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Periods of tropical K3 hypersurfaces

Yuto Yamamoto

Abstract

Let A be a smooth reflexive polytope in dimension 3 and f be a tropical polynomial
whose Newton polytope is the polar dual of A. One can construct a 2-sphere B equipped
with an integral affine structure with singularities by contracting the tropical K3 hyper-
surface defined by f. We write the complement of the singularity as ¢: By < B, and the
local system of integral tangent vectors on By as Tz. Let further Y be an anti-canonical
hypersurface of the toric variety associated with the normal fan of A, and Pic(Y)amp be
the sublattice of Pic(Y) coming from the ambient space. We give a primitive lattice em-
bedding Pic(Y)amp — H'(B,1.7Tz), and compute the radiance obstruction of B, which
sits in the subspace generated by the image of Pic(Y)amp.-

1 Introduction

Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We set
Mg == M ®z R and Ng := N ®z R = Hom(M,R). Let A C Mg be a smooth reflexive
polytope of dimension 3, and A C Ng be the polar polytope of A. Let further ¥ and % be
the normal fans to A and A respectively. We choose a refinement ¥’ C Mg of ¥ such that the
primitive generator of any 1-dimensional cone in ¥ is contained in A N M.

Let A C N denote the subset consisting of all vertices of A and 0 € N. We consider a
tropical Laurent polynomial

f(z) = max{a(n) + mzy + naws + ngrs}, (1.1)
such that the function
A—R, n+a(n) (1.2)

induces a central subdivision of A, i.e., every maximal dimensional simplex of the subdivision
has the origin 0 € N as its vertex. Let V(f) be the tropical hypersurface defined by f in the
tropical toric variety associated with '. See Section 3.1 for the definition of tropical toric
varieties.

We can construct a 2-sphere B equipped with an integral affine structure with singularities
by contracting V'(f). See Section 4 for details about the construction. The same construction
has already been performed in Gross—Siebert program [Gro05], [GS06]. There is also another
construction by Haase and Zharkov, which was discovered independently [HZ02]. Tt is also
known that maximally degenerating families of complex K3 surfaces with Ricci-flat Kahler
metrics converge to 2-spheres with integral affine structures with singularities in the Gromov—
Hausdorff limit [GWO00].



In this paper, we compute the radiance obstruction of B. Radiance obstructions are
invariants of integral affine manifolds, which were introduced in [GH84]. See Section 2 for its
definition. Let ¢: By — B denote the complement of singularities of B. Let further 7z be the
local system on By of integral tangent vectors. The cohomology group H'(B,:,7z) has the
cup product

U: HY(B,1,T2) @ H' (B, 1,Tz) — H*(B, 1, N*Tz) 2 Z (1.3)

induced by the wedge product. Let Y be an anti-canonical hypersurface of the complex toric
variety Xy associated with X, and

Pic(Y amp := Im (Pic(Xs) < Pic(Y)) (1.4)

be the sublattice of Pic(Y) coming from the Picard group of the ambient space. We show the
followings in this paper:

Theorem 1.1. There is a primitive embedding
¥ Pic(Y)amy — H' (B, 1.T2), (1.5)
that preserves the pairing.

Each element n of A\ {0} is the primitive generator of the 1-dimensional cone p, of X.
We write the restriction to Y of the toric divisor on Xy corresponding to p, as D,.

Theorem 1.2. The radiance obstruction cg of B is given by

cx= 3 {aln) - a(0)} (D). (1.6)

neA\{0}

It is known that the valuation of the j-invariant of an elliptic curve over a non-archimedean
valuation field coincides with the cycle length of the tropical elliptic curve obtained by tropi-
calization [KMMO8]|, [KMMO09]. Theorem 1.1 and Theorem 1.2 are a generalization of this to
the case of K3 hypersurfaces.

The definition of periods for general tropical curves was given in [MZ08]. It was also
shown in [Iwal0] that the leading term of the period map of a degenerating family of Riemann
surfaces is given by the period of the tropical curve obtained by tropicalization.

The period map is approximated by Schmid’s nilpotent orbit [Sch73] in the limit to the
degeneration point. The leading term of the nilpotent orbit is determined by the monodromy
around the degeneration point. It was also shown in [GS10] that the wedge product of the
radiance obstruction corresponds to the monodromy operator around the degeneration point
in the case of Calabi-Yau varieties. Hence, we can see that the radiance obstruction gives the
leading term of the period map of the corresponding family of Calabi—Yau varieties.

The organization of this paper is as follows: In Section 2, we recall the definitions of inte-
gral affine manifolds and their radiance obstructions. We also recall the definition of integral
affine manifolds with singularities and we define their radiance obstructions. In Section 3, we
recall some notions of tropical geometry, such as tropical toric varieties and tropical modifica-
tions. In Section 4, we explain the details about how to construct integral affine spheres with
singularities from tropical K3 hypersurfaces. In Section 5, we discuss how dispersing singular



points piling at one point affects the cohomology group H'(B, 1,7z) and the radiance obstruc-
tion cp. The results in Section 5 will be used for proofs of the main theorems. In Section 6,
we give proofs of Theorem 1.1 and Theorem 1.2. In Section 7, we discuss the relation with
asymptotic behaviors of period maps of complex K3 hypersurfaces.
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2 Integral affine structures with singularities

Let M be a free Z-module of rank n and N := Homgz(M,Z) be the dual lattice of M. We set
MR =M Rz R, NR =N Xz R = HomZ(M, R), and AH(MR) = MR X GL(M)

Definition 2.1. An integral affine manifold is a real topological manifold B with an atlas of

coordinate charts v;: U; — Mg such that all transition functions ; o ;Z)j_l are contained in
Aff(Mg).

Let B be an integral affine manifold. We give an affine bundle structure to the tangent
bundle T'B of B as follows: For each U; and = € U;, we set an affine isomorphism

Oiv: TyB — Mg, v ¢i(x)+ d(x)v, (2.1)
and define an affine trivializations by
0;: TU; — U; x Mg, (z,v) = (2,0;,(v)), (2.2)

where v € T, B. This gives an affine bundle structure to TB. We write T'B with this affine
bundle structure as T B.
Let 7z be the local system on B of integral tangent vectors. We set T := Tz ®z R.

Definition 2.2. We choose a sufficiently fine open covering U := {U;}, of B so that there is a
flat section s; € T'(U;, T** B) for each U;. When we set cg((U;, U;)) := s;—s; for each 1-simplex
(U;,U;) of U, the element cz becomes a Cech 1-cocycle for 7. We call cg € H'(B,T) the
radiance obstruction of B.

Definition 2.3. An integral affine manifold with singularities is a topological manifold B
with an integral affine structure on By := B\ I', where I' C B is a locally finite union of
locally closed submanifolds of codimension greater than 2. We call I" the singular locus of B.



We assume that integral affine manifolds with singularities satisfy the following condition.
This was mentioned in [KS06, Section 3.1] as the fixed point property.

Condition 2.4. For any z € I', there is a small neighborhood U such that the monodromy
representation 71 (U \ I') — Aff(Mg) has a fixed vector.

Let B be an integral affine manifold with singularities satisfying the above condition. We
write the complement of the singular locus as ¢: By < B. Let further 77 be the local system
on By of integral tangent vectors. We set T := Tz ®7z R again.

Definition 2.5. We choose a sufficiently fine covering {U;}, of B so that there is a flat section
s; € I'(U; N By, TaﬁBO) for each U;. This is possible as long as we assume Condition 2.4. When
we set cp((Us,U;)) := s; — s;, the element cp becomes a Cech 1-cocycle for 1, 7. We call
cp € HY(B,1,T) the radiance obstruction of B.

Remark 2.6. The inclusion ¢: By < B induces a map t*: H'(B,1,T) < H'(By,T). Then
we can see (* (cg) = cp, from the definitions.

3 'Tropical geometry

3.1 Tropical toric varieties and hypersurfaces
Let (T, +, ) be the tropical semifield, where T := R U {—o0} and
a+b:=max{a,b}, (3.1)
a-b:=a+b.

Here the addition + in the right hand side of (3.2) means the usual addition. In the following
of this section, all additions + and multiplications - mean max and + respectively unless

otherwise mentioned.
Let M be a free Z-module of rank n and N := Homgz (M, Z) be the dual lattice of M. We

set Mg := M ®zR and Ng := N ®zR = Homy(M,R). We have a canonical R-bilinear pairing
<—, —) : MR X NR — R. (33)
For each cone o € F, we set

o :={me& Mg | (m,n) >0 foralln € o},
ot :={m & Mg |{m,n) =0forallnco}.

Let 3 be a fan in Ng. We define the toric variety X5 (T) associated with ¥ over T as follows:
For each cone o € ¥, we define X, as the set of monoid homomorphisms ¢¥ N M — (T, -)

X,(T) := Hom(c" N M, T) (3.6)

with the compact open topology. For cones 0,7 € ¥ such that ¢ < 7, we have a natural
immersion,

X, (T) = X(T), (v:e"NM—=T)— ("NMcCo'NM>T), (3.7)



where 0 < 7 means that o is a face of 7. By gluing {X,(T)}
tropical toric variety Xx(T) associated with 3,

X5(T) := <H XJ(’]I‘)> /N. (3.8)

ceY

ven together, we obtain the

We also define the torus orbit O, corresponding to o by

O,(T) := Hom(c™ N M, R). (3.9)
There is a projection map to the torus orbit
Po: Xo(T) = Ou(T), (w:c"NM —=T)— (c*NMcCo'NnMZT). (3.10)

See [Pay09] or [Kaj08] for more details about tropical toric varieties.
Consider a tropical Laurent polynomial

f=> ana™ (3.11)

where A C M be a finite subset and a,, € T. It gives rise to a piecewise linear function
f: Ng — T. The bend locus V(f) C Ng of f is called the tropical hypersurface defined by
f. The tropical hypersurface defined by f in the tropical toric variety Xy (T) is the closure of
V(f) in Xx(T). Note that the tropical toric variety X5(T) contains the maximal dimensional
torus orbit Ogo(T) = Ny as its open dense subset.

3.2 Tropical modifications

Tropical modifications are first introduced in [Mik06]. We briefly recall the idea of it. Let
(T, ®,®) be the tropical hyperfield, where T := RU {—oc0} and

| max{a,b}, a # b,
a@b'_{{tETHSa}, 0l (3.12)
a®b:=a+b. (3.13)

The addition + in the right hand side of (3.13) means the usual addition.
Let A C Z" be a finite subset. We consider a tropical polynomial

fla)=EPa, o, (3.14)

which is a multi-valued function on T" defined by

f@) = { {Ztné%arfézfzzf;xn} | Vg?ﬁ;ig%_e A st ap,x™ > apx™ (Yn # ng), (3.15)
We consider the graph I'y C T"*! of the function f
Iy:= {(x,y) e Tt | y € f(x)} (3.16)
This coincides with the bend locus of
f(z,y) =y+ Z a,z" (3.17)

neA

in T"* and has a natural balanced polyhedral structure. Let d;: I'y — T™ be the projection
forgetting the last component.



Definition 3.1. We call the balanced polyhedral complex I'; the tropical modification of T"
with respect to f. We also call the map d;: I'y — T™ the contraction with respect to f.

The graph of ) _, a,a™ is isomorphic to T™ as sets. Hence, we can think that associating
I'y with T" corresponds to replacing 4+ and - of > _, a,2™ with @ and © respectively.

We can also define tropical modifications of general tropical varieties in affine spaces.
We define tropical modifications of tropical manifolds that are not necessarily embedded in
ambient spaces as maps between tropical manifolds which locally coincide with a tropical mod-
ification of an affine tropical variety. For a tropical manifold X, we regard a tropical manifold
X’ which relates to X by tropical modifications as a tropical manifold that is equivalent to
X. We refer the reader to [Shal5] or [Kall5] for details.

4 Contractions of tropical hypersurfaces

In this section, all additions + and multiplications - mean max and + respectively unless
otherwise mentioned. We also let M, N denote a free Z-module of rank 3 and its dual lattice
respectively.

4.1 A local model of contractions

We fix basis vectors eq, eg, e3 of N. Consider the cone o generated by ke; +es,e5 € N in Ng,
where £ is some positive integer. Then the dual cone o) is generated by e}, —ei + kej, e
and we have

X,, (T) :=Hom(e) N M, T) (4.1)
:{(az,y,z,w) eT* xR ‘ xy:zk}.
We define the space X} ; by
Xiy = {(z,y,2,w) € X0 (T) | z=0+w'}, (4.3)

where [ is also some positive integer. This space consists of two 2-dimensional faces

Fy ={(z,y,z,w) e T° xR ‘ xy:wkl,z:wl,w>0},

F_ = {(x,y,z,w)E’]T3><R‘xy:z:0>w},
and a 1-dimensional face
= {(z,y,2,w) €ET* xR |2y =2 =w =0} . (4.6)

Each of these faces has an integral affine structure induced from the ambient space T? x R.
We extend them and construct an integral affine structure with a singular point on Xj; as
follows:

First, we choose a point p = (zg, ¥0,0,0) € L. We set

Ux ::Xk,l\{(xayazaw) EL‘xZ$O}7
Uy ::Xk,l\{(xvyazaw) 6L|l’§l’0}



These give a covering of Xj; \ {p}. Consider projections

pz: U:D % R27 (x7 y7 Z7 w) H (x7 w)7 (4'9)
py: Uy = R (2,9, 2,0) = (y,w). (4.10)

The restrictions of p, and p, to F, are integral affine isomorphisms onto their images. Hence,
we can extend the integral affine structures on Fy to U, and U, so that projections p, and p,
are integral affine isomorphisms onto their images. Here we have U, N U, = F U F_ and the
integral affine structures on U, and U, coincide on F and F_ with each other. Hence, we can
extend the integral affine structures on U, and U, to an integral affine structure on Xj; \ {p}.
We can easily calculate the monodromy of the integral affine structure around p.

Lemma 4.1. Consider a loop around the point p, which starts from a point in U,, passes
through F_,U,, and Fy in this order, and comes back to the original point. The monodromy

along this loop is given by the matrix
1 ki
(). -

under the basis ey, e, corresponding to the coordinate (z,w) of U,.

Proof. A point (z,w) = (z¢,wo) of U, is shown as (z,y, z,w) = (zo, 75", 0, wp) in F_. If we see
this in Uy, we have (y, w) = (25", wp). This is shown as (2, y, 2, w) = (zow*, x5, w), wy) in F.
If we see this in U, again, we get (x,w) = (zowf', wo). Hence, the monodromy transformation

is given by e, > e, e, > (kl)e, + €y. O

Remark 4.2. In the above construction of Xj;, there is an ambiguity in the choice of the
position of p € L.

Remark 4.3. When k£ = [ = 1, the point p becomes a so-called focus-focus singularity. When
k,l are not necessarily 1, the point p can be regarded as a concentration of kl focus-focus
singularities. The invariant subspace with respect to the monodromy around p is generated
by e,. It coincides with the tangent space of L.

Remark 4.4. When k =1 =1, we have
Xl,lg{(xayaw) ETQXR‘xy:()—Fw}, ("L‘7yazaw)'_>($ay7w)' (412)

In [KS06, Section 8], a non-archimedean torus fibration corresponding to a surface containing
a focus-focus singularity is constructed by using the algebraic surface defined by (af—1)y = 1.
Here, the subtraction and multiplication mean the usual ones. When we set a = x, 5 =y,v =
w™!, the tropicalizaion of it coincides with zy = 0 4+ w, the equation defining X ;.

Consider replacing the right hand side 0 + w' of the equation of (4.3) with 0 @ w'. Then
the solution of the equation z = 0 ® w' in X, (T) is the union of Xy, and the additional face

Ry = {(e..20) € T x B | ay = 5.2 < 0,0 = 0}. (1.13

This coincides with the tropical hypersurface V(f) defined by f =0+ 2 + w' in X, (T). We
can think that the surface X}, is obtained by contracting the tropical hypersurfaces V(f) to



a-direction and y-direction at the same time. We choose a point p = (¢, y0,0,0) € L and
define a contraction map ds,: V(f) = X, by

(Qf,y,Z,'lU) (x,y,z,w) € Xk,l

(x,271,0,0) T > @
T,Y,z,w) — _ 4.14
(.9, 2,w) (y"9,0,0) Yy > yo (4.14)

p = (z0,¥0,0,0) otherwise.

The face Fy is contracted to the line L by this map. The tropical hypersurface V'(f) and the
contraction dy, are shown in Figure 4.1.

Bt
.......

p

Figure 4.1: The tropical hypersurface V'(f) and the contraction of the face Fj

Associating V' (f) with Xy, is similar to tropical modifications which we recalled in Sec-
tion 3.2 in the sense that we replace operations + contained in a function with hyperoperations
@. In this article, we call associating the tropical hypersurface V(f) with Xj; a tropical mod-
ification with respect to 0 + w’, and the map d;,: V(f) — Xj; the contraction with respect
to 0+ w'.

4.2 Contractions of tropical toric K3 hypersurfaces

Let A C Mg := M ®z R be a reflexive polytope of dimension 3, which is not necessarily
smooth. We write the polar polytope of A as A € Ng := N ®z R, and the normal fans of
A, AasY C Ng, Y C Mg respectively. We choose a refinement Y C Mg of ¥ such that the
primitive generator of any 1-dimensional cone in ¥’ is contained in A N M. This gives rise to
a crepant resolution of the toric variety associated with X.

Let A C N denote the subset consisting of all vertices of A and 0 € N. We consider a
tropical Laurent polynomial

flx)=> " a(n)z", (4.15)
such that the function

A—R, n+—a(n) (4.16)

induces a central subdivision of A. We consider the tropical hypersurface V(f) defined by f
in the tropical toric variety Xy, (T).



The tropical hypersurface V(f) intersects with the toric boundary of X5, (T) as follows: Let
p € ¥’ be a 1-dimensional cone, and F, » be the face of A which contains the primitive generator
of p in its interior. Recall that there is a one-to-one correspondence between k-dimensional
faces of A and (2 — k)-dimensional faces of A, given by

Fe Fri={neA|(mn)=-1YmeF}. (4.17)
On the torus orbit O,(T) C Xs,/(T), the tropical hypersurface V(f) is defined by

Z a(n)z". (4.18)

n€ANEy

The tropical hypersurface V(f) intersects with the torus orbit O,(T) if and only if the number
of elements of AN F is greater than or equal to 2. This happens exactly when F, is a vertex

or an edge. Let 0 € ¥’ be a cone of dimension greater than 1, and {Pi}izo C Y be the set of
1-dimensional faces of 0. On the torus orbit O,(T) C X5, (T), the tropical hypersurface V(f)
is defined by

Z a(n)z". (4.19)

neMi—g ANFy;,

The tropical hypersurface V(f) intersects with the torus orbit O, (T) if and only if the number
of elements of ﬂizo ANF; is greater than or equal to 2. This happens when the dimension of
o is 2 and the primitive generators of its 1-dimensional faces pi, po are contained in a common
edge of A.

We write the union of cells of V(f) that do not intersect with the toric boundary as B.
This is topologically a 2-sphere. In the following, we contract the tropical hypersurface V'(f)
to the 2-sphere B, and equip B with an integral affine structure with singularities.

First, we choose positions of singular points. Let P be the natural polyhedral structure of
B. For each cell 7 € P, we set

A :={ne A\ {0} | f(z) =a(0) = a(n)z",Vz € T}. (4.20)

There is a one-to-one correspondence between P and proper faces of A given by 7 <> F(7),
where

F(r):={meA|{m,n)=—-1,Vne A,}. (4.21)

Let 7 € P be a 1-dimensional cell and vy, v; € P be its endpoints. Let further {pi}ﬁzo be the
set of 1-dimensional cones in ¥’ whose primitive generators are contained in F(7). We write
the primitive generator of p; as m; € M. We renumber p; (0 < i <) so that my = F'(vy) and
my; = F(vq1), and m; is nearer to mg than m;,; for any 1 < i <[ — 1. We choose [ distinct
points p(7); (1 < i <) on the interior of 7 so that the point p(7); is nearer to the vertex vy
than p(7);41 for any 1 <7 <1 — 1. These points will be singular points of the integral affine
structure of B. For each 1-dimensional cell 7 € P, we choose points p(7); in this way and fix
them.

For each point p(7);, we take an open neighborhood Uy, of it. We also take an open
neighborhood U, for each vertex v of B. Here, we take these open sets so that they do not
contain any other singular points or any other vertices of B, and all of these open sets Uy ,y,, U,
and interiors of all facets of B form a covering of B. We contract the tropical hypersurface
V(f) to B as follows:



e Around U,

Let p € ¥’ be the cone whose primitive generator is F'(v), and X,(T) C Xy, (T) be the
tropical affine toric variety corresponding to p. Let further V(f), be the star of v in
V(f). We consider the projection

pp: X,(T) = O,(T), (w:p'NM—=T)= (p"NMcCp'NM=T). (4.22)
We set U, == p;,(p,(U,)) N V(f), and defined the map 4,: U, 2 U, as

8, Uy 2 p,(U,) 2 U, (4.23)

where p,(U,) = U, is the inverse map of the bijection p,: U, — p,(U,). We equip U,
with the integral affine structure induced by the integral affine structure of p,(U,) C
O,(T) = R?. The dominant part of f at v is given by

a0)+ > a(n)a". (4.24)

n€EANES

By taking an appropriate coordinate, the function (4.24) can be rewritten as a function
of the form y + f,, where f, is a function on O,(T). The map ¢, coincides with a
restriction of the contraction of the hypersurface defined by y + f, with respect to the
function f,, which we considered in Section 3.2.

e Around Up(q-)i

We write the 2-dimensional cone whose 1-dimensional faces are p;_; and p; as o; € >
(1 <i<1). Let V(f), be the intersection of the star of 7 in V(f) and the subvariety
X5 (T) C X5 (T). The tropical toric variety X,,(T) coincides with X, (T) of Section 4.1,
where k; is the integral distance between the primitive generators m; 1, m; of p;_1, p;.
On the other hand, the dominant part of f at 7 is given by

a(0) + Y a(n)a". (4.25)

neA;

The set A, coincides with F(7)* N N, and consists of two vertices of A. By taking an
appropriate coordinate, the function (4.25) can be rewritten as a function f, of the form
0 + z + w', where [ is the integral distance between the elements of A.. Let V(f,) be
the tropical hypersurface defined by f; in X,, (T). We can embed V(f), into V(f;).
The open set Uy, C V(f)r is embedded into Xk, by the embedding. We define

Up(r); C V(f)+ as the inverse image of Uy (;), by the map

8 frp(r)s
V(f)r CV(fr) 2225 X0 D Uiy, (4.26)

where d;, (), is the contraction map of (4.14). We also define &p(r),: Up(r)y — Up(r),
as the restriction of (4.26) to Up;),. We equip Uy ), with the integral affine structure
induced from the integral affine structure of Xy, ; D Upr,.

e Around facets

We consider the identity map from the interior of each facet of B to itself. The interior of
cach facet has an integral affine structure induced from the ambient space Oy (T) = R?.
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The open sets U, UP(T)i and interiors of all facets of B form a covering of V(f). The above
maps 9, p(r), and identity maps of interiors of facets coincides with each other on overlaps,
since 0y, Op(r), are constructed by using the projections to the same direction on the overlap,
and these maps is identical on facets of B. By gluing these maps together, we obtain a
contraction map 0: V(f) — B and an integral affine surface B with singular points on each
edge. We regard B as a tropical K3 surface equivalent to the tropical K3 hypersurface V(f).

Remark 4.5. There is an ambiguity in the choice of the position of each singular point p(7);.
However, neither the cohomology group H'(B, ¢,7z) nor the radiance obstruction cp of B does
not depend on this choice. We will reconsider this point in Remark 7.3.

Remark 4.6. Kontsevich and Soibelman constructed a 2-sphere with an integral affine struc-
ture with singularities by contracting a Clemens polytope of a degenerating family of K3
surfaces [KS06, Section 4.2.5]. Their contraction is quite similar to the above contraction of
tropical hypersurfaces. Compare the local contraction given in [KS06, Section 4.2.5] to the
contraction given in (4.14) of this article.

Example 4.7. Consider the polynomial

flryy,2)=1+2%y 2t oty oty 128 p oty (4.27)
The Newton polytope A C Ng of f is the simplex whose one side is 4. In this case, there are
no further crepant refinements of 3. We choose a point p(7) on the interior of each edge 7 of
B, which will be a singular point. Let p; and py be the 1-dimensional cones in the normal fan
Y. of A generated by (1,0,0) and (0, 1,0) respectively. Let further v; and vy be the vertices of

B such that F(v;) = (1,0,0), F(v2) = (0,1,0), and 7 be the edge of B connecting v; and v,.
Around vy, the tropical hypersurface V(f) is locally defined by

L+ Y2 by i3 4 aty et (4.28)
and the contraction d,, coincides with a restriction of the contraction with respect to the
function f,, on O, (T) defined by

fuly,2) =yt +y 8yl (4.29)
Around vy, the tropical hypersurface V(f) is locally defined by

1+ 23y e by i3 a7ty et (4.30)
and the contraction d,, coincides with a restriction of the contraction with respect to the
function f,, on O,,(T) defined by

for(m,2) =227 a2 a7l (4.31)
Around 7, the tropical hypersurface V' (f) is locally defined by
L+aly 128 ly 7l (4.32)
When we set 2’ := 1x,y := yz, 2/ := leyz,w’ := z, it is locally defined by
[ W) =042 +w'™. (4.33)

The contraction d,(,) coincides with a restriction of the contraction dy, ,(,) of (4.14) (k= 1,1 =
4). The open set U, is equipped with the integral affine structure of Xj 4.

These contractions are shown in Figure 4.2. Black points are chosen points as singular
points. The red region shows the contraction d,, and the blue region shows the contraction
dy,- The green region shows the contraction d,).
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Figure 4.2: A contraction of the tropical hypersurface V' (f)

5 Dispersions of focus-focus singularities

Let S be an integral affine surface with some singular points. We suppose that the monodromy
around one of the singular points p of S is given by the matrix

((1) lf) | (5.1)

under a local coordinate system (z,y) near p, where k is a non-zero integer. Here, the tangent
vector e, corresponding to the coordinate = is monodromy invariant, and the coordinate y is
globally well-defined on a sufficiently small open neighborhood U of p. We write the line defined
by y =0 on U as L. We can construct another integral affine structure with singularities on
U, which has just two singular points p; and ps on L whose monodromies are given by

((1) ’i) , (5.2)

under the same coordinate system (x,y) respectively, where ki, ks are non-zero integers such
that k1 + k2 = k. By replacing the original integral affine structure with singularities on U
with this new one, we can obtain another integral affine surface S’ with singularities, since
monodromies of both integral affine structures with respect to the loop along the boundary of
U are the same.

Assume that the determinant of the monodromy matrix around any singular point of S is
1. Then we have 1, A2 Tz = Z for both S and S’, where ¢ is the inclusion of the complement
of singularities. The cohomology groups H'(S,,7z) and H*(S’,1,7z) have the cup product
(1.3) induced by the wedge product. We also write the radiance obstructions of S and S’ as
cs and cgs respectively.

Let U = {Uj}je 5 be a sufficiently fine acyclic covering of S for +,7z such that each
open set have one singular point at most and each singular point is contained by only one
open set. Let Uj,,U;, € U' be the open sets containing p; and p, respectively. We set
Uj, =U;, WU;,,J° = J'\ {Ja,js}, and J := J° U {j,}. We replace U’ if necessary so that
U;, NUj, does not intersect with U;, NU;, for any ji, j» € J°. The set of open sets U := {U;}
is an acyclic covering of S for ¢, 77.

JjeJ
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We define a map f: H*(S,t.Tz) — H*(S',1.Tz) by setting

@) (Ui, Up)) = & (U3 U)o, o, (5:3)
for each ¢ € Z*(U,1,Tz) and j1, jo € J', where
, U, jeJo
U= G o 5.4
J { Uj»w J € {jaa]ﬂ}' ( )

Lemma 5.1. The map f: H'(S,1.Tz) — H'(S',1.Tz) is well-defined.

Proof. Since we have

5(f<¢)) (((Ujl’ szv U ))) f(¢) (( J2s )) - f(¢) ((UjN Uj3)) + f(¢) ((ij Uj2>> ( 5)
= ¢ (U, 13)) ¢ (U}, U3)) + 6 (U}, UR)) (5.6)

(5¢> (( Ju? JQ’U;S)) - O’ ( )

)

f(¢) is a cocyle. For any element 6 € C°(U,1,Tz), we take the element ¢ € C°(U', 1, Tz

defined by ¢'(U;) := 0(U;) !U Then we have

f(549) ((Ujm sz)) = 00 ((UJ,N /'2>)|UjlmUj2 = Q(U]{ ‘U NUj 0 U/’ ‘U NU;, (5'8)
o0’ ((UJUU )) = 9/( j2)|Uj1mUj2 - GI(UJ&)’UthD = 9 UI ’U \NUjy - 9 U/ |U \NUjy (59)
Hence, we obtain f(d6) = 06’ O

Proposition 5.2. The map f: H'(S,1.7z) — HYS',1.Tz) is a primitive embedding that
preserves the pairing.

Proof. First, we check that the map f is injective. Suppose there exists ¢’ € C°(U’, 1, Tz) such
that §(0') = f(¢). We will construct an element § € C°(U, 1. Tz) such that §(8) = ¢. Here

since we have

0'(Ujs) = 0'(Uia) = (60) (Ui, Uis)) = f(9) (U Ua)) = & (U3, U, )) =0, (5.10)
there is a section s € I'(Uj,, 1, 7z) such that S|Uja = 0'(U;,) and 8|Ujﬁ = 0'(Uj,). We define
6 € C°(U, 1. Tz) by setting

0'((U,), jeJo,
o((U;)) == { ’ ((U;) ]j:jy. (5.11)
Then when 7,75 € J°, we have

00 (U, Uy,)) = 0'(Us,) — 0'(Uy,) = 66" (U, Uj,)) = f(9) (Uy,, Up,)) = 6 (Uy,, U,)) -

(5.12)

When j; = j,, j2 € J°, we have
00 ((Uw U ‘Ujamsz - HI(UJ'Q)’UjamU]-Q - ’UjamUjQ (5.13)
= ‘9,(Uj2)|U- nU;, — el(Uja”U. NUj, (5-14)

= 60 (U, U3)) = 16) (U Un)) = 6 (U5, U3)) |y, - (5:15)
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Since we can also get 66 ((ij,Uj2))|UijUj2 = ¢ ((ij,U]»Q))’U]_ﬁmU]_2 in the same way, we

obtain

30 (U, U) = 0 (U3, Us) (5.16)

Therefore, we obtain 6(0) = ¢.

Next, we check that the map f preserves the pairing. We take a total orders of J°. By
adding j, to J° as the minimum element, we obtain a total order of J. We also consider the
total order of J' obtained by adding j,, jg to J° as the minimum and the second minimum
elements respectively. For any ¢y, ¢y € H (U, 1,Tz), we can calculate as follows:

S UG — f(0)Uf(g) = > (U, Up)) Aéal((Uy,, Us)) (5.17)
Uijy ﬁéljff%jz #0
= > ), Ui) A f(62)((U3,, U)) - (5.18)
Uja m&f%%}m #0
— > F@U U)) A F(6) (U3, U3,))  (5.19)
Ujﬁm(]}jfg%]jﬁéw
— Y F@)U, Uip)) A F(2) (U, U;) (5.20)
Ujam{}f;;Uﬂé@
=0, (5.21)

where j1,jo € J°.
Lastly, we show that the map f is primitive. Consider the map

f@idp: HY(S,1,T2) @z R — HY(S',1,Tz) 22 R, ¢t f(¢) D1, (5.22)

which we will also write as f. Assume that there exists an element §' € C°U’, 1, T) such
that 6(0") + f(¢ @ t) € CHU', 1, Tz). We will construct an element § € C°(U, 1, T) such that
5(0)+opxt € CY (U, 1,Tz). Since the monodromy invariant directions of p; and p, are the same,
we can extend sections ¢'(Uj, ), 0'(Uj,) to U; . Let sq, s € I'(Uj,, 1. Tz) denote the extensions
of 0'(Uj, ), 0'(Uj,) respectively. Since we have

(3(8) + 6 @ 0) (Vs Up)) = O Wiy, = Wil ) € 6 TelUs, MU, (5:23)

we can see o — Sg € 1, T7(U;,). We define 0 € C°(U, 1, Tz) by setting

w&wrz{eﬂ%”’jeja (5.24)

Sas J = Jve

Then, in the case where j1, jo € J°, we have

(59 + ¢ ® t) ((ij sz)) = el(sz) - Ql(Uh) + (¢ ® t) ((Ujl’ Uj2)) (525)
= ot ((Uju Uj2)) + f(¢ ® t) ((Ujl’ sz)) (5‘26)
= (00" + f(o @ 1) (U1, Upp)) € :Tz(Uj, NUj). (5.27)
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In the case where j; = j,,j» € J°, Uj, N Uy, # 0 or Uj, N U, # 0. When U;, N U;, # 0, we

have

<58 +9® t) ((ij Uj2)) }UjamUj2 = 9,<Uj2)|UjamUj2 — Sa ’UjamUJQ + (¢ ® t) ((ij Uj?)) ‘UjamUj2
(5.28)
=V Uly, 0, — U3l o, + £ ©8) (U3 Up))
(5.29)
(

= (00" + f(¢p @1)) (U)o, Up,)) € tTa(Uj, N Uy,). 5.30)

Hence, we obtain (00 + ¢ @ t) ((U;,,Uy,)) € w.Tz(U;, NUy,). When U;, N Uj, # 0, we have

(00 +o®t) ((ij sz)) ’UjﬁmUj2 - gl(Uj2)|UijUj2 — Sa |U15”Ug‘2 +(0®1) ((ij Uj2)) ‘UjﬁmUjQ

(5.31)
= QI(UJQHmeUh = 58 |uj,n0,
— (80 = 58) lvy, 0y, +F(@ @) ((Ujy: Us)) (5.32)
= el(Uj2)|UijUj2 - el(Ujﬁ)|UjBﬂUj2
— (80 = 38) lvy, 0y, (@@ 1) ((Ujy:Us)) (5.33)
=00+ f(6®1) ((Usy, Upn)) = (sa = 88) luy,rwy,  (5:34)
€L Tz(Uj, N Uy, ). (5.35)

Hence, we obtain (60 + ¢ ®1t) ((Uj,,Uy,)) € t.T2(U;, NU,,). Therefore, we have §(6) +¢ @1 €
CY U, 1. Tz). O

Proposition 5.3. One has f(cs) = cgr.

Proof. When we take a set of sections {s; € ['(Uj, ¢t.T)},.;, the radiance obstruction cg of S
is given by

CS<<UJ'17 sz)) = SJ'2|U]-1mUj2 - Sjl‘UjlﬂUjQ € F<Uj1 N sza L*T) (536)

for any ji,js € J. We set s, :=s;, [u,, and sj, :=s;, |v, . We have
Fes) (U Ui) = es(Uh Uy, = 8l eus, = S5l eus, € P O U 1T)
(5.37)
for any 71, jo € J'. This is just the radiance obstruction cg of S’ constructed from the set of

sections {s; € I'(Uj, . T)} e - O

6 Proofs of Theorem 1.1 and Theorem 1.2

Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We set
Mg == M ®z R and Ng := N ®; R = Hom(M,R). Let A C Mg be a smooth reflexive
polytope of dimension 3, and A C Ng be the polar polytope of A. Let further ¥ and ¥ be
the normal fans to A and A respectively.
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Let A C N denote the subset consisting of all vertices of A and 0 € N. We consider a
tropical Laurent polynomial

f(z) = max{a(n) + mz1 + naws + nyrs}, (6.1)
such that the function
A—=R, nw—a(n) (6.2)

induces a central subdivision of A, i.e., every maximal dimensional simplex of the subdivision
has the origin 0 € N as its vertex. Let V(f) be the tropical hypersurface defined by f in
the tropical toric variety Xg(T) associated with . For the time being, we do not take a
refinement of ¥.

Let further B be the 2-sphere with an integral affine structure with singularities obtained
by contracting V' (f) in the way of Section 4.2, and P be its natural polyhedral structure. For
each 1-dimensional cell of B, we choose its barycenter as a position of the singular point that
should be on it. We write the complement of singularities of B as t: By — B. Let Tz be the
local system on By of integral tangent vectors. We set 7 := Tz ®z R.

In the subsequent subsections, we give proofs of Theorem 1.1 and Theorem 1.2 in this
setting. Note that the statements of Theorem 1.1 and Theorem 1.2 do not depend on the the
choices of positions of singular points as mentioned in Remark 4.5. Furthermore, it is obvious
from the way of construction of B that taking a refinement ¥’ C Mg of ¥ such that the
primitive generator of any 1-dimensional cone in Y’ is contained in A N M can only disperse
concentrations of focus-focus singularities on B, and do not change anything else. Therefore,
if we prove the theorems in the above setting, Proposition 5.2 and Proposition 5.3 ensure that
Theorem 1.1 and Theorem 1.2 hold also when we replace ¥ with X'.

6.1 Proof of Theorem 1.1

We consider the complex toric variety Xy associated with ¥. We write the group of toric
divisors on X as

Divy(Xs) = € Z- D, (6.3)

peEX(1)

where 2(1) is the set of 1-dimensional cones in 3, and D, is the toric divisor corresponding
to p € X(1). We take the barycentric subdivision of P and let ¢ := {U.}. _, be the covering
of B, where U, is the open star of the barycenter of 7 € P. The covering U is acyclic for ¢,7z
and ¢, 7T, and

HY(U, 1, Tz) = H (B, 1, Tz), H (U, ., T)=H'B,.,T). (6.4)

There is a one-to-one correspondence between (1), A\ {0} and the set of facets of B given
by

p ey & 0(p), (6.5)

where n, € N is the primitive generator of p € ¥(1) and o(p) € P is the maximal dimensional
cell of B where a(0) and a(n,)z" attain the maximum of f.
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Let v € P be a vertex of B, and {o(p;)}>_, be the set of facets containing v. For a divisor
D =3 s koD, € Dive(Xs) and the vertex v € P, let m(v, D) denote the element of M
defined by

(m(v, D),n,,) = <k, 1<i<3. (6.6)

Since the fan ¥ is smooth, such an element m(v, D) always uniquely exists.
Let P(0) denote the set of vertices in P. Take an arbitrary map

&P — P(0), (6.7)
such that £(7) is a vertex of 7. We define a map
Ve: Dive(Xs) — H'U, 1. Tz), D e(D), (6.8)
by setting

Ye(D) (Ury, Ur,)) := m(&(m1), D) — m(&(m0), D) (6.9)

for each 1-simplex (Uy,, Uy, ) of . We will check that this map 1), gives the map of Theorem 1.1
in the following lemmas, from Lemma 6.1 to Lemma 6.5.

Lemma 6.1. The map ¢ is a well-defined group homomorphism.

Proof. First, we check that 1¢(D) ((Us,, U, )) is certainly a section of ¢, Tz over U,,NU,,. Open
sets Uy, Uy, intersect if and only if 79 < 7 or 7 < 79. Assume 7y < 73.

Consider the case where 7 is a facet. Let p € ¥(1) and n, € N be the elements corre-
sponding to 7; under (6.5). Since points m({(7), D) and m(&(m), D) are contained in the
plane

{m € Mg [ (m,ny) = —k,}, (6.10)
the vector m(&(m), D) — m(&(0), D) is contained in the plane
{m e Mg | (m,n,) =0}. (6.11)

On the other hand, the section ¢, 7z(U,, N U,,) coincides with this subspace. Hence, we have
¢£(D) ((UTm Uﬁ)) S L*,TZ(UTO N UTl)'

In the case where 71 is not a facet, 7 is a vertex and 77 is an edge. Let o(p;) and o(py) be
the facets of B containing 7 as their face. Since the points m(&(7), D) and m(&(m), D) are
contained in the 1-dimensional space

{m e Mg | (m,n,,) = —k,,,i =1,2}, (6.12)
the vector m(&(m), D) — m(&(p), D) is contained in the 1-dimensional subspace defined by
{me Mg | (m,n,,) =0,i=1,2}. (6.13)

On the other hand, the section ¢, 77(U,, N U,,) contains this subspace. Hence, we have
Ve(D) (Ury, Uny)) € 1 Tz(Ur, NU,).
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Next, we show that ¢¢(D) is a cocycle. For any 2-simplex (U, U,,, U,) of U, we have

0 (Ve(D)) (Ury, Uy, Ury)) = {m(&(72), D) — m(&(m1), D)}
—{m(&(m2), D) —m(&(m), D)}
+ {m(&(r1), D) — m(&(70), D)}
=0. (6.14)

Lastly, we show that the map )¢ is a group homomorphism. We will show ¢¢(D + D') =
V(D) + ¢e(D') for any D = > k,D,, D" =3 k,D, € Divy(Xs). Let v € P be a vertex,
and {o(p;)},_, be the set of facets containing v. Then the point m(v, D + D') is defined by

(m(v,D+D"),n,) = —k, —k,, 1<i<3. (6.15)
On the other hands, the points m(v, D), m(v, D’) are defined by

(m(v, D), np,) = —kp, (m(v,D'),n,)=—k,, 1<i<3, (6.16)
respectively. Hence, we have m(v, D + D') = m(v, D) + m(v, D’), and

be(D + D) ((Ur,, Ur))) = m(&(1), D + D) = m(&(n0), D + D)

= {m(&(n), D) +m(&(n), D)} — {m(&(m0), D) + m(&(m0), D)}

= {m({(n1), D) = m(&(n0), D)} + {m(&(m1), D) — m(&(70), D)}

= (D) (Uny, Un)) + 1h(D)((Uny, Ur)) (6.17)
for any 1-simplex (U, U,,) of U. O

Lemma 6.2. The map ¢ is independent of the choice of the map £: P — P(0).

Proof. Let £: P — P(0) be another map such that &'(7) < 7 for any 7 € P. We show that
Ye(D) = g (D) for any D € Divyp(Xy). For each D = > k,D, € Divy(Xs), we define
#(D) € CO(U, 1,Tz) by setting

o(D)((Uy)) := m(&'(7), D) = m(&(7), D) (6.18)

for each O-simplex (U;) of Y. We will show that the coboundary of ¢(D) coincides with
Ve (D) — (D). First, we check that ¢(D) is certainly an element of C°(U, 1, Tz).

When 7 is a vertex, (1) = &'(1) = 7, and we have ¢(D)(U;) =0 € . Tz(U,,).

When 7 is an edge and is contained in facets o(p;) and o(ps), points m(&(7), D), m(&'(7), D)
are contained in the 1-dimensional space of (6.12). Hence, the vector m(¢'(7), D) —m(&(1), D)
is contained in the 1-dimensional subspace of (6.13). On the other hand, the section ¢, 77(U;) is
the lattice of integral tangent vectors that are invariant under the monodromy transformation
around the singular point on 7. That is the lattice contained in the subspace defined by (6.13).
Hence, we have ¢(D) ((U;)) € t.7z(U;).

When 7 is a facet, points m(&(7), D), m(&'(7), D) are contained in the plane of (6.10), where
p is the 1-dimensional cone corresponding to 7. Hence, the vector m(&'(7), D) — m(&(), D)
is contained in the plane of (6.11). On the other hand, the section ¢, T7(U,) is the lattice of
integral tangent vectors on U,. That is the lattice contained in the subspace defined by (6.11).
Hence, we have ¢(D) ((U;)) € t.Tz(U,). Therefore, we have ¢(D) € C°(U, 1,Tz).

18



For any 1-simplex (U, U, ) of U, one can get,

(Ve (D) = (D)) (Uny, Ur)) = {m(&' (), D) = m(¢'(70), D)} — {m(&(m), D) — m(&(m), D)}
= {m('(m), D) = m(&(n1), D)} — {m(&'(70), D) — m(&(0), D)}
= (00(D))((Ury, Ur))- (6.19)

Hence, we have 1¢(D) = ¢¢(D). O

Recall that we have the exact sequence
M — Divy(Xy) — Pic(Xy) — 0, (6.20)

where the map M — Divy(Xy) is given by

m+— D(m) = Z (m,n,) D,. (6.21)

peX(1)

Lemma 6.3. The map 1{¢ induces an injection
Pic(Xs) — H' (U, 1.Tz). (6.22)

Proof. First, we check that 1¢(D(my)) = 0 for any mg € M. Let v € P be a vertex of B, and
{o(pi)}._, be the set of facets containing v. The element m(v, D(my)) satisfies

(m(v, D(mg)),n,,) = — (mo,n,,), 1<i<3. (6.23)

Therefore, we have m(v, D(my)) = —mo € M for any v € P(0). From the definition of ¢, we
can see that 1¢(D(my)) = 0.

Next, we show that the induced map Pic(Xy) — H'(U,1,Tz) is injective. Assume that
Ye(Dg) = (o) for some Dy € Divy(Xy) and ¢ € C°(U, 1. Tz). We show that there is some
m € M such that Dy = D(m). Let 7 € P be a 1-dimensional cell, and vy, v; be its endpoints.
Suppose £(7) = v1. Then we have

Ye(Do)((Uny, Ur)) = m(vy, Do) — m(vo, Do) = ¢((Ur)) — ¢((Uyy)), (6.24)

Here, m(vy, Dy)) —m(vg, Dy) and ¢((U,)) are parallel to the direction which is invariant under
the monodromy around the singular point on 7. Hence, from (6.24), (6.25), it turns out that
?((Uy,)) and ¢((U,,)) also have to be parallel to this direction.

Let 7" € P be another 1-dimensional cell that has vy as its vertex. By the same argument,
we can see that ¢((U,,)) has to be parallel also to the direction which is invariant under the
monodromy around the singular point on 7. Since these two monodromy invariant directions
are linearly independent, ¢((U,,)) has to be zero. Similarly, we get ¢((U,,)) = 0. Hence, by
(6.24), (6.25), we obtain

o((U;)) =0, m(vy, Dy) =m(vg, D). (6.26)

Since there is a sequence of edges of B connecting arbitrary two vertices of B, we can conclude
that the element m(v, Dy) € M is the same for any v € P(0). We write it as m(Dy) € M.
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We set Do =: >~ sy kpDp and D(—m(Dy)) =: 3 5 kD, For any p € E(1), we take
a vertex v € P(0) contained in the facet o(p) € P. Then we have

(m(v, Do), n,) = —ky, Kk, = (=m(Dy),n,). (6.27)
Since m(v, Do) = m(Dy), we obtain k, = kj. Hence, we have Dy = D(—m(Dy)). Therefore,
the induced map Pic(Xy) — H' (U, 1,Tz) is injective. O
This map Pic(Xy) — H'(B,1.Tz) will be denoted by .
Lemma 6.4. The embedding 1): Pic(Xx) — HY(B,1,Tz) is primitive, i.e., the image of the
map
Y Pic(Xs) — HY(B, 1. Tz) — H(B,1.T) = H' (B, 1.T7) ® R (6.28)
coincides with Tm(v) @z RN HY(B, 1.7z).

Proof. We show that there exists a toric divisor D € Divyp(Xy) such that ¢¢(D) = X for
any A € Im(v) @z RN H'Y(B,1,Tz). Choose an arbitrary vertex vy € P(0). Let {o(p;)}:_,
be the facets containing vy, and {mi}?zl be the basis of M such that <mi,npj> = 0;; for
any 1 < j < 3. There exist D' € Divyp(Xy) and ¢t € R such that ¢¢(D') ® t = A. For
D'®t=:3 kD, (k, € R), we set

3
D:=D'&t—Y k,D(m;) € Divy(Xy) ®z R. (6.29)

i=1
Then the coefficient of D,, in D is zero for 1 <7 < 3. Therefore, we have
(m(vo, D), mp,) =0, 1<4<3. (6.30)

Hence, we have m(vg, D) = 0. Moreover, since D = D’ ® t as elements of Pic(Xy) ® R, we
have 1¢(D) = ¢(D') ® t = X\. We will show D € Divy(Xy).
Since ¢¢(D) = X € H' (B, 1.Tz), there exist an element ¢ € C°(U, ¢, T) such that

§(p) + (D) € CHU, 1. Tz). (6.31)

Let v € P(0) be an arbitrary vertex, and 71,7, € P be two distinct edges containing v. Then
we have

{3(0) + ve(D)} (Uy, Ur,)) = &(Ur,) — &(Uy) + m(&(7:), D) — m(v, D) (6.32)
€ 1. T7(U,NU,,)

for i = 1,2. Let ey, ey € 1,72(U,) be sections that are parallel to the tangent direction of 11, 75
respectively and form a basis of ¢, Tz(U,) = Z*. We set ¢(U,) =: aje; + azes (a; € R). Since
¢(U,,) and the vector m(&(m), D) — m(v, D) are parallel to ey, it turns out from (6.32) that
as has to be an integer. Similarly we can get a; € Z. Hence, we have ¢(U,) € 1, Tz(U,) for
any v € P(0).

Let v1,v9 € P(0) be two arbitrary distinct vertices connected by an edge 7 € P. We have

€ uTz(Uy,, NU;)
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for i = 1,2. When £(7) = vy, we have ¢(U,) € t.7z(U;) from (6.33) of i = 1 and ¢(U,,) €
L Tz(Uy,;). We also get m(vy, D) — m(vqy, D) € M from ¢(U;) € 1, Tz(U,) and (6.33) of i = 2.
Similarly we get this also when &(7) = vy. Hence, m(vy, D) — m(vqe, D) € M for any vertices
U1,V € P(O)

Since there is a sequence of edges of B connecting any vertex of B and vy that we took in
the beginning, and we have m(vy, D) = 0 € M, we can get m(v, D) € M for any v € P(0).
From the definition of m(v, D), we can have D € Divy(Xy). O

Recall that the cohomology group H(B, 1, 7Tz) has the cup product induced by the wedge
product

U: HY(B,1,Tz) @ HY(B, 1, Tz) — H*(B, 1, N> Tz). (6.34)

Since any singular point of B has (4.11) as its monodromy matrix, we can see t, A> Tz = Z,
and hence

H*(B, 1, N*Tz) 2 H*(B,7Z) & 7. (6.35)

Choosing t, A?> Tz = Z amounts to choosing an orientation of B. Furthermore, we need to
choose an orientation of B again in order to determine H*(B,Z) = Z. Here, we choose the
same orientation as we did for ¢, A? Tz = Z. Then we obtain the pairing (1.3) of H'(B,1,7z).

Let Y be an anti-canonical hypersurface of the complex toric variety Xy associated with
>, and

Pic(Y)amp := Im (Pic(Xy) < Pic(Y)) (6.36)
be the sublattice of Pic(Y') coming from the Picard group of the ambient space.
Lemma 6.5. The embedding : Pic(Y )amp < H'(B, 1, Tz) preserves the pairing.

Proof. We show that D,, - D,, = ¢(D,,) U¢(D,,) for any p1, p2 € ¥(1). First, we show this
in the case where p; # pa. Recall that there is a one-to-one correspondence between (1) and
facets of A given by p <> F(p), where

F(p) :={meA|{m,n,) =—1}. (6.37)

A hypersurface in the toric variety Xy defined by a polynomial whose Newton polytope is A is
an anti-canonical hypersuface. When F'(p)NF(p) is empty, D,,-D,, = 0. When F(p1)NF(p2)
is not empty, D,, - D,, is equal to the integral length of the edge F(p1) N F'(p2). Let | € Zx
denote the integral length of F'(p;) N F(p2). We choose two maps &: P — P(0) (i = 1,2)
satisfying

e the condition of the map (6.7) : &(7) is a vertex of 7 for any 7 € P,

o (1) € a(p) for any 7 & o (pi).

We will show that ¢, (D,,) U ¢, (D,,) = 0 when F(p;) N F(p2) is empty, and ¢, (D,,) U
Ve, (D,,) =1 when F(p1) N F(p2) is not empty.

When 7,7 € P are not in o(p;), we have &(7),&(7") € o(p;). From the definition of
m(v, D) (6.6), we can see m(&(7), D,,) = m(&(1'), D,,) = 0, and therefore

w£i<DPi>((UT7 UT/)) = m<§i(7-/)7 Dpi) - m(fl(T)a Dpi) = 0. (638)
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Hence, for a 2-simplex (U, U,,,U,,) of U,

77Z)§1 (Dpl) U 7vD§2 (Dm)((UTo’ Uﬁ’ U7'2>> = {m(fl(Tl)a Dpl) - m(§1(70)7 DP1)}
Am(&2(72), Dp,) — m(&2(71), D)} (6.39)

can be non-zero only when either 7y or 71 is contained in o(p;) and either 71 or 75 is contained
in o(ps). One of 79,71, 72 is a vertex of B. Assume 7 is that vertex. Since 7, < 79,71, T2,
we have 7, € o(p1) No(p2) when (6.39) is not zero. When o(p1) N o(p2) is empty, this never
happens. Hence, we get ¢, (D,, ) Utbe,(D,,) = 0 when o(p1) No(p2) = 0. In the following, we
assume o(p1) No(pz) # 0, and directly compute the sum of (6.39).

All 2-simplices such that 7, € o(p;) No(p2) are shown in Figure 6.1. (6.39) can be non-
zero on these simplices. Let vy, --- ,v19 denote the vertices of these 2-simplexes as shown in

Vo

Figure 6.1: 2-simplexes where )¢, (D,,) U ¢, (D,,) can be non-zero

Figure 6.1. vy, vg are vertices of B, and vy, vs, vs, v7, vg are barycenters of edges of B. vy, vg
denote the barycenters of o(py) and o(p;) respectively. Let further 7; (0 < i < 10) denote the
cell of B whose barycenter is v;. For instance, 7 = o(p1), 74 = 0(p2), and 75 = o(p1) N o (p2).
We use the ascending order of index numbers i (0 < ¢ < 10) as a total order of {U,},. We
compute the sum of (6.39) by using this total order.

Let e; (1 <4 < 3) be the integral tangent vectors at vg contained in Ry - 1_)8779}, Ryg - 1_)8_1)_7>,
Rog - Usvt respectively. Let further e; (i = 4,5) be the integral tangent vectors at ve contained
in Rog - 0204, Reg - 0o0] respectively. By transporting e; and e3 to v, along paths contained in
o(p1) and o(py) respectively, we set

€4 = ey + se3, e5 = ey + tes, (6.40)

where s,t € Z.
Consider the monodromy with respect to a loop that starts at vg, passes through vy, vo, vg
in this order, and comes back to vg. From Lemma 4.1, we can see that it is given by

(é Il) : (6.41)

under the basis (es, e1), where [ is the length of o(p;) No(p2). On the other hand, we can
also calculate the monodromy of e; as follows: We have e; = —ey — e3 in U,,. Since we have
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ey = e5 — teg, e; becomes (t — 1)eg — e when it arrives at vo. We also have e5 = e3 — e4 in
U,,, and e4 = €1 + seg. Therefore, e; becomes (s +t — 2)es + e; when it is back to ve. Hence
we obtain

s+t—2=—L. (6.42)
We choose maps &1,&: P — P(0) so that

the endpoint of 7 that is not vy 1=0,1,4,
) v 1=2,3,5,0,
&(7i) = 4 the endpoint of 77 that is not vg i=17,10, (6.43)
[ Us 1=28,9,
( the endpoint of 73 that is not v, i=0,3,6,
) Ve 1=1,2,4,5,
&(m) = s i=T.8, (6.44)
| the endpoint of 79 that is not vg 1=9,10.
Then we have
([ —e5 (i1,42) = (0,2),(0,3),(1,2), (4,5)
es (i1,12) = (2,4),
—€2 (i17 7/2) = (47 8)7 (77 8)a
¢£1( )((Unl Un2>> 5 — o (217 22) (5, 8), (6, 8), (6, 9), (6‘45)
€2 (Zla Z2) = (87 10)7 ( ) 10)7
(0 otherwise,
( —€4 (Zlu 7’2) = <O7 1)7 (07 2)7
€4 <217i2) = (2=3>’(276)7<576)7
€4 — € (ily 22) = (47 7)a (4a 8)7 (57 8)7
1/152( )((Unl U‘r@)) —e (i1,i2) _ (6,8), (646)
€1 <217i2) - 77 10)7 (8 9) (8 10)a
(0 otherwise,
for 0 < iy < iy < 10. We obtain
—e5 N\ ey (i1,12,13) = (0, 2,

);
)

0w

—es A (eg —er)  (i1,02,13) = (4,5

Y

Ve, (D) Uthey (D, ) (U, Un Ur ) = (65 —€2) Aes (i1,12,33) = (6,8,9),  (6.47)
_62/\61 (i17i27i3):< 7871 )7
0 otherwise,
(2 — S — t)el VAN (il,’iQ,’i3) = (7, 8, 10),
{ 0 otherwise, (6.48)

for 0 <4y < iy < 43 < 10. This is equal to 2 — s — ¢ in H*(B, 1, A\?> Tz) = Z. Hence, from

(6.42), we get (D, U (D) — I
Lastly, we show that D, - D, = ¥(D,,) U(D,,) for any py € £(0). Since there exists a
primitive element m € M such that D(m) = Dy, +3_ ., a,D, (a, € Z), we have

Dy~ =Y a,D, (6.49)

pF#po

23



Hence, we obtain

DPO'DPOZDPO' <_ZaPDP> :_ZGPDPO'DP (6'50)

PFPO pFpo
= =Y a,(Dyy) U(D,) = ¢(Dy, uw( > a,D > (6.51)
p#po PFP0
= V(D) U (D). (6.52)

]

6.2 Proof of Theorem 1.2

We take a map of (6.7) £&: P — P(0) such that {(7) < 7. By enlarging each open set
U, slightly, we assume that U, contains £(7). We take each chart ¢,: U, — Mg so that
¥-(£(1)) = 0 € Mg. In order to specify the radiance obstruction of B, we choose the zero
section 0 € I'(U, N BO,TaﬁBO) for each U,. Then the radiance obstruction cp is represented
by the element of C*(U, 1, T) given by

CB ((UTov UTl)) = 5(7_1) - 6(7_0) (653)

for each 1-simplex (U,,,U,,) of U.
Let v € P be a vertex, and {O‘(pi>}?:1 be the set of facets of B containing v. Then the
vertex v € My is determined by

(m,n,,) =—a(n,)+a(0), 1<i<3. (6.54)

From the definition of the map ¢, we can see that

cs=ve | Y {aln,) —a(0)} D, (6.55)

pEX(1)

= Y {a(n,) — a(0)} (D). (6.56)

peX(1)

7 Asymptotic behaviors of period maps

Let K := C{t} be the convergent Puiseux series field, equipped with the standard non-
archimedean valuation

val: K — QU {—o0}, k:ZCjth—Hlin{jeQ\cj#O}. (7.1)
JeQ
Let M be a free Z-module of rank 3 and N := Hom(M,Z) be the dual lattice. We set
Mg == M ®zR and Ng := N®zR = Hom(M,R). Let A C Mg be a smooth reflexive polytope
of dimension 3, and A C Ng be the polar polytope of A. Let further ¥ C Ng, ¥ C Mg be the
normal fans of A, A respectively. We choose a refinement >’ € Mg of ¥ which gives rise to a
projective crepant resolution Xy, — Xy of a toric variety associated with .
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We consider a Laurent polynomial F =" _, k,2" € K[27, 23, 23] over K whose Newton

polytope is A, where A C N denotes the subset consisting of all vertices of A and 0 € N. We
assume that the function

A—=R, nw—val(k,) (7.2)

induces a central subdivision of A. Let trop(F') be the tropicalization of F', which is defined
as the tropical polynomial

trop(F)(z) := max {val(k,) + niz1 + nows + naxs} . (7.3)
Let further B be the 2-sphere with an integral affine structure with singularities obtained by
contracting the tropical hypersurface defined by trop(F’) in the tropical toric variety Xs, (T)
associated with >’ in the way of Section 4.2. We write the radiance obstruction of B as
cp € Hl(B, L*T)
Let D C C be the open unit disk. We consider the universal covering of D \ {0}

e:H — D\ {0}, 2z exp(2mv/—12), (7.4)

where H is the upper half plane. We set
Hr:={2z€H|Imz> R}, (7.5)

where R is a positive real number such that e(y/1R) is smaller than the radius of convergence
of k, for any n € A. For each element z € Hp, we consider the polynomial f, € Clzf, 25, 73]
obtained by substituting e(z) to t in F. Let V, be the complex hypersurface defined by f,
in the complex toric variety Xy,. This is a quasi-smooth K3 hypersurface. We describe the
asymptotic behavior of the period of V, in the limit R — oo by using the radiance obstruction
cp. In the following, we assume ky = 1 by multiplying an element of K to F. Some parts of
the following are borrowed from [Ued14, Section 7).

For a given element o = (a,)nea\ (o € (C*)*M%, we associate the polynomial
r)=1+ Z anx". (7.6)
neA\{0}

We write the toric hypersurface defined by W, in the complex toric variety Xy, as Y,. Let
(CX)@;{D} be the set of a € (C*)*\M such that Y, is X-regular, i.e., the intersection of Yy,
with any torus orbit of Xy, is a smooth subvariety of codimension one. We consider the family
of ¥-regular hypersurfaces given by the second projection

¢: Y = {(z,0) € X5 x (C) )AVO} | Wa(z) =0} — ( (C) A0} (7.7)

reg reg

and the action of M ®z C* to this family given by
t(z,a) =tz (" an)nea (o) » (7.8)

where t € M ®z C*. We write the quotient by this action as ¢: @ — Meg, Where M,op 1=

(C)ies™ / (M ©7 C*). The space Mg can be regarded as a parameter space of Y'-regular
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hypersurfaces whose Newton polytopes are A. Let (%, V5, Hp g, Z5,Qp) be the residual
B-model VHS of the family ¢: Q) — M, [Irill, Definition 6.5].

When R is sufficiently large, the hypersurface V, is >'-regular for any z € Hz. We have a
map [ given by

i Hr = Mgy 22 [(Ba(6(2)))ie ) (79)

where k,(e(z)) is the complex number obtained by substituting e(z) to ¢ in k,. We define a
holomorphic form on V, by

dzy A dzz A dzg

Q, .= o df % (7.10)

This defines a section of [*.7¢5 over Hp.

Let Y be an anti-canonical hypersurface of the complex toric variety Xy associated with 3,
and ¢: Y < Xy, be the inclusion. Choose an integral basis {pz} _, of Pic X5, such that each p; is
nef. This determines a coordinate ¢ = (¢1,- -+ ,¢,) on M := Pic Xy ®; C* = (ZA\{O}/M) Rz
C* D My and a coordinate 7 = (71, ,7,) on H2 ,(Y,C). Let u; € H*(Xx,Z) be the

Poincaré dual of the toric divisor D, corresponding to the one-dimensional cone p; € ¥, and
v =1uy + -+ u,, be the anticanonical class. Givental’s I-function is defined as the series

Ix.v(q,2) = ePloga/z Z d Hk—foo(v + k2) H;” . Hg—_oo(uj +k2)
B ’ - (dyuy) 9
ACRI () [l (v + £2) 155 T2 (uy + kz)

which gives a multi-valued map from an open subset of M x C* to the cohomology ring
H*(Xs,C). Here, Eff(Xy) denotes the set of effective toric divisors on Xy. We write

Ix,v(q,2) =Fl(q)+ @ + y +0(z7%). (7.11)

(Y, C) is a multi-valued map defined by

(D). (7.12)

The residual B-model VHS is isomorphic to the ambient A-model VHS (374, VA, .Z%, Q)
[Iri11, Definition 6.2] via the mirror map ¢ [Irill, Theorem 6.9]. Hence, the section of [*.7% over
Hp defined by €2, can also be regarded as a section of (¢ ol)*. via the mirror isomorphism.
Here we replace the real number R with a larger one if necessary.

We also choose elements py € H?  (V;Q) and p,,; € HL ,(Y;Q) so that we have py U
pre1 = 1, and define sections

The mirror map ¢: M — H

amb

pii=exp(—7T)Up;, 0<i<r+1, (7.13)

of ##,. These are flat sections with respect to the Dubrovin connection V4. Note that the
quantum cup product coincides with the ordinary cup product, since Y is a K3 surface. The
sections {]51}23 form an integral structure of Ha ¢ := Ker V4. This is related to the integral
structure 3% defined in [Irill, Definition 6.3] by a linear transformation.
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We consider a map ¢: I*Hac(Hgr) = (U @ Pic(Y)amp) ®z C defined by
Do 2nv—1le, D1 2V —1f, P —2mp; (1 <0 <), (7.14)

where U denotes the hyperbolic plane and (e, f) is its standard basis. This is an isomorphism
preserving the pairing. We obtain the period map

Hy — P((U @ Pic(Y )am) ®2 C) (7.15)

determined by €2, via the mirror isomorphism and the map ¢. The image of this map is
contained in

D' :={[o] € P((U ® Pic(Y )amp) ®z C) | (0,0) =0, (0,7) > 0}. (7.16)
We also set
D := {0 € Pic(Y)amp ®z C | (Re1,Re7) > 0}. (7.17)
Here we have an isomorphism D’ = D of complex manifolds given by

—/—1
k1

kie+kof +0— o, (7.18)

where ky, ko € C and o € Pic(Y)amp ®z C. By this isomorphism, we obtain the period map
P HR — D.

Corollary 7.1. The leading term of the period map & in the limit R — oo is given by
—2mv/ =1z -~ (ep), (7.19)
where 1 denotes the map ¢ @z idg: Pic(Y)amp @z R — HY(B, 1, T).

Proof. From Theorem 1.2, we can see that the radiance obstruction cg of B is given by

cp=Y_ val(k,)v(Dy), (7.20)

neA\{0}

where D,, is the restriction to Y of the toric divisor on Xy, that corresponds to the 1-dimensional
cone whose primitive generator is n.

The holomorphic form €2, corresponds to F(q) -1 € H? . (Y, C) under the mirror isomor-
phism [Irill, Theorem 6.9], where F'(q) is the first term of the Givental’s I-function (7.11). It
turns out that the period map &2: Hr — D is given by z — ¢(I(2)). The leading term of this

is given by

> “pilogqi(I(2)). (7.21)
i—1
Suppose D,, = >, b,;p; in Pic(Xy), where b, ; € Z. Then we have

w(l) = JI Falez)). (7.22)

neA\{0}
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Hence, we obtain

meng sz D bailog (ka(e(2))) (7.23)

neA\{0}

~ T sz- Y busloge(z) - val(ky) (7.24)

neA\{0}

= —loge(z) Z val(ky,) Z bn,ipi (7.25)
neA\{0} i=1

=—2mv~1z Y val(k,)D, (7.26)
neA\{0}

= —2mv—1z -9 (cB). (7.27)

]

Corollary 7.1 implies that the radiance obstruction ¥ *(cg) € Pic(Y )amp ®z R can be
regarded as the period of the tropical K3 hypersurface defined by trop(F). We can also obtain

(¥~ (ep), ¥ (ep)) > 0 (7.28)

from Corollary 7.1 and the inequality (Re7,9Re7) > 0 of (7.17). The following inequality
(7.29) can be regarded as a tropical version of the Hodge-Riemann bilinear relation for K3
surfaces appearing in (7.16).

Corollary 7.2. One has

(¥~ (en), ¥ (cB)) > 0. (7.29)

Proof. From the assumption that the function A — R, n + val(k,) induces a central subdi-
vision of A, we can see that for any ng € A\ {0}, there exists mg € Mg such that

(mg, ng) = val(k,,), (mg,n) >val(k,) (Vne€ A\{0,no}). (7.30)

By subtracting the divisor D(myg) of (6.21), we get

v Mep)= D vallk)Dp~ D dugaDa, (7.31)

neA\{0} neA\{0,no}

where d,,, ,, is some negative real number. Since D, - D,, > 0 for any n € A\ {0,n} and there
exists n € A\ {0,n0} such that D, - D, > 0, we can get

(D”O’wil(CB)) = D?’Lm Z dno,nDn <0 (732)

neA\{0,no}
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for any ng € A\ {0}. Hence, we obtain

(07 en) v ew) = | D duanDa V7 (en) (733
neA\(Om0}

= D o (Dn¥7(en)) (7.34)
neA\{0,no}

> 0. (7.35)

O

Remark 7.3. As we saw in Remark 4.2 and Remark 4.5, there are ambiguities in the choices
of positions of singular points when we contract tropical toric hypersurfaces, and the radiance
obstruction does not depend on these choices. This means that moving singular points to
monodromy invariant directions does not change the period of the tropical K3 surface B. We
can infer that we should think that a tropical K3 surface which is obtained by moving singular
points to monodromy invariant directions is “equivalent” to the original one.

Remark 7.4. The space
{o € Pic(Y)amp @z R | (0,0) > 0} (7.36)

is the period domain of tropical K3 hypersurfaces. This is the numerator of the moduli
space of lattice polarized tropical K3 surfaces [HU18, Section 5. In [O0O18al, [OO18b], they
construct Gromov—Hausdorff compactifications of polarized complex K3 surfaces by adding
moduli spaces of lattice polarized tropical K3 surfaces to their boundaries.

References

[GH84]  William Goldman and Morris W. Hirsch, The radiance obstruction and parallel
forms on affine manifolds, Trans. Amer. Math. Soc. 286 (1984), no. 2, 629-649.
MR 760977

[Gro05]  Mark Gross, Toric degenerations and Batyrev-Borisov duality, Math. Ann. 333
(2005), no. 3, 645-688. MR 2198802

[GS06] Mark Gross and Bernd Siebert, Mirror symmetry via logarithmic degeneration data.
I, J. Differential Geom. 72 (2006), no. 2, 169-338. MR 2213573

[GS10]

, Mirror symmetry via logarithmic degeneration data, II, J. Algebraic Geom.
19 (2010), no. 4, 679-780. MR 2669728

[GWO00] Mark Gross and P. M. H. Wilson, Large complex structure limits of K3 surfaces, J.
Differential Geom. 55 (2000), no. 3, 475-546. MR 1863732

[HU18]  Kenji Hashimoto and Kazushi Ueda, Reconstruction of general elliptic K3 surfaces
from thewr Gromov-Hausdorff limits, arXiv:1805.01719, 2018.

[HZ02] Christian Haase and Ilia Zharkov, Integral affine structures on spheres and torus
fibrations of Calabi—Yau toric hypersurfaces I, arXiv:math/0205321, 2002.

29



[Iril1]

[Iwal0]

[Kajo8]

[Kall5]

[KMMOS)]

[KMMO9]

[KSO06]

[Mik06]

IMZ08]

[0O018a]

[0018b)]

[Pay09]

[Sch73]

[Shal5]
[Ued14]

Hiroshi Iritani, Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61
(2011), no. 7, 2909-2958. MR 3112512

Shinsuke Iwao, Integration over tropical plane curves and ultradiscretization, Int.

Math. Res. Not. IMRN (2010), no. 1, 112-148. MR 2576286

Takeshi Kajiwara, Tropical toric geometry, Toric topology, Contemp. Math.,
vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 197-207. MR 2428356
(2010c:14078)

Nikita Kalinin, A guide to tropical modifications, arXiv:1509.03443, 2015.

Eric Katz, Hannah Markwig, and Thomas Markwig, The j-invariant of a plane
tropical cubic, J. Algebra 320 (2008), no. 10, 3832-3848. MR 2457725

_, The tropical j-invariant, LMS J. Comput. Math. 12 (2009), 275-294. MR
2570928

Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean an-
alytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhauser Boston,
Boston, MA, 2006, pp. 321-385. MR 2181810

Grigory Mikhalkin, Tropical geometry and its applications, International Congress
of Mathematicians. Vol. II, Eur. Math. Soc., Ziirich, 2006, pp. 827-852. MR 2275625

Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta
functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math.
Soc., Providence, RI, 2008, pp. 203-230.

Yuji Odaka and Yoshiki Oshima, Collapsing K3 surfaces and Moduli compactifica-
tion, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 8, 81-86. MR 3859764

_, Collapsing K3 surfaces, Tropical geometry and Moduli compactifications of
Satake, Morgan-Shalen type, arXiv:1810.07685, 2018.

Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16
(2009), no. 3, 543-556. MR 2511632 (2010j:14104)

Wilfried Schmid, Variation of Hodge structure: the singularities of the period map-
ping, Invent. Math. 22 (1973), 211-319. MR 0382272

Kristin Shaw, Tropical surfaces, arXiv:1506.07407, 2015.
Kazushi Ueda, Mirror symmetry and K3 surfaces, arXiv:1407.1566, 2014.

Yuto Yamamoto

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Me-
guro, Tokyo, 153-8914, Japan.

e-mail address : yuto@ms.u-tokyo.ac.jp

30



