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SUMMARY OF “ON DEPTH IN THE LOCAL LANGLANDS

CORRESPONDENCE”

MASAO OI

Abstract. In this paper, we investigate the local Langlands correspondence
for classical groups over p-adic fields from the viewpoint of the depth, which is
an invariant of representations. In the first and second parts of this paper, we
establish a general result on a depth preserving property of the local Langlands
correspondence for classical groups under the assumption that the residual
characteristic p is large enough. In the third part, we study the structures
of L-packets consisting of simple supercuspidal representations, which are the
representations with the minimal positive depth, under the assumption that p
is odd.
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1. Background

Let G be a connected reductive group over a p-adic field F . One of the central
themes in representation theory of G = G(F ) is the conjectural local Langlands
correspondence for G. To be more precise, let Π(G) denote the set of equivalence
classes of irreducible smooth representations of G, and Φ(G) the set of conjugacy
classes of L-parameters of G, which are admissible homomorphisms from WF ×
SL2(C) to LG. Here LG is the L-group of G, which is the semi-direct product
“G!WF of the Langlands dual group “G of G and the Weil group WF of F . Then
the local Langlands correspondence for G predicts that there exists a “natural”
map from the set Π(G) to the set Φ(G) with finite fibers (called L-packets). In
other words, the local Langlands correspondence gives a natural partition of the
set Π(G) into finite sets parametrized by L-parameters:

Π(G) =
⊔

φ∈Φ(G)

ΠG
φ .

2010 Mathematics Subject Classification. Primary: 22E50; Secondary: 11F70.
Key words and phrases. local Langlands correspondence, depth of representations, endoscopy,

simple supercuspidal representations.

1



The local Langlands correspondence for fully general connected reductive groups
has not been known at present. However, thanks to recent developments based on
works of a lot of people, for several groups, the correspondence was established. In
particular, for

• general linear groups ([HT01]),
• quasi-split symplectic or special orthogonal groups ([Art13]),
• quasi-split unitary groups ([Mok15]), and
• non-quasi-split unitary groups ([KMSW14]),

the local Langlands correspondence has been established.
The aim of this paper is to investigate the “naturality” of the local Langlands

correspondence for these groups beyond their characterizations. For example, in the
case of general linear groups, the correspondence is characterized by the theory of ε-
factors and L-factors of representations. In the cases of other classical groups listed
above, the correspondence is characterized by the theory of endoscopy. However it
is known that the local Langlands correspondence for these groups satisfies a lot of
properties other than such characterizations.

One example for such phenomena is a depth preserving property of the local
Langlands correspondence for general linear groups. To be more precise, let us
recall the notion of the depth of representations. When G = GL1, the group
G = F× has a maximal open compact subgroup O×

F (the unit group) and its
filtration {1 + pnF }n∈Z>0 (the higher unit groups). As its generalization, for a
tamely ramified connected reductive group G over F , we can define various open
compact subgroups (called parahoric subgroups) of G and their filtrations (called
the Moy–Prasad filtrations). By using these subgroups of G, for each irreducible
representation π of G, we can define its depth “depth(π)”, which expresses how
large subgroups having an invariant part in the representation are. On the other
hand, for the inertia subgroup IF of the Weil group WF of F , we can define its
ramification filtration {I•F }. Then, by noting that an L-parameter of G is an
admissible homomorphism fromWF×SL2(C) to the L-group ofG, we can define the
depth “depth(φ)” of an L-parameter φ, which measures how deep the ramification
of the L-parameter φ is. Then it is known that the local Langlands correspondence
for GLN preserves the depth. Namely, we have the following:

Theorem 1.1 ([Yu09, 2.3.6] and [ABPS16b, Proposition 4.5]). Let π be an irre-
ducible smooth representation of GLN (F ) and φ the L-parameter of GLN corre-
sponding to π under the local Langlands correspondence for GLN . Then we have

depth(π) = depth(φ).

Note that, when N = 1, this is nothing but the well-known property of the
local class field theory about the correspondence between the higher unit groups
{1 + pnF }n∈Z>0 and the ramification filtration {Iab,nF }n∈Z>0 .

Therefore it is a natural attempt to investigate the relation between the depth of
representations and that of L-parameters under the local Langlands correspondence
for other classical groups. At present, there is no complete description of the
behavior of the depth under the local Langlands correspondence for general classical
groups except for some small groups (see, for example, [ABPS16a] for the details).
However, in a recent paper [GV17], Ganapathy and Varma gave the following partial
answer to this problem:
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Theorem 1.2 ([GV17, Corollary 10.6.4]). Let H be a quasi-split symplectic or
special orthogonal group over F . We assume that the residual characteristic is
large enough. Let φ be a tempered L-parameter of H, and ΠH

φ the L-packet of H
for φ. Then we have

max
{
depth(π)

∣∣π ∈ ΠH
φ

}
≤ depth(φ).

In the first part of this paper (Part 1), we improve this inequality to the equality,
under the assumption that the residual characteristic p is large enough compared
to the size of the classical group. Furthermore, in the case of quasi-split unitary
groups, we prove that the representations in each L-packet have the same depth.
The key of our proof is an analysis of the endoscopic character relation, which is
the characterization of the local Langlands correspondence for classical groups, via
harmonic analysis on p-adic reductive groups.

In the second part (Part 2), we extend the above result for quasi-split unitary
groups to non-quasi-split unitary groups. The key point in this generalization
is to utilize the local theta correspondence, which can transfer representations of
non-quasi-split unitary groups to those of quasi-split unitary groups. By combining
several known results on the local theta correspondence, we can reduce the problem
for the non-quasi-split case to that for the quasi-split case, which is already proved
in Part 1.

In the final part (Part 3), we tackle the depth preserving problem of the local
Langlands correspondence from a slightly different viewpoint, that is, an explicit
description of the local Langlands correspondence. In Parts 1 and 2, in order to
use general results of harmonic analysis on p-adic reductive groups, we have to
assume that the residual characteristic p is large enough. However, by focusing
on some special class of representations, there is a case that we can avoid such a
restriction on the residual characteristic. More specifically, in Part 3, we investigate
the local Langlands correspondence for simple supercuspidal representations, which
are the representations with the minimal positive depth. In this part, by computing
the endoscopic character relation precisely, we study the structures of L-packets
consisting of simple supercuspidal representations without appealing to the results
in Parts 1 and 2. By such a precise description of L-packets, in particular, we
can conclude that the depth preserving property holds for simple supercuspidal
representations only under the assumption that p is odd.

2. Outline of Part 1

Our main theorem in Part 1 is the following, which is an improvement of the
result of Ganapathy–Varma (Theorem 1.2):

Theorem 2.1. Let H be a quasi-split classical (namely, symplectic, special orthog-
onal, or unitary) group over F . We assume that the residual characteristic is large
enough. Let φ be an L-parameter of H, and ΠH

φ the L-packet of H for φ. Then we
have

max
{
depth(π)

∣∣π ∈ ΠH
φ

}
= depth(φ).

From now on, let H be a quasi-split classical group over F . Before we explain
the sketch of our proof, we recall the endoscopic character relation, which is used
to formulate the naturality of the local Langlands correspondence for H. First,
we can regard H as an endoscopic group of a (twisted) general linear group GLN
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over F (strictly speaking, when H is a unitary group, we have to consider the
Weil restriction of GLN with respect to a quadratic extension associated to H).
In particular, we have an embedding ι from the L-group of H to that of GLN .
Here the size N of the general linear group depends on each classical group. Now
let us take an L-parameter φ of H. By the theory of Langlands classification,
we can extend the local Langlands correspondence for tempered representations
to nontempered representations formally. Therefore, to consider the naturality of
the local Langlands correspondence, we may assume that φ is tempered. Then,
by noting that φ is a homomorphism from WF × SL2(C) to LH, we obtain an L-
parameter of GLN by composing φ with the embedding ι. From these L-parameters,
we get representations of two different groups. One is the representation πGLN

φ of
GLN (F ) corresponding to ι ◦φ under the local Langlands correspondence for GLN

(note that, for GLN , each L-packet is a singleton). The other is an L-packet ΠH
φ ,

which is a finite set of representations of H, corresponding to φ under the local
Langlands correspondence for H.

Π(GLN ) ∋ πGLN
φ

!!
LLC for GLN""!"!"!" LGLN

Π(H) ⊇ ΠH
φ

endoscopic lifting

##
#$
#$
#$

!!LLC for H""!"!"!" WF × SL2(C)
φ

""

ι◦φ
$$!!!!!!!!!!!!
LH
%&

ι

##

In this situation, we say that πGLN
φ is the endoscopic lift of ΠH

φ from H to GLN .
Then the endoscopic character relation is the following equality satisfied by the
twisted character ΘGLN

φ,θ of πGLN
φ and the characters Θπ of representations π be-

longing to ΠH
φ :

ΘGLN
φ,θ (f) =

∑

π∈ΠH
φ

Θπ(f
H).

Here f is any test function of GLN (F ) and fH is its Langlands–Shelstad–Kottwitz
transfer to H = H(F ). The important point here is that the composition with
the L-embedding does not change the depth of L-parameters. Namely, by this
formulation of the naturality of the local Langlands correspondence for H and
the depth preserving property of the local Langlands correspondence for GLN , the
depth preserving problem of the local Langlands correspondence for H is equivalent
to that of the endoscopic lifting from H to GLN . We tackle the latter problem by
investigating the endoscopic character relations via harmonic analysis on p-adic
reductive groups.

To explain the strategy of our proof of Theorem 2.1, we recall Ganapathy–
Varma’s method used in the proof of Theorem 1.2 in [GV17]. The key tools in their
proof are the following DeBacker’s two results:

(1) Description of the radii of the character expansions of irreducible smooth
representations (“homogeneity”, established in [DeB02a]).

(2) Parametrization of nilpotent orbits via the Bruhat–Tits theory (established
in [DeB02b]).

Let us recall them. First, for every irreducible smooth representation π of H, we
have its character Θπ, which is an invariant distribution on H. In general, it is very
complicated and difficult to describe the behavior of the character Θπ. However,
in some “small neighborhood” of the origin, we can express the character Θπ as a
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linear combination of the nilpotent orbital integrals of the Fourier transforms. More
precisely, if we have an appropriate exponential map cH from the Lie algebra h toH,
then, for every function f on the Lie algebra supported on a “small neighborhood”
of the origin, we have

Θπ(f ◦ c−1
H ) =

∑

O∈Nil(h)

cO ·”µO(f)

(this is called the character expansion of the character of a representation, and
established by Harish-Chandra ([HC99])). Then the following question about this
character expansion naturally arises: what is the optimal size of a “small neigh-
borhood”? In [DeB02a], DeBacker gave an answer to this question by using the
Bruhat–Tits theory. To be more precise, we put r to be the depth of an irreducible
smooth representation π and Hr+ to be the union of the (r+)-th Moy–Prasad filtra-
tions of parahoric subgroups. Then DeBacker proved that the character expansion
is valid on c−1

H (Hr+) under some assumptions on the residual characteristic p. On
the other hand, in another paper [DeB02b], DeBacker established a parametriza-
tion of nilpotent orbits via the Bruhat–Tits theory under some assumptions on the
residual characteristic. By using this parametrization, we can recover the depth
of an irreducible smooth representation from the radius of its character expansion.
Namely we can show that if Θπ has a character expansion on c−1

H (Hs+) for some
positive number s ∈ R, then the depth of π is not greater than s. In other words,
we can say that the depth of an irreducible smooth representation gives an optimal
radius of the character expansion.

On the other hand, for twisted characters of irreducible smooth representations,
the theory of the character expansion can be formulated as follows: for every func-
tion f on the Lie algebra of GLN supported on a “small neighborhood” of the
origin, we have

ΘGLN
φ,θ (f ◦ c−1) =

∑

O∈Nil(gθ)

cO ·”µO(fθ).

Here c is a kind of exponential map, gθ is the Lie algebra of the group Gθ which
is the identity component of the fixed part of an involution θ of G, and fθ is a
function on gθ which is a semisimple descent of f . For this expansion of twisted
characters, in [AK07], Adler and Korman established a result which is analogous to
that of DeBacker under some assumptions on the residual characteristic of the same
type as DeBacker’s one. Namely, they described the size of a “small neighborhood”
where the character expansion is valid in terms of the depth of the representation.

Now we recall Ganapathy–Varma’s method. Their idea is to compare the depth
of a tempered L-packet ΠH

φ and its endoscopic lift πGLN
φ by comparing the radii of

the character expansions for ΠH
φ and πGLN

φ via the endoscopic character relation.
Under the assumption that the residual characteristic is large enough to satisfy
the assumptions of DeBacker’s results and Adler–Korman’s result, Ganapathy and
Varma proved Theorem 1.2 in the following way:

(1) The radius of the character expansion of the twisted character ΘGLN
φ,θ of

πGLN
φ is given by depth(πGLN

φ )+ (Adler–Korman’s result).
(2) By using the endoscopic character relation, we know that the maximum of

the radii of the character expansions of the characters of representations
belonging to ΠH

φ is smaller than depth(πGLN
φ )+.
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(3) By using DeBacker’s parametrization of the nilpotent orbits, we can con-
clude that the maximum of the depth of representations belonging to ΠH

φ

is smaller than depth(πGLN
φ )+.

Then it is natural to consider the converse direction of this argument by swapping
the roles of GLN and H, that is:

(1)′ The maximum of radii of the character expansions of the characters of
representations π belonging to ΠH

φ is given by the maximum of depth(π)+
(DeBacker’s result).

(2)′ By using the endoscopic character relation, we know that the radius of the
character expansion of the twisted character ΘGLN

φ,θ of πGLN
φ is smaller than

max{depth(π)+}.
(3)′ By using DeBacker’s parametrization of the nilpotent orbits, we conclude

that the depth of πGLN
φ is smaller than max{depth(π)+}.

However, we cannot so immediately imitate Ganapathy–Varma’s arguments. The
problem is in the step (3)′. That is, the behavior of the characteristic functions of
the Moy–Prasad filtrations of parahoric subgroups under the semisimple descent is
not so clear.

In Part 1 of this paper, in order to carry out the step (3)′, we investigate the
semisimple descents for the characteristic functions of the Moy–Prasad filtrations
of parahoric subgroups of general linear groups by a group-theoretic computation.
Then, as a consequence of such a computation, we can complete the above argu-
ments of the converse direction and get the following converse inequality:

max
{
depth(π)

∣∣π ∈ ΠH
φ

}
≥ depth(φ).

In particular, by combining this with Theorem 1.2, we get the equality (Theorem
2.1).

When H is a unitary group UE/F (N) associated to a quadratic extension E of F ,
the semisimple descent coincides with the Langlands–Shelstad–Kottwitz transfer.
Thus, by the above computation of the semisimple descents for the characteristic
functions of the Moy–Prasad filtrations, we get the following generalization of the
fundamental lemma to a positive depth direction:

Theorem 2.2. We assume that the residual characteristic p is not equal to 2. We
take a point x of the Bruhat–Tits building of H and we identify it with a point
of the Bruhat–Tits building of G = ResE/F GLN canonically. Let r ∈ R>0. Let
Hx,r and Gx,r be the r-th Moy–Prasad filtrations with respect to the point x. Then
vol(Hx,r)−1

Hx,r ∈ C∞
c (H) is a transfer of vol(Gx,r)−1

Gx,r ∈ C∞
c (G).

We remark that a similar assertion for r = 0 (namely, the fundamental lemma
for parahoric subgroups) in the case where E is unramified over F is proved in
[Kot86] (see also [Hai09]). This theorem is not only interesting itself, but also
having an application to the depth preserving problem of the endoscopic lifting.
We can immediately deduce the following theorem from Theorem 2.2 by using the
endoscopic character relation:

Theorem 2.3. We assume that the residual characteristic p is not equal to 2. Let
φ be an L-parameter of H, and ΠH

φ the L-packet of H for φ. Then we have

min
{
depth(π)

∣∣π ∈ ΠH
φ

}
≥ depth(φ).
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In particular, by combining it with Theorem 1.2, we have

depth(π) = depth(φ)

for every π ∈ ΠH
φ under the assumption that the residual characteristic p is greater

than 2N + 1.

We finally remark that we cannot expect that the inequality in Theorem 1.2
holds for a general connected reductive group. For example, in [RY14, Section
7.4] Reeder and Yu constructed a candidate of the L-parameters corresponding to
“simple supercuspidal representations” of SUp(Qp) for an odd prime p, by assuming
Hiraga–Ichino–Ikeda’s formal degree conjecture. In this example, the depth of
simple supercuspidal representations and the depth of their L-parameters are given
by 1

2p and 1
2(p+1) , respectively. See also [ABPS16a, Section 3.3].

3. Outline of Part 2

Our aim in this part is to extend Theorem 2.3 to non-quasi-split unitary groups.
Namely, our main result in Part 2 is the following:

Theorem 3.1. Let G be a non-quasi-split unitary group in N variables over F .
We assume that the residual characteristic p of F is greater than or equal to 2N+3.
Then, for every irreducible smooth representation π of G(F ) and its corresponding
L-parameter φ of G, we have

depth(π) = depth(φ).

To show this, we utilize the local theta correspondence. Let V (resp. V ′) be an
ϵ-hermitian (resp. ϵ′-hermitian) space over F such that ϵϵ′ = −1, and U(V ) (resp.
U(V ′)) the corresponding unitary group over F . Then the local theta correspon-
dence gives a correspondence between representations of U(V ) and those of U(V ′).
For an irreducible smooth representation π of U(V ), we denote the corresponding
representation of U(V ′) by θ(π). Here note that θ(π) is possibly zero and that, if
θ(π) is not zero, then it is irreducible and smooth. The key point in our proof is
that the local theta correspondence has the following two properties:

Pan’s depth preserving theorem: The local theta correspondence preserves
the depth of representations ([Pan02]). Namely, if θ(π) is not zero, then we
have

depth
(
θ(π)

)
= depth(π).

Gan–Ichino’s description of the L-parameter of the local theta lift:
If θ(π) is not zero, then the L-parameter θ(φ) of θ(π) can be described by
using the L-parameter φ of π ([GI14, Appendix C]).

By combining these properties with the observation that every unitary group in odd
variables is quasi-split, we can reduce the problem to the quasi-split case (Theorem
2.3). More precisely, for a given non-quasi-split unitary group G, we assume that G
is realized by an ϵ-hermitian space V over F (necessarily V has even dimension). We
put 2n to be the dimension of this space V and let V ′ be a (2n+1)-dimensional (−ϵ)-
hermitian space over F . Then the corresponding unitary group U(V ′) is quasi-split.
Thus, for an irreducible smooth representation π of G = U(V ), we can compare its
depth with the depth of the L-parameter φ of π in the following way:

(1) By Pan’s theorem, the depth of π is equal to the depth of its theta lift θ(π).
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(2) Since U(V ′) is quasi-split, by Theorem 2.3, the depth of θ(π) is equal to
the depth of its L-parameter θ(φ).

(3) By Gan–Ichino’s description, we can compare the depth of θ(φ) with that
of φ.

π: representation of U(V ) !!
LLC for U(V )

""!"!"!"!"!"!"!"!"!"

θ

%%
$#
$#
$#

φ: L-parameter of U(V )

θ

%%
$#
$#
$#

θ(π): representation of U(V ′) !!
LLC for U(V ′)

""!"!"!"!"!"!"!" θ(φ): L-parameter of U(V ′)

However, in carrying out this strategy, we have to take care of the difference
between the normalization of the local theta correspondence used in Pan’s result and
that in Gan–Ichino’s result. Recall that the local theta correspondence is obtained
by considering the Weil representation of the metaplectic group Mp(W ) for the
symplectic space W := V ⊗ V ′. More precisely, the metaplectic group Mp(W ) is a

covering group of the symplectic group Sp(W ) and contains covering groups flU(V )

of U(V ) and‡U(V ′) of U(V ). Then, by restricting the Weil representation of Mp(W )

to flU(V ) ×‡U(V ′), we get a correspondence between representations of flU(V ) and

those of‡U(V ′).

flU(V )×‡U(V ′) ""

%%

Mp(W )

%%

U(V )×U(V ′) "" Sp(W )

To make this to be a correspondence between representations of U(V ) and those of

U(V ′), we have to choose splittings of the coverings flU(V ) → U(V ) and ‡U(V ′) →
U(V ′). The important point here is that such splittings are not canonical. Namely,
there are several ways to construct them. The depth preserving result of Pan is
based on Pan’s splittings constructed in [Pan01] by using the generalized lattice
model of the Weil representation. On the other hand, the result of Gan–Ichino is
based on Kudla’s splitting constructed in [Kud94] by using the Schrödinger model
of the Weil representation. Therefore, in order to combine these two results, we
have to compute the difference between these two kinds of splittings.

4. Outline of Part 3

The aim of this part is to determine the structures of L-packets consisting of sim-
ple supercuspidal representations and their corresponding L-parameters for quasi-
split classical groups over p-adic fields.

To be more precise, let G be a quasi-split classical group over F . Then, as
explained in Section 2, we can regard G as an endoscopic group of a (twisted)
general linear group GLN over F . Here the size N of the general linear group
depends on each classical group. For example, for

• the symplectic group Sp2n of size 2n,
• the quasi-split special orthogonal group SOµ

2n which is of size 2n and cor-
responds to a ramified quadratic character µ of F×,

• the split special orthogonal group SO2n+2 of size 2n+ 2, and
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• the quasi-split special orthogonal group SOur
2n+2 which is of size 2n+2 and

corresponds to the unramified quadratic character µur of F×

(these are groups which will be treated in this part), their dual groups and corre-
sponding general linear groups are given by the following:

G Sp2n SOµ
2n SO(ur)

2n+2
“G SO2n+1(C) SO2n(C) SO2n+2(C)

GLN GL2n+1 GL2n GL2n+2

Then, by the local Langlands correspondence, for each tempered L-parameter of
G, we have the L-packet ΠG

φ and its endoscopic lift πGLN
φ to GLN satisfying the

endoscopic character relation. Although we introduced the endoscopic character
relation as an equality of distribution characters in Section 2, we can also write it
in terms of functions as follows:

ΘGLN
φ,θ (g) =

∑

h↔g/∼

DG(h)2

DGLN ,θ(g)2
∆G,GLN (h, g)

∑

π∈ΠG
φ

Θπ(h).

Here we do not explain the precise meaning of each term in this equality. However,
we emphasize that the relation between πGLN

φ and ΠG
φ is characterized by this

identity since we have linear independence of the characters of representations.
Now we wish to describe the local Langlands correspondence for G explicitly.

Then we can divide this problem of explicit description of the local Langlands
correspondence for G into the following two problems:

(1) Describe the endoscopic lifting from G to GLN explicitly by investigating
the endoscopic character relation.

(2) Describe the local Langlands correspondence for GLN explicitly.

In this part, we consider these problems for simple supercuspidal representations,
which were introduced by Gross and Reeder in [GR10] (and also by Reeder and
Yu in [RY14]), of quasi-split classical groups. From now on, we assume that the
residual characteristic p is not equal to 2. Simple supercuspidal representations are
supercuspidal representations obtained by the compact induction of affine generic
characters of the pro-unipotent radical of the Iwahori subgroup, and characterized
as the representations having the minimal positive depth. In general, the depth is
a non-negative rational number, and the minimal positive depth for each group is
given by the following:

G GLN Sp2n SOµ
2n SO(ur)

2n+2

minimal positive depth 1
N

1
2n

1
2n

1
2n

Since the construction of simple supercuspidal representations is very explicit, af-
ter making some choices (for example, fixing a uniformizer of F ), we can easily
parametrize the equivalence classes of them by a concrete set, which is denoted by
SSC(G) in this part. Roughly speaking, an element of SSC(G) consists of data of

• a central character,
• an affine generic character on the pro-unipotent radical of the Iwahori sub-
group of G, and

• a way to extend the affine generic character to its intertwining subgroup,
9



and described as follows:

group G parametrizing set SSC(G)
GLN (k×)∨ × k× × C×

Sp2n µ2 × {0, 1}× k×

SOµ
2n µ2 × k×

SO(ur)
2n+2 µ2 × {0, 1}× k× × µ2

Here µ2 is the set {±1} of signs, and (k×)∨ is the set of characters of the multi-
plicative group k× of the residue field k of F . For X ∈ SSC(G), we denote the
corresponding simple supercuspidal representation of G by πG

X . We write ωG
X for

the central character of πG
X .

Now we state our main theorem in Part 3.

Theorem 4.1 (Main theorem in Part 3). We assume that p is not equal to 2. Let
πG
X be a simple supercuspidal representation of G corresponding to an element X

of SSC(G). Let φ ∈ Φ(G) be the L-parameter of πG
X (namely, the L-packet ΠG

φ of

φ contains πG
X ).

The case where G = Sp2n: The order of the L-packet ΠG
φ is two and ΠG

φ

equals the orbit of πG
X with respect to the action of the adjoint group of

G. Moreover the endoscopic lift πGL2n+1

φ of ΠG
φ to GL2n+1 is given by the

parabolic induction of

πGL2n
Y ! ωGL2n

Y

for some Y ∈ SSC(GL2n) which is explicitly described in terms of X ∈
SSC(Sp2n).

The case where G = SOµ
2n: The L-packet ΠG

φ is a singleton. Moreover the

endoscopic lift πGL2n
φ of ΠG

φ to GL2n is a simple supercuspidal representa-

tion πGL2n
Y corresponding to an element Y ∈ SSC(GL2n), which is explicitly

described in terms of X ∈ SSC(SOµ
2n).

The case where G = SO(ur)
2n+2: The order of the L-packet ΠG

φ is two and ΠG
φ

equals the orbit of πG
X with respect to the action of the adjoint group of G.

Moreover the endoscopic lift of ΠG
φ to GL2n+2 is given by the parabolic

induction of
®
πGL2n
Y ! (ωGL2n

Y ⊗ µG)! if ζ = 1,

πGL2n
Y ! (ωGL2n

Y ⊗ µur ⊗ µG)! µur if ζ = −1.

Here µG is the quadratic character of F× corresponding to G, ζ is the

fourth parameter of the data X ∈ SSC(SO(ur)
2n+2), and Y ∈ SSC(GL2n) is an

element described explicitly in terms of X.

We note that, in the case of even special orthogonal groups, the local Langlands
correspondence has been established modulo the action of the outer automorphism.
However, in this introduction, we ignore the difference between the set of irreducible
smooth representations and the set of their orbits under the action of the outer
automorphism for simplicity.

Theorem 4.1 gives a complete answer to the problem (1) for simple supercuspidal

representations of Sp2n(F ), SOµ
2n(F ), and SO(ur)

2n+2(F ). Moreover, since the L-
parameters of simple supercuspidal representations of general linear groups have
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been explicitly determined by the works of Bushnell–Henniart ([BH05]) and Imai–
Tsushima ([IT15]), by combining Theorem 4.1 with them, we also get an answer to
the problem (2) for the lifted representations.

Before we explain the outline of the proof of Theorem 4.1, we remark on several
preceding works:

• In our previous works ([Oi16a, Oi16b]), we considered the same problem
for split special orthogonal groups of odd degrees and unramified quasi-split
unitary groups, and got results of the same type.

• In the case of split special orthogonal groups of odd degrees, the endoscopic
lifts of simple supercuspidal representations had already been determined
by Adrian ([Adr16]) before our work ([Oi16a]), under some assumption on
the residual characteristic p. His method is based on a computation of the
twisted local γ-factors of simple supercuspidal representations, and totally
different from our one.

• For tamely ramified connected reductive groups, Kaletha constructed a can-
didate of L-packets consisting of epipelagic representations in [Kal15]. Since
a simple supercuspidal representation is a special case of epipelagic repre-
sentations, the L-packets constructed by him includes our ones. Moreover
he showed various expected properties of the local Langlands correspon-
dence for his L-packets. In particular, he proved the stability of L-packets
under some assumption on the residual characteristic. Thus we can say
that, in the cases of quasi-split classical groups, his L-packets coincide with
those of Arthur and Mok. On the other hand, the endoscopic character
relation for twisted endoscopy has not been checked for his L-packets yet.
In other words, the endoscopic lifts of his L-packets to general linear groups
have not been determined yet. Therefore Theorem 4.1 does not follow from
his results. We also emphasize that, in our method, we only have to assume
that the residual characteristic p is odd.

Now we first explain the rough idea of the proof of Theorem 4.1. The starting
point is a computation of characters of simple supercuspidal representations. By
using the character formula for supercuspidal representations, we can write the
character of a simple supercuspidal representation as a group-theoretical sum of the
values of an affine generic character. In particular, at “shallowest” elements of pro-
p Iwahori subgroups (which we will call affine generic elements), we can write the
characters of simple supercuspidal representations in terms of Kloosterman sums.
Our basic strategy is to combine such a computation with the endoscopic character
relation. That is, we get the values of the twisted character of πGLN

φ by combining

such a computation with the endoscopic character relation, and then recover πGLN
φ

from its twisted character. However, in carrying out such a procedure, there are
several difficulties.

First, a priori, there is a possibility that ΠG
φ contains a representation which is

totally different from simple supercuspidal representations. Therefore we first have
to determine the structure of ΠG

φ . To accomplish this, we utilize various properties
of the local Langlands correspondence.

Second, we do not have a full character formula for the twisted characters of
the representations which are obtained by the parabolic induction from “non-θ-
stable” parabolic subgroups (here θ is an involution of G used to define the twisted
character). In particular, we do not have a way to compute the twisted characters

11



of the lifted representations of GL2n+1(F ) in the case where G = Sp2n in Theorem
4.1. To resolve this difficulty, we first study the standard endoscopy of Sp2n and
reduce the problem to the case where G = SOµ

2n.
Let us explain the more detailed outline of the proof of Theorem 4.1. From now

on, we put G := Sp2n. Let πG
X and φ be as in Theorem 4.1. Then the proof of

Theorem 4.1 can be divided into four parts as follows:
Step 1. Determine the structure of ΠG

φ : The first step is to determine

the structure of ΠG
φ . To do this, we first note that, by the stability of L-packets,

ΠG
φ consists of orbits with respect to the action of the adjoint group Gad of G.

According to a result of Kaletha in [Kal13], every Gad-orbit of simple supercuspidal
representations consists of exactly two simple supercuspidal representations, only
one of which is generic (with respect to a fixed Whittaker data). Thus ΠG

φ contains
at least two simple supercuspidal representations, one of which is generic. Moreover,
by combining this observation with a result of Mœglin and Xu ([Mœg11, Xu17]),
we know that every member of ΠG

φ is supercuspidal.
On the other hand, by using a constancy and a non-vanishing property of the

characters of simple supercuspidal representations at affine generic elements of the
Iwahori subgroup, we can show that if the order of ΠG

φ is greater than two, then ΠG
φ

contains either an irreducible depth-zero supercuspidal representation or another
simple supercuspidal representation. However we can eliminate these possibilities
as follows. First, by the above Kaletha’s result and the uniqueness of a generic
representation in an L-packet (uniqueness part of so-called Shahidi’s generic packet
conjecture, which is established by [Var17] and [Ato17]), ΠG

φ has no more simple
supercuspidal representation. Second, by the constancy of the formal degree of rep-
resentations in each L-packet (which is proved in [Sha90]), in order to show that ΠG

φ

does not have an irreducible depth-zero supercuspidal representation, it suffices to
show that the formal degree of a simple supercuspidal representation is not equal
to those of irreducible depth-zero supercuspidal representations. However, since
irreducible depth-zero supercuspidal representations are obtained by the compact
induction of irreducible cuspidal representations of the reductions of maximal para-
horic subgroups of G ([MP96]), we can check this easily by studying the dimensions
of irreducible cuspidal representations of reductive groups over finite fields.

Step 2. Reduce the case of Sp2n to the case of SOµ
2n: The second step

is to study the relationship between simple supercuspidal L-packets of Sp2n and
those of ramified even special orthogonal groups SOµ

2n. Since the order of ΠG
φ

is two, we know that ΠG
φ is the endoscopic lift of an L-packet ΠH

φ of a proper
endoscopic group H of G (i.e., H ̸= G). In fact, by the argument in Step 1, we
can show that this group H is the special orthogonal group SOµ

2n of degree 2n
corresponding to a ramified quadratic character µ of F× which is determined by
the data X ∈ SSC(Sp2n).

On the other hand, we note that (G,H) is a dual pair (strictly speaking, we
should consider the orthogonal group rather than the special orthogonal group, but
we ignore this difference in this introduction). Then ΠG

φ can also be regarded as (a

character twist of) the theta lift of ΠH
φ , by the compatibility of the theta lifting and

the endoscopic lifting, which is known by [GI14] (or a special case of [AG17]). As
the theta correspondence preserves the depth of representations ([Pan02]), we can
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conclude that ΠH
φ consists of only one representation, which is simple supercuspidal.

Let us denote this representation by πH
X′ , for an element X ′ of SSC(H).

The final task in this step is to determine the data X ′ by computing the en-
doscopic character relation for ΠG

φ and ΠH
φ . Then we know that every simple

supercuspidal representation of H can be obtained by such a “descent” of simple
supercuspidal representations of G, and the case of Sp2n of Theorem 4.1 is reduced
to the case of SOµ

2n.
Step 3. Determine the endoscopic lift of ΠH

φ to GL2n: The third step is

to determine the endoscopic lift πGL2n
φ of ΠH

φ to GL2n and complete the proof of
the case of SOµ

2n of Theorem 4.1.
We first show that the depth of πGL2n

φ is not greater than 1
2n (in particular πGL2n

φ

is either simple supercuspidal or depth-zero supercuspidal). Since the representa-

tion πGL2n+1

φ is obtained by the parabolic induction of the tensor product of πGL2n
φ

and its central character, the depth of πGL2n
φ is equal to that of πGL2n+1

φ . Thus

it suffices to show that the depth of πGL2n+1

φ is not greater than 1
2n . In order to

evaluate the depth of πGL2n+1

φ , it is enough to show that its twisted character is
constant on a sufficiently large open compact set. By using the endoscopic charac-
ter relation for (ΠG

φ ,πGL2n+1

φ ), we can reduce it to constancy of the characters of

representations belonging to ΠH
φ on an open compact coset of the Iwahori subgroup

of H, and we can check it easily. The key point of this argument is to consider the
endoscopic character relation for (ΠG

φ ,πGL2n+1

φ ), not for (ΠH
φ ,πGL2n

φ ). The reason
why we consider the pair (GL2n+1,G) rather than (GL2n,H) is that the Kottwitz–
Shelstad transfer factor, which appears in the endoscopic character relation, for
(GL2n+1,G) is trivial while that for (GL2n,H) is not trivial. Namely, for the pair
(GL2n,H), the above argument fails because the Kottwitz–Shelstad transfer factor
may not be constant on a coset of an Iwahori subgroup.

After we evaluate the depth of πGL2n
φ , we eliminate the possibility that πGL2n

φ

is depth-zero and determine πGL2n
φ by computing the endoscopic character relation

for (GL2n,H) at affine generic elements.

GL2n+1 G
twisted

endoscopy
!! "! "! "! "! "! "! "! H

standard

endoscopy
!! "! "! "! "! "! "! "! "! twisted

endoscopy
""!"!"!"!"!"!"!"!" GL2n

πGL2n+1

φ ΠG
φ

endoscopic

lifting
!! "! "! "! "! "! "! "! ΠH

φ

endoscopic

lifting
!! "! "! "! "! "! "! "!

endoscopic

lifting
""!"!"!"!"!"!"!" πGL2n

φ

Step 4. Deduce the case of SO(ur)
2n+2 from the case of SOµ

2n: The final
step is to construct the simple supercuspidal L-packets of split or unramified quasi-
split even special orthogonal groups, and determine their endoscopic lifts to general
linear groups. For simplicity, here we consider only the split case.

In order to construct simple supercuspidal L-packets, we consider the theta
lifting. More precisely, if we take a ramified quadratic character µ of F×, then
(SOµ

2n, Sp2n) and (Sp2n, SO2n+2) are dual pairs, so we can construct representa-
tions of SO2n+2 from those of SOµ

2n by considering the theta lifting twice. On the
other hand, SOµ

2n × SOµ
2 is an endoscopic group of SO2n+2, and the theta lift of

Π
SOµ

2n
φ to SO2n+2 coincides with the endoscopic lift of the L-packet Π

SOµ
2n

φ × { }
13



to SO2n+2 up to a character twist, by the compatibility of the theta lifting and
the endoscopic lifting. Again by using the depth-preserving property of the theta
lifting, we can show that the lifted L-packet consists of two simple supercuspi-
dal representations. Finally, by computing the endoscopic character relation for
(SOµ

2n ×SOµ
2 , SO2n+2), we can determine the lifted L-packet.

In fact, this construction gives only the half of the simple supercuspidal rep-
resentations of SO2n+2(F ). However, we can get the other half by twisting these
simple supercuspidal L-packets by the spinor norm character of SO2n+2(F ). This
completes the proof of Theorem 4.1.

SO2n+2

Sp2n
%%

theta lifting

##
#$
#$
#$

SOµ
2n ×SOµ

2

endoscopic lifting

&&
'(

'(
'(

'(
'(

'(
'(

'(
'(

'(
'(

'(
'(

'(

SOµ
2n

%%

theta lifting

##
#$
#$
#$

inflation

via { }
!! "! "! "! "! "! "! "! "!

Finally, we comment on applications of our results. We can use the results in
this part as a touchstone in verifying a lot of conjectural properties of the local
Langlands correspondence.

For example, we can check the formal degree conjecture for our L-packets. The
formal degree conjecture was formulated by Hiraga–Ichino–Ikeda in [HII08] and
asserts that there is an explicit relation between the special value of the adjoint
γ-factor of a discrete L-parameter φ and the formal degree of the representations in
the L-packet of φ. This conjecture is proved for several groups, for example, general
linear groups ([HII08]), odd special orthogonal groups ([ILM17]), and some small
classical groups such as the unitary group of degree 3 ([GI14]). However, for other
groups such as symplectic groups, the formal degree conjecture has still been open.
We consider this conjecture for simple supercuspidal representations. Since simple
supercuspidal representations are obtained by the compact induction, we can com-
pute their formal degree quite easily. On the other hand, as we mentioned before,
we have an explicit description of the L-parameters of simple supercuspidal repre-
sentations as a consequence of Theorem 4.1 and the works of Bushnell–Henniart
and Imai–Tsushima. By using this description, a computation of the special value
of the adjoint γ-factors of such L-parameters is reduced to a simple problem of
representation theory of finite groups. In the end of this part, we carry out such a
computation and confirm that the formal degree conjecture holds for simple super-
cuspidal L-packets of the quasi-split classical groups, under some assumption on p
(including some cases of “bad” primes).

Another example is the depth preserving property of the local Langlands corre-
spondence, which is the main theme of this paper. By Theorem 4.1, we can conclude
that the depth preserving property holds for simple supercuspidal representations.
The important point here is that, in Theorem 4.1, we only have to assume that the
residual characteristic p is odd. Namely, simple supercuspidal representations give
us an example of the depth preservation in a case which is not covered by the cases
treated in a general result of Part 1.
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