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Chapter 1

Introduction

1.1 Background

This thesis is intended to study the mean curvature flow with driving force.

Precisely, we consider a family {Γ(t)}t≥0 of hypersurfaces satisfying:

V = −κ+ A on Γ(t) ⊂ Rn+1, (1.1.1)

Γ(0) = Γ0. (1.1.2)

Here V is the outer normal velocity, κ is the mean curvature, A is a positive constant.

We aim to consider the initial hypersurface Γ0 has singularity.

This research is motivated by [14], the mean curvature flow with driving force

under the Neumann boundary condition in a two-dimensional cylinder with period-

ically undulating boundary. In [14], they only consider the condition that for initial

curve Γ0 = {(x, y) ∈ R2 | y = u0(x)} with |u′0(x)| < M for some M . They show

that the interior point of Γ(t) = {(x, y) ∈ R2 | y = u(x, t)} never touches the bound-

ary and Γ(t) remains graph. Therefore, the problem can be studied by the classical

quasilinear parabolic theory. If removing the assumption |u′0(x)| < M , when u(x, t)
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Figure 1.1: Curve touching
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Figure 1.2: After touching

touches the boundary, the singularity will develop (Figure 1.1). Noting Figure 1.2,

after touching, Γ(t) possibly separates into two parts and become non-graph (Γ(t)

can not be represented by y = u(x, t)). This makes us analyze what will happen

after touching boundary. Noting that Γ(t) may become non-graph, we tend to use

the level set method established by [5]. In Chapter 3 and Chapter 5, we consider our

problem by level set method and identify whether the interface evolution is fattening

or not.

For mean curvature flow with driving force, recently, there are some researches. In

[13], Z. Liu shows that any solution starting as a convex, smooth, compact, embedded

hypersurface remains so like the result of G. Huisken. Moreover, the solutions can

be classified into three cases by its behaviors. In 2016, [10] consider the following

2



Chapter 1. Introduction

free boundary problem called (Q)

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, x ∈ (a(t), b(t)), 0 < t < T,

u(a(t), t) = 0, u(b(t), t) = 0, 0 ≤ t < T,

ux(a(t), t) = tan θ−(t), ux(b(t), t) = − tan θ+(t), 0 ≤ t < T,

u(x, 0) = u0(x), a(0) ≤ x ≤ b(0),

(Q)

where 0 < θ± < π/2. The family Γ(t) = {(x, y) | y = u(x, t), a(t) ≤ x ≤ b(t)}
moves by (1.1.1) in the plane and keeps the endpoints on the x-axis with the same

fixed contact angles. They also classify the solutions into three cases and give the

asymptotic behavior in each case.

In Chapter 4, we also give the results of the classification of the solutions in the

plane, however, without assuming the convexity of the initial curve.

1.2 Main results

We consider the initial hypersurface Γ0 has singularity at the origin and is sym-

metric to x, y-axis. Γ0 is given as in Figure 1.3. (The precise setting is given in

Chapter 3 and 5.) We want to identify the fattening phenomenon related to the

singular angle γ. Moreover in Chapter 4, we classify the curvature flow with driving

force in the plane into three cases and give the asymptotic behavior in each case.

In the case singular angle γ = π/2, we introduce our main assumptions (A+),

(A−). Consider

V = −κ+ A on Λ+(t) ⊂ Rn+1, (1.1.1*)

Λ+(0) = Λ0, (1.1.2*)

where Λ0 = Γ0 ∩ {x ≥ 0}. (Figure 1.4). By level set method, as introduced in

3
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Figure 1.3: Initial hypersurface Γ0

O
0( ,0)b

Figure 1.4: Initial curve Λ0
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Chapter 2, there exists unique viscosity solution φ of the following level set equation φt = |∇φ|div(
∇φ
|∇φ|

) + A|∇φ| in Rn+1 × (0, T ),

φ(x, y, 0) = a1(x, y),

where a1(x, y) is chosen such that Λ0 = {(x, y) | a1(x, y) = 0} and {(x, y) | a1(x, y) >

0} is bounded. The results in appendix show that the zero set of φ is not fattening

in a short time. Indeed, thanks to Theorem 2.3.7, the zero set of φ can be written

into

Λ+(t) = {(x, y) ∈ R× Rn | φ(x, y, t) = 0}

= {(x, y) ∈ R× Rn | |y| = v(x, t), a∗(t) ≤ x ≤ b∗(t)},

for 0 < t < T∗. Moreover, (v, a∗, b∗) is the solution of the following free boundary

problem

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x, x ∈ (a∗(t), b∗(t)), 0 < t < T∗,

u(a∗(t), t) = 0, u(b∗(t), t) = 0, 0 ≤ t < T∗,

ux(a∗(t), t) =∞, ux(b∗(t), t) = −∞, 0 ≤ t < T∗,

u(x, t) > 0, x ∈ (a∗(t), b∗(t)), 0 < t < T∗,

u(x, 0) = u0(x), 0 ≤ x ≤ b0.

(*)

Here a∗ and b∗ are called the end points of Λ+(t).

Assumption (A+): There exists δ > 0 such that a∗(t) ≥ 0 for 0 ≤ t < δ.

Assumption (A−): There exists δ > 0 such that a∗(t) < 0 for 0 < t < δ.

In Chapter 3, we consider the flow in the plane with singular angle γ = π/2.

Theorem 3.1.1 shows that under the assumption (A−), the outer evolution and

inner evolution are away from origin. By uniqueness results we can prove they are

5
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Figure 1.5: Main assumptions

coincide. Therefore, the interface evolution Γ(t) of (1.1.1) with initial curve Γ0 is not

fattening.

In Theorem 3.1.2, assuming (A+) holds, the inner evolution is separated and the

outer evolution is connected. This means the interface evolution Γ(t) of (1.1.1) with

initial curve Γ0 is fattening.

In Chapter 4, we continue to consider the curvature flow with driving force in

the plane. Assume the solution Γ(t) is given in Theorem 3.1.1. Theorem 4.1.1 and

Theorem 4.1.2 classifies Γ(t) into three cases: Expanding, Bounded and Shrinking.

Expanding. Γ(t) remains embedded for all t > 0 and expands to infinity, as t→∞.

Bounded. Γ(t) remains embedded and bounded for all t > 0. Moreover, Γ(t)

converges to a sphere with radius 1/A, as t→∞.

Shrinking. Γ(t) remains embedded until it contracts to a point at some finite time

T . Moreover, in Theorem 4.1.3, we can prove the asymptotic behavior for Γ(t) near

6
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Figure 1.6: a∗(t) < 0 in Theorem 3.1.1
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Figure 1.7: a∗(t) ≥ 0 in Theorem 3.1.2
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singular time T is a sphere. As a corollary, Γ(t) becomes convex eventually.

To help readers understand the three cases, we give a simple example. Consider

a family of circles ∂BR(t) (here we omit the center) evolving by V = −κ+ A. Thus,

R(t) satisfies  R′(t) = A− 1
R(t)

, t > 0,

R(0) = R0.

We can easily get that

Expanding. When R0 > 1/A, R(t) ↑ ∞, as t→∞.

Bounded. When R0 = 1/A, R(t) = 1/A, for 0 ≤ t <∞;

Shrinking. When R0 < 1/A, there exists TR0 <∞ such that R(t) ↓ 0, as t→ TR0 ;

In Chapter 5, we consider the mean curvature flow in higher dimensions and give

the criteria in judging whether the interface evolution fattening or not.

For the singular angle γ = π/2, in Theorem 5.1.1, we prove the same results of

Theorem 3.1.1 and Theorem 3.1.2 in higher dimensions.

In Theorem 5.1.2, for n ≥ 2, we can find an angle αn ∈ (0, π/2), as long as

0 ≤ γ < αn, the interface evolution Γ(t) is not fattening. Moreover, Γ(t) will

separate into two disjoint components.

In Theorem 5.1.3, for n = 1, as long as 0 ≤ γ < π/2, the inner evolution always

separates into two disjoint components. However, the outer evolution is connected.

This means the interface evolution Γ(t) is fattening.

At last, we can conclude the results of Chapter 3 and Chapter 5 into following

tables:

Table 1.1: Singular angle γ = π/2

Assumption (A+) n = 1 n ≥ 2
Outer evolution Connected Connected
Inner evolution Separated Separated
Result Fattening Fattening

8
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Table 1.2: Singular angle γ = π/2

Assumption (A−) n = 1 n ≥ 2
Outer evolution Connected Connected
Inner evolution Connected Connected
Result Non-fattening Non-fattening

Table 1.3: Singular angle γ < π/2

n = 1, 0 ≤ γ < π/2 n ≥ 2, 0 ≤ γ < αn
Outer evolution Connected Separated
Inner evolution Separated Separated
Result Fattening Non-fattening

Compare these results with the results in [2]. S. Angenent, T. Ilmanen and D.L.

Chopp shows that for mean curvature flow V = −κ in R3, there exists α ∈ (0, π/2)

such that

(1). when singular angle γ ∈ [α, π/2], the interface evolution is fattening.

(2). when singular angle γ ∈ [0, α), the interface evolution is not fattening.

We note that when the singular angle γ = π/2, the interface evolution always be-

comes fattening. It is the most different from the case with driving force.

1.3 A short review of mean curvature flow

For the classical mean curvature flow:

V = −κ,

there are many results. Concerning this problem, G. Huisken [11] shows that any

solution that starts out as a convex, smooth, compact, embedded surface remains so

until it shrinks to a ”round point” and its asymptotic shape is a sphere just before it

disappears. He proves this result for hypersurfaces of Rn+1 with n ≥ 2, but M. Gage

9
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and R. Hamilton [7] show that it still holds when n = 1, the curves in the plane.

M. Gage and R. Hamilton also show that embedded curve remains embedded, i.e.

the curve will not intersect itself. M. Grayson [8] proves the remarkable fact that

such family must become convex eventually. Thus, any embedded curve in the plane

shrinks to ”round point” under curve shortening flow. But in higher dimensions

it is not true. M. Grayson [9] also shows that there exists a smooth flow that

becomes singular before shrinking to a point. His example consisted of a barbell:

two spherical surfaces connected by a sufficiently thin ”neck”. In this example, the

inward curvature of the neck is so large that it will force the neck to pinch before

shrinking. This result can be also proved by Angenent’s doughnuts (seeing [3]).

Moreover, in [1], A. Altschuler, S. B. Angenent and Y. Giga study the flow whose

initial hypersurface is a compact, rotationally symmetric hypersurface but pinching

on x-axis by level set method. They prove the hypersurface will separate into two

smooth hypersurfaces after pinching.

1.4 Key methods

In this research, one of the most important tools is the level set method. An-

alytic foundation of the level set method is first established by L. C. Evans and J.

Spruck [6] and independently by Y. G. Chen, Y. Giga and S. Goto [5] in 1991; see

also [4]. Adjusting the theory of viscosity solutions in [6] the mean curvature flow

equation is studied in detail while in [5], more general geometric evolution equations

including the mean curvature flow equation with a driving force term are studied.

They prove the existence and uniqueness of the interface evolution. However, the

interface evolution possibly become fattening, first observed by [6]. Seeing our ini-

tial hypersurface has singularity at origin, we tend to use the level set method and

identify the interface evolution is fattening or not.

10
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Another important tool is the intersection number principle. But for the problem

with driving force, the intersection number may increase. In [10], they give the

extended intersection number principle to conquer this difficulty. Precisely, assume

(u1, a1, b1), (u2, a2, b2) are the solutions of (Q) with contact angles θ1
±, θ2

± and initial

functions u1
0, u2

0. Let u∗1, u∗2 be the straight line extensions of u1 and u2 such that

u∗1, u∗2 in C1(R × [0, T )). They prove the intersection number between u∗1 and u∗2

is non-increasing provided that θ1
± 6= θ2

±. If θ1
+ = θ2

+, the intersection number

will not increase provided that b1(t) 6= b2(t) and decrease at t0, where t0 satisfies

b1(t0) = b2(t0). Similarly for a(t). These results are called “extended intersection

number principle”. However, we cannot use the result directly. We will study the

intersection number and give their applications in Chapter 2.

1.5 Organization of this thesis

The rest of this paper is organized as follows. In Chapter 2, we provide some

preliminaries, which include level set method established by [5], a priori gradient

estimates and the intersection number principle. In Chapter 3, we introduce the

results in [17]. We study the curvature flow with driving force by the level set method

and give the sufficient conditions for fattening and non-fattening. In Chapter 4, we

continue to study the curvature flow with driving force in the plane. The solutions

given in Chapter 3 can be classified into three cases and the asymptotic behaviors in

each case are identified. To get the asymptotic behavior in Shrinking case, we need

a distance comparison principle for curvature flow with driving force. G. Huisken

first proves the principle for classical curve shortening flow in [12]. Seeing future, the

distance comparison principle for curvature flow with driving force only holds under

some special conditions. These results are included in [17] and [16]. In Chapter

5, we consider our problem in higher dimensions included in [15]. The criteria for

11
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fattening and non-fattening are given. In Chapter 6, we give the nonfattening results

for α-domain.

Bibliography

[1] S. Altschuler, S. Angenent, and Y. Giga. Mean curvature flow through singu-

larities for surfaces of rotation. J. Geom. Anal., 5:293–357, 1995.

[2] S. Altschuler, T.Ilmanen, and D.L. Chopp. A computed example of nonunique-

ness of mean curvature flow in R3. Communications in Partial Differential

Equations, 20:1937–1958, 1995.

[3] S. Angenent. Shrinking doughnuts. In: Nonlinear diffusion equations and their

equilibrium states, 3:21–38, 1992.

[4] Y.G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity solutions

of generalized mean curvature flow equations. Proc. Japan Acad., Ser. A 33:207–

210, 1989.

[5] Y.G. Chen, Y. Giga, and S. Goto. Uniqueness and existence of viscosity solutions

of generalized mean curvature flow equations. J. Diff. Geom., 33:749–786, 1991.

[6] L.C. Evans and J. Spruck. Motion of level sets by mean curvature III. J. Geom.

Anal., 2:121–150, 1992.

[7] M. Gage and R. Hamilton. The heat equation shrinking convex plane curves.

J. Diff. Geom., 23:69–96, 1986.

[8] M. Grayson. The heat equation shrinks embedded plane curves to round points.

J. Diff. Geom., 26:285–314, 1987.

12



Chapter 1. Introduction

[9] M. Grayson. A short note on the evolution of a surface by its mean curvature.

Duke Math. Journal, 58:555–558, 1989.

[10] J. Guo, H. Matano, M. Shimojo, and C. Wu. On a free boundary problem

for the curvature flow with driving force. Archive for Rational Mechanics and

Analysis March, 219(issue 3):1207–1272, 2016.

[11] G. Huisken. Flow by mean curvature of convex surfaces into spheres. J. Diff.

Geom., 20:237–266, 1984.

[12] G. Huisken. A distance comparison principle for evolving curves. Asian J.

Math., 2:127–133, 1998.

[13] Z. Liu. Mean curvature flow with a constant forcing. Nonlinear Differ. Equ.

Appl., 20:621–649, 2013.

[14] H. Matano, K. Nakamura, and B. Lou. Periodic traveling waves in a two-

dimensional cylinder with saw-toothed boundary and their homogenization

limit. Networks and Heterogeneous Media, 1:537–568, 2006.

[15] R. Mori and L. Zhang. On mean curvature flow with driving force starting as

singular initial hypersurface. arXiv:1712.09590, pages 1–38, 2017.

[16] L. Zhang. Asymptotic behavior for curvature flow with driving force when

curvature blowing up. Advances in Mathematical Sciences and Applications,

26(1):89–108, 2017.

[17] L. Zhang. On curvature flow with driving force starting as singular initial curve

in the plane. J. Geom. Anal., pages 1–56, 2017.

13



Chapter 2

Preliminaries

In this chapter, we give some useful preliminaries. In Section 2.1, we introduce

the level set method and give the notion of the viscosity solution of level set equation.

In Section 2.2, we give the interior estimates for the graph equation. In Section 2.3,

we introduce the intersection number principle and give the application.

2.1 Level set method

First, we recall one of the main methods—level set method in this thesis. The

level set method is first introduced by [5] and [7], [8] independently.

Let Γ(t) be a smooth family of smooth, closed, compact, embedded hypersurfaces

in RN given by Γ(t) = {x|ψ(x, t) = 0, x ∈ RN} for some ψ and {x | ψ(x, t) > 0} is

bounded. If Γ(t) evolves by (1.1.1), we can see that ψ(x, t) satisfies

ψt = |∇ψ|div(
∇ψ
|∇ψ|

) + A|∇ψ| on {(x, t) | ψ(x, t) = 0}.

14



Chapter 2. Preliminaries

Next we consider the equation in whole space

ψt = |∇ψ|div(
∇ψ
|∇ψ|

) + A|∇ψ| in RN × (0, T ). (2.1.1)

Equation (2.1.1) is called the level set equation of (1.1.1). Theorem 4.3.1 in [9] proves

the existence and uniqueness of the viscosity solution for (2.1.1) with ψ(x, 0) = ψ0(x).

Here ψ0(x) is a bounded and uniform continuous function.

O

x

( , , )z x y t

y

z

 ( ) ( , ) ( , , ) 0t x y x y t  

Figure 2.1: Level set method in R2

Level set method Using the solution of level set equation, we introduce the

level set method.

Definition 2.1.1. (1) Let D0 be a bounded open set in RN . A family of open sets

{D(t) | D(t) ⊂ RN}0<t<T is called an (generalized) open (or inner) evolution of

(1.1.1) with initial data D0 if there exists a viscosity solution ψ of (2.1.1) that satisfies

D(t) = {x ∈ RN | ψ(x, t) > 0}, D0 = {x ∈ RN | ψ(x, 0) > 0}.

(2) Let E0 be a bounded closed set in RN . A family of closed sets {E(t) | E(t) ⊂
RN}0<t<T is called a (generalized) closed (or outer) evolution of (1.1.1) with initial

15
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data E0 if there exists a viscosity solution ψ of (2.1.1) that satisfies

E(t) = {x ∈ RN | ψ(x, t) ≥ 0}, E0 = {x ∈ RN | ψ(x, 0) ≥ 0}.

The set Γ(t) = E(t) \D(t) is called an (generalized) interface evolution of (1.1.1)

with initial data Γ0 = E0 \D0.

Remark 2.1.2. (1) For open set D0 and E0 = D0, we often choose

ψ(x, 0) = max{sd(x, ∂D0),−1}

where

sd(x, ∂D0) =

 dist(x, ∂D0), x ∈ D0,

−dist(x, ∂D0), x /∈ D0.

(2) Seeing that the choice of ψ(x, 0) is not unique, Theorem 4.2.8 in [9] implies

that the open evolution D(t) and closed evolution E(t) are both independent of the

choice of ψ(x, 0).

(3) Generally, even if E0 = D0, we can not guarantee E(t) = D(t). If E(t) \D(t)

has interior points for some t, we call the interface evolution is fattening. Respec-

tively, if E(t) = D(t), for all 0 < t < T , we say the interface evolution is not

fattening.

(4) If D0 and D0 are symmetric to xi-axis, then it is also true for D(t) and E(t).

Since level set equation (2.1.1) is invariance under orthogonal transformation.

We now list some fundamental properties of open evolution and closed evolution

of (1.1.1). (All the results listed below can be found in Chapter 4 of [9])

Theorem 2.1.3. (Semigroups) [9]. Denote N(t) and M(t) being the operators such

that N(t)D0 = D(t) and M(t)E0 = E(t), for t > 0. Then we have N(t)D(s) =

D(t+ s) and M(t)E(s) = E(t+ s), for any t > 0, s > 0.

16
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Theorem 2.1.4. (Order preserving property or comparison principle) [9]. Let D0,

D′0 be two open sets in RN and let E0, E ′0 be two closed sets in RN . Then

(1) N(t)D0 ⊂ U(t)D′0, if D0 ⊂ D′0;

(2) M(t)E0 ⊂M(t)E ′0, if E0 ⊂ E ′0;

(3) N(t)D0 ⊂M(t)E ′0, if D0 ⊂ E ′0;

(4) E0 ⊂ D0 and dist(E0, ∂D0) > 0, then M(t)E0 ⊂ N(t)D0.

Theorem 2.1.5. (Monotone convergence) [9].

(1) Let D(t) and {Dj(t)} be open evolutions with initial data D0 and Dj0 respec-

tively. If Dj0 ↑ D0, then Dj(t) ↑ D(t), t > 0, i.e.,
⋃
j≥1

Dj(t) = D(t);

(2) Let E(t) and {Ej(t)} be closed evolutions with initial data E0 and Ej0 respec-

tively. If Ej0 ↓ E0, then Ej(t) ↓ E(t), t > 0, i.e.,
⋂
j≥1

Ej(t) = E(t).

Theorem 2.1.6. (Continuity in time) [9]. Let D(t) and E(t) be open and closed

evolutions, respectively.

(1a) D(t) is a lower semicontinuous function of t ∈ [0, T ), in the sense that

for any t0 ≥ 0, and sequence xn ∈ (D(tn))c with xn → x0, tn → t0, the limit

x0 ∈ (D(t0))c. If D(0) is bounded so that Cε(D(t0)) is compact, this implies that for

any t0 ≥ 0, ε > 0 there is a δ > 0 such that |t− t0| < δ implies D(t) ⊃ Cε(D(t0)).

(1b) E(t) is an upper semicontinuous function of t ∈ [0, T ), in the sense that for

any t0 ≥ 0, and sequence xn ∈ E(tn) with xn → x0, tn → t0, the limit x0 ∈ E(t0). If

E(0) is bounded so that Nε(E(t0)) is compact, this implies that for any t0 ≥ 0, ε > 0

there is a δ > 0 such that |t− t0| < δ implies E(t) ⊂ Nε(E(t0)).

(2a) D(t) is a left upper semicontinuous in t in the sense that for any t0 ∈ (0, T ),

x0 ∈ (D(t0))c there is a sequence xn → x0 and tn ↑ t0 with xn ∈ (D(tn))c. Moreover,

for any t0 ∈ (0, T ), ε > 0 there exists a δ > 0 such that t0 − δ < t < t0 implies

Cε(D(t)) ⊂ D(t0).

(2b) E(t) is a left lower semicontinuous in t in the sense that for any t0 ∈ (0, T ),

x0 ∈ E(t0) there is a sequence xn → x0 and tn ↑ t0 with xn ∈ E(t0). Moreover,

17
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for any t0 ∈ (0, T ), ε > 0 there exists a δ > 0 such that t0 − δ < t < t0 implies

Nε(E(t)) ⊃ E(t0).

Here Nε(A) = {x ∈ RN | d(x,A) < ε}, for A is a closed subset in RN and

Cε(A) = Nε(A
c)c, for A is an open subset in RN .

Theorem 2.1.7. (Separate) Let {D1(t)}0≤t<T be the open evolution of V = −κ+A

and {D2(t)}0≤t<T be the open evolution of V = −κ− A. If D1(0) ∩D2(0) = ∅, then

D1(t) ∩D2(t) = ∅ for 0 ≤ t < T .

The proof of this theorem is similar to Theorem 3.5 in [1]. We omit it.

Remark 2.1.8. For A > 0, even if D1(0) and D2(0) are disjoint, D1(t) and D2(t) may

intersect. The basic reason is that the level set equation (2.1.1) is not orientation

free(If u is a solution, there does not hold that −u is also a solution for (2.1.1)).

In Chapter 3 and Chapter 5, to prove the fattening results, we need the following

lemma. This lemma gives the construction of an open evolution containing two

disjoint components.

Lemma 2.1.9. Assume D1(t) and D2(t) being the open evolution of (2.1.1) with

D1(0) = U1 and D2(0) = U2. And D(t) is denoted as the open evolution of (2.1.1)

with D(0) = U1∪U2. If D1(t)∩D2(t) = ∅ for 0 ≤ t ≤ T , then D(t) = D1(t)∪D2(t),

0 ≤ t ≤ T .

Under the condition A = 0, D1(t)∩D2(t) = ∅ holds automatically provided that

D1(0) ∩D2(0) = ∅. But for A > 0, it is not true. Therefore, we give the assumption

D1(t) ∩D2(t) = ∅ for 0 ≤ t ≤ T .

Proof. First, we assume δ =: min
0≤t≤T

dist(D1(t), D2(t)) > 0. We define

ai(x) = max{sd(x, ∂Di(0)), 0}, x ∈ RN , i = 1, 2.

18
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1 1( , )Nx x t  1 2 ( , )Nx x t 

1Nx 

x

Figure 2.2: Proof of Lemma 2.1.9

Let ϕi be the viscosity solution of level set equation (2.1.1) with ϕ(x, 0) = ai(x),

i = 1, 2. By the theory in [9], ϕi(x, t) ∈ Cc(RN × [0, T ]) and Di(t) = {x ∈ RN |
ϕi(x, t) > 0}. Moreover, ϕi = 0 in RN \Di(t), i = 1, 2.

Our assumption implies that suppϕ1 and suppϕ2 are seperated by δ. Denote

ϕ =: max{ϕ1, ϕ2}. For any open set B and diam(B) < δ,

ϕ(x) = ϕ1(x) or ϕ2(x), x ∈ B,

where diam(B) = sup{|x− y| | x, y ∈ B}. Seeing the definition of viscosity solution,

ϕ is also a viscosity solution of (2.1.1). ThenD(t) = {x | ϕ(x, t) > 0} = D1(t)∪D2(t),

for 0 ≤ t ≤ T .

Next we prove the result only under the assumption D1(t)∩D2(t) = ∅, 0 ≤ t ≤ T .

Consider Dj
i (t) = {x | ϕi(x, t) >

1

j
}.

We claim that min
0≤t≤T

dist(Dj
1(t), Dj

2(t)) > 0, for all j. If min
0≤t≤T

dist(Dj
1(t), Dj

2(t)) =

0, for some j, then there exist t0 ∈ [0, T ] and sequences {xm} ⊂ Dj
1(t0), {ym} ⊂

Dj
2(t0) such that

|xm − ym| → 0, ϕ1(xm, t0) >
1

j
, ϕ2(ym, t0) >

1

j
.
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Then there exists x, such that lim
m→∞

xm = lim
m→∞

ym = x. Then

ϕ1(x, t0) ≥ 1

j
> 0, ϕ2(x, t0) ≥ 1

j
> 0.

Consequently, x ∈ D1(t0)∩D2(t0) 6= ∅, contradiction. Then we have min
0≤t≤T

dist(Dj
1(t), Dj

2(t)) >

0, for all j. By the argument in the first step, there holds Dj(t) = Dj
1(t) ∪ Dj

2(t)

is the open evolution with initial openset {x | ϕ1(x, 0) >
1

j
} ∪ {x | ϕ2(x, 0) >

1

j
}, for

0 ≤ t ≤ T .

Noting
∞⋃
j=1

Dj
1(0)∪Dj

2(0) = U1 ∪U2 and using Theorem 2.1.5, D(t) =
∞⋃
j=1

Dj(t) =

∞⋃
j=1

Dj
1(t) ∪Dj

2(t) = D1(t) ∪D2(t), for 0 ≤ t ≤ T .

Theorem 2.1.10. (Local smoothness for graphs) Suppose that ψ is a viscosity solu-

tion of (2.1.1). Assume in an open region U × (t1, t2),

{(x, t) | ψ = 0} ∩ U = {(x, t) | xN = g(x′, t), x′ ∈ U ′}

where x′ = (x1, · · · , xN−1), U ′ = U ∩ {xN = 0} and g is continuous in U ′ × (t1, t2).

Then the function g is a viscosity solution of

gt =

(
δij −

gxigxj
1 + |∇g|2

)
gxixj + A

√
1 + |∇g|2

or

gt =

(
δij −

gxigxj
1 + |∇g|2

)
gxixj − A

√
1 + |∇g|2.

If the normal velocity of {(x, t) | ψ = 0} ∩ U is upward (downward), we choose “+”

(“−”) in above graph equation.

Moreover, g is C∞ in the region U ′ × (t1, t2).

The proof can be seen similarly in [8] (Theorem 5.1 and Theorem 5.4). Here we
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omit it.

2.2 A Priori estimates

In this section, we give the interior gradient estimate.

Graph equation Let u(x, t) be some function on an open subset of Rn×R, then

the graph of u(x, t) is a family of hypersurfaces in Rn+1. The family of hypersurfaces

moves by V = −κ+ A if and only if

ut =

(
δij −

uxiuxj
1 + |∇u|2

)
uxixj ± A

√
1 + |∇u|2,

where the signs of the last terms are determined by direction of the driving force.

Under the case A = 0,

ut =

(
δij −

uxiuxj
1 + |∇u|2

)
uxixj ,

The gradient estimate in entire space Rn is given by [6]. The local gradient estimate

is also given by [8]. In this thesis, the local gradient estimate under the condition

A > 0 is important. We prove it similarly as in [8].

Theorem 2.2.1. For u ∈ C3(ΩT ) ∩ C0(ΩT ), u satisfies

ut =

(
δij −

uxiuxj
1 + |∇u|2

)
uxixj ± A

√
1 + |∇u|2, (2.2.1)

For the condition “+”(“−”), we assume u < 0(u > 0) in ΩT , u(0, T ) = −v0(u(0, T ) =

v0). Then

|∇u(0, T )| ≤ (3 + 16v0)e2K ,
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where K = 20v2
0(4n+

1

T
+ 4A+

A

2v0

) + 2, ΩT = B1(0)× (0, 2T ) and

δij =

 1, i = j

0, i 6= j
.

Proof. We only prove the case ”+”. For the case “−” , we can consider “−u” to

get the result. Denote w =
√

1 + |∇u|2, νi = uxi/
√

1 + |∇u|2, gij = δij − νiνj. We

define the operator L as

Lh = gijhxixj − ht + Aνkhxk .

We let h = η(x, t, u(x, t))w, where η is a non-negative function and will be iden-

tified in future. By calculation,

Lh = gij(wxixjη + wxi(η)xj + (η)xiwxj + w(η)xixj)

− (η)tw − ηwt + Aνk(wxkη + (η)xkw)

= ηLw + wLη + 2gijwxi(η)xj

= ηLw + wLη + 2gijwxi

(
hxj − wxjη

w

)
.

Then

Lh− 2gij
wxi
w
hxj = η

(
Lw − 2gij

wxiwxj
w

)
+ wLη.

We claim that

Lw − 2gij
wxiwxj
w

≥ 0.

Therefore, there holds

Lh− 2gij
wxi
w
hxj ≥ wLη. (2.2.2)
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We begin to prove the claim. Seeing

wxixj = νkuxkxixj +
1

w
(uxkxiuxkxj − νkνluxkxiuxlxj),

we have

gijwxixj ≥ νkgijuxkxixj = νk((gijuxixj)xk − gijxkuxixj)

= νk

(
utxk − A

uxluxlxk√
1 + |∇u|2

)
− νkgijxkuxixj .

Combining

gijxk = − 1

w
(νjuxixk + νiuxjxk) +

2uxiuxj
w3

wxk ,

νkgijuxkxixj = wt − Aνkwxk +
νkuxixj
w

(
νjuxixk + νiuxjxk −

2uxiuxj
w2

wxk

)
= wt − Aνkwxk +

2

w
gijwxiwxj .

Therefore

gijwxixj ≥ wt − Aνkwxk +
2

w
gijwxiwxj .

Then

Lw ≥ 2

w
gijwxiwxj .

We complete the proof of the claim.

Next we choose η = f ◦ φ(x, t, u(x, t)),

φ(x, t, z) =

(
z

2v0

+
t

T
(1− |x|2)

)+

and

f(φ) = eKφ − 1.
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When φ > 0, there holds

φz =
1

2v0

, φt =
1− |x|2

T
, φxi = −2t

T
xi, φxixj = −2t

T
δij.

Consequently, when φ > 0, z < 0, 0 < t < 2T ,

0 ≤ φ ≤ 2,
∑

φ2
xi
≤ 4t2

T 2
≤ 16.

By calculation,

Lη = gijf ′′(φxi + φzuxi)(φxj + φzuxj) + gijf ′(φxixj + φzuxixj)

− f ′(φt + φzut) + Aνkf ′(φxk + φzuxk)

≥ f ′′

w2
(φxi + φzuxi)

2 + f ′(gijφxixj − φt + Aνkφxk) + f ′φzLu

=
f ′′

w2

(
−2t

T
xi +

1

2v0

uxi

)2

+ f ′
(
−2t

T
(n− |∇u|2

1 + |∇u|2
)− 1− |x|2

T

− Axk
2t

T

uxk√
1 + |∇u|2

)
+ f ′φzLu.

Combining

Lu = gijuxixj − ut + Aνkuxk = − A√
1 + |∇u|2

,

there holds

Lη ≥ f ′′

w2

(
|∇u|2

8v2
0

− 8

)
+ f ′

(
−4n− 1

T
− 4A

)
− f ′φz

A√
1 + |∇u|2

≥ f ′′

w2

(
|∇u|2

8v2
0

− 8

)
+ f ′

(
−4n− 1

T
− 4A− A

2v0

)
=

K2eKφ

w2

(
|∇u|2

8v2
0

− 8

)
+KeKφ

(
−4n− 1

T
− 4A− A

2v0

)
.
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When |∇u| ≥ max{16v0, 2}, we have

|∇u|2

16v2
0

≥ 8,
|∇u|2

16
≥ 1 + |∇u|2

20
.

Then

Lη ≥ K2eKφ

w2

|∇u|2

16v2
0

+KeKφ
(
−4n− 1

T
− 4A− A

2v0

)
≥ K2eKφ

20v2
0

+KeKφ(−4n− 1

T
− 4A− A

2v0

)

= KeKφ
(

K

20v2
0

− 4n− 1

T
− 4A− A

2v0

)
> 0,

when we choose K = 20v2
0(4n+

1

T
+ 4A+

A

2v0

) + 2, ΩT = B1(0)× (0, 2T ).

Therefore by (2.2.2), there holds

Lh− 2gij
wxi
w
hxj ≥ 0 on {h > 0 or |∇u| > max{16v0, 2}}.

By maximum principle,

(e
K
2 − 1)w(0, T ) = h(0, T ) ≤ max

h=0 and |∇u|=max{16v0,2}
h

≤ (e2K − 1) max{
√

1 + (16v0)2,
√

5}.

Consequently, w(0, T ) ≤ e2K(3 + 16v0).

Remark 2.2.2. (1) In Theorem 2.2.1, ΩT can be replaced by ΩT = BR(x0)× (0, 2T )

and v0 = u(x0, T ). Then the conclusion becomes

|∇u(x0, T )| ≤ e2K(3 + 16
v0

R
),
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where K = 20
v2

0

R2

(
4n+

R2

T
+

4A

R
+

A

2v0

)
+2. We can set v(x, t) =

u(Rx+ x0, R
2t)

R
,

then we can use Theorem 2.2.1 for v(x, t).

(2) When u is the solution of (2.2.1) for “+” without the assumption “u < 0”,

we can set

v = u−M − ε

where M = sup
ΩT

|u| and ε > 0. Using (1) in Remark 2.2.2 to v, we can deduce

|∇u(0, T )| ≤
(

3 + 16
M − u(0, T ) + ε

R

)
e2K̃ε ,

where K̃ε =
20(M − u(0, T ) + ε)2

R2

(
4n+

R2

T
+

4A

R
+

A

2(M + ε− u(0, T ))

)
+2.

Tending ε→ 0, we have

|∇u(0, T )| ≤
(

3 + 32
M

R

)
e2K̃ ,

where K̃ =
80M2

R2

(
4n+

R2

T
+

4A

R

)
+

20AM

R2
+ 2.

Then we can get the next corollary by (2) in Remark 2.2.2 and the same method

as in [1].

Corollary 2.2.3. For s1 < s2, ρ > 0 and x0 ∈ Rn we set

Ω = Bρ(x0)× (s1, s2).

Suppose that u ∈ C3(Ω) solves the equation (2.2.1) in Ω with M = sup
Ω

|u| <∞. For

any ε > 0 there is a constant C = C(M, ε, n) such that

|∇u| ≤ C on Ωε = Bρ−ε(x0)× (s1 + ε2, s2).
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Remark 2.2.4. (1) From Corollary 2.2.3 and [11], there exist Ck(M, ε, n) such that

|∇ku| ≤ Ck, (x, t) ∈ Bρ−2ε(x0)× (s1 + 2ε2, s2).

(2) Noting C and Ck are all independent of s2, if the solution u exists for all t > s1,

s2 can be chosen as ∞.

2.3 Intersection number principle

In this section, we introduce another important method—-intersection number

principle and give their applications.

A short review of the research in the intersection number The Sturmian

theorem states that the number of zeros(counted with multiplicity) of a solution of

linear parabolic equation of the type

ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

doesn’t increase with time, provided that u is defined on a rectangle x0 ≤ x ≤ x1,

0 < t < T and u(xj, t) 6= 0 for j = 0, 1, for all t ∈ (0, T ). This result also holds for

the number of sign changing rather than the number of zeros of u(·, t).
It is well known that the intersection number between two families of rotationally

symmetric hypersurfaces Γ1(t) and Γ2(t) evolving by V = −κ is non-increasing(

[3]). However, this result is not true in the case A > 0. Indeed seeing future, the

intersection number between two families of rotationally symmetric hypersurfaces

evolving by V = −κ+A may increase. The intersection number between two families

of rotationally symmetric hypersurfaces is defined as follows:

Intersection number for rotationally symmetric hypersurfaces For two

rotationally symmetric hypersurfaces Γ1(t) and Γ2(t) are given by Γ1(t) = {(x, y) ∈
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R×Rn | r = u1(x, t)} and Γ2(t) = {(x, y) ∈ R×Rn | r = u2(x, t)}. The intersection

number between Γ1(t) and Γ2(t) denoted by Z[Γ1(t),Γ2(t)] is defined by the number

of intersections between u1(·, t) and u2(·, t).
Extended intersection number principle First we introduce a more general

result about the intersection number in the plane. Consider the following problem

which we call (Q):

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, x ∈ (a(t), b(t)), 0 < t < T,

u(a(t), t) = 0, u(b(t), t) = 0, 0 ≤ t < T,

ux(a(t), t) = tan θ−(t), ux(b(t), t) = − tan θ+(t), 0 ≤ t < T,

u(x, 0) = u0(x), a(0) ≤ x ≤ b(0),

(Q)

where u0 ∈ C[a(0), b(0)] ∩C1(a(0), b(0)) and θ±(t) are smooth functions with values

in [0, π/2]. Let

γ1(t) :=

 {(x, y) | y = tan θ−(t)(x− a(t)), y < 0}, θ−(t) < π/2

{(x, y) | x = a(t), y < 0}, θ−(t) = π/2,

γ2(t) :=

 {(x, y) | y = − tan θ+(t)(x− b(t)), y < 0}, θ+(t) < π/2

{(x, y) | x = b(t), y < 0}, θ+(t) = π/2,

and

γ3(t) := {(x, y) | y = u(x, t), a(t) ≤ x ≤ b(t)}.

The extension curve of u(·, t) is given by

γ(t) := γ1(t) ∪ γ2(t) ∪ γ3(t).

Proposition 2.3.1. Let u1(x, t), a1(t) < x < b1(t) be solution of (Q) for θ1
±(t) ∈

[0, π/2), and u2(x, t), a2(t) < x < b2(t) be solution of (Q) for θ2
±(t) = π/2, for 0 ≤
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t < T . Let γi(t) be the extension curve of ui(x, t), respectively. Then Z[γ1(t), γ2(t)] is

non-increasing in t ∈ [0, T ) and is finite for each t ∈ [0, T ). Moreover, Z[γ1(t), γ2(t)]

will drop when γ1(t) intersects γ2(t) tangentially.

For the proof of this proposition, it is similar as the proof of the Proposition 2.4

in [10]. Here we omit it.

Remark 2.3.2. (1). Proposition 2.4 in [10] only give the results under θi± ∈ (0, π/2),

i = 1, 2.

(2). For θi± = π/2, i = 1, 2, the results in Proposition 2.3.1 are not true. We

conclude the results in Remark 2.3.6.

We consider higher dimensional condition.

Horizontal and vertical graph equations If Γ(t) is a family of rotationally

symmetric hypersurfaces in Rn+1, then parts of Γ(t) may be represented either as

horizontal graph, r = u(x, t), or vertical graph, x = v(r, t), where (x, y1, · · · , yn) ∈
Rn+1 and r =

√
y2

1 + y2
2 + · · ·+ y2

n.

If Γ(t) is given as a horizontal graph, then Γ(t) evolves by V = −κ + A in Rn+1

and the direction of the driving force points to the positive direction of r = |y| axis

if and only if u satisfies the horizontal graph equation

∂u

∂t
=

uxx
1 + u2

x

− n− 1

u
+ A

√
1 + u2

x. (2.3.1)

If Γ(t) is given as a vertical graph, then Γ(t) evolves by V = −κ+ A in Rn+1 if and

only if v satisfies the vertical graph equation

∂v

∂t
=

vrr
1 + v2

r

+
n− 1

r
vr + A

√
1 + v2

r , (2.3.2)

or
∂v

∂t
=

vrr
1 + v2

r

+
n− 1

r
vr − A

√
1 + v2

r , (2.3.3)
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where the signs in the last terms are determined by the direction of the driving force

(we choose “+(−)” when the direction of the driving force is rightward(leftward)).

Moreover, a smooth family of smooth, closed, embedded hypersurfaces given by

Γ(t) = {(x, y) ∈ R×Rn | r = u(x, t), a(t) ≤ x ≤ b(t)} evolves by V = −κ+A if and

only if u satisfies horizontal graph equation (2.3.1) and following:

u(b(t), t) = u(a(t), t) = 0, ux(a(t), t) = −ux(b(t), t) =∞, 0 < t < TU , (2.3.4)

u(x, t) > 0, a(t) < x < b(t), 0 < t < TU , (2.3.5)

u(x, 0) = u0, a(0) ≤ x ≤ b(0). (2.3.6)

Theorem 2.3.3. Two smooth families of smooth, closed, embedded hypersurfaces

given by Γ1(t) = {(x, y) ∈ R×Rn | r = u1(x, t), a1(t) ≤ x ≤ b1(t)}, Γ2(t) = {(x, y) ∈
R× Rn | r = u2(x, t), a2(t) ≤ x ≤ b2(t)} evolve by V = −κ+ A in Rn+1, 0 < t < T .

Then either Γ1 ≡ Γ2 for all t ∈ (0, T ), or the number of intersections of Γ1(t) and

Γ2(t) is finite for all t ∈ (0, T ). In the second case, if a1(t), b1(t), a2(t) and b2(t)

are all different and their order remains unchanged for all t ∈ (0, T ), this number

is nonincreasing in time, and decreases whenever Γ1(t) and Γ2(t) have a tangential

intersection.

We only give the sketch of the proof. For example, if the order of a1, b1, a2, b2 is

given by a1(t) < a2(t) < b1(t) < b2(t), 0 < t < T , the intersections are only in the

interval [a2(t), b1(t)]. Since u1(a2(t), t)−u2(a2(t), t) 6= 0 and u1(b1(t), t)−u2(b1(t), t) 6=
0, 0 < t < T , using Theorem D in [2], the intersection number between u1 and

u2 is not increasing and decreases when tangentially intersecting in [a2(t), b1(t)].

Consequently, the intersection number between Γ1(t) and Γ2(t) is not increasing.

We can prove the other conditions with the same method.

Using the intersection number principle, we can prove following gradient estimate.

We postpone the intersection number arguments in Lemma 2.3.5.
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Theorem 2.3.4. Γ(t) = {(x, y) ∈ Rn+1 | r = u(x, t), a2(t) ≤ x ≤ b2(t)} is a smooth

family of closed, smooth, embedded hypersurfaces in Rn+1, 0 < t < T . If Γ(t) evolves

by V = −κ+ A in Rn+1, there is a function σ: R+ × R+ → R such that

|ux(x, t)| ≤ σ(t, u(x, t))

holds for 0 < t < T , a2(t) < x < b2(t). The function σ only depends on M =

max
a2(0)<x<b2(0)

u(x, 0) and T .

Proof. Let w0(r) ∈ C∞((0,+∞)), w′0(r) ≥ 0 and

x = w0(r) =

 0, 0 ≤ r < M + 1

1, r > M + 2
.

x

r

0 ( )x w r

0 ( )u x

M

1M 

2M 

10

Figure 2.3: Proof of Theorem 2.3.4

We let w be the unique solution of the vertical equation (2.3.3) with the boundary
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condition

wr(0, t) = 0, t ≥ 0

and initial condition

w(r, 0) = w0(r), r ≥ 0.

Differentiating (2.3.3) in r,

pt = a∗(r, t)prr + b∗(r, t)pr + c∗(r, t)p, (2.3.7)

where p = wr, a
∗(r, t) = 1/(1 + w2

r), b
∗(r, t) = −2wrwrr/(1 + w2

r)
2 + (n − 1)/r −

Awr/
√

1 + w2
r , c

∗(r, t) = −(n− 1)/r2.

By the maximum principle, we have for all r, t > 0, wr > 0 and sup
r≥0

wr(r, t) is

nonincreasing in time. It follows from classical estimate for parabolic equation that

all derivative of w are uniformly bounded for r, t ≥ 0.

We claim that for any δ satisfying 0 < δ < M + AT , there exists Aδ,T > 0 such

that Aδ,T decreases with respect to δ and

p(r, t) ≥ e−
Aδ,T
t (2.3.8)

for δ ≤ r ≤M + AT .

We only prove the claim for δ small by constructing a subsolution. Let p be the

solution of

p
t

= a∗(r, t)p
rr

+ b∗(r, t)p
r

+ c∗(r, t)p, r > δ/2, t > 0,

with boundary condition p(δ/2, t) = 0, t ≥ 0 and initial data p(r, 0) = w0(r), r ≥ δ/2.

Since |wr| ≤ sup
r≥0
|w′0(r)|, sup

r≥δ/2, 0<t<T

|wrr| depends only on δ and T . Seeing coef-

ficients a∗, b∗, c∗ depending on wr, wrr and r, a∗, b∗, c∗ are all smooth and bounded

for some constant depending on δ and T , for r ≥ δ/2, 0 < t < T . Using the property
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of Green’s function in half space, we can get the estimate (2.3.8) for p (seeing [4]).

Noting p(r, 0) = p(r, 0), r ≥ δ/2 and p(δ/2, t) > 0 = p(δ/2, t), then there holds

that p ≥ p, for r ≥ δ/2, t > 0. Here we complete the proof of the claim.

Since p(r, t) > 0 for r > 0, the inverse of x = w(r, t) exists, denoted by r = v(x, t).

Seeing the normal velocity of x = w(r, t) is leftward, the normal velocity of r = v(x, t)

is upward. Therefore, v(x, t) satisfies the horizontal graph equation (2.3.1) with the

free boundary condition

v(a(t), t) = 0, vx(a(t), t) =∞, lim
x→b(t)

v(x, t) =∞, lim
x→b(t)

vx(x, t) =∞, t > 0.

Let Σ(t) = {(x, y) ∈ Rn+1 | r = v(x, t), a(t) ≤ x < b(t)} and Σξ(t) denote the

translation of Σ(t) given by

x = w(r, t) + ξ.

Σξ(t) can be also represented by r = v(x − ξ, t), a(t) + ξ ≤ x < b(t) + ξ. Let a1(t)

and b1(t) be the end point of Σξ(t), then a1(t) = ξ+a(t), b1(t) = ξ+ b(t). Obviously,

for (x0, t0) ∈ (a2(t0), b2(t0))× (0, T ), there exists ξ ∈ R such that

v(x0 − ξ, t0) = u(x0, t0).

By the following Lemma 2.3.5, we can deduce that the graph of u(x, t0) intersects

v(x− ξ, t0) only once.

Next we claim

vx(x0 − ξ, t0) ≥ ux(x0, t0).

If not, vx(x0 − ξ, t0) < ux(x0, t0), then there exists δ > 0, such that

u(x, t0) > v(x− ξ, t0),
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for all x ∈ (x0, x0 + δ). Since lim
x→b1(t)

v(x, t0) = +∞ and max
a2(t0)≤x≤b2(t0)

u(x, t0) < ∞,

Σξ(t0) intersects Γ(t0) at least twice. This yields a contradiction.

0( , )x w r t

0( , )x w r t  

 0 0 0, ( , )x u x t

0( )a t 0( )a t 0( )b t 2 0( )a t 2 0( )b t0( )b t 

Figure 2.4: Proof of Theorem 2.3.4

By maximum principle, it is easy to see r = u(x, t) < M + At < M + AT ,

a2(t) ≤ x ≤ b2(t), 0 < t < T . Combining (2.3.8), there holds

ux(x0, t0) ≤ 1

wr(v(x0 − ξ, t0), t0)
≤ e

Av(x0−ξ,t0),T
t0 = e

Au(x0,t0),T
t0 := σ(t0, u(x0, t0)).

By considering the reflection Σ̃(0) = {(x, y) | x = −w0(r)} and the equation

(2.3.2) with wr(0, t) = 0, t ≥ 0 and w(r, 0) = w0(r), r ≥ 0, the bound for −ux(x0, t0)

can be got similarly.

Lemma 2.3.5. Σξ(t) and Γ(t) is given in the proof of Theorem 2.3.4, then Σξ(t)

intersects Γ(t) at most once.

Proof. By the same argument as Theorem 2.3.3, the intersection number between

Σξ(t) and Γ(t) is not increasing provided that a1(t), b1(t), a2(t) and b2(t) are all
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different and that their order remains unchanged. So we only prove this result when

the order of a1(t), b1(t), a2(t) and b2(t) changes.

Case 1. Assume a1(t) < a2(t) < b1(t) < b2(t), t < t2 and a1(t) < a2(t) < b2(t) <

b1(t), t > t2. And for t < t2, Σξ(t) does not intersect Γ(t). Then Σξ(t) does not

intersect Γ(t), for t > t2.

( )t ( )t

1( )a t 1( )b t2 ( )a t 2 ( )b t

Figure 2.5: Case 1

( )t

( )t

1( )a t
1( )b t2 ( )a t 2 ( )b t

Figure 2.6: Case 1

Since lim
x→b1(t2)

v(x − ξ, t2) = +∞ and u(b2(t2), t2) = 0, there exists a positive δ

independent of t, such that v(x − ξ, t2) > u(x, t2), b1(t2) − δ < x < b1(t2). By

continuity, there exists ε such that

v(b1(t2)− δ − ξ, t) > u(b1(t2)− δ, t), t2 − ε ≤ t < t2 + ε (2.3.9)

and

v(x− ξ, t) > u(x, t), b1(t2)− δ < x ≤ b2(t), t2 ≤ t < t2 + ε. (2.3.10)

The assumptions in this case imply boundary condition

u(a2(t), t)− v(a2(t)− ξ, t) < 0, t2 − ε ≤ t < t2 + ε

and initial condition

u(x, t2 − ε) < v(x− ξ, t2 − ε), a2(t2 − ε) ≤ x ≤ b1(t2)− δ.
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Combining the other boundary condition (2.3.9), using maximum principle in domain

∪t2−ε≤t<t2+ε ([a2(t), b1(t2)− δ]× {t}) ,

there holds

u(x, t) < v(x− ξ, t), a2(t) ≤ x ≤ b1(t2)− δ, t2 − ε ≤ t < t2 + ε.

Seeing (2.3.10), u(x, t) < v(x− ξ, t), a2(t) ≤ x ≤ b2(t), t2 ≤ t < t2 + ε. It means that

Σξ(t) does not intersect Γ(t), for t2 ≤ t < t2 + ε. So by Theorem 2.3.3, Σξ(t) does

not intersect Γ(t), for t > t2.

Case 2. Assume a1(t) < a2(t), Σξ(t) does not intersect Γ(t), t < t3 and a1(t3) =

a2(t3).

( )t ( )t

1( )a t 1( )b t
2 ( )a t 2 ( )b t

( )t ( )t

1 2( )= ( )a t a t 1( )b t 2 ( )b t

( )t ( )t

1( )a t 1( )b t
2 ( )a t 2 ( )b t

3t t
3t t

3t t

Figure 2.7: Case 2

Since lim
x→a2(t)

ux(x, t) = ∞, there exist δ1 and ε such that r = u(x, t) can be

expressed as x = h(r, t), 0 ≤ r ≤ δ1, t3 − ε < t < t3 + ε. The assumptions in this
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case imply that

w(δ1, t) + ξ < h(δ1, t), t3 − ε < t < t3 + ε.

It is easy to see w(r, t) + ξ and h(r, t) satisfy the vertical graph equation

 wt =
wrr

1 + w2
r

+
n− 1

r
wr − A

√
1 + w2

r , 0 ≤ r ≤ δ1, t3 − ε < t < t3 + ε,

wr(0, t) = 0, t ≥ 0,

and w(r, t3− ε)+ ξ < h(r, t3− ε). By strong maximum principle, w(r, t)+ ξ < h(r, t),

for 0 ≤ r < δ1, t3 − ε < t < t3 + ε. Contradiction to a1(t3) = a2(t3). It means that

this case does not happen.

Case 3. Assume a2(t) < b2(t) < a1(t) < b1(t), t < t6 and a2(t) < a1(t) < b2(t) <

b1(t), t > t6.

( )t

( )t

1( )a t 1( )b t2 ( )a t
2 ( )b t

Figure 2.8: Case 3

( )t

( )t

1( )a t 1( )b t2 ( )a t
2 ( )b t

Figure 2.9: Case 3

Obviously, Σξ(t) dosen’t intersect Γ(t), t < t6. Noting lim
x→b2(t)

ux(x, t) = −∞ and

lim
x→a1(t)

vx(x− ξ, t) =∞, there exists ε such that

ux(x, t)− vx(x− ξ, t) < 0, a1(t) ≤ x ≤ b2(t), t6 < t < t6 + ε.

Seeing u(a1(t), t) − v(a1(t) − ξ, t) > 0 and u(b2(t), t) − v(b2(t) − ξ, t) < 0, u(x, t)

intersects v(x − ξ, t) only once in [a1(t), b2(t)], t6 < t < t6 + ε. Consequently, Σξ(t)

intersects Γ(t) only once, t6 < t < t6 + ε. So by Theorem 2.3.3 we have Σξ(t)
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intersects Γ(t) only once, t > t6.

The other conditions can be investigated similarly as the three cases above. We

note that the intersection number increases only in Case 3.

Then we can conclude that

1. if a1(0) < a2(0), Σξ(t) does not intersect Γ(t).

2. if a2(0) < a1(0) < b2(0), Σξ(t) intersects Γ(t) at most once.

3. if b2(0) < a1(0), Σξ(t) intersects Γ(t) at most once.(Only in this case, the

intersection number may increase)

We complete the proof.

Remark 2.3.6. The intersection number between two closed, compact, embedded,

rotationally symmetric hypersurfaces Γ1(t) = {(x, y) ∈ R×Rn | r = u1(x, t), a1(t) ≤
x ≤ b1(t)}, Γ2(t) = {(x, y) ∈ R × Rn | r = u2(x, t), a2(t) ≤ x ≤ b2(t)} is denoted by

Z(t) := Z[Γ1(t),Γ2(t)]. If Γi(t) evolve by V = −κ+A in Rn+1, using Theorem 2.3.3

and the same methods in Lemma 2.3.5, we can similarly prove

(a). If Z(t) > 0, 0 ≤ t < t0, then Z(t) does not increase for 0 ≤ t < t0.

(b). If Z(t0) = 0, then Z(t) ≤ 1, t0 < t < T .

In this remark, observing the proof of Case 3 in Lemma 2.3.5, it also holds

that the intersection number possibly increases once in the cases a1(0) > b2(0) or

a2(0) > b1(0). The results in this remark can be proved similarly as Lemma 2.3.5.

Using the opinion in this remark similarly, since Z(0) ≤ 1 in Lemma 2.3.5, there

holds Z(t) ≤ 1 for 0 < t < T .

By the arguments of intersections, we can prove the following theorem.

Theorem 2.3.7. Let Γ(t), t ∈ [0, T ), be a family of smooth hypersurfaces evolving

by V = −κ + A in Rn+1. If Γ(0) is obtained by rotating the graph of a function

around the x-axis, then so are the Γ(t) for t ∈ [0, T ).
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For the proof of Theorem 2.3.7, we see that Γ(t) is also rotationally symmetric

because the equation is rotationally invariance. Since Γ(0) is obtained by rotating

the graph of a function around the x-axis, Γ(0) can be written into Γ(0) = {(x, y) ∈
R×Rn | r = v0(x)} for some function v0(x). It means that all straight vertical plane

x = c intersects Γ(0) at most once. Using the same argument in Lemma 2.3.5, we

can prove that every vertical plane x = c intersects Γ(t) at most once. Then Γ(t)

can be also written into {(x, y) ∈ R× Rn | r = u(x, t)}. We omit the details.

In our problem, seeing future, the hypersurface evolving by V = −κ + A maybe

intersect itself at x-axis. To conquer this difficulty, we refer to the definition of

α-domain in [1].

Definition 2.3.8. We say a domain U is an α-domain if

(1). U ⊂ Rn+1 is an open set of the form

U = {(x, y) ∈ R× Rn | r < u(x)}.

(2). I = {x ∈ R | u(x) > 0} is a bounded, connected interval. Let the endpoints

of I be a1 < a2.

(3). u is smooth on I;

(4). ∂U intersects each cylinder ∂Cρ with 0 < ρ ≤ α twice and these intersections

are transverse, where Cρ = {(x, y) ∈ Rn+1 | r < ρ}.

We observe that the boundary ∂U of an α-domain U does not intersect itself

at y = 0. The condition (3) implies ∂U is a smooth curve, except possibly at its

endpoints (a1,0), (a2,0). The condition (4) implies that there exist δ1, δ2 > 0 such

that

u(a1 + δ1) = u(a2 − δ2) = α,

39



Chapter 2. Preliminaries

x



U

1a 2a

Figure 2.10: α-domain

and

u′(x) =

 > 0, x ∈ (a1, a1 + δ1],

< 0, x ∈ [a2 − δ2, a2).

Therefore, the inverse of u|[a1,a1+δ1] and u|[a2−δ2,a2] exist, denoted by v1, v2 : [0, α]→
R. By the implicit function theorem, they are smooth in (0, α]. Moreover, v′1(r) > 0,

v′2(r) < 0, (0 < r ≤ α) and

∂U ∩ Cα = {(x, y) ∈ Rn+1 | 0 ≤ r ≤ α, x = vi(r), i = 1, 2}.

The two components of ∂U ∩ Cα are called the left and right caps of ∂U .

If U is an α-domain, by Theorem 6.0.3, there exists TU and D(t) be the open

evolution with D(0) = U such that ∂D(t) is smooth and D(t) = {(x, y) ∈ R2 | |y| <
u(x, t), a(t) < x < b(t)} for 0 < t < TU . Moreover, (u, a, b) satisfies (2.3.1), (2.3.4),

(2.3.5).

Next we prove Lemma 2.3.9 and 2.3.10 by the arguments of intersection number.

Following Lemma 2.3.9 and 2.3.10 show the open evolution starting as α-domain
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does not intersect itself at x-axis in short time.

Lemma 2.3.9. For n = 1, let U be an α-domain. Then there exists tαU > 0 such

that D(t) denoted the open evolution with D(0) = U is an (α+At)-domain, 0 < t <

min{tαU , TU}.

Lemma 2.3.10. For n ≥ 2, there exists tαU > 0 such that D(t) is an α(t)-domain

for all 0 < t < min{tαU , TU}, where α(t) is the solution of the following equation

α′(t) = A− n− 1

α(t)
(2.3.11)

with initial data α(0) = α.

Using Proposition 2.3.1, we prove Lemma 2.3.9.

Proof of Lemma 2.3.9. Since U is an α-domain, using Theorem 6.0.3, there exists TU

such that ∂D(t) is smooth and ∂D(t) = {(x, y) ∈ R2 | |y| = u(x, t), a(t) ≤ x ≤ b(t)}
for 0 < t < TU . Here (u, a, b) satisfies

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, ((2.3.1*))

with (2.3.4), (2.3.6).

Since U is not contained in the cylinder Cα, there exists a small ball Bε(P ) ⊂
U \ Cα. By (1) in Theorem 2.1.4, there holds Bε(t)(P ) ⊂ D(t) for 0 < t < δ1. Here

ε(t) satisfies

ε′(t) = A− 1

ε(t)
, 0 < t < δ1, (2.3.12)

with ε(0) = ε. Since Bε(P ) ∩ Cα = ∅, by (1b) in Theorem 2.1.6, there exists t1 > 0,

such that Bε(t)(P ) ∩ Cα+At = ∅, 0 < t < t1. Then

Bε(t)(P ) ⊂ D(t) \ Cα+At, 0 < t < t1.
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This implies for all 0 < t0 < tαU , ρ < α + At0, y = ρ intersects y = u(x, t0) at least

twice. Here tαU = min{δ1, t1}.
On the other hand, for 0 < ρ < α+At0, 0 < t0 < TU , y = ρ−At0 intersects γ1(0)

exactly twice (γ1(t) is constructed in Proposition 2.3.1). Proposition 2.3.1 shows

that y = ρ intersects γ1(t0) at most twice.

Therefore ∂Cρ intersects ∂D(t0) exactly twice, 0 < t0 < min{tαU , TU}.
Choosing tU = min{tαU , TU}, D(t) is an (α + At)-domain, 0 < t < tU . The proof

is completed.

x



(0)D U

0At 

( )B P

Figure 2.11: Proof of Lemma 2.3.9

x



0( )D t



0( ) ( )tB P

Figure 2.12: Proof of Lemma 2.3.9

We continue to prove Lemma 2.3.10. We note for the problem, α′(t) = A− n− 1

α(t)
, t > 0,

α(0) = α,

the following results hold.

(1) when α < (n − 1)/A, there exists Tα < ∞ such that α(t) ↓ 0 as t → Tα and

lim
t→−∞

α(t) = (n− 1)/A;
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(2) when α = (n− 1)/A, α(t) = (n− 1)/A for 0 ≤ t <∞;

(3) when α > (n− 1)/A, α(t) ↑ ∞ as t→∞ and lim
t→−∞

α(t) = (n− 1)/A.

Proof of Lemma 2.3.10. Since U is not contained in the cylinder Cα, there is a small

ball Bε(P ) ⊂ U \Cα. By (1) in Theorem 2.1.4, Bε(t)(P ) ⊂ D(t) for 0 < t < δ1. Here

ε(t) is the solution of the following equation

ε′(t) = −A− n

ε(t)
, 0 < t < δ1 (2.3.13)

with initial data ε(0) = ε and δ1 is the maximal time for the solution existing.

Let δ2 be the maximal existence time of the solution for equation (2.3.11) with

initial data α(0) = α.

Theorem 2.1.7 implies Bε(t)(P ) ∩ Cα(t) = ∅ for 0 < t < tαU . Here

tαU = min{δ1, δ2}.

Therefore,

Bε(t)(P ) ⊂ D(t) \ Cα(t), 0 < t < tαU .

Then for all 0 < ρ < α(t), ∂Cρ must intersect ∂D(t) at least twice for 0 < t < tαU .

On the other hand, Fix 0 < ρ < α(t0) and 0 < t0 < min{tαU , TU}, and let ρ(t) be

the solution of the equation (2.3.11) with initial data ρ(0) = ρ. Next we prove that

∂Cρ intersects ∂D(t0) at most twice.

By comparison principle for ordinary differential equation, we have ρ(−t0) < α.

This means y = ρ(−t0) intersects y = u(x, 0) only twice. Noting ρ(t − t0) > 0 for

t ≥ 0,

y = ρ(t− t0) > u(a(t), t) = 0, y = ρ(t− t0) > u(b(t), t) = 0 for t > 0.
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By Theorem D in [2], Z[a(t),b(t)](ρ(t− t0), u(·, t)) is not increasing for t > 0. Then

Z[a(t),b(t)](ρ(t− t0), u(·, t)) ≤ Z[a(0),b(0)](ρ(−t0), u(·, 0)) = 2.

Therefore ∂Cρ intersects ∂D(t0) exactly twice, for 0 < t < min{tαU , TU}. Conse-

quently, D(t) is an α(t)-domain for 0 < t < min{tαU , TU}.

Proposition 2.3.11. For tαU and TU given in Lemma 2.3.9 and 2.3.10, there holds

tαU ≤ TU .

To prove this proposition, we need the following lemma.

Lemma 2.3.12. Assume that D(t) = {(x, y) ∈ R × Rn | |y| < u(x, t), a(t) ≤ x ≤
b(t)} is a ρ-domain for 0 < t < T . Let w1 < w2 such that

Cρ ∩ ∂D(t) = {(x, y) | x = w1(y, t) or x = w2(y, t)}.

Then

lim
t→T

w1(y, t) = w1(y, T ) and lim
t→T

w2(y, t) = w2(y, T )

exist and these convergences are uniformly convergent for |y| ≤ ρ
2
. Moreover, v1(r1, T )

< v1(r2, T ) and v2(r1, T ) > v2(r2, T ) for 0 < r1 < r2 <
ρ
2
, where v1(r, t) = w1(y, t)

and v2(r, t) = w2(y, t).

Proof. w1(y, t) and w2(y, t) satisfy the equation (2.2.1), respectively for ”∓”. We

only prove the result for w1(y, t). Since w1 is uniformly bounded, Corollary 2.2.3

and Remark 2.2.4 imply that derivatives ∇j
yw1, j = 1, 2, are uniformly bounded

for 0 ≤ |y| ≤ ρ
2
, T

2
≤ t < T . Consequently, ∂w1

∂t
is bounded for 0 ≤ |y| ≤ ρ

2
,

T
2
≤ t < T . So there exists w1(y, T ) such that w1(y, t) converges to w1(y, T ) uniformly

for 0 ≤ |y| ≤ ρ
2
, as t→ T .
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Note that the following hold

∂v1

∂r
(
ρ

2
, t) > 0,

∂v1

∂r
(0, t) = 0 for 0 < t < T

and
∂v1

∂r
(r, 0) > 0 for 0 < r <

ρ

2
.

In fact, differentiating (2.3.3) in r,

pt = a(r, t)prr + b(r, t)pr + c(r, t)p, (2.3.7)

where p = wr, a(r, t) = 1/(1 + w2
r), b(r, t) = −2wrwrr/(1 + w2

r)
2 + (n − 1)/r −

Awr/
√

1 + w2
r , c(r, t) = −(n− 1)/r2. Strong maximum principle implies

∂v1

∂r
> 0 for 0 < r <

ρ

2
, 0 < t ≤ T.

Therefore v1(r1, T ) < v1(r2, T ) for 0 < r1 < r2 <
ρ
2
. Similarly, we can prove the

conclusion for v2.

Proof of Proposition 2.3.11. If TU < tαU . By Lemma 2.3.10, there exists ρ > 0 such

that D(t) is a ρ-domain for 0 < t < TU .

We divide ∂D(t) into two parts: ∂D(t) = (∂D(t) ∩ {r < ρ/2}) ∪ (∂D(t) ∩ {r ≥
ρ/2}).
Step 1. ∂D(t) ∩ {r < ρ/2}

Since ∂D(t) is a ρ-domain, there exist w1 < w2 such that ∂D(t) ∩ {r < ρ} =

{(x, y) | x = w1(y, t), |y| < ρ}∪{(x, y) | x = w2(y, t), |y| < ρ}. By the same argument

as in Lemma 2.3.12, ∇j
ywi, j = 1, 2, i = 1, 2, are uniformly bounded for 0 ≤ |y| ≤ ρ

2
,

TU
2
≤ t < TU . Therefore, the mean curvature of ∂D(t) ∩ {r < ρ/2} is uniformly

bounded for TU
2
≤ t < TU .

Step 2. ∂D(t) ∩ {r ≥ ρ/2}
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Recalling ∂D(t) = {(x, y) | |y| = u(x, t), a(t) ≤ x ≤ b(t)}, by Lemma 2.3.12,

v1(ρ/4, TU) < v1(ρ/2, TU) and v2(ρ/4, TU) > v2(ρ/2, TU). Then for any sufficiently

small ε > 0 for all t close to TU there holds

[v1(ρ/2, t), v2(ρ/2, t)] ⊂ (v1(ρ/4, t) + ε, v2(ρ/4, t)− ε). (2.3.14)

Theorem 2.3.4 shows that ux is bounded for |y| ≥ ρ/4. i.e. ux is bounded in

[v1(ρ/4, t), v2(ρ/4, t)], t close to TU . Remark 2.2.4 implies that uxx is uniformly

bounded in (v1(ρ/4, t) + ε, v2(ρ/4, t)− ε), t close to TU .

Therefore, (2.3.14) shows that ux and uxx are uniformly bounded for x ∈ [v1(ρ/2, t),

v2(ρ/2, t)], t close to TU . Consequently, the curvature of ∂D(t)∩{r ≥ ρ/2} is bounded

for t close to TU . Here we show that the curvature of ∂D(t) is uniformly bounded as

t ↑ TU . It contradicts that ∂D(t) become singular at TU .

Remark 2.3.13. (1). In Lemma 2.3.10, 0 < t < min{tαU , TU} is equivalent to 0 < t <

tαU .

(2). Seeing the choice of tαU , tαU ≤ tαW , if U ⊂ W .
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Chapter 3

The criteria for fattening and

non-fattening phenomenon in the

plane

In this chapter, we want to introduce the results in [8]. In [8], we consider a

family of axisymmetric curves evolving by its curvature with driving force in the

plane. However, the initial curve is oriented singularly at origin. We investigate this

problem by level set method and give some criteria to judge whether the interface

evolution is fattening or not.

3.1 Introduction

Curvature flow with driving force, precisely, is given by

V = −κ+ A on Γ(t) ⊂ R2, (1.1.1)

Γ(0) = Γ0, (1.1.2)
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Chapter 3. The criteria for fattening and non-fattening phenomenon in the plane

where V is the outer normal velocity of Γ(t), κ is the curvature of Γ(t) and the sign

is chosen such that the problem is parabolic. The constant A called driving force is

positive.

In this research, the initial curve Γ0 is symmetric to x and y-axis. Let Λ0 =

Γ0 ∩ {x ≥ 0} be closed, smooth, embedded given by

Λ0 = {(x, y) ∈ R2 | |y| = u0(x), 0 ≤ x ≤ b0}.

Here u0 is even and u0 ∈ C[−b0, b0]∩C∞
(
(−b0, 0)∪ (0, b0)

)
for b0 > 0. Consequently,

Γ0 = {(x, y) ∈ R2 | |y| = u0(x),−b0 ≤ x ≤ b0}

and Γ0 is singular at origin (Figure 3.1).

By the assumption of Λ0, there hold

u0(x) > 0, 0 < x < b0

and

u0(0) = u0(b0) = 0, lim
x→0+

u′0(x) = − lim
x→b−0

u′0(x) =∞.

Main assumptions. Before giving our main results, we first consider another

problem.

V = −κ+ A on Λ+(t) ⊂ R2, (1.1.1*)

Λ+(0) = Λ0, (1.1.2*)

(Figure 3.2). We consider this problem by level set method. As introduced in Chapter
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O
0( ,0)b

 0 0 0 0( , ) ( ) ,x y y u x b x b     

Figure 3.1: Initial curve Γ0

O
0( ,0)b

Figure 3.2: Initial curve Λ0
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2, there exists unique viscosity solution φ of the following level set equation φt = |∇φ|div(
∇φ
|∇φ|

) + A|∇φ| in R2 × (0, T ),

φ(x, y, 0) = a1(x, y),

where a1(x, y) is chosen such that Λ0 = {(x, y) | a1(x, y) = 0} and {(x, y) | a1(x, y) >

0} is bounded. The results in appendix show that the zero set of φ is not fattening

in a short time. Indeed, thanks to Theorem 2.3.7, the zero set of φ can be written

into

Λ+(t) = {(x, y) ∈ R2 | φ(x, y, t) = 0} = {(x, y) ∈ R2 | |y| = v(x, t), a∗(t) ≤ x ≤ b∗(t)},

for 0 < t < T∗. Moreover, (v, a∗, b∗) is the solution of the following free boundary

problem 

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, x ∈ (a∗(t), b∗(t)), 0 < t < T∗,

u(a∗(t), t) = 0, u(b∗(t), t) = 0, 0 ≤ t < T∗,

ux(a∗(t), t) =∞, ux(b∗(t), t) = −∞, 0 ≤ t < T∗,

u(x, 0) = u0(x), 0 ≤ x ≤ b0.

(*)

Here a∗ and b∗ are called the end points of Λ+(t).

Assumption (A+): There exists δ > 0 such that a∗(t) ≥ 0 for 0 ≤ t < δ.

Assumption (A−): There exists δ > 0 such that a∗(t) < 0 for 0 < t < δ.

The assumptions (A+) and (A−) for a∗(t) seem not to be understood easily. We

explain the assumptions by giving some sufficient conditions.

The curvature of Λ0 at origin is denoted by κ(O). Noting that

κ(O) = − lim
x→0+

u′′0/(1 + (u′0)2)3/2
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O *( )b t*( )a t
O *( )b t*( )a t

( )A ( )A

Figure 3.3: Main assumptions

and

a′∗(0) = κ(O)− A,

we can prove that

(a). if κ(O) < A, there holds a∗(t) < 0, for t small;

(b). if κ(O) > A, there holds a∗(t) > 0, for t small.

Here we give our main results.

Theorem 3.1.1. Assuming the assumption (A−) holds, then there exists T1 > 0

such that the interface evolution Γ(t) for (1.1.1) with initial curve Γ0 is not fattening

for 0 ≤ t < T1. Moreover, Γ(t) can be written into Γ(t) = {(x, y) ∈ R2 | |y| =

u(x, t), −b(t) ≤ x ≤ b(t)}. Here (u, b) is the unique solution of the following free
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boundary problem

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, −b(t) < x < b(t), 0 < t < T1, (3.1.1)

u(b(t), t) = u(−b(t), t) = 0, ux(−b(t), t) = −ux(b(t), t) =∞, 0 < t < T1, (3.1.2)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0. (3.1.3)

Precisely, we say (u, b) is the solution of (3.1.1), (3.1.2) and (3.1.3), if

(1). b(t) is a positive function and b ∈ C([0, T1)) ∩ C1((0, T1)).

(2). u ∈ C(DT1) ∩ C2,1(DT1), where DT1 = ∪0≤t<T1
(
[−b(t), b(t)] × {t}

)
and

DT1 = ∪0<t<T1

(
(−b(t), b(t))× {t}

)
(We must note that DT1 6= DT1).

(3). (u, b) satisfies (3.1.1), (3.1.2) and (3.1.3).

The definition of interface evolution and fattening are given in section 2.

Indeed, seeing future, the solution (u, b) given by Theorem 3.1.1 satisfies

u(x, t) > 0, −b(t) < x < b(t), 0 < t < T1.

This impies that Γ(t) is a family of embedded curves for 0 < t < T1. Let T be the

maximal smooth time given by

T = sup{t | Γ(s) is smooth and embedding, 0 < s < t}.

We now give a sufficient result to have a fattening phenomenon.

Theorem 3.1.2. (Fattening)

Assuming the assumption (A+) holds, the interface evolution Γ(t) for (1.1.1) with

initial data Γ0 is fattening.

Theorem 3.1.1 and Theorem 3.1.2 can be explained by Figure 3.4 and 3.5. ϕ in
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Figure 3.4 and 3.5 is the unique viscosity solution of

 ϕt = |∇ϕ|div(
∇ϕ
|∇ϕ|

) + A|∇ϕ| in R2 × (0, T ),

ϕ(x, y, 0) = a2(x, y),

where a2(x, y) satisfies Γ0 = {(x, y) | a2(x, y) = 0} and Γ0 = {(x, y) | a2(x, y) > 0} is

bounded. Let Γ(t) = {(x, y) | ϕ(x, y, t) = 0}.

O

( )t

*( )a t ( )b t( )b t

 2( ) ( , ) ( , , ) 0t x y x y t   

*( )b t

Figure 3.4: a∗(t) < 0 in Theorem 3.1.1

The role of a∗(t) in main theorem. Let (u, b) be the unique solution of the

free boundary problem

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, −b(t) < x < b(t), 0 < t < T1, (3.1.1)

u(b(t), t) = u(−b(t), t) = 0, ux(−b(t), t) = −ux(b(t), t) =∞, 0 < t < T1, (3.1.2)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0. (3.1.3)
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O

( )t( )t

*( )a t

 2( ) ( , ) ( , , ) 0t x y x y t   

Figure 3.5: a∗(t) ≥ 0 in Theorem 3.1.2

Obviously, the flow Γ∗(t) = {(x, y) | |y| = u(x, t), −b(t) ≤ x ≤ b(t)} satisfies (1.1.1),

(1.1.2) naturally.

On the other hand, let (v, a∗, b∗) be the solution of the problem (*). If a∗(t) ≥ 0,

0 < t < δ, the flow

Λ+(t) = {(x, y) | |y| = v(x, t), a∗(t) ≤ x ≤ b∗(t)}

does not intersect the flow

Λ−(t) = {(−x, y) | (x, y) ∈ Λ+(t)},

for 0 < t < δ. Denote Λ(t) = Λ+(t) ∪ Λ−(t). Obviously, Λ(t) also satisfies (1.1.1).

Seeing Γ∗(0) = Λ(0) = Γ0, this means there exist two types of flows Γ∗(t) and

Λ(t) evolving by V = −κ + A with the same initial curve Γ0. Therefore under this

condition, the solution of the original problem (1.1.1), (1.1.2) is not unique. Indeed,
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seeing the proof of Theorem 3.1.2, the flow Γ∗(t) is the boundary of closed evolution

and the flow Λ(t) is the boundary of open evolution.

If a∗(t) < 0, 0 < t < δ, Λ+(t) ∩ Λ−(t) 6= ∅. Obviously, Λ(t) = Λ+(t) ∪ Λ−(t)

does not satisfy (1.1.1). But Λ+(t) plays the role of a sub-solution (in the proof of

Lemma 3.2.6). Using this sub-solution, the boundaries of the open evolution and

closed evolution are away from the x-axis. Moreover, the derivatives and the second

fundamental forms of them can be proved uniformly bounded. By the uniqueness

result (Proposition 3.2.4), we can prove they are the same. Since the interface evo-

lution Γ(t) is imposed to be symmetric to the y-axis, Γ(t) are perpendicular to the

y-axis for t > 0, but this condition does not hold at time t = 0.

In our problem, if A = 0, since a∗(t) ≥ 0 always holds, the interface evolution is

fattening.

Motivation. This research is motivated by [7], the mean curvature flow with

driving force under the Neumann boundary condition in a two-dimensional cylinder

with periodically undulating boundary. In [7], they only consider the condition that

for initial curve {(x, y) ∈ R2 | y = u0(x)} with |u′0(x)| < M for some M . They

show that the interior point of Γ(t) = {(x, y) ∈ R2 | y = u(x, t)} never touches the

boundary and Γ(t) remains graph. Therefore, the problem can be studied by the

classical parabolic theory. If removing the assumption |u′0(x)| < M , when u(x, t)

touches the boundary, the singularity will develop (Figure 3.6). Noting Figure 3.7,

after touching, Γ(t) possibly separates into two parts and become non-graph (Γ(t)

can’t be represented by y = u(x, t)). This makes us analyze what will happen after

touching boundary. Noting that Γ(t) may become non-graph, we tend to use the

level set method established by [2]; see also Evans and Spruck [3], [4], [5], for the

mean curvature flow, where fattening phenomenon is first observed.
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( )tTouch point 

Figure 3.6: Curve touching



( )t

Figure 3.7: After touching

3.2 Identity for the outer evolution and inner evo-

lution

In this section, we prove the fattening and non-fattening results. It is necessary

to identify whether the outer evolution and inner evolution are identical.

Denote U = {(x, y) ∈ R2 | |y| < u0(x),−b0 ≤ x ≤ b0}. By assumption of u0 in

Section 3.1, we know that U ∩ {x ≥ 0} is an α-domain with smooth boundary, for

some α > 0.

We choose vector field X ∈ C1(R2 \ {(0, 0)} → R2) such that

(i) At any P ∈ ∂U not on the x-axis has 〈X,n(P )〉 > 0, where n is inward unit

normal vector at P .

(ii) We set X((x, y)) = (0,−y/|y|), near (0, 0) and set X = (−1, 0) near (b, 0),

X = (1, 0) near (−b, 0).

We note that X has no definition at (0, 0).
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Since X 6= 0 on ∂U \ {(0, 0)}, there exists a neighbourhood V ⊃ ∂U such that

|X| ≥ δ > 0 for some δ > 0 in V \ {(0, 0)}.

Proposition 3.2.1. For ρ small enough, there exists a smooth curve Σ ⊂ V \{(0, 0)}
with

(i) X(P ) /∈ TPΣ at all P ∈ Σ, i.e., Σ is transverse to the vector field X;

(ii) Σ = ∂U in {(x, y) | |y| ≥ 2ρ};
(iii) Σ ∩ {(x, y) | |y| ≤ ρ} consists of discs ∆±c = {(±c, y) | |y| ≤ ρ} and pipe

Bd = {(x, y) | −d ≤ x ≤ d, |y| = ρ}.

O

 U

Figure 3.8: Proof of Proposition 3.2.1

Proof. Because U ∩ {x ≥ 0} is an α-domain, there exist δj, γj and 0 < δj < γj such

that

u0(δj) = u0(γj) = u0(−δj) = u0(−γj) =
α

2j

and

∂U ∩ Cα = {(x, y) | x = ±v(y), |y| < α} ∪ {(x, y) | x = ±w(y), |y| < α},
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where v, w ∈ C∞((−α, α)) and 0 < v(y) < w(y) for |y| < α. Here δj is decreasing

and γj is increasing in j, respectively.

We let wj ∈ C∞((−α/2j−1, α/2j−1)) be defined as following

wj(y) =

 γj+2, 0 ≤ |y| < α

2j+1
,

w(y),
α

2j
< |y| < α

2j−1
.

And uj ∈ C∞((−δj−1, δj−1)) is defined as following

uj(x) =


α

2j+1
, x ∈ [0, δj+2],

u0(x), x ∈ [δj, δj−1).

Let Σj consist of three parts: {(x, y) | |y| = uj(x), x ∈ (−δj, δj)}, {(x, y) | x =

±wj(y), |y| < α/2j} and ∂U∩{|y| ≥ α/2j}. It is easy to see that for j sufficient large,

Σj ⊂ V \ {(0, 0)} satisfies (i), (ii), (iii) for c = γj+2, ρ = α/2j+1 and d = δj+2.

Denote σ(P, t) : Σ×(−δ, δ)→ V (V is given at the begining of this section and Σ

is given by Proposition 3.2.1) the flow generated by vector field X in R2. Precisely,

σ(P, t) is defined as following:
dσ(P, t)

dt
= X(σ(P, t)), P ∈ Σ,

σ(P, 0) = P, P ∈ Σ.

Seeing (i) in Proposition 3.2.1, for any C1 function u : Σ → R, “the image

of u under σ”—{σ(P, u(P )) | P ∈ Σ} is a C1 curve. Conversely, for any curve

Γ ⊂ V being C1 close to Σ, there exists a unique C1 function u : Σ → R such that

Γ = {σ(P, u(P )) | P ∈ Σ}. In other words, the map σ(·, t) defines a new coordinate

from Σ to V . Therefore, if Γ(t) ⊂ V (0 < t < T ) is a smooth family of smooth

curves and C1 close to Σ, there exists a unique function u ∈ C∞(Σ × (0, T )) such
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that Γ(t) = {σ(P, u(P, t)) | P ∈ Σ}. Let z be the local coordinate on an open subset

of Σ. If Γ(t) evolves by V = −κ+ A, under this coordinate u satisfies the following

equation
∂u

∂t
= a(z, u, uz)

∂2u

∂z2
+ b(z, u, uz). (3.2.1)

Here a, b are smooth functions in their arguments Section 3 in [1]. And a is

always positive so that (3.2.1) is a parabolic equation.

For example, σ(·, t) is the flow defined as above. We can easily deduce that

σ(P, t) =


(x, ρ− t), P ∈ Bd,

(−c+ t, y), P ∈ ∆−c,

(c− t, y), P ∈ ∆c,

where we choose the local coordinates:

(1). (x, ρy) on Bd, for |y| = 1;

(2). (±c, y) on ∆±c.

Assume Γ(t) is symmetric to x-axis. Therefore, on Bd, u only depends on x, t

and satisfies

ut = a(x, u, ux)uxx + b(x, u, ux), (3.2.2)

where a(x, u, ux) = 1/(1 + u2
x) and b(x, u, ux) = −A

√
1 + u2

x.

On ∆±c, u only depends on y, t. Then on ∆±c, u satisfies

ut = a(y, u, uy)uyy + b(y, u, uy), (3.2.3)

where a(y, u, uy) = 1/(1 + u2
y), b(y, u, uy) = −A

√
1 + u2

y.

Remark 3.2.2. In Rn+1, b obtained above may not be smooth. For example,

ut =
uxx

1 + u2
x

+
n− 1

ρ− u
− A

√
1 + u2

x,
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on {(x, y) ∈ R × Rn | |y| = ρ,−d < x < d}. In this case, b = n−1
ρ−u − A

√
1 + u2

x. It

is easy to see b is not smooth at u = ρ. This is the most difficult point in higher

dimension. We consider it in Chapter 5.

Lemma 3.2.3. For smooth function v(x, t) on V × (0, T ), where V is a compact set,

let m(t) be

m(t) = max{v(x, t) | x ∈ V }.

Then there exists Pt ∈ V such that v(Pt, t) = m(t) and m′(t) = vt(Pt, t) for t > 0.

This is a well known result, for example, seeing [6].

Proposition 3.2.4. Let Γ1(t), Γ2(t), t ∈ [0, T ] be two families of curves with

σ−1(Γj(t)) the graph of uj(·, t) for certain uj ∈ C(Σ × [0, T ]). Assume uj are

smooth on Σ × (0, T ] and smooth on Σ \ (∆±c ∪ Bd) × [0, T ]. If Γ1(0) = Γ2(0),

then Γ1(t) = Γ2(t), 0 ≤ t ≤ T .

The assumption “uj are smooth on Σ×(0, T ] and smooth on Σ\(∆±c∪Bd)×[0, T ]”

means that it is not necessary that the parts of Γi(t) near origin and end points are

smooth up to t = 0.

Proof. Consider v(P, t) = u1(P, t) − u2(P, t). From our assumptions, we have v ∈
C(Σ × [0, T ]) and that v is smooth on Σ × (0, T ] and Σ \ (∆±c ∪ Bd) × [0, T ).

Moreover, v(P, 0) ≡ 0. Define m(t) = max{v(P, t) | P ∈ Σ}. We want to show

that m′(t) ≤ Cm(t) for some constant C. Choose Pt as in Lemma 3.2.3 such that

m(t) = v(Pt, t) and m′(t) = vt(Pt, t).

Case 1. Pt ∈ Bd, since uj satisfy the equation (3.2.2), v satisfies a parabolic

equation

vt = a1(x, t)vxx + b1(x, t)vx,

where a1(x, t) and b1(x, t) is smooth, and a1(x, t) > 0. Since v attains its maximum

at Pt, vx(Pt, t) = 0 and vxx(Pt, t) ≤ 0. Then vt(Pt, t) ≤ 0. Considering Lemma 3.2.3,

m′(t) ≤ 0.
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Case 2. Pt ∈ ∆±c. We only consider Pt ∈ ∆−c. Then in the y-coordinates of

∆−c, uj satisfy (3.2.3). Therefore v = u1 − u2 satisfies a parabolic equation

vt = a2(y, t)vyy + b2(y, t)vy.

Seeing vy(Pt, t) = 0 and vyy(Pt, t) ≤ 0, m′(t) ≤ 0.

Case 3. Pt ∈ Σ \ (∆±c ∪ Bd). Then we can choose coordinate z on some

neighbourhood of Pt on Σ and uj satisfy (3.2.1). We may write this equation as

ut = F (z, t, u, uz, uzz). Then v = u1 − u2 satisfies

vt = a3(z, t)vzz + b3(z, t)vz + c3(z, t)v,

where

a3 = a(z, u1, (u1)z)

and

c3(z, t) =

∫ 1

0

Fu(z, t, u
θ, uθz, u

θ
zz)dθ,

where uθ = (1− θ)u2 + θu1. As mentioned in equation (3.2.1), a3 is positive.

By the assumption, outside of the disks ∆±c and the pipe Bd, ui are smooth up to

t = 0, so the coefficient c3(z, t) is bounded, 0 ≤ t ≤ T , saying by |c3(z, t)| ≤M <∞.

The constantM may depend on the choice of local coordinate z. Noting Σ is compact,

by easy covering argument, we can choose M independent of the choice of local

coordinate. Since vz(Pt, t) = 0, vzz(Pt, t) ≤ 0,

vt(Pt, t) ≤ c3(Pt, t)v(Pt, t) ≤Mv(Pt, t).

Consequently, m′(t) ≤Mm(t).

Combining the three cases, we have m′(t) ≤ Cm(t), for some constant C > 0.
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Considering m(0) = 0, m(t) ≤ 0. Conversely, we can prove M(t) = min{v(P, t) |
P ∈ Σ} ≥ 0. Therefore u1 ≡ u2. We complete the proof.

Lemma 3.2.5. There exists a sequence of closed sets Ej such that E◦j are α/2j-

domains and Ej ↓ U . Where U is given at the beginning of the section and E◦

denotes the interior of the set E.

Proof. We choose δj as in Proposition 3.2.1. We can construct vj ∈ C∞((−b0, b0))

being even such that

vj(x) =

 α/2j, x ∈ (−δj/2, δj/2),

u0(x), x ∈ [−b0,−δj] ∪ [δj, b0],

vj(x) ≥ u0(x), x ∈ [−b0, b0] and v′j(x) > 0, x ∈ (δj/2, δj). It is easy to see vj ↓ u0

uniformly in [−b0, b0].

Let Ej = {(x, y) | |y| ≤ vj(x), −b0 ≤ x ≤ b0}. Since vj ↓ u0 uniformly in

[−b0, b0], Ej ↓ U . It is easy to check E◦j are α/2j-domain.

Lemma 3.2.6. Let the same assumption in Theorem 3.1.1 be given. Then there

exists t1 > 0 such that, for all t2 satisfying 0 < t2 < t1, the second fundamental

forms and derivatives of ∂Ej(t) are uniformly bounded for t2 ≤ t ≤ t1, where Ej(t)

denote the closed evolution of V = −κ+ A with Ej(0) = Ej.

Proof. Let Ej(t) = {(x, y) | |y| ≤ vj(x, t)}.
Step 1. For all t2 satisfying 0 < t2 < δ (δ given by Theorem 3.1.1), there exists

a constant c > 0 such that

vj(0, t) > c, t2/2 < t < δ.

Let U+(t) denote the bounded set with ∂U+(t) = Λ+(t). Since U+(0) = U ∩{x ≥
0} ⊂ Ej = Ej(0), there holds U+(t) ⊂ Ej(t). By our assumption that a∗(t) < 0, for
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0 < t ≤ δ, there holds (0, 0) ∈ U+(t) ⊂ Ej(t), 0 < t < δ. For all t2 ∈ (0, δ), there

exists c > 0 such that vj(0, t) > c, t2/2 ≤ t ≤ δ.

Step 2. Construction of auxiliary balls.

Since U ∩ {x ≥ 0} is an α-domain, there exist β2 > β1 > 0 such that u0(±β1) =

u0(±β2) = α and u′0(x) < 0 for x > β2, u′0(x) > 0 for 0 < x < β1. There exist p > β1

and 0 < q < β2 such that u0(±q) = u0(±p) =
α

2
. We consider the points

Q = (−p, 0), P = (p, 0),

Q′ = (−p, α), P ′ = (p, α).

B

0t 



2



B

B

B

p p

Figure 3.9: Proof of Lemma 3.2.6

Since P ∈ U and P ′ ∈ U c
, there exists ε such that Bε(P ) ⊂ U and Bε(P ′) ⊂ U

c
.

Consequently, Bε(P ) ∪ Bε(Q) ⊂ E◦ and Bε(P ′) ∪ Bε(Q′) ⊂ Ec. Then for j large
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enough, Bε(P ) ∪Bε(Q) ⊂ E◦j and Bε(P ′) ∪Bε(Q′) ⊂ Ec
j . By (4) in Theorem 2.1.4,

Bε(t)(P ) ∪Bε(t)(Q) ⊂ Ej(t)
◦, (3.2.4)

0 < t < δ2. By (1b) in Theorem 2.1.6, there exists δ3 > 0 such that

Bε(t)(P ′) ∪Bε(t)(Q′) ⊂ Ej(t)
c, (3.2.5)

for 0 < t < δ3. Where ε(t) is the solution of (2.3.12) with ε(0) = ε, 0 < t < δ1.

Choose δ2 independent of j such that ε(t) > ε/2, 0 < t < δ2.



2



( )tB

p p

( )tB

( )tB

( )tBd

Figure 3.10: Proof of Lemma 3.2.6

Step 3. Divide ∂Ej(t) into two parts by auxiliary balls.

Since for all ρ < α, Cρ intersects ∂Ej at most four times, by Proposition 2.3.1,

there exists t0 > 0 such that Cρ intersects ∂Ej(t) at most four times for 0 < t < t0.

By continuity, we can deduce that there exists δ4 such that for all ρ < α, the equation

vj(x, t) = ρ has just one root for x > p for all t < δ4. By symmetry, it also holds for
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x < −p.
Choosing t1 = min{t0, δ2, δ3, δ4}, Step 1 and intersection number argument show

that Ej(t)
◦ are all c-domains, t2/2 < t < t1. Let d < min{c, ε/4}. By (3.2.4) in

Step 2, we have vj(x, t) > d, for t2/2 < t < t1, |x − p| <
√
ε2(t)− d2 or |x + p| <√

ε2(t)− d2. Seeing ε(t) > ε/2, there holds

vj(x, t) ≥ d in Ω = (−p−
√

3

4
ε, p+

√
3

4
ε)× (t2/2, t1).

For x ≤ −p, by (3.2.5) in Step 2,

vj(x, t) < α/2− ε(t) < α/2− ε/2, x ≤ −p, 0 ≤ t < t1.

This is also true for x ≥ p.

Step 4. The derivatives and second fundamental forms of ∂Ej(t) are bounded

in Ω′ = [−p, p]× (t2, t1).

Since vj(x, t) ≥ d in Ω = (−p−
√

3
4
ε, p+

√
3

4
ε)× (t2/2, t1), Theorem 2.3.4 implies

that vjx are uniformly bounded in Ω. By Remark 2.2.4, vjxx are uniformly bounded

in Ω′.

Step 5. The derivatives and second fundamental forms of ∂Ej(t) are bounded

for x ≤ −p and x ≥ p, t2 < t < t1.

We only consider for x ≤ −p. For 0 < t < t1, the part of ∂Ej(t) on x ≤ −p
can be represented by x = wj(y, t), for |y| < α/2, t ∈ (0, t1). And wj satisfy the

equation (2.2.1) in the condition “−” and n = 1. Then Corollary 2.2.3 and Remark

2.2.4 imply that all ∂k

∂yk
wj(y, t), k = 1, 2, are uniformly bounded for |y| ≤ α/2− ε/2,

t2 < t < t1 and for any t2 > 0. Then the derivatives and second fundamental forms

of ∂Ej(t) are uniformly bounded for x ≤ −p, t2 < t < t1.

The proof of this lemma is completed.
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Lemma 3.2.7. There exist Uj being open and Uj ∩{x ≥ 0} being an α-domain such

that Uj ↑ U as j →∞.

Proof. Since U ∩ {x > 0} being α-domain, for j ≥ 1, there exist δj satisfying 0 <

δj < δ0 such that u0(δj) = α/2j, where δ0 satisfies u0(±δ0) = α and u′0(x) > 0 for

0 < x < δ0. We set uj ∈ C∞((−b0, b0)) and even satisfying

uj(x) =

 0, x = 0,

u0(x), x ∈ [−b0,−δj] ∪ [δj, b0],

and uj(x) ≤ u0 for x ∈ [−b0, b0], u′j(x) > 0 for x ∈ (0, δj).

Let Uj = {(x, y) | |y| < uj(x)}. Obviously uj ↑ u0, then Uj ↑ U . It is easy to

check Uj ∩ {x > 0} are α-domain.

Lemma 3.2.8. Let the same assumption in Theorem 3.1.1 be given. Then there

exists t1 > 0 such that for all t2 satisfying 0 < t2 < t1, the second fundamental forms

and derivatives of ∂Uj(t) is uniformly bounded, t2 < t < t1, where Uj(t) is the open

evolution of V = −κ+ A with Uj(0) = Uj.

This lemma can be proved similar as in Lemma 3.2.6.

Proof of Theorem 3.1.1. Seeing Lemma 3.2.6 and 3.2.8, ∂U(t), ∂E(t) are smooth

curves and homeomorphic to the curve Σ given by Proposition 3.2.1. Consequently,

∂U(t), ∂E(t) satisfy the assumption of Proposition 3.2.4, 0 ≤ t < T1, for some T1

satisfying 0 < T1 < t1. Here t1 is given by Lemma 3.2.6 and 3.2.8. Then there holds

∂U(t) = ∂E(t), 0 < t < T1. The proof of Theorem 3.1.1 is completed.

Moreover, by Theorem 2.1.10 and Theorem 2.3.7, Γ(t) = {(x, y) ∈ R2 | |y| =

u(x, t),−b(t) ≤ x ≤ b(t)} and (u, b) is the solution of the following free boundary
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problem 

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, x ∈ (−b(t), b(t)), 0 < t < T,

u(−b(t), t) = 0, u(b(t), t) = 0, 0 ≤ t < T,

ux(−b(t), t) =∞, ux(b(t), t) = −∞, 0 ≤ t < T,

u(x, 0) = u0(x), −b0 ≤ x ≤ b0.

Remark 3.2.9. Indeed, in Proposition 3.2.4, it is not necessary that the parts of Γi(t)

near end points are smooth up to t = 0. Therefore, we can remove the assumption

that Γ0 is smooth at end point (−b0, 0) and (b0, 0).

Proof of Theorem 3.1.2. It is sufficient to show that there is a ball B such that

B ⊂ E(t) \ U(t), for some t.

Closed evolution E(t). Since E◦j (given by Lemma 3.2.5) are α/2j-domain

with smooth boundary, by Lemma 2.3.9, there exists a positive time t1, t1 < δ (δ

is given in Theorem 3.1.2) such that Ej(t)
◦ are (At + α/2j)-domain for 0 < t < t1.

Combining Ej(t) ↓ E(t), we have E(t)◦ is an At-domain, 0 < t < t1. Therefore E(t)◦

is an At1/2-domain, t1/2 < t < t1.

Open evolution U(t). Let U±(t) be the bounded open domain with ∂U±(t) =

Λ±(t). Thus the left end point of U+(t) and the right end point of U−(t) are (a∗(t),0)

and (−a∗(t),0), respectively. By the assumption in this theorem a∗(t) ≥ 0, 0 ≤ t < δ,

it means that −a∗(t) ≤ a∗(t), 0 ≤ t < δ. Therefore, U+(t) ∩ U−(t) = ∅, 0 ≤ t < δ.

From Lemma 2.1.9, the inner evolution U(t) satisfies U(t) = U+(t) ∪ U−(t), for

0 ≤ t < δ.

By (2a) in Theorem 2.1.6 (the boundary of open evolution evolves continuously)

68



Chapter 3. The criteria for fattening and non-fattening phenomenon in the plane

and a(t) ≥ 0, there exists δ1 <
At1
4

such that

Bδ1((0,
At1
4

)) ∩ U(t) = ∅, t1
2
< t < t1

and

Bδ1((0,
At1
4

)) ⊂ E(t),
t1
2
< t < t1.

Then Bδ1((0,
At1
4

)) ⊂ Γ(t) = E(t) \ U(t), for
t1
2
< t < t1.
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Chapter 4

Asymptotic behavior for curvature

flow with driving force in the plane

In this chapter, we want to introduce the researches in [12] and [13]. We want to

classify the solution given in Chapter 3 into three cases and consider the asymptotic

behavior in each case.

4.1 Introduction

In [12] and [13], they classify the solution of the following problem and give their

asymptotic behavior

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, x ∈ (−b(t), b(t)), 0 < t < T, (4.1.1)

u(−b(t), t) = 0, u(b(t), t) = 0, 0 ≤ t < T, (4.1.2)

ux(−b(t), t) =∞, ux(b(t), t) = −∞, 0 ≤ t < T, (4.1.3)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0, (4.1.4)
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where u0 ∈ C∞((−b0, b0))∩C([−b0, b0]) is even and satisfies u0(x) > 0, −b0 < x < b0.

Moreover, we assume the curve Γ0 = {(x, y) | |y| = u0(x),−b0 ≤ x ≤ b0} is smooth

and embedded. The constant A called driving force is positive.

Recall constant T being the maximal time such that Γ(t) = {(x, y) ∈ R2 | |y| =

u(x, t),−b(t) ≤ x ≤ b(t)} is smooth and embedded for 0 < t < T .

Theorem 4.1.1. (Classification) Denote

h(t) = max
−b(t)≤x≤b(t)

u(x, t)

and

Γ(t) = {(x, y) | |y| = u(x, t), −b(t) ≤ x ≤ b(t)}.

Then Γ(t) must fulfill one of the following situations.

(1). (Expanding) The maximal smooth time T = ∞ and both h(t) and b(t) tend

to ∞, as t→∞.

(2). (Bounded) The maximal smooth time T = ∞ and both h(t) and b(t) are

bounded from above and below by two positive constants, as t→∞.

(3). (Shrinking) The maximal smooth time T < ∞ and both h(t) and b(t) tend

to 0, as t→ T .

Theorem 4.1.2. (Asymptotic behavior)

(1). (Expanding) The maximal smooth time T =∞ and that both h(t) and b(t) tend

to ∞ as t→∞. Then there exist t0 > 0, R1(t), R2(t) such that

BR1(t)(O) ⊂ U(t) ⊂ BR2(t)(O), t > t0,

where U(t) = {(x, y) ∈ R2 | |y| < u(x, t), x > 0}. Moreover lim
t→∞

R1(t)/t =

lim
t→∞

R2(t)/t = A.

(2). (Bounded) The maximal smooth time T = ∞ and that both h(t) and
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b(t) are bounded from above and below by two positive constants for t > 0. Then

lim
t→∞

dH(Γ(t), ∂B1/A(O)) = 0. Here dH denotes the Hausdorff distance.

Next we give the asymptotic behavior for the Shrinking case.

If T <∞, seeing Corollary 4.2.6, there exists t0 such that u(x, t) loses all its local

minimum, t0 < t < T and Γ(t) shrinks to the origin, as t→ T .

Noting that the initial function u0 is even, u(x, t) is also even. Therefore for every

t > t0, u(x, t) is increasing for x ∈ (−b(t), 0) and u(x, t) is decreasing for x ∈ (0, b(t)).

Moreover, h(t) = u(0, t), t > t0.

Results for Shrinking. Under the case T < ∞, we introduce the following

similarity transformation (first used by [4]):

z =
x√

2(T − t)
, τ = −1

2
ln(T − t) (4.1.5)

and

w(z, τ) =
1√
2
eτu(
√

2e−τz, T − e−2τ ). (4.1.6)

We also define

r(τ) =
1√
2
eτh(T − e−2τ ) and q(τ) =

1√
2
eτb(T − e−2τ ).

Obviously, r(τ) = w(0, τ) = max
−q(τ)≤z≤q(τ)

w(z, τ), τ > −1
2

ln(T − t0). Then u satisfies

(4.1.1), (4.1.2), (4.1.3), (4.1.4) if and only if w satisfies

wτ =
wzz

1 + w2
z

− zwz + w +
√

2Ae−τ
√

1 + w2
z , z ∈ (−q(τ), q(τ)), τ > τ0, (4.1.7)

w(−q(τ), τ) = w(q(τ), τ) = 0, τ > τ0, (4.1.8)

wz(−q(τ), τ) =∞, wz(q(τ), τ) = −∞, τ > τ0, (4.1.9)
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w0(z) := w(z, τ0) =
1√
2T

u0(
√

2Tz), z ∈ [−b(0)/
√

2T , b(0)/
√

2T ], (4.1.10)

where τ0 = −1
2

lnT . The stationary problem for (4.1.7), (4.1.8), (4.1.9), (4.1.10) is

given by
ϕzz

1 + ϕ2
z

− zϕz + ϕ = 0, z ∈ (−q, q), (4.1.11)

ϕ(−q) = ϕ(q) = 0, (4.1.12)

ϕz(−q) =∞, ϕz(q) = −∞, (4.1.13)

for some q. Obviously, ϕ(z) =
√

1− z2 and q = 1 are the unique solution of the

above stationary problem (4.1.11)-(4.1.13).

Then we have the following theorem.

Theorem 4.1.3 (Asymptotic behavior). The solution (w(z, τ), q(τ)) of problem

(4.1.7)-(4.1.10) converges to the unique solution (ϕ(z), q) of (4.1.11)-(4.1.13) point-

wise, as τ → +∞, where w and ϕ are considered as 0 outside the interval.

Furthermore, there exists t1 such that Γ(t) is strict convex for t1 < t < T . Equiv-

alently, uxx(x, t) < 0, for −b(t) < x < b(t), t1 < t < T .

Remark 4.1.4. Indeed, we can prove the graph of w(z, τ) converges to the graph of

ϕ(z) under the Hausdorff distance.

Note that our result does not assume convexity for initial data as in [9], since we

assume symmetry to the the initial curve.

The most important tool in proving the asymptotic behavior for Shrinking case

is the comparison principle for extrinsic and intrinsic distances. Let the flow G :

[0, L∗(t)] × [0, T ) → R2 be the smooth closed curves evolving by the classical curve

shortening flow
∂

∂t
G(s, t) =

∂2

∂s2
G(s, t),

where s denotes the arc length parameter, L∗(t) denotes the perimeter of G(·, t). For

74



Chapter 4. Asymptotic behavior for curvature flow with driving force in the plane

any two points on mean curvature flow G(s, t), denoted by G(s1, t), G(s2, t). Denote

d = |G(s1, t) −G(s2, t)|. l = |s2 − s1| is the length of the curve between G(s1, t),

G(s2, t). More precisely, l and d are called the intrinsic and extrinsic distances,

respectively. The paper [7] shows that m(t) = min
(s1,s2)∈[0,L∗(t)]×[0,L∗(t)]

(d/l)(s1, s2, t) is

non-decreasing in time. The ratio between extrinsic and intrinsic distance is also

used by [10] and [11].

In our problem, if we let F satisfy

Γ(t) = {(x, y) ∈ R2 | |y| = u(x, t),−b(t) ≤ x ≤ b(t)} = {F(s, t) ∈ R2 | s ∈ [0, L(t)]},

L(t) denotes the perimeter of Γ(t). Then F satisfies

∂

∂t
F(s, t) =

∂2

∂s2
F(s, t)− AN,

where N denotes the unit inner normal vector. We will see the result in [7] does not

hold in our problem. Seeing future, the curvature flow with driving force does not

intersect itself interior, but could intersect itself exterior.

4.2 Formation of sigularity

In this section, we want to identify the singular formation of Γ(t) at the singular

time T <∞. Recall

T = sup{t > 0 | Γ(s) is smooth and embedding, 0 < s < t}. (4.2.1)

For curve shortening flow, Grayson shows that any curve shortening flow starting

as a close smooth curve only shrinks to a point when becoming singular. But under

the condition with driving force, there is no any result. I will show the formation of
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singularity under the asymmetric assumption.

Following Theorem 4.2.5 shows that axisymmetric flow will pinch at x-axis at

singular time T . As a corollary, combining intersection number principle, we can

show the flow given by Theorem 3.1.1 shrinks to origin at singular time T .

By Sturmian theorem, the numbers of local maxima and local minima are a finite

nonincreasing function of time. It follows that, after a while, the numbers of local

maxima and local minima are constants. After discarding an initial section of the

solution, we may even assume that x 7→ u(x, t) has m local minima and m+ 1 local

maxima. Let these minima and maxima be located at {ξj(t)}1≤j≤m and {ηj(t)}0≤j≤m,

respectively. And order the ξj(t) and ηj(t) so that

−b(t) < η0(t) < ξ1(t) < η1(t) < · · · < ξm(t) < ηm(t) < b(t). (4.2.2)

Since the number of critical points of u(·, t) drops whenever u(·, t) has degenerate

critical point, the minima and maxima of u(·, t) are all nondegenerate. By the implicit

function theorem the ξj(t) and ηj(t) are therefore smooth functions of time.

Lemma 4.2.1. The limits

lim
t→T

b(t) = b(T )

and

lim
t→T

ξj(t) = ξj(T ), lim
t→T

ηj(t) = ηj(T )

exist.

Proof. We prove this lemma by the method from [1], first developed by [2]. However,

in our proof, there is a little difference, since the intersection number between two

flows evolving by V = −κ+A may increase. The method in [1] should be modified.
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First, we prove lim
t→T

b(t) exists. By the vertical equation

wt =
wrr

1 + w2
r

+ A
√

1 + w2
r ,

we can derive b′(t) = wrr(0, t)+A ≤ A because of wrr(0, t) ≤ 0. Then b(t)−At is non-

increasing. It is easy to see b(t)−At is bounded for t < T . Therefore lim
t→T

(b(t)−At)
exists. Consequently, lim

t→T
b(t) exists.

Next, we prove lim
t→T

ξj(t) exists. We assume

lim sup
t→T

ξj(t) > lim inf
t→T

ξj(t).

We can choose x0 ∈ (lim inf
t→T

ξj(t), lim sup
t→T

ξj(t)) and x0 6= 0. Without loss of general-

ity, we assume −b(T ) < x0 < 0 < b(T ). Since ξj(t) is continuous in t, there exists a

sequence tm → T such that

ξj(tm) = x0 and ux(x0, tm) = 0.

We let Γ̃(t) be the reflection from Γ(t) about x = x0. Consequently, ã(t) := 2x0−b(t)
and b̃(t) := 2x0 + b(t) are the end points of Γ̃(t). Obviously, Γ̃(t) also evolves by

V = −κ+A and ã(T ) < −b(T ) < x0 < b̃(T ) < b(T ). For t being sufficiently close to

T , ã(t) < −b(t) < x0 < b̃(t) < b(t), i.e., the order of ã(t), b̃(t), −b(t), b(t) does not

change. Using Theorem 2.3.3, since Γ̃(tm) intersects Γ(tm) at x0 tangentially, the

intersection number between Γ̃(t) and Γ(t) will drop infinite times, for t close to T .

But Theorem 2.3.3 shows that the intersection number between Γ(t) and Γ̃(t) is finite

(the choice of x0 implies Γ(t) is not identity to Γ̃(t)). This yields a contradiction.

Lemma 4.2.2. If ξj(T ) < ηj(T ), then for any compact interval [c, d] ⊂ (ξj(T ), ηj(T )),

there exists t1 and δ > 0 such that u(x, t) ≥ δ for x ∈ [c, d], t ∈ [t1, T ). (Similarly

for ηj−1(T ) < ξj(T ), −b(T ) < η0(T ), ηm(T ) < b(T )).
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Proof. Let [a, b] ⊂ (ξj(T ), ηj(T )) be any compact interval, then there exists t1 < T

such that [a, b] ⊂ (ξj(t), ηj(t)) and ux(x, t) > 0, x ∈ [a, b], t ∈ (t1, T ). Denoting

θ = arctanux, θ satisfies

θt = cos2 θθxx + A sin θθx.

On the other hand, we let ϕ(x, t) = εe−ct sin(λ(x − a)), where λ = π/(b − a),

c > Aλπ + λ2, 0 < ε < π. Since ϕxx ≤ 0, x ∈ [a, b] and seeing∣∣∣∣−Aλsin(εe−ct sin(λ(x− a)))

sin(λ(x− a))
cos(λ(x− a))

∣∣∣∣ ≤ Aλπ,

there holds

ϕt − cos2 ϕϕxx − A sinϕϕx ≤ ϕt − ϕxx − A sinϕϕx

= εe−ct sin(λ(x− a))

(
−c+ λ2 − Aλsin(εe−ct sin(λ(x− a)))

sin(λ(x− a))
cos(λ(x− a))

)
≤ εe−ct sin(λ(x− a))(−Aλπ − λ2 + λ2 + Aλπ) = 0,

for x ∈ [a, b], t ∈ (t1, T ). Since ux(x, t1) is bounded from below for some positive

constant in [a, b], we can choose ε > 0 small enough such that ϕ(x, t1) ≤ θ(x, t1).

Seeing

ϕ(a, t) = 0 < θ(a, t), ϕ(b, t) = 0 < θ(b, t), t ∈ (t1, T ).

By maximum principle,

θ(x, t) ≥ ϕ(x, t), a < x < b, t1 < t < T.

Consequently,

ux ≥ arctanux = θ ≥ εe−ct sin(λ(x− a)), x ∈ [a, b], t ∈ (t1, T ).
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u ≥ ε
e−ct

λ
(1− cos(λ(x− a))), x ∈ [a, b], t ∈ (t1, T ).

Then for all [c, d] ⊂ (a, b), u is uniformly bounded from below for x ∈ [c, d], t ∈
[t1, T ).

Lemma 4.2.3. lim
t→T

u(x, t) = u(x, T ) exists, and u(x, t) converges uniformly to u(x, T ),

for x ∈ R, as t → T . The function u is smooth at (x, t) ∈ R × (0, T ] provided that

u(x, t) > 0. We interpret that u(x, t) = 0 outside (a(t), b(t)).

Proof. By Lemma 4.2.2, for all [c, d] ⊂ (ξj−1(T ), ξj(T )), u(x, t) ≥ δ, x ∈ [c, d],

t ∈ [t1, T ). By Theorem 2.3.4, ux is uniformly bounded on [c, d] × [t1, T ), which

implies ∂i

∂xi
u(x, t), i = 1, 2 are bounded on any compact subinterval of (c, d). On the

other hand, from equation, ut(x, t) is uniformly bounded on such interval, so that

u(·, t) converges uniformly on any such interval.

The same idea can be applied to the conditions in the intervals (−b(T ), ξ1(T ))

and (ξm(T ), b(T )). Since outside of [−b(T ), b(T )], u(x, T ) is considered to be 0, the

result is true.

Except at −b(T ), b(T ) and ξj(T )s, u(x, t) converges pointwise for every x not

equaling −b(T ), b(T ), ξj(T ), as t → T . The convergence is uniform on any interval

that does not contain any of the points.

Next we want to prove the functions u(·, t) are equicontinuous for T/2 < t < T .

Assuming x1 < x2, if x1, x2 are both not in the interval (−b(T ), b(T )), the

conclusion is obvious. Assume x1 ∈ (−b(T ), b(T )).

Suppose that |u(x1, t) − u(x2, t)| ≥ ε. Then either u(x1, t) ≥ ε or u(x2, t) ≥ ε

or both (since u is positive); we assume the first one. From Theorem 2.3.4, |ux| <
σ(ε/2, T/2) whenever u(x, t) ≥ ε/2, T/2 < t < T . Thus, if u(x, t) ≥ ε/2 on (x1, x2),

x2 − x1 ≥
|u(x1, t)− u(x2, t)|

σ(ε/2, T/2)
≥ ε

σ(ε/2, T/2)
.

If u(x, t) < ε/2 some where in the interval (x1, x2), then there is a smallest x3
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satisfying x1 < x3 at which u(x3, t) = ε/2. On the interval (x1, x3), u(x, t) ≥ ε/2.

Then

x2 − x1 ≥ x3 − x1 ≥
u(x1, t)− u(x3, t)

σ(ε/2, T/2)
≥ ε

2σ(ε/2, T/2)
.

So for every ε > 0, choose δ = ε/(2σ(ε/2, T/2)) so that

|u(x1, t)− u(x2, t)| < ε,

|x1 − x2| < δ, for T/2 < t < T .

Thus u(x, t) is equicontinuous. Noting that u(x, t) converges to u(x, T ) in R \
{ξi(T ),−b(T ), b(T )} and R \ {ξi(T ),−b(T ), b(T )} is dense in R, the proof is com-

pleted.

Lemma 4.2.4. If u(η0(T ), T ) > 0 holds, then −b(T ) < η0(T ) < b(T ).

Proof. Since u(η0(T ), T ) > 0, there exists δ > 0 such that δ = inf
0≤t≤T

u(η0(t), t). We

consider

x = v(|y|, t),

being the inverse function of |y| = u(x, t) for x ∈ (a(t), η0(t)) and let w(y, t) =

v(|y|, t). w(y, t) satisfies the equation (2.2.1) for the condition ”−” and “n = 1”,

|y| < δ, 0 < t < T . Clearly w is uniformly bounded, so Corollary 2.2.3 and Remark

2.2.4 imply that ∂kw
∂yk

(y, t), k = 1, 2 are bounded for |y| ≤ δ/2, T/2 ≤ t < T . So the

limit function w(y, T ) obtained by Lemma 4.2.3 is smooth for |y| ≤ δ/2.

As the proof of Lemma 2.3.12, using maximum principle, vr(r, T ) > 0, 0 < t <

δ/2. Consequently, −b(T ) = v(0, T ) < v(δ/2, T ) < η0(T ). η0(T ) < b(T ) can be

proved similarly.

Theorem 4.2.5. (Formation of singularities)

1. If m = 0, u(η0(T ), T ) = 0 and b(T ) = 0. This implies that Γ(t) shrinks to the

origin O, as t→ T .
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2. If m ≥ 1, there is j such that u(ξj(T ), T ) = 0, 1 ≤ j ≤ m.

Proof. 1. First, we prove for m = 0, i.e., u(x, t) only has one maximum without local

minimum. We prove this by contradiction.

Case 1. If u(η0(T ), T ) > 0, from Lemma 4.2.4, −b(T ) < η0(T ) < b(T ). Γ(t)

can be divided into three parts ∆1(t), ∆2(t) and ∆3(t), for t being very close to T ,

where ∆1(t) and ∆2(t) are the left and right caps of Γ(t), ∆3(t) is the middle part

of Γ(t) away form x-axis. It is easy to show the derivatives and second fundamental

forms of ∆1, ∆2 and ∆3 are uniformly smooth for t→ T (We can similarly prove as

in Lemma 2.3.12), which contradicts to Γ(t) becoming singular at T .

Case 2. If b(T ) > 0, there holds −b(T ) < η0(T ) or η0(T ) < b(T ), assuming

−b(T ) < η0(T ). By Lemma 4.2.2, for every [c, d] ⊂ (−b(T ), η0(T )), u(x, t) ≥ δ > 0

in [c, d] × [t1, T ). Then u(η0(t), t) ≥ δ, t1 ≤ t < T . Consequently, u(η0(T ), T ) ≥ δ.

By the same argument as in Case 1, we get a contradiction. Here we complete the

proof under the condition m = 0.

2. For m ≥ 1, if u(ξj(T ), T ) > 0, for any 1 ≤ j ≤ m, we can divide Γ(t) into

three parts as above for t being close to T (seeing Figure 4.1). Then we can get

contradiction similarly as in the case m = 0. So there is j such that u(ξj(T ), T ) = 0.

Corollary 4.2.6. There is t1 satisfying 0 < t1 < T such that u(x, t) loses all its local

minima for t ∈ [t1, T ). Moreover, Γ(t) shrinks to a point, as t→ T .

Proof. Denote h(t) = max
−b(t)<x<b(t)

u(x, t). By Proposition 2.3.1, we can deduce that,

for t satisfying t2 < t < T given, when ρ < min{At2, h(t)}, y = ρ intersects y =

u(x, t) only twice.

We assume u(x, t) does not lose its all local minima. From Theorem 4.2.5, there

exists j, 1 ≤ j ≤ m such that u(ξj(T ), T ) = 0. So we can choose t0 such that t2 <

t0 < T and u(ξj(t0), t0) < At2. Obviously, u(ξj(t0), t0) < h(t0), then u(ξj(t0), t0) <
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1 2

3

Figure 4.1: Case 2 in Theorem 4.2.5

min{At2, h(t0)}. Consequently, y = ρ = u(ξj(t0), t0) intersects y = u(x, t0) three

times. Contradiction.

Therefore, there is t1 such that u(x, t) will lose its all local minima for t ∈ [t1, T ).

Seeing the proof in Theorem 4.2.5 for m = 0, u(η0(T ), T ) = 0 and b(T ) = 0. It

means that Γ(t) shrinks to a point, as t→ T .

Remark 4.2.7. All the arguments in this section can be used to prove for any x-

axisymmetric curve, since the fact that u(·, t) is even in [−b(t), b(t)] is not used in

the proofs.

4.3 Classification of the solutions

In this section, we will prove Theorem 4.1.1. Let

h(t) = max
−b(t)≤x≤b(t)

u(x, t), l(t) = 2b(t).
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Denote U(t) being the open domain with ∂U(t) = Γ(t).

Before proving the main results, we give a simple example for understanding the

results. Consider a family of circles ∂BR(t) (here we omit the center) evolving by

V = −κ+ A. Therefore, R(t) satisfies (2.3.12), precisely, R′(t) = A− 1
R(t)

, t > 0,

R(0) = R0.

We can easily get that

(1). when R0 < 1/A, there exists TR0 <∞ such that R(t) ↓ 0, as t→ TR0 ;

(2). when R0 = 1/A, R(t) = 1/A, for 0 ≤ t <∞;

(3). when R0 > 1/A, R(t) ↑ ∞, as t→∞. Moreover, by L’Hospital rule,

lim
t→∞

R(t)/t = lim
t→∞

R′(t) = lim
t→∞

(A− 1/R(t)) = A.

This example shows a special case for our main results.

The following lemma says that h(t0) can become arbitrary large when l(t0) is

large enough. We prove it by Proposition 2.3.1. Although the proof of Lemma 4.3.1

is similar as in [5], for the reader’s convenience, we still give the proof for detail.

Lemma 4.3.1. For any τ ∈ (0, T ) and M ∈ (0, Aτ/2), there exists lM,τ > 0 such

that, when l(t0) > lM,τ for some t0 ∈ [τ, T ), it holds h(t0) > M .

Proof. For given τ ∈ (0, T ) and M ∈ (0, Aτ/2), we choose R0 such that

R0 ≥
2

A
.

Let R(t) be the solution of (2.3.12) with R(0) = R0. Since R0 > 1/A, R(t) increases

83



Chapter 4. Asymptotic behavior for curvature flow with driving force in the plane

in t. Therefore R′(t) ≥ A− 1/R0 ≥ A/2. Integrating the inequality, there holds

R(τ) ≥ R0 + Aτ/2 ≥ R0 +M.

So there exists τ1 ∈ (0, τ ] such that

R(τ1) = R0 +M.

Now we let

W (x, t) :=
√
R(t)2 − x2 −R0, x ∈ [σ−(t), σ+(t)], t ∈ (0, τ1],

where σ−(t) = −
√
R(t)2 −R2

0 and σ+(t) =
√
R(t)2 −R2

0. And we denote

θ±(t) = arctan

√
R(t)2 −R2

0

R0

.

Obviously, π/2 > θ±(t) > 0. Therefore, (W (x, t), σ±(t)) is the solution of (Q) with

θ±(t)

We choose lM,τ := σ+(τ1) − σ−(τ1) = 2
√
R(τ1)2 −R2

0 = 2
√
M2 + 2R0M. Let

γ1(t) and γ2(t) be the extension of u(x, t) and W (x, t) as in Proposition 2.3.1. So by

Proposition 2.3.1, we can deduce

Z(γ1(t0), γ2(τ1)) ≤ Z(γ1(t0 − s), γ2(τ1 − s)), for s ∈ [0, τ1).

Since the extended curve γ2(τ1−s) converges to the x-axis, as s→ τ1, the right-hand

side of the above inequality equals 2 for s sufficiently close to τ1. Consequently,

Z[γ1(t0), γ2(τ1)] ≤ 2.
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Assuming l(t0) > lM,τ , for some t0 ∈ [τ, T ), then σ±(τ1) satisfy

−b(t0) < σ1(τ−) < σ+(τ1) < b(t0).

Hence γ1(t0) intersects γ2(τ1) twice below the x-axis. Therefore, Z[γ1(t0), γ2(τ1)] = 2.

This implies that u(x, t0) > W (x, τ1) on the interval [σ−(τ1), σ+(τ1)]. Consequently,

h(t0) > M .

The following corollary shows that as long as l(t) is unbounded, Γ(t) will become

“Expanding”.

Corollary 4.3.2. Assume T = ∞ and there exists a sequence sm → ∞ such that

l(sm)→∞, as m→∞. Then l(t)→∞ and h(t)→∞, as t→∞.

Proof. We can use the same argument as in Lemma 4.3.1, there exist C > 1/A andm0

such that u(x, sm0) >
√

(C +R0)2 − x2 − R0. Obviously,
√

(C +R0)2 − x2 − R0 >
√
C2 − x2, −C ≤ x ≤ C. Therefore u(x, sm0) ≥

√
C2 − x2, −C ≤ x ≤ C. This

implies that

BC(O) ⊂ U(sm0),

recalling ∂U(t) = Γ(t). Then by comparison principle, we get

BC(t)(O) ⊂ U(t+ sm0), t > 0.

Here C(t) is the solution of (2.3.12) with C(0) = C. Seeing the choice of C and

the example at the beginning of this section, we can deduce C(t) → ∞, as t → ∞.

Therefore h(t+ sm0) > C(t)→∞ and l(t+ sm0) > 2C(t)→∞, as t→∞.

Corollary 4.3.3. If there exists a sequence sm →∞, as m→∞ such that h(sm)→
0, as m→∞, then l(sm)→ 0, as m→∞.
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Proof. Using Lemma 4.3.1 with M = h(sm),

l(sm) ≤ lM,τ = 2
√
M2 + 2R0M = 2

√
h(sm)2 + 2R0h(sm)

Then we have l(sm)→ 0.

Corollary 4.3.4. If T =∞, then h(t) is bounded from below.

Proof. If not, there exists another sequence sm → ∞ such that h(sm) → 0, as

sm → ∞. By Corollary 4.3.3, l(sm) → 0, as sm → ∞. Then there exists sm0 and

r < 1/A such that

U(sm0) ⊂ Br((0, 0)),

recalling U(t) being the domain with ∂U(t) = Γ(t). Then by Theorem 2.1.4, we have

U(t+ sm0) ⊂ Br(t)((0, 0)),

where r(t) is the solution of (2.3.12) with r(0) = r. Seeing the example at the

beginning of this section, Br(t)((0, 0)) shrinks to origin in finite time. Then it is also

for U(t). This contradicts to T =∞.

Hence h(t) is bounded from below.

Lemma 4.3.5. Assume T = ∞ and there exists a sequence sm → ∞ such that

h(sm)→∞, as m→∞. Then l(t)→∞ and h(t)→∞, as t→∞.

Proof. If l(t) is unbounded, by Corollary 4.3.2, h(t) → ∞ and l(t) → ∞, t → ∞.

The result is true. Next we prove l(t) is unbounded by contradiction. Assume l(t)

is bounded.

Step 1. We are going to prove that lim
t→∞

b(t) exists. If lim inf
t→∞

b(t) < lim sup
t→∞

b(t),

we can choose x0 such that

lim inf
t→∞

b(t) < x0 < lim sup
t→∞

b(t).
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We consider the function u1(x) =
√

1/A2 − (x+ 1/A− x0)2. Obviously, (u1(x), x0−
2/A, x0) is the solution of the problem (Q) with θ± = π/2.

Seeing b(t) − x0 changes sign infinite many times as t varying over [0,∞), there

exists a sequence pm →∞ such that u(x, pm) intersects u1(x) tangentially at x0.

Arguing as in Lemma 2.3.5, the intersection number between u(x, t) and u1(x)

drops at x = b(pm) = x0 and t = pm. Therefore, the intersection number between

u(x, t) and u1(x) drops infinite many times. This yields a contradiction. Then we

let ν := lim
t→∞

b(t).

Step 2. We deduce the contradiction.

Choose t1 = 4/A2. Since h(sm)→∞, Lemma 2.3.9 implies for all ρ < At1, y = ρ

intersects y = u(x, t) only twice, t > t1. Here we choose ρ0 = 2/A. Then there exists

w(y, t) > 0 such that

Cρ0 ∩ Γ(t) = {(x, y) | x = w(y, t) or x = −w(y, t)},

recalling Cρ = {(x, y) ∈ R2 | |y| < ρ}. Here w(y, t) satisfies (2.2.1) under the

condition ”+” and n = 1, for |y| < ρ0, t > t1.

Since w(0, t) = b(t) is bounded for t > 0, by Corollary 2.2.3 and Remark 2.2.4,

∂kw
∂yk

(y, t), k = 1, 2, 3, are uniformly bounded for |y| ≤ ρ0/2, t > t1 + ε2. From

equation, ∂kw
∂tk

w(y, t), k = 1, 2, are also bounded for |y| < ρ0/2, t > t1 + ε2. For any

sequence tm →∞ and any [a, b] ⊂ [0,∞), on a subsequence there exists w1(y, t) such

that

w(·, ·+ tmj)→ w1 in C2,1([−ρ0/2, ρ0/2]× [a, b]),

as j → ∞. The limit function w1(y, t) also satisfies (2.2.1) with the condition “+”

and n = 1. Moreover, w1(0, t) = lim
j→∞

b(t+ tmj) = ν and ∂
∂y
w1(0, t) = 0, t ∈ [a, b].

Next, we consider the function w2(y) = ν − 1/A +
√

1/A2 − y2. w2(y) satisfies

(2.2.1) with the condition “+” and n = 1. Moreover, w2(0) = ν and ∂
∂y
w2(0) = 0. So
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w1(y, t) intersects w2(y) at y = 0 tangentially for all t ∈ [a, b]. By intersection number

principle, there holds w1(y, t) ≡ w2(y), |y| ≤ ρ0/2. Then we have ∂w1

∂y
(1/A, t) =

∂w2

∂y
(1/A) =∞. However, from the definition of w1, ∂w1

∂y
(y, t) is bounded for |y| ≤ 1/A

(w1 is independent of t). This is a contradiction.

We complete the proof.

Lemma 4.3.6. Assume T = ∞. If h(t) is bounded from above, then h(t) and l(t)

are bounded from above and below.

Proof. By Corollary 4.3.4 and 4.3.2, h(t) is bounded from below and l(t) is bounded

from above.

Next, we prove l(t) is bounded from below by contradiction. Assume there exists

a sequence sm →∞ such that l(sm)→ 0.

Since h(t) is bounded from below, by Lemma 2.3.9, there exist ρ0 and t1 such

that for all ρ < ρ0, y = ρ intersects y = u(x, t) only twice for t > t1. Then we let

w(y, t) > 0 such that

Cρ0 ∩ Γ(t) = {(x, y) | x = w(y, t) or x = −w(y, t)}.

Arguing as Step 1 in Lemma 4.3.5, ν = lim
t→∞

b(t). By l(sm) → 0, we have ν = 0.

Arguing as Step 2 in Lemma 4.3.5,

w(·, t)→ w1 in C2([0, ρ0/2]),

as t → ∞. Here w1(y) = −1/A +
√

1/A2 − y2 ≤ 0. But seeing w(y, t) > 0, there

holds w1(y) ≥ 0 for |y| < ρ0/2. Contradiction.

Therefore h(t) and l(t) are bounded from below.

Proof of Theorem 4.1.1. 1. Maximal smooth time T < ∞. As shown in Corollary

4.2.6, l(t)→ 0 and h(t)→ 0, as t→ T .
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2. Maximal smooth time T =∞.

2-1. h(t) is unbounded, Lemma 4.3.5 shows that l(t) → ∞, h(t) → ∞, as t → ∞.

This yields the case “Expanding”.

2-2. h(t) is bounded, Lemma 4.3.6 shows that l(t) and h(t) are bounded from above

and below. This yields the case “Bounded”.

4.4 Asymptotic behavior

In this section, we prove Theorem 4.1.2.

Proof of the Expanding case in Theorem 4.1.2. In this case, since h(t) and l(t) tend

to infinity, using the same argument as in the proof of Corollary 4.3.2, there exist t0

and C > 1/A such that

BC((0, 0)) ⊂ U(t0).

Therefore, BC(t)((0, 0)) ⊂ U(t0 + t), where C(t) satisfies (2.3.12) with C(0) = C.

Consequently, BC(t−t0)((0, 0)) ⊂ U(t), t ≥ t0,

On the other hand, seeing U(0) being bounded, there exists R > 1/A such that

U(0) ⊂ BR((0, 0)). Then U(t) ⊂ BR(t)((0, 0)), where R(t) also satisfies (2.3.12) with

R(0) = R.

DenotingR1(t) = C(t−t0) andR2(t) = R(t), BR1(t)((0, 0)) ⊂ U(t) ⊂ BR2(t)((0, 0)),

t > t0. By the example at the beginning of this section, we have lim
t→∞

R1(t)/t =

lim
t→∞

R2(t)/t = A. We complete the proof.

Before proving the asymptotic behavior of the condition “Bounded”, we give the

following lemma.

Lemma 4.4.1. Under the condition “Bounded”, there exists t∗ such that uxx(x, t) <
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0 for x ∈ (−b(t), b(t)), t > t∗. Recalling

Γ(t) = {(x, y) | |y| = u(x, t), −b(t) ≤ x ≤ b(t)}.

By Proposition 2.3.1, we can easily prove that there exists t∗ such that for all

straight line l, l intersects Γ∩{y ≥ 0} at most twice. This proof is similar as Theorem

1.3 in [5]. Here we omit it.

Lemma 4.4.1 implies that Γ(t) is convex for t > t∗. Noting Γ(t) is symmetric to

x,y-axis, Γ(t) can be represented by polar coordinates. Let

Γ(t) = {(x, y) | x = ρ(θ, t) cos θ, y = ρ(θ, t) sin θ, 0 ≤ θ ≤ 2π}, t > t∗.

By calculation, it is easy to check ρ satisfies the following equation
ρt =

ρθθ
ρ2 + ρ2

θ

− 2ρ2
θ + ρ2

ρ(ρ2
θ + ρ2)

+
1

ρ
A
√
ρ2
θ + ρ2, 0 < θ < 2π, t > t∗,

ρ(0, t) = ρ(2π, t), t > t∗,

ρθ(0, t) = ρθ(2π, t), t > t∗.

(4.4.1)

Lemma 4.4.2. Under the condition “Bounded”, there exist two positive constants

ρ1 and ρ2 such that

ρ1 < ρ(θ, t) < ρ2, 0 ≤ θ ≤ 2π, t > t∗.

Moreover, ρθ(θ, t), ρθθ(θ, t) and ρθθθ(θ, t) are bounded for 0 ≤ θ ≤ 2π, t > t∗.

Proof. Combining Γ(t) is convex and b(t), l(t) are bounded from above and below,

obviously, ρ is bounded from above and below.

Then by quasilinear parabolic theory in [8], ρθ(θ, t), ρθθ(θ, t) and ρθθθ(θ, t) are

bounded for 0 ≤ θ ≤ 2π, t > t∗.
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Proof of the Bounded case in Theorem 4.1.2. For any sequence sm →∞, by Lemma

4.4.2 and interval [a, b] ⊂ [0,∞), there exists ρ∗ ∈ C2,1([0, 2π] × [a, b]) such that on

a subsequence

ρ(·, ·+ smj)→ ρ∗ in C2,1([0, 2π]× [a, b]).

Let x = ρ∗(θ, t) cos θ and u∗(x, t) = ρ∗(θ, t) sin θ. And let b∗(t) = ρ∗(0, t). There-

fore, (u∗,−b∗, b∗) is a solution of problem (Q) with θ±(t) = π/2. By the same method

as Step 1 in Lemma 4.3.5, for some positive constant ν, the limit function b∗(t) ≡ ν,

t ∈ [a, b].

Consider the function u∗ =
√

1/A2 − (x+ 1/A− ν)2. Obviously, (u∗, ν − 2/A, ν)

is the solution of problem (Q) with θ±(x) = π/2. Obviously, u∗(x, t) intersects u∗(x)

at (ν, 0) tangentially, for all t ∈ [a, b]. Then u∗(x, t) ≡ u∗(x), t ∈ [a, b]. Since u∗ is

symmetric to y-axis, ν = 1/A. Consequently, ρ∗ = 1/A. Seeing the limit function ρ∗

is independent of the choice of the subsequence smj , we have

ρ(·, t)→ ρ∗ in C2([0, 2π]).

Here we complete the proof

4.5 Comparison principle between extrinsic and

intrinsic distances

To get the asymptotic behavior for Shrinking, in this section, we give a comparison

principle between extrinsic and intrinsic distances.

First, we give some basic results for general mean curvature flow with driving

force. For A = 0, the results are proved by Gage and Hamilton in [3]. Let M be an

one-dimension Riemannian manifold and F : M × [0, T )→ R2 be a smooth map. F
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satisfies
∂

∂t
F(p, t) = κN− AN, (4.5.1)

where the sign of κ is determined by

∂2

∂s2
F(s, t) = κN,

where we recall N is the unit inner normal velocity, s is the arc length parameter.

In this section, for convenience, we take M = S1 with parameter p. Let F :

S1 × [0, T )→ R2 be a closed embedded curve moving by (4.5.1).

Using the arclength parameter s,

∂

∂s
=

1

v

∂

∂p
,

where v = |∂F/∂p|. The sign of κ will be determined by

∂2F

∂s2
= κN.

Let T be the unit tangent vector given by

T =
∂F/∂p

|∂F/∂p|
.

The Frenet equations show that

1

v

∂

∂p

 T

N

 =

 0 κ

−κ 0

 T

N

 .

Define θ by T = (cos θ, sin θ). We can deduce that

∂s

∂θ
=

1

κ
.
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Lemma 4.5.1.
∂v

∂t
= −κ2v + Aκv.

Proof. By (4.5.1) and the Frenet equations,

∂v

∂t
=

∂|∂F/∂p|
∂t

= 〈T,Fpt〉 = 〈T,Ftp〉 = 〈T, (κN− AN)p〉

= 〈T, (κ− A)Np〉 = 〈T,−vκ(κ− A)T〉 = −κ2v + Aκv.

Lemma 4.5.2. Denote l =
∫ p2
p1
vdp = s(p2)− s(p1), p1, p2 ∈ S1, then

∂l

∂t
= A

∫ s(p2)

s(p1)

κds−
∫ s(p2)

s(p1)

κ2ds.

In particular, dL(t)/dt = 2πA −
∫ L(t)

0
κ2ds, where we recall L(t) is the perimeter of

the curve.

Proof. Using ∂v/∂t = −κ2v + Aκv and ∂θ/∂s = κ, this lemma can be proved at

once.

We note that the arc length parameter s depends on t, then ∂/∂t does not com-

mute with ∂/∂s. The following lemma gives the relation between them.

Lemma 4.5.3.
∂

∂t

∂

∂s
=

∂

∂s

∂

∂t
+ (κ2 − Aκ)

∂

∂s
.

Proof. Apply Lemma 4.5.1, we get

∂

∂t

∂

∂s
=

∂

∂t

(
1

v

∂

∂p

)
=

∂

∂s

∂

∂t
+
∂

∂t

(
1

v

)
∂

∂p
=

∂

∂s

∂

∂t
− ∂v/∂t

v2

∂

∂p

=
∂

∂s

∂

∂t
+ (κ2 − Aκ)

∂

∂s
.
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The derivatives of T and N are related as follows:

Lemma 4.5.4.
∂T

∂t
=
∂κ

∂s
N and

∂N

∂t
= −∂κ

∂s
T.

Proof. By Lemma 4.5.3, (4.5.1) and Frenet equations,

∂T

∂t
=

∂2F

∂t∂s
=

∂2F

∂s∂t
+ (κ2 − Aκ)

∂F

∂s
=

∂

∂s
(κN− AN) + (κ2 − Aκ)T

=
∂κ

∂s
N− (κ2 − Aκ)T + (κ2 − Aκ)T =

∂κ

∂s
N.

On the other hand,

0 =
∂

∂t
〈T,N〉 = 〈∂κ

∂s
N,N〉+ 〈T, ∂N

∂t
〉.

Note that ∂N/∂t must be perpendicular to N. We complete the proof.

Lemma 4.5.5.
∂θ

∂t
=
∂κ

∂s

Proof. Since T = (cos θ, sin θ)

∂T

∂t
=
∂θ

∂t
(− sin θ, cos θ).

On the other hand, we use the formula in Lemma 4.5.4 to calculate

∂T

∂t
= −∂κ

∂s
N =

∂κ

∂s
(− sin θ, cos θ).

Comparing components the proof is completed.
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Lemma 4.5.6. Let S(t) be the area enclosed by the curve F(·, t). Then

d

dt
S(t) = −2π + AL(t).

Proof. By Gauss-Green’s Theorem,

S(t) = −1

2

∫ L(t)

0

〈F,N〉ds.

Using above lemmas, we get

d

dt
S(t) = −1

2

∫ 2π

0

〈∂F

∂t
, vN〉dp− 1

2

∫ 2π

0

〈F, ∂v
∂t

N〉dp− 1

2

∫ 2π

0

〈F, v ∂N

∂t
〉dp

= −1

2

∫ 2π

0

〈κN− AN, vN〉dp− 1

2

∫ 2π

0

〈F, (−κ2v + Aκv)N〉dp

+
1

2

∫ 2π

0

〈F, v ∂κ
∂s

T〉dp = −π +
1

2
AL(t)− 1

2

∫ L(t)

0

〈F, AκN〉ds

+
1

2

∫ L(t)

0

〈F, κ2N〉ds− 1

2

∫ L(t)

0

κds− 1

2

∫ L(t)

0

κ2〈F,N〉ds

= −2π +
1

2
AL(t)− 1

2

∫ L(t)

0

〈F, A∂T

∂s
〉ds = −2π +

1

2
AL(t) +

A

2

∫ L(t)

0

ds

= −2π + AL(t).

In the third and fifth equalities, we use the integral by parts.

Next we are going to prove the comparison principle for extrinsic and intrinsic

distances under mean curvature flow with driving force in a special case.

Theorem 4.5.7. For our flow

Γ(t) = {(x, y) | |y| = u(x, t),−b(t) ≤ x ≤ b(t)}, t0 < t < T,
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let d = 2x and l(x, t) =
∫ x
−x

√
1 + u2

xdx, 0 ≤ x ≤ b(t). Then

m(t) = min
0≤x≤b(t)

d/ψ

is strictly increasing provided that m(t) < 1, for t0 < t < T , where

ψ =
L

π
sin

lπ

L
,

where we recall t0 is defined in Section 4.1 such that u(x, t) loses all its local mini-

mum, t0 < t < T .

Remark 4.5.8. (1) The quantities d and l are the extrinsic and intrinsic distances

between (−x, u(x, t)) and (x, u(x, t)) and l ≤ L(t)/2. Hence d = 2x and l =

2
∫ x

0

√
1 + u2

xdx.

(2) Noting that lim
x→0+

d/ψ = 1, d/ψ can not attain its minimum which is less than

1 at x = 0.

Proof. Case 1: Let 0 < x0 < b(t) be a minimum point of d/ψ defined through the

relation

m(t) = (d/ψ)(x0, t).

Then
∂2

∂x2

d

ψ
(x0, t) ≥ 0

and

0 =
∂

∂x

d

ψ
(x0, t) =

2

ψ
− 2d cosα

ψ2

√
1 + u2

x,

where α = l(x0, t)π/L. Consequently,

1√
1 + u2

x

=
d

ψ
cosα,
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at x = x0. Let 0 < β < π/2 satisfy tan β = −ux(x0, t)(recall ux(x0, t) < 0), then

cos β =
1√

1 + u2
x

(x0, t) =

(
d

ψ
cosα

)
(x0, t). (4.5.2)

Since d/ψ(x0, t) < 1, we observe that 0 < α < β < π/2. Moreover,

0 ≤ ∂2

∂x2

d

ψ
(x0, t) = −4 cosα

ψ2

√
1 + u2

x −
4 cosα

ψ2

√
1 + u2

x +
8d

ψ3
cos2 α(1 + u2

x)

+
4πd sinα

Lψ2
(1 + u2

x)−
2d cosα

ψ2

uxuxx√
1 + u2

x

=
4πd sinα

Lψ2
(1 + u2

x)−
2d cosα

ψ2

uxuxx√
1 + u2

x

=
4π2d

L2ψ
(1 + u2

x)−
2d cosα

ψ2

uxuxx√
1 + u2

x

,

where we invoke (4.5.2) and ψ = L/π sin(lπ/L). Consequently,

−2d cosα

ψ2

uxuxx
(1 + u2

x)
3/2

(x0, t) ≥ −
4π2d

L2ψ
(x0, t). (4.5.3)

∂l

∂t
(x0, t) =

∂

∂t

(∫ x

−x

√
1 + u2

xdx

)
(x0, t) =

∫ x0

−x0

ux√
1 + u2

x

dut =
2uxut√
1 + u2

x

(x0, t)

−
∫ x0

−x0

utuxx
(1 + u2

x)
3/2
dx =

2uxuxx
(1 + u2

x)
3/2

(x0, t) + 2Aux(x0, t)−
∫ l

0

κ2ds

− 2A arctanux(x0, t) =
2uxuxx

(1 + u2
x)

3/2
(x0, t)− 2A tan β −

∫ l

0

κ2ds+ 2Aβ,

where we again invoke (4.5.2) and tan β = −ux(x0, t). Using the Hölder inequality,

we have

l

∫ l

0

κ2ds ≥
(∫ l

0

κds

)2

= 4β2 (4.5.4)

and

L

∫ L

0

κ2ds ≥
(∫ L

0

κds

)2

= 4π2. (4.5.5)
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m′(t) =
d

dt

(
d

ψ

)
(x0, t) = −d sinα

ψ2π

(
2πA−

∫ L

0

κ2ds

)
+
dl cosα

ψ2L

(
2πA−

∫ L

0

κ2ds

)
− d cosα

ψ2

(
2uxuxx

(1 + u2
x)

3/2
(x0, t)− 2A tan β −

∫ l

0

κ2ds+ 2Aβ

)
=

2Ad cosα

ψ2

(
(tan β − β)− (tanα− α)

)
− d cosα

ψ2

2uxuxx
(1 + u2

x)
3/2

(x0, t) +
d sinα

ψ2π

∫ L

0

κ2ds

− dl cosα

ψ2L

∫ L

0

κ2ds+
d cosα

ψ2

∫ l

0

κ2ds > −4dπ2

ψL2
+
d cosα

ψ2π
(tanα− α)

∫ L

0

κ2ds

+
d cosα

ψ2

∫ l

0

κ2ds ≥ −4dπ2

ψL2
+

4πd cosα

ψ2L
(tanα− α) +

4β2d cosα

lψ2
= −4πdα cosα

ψ2L

+
4β2d cosα

lψ2
=

4β2d cosα

lψ2
− 4α2d cosα

lψ2
> 0,

where we use (4.5.2), (4.5.3), (4.5.4), (4.5.5) and tanα−α is increasing, 0 < α < π/2.

Case 2: For x0 = b(t) such that

m(t) = (d/ψ)(x0, t).

Since u(x, t) is increasing for −b(t) < x < 0 and decreasing for 0 < x < b(t),

t0 < t < T , we let x = v(y, t) be the inverse of y = u(x, t) in the first quadrant.

Consider

L(y, t) =

 2
∫ h(t)

y

√
1 + v2

y(y, t)dy, y > 0,

L(t)− 2
∫ h(t)

y

√
1 + v2

y(y, t)dy, y ≤ 0,

recalling h(t) = u(0, t) = max
−b(t)<x<b(t)

u(x, t).

It is easy to see l(x, t) = L(u(x, t), t), for 0 ≤ x ≤ b(t), specially, l(b(t), t) =

L(0, t). Since y = 0 is an interior point and ψ = L
π

sin Lπ
L

is smooth, we can prove

this case similarly as in case 1. The proof is now complete.

Similarly, we can obtain
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Theorem 4.5.9. For our flow

Γ(t) = {(x, y) | |y| = u(x, t),−b(t) ≤ x ≤ b(t)}, t0 < t < T,

where t0 is the same as in Theorem 4.5.7. Let

d = 2y, and l = 2

∫ y

0

√
1 + v2

y(y, t)dy, 0 ≤ y ≤ h(t),

where v(y, t) is the inverse of u(x, t) in the first quadrant as in the proof of Theorem

4.5.7. Then

m(t) = min
0≤y≤h(t)

d/ψ

is strictly increasing provided that m(t) < 1, t0 < t < T .

Using Theorems 4.5.7 and 4.5.9, we obtain

Corollary 4.5.10. There exists a constant C > 0 such that

d ≥ Cl, t0 < t < T,

where d and l are the extrinsic and intrinsic distances in Theorem 4.5.7 or 4.5.9. In

particular,

h(t) ≥ CL(t) and b(t) ≥ CL(t), t0 < t < T.

Remark 4.5.11. To explain the geometric meaning in the proof of Theorem 4.5.7, we

will give the calculation in geometric method for closed curve moving by (4.5.1).

Let F : S1× [0, T )→ R2 be a family of closed embedded curves moving by (4.5.1).

In this remark, we let

d(p1, p2, t) = |F(p1, t)− F(p2, t)|, l(p1, p2, t) = |s(p1)− s(p2)|,

where s denotes the arc length parameter at time t. ψ is also defined as in Theorem
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4.5.7 by

ψ =
L

π
sin

lπ

L
.

We define

m(t) = min
(p1,p2)∈S1×S1

d/ψ(p1, p2, t).

Assume that d/ψ attains its minimum at (p1, p2) ∈ S1 × S1, i.e.,

m(t) = (d/ψ)(p1, p2, t) < 1.

Here we abuse the notation (p1, p2) to shorten the notations in the following argu-

ment.

Let s be the arc length parameter at time t and without loss of generality 0 ≤
s(p1) < s(p2) < L/2 such that l(p1, p2, t) = s(p2) − s(p1). Next we represent l, d by

arclength parameter

l = s2 − s1 and d = |F(s1, t)− F(s2, t)|.

Then

∂

∂si
(d/ψ)(p1, p2, t) = 0, i = 1, 2 and

( ∂2

∂si∂sj
(d/ψ)

)
2×2

(p1, p2, t) ≥ 0.

Let

ei :=
∂F

∂si
(p1, p2, t) and ω :=

F(p2, t)− F(p1, t)

d(p1, p2, t)
.

Then there holds

0 =
∂

∂s1

(d/ψ)(p1, p2, t) = −〈ω, e1〉
ψ

+
d

ψ2
cosα,
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where α = l(p1, p2, t)π/L = (s(p2)− s(p1))π/L ∈ (0, π/2). Consequently,

〈ω, ei〉 =
d

ψ
cosα, i = 1, 2 (4.5.6)

at (p1, p2, t). We can choose 0 < β < π/2 such that

cos β = 〈ω, ei〉 = d/ψ cosα < cosα. (4.5.7)

Then β > α.

Since matrix
(

∂2

∂si∂sj
(d/ψ)

)
2×2

(p1, p2, t) is non-negative, then for every vector ξ ∈
R2 there holds

ξ
( ∂2

∂si∂sj
(d/ψ)

)
2×2

(p1, p2, t)ξ
t ≥ 0, (4.5.8)

where ξt denotes the transposition of ξ.

In view of relations of (4.5.6), there are two possible cases:

Case 1: e1 = e2. We choose ξ = (1, 1) in (4.5.8).

0 ≤ (1, 1)
( ∂2

∂si∂sj
(d/ψ)

)
2×2

(p1, p2, t)(1, 1)t =
1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉.

(4.5.9)

Case 2: e1 6= e2. We choose ξ = (1,−1) in (4.5.8).

0 ≤ (1,−1)
( ∂2

∂si∂sj
(d/ψ)

)
2×2

(p1, p2, t)(1,−1)t

=
1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉+

4π2d

L2ψ
.

Then

−4π2d

L2ψ
≤ 1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉. (4.5.10)

Since there is no t derivative in above calculation, more precise calculation is neces-

sary which is found in [7], Theorem 2.3. Here we safely omit it.
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Therefore, by (4.5.1) and Lemma 4.5.2

∂

∂t

(
d

ψ

)
= − d

ψ2

∂ψ

∂t
+

1

ψ

∂d

∂t
= − d

ψ2

(
1

π

dL

dt
sinα +

∂l

∂t
cosα− l

L

dL

dt
cosα

)
+

1

dψ
〈ω, ∂

∂t
F(p2, t)−

∂

∂t
F(p1, t)〉 = − d

ψ2

(
1

π
(2πA−

∫ L

0

κ2ds) sinα

+ (A

∫ l

0

κds−
∫ l

0

κ2ds) cosα− l

L
(2πA−

∫ L

0

κ2ds) cosα

)
+

1

dψ
〈ω, (κ− A)N(p2, t)− (κ− A)N(p1, t)〉 = −2Ad

ψ2
sinα

− dA

ψ2
cosα

∫ l

0

κds+
2πdlA

ψ2L
cosα− A

ψ
〈ω,N(p2, t)−N(p1, t)〉

+
1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉+

d sinα

πψ2

∫ L

0

κ2ds+
d cosα

ψ2

∫ l

0

κ2ds

− dl

ψ2L
cosα

∫ L

0

κ2ds.

In the following step, we assume that

−A
ψ
〈ω,N(p2, t)−N(p1, t)〉 > 0. (4.5.11)

Seeing Figure 4.2, there holds

−A
ψ
〈ω,N(p2, t)−N(p1, t)〉 =

2A

ψ
sin β. (4.5.12)

Case 1: e1 = e2. By calculation,

dA

ψ2
cosα

∫ l

0

κds = 0.

102



Chapter 4. Asymptotic behavior for curvature flow with driving force in the plane

/ 2 

1( , )F p t



2( , )F p t
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2( , )N p t
/ 2 

Figure 4.2: Assumption (4.5.11)

Then

∂

∂t

(
d

ψ

)
≥ −2Ad

ψ2
sinα +

2πdlA

ψ2L
cosα +

2A

ψ
sin β +

d sinα

πψ2

∫ L

0

κ2ds+
d cosα

ψ2

∫ l

0

κ2ds

− dl

ψ2L
cosα

∫ L

0

κ2ds ≥ 2A

ψ

(
sin β − d

ψ
sinα

)
+

d

πψ2
(sinα− α cosα)

∫ L

0

κ2ds

> 0,

where we use (4.5.7), (4.5.9), d/ψ < 1 and sinα− α cosα > 0, for 0 < α < π/2.

Case 2: e1 6= e2.

Using Hölder inequality,

l

∫ l

0

κ2ds ≥
(∫ l

0

κds

)2

= 4β2

and

L

∫ L

0

κ2ds ≥
(∫ L

0

κds

)2

= 4π2.
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∂

∂t

(
d

ψ

)
≥ −2Ad

ψ2
sinα− 2βdA

ψ2
cosα +

2πdlA

ψ2L
cosα +

2A

ψ
sin β +

d sinα

πψ2

∫ L

0

κ2ds

+
d cosα

ψ2

∫ l

0

κ2ds− dl

ψ2L
cosα

∫ L

0

κ2ds− 4π2d

L2ψ

≥ 2A

ψ

(
sin β − β cos β − (

d

ψ
)(sinα− α cosα)

)
+

d

πψ2
(sinα− α cosα)

∫ L

0

κ2ds

+
d cosα

ψ2

∫ l

0

κ2ds− 4π2d

L2ψ
≥ 4π2d

πLψ2
(sinα− α cosα) +

d cosα

ψ2

∫ l

0

κ2ds− 4π2d

L2ψ

= −4dα2 cosα

lψ2
+
d cosα

ψ2

∫ l

0

κ2ds ≥ −4dα2 cosα

lψ2
+

4dβ2 cosα

lψ2
> 0,

where we use (4.5.7), (4.5.10), (4.5.12), d/ψ < 1, β > α and sinα − α cosα is

increasing for 0 < α < π/2.

A sufficient condition for the assumption (4.5.11) is that the line connecting

F(p2, t) and F(p1, t) lies in the domain surrounded by the curve. In Theorem 4.5.7,

the conclusion that d/ψ is increasing provided that d/ψ < 1 is true in the direc-

tion (2x0, 0) instead of all directions, since the line connecting (−x0, u(x0, t)) and

(x0, u(x0, t)) just enough lies in the domain surrounded by the curve Γ(t). This is

the key point under the condition A > 0. We cannot guarantee that d/ψ is non-

decreasing in every direction even if d/ψ is very small. We construct such an example

in Section 4.7.

4.6 Asymptotic behavior for Shrinking

Lemma 4.6.1. For the shrinking case in Theorem C, there exist C1, C2 > 0 such

that

C1 ≤
b(t)√
T − t

≤ C2 and C1 ≤
h(t)√
T − t

≤ C2, t0 < t < T.

Proof. Since u(x, t) has only one maximum at x = 0, it is easy to see that 0 ≤
L(t) ≤ 4h(t) + 4b(t)→ 0, 0 ≤ S(t) ≤ 4b(t)h(t)→ 0, t→ T . Using Lemma 4.5.6 and
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S(t)→ 0, L(t)→ 0 as t→ T , there holds

S(t) = 2π(T − t)− A
∫ T

t

L(s)ds = 2π(T − t) + o(T − t).

By isoperimeter inequality L(t)2 ≥ 4πS(t),

lim inf
t→T

L(t)2

T − t
≥ lim

t→T

4πS(t)

T − t
= 8π2.

Using Corollary 4.5.10, there exists C > 0 such that

h(t) ≥ CL(t) and b(t) ≥ CL(t).

Then there exists C1 > 0 such that

lim inf
t→T

b(t)√
T − t

≥ C1 and lim inf
t→T

h(t)√
T − t

≥ C1.

Using similarity transformation (4.1.5) and (4.1.6), there exists C̃1 > 0 such that

r(τ) ≥ C̃1 and q(τ) ≥ C̃1.

We next prove upper bounds for r(τ), q(τ) by contradiction argument. Assume

that if there exists a sequence τk →∞ such that r(τk)→∞. S̃(τ) denotes the area

enclosed by w(z, τ) and axis z. By calculation,

S̃(τ) = 2

∫ q(τ)

0

w(z, τ)dz =

∫ b(t)
0

u(x, t)dx

T − t
=

S(t)

4(T − t)
≤ C,

for some C. Since w(z, τk) is even in z and w(z, τk) is monotone decreasing for z > 0,

C̃1w(−C̃1

2
, τk) ≤ S̃(τk) ≤ C, ∀k.
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Consequently, w(−C̃1/2, τk) is bounded for all k. Consider the extrinsic and intrin-

sic distances between (−C̃1/2, w(−C̃1/2, τk)) and (C̃1/2, w(C̃1/2, τk)) after transfor-

mation, denoted by d̃(τk) and l̃(τk), respectively. Then there hold d̃(τk) = C̃1 and

r(τk)−w(−C̃1/2, τk) < l̃(τk). By the argument above, since w(−C̃1/2, τk) is bounded,

l̃(τk)→∞, as k →∞. Then d̃(τk)/l̃(τk)→ 0, as k →∞.

Consider the extrinsic and intrinsic distance between

(−
√

2(T − tk)C̃1/2, u(−
√

2(T − tk)C̃1/2, tk)) and (
√

2(T − tk)C̃1/2, u(
√

2(T − tk)C̃1/2, tk)),

denoted by d(tk) and l(tk) < L(tk)/2, respectively. By calculation,

d(tk) =
√

2(T − tk)d̃(τk) and l(tk) =
√

2(T − tk)l̃(τk).

Then d(tk)/l(tk) = d̃(τk)/l̃(τk)→ 0, as k →∞, which contradicts to Corollary 4.5.10.

Therefore, r(τ) is bounded. Similarly it also holds for q(τ). Consequently,

C1 ≤
b(t)√
T − t

≤ C2 and C1 ≤
h(t)√
T − t

≤ C2.

For the lemma above, it is obvious that there exist D1, D2 > 0 such that D1 <

r(τ) < D2 and D1 < q(τ) < D2.

Since w(z, τ) is increasing for −q(τ) < z < 0 and decreasing for 0 < z < q(τ),

τ > −1
2

ln(T − t0), we can represent w = w(z, τ) under polar coordinate, z = ρ(θ, τ) cos θ,

w(z, τ) = ρ(θ, τ) sin θ,
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0 ≤ θ ≤ π, τ > −1
2

ln(T − t0). Consequently, ρ(θ, τ) satisfies

ρτ =
ρθθ

ρ2 + ρ2
θ

− 2ρ2
θ + ρ2

ρ(ρ2
θ + ρ2)

+ ρ+

√
2

ρ
Ae−τ

√
ρ2
θ + ρ2, 0 < θ < π, τ > −1

2
ln(T − t0),

(4.6.1)

ρθ(0, τ) = ρθ(π, τ) = 0, τ > −1

2
ln(T − t0). (4.6.2)

Lemma 4.6.2. For any given ε > 0, there exist positive constant Ck and Bk such

that

| ∂
k

∂θk
ρ(θ, τ)| < Ck, |

∂k

∂τ k
ρ(θ, τ)| < Bk, k = 1, 2, · · · , 0 ≤ θ ≤ π, τ ≥ −1

2
ln(T−t0)+ε.

Proof. Firstly, we prove that there exist constants ρ1, ρ2 > 0 such that ρ1 ≤ ρ ≤ ρ2.

Since r(τ) < D2, q(τ) < D2 and w(z, τ) has only one maximum point at x = 0,

it is easy to get ρ <
√

2D2 := ρ2.

Consider the intrinsic and extrinsic distances, l̃(τ) and d̃(τ), respectively, between

(W (D1/2, τ), D1/2) and (−W (D1/2, τ), D1/2), where z = W (r, τ) is the inverse of

r = w(z, τ), for z ≥ 0. By Corollary 4.5.10, d̃(τ) ≥ Cl̃(τ). Note that d̃(τ) =

2W (D1/2, τ) and l̃(τ) ≥ r(τ) − D1/2 ≥ D1/2. Then W (D1/2, τ) ≥ CD1/4. Since

z = W (r, τ) is decreasing with respective to r, W (r, τ) ≥ W (D1/2, τ) ≥ CD1/4,

0 ≤ r ≤ D1/2. It is easy to see ρ > min{D1/2, CD1/4} := ρ1.

Next, we are going to prove our main result. We extend ρ by even and periodic

in θ. Using the interior estimates in [8], we can get

| ∂
k

∂θk
ρ(θ, τ)| < Ck, |

∂k

∂τ k
ρ(θ, τ)| < Bk, 0 ≤ θ ≤ π, τ ≥ −1

2
ln(T − t0) + ε.

Proof of Theorem 4.1.3. Firstly, We introduce the following Lyapunov functional
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borrowed from [6] (The Lyapunov functional also is used by [5]):

E[w(·, τ)] =

∫ q(τ)

−q(τ)

exp

{
−z

2 + w2(z, τ)

2

}√
1 + w2

z(z, τ)dz.

We can compute that

d

dτ
E[w(·, τ)] = −

∫ q(τ)

−q(τ)

w2
τ (z, τ) exp

{
−z

2 + w2(z, τ)

2

}
(1 + w2

z(z, τ))−1/2dz + J,

where

J =
√

2Ae−τ
∫ q(τ)

−q(τ)

exp

{
−z

2 + w2(z, τ)

2

}
wτ (z, τ)dz.

We consider the following integral∣∣∣∣∣
∫ q(τ)

−q(τ)

exp

{
−z

2 + w2(z, τ)

2

}
wτ (z, τ)dz

∣∣∣∣∣ ≤
∫ q(τ)

−q(τ)

∣∣∣∣ wzz
1 + w2

z

− zwz + w +
√

2Ae−τ
√

1 + w2
z

∣∣∣∣ dz
≤

{∫ q(τ)

−q(τ)

∣∣∣∣ wzz
(1 + w2

z)
3/2

∣∣∣∣+ |z| |wz|√
1 + w2

z

+
w√

1 + w2
z

+
√

2A

}√
1 + w2

zdz.

We note that |q(τ)|, |w(z, τ)| are bounded. By Lemma 4.6.2, the curvature |wzz/(1+

w2
z)

3/2| = |(−ρρθθ+2ρ2
θ+ρ

2)/(ρ2
θ+ρ

2)3/2| is bounded, 0 ≤ θ ≤ π, τ > −1
2

ln(T−t0)+ε.

Then

|J | ≤ C1

√
2Ae−τ

∫ q(τ)

−q(τ)

√
1 + w2

zdz ≤ C1

√
2Ae−τ (2r(τ) + 2q(τ)) ≤ Ce−τ ,

for τ > −1
2

ln(T − t0) + ε. Consequently,∫ ∞
− 1

2
ln(T−t0)+ε

|J |dτ <∞.
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We note that

E(w(·, τ)) ≤ 2r(τ) + 2q(τ) ≤ C, τ > −1

2
ln(T − t0) + ε.

Therefore∫ ∞
− 1

2
ln(T−t0)+ε

∫ q(τ)

−q(τ)

w2
τ (z, τ) exp

{
−z

2 + w2(z, τ)

2

}
(1 + wz(z, τ))−1/2dzdτ <∞.

Finally, it suffices to show that, for any sequence τn → +∞, the sequence

(w(z, τn), q(τn)) has a subsequence that converges to (ϕ, q), as n→∞, where (ϕ, q)

is the solution of (4.1.11)-(4.1.13)(more precisely, the graph of r = w(z, τn) converges

to the graph of r = ϕ(z) under the Hausdorff distance).

We set

wn(z, τ) = w(z, τ + τn), qn(τ) = q(τ + τn), ρn(θ, τ) = ρ(θ, τ + τn), τ ∈ [a, a+ 1],

where a > −1
2

ln(T − t0) + ε. By Lemma 4.6.2, ∂k

∂θk
ρn(θ, τ) and ∂j

∂τ j
ρn(θ, τ) are

uniformly bounded for n, θ ∈ [0, π], τ ∈ [a, a + 1], k = 1, 2, 3, j = 1, 2. Then

there exists ρ∗(θ, τ) such that ρn converges to ρ∗ in C2,1([0, π] × [a, a + 1]) as n →
∞. Consequently, wn(z, τ) converges to w∗(z, τ) as n → ∞, where w∗(z, τ) =

ρ∗(θ, τ) sin θ. Obviously, w∗(z, τ) satisfies

wτ =
wzz

1 + w2
z

− zwz + w, z ∈ (−q∗(τ), q∗(τ)), τ ∈ [a, a+ 1], (4.6.3)

w(−q∗(τ), τ) = w(q∗(τ), τ) = 0, τ ∈ [a, a+ 1], (4.6.4)

wz(−q∗(τ), τ) =∞, wz(q∗(τ), τ) = −∞, τ ∈ [a, a+ 1], (4.6.5)

where q∗(τ) denotes the limit of qn(τ) defined as above.
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We next prove w∗τ (z, τ) = 0. By the argument of Lyapunov function above,

∫ a+1

a

∫ q(τ+τn)

−q(τ+τn)

w2
τ (z, τ + τn) exp

{
−z

2 + w2(z, τ + τn)

2

}
(1 + w2

z(z, τ + τn))−1/2dzdτ

≤
∫ ∞
τn+a

∫ q(τ)

−q(τ)

w2
τ (z, τ) exp

{
−z

2 + w2(z, τ)

2

}
(1 + w2

z(z, τ))−1/2dzdτ.

Using ρn converges to ρ∗ in C2,1([0.π]× [a, a+ 1]) and letting n→∞,

∫ a+1

a

∫ q∗(τ)

−q∗(τ)

(w∗τ )
2(z, τ) exp

{
−z

2 + (w∗)2(z, τ)

2

}
(1 + (w∗z)

2(z, τ))−1/2dzdτ = 0,

which implies w∗τ ≡ 0 for −q∗(τ) < z < q∗(τ). So (w∗, q(τ)) is a stationary solution

of (4.6.3)-(4.6.5). Since the problem (4.1.11)-(4.1.13) is unique, q∗(τ) = q, where

q is a constant. Therefore, we prove that (w(z, τn), q(τn)) converges to (ϕ, q) up

to a sequence. Therefore, we have (w(z, τ), q(τ)) → (ϕ, q), as τ → ∞. Indeed,

(ϕ, q) = (
√

1− z2, 1). The proof of Theorem 4.1.3 is complete.

Since Γ(t) can be represented by F(p, t) : S1× [0, T ). Seeing the proof of Theorem

4.1.3,

κ(p, τ) =
−wzz

(1 + w2
z)

3/2
→ 1, uniformly on S1 ∩ {y ≥ 0},

as τ → ∞. Then for τ large enough wzz < 0 for −q(τ) < z < q(τ). Consequently,

seeing the relation between w and u, there exists t1 such that uxx < 0, for −b(t) <
x < b(t), t1 < t < T .
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4.7 An example for min d/ψ = 0

In this section we give an example that the comparison principle for extrinsic and

intrinsic distances does not hold for A > 0. First, we give some curves.

γ1 = {(x, y) | (x− 2

A
)2 + y2 = R2,−L ≤ y ≤ R}.

where L > 1/A and L < R < 2/A.

γ2 = {(x, y) | |x− 2

A
| = 1

2

√
R2 − L2,−2L− δ < y < −L− δ},

where 0 < δ < min{L/4, 2/A− 1
2

√
(2/A)2 − L2}.

γ3 = {(x, y) | |y + 2L+ 3δ| = δ, 0 ≤ x <
2

A
− 1

2

√
R2 − L2 − δ}.

We connect γ1, γ2, γ3 smoothly by short curves, called Γ1. Extend Γ1 by even,

denoted by Γ0. Let Γ(t) be the maximal smooth solution of V = −κ+A with initial

curve Γ0 and we show that the curve Γ(t) will intersect itself in a finite time. By the

construction of Γ0, there exist 1/A < R1 < R such that

BR1(2/A, 0) ⊂ U, BR1(−2/A, 0) ⊂ U,

where U is the domain surrounded by Γ0. Let R1(t) be the solution of

R′1(t) = A− 1

R1(t)
,

with R(0) = R1. Then ∂BR1(t) evolves by V = −κ + A with ∂BR1 . By comparison

principle,

BR1(t)(2/A, 0) ⊂ U(t), BR1(t)(−2/A, 0) ⊂ U(t),
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Figure 4.3: Initial curve Γ0

where U(t) is the domain surrounded by Γ(t). Let R2(t) be the solution of

R′2(t) = −A− 1

R2(t)
,

with R2(0) = R2 := min{2/A −
√

(2/A)2 − L2 − δ, L/2}. Then ∂BR2(t) evolves by

V = −κ − A with ∂BR2 . Here we note the direction of the driving force must

be reversed. Since U ⊂ R2 \ BR2(0,−3L/2 − δ), by comparison principle, U(t) ⊂
R2\BR2(t)(0,−3L/2−δ), 0 ≤ t < t2, where t2 is the maximal existence time of R2(t).

Note that t2 is independent on R and R1. We can choose R and R1 very closed to

2/A and seeing R1(t)→∞ as t→∞, then there exists t0, t0 < t2 such that

BR1(t0)(2/A, 0) ∩BR1(t0)(−2/A, 0) 6= ∅.
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Combining U(t) ⊂ R2 \ BR2(t)(0,−3L/2 − δ), 0 ≤ t < t2, this implies there exists

t1, t1 < t0 < t2 such that Γ(t1) intersects itself at origin. It means that m(t1) =

min d/ψ = 0.
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Chapter 5

Mean curvature flow with driving

force in higher dimension

In this Chapter, we introduce the results in [4], mean curvature flow with drving

force in higher dimensions. In [4], they give the criteria for fattening and non-

fattening.

5.1 Introduction

We consider

V = −κ+ A on Γ(t) ⊂ Rn+1, (1.1.1)

Γ(0) = Γ0, (1.1.2)

where Γ(t) is a smooth family of hypersurfaces embedded in Rn+1, V is the outer

normal velocity of Γ(t), κ is the mean curvature of Γ(t) and A > 0, called driving

force, is a constant. Here the sign of κ is taken so that the problem is parabolic. For

example, under the definition, the mean curvature of unit sphere in Rn+1 is n.

In this chapter, we consider the initial data Γ0 is smooth except for origin and

115



Chapter 5. Mean curvature flow with driving force in higher dimension

O
0( ,0)b



Figure 5.1: Initial hypersurface Γ0

can be wrriten into

Γ0 = {(x, y) ∈ R× Rn | |y| = u0(x),−b0 ≤ x ≤ b0}, (5.1.1)

where u0(x) is even and satisfies u0(x) > 0, for x ∈ (−b0, 0) ∪ (0, b0), u0(0) =

u0(−b0) = u0(b0) = 0. Since Γ0 is smooth at (−b, 0, · · · , 0) and (b, 0, · · · , 0), it is

easy to see that u′0(−b0) = −u′0(b0) = +∞.

Assume

γ := lim
x→0+

arctanu′0(x) ∈ [0, π/2], (5.1.2)

seeing Figure 5.1.

Main assumptions for γ = π/2. Under the condition γ = π/2, let Λ0 =

Γ0 ∩ {(x, y) ∈ R× Rn | x ≥ 0}.
We consider another problem.

V = −κ+ A on Λ+(t) ⊂ Rn+1, (1.1.1*)
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Λ+(0) = Λ0 (1.1.2*)

(Figure 3.2).

As in Chapter 3, let φ be the unique solution of φt = |∇φ|div(
∇φ
|∇φ|

) + A|∇φ| in Rn+1 × (0, T ),

φ(x, y, 0) = a1(x, y),

where a1(x, y) satisfies Λ0 = {(x, y) | a1(x, y) = 0} and {(x, y) | a1(x, y) > 0} is

bounded. The results in appendix show that the zero set of φ is not fattening in a

short time and the zero set of φ can be written into

Λ+(t) = {(x, y) ∈ Rn+1 | φ(x, y, t) = 0} = {(x, y) ∈ Rn+1 | |y| = v(x, t), a∗(t) ≤ x ≤ b∗(t)}

for 0 < t < T∗. Moreover, (v, a∗, b∗) is the solution of the following free boundary

problem

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x, x ∈ (a∗(t), b∗(t)), 0 < t < T∗,

u(a∗(t), t) = 0, u(b∗(t), t) = 0, 0 ≤ t < T∗,

ux(a∗(t), t) =∞, ux(b∗(t), t) = −∞, 0 ≤ t < T∗,

u(x, 0) = u0(x), 0 ≤ x ≤ b0,

u(x, t) > 0, x ∈ (a∗(t), b∗(t)), 0 < t < T∗.

(**)

We call a∗ and b∗ the end points of Λ+(t).

Assumption (A+): There exists δ > 0 such that a∗(t) ≥ 0 for 0 ≤ t < δ.

Assumption (A−): There exists δ > 0 such that a∗(t) < 0 for 0 < t < δ.

For example, if κ(O) < A, then, since

a′∗(0) = κ(O)− A < 0,
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a∗(t) < 0 for any small t > 0. Similarly, if κ(O) > A, a(t) > 0 for any small t > 0.

Here

κ(O) = lim
x→0+

(
− uxx

(1 + u2
x)

3/2
+

n− 1

u
√

1 + u2
x

)
denotes the mean curvature of Λ0 at the origin O.

Here we present our main results.

Theorem 5.1.1. Let Γ0 and γ be defined by (5.1.1) and (5.1.2).

Assume γ = π/2, n ≥ 2.

(1) If the assumption (A−) holds, then there exists T > 0 such that the interface

evolution Γ(t) for (1.1.1) with initial hypersurface Γ0 is not fattening for 0 ≤ t < T .

(2) If the assumption (A+) holds, then the interface evolution Γ(t) for (1.1.1)

with initial hypersurface Γ0 is fattening.

Theorem 5.1.2. Let Γ0 and γ be defined by (5.1.1) and (5.1.2).

Then there exist αn ∈ (0, π/2) (n ≥ 2) such that αn → π/2, as n → ∞ and if

0 ≤ γ < αn, then there exists Tγ such that the interface evolution Γ(t) for (1.1.1)

with initial hypersurface Γ0 is not fattening for 0 ≤ t < Tγ.

Theorem 5.1.3. Let Γ0 and γ be defined by (5.1.1) and (5.1.2).

Assume 0 ≤ γ < π/2, for n = 1.

The interface evolution Γ(t) for (1.1.1) in R2 with initial curve Γ0 is fattening.

The definitions of fattening, non-fattening, outer-evolution, inner-evolution and

interface evolution are given in section 2.

Theorem 5.1.1 can be explained by Figure 3.4 and Figure 3.5. ϕ in Figure 3.4

and Figure 3.5 is the unique viscosity solution of

 ϕt = |∇ϕ|div(
∇ϕ
|∇ϕ|

) + A|∇ϕ| in Rn+1 × (0, T ),

ϕ(x, y, 0) = a2(x, y) in Rn+1 × (0, T ),
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where a2(x, y) satisfies Γ0 = {(x, y) ∈ Rn+1 | a2(x, y) = 0} and {(x, y) ∈ Rn+1 |
a2(x, y) > 0} is bounded. Let Γ(t) = {(x, y) ∈ Rn+1 | ϕ(x, y, t) = 0}.

Motivation. In Chapter 3, we consider the mean curvature flow with driving

force starting as singular initial curve in the plane and get the same results as in

Theorem 5.1.1 under the condition n = 1. In this chapter, we give some criteria to

judge whether the interface evolution starting as singular hypersurface is fattening

or non-fattening in higher dimension. Combining the results in [5], we can conclude

the results as the following tables. In the following tables, “Connected” means that

the evolution is a connected set and “Separated” means that the evolution consists

of two disjoint components.

Table 5.1: Singular angle γ = π/2

Assumption (A+) n = 1 n ≥ 2
Outer evolution Connected Connected
Inner evolution Separated Separated
Result Fattening Fattening

Table 5.2: Singular angle γ = π/2

Assumption (A−) n = 1 n ≥ 2
Outer evolution Connected Connected
Inner evolution Connected Connected
Result Non-fattening Non-fattening

Table 5.3: Singular angle γ < π/2

n = 1, 0 ≤ γ < π/2 n ≥ 2, 0 ≤ γ < αn
Outer evolution Connected Separated
Inner evolution Separated Separated
Result Fattening Non-fattening

The role of a∗(t) in Theorem 5.1.1. Seeing Proposition 5.4.1, we can prove

119



Chapter 5. Mean curvature flow with driving force in higher dimension

there exists a unique solution (u, b) of the following free boundary problem

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x, −b(t) < x < b(t), 0 < t < T1, (5.1.3)

u(b(t), t) = u(−b(t), t) = 0, ux(−b(t), t) = −ux(b(t), t) =∞, 0 < t < T1, (5.1.4)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0, (5.1.5)

u(x, t) > 0, −b(t) < x < b(t), 0 < t < T1. (5.1.6)

Precisely, we say (u, b) is the solution of (5.1.3), (5.1.4), (5.1.5) and (5.1.6), if

(1) b(t) is a positive function and b ∈ C([0, T1)) ∩ C1((0, T1)).

(2) u ∈ C(DT1) ∩C2,1(DT1), where DT1 = ∪0≤t<T1
(
[−b(t), b(t)]× {t}

)
and DT1 =

∪0<t<T1

(
(−b(t), b(t))× {t}

)
(We must note that DT1 6= DT1).

(3) (u, b) satisfies (5.1.3), (5.1.4), (5.1.5) and (5.1.6).

Obviously, the flow Γ∗(t) = {(x, y) | |y| = u(x, t), −b(t) ≤ x ≤ b(t)} satisfies

(1.1.1), (1.1.2) naturally.

Let (v, a∗, b∗) be the solution of the problem (*). If the assumption (A+) holds,

the flow

Λ+(t) = {(x, y) | |y| = v(x, t), a∗(t) ≤ x ≤ b∗(t)}

does not intersect the flow

Λ−(t) = {(−x, y) | (x, y) ∈ Λ+(t)},

for 0 < t < δ. Denote Λ(t) = Λ+(t) ∪ Λ−(t). Obviously, Λ(t) also satisfies (1.1.1).

Seeing Γ∗(0) = Λ(0) = Γ0, this means that there exist two types of flows Γ∗(t) and

Λ(t) evolving by V = −κ + A with the same initial curve Γ0. Therefore under this

condition, the solution of the original problem (1.1.1), (1.1.2) is not unique. Indeed,

from the proof of Theorem 5.1.1, we see that the flow Γ∗(t) is the boundary of the
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closed evolution and the flow Λ(t) is the boundary of open evolution.

If a∗(t) < 0 for 0 < t < δ, Λ+(t) ∩ Λ−(t) 6= ∅. Obviously, Λ(t) = Λ+(t) ∪ Λ−(t)

does not satisfy (1.1.1). But Λ+(t) plays the role of a sub-solution (in the proof of

Lemma 5.2.4). Using this sub-solution, the boundaries of the open evolution and

closed evolution are away from the x-axis. Moreover, it can be proved that the

derivatives and the second fundamental forms of them are uniformly bounded. By

the uniqueness result (Proposition 5.2.2), we can prove they are coincide.

For classical mean curvature flow i.e. A = 0 and under the condition γ = π/2,

since a∗(t) ≥ 0 always holds, the interface evolution is fattening.

Background. In 1995, [1] considered the classical mean curvature flow in di-

mension n, n ≥ 2. They proved that the singular formations for axisymmetric flow

can only be shrinking or pinching. Moreover, they used level set method to show

that after pinching, the interface evolution is non-fattening and separated into some

disjoint connected components. Indeed, this result can be seen as a special condition

A = 0 and γ = 0 in this paper.

Mean curvature with driving force under the condition γ = π/2 and n = 1, the

curve in plane, has been considered in [5] recently. The same results as in Theorem

5.1.1 are given in [5]. In this paper, we give more general criteria to judge whether

the interface evolution starting as singular initial hypersurface is fattening or non-

fattening.

5.2 Singular angle γ = π/2

In this section, we consider the case γ = π/2 and prove Theorem 5.1.1.

Denote U = {(x, y) ∈ Rn+1 | |y| < u0(x),−b0 ≤ x ≤ b0}. By assumption of u0 in

Section 5.1, we know that U ∩ {x ≥ 0} is an α-domain with smooth boundary, for

some α > 0.
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We choose vector field X ∈ C1(Rn+1 \ {O} → Rn+1) such that

(i) At any P ∈ ∂U not on the x-axis has 〈X,n(P )〉 > 0, n(P ) is the inward unit

normal vector to ∂U at P .

(ii) We set X((x, y)) = (0,−y/|y|), near O and set X = (−1, 0, · · · , 0) near

(b, 0, · · · , 0), X = (1, 0, · · · , 0) near (−b, 0, · · · , 0).

We note that X has no definition at O.

Since X 6= 0 on ∂U \ {O} and |X| = 1 near O, by continuity, there exists a

neighbourhood V ⊃ ∂U such that |X| ≥ δ > 0 for some δ > 0 in V \ {(0, 0)}.

Proposition 5.2.1. For ρ small enough, there exists a smooth hypersurface Σ ⊂
V \ {O} with

(i) X(P ) /∈ TPΣ at all P ∈ Σ, i.e., Σ is transverse to the vector field X;

(ii) Σ = ∂U in {(x, y) | |y| ≥ 2ρ};
(iii) Σ ∩ {(x, y) | |y| ≤ ρ} consists of discs ∆±c = {(±c, y) | |y| ≤ ρ} and pipe

Bd = {(x, y) | −d ≤ x ≤ d, |y| = ρ}.

The proof of this proposition is similar as Proposition 3.2.1. We omit it.

Denote σ(P, α) : Σ × (−δ, δ) → V (V is given at the begining of this section

and Σ is given by Proposition 5.2.1) the flow generated by vector field X in Rn+1.

Precisely, σ(P, α) is defined as following:
dσ(P, α)

dα
= X(σ(P, α)), P ∈ Σ,

σ(P, 0) = P, P ∈ Σ.

By (i) in Proposition 5.2.1, for any C1 function u : Σ → R, “the image of u

under σ”:= {σ(P, u(P )) | P ∈ Σ} is a C1 hypersurface. Conversely, for any curve

Γ ⊂ V which is C1 close to Σ, there exists a unique C1 function u : Σ → R

such that Γ = {σ(P, u(P )) | P ∈ Σ}. In other words, the map σ(·, t) defines

new coordinates from Σ to V . Therefore, if Γ(t) ⊂ V (0 < t < T ) is a smooth
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family of smooth hypersurfaces and C1 close to Σ, there exists a unique function

u ∈ C∞(Σ × (0, T )) such that Γ(t) = {σ(P, u(P, t)) | P ∈ Σ}. Let z = (z1, · · · , zn)

be the local coordinates on an open subset of Σ. If Γ(t) evolves by V = −κ + A,

under these coordinates u satisfies the following equation

∂u

∂t
= aij(z, u,∇zu)∇2

zizj
u+ b(z, u,∇zu). (5.2.1)

Here {aij} is a smooth, positive matrix. Precisely, we can see Section 3 in [2].

Consequently, (5.2.1) is a parabolic equation.

For example, σ(·, α) is the flow defined as above. We can easily deduce that

σ(P, α) =


(x, ρ− α), P ∈ Bd,

(−c+ α, y), P ∈ ∆−c,

(c− α, y), P ∈ ∆c,

where we choose the local coordinates:

(1). (x, ρy) on Bd;

(2). (±c, y) on ∆±c.

Suppose that Γ(t) is symmetric to x-axis. Then, on Bd, u depends only on x, t

and satisfies

ut =
uxx

1 + u2
x

+
n− 1

ρ− u
− A

√
1 + u2

x. (5.2.2)

In this case, b = n−1
ρ−u − A

√
1 + u2

x. For n ≥ 2, it is easy to see b is not smooth

at u = ρ. This is the most significant difference between the condition n = 1 and

condition n ≥ 2.

On ∆±c, since u depends only on y = (y1, · · · , yn), u satisfies

ut =

(
δij −

uyiuyj
1 + |∇u|2

)
uyiyj − A

√
1 + |∇u|2. (5.2.3)
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Proposition 5.2.2. For n ≥ 2, let Γj(t), t ∈ [0, T ] be two families of hypersurfaces

with σ−1(Γj(t)) the graph of uj(·, t) for certain uj ∈ C(Σ × [0, T ]), j = 1, 2. Let

Dj(t) be bounded open domain with ∂Dj(t) = Γj(t) and assume that Dj(t) are α(t)-

domain, j = 1, 2. Moreover, assume that uj are smooth on Σ × (0, T ] and smooth

on Σ \ (∆±c ∪ Bd) × [0, T ]. And suppose that ρ − uj are bounded from below on

Σ \ (∆±c ∪Bd)× [0, T ]. If

(1). Γj(t) evolves by (1.1.1);

(2). Γ1(0) = Γ2(0);

(3).
∫ T

0
1

α2(t)
dt <∞,

then Γ1(t) = Γ2(t) for 0 < t ≤ T .

Proof. Consider function v(P, t) = u1(P, t) − u2(P, t). From our assumptions, there

holds v ∈ C(Σ × [0, T ]) and v is smooth on (Σ \∆±c ∪ Bd) × [0, T ] and smooth on

Σ× (0, T ]. Moreover v(P, 0) ≡ 0. We define M(t) = max{v(P, t) | P ∈ Σ}. Choose

Pt as in Lemma 3.2.3 such that M(t) = v(Pt, t) and M ′(t) = vt(Pt, t).

Case 1. Pt ∈ Bd, uj satisfy

ut =
uxx

1 + u2
x

+
n− 1

ρ− u
− A

√
1 + u2

x. (5.2.2)

Obviously, v satisfies the following equation

vt = a1(x, t)vxx + b1(x, t)vx + c1(x, t)v,

where a1(x, t) > 0 and c1(x, t) = n−1
(ρ−u1)(ρ−u2)

. Since v attains its maximum at Pt,

then vx(Pt, t) = 0 and vxx(Pt, t) ≤ 0. So we have vt(Pt, t) ≤ c1(x, t)v. By assumption

that Dj are α(t)-domain, then ρ− uj > α(t), j = 1, 2. Therefore,

vt(Pt, t) ≤
n− 1

α2(t)
v(Pt, t).
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Consequently, M ′(t) ≤ n−1
α2(t)

M(t).

Case 2. Pt ∈ Σ \ (∆±c ∪ Bd). Then we can choose coordinates z on some

neighbourhood of Pt on Σ and uj satisfy (5.2.1). We may write this equation as

ut = F (z, t, u,∇u,∇2u). Then v satisfies

vt = a2
ij(z, t)vzizj + b2

i (z, t)vzi + c2(z, t)v

where

c2(z, t) =

∫ 1

0

Fu(z, t, u
θ,∇uθ,∇2uθ)dθ,

where uθ = (1− θ)u0 + θu1 and {a2
ij} is a positive definite.

Since v is smooth on Σ \ (∆±c ∪Bd)× [0, T ] and ρ− uj are bounded from below

on Σ \ (∆±c ∪ Bd), 0 < t < T , then there exists a positive constant C such that

|c2(z, t)| ≤ C. The constant C may depend on the choice of local coordinates z.

By compactness of Σ, Σ has a finite covering consisting of neighborhoods of local

coordinates, and we can choose C independent of the choice of local coordinates.

Since ∇v(Pt, t) = 0, {vzizj(Pt, t)} is negative semi-definite,

vt(Pt, t) ≤ c(Pt, t)v(Pt, t) ≤ Cv(Pt, t).

Consequently, M ′(t) ≤ CM(t).

Case 3. Pt ∈ ∆±c. We only consider Pt ∈ ∆−c. Then in the z-coordinates of

∆−c, uj satisfy the full graph equation

ut =

(
δij −

uyiuyj
1 + |∇u|2

)
uyiyj − A

√
1 + |∇u|2. (5.2.3)

Hence v = u1 − u2 satisfies a linear parabolic equation

vt = a3
ij(z, t)vzizj + b3

i (z, t)vzi ,
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where {a3
ij} is positive definite. Obviously, ∇v(Pt, t) = 0 and {vzizj(Pt, t)} is negative

semi-definite. It follows that M ′(t) ≤ 0.

From the three cases above, if we put

r(t) =
n− 1

α2(t)
+ C,

then there holds M ′(t) ≤ r(t)M(t). Consequently, by the assumption of α(t),

M(t) ≤M(0)e
∫ t
0 r(t)ds = 0.

By considering m(t) = min{v(P, t) | P ∈ Σ}, we can similarly prove m(t) ≥ 0.

Therefore Γ1(t) = Γ2(t) for 0 ≤ t ≤ T .

Note that the intial curve in our problem is singular at x-axis. The assumption

that “Dj(t) are α(t) domain” in Proposition 5.2.2 means that Γj(t) “escape” from

origin with speed α(t). If the “escape speed” satisfies

∫ T

0

1

α2(t)
dt <∞,

we can get the uniqueness.

Following Lemmas 5.2.3 and 5.2.4 can be proved by similar argument to the

argument in R2 (Chapter 3). For reader’s convenience, we give the proof of Lemma

5.2.4.

Lemma 5.2.3. There exists a sequence of closed sets Ej such that E◦j are α/2j-

domains and Ej ↓ U . Here U is given at the beginning of the section and E◦ denotes

the interior of the set E.

Lemma 5.2.4. Let the same assumption of (1) in Theorem 5.1.1 be given. Then

there exists t1 > 0 such that, for all t2 satisfying 0 < t2 < t1, the second fundamental
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forms and derivatives of ∂Ej(t) are uniformly bounded for t2 ≤ t ≤ t1, where Ej(t)

denote the closed evolution of V = −κ + A with Ej(0) = Ej and Ej are given in

Lemma 5.2.3.

Proof. Let Ej(t) = {(x, y) | |y| ≤ vj(x, t), −cj(t) ≤ x ≤ cj(t)}.
Step 1. For all t2 satisfying 0 < t2 < δ (δ given by assumption (A−)), there

exists a constant c > 0 such that

vj(0, t) > c, t2/2 < t < δ.

Let U+(t) denote the bounded set with ∂U+(t) = Λ+(t). Since U+(0) = U ∩{x ≥
0} ⊂ Ej = Ej(0), U+(t) ⊂ Ej(t). By our assumption that a∗(t) < 0 for 0 < t ≤ δ,

O ∈ U+(t) ⊂ Ej(t) for 0 < t < δ. For all t2 ∈ (0, δ), there exists c > 0 such that

vj(0, t) > c for t2/2 ≤ t ≤ δ.

Step 2. Construction of four auxiliary balls.

Since U ∩ {x ≥ 0} is an α-domain, there exist β2 > β1 > 0 such that u0(±β1) =

u0(±β2) = α and u′0(x) < 0 for x > β2, u′0(x) > 0 for 0 < x < β1. There exist p > β1

and 0 < q < β2 such that u0(±q) = u0(±p) =
α

2
. We consider the points

Q = (−p, 0), P = (p, 0),

Q′ = (−p, α), P ′ = (p, α).

Since P ∈ U and P ′ ∈ U c
, there exists ε such that Bε(P ) ⊂ U and Bε(P ′) ⊂ U

c
.

Consequently, Bε(P ) ∪ Bε(Q) ⊂ E◦ and Bε(P ′) ∪ Bε(Q′) ⊂ Ec. Then for j large

enough, Bε(P ) ∪ Bε(Q) ⊂ E◦j and Bε(P ′) ∪ Bε(Q′) ⊂ Ec
j . Comparison principle

shows that

Bε(t)(P ) ∪Bε(t)(Q) ⊂ Ej(t)
◦ (5.2.4)
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Figure 5.2: Proof of Lemma 5.2.4

for 0 < t < δ2. By Theorem 2.1.7,

Bε(t)(P ′) ∪Bε(t)(Q′) ⊂ Ej(t)
c (5.2.5)

for 0 < t < δ2. Here ε(t) is the solution of (2.3.13) with ε(0) = ε on the interval

[0, δ1). Take δ2 independent of j such that ε(t) > ε/2 for 0 < t < δ2.

Step 3. Divide ∂Ej(t) into two parts by auxiliary balls.

Since for all ρ < α/2, Cρ intersects ∂Ej at most four times, by the intersection

number argument as in the proof of Lemma 2.3.10, there exists t0 > 0 such that Cρ

intersects ∂Ej(t) at most four times for 0 < t < t0. By continuity, we can deduce

that there exists δ4 such that for all ρ < α, the equation vj(x, t) = ρ has just one

root for x > p for all t < δ4. By symmetry, it also holds for x < −p.
Put t1 = min{t0, δ2, δ3, δ4}. Then Step 1 and intersection argument show that

Ej(t)
◦ are all c-domains for t2/2 < t < t1. Let d < min{c, ε/4}. By (5.2.4) in
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Figure 5.3: Proof of Lemma 5.2.4

Step 2, we have vj(x, t) > d for t2/2 < t < t1 and x with |x − p| <
√
ε2(t)− d2 or

|x+ p| <
√
ε2(t)− d2. By ε(t) > ε/2,

vj(x, t) ≥ d in Ω = (−p−
√

3

4
ε, p+

√
3

4
ε)× (t2/2, t1).

For x ≤ −p, by (5.2.5) in Step 2,

vj(x, t) < α/2− ε(t) < α/2− ε/2 for x ≤ −p, 0 ≤ t < t1.

This is also true for x ≥ p.

Step 4. The derivatives and second fundamental forms of ∂Ej(t) are bounded

in Ω′ = [−p, p]× (t2, t1).

Since vj(x, t) ≥ d in Ω = (−p−
√

3
4
ε, p+

√
3

4
ε)× (t2/2, t1), Theorem 2.3.4 implies

that vjx are uniformly bounded in Ω. By Remark 2.2.4, vjxx are uniformly bounded

in Ω′.
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Step 5. The derivatives and second fundamental forms of ∂Ej(t) are bounded

for x ≤ −p and x ≥ p, t2 < t < t1.

We only consider for x ≤ −p. For 0 < t < t1, the part of ∂Ej(t) on x ≤ −p
can be represented by x = wj(y, t) for |y| < α/2, t ∈ (0, t1), and wj satisfy the

equation (2.2.1) in the condition “−” and n = 1. Then Corollary 2.2.3 and Remark

2.2.4 imply that all ∂k

∂yk
wj(y, t), k = 1, 2, are uniformly bounded for |y| ≤ α/2− ε/2,

t2 < t < t1 and for any t2 > 0. Then the derivatives and second fundamental forms

of ∂Ej(t) are uniformly bounded for x ≤ −p, t2 < t < t1.

The proof of this lemma is completed.

Lemma 5.2.5. Let the same assumption in Theorem 5.1.1 hold. Then there exists

t1 > 0 such that for all t2 ∈ (0, t1), the second fundamental forms and derivatives

of ∂U(t) is uniformly bounded for t2 < t < t1, where U(t) is the open evolution of

V = −κ+ A with U(0) = U .

Lemma 5.2.5 is able to be proved as Lemma 5.2.4.

As mentioned in Proposition 5.2.2, in order to get the uniqueness, we must

give the estimate of “escape speed”. Let R0 be taken small enough such that

BR0((R0, 0, · · · , 0)) ∪ BR0((−R0, 0, · · · , 0)) ⊂ U . In next lemma, we construct a

sub-solution.

Lemma 5.2.6. (Sub-solution) Take R0 as above. Function u is even and defined by

u(x, t) =


√

(r(t) +R(t))2 −R2
0 −

√
r2(t)− x2, 0 ≤ x < R0r(t)

R(t)+r(t)
,√

R2(t)− (x−R0)2, R0r(t)
R(t)+r(t)

≤ x ≤ R0 +R(t).

Here r(t) = t3/4 and R(t) satisfies R′ = A − n/R, R(0) = R0. Then there exists

t∗ > 0 such that (u,R0 + R(t)) is a sub-solution of (5.1.3), (5.1.4), (5.1.5), (5.1.6)

for 0 < t < t∗.
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Proof. We can easily deduce that |R(t)− R0| = O(t), as t → 0. Since r(t) = t3/4 >

R(t), for sufficient small t, u is well-defined for small t.

1. Positive: Obviously, u0(x, t) > 0 for −R0 −R(t) < x < R0 +R(t).

2. Initial condition: By the choice of R0, u(x, 0) =
√
R0 − (x+R0)2 ≤ u0(x) for

0 ≤ x ≤ R0 and R0 ≤ b0.

3. Boundary condition: Obviously, at boundary,

u(−R0 −R(t), t) = u(R0 +R(t), t) = 0

and

ux(−R0 −R(t), t) = −ux(R0 +R(t), t) =∞.

4. Interior: For R0r(t)
R(t)+r(t)

< x < R0 + R(t) or −R0 − R(t) < x < − R0r(t)
R(t)+r(t)

, u(x, t) =√
R2(t)− (x−R0)2 satisfies (5.1.3). Next we only need prove u is a sub-solution of

(5.1.3) for − R0r(t)
R(t)+r(t)

< x < R0r(t)
R(t)+r(t)

and t small. By calculation,

1 + u2
x =

r2

r2 − x2
;

uxx =
r2

(r2 − x2)3/2
;

ut =
(r +R)(r′ +R′)√

(r +R)2 −R2
0

− rr′√
r2 − x2

.

Therefore,

ut −
uxx

1 + u2
x

+
n− 1

u
− A

√
1 + u2

x =
(r +R)(r′ +R′)√

(r +R)2 −R2
0

− rr′√
r2 − x2

− 1√
r2 − x2

+
n− 1√

(r +R)2 −R2
0 −
√
r2 − x2

− Ar√
r2 − x2

≤ (r +R)(r′ +R′)√
(r +R)2 −R2

0

− r′ − 1

r

+
n− 1√

(r +R)2 −R2
0 − r

.
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Since |R′(t)| is bounded, R(t) is bounded from above and below for small t, and

r(t) = t3/4, we can deduce that

1√
(r +R)2 −R2

0

=
1√

(r +R−R0)(r +R +R0)
= O(t−3/8);

(r +R)(r′ +R′) = O(t−1/4)

as t→ 0. Consequently,

ut −
uxx

1 + u2
x

+
n− 1

u
− A

√
1 + u2

x ≤ C1t
−5/8 − C2t

−1/4 − C3t
−3/4 + C4t

−3/8

= t−3/4(C1t
1/8 − C2t

1/2 − C3 + C4t
3/8) < 0

for any sufficient small t > 0. It is easy to check that u is C1 at x = R0r(t)
R(t)+r(t)

.

Then there exists t∗ > 0 such that u is a sub-solution of (5.1.3) in viscosity sense for

0 < t < t∗.

We complete the proof.

Corollary 5.2.7. Recall U = {(x, y) ∈ Rn+1 | |y| < u0(x), b0 < x < b0} and E(t)

be the outer evolution of U . Then there exists t∗ > 0 such that, for each t ∈ [0, t∗),

E(t) can be described as follows,

E(t) = {(x, y) ∈ Rn+1 | |y| ≤ v(x, t), −b1(t) ≤ x ≤ b1(t)}.

Here (v, b1) is the uniqueness solution of (5.1.3), (5.1.4), (5.1.5), (5.1.6) on the

interval [0, t∗). Moreover, there exists α(t) with
∫ t∗

0
1

α2(t)
dt < ∞ such that E(t)◦ is

α(t)-domain for t < t∗.

Proof. Let Ej(t) be given by Lemma 5.2.4. Since {(x, y) ∈ Rn+1 | |y| ≤ u(x, 0)} ⊂
Ej(0) = {(x, y) ∈ Rn+1 | |y| ≤ vj(x, 0), −cj(0) ≤ x ≤ cj(0)}), {(x, y) ∈ R × RN |
|y| ≤ u(x, t)} ⊂ Ej(t) = {(x, y) ∈ Rn+1 | |y| ≤ vj(x, t), −cj(t) ≤ x ≤ cj(t)} for
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0 < t < t∗ and for all j.

By r(t) = t3/4, |R(t)−R0| = O(t) and boundedness of R(t) from below as t→ 0,

there exists t∗ > 0 such that

u(0, t) =
√

(r(t) +R(t))2 −R2
0 −

√
r2(t) =

√
r(t)

(√
r(t) + 2R(t) +

R(t)−R0

r(t)
−
√
r(t)

)
≥ C ′t3/8 − t3/4 ≥ Ct3/8,

for t < t∗. If we taken

α(t) = Ct3/8 for 0 ≤ t < t∗,

then
∫ t∗

0
1

α2(t)
dt <∞. Therefore, Ej(t)

◦ are all α(t)-domains. Moreover, (vj, cj) sat-

isfy (5.1.3), (5.1.4), (5.1.6). By Ej(0) ↓ E(0), Theorem 2.1.5 and the same method

as in Lemma 5.2.4, we can show that Ej(t) ↓ E(t) and derivatives and second funda-

mental forms of Ej(t) are uniformly bounded. (v, b1) = lim
j→∞

(vj, cj) is the solution of

(5.1.3), (5.1.4), (5.1.5), (5.1.6). Moreover, {(x, y) ∈ Rn+1 | |y| ≤ u(x, t)} ⊂ E(t) for

0 < t < t∗. E(t)◦ is also an α(t)-domain 0 < t < t∗. The uniqueness of the solution

follows from Proposition 5.2.2.

Proof of (1) in Theorem 5.1.1. Let E(t) and U(t) be the closed and open evolution

of (1.1.1) with E(0) = U and U(0) = U , respectively.

Let U+(t) denote the bounded open set with ∂U+(t) = Λ+(t). Since U+(0) =

U ∩ {x ≥ 0} ⊂ U = U(0), there holds U+(t) ⊂ U(t). By our assumption that

a∗(t) < 0 for 0 < t ≤ δ, O ∈ U+(t) ⊂ U(t) for 0 < t < δ, where δ is given in

assumption (A−). This means that ∂U(t) escapes away from origin. Therefore,

{(x, y) ∈ Rn+1 | |y| ≤ u(x, t)} ⊂ U(t), 0 < t < T,

where T = min{t∗, δ, t1}. (Recall t1 is given by Lemma 5.2.5) Consequently, U(t) is

also an α(t)-domain. For small t, we can easily check that ∂E(t) and ∂U(t) satisfy
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the assumption in Proposition 5.2.2. We get ∂E(t) = ∂U(t) for 0 ≤ t < T .

We complete the proof.

Proof of (2) in Theorem 5.1.1. Choose T1 < min{t∗, δ}. Here δ is given in assump-

tion (A+), and t∗ is given in Corollary 5.2.7.

Let U±(t) be the bounded open domain with ∂U±(t) = Λ±(t). Thus the left end

point of U+(t) and the right end point of U−(t) are (a∗(t), 0, · · · , 0) and (−a∗(t), 0, ·, 0),

respectively. By assumption (A+), −a∗(t) ≤ a∗(t), 0 ≤ t < T1. Therefore, U+(t) ∩
U−(t) = ∅, 0 ≤ t < δ. From Lemma 2.1.9, the inner evolution U(t) satisfies

U(t) = U+(t) ∪ U−(t), for 0 ≤ t < δ.

Corollary 5.2.7 shows that E(t)◦ is an α(t)-domain for 0 < t < T1. By α(t) =

Ct3/8, there exists small enough ρ such that the ball

Bρ((0, C(
T1

4
)3/8, 0, · · · , 0)) ⊂ E(t),

T1

2
< t < T1

and

Bρ((0, C(
T1

4
)3/8, 0, · · · , 0)) ∩ U(t) = ∅, T1

2
< t < T1.

This means that the interface evolution Γ(t) = E(t) \ U(t) has interior.

Remark 5.2.8. (1) In the proof of (1) in Theorem 5.1.1, we get the closed evolution

and the open evolution are all connected sets. Therefore, they are homeomorphic.

Moreover, using the unique result, we can prove that they are coincide.

(2) In the proof of (2) in Theorem 5.1.1, we get the closed evolution is connected

and the open evolution is separated. Therefore, they are not homeomorphic.
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5.3 Singular angle γ < π/2 with n ≥ 2

In this section, we give the proof of Theorem 5.1.2. First, we introduce the

following similarity transformation: for T > 0,

z =
x√

2(T − t)
, τ = −1

2
ln(T − t) (5.3.1)

and

w(z, τ) =
1√
2
eτu(
√

2e−τz, T − e−2τ ). (5.3.2)

Then u satisfies

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x, (5.1.3)

if and only if w satisfies

wτ =
wzz

1 + w2
z

− zwz + w − n− 1

w
+
√

2Ae−τ
√

1 + w2
z . (5.3.3)

In 1992, [3] shows that there is a torus shape self-similar solution of (1.1.1) for A = 0

called “Angenent shrinking doughnut”. The self-similar solution remaining the shape

of doughnut shrinks to a point. Moreover, in [1], using this self-similar solution, they

prove that after a rotational hypersurface pinches, the hypersurface will be separated

into two disjoint components. We also expect to prove Theorem 1.2 by using some

self-similar solution of (1.1.1), however, it is difficult to find such solution. Therefore,

we construct a compact self-similar super-solution of (5.1.3).

Proposition 5.3.1. (Super-solution of equation (5.3.3)) Denote w := C−
√
ρ2 − z2,

−ρ ≤ z ≤ ρ.

For n > 2, for every C, ρ with C2 + ρ2 < n and C > ρ > 1, there exists τ0(C, ρ)

such that w is a super-solution of (5.3.3) for −ρ < z < ρ, τ > τ0.

For n = 2, Fix θ ∈ (0, 1), ε0 ∈ (0, 2
9
θ) arbitrary. Then, for each 1+θε0 < ρ < C <
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1+ ε0, there exists τ0(C, ρ) such that w is a super-solution of (5.3.3) for −ρ < z < ρ,

τ > τ0.

Proof. By calculation,

wτ = 0,

wz =
z√

ρ2 − z2

and

wzz =
ρ2

(ρ2 − z2)3/2
.

For convenience, we put q =
√
ρ2 − z2 for −ρ ≤ z ≤ ρ.

wτ −
wzz

1 + w2
z

+ zwz − w +
n− 1

w
−
√

2Ae−τ
√

1 + w2
z

= −1

q
+
n− 1

C − q
− C + q +

ρ2 − q2

q
−
√

2Ae−τ
ρ

q

= −1

q
+
n− 1

C − q
− C +

ρ2

q
−
√

2Ae−τ
ρ

q

=
1

q(C − q)

(
Cq2 − (ρ2 + C2 − n)q − C + ρ2C −

√
2Ae−τρ(C − q)

)
.

For n > 2, if ρ2+C2 < n and ρ < C, we can deduce Cq2−(ρ2+C2−n)q−C+ρ2C of

the right hand side of the formula above attains its minimum at q = 0. Consequently,

wτ−
wzz

1 + w2
z

+zwz−w+
n− 1

w
−
√

2Ae−τ
√

1 + w2
z ≥

1

q(C − q)
(−C+ρ2C−

√
2Ae−τρC).

Therefore, if ρ > 1, then there exits τ0(C, ρ) such that

wτ −
wzz

1 + w2
z

+ zwz − w +
n− 1

w
−
√

2Ae−τ
√

1 + w2
z > 0

for τ > τ0.

For n = 2, Cq2 − (ρ2 + C2 − 2)q − C + ρ2C attains its minimum at ρ2+C2−2
2C

.
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Consequently,

wτ −
wzz

1 + w2
z

+ zwz − w +
1

w
−
√

2Ae−τ
√

1 + w2
z

≥ 1

q(C − q)
(−(C2 + ρ2 − 2)2

4C
+ (ρ2 − 1)C −

√
2Ae−τρC).

Then fixed θ ∈ (0, 1), for any ε0 ∈ (0, 2
9
θ) and 1 + θε0 < ρ < C < 1 + ε0,

−(C2 + ρ2 − 2)2

4C
+ (ρ2 − 1)C ≥ 8θε0 − 36ε20

4(1 + θε0)
=

2θε0 − 9ε20
(1 + θε0)

> 0.

Therefore, there exists τ0(C, ρ) > 0 such that

wτ −
wzz

1 + w2
z

+ zwz − w +
1

w
−
√

2Ae−τ
√

1 + w2
z > 0

for τ > τ0.

Remark 5.3.2. Under the condition n > 2, in the proof of Proposition 5.3.1, for

convenience, we assume

ρ2 + C2 < n.

Indeed, it is not necessary. In the proof, we can use that Cq2−(ρ2+C2−n)q−C+ρ2C

attains its minimum at q = ρ2+C2−n
2C

.

Corollary 5.3.3. Let w and τ0 be given by Proposition 5.3.1. Then for T < e−τ0,

u(x, t;T ) =
√

2(T − t)w

(
x√

2(T − t)

)

is a super-solution of equation (5.1.3) for −ρ
√

2(T − t) < x < ρ
√

2(T − t), 0 < t <

T .

This result is obvious by Proposition 5.3.1. Here we omit the proof.
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Remark 5.3.4. For n = 2, recall γ given in Section 1 and ε0 given by Proposition

5.3.1. Then for all 0 ≤ γ < arctan
√

(1 + ε0)2 − 1, we can choose ρ and C satisfying

1 < ρ < C < 1 + ε0 such that

γ <

√
C2 − ρ2

ρ
.

For n > 2, if 0 ≤ γ < arctan
√
n− 2, we can choose ρ, C satisfying 1 < ρ < C

and ρ2 + C2 < n such that

γ <

√
C2 − ρ2

ρ
.

It is obvious that the cone

|y| =
√
C2 − ρ2

ρ
|x|

is the envelop of the family of hypersurfaces {|y| = λw(x/λ)}λ>0.

By the property of u0, we can get

y =

√
C2 − ρ2

ρ
|x| > u0(x),

for small |x|.
Therefore, there exists T (ρ, C) such that for all 0 ≤ T < T (ρ, C),

u(x, 0;T ) > u0(x),

−ρ
√

2T < x < ρ
√

2T .

Proof of Theorem 5.1.2. As mentioned in Remark 5.3.4, we choose

αn =

 arctan
√

(1 + ε0)2 − 1, n = 2,

arctan
√
n− 2, n > 2.

Obviously, αn → π/2, as n→∞.
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For every γ < αn, we choose C and ρ as in Remark 5.3.4. Let Tγ < min{T (ρ, C), e−τ0(ρ,C)},
where τ0(ρ, C) is given by Proposition 5.3.1 and T (ρ, C) is given by Remark 5.3.4.

Next we show that for every 0 < t < Tγ, the origin O ∈ E(t)c. Let flow

Γ(t;T ) = {(x, y) | |y| = u(x, t, T ),−ρ
√

2(T − t) ≤ x ≤ ρ
√

2(T − t)},

0 ≤ t < T . Remark 5.3.4 shows that for every 0 < t < Tγ,

Γ(0; t) ∩ E(0) = ∅.

By comparison principle, we can easily show that

Γ(s; t) ∩ E(s) = ∅, 0 ≤ s ≤ t.

(Noting that Γ(s, t) is a hypersurface with boundary, we must consider the compar-

ison principle in interior and boundary separately. By comparison principle, ∂E(s)

can not touch Γ(s, t) interior. At the boundary, gradient of u(x, s, t) is infinity. The-

orem 2.3.4 and 2.3.7 implies that ∂E(s) can not touch Γ(s, t) at the boundary. The

details are left to the reader) Especially,

{O} ∩ E(t) = Γ(t; t) ∩ E(t) = ∅.

Therefore for every 0 < t < Tγ, there holds O ∈ E(t)c.

Here we show that E(t) is separated into two connected components, for 0 <

t < Tγ. Let E+(t) (E−(t)) and U+(t) (U−(t)) be the outer evolution and inner

evolution of V = −κ + A with E+(0) = U ∩ {x ≥ 0} (E−(0) = U ∩ {x ≤ 0}) and

U+(0) = U ∩ {x ≥ 0} (U−(0) = U ∩ {x ≤ 0}), respectively.

Since U ∩ {x ≥ 0} and U ∩ {x ≤ 0} are α-domains and E+(t)∩E−(t) = ∅, using
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Theorem 6.0.3, we obtain

∂E+(t) = ∂U+(t), ∂E−(t) = ∂U−(t), 0 < t < Tγ.

Therefore

∂E(t) = ∂E+(t) ∪ ∂E−(t) = ∂U+(t) ∪ ∂U−(t) = ∂U(t), 0 < t < Tγ.

Here we complete the proof.

Corollary 5.3.5. Let u0 be a function as in Section 5.1 and let γ be the constant

in (5.1.2). For n ≥ 2 and 0 ≤ γ < αn, there is no solution of the following free

boundary problem,

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x, −b(t) < x < b(t), 0 < t < T1, (5.1.3)

u(b(t), t) = u(−b(t), t) = 0, ux(−b(t), t) = −ux(b(t), t) =∞, 0 < t < T1, (5.1.4)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0, (5.1.5)

u(x, t) > 0, −b(t) < x < b(t), 0 < t < T1. (5.1.6)

Proof. Assume that there exists the solution (u, b) of the free boundary problem.

We can use the approximate argument similarly as in Lemma 5.2.3 to prove that the

outer evolution E(t) is written as follows

E(t) = {(x, y) | Rn+1 | |y| ≤ u(x, t),−b(t) ≤ x ≤ b(t)}.

This contradicts that E(t) is separated into two connected components.
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5.4 Singular angle γ < π/2 with n = 1

In this section, we give the proof of Theorem 5.1.3.

Proposition 5.4.1. (Connected Outer evolution) Let u0 be a function as in Section

1. In the plane, there is T1 > 0 such that (u, b) is a unique solution of the following

free boundary problem,

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, −b(t) < x < b(t), 0 < t < T1, (5.1.3*)

u(b(t), t) = u(−b(t), t) = 0, ux(−b(t), t) = −ux(b(t), t) =∞, 0 < t < T1, (5.1.4)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0, (5.1.5)

u(x, t) > 0, −b(t) < x < b(t), 0 < t < T1. (5.1.6)

Moreover, the outer evolution

E(t) = {(x, y) ∈ R2 | |y| ≤ u(x, t),−b(t) ≤ x ≤ b(t)}, 0 < t < T1.

Proof. Using the approximate argument as in Lemma 3.2.5, we can prove that there

exists T1 > 0 such that E(t)◦ is At-domain, 0 < t < T1. Moreover,

E(t) = {(x, y) ∈ R2 | |y| ≤ u(x, t),−b(t) ≤ x ≤ b(t)}, 0 ≤ t < T1.

Here (u, b) is the unique solution of (5.1.3*), (5.1.4), (5.1.5), (5.1.6). For the precise

proof, we can see [5] similarly. Here we omit the details.

Remark 5.4.2. Indeed, it is determined by the existence of the solution (u, b) of

(5.1.3*), (5.1.4), (5.1.5), (5.1.6) whether the outer evolution is connected or sepa-

rated.
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Under the condition n = 1, saying roughly, if u satisfies

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, (5.1.3*)

and u(x, 0) = u0(x) ≥ 0, by comparison principle, u(x, t) > 0, t > 0. This means

that the problem always has a “positive” solution in the plane. This can be explained

precisely by Lemma 2.3.9

However, under the conditon n ≥ 2, the equation

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x (5.1.3)

has the “contraction power −n−1
u

”. We can not ensure that the problem has a

“positive” solution with u(x, 0) = u0(x) ≥ 0. Lemma 5.2.6 shows that if γ = π/2,

this problem has a unique “positive” solution.

Proposition 5.4.3. (Separated inner evolution) Suppose 0 ≤ γ < π/2. Let (u, a, b)

be the solution of the following problem

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, a(t) < x < b(t), 0 < t < T1, (5.1.3**)

u(b(t), t) = u(a(t), t) = 0, ux(a(t), t) = −ux(b(t), t) =∞, 0 < t < T1, (5.1.4*)

u(x, 0) = u0(x), 0 ≤ x ≤ b0, (5.1.5*)

u(x, t) > 0, a(t) < x < b(t), 0 < t < T1. (5.1.6*)

Then there exists δ > 0 such that a(t) > 0, 0 < t < δ. Moreover, the inner evolution

U(t) can be written as follows,

U(t) = U+(t) ∪ U−(t), 0 < t < δ,
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where U+(t) = {(x, y) ∈ R2 | |y| < u(x, t), a(t) ≤ x ≤ b(t)} and U−(t) = {(−x, y) |
(x, y) ∈ U+(t)}.

Proof. We claim that there exists δ > 0 such that a(t) > 0 for 0 < t < δ. If the claim

holds, U+(t) ∩ U−(t) = ∅, 0 < t < δ. Using Lemma 2.1.9, U(t) = U+(t) ∩ U−(t),

0 < t < δ.

We give the sketch of the proof of the claim.

Let γ < γ1 < π/2. Define a family of circles

vλ(y) = λC −
√

(λC cos(π/2− γ1))2 − y2.

It is easy to find that the envelop of {vλ}λ>0 is |y| = tan γ1x.

Let {(x, y) | x = v0(y),−δ0 < y < δ0} be the left cap of ∂U ∩ {x ≥ 0}.
By the choice of γ1, if necessary, choose δ0 smaller such that

v0(y) ≤ tan(π/2− γ1)|y|, −δ0 < y < δ0.

Consider the following inverse equation

vt =
vyy

1 + v2
y

− A
√

1 + v2
y, −δ0 < y < δ0,

with v(y, 0) = tan(π/2−γ1)|y|. Since the initial function is not smooth, we modify it

by the family {vλ}λ>0 near the origin. Let vλ(y, t) be the solution with the modified

initial data. We calculate

∂

∂t
vλ(0, 0) =

1

λC cos(π/2− γ1)
− A→∞,

as λ→ 0. Therefore, there exists constant C > 0 such that vλ(0, t) > Ct, for t small.
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It is easy to see vλ(0, t)→ a(t), for every t small. Then

a(t) > Ct, 0 < t < δ,

for some δ. Here we complete the proof.

Proof of Theorem 5.1.3. This result is an easy consequence of Proposition 5.4.1 and

Proposition 5.4.3.
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Appendix

In this section, we want to prove that there exists unique smooth family of smooth

hypersurfaces Γ(t) satisfying

V = −κ+ A, on Γ(t) ⊂ Rn+1, (1.1.1)

where Γ(0) = ∂U and U is an α-domain.

Seeing ∂U is not necessary smooth, we also use the level set method and prove

the interface evolution is not fattening.

We choose smooth vector field X : Rn+1 → Rn+1 such that

(i) At any point P ∈ ∂U not on the x-axis has 〈X(P ),n(P )〉 > 0, n is inward unit

normal vector at P .

(ii) Near the two end points of ∂U , X is constant vector withX ≡ ±e0 = (±1, 0, · · · , 0).

Since X 6= 0 on the compact ∂U , there is an open neighbourhood V ⊃ ∂U on

which |X| ≥ δ > 0 for some δ > 0.

Proposition 6.0.1. For small enough ρ > 0 there exists a smooth hypersurface

Σ ⊂ V with

(i) X(P ) /∈ TPΣ at all P ∈ Σ, i.e., Σ is transverse to the vector field X.
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x

U

X

Figure 6.1: Vector field X

(ii) Σ = ∂U in {(x, y) ∈ R× Rn | |y| ≥ 2ρ}.
(iii) Σ∩{(x, y) ∈ R×Rn | |y| ≤ ρ} consists of two flat disks ∆a = {(a, y) ∈ R×Rn |
|y| ≤ ρ} and ∆b = {(b, y) ∈ R× Rn | |y| ≤ ρ} for some a < b.

Seeing Figure 6.2, this proposition can be proved as in Proposition 3.2.1.

Let φt : Rn+1 → Rn+1(t ∈ R), t ∈ (−δ, δ) be the flow generated by vector field X

on Rn+1 determined by 
dφt(P )

dt
= X(φt), P ∈ Σ,

φ0(P ) = P, P ∈ Σ.

We denote σ(P, s) := φs(P ). Suppose Γ(t) ⊂ V (0 < t < T ) are smooth hypersur-

faces with σ−1(Γ(t)) being the graph u(·, t) for u : Σ× [0, T )→ R. Let z1, z2, · · · , zn
be local coordinates on an open subset of Σ. If Γ(t) evolving by V = −κ + A, then

in these coordinates u satisfies the following parabolic equation

∂u

∂t
= aij(z, u,∇zu)∇2

zizj
u+ b(z, u,∇zu). (3.2.1)
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x

U

Figure 6.2: Proof of Proposition 6.0.1

For example, on ∆a, by calculation, σ(y1, , y2, · · · , yn, s) = (a− s, y1, y2, · · · , yn).

Then u satisfies the ”−” condition of (2.2.1).

Proposition 6.0.2. For n ≥ 1, let Γ1(t), Γ2(t)(0 ≤ t < T ) be two families of

hypersurfaces and σ−1(Γj(t)) be the graph of uj(·, t) for certain uj ∈ C(Σ × [0, T )).

Assume that the uj are smooth on Σ × (0, T ) as well as on Σ \ (∆a ∪ ∆b) × [0, T ).

Then if the Γj(t) evolve by V = −κ + A and if Γ1(0) = Γ2(0), then there holds

Γ1(t) = Γ2(t) for 0 < t < T .

The proof is similar as in Proposition 3.2.4. Here we omit it.

Theorem 6.0.3. If U is an α-domain with smooth boundary, let D(t) and E(t) be

the open and closed evolutions of V = −κ+ A with D(0) = U and E(0) = U . Then

there exists T > 0 such that ∂D(t) and ∂E(t) are smooth hypersurfaces for 0 < t ≤ T

and ∂D(t) = ∂E(t). Moreover, denoting Σ(t) = ∂D(t) = ∂E(t), Σ(t) can be written

into Σ(t) = {(x, y) ∈ R × Rn | |y| = u(x, t), a(t) ≤ x ≤ b(t)} and (u, a, b) is the
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Figure 6.3: The transportation from Σ to Γ

solution of the following problem

ut =
uxx

1 + u2
x

− n− 1

u
+ A

√
1 + u2

x, x ∈ (a(t), b(t)), 0 < t < T,

u(a(t), t) = 0, u(b(t), t) = 0, 0 ≤ t < T,

ux(a(t), t) =∞, ux(b(t), t) = −∞, 0 ≤ t < T,

u(x, t) > 0, x ∈ (a(t), b(t)), 0 < t < T.

(**)

Proof. We only give the sketch of the proof. By approximate argument, ∂D(t) and

∂E(t) are smooth hypersurfaces and can be represented by σ(P, uj(P )), for some uj,

j = 1, 2. Then we can use Proposition 6.0.2 to prove ∂D(t) = ∂E(t). Therefore

Γ(t) = ∂E(t) can be represented by Γ(t) = {(x, y) ∈ R × Rn | |y| = u(x, t), a(t) ≤
x ≤ b(t)}. Using Theorem 2.1.10, (u, a, b) is the solution of (**).
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