € C(I'(0)) is bounded and uniformly continuous on I'(0). Hence
setting

wolr) = sup{luo(z) — uo(ao)| | & € T(0), & — 2ol <1}, € [0,00),

we see that wo(0) = 0 and wy is bounded, nondecreasing, continuous at » = 0. From this fact
and the proof of [15, Lemma 2.1.9 (i)] there exists a bounded, nondecreasing, and continuous
function w on [0, c0) satisfying w(0) = 0 and wy < w on [0,00). Fix an arbitrary 6 > 0. By
the above properties of w we may take a constant As > 0 such that w(r) < § + Asr? for all
r € [0,00). From this inequality and |ug(z) — ug(zo)| < wo(|x — z0]) < w(|z — x0|) it follows
that

uo(z) < uo(zo) + 6 + As|lz — xo|*>  for all z € T(0). (6.5.9)

Now we construct v} = ZZ 1 ,L vxi(t") € Vi, n=0,1,...,N by (6.4.5)-(6.4.8) from the
initial value vo(x) := As|r — xo|?, z € T'(0). Then by interpolating both sides of (6.5.9) on
I',(0) and observing that ug(zg) + J is constant we have

uf) < ug(zo) +0+v), on Ty(0).
Combining this inequality with Lemma 6.4.1 and (6.4.9) we obtain
up = Sp(ul)) < SP(ug(z0) + 6 + ) = ug(xo) + 0 + Sp(v)) = up(xo) + 6 +v) on Th(th)
and then inductively u} < ug(xg) + 6 + vy on I',(t") for n =0,1,..., N, or
ul' < ug(zo) + 0 4+ vl < ug(wo) + 6 + v) + Cyt™ (6.5.10)

forn =0,1,...,N,7=1,..., M, where we applied Lemma 6.5.1 to v;. Multiplying both
sides by xé(-, t),t € [t",t"!) and summing them over i = 1,..., M we infer with the help of
(6.5.2) (with ¢ instead of ¢")

ub (z,t) < ug(xo) + 6 + [Ihvo] (x) +Cyt for all (z,t) € St. (6.5.11)

Since vg(azo, 0) = vo(zo) = 0 and vg is Lipschitz continuous on St we may estimate

(6] (@) < NIl @) = v D] + o, ) = o0, 0)
< w5 1) = [Thvfl | By + Clle — ol + ) < C(h+ | — o] +1),
where we also used Lemma 6.2.1. Combining this estimate with (6.5.11) we infer

u(zp,0) = lir}? sz)lp ul, (z,t) < ug(wo) + 0.
%
53(33:t)ﬁ($070)

Since § > 0 is arbitrary, it follows that w(xo,0) < ug(zo). By the same argument we can
show ug(zo) < u(xp,0). Hence (6.5.8) is valid and the lemma follows. O
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Lemma 6.5.3. Under the same assumptions as in Lemma 6.5.2, u (resp. w) is a subsolution
(resp. supersolution) to (6.3.1).

Proof. We know from Lemma 6.5.2 that u(z,0) = u(z,0) = up(x),x € I'(0) so that it remains
to verify (6.3.4).

Let us suppose first that ¢ € C?(S7) and that % — ¢ takes a local maximum at (zo,ty) € St
with tg > 0. Since @ is bounded on S7 we may assume by a standard argument that @ — ¢
has a strict global maximum at (xg,%g). Let goﬁl be given by

Z% Xi(x,t), te [ttt z e D(t), (6.5.12)

where ¢ := p(z,t"), i =1,..., M and we include t = t¥ = T if n = N — 1. We claim that

(@—@)(x,t) = limsup  (uj, — @},)(y, 9). (6.5.13)
h—0
ga(y»s)ﬂ—)(ﬂﬁo»to)

In order to see this, we note that in view of the Lipschitz continuity of ¢ on St it is sufficient
to show that goﬁl — ¢ uniformly on Sr. But,

loh — @l pggy < S le (- 8) = el s
€

)

M
+ max sup o(xi(t), 1) — (a?, t" Xé ot
et xep(ﬁ)mwﬁ\;(( (£):) = ()X, 1)
<Ch+ max sup l(i(t),t) — p(af,t")] < C(h + )

n=0,.. . N=1;1  Mn<t<tntl

by Lemma 6.2.1, the fact that x;(t) = ®(2,¢) and the Lipschitz continuity of ¢ and .
Thus, (6.5.13) holds so that there exist h; > 0 and (yj,s;) € Sr, j € N with h; — 0,
(yj,85) = (z0,t0), and (uh - goh )(yj,85) = (@ — @) (xo,to) as j — oo. For each j € N, the

function ulhj — golhj is of the form

M
(uh, = oh) @ t) = D (uF = @l)xk(w, 1), @ € T(t),t € [(", " )n=0,...,N —1.
i=1
Let us choose nj € {0,1,...,N} and i; € {1,..., M} such that
uZ_j—goz_j:max{u?—go?]nzO,...,N,izl,...,M}

and use x;(z,t) >0,i=1,...,M and Zf\il Xi(z,t) =1 to get

(u, — b V(a,) < (w7 — o szxt (b )@, 179) (6.5.14)

for all (x,t) € Sy. In particular, for all j € N,

(= b )y 55) < (uhy, — 0, (@] £79).
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Since (.CCZJ ,t") belongs to the compact set St, we may assume (up to a subsequence) that
there exists (z,%) € St such that (acg,j,t”f) — (Z,t) as j — oo. Then by the above inequality
and (6.5.13) we have

_ . 1 l . l l ; ) _ _

(@ = @) (o, o) = lim (un; —pn,;) (5, 55) < hljf,n_ilip(uhj — ¢, )@y 1) < (u = 9)(2,7)
where the last inequality follows from the fact that @ — ¢ € USC(S7). Recalling that @ — ¢
takes a strict global maximum at (xg,tp) we infer that (Z,t) = (zg,to). In particular, since
lim; ,o t" =t = to > 0 we have for sufficiently large j that "5 > 0 i.e. n; > 1. Thus we
% =1y in (6.5.14) to obtain

can set (z,t) = (z;

l n;— nj

1 o )
(uhj o SD%])(:E,L 7th 1) S 5j = unJ — SOZ‘, ,

5 J

or equivalently, u?rl < w?rl + 0 for i =1,..., M. From this we see that

W <k, on Ty (),

and then by Lemma 6.4.1 and (6.4.9)

i i—1 i—1 i—1 i—1 i—1 i—1 .
w, =Sy (! ) < ST (L) e+ 8) =8, (1) @) + 85 on Iy (7).

J

Inserting x = xZJ € I'y, (t") into this inequality we get

; i—1, n;—1 i—1, n;—1 ; ;
W < (SN ) 85 = (ST T ), T — ol

J

by the definition of §; and hence,

j i—1,.m;—1
v, =S, (L) @i, <0. (6.5.15)

J

Since ¢ € C?(S7), we can combine (6.5.15) with Lemma 6.4.2 to derive

0% ) + H(x? ™ T V(e T ) < Cuhy (6.5.16)

2 i 2
and observing that

(27 ,47) — (227 T < O < Chy =0, j = o0
we obtain (6.3.4) by sending j — oo in (6.5.16).

Finally, let ¢ € C'(ST) and suppose that 4—¢ takes a local maximum at (xq,tg) € S, to > 0.
As in the first part of the proof, we may assume that u — ¢ takes a strict global maximum
at (zo,t0). Let us approximate ¢ by a sequence (¢5) C C%(St) such that ps — ¢ in C(St)
as & — 0. For a suitable subsequence there exist (zs,ts) € St such that (zs,ts) — (z0,0)
and u — s takes a global maximum at (x,t5). In particular, t5 > 0 for sufficiently small

0 > 0. It follows from the first part of the proof that
0%ps(ws,t5) + H(xs,ts, Vrps(zs,ts5)) < 0.

Letting § — 0 in the above inequality we see that ¢ satisfies (6.3.4) at (zg, %), so that @ is
a subsolution to (6.3.1). In the same way one shows that u is a supersolution. O
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Finally, let us prove the existence of a viscosity solution to (6.3.1).

Theorem 6.5.4. Suppose that ug € C(I'(0)). Then there exists a unique viscosity solution
to (6.3.1).

Proof. The uniqueness of a viscosity solution was already shown in Corollary 6.3.3. Let
us prove the existence. Since ug € C(I'(0)), Lemmas 6.5.2 and 6.5.3 imply that @ and u
constructed by (6.5.6)—(6.5.7) are a subsolution and supersolution to (6.3.1), respectively,
and satisfy u(-,0) = u(-,0) = ug on I'(0). Hence we can apply the comparison principle (see
Theorem 6.3.2) to the subsolution @ and the supersolution u to get @ < u on St. Moreover,
by (6.5.7) we easily see that u < % on Sp. Therefore, u := 4 = u is a viscosity solution to
(6.3.1). 0

6.6 Error bound

In this section we prove an error estimate between the viscosity solution to (6.3.1) and the
numerical solution given by the scheme (6.4.5)—(6.4.8).

Theorem 6.6.1. Let u be the viscosity solution to (6.3.1) with initial value ug. For h > 0

and n = 0,1,...,N, let uj} = Zf\il ul'xi(-,t") € V' be the finite element function con-

structed from ug by (6.4.5)—(6.4.8). Assume that (6.4.10) is satisfied and that u is Lipschitz
continuous on St in the sense that

|u(z, t) —u(y, s)| < Lu(|z —y[ + [t — ) (6.6.1)

for all (z,t), (y,s) € Sr, where Ly > 0 is a constant independent of (z,t) and (y,s). Then
there exist hg > 0 and a constant C > 0 independent of h such that

nony oy < OhL/2 . 6.
1§igﬁ%§n§N|u(:ﬂZ M) —ul| < Ch for all h € (0,ho) (6.6.2)

Proof. The argument is similar to that in the proof of the comparison principle (see Theo-
rem 6.3.2). Let us define

|z — PP+ |t — "

Vh

for (z,t) € Sy, i€ {l,...,M} and n € {0,1,..., N}. Here, the constant p > 0 is subject to
pV'h < 1 and will be chosen later. Clearly,

(x,t,i,n) = u(x,t) — pVht —ul — (6.6.3)

nogny _ . ny _ n on s n
lglgll\}ll,aé)énSN(U(xljt ) ul) ISZSJI\?,%)énSN(\IJ(x’L’t 727n)+p\/ﬁt )

< _ max U(xz,t,i,n)+ pVhT (6.6.4)
(z,t)€ST,i=1,...,M,n=0,...,N

= \I’(l‘o,to,’io,no) + p\/ET

for some (wzo,t9) € St, ig € {1,...,M} and ng € {0,1,...,N}. In particular, we have
\I/(',EZ]O’tnO?iO?nO) < \IJ(.’L‘(],t(),io,no), Le.
|zg — JUZ)O|2 + |to — t™|?

(@, 1) — pVht" — ul < u(wo,to) — pVhto — ull? — N

20’
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From this, (6.6.1), and the fact that pv/h < 1 it follows that

|zo — a:?oolz + [to — t™0|?

Vvh

w(zo, to) — u(z™, ") + pVR(t"™ — to)

7,07

< Ly(Jzo — o | + |to — t"°]) + |to — t"™°]
< C(‘J}o B no 2 + ’t tno‘ )1/2
and hence
(’xo _ xz)0|2 + |t0 _ tn0’2)1/2
Vh

Now let us consider several possible cases.
Case 1: tp > 0 and ng > 1. By exploiting the fact that u is a subsolution we obtain as in
(6.3.7)

<C. (6.6.5)

2 " 2 2 "
(to—t O)—‘ri’l)r‘(l'o,to) (.T() l’ )—i—H(Z’o,to, P (:Co,t())(x()—:(}ioo)) < —p\/ﬁ. (6.6.6)

Vh Vh Vh
On the other hand, since V(zg,to,i,n9 — 1) < ¥(xo, to,i0,n0),7 = 1,..., M we infer
e L u?o_lggo?oo—u%o, i1=1,..., M,
where 20— a2 + (10 — 1)?
ei =¢(zi,t") and  @(z,t) = — T

Hence, Iﬁo_lgo < uzo_l + % — ui® on Iy(t" ') so that we deduce with the help of

0

Lemma 6.4.1, (6.4.9) and the definition of the scheme

Sp I ) < S0 () 4 gl = w4 g —

'LO 20

Evaluating the above inequality for x = x?oo we find that

(SR IR T )i < @i

from which we infer that

_ao ( no tno)—H(

7,0’

", Vrp(z30, 1)) < A+ B, (6.6.7)

i0 ?
where

no no—1/yno—1
° no—1 4no—1 no—1 4ng—1 n 1 no—1 ¥ _[Sh (Ih @)]io
A= —0%p(ap0 " ") — H (207 "7, V(a0 ¢ 7)) 4 =0 - ,
[6. ( no— 1 tno 1) o° ( :L007tn0)]

(a0 a1 1) — H (a2

0

", Vrp(z0,t"))].

Zo’ Zo’

We deduce from Lemma 6.4.2 that

141 < Cah (I9r¢l s + IVFel sy + 109 llnsp ) SCVR - (6.68)
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0%p(z,t) = —;E(t —tog) — jgvp(x,t) (x — x9), (6.6.9)
Vigp(z,t) = —jﬁPp(x, 1)z — z0). (6.6.10)

Using (6.6.9), (6.6.10), (6.3.2), (6.3.3) and the Lipschitz continuity of vp we further obtain

C T, n n no—
1Bl < (—=+ L1 (1+ [ Vrel pey) ) (i — a5 [ — ¢t
vh

+ L | Vg, t"0) — Ve~ 1"t (6.6.11)

Z()’

C
< —7< C’\/ﬁ,
J— JE J—
where we used (6.4.10) for the last inequality. If we insert (6.6.8) and (6.6.11) into (6.6.7)
and use again (6.6.9), (6.6.10) we obtain

n, 2 i n T
(to —t") — ﬁ”r( i 1) (zo — 23))

2
Vh
— H (a1, ﬁpr( 10, 470) (g — ) < CVh. (6.6.12)

We sum up both sides of (6.6.6) and (6.6.12) and employ the Lipschitz continuity of vp as
well as (6.3.2), (6.3.3) to get

oVh < CVh + f{vr( i, ") —wp(wo, to) } - (w0 — 7))
el T, T n T 2 n
+ H( zoovt 0 EPF( 2007t 0)(%0 - xioo)) - H($07t07 ﬁpp(mo,to)(wo o xioo))
C(lwo — 2| + [to — t"°[) w0 — 27,
< CVh+
vh
2 n
+ Lua(Jwo — 23| + [to — t™°]) (1 + ﬁ|PF(xOvt0)(x0 - xz‘oo))
2L n n n
+ \/%2|PF(5507750) Pr(zi), t")||lzo — i)
w0 — 20 + [to — t"O\Z
<CVh+C o — )| + [to — "
<CVh

in view of (6.6.5). Choosing p > C we obtain a contradiction so that this case cannot occur.
Case 2: tp = 0 and ng > 0. Since u(xg,to) = u(zo,0) = ug(zp) we obtain with the help of
(6.6.1), Lemma 6.5.1 and (6.6.5)

\IJ(.%'O,tO,iO, nO) = \Il(x()?O 7:07n0) < U(fI,'O, O) - uno = Uo(l'()) - UO((I,'?O) + u?o - UZ)O

< LU‘Z‘O ’ + Cyt™ < C(‘l‘o — .1' | + ‘.%' x?o\) + Cyt™ (6.6.13)
< C(lzo — 2°| + [to — t™]) < CVh.
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Case 3: tp > 0 and nyp = 0. Using once more (6.6.1) and (6.6.5) we derive

VU (xo, to, 90, no) = V(xo, to, i, 0)
< u(xg,tog) — u?o = u(wg, to) — u(m?o, 0)
< LU(\xo — 29|+ to) = LU(]a:O — xfoo\ + [to — t”0|)

10
< CVh.

(6.6.14)

In conclusion we infer that from (6.6.4), (6.6.13), (6.6.14) and the fact that Case 1 cannot
occur that

n n n
1§i§M,%};n§N(u(x’ ) =) < CVh

In an analogous way we bound maxi<;<ar,o<n<n(u} —u(x},t")) which completes the proof

of the theorem. O
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