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Periods of tropical K3 hypersurfaces

Yuto Yamamoto

Abstract

Let ∆ be a smooth reflexive polytope in dimension 3 and f be a tropical polynomial
whose Newton polytope is the polar dual of ∆. One can construct a 2-sphere B equipped
with an integral affine structure with singularities by contracting the tropical K3 hyper-
surface defined by f . We write the complement of the singularity as ι : B0 ↪→ B, and the
local system of integral tangent vectors on B0 as TZ. Let further Y be an anti-canonical
hypersurface of the toric variety associated with the normal fan of ∆, and Pic(Y )amb be
the sublattice of Pic(Y ) coming from the ambient space. We give a primitive lattice em-
bedding Pic(Y )amb ↪→ H1(B, ι∗TZ), and compute the radiance obstruction of B, which
sits in the subspace generated by the image of Pic(Y )amb.

1 Introduction

Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We set
MR := M ⊗Z R and NR := N ⊗Z R = Hom(M,R). Let ∆ ⊂ MR be a smooth reflexive
polytope of dimension 3, and ∆̌ ⊂ NR be the polar polytope of ∆. Let further Σ and Σ̌ be
the normal fans to ∆ and ∆̌ respectively. We choose a refinement Σ̌′ ⊂MR of Σ̌ such that the
primitive generator of any 1-dimensional cone in Σ̌′ is contained in ∆ ∩M .

Let A ⊂ N denote the subset consisting of all vertices of ∆̌ and 0 ∈ N . We consider a
tropical Laurent polynomial

f(x) = max
n∈A

{a(n) + n1x1 + n2x2 + n3x3} , (1.1)

such that the function

A→ R, n 7→ a(n) (1.2)

induces a central subdivision of ∆̌, i.e., every maximal dimensional simplex of the subdivision
has the origin 0 ∈ N as its vertex. Let V (f) be the tropical hypersurface defined by f in the
tropical toric variety associated with Σ̌′. See Section 3.1 for the definition of tropical toric
varieties.

We can construct a 2-sphere B equipped with an integral affine structure with singularities
by contracting V (f). See Section 4 for details about the construction. The same construction
has already been performed in Gross–Siebert program [Gro05], [GS06]. There is also another
construction by Haase and Zharkov, which was discovered independently [HZ02]. It is also
known that maximally degenerating families of complex K3 surfaces with Ricci-flat Kähler
metrics converge to 2-spheres with integral affine structures with singularities in the Gromov–
Hausdorff limit [GW00].
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In this paper, we compute the radiance obstruction of B. Radiance obstructions are
invariants of integral affine manifolds, which were introduced in [GH84]. See Section 2 for its
definition. Let ι : B0 ↪→ B denote the complement of singularities of B. Let further TZ be the
local system on B0 of integral tangent vectors. The cohomology group H1(B, ι∗TZ) has the
cup product

∪ : H1(B, ι∗TZ)⊗H1(B, ι∗TZ) → H2(B, ι∗ ∧2 TZ) ∼= Z (1.3)

induced by the wedge product. Let Y be an anti-canonical hypersurface of the complex toric
variety XΣ associated with Σ, and

Pic(Y )amb := Im (Pic(XΣ) ↪→ Pic(Y )) (1.4)

be the sublattice of Pic(Y ) coming from the Picard group of the ambient space. We show the
followings in this paper:

Theorem 1.1. There is a primitive embedding

ψ : Pic(Y )amb ↪→ H1(B, ι∗TZ), (1.5)

that preserves the pairing.

Each element n of A \ {0} is the primitive generator of the 1-dimensional cone ρn of Σ.
We write the restriction to Y of the toric divisor on XΣ corresponding to ρn as Dn.

Theorem 1.2. The radiance obstruction cB of B is given by

cB =
∑

n∈A\{0}

{a(n)− a(0)}ψ(Dn). (1.6)

It is known that the valuation of the j-invariant of an elliptic curve over a non-archimedean
valuation field coincides with the cycle length of the tropical elliptic curve obtained by tropi-
calization [KMM08], [KMM09]. Theorem 1.1 and Theorem 1.2 are a generalization of this to
the case of K3 hypersurfaces.

The definition of periods for general tropical curves was given in [MZ08]. It was also
shown in [Iwa10] that the leading term of the period map of a degenerating family of Riemann
surfaces is given by the period of the tropical curve obtained by tropicalization.

The period map is approximated by Schmid’s nilpotent orbit [Sch73] in the limit to the
degeneration point. The leading term of the nilpotent orbit is determined by the monodromy
around the degeneration point. It was also shown in [GS10] that the wedge product of the
radiance obstruction corresponds to the monodromy operator around the degeneration point
in the case of Calabi–Yau varieties. Hence, we can see that the radiance obstruction gives the
leading term of the period map of the corresponding family of Calabi–Yau varieties.

The organization of this paper is as follows: In Section 2, we recall the definitions of inte-
gral affine manifolds and their radiance obstructions. We also recall the definition of integral
affine manifolds with singularities and we define their radiance obstructions. In Section 3, we
recall some notions of tropical geometry, such as tropical toric varieties and tropical modifica-
tions. In Section 4, we explain the details about how to construct integral affine spheres with
singularities from tropical K3 hypersurfaces. In Section 5, we discuss how dispersing singular
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points piling at one point affects the cohomology group H1(B, ι∗TZ) and the radiance obstruc-
tion cB. The results in Section 5 will be used for proofs of the main theorems. In Section 6,
we give proofs of Theorem 1.1 and Theorem 1.2. In Section 7, we discuss the relation with
asymptotic behaviors of period maps of complex K3 hypersurfaces.

Acknowledgment: I am most grateful to my advisor Kazushi Ueda for his encouragement
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K3 hypersurfaces was suggested by him. Most parts of this work was done during a visit to
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to Mark Gross for letting me know the work by Haase and Zharkov [HZ02]. This research
was supported by Grant-in-Aid for JSPS Research Fellow (18J11281) and the Program for
Leading Graduate Schools, MEXT, Japan.

2 Integral affine structures with singularities

Let M be a free Z-module of rank n and N := HomZ(M,Z) be the dual lattice of M . We set
MR :=M ⊗Z R, NR := N ⊗Z R = HomZ(M,R), and Aff(MR) :=MR ⋊GL(M).

Definition 2.1. An integral affine manifold is a real topological manifold B with an atlas of
coordinate charts ψi : Ui → MR such that all transition functions ψi ◦ ψ−1

j are contained in
Aff(MR).

Let B be an integral affine manifold. We give an affine bundle structure to the tangent
bundle TB of B as follows: For each Ui and x ∈ Ui, we set an affine isomorphism

θi,x : TxB →MR, v 7→ ψi(x) + dψi(x)v, (2.1)

and define an affine trivializations by

θi : TUi → Ui ×MR, (x, v) 7→ (x, θi,x(v)), (2.2)

where v ∈ TxB. This gives an affine bundle structure to TB. We write TB with this affine
bundle structure as T affB.

Let TZ be the local system on B of integral tangent vectors. We set T := TZ ⊗Z R.

Definition 2.2. We choose a sufficiently fine open covering U := {Ui}i of B so that there is a
flat section si ∈ Γ(Ui, T

affB) for each Ui. When we set cB((Ui, Uj)) := sj−si for each 1-simplex
(Ui, Uj) of U , the element cB becomes a Čech 1-cocycle for T . We call cB ∈ H1(B, T ) the
radiance obstruction of B.

Definition 2.3. An integral affine manifold with singularities is a topological manifold B
with an integral affine structure on B0 := B \ Γ, where Γ ⊂ B is a locally finite union of
locally closed submanifolds of codimension greater than 2. We call Γ the singular locus of B.
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We assume that integral affine manifolds with singularities satisfy the following condition.
This was mentioned in [KS06, Section 3.1] as the fixed point property.

Condition 2.4. For any x ∈ Γ, there is a small neighborhood U such that the monodromy
representation π1(U \ Γ) → Aff(MR) has a fixed vector.

Let B be an integral affine manifold with singularities satisfying the above condition. We
write the complement of the singular locus as ι : B0 ↪→ B. Let further TZ be the local system
on B0 of integral tangent vectors. We set T := TZ ⊗Z R again.

Definition 2.5. We choose a sufficiently fine covering {Ui}i of B so that there is a flat section
si ∈ Γ(Ui∩B0, T

affB0) for each Ui. This is possible as long as we assume Condition 2.4. When
we set cB((Ui, Uj)) := sj − si, the element cB becomes a Čech 1-cocycle for ι∗T . We call
cB ∈ H1(B, ι∗T ) the radiance obstruction of B.

Remark 2.6. The inclusion ι : B0 ↪→ B induces a map ι∗ : H1(B, ι∗T ) ↪→ H1(B0, T ). Then
we can see ι∗ (cB) = cB0 from the definitions.

3 Tropical geometry

3.1 Tropical toric varieties and hypersurfaces

Let (T,+, ·) be the tropical semifield, where T := R ∪ {−∞} and

a+ b := max {a, b} , (3.1)

a · b := a+ b. (3.2)

Here the addition + in the right hand side of (3.2) means the usual addition. In the following
of this section, all additions + and multiplications · mean max and + respectively unless
otherwise mentioned.

Let M be a free Z-module of rank n and N := HomZ(M,Z) be the dual lattice of M . We
setMR :=M⊗ZR and NR := N⊗ZR = HomZ(M,R). We have a canonical R-bilinear pairing

⟨−,−⟩ : MR ×NR → R. (3.3)

For each cone σ ∈ F , we set

σ∨ := {m ∈MR | ⟨m,n⟩ ≥ 0 for all n ∈ σ} , (3.4)

σ⊥ := {m ∈MR | ⟨m,n⟩ = 0 for all n ∈ σ} . (3.5)

Let Σ be a fan in NR. We define the toric varietyXΣ(T) associated with Σ over T as follows:
For each cone σ ∈ Σ, we define Xσ as the set of monoid homomorphisms σ∨ ∩M → (T, ·)

Xσ(T) := Hom(σ∨ ∩M,T) (3.6)

with the compact open topology. For cones σ, τ ∈ Σ such that σ ≺ τ , we have a natural
immersion,

Xσ(T) → Xτ (T), (v : σ∨ ∩M → T) 7→ (τ∨ ∩M ⊂ σ∨ ∩M v−→ T), (3.7)

4



where σ ≺ τ means that σ is a face of τ . By gluing {Xσ(T)}σ∈Σ together, we obtain the
tropical toric variety XΣ(T) associated with Σ,

XΣ(T) :=

(⨿
σ∈Σ

Xσ(T)

)/
∼ . (3.8)

We also define the torus orbit Oσ corresponding to σ by

Oσ(T) := Hom(σ⊥ ∩M,R). (3.9)

There is a projection map to the torus orbit

pσ : Xσ(T) → Oσ(T), (w : σ∨ ∩M → T) 7→ (σ⊥ ∩M ⊂ σ∨ ∩M w−→ T). (3.10)

See [Pay09] or [Kaj08] for more details about tropical toric varieties.
Consider a tropical Laurent polynomial

f =
∑
m∈A

amx
m, (3.11)

where A ⊂ M be a finite subset and am ∈ T. It gives rise to a piecewise linear function
f : NR → T. The bend locus V (f) ⊂ NR of f is called the tropical hypersurface defined by
f . The tropical hypersurface defined by f in the tropical toric variety XΣ(T) is the closure of
V (f) in XΣ(T). Note that the tropical toric variety XΣ(T) contains the maximal dimensional
torus orbit O{0}(T) ∼= NR as its open dense subset.

3.2 Tropical modifications

Tropical modifications are first introduced in [Mik06]. We briefly recall the idea of it. Let
(T,⊕,⊙) be the tropical hyperfield, where T := R ∪ {−∞} and

a⊕ b :=

{
max {a, b} , a ̸= b,
{t ∈ T | t ≤ a} , a = b,

(3.12)

a⊙ b := a+ b. (3.13)

The addition + in the right hand side of (3.13) means the usual addition.
Let A ⊂ Zn be a finite subset. We consider a tropical polynomial

f(x) =
⊕
n∈A

an ⊙ xn, (3.14)

which is a multi-valued function on Tn defined by

f(x) :=

{ ∑
n∈A anx

n = an0x
n0 , when ∃n0 ∈ A s.t. an0x

n0 > anx
n (∀n ̸= n0),{

t ∈ T
∣∣ t ≤∑n∈A anx

n
}
, otherwise.

(3.15)

We consider the graph Γf ⊂ Tn+1 of the function f

Γf :=
{
(x, y) ∈ Tn+1

∣∣ y ∈ f(x)
}
. (3.16)

This coincides with the bend locus of

f ′(x, y) := y +
∑
n∈A

anx
n (3.17)

in Tn+1 and has a natural balanced polyhedral structure. Let δf : Γf → Tn be the projection
forgetting the last component.
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Definition 3.1. We call the balanced polyhedral complex Γf the tropical modification of Tn

with respect to f . We also call the map δf : Γf → Tn the contraction with respect to f .

The graph of
∑

n∈A anx
n is isomorphic to Tn as sets. Hence, we can think that associating

Γf with Tn corresponds to replacing + and · of
∑

n∈A anx
n with ⊕ and ⊙ respectively.

We can also define tropical modifications of general tropical varieties in affine spaces.
We define tropical modifications of tropical manifolds that are not necessarily embedded in
ambient spaces as maps between tropical manifolds which locally coincide with a tropical mod-
ification of an affine tropical variety. For a tropical manifold X, we regard a tropical manifold
X ′ which relates to X by tropical modifications as a tropical manifold that is equivalent to
X. We refer the reader to [Sha15] or [Kal15] for details.

4 Contractions of tropical hypersurfaces

In this section, all additions + and multiplications · mean max and + respectively unless
otherwise mentioned. We also let M,N denote a free Z-module of rank 3 and its dual lattice
respectively.

4.1 A local model of contractions

We fix basis vectors e1, e2, e3 of N . Consider the cone σk generated by ke1 + e2, e2 ∈ N in NR,
where k is some positive integer. Then the dual cone σ∨

k is generated by e∗1,−e∗1 + ke∗2,±e∗3
and we have

Xσk
(T) :=Hom(σ∨

k ∩M,T) (4.1)

=
{
(x, y, z, w) ∈ T3 × R

∣∣ xy = zk
}
. (4.2)

We define the space Xk,l by

Xk,l :=
{
(x, y, z, w) ∈ Xσk

(T)
∣∣ z = 0 + wl

}
, (4.3)

where l is also some positive integer. This space consists of two 2-dimensional faces

F+ :=
{
(x, y, z, w) ∈ T3 × R

∣∣ xy = wkl, z = wl, w > 0
}
, (4.4)

F− :=
{
(x, y, z, w) ∈ T3 × R

∣∣ xy = z = 0 > w
}
, (4.5)

and a 1-dimensional face

L :=
{
(x, y, z, w) ∈ T3 × R

∣∣ xy = z = w = 0
}
. (4.6)

Each of these faces has an integral affine structure induced from the ambient space T3 × R.
We extend them and construct an integral affine structure with a singular point on Xk,l as
follows:

First, we choose a point p = (x0, y0, 0, 0) ∈ L. We set

Ux := Xk,l \ {(x, y, z, w) ∈ L | x ≥ x0} , (4.7)

Uy := Xk,l \ {(x, y, z, w) ∈ L | x ≤ x0} . (4.8)
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These give a covering of Xk,l \ {p}. Consider projections

px : Ux → R2, (x, y, z, w) 7→ (x,w), (4.9)

py : Uy → R2, (x, y, z, w) 7→ (y, w). (4.10)

The restrictions of px and py to F± are integral affine isomorphisms onto their images. Hence,
we can extend the integral affine structures on F± to Ux and Uy so that projections px and py
are integral affine isomorphisms onto their images. Here we have Ux ∩ Uy = F+ ∪ F− and the
integral affine structures on Ux and Uy coincide on F+ and F− with each other. Hence, we can
extend the integral affine structures on Ux and Uy to an integral affine structure on Xk,l \ {p}.
We can easily calculate the monodromy of the integral affine structure around p.

Lemma 4.1. Consider a loop around the point p, which starts from a point in Ux, passes
through F−, Uy, and F+ in this order, and comes back to the original point. The monodromy
along this loop is given by the matrix (

1 kl
0 1

)
, (4.11)

under the basis ex, ew corresponding to the coordinate (x,w) of Ux.

Proof. A point (x,w) = (x0, w0) of Ux is shown as (x, y, z, w) = (x0, x
−1
0 , 0, w0) in F−. If we see

this in Uy, we have (y, w) = (x−1
0 , w0). This is shown as (x, y, z, w) = (x0w

kl, x−1
0 , wl

0, w0) in F+.
If we see this in Ux again, we get (x,w) = (x0w

kl
0 , w0). Hence, the monodromy transformation

is given by ex 7→ ex, ew 7→ (kl)ex + ew.

Remark 4.2. In the above construction of Xk,l, there is an ambiguity in the choice of the
position of p ∈ L.

Remark 4.3. When k = l = 1, the point p becomes a so-called focus-focus singularity. When
k, l are not necessarily 1, the point p can be regarded as a concentration of kl focus-focus
singularities. The invariant subspace with respect to the monodromy around p is generated
by ex. It coincides with the tangent space of L.

Remark 4.4. When k = l = 1, we have

X1,1
∼=
{
(x, y, w) ∈ T2 × R

∣∣ xy = 0 + w
}
, (x, y, z, w) 7→ (x, y, w). (4.12)

In [KS06, Section 8], a non-archimedean torus fibration corresponding to a surface containing
a focus-focus singularity is constructed by using the algebraic surface defined by (αβ−1)γ = 1.
Here, the subtraction and multiplication mean the usual ones. When we set α = x, β = y, γ =
w−1, the tropicalizaion of it coincides with xy = 0 + w, the equation defining X1,1.

Consider replacing the right hand side 0 + wl of the equation of (4.3) with 0 ⊕ wl. Then
the solution of the equation z = 0⊕ wl in Xσk

(T) is the union of Xk,l and the additional face

F0 :=
{
(x, y, z, w) ∈ T3 × R

∣∣ xy = zk, z < 0, w = 0
}
. (4.13)

This coincides with the tropical hypersurface V (f) defined by f = 0 + z + wl in Xσk
(T). We

can think that the surface Xk,l is obtained by contracting the tropical hypersurfaces V (f) to
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x-direction and y-direction at the same time. We choose a point p = (x0, y0, 0, 0) ∈ L and
define a contraction map δf,p : V (f) → Xk,l by

(x, y, z, w) 7→


(x, y, z, w) (x, y, z, w) ∈ Xk,l

(x, x−1, 0, 0) x ≥ x0
(y−1, y, 0, 0) y ≥ y0
p = (x0, y0, 0, 0) otherwise.

(4.14)

The face F0 is contracted to the line L by this map. The tropical hypersurface V (f) and the
contraction δf,p are shown in Figure 4.1.

Figure 4.1: The tropical hypersurface V (f) and the contraction of the face F0

Associating V (f) with Xk,l is similar to tropical modifications which we recalled in Sec-
tion 3.2 in the sense that we replace operations + contained in a function with hyperoperations
⊕. In this article, we call associating the tropical hypersurface V (f) with Xk,l a tropical mod-
ification with respect to 0 + wl, and the map δf,p : V (f) → Xk,l the contraction with respect
to 0 + wl.

4.2 Contractions of tropical toric K3 hypersurfaces

Let ∆ ⊂ MR := M ⊗Z R be a reflexive polytope of dimension 3, which is not necessarily
smooth. We write the polar polytope of ∆ as ∆̌ ⊂ NR := N ⊗Z R, and the normal fans of
∆, ∆̌ as Σ ⊂ NR, Σ̌ ⊂ MR respectively. We choose a refinement Σ̌′ ⊂ MR of Σ̌ such that the
primitive generator of any 1-dimensional cone in Σ̌′ is contained in ∆ ∩M . This gives rise to
a crepant resolution of the toric variety associated with Σ̌.

Let A ⊂ N denote the subset consisting of all vertices of ∆̌ and 0 ∈ N . We consider a
tropical Laurent polynomial

f(x) =
∑
n∈A

a(n)xn, (4.15)

such that the function

A→ R, n 7→ a(n) (4.16)

induces a central subdivision of ∆̌. We consider the tropical hypersurface V (f) defined by f
in the tropical toric variety XΣ̌′(T).
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The tropical hypersurface V (f) intersects with the toric boundary ofXΣ̌′(T) as follows: Let
ρ ∈ Σ̌′ be a 1-dimensional cone, and Fρ be the face of ∆ which contains the primitive generator
of ρ in its interior. Recall that there is a one-to-one correspondence between k-dimensional
faces of ∆ and (2− k)-dimensional faces of ∆̌, given by

F ↔ F ∗ :=
{
n ∈ ∆̌

∣∣ ⟨m,n⟩ = −1,∀m ∈ F
}
. (4.17)

On the torus orbit Oρ(T) ⊂ XΣ̌′(T), the tropical hypersurface V (f) is defined by∑
n∈A∩F ∗

ρ

a(n)xn. (4.18)

The tropical hypersurface V (f) intersects with the torus orbit Oρ(T) if and only if the number
of elements of A∩ F ∗

ρ is greater than or equal to 2. This happens exactly when Fρ is a vertex

or an edge. Let σ ∈ Σ̌′ be a cone of dimension greater than 1, and {ρi}li=0 ⊂ Σ̌′ be the set of
1-dimensional faces of σ. On the torus orbit Oσ(T) ⊂ XΣ̌′(T), the tropical hypersurface V (f)
is defined by ∑

n∈
∩l

i=0 A∩F ∗
ρi

a(n)xn. (4.19)

The tropical hypersurface V (f) intersects with the torus orbit Oσ(T) if and only if the number
of elements of

∩l
i=0A∩F ∗

ρi
is greater than or equal to 2. This happens when the dimension of

σ is 2 and the primitive generators of its 1-dimensional faces ρ1, ρ2 are contained in a common
edge of ∆.

We write the union of cells of V (f) that do not intersect with the toric boundary as B.
This is topologically a 2-sphere. In the following, we contract the tropical hypersurface V (f)
to the 2-sphere B, and equip B with an integral affine structure with singularities.

First, we choose positions of singular points. Let P be the natural polyhedral structure of
B. For each cell τ ∈ P , we set

Aτ := {n ∈ A \ {0} | f(x) = a(0) = a(n)xn,∀x ∈ τ} . (4.20)

There is a one-to-one correspondence between P and proper faces of ∆ given by τ ↔ F (τ),
where

F (τ) := {m ∈ ∆ | ⟨m,n⟩ = −1,∀n ∈ Aτ} . (4.21)

Let τ ∈ P be a 1-dimensional cell and v0, v1 ∈ P be its endpoints. Let further {ρi}li=0 be the
set of 1-dimensional cones in Σ̌′ whose primitive generators are contained in F (τ). We write
the primitive generator of ρi as mi ∈M . We renumber ρi (0 ≤ i ≤ l) so that m0 = F (v0) and
ml = F (v1), and mi is nearer to m0 than mi+1 for any 1 ≤ i ≤ l − 1. We choose l distinct
points p(τ)i (1 ≤ i ≤ l) on the interior of τ so that the point p(τ)i is nearer to the vertex v0
than p(τ)i+1 for any 1 ≤ i ≤ l − 1. These points will be singular points of the integral affine
structure of B. For each 1-dimensional cell τ ∈ P , we choose points p(τ)i in this way and fix
them.

For each point p(τ)i, we take an open neighborhood Up(τ)i of it. We also take an open
neighborhood Uv for each vertex v of B. Here, we take these open sets so that they do not
contain any other singular points or any other vertices of B, and all of these open sets Up(τ)i , Uv

and interiors of all facets of B form a covering of B. We contract the tropical hypersurface
V (f) to B as follows:
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• Around Uv

Let ρ ∈ Σ̌′ be the cone whose primitive generator is F (v), and Xρ(T) ⊂ XΣ̌′(T) be the
tropical affine toric variety corresponding to ρ. Let further V (f)v be the star of v in
V (f). We consider the projection

pρ : Xρ(T) → Oρ(T), (w : ρ∨ ∩M → T) 7→ (ρ⊥ ∩M ⊂ ρ∨ ∩M w−→ T). (4.22)

We set Ũv := p−1
ρ (pρ(Uv)) ∩ V (f)v and defined the map δv : Ũv

pρ−→ Uv as

δv : Ũv
pρ−→ pρ(Uv) ∼= Uv, (4.23)

where pρ(Uv) ∼= Uv is the inverse map of the bijection pρ : Uv → pρ(Uv). We equip Uv

with the integral affine structure induced by the integral affine structure of pρ(Uv) ⊂
Oρ(T) ∼= R2. The dominant part of f at v is given by

a(0) +
∑

n∈A∩F ∗
ρ

a(n)xn. (4.24)

By taking an appropriate coordinate, the function (4.24) can be rewritten as a function
of the form y + fv, where fv is a function on Oρ(T). The map δv coincides with a
restriction of the contraction of the hypersurface defined by y + fv with respect to the
function fv, which we considered in Section 3.2.

• Around Up(τ)i

We write the 2-dimensional cone whose 1-dimensional faces are ρi−1 and ρi as σi ∈ Σ̌′

(1 ≤ i ≤ l). Let V (f)τ be the intersection of the star of τ in V (f) and the subvariety
Xσi

(T) ⊂ XΣ̌′(T). The tropical toric varietyXσi
(T) coincides withXσki

(T) of Section 4.1,
where ki is the integral distance between the primitive generators mi−1,mi of ρi−1, ρi.
On the other hand, the dominant part of f at τ is given by

a(0) +
∑
n∈Aτ

a(n)xn. (4.25)

The set Aτ coincides with F (τ)∗ ∩ N , and consists of two vertices of ∆̌. By taking an
appropriate coordinate, the function (4.25) can be rewritten as a function fτ of the form
0 + z + wl, where l is the integral distance between the elements of Aτ . Let V (fτ ) be
the tropical hypersurface defined by fτ in Xσki

(T). We can embed V (f)τ into V (fτ ).
The open set Up(τ)i ⊂ V (f)τ is embedded into Xki,l by the embedding. We define

Ũp(τ)i ⊂ V (f)τ as the inverse image of Up(τ)i by the map

V (f)τ ⊂ V (fτ )
δfτ ,p(τ)i−−−−→ Xki,l ⊃ Up(τ)i , (4.26)

where δfτ ,p(τ)i is the contraction map of (4.14). We also define δp(τ)i : Ũp(τ)i → Up(τ)i

as the restriction of (4.26) to Ũp(τ)i . We equip Up(τ)i with the integral affine structure
induced from the integral affine structure of Xki,l ⊃ Up(τ)i .

• Around facets

We consider the identity map from the interior of each facet of B to itself. The interior of
each facet has an integral affine structure induced from the ambient space O{0}(T) ∼= R3.
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The open sets Ũv, Ũp(τ)i and interiors of all facets of B form a covering of V (f). The above
maps δv, δp(τ)i and identity maps of interiors of facets coincides with each other on overlaps,
since δv, δp(τ)i are constructed by using the projections to the same direction on the overlap,
and these maps is identical on facets of B. By gluing these maps together, we obtain a
contraction map δ : V (f) → B and an integral affine surface B with singular points on each
edge. We regard B as a tropical K3 surface equivalent to the tropical K3 hypersurface V (f).

Remark 4.5. There is an ambiguity in the choice of the position of each singular point p(τ)i.
However, neither the cohomology group H1(B, ι∗TZ) nor the radiance obstruction cB of B does
not depend on this choice. We will reconsider this point in Remark 7.3.

Remark 4.6. Kontsevich and Soibelman constructed a 2-sphere with an integral affine struc-
ture with singularities by contracting a Clemens polytope of a degenerating family of K3
surfaces [KS06, Section 4.2.5]. Their contraction is quite similar to the above contraction of
tropical hypersurfaces. Compare the local contraction given in [KS06, Section 4.2.5] to the
contraction given in (4.14) of this article.

Example 4.7. Consider the polynomial

f(x, y, z) = 1 + x3y−1z−1 + x−1y3z−1 + x−1y−1z3 + x−1y−1z−1. (4.27)

The Newton polytope ∆̌ ⊂ NR of f is the simplex whose one side is 4. In this case, there are
no further crepant refinements of Σ̌. We choose a point p(τ) on the interior of each edge τ of
B, which will be a singular point. Let ρ1 and ρ2 be the 1-dimensional cones in the normal fan
Σ̌ of ∆̌ generated by (1, 0, 0) and (0, 1, 0) respectively. Let further v1 and v2 be the vertices of
B such that F (v1) = (1, 0, 0), F (v2) = (0, 1, 0), and τ be the edge of B connecting v1 and v2.

Around v1, the tropical hypersurface V (f) is locally defined by

1 + x−1y3z−1 + x−1y−1z3 + x−1y−1z−1, (4.28)

and the contraction δv1 coincides with a restriction of the contraction with respect to the
function fv1 on Oρ1(T) defined by

fv1(y, z) := y3z−1 + y−1z3 + y−1z−1. (4.29)

Around v2, the tropical hypersurface V (f) is locally defined by

1 + x3y−1z−1 + x−1y−1z3 + x−1y−1z−1, (4.30)

and the contraction δv2 coincides with a restriction of the contraction with respect to the
function fv2 on Oρ2(T) defined by

fv2(x, z) := x3z−1 + x−1z3 + x−1z−1. (4.31)

Around τ , the tropical hypersurface V (f) is locally defined by

1 + x−1y−1z3 + x−1y−1z−1. (4.32)

When we set x′ := 1x, y′ := yz, z′ := 1xyz, w′ := z, it is locally defined by

fτ (z
′, w′) := 0 + z′ + w′4. (4.33)

The contraction δp(τ) coincides with a restriction of the contraction δfτ ,p(τ) of (4.14) (k = 1, l =
4). The open set Uτ is equipped with the integral affine structure of X1,4.

These contractions are shown in Figure 4.2. Black points are chosen points as singular
points. The red region shows the contraction δv1 and the blue region shows the contraction
δv2 . The green region shows the contraction δp(τ).
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Figure 4.2: A contraction of the tropical hypersurface V (f)

5 Dispersions of focus-focus singularities

Let S be an integral affine surface with some singular points. We suppose that the monodromy
around one of the singular points p of S is given by the matrix(

1 k
0 1

)
, (5.1)

under a local coordinate system (x, y) near p, where k is a non-zero integer. Here, the tangent
vector ex corresponding to the coordinate x is monodromy invariant, and the coordinate y is
globally well-defined on a sufficiently small open neighborhood U of p. We write the line defined
by y = 0 on U as L. We can construct another integral affine structure with singularities on
U , which has just two singular points p1 and p2 on L whose monodromies are given by(

1 ki
0 1

)
, (5.2)

under the same coordinate system (x, y) respectively, where k1, k2 are non-zero integers such
that k1 + k2 = k. By replacing the original integral affine structure with singularities on U
with this new one, we can obtain another integral affine surface S ′ with singularities, since
monodromies of both integral affine structures with respect to the loop along the boundary of
U are the same.

Assume that the determinant of the monodromy matrix around any singular point of S is
1. Then we have ι∗ ∧2 TZ ∼= Z for both S and S ′, where ι is the inclusion of the complement
of singularities. The cohomology groups H1(S, ι∗TZ) and H1(S ′, ι∗TZ) have the cup product
(1.3) induced by the wedge product. We also write the radiance obstructions of S and S ′ as
cS and cS′ respectively.

Let U ′ = {Uj}j∈J ′ be a sufficiently fine acyclic covering of S ′ for ι∗TZ such that each
open set have one singular point at most and each singular point is contained by only one
open set. Let Ujα , Ujβ ∈ U ′ be the open sets containing p1 and p2 respectively. We set
Ujγ := Ujα ∪ Ujβ , J

◦ := J ′ \ {jα, jβ}, and J := J◦ ∪ {jγ}. We replace U ′ if necessary so that
Uj1∩Uj2 does not intersect with Ujα∩Ujβ for any j1, j2 ∈ J◦. The set of open sets U := {Uj}j∈J
is an acyclic covering of S for ι∗TZ.
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We define a map f : H1(S, ι∗TZ) → H1(S ′, ι∗TZ) by setting

f(ϕ) ((Uj1 , Uj2)) := ϕ
((
U ′
j1
, U ′

j2

))∣∣
Uj1

∩Uj2

(5.3)

for each ϕ ∈ Z1(U , ι∗TZ) and j1, j2 ∈ J ′, where

U ′
j :=

{
Uj, j ∈ J◦,
Ujγ , j ∈ {jα, jβ} .

(5.4)

Lemma 5.1. The map f : H1(S, ι∗TZ) → H1(S ′, ι∗TZ) is well-defined.

Proof. Since we have

δ(f(ϕ)) (((Uj1 , Uj2 , Uj3))) = f(ϕ) ((Uj2 , Uj3))− f(ϕ) ((Uj1 , Uj3)) + f(ϕ) ((Uj1 , Uj2)) (5.5)

= ϕ
((
U ′
j2
, U ′

j3

))
− ϕ

((
U ′
j1
, U ′

j3

))
+ ϕ

((
U ′
j1
, U ′

j2

))
(5.6)

= (δϕ)
((
U ′
j1
, U ′

j2
, U ′

j3

))
= 0, (5.7)

f(ϕ) is a cocyle. For any element θ ∈ C0(U , ι∗TZ), we take the element θ′ ∈ C0(U ′, ι∗TZ)
defined by θ′(Uj) := θ(U ′

j)
∣∣
Uj
. Then we have

f(δθ) ((Uj1 , Uj2)) = δθ
((
U ′
j1
, U ′

j2

))∣∣
Uj1

∩Uj2

= θ(U ′
j2
)
∣∣
Uj1

∩Uj2

− θ(U ′
j1
)
∣∣
Uj1

∩Uj2

, (5.8)

δθ′ ((Uj1 , Uj2)) = θ′(Uj2)|Uj1
∩Uj2

− θ′(Uj1)|Uj1
∩Uj2

= θ(U ′
j2
)
∣∣
Uj1

∩Uj2

− θ(U ′
j1
)
∣∣
Uj1

∩Uj2

. (5.9)

Hence, we obtain f(δθ) = δθ′.

Proposition 5.2. The map f : H1(S, ι∗TZ) → H1(S ′, ι∗TZ) is a primitive embedding that
preserves the pairing.

Proof. First, we check that the map f is injective. Suppose there exists θ′ ∈ C0(U ′, ι∗TZ) such
that δ(θ′) = f(ϕ). We will construct an element θ ∈ C0(U , ι∗TZ) such that δ(θ) = ϕ. Here
since we have

θ′(Ujβ)− θ′(Ujα) = (δθ′)
((
Ujα , Ujβ

))
= f(ϕ)

((
Ujα , Ujβ

))
= ϕ

((
Ujγ , Ujγ

))
= 0, (5.10)

there is a section s ∈ Γ(Ujγ , ι∗TZ) such that s|Ujα
= θ′(Ujα) and s|Ujβ

= θ′(Ujβ). We define

θ ∈ C0(U , ι∗TZ) by setting

θ((Uj)) :=

{
θ′((Uj)), j ∈ J◦,
s, j = jγ.

(5.11)

Then when j1, j2 ∈ J◦, we have

δθ ((Uj1 , Uj2)) = θ′(Uj2)− θ′(Uj1) = δθ′ ((Uj1 , Uj2)) = f(ϕ) ((Uj1 , Uj2)) = ϕ ((Uj1 , Uj2)) .
(5.12)

When j1 = jγ, j2 ∈ J◦, we have

δθ
((
Ujγ , Uj2

))∣∣
Ujα∩Uj2

= θ′(Uj2)|Ujα∩Uj2
− s |Ujα∩Uj2

(5.13)

= θ′(Uj2)|Ujα∩Uj2
− θ′(Ujα)|Ujα∩Uj2

(5.14)

= δθ′ ((Ujα , Uj2)) = f(ϕ) ((Ujα , Uj2)) = ϕ
((
Ujγ , Uj2

))∣∣
Ujα∩Uj2

. (5.15)
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Since we can also get δθ
((
Ujγ , Uj2

))∣∣
Ujβ

∩Uj2

= ϕ
((
Ujγ , Uj2

))∣∣
Ujβ

∩Uj2

in the same way, we

obtain

δθ
((
Ujγ , Uj2

))
= ϕ

((
Ujγ , Uj2

))
. (5.16)

Therefore, we obtain δ(θ) = ϕ.
Next, we check that the map f preserves the pairing. We take a total orders of J◦. By

adding jγ to J◦ as the minimum element, we obtain a total order of J . We also consider the
total order of J ′ obtained by adding jα, jβ to J◦ as the minimum and the second minimum
elements respectively. For any ϕ1, ϕ2 ∈ Ȟ1(U , ι∗TZ), we can calculate as follows:

ϕ1 ∪ ϕ2 − f(ϕ1) ∪ f(ϕ2) =
∑
j1<j2

Ujγ∩Uj1
∩Uj2

̸=∅

ϕ1((Ujγ , Uj1)) ∧ ϕ2((Uj1 , Uj2)) (5.17)

−
∑
j1<j2

Ujα∩Uj1
∩Uj2

̸=∅

f(ϕ1)((Ujα , Uj1)) ∧ f(ϕ2)((Uj1 , Uj2)) (5.18)

−
∑
j1<j2

Ujβ
∩Uj1

∩Uj2
̸=∅

f(ϕ1)((Ujβ , Uj1)) ∧ f(ϕ2)((Uj1 , Uj2)) (5.19)

−
∑
j∈J◦

Ujα∩Ujβ
∩Uj ̸=∅

f(ϕ1)((Ujα , Ujβ)) ∧ f(ϕ2)((Ujβ , Uj)) (5.20)

=0, (5.21)

where j1, j2 ∈ J◦.
Lastly, we show that the map f is primitive. Consider the map

f ⊗ idR : H
1(S, ι∗TZ)⊗Z R → H1(S ′, ι∗TZ)⊗Z R, ϕ⊗ t 7→ f(ϕ)⊗ t, (5.22)

which we will also write as f . Assume that there exists an element θ′ ∈ C0(U ′, ι∗T ) such
that δ(θ′) + f(ϕ ⊗ t) ∈ C1(U ′, ι∗TZ). We will construct an element θ ∈ C0(U , ι∗T ) such that
δ(θ)+ϕ⊗t ∈ C1(U , ι∗TZ). Since the monodromy invariant directions of p1 and p2 are the same,
we can extend sections θ′(Ujα), θ

′(Ujβ) to Ujγ . Let sα, sβ ∈ Γ(Ujγ , ι∗TZ) denote the extensions
of θ′(Ujα), θ

′(Ujβ) respectively. Since we have

(δ(θ′) + f(ϕ⊗ t)) ((Ujα , Ujβ)) = θ′(Ujβ)
∣∣
Ujα∩Ujβ

− θ′(Ujα)|Ujα∩Ujβ
∈ ι∗TZ(Ujα ∩ Ujβ), (5.23)

we can see sα − sβ ∈ ι∗TZ(Ujγ ). We define θ ∈ C0(U , ι∗TZ) by setting

θ((Uj)) :=

{
θ′((Uj)), j ∈ J◦,
sα, j = jγ.

(5.24)

Then, in the case where j1, j2 ∈ J◦, we have

(δθ + ϕ⊗ t) ((Uj1 , Uj2)) = θ′(Uj2)− θ′(Uj1) + (ϕ⊗ t) ((Uj1 , Uj2)) (5.25)

= δθ′ ((Uj1 , Uj2)) + f(ϕ⊗ t) ((Uj1 , Uj2)) (5.26)

= (δθ′ + f(ϕ⊗ t)) ((Uj1 , Uj2)) ∈ ι∗TZ(Uj1 ∩ Uj2). (5.27)
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In the case where j1 = jγ, j2 ∈ J◦, Ujα ∩ Uj2 ̸= ∅ or Ujβ ∩ Uj2 ̸= ∅. When Ujα ∩ Uj2 ̸= ∅, we
have

(δθ + ϕ⊗ t)
((
Ujγ , Uj2

))∣∣
Ujα∩Uj2

= θ′(Uj2)|Ujα∩Uj2
− sα |Ujα∩Uj2

+ (ϕ⊗ t)
((
Ujγ , Uj2

))∣∣
Ujα∩Uj2

(5.28)

= θ′(Uj2)|Ujα∩Uj2
− θ′(Ujα)|Ujα∩Uj2

+ f(ϕ⊗ t) ((Ujα , Uj2))

(5.29)

= (δθ′ + f(ϕ⊗ t)) ((Ujα , Uj2)) ∈ ι∗TZ(Ujα ∩ Uj2). (5.30)

Hence, we obtain (δθ + ϕ⊗ t)
((
Ujγ , Uj2

))
∈ ι∗TZ(Ujγ ∩ Uj2). When Ujβ ∩ Uj2 ̸= ∅, we have

(δθ + ϕ⊗ t)
((
Ujγ , Uj2

))∣∣
Ujβ

∩Uj2

= θ′(Uj2)|Ujβ
∩Uj2

− sα |Ujβ
∩Uj2

+ (ϕ⊗ t)
((
Ujγ , Uj2

))∣∣
Ujβ

∩Uj2

(5.31)

= θ′(Uj2)|Ujβ
∩Uj2

− sβ |Ujβ
∩Uj2

− (sα − sβ) |Ujβ
∩Uj2

+f(ϕ⊗ t)
((
Ujβ , Uj2

))
(5.32)

= θ′(Uj2)|Ujβ
∩Uj2

− θ′(Ujβ)
∣∣
Ujβ

∩Uj2

− (sα − sβ) |Ujβ
∩Uj2

+f(ϕ⊗ t)
((
Ujβ , Uj2

))
(5.33)

=(δθ′ + f(ϕ⊗ t))
((
Ujβ , Uj2

))
− (sα − sβ) |Ujβ

∩Uj2
(5.34)

∈ι∗TZ(Ujβ ∩ Uj2). (5.35)

Hence, we obtain (δθ+ϕ⊗ t)
((
Ujγ , Uj2

))
∈ ι∗TZ(Ujγ ∩Uj2). Therefore, we have δ(θ)+ϕ⊗ t ∈

C1(U , ι∗TZ).

Proposition 5.3. One has f(cS) = cS′.

Proof. When we take a set of sections {sj ∈ Γ(Uj, ι∗T )}j∈J , the radiance obstruction cS of S
is given by

cS((Uj1 , Uj2)) = sj2|Uj1
∩Uj2

− sj1|Uj1
∩Uj2

∈ Γ(Uj1 ∩ Uj2 , ι∗T ) (5.36)

for any j1, j2 ∈ J . We set sjα := sjγ |Ujα
and sjβ := sjγ |Ujβ

. We have

f(cS)((Uj1 , Uj2)) = cS((U
′
j1
, U ′

j2
))
∣∣
Uj1

∩Uj2

= sj2 |Uj1
∩Uj2

− sj1|Uj1
∩Uj2

∈ Γ(Uj1 ∩ Uj2 , ι∗T )

(5.37)

for any j1, j2 ∈ J ′. This is just the radiance obstruction cS′ of S ′ constructed from the set of
sections {sj ∈ Γ(Uj, ι∗T )}j∈J ′ .

6 Proofs of Theorem 1.1 and Theorem 1.2

Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We set
MR := M ⊗Z R and NR := N ⊗Z R = Hom(M,R). Let ∆ ⊂ MR be a smooth reflexive
polytope of dimension 3, and ∆̌ ⊂ NR be the polar polytope of ∆. Let further Σ and Σ̌ be
the normal fans to ∆ and ∆̌ respectively.
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Let A ⊂ N denote the subset consisting of all vertices of ∆̌ and 0 ∈ N . We consider a
tropical Laurent polynomial

f(x) = max
n∈A

{a(n) + n1x1 + n2x2 + n3x3} , (6.1)

such that the function

A→ R, n 7→ a(n) (6.2)

induces a central subdivision of ∆̌, i.e., every maximal dimensional simplex of the subdivision
has the origin 0 ∈ N as its vertex. Let V (f) be the tropical hypersurface defined by f in
the tropical toric variety XΣ̌(T) associated with Σ̌. For the time being, we do not take a
refinement of Σ̌.

Let further B be the 2-sphere with an integral affine structure with singularities obtained
by contracting V (f) in the way of Section 4.2, and P be its natural polyhedral structure. For
each 1-dimensional cell of B, we choose its barycenter as a position of the singular point that
should be on it. We write the complement of singularities of B as ι : B0 ↪→ B. Let TZ be the
local system on B0 of integral tangent vectors. We set T := TZ ⊗Z R.

In the subsequent subsections, we give proofs of Theorem 1.1 and Theorem 1.2 in this
setting. Note that the statements of Theorem 1.1 and Theorem 1.2 do not depend on the the
choices of positions of singular points as mentioned in Remark 4.5. Furthermore, it is obvious
from the way of construction of B that taking a refinement Σ̌′ ⊂ MR of Σ̌ such that the
primitive generator of any 1-dimensional cone in Σ̌′ is contained in ∆ ∩M can only disperse
concentrations of focus-focus singularities on B, and do not change anything else. Therefore,
if we prove the theorems in the above setting, Proposition 5.2 and Proposition 5.3 ensure that
Theorem 1.1 and Theorem 1.2 hold also when we replace Σ̌ with Σ̌′.

6.1 Proof of Theorem 1.1

We consider the complex toric variety XΣ associated with Σ. We write the group of toric
divisors on XΣ as

DivT (XΣ) :=
⊕

ρ∈Σ(1)

Z ·Dρ, (6.3)

where Σ(1) is the set of 1-dimensional cones in Σ, and Dρ is the toric divisor corresponding
to ρ ∈ Σ(1). We take the barycentric subdivision of P and let U := {Uτ}τ∈P be the covering
of B, where Uτ is the open star of the barycenter of τ ∈ P . The covering U is acyclic for ι∗TZ
and ι∗T , and

Ȟ1(U , ι∗TZ) = H1(B, ι∗TZ), Ȟ1(U , ι∗T ) = H1(B, ι∗T ). (6.4)

There is a one-to-one correspondence between Σ(1), A \ {0} and the set of facets of B given
by

ρ↔ nρ ↔ σ(ρ), (6.5)

where nρ ∈ N is the primitive generator of ρ ∈ Σ(1) and σ(ρ) ∈ P is the maximal dimensional
cell of B where a(0) and a(nρ)x

nρ attain the maximum of f .
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Let v ∈ P be a vertex of B, and {σ(ρi)}3i=1 be the set of facets containing v. For a divisor
D =

∑
ρ∈Σ(1) kρDρ ∈ DivT (XΣ) and the vertex v ∈ P , let m(v,D) denote the element of M

defined by

⟨m(v,D), nρi⟩ = −kρi , 1 ≤ i ≤ 3. (6.6)

Since the fan Σ is smooth, such an element m(v,D) always uniquely exists.
Let P(0) denote the set of vertices in P . Take an arbitrary map

ξ : P → P(0), (6.7)

such that ξ(τ) is a vertex of τ . We define a map

ψξ : DivT (XΣ) → Ȟ1(U , ι∗TZ), D 7→ ψξ(D), (6.8)

by setting

ψξ(D) ((Uτ0 , Uτ1)) := m(ξ(τ1), D)−m(ξ(τ0), D) (6.9)

for each 1-simplex (Uτ0 , Uτ1) of U . We will check that this map ψξ gives the map of Theorem 1.1
in the following lemmas, from Lemma 6.1 to Lemma 6.5.

Lemma 6.1. The map ψξ is a well-defined group homomorphism.

Proof. First, we check that ψξ(D) ((Uτ0 , Uτ1)) is certainly a section of ι∗TZ over Uτ0∩Uτ1 . Open
sets Uτ0 , Uτ1 intersect if and only if τ0 ≺ τ1 or τ1 ≺ τ0. Assume τ0 ≺ τ1.

Consider the case where τ1 is a facet. Let ρ ∈ Σ(1) and nρ ∈ N be the elements corre-
sponding to τ1 under (6.5). Since points m(ξ(τ0), D) and m(ξ(τ1), D) are contained in the
plane

{m ∈MR | ⟨m,nρ⟩ = −kρ} , (6.10)

the vector m(ξ(τ1), D)−m(ξ(τ0), D) is contained in the plane

{m ∈MR | ⟨m,nρ⟩ = 0} . (6.11)

On the other hand, the section ι∗TZ(Uτ0 ∩ Uτ1) coincides with this subspace. Hence, we have
ψξ(D) ((Uτ0 , Uτ1)) ∈ ι∗TZ(Uτ0 ∩ Uτ1).

In the case where τ1 is not a facet, τ0 is a vertex and τ1 is an edge. Let σ(ρ1) and σ(ρ2) be
the facets of B containing τ1 as their face. Since the points m(ξ(τ0), D) and m(ξ(τ1), D) are
contained in the 1-dimensional space

{m ∈MR | ⟨m,nρi⟩ = −kρi , i = 1, 2} , (6.12)

the vector m(ξ(τ1), D)−m(ξ(τ0), D) is contained in the 1-dimensional subspace defined by

{m ∈MR | ⟨m,nρi⟩ = 0, i = 1, 2} . (6.13)

On the other hand, the section ι∗TZ(Uτ0 ∩ Uτ1) contains this subspace. Hence, we have
ψξ(D) ((Uτ0 , Uτ1)) ∈ ι∗TZ(Uτ0 ∩ Uτ1).
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Next, we show that ψξ(D) is a cocycle. For any 2-simplex (Uτ0 , Uτ1 , Uτ2) of U , we have

δ (ψξ(D)) ((Uτ0 , Uτ1 , Uτ2)) = {m(ξ(τ2), D)−m(ξ(τ1), D)}
− {m(ξ(τ2), D)−m(ξ(τ0), D)}
+ {m(ξ(τ1), D)−m(ξ(τ0), D)}

= 0. (6.14)

Lastly, we show that the map ψξ is a group homomorphism. We will show ψξ(D +D′) =
ψξ(D) + ψξ(D

′) for any D =
∑

ρ kρDρ, D
′ =

∑
ρ k

′
ρDρ ∈ DivT (XΣ). Let v ∈ P be a vertex,

and {σ(ρi)}3i=1 be the set of facets containing v. Then the point m(v,D +D′) is defined by

⟨m(v,D +D′), nρi⟩ = −kρi − k′ρi , 1 ≤ i ≤ 3. (6.15)

On the other hands, the points m(v,D),m(v,D′) are defined by

⟨m(v,D), nρi⟩ = −kρi , ⟨m(v,D′), nρi⟩ = −k′ρi , 1 ≤ i ≤ 3, (6.16)

respectively. Hence, we have m(v,D +D′) = m(v,D) +m(v,D′), and

ψξ(D +D′)((Uτ0 , Uτ1)) = m(ξ(τ1), D +D′)−m(ξ(τ0), D +D′)

= {m(ξ(τ1), D) +m(ξ(τ1), D
′)} − {m(ξ(τ0), D) +m(ξ(τ0), D

′)}
= {m(ξ(τ1), D)−m(ξ(τ0), D)}+ {m(ξ(τ1), D

′)−m(ξ(τ0), D
′)}

= ψξ(D)((Uτ0 , Uτ1)) + ψξ(D
′)((Uτ0 , Uτ1)) (6.17)

for any 1-simplex (Uτ0 , Uτ1) of U .

Lemma 6.2. The map ψξ is independent of the choice of the map ξ : P → P(0).

Proof. Let ξ′ : P → P(0) be another map such that ξ′(τ) ≺ τ for any τ ∈ P . We show that
ψξ(D) = ψξ′(D) for any D ∈ DivT (XΣ). For each D =

∑
ρ kρDρ ∈ DivT (XΣ), we define

ϕ(D) ∈ C0(U , ι∗TZ) by setting

ϕ(D)((Uτ )) := m(ξ′(τ), D)−m(ξ(τ), D) (6.18)

for each 0-simplex (Uτ ) of U . We will show that the coboundary of ϕ(D) coincides with
ψξ′(D)− ψξ(D). First, we check that ϕ(D) is certainly an element of C0(U , ι∗TZ).

When τ is a vertex, ξ(τ) = ξ′(τ) = τ , and we have ϕ(D)(Uτ ) = 0 ∈ ι∗TZ(Uτi).
When τ is an edge and is contained in facets σ(ρ1) and σ(ρ2), pointsm(ξ(τ), D),m(ξ′(τ), D)

are contained in the 1-dimensional space of (6.12). Hence, the vector m(ξ′(τ), D)−m(ξ(τ), D)
is contained in the 1-dimensional subspace of (6.13). On the other hand, the section ι∗TZ(Uτ ) is
the lattice of integral tangent vectors that are invariant under the monodromy transformation
around the singular point on τ . That is the lattice contained in the subspace defined by (6.13).
Hence, we have ϕ(D) ((Uτ )) ∈ ι∗TZ(Uτ ).

When τ is a facet, pointsm(ξ(τ), D),m(ξ′(τ), D) are contained in the plane of (6.10), where
ρ is the 1-dimensional cone corresponding to τ . Hence, the vector m(ξ′(τ), D) −m(ξ(τ), D)
is contained in the plane of (6.11). On the other hand, the section ι∗TZ(Uτ ) is the lattice of
integral tangent vectors on Uτ . That is the lattice contained in the subspace defined by (6.11).
Hence, we have ϕ(D) ((Uτ )) ∈ ι∗TZ(Uτ ). Therefore, we have ϕ(D) ∈ C0(U , ι∗TZ).
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For any 1-simplex (Uτ0 , Uτ1) of U , one can get

(ψξ′(D)− ψξ(D)) ((Uτ0 , Uτ1)) = {m(ξ′(τ1), D)−m(ξ′(τ0), D)} − {m(ξ(τ1), D)−m(ξ(τ0), D)}
= {m(ξ′(τ1), D)−m(ξ(τ1), D)} − {m(ξ′(τ0), D)−m(ξ(τ0), D)}
= (δϕ(D))((Uτ0 , Uτ1)). (6.19)

Hence, we have ψξ(D) = ψξ′(D).

Recall that we have the exact sequence

M → DivT (XΣ) → Pic(XΣ) → 0, (6.20)

where the map M → DivT (XΣ) is given by

m 7→ D(m) :=
∑

ρ∈Σ(1)

⟨m,nρ⟩Dρ. (6.21)

Lemma 6.3. The map ψξ induces an injection

Pic(XΣ) ↪→ Ȟ1(U , ι∗TZ). (6.22)

Proof. First, we check that ψξ(D(m0)) = 0 for any m0 ∈M . Let v ∈ P be a vertex of B, and
{σ(ρi)}3i=1 be the set of facets containing v. The element m(v,D(m0)) satisfies

⟨m(v,D(m0)), nρi⟩ = −⟨m0, nρi⟩ , 1 ≤ i ≤ 3. (6.23)

Therefore, we have m(v,D(m0)) = −m0 ∈M for any v ∈ P(0). From the definition of ψξ, we
can see that ψξ(D(m0)) = 0.

Next, we show that the induced map Pic(XΣ) → Ȟ1(U , ι∗TZ) is injective. Assume that
ψξ(D0) = δ(ϕ) for some D0 ∈ DivT (XΣ) and ϕ ∈ C0(U , ι∗TZ). We show that there is some
m ∈M such that D0 = D(m). Let τ ∈ P be a 1-dimensional cell, and v0, v1 be its endpoints.
Suppose ξ(τ) = v1. Then we have

ψξ(D0)((Uv0 , Uτ )) = m(v1, D0))−m(v0, D0) = ϕ((Uτ ))− ϕ((Uv0)), (6.24)

ψξ(D0)((Uv1 , Uτ )) = 0 = ϕ((Uτ ))− ϕ((Uv1)). (6.25)

Here, m(v1, D0))−m(v0, D0) and ϕ((Uτ )) are parallel to the direction which is invariant under
the monodromy around the singular point on τ . Hence, from (6.24), (6.25), it turns out that
ϕ((Uv0)) and ϕ((Uv1)) also have to be parallel to this direction.

Let τ ′ ∈ P be another 1-dimensional cell that has v0 as its vertex. By the same argument,
we can see that ϕ((Uv0)) has to be parallel also to the direction which is invariant under the
monodromy around the singular point on τ ′. Since these two monodromy invariant directions
are linearly independent, ϕ((Uv0)) has to be zero. Similarly, we get ϕ((Uv1)) = 0. Hence, by
(6.24), (6.25), we obtain

ϕ((Uτ )) = 0, m(v1, D0) = m(v0, D). (6.26)

Since there is a sequence of edges of B connecting arbitrary two vertices of B, we can conclude
that the element m(v,D0) ∈M is the same for any v ∈ P(0). We write it as m(D0) ∈M .
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We set D0 =:
∑

ρ∈Σ(1) kρDρ and D(−m(D0)) =:
∑

ρ∈Σ(1) k
′
ρDρ. For any ρ ∈ Σ(1), we take

a vertex v ∈ P(0) contained in the facet σ(ρ) ∈ P . Then we have

⟨m(v,D0), nρ⟩ = −kρ, k′ρ = ⟨−m(D0), nρ⟩ . (6.27)

Since m(v,D0) = m(D0), we obtain kρ = k′ρ. Hence, we have D0 = D(−m(D0)). Therefore,

the induced map Pic(XΣ) → Ȟ1(U , ι∗TZ) is injective.

This map Pic(XΣ) → H1(B, ι∗TZ) will be denoted by ψ.

Lemma 6.4. The embedding ψ : Pic(XΣ) → H1(B, ι∗TZ) is primitive, i.e., the image of the
map

ψ : Pic(XΣ) → H1(B, ι∗TZ) → H1(B, ι∗T ) = H1(B, ι∗TZ)⊗ R (6.28)

coincides with Im(ψ)⊗Z R ∩H1(B, ι∗TZ).

Proof. We show that there exists a toric divisor D ∈ DivT (XΣ) such that ψξ(D) = λ for
any λ ∈ Im(ψ) ⊗Z R ∩ H1(B, ι∗TZ). Choose an arbitrary vertex v0 ∈ P(0). Let {σ(ρi)}3i=1

be the facets containing v0, and {mi}3i=1 be the basis of M such that
⟨
mi, nρj

⟩
= δi,j for

any 1 ≤ j ≤ 3. There exist D′ ∈ DivT (XΣ) and t ∈ R such that ψξ(D
′) ⊗ t = λ. For

D′ ⊗ t =:
∑

ρ kρDρ (kρ ∈ R), we set

D := D′ ⊗ t−
3∑

i=1

kρiD(mi) ∈ DivT (XΣ)⊗Z R. (6.29)

Then the coefficient of Dρi in D is zero for 1 ≤ i ≤ 3. Therefore, we have

⟨m(v0, D), nρi⟩ = 0, 1 ≤ i ≤ 3. (6.30)

Hence, we have m(v0, D) = 0. Moreover, since D = D′ ⊗ t as elements of Pic(XΣ) ⊗ R, we
have ψξ(D) = ψξ(D

′)⊗ t = λ. We will show D ∈ DivT (XΣ).
Since ψξ(D) = λ ∈ H1(B, ι∗TZ), there exist an element ϕ ∈ C0(U , ι∗T ) such that

δ(ϕ) + ψξ(D) ∈ C1(U , ι∗TZ). (6.31)

Let v ∈ P(0) be an arbitrary vertex, and τ1, τ2 ∈ P be two distinct edges containing v. Then
we have

{δ(ϕ) + ψξ(D)} ((Uv, Uτi)) = ϕ(Uτi)− ϕ(Uv) +m(ξ(τi), D)−m(v,D) (6.32)

∈ ι∗TZ(Uv ∩ Uτi)

for i = 1, 2. Let e1, e2 ∈ ι∗TZ(Uv) be sections that are parallel to the tangent direction of τ1, τ2
respectively and form a basis of ι∗TZ(Uv) ∼= Z2. We set ϕ(Uv) =: a1e1 + a2e2 (ai ∈ R). Since
ϕ(Uτ1) and the vector m(ξ(τ1), D) −m(v,D) are parallel to e1, it turns out from (6.32) that
a2 has to be an integer. Similarly we can get a1 ∈ Z. Hence, we have ϕ(Uv) ∈ ι∗TZ(Uv) for
any v ∈ P(0).

Let v1, v2 ∈ P(0) be two arbitrary distinct vertices connected by an edge τ ∈ P . We have

{δ(ϕ) + ψξ(D)} ((Uvi , Uτ )) = ϕ(Uτ )− ϕ(Uvi) +m(ξ(τ), D)−m(vi, D) (6.33)

∈ ι∗TZ(Uvi ∩ Uτ )
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for i = 1, 2. When ξ(τ) = v1, we have ϕ(Uτ ) ∈ ι∗TZ(Uτ ) from (6.33) of i = 1 and ϕ(Uvi) ∈
ι∗TZ(Uvi). We also get m(v1, D) −m(v2, D) ∈ M from ϕ(Uτ ) ∈ ι∗TZ(Uτ ) and (6.33) of i = 2.
Similarly we get this also when ξ(τ) = v2. Hence, m(v1, D) −m(v2, D) ∈ M for any vertices
v1, v2 ∈ P(0).

Since there is a sequence of edges of B connecting any vertex of B and v0 that we took in
the beginning, and we have m(v0, D) = 0 ∈ M , we can get m(v,D) ∈ M for any v ∈ P(0).
From the definition of m(v,D), we can have D ∈ DivT (XΣ).

Recall that the cohomology group H1(B, ι∗TZ) has the cup product induced by the wedge
product

∪ : H1(B, ι∗TZ)⊗H1(B, ι∗TZ) → H2(B, ι∗ ∧2 TZ). (6.34)

Since any singular point of B has (4.11) as its monodromy matrix, we can see ι∗ ∧2 TZ ∼= Z,
and hence

H2(B, ι∗ ∧2 TZ) ∼= H2(B,Z) ∼= Z. (6.35)

Choosing ι∗ ∧2 TZ ∼= Z amounts to choosing an orientation of B. Furthermore, we need to
choose an orientation of B again in order to determine H2(B,Z) ∼= Z. Here, we choose the
same orientation as we did for ι∗ ∧2 TZ ∼= Z. Then we obtain the pairing (1.3) of H1(B, ι∗TZ).

Let Y be an anti-canonical hypersurface of the complex toric variety XΣ associated with
Σ, and

Pic(Y )amb := Im (Pic(XΣ) ↪→ Pic(Y )) (6.36)

be the sublattice of Pic(Y ) coming from the Picard group of the ambient space.

Lemma 6.5. The embedding ψ : Pic(Y )amb ↪→ H1(B, ι∗TZ) preserves the pairing.

Proof. We show that Dρ1 ·Dρ2 = ψ(Dρ1) ∪ ψ(Dρ2) for any ρ1, ρ2 ∈ Σ(1). First, we show this
in the case where ρ1 ̸= ρ2. Recall that there is a one-to-one correspondence between Σ(1) and
facets of ∆ given by ρ↔ F (ρ), where

F (ρ) := {m ∈ ∆ | ⟨m,nρ⟩ = −1} . (6.37)

A hypersurface in the toric variety XΣ defined by a polynomial whose Newton polytope is ∆ is
an anti-canonical hypersuface. When F (ρ1)∩F (ρ2) is empty,Dρ1 ·Dρ2 = 0. When F (ρ1)∩F (ρ2)
is not empty, Dρ1 ·Dρ2 is equal to the integral length of the edge F (ρ1) ∩ F (ρ2). Let l ∈ Z≥0

denote the integral length of F (ρ1) ∩ F (ρ2). We choose two maps ξi : P → P(0) (i = 1, 2)
satisfying

• the condition of the map (6.7) : ξi(τ) is a vertex of τ for any τ ∈ P ,

• ξi(τ) ̸∈ σ(ρi) for any τ ̸⊂ σ(ρi).

We will show that ψξ1(Dρ1) ∪ ψξ2(Dρ2) = 0 when F (ρ1) ∩ F (ρ2) is empty, and ψξ1(Dρ1) ∪
ψξ2(Dρ2) = l when F (ρ1) ∩ F (ρ2) is not empty.

When τ, τ ′ ∈ P are not in σ(ρi), we have ξi(τ), ξi(τ
′) ̸∈ σ(ρi). From the definition of

m(v,D) (6.6), we can see m(ξi(τ), Dρi) = m(ξi(τ
′), Dρi) = 0, and therefore

ψξi(Dρi)((Uτ , Uτ ′)) = m(ξi(τ
′), Dρi)−m(ξi(τ), Dρi) = 0. (6.38)
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Hence, for a 2-simplex (Uτ0 , Uτ1 , Uτ2) of U ,

ψξ1(Dρ1) ∪ ψξ2(Dρ2)((Uτ0 , Uτ1 , Uτ2)) = {m(ξ1(τ1), Dρ1)−m(ξ1(τ0), Dρ1)}
∧ {m(ξ2(τ2), Dρ2)−m(ξ2(τ1), Dρ2)} (6.39)

can be non-zero only when either τ0 or τ1 is contained in σ(ρ1) and either τ1 or τ2 is contained
in σ(ρ2). One of τ0, τ1, τ2 is a vertex of B. Assume τk is that vertex. Since τk ≺ τ0, τ1, τ2,
we have τk ∈ σ(ρ1) ∩ σ(ρ2) when (6.39) is not zero. When σ(ρ1) ∩ σ(ρ2) is empty, this never
happens. Hence, we get ψξ1(Dρ1)∪ψξ2(Dρ2) = 0 when σ(ρ1)∩ σ(ρ2) = ∅. In the following, we
assume σ(ρ1) ∩ σ(ρ2) ̸= ∅, and directly compute the sum of (6.39).

All 2-simplices such that τk ∈ σ(ρ1) ∩ σ(ρ2) are shown in Figure 6.1. (6.39) can be non-
zero on these simplices. Let v0, · · · , v10 denote the vertices of these 2-simplexes as shown in

Figure 6.1: 2-simplexes where ψξ1(Dρ1) ∪ ψξ2(Dρ2) can be non-zero

Figure 6.1. v2, v8 are vertices of B, and v1, v3, v5, v7, v8 are barycenters of edges of B. v4, v6
denote the barycenters of σ(ρ2) and σ(ρ1) respectively. Let further τi (0 ≤ i ≤ 10) denote the
cell of B whose barycenter is vi. For instance, τ6 = σ(ρ1), τ4 = σ(ρ2), and τ5 = σ(ρ1) ∩ σ(ρ2).
We use the ascending order of index numbers i (0 ≤ i ≤ 10) as a total order of {Uτi}i. We
compute the sum of (6.39) by using this total order.

Let ei (1 ≤ i ≤ 3) be the integral tangent vectors at v8 contained in R>0 · −−→v8v9, R>0 · −−→v8v7,
R>0 · −−→v8v5 respectively. Let further ei (i = 4, 5) be the integral tangent vectors at v2 contained
in R>0 · −−→v2v3, R>0 · −−→v2v1 respectively. By transporting e1 and e3 to v2 along paths contained in
σ(ρ1) and σ(ρ2) respectively, we set

e4 = e1 + se3, e5 = e2 + te3, (6.40)

where s, t ∈ Z.
Consider the monodromy with respect to a loop that starts at v8, passes through v4, v2, v6

in this order, and comes back to v8. From Lemma 4.1, we can see that it is given by(
1 −l
0 1

)
, (6.41)

under the basis (e3, e1), where l is the length of σ(ρ1) ∩ σ(ρ2). On the other hand, we can
also calculate the monodromy of e1 as follows: We have e1 = −e2 − e3 in Uv8 . Since we have
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e2 = e5 − te3, e1 becomes (t − 1)e3 − e5 when it arrives at v2. We also have e5 = e3 − e4 in
Uv2 , and e4 = e1 + se3. Therefore, e1 becomes (s+ t− 2)e3 + e1 when it is back to v2. Hence
we obtain

s+ t− 2 = −l. (6.42)

We choose maps ξ1, ξ2 : P → P(0) so that

ξ1(τi) =


the endpoint of τ1 that is not v2 i = 0, 1, 4,
v2 i = 2, 3, 5, 6,
the endpoint of τ7 that is not v8 i = 7, 10,
v8 i = 8, 9,

(6.43)

ξ2(τi) =


the endpoint of τ3 that is not v2 i = 0, 3, 6,
v2 i = 1, 2, 4, 5,
v8 i = 7, 8,
the endpoint of τ9 that is not v8 i = 9, 10.

(6.44)

Then we have

ψξ1(Dρ1)((Uτi1
, Uτi2

)) =



−e5 (i1, i2) = (0, 2), (0, 3), (1, 2), (4, 5),
e5 (i1, i2) = (2, 4),
−e2 (i1, i2) = (4, 8), (7, 8),
e5 − e2 (i1, i2) = (5, 8), (6, 8), (6, 9),
e2 (i1, i2) = (8, 10), (9, 10),
0 otherwise,

(6.45)

ψξ2(Dρ2)((Uτi1
, Uτi2

)) =



−e4 (i1, i2) = (0, 1), (0, 2),
e4 (i1, i2) = (2, 3), (2, 6), (5, 6),
e4 − e1 (i1, i2) = (4, 7), (4, 8), (5, 8),
−e1 (i1, i2) = (6, 8),
e1 (i1, i2) = (7, 10), (8, 9), (8, 10),
0 otherwise,

(6.46)

for 0 ≤ i1 < i2 ≤ 10. We obtain

ψξ1(Dρ1) ∪ ψξ2(Dρ2)((Uτi1
, Uτi2

, Uτi3
)) =


−e5 ∧ e4 (i1, i2, i3) = (0, 2, 3),
−e5 ∧ (e4 − e1) (i1, i2, i3) = (4, 5, 8),
(e5 − e2) ∧ e1 (i1, i2, i3) = (6, 8, 9),
−e2 ∧ e1 (i1, i2, i3) = (7, 8, 10),
0 otherwise,

(6.47)

∼
{

(2− s− t)e1 ∧ e2 (i1, i2, i3) = (7, 8, 10),
0 otherwise,

(6.48)

for 0 ≤ i1 < i2 < i3 ≤ 10. This is equal to 2 − s − t in H2(B, ι∗ ∧2 TZ) ∼= Z. Hence, from
(6.42), we get ψ(Dρ1) ∪ ψ(Dρ2) = l.

Lastly, we show that Dρ0 ·Dρ0 = ψ(Dρ0) ∪ ψ(Dρ0) for any ρ0 ∈ Σ(0). Since there exists a
primitive element m ∈M such that D(m) = Dρ0 +

∑
ρ ̸=ρ0

aρDρ (aρ ∈ Z), we have

Dρ0 ∼ −
∑
ρ ̸=ρ0

aρDρ. (6.49)
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Hence, we obtain

Dρ0 ·Dρ0 = Dρ0 ·

(
−
∑
ρ ̸=ρ0

aρDρ

)
= −

∑
ρ ̸=ρ0

aρDρ0 ·Dρ (6.50)

= −
∑
ρ̸=ρ0

aρψ(Dρ0) ∪ ψ(Dρ) = ψ(Dρ0) ∪ ψ

(
−
∑
ρ ̸=ρ0

aρDρ

)
(6.51)

= ψ(Dρ0) ∪ ψ(Dρ0). (6.52)

6.2 Proof of Theorem 1.2

We take a map of (6.7) ξ : P → P(0) such that ξ(τ) ≺ τ . By enlarging each open set
Uτ slightly, we assume that Uτ contains ξ(τ). We take each chart ψτ : Uτ → MR so that
ψτ (ξ(τ)) = 0 ∈ MR. In order to specify the radiance obstruction of B, we choose the zero
section 0 ∈ Γ(Uτ ∩ B0, T

affB0) for each Uτ . Then the radiance obstruction cB is represented
by the element of C1(U , ι∗T ) given by

cB ((Uτ0 , Uτ1)) := ξ(τ1)− ξ(τ0) (6.53)

for each 1-simplex (Uτ0 , Uτ1) of U .
Let v ∈ P be a vertex, and {σ(ρi)}3i=1 be the set of facets of B containing v. Then the

vertex v ∈MR is determined by

⟨m,nρi⟩ = −a(nρi) + a(0), 1 ≤ i ≤ 3. (6.54)

From the definition of the map ψξ, we can see that

cB = ψξ

 ∑
ρ∈Σ(1)

{a(nρ)− a(0)}Dρ

 (6.55)

=
∑

ρ∈Σ(1)

{a(nρ)− a(0)}ψ(Dρ). (6.56)

7 Asymptotic behaviors of period maps

Let K := C {t} be the convergent Puiseux series field, equipped with the standard non-
archimedean valuation

val : K −→ Q ∪ {−∞}, k =
∑
j∈Q

cjt
j 7→ −min {j ∈ Q | cj ̸= 0} . (7.1)

Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We set
MR :=M⊗ZR and NR := N⊗ZR = Hom(M,R). Let ∆ ⊂MR be a smooth reflexive polytope
of dimension 3, and ∆̌ ⊂ NR be the polar polytope of ∆. Let further Σ ⊂ NR, Σ̌ ⊂MR be the
normal fans of ∆, ∆̌ respectively. We choose a refinement Σ̌′ ⊂MR of Σ̌ which gives rise to a
projective crepant resolution XΣ̌′ → XΣ̌ of a toric variety associated with Σ̌.
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We consider a Laurent polynomial F =
∑

n∈A knx
n ∈ K[x±1 , x

±
2 , x

±
3 ] over K whose Newton

polytope is ∆̌, where A ⊂ N denotes the subset consisting of all vertices of ∆̌ and 0 ∈ N . We
assume that the function

A→ R, n 7→ val(kn) (7.2)

induces a central subdivision of ∆̌. Let trop(F ) be the tropicalization of F , which is defined
as the tropical polynomial

trop(F )(x) := max
n∈A

{val(kn) + n1x1 + n2x2 + n3x3} . (7.3)

Let further B be the 2-sphere with an integral affine structure with singularities obtained by
contracting the tropical hypersurface defined by trop(F ) in the tropical toric variety XΣ̌′(T)
associated with Σ̌′ in the way of Section 4.2. We write the radiance obstruction of B as
cB ∈ H1(B, ι∗T ).

Let D ⊂ C be the open unit disk. We consider the universal covering of D \ {0}

e : H → D \ {0} , z 7→ exp(2π
√
−1z), (7.4)

where H is the upper half plane. We set

HR := {z ∈ H | Im z > R} , (7.5)

where R is a positive real number such that e(
√
1R) is smaller than the radius of convergence

of kn for any n ∈ A. For each element z ∈ HR, we consider the polynomial fz ∈ C[x±1 , x±2 , x±3 ]
obtained by substituting e(z) to t in F . Let Vz be the complex hypersurface defined by fz
in the complex toric variety XΣ̌′ . This is a quasi-smooth K3 hypersurface. We describe the
asymptotic behavior of the period of Vz in the limit R → ∞ by using the radiance obstruction
cB. In the following, we assume k0 = 1 by multiplying an element of K to F . Some parts of
the following are borrowed from [Ued14, Section 7].

For a given element α = (an)n∈A\{0} ∈ (C×)A\{0}, we associate the polynomial

Wα(x) = 1 +
∑

n∈A\{0}

anx
n. (7.6)

We write the toric hypersurface defined by Wα in the complex toric variety XΣ̌′ as Yα. Let

(C×)
A\{0}
reg be the set of α ∈ (C×)A\{0} such that Yα is Σ̌′-regular, i.e., the intersection of Yα

with any torus orbit of XΣ̌′ is a smooth subvariety of codimension one. We consider the family
of Σ̌′-regular hypersurfaces given by the second projection

φ : Y :=
{
(x, α) ∈ XΣ̌′ × (C×)A\{0}

reg

∣∣ Wα(x) = 0
}
→ (C×)A\{0}

reg , (7.7)

and the action of M ⊗Z C× to this family given by

t · (x, α) :=
(
t−1x, (tnan)n∈A\{0}

)
, (7.8)

where t ∈ M ⊗Z C×. We write the quotient by this action as φ̃ : Ỹ → Mreg, where Mreg :=

(C×)
A\{0}
reg / (M ⊗Z C×). The space Mreg can be regarded as a parameter space of Σ̌′-regular
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hypersurfaces whose Newton polytopes are ∆̌. Let (HB,∇B, HB,Q,F •
B, QB) be the residual

B-model VHS of the family φ̃ : Ỹ → Mreg [Iri11, Definition 6.5].
When R is sufficiently large, the hypersurface Vz is Σ̌′-regular for any z ∈ HR. We have a

map l given by

l : HR → Mreg, z 7→ [(kn(e(z)))n∈A\{0}], (7.9)

where kn(e(z)) is the complex number obtained by substituting e(z) to t in kn. We define a
holomorphic form on Vz by

Ωz :=
dx1

x1
∧ dx2

x2
∧ dx3

x3

dfz
. (7.10)

This defines a section of l∗HB over HR.
Let Y be an anti-canonical hypersurface of the complex toric variety XΣ associated with Σ,

and ι : Y ↪→ XΣ be the inclusion. Choose an integral basis {pi}ri=1 of PicXΣ such that each pi is
nef. This determines a coordinate q = (q1, · · · , qr) on M := PicXΣ ⊗Z C× =

(
ZA\{0}/M

)
⊗Z

C× ⊃ Mreg and a coordinate τ = (τ1, · · · , τr) on H2
amb(Y,C). Let ui ∈ H2(XΣ,Z) be the

Poincaré dual of the toric divisor Dρi corresponding to the one-dimensional cone ρi ∈ Σ, and
v = u1 + · · ·+ um be the anticanonical class. Givental’s I-function is defined as the series

IXΣ,Y (q, z) = ep log q/z
∑

d∈Eff(XΣ)

qd
∏⟨d,v⟩

k=−∞(v + kz)
∏m

j=1

∏0
k=−∞(uj + kz)∏0

k=−∞(v + kz)
∏m

j=1

∏⟨d,uj⟩
k=−∞(uj + kz)

,

which gives a multi-valued map from an open subset of M × C× to the cohomology ring
H•(XΣ,C). Here, Eff(XΣ) denotes the set of effective toric divisors on XΣ. We write

IXΣ,Y (q, z) = F (q) +
G(q)

z
+
H(q)

z2
+O(z−3). (7.11)

The mirror map ς : M → H2
amb(Y,C) is a multi-valued map defined by

ι∗
(
G(q)

F (q)

)
. (7.12)

The residual B-model VHS is isomorphic to the ambient A-model VHS (HA,∇A,F •
A, QA)

[Iri11, Definition 6.2] via the mirror map ς [Iri11, Theorem 6.9]. Hence, the section of l∗HB over
HR defined by Ωz can also be regarded as a section of (ς ◦ l)∗HA via the mirror isomorphism.
Here we replace the real number R with a larger one if necessary.

We also choose elements p0 ∈ H0
amb(Y ;Q) and pr+1 ∈ H4

amb(Y ;Q) so that we have p0 ∪
pr+1 = 1, and define sections

p̃i := exp(−τ) ∪ pi, 0 ≤ i ≤ r + 1, (7.13)

of HA. These are flat sections with respect to the Dubrovin connection ∇A. Note that the
quantum cup product coincides with the ordinary cup product, since Y is a K3 surface. The
sections {p̃i}r+1

i=0 form an integral structure of HA,C := Ker∇A. This is related to the integral
structure Hamb

A,Z defined in [Iri11, Definition 6.3] by a linear transformation.
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We consider a map ϕ : l∗HA,C(HR) → (U ⊕ Pic(Y )amb)⊗Z C defined by

p̃0 7→ 2π
√
−1e, p̃r+1 7→ 2π

√
−1f, p̃i 7→ −2πpi (1 ≤ i ≤ r), (7.14)

where U denotes the hyperbolic plane and (e, f) is its standard basis. This is an isomorphism
preserving the pairing. We obtain the period map

HR → P((U ⊕ Pic(Y )amb)⊗Z C) (7.15)

determined by Ωz via the mirror isomorphism and the map ϕ. The image of this map is
contained in

D′ := {[σ] ∈ P((U ⊕ Pic(Y )amb)⊗Z C) | (σ, σ) = 0, (σ, σ) > 0} . (7.16)

We also set

D := {σ ∈ Pic(Y )amb ⊗Z C | (Re τ,Re τ) > 0} . (7.17)

Here we have an isomorphism D′ ∼= D of complex manifolds given by

k1e+ k2f + σ 7→ −
√
−1

k1
σ, (7.18)

where k1, k2 ∈ C and σ ∈ Pic(Y )amb ⊗Z C. By this isomorphism, we obtain the period map
P : HR → D.

Corollary 7.1. The leading term of the period map P in the limit R → ∞ is given by

−2π
√
−1z · ψ−1(cB), (7.19)

where ψ denotes the map ψ ⊗Z idR : Pic(Y )amb ⊗Z R ↪→ H1(B, ι∗T ).

Proof. From Theorem 1.2, we can see that the radiance obstruction cB of B is given by

cB =
∑

n∈A\{0}

val(kn)ψ(Dn), (7.20)

whereDn is the restriction to Y of the toric divisor onXΣ that corresponds to the 1-dimensional
cone whose primitive generator is n.

The holomorphic form Ωz corresponds to F (q) · 1 ∈ H0
amb(Y,C) under the mirror isomor-

phism [Iri11, Theorem 6.9], where F (q) is the first term of the Givental’s I-function (7.11). It
turns out that the period map P : HR → D is given by z 7→ ς(l(z)). The leading term of this
is given by

r∑
i=1

pi log qi (l(z)) . (7.21)

Suppose Dn =
∑r

i=1 bn,ipi in Pic(XΣ), where bn,i ∈ Z. Then we have

qi(l(z)) =
∏

n∈A\{0}

kn(e(z))
bn,i . (7.22)
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Hence, we obtain

r∑
i=1

pi log qi (l(z)) =
r∑

i=1

pi

 ∑
n∈A\{0}

bn,i log (kn(e(z)))

 (7.23)

∼ −
r∑

i=1

pi

 ∑
n∈A\{0}

bn,i log e(z) · val(kn)

 (7.24)

= − log e(z)
∑

n∈A\{0}

val(kn)
r∑

i=1

bn,ipi (7.25)

= −2π
√
−1z

∑
n∈A\{0}

val(kn)Dn (7.26)

= −2π
√
−1z · ψ−1(cB). (7.27)

Corollary 7.1 implies that the radiance obstruction ψ−1(cB) ∈ Pic(Y )amb ⊗Z R can be
regarded as the period of the tropical K3 hypersurface defined by trop(F ). We can also obtain

(ψ−1(cB), ψ
−1(cB)) ≥ 0 (7.28)

from Corollary 7.1 and the inequality (Re τ,Re τ) > 0 of (7.17). The following inequality
(7.29) can be regarded as a tropical version of the Hodge–Riemann bilinear relation for K3
surfaces appearing in (7.16).

Corollary 7.2. One has

(ψ−1(cB), ψ
−1(cB)) > 0. (7.29)

Proof. From the assumption that the function A → R, n 7→ val(kn) induces a central subdi-
vision of ∆̌, we can see that for any n0 ∈ A \ {0}, there exists m0 ∈MR such that

⟨m0, n0⟩ = val(kn0), ⟨m0, n⟩ > val(kn) (∀n ∈ A \ {0, n0}) . (7.30)

By subtracting the divisor D(m0) of (6.21), we get

ψ−1(cB) =
∑

n∈A\{0}

val(kn)Dn ∼
∑

n∈A\{0,n0}

dn0,nDn, (7.31)

where dn0,n is some negative real number. Since Dn0 ·Dn ≥ 0 for any n ∈ A\{0, n0} and there
exists n ∈ A \ {0, n0} such that Dn0 ·Dn > 0, we can get

(
Dn0 , ψ

−1(cB)
)
=

Dn0 ,
∑

n∈A\{0,n0}

dn0,nDn

 < 0 (7.32)
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for any n0 ∈ A \ {0}. Hence, we obtain

(
ψ−1(cB), ψ

−1(cB)
)
=

 ∑
n∈A\{0,n0}

dn0,nDn, ψ
−1(cB)

 (7.33)

=
∑

n∈A\{0,n0}

dn0,n

(
Dn, ψ

−1(cB)
)

(7.34)

> 0. (7.35)

Remark 7.3. As we saw in Remark 4.2 and Remark 4.5, there are ambiguities in the choices
of positions of singular points when we contract tropical toric hypersurfaces, and the radiance
obstruction does not depend on these choices. This means that moving singular points to
monodromy invariant directions does not change the period of the tropical K3 surface B. We
can infer that we should think that a tropical K3 surface which is obtained by moving singular
points to monodromy invariant directions is “equivalent” to the original one.

Remark 7.4. The space

{σ ∈ Pic(Y )amb ⊗Z R | (σ, σ) > 0} (7.36)

is the period domain of tropical K3 hypersurfaces. This is the numerator of the moduli
space of lattice polarized tropical K3 surfaces [HU18, Section 5]. In [OO18a], [OO18b], they
construct Gromov–Hausdorff compactifications of polarized complex K3 surfaces by adding
moduli spaces of lattice polarized tropical K3 surfaces to their boundaries.

References

[GH84] William Goldman and Morris W. Hirsch, The radiance obstruction and parallel
forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), no. 2, 629–649.
MR 760977

[Gro05] Mark Gross, Toric degenerations and Batyrev-Borisov duality, Math. Ann. 333
(2005), no. 3, 645–688. MR 2198802

[GS06] Mark Gross and Bernd Siebert, Mirror symmetry via logarithmic degeneration data.
I, J. Differential Geom. 72 (2006), no. 2, 169–338. MR 2213573

[GS10] , Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom.
19 (2010), no. 4, 679–780. MR 2669728

[GW00] Mark Gross and P. M. H. Wilson, Large complex structure limits of K3 surfaces, J.
Differential Geom. 55 (2000), no. 3, 475–546. MR 1863732

[HU18] Kenji Hashimoto and Kazushi Ueda, Reconstruction of general elliptic K3 surfaces
from their Gromov-Hausdorff limits, arXiv:1805.01719, 2018.

[HZ02] Christian Haase and Ilia Zharkov, Integral affine structures on spheres and torus
fibrations of Calabi–Yau toric hypersurfaces I, arXiv:math/0205321, 2002.

29



[Iri11] Hiroshi Iritani, Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61
(2011), no. 7, 2909–2958. MR 3112512

[Iwa10] Shinsuke Iwao, Integration over tropical plane curves and ultradiscretization, Int.
Math. Res. Not. IMRN (2010), no. 1, 112–148. MR 2576286

[Kaj08] Takeshi Kajiwara, Tropical toric geometry, Toric topology, Contemp. Math.,
vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 197–207. MR 2428356
(2010c:14078)

[Kal15] Nikita Kalinin, A guide to tropical modifications, arXiv:1509.03443, 2015.

[KMM08] Eric Katz, Hannah Markwig, and Thomas Markwig, The j-invariant of a plane
tropical cubic, J. Algebra 320 (2008), no. 10, 3832–3848. MR 2457725

[KMM09] , The tropical j-invariant, LMS J. Comput. Math. 12 (2009), 275–294. MR
2570928

[KS06] Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean an-
alytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston,
Boston, MA, 2006, pp. 321–385. MR 2181810

[Mik06] Grigory Mikhalkin, Tropical geometry and its applications, International Congress
of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 827–852. MR 2275625
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