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Abstract

In this dissertation we consider well-posedness and constructions of various solu-
tions for the parabolic evolution equations by theories of analytic semigroups and max-
imal Lp regularity. The equations we consider are the bidomain equations which repre-
sent electrophysiological wave propagation in the heart, the phase-field Navier–Stokes
equations which represent the deformation of the vesicle membrane in incompressible
viscous fluids, the Cahn–Hilliard equation which represent the spinodal decomposi-
tion of binary mixture, and the abstract parabolic evolution equations. The bidomain
equations are the model of biology and the phase-field Navier–Stokes equations and
the Cahn–Hilliard equations are so-called phase-field models.

In Chapter 1 we consider the semigroup generated by the principal part of the bido-
main equations. In general, solutions of the linear evolution equations can be analyzed
by the semigroup which is the solution operator corresponding from the initial data
to the solution at some time. It is important to characterize whether the semigroup is
analytic or not. Analytic semigroups represent the smoothing effect in parabolic evolu-
tion equations. The bidomain equations is complicated since they have three unknown
functions ui,e and u. Bourgault et al. introduced a bidomain operator and they re-
garded the equation into a reaction diffusion system ([Bourgault et al. 2009]). They
proved that the bidomain operator is a self-adjoint operator and a non-negative opera-
tor in L2 space. It means that the operator A generates an analytic semigroup e−tA. In
this chapter, we consider the bidomain operator in Lp spaces for 1 < p ≤ ∞. We prove
an L∞ resolvent estimate by a contradiction argument and a blow-up argument. From
the inequality obtained by the negation of its conclusion, we show that one holds the
inequality by compactness, but the other breaks down the inequality by uniqueness,
which leads a contradiction. The estimates from L2 and L∞ imply an Lp resolvent es-
timate for 1 < p < ∞ by the interpolation and the duality. We properly introduce
the bidomain operator in Lp spaces and characterize the resolvent set of the operator.
The main theorem is that the bidomain operator generates an analytic semigroup in
Lp spaces. For the non-linear bidomain equations, we construct a local well-posedness
theorem by a general theory of analytic semigroups. This chapter consists of a joint
work with Professor Giga (1).

In Chapter 2 we consider the time periodic problem about the bidomain equa-
tions since the heart periodically beats in time. Under the assumption that the oper-
ator A generates an exponential stable analytic semigroup e−tA, we construct DaPrato-
Grisvard type maximal Lp-DA(θ, p) regularity in a real interpolation spaces for an ab-
stract linear parabolic equation u′ + Au = f , where DA(θ, p) := (X,D(A))θ,p. This
means that for any time periodic function f ∈ Lp(T;DA(θ, p)), there exists a unique
time periodic solution u which have the same regularity u′, Au ∈ Lp(T;DA(θ, p)),
where Lp(T;DA(θ, p)) is a class of X-valued Lp(T) function with T := R/TZ for a pe-
riod T > 0. This is a linear theory about the time periodic problem. The proof is based
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on the time periodic solution formula u(t) =
´ t
−∞ e−(t−s)Af(s)ds. For the non-linear

bidomain equations, we prove that the equations admit a unique periodic solution by
Banach’s fixed point theorem provided the source terms are small. This chapter consists
of a joint work with Professor Hieber, Dr Tolksdorf and Mr. Kress (2).

In Chapter 3 we continue discussing the time periodic problem about the bido-
main equations. In Chapter 2 we need the smallness conditions since the bidomain
equations are considered as a perturbed equation of their linearized equations. In this
chapter we restrict that the nonlinear term is FitzHugh–Nagumo type and the function
space is L2, but we prove that the equations admit a time periodic solution without
assuming the smallness conditions on the source. When we use Galerkin method, we
apply Brouwer’s fixed point theorem for Poincaré map. This guarantees the existence
of a weak time periodic solution. Moreover we regard the initial data as this periodic
solution, then by global well-posedness result for initial value problem, the weak solu-
tions agree with the strong solutions. This is a regularity theorem, which implies the
existence of the strong time periodic solutions in maximal L2-L2 spaces. This chapter
consists of a joint work with Professor Giga and Mr. Kress (3).

In Chapter 4 we consider the well-posedness for the phase-field Navier–Stokes
equations. In previous works, it was proved the existence of the global weak solutions
([Du et al. 2007]) and the unique existence of the local strong solutions ([Takahashi et al.
2012]). However the former is not known its uniqueness and regularity and the latter
is analyzed as a semi-linear evolution equation although the coupling part should be
the principal part. Therefore its regularity class of the solutions is not suitable. We treat
the equation as a quasi-linear evolution equation which means the coupling part is the
principal part. We prove the linear operator has maximal Lp-Lq regularity property
and prove the unique existence of the local strong solutions and the continuity on the
initial data. Moreover we have that the solution is real analytic in time and space, thus
this is a classical solution. At last it is shown that the variational strict stable solution is
exponentially stable provided the product of the viscosity coefficient and the mobility
constant is large. This chapter consists of a paper (4).

In Chapter 5 we consider the global existence and uniqueness of the solutions for
the Cahn–Hilliard equation. Let the order parameter u and the chemical potential µ.
In previous works, the boundary condition was Neumann condition for µ so that it
derives the volume conservation law d

dt

´
Ω u dx = 0. Since the equation is fourth order,

we need two boundary conditions. The other boundary condition is Neumann con-
dition for u so that it derives that the energy EΩ(u) decrease, or a dynamic boundary
condition for u so that it derives the energy EΩ(u) + E∂Ω(u) decrease. Here E∂Ω(u) is
a energy from the boundary. However when the substances permeate the boundary,
volume preservation is not necessarily achieved. Gal and Goldstein et al. introduced
new boundary conditions which model the boundaries are permeable walls and non-
permeable walls, respectively ([Gal 2006], [Goldstein et al. 2011]). The former derives
d
dt(
´
Ω u dx+

´
∂Ω u dS) = −c

´
Γ µ

dS
b with the constants b > 0, c ≥ 0 and the latter derives
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the total volume conservation law d
dt(
´
Ω u dx +

´
∂Ω u dS) = 0. In permeable walls, the

case c = 0 implies the total volume conservation law. We consider these two boundary
conditions including the case c = 0. We apply the linear theory of maximal Lp regular-
ity which corresponds to higher order equations and the dynamic boundary condition
(cf. [Denk et al. 2008]). It characterizes the solvability and the classes of data by a nec-
essary and a sufficient condition. For the non-linear Cahn–Hilliard equation, we use
Banach’s fixed point theorem, energy estimates and a-priori estimate. We are able to
generalize the global solvability for p ̸= 2 although above previous works are L2 frame-
work. Moreover since the spaces of initial functions are optimal, we are able to classify
the necessary of the compatibility conditions by p although above previous works need
the compatibility conditions. This chapter consists of a paper (5).

In Chapter 6 we consider the well-posedness for the abstract parabolic evolution
equations by means of maximal Lp regularity with time weights. The (classical) max-
imal Lp regularity property is the solvability and the estimate for the abstract linear
evolution equations u′ + Au = f in Lp(0, T ;X). The remarkable application of the
maximal Lp regularity is the solvability of the quasi-linear parabolic evolution equa-
tions u′ + A(u)u = F (u). However when we use this theory, in general, we need to
take the initial data in the real interpolation space (X,D(A))1−1/p,p which is the trace
space of the solution space at t = 0. The theory of maximal Lp regularity with time
weight is a generalization of this initial data while keeping the solution class except-
ing for the behavior near t = 0. In a series of papers by J. Prüss, they extended the
initial data to (X,D(A))µ−1/p,p for µc ≤ µ ≤ 1, where the critical weight µc is deter-
mined by the non-linearities F . Moreover they give a sufficient condition to be a global
solution when the equation is a semi-linear and the non-linear term is the bi-linear.
In this chapter we extend this general local well-posedness theory to the quasi-linear
parabolic evolution equations u′ + A(t, u) = F (t, u) with the time-dependent operator
and the non-linear term. Under the caseA(t, u) = A(t) and the assumptions used in the
local well-posedness with some technical assumption, we give a sufficient condition in
order that the local solution becomes a global solution. This is a generalization of above
bilinear non-linearities. As a example of the local well-posedness theorem, we applied
the theory to the quasi-linear heat equations u′−a(t, u)∆u = F (t, u)+ |∇u|κ with κ > 2.

All chapters are based on the papers below, respectively. All sections, notations and
theorems, etc are cited only in each chapter where they appear.
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Chapter 1

On a resolvent estimate for bidomain opera-
tors and its applications

We study bidomain equations that are commonly used as a model to represent the elec-
trophysiological wave propagation in the heart. We prove existence, uniqueness and
regularity of a strong solution in Lp spaces. For this purpose we derive an L∞ resol-
vent estimate for the bidomain operator by using a contradiction argument based on a
blow-up argument. Interpolating with the standard L2-theory, we conclude that bido-
main operators generate C0-analytic semigroups in Lp spaces, which leads to construct
a strong solution to a bidomain equation in Lp spaces.

Keywords: bidomain model; resolvent estimates; blow-up argument

1.1 Introduction

The bidomain model is a system related to intra- and extra-cellular electric potentials
and some ionic variables. Mathematically, bidomain equations can be written as two
partial differential equations coupled with a system of m ordinary differential equa-
tions:

∂tu+ f(u,w)−∇ · (σi∇ui) = si in (0,∞)× Ω,(1.1.1)

∂tu+ f(u,w) +∇ · (σe∇ue) = −se in (0,∞)× Ω,(1.1.2)

∂tw + g(u,w) = 0 in (0,∞)× Ω,(1.1.3)

u = ui − ue in (0,∞)× Ω,(1.1.4)

σi∇ui · n = 0, σe∇ue · n = 0 on (0,∞)× ∂Ω,(1.1.5)

u(0) = u0, w(0) = w0 in Ω.(1.1.6)

Here, functions ui and ue are intra- and extra-cellular electric potentials, u is the
transmembrane potential (or the action potential) and w = w(t, x) ∈ Rm(m ∈ N) is
some ionic variables (current, gating variables, concentrations, etc.). All these functions
are unknown. On the other hand, the physical region occupied by the heart Ω ⊂ Rd,
conductivity matrices σi,e = σi,e(x), external applied current sources si,e = si,e(t, x),
total transmembrane ionic currents f : R × Rm → R and g : R × Rm → Rm and initial
data u0 and w0 are given. The symbol n denotes the unit outward normal vector to

1
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∂Ω. The reader is referred to the books [12] and [22] about mathematical physiology
including bidomain models.

There are some literature about well-posedness of bidomain equations. First pi-
oneering work is due to P. Colli-Franzone and G. Savaré [13]. They introduced a
variational formulation and derived existence, uniqueness and some regularity results
in Hilbert spaces. Here, they assumed nonlinear terms f, g are forms of f(u,w) =

k(u) + αw, g(u,w) = −βu + γw (α, β, γ ≥ 0) with a suitable growth condition on k.
Examples include cubic-like FitzHugh-Nagumo model, which is the most fundamen-
tal electrophysiological model. However, other realistic models cannot be handled by
their approach because nonlinear terms are limited. Later M. Veneroni [40] extended
to their results by using fixed point argument and established well-posedness of more
general and more realistic ionic models. These two papers discussed strong solutions
by deriving further regularity of weak solutions. In 2009, Y. Bourgault, Y. Coudiére and
C. Pierre [11] showed well-posedness of a strong solution in L2 spaces. They trans-
formed bidomain equations into an abstract evolution equation of the form{

∂tu+Au+ f(u,w) = s,

∂tw + g(u,w) = 0

by introducing the bidomain operatorA inL2 and modified source term s. Formally the
bidomain operator is the harmonic mean of two elliptic operators, i.e. (A−1

i + A−1
e )−1

or Ai(Ai + Ae)
−1Ae, where Ai,e· is the elliptic operator −∇ · (σi,e∇ · ) with the ho-

mogeneous Neumann boundary condition. They proved that the bidomain operator is
a non-negative self-adjoint operator by considering corresponding weak formulations.
Since their framework is in L2, well-posedness was only proved for d ≤ 3 in L2 spaces.

The main goal of this chapter is to establish Lp-theory (1 < p < ∞) and L∞-theory
for the bidomain operator with applications to bidomain equations. More explicitly,
we shall prove that the bidomain operator forms an analytic semigroup e−tA both in
Lp and L∞. By this result we are able to construct a strong solution in Lp for any space
dimension d (by taking p large if necessary). Our result allows any locally Lipschitz
nonlinear terms.

To derive analyticity it is sufficient to derive resolvent estimates. For Lp resolvent
estimates a standard way is to use the Agmon’s method (e.g. [24], [37]). The main idea
of the method is as follows. If we have a W 2,p(Ω×R) a priori estimate for the operator
A−eiθ∂tt, thenA has anLp resolvent estimate. Unfortunately, it seems difficult to derive
such a W 2,p a priori estimate because of nonlocal structure of the bidomain operator.
Thus we argue in a different way.

We first establish an L∞ resolvent estimate for the bidomain operator by a contra-
diction argument including a blow-up argument. We then derive an Lp resolvent esti-
mate for 2 ≤ p ≤ ∞ by interpolating L2 and L∞ results. The Lp-theory for 1 < p < 2 is
established by a duality argument. Note that a standard idea to derive an L∞ resolvent
estimate due to Masuda-Stewart (see the third next paragraph) does not apply because
their method is based on an Lp resolvent estimate, which we would like to prove.

A blow-up argument was first introduced by E. De Giorgi [14] in order to study
regularity of a minimal surface. It is also efficient to derive a priori estimates for so-
lutions of a semilinear elliptic problem [17] and a semilinear parabolic problem [18],
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[16]. Recently, K. Abe and the first author [1], [2] showed that the Stokes operator is
a generator of an analytic semigroup on C0,σ(Ω), the L∞-closure of C∞

c,σ(Ω) (the space
of smooth solenoidal vector fields with compact support in Ω) for some class of do-
mains Ω including bounded and exterior domains by using a blow-up argument for a
nonstationary problem. For a direct proof extending the Masuda-Stewart method for
resolvent estimates, see [3]. Suzuki [35] showed analyticity of semigroups generated
by higher order elliptic operators in L∞ spaces by a blow-up method even if the do-
main has only uniformly C1 regularity for resolvent equations. Our approach is similar
to his approach, but boundary conditions are different and our equations are systems.
For the Dirichlet boundary condition, we can easily take a cut-off function and a test
function. However, for the Neumann boundary condition, we have to take a cut-off
function and a test function carefully so that we does not violate boundary conditions.

Our method is based on a contradiction argument together with a blow-up argu-
ment. Let us explain a heuristic idea. Suppose that we would like to prove that

|λ|∥u∥∞ ≤ C∥s∥∞

with someC > 0 independent of sufficiently large λ, u and swhich satisfy the resolvent
equation λu + Au = s in Ω. Here, ∥ · ∥∞ denotes the L∞(Ω) norm. Suppose that the
estimate were false. Then there would exists a sequence {λk}∞k=1, |λk| → ∞ and {uk, sk}
satisfy λkuk + Auk = sk in Ω such that |λk|∥uk∥∞ > k∥sk∥∞. By normalizing uk to
introduce vk = uk/∥uk∥∞, we observe that ∥vk∥∞ = 1. We take {xk}∞k=1 ⊂ Ω such
that |vk(xk)| > 1/2. We rescale wk(x) = vk(xk + x/|λk|1/2). This function solves the
equation eiθkwk+Akwk = tk in Ωk withAk → A0 ifA has a nice scaling property, where
eiθk = λk/|λk|, tk(x) = sk(xk + x/|λk|1/2)/|λk|∥uk∥∞ and Ωk := |λk|1/2(Ω − xk). Here,
A0 is the bidomain operator with a constant coefficient. Since |λk| → ∞, the rescaled
domain Ωk converges to either the whole space or the half space. If wk converges to
some w, then w solves the limit equation eiθ∞w + A0w = 0 since ∥tk∥∞ < 1/k. If the
convergence is strong enough, then the assumption |wk(0)| > 1/2 implies |w(0)| ≥ 1/2.
However, if the solution of the limit equation eiθ∞w+A0w = 0 is unique, i.e. w = 0, then
we get a contradiction. The key step is a local ‘Compactness’ of the blow-up sequence
{wk}∞k=1 near zero to conclude |w(0)| ≥ 1/2 and ‘Uniqueness’ of a blow-up limit.

Let us explain some literatures for L∞-theory. For the Laplace operator or general
elliptic operators it is well known that the corresponding semigroup is analytic in L∞-
type spaces. K. Yosida [42] considered the second order elliptic operator on R. It was
difficult to extend his method for multi-dimensional elliptic operators. K. Masuda [25],
[26] (see also [27]) first proved the analyticity of the semigroup generated by a general
elliptic operator (even for higher-order elliptic operators) in C0(Rd), the space of con-
tinuous functions vanishing at the space-infinity. For general domains, H. B. Stewart
treated Dirichlet conditions [33] and general boundary conditions [34]. Their methods
are based on a localization with Lp results and interpolation inequalities. The reader
may refer to the comprehensive book written by A. Lunardi [24, Chapter 3] for the
Masuda-Stewart method which applies to many other cases. However, in our situa-
tions, we cannot apply these methods since we do not have Lp estimates.

Originally, bidomain equations were derived at a microscopic level. The cardiac cel-
lular structure of the tissue can be viewed by disjoint unions of two regions separated
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by the interface, i.e. Ω = Ωi ∪ Ωe ∪ Γ, where Ωi and Ωe are disjoint intra- and extra cel-
lular domains and Γ = ∂Ωi ∩ ∂Ωe is their interface called the active membrane. When
we consider this model, the intra- and extra cellular potential ui,e are functions in Ωi,e
respectively, and transmembrane potential u = ui − ue is the function on Γ. Bidomain
equations are replaced to equations on Ωi, Ωe and Γ in this microscopic model. The
dynamics inside the heart is much complicated. There are only a few papers (e.g. [13],
[38]) because of standard techniques and results on reaction diffusion equation systems
cannot be directly applied. H. Matano and Y. Mori [28] showed existence and unique-
ness of a global classical solution for 3D cable model which is one of the microscopic
cellular model by proving a uniform L∞ bound of solutions.

Conversely at a macroscopic model, the cardiac tissue can be represented by a con-
tinuous model (called “bi”domain model), i.e. Ω = Ωi = Ωe = Γ though each point
of the heart Ω is one of the interior part Ωi or exterior part Ωe or their boundary Γ.
Formal derivation from microscopic model to macroscopic model was shown by a ho-
mogenization process when a periodic cardiac structure [22], [23]. The authors of [31]
showed a rigorous mathematical derivation of the macroscopic model by using the
tools of the Γ-convergence theory. The paper [7] studied the asymptotic behavior of the
family of vectorial integral functionals, which is concerned with bidomain model, in the
framework of Γ-convergence. The bidomain model is also used to analyze nonconvex
mean curvature flow as a diffuse interface approximation [6], [10], [9]. Nonconvexity
leads to the gradient flow of a nonconvex functional, which corresponds in general to
an ill-posed parabolic problem. To study an ill-posed problem, it is often efficient to
regularize it, for example by adding some higher order term, and then passing to the
limit as the regularizing parameter goes to zero. However, papers [6], [10], [9] intro-
duced completely different regularization, namely, to use bidomain equations, where
hidden anisotrophy plays a key role. Recently in [29], interesting phenomena about
stability of traveling wave solutions was found for bidomain Allen-Cahn equations,
which is quite different from classical Allen-Cahn equations. This is also relevant to the
hidden anisotropy of the bidomain model.

The outline of this chapter is as follows. In Section 1.2 after preparing a few no-
tations, we state an L∞ resolvent estimate for bidomain equations, which is a key es-
timate of analyticity in Lp and L∞ spaces. In Section 1.3 we give our proof of an L∞

resolvent estimate by using a blow-up argument. In Section 1.4 the system of bidomain
equations is replaced by a single equation by using bidomain operators in Lp spaces.
Then we show existence and uniqueness of the solution. The method is based on a
continuity method [20]. We also establish Lp and L∞ resolvent estimates for bidomain
operators based in our analysis in Section 1.3. In Section 1.5 to solve original prob-
lem (1.1.1)-(1.1.6) in Lp we define bidomain operators and domains of their fractional
powers in order to handle nonlinear terms f, g having only locally Lipschitz continu-
ity. From an Lp resolvent estimate, we show bidomain operators are sectorial opera-
tors and then we derive existence, uniqueness and regularity of a strong solution to
(1.1.1)-(1.1.6) in Lp spaces. In the appendix, we collect the L1 boundedness of Fourier
multiplier, which was left in Section 1.3.
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1.2 Resolvent estimate for bidomain operators

1.2.1 Preliminaries, notations and definitions

In this subsection we give a rigorous setting in order to state an L∞ resolvent estimate.
We first recall the definition of uniformly Ck-domain for k ≥ 1 and function spaces
W 2,p
loc (Ω).

Let B(x0, r) be an open ball with center x0, radius r > 0, i.e. B(x0, r) = {x ∈ Rd |
|x− x0| < r}.

Definition 1.1 (Uniformly Ck-domain). Let Ω ⊂ Rd be a domain with d ≥ 2. We say
that Ω is a uniformly Ck-domain (k ≥ 1) if there exist K > 0 and r > 0 such that for
each point x0 ∈ ∂Ω there exists a Ck function γ of d − 1 variables x′ such that -upon
relabeling, reorienting and rotation the coordinates axes if necessary- we have

Ω ∩B(x0, r) =
{
x = (x′, xd) ∈ B(x0, r) | xd > γ(x′)

}
,

∥γ∥Ck(Rd−1) = sup
|α|≤k, x′∈Rd−1

|∂αx′γ(x′)| ≤ K.

Definition 1.2. We say u ∈ W 2,p
loc (Ω) if there exists v ∈ W 2,p

loc (R
d) such that u = v a.e. in

Ω.

Here W 2,p is Lp Sobolev space of order 2 and W 2,p
loc is their localized version.

The conductivity matrices σi,e are functions of the space variable x ∈ Ω with coef-
ficients C1(Ω) and satisfy the uniform ellipticity condition. Namely, we assume that
there exist constants 0 < σ < σ such that

σ|ξ|2 ≤ ⟨σi,e(x)ξ, ξ⟩ ≤ σ|ξ|2(1.2.1)

for all x ∈ Ω and ξ ∈ Rd. Let a = a(x) denote unit tangent vector at the point x ∈ ∂Ω.
Set the longitudinal conductances kli,e : ∂Ω → R and the transverse conductances kti,e :
∂Ω → R along the fibers. Commonly used conductance tensors are of the form ([16])

σi,e(x) = kti,e(x)I + (kli,e(x)− kti,e(x))a(x)⊗ a(x) (x ∈ ∂Ω).

By this form we have the normal n is the eigenvector of σi,e whose eigenvalue is kti,e(x):

σi,e(x)n(x) = kti,e(x)n(x) (x ∈ ∂Ω).

Under these assumptions of σi,e, we have the property of boundary conditions:

σi,e∇u · n = 0 ⇔ ∇u · n = 0 on ∂Ω.(1.2.2)

Source terms si,e also have important property. In physiology no current flow out-
side through boundary ∂Ω and the intra- and extra-cellular media communicate elec-
trically through the transmembrane. Hereafter we assume current conservation;

ˆ
Ω
(si(t) + se(t))dx = 0 (t ≥ 0).
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This is nothing but the compatibility condition for bidomain equations. This averaging
zero condition is used when we transform the system of bidomain equations (1.1.1)-
(1.1.6) into single equation (1.5.7)-(1.5.8).

1.2.2 Resolvent estimate

We consider the following resolvent equations

(∗)


λu−∇ · (σi∇ui) = s in Ω,

λu+∇ · (σe∇ue) = s in Ω,

u = ui − ue in Ω,

σi∇ui · n = 0, σe∇ue · n = 0 on ∂Ω,

corresponding to (1.1.1)-(1.1.6). These equations come from the Laplace transformation
of linear part of bidomain equations.

Let us state an L∞ resolvent estimate. We set Σθ,M := {λ ∈ C \ {0} | |Arg λ| <
θ,M < |λ|} and N(u, ui, ue, λ) of the form

N(u, ui, ue, λ) := sup
x∈Ω

(
|λ||u(x)|+ |λ|1/2 (|∇u(x)|+ |∇ui(x)|+ |∇ue(x)|)

)
.

Theorem 1.3 (L∞ resolvent estimate for bidomain equations). Let Ω ⊂ Rd be a uniformly
C2-domain and σi,e ∈ C1(Ω,Sd) satisfy (1.2.1) and (1.2.2). Then for each ε ∈ (0, π/2) there
exist C > 0 and M > 0 such that

N(u, ui, ue, λ) ≤ C∥s∥L∞(Ω)

for all λ ∈ Σπ−ε,M , s ∈ L∞(Ω) and strong solutions u, ui,e ∈
∩
n<p<∞W 2,p

loc (Ω) ∩W
1,∞(Ω)

of (∗).

Remark 1.4. (i) It is impossible to derive an estimate |λ|∥ui,e∥∞ ≤ C∥s∥L∞(Ω) because if
(u, ui, ue) is a triplet of strong solutions then so is (u, ui + c, ue + c) for all c ∈ R.
(ii) By the Sobolev embedding theorem [5],∩

n<p<∞
W 2,p
loc (Ω) ∩W

1,∞(Ω) ⊂
∩

0<α<1

C1+α(Ω).

Hence (u, ui, ue) areC1 functions and the left-hand side of the resolvent estimate makes
sense.

1.3 Proof of an L∞ resolvent estimate

Proof of Theorem 1.3. We divide the proof into five steps. The first two steps are reformu-
lation of equations and estimates. The last three steps (compactness, characterization
of the limit and uniqueness) are crucial.

Step 1 (Normalization)
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We argue by contradiction. Suppose that the statement were false. Then there
would exist ε ∈ (0, π/2), for any k ∈ N there would exist λk = |λk|eiθk ∈ Σπ−ε,k,
sk ∈ L∞(Ω) and uk, uik, uek ∈

∩
n<p<∞W 2,p

loc (Ω) ∩W
1,∞(Ω) which are strong solutions

of resolvent equations
λkuk −∇ · (σi∇uik) = sk in Ω,

λkuk +∇ · (σe∇uek) = sk in Ω,

uk = uik − uek in Ω,

σi∇uik · n = 0, σe∇uek · n = 0 on ∂Ω,

with an L∞ estimate N(uk, uik, uek, λk) > k∥sk∥L∞(Ω).
We set 

vk
vik
vek
s̃k

 :=
1

N(uk, uik, uek, λk)


|λk|uk
|λk|uik
|λk|uek
sk

 .

Then we get normalized resolvent equations of the form
eiθkvk − 1

|λk|∇ · (σi∇vik) = s̃k in Ω,

eiθkvk +
1

|λk|∇ · (σe∇vek) = s̃k in Ω,

vk = vik − vek in Ω,

σi∇vik · n = 0, σe∇vek · n = 0 on ∂Ω,

with estimates 1
k > ∥s̃k∥L∞(Ω) and

N

(
vk
|λk|

,
vik
|λk|

,
vek
|λk|

, λk

)
=sup
x∈Ω

(
|vk(x)|+ |λk|−1/2 (|∇vk(x)|+ |∇vik(x)|+ |∇vek(x)|)

)
=1.

Step 2 (Rescaling)

Secondly, we rescale variables near maximum points of normalizedN . By definition
of supremum there exists {xk}∞k=1 ⊂ Ω such that

|vk(xk)|+ |λk|−1/2 (|∇vk(xk)|+ |∇vik(xk)|+ |∇vek(xk)|) >
1

2

for all k ∈ N. We rescale functions {(wk, wik, wek)}∞k=1, {tk}∞k=1, matrices {(σik, σek)}∞k=1

and domain Ωk with respect to xk. Namely, we set wk
wik
wek

 (x) :=

 vk
vik
vek

(xk + x

|λk|1/2

)
,
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tk(x) :=s̃k

(
xk +

x

|λk|1/2

)
,

σik(x) := σi

(
xk +

x

|λk|1/2

)
, σek(x) := σe

(
xk +

x

|λk|1/2

)
,

Ωk :=|λk|1/2(Ω− xk).

By changing variables Ω ∋ x 7→ |λk|1/2(x− xk) ∈ Ωk, we notice that our equations and
our estimates can be rewritten of the form

eiθkwk −∇ · (σik∇wik) = tk in Ωk,

eiθkwk +∇ · (σek∇wek) = tk in Ωk,

wk = wik − wek in Ωk,

σik∇wik · nk = 0, σek∇wek · nk = 0 on ∂Ωk,

with estimates

1

k
> ∥tk∥L∞(Ωk),

|wk(0)|+ |∇wk(0)|+ |∇wik(0)|+ |∇wek(0)| >
1

2
,

sup
x∈Ωk

(|wk(x)|+ |∇wk(x)|+ |∇wik(x)|+ |∇wek(x)|) = 1,

where nk denotes the unit outer normal vector to Ωk. Here, we remark that unknown
functions wik and wek are defined up to an additive constant. So without loss of gener-
ality we may assume that wik(0) := 0.

Step 3 (Compactness)

In this step, we will show local uniform boundedness for {(wk, wik, wek)}∞k=1. If
these sequences are bounded, one can take subsequences {(wkl , wikl , wekl)}∞l=1 which
uniformly convergences in the norm C1 on each compact set. We need to divide two
cases. One is the whole space case and the other is the half space case up to translation
and rotation.
We set dk = dist(0, ∂Ωk) = |λk|1/2dist(xk, ∂Ω) and D := lim inf

k→∞
dk.

Case(3-i) D = ∞

In this case the limit Ωk is Rd in the sense that for any R > 0 there is k0 such that
B(0, R) ⊂ Ωk for k0 ≤ k. For the convergence of the domain, see [1], [4], [35]. Let cut-
off function ρ ∈ C∞

0 (Rd) be such that ρ(x) ≡ 1 for |x| ≤ 1 and ρ(x) ≡ 0 for |x| ≥ 3/2.
Here and hereafter by Ck0 (E) we mean the space of all k-times continuously differen-
tiable function with compact support in the set E. We localize functions wk, wik, wek as
follows  wρk

wρik
wρek

 := ρ

 wk
wik
wek

 in Ωk.
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By multiplying rescaled resolvent equations by ρ, we consider the following localized
equations

eiθkwρk −∇ · (σik∇wρik) = tkρ+ Iik in Ωk,(1.3.1)

eiθkwρk +∇ · (σek∇wρek) = tkρ+ Iek in Ωk,(1.3.2)

wρk = wρik − wρek in Ωk,(1.3.3)

σik∇wρik · nk = 0, σek∇wρek · nk = 0 on ∂Ωk,(1.3.4)

where

Iik = −
∑

1≤m,n≤d

{(
(σik)mn

)
xm
ρxnwik + (σik)mnρxmxnwik

+(σik)mnρxn(wik)xm + (σik)mnρxm(wik)xn

}
,

Iek =
∑

1≤m,n≤d

{(
(σek)mn

)
xm
ρxnwek + (σek)mnρxmxnwek

+(σek)mnρxn(wek)xm + (σek)mnρxm(wek)xn

}
are lower order terms of wik and wek. Here, we take sufficiently large k such that
B(0, 2) ⊂ Ωk.

Take some p > n and apply W 2,p(Ωk) a priori estimate for second order elliptic
operators −∇ · (σik∇·), which have the Neumann boundary (1.3.4). By (1.3.1) there
exists C > 0 independent of k ∈ N such that

∥wρik∥W 2,p(Ωk)

≤C
(
∥wρik∥Lp(Ωk) + ∥wρk∥Lp(Ωk) + ∥tkρ∥Lp(Ωk) + ∥Iik∥Lp(Ωk)

)
≤C|B(0, 2)|1/p

(
∥wρik∥L∞(Ωk) + ∥wρk∥L∞(Ωk) + ∥tkρ∥L∞(Ωk) + ∥Iik∥L∞(Ωk)

)
=:C|B(0, 2)|1/p (I + II + III + IV ) ,

where we use Hölder inequality in the second inequality. The first term I is uniformly
bounded in k since wik(0) = 0 and ∥∇wik∥L∞(Ωk) ≤ 1. The second term II and the third
term III are also uniformly bounded in k since ∥wk∥L∞(Ωk) ≤ 1, ∥ρ∥L∞(Ωk) ≤ 1 and
∥tk∥L∞(Ωk) < 1/k. Finally the forth term IV is also uniformly bounded in k since

IV ≤ C(d, sup
k

∥σik∥W 1,∞(Ωk))∥wik∥W 1,∞(Ωk)

≤ C.

Here, the constant C may differ from line to line. Therefore the sequence {wρik}
∞
k=1 is

uniformly bounded in W 2,p(Ωk). Functions {wρek}
∞
k=1 and {wρk}

∞
k=1 are also uniformly

bounded in W 2,p(Ωk) since the same calculation as above and (1.3.3). Here, Ωk de-
pends on k ∈ N. By zero extension from Ωk to Rd, we have {(wρk, w

ρ
ik, w

ρ
ek)}

∞
k=1 is

uniform bounded in the norm
(
W 2,p(Rd)

)3. Thus we are able to take subsequences
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{(wρkl , w
ρ
ikl
, wρekl)}

∞
l=1 and w,wi, we ∈W 2,p(Rd) such that wρkl
wρikl
wρekl

→

 w

wi
we

 in the norm C1(Rd) as l → ∞,

by Rellich’s compactness theorem [5]. Since

|wkl(0)|+ |∇wkl(0)|+ |∇wikl(0)|+ |∇wekl(0)| >
1

2
,

we get

|w(0)|+ |∇w(0)|+ |∇wi(0)|+ |∇we(0)| ≥
1

2
.

Case(3-ii) D <∞

By D = lim inf
k→∞

dk < ∞, there exists a subsequence {dkl} such that lim
l→∞

dkl = D. We

abbreviated dkl and write dk. We may assume that Ωk tends to Rd+,D := {(x′, xd) ∈ Rd |
xd > −D} as k → ∞ in C2-sense up to translation and rotation. Indeed, since Ω is
uniformly C2, there is a unique nearest point of zk ∈ ∂Ω from xk for sufficiently large k
(cf. [20]). Moreover, by rotation with respect to xk, the domain Ω is represented locally
near zk as the domain occupied above the graph of a C2 function γk of d − 1 variable
x′ such that xd-direction corresponds to the direction from zk to xk. This implies that
∇x′γk(z

′
k) = 0, where zk = (z′k, zkd), xk = (x′k, xkd); see Definition 1.1. By translation we

may assume that xkd = 0. By uniformity of C2-regularity we may assume that the size
of neighborhood where the representation is valid and C2-bound for γk can be taken
independent of k. Under this setting Ωk is represented locally near the origin as the
domain occupied above the graph of γ̃k(x′) = |λk|1/2γk(x′k + x′/|λk|1/2) and the size
of region where the representation is valid is of order |λk|−1/2. By definition this γ̃k
converges locally uniformly in Rd−1 to a constant function xd = −D up to second order
derivatives as k → ∞ since ∇x′ γ̃k(0) = 0 and γ̃k(0) = −|λk|1/2(xkd− zkd) = −dk → −D
as k → ∞.

We would like to take a cut-off function similar to the Case(3-i). However, we need
to keep the Neumann boundary condition. We refer the papers [1], [4], [35] to take
ρk satisfying ∂ρk/∂nk = 0 so that it converges to some function ρ. Assume that ρ ∈
C2
0 (Rd+,D) with supp ρ ⊂ B(0, R) and ∂ρ/∂xd = 0 on xd = −D. Take a sequence of

functions ρk ∈ C2
0 (Ωk) such that ∂ρk/∂nk = 0 on ∂Ωk, supp ρk ⊂ B(0, 4R/3) and that ρk

converges to ρ uniformly in Ωk ∩ Rd+,D up to second derivatives. Fortunately, such ρk
exists as constructed in [4, p.27, Appendix B].

We argue in the same way as Case(3-i), we localize (wk, wik, wek) by multiplying
ρk. Note that the Neumann boundary condition is fulfilled for (wρkik , w

ρk
ek ) thanks to the

condition ∂ρk/∂nk = 0 on ∂Ωk, which yields W 2,p(Ωk) a priori estimate.
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Then we can take subsequences {(wρklkl
, w

ρkl
ikl
, w

ρkl
ekl

)}∞l=1 and w,wi, we ∈ W 2,p(Rd+,D)
such that  w

ρkl
kl

w
ρkl
ikl

w
ρkl
ekl

→

 w

wi
we

 in the norm C1(Rd+,D) as l → ∞.

As in Case (3-i), we get the same inequality.
In this step, we are able to conclude that w ̸≡ 0 and wi,e are not constants on some

neighborhood near the origin.

Step 4 (Characterization of the limit)

Let us explain resolvent equations of wkl , wikl , wekl tend to the limit equation

(1.3.5)


eiθ∞w −∇ · (σi∞∇wi) = 0 in Ω∞,

eiθ∞w +∇ · (σe∞∇we) = 0 in Ω∞,

w = wi − we in Ω∞,

σi∞∇wi · n∞ = 0, σe∞∇we · n∞ = 0 on ∂Ω∞,

in the weak sense, where θ∞ = limk→∞ θk, σi∞, σe∞ are constant coefficients matrices
defined as below which satisfy uniform ellipticity condition and n∞ is unit outer nor-
mal vector (0, · · · , 0,−1) when Ω∞ = Rd+,D. If Ω∞ = Rd, we do not need to consider
boundary conditions.

We have w,wi, we ∈
∩
n<p<∞W 2,p

loc (Ω∞) ∩W 1,∞(Ω∞) and wkl
∇wikl
∇wekl

→

 w

∇wi
∇we

 weak ∗ in L∞(Ω∞) as l → ∞

since sup
x∈Ωk

(|wk(x)|+ |∇wk(x)|+ |∇wik(x)|+ |∇wek(x)|) = 1.

Case(4-i) Ω∞ = Rd

Proposition 1.5. The limit w,wi, we ∈
∩
n<p<∞W 2,p

loc (R
d) ∩W 1,∞(Rd) satisfy that for any

ϕi,e ∈ C∞
0 (Rd) 

eiθ∞(w, ϕi)L2(Rd) + (σi∞∇wi,∇ϕi)L2(Rd) = 0,

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd) = 0,

w = wi − we,

where θ∞ = limk→∞ θk and σi∞, σe∞ are constant coefficients matrices which satisfy uniform
ellipticity condition. Here, (·, ·)L2(Rd) denotes L2-inner product.
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Proof of Proposition 1.5. For each function η ∈ C∞
0 (Rd), there exists kη ∈ N such that

supp η ⊂ Ωk for kη ≤ k. Since supp η is compact, there exist wkl , wikl , wekl such that wkl
wikl
wekl

→

 w

wi
we

 weakly onW 2,p(supp η) as l → ∞

for all n < p < ∞. Now we have to determine σi∞ and σe∞. For a matrix A =

{amn}1≤m,n≤d, set ∥A∥ := max1≤m,n≤d |amn|. Since σi is uniformly continuous, for

each ε > 0 there exists δ > 0 such that if
∣∣∣xk + x

|λk|1/2
− xk

∣∣∣ =
∣∣∣ x
|λk|1/2

∣∣∣ < δ then∥∥∥σi (xk + x
|λk|1/2

)
− σi(xk)

∥∥∥ = ∥σik(x) − σik(0)∥ < ε. We can take k0 ∈ N such that∣∣∣ x
|λk|1/2

∣∣∣ < δ for k0 ≤ k since x ∈ supp η and |λk| → ∞. Since ∥σi(xk)∥ ≤ supx∈Ω ∥σi(x)∥,
there exists a subsequence {σikl}∞l=1 and a constant matrix σi∞ such that σikl(0) =

σi(xkl) → σi∞ (l → ∞). Then for k0 ≤ k

∥σikl(x)− σi∞∥ ≤ ∥σikl(x)− σikl(0)∥+ ∥σikl(0)− σi∞∥
≤ ε+ ∥σikl(0)− σi∞∥
→ ε (l → ∞).

Since ε > 0 and x ∈ supp η are arbitrary, we get ∥σikl − σi∞∥ → 0 (l → ∞). The above
calculation is also valid for σe. Naturally, σi∞ and σe∞ are positive definite constant
matrices.

We consider the weak formulation of the resolvent equation under oblique bound-
ary condition. For any test functions ϕi,e ∈ C∞

0 (Rd),
eiθkl (wkl , ϕi)L2(Ωkl

) + (σikl∇wikl ,∇ϕi)L2(Ωkl
) = (tkl , ϕi)L2(Ωkl

),

eiθkl (wkl , ϕe)L2(Ωkl
) − (σekl∇wekl ,∇ϕe)L2(Ωkl

) = (tkl , ϕe)L2(Ωkl
),

wkl = wkl − wkl .

As l → ∞, 
eiθ∞(w, ϕi)L2(Rd) + (σi∞∇wi,∇ϕi)L2(Rd) = 0,

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd) = 0,

w = wi − we.

Case(4-ii) Ω∞ = Rd+,D

Proposition 1.6. The limit w,wi, we ∈
∩
n<p<∞W 2,p

loc (Rd+,D)∩W
1,∞(Rd+,D) satisfy that for

any ϕi,e ∈ C∞
0 (Rd)|Rd

+,D
eiθ∞(w, ϕi)L2(Rd

+,D) + (σi∞∇wi,∇ϕi)L2(Rd
+,D) = 0,

eiθ∞(w, ϕe)L2(Rd
+,D) − (σe∞∇we,∇ϕe)L2(Rd

+,D) = 0,

w = wi − we,
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where θ∞ = limk→∞ θk and σi∞, σe∞ are constant coefficients matrices which satisfy (1.2.1)

and (1.2.2).

We can prove this proposition by similar calculation to Case (4-i).

Step 5 (Uniqueness)

In this last step we prove that limit functions are unique. The method is to reduce
existence of solution to dual problems and use the fundamental lemma of calculus of
variation. In order to solve the dual problem we use the Fourier transform. In the half
space case we extend to the whole space. However, we have to pay attention to the
boundary condition. We overcome the difficulty by using the condition (1.2.2).

Case(5-i) Ω∞ = Rd

Lemma 1.7. Let w,wi, we ∈
∩
n<p<∞W 2,p

loc (R
d) ∩W 1,∞(Rd) satisfy

eiθ∞(w, ϕi)L2(Rd) + (σi∞∇wi,∇ϕi)L2(Rd) = 0,

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd) = 0,

w = wi − we,

(1.3.6)

for all ϕi,e ∈ C∞
0 (Rd), then w = 0 and wi = we =constant.

Proof of Lemma 1.7. Equations (1.3.6) implies the following equations
(
wi, e

iθ∞ϕi −∇ · (σi∞∇ϕi)
)
L2(Rd)

− (we, e
iθ∞ϕi)L2(Rd) = 0,

(wi, e
iθ∞ϕe)L2(Rd) −

(
we, e

iθ∞ϕe −∇ · (σe∞∇ϕe)
)
L2(Rd)

= 0,

(
wi, e

iθ∞(ϕi − ϕe)−∇ · (σi∞∇ϕi)
)
L2(Rd)

−
(
we, e

iθ∞(ϕi − ϕe) +∇ · (σe∞∇ϕe)
)
L2(Rd)

= 0.

We set T := {(ϕi, ϕe) ∈ S ′(Rd)2 | ϕi − ϕe,∇ · (σi∞∇ϕi),∇ · (σe∞∇ϕe) ∈ L1(Rd)}. Here
S ′(R) is the space of all tempered distributions in the sense of L. Schwartz. Define a
smooth cut-off function χR such that χR ≡ 1 on B(0, R/2) and χR ≡ 0 on B(0, R)c, and
a Friedrich’s mollifier FR such that suppFR ⊂ B(0, 1/R). Since for any (ϕi, ϕe) ∈ T the
sequences {((χRϕi) ∗ FR, (χRϕe) ∗ FR)}R>0 ⊂ (C∞

0 (Rd))2 converges (ϕi, ϕe) in T , we
are able to take (ϕi, ϕe) in T as test functions. We consider the dual problem of the limit
equation. For all ψi,e ∈ C∞

0 (Rd) satisfying
´
Rd(ψi − ψe)dx = 0, we would like to find

solutions (ϕi, ϕe) ∈ T such that

eiθ∞(ϕi − ϕe)−∇ · (σi∞∇ϕi) = ψi in Rd,
eiθ∞(ϕi − ϕe) +∇ · (σe∞∇ϕe) = ψe in Rd.

We will prove the existence of these solutions in the next lemma. A key issue is whether
ϕi,e satisfies a necessary decay condition as included in T . For the moment, assume that
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we are able to take the solutions ϕi,e. Then, we have that for all ψi,e ∈ C∞
0 (Rd) satisfying´

Rd(ψi − ψe)dx = 0,

(wi, ψi)L2(Rd) − (we, ψe)L2(Rd) = 0.

Let ψi = ψe then (w,ψi)L2(Rd) = 0 for all ψi ∈ C∞
0 (Rd). By fundamental lemma of

calculus of variations, we get w ≡ 0. Let ψe ≡ 0 then (wi, ψi)L2(Rd) = 0 for all ψi ∈
C∞
0 (Rd) satisfying

´
Rd ψidx = 0. This means wi ≡ constant. Obviously we = wi since

w = wi − we.

Lemma 1.8. For all ψi,e ∈ C∞
0 (Rd) satisfying

´
Rd(ψi − ψe)dx = 0, there exist the solutions

(ϕi, ϕe) ∈ T such that

eiθ∞(ϕi − ϕe)−∇ · (σi∞∇ϕi) = ψi in Rd,
eiθ∞(ϕi − ϕe) +∇ · (σe∞∇ϕe) = ψe in Rd.

Proof. We are able to solve these equations by the Fourier transform. We solve the
following equations {

(eiθ∞ + ⟨σi∞ξ, ξ⟩)Fϕi − eiθ∞Fϕe = Fψi
eiθ∞Fϕi − (eiθ∞ + ⟨σe∞ξ, ξ⟩)Fϕe = Fψe,

where F and F−1 denote the Fourier transform and its inverse.
Solutions are formally of the form

ϕi = F−1

(
1

eiθ∞ + p(ξ)

(
qe(ξ)Fψi +

eiθ∞

⟨(σi∞ + σe∞)ξ, ξ⟩
(Fψi −Fψe)

))
(∈ S ′(Rd))

ϕe = F−1

(
−1

eiθ∞ + p(ξ)

(
qi(ξ)Fψe −

eiθ∞

⟨(σi∞ + σe∞)ξ, ξ⟩
(Fψi −Fψe)

))
(∈ S ′(Rd))

and

ϕi − ϕe = F−1

(
1

eiθ∞ + p(ξ)
(qe(ξ)Fψi + qi(ξ)Fψe)

)
,

∇ · (σi∞∇ϕi) = F−1

(
−⟨σi∞ξ, ξ⟩
eiθ∞ + p(ξ)

qe(ξ)Fψi −
eiθ∞

eiθ∞ + p(ξ)
qi(ξ)(Fψi −Fψe)

)
,

∇ · (σe∞∇ϕe) = F−1

(
⟨σe∞ξ, ξ⟩
eiθ∞ + p(ξ)

qi(ξ)Fψe −
eiθ∞

eiθ∞ + p(ξ)
qe(ξ)(Fψi −Fψe)

)
,

with

p(ξ) :=
⟨σi∞ξ, ξ⟩⟨σe∞ξ, ξ⟩
⟨(σi∞ + σe∞)ξ, ξ⟩

, qi(ξ) :=
⟨σi∞ξ, ξ⟩

⟨(σi∞ + σe∞)ξ, ξ⟩
, qe(ξ) :=

⟨σe∞ξ, ξ⟩
⟨(σi∞ + σe∞)ξ, ξ⟩

.

Let q(k) be a positively homogeneous function of degree k and q(ξ) = qi(ξ) or qe(ξ).
We consider M1Ψ1 := F−1

(
1

eiθ∞+p(ξ)
q(2)(ξ)FΨ1

)
for Ψ1 ∈ C∞

0 (Rd) and M2Ψ2 :=

F−1
(

1
eiθ∞+p(ξ)

q(ξ)FΨ2

)
for Ψ2 ∈ C∞

0 (Rd) satisfying
´
Rd Ψ2dx = 0. We notice that the

solutions ∇ · (σi∞∇ϕi) and ∇ · (σe∞∇ϕe) are the sum of this form. We shall prove that
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M1Ψ1 and M2Ψ2 belong L1 space. Then we conclude that ϕi − ϕe ∈ L1(Rd) since
eiθ∞(ϕi − ϕe) = ∇ · (σi∞∇ϕi) + ψi ∈ L1(Rd).

We notice that F−1(eiθ∞ + p(ξ))−1 ∈ L1(Rd) whose proof is postponed in the ap-
pendix.

First, we prove M1Ψ1 ∈ L1(Rd) for any Ψ1 ∈ C∞
0 (Rd). Let R > 0 be suppΨ1 ⊂ R.

Then we have

∥M1Ψ1∥L1(Rd)

≤∥F−1(eiθ∞ + p(ξ))−1 ∗ F−1(q(2)(ξ)FΨ1)∥L1(Rd)

≤∥F−1(eiθ∞ + p(ξ))−1∥L1(Rd)·(
∥F−1(q(2)(ξ)FΨ1)∥L1(B(0,R)) + ∥F−1(q(2)(ξ)FΨ1)∥L1(B(0,R)c)

)
≤C∥F−1(q(2)(ξ)Ψ1)∥L∞(Rd) + C

∥∥∥∥ˆ
Rd

q̃(−2−d)(x− y)Ψ1(y)dy

∥∥∥∥
L1(B(0,R)c)

≤C∥q(2)(ξ)Ψ1∥L1(Rd) + C

ˆ
suppΨ1

∥q̃(−2−d)(x− y)∥L1
x(B(0,R)c)|Ψ1(y)|dy

≤C∥q(2)(ξ)Ψ1∥L1(Rd) + C∥Ψ1∥L1(Rd)

<+∞

by Young’s inequality, Fubini’s theorem and Ψ1 ∈ C∞
0 (Rd) since F−1(eiθ∞ + p(ξ))−1 ∈

L1(Rd). Here q̃(−2−d) is the inverse Fourier transform of q(2), which is a positively
homogeneous function of degree −2 − d observed by the following calculation: for
r > 0,

q̃(−2−d)(rx) =

ˆ
Rd

eirx·ξq(2)(ξ)dξ =

ˆ
Rd

eix·ηq(2)(r−1η)η−ddη = r−2−dF−1q(2)(x)

by a changing variable rξ = η.
Second, we prove M2Ψ2 ∈ L1(Rd) for any Ψ2 ∈ C∞

0 (Rd) satisfying
´
Rd Ψ2dx = 0.

We notice that F−1(q(0)(ξ)FΨ2) ∈ L1(Rd) in the appendix. We thus conclude that
M2Ψ2 ∈ L1(Rd) by applying Young’s inequality with F−1(eiθ∞ + p(ξ))−1 ∈ L1(Rd):

∥M2Ψ2∥L1(Rd) ≤ ∥F−1(eiθ∞ + p(ξ))−1∥L1(Rd)∥F−1(q(0)(ξ)FΨ2)∥L1(Rd) < +∞.

Therefore from theL1-finiteness of M1Ψ1 and M2Ψ2, we see ϕi−ψe,∇·(σi∞∇ϕi),∇·
(σe∞∇ϕe) ∈ L1(Rd) i.e. (ϕi, ϕe) ∈ T .

Case(5-ii) Ω∞ = Rd+,D

It is enough to show the case Rd+ by changing variables.

Lemma 1.9. Let w,wi, we ∈
∩
n<p<∞W 2,p

loc (Rd+) ∩W
1,∞(Rd+) satisfy

eiθ∞(w, ϕi)L2(Rd
+) + (σi∞∇wi,∇ϕi)L2(Rd

+) = 0,

eiθ∞(w, ϕe)L2(Rd) − (σe∞∇we,∇ϕe)L2(Rd
+) = 0,

w = wi − we,

(1.3.7)
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for all ϕi,e ∈ C∞
0 (Rd)|Rd

+
, then w = 0 and wi = we =constant.

Proof of lemma 1.9. Equations (1.3.7) implies the following equations;
(
wi, e

iθ∞ϕi −∇ · (σi∞∇ϕi)
)
L2(Rd

+)
− (we, e

iθ∞ϕi)L2(Rd
+) = 0,

(wi, e
iθ∞ϕe)L2(Rd

+) −
(
we, e

iθ∞ϕe −∇ · (σe∞∇ϕe)
)
L2(Rd

+)
= 0,

for all ϕi ∈ C∞
0 (Rd)|Rd

+
such that σi∞∇ϕi · n∞ = 0 and ϕe ∈ C∞

0 (Rd)|Rd
+

such that
σe∞∇ϕe · n∞ = 0, and(

wi, e
iθ∞(ϕi − ϕe)−∇ · (σi∞∇ϕi)

)
L2(Rd

+)

−
(
we, e

iθ∞(ϕi − ϕe) +∇ · (σe∞∇ϕe)
)
L2(Rd

+)
= 0.

The problem can be reduced to the whole space. Let Ewi,e be an even extension to the
whole space Rd, i.e.

Ewi,e(x) :=

{
wi,e(x

′, xd) (xd ≥ 0)

wi,e(x
′,−xd) (xd < 0).

Matrices σi∞ and σe∞ are constant so we extend these to whole space Rd, which we sim-
ply write by σi∞ and σe∞. Since σi∞∇wi·n∞ = ∇wi·n∞ = 0, σe∞∇we·n∞ = ∇we·n∞ =

0 and wi,e ∈
∩
n<p<∞W 2,p

loc (Rd+) ∩ W 1,∞(Rd+), we have Ewi,e ∈
∩
n<p<∞W 2,p

loc (R
d) ∩

W 1,∞(Rd). For arbitrary φi,e ∈ C∞
0 (Rd), let φeven

i,e and φodd
i,e be the even and odd parts of

φi,e, i.e.

φeven
i,e (x) :=

φi,e(x
′, xd) + φi,e(x

′,−xd)
2

,

φodd
i,e (x) :=

φi,e(x
′, xd)− φi,e(x

′,−xd)
2

.

For simplicity, set a linear operator Li(φi, φe) := eiθ∞(φi − φe) − ∇ · (σi∞∇φi) and
Le(φi, φe) := eiθ∞(φi − φe) +∇ · (σe∞∇φe). From the assumption of σi, note that σi∞

have the form of σi∞ =

(
σ̃i∞ 0

0 τi

)
for some constant (d − 1) × (d − 1) matrix σ̃i∞

and τi > 0 because (0, · · · , 0,−1) is eigenvector of σi∞. So we have that Li(φeven
i , φeven

e )

is even function and Li(φodd
e , φodd

e ) is odd function. Consider Le same as Li. Naturally,
Le also has the same property. Then we have

(Ewi, Li(φi, φe))L2(Rd) − (Ewe, Le(φi, φe))L2(Rd)

=(Ewi, Li(φ
even
i , φeven

e ))L2(Rd) + (Ewi, Li(φ
odd
i , φodd

e ))L2(Rd)

− (Ewe, Le(φ
even
i , φeven

e ))L2(Rd) − (Ewe, Le(φ
odd
i , φodd

e ))L2(Rd)

=(Ewi, Li(φ
even
i , φeven

e ))L2(Rd) − (Ewe, Le(φ
even
i , φeven

e ))L2(Rd)

=2
{
(wi, Li(φ

even
i , φeven

e ))L2(Rd
+) − (we, Le(φ

even
i , φeven

e ))L2(Rd
+)

}
.
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The function φeven
i satisfies σi∞∇φeven

i · n∞ = ∇φeven
i · n∞ = 0. Function φeven

e also
satisfies same boundary condition. Since the last term of above calculation equals to
zero, we conclude that for any φi,e ∈ C∞

0 (Rd)

(Ewi, Li(φi, φe))L2(Rd) − (Ewe, Le(φi, φe))L2(Rd) = 0.

This means Ewi = Ewe = constant by the Case(4-i). Therefore we have w = 0 and
wi = we = constant.

Results of Step 3 and Step 5 are contradictory, so the proof of Theorem 1.3 is now
complete.

1.4 Bidomain operators

1.4.1 Definition of bidomain operators in Lp spaces

In this subsection we define bidomain operators in Lp spaces for 1 < p < ∞. To
avoid technical difficulties we assume that Ω is a bounded C2-domain. We reformulate
resolvent equations corresponding to the parabolic and elliptic system as are derived in
[11]. The new system contains only u and ue as unknown functions. Since ui = u + ue
by (1.1.4), the new system is of the form:

λu−∇ · (σi∇u)−∇ · (σi∇ue) = s in Ω,(1.4.1)

−∇ · (σi∇u+ (σi + σe)∇ue) = 0 in Ω,(1.4.2)

σi∇u · n+ σi∇ue · n = 0 on ∂Ω,(1.4.3)

σi∇u · n+ (σi + σe)∇ue · n = 0 on ∂Ω.(1.4.4)

Let 1 < p < ∞ and Ω be a bounded C2-domain. Set Lpav(Ω) := {u ∈ Lp(Ω) |´
Ω udx = 0} and the operator Pav defined by Pavu := u − 1

|Ω|
´
Ω udx, which is the

orthogonal projection. Evidently, Lpav(Ω) is a closed subspace in Lp(Ω) and Pav is a
bounded linear operator on Lp(Ω). We similarly define a function space W 2,p

av (Ω), i.e.
W 2,p
av (Ω) = W 2,p(Ω) ∩ Lpav(Ω). We define an operator Ai,e in Lpav(Ω) with the domain

D(Ai,e) corresponding to a uniformly elliptic operator −∇ · (σi,e∇·) with the oblique
boundary condition. It is explicitly defined as

u ∈ D(Ai,e) :=
{
u ∈W 2,p

av (Ω) | σi,e∇u · n = 0 a.e. in ∂Ω
}
⊂ Lpav(Ω),

Ai,eu := −∇ · (σi,e∇u).

Lemma 1.10 ([32]). Let 1 < p < ∞ and let Ω be a bounded C2-domain. Assume that σi,e ∈
C1(Ω) satisfies (1.2.1). Then the operatorAi is densely defined closed linear operator on Lpav(Ω)
and for any f ∈ Lpav(Ω) there uniquely exists u ∈ D(Ai) such that Aiu = f . The operator Ae
also has the same property.

If we assume that σi,e∇u · n = 0 is equivalent to ∇u · n = 0, then D(Ai) ={
u ∈W 2,p

av (Ω) | ∇u · n = 0 a.e. in ∂Ω
}

= D(Ae). So we are able to define the opera-
tor Ai + Ae with the domain D(Ai)(= D(Ae)) and we observe that inverse operator
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(Ai + Ae)
−1 on Lpav is a bounded linear operator. Under

´
Ω uedx = 0, which is often

used assumption to study bidomain equations, from (1.4.2),

AiPavu+ (Ai +Ae)ue = 0

⇔(Ai +Ae)ue = −AiPavu (∈ Lpav(Ω))

⇔ue = −(Ai +Ae)
−1AiPavu (∈ D(Ai)).

We substitute this into (1.4.1) to set

λu+AiPavu−Ai(Ai +Ae)
−1AiPavu = s

⇔λu+Ai(Ai +Ae)
−1AePavu = s.

We are ready to define bidomain operators A.

Definition 1.11 ([11, Definition 12(p = 2)]). For 1 < p < ∞, we define the bidomain
operator A : D(A) := {u ∈W 2,p(Ω) | ∇u · n = 0 a.e. in ∂Ω} ⊂ Lp(Ω) → Lp(Ω) by

A = Ai(Ai +Ae)
−1AePav.(1.4.5)

Under
´
Ω uedx = 0, equations (1.4.1)-(1.4.4) for the function u can be written in a

single resolvent equation of the form

(λ+A)u = s in Ω.(1.4.6)

Once we solve this equation, we are able to derive ue = −(Ai +Ae)
−1AiPavu.

1.4.2 Resolvent set of bidomain operators

We study existence and uniqueness of the solution for bidomain equations (1.4.6). We
derive W 2,p a priori estimate for fixed λ by W 2,p a priori estimate for the usual elliptic
operator Ae. To define the bidomain operator A, we now assume that Ω is a bounded
C2-domain and σi,e ∈ C1(Ω) satisfy (1.2.1) and (1.2.2), which will be used throughout.

Theorem 1.12 (A priori estimate for bidomain operators). Let 1 < p < ∞. For each
λ ∈ Σπ,0 there exists Cλ > 0 such that

∥u∥W 2,p(Ω) ≤ Cλ
(
∥(λ+A)u∥Lp(Ω) + ∥u∥Lp(Ω)

)
for all u ∈ D(A).

Proof. We operate (Ai + Ae)A
−1
i Pav to (λ + A)u = s to get (λ + Ae)Pavu = (Ai +

Ae)A
−1
i Pavs−λAeA−1

i Pavu. Since Ae has a resolvent estimate [36], for each ε ∈ (0, π/2)

there exists C > 0 such that

|λ|∥Pavu∥Lp(Ω) + |λ|1/2∥∇Pavu∥Lp(Ω) + ∥∇2Pavu∥Lp(Ω)

≤ C∥(Ai +Ae)A
−1
i Pavs− λAeA

−1
i Pavu∥Lp(Ω)

≤ C∥s∥Lp(Ω) + C|λ|∥u∥Lp(Ω) · · · (∗∗)
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for all λ ∈ Σπ−ε,0. Here, note that (Ai + Ae)A
−1
i Pav and AeA

−1
i Pav are bounded oper-

ators in Lp(Ω). From above inequality we have for any λ ∈ Σπ,0 there exists Cλ > 0

independent of u (may depend on λ) such that

∥u∥W 2,p(Ω) ≤ Cλ
(
∥(λ+A)u∥Lp(Ω) + ∥u∥Lp(Ω)

)
.

By this theorem we observe that the bidomain operator A in Lp spaces is a densely
defined closed linear operator.

Let Ap be the bidomain operator in Lp spaces. We characterize the resolvent set
of bidomain operator Ap in Lp spaces from the previous result [11] that the bidomain
operator A2 is non-negative self-adjoint operator in L2 spaces, i.e. Σπ,0 ⊂ ρ(−A2).

Lemma 1.13. Let 1 < p < ∞. Let λ ∈ Σπ,0. Assume that (λ + Ap)u = 0 implies u = 0,
then the inequality ∥u∥W 2,p(Ω) ≤ Cλ∥(λ + Ap)u∥Lp(Ω) holds, where Cλ > 0 is the constant
independent of u ∈ D(Ap).

Proof. We argue by contradiction. If the inequality were false, there would exist a se-
quence {uk}∞k=1 ⊂ D(Ap) satisfying

∥uk∥W 2,p(Ω) = 1, ∥(λ+Ap)uk∥Lp(Ω) < 1/k.

By the compactness of the imbeddingW 2,p(Ω) →W 1,p(Ω) (Rellich’s compactness theo-
rem), there exists a subsequence {ukl}∞l=1 converging strongly in W 1,p(Ω) to a function
u ∈ D(Ap). Define ũkl = (Ai + Ae)

−1AePavukl , ũ = (Ai + Ae)
−1AePavu and the conju-

gate exponent p′ of p, 1
p +

1
p′ = 1 for 1 < p <∞. We have {ũkl}∞l=1 are uniform bounded

in W 2,p(Ω) converging to a function ũ ∈ D(Ap). Since
ˆ
Ω
λuklv + σi∇ũkl · ∇v →

ˆ
Ω
λuv + σi∇ũ · ∇v

for all v ∈ Lp
′
(Ω), we must have

´
Ω λuv + σi∇ũ · ∇v = 0 for all v ∈ Lp

′
(Ω). Hence

(λ + Ap)u = 0. The uniqueness implies u = 0. However, the estimate in Theorem 1.12
implies

1 = ∥ukl∥W 2,p(Ω) ≤ C
(
∥(λ+Ap)ukl∥Lp(Ω) + ∥ukl∥Lp(Ω)

)
.

Sending l → ∞ implies 1 ≤ C lim infk→∞ ∥ukl∥Lp(Ω). This would contradict that ukl →
u = 0 strongly in W 1,p(Ω).

Theorem 1.14. Let 2 ≤ p < ∞. Then for any λ ∈ Σπ,0 and s ∈ Lp(Ω), there uniquely exists
u ∈ D(Ap) such that (λ+Ap)u = s.

Proof. If λ ∈ Σπ,0 and u ∈ D(Ap) satisfy (λ + Ap)u = 0 then u = 0 since u ∈ D(Ap) ⊂
D(A2) and λ ∈ ρ(−A2). For existence of a solution to a bidomain equation we use the
continuity method [20]. For each t ∈ [0, 1] we set

Lt := λ+Ai(tAi +Ae)
−1AePav : D(Ap) → Lp(Ω).
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By Lemma 1.13 we see there is a constant Cλ > 0 such that ∥u∥W 2,p(Ω) ≤ Cλ∥Ltu∥Lp(Ω)

for all u ∈ D(Ap) and t ∈ [0, 1]. Suppose that Lt̃ : D(Ap) → Lp(Ω) is onto for some t̃ ∈
[0, 1], then Lt̃ is one-to-one. Hence there exists inverse mapping L−1

t̃
: Lp(Ω) → D(Ap).

For t ∈ [0, 1] and s ∈ Lp(Ω), the equation Ltu = s is equivalent to the equation

Ltu = s

Lt̃u = s+ (Lt̃ − Lt)u

= s+ (t− t̃)Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePavu

u = L−1
t̃

{s+ (t− t̃)Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePavu}.

Set the mapping T : D(Ap) → D(Ap) and δ > 0 of the form

Tu = L−1
t̃

{s+ (t− t̃)Ai(t̃Ai +Ae)
−1Ai(tAi +Ae)

−1AePavu},

δ =

{
sup

t,t̃∈[0,1]
∥L−1

t̃
{Ai(t̃Ai +Ae)

−1Ai(tAi +Ae)
−1AePav∥L(W 2,p(Ω))

}−1

.

The mapping T is a contraction mapping if |t − t̃| < δ and hence the mapping Lt :

D(Ap) → Lp(Ω) is onto for all t ∈ [0, 1] satisfying |t− t̃| < δ because of δ is independent
of t, t̃. By dividing the interval [0, 1] into subintervals of length less than δ, we see that
the mapping Lt is onto for all t ∈ [0, 1] because of L0 = λ + AiPav : D(Ap) → Lp(Ω) is
onto when λ ∈ Σπ,0.

Lemma 1.15. Let 1 < p <∞. The adjoint of the bidomain operator Ap is Ap′ .

Proof. Let u ∈ D(Ap), v ∈ D(Ap′) and 2 ≤ p < ∞. For simplicity, we write ⟨·, ·⟩ :=

⟨·, ·⟩Lp(Ω)×Lp′ (Ω).

⟨Apu, v⟩
= ⟨AiPavu−Ai(Ai +Ae)

−1AiPavu, v⟩
= ⟨AiPavu−Ai(Ai +Ae)

−1AiPavu, v⟩
− ⟨AiPavu− (Ai +Ae)(Ai +Ae)

−1AiPavu, (Ai +Ae)
−1AiPavv⟩

= ⟨AiPavu−Ai(Ai +Ae)
−1AiPavu, v − (Ai +Ae)

−1AiPavv⟩
+ ⟨Ae(Ai +Ae)

−1AiPavu, (Ai +Ae)
−1AiPavv⟩

= ⟨u− (Ai +Ae)
−1AiPavu,AiPavv −Ai(Ai +Ae)AiPavv⟩

+ ⟨(Ai +Ae)
−1AiPavu,Ae(Ai +Ae)

−1AiPavv⟩
= ⟨u,Ap′v⟩
− ⟨(Ai +Ae)

−1AiPavu,AiPavv −Ai(Ai +Ae)
−1AiPavv −Ae(Ai +Ae)

−1AiPavv⟩
= ⟨u,Ap′v⟩.

So we get Ap ⊂ A∗
p′ . In order to show D(Ap) ⊃ D(A∗

p′), we first show that λ ∈ ρ(−Ap)
implies λ ∈ ρ(−A∗

p′). Remark that D(A2) ⊂ D(Ap′) and Ap′u = A2u (u ∈ D(A2)).
For λ ∈ ρ(−Ap), (λ + Ap′)D(Ap′) ⊃ (λ + Ap′)D(A2) = (λ + A2)D(A2) = L2(Ω). So
R
(
λ+Ap′

)
is dense in Lp

′
(Ω). Therefore λ+A∗

p′ is one-to-one in Lp(Ω). Since Ap ⊂ A∗
p′

and λ+Ap is surjection in Lp(Ω), we get λ+A∗
p′ is surjection. This means λ ∈ ρ(−A∗

p′).
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Take u ∈ D(A∗
p′) and for some λ ∈ ρ(−Ap) ∩ ρ(−A∗

p′) ̸= ∅, then

v := (λ+Ap)
−1(λ+A∗

p′)u ∈ D(Ap)

(λ+Ap)v = (λ+A∗
p′)u

(λ+A∗
p′)v = (λ+A∗

p′)u

v = u.

Therefore D(A∗
p′) ⊂ D(Ap) and A∗

p′ = Ap. Since Ap′ is a closed linear operator, we have
Ap′ = A∗∗

p′ = A∗
p. This means for all 1 < p < ∞ the adjoint of the bidomain operator Ap

is Ap′ .

So we have for all 1 < p <∞, ρ(−Ap) = ρ(−A∗
p) = ρ(−Ap′) = Σπ,0.

Our Theorem 1.14 implies existence and uniqueness of the resolvent bidomain equa-
tion since it is equivalent to the equation (1.4.6).

Theorem 1.16 (Existence and Uniqueness). Let 1 < p <∞, Ω be a boundedC2-domain and
σi,e ∈ C1(Ω, Sd) satisfy (1.2.1) and (1.2.2). Then for any λ ∈ Σπ,0, s ∈ Lp(Ω), the resolvent
problem 

λu−∇ · (σi∇ui) = s in Ω,

λu+∇ · (σe∇ue) = s in Ω,

u = ui − ue in Ω,

σi∇ui · n = 0, σe∇ue · n = 0 on ∂Ω,

has a unique solution u, ui,e ∈W 2,p(Ω) satisfying
´
Ω uedx = 0.

1.4.3 Analyticity of semigroup generated by bidomain operators

We will study bidomain equations in the framework of an analytic semigroup, so let
us recall the definition of a sectorial operator. Let X be a complex Banach space and
A : D(A) ⊂ X → X be a linear operator, may not have a dense domain.

Definition 1.17. The operatorA is said to be a sectorial operator with angle θ(∈ [0, π/2)

if for each ε ∈ (0, π/2) there exist C > 0 and M ≥ 0 such that

(1) ρ(−A) ⊃ Σπ−θ,M , (2) sup
λ∈Σπ−θ−ε,M

|λ|∥(λ+A)−1∥L(X) ≤ C.

We do not assume that the operator A has a dense domain. So it may happen that
the analytic semigroup {e−tA}t≥0 generated by the operator A may not be strongly
continuous, that is for each x ∈ X the function t 7→ e−tAx is not necessarily continuous
on [0,∞). We call {e−tA}t≥0 C0-analytic semigroup if for each x ∈ X , t 7→ e−tAx is
continuous on [0,∞). We have that if the operator A is a sectorial operator with angle
θ, then t 7→ e−tA is analytic in [0,∞) and it can be extended holomorphically in a sector
with opening angle 2(π/2− θ). For sectorial operators, it is known that

{e−tA}t≥0 : strongly continuous ⇔ ∀x ∈ X, lim
t→0

e−tAx = x⇔ D(A) = X.
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Therefore, {e−tA}t≥0 is C0-analytic semigroup if and only if the operatorA is a sectorial
operator with dense domain D(A) in X (See [24]).

Let us go back to consider bidomain operators. Note that [11] showed the bido-
main operator A is a non-negative self-adjoint operator in L2(Ω) so that it is a sectorial
operator. Namely, ρ(−A2) ⊃ Σπ,0 and for each ε ∈ (0, π/2) there exists C > 0 such that

sup
λ∈Σπ−ε,0

|λ|∥u∥L2(Ω) ≤ C∥s∥L2(Ω)

for all s ∈ L2(Ω). We derived an L∞ resolvent estimate (Theorem 1.3); for each ε ∈
(0, π/2) there exist C > 0 and M ≥ 0 such that ρ(−A) ⊃ Σπ,M

sup
λ∈Σπ−ε,M

|λ|∥u∥L∞(Ω) ≤ C∥s∥L∞(Ω)

and for all s ∈ L∞(Ω).
By using Riesz–Thorin interpolation theorem, we are able to derive an Lp resolvent

estimate, i.e. for each ε ∈ (0, π/2) and 2 ≤ p ≤ ∞ there exist C > 0 and M ≥ 0 such
that ρ(−Ap) ⊃ Σπ,M and that

sup
λ∈Σπ−ε,M

|λ|∥u∥Lp(Ω) ≤ C∥s∥Lp(Ω)

and for all s ∈ Lp(Ω).
For 2 ≤ p <∞ and its conjugate exponent p′(∈ (1, 2]), we have

∥(λ+Ap′)
−1∥L(Lp′ (Ω)) = ∥((λ+Ap)

−1)∗∥L(Lp′ (Ω)) = ∥(λ+Ap)
−1∥L(Lp(Ω)) ≤

C

|λ|
.

We derived the resolvent estimate for bidomain operators −Ap in Lp spaces for the
sufficiently large λ. However, in the next theorem, we estimate the resolvent for all
λ ∈ Σπ−ε,0 and higher order derivatives ∥∇u∥Lp(Ω) and ∥∇2u∥Lp(Ω), which is similar to
an elliptic operator in Lp spaces.

Theorem 1.18 (Lp resolvent estimates for bidomain operators). Let 1 < p <∞. For each
ε ∈ (0, π/2) there exists C > 0 depending only on ε such that the unique solution u ∈ D(Ap)

of the resolvent equation (λ+Ap)u = s satisfies

|λ|∥u∥Lp(Ω) + |λ|1/2∥∇u∥Lp(Ω) + ∥∇2u∥Lp(Ω) ≤ C∥s∥Lp(Ω)

for all λ ∈ Σπ−ε,0 and s ∈ Lp(Ω).

Proof. We divide the resolvent estimate (λ + Ap)u = s into (λ + Ap)u1 = Pavs and
(λ + Ap)u2 = s − Pavs. Note that u = u1 + u2, Pavs ∈ Lpav(Ω), s − Pavs is a constant
and the origin 0 belongs to ρ(−Ap|Lp

av(Ω)). For each ε ∈ (0, π/2) we fix M ≥ 0 which is
the constant in the above explanation. Since (λ + Ap)

−1Pavs = (λ + Ap|Lp
av(Ω))

−1Pavs

and the resolvent operator (λ + Ap|Lp
av(Ω))

−1 is uniform bounded in a compact subset
Σπ−ε,0 ∩B(0, 2M), we have there exists C > 0 depending on ε such that

∥u1∥Lp(Ω) = ∥(λ+Ap)
−1Pavs∥Lp(Ω)

= ∥(λ+Ap|Lp
av(Ω))

−1Pavs∥Lp(Ω)
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≤ C

|λ|+ 1
∥Pavs∥Lp(Ω)

for all λ ∈ Σπ−ε,0 ∩ B(0, 2M). On the other hand we have u2 = 1
λ(s − Pavs), so there

exists C > 0 such that

∥u2∥Lp(Ω) = ∥ 1
λ
(s− Pavs)∥Lp(Ω)

≤ C

|λ|
∥s− Pavs∥Lp(Ω)

for all λ ∈ Σπ−ε,0. We use the operator Pav is a bounded linear operator and combine
two estimates. We have that there exists C > 0 such that ∥u∥Lp(Ω) ≤ C

|λ|∥s∥Lp(Ω) for
all λ ∈ Σπ−ε,0 ∩ B(0, 2M). Since we have already proved the resolvent estimate for
|λ| > M , the resolvent estimate holds for all λ ∈ Σπ−ε,0. Estimates for higher order
derivatives it follows from the key estimate (∗∗) of the proof of Theorem 1.12.

We can also define the bidomain operator inL∞(Ω). When the domain Ω is bounded,
L∞(Ω) is contained in

∩
n<p<∞ Lp(Ω). So for all s ∈ L∞(Ω) we can take a unique solu-

tion of (1.4.1)-(1.4.4) u, ui,e ∈
∩
n<p<∞W 2,p(Ω) satisfying

´
Ω uedx = 0. Here, note that

we cannot expect a W 2,∞(Ω) solution such as a usual elliptic problem.
For λ ∈ Σπ−ε,M letR∞(λ) be the solution operator from s ∈ L∞(Ω)(⊂

∩
n<p<∞ Lp(Ω))

to u ∈
∩
n<p<∞W 2,p(Ω)(⊂ L∞(Ω)) such that u is a solution of the resolvent bidomain

equation (1.4.1)-(1.4.4). We warn that the abstract equation (1.4.6) is not available for
L∞ at this moment. The operator R∞(λ) is a bounded operator whose operator norm
is dominated by C/|λ|, i.e.,

∥R∞(λ)s∥L∞(Ω) ≤
C

|λ|
∥s∥L∞(Ω).

The operatorR∞(λ) may be regarded as a bijection operator fromL∞(Ω) toR∞(λ)L∞(Ω).
The operator R∞ : Σπ−ε,M → L(L∞(Ω)) satisfy the following resolvent equation;

R∞(λ)−R∞(µ) = (µ− λ)R∞(λ)R∞(µ) (λ, µ ∈ Σπ−ε,M ).

Namely the operator R∞(λ) is a pseudo-resolvent. We use the following proposition.

Proposition 1.19 ([8, Proposition B.6.]). Set a subset U ⊂ C and a Banach space X . Let a
function R : U → L(X) be a pseudo-resolvent. Then
(a) KerR(λ) and RanR(λ) are independent of λ ∈ U .
(b) There is an operator A on X such that R(λ) = (λ + A)−1 for all λ ∈ U if and only if
KerR(λ) = {0}.

By this proposition, there exists an operatorA∞ with the domainD(A∞) = R∞(λ)L∞(Ω)

(⊂ ∩n<p<∞W
2,p(Ω)) such that (λ + A∞)−1s = u, i.e. (λ + A∞)u = s. We call A∞

the bidomain operator in L∞(Ω). We have the bidomain operator A∞ in L∞(Ω) is
a sectorial operator. However, it is easy to see that D(A∞) is not dense. Indeed,∩
n<p<∞W 2,p(Ω) ⊂ C(Ω) and hence D(A∞)

L∞(Ω) ⊂ C(Ω), where D(A∞)
L∞(Ω)

is the
closure of D(A∞) in the L∞(Ω) norm. Since C(Ω) is not dense in L∞(Ω), D(A∞)

is not dense in L∞(Ω). We restrict the dense domain D(A∞)
L∞(Ω)

. We also have
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D(A∞)
L∞(Ω)

= {u ∈ ∩n<p<∞W
2,p(Ω) | u,A∞u ∈ L∞(Ω),∇u · n = 0 a.e. on ∂Ω} (see

[24]). So we consider again such that

D(Ã∞) := {u ∈ D(A∞) | u,A∞u ∈ UC(Ω)},
Ã∞u := A∞u,

where UC(Ω) denotes the space of all the uniformly continuous functions in Ω. Then
the operator Ã∞ is a densely defined sectorial operator in UC(Ω). Our resolvent esti-
mates (Theorem 1.18 for Lp, Theorem 1.3 for L∞) yields the following theorem.

Theorem 1.20 (Analyticity of bidomain operators). For 1 < p <∞ bidomain operatorsAp
inLp(Ω) generate boundedC0-analytic semigroups with angle π/2. The operatorA∞ generates
a non-C0-analytic semigroup with angle π/2 in L∞(Ω), and the operator Ã∞ generates a C0-
analytic semigroup with angle π/2 in UC(Ω).

1.5 Strong solutions in Lp spaces

By discussion in the previous section, we are able to study nonstationary state bido-
main equations by using the bidomain operatorA. Let us state the definition of a strong
solution. Assume that Ω is a bounded C2-domain, 1 < p <∞, si,e ∈ Cνloc([0,∞);Lp(Ω))

(for some 0 < ν < 1) such that si(t) + se(t) ∈ Lpav(Ω) (∀t ≥ 0) and f : R × Rm → Rm

and g : R × Rm → Rm are locally Lipschitz continuous functions. Before giving the
definition of a strong solution, we recall parabolic-elliptic type bidomain equations.

∂tu+ f(u,w)−∇ · (σi∇u)−∇ · (σi∇ue) = si in (0,∞)× Ω,(1.5.1)

−∇ · (σi∇u+ (σi + σe)∇ue) = si + se in (0,∞)× Ω,(1.5.2)

∂tw + g(u,w) = 0 in (0,∞)× Ω,(1.5.3)

σi∇u · n+ σi∇ue · n = 0 on (0,∞)× ∂Ω,(1.5.4)

σi∇u · n+ (σi + σe)∇ue · n = 0 on (0,∞)× ∂Ω,(1.5.5)

u(0) = u0, w(0) = w0 in Ω.(1.5.6)

Definition 1.21 ([11, Definition 18] Strong solution). For τ > 0 consider the functions
z : t ∈ [0, τ) 7→ z(t) = (u(t), w(t)) ∈ Z := Lp(Ω) × Bm (B = L∞(Ω) or Cν(Ω)) and
ue : t ∈ [0, τ) 7→ ue(t) ∈ Lp(Ω). Given z0 = (u0, w0) ∈ Z, we say that (u, ue, w) is a
strong solution to (1.5.1) to (1.5.6) if

(1) z : [0, τ) → Z is continuous and z(0) = (u0, w0) in Z,
(2) z : (0, τ) → Z is Fréchet differentiable,
(3) t ∈ [0, τ) 7→

(
f
(
u(t), w(t)

)
, g
(
u(t), w(t)

))
∈ Z is well-defined, locally ν-Hölder

continuous on (0, τ) and is continuous at t = 0,
(4) for all t ∈ (0, τ), u(t) ∈W 2,p(Ω), ue(t) ∈W 2,p

av (Ω),

and (u, ue, w) verify (1.5.1)-(5.6.1) for all t ∈ (0, τ) and for a.e. x ∈ Ω, and the boundary
conditions (1.5.4) and (1.5.5) for all t ∈ (0, τ) and for a.e. x ∈ ∂Ω.
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Let us consider bidomain equations as an abstract parabolic evolution equation on
some Cartesian product spaces. We set

Az := (Au, 0) for z = (u,w) ∈ D(A) := D(A)×Bm,

F : z ∈ Z 7→ (f(z), g(z)) ∈ Z,

S : t ∈ [0,∞) 7→ (s(t), 0) =
(
si(t)−Ai(Ai +Ae)

−1(si(t) + se(t)), 0
)
∈ Z,

F(t, z) = S(t)− F (z).

If one collects all calculation, then bidomain equations is transformed into

dz

dt
(t) +Az(t) = F(t, z(t)) in Z,(1.5.7)

ue(t) = (Ai +Ae)
−1 {(si(t) + se(t))−AiPavu(t)} ∈ D(Ae),(1.5.8)

z(0) = z0 in Z.

Lemma 1.22 ([11, Lemma 19]). The function z = (u,w) with ue is a strong solution (1.5.1)-
(1.5.6) if and only if conditions (1)-(3) of Definition 1.21 and condition (4’) below is satisfied;

(4’) for all t ∈ (0, τ), u(t) ∈ D(A) satisfies (1.5.7) and (1.5.8).

We will use the general theory in Henry’s book [21]. We have to control the non-
linear term f, g. The key idea is to use fractional powers Aα and related space Zα with
0 ≤ α ≤ 1.

Definition 1.23 ([21]). If A is a sectorial operator in a Banach space Z and if there is
a ≥ 0 such that Reσ(A+ a) > 0, then for each α > 0 we define the operator

(A+ a)−α :=
1

Γ(α)

ˆ ∞

0
tα−1e−(A+a)tdt.

For α > 0, we see (A+ a)−α is a bounded linear operator on Z which is one-to-one.
By using this operator with fractional power, we define the domain Zα of fractional
power;

Zα := R((A+ a)−α) (α > 0),

∥x∥Zα := ∥((A+ a)−α)−1x∥Z .

For α = 0, we define Z0 := Z, ∥x∥Z0 := ∥x∥Z .

Remark 1.24 ([21]). • Different choices of a give equivalent norms on Zα.

• (Zα, ∥ · ∥Zα) is a Banach space, Z1 = D(A) and for 0 ≤ β ≤ α ≤ 1, Zα is a dense
subspace of Zβ with continuous inclusion.

Lemma 1.25 ([21, Theorem 1.6.1]). If B = L∞(Ω) and f, g are locally Lipschitz continuous
on R× Rm, then

Zα ⊂ L∞(Ω)×Bm if
d

2p
< α ≤ 1,
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and in that case, F : z ∈ Zα 7→ F (z) ∈ Z is locally Lipschitz continuous.
If B = Cν(Ω) and f, g are C2 functions on R× Rm, then

Zα ⊂ Cν(Ω)×Bm if
1

2

(
ν +

d

p

)
< α ≤ 1,

and in that case, F : z ∈ Zα 7→ F (z) ∈ Z is locally Lipschitz continuous.

We are ready to state existence and uniqueness of the strong solution for bidomain
equations. When p = 2, d = 2, 3, this was proved in [11, Theorem 20] so our result is
regarded as an extension of their result.

Theorem 1.26 (Local existence and uniqueness). Let 0 ≤ α < 1 and 1 < p <∞ satisfying
the relation in Lemma 1.25. Then for any z0 = (u0, w0) ∈ Zα, there exists T > 0 such that
bidomain equations have a unique strong solution on [0, T ).

Proof. It is enough to show

• A is a sectorial operator,

• F : [0,∞) × Zα → Z is a locally Hölder continuous function in t and a locally
Lipschitz continuous function in z,

because of existence and uniqueness theorem [21, Theorem 3.3.3]. First part is obvious
since A = (A, 0), A is a sectorial operator and 0 is a bounded linear operator. Note that
a bounded linear operator is a sectorial operator and direct sum of a sectorial operator
is a sectorial operator [21]. Second part follows from the calculation as below. We need
to show s : [0,∞) → Lp(Ω) is locally ν-Hölder continuous in time. For any compact set
M ⊂ [0,∞) there exists C > 0 such that for all t1, t2 ∈M , we have

∥s(t1)− s(t2)∥Lp(Ω)

=∥si(t1)− si(t2)−Ai(Ai +Ae)
−1(si(t1)− si(t2) + se(t1)− se(t2))∥Lp(Ω)

≤∥si(t1)− si(t2)∥Lp(Ω) + C(∥si(t1)− si(t2)∥Lp(Ω) + ∥se(t1)− se(t2)∥Lp(Ω))

≤C|t1 − t2|ν .

Here, we invoked the fact that Ai(Ai +Ae)
−1 is a bounded linear operator and that si,e

are locally ν-Hölder continuous functions.

We conclude this chapter by studying regularity of a strong solution. Let 0 < ν < 1,
Ω be a bounded C2+ν-domain, f, g be C2 regularity, and coefficient of σi,e be C1+ν(Ω).

Theorem 1.27 (Regularity of a strong solution). Consider the caseB = Cν(Ω) in Definition
1.21 and 0 ≤ α < 1 defined by Lemma 1.25. Assume that si,e ∈ Cνloc([0,∞);Lp(Ω)) such that
si,e(t) ∈ Cν(Ω) and

´
Ω(si(t) + se(t))dx = 0(∀t ≥ 0). For z0 = (u0, w0) ∈ Zα the unique

strong solution z of bidomain equations defined on [0, T ) for some T > 0 satisfies furthermore:

(1) For any x ∈ Ω, u(x, ·) ∈ C1((0, T );R) and w(x, ·) ∈ C1((0, T );Rm).
(2) For any t ∈ (0, T ), u(·, t), ui,e(·, t) ∈ C2(Ω).
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Proof. We see that t ∈ (0, T ) 7→ z(t) ∈ Cν(Ω) × (Cν(Ω))m is continuous (Fréchet) dif-
ferentiable. This actually implies that (t, x) ∈ (0, T ) × Ω 7→ z(x, t) = (u(x, t), w(t, x)) is
continuously differentiable in t. By [21, Theorem 3.5.2], we have t ∈ (0, T ) 7→ z(t) ∈ Zν

is continuously (Fréchet) differentiable. This means du/dt(t) ∈ Cν(Ω). From (1.5.7),

Pavu(t) = A−1
e (Ai +Ae)A

−1
i

{
−du
dt

(t)− f(u(t), w(t)) + s(t)

}
.

By elliptic regularity theorem for Hölder spaces, Pavu(·, t) is (2+ ν)-Hölder continuous
since −du/dt(t) − f(u(t), w(t)) + s(t) is ν-Hölder continuous. Therefore u(·, t) is in
C2(Ω). The function ue is also in C2(Ω) by (1.5.8).

1.6 Appendix

In this appendix we show F−1(eiθ∞+p(ξ))−1 belongs L1(Rd) and for any Ψ2 ∈ C∞
0 (Rd)

satisfying
´
Rd Ψ2dx = 0, F−1(q(0)(ξ)FΨ2) belongs L1(Rd), where p(ξ) = ⟨σi∞ξ,ξ⟩⟨σe∞ξ,ξ⟩

⟨(σi∞+σe∞)ξ,ξ⟩

and q(0)(ξ) = qi(ξ) =
⟨σi∞ξ,ξ⟩

⟨(σi∞+σe∞)ξ,ξ⟩ . For q(0)(ξ) = qe(ξ) =
⟨σe∞ξ,ξ⟩

⟨(σi∞+σe∞)ξ,ξ⟩ , the L1 finite-

ness of F−1(q(0)(ξ)FΨ2) is the same as q(0)(ξ) = qi(ξ).

Proof that F−1(eiθ∞ + p(ξ))−1 ∈ L1(Rd). By the chain rule, we have that for any multi-
index α with |α| ≥ 1,

∂αξ (e
iθ∞ + p(ξ))−1

=

|α|∑
ℓ=1

(−1)ℓℓ!(eiθ∞ + p(ξ))−1−ℓ

 ∑
α1+···+αℓ=α
|α1|,··· ,|αℓ|≥1

Cℓα1,··· ,αℓ
∂α1
ξ p(ξ) · · · ∂αℓ

ξ p(ξ)


=

|α|∑
ℓ=1

∑
α1+···+αℓ=α
|α1|,··· ,|αℓ|≥1

Cℓα1,··· ,αℓ
(eiθ∞ + p(ξ))−1−ℓq(2−|α1|)(ξ) · · · q(2−|αℓ|)(ξ)

=

|α|∑
ℓ=1

∑
α1+···+αℓ=α
|α1|,··· ,|αℓ|≥1

Cℓα1,··· ,αℓ
(eiθ∞ + p(ξ))−1−ℓq(2ℓ−|α|)(ξ)

holds, where constants change from line to line and q(k)(ξ) is a positively homogeneous
function of degree k. We apply this formula to estimate L∞ norm of xαF−1(eiθ∞ +

p(ξ))−1. We take α such that |α| = d+1 to estimate behavior of F−1(eiθ∞ +p(ξ))−1 near
space infinity and that |α| = d− 1 to estimate behavior near the origin. We observe that∥∥∥∥∥∥

∑
|α|=d±1

xαF−1(eiθ∞ + p(ξ))−1

∥∥∥∥∥∥
L∞(Rd)

≤

∥∥∥∥∥∥
∑

|α|=d±1

F−1(i∂ξ)
α(eiθ∞ + p(ξ))−1

∥∥∥∥∥∥
L∞(Rd)
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≤
∑

|α|=d±1

(∥∥∥∂αξ (eiθ∞ + p(ξ))−1
∥∥∥
L1(B(0,1))

+
∥∥∥∂αξ (eiθ∞ + p(ξ))−1

∥∥∥
L1(B(0,1)c)

)

≤
∑

|α|=d±1

|α|∑
ℓ=1

Cℓα(∥(eiθ∞ + p(ξ))−1−ℓq(2ℓ−|α|)(ξ)∥L1(B(0,1))

+ ∥(eiθ∞ + p(ξ))−1−ℓq(2ℓ+2)(ξ)q(−2−|α|)(ξ)∥L1(B(0,1)c)).

Since for ℓ = 1, 2, · · · , d± 1, −d < 2ℓ− (d± 1) and (eiθ∞ + p(ξ))−1 is bounded, the first
term in the right-hand side is finite. Since for ℓ = 1, 2, · · · , d ± 1, −2 − (d ± 1) < −d
and (eiθ∞ + p(ξ))−1−ℓq(2ℓ+2)(ξ) is also bounded, the second term in the right-hand side
is finite. We thus conclude that

∥∥∥∑|α|=d±1 x
αF−1(eiθ∞ + p(ξ))−1

∥∥∥
L∞(Rd)

< +∞. This

implies that

|F−1(eiθ∞ + p(ξ))−1(x)| ≤

{
C|x|−d+1 for |x| ≤ 1,

C|x|−d−1 for 1 ≤ |x|.

We thus conclude that F−1(eiθ∞ + p(ξ))−1 is in L1(Rd).

The proof for F−1q(0)(ξ)FΨ2 ∈ L1(Rd) is essentially reduced to next proposition.

Proposition 1.28. For any f ∈ C∞
0 (Rd) satisfying

´
Rd f(x)dx = 0, the solution u(∈ S ′(Rd))

of −∆u = f in Rd defined by u(x) = F−1(|ξ|−2Ff)(x) satisfies that for any j, k = 1, 2, · · · , d
there exists C > 0 such that for any x ∈ Rd,

|∂j∂ku(x)| ≤
C

(1 + |x|)d+1
.

In particular ∂j∂ku ∈ L1(Rd).

Proof. We have ∂j∂ku ∈ L∞(Rd):

∥∂j∂ku∥L∞(Rd) =

∥∥∥∥F−1 iξjiξk
|ξ|2

Ff
∥∥∥∥
L∞(Rd)

≤
∥∥∥∥ iξjiξk|ξ|2

∥∥∥∥
L∞(Rd)

∥Ff∥L1(Rd) < +∞.

Set q̃(−d)(x) := F−1 iξjiξk
|ξ|2 , then ∇q̃(−d)(x) is a positively homogeneous function of de-

gree −d − 1 and |∇q̃(−d)(x)| ≤ C|x|−(d+1). Let R > 0 be sufficiently large so that
supp f ⊂ B(0, R/2). For any x ∈ B(0, R)c,

|∂j∂ku(x)| =
∣∣∣∣ˆ

Rd

q̃(−d)(x− y)f(y)dy

∣∣∣∣
=

∣∣∣∣ˆ
Rd

(q̃(−d)(x− y)− q̃(−d)(x))f(y)dy

∣∣∣∣
=

∣∣∣∣ˆ
supp f

ˆ 1

0
⟨∇q̃(−d)(x− ty), y⟩dtf(y)dy

∣∣∣∣
=

ˆ
supp f

ˆ 1

0

|y||f(y)|
|x− ty|d+1

dtdy



On a resolvent estimate for bidomain operators and its applications 29

In the above calculation we have used the fact
´
Rd q̃

(−d)(x)f(y)dy = 0 since
´
Rd f(y)dy =

0. By supp f ⊂ B(0, R/2) and x ∈ B(0, R)c, we see |x| ≤ |x−ty|+t|y| ≤ |x−ty|+R/2 <
|x− ty|+ |x|/2 so that |x− ty|−(d+1) ≤ C|x|−(d+1). So we have

|∂j∂ku(x)| ≤
C

|x|d+1

for all x ∈ B(0, R)c. Since we know that ∂j∂ku ∈ L∞(Rd), we now conclude

|∂j∂ku(x)| ≤
C

(1 + |x|)d+1
.

We transform the symbol q(0)(ξ) = qi(ξ) into iξjiξk
|ξ|2 so that we get the L1 bounded-

ness in the next proposition.

Proposition 1.29. For any Ψ2 ∈ C∞
0 (Rd) satisfying

´
Rd Ψ2(x)dx = 0 there exists C > 0

such that for any x ∈ Rd,

|F−1qi(ξ)FΨ2(x)| ≤
C

(1 + |x|)d+1

In particular F−1qi(ξ)FΨ2 ∈ L1(Rd).

Proof. We are able to take a diagonal matrix D = diag((λ1)
−1/2, · · · , (λd)−1/2) and a

orthogonal matrix P = (p1, · · · , pd) such that η = DPξ and ⟨(σi∞ + σe∞)ξ, ξ⟩ = |η|2,
where {(λℓ, pℓ)}dℓ=1 are the pair of eigenvalues and eigenfunctions of σi∞ + σe∞. Then
we have that the following calculation:

F−1qi(ξ)FΨ2(x)

=

ˆ
Rd

(ˆ
Rd

ei(x−y)·ξ
⟨σi∞ξ, ξ⟩

⟨(σi∞ + σe∞)ξ, ξ⟩
dξ

)
Ψ2(y)dy

=

ˆ
Rd

(ˆ
Rd

ei(x−y)·(DP )−1η ⟨σi∞(DP )−1η, (DP )−1η⟩
|η|2

detD−1 dη

)
Ψ2(y)dy

=
∑
j,k

Cj,k∂j∂k

ˆ
Rd

(ˆ
Rd

eiDP (x−y)·η 1

|η|2
dη

)
Ψ2(y)dy

=
∑
j,k

Cj,k∂j∂k

ˆ
Rd

(ˆ
Rd

eiDP (x−y)·η 1

|η|2
dη

)
Ψ̃2(DPy)dy

for some Cj,k ∈ R and Ψ̃2 ∈ C∞
0 (Rd) such that Ψ2(y) = Ψ̃2(DPy) and

´
Rd Ψ̃2(x)dx = 0.

This implies that F−1qi(ξ)FΨ2(x) =
∑

j,k Cj,k∂j∂k(−∆)−1Ψ̃2(DPx) and

|F−1qi(ξ)FΨ2(x)| ≤
C

(1 + |DPx|)d+1
≤ C

(1 + |x|)d+1

and then F−1qi(ξ)FΨ2 ∈ L1(Rd).
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Chapter 2

Strong Time Periodic Solutions to the Bido-
main Equations with FitzHugh–Nagumo Type
Nonlinearities

Consider the bidomain equations subject to ionic transport described by the models
of FitzHugh–Nagumo, Aliev–Panfilov, or Rogers–McCulloch. It is proved that this set
of equations admits a unique, strong T -periodic solution provided it is innervated by
T -periodic intra- and extracellular currents. The approach relies on a new periodic
version of the classical Da Prato–Grisvard theorem on maximal Lp-regularity in real
interpolation spaces.

Keywords: bidomain model; periodic solutions; maximal regularity in real interpola-
tion spaces

2.1 Introduction

The bidomain system is a well established system of equations describing the electrical
activities of the heart. For a detailed description of this model as well as its derivation
from general principles, we refer, e.g., to [9, 18] and the monograph by Keener and
Sneyd [20]. The system is given by

∂tu+ F (u,w)−∇ · (σi∇ui) = Ii in (0,∞)× Ω,

∂tu+ F (u,w) +∇ · (σe∇ue) = −Ie in (0,∞)× Ω,

∂tw +G(u,w) = 0 in (0,∞)× Ω,

(BDE)

subject to the boundary conditions

σi∇ui · ν = 0, σe∇ue · ν = 0 on (0,∞)× ∂Ω,(2.1.1)

and the initial data

u(0) = u0, w(0) = w0 in Ω.(2.1.2)

Here Ω ⊂ Rn denotes a domain describing the myocardium, the functions ui and ue
model the intra- and extracellular electric potentials, u := ui−ue denotes the transmem-
brane potential, and ν denotes the outward unit normal vector to ∂Ω. The anisotropic
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properties of the intra- and extracellular tissue parts will be described by the conductiv-
ity matrices σi(x) and σe(x). Furthermore, Ii and Ie stand for the intra- and extracellular
stimulation current, respectively.

The variable w, the so-called gating variable, corresponds to the ionic transport
through the cell membrane. On a microscopic level, the intra- and extracellular quanti-
ties are defined on disjoint domains Ωi and Ωe of Ω. After a homogenization procedure
described rather rigorously, e.g., in [10, 11], one obtains the macroscopic model above,
where the intra- and extracellular components are defined on all of Ω. The behavior of
the ionic current through the cell membrane, described by the variable w, is coupled
with the transmembrane voltage u by the equation in the third line of (BDE).

Mathematical models describing the propagation of impulses in electrophysiology
have a long tradition starting with the classical model by Hodgkin and Huxley in the
1950s, see, e.g., the recent survey article of Stevens [34]. In this article, we consider
various models for the ionic transport including the models by FitzHugh–Nagumo,
Aliev–Panfilov, and Rogers–McCulloch. The FitzHugh–Nagumo model reads as

F (u,w) = u(u− a)(u− 1) + w = u3 − (a+ 1)u2 + au+ w,

G(u,w) = bw − cu,

where 0 < a < 1 and b, c > 0. In the Aliev–Panfilov model the functions F and G are
given by

F (u,w) = ku(u− a)(u− 1) + uw = ku3 − k(a+ 1)u2 + kau+ uw,

G(u,w) = ku(u− 1− a) + dw,

whereas for the Rogers–McCulloch model we have

F (u,w) = bu(u− a)(u− 1) + uw = bu3 − b(a+ 1)u2 + bau+ uw,

G(u,w) = dw − cu.

The coefficients in these models satisfy the conditions 0 < a < 1 and b, c, d, k > 0.
Despite its importance in cardiac electrophysiology, not many analytical results on

the bidomain equations are known until today. Note that the so-called bidomain op-
erator is a very non local operator, which makes the analysis of this equation seriously
more complicated compared, e.g., to the classical Allen–Cahn equation.

The rigorous mathematical analysis of this system started with the work of Colli-
Franzone and Savaré [11], who introduced a variational formulation of the problem
and showed the global existence and uniqueness of weak and strong solutions for
FitzHugh-Nagumo model. Veneroni [37] extended the latter result to more general
models for the ionic transport including the Luo and Rudy I model [26].

In 2009, a new approach to this system was presented by Bourgault, Cordière, and
Pierre in [5]. They introduced for the first time the so-called bidomain operator within
the L2-setting and showed that it is a non-negative and self-adjoint operator. By mak-
ing use of the theory of evolution equations they further showed the existence and
uniqueness of a local strong solution and the existence of a global, weak solution to the
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system above for a large class of ionic models including the FitzHugh–Nagumo, Aliev–
Panfilov, and Rogers–McCulloch models above. In [23], the uniqueness and regularity
of the weak solution were proved.

For results concerning the optimal control problem subject to the monodomain ap-
proximation, in which the conductivity matrices satisfy σi = λσe for some λ > 0, we
refer to a series of papers by Kunisch et al. [6, 21, 22, 29], see also [35].

A new impetus to the field was recently given by Giga and Kajiwara [16], who in-
vestigated the bidomain equations within the Lp-setting for 1 < p ≤ ∞. They showed
that the bidomain operator is the generator of an analytic semigroup on Lp(Ω) for
p ∈ (1,∞] and constructed a local, strong solution to the bidomain system within this
setting.

All these results mainly concern the well-posedness of the bidomain equations and
results on the dynamics of the solution are even more rare. We refer here to the very
recent work of Mori and Matano [28], who studied for the first time the stability of front
solutions of the bidomain equations.

In this context it is now a very natural question to ask, whether the bidomain equa-
tions admit time periodic solutions. Periodic solutions can be formulated in various
regularity classes, ranging from weak over mild to strong solutions.

In this chapter, we consider the situation where the bidomain model, combined
with one of the models for the ionic transport above, is innervated by periodic intra- and
extracellular currents Ii and Ie. It is then our aim to show that in this case the innervated
system admits a strong time periodic solution of period T provided the outer forces Ii
and Ie are both time-periodic of period T > 0.

Let us emphasize, that we consider here the full bidomain model taking into account
the anisotropic phenomena and not only the so-called monodomain approximation. A
function space related to a fixed point argument for the Poincaré map in the strong
sense is naturally linked to a space of maximal regularity. This leads us to the scale of
real interpolation spaces and our approach is then based on a periodic version of the
classical Da Prato–Grisvard theorem [12]. A different approach within the Lp-setting
based on a semilinear version of a result by Arendt and Bu [4] on strong periodic solu-
tions of linear equations would require additional properties of the bidomain operator,
which, however, seem to be unknown.

Some more specific words about the strategy of our approach are in order. The
bidomain system is first reformulated into a coupled system. In this coupled system a
2×2 operator matrix A involving the bidomain operatorA in one of its components will
represent the linear part of (BDE). Given a Banach space X and a T -periodic function
f : R → X whose restriction to (0, T ) belongs to Lp(0, T ;X), we understand by a strong
T -periodic solution to the bidomain equations with right-hand side (f, 0) a T -periodic
tupel (u,w) ∈ Lp(0, T ;X) satisfying (u′, w′) ∈ Lp(0, T ;X) and A(u,w) ∈ Lp(0, T ;X).
This means in particular that (u,w) admit the property of maximal Lp-regularity. In
order to obtain a T -periodic solution to (BDE) within this regularity class, we choose as
underlying Banach space the real interpolation spaceDA(θ, p) for θ ∈ (0, 1), 1 ≤ p <∞,
and A being again the bidomain operator. Our approach to T -periodic solutions for
the linearized equation is then based on a periodic version of the classical Da Prato–
Grisvard theorem, which we develop in Section 2.4. Having this at hand, we apply then
the contraction mapping principle in the space of maximal regularity to find a strong
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T -periodic solution of the nonlinear problem in a neighborhood of stable equilibrium
points.

This chapter is organized as follows: While Section 3.2 is devoted to fix some nota-
tion and to collect some known results, our main results on strong T -periodic solutions
to the bidomain equations subject to a large class of models for the ionic transport are
presented in Section 2.3. The following Section 2.4 presents a periodic version of the
Da Prato–Grisvard theorem, which will be extended in Section 2.5 to the semilinear
setting. In Section 2.6 we apply our previous results to the bidomain equations subject
to various models for the ionic transport including the models by FitzHugh–Nagumo,
Aliev–Panfilov, and Rogers–McCulloch.

2.2 Preliminaries

In the whole article, let the space dimension n ≥ 2 be fixed and let Ω ⊂ Rn denote a
bounded domain with boundary ∂Ω of class C2. For the conductivity matrices σi and
σe we make the following assumptions.

Assumption E. The conductivity matrices σi, σe : Ω → Rn×n are symmetric matrices and
are functions of class C1(Ω). Ellipticity is imposed by means of the following condition:
there exist constants σ, σ with 0 < σ < σ such that

σ|ξ|2 ≤ ⟨σi(x)ξ, ξ⟩ ≤ σ|ξ|2 and σ|ξ|2 ≤ ⟨σe(x)ξ, ξ⟩ ≤ σ|ξ|2(2.2.1)

for all x ∈ Ω and all ξ ∈ Rn. Moreover, it is assumed that

σi∇ui · ν = 0 ⇔ ∇ui · ν = 0 on ∂Ω,

σe∇ue · ν = 0 ⇔ ∇ue · ν = 0 on ∂Ω.
(2.2.2)

It is known due to [8] that (3.2.2) is a biological reasonable assumption.
Next, we define the bidomain operator in the Lq-setting for 1 < q <∞. To this end,

let Lqav(Ω) := {u ∈ Lq(Ω) :
´
Ω u dx = 0} and let Pav be the orthogonal projection from

Lq(Ω) to Lqav(Ω), i.e., Pavu := u − 1
|Ω|
´
Ω u dx. We then introduce the operators Ai and

Ae by

Ai,eu := −∇ · (σi,e∇u),
D(Ai,e) :=

{
u ∈ W2,q(Ω) ∩ Lqav(Ω) : σi,e∇u · ν = 0 a.e. on ∂Ω

}
⊂ Lqav(Ω),

where Ai,e and σi,e indicates that either Ai and σi or Ae and σe are considered. Due to
condition (3.2.2) we obtain D(Ai) = D(Ae) and thus, it is possible to define the sum
Ai + Ae of Ai and Ae with the domain D(Ai) = D(Ae). Note that the inverse operator
(Ai +Ae)

−1 on Lqav(Ω) is a bounded linear operator.
Following [16] we define the bidomain operator as follows. Let σi and σe satisfy

Assumption E. Then the bidomain operator A is defined as

A = Ai(Ai +Ae)
−1AePav(2.2.3)
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with domain

D(A) := {u ∈ W2,q(Ω) : ∇u · ν = 0 a.e. on ∂Ω}.

The following resolvent estimates for A were proven by Giga and Kajiwara in [16].
Here, denote for θ ∈ (0, π] the sector Σθ := {λ ∈ C \ {0} : |argλ| < θ}.

Proposition 2.1 ([16, Theorem 4.7, Theorem 4.9]). Let 1 < q < ∞, Ω be a bounded C2-
domain and let σi and σe satisfy Assumption E. Then, for λ ∈ Σπ and f ∈ Lq(Ω), the resolvent
problem

(λ+A)u = f in Ω(2.2.4)

has a unique solution u ∈ D(A). Moreover, for each ε ∈ (0, π/2) there exists a constant C > 0

such that for all λ ∈ Σπ−ε and all f ∈ Lq(Ω) the unique solution u ∈ D(A) satisfies

|λ|∥u∥Lq(Ω) + |λ|1/2∥∇u∥Lq(Ω) + ∥∇2u∥Lq(Ω) ≤ C∥f∥Lq(Ω).

Observe that the proposition above implies in particular that −A generates a bounded
analytic semigroup e−tA on Lq(Ω).

Under the assumption of the conservation of currents, i.e.,
ˆ
Ω
(Ii(t) + Ie(t)) dx = 0, t ≥ 0(2.2.5)

and assuming moreover
´
Ω ue dx = 0, the bidomain equations (BDE) may be equiva-

lently rewritten as an evolution equation [5, 16] of the form
∂tu+Au+ F (u,w) = I, in (0,∞),

∂tw +G(u,w) = 0, in (0,∞),

u(0) = u0,

w(0) = w0,

(ABDE)

where

I := Ii −Ai(Ai +Ae)
−1(Ii + Ie)(2.2.6)

is the modified source term. The functions ue and ui can be recovered from u by virtue
of the following relations

ue = (Ai +Ae)
−1{(Ii + Ie)−AiPavu},

ui = u+ ue.

Our main results on the unique existence of strong T -periodic solutions to (PABDE) are
formulated in the real interpolation space DA(θ, p) between D(A) and the underlying
space Lq(Ω). This choice of spaces is motivated by our aim to prove the existence and
uniqueness of T -periodic solutions to the bidomain equations in the strong, and not
only in the mild sense. The classical Da Prato–Grisvard theorem ensures the maximal
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Lp-regularity for parabolic evolution equations in these spaces and our approach is
based on a periodic version of the Da Prato–Grisvard theorem.

More specifically, let X be a Banach space and −A be the generator of a bounded
analytic semigroup e−tA on X with domain D(A). For θ ∈ (0, 1) and 1 ≤ p < ∞, we
denote by DA(θ, p) space defined as

DA(θ, p) :=
{
x ∈ X : [x]θ,p :=

(ˆ ∞

0
∥t1−θAe−tAx∥pX

dt

t

)1/p
<∞

}
.(2.2.7)

When equipped with the norm ∥x∥θ,p := ∥x∥ + [x]θ,p, the space DA(θ, p) becomes a
Banach space. For details and more on interpolation spaces we refer, e.g., to [24,25]. It is
well-known that DA(θ, p) coincides with the real interpolation space (X,D(A))θ,p and
that the respective norms are equivalent. If 0 ∈ ρ(A), then the real interpolation space
norm is equivalent to the homogeneous norm [·]θ,p, see [17, Corollary 6.5.5]. Consider
in particular the bidomain operator A in X = Lq(Ω) for 1 < q < ∞. Then, following
Amann [2, Theorem 5.2], the space (X,D(A))θ,p can be characterized as

(Lq(Ω), D(A))θ,p = B2θ
q,p(Ω), 1 ≤ p ≤ ∞,(2.2.8)

provided 2θ ∈ (0, 1 + 1/q). Here Bsq,p(Ω) denotes, as usual, the Besov space of order
s ≥ 0.

For 0 < T <∞, we define the solution space Eper
A as

Eper
A := {u ∈ W1,p(0, T ;DA(θ, p)) : Au ∈ Lp(0, T ;DA(θ, p)) and u(0) = u(T )}

with norm

∥u∥Eper
A

:= ∥u∥W1,p(0,T ;DA(θ,p)) + ∥Au∥Lp(0,T ;DA(θ,p)),

which corresponds to the data space

FA := Lp(0, T ;DA(θ, p)).

In our situation, where A denotes the bidomain operator, the solution space for the
transmembrane potential u reads as

Eper
A = {u ∈ W1,p(0, T ;DA(θ, p)) : Au ∈ Lp(0, T ;DA(θ, p)) and u(0) = u(T )}.

The solution space for the gating variable w is defined as

Eper
w := {w ∈ W1,p(0, T ;DA(θ, p)) : w(0) = w(T )}.

Then, the solution space for the periodic bidomain system is defined as the product
space

E := Eper
A × Eper

w .
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Finally, for a Banach space X we denote by BX(u∗, R) the closed ball in X with
center u∗ ∈ X and radius R > 0, i.e.,

BX(u∗, R) := {u ∈ X : ∥u− u∗∥X ≤ R}.

2.3 Main results for various models

In this section we state our main results concerning the existence and uniqueness of
strong T -periodic solutions to the bidomain equations subject to various models of the
ionic transport. Notice that the respective models treated here are slightly more general
as described in the introduction, as an additional parameter ε > 0 is introduced, that
incorporates the phenomenon of fast and slow diffusion.

Additionally to Assumption E on the conductivity matrices of the bidomain oper-
ator A, we require the following regularity and periodicity conditions on the forcing
term I .

Assumption P. Let 1 ≤ p < ∞ and n < q < ∞ satisfy 1/p + n/(2q) ≤ 3/4. Assume
I : R → DA(θ, p) is a T -periodic function satisfying I|(0,T ) ∈ FA for some θ ∈ (0, 1/2)

and T > 0.

Remark 2.2. If Ω has a C4-boundary and if the conductivity matrices σi and σe lie
in W3,∞(Ω;Rn×n), then Assumption P is satisfied by virtue of (3.2.5) if Ii, Ie : R →
DA(θ, p) are T -periodic functions satisfying Ii|(0,T )

and Ie|(0,T )
∈ FA. Indeed, this follows

by real interpolation sinceAi(Ai+Ae)−1 is bounded on Lqav(Ω) and fromD(A)∩Lqav(Ω)

into W2,q(Ω) ∩ Lqav(Ω).

We start with the most classical model due to FitzHugh and Nagumo.

2.3.1 The periodic bidomain FitzHugh–Nagumo model

For T > 0, 0 < a < 1, and b, c, ε > 0, the periodic bidomain FitzHugh–Nagumo
equations are given by

∂tu+ εAu = I − 1

ε
[u3 − (a+ 1)u2 + au+ w] in R× Ω,

∂tw = cu− bw in R× Ω,

u(t) = u(t+ T ) in R× Ω,

w(t) = w(t+ T ) in R× Ω.

(2.3.1)

This system has three equilibrium points, the trivial one (u1, w1) = (0, 0) and two others
given by (u2, w2) and (u3, w3), where

u2 =
1

2
(a+ 1− d), w2 =

c

2b
(a+ 1− d), u3 =

1

2
(a+ 1 + d), w3 =

c

2b
(a+ 1 + d),

(2.3.2)
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and d =
√
(a+ 1)2 − 4(a+ c

b). We assume that the following stability condition (SFN)

on the coefficients is satisfied:

c < b

(
(a− 1)2

4
− a

)
and u3 >

1

3

(
a+ 1 +

√
(a+ 1)2 − 3a

)
.(SFN)

Our result on strong periodic solutions to the bidomain FitzHugh–Nagumo equa-
tions reads then as follows.

Theorem 2.3. Let Ω ⊂ Rn, n ≥ 2, be a bounded C2-domain and suppose that Assumptions E
and P hold true.

a) Then there exist constants R > 0 and C(R) > 0 such that if ∥I∥FA
< C(R), the

equation (2.3.1) admits a unique T-periodic strong solution (u,w) with (u,w)|(0,T ) ∈
BE((0, 0), R).

b) If condition (SFN) is satisfied, then there exist constants R > 0 and C(R) > 0 such that
if ∥I∥FA

< C(R), the equation (2.3.1) admits a unique T-periodic strong solution (u,w)

with (u,w)|(0,T ) ∈ BE((u3, w3), R).

2.3.2 The periodic bidomain Aliev–Panfilov model

For T > 0, 0 < a < 1, and d, k, ε > 0, the periodic bidomain Aliev–Panfilov equa-
tions are given by

∂tu+ εAu = I − 1

ε
[ku3 − k(a+ 1)u2 + kau+ uw] in R× Ω,

∂tw = −(ku(u− 1− a) + dw) in R× Ω,

u(t) = u(t+ T ) in R× Ω,

w(t) = w(t+ T ) in R× Ω.

(2.3.3)

This system has only one stable equilibrium point, namely the trivial solution (u1, w1) =

(0, 0). Our theorem on the existence and uniqueness of strong, periodic solutions to the
periodic bidomain Aliev–Panfilov equations reads as follows.

Theorem 2.4. Let Ω ⊂ Rn, n ≥ 2, be a bounded C2-domain and suppose that Assumptions E
and P hold true. Then, there exist constants R > 0 and C(R) > 0 such that if ∥I∥FA

<

C(R), the equation (2.3.3) admits a unique T-periodic strong solution (u,w) with (u,w)|(0,T ) ∈
BE((0, 0), R).

2.3.3 The periodic bidomain Rogers–McCulloch model
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For T > 0, 0 < a < 1, and b, c, d, ε > 0, the periodic bidomain Rogers–McCulloch
equations are given by

∂tu+ εAu = I − 1

ε
[bu3 − b(a+ 1)u2 + bau+ uw] in R× Ω,

∂tw = cu− dw in R× Ω,

u(t) = u(t+ T ) in R× Ω,

w(t) = w(t+ T ) in R× Ω.

(2.3.4)

This system has three equilibrium points, the trivial one (u1, w1) = (0, 0) and two
others given by (u2, w2) and (u3, w3), where

u2 =
1

2
(a+ 1− c

bd
− e), w2 =

c

2d
(a+ 1− c

bd
− e),(2.3.5)

u3 =
1

2
(a+ 1− c

bd
+ e), w3 =

c

2d
(a+ 1− c

bd
+ e),(2.3.6)

and e =
√(

a+ 1− c
bd

)2 − 4a. We assume that the following stability condition (SRM)
on the coefficients is satisfied:√(

a+ 1− c

bd

)2 − 4a− c

bd
> 0.(SRM)

Our theorem on the existence and uniqueness of strong periodic solutions to the
periodic bidomain Rogers–McCulloch equations reads as follows.

Theorem 2.5. Let Ω ⊂ Rn, n ≥ 2, be a bounded C2-domain and suppose that Assumptions E
and P hold true.

a) Then there exist constants R > 0 and C(R) > 0 such that if ∥I∥FA
< C(R), the

equation (2.3.4) admits a unique T-periodic strong solution (u,w) with (u,w)|(0,T ) ∈
BE((0, 0), R).

b) If condition (SRM) is satisfied, then there exist constants R > 0 and C(R) > 0 such that
if ∥I∥FA

< C(R), the equation (2.3.4) admits a unique T-periodic strong solution (u,w)

with (u,w)|(0,T ) ∈ BE((u3, w3), R).

2.3.4 The periodic bidomain Allen–Cahn equation

For T > 0, the periodic bidomain Allen–Cahn equation is given by{
∂tu+Au = I + u− u3 in R× Ω,

u(t) = u(t+ T ) in R× Ω.
(2.3.7)

This system has three equilibrium points, u1 = −1, u2 = 0, and u3 = 1 and our theorem
on the existence and uniqueness of strong, periodic solutions to the periodic bidomain
Allen–Cahn equation reads as follows.
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Theorem 2.6. Let Ω ⊂ Rn, n ≥ 2, be a bounded C2-domain and suppose that Assumptions E
and P hold true.

a) Then, there exist constants R > 0 and C(R) > 0 such that if ∥I∥FA
< C(R) the equa-

tion (2.3.7) admits a unique T-periodic strong solutions u with u|(0,T ) ∈ BEper
A (−1, R).

b) Then, there exist constants R > 0 and C(R) > 0 such that if ∥I∥FA
< C(R) the

equation (2.3.7) admits a unique T-periodic strong solutions uwith u|(0,T ) ∈ BEper
A (1, R).

2.4 A periodic version of the Da Prato–Grisvard theorem

Let X be a Banach space and −A be the generator of a bounded analytic semigroup on
X . Assume that θ ∈ (0, 1), 1 ≤ p <∞, and 0 < T <∞. Then, for f ∈ Lp(0, T ;DA(θ, p))

we consider

u(t) :=

ˆ t

0
e−(t−s)Af(s) ds, 0 < t < T.(2.4.1)

Then, u is the unique mild solution to the abstract Cauchy problem{
u′(t) +Au(t) = f(t), 0 < t < T

u(0) = 0
(ACP)

and fulfills, thanks to the classical Da Prato and Grisvard theorem [12], the following
maximal regularity estimate.

Proposition 2.7 ([12, Da Prato, Grisvard]). Let θ ∈ (0, 1), 1 ≤ p < ∞, and 0 < T < ∞.
Then there exists a constant C > 0 such that for all f ∈ Lp(0, T ;DA(θ, p)), the function u

given by (2.4.1) satisfies u(t) ∈ D(A) for almost every 0 < t < T and

∥Au∥Lp(0,T ;DA(θ,p)) ≤ C∥f∥Lp(0,T ;DA(θ,p)).

We remark at this point that the theorem above implies that the mild solution u

to (ACP) is in fact a strong solution satisfying u′(t) + Au(t) = f(t) for almost every
0 < t < T .

The proof of our main results are based on the following periodic version of the Da
Prato–Grisvard theorem, which is also of independent interest. To this end, we define
the periodicity of measurable functions as follows. For some 0 < T < ∞, we say a
measurable function f : R → X is called periodic of period T if f(t) = f(t+T ) holds true
for almost all t ∈ (−∞,∞).

For θ ∈ (0, 1), 1 ≤ p < ∞, and 0 < T < ∞ assume that f : R → DA(θ, p) is periodic
of period T . Then the periodic version of (ACP) reads as{

u′(t) +Au(t) = f(t), t ∈ R,
u(t) = u(t+ T ), t ∈ R.

(PACP)

Formally, a candidate for a solution u of (PACP) is given by

u(t) :=

ˆ t

−∞
e−(t−s)Af(s) ds.(2.4.2)
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The following lemma shows that, under certain assumptions on A and f , u is indeed
well-defined, continuous and periodic.

Lemma 2.8. Let f : R → DA(θ, p) be a T -periodic function satisfying f|(0,T ) ∈ Lp(0, T ;DA(θ, p))

and assume that 0 ∈ ρ(A). Then, the function u defined by (2.4.2) is well-defined, satisfies
u ∈ C(R;DA(θ, p)), and is T -periodic.

Proof. Let k0 ∈ Z be such that −k0T < t ≤ −(k0 − 1)T . Using Hölder’s inequality, the
periodicity of f , and the exponential decay of e−tA, we obtain

ˆ t

−∞
∥e−(t−s)Af(s)∥DA(θ,p) ds

=

ˆ t

−k0T
∥e−(t−s)Af(s)∥DA(θ,p) ds+

∞∑
k=k0

ˆ −kT

−(k+1)T
∥e−(t−s)Af(s)∥DA(θ,p) ds

≤ C

( ˆ t+k0T

0
∥f(s)∥pDA(θ,p) ds

) 1
p

+ C
∞∑

k=k0

e−ωkT
ˆ T

0
∥e−(T−s)Af(s)∥DA(θ,p) ds

≤ C
(
1 +

∞∑
k=k0

e−ωkT
)(ˆ T

0
∥f(s)∥pDA(θ,p) ds

) 1
p

for some ω > 0. It follows that u is well-defined. For the continuity of u we write for
h > 0

u(t+ h)− u(t) =

ˆ t+h

t
e−(t+h−s)Af(s) ds+

ˆ t

−∞
e−(t−s)A[e−hA − Id]f(s) ds.

By the boundedness of the semigroup it suffices to consider the second integral. This
resembles the expression from the first part of the proof but with f being replaced by
[e−hA − Id]f . Thus,

∥∥∥ˆ t

−∞
e−(t−s)A[e−hA − Id]f(s) ds

∥∥∥
DA(θ,p)

≤ C

( ˆ T

0
∥[e−hA − Id]f(s)∥pDA(θ,p) ds

) 1
p

and the right-hand side tends to zero as h→ 0 by Lebesgue’s theorem. The periodicity
of u directly follows by using the transformation s′ = s+T and the periodicity of f .

We now state the periodic version of the Da Prato–Grisvard theorem.

Theorem 2.9. Let X be a Banach space and −A be the generator of a bounded analytic semi-
group on X with 0 ∈ ρ(A). Let θ ∈ (0, 1), 1 ≤ p <∞, and 0 < T <∞.

Then there exists a constant C > 0 such that for all periodic functions f : R → DA(θ, p)

with f|(0,T ) ∈ Lp(0, T ;DA(θ, p)) the function u defined by (2.4.2) lies in C(R;DA(θ, p)), is
periodic of period T , satisfies u(t) ∈ D(A) for almost every t ∈ R, and satisfies

∥Au∥Lp(0,T ;DA(θ,p)) ≤ C∥f∥Lp(0,T ;DA(θ,p)).
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Proof. The continuity and periodicity of u are proven in Lemma 2.8. Let t ∈ [0, T ) and
use the transformation s′ = s+ (k+1)T for k ∈ N0 as well as that f is periodic to write

u(t) =

ˆ t

0
e−(t−s)Af(s) ds+

∞∑
k=0

e−(t+kT )A
ˆ T

0
e−(T−s)Af(s) ds.(2.4.3)

In the following, use the notation

u :=

ˆ T

0
e−(T−s)Af(s) ds.

Since Proposition 2.7 implies

ˆ t

0
e−(t−s)Af(s) ds ∈ D(A) (a.e. t ∈ (0, T ))

and ∥∥∥t 7→ A
ˆ t

0
e−(t−s)Af(s) ds

∥∥∥
Lp(0,T ;DA(θ,p))

≤ C∥f∥Lp(0,T ;DA(θ,p)),

by the exponential decay of the semigroup, it suffices to prove the estimate

∥t 7→ Ae−tAu∥Lp(0,T ;DA(θ,p)) ≤ C∥f∥Lp(0,T ;DA(θ,p)).

Step 1.

Let γ1, γ2 ∈ (0, 1) with γ1 + γ2 = 1 and 1/p′ < γ2 < 1 − θ + 1/p′, where p′ denotes
the Hölder conjugate exponent to p. Then, the boundedness and the analyticity of the
semigroup, followed by a linear transformation and Hölder’s inequality imply

∥Ae−τAAe−tAu∥X ≤ C

ˆ T

0

1

(T + τ + t− s)γ1
1

(T + τ + t− s)γ2
∥Ae−(T+τ+t−s)/2Af(s)∥X ds

= C

ˆ T+t

t

1

(τ + s)γ1
1

(τ + s)γ2
∥Ae−(τ+s)/2Af(T + t− s)∥X ds

≤ C(τ + t)1/p
′−γ2

(ˆ T+t

t

1

(τ + s)γ1p
∥Ae−(τ+s)/2Af(T + t− s)∥pX ds

) 1
p

.

Notice that 1/p′ < γ2 was eminent in the calculation above. Next, t > 0 implies

∥Ae−τAAe−tAu∥X ≤ Cτ1/p
′−γ2

( ˆ T+t

t

1

(τ + s)γ1p
∥Ae−(τ+s)/2Af(T + t− s)∥pX ds

) 1
p

.

(2.4.4)

Step 2.

An application of (2.4.4) and Fubini’s theorem yields

ˆ T

0
∥Ae−τAAe−tAu∥pX dt
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≤ Cτp(1/p
′−γ2)

ˆ 2T

0

ˆ min{T,s}

max{0,s−T}

1

(τ + s)γ1p
∥Ae−(τ+s)/2Af(T + t− s)∥pX dt ds.

Notice that the inner integral can be estimated by using min{T, s} ≤ s. The transfor-
mation t′ = T + t− s delivers then the estimate

∥t 7→ Ae−τAAe−tAu∥pLp(0,T ;X)

≤ Cτp(1/p
′−γ2)

ˆ 2T

0

ˆ T

max{0,T−s}

1

(τ + s)γ1p
∥Ae−(τ+s)/2Af(t)∥pX dt ds.

(2.4.5)

Step 3.

Use Fubini’s theorem first and then (2.4.5) to estimate the full norm by

ˆ T

0
[Ae−tAu]pθ,p dt ≤ C

ˆ ∞

0
τγ−1

ˆ 2T

0

ˆ T

max{0,T−s}

1

(τ + s)γ1p
∥Ae−(τ+s)/2Af(t)∥pX dt ds dτ,

where γ = p(1 + 1/p′ − θ − γ2). Apply Fubini’s theorem followed by the substitution
s′ = τ + s to get

ˆ T

0
[Ae−tAu]pθ,p dt ≤ C

ˆ T

0

ˆ ∞

0
τγ−1

ˆ 2T+τ

T+τ−t

1

sγ1p
∥Ae−s/2Af(t)∥pX ds dτ dt.

Finally, use Fubini’s theorem in order to calculate the τ -integral (here γ2 < 1− θ + 1/p′

is essential) and note that t− T is negative and γ positive to get

ˆ T

0
[Ae−tAu]pθ,p dt ≤

C

γ

ˆ T

0

ˆ ∞

T−t

1

sγ1p
∥Ae−s/2Af(t)∥pX(s+ t− T )γ ds dt

≤ C

γ

ˆ T

0

ˆ ∞

T−t
sγ−γ1p∥Ae−s/2Af(t)∥pX ds dt.

The proof is concluded by definition γ and of the real interpolation space norm, since
this gives

ˆ T

0
[Ae−tAu]pθ,p dt ≤

2p(1−θ)C

2γ
∥f∥pLp(0,T ;DA(θ,p)).

Step 4.

In this step, we estimate
´ T
0 ∥Ae−tAu∥X dt. It is known, see [17, Corollary 6.6.3], that

DA(ϑ, 1) ↪→ D(Aϑ) and that DA(θ, p) ↪→ DA(ϑ, 1) for every 0 < ϑ < θ. Thus,

DA(θ, p) ↪→ D(Aϑ).

Now, let ϑ1, ϑ2, ϑ3 ∈ (0, 1) with ϑ1 + ϑ2 + ϑ3 = 1, ϑ1 < θ, ϑ2p′ < 1 and ϑ3p < 1, where
p′ denotes the Hölder conjugate exponent to p. Then, the bounded analyticity of e−tA,
Hölder’s inequality and the above embedding imply

∥Ae−tAu∥X = ∥Aϑ3e−tA
ˆ T

0
Aϑ2e−(T−s)AAϑ1f(s) ds∥X
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≤ Ct−ϑ3
ˆ T

0
(T − s)−ϑ2∥Aϑ1f(s)∥X ds

≤ Ct−ϑ3
(ˆ T

0
(T − s)−ϑ2p

′
ds

) 1
p′
(ˆ T

0
∥Aϑ1f(s)∥pX ds

) 1
p

≤ Ct−ϑ3∥f∥Lp(0,T :DA(θ,p)).

Consequently,

ˆ T

0
∥Ae−tAu∥X dt ≤ c∥f∥Lp(0,T :DA(θ,p)).

We conclude this section by showing that, under the assumptions of Theorem 2.9,
u defined by (2.4.2) indeed is the unique strong solution to (PACP).

Proposition 2.10. Under the hypotheses of Theorem 2.9 the function u defined by (2.4.2) is the
unique strong solution to (PACP), i.e., u is the unique periodic function of period T in C(R;X)

that is for almost every t ∈ R differentiable in t, satisfies u(t) ∈ D(A), and Au ∈ Lp(0, T ;X),
and u solves

u′(t) +Au(t) = f(t).

Proof. First of all, u is periodic by Lemma 2.8 and since DA(θ, p) continuously embeds
into X the very same lemma implies u ∈ C(R;X).

Assume first that f|(0,T ) ∈ Lp(0, T ;D(A)). Then, by a direct calculation, u defined
by (2.4.2) is differentiable, satisfies u(t) ∈ D(A), and solves

u′(t) +Au(t) = f(t)

for every t ∈ R. The density of Lp(0, T ;D(A)) in Lp(0, T ;DA(θ, p)) and the estimate
proven in Theorem 2.9 imply that all these properties carry over to all right-hand sides
in Lp(0, T ;DA(θ, p)) (but only for almost every t ∈ R) by an approximation argument.

For the uniqueness, assume that v ∈ C(R;X) with v′,Av ∈ Lp(0, T ;X) is another
periodic function of period T which satisfies the equation for almost every t ∈ R. Let
w := u− v. Then w satisfies

w′(t) = −Aw(t) (a.e. t ∈ R).

In this case, for t > 0,w can be written by means of the semigroup asw(t) = e−tA(u(0)−
v(0)). Now, the exponential decay of the semigroup and the periodicity of w imply that
w must be zero for all t ∈ R.

Remark 2.11. Combining Theorem 2.9 and Proposition 2.10 shows that for each periodic
f with period T and f|(0,T ) ∈ Lp(0, T ;DA(θ, p)) also u′|(0,T ) ∈ Lp(0, T ;DA(θ, p)). The
same is true for u since 0 ∈ ρ(A). Summarizing, there exists a constant C > 0 such that

∥u∥Eper
A

≤ C∥f∥Lp(0,T ;DA(θ,p)),(2.4.6)

where Eper
A is defined as in the end of Section 3.2.
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2.5 Time periodic solutions for semilinear equations

In this section, we use the periodic version of the Da Prato–Grisvard theorem to con-
struct time periodic solutions to semilinear parabolic equations by employing Banach’s
fixed point theorem. The framework that is presented here includes all the models from
Section 2.3.

2.5.1 An abstract existence theorem for general types of nonlinearities

Let −A be the generator of a bounded analytic semigroup e−tA on a Banach space X
with the domain D(A) and 0 ∈ ρ(A). For T > 0, θ ∈ (0, 1), and 1 ≤ p < ∞ let
f : R → DA(θ, p) be periodic of period T with f|(0,T ) ∈ Lp(0, T ;DA(θ, p)). We are
aiming for the strong solvability of{

u′(t) +Au(t) = F [u](t) + f(t) (t ∈ R)
u(t) = u(t+ T ) (t ∈ R)

(NACP)

under some smallness assumptions on f . The solution uwill be constructed in the space
of maximal regularity Eper

A defined in the end of Section 3.2. Recall the corresponding
data space

FA = Lp(0, T ;DA(θ, p))

and let Bρ := BEper
A (0, ρ) for some ρ > 0. For the nonlinear term F , we make the

following standard assumption.

Assumption N. There existsR > 0 such that the nonlinear term F is a mapping from BR
into FA and satisfies

F ∈ C1(BR;FA), F (0) = 0, and DF (0) = 0,

where DF : BR → L(Eper
A ,FA) denotes the Fréchet derivative.

The following theorem proves existence and uniqueness of solutions to (NACP) in
the class Eper

A for small forcings f .

Theorem 2.12. Let T > 0, 0 < θ < 1, 1 ≤ p < ∞, and F and R > 0 subject to Assump-
tion N. Then there is a constant r ≤ R and c = c(T, θ, p, r) > 0 such that if f : R → DA(θ, p)

is T -periodic with ∥f∥FA ≤ c, then there exists a unique solution u : R → DA(θ, p) of (NACP)
with the same period T and u|(0,T ) ∈ Br.

Proof. Let S : BR → Eper
A , v 7→ uv be the solution operator of the linear equation

u′v(t) +Auv(t) = F [v(t)] + f(t) in (0, T )

with uv(0) = uv(T ). This is well-defined since F [v] ∈ FA by Assumption N, so that, by
Proposition 2.10 and Remark 2.11, uv uniquely exists and lies in Eper

A .
We prove that this solution operator is a contraction on Br for some r ≤ R. Let

M > 0 denote the infimum of all constants C satisfying (2.4.6). Choose r > 0 small
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enough such that

sup
w∈Br

∥DF [w]∥L(Eper
A ,FA) ≤

1

2M
,

which is possible by Assumption N. By virtue of (2.4.6) as well as the mean value the-
orem, estimate for any v ∈ Br and f satisfying ∥f∥FA ≤ r/(2M) =: c,

∥S(v)∥Eper
A

≤M(∥F [v]∥FA + ∥f∥FA) ≤M( sup
w∈Br

∥DF [w]∥L(Eper
A ,FA)∥v∥Eper

A
+ ∥f∥FA) ≤ r.

So S(Br) ⊂ Br. Similarly, for any v1, v2 ∈ Br,

∥S(v1)− S(v2)∥Eper
A

≤M sup
w∈Br

∥DF [w]∥L(Eper
A ,FA)∥v1 − v2∥Eper

A
≤ 1

2
∥v1 − v2∥Eper

A
.

Consequently, the solution operator S is a contraction on Br and the contraction map-
ping theorem is applicable. The solution to (NACP) is defined as follows. Let u be the
unique fixed point of S. Since Su = u, u satisfies u(0) = u(T ) and thus can be extended
periodically to the whole real line. This function solves (NACP).

2.5.2 Two special examples

A short glimpse towards the models presented in Subsections 2.3.1-2.3.4 reveals that
one of the following situations occurs:

• The bidomain operator A appears only in the first but not in the second equa-
tion of the bidomain models and the nonlinearity depends linearly on the gating
variable w. (Subsections 2.3.1-2.3.3)

• The ODE and the gating variable w are omitted. (Subsection 2.3.4)

As a consequence, in the first situation the operator associated with the linearization
of the bidomain models can be written as an operator matrix whose first component
of the domain embeds into a W2,q-space. Since the dynamics of the gating variable
is described only by an ODE, there appears no smoothing in the spatial variables of
w. However, as we aim to employ Theorem 2.12 and as the nonlinearity of the first
equation depends linearly on w, at least in the models of Aliev–Panfilov and Rogers–
McCulloch, w must be contained in DA(θ, p). Otherwise one cannot view the nonlin-
earity as a suitable right-hand side as it is done in Subsection 2.5.1. Hence, we choose
DA(θ, p) as the ground space for the gating variable.

To describe this situation in our setup, assume in the following, that −A is the gen-
erator of a bounded analytic semigroup on a Banach space X = X1 ×X2, with domain
D(A) = D(A1)×D(A2), and 0 ∈ ρ(A). We further set for some 1 < q <∞, 1 ≤ p <∞,
and θ ∈ (0, 1)

X1 = Lq(Ω), D(A1) = D(A), and X2 = D(A2) = DA(θ, p).
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Furthermore, define two types of nonlinearities as follows: For a1, a2, a3, a4 ∈ R let

F1[u1, u2] :=

(
a1u

2
1 + a2u

3
1 + a3u1u2

a4u
2
1

)

and for b1, b2 ∈ R let

F2[u1] := b1u
2
1 + b2u

3
1.

Here, F1 will be a prototype of the nonlinearities considered in Subsections 2.3.1-2.3.3
and F2 for the one considered in Subsection 2.3.4. For the moment, the condition
0 ∈ ρ(A) seems inappropriate as 0 /∈ ρ(A). However, we will linearize the bidomain
equations around suitable stable stationary solutions and in this situation 0 ∈ ρ(A) will
be achieved.

In the following, we concentrate only on F1, since the results for F2 may be proved
in a similar way. To derive conditions on p, q, and θ ensuring that F1 satisfies Assump-
tion N, the following two lemmas are essential. The first one is a consequence of the
mixed derivative theorem, see, e.g., [14] and reads as follows.

Lemma 2.13. Let Ω ⊂ Rn be a bounded C2-domain, T > 0, 1 < p, q < ∞, and σ ∈ [0, 1].
Then the following continuous embedding is valid

W1,p(0, T ; Lq(Ω)) ∩ Lp(0, T ;W2,q(Ω)) ⊂ Wσ,p(0, T ;W2(1−σ),q(Ω)).

Lemma 2.14. Let Ω ⊂ Rn be a bounded C2-domain, 1 ≤ p < ∞, 1 < q < ∞, q ≤ r, s ≤ ∞,
1/r + 1/s = 1/q, and θ ∈ (0, 1/2). Then there exists a constant C > 0 such that for

∥uv∥B2θ
q,p(Ω) ≤ C∥u∥W1,s(Ω)∥v∥B2θ

r,p(Ω) (u ∈ W1,s(Ω), v ∈ B2θ
r,p(Ω)).

Proof. Assume first that v ∈ W1,r(Ω). By Hölder’s inequality it follows that

∥uv∥Lq(Ω) ≤ ∥u∥Ls(Ω)∥v∥Lr(Ω) and ∥uv∥W1,q(Ω) ≤ 2∥u∥W1,s(Ω)∥v∥W1,r(Ω).

Now, real interpolation delivers the desired inequality.

In the following proposition we elaborate the conditions on p, q, and θ that ensure
that F maps Eper

A into FA.

Proposition 2.15. Let 1 ≤ p < ∞, n < q < ∞ satisfy 1/p+ n/(2q) ≤ 3/4 and θ ∈ (0, 1/2)

there exists a constant C > 0 such that

∥F1(u1, u2)∥FA ≤ C
(
∥u1∥2Eper

A1

+ ∥u1∥3Eper
A1

+ ∥u1∥Eper
A1

∥u2∥Eper
A2

)
for all u1 ∈ Eper

A1
and u2 ∈ Eper

A2
.

Proof. We start with the first component of F1. By (2.2.8) we have DA(θ, p) = B2θ
q,p(Ω)

and Lemma 2.14 implies

∥u1u2∥pLp(0,T ;DA(θ,p)) ≤ C∥u1u2∥pLp(0,T ;B2θ
q,p(Ω))

≤ C

ˆ T

0
∥u1∥pW1,∞(Ω)

∥u2∥pB2θ
q,p(Ω)

dt,
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by choosing r = q, s = ∞ in Lemma 2.14. Using that W1,p(0, T ; B2θ
q,p(Ω)) ⊂ L∞(0, T ; B2θ

q,p(Ω))

delivers

∥u1u2∥pLp(0,T ;DA(θ,p)) ≤ C∥u2∥pW1,p(0,T ;B2θ
q,p(Ω))

∥u1∥pLp(0,T ;W1,∞(Ω))
.

Finally, note that D(A1) ⊂ W2,q(Ω) ⊂ W1,∞(Ω) if n < q. Next, by the continuous
embedding W1,q(Ω) ⊂ B2θ

q,p(Ω), Hölder’s inequality and the mixed derivative theorem,
we obtain for α ∈ {2, 3}

∥uα1 ∥Lp(0,T ;DA(θ,p)) ≤ C∥u1∥αLαp(0,T ;W1,αq(Ω)) ≤ C∥u1∥αWσ,p(0,T ;W2(1−σ),q(Ω))
.

provided σ ∈ [0, 1] satisfies

σ − 1/p ≥ −1/(αp), and 2(1− σ)− n/q ≥ 1− n/(αq).

The condition 1/p + n/(2q) ≤ 3/4 guarantees the existence of σ for α ∈ {2, 3}. The
second component of F1 was already estimated above.

Finally, by definition of F1 it is clear that F1(0, 0) = 0. Moreover, due to the poly-
nomial structure of F1 it is clear that F1 is Fréchet differentiable with DF1(0, 0) = 0.
Hence, we have the following proposition.

Proposition 2.16. With the definitions of this subsection the nonlinearities F1 and F2 satisfy
Assumption N.

2.6 Proofs of the Main Theorems

Before treating the models described in Section 2.3, we remark that the linear part of
the bidomain systems will be represented as an operator matrix and it will be eminent
that the negative of this operator matrix generates a bounded analytic semigroup. This
will be proven in the following lemma.

Lemma 2.17. Let −B be the generator of a bounded analytic semigroup on a Banach space X1

with 0 ∈ ρ(B), 1 ≤ p < ∞, and θ ∈ (0, 1). Let X2 = DB(θ, p) and define for d > 0 and
b, c ≥ 0 the operator A : X := X1 ×X2 → X with domain D(A) := D(B)×X2 by

A :=

(
B b

−c d

)
.

Then −A generates a bounded analytic semigroup on X with 0 ∈ ρ(A).

Proof. Let Σω, ω ∈ (π/2, π], be a sector that satisfies ρ(−B) ⊂ Σω with

∥λ(λ+B)−1∥L(X1) ≤ C (λ ∈ Σω).

First note that 0 ∈ ρ(A); its inverse being

A−1 =

(
d −b
c B

)
(bc+ dB)−1.
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Note that the choiceX2 = DB(θ, p) is used here as A−1 is only an operator fromX1×X2

onto D(B) × X2 if D(B) ⊂ X2 ⊂ X1 and if B(bc + dB)−1 maps X2 into X2. By the
definition of DB(θ, p) in (2.2.7) this latter is satisfied.

For the resolvent problem let λ ∈ Σβ , β ∈ (π/2, ω) to be chosen. Then,

(λ+A)−1 = (λ+ d)−1

(
λ+ d −b
c λ+B

)(
λ+

bc

λ+ d
+B

)−1

whenever λ + bc
λ+d ∈ ρ(−B). To determine the angle β for which λ + bc

λ+d ∈ ρ(−B)

distinguish between the cases |λ| < M and |λ| ≥ M for some suitable constant M > 0.
Notice that only the case b, c > 0 is of interest. Let Cω > 0 be a constant depending
solely on ω such that |λ+ d| ≥ Cω(|λ|+ d). Choose M such that |λ| ≥M if and only if

Cω sin(ω − β)[|λ|2 + d|λ|] ≥ 2bc.(2.6.1)

This implies ∣∣∣ bc

λ+ d

∣∣∣ ≤ bc

Cω(|λ|+ d)
≤ |λ| sin(ω − β)

2

and thus that λ+ bc
λ+d ∈ Σω. Moreover,

∣∣∣λ+
bc

d+ λ

∣∣∣ ≥ |λ|
(
1− sin(ω − β)

2

)
.(2.6.2)

Next, choose β that close to π/2 such that

M sin(β − π/2) ≤ bcd

bc+ (d+M)2
.(2.6.3)

Notice that M itself depends on β, however, it depends only uniformly on its distance
to ω by (2.6.1). In the case |λ| < M the validity of (2.6.3) together with trigonometric
considerations implies that Re

(
λ + bc

d+λ

)
≥ 0 proving that under conditions (2.6.1)

and (2.6.3) we have λ + bc
d+λ ∈ Σω whenever λ ∈ Σβ . We conclude that λ ∈ ρ(−A). To

obtain the resolvent estimate, we calculate

∥λ(λ+A)−1∥L(X)

≤
∥∥∥λ(λ+

bc

λ+ d
+B

)−1∥∥∥
L(X1)

+
∣∣∣ λb

λ+ d

∣∣∣∥∥∥(λ+
bc

λ+ d
+B

)−1∥∥∥
L(X2,X1)

+
∣∣∣ λc

λ+ d

∣∣∣∥∥∥(λ+
bc

λ+ d
+B

)−1∥∥∥
L(X1,X2)

+
∣∣∣ λ

λ+ d

∣∣∣∥∥∥(λ+B)
(
λ+

bc

λ+ d
+B

)−1∥∥∥
L(X2)

.

The first term on the right-hand side is directly handled by the resolvent estimate of B.
The second is treated by this resolvent estimate as well and by noting thatX2 ⊂ X1. The
fourth term is estimated by using that the definition of X2 in (2.2.7) implies resolvent
estimates in X2 (the resolvent commutes with the semigroup appearing in (2.2.7)). For
the third term, the estimate follows from the invertibility of B and the interpolation
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inequality ∥x∥X2 ≤ C∥x∥1−θX1
∥Bx∥θX1

. Altogether, this yields

∥λ(λ+A)−1∥L(X)

≤C
(
|λ|+

∣∣∣ λb

λ+ d

∣∣∣+ ∣∣∣ λc

λ+ d

∣∣∣∣∣∣λ+
bc

λ+ d

∣∣∣θ + ∣∣∣ λ2

λ+ d

∣∣∣)∣∣∣λ+
bc

λ+ d

∣∣∣−1
+ C

∣∣∣ λ

λ+ d

∣∣∣.
The resolvent estimate for |λ| ≥ M follows by means of the uniform boundedness of
the term |λ/(λ+ d)| and by (2.6.2).

For |λ| < M the function λ 7→ λ(λ + A)−1 is continuous on Σβ ∩ B(0,M) since
0 ∈ ρ(A). This implies the resolvent estimate also for small λ.

Now, we are ready to prove the main results presented in Section 2.3. To do so, the
equilibrium points of the nonlinearities are calculated for the respective models. After-
wards, the solutions to the bidomain models are written as the sum of the equilibrium
solution and a perturbation. This results in an equation for the perturbation which
is shown via Theorem 2.12 to have strong periodic solutions for suitable equilibrium
points.

2.6.1 The periodic bidomain FitzHugh–Nagumo equation

Recall the periodic bidomain FitzHugh–Nagumo equation
∂tu+ εAu = I − 1

ε
[u3 − (a+ 1)u2 + au+ w] in R× Ω,

∂tw = cu− bw in R× Ω,

u(t) = u(t+ T ) in R× Ω,

w(t) = w(t+ T ) in R× Ω.

(2.6.4)

In order to calculate the equilibrium points, we consider

u3 − (a+ 1)u2 + au+ w = 0,(2.6.5)

cu− bw = 0.(2.6.6)

Then, the equilibrium points are (u1, w1) = (0, 0) and assuming c < b
( (a+1)2

4 − a
)
, we

obtain furthermore

(u2, w2) =

(
1

2
(a+ 1− d),

c

2b
(a+ 1− d)

)
,(2.6.7)

(u3, w3) =

(
1

2
(a+ 1 + d),

c

2b
(a+ 1 + d)

)
,(2.6.8)

with d =
√
(a+ 1)2 − 4(a+ c

b). In the following, we use the results from Sections 2.4
and 2.5 to obtain periodic solutions in a neighborhood of these equilibrium points.
For this purpose, we use Taylor expansion at the equilibrium points and perform the
following change of variables (

v

z

)
:=

(
u− ui
w − wi

)
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for i = 1, 2, 3. Then, functions F and G describing the ionic transport defined as in the
introduction read as follows

F (v, z) =
1

ε
[v3 + (3ui − a− 1)v2 + (3u2i − 2(a+ 1)ui + a)v + z],

G(v, z) = −cv + bz.

Plugging this into equation (2.6.4) and shifting the linear parts of F and G to the left-
hand side yields


∂t

(
v

z

)
+

(
εA+ 1

ε [3u
2
i − 2(a+ 1)ui + a] 1

ε

−c b

)(
v

z

)
=

(
I − 1

ε [v
3 + (3ui − a− 1)v2]

0

)
,

v(t) = v(t+ T ),

z(t) = z(t+ T ).

(2.6.9)

First of all, notice that Proposition 2.16 implies that the nonlinearity in (2.6.9) satis-
fies Assumption N. Next, regarding the system with respect to the equilibrium point
(0, 0), then −(εA+ a

ε ) generates a bounded analytic semigroup by Proposition 2.1 and
since 0 ∈ ρ(εA + a

ε ), we may apply Lemma 2.17 to conclude that the negative of the
operator matrix in (2.6.9) has zero in its resolvent set and generates a bounded analytic
semigroup. Consequently, Theorem 2.12 is applicable in the case of the equilibrium
point (0, 0) and delivers a unique strong periodic solution (v, z) to (2.6.9) in the desired
function space for small periodic forcings I .

For the second equilibrium point we have 3u22 − 2(a+ 1)u2 + a < 0. Since 0 ∈ σ(A)

the operator −(εA + 1
ε [3u

2
2 − 2(a + 1)u2 + a]) does not generate a bounded analytic

semigroup so that Lemma 2.17 is not applicable.
If

u3 >
a+ 1 +

√
(a+ 1)2 − 3a

3
,

we obtain 3u23 − 2(a+ 1)u3 + a > 0. Thus, −(εA+ 1
ε [3u

2
3 − 2(a+ 1)u3 + a]) generates a

bounded analytic semigroup by Proposition 2.1 and 0 ∈ ρ(εA+ 1
ε [3u

2
3−2(a+1)u3+a]).

Hence, we can apply Lemma 2.17 to conclude that the negative of the operator matrix
in (2.6.9) has zero in its resolvent set and generates a bounded analytic semigroup.
Consequently, Theorem 2.12 is applicable in this case of the equilibrium point (u3, w3)

and delivers a unique strong periodic solution (v, z) to (2.6.9) in the desired function
spaces for small periodic forcings I . This proves Theorem 2.3.
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2.6.2 The periodic bidomain Aliev–Panfilov equation

Recall the periodic bidomain Aliev–Panfilov equation
∂tu+ εAu = I − 1

ε
[ku3 − k(a+ 1)u2 + kau+ uw] in R× Ω,

∂tw = −(ku(u− 1− a) + dw) in R× Ω,

u(t) = u(t+ T ) in R× Ω,

w(t) = w(t+ T ) in R× Ω.

(2.6.10)

In order to calculate the equilibrium points, we consider

ku3 − k(a+ 1)u2 + kau+ uw = 0,(2.6.11)

ku(u− 1− a) + dw = 0.(2.6.12)

Then, the equilibrium points are (u1, w1) = (0, 0) and, if we assume (a+1)2

4 + da
1−d > 0,

furthermore

(u2, w2) =

(
a+ 1

2
− e,−ku22 + k(a+ 1)u2 − ka

)
,(2.6.13)

(u3, w3) =

(
a+ 1

2
+ e,−ku23 + k(a+ 1)u3 − ka

)
.(2.6.14)

with e =
√

(a+1)2

4 + da
1−d . In the following, we want to use the results from Sections 2.4

and 2.5 to obtain periodic solutions in a neighborhood of these equilibrium points.
For this purpose, we use Taylor expansion at the equilibrium points and perform the
following change of variables (

v

z

)
:=

(
u− ui
w − wi

)

for i = 1, 2, 3. Then, functions F and G describing the ionic transport defined as in the
introduction read as follows

F (v, z) =
1

ε
[kv3 + (3kui − k(a+ 1))v2 + (3ku2i − 2k(a+ 1)ui + ka+ wi)v + uiz + vz],

G(v, z) = (2kui − k(a+ 1))v + dz + kv2.

Plugging this into equation (2.6.10) and shifting the linear parts of F and G to the
left-hand side yields

∂t

(
v

z

)
+

(
εA+ 1

ε [3ku
2
i − 2k(a+ 1)ui + ka+ wi]

ui
ε

2kui − k(a+ 1) d

)(
v

z

)

=

(
I − 1

ε [kv
3 + (3kui − k(a+ 1))v2 + vz]

−kv2

)
,

v(t) = v(t+ T ),

z(t) = z(t+ T ).

(2.6.15)
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According to Proposition 2.16, the nonlinearity in (2.6.15) satisfies Assumption N.
Moreover, considering the system for the equilibrium point (0, 0), then −(εA+ ka

ε ) gen-
erates a bounded analytic semigroup by Proposition 2.1 and since 0 ∈ ρ(εA + ka

ε ), we
can apply Lemma 2.17 to conclude that the negative of the operator matrix in (2.6.15)
has zero in its resolvent set and generates a bounded analytic semigroup. Conse-
quently, Theorem 2.12 is applicable in the case of the equilibrium point (0, 0) and deliv-
ers a unique strong periodic solution (v, z) to (2.6.15) in the desired function space for
small periodic forcings I .

For the second equilibrium point we see that u2 < 0, so that the component in the
upper right component of the operator matrix is negative. Therefore, we cannot apply
Lemma 2.17 for (u2, w2).

Similarly, for (u3, w3) it is

2ku3 − k(a+ 1) = 2ke > 0.

Hence, Lemma 2.17 is not applicable in this case. Altogether, Theorem 2.4 follows.

2.6.3 The periodic bidomain Rogers–McCulloch equation

Recall the periodic bidomain Rogers–McCulloch equation
∂tu+ εAu = I − 1

ε
[bu3 − b(a+ 1)u2 + bau+ uw] in R× Ω,

∂tw = cu− dw in R× Ω,

u(t) = u(t+ T ) in R× Ω,

w(t) = w(t+ T ) in R× Ω.

(2.6.16)

In order to calculate the equilibrium points, we consider

bu3 − b(a+ 1)u2 + bau+ uw = 0,(2.6.17)

cu− dw = 0.(2.6.18)

Then, the equilibrium points are (u1, w1) = (0, 0) and, if we assume
(
a+ 1− c

bd

)2−4a >

0, furthermore

(u2, w2) =

(
1

2

(
a+ 1− c

bd
− e
)
,
c

2d
·
(
a+ 1− c

bd
− e
))

,(2.6.19)

(u3, w3) =

(
1

2

(
a+ 1− c

bd
+ e
)
,
c

2d
·
(
a+ 1− c

bd
+ e
))

.(2.6.20)

with e =
√(

a+ 1− c
bd

)2 − 4a. In the following, we want to use the results from Sec-
tions 2.4 and 2.5 to obtain periodic solutions in a neighborhood of these equilibrium
points. For this purpose, we use Taylor expansion at the equilibrium points and per-
form the following change of variables(

v

z

)
:=

(
u− ui
w − wi

)
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for i = 1, 2, 3. Then, functions F and G describing the ionic transport defined as in
Section 3.1 read as follows

F (v, z) =
1

ε
[bv3 + (3bui − b(a+ 1))v2 + (3bu2i − 2b(a+ 1)ui + ba+ wi)v + uiz + vz],

G(v, y) = −cv + dz.

Plugging this into equation (2.6.16) and shifting the linear parts of F and G to the left-
hand side yields

∂t

(
v

z

)
+

(
εA+ 1

ε [3bu
2
i − 2b(a+ 1)ui + ba+ wi]

ui
ε

−c d

)(
v

z

)

=

(
I − 1

ε [bv
3 + (3bui − b(a+ 1))v2 + vz]

0

)
,

v(t) = v(t+ T ),

z(t) = z(t+ T ).

(2.6.21)

According to Proposition 2.16, the nonlinearity in (2.6.21) satisfies Assumption N.
Next, considering the equilibrium point (0, 0), the operator −(εA + ba

ε ) generates a
bounded analytic semigroup by Proposition 2.1 and since 0 ∈ ρ(εA+ ba

ε ), we can apply
Lemma 2.17 to conclude that the negative of the operator matrix in (2.6.21) has zero
in its resolvent set and generates a bounded analytic semigroup. Consequently, Theo-
rem 2.12 is applicable in the case of the equilibrium point (0, 0) and delivers a unique
strong periodic solution (v, z) to (2.6.21) in the desired function space for small forcings
I .

Next, equation (2.6.17) implies wi = −bu2i + b(a+ 1)ui − ba for i = 2, 3. Then

3bu2i − 2b(a+ 1)ui + ba+ wi = ui(2bui − b(a+ 1)).

Hence, for the second equilibrium point we either have 3bu22−2b(a+1)u2+ba+w2 < 0,
then −(εA + 1

ε [3bu
2
2 − 2b(a + 1)u2 + ba + w2]) does not generate a bounded analytic

semigroup, or u2 < 0. Therefore, we cannot apply Lemma 2.17 for (u2, w2).
If we assume √(

a+ 1− c

bd

)2 − 4a− c

bd
> 0,

we obtain 3bu23 − 2b(a + 1)u3 + ba + w3 > 0 and u3 > 0. Thus, −(εA + 1
ε [3bu

2
3 −

2b(a + 1)u3 + ba + w3]) generates a bounded analytic semigroup by Proposition 2.1
and 0 ∈ ρ(εA + 1

ε [3bu
2
3 − 2b(a + 1)u3 + ba + w3]). Hence, we can apply Lemma 2.17 to

conclude that the negative of the operator matrix in (2.6.21) has zero in its resolvent and
generates a bounded analytic semigroup. Thus, Theorem 2.12 is applicable in this case
for (u3, w3) and delivers a unique strong periodic solution (v, z) in the desired function
space for small forcings I . This delivers Theorem 2.5.



Strong Time Periodic Solutions to the Bidomain Equations with FitzHugh–Nagumo Type
Nonlinearities 56

2.6.4 The periodic bidomain Allen–Cahn equation

Recall the periodic bidomain Allen–Cahn equation{
∂tu+Au = I + u− u3 in R× Ω,

u(t) = u(t+ T ) in R× Ω.
(2.6.22)

The equilibrium points of this system are u1 = −1, u2 = 0, and u3 = 1. In the following,
we want to use the results from Sections 2.4 and 2.5 to obtain periodic solutions in a
neighborhood of these equilibrium points. For this purpose, we use Taylor expansion
at the equilibrium points and perform the change of variables v = u− ui for i = 1, 2, 3.
Then, the function F (u) = u3 − u reads as follows

F (v) = v3 + 3uiv
2 − (1− 3u2i )v, i = 1, 2, 3.

Plugging this into equation (2.6.22) and shifting the linear parts of F to the left-hand
side yields {

∂tv + (A− 1 + 3u2i )v = I − v3 − 3uiv
2 in R× Ω,

u(t) = u(t+ T ) in R× Ω
(2.6.23)

for i = 1, 2, 3. According to Proposition 2.16, the nonlinearity in (2.6.23) satisfies As-
sumption N. Since −(A+2) generates a bounded analytic semigroup by Proposition 2.1
and since 0 ∈ ρ(A+ 2), Theorem 2.12 is applicable in the case of the equilibrium points
u1 and u3 and delivers a unique strong periodic solution v to (2.6.23) in the desired
function space for small forcings I . Thus, we obtain Theorem 2.6.

2.7 Discussion: biological significance of our mathematical re-
sults

Anatomically, the human heart consists of four chambers. The two lower ones are
called ventricles, the two upper ones are the atria. The ventricles possess thick walls
and their contraction pushes blood through the human body. The atria, having thin
walls, collect the blood and their contraction delivers it back to the ventricles. Exci-
tation of the heart starts at the sinoatrial node located in the atrium. The cells in this
node periodically initiate excitation waves. The wave then propagates through the atria
causing atrial contraction. The excitation enters, after a certain delay, the ventricles and
causes the contraction of the ventricles.

Cardiac arrhytmias is the result of abnormal excitation of the heart. Its mechanisms
are strongly related to wave propagation phenomena. The waves in question possess
the property of refractoriness, meaning that after excitation, the cardiac cell requires
some time to recover its original properties. This time is called the refractory period. If
the travel time of a wave propagating around an obstacle is longer than the refractory
period a rotation will take place yielding in the production of vortices. Such a rotation
implies periodic excitation of the heart with a frequency much faster than the one by
the sinus mode and so-called tachycardia may occur. The above vortices are called
spiral waves.
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The cardiac modeling involves, of course, not only the understanding of a single
cardiac cell but also the knowledge of how the changes in a single cardiac cell will
manifest in the whole organ.

Modeling single cardiac cells has a long tradition in mathematical biology. Almost
all cardiac cell models are based on the model of Hodgkin and Huxley in 1952. Their
general aim was to understand the mechanism which governs movements of ions
through the cell membrane during electrical activity. Like all biological cells, cardiac
cells are surrounded by a membrane. This membrane acts as an interface separating
intracellular and extracellular media and prevents free passage of the ion from the one
side to the other one. Ion channels allow particular species to cross this membrane.
This gating process is regulated by the electrical potential difference across the mem-
brane. Biological cells maintain stable equilibria membrane potentials. If a current is
applied, the media may then be excitable or not. The Hodgkin–Huxley model describes
the electrical activities of the cell by a system of ordinary differential equation for four
state variables, the membrane potential V and the three gating variables m,n, h con-
trolling the permeability of the membrane for behavior for certain classes of ions. This
system was investigated numerically by Hodgkin and Huxley. The results of an in-
vestigation of this ODE-system by means of methods from dynamical systems may be
interpreted from a biological point of view as follows: If the change of the membrane
potential is sufficiently small, the cell does not react at all. However, if the excitation is
above a certain threshold value, the cell fires a so-called spike. Moreover, if the excita-
tion values lie in a certain, well-defined interval, the system allows for periodic solutions
meaning that the cell is periodically firing spikes.

Aiming for a complete picture of the dynamical behavior of the Hodgkin–Huxley
system, it is desirable to have a system at hand, which is on the one hand easier to han-
dle from a mathematical perspective but shows nevertheless all the dynamical features
of the Hodgkin–Huxley system. The FitzHugh–Nagumo model, a simplification of the
Hodgkin–Huxley model, shows the same dynamical behavior as the Hodgkin–Huxley
model, however, it consists only of two state variables. This has the advantage that
its dynamical behavior can be investigated in a phase plane and in particular, aiming
for an explanation for the existence of periodic solutions, the Poincaré–Bendixson the-
orem is available in this two-dimensional setting. Note that the latter does not hold
in a higher dimensional setting. The FitzHugh–Nagumo model takes into account the
different time scaling of the variablesm, n, and h, distinguishes between slow reactions
for m and h and fast reactions for n and setting m and h to be constant within the fast
scale, one arrives at the system described in the introduction.

The Rogers–McCulloch model, also discussed in the introduction, is a modification
of the FitzHugh–Nagumo model taking into account the hyperpolarization of the re-
fractory part of the action potential. The Aliev–Panfilov models another modification
accounting for the restitution property. For a comprehensive list of various single cell
models, see, e.g., [31].

The phase plane analysis of the FitzHugh–Nagumo model is well understood: ev-
ery stationary point is asymptotically stable. The existence of periodic solutions to
this system is shown by means of the Poincaré–Bendixson theorem. Indeed, one can
show that the FitzHugh–Nagumo model possesses a periodic solution if and only if
the values of the current I applied are located in a certain interval and the coefficients
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involved satisfy certain inequalities. It is interesting to note that periodic solutions to
the Hodgkin–Huxley model were indeed measured experimentally by Hodgkin and
Huxley.

Starting from this understanding of a single cardiac cell, it is now a major task to
build a macroscopic model describing the propagation of a wave through cardiac tissues.
In cardiac tissues, the excitable cells are related to each other via so-called gap junctions.
A first model representing the tissue as a resistive network yielded in the monodomain
equations, in which the diffusive current is modeled by the term div(D∇) for a constant
diffusion tensorD based on the assumptions of equal anisotropy ratios σe = ασi, where
σi and σe denote the conductivity parameters of the intra- and extracellular domains.
The latter is, however, an unrealistic assumption and was introduced only for reasons
of mathematical simplicity.

The so-called bidomain model, the main object of our analysis, was introduced for the
first time by L. Tung in his PhD thesis [36]. Its aim is to describe the spatial distribution
of macroscopic potentials as they are measured on the surface of the heart. Intra- and
extracellular quantities are considered in the bidomain model via an elaborate homog-
enization procedure in an averaged sense. For details see, e.g., [32]. As a result, the
bidomain system considers the cardiac tissue as a two-phase medium, where the intra-
and extracellular domains occupy the same macroscopic space and overlap at every
point. Each domain is considered as a homogeneous structure. The coupling between
the two domains is provided by the transmembrane current.

It is now a very interesting question to ask in mathematical biology, whether the
dynamical behavior of the macroscopic bidomain model qualitatively is in accordance
with the measurements and whether one is able to describe, understand, and predict
the dynamical behavior of this system by mathematical methods including periodic
solutions. Secondly, it would be very interesting to determine in which way the macro-
scopic bidomain model resembles the dynamical behavior of a single cell model. Re-
sults on the dynamics of the bidomain system are extremely rare.

A first step in this direction was done recently by Mori and Matano [28], who stud-
ied for the first time the stability of front solutions of the bidomain equations, however,
under restrictive assumptions on the conductivity parameters of the intra- and extracel-
lular domains. The main difficulty is that the bidomain equation is given by a coupled
system of partial differential equations for the intra- and extracellular currents, ui and
ue, and which is in addition coupled to an ordinary differential equation. Writing this
system as an evolution equation for u = ui − ue, its dynamical behavior is determined
by spectral properties of an operator matrix involving the bidomain operator. The latter
is a very nonlocal operator.

From a biological perspective, it would be very interesting to know whether the
bidomain model subject to various models of ionic transport allow - as in the situa-
tion of the Hodgkin–Huxley or FitzHugh–Nagumo model, respectively, for single cells
- again for periodic solutions. Another interesting direction is the investigation of dy-
namical instabilities resulting in the generation of spiral waves, as discussed above. A
very interesting result concerns an instability that occurs as a result of period-doubling
bifurcation for a map describing the periodically forced cardiac cell, see [7]. There
necessary conditions for onset of instability leading to spiral waves have been investi-
gated. These conditions are related to measurable characteristics of cardiac tissue and
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to the period of the stimulation of cardiac cells. These conditions were also tested in
experimental research, see [19].

Our investigations show that, similarly to the case of the FitzHugh–Nagumo model
for a single cell, the macroscopic bidomain model allows - in accordance with mea-
surements for cardiac tissue - also for periodic solutions, in our case, however, in a
neighborhood of a stable equilibrium point. They are characterized by the values of
the coefficients of the underlying models of ionic transport, see Section 2.3 for a pre-
cise formulation. The existence of periodic solutions to the bidomain equations in a
neighborhood of an instable equilibrium point remains a very interesting topic of our
further investigations, mathematically and in particular from a biological perspective,
since spiral waves are intimately connected to arrhythmias.
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Chapter 3

Strong time-periodic solutions to the bidomain
equations with arbitrary large forces

We prove the existence of strong time-periodic solutions to the bidomain equations
with arbitrary large forces. We construct weak time-periodic solutions by a Galerkin
method combined with Brouwer’s fixed point theorem and a priori estimate indepen-
dent of approximation. We then show their regularity so that our solution is a strong
time-periodic solution in L2 spaces. Our strategy is based on the weak-strong unique-
ness method.

Keywords: bidomain model; periodic solutions; weak-strong uniqueness, large data

3.1 Introduction

In this chapter, we consider the bidomain system which is a well-established system
describing the electrical wave propagation in the heart. The system is given by

∂tu− div(σi∇ui) + f(u,w) = si in (0,∞)× Ω,

∂tu+ div(σe∇ue) + f(u,w) = −se in (0,∞)× Ω,

∂tw + g(u,w) = 0 in (0,∞)× Ω,

u = ui − ue in (0,∞)× Ω,

σi∇ui · ν = 0, σe∇ue · ν = 0 on (0,∞)× ∂Ω,

u(0) = u0, w(0) = w0 in Ω.

(BDE)

Here Ω ⊂ Rd denotes a domain describing the myocardium and the outward unit nor-
mal vector to ∂Ω is denoted by ν. The unknown functions ui and ue model the intra-
and extracellular electric potentials, and u denotes the transmembrane potential. The
variable w, the so-called gating variable, corresponds to the ionic transport through the
cell membrane. The anisotropic properties of the intra- and extracellular tissue parts
are described by the conductivity matrices σi(x) and σe(x), whereas si(t, x) and se(t, x)
denote the intra- and extracellular stimulation current, respectively. The ionic trans-
port is described by the nonlinearities f and g. In this article, we will consider a large
class of ionic models including those by FitzHugh–Nagumo, Rogers–McCulloch, and
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Aliev–Panfilov. Note, that we will look at the Aliev–Panfilov model in a slightly modi-
fied form as considered, e.g., in [13]. The FitzHugh–Nagumo model reads as

f(u,w) = u(u− a)(u− 1) + w = u3 − (a+ 1)u2 + au+ w,

g(u,w) = −ε(ku− w),

with 0 < a < 1 and k, ε > 0.
In the Rogers–McCulloch model the functions f and g are given by

f(u,w) = bu(u− a)(u− 1) + uw = bu3 − b(a+ 1)u2 + bau+ uw,

g(u,w) = −ε(ku− w),

with 0 < a < 1 and b, k, ε > 0.
For the modified Aliev–Panfilov model we have

f(u,w) = bu(u− a)(u− 1) + uw = bu3 − b(a+ 1)u2 + bau+ uw,

g(u,w) = ε(ku(u− 1− d) + w)

with 0 < a, d < 1 and b, k, ε > 0. To get weak time-periodic solutions for the Aliev–
Panfilov model we will need the further assumption b > k. For a detailed description
of the bidomain model we refer to the monographs by Keener and Sneyd [20] and Colli
Franzone, Pavarino, and Scacchi [9].

Since the bidomain model describes electrical activities in the heart, it is a natu-
ral question to ask whether it admits time-periodic solutions. Therefore, consider the
situation where the bidomain model is innervated by periodic intra- and extracellu-
lar stimulation currents si and se. Recently, Hieber, Kajiwara, Kress, and Tolksdorf [9]
proved the existence and uniqueness of a strong T -periodic solution to the innervated
model in real interpolation spaces provided the external forces si and se are both time-
periodic of period T > 0. In their approach, they furthermore assumed that the external
forces satisfy a suitable smallness condition.

It is the goal of this chapter to prove the existence of time-periodic solutions with-
out assuming any smallness condition on the external forces. We employ the method
given by Galdi, Hieber, and Kashiwabara [12] for the case of the primitive equations.
First, the existence of weak time-periodic solutions for the three nonlinear dynamic
models mentioned above is shown by using a Galerkin approximation combined with
Brouwer’s fixed point theorem. Then, we use the global well-posedness result by Colli
Franzone and Savaré [11] and consider the weak time-periodic solution as a weak solu-
tion to the initial value problem. Finally, we apply a weak-strong uniqueness argument
to get a strong-time periodic solution without assuming any smallness condition for the
external applied currents in case of the FitzHugh–Nagumo model.

The bidomain model was first introduced by Tung [36] in 1978. Despite its central
importance in cardiac electrophysiology, the rigorous mathematical analysis started not
until the work of Colli Franzone and Savaré [11] in 2002. They introduced a variational
formulation of the bidomain problem and proved the existence and uniqueness of weak
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and strong solutions to the bidomain equations with FitzHugh–Nagumo type nonlin-
earities. A slightly more detailed review of their results is given in Section 3.4. Ven-
eroni [37] extended their results to more general ionic models including the Luo and
Rudy I model. In 2009, Bourgault, Cordière, and Pierre [5] presented a new approach
to the bidomain system. They introduced the so-called bidomain operator within the
L2-setting and showed that it is a non-negative and self-adjoint operator. By using the
bidomain operator, they transformed the bidomain system into an abstract evolution
equation and showed the existence and uniqueness of a local strong solution and the
existence of a global weak solution for a large class of ionic models including the three
models introduced above. Later, Kunisch and Wagner [23] showed uniqueness and
further regularity for these weak solutions. Giga and Kajiwara [16] investigated the
bidomain system within the Lp-setting and showed that the bidomain operator is the
generator of an analytic semigroup on Lp(Ω) for p ∈ (1,∞]. Recently, Hieber and Prüss
proved the maximal Lp-Lq regularity for the bidomain operator in [15] and proved the
global well-posedness in [5]. They considered the case si,e = 0 with FitzHugh-Nagumo
type non-linearities. More recently, the bidomain equations were treated as a kind of
gradient system in [2]. They proved the global well-posedness results in L2 spaces and
energy spaces. Their paper also treated the case si,e = 0.

For results concerning the dynamics of the solution, we refer to the work of Mori
and Matano [28]. They studied the stability of front solutions of the bidomain equa-
tions.

On a microscopic level, the cardiac cellular structure is described by two disjoint
domains Ωi and Ωe, which denote the intra- and extracellular space, respectively, and
which are separated by the the active membrane Γ = ∂Ωi ∩ ∂Ωe. The intra- and extra-
cellular quantities are defined on the corresponding domains and the transmembrane
potential u is a function on Γ. After a homogenization procedure, see, e.g., [10, 11], the
macroscopic model of the bidomain equations is obtained. Here all membrane, intra-,
and extracellular quantities are defined everywhere on Ω.

This chapter is organized as follows: We start in Section 3.2 with collecting known
facts concerning the bidomain operator. In Section 3.3, we construct a weak time-
periodic solution to the bidomain equations. When we construct the weak time-periodic
solutions, we need some growth conditions on the nonlinear terms f, g. Fortunately, all
three models mentioned above fulfill these conditions, which are confirmed in the ap-
pendix. A global well-posedness result is reviewed in Section 3.4 and invoked to obtain
a strong time-periodic solution for the FitzHugh–Nagumo model. We do not treat the
other two models introduced above since the global well-posedness for the initial value
problem is not proved in a suitable L2 setting.

3.2 Preliminaries

In this section, we fix some notation and formally introduce the bidomain operator in
a weak as well as in a strong setting. In the whole article, let Ω ⊂ Rd denote a bounded
domain whose boundary ∂Ω is of class C2. For convenience, we use the following
notation for the function spaces which we will use throughout this article

V = H1(Ω), H = L2(Ω), V ′ = (H1(Ω))′,
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where the spaces are endowed with their usual norms and they are Hilbert spaces.
Furthermore, we set Q = (0, T ) × Ω. The canonical pair of V ′ and V is denoted by

V ′⟨·, ·⟩V .
We assume that the conductivity matrices σi and σe satisfy the following assump-

tion.

Assumption C. The conductivity matrices σi, σe : Ω → Rd×d are symmetric matrices and
are functions of classC1(Ω). Ellipticity is imposed by means of the following condition:
there exist constants σ, σ with 0 < σ < σ such that

σ|ξ|2 ≤ tξσi(x)ξ ≤ σ|ξ|2 and σ|ξ|2 ≤ tξσe(x)ξ ≤ σ|ξ|2(3.2.1)

for all x ∈ Ω and all ξ ∈ Rd. Moreover, it is assumed that

σi∇ui · ν = 0 ⇔ ∇ui · ν = 0 on ∂Ω,

σe∇ue · ν = 0 ⇔ ∇ue · ν = 0 on ∂Ω.
(3.2.2)

It is known due to [8] that (3.2.2) is biological reasonable.
First, we want to introduce the bidomain operator in a weak setting as well as

the corresponding bidomain bilinear form. Therefore, we define Vav(Ω) := {u ∈ V :´
Ω u dx = 0}. Following [5], we define the bilinear forms

ai(u, v) :=

ˆ
Ω
σi∇u · ∇v dx, ae(u, v) :=

ˆ
Ω
σe∇u · ∇v dx

for all (u, v) ∈ Vav × Vav. Due to (3.2.1) these bilinear forms are symmetric, continuous
and uniformly elliptic on Vav×Vav. Then, we define the weak operatorsAi andAe from
Vav onto V ′

av by

⟨Aiu, v⟩ := ai(u, v), ⟨Aeu, v⟩ := ae(u, v)

for all (u, v) ∈ Vav × Vav. Let Pav be the orthogonal projection from V to Vav(Ω), i.e.,
Pavu := u− 1

|Ω|
´
Ω u dx and denote its transpose by P Tav : V ′

av → V ′. Now we are able to
define the weak bidomain operator and the corresponding bidomain bilinear form as

A = P TavAi(Ai +Ae)
−1AePav,

a(u, v) = ⟨Au, v⟩

for all (u, v) ∈ V × V . We have the following lemma.

Lemma 3.1 ([5, Theorem 6]). The bidomain bilinear form a(·, ·) is symmetric, continuous and
coercive on V ,

α∥u∥2V ≤ a(u, u) + α∥u∥2H , for all u ∈ V,

|a(u, v)| ≤M∥u∥V ∥v∥V , for all u, v ∈ V,

for some constants α, M > 0. Furthermore, there exists an increasing sequence 0 = λ0 <

· · · ≤ λi ≤ · · · in R and an orthonormal Hilbert basis of H of eigenvectors (ψi)i∈N such that
for all i ∈ N, ψi ∈ V and v ∈ V it is a(ψi, v) = λi(ψi, v).
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We next define the strong bidomain operator in the Lq-setting for 1 < q < ∞. We
will use the same notation as for the weak setting since it will be clear from the context
whether we consider the weak or strong formulation. To this end, let Lqav(Ω) := {u ∈
Lq(Ω) :

´
Ω u dx = 0} and let Pav be the orthogonal projection from Lq(Ω) to Lqav(Ω), i.e.,

Pavu := u− 1
|Ω|
´
Ω u dx. Then, we define the elliptic operators Ai and Ae by

Ai,eu := −div(σi,e∇u),
D(Ai,e) :=

{
u ∈W 2,q(Ω) ∩ Lqav(Ω) : σi,e∇u · ν = 0 a.e. on ∂Ω

}
⊂ Lqav(Ω).

Here Ai,e and σi,e mean that either Ai and σi or Ae and σe are considered. Condi-
tion (3.2.2) implies that D(Ai) = D(Ae). Hence, it is possible to define the sum Ai +Ae
with the domain D(Ai) = D(Ae). Note that the inverse operator (Ai+Ae)−1 on Lqav(Ω)
is a bounded linear operator.

Following [16] we define the bidomain operator as follows. Let σi and σe satisfy
Assumption C. Then the bidomain operator A is defined as

A = Ai(Ai +Ae)
−1AePav(3.2.3)

with domain

D(A) := {u ∈W 2,q(Ω) : ∇u · ν = 0 a.e. on ∂Ω}.

If we assume conservation of currents, i.e.,
ˆ
Ω
(si(t) + se(t)) dx = 0, t ≥ 0(3.2.4)

and moreover
´
Ω ue dx = 0, the bidomain equations (BDE) may be equivalently rewrit-

ten as an evolution equation [5, 16] of the form
∂tu+Au+ f(u,w) = s, in (0,∞),

∂tw + g(u,w) = 0, in (0,∞),

u(0) = u0, w(0) = w0,

(ABDE)

where

s := si −Ai(Ai +Ae)
−1(si + se)(3.2.5)

is the modified source term. The functions ue and ui can be recovered from u by virtue
of the following relations

ue = (Ai +Ae)
−1{(si + se)−AiPavu},

ui = u+ ue.

3.3 Weak time-periodic solutions

In this section, we show the existence of weak time-periodic solutions by using a Galerkin
approximation. We consider the bidomain equations under some growth conditions on
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f and g which contain the nonlinearities introduced in Section 3.1.
We use the abstract form


u′ +Au+ f(u,w) = s, in T× Ω,

w′ + g(u,w) = 0, in T× Ω,

u(t+ T, x) = u(t, x), w(t+ T, x) = w(t, x),

(PABDE)

where s is a T -periodic function for some T > 0 and T := R/TZ denotes the time torus.
We assume that the nonlinear terms f and g satisfy the following conditions.

Assumption N. Let p > 1 be a number so that the Sobolev embedding V ⊂ Lp(Ω) holds.
In other words, 2 ≤ p if d = 2; or 2 ≤ p ≤ 6 if d = 3. The nonlinear terms f, g : R×R → R
are of the form

f(u,w) = f1(u) + f2(u)w,

g(u,w) = g1(u) + g2w,

where g2 ∈ R and f1, f2, g1 : R → R are continuous functions. The functions are
assumed to satisfy that there exist constants C0 ∈ R, Ci > 0 (i = 1, . . . , 5) and r > 0

such that

C0 + C1|u|p + C2|w|2 ≤ rf(u,w)u+ g(u,w)w(3.3.1)

|f1(u)| ≤ C3(1 + |u|p−1)(3.3.2)

|f2(u)| ≤ C4(1 + |u|p/2−1)(3.3.3)

|g1(u)| ≤ C5(1 + |u|p/2)(3.3.4)

for all u,w ∈ R.

This assumption is a modified version of the assumption used in [5]. Note that
Assumption N, with p = 4, holds in the three models introduced in Section 3.1. We
shall check it in the appendix. We see that the following inequality holds: for any
(u,w) ∈ Lp(Ω)×H , we have

∥f(u,w)∥p
′

p′ ≤ C6(1 + ∥u∥pp + ∥w∥2H)

∥g(u,w)∥2H ≤ C7(1 + ∥u∥pp + ∥w∥2H)

for some Ci > 0 (i = 6, 7) depending on p and C3, . . . , C5, where p′ is the Hölder
conjugate exponent, i.e., 1/p + 1/p′ = 1. In particular, f(u,w) ∈ Lp

′
(Q) and g(u,w) ∈

L2(Q) for all u ∈ Lp(Q), w ∈ L2(Q). See in [5, Lemma 25].
Under this assumption, weak time-periodic solutions for (PABDE) are defined as

follows.

Definition 3.2. Let T > 0, s ∈ L2(T;V ′). Suppose that the Assumption N holds. Then
a pair of (u,w) of u : T × Ω → R, w : T × Ω → R is called a weak T -periodic solution
to (PABDE) if

(i) u ∈ Cw(T;H) ∩ L2(T;V ) ∩ Lp(Q), w ∈ Cw(T;H),
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(ii) For all φ1 ∈W 1,2(0, T ;H) ∩ L2(0, T ;V ) ∩ Lp(Q) and all φ2 ∈W 1,2(0, T ;H),

ˆ t

0
{(u, ∂tφ1)− a(u, φ1)− p′⟨f(u,w), φ1⟩p} dτ = −

ˆ t

0
V ′⟨s, φ1⟩V dτ + (u(t), φ1(t))− (u(0), φ1(0)),

ˆ t

0
{(w, ∂tφ2)− (g(u,w), φ2)} dτ = (w(t), φ2(t))− (w(0), φ2(0)),

for all t ∈ (0, T ). Here (·, ·) denotes theL2-inner product andCw(T,H) denotes the
space of all weakly continuous functions u on T with values in H , i.e., u : T → H

such that (u(t), ψ) is continuous in t for all ψ ∈ H .

A weak T -periodic solution (u,w) is called strong if, in addition to above, it holds

u ∈W 1,2(T;H) ∩ L2(T;H2(Ω)), w ∈W 1,2(T;H).

The result on existence of weak time-periodic solutions reads as follows.

Theorem 3.3. Let T > 0. For every T -periodic function s ∈ L2(T;V ′) there exists at least one
weak T -periodic solution (u,w) to (PABDE).

Proof. Let {ψi}∞i=0 ⊂ V be the orthonormal basis of eigenvectors of the bidomain bi-
linear form a in H and let {λi}∞i=0 ⊂ R≥0 be the corresponding eigenvalues as in
Lemma 3.1. Let

uk(t, x) :=
k∑
i=0

αki(t)ψi(x),(3.3.5)

wk(t, x) :=

k∑
i=0

βki(t)ψi(x),(3.3.6)

with αk(t) = {αkj(t)}kj=0, βk(t) = {βkj(t)}kj=0, which are the solutions of the system of
the ordinary differential equations

d

dt
αkj = −αkjλj −

ˆ
Ω
f(uk, wk)ψj dx+ V ′⟨s(t), ψj⟩V ,

d

dt
βkj = −

ˆ
Ω
g(uk, wk)ψj dx,

αkj(0) = aj ,

βkj(0) = bj ,

(3.3.7)

for j = 0, 1, . . . , k. The initial data ak = {aj}kj=0 and bk = {bj}kj=0 are fixed later. By the
standard theory of ordinary differential equations, this system admits a unique solution
(αk, βk) ⊂ (W 1,2(0, Tk))

2(k+1) on some interval (0, Tk). It is either |αk(t)| + |βk(t)| →
∞ as t ↗ Tk or we can take any finite time Tk. In the following, it is shown that
|αk(t)|+ |βk(t)| → ∞ as t↗ Tk does not occur by using a priori estimates. To this end,
multiplying the first equation of (3.3.7) with r · αkj , where r is the constant defined in
Assumption N, the second equation with βkj , and summing over j yield

1

2

d

dt

(
r∥uk(t)∥2H + ∥wk(t)∥2H

)
+ ra(uk(t), uk(t)) +

ˆ
Ω
rf(uk(t), wk(t))uk(t) + g(uk(t), wk(t))wk(t) dx



Strong time-periodic solutions to the bidomain equations with arbitrary large forces 69

= rV ′⟨s(t), uk(t)⟩V .

We recall that the bidomain bilinear form a has the coercivity of the form

α∥U∥2V ≤ a(U,U) + α∥U∥2H

for all U ∈ V and for some constant α > 0, see [5]. By the coercivity of a, the Assump-
tion N, and Young’s inequality, it is

d

dt

(
r∥uk(t)∥2H + ∥wk(t)∥2H

)
+ C11∥uk(t)∥2V + C12∥uk(t)∥pp − C13∥uk(t)∥2H + C14∥wk(t)∥2H

≤C15∥s(t)∥2V ′ + C16,

for some constants C1i = C1i(r, α, Cj) > 0 (i = 1, . . . , 6, j = 0, . . . , 2); we emphasize
that all constants C1i are independent of k. We use the estimate

C17∥uk(t)∥pp − C18 ≤ C12∥uk(t)∥pp − C13∥uk(t)∥22

for some C17, C18 > 0 since 2 < p <∞. Therefore, we have the following estimate

d

dt

(
r∥uk(t)∥2H + ∥wk(t)∥2H

)
+ C21

(
r∥uk(t)∥2V + ∥uk(t)∥pp + ∥wk(t)∥2H

)
≤C22∥s(t)∥2V ′ + C23,(3.3.8)

for some constants C2i > 0 (i = 1, 2, 3).
Then, we apply Gronwall’s inequality for the inequality (3.3.8), then

r∥uk(t)∥2H + ∥wk(t)∥2H

≤e−C21t(r∥ak∥2H + ∥bk∥2H) +
ˆ t

0
e−C21(t−τ)(C22∥s(τ)∥2V ′ + C23) dτ.(3.3.9)

Since ∥uk(t)∥2H = |αk(t)|2 and ∥wk(t)∥2H = |βk(t)|2, this implies Tk does not blow up at
any finite time. We consider the Poincaré map

S : Rk+1 × Rk+1 → Rk+1 × Rk+1,

S(ak,bk) := (αk(T ), βk(T )).

We define

BR :=

(ak,bk) = ({aj}kj=0, {bj}kj=0) ∈ Rk+1 × Rk+1

∣∣∣∣∣∣∣r
 k∑
j=0

|aj |2
1/2

+

 k∑
j=0

|bj |2
1/2

≤ R


with

R2 =

´ T
0 e−C21(T−τ)(C22∥s(τ)∥2V ′ + C23) dτ

1− e−C21T
.(3.3.10)

Then, it follows that S maps BR into itself from (3.3.9). Since S is also continuous,
by Brouwer’s fixed point theorem we conclude that S admits a fixed point (āk, b̄k) =
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S(āk, b̄k) in BR for all k ∈ N.
In the following, we denote by uk and wk the functions defined in (3.3.5) and (3.3.6)

respectively, corresponding to the solutions αk, βk of (3.3.7) with initial values āk, b̄k.
Then, uk(0, x) = uk(T, x) and wk(0, x) = wk(T, x). Moreover, we see uk(t + T, x) =

uk(t, x) and wk(t + T, x) = wk(t, x) for all t ∈ R by periodically expansion. In the next
step, we would like to pass to the limit k → ∞ and show the existence of a weak solu-
tion to the original problem (ABDE). To do so, we consider the uniform boundedness.
For the inequality (3.3.9), we take the supremum from t = 0 to t = T , then by using
(3.3.10)

∥uk∥L∞(0,T ;H) + ∥wk∥L∞(0,T ;H) ≤ C31∥s∥L2(0,T ;V ′) + C32,

for some C3i > 0 (i = 1, 2). Moreover, for the inequality (3.3.8), integrate from t = 0 to
t = T to get

∥uk∥2L2(0,T ;V ) + ∥uk∥pLp(Q) + ∥wk∥2L2(0,T ;H) ≤ C41∥s∥2L2(0,T ;V ′) + C42.(3.3.11)

for some C4i > 0 (i = 1, 2). This implies that there are sub-sequences of {uk}∞k=1 and
{wk}∞k=1, for convenience still denoted by {uk}∞k=1 and {wk}∞k=1, that converges to u

weakly in L2(0, T ;V ) ∩ Lp(Q) and converges to w weakly in L2(0, T ;H).
By construction of the function uk and wk,

(∂tuk(t), ψℓ) + a(uk(t), ψℓ) + p′⟨f(uk, wk), ψℓ⟩p = V ′⟨s(t), ψℓ⟩V
(∂twk(t), ψℓ) + (g(uk, wk), ψℓ) = 0

for all ℓ = 0, . . . , k. Integrate from t0 to t1 (0 ≤ t0 ≤ t1 ≤ T ), then we get

|(uk(t1), ψℓ)− (uk(t0), ψℓ)|

=|
ˆ t1

t0

−a(uk, ψℓ)− p′⟨f(uk, wk), ψℓ⟩p + V ′⟨s, ψℓ⟩V dτ |

≤CM,ψℓ

(ˆ t1

t0

(∥uk∥V + ∥f(uk, wk)∥Lp′ (Ω)) dτ + ∥s∥L2(t0,t1;V ′)

)
≤CM,ψℓ

(
|t1 − t0|1/2 + |t1 − t0|1/p + ∥s∥L2(t0,t1;V ′)

)
,

|(wk(t1), ψℓ)− (wk(t0), ψℓ)|

=|
ˆ t1

t0

−(g(uk, wk), ψℓ) dτ |

≤∥ψℓ∥L2(Ω)

ˆ t1

t0

∥g(uk, wk)∥L2(Ω) dτ

≤Cψℓ
|t1 − t0|1/2

for some CM,ψℓ
independent of t0, t1 and k, where we use the embedding assumption

(ψℓ ∈)V ⊂ Lp(Ω), the Schwarz inequality and the inequality 3.3.11. Therefore, it follows
that for any ε > 0 there is a δ > 0 with

|(uk(t1), ψℓ)− (uk(t0), ψℓ)|+ |(wk(t1), ψℓ)− (wk(t0), ψℓ)| < ε if |t1 − t0| ≤ δ, k = 1, 2, . . . .
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This means the families {(uk(t), ψℓ)}∞k=1 and {(wk(t), ψℓ)}∞k=1 are equicontinuous. Since
{(uk, ψℓ)}∞k=1 and {(wk, ψℓ)}∞k=1 are uniform bounded in k, from Ascoli-Arzela’s the-
orem, it follows that the subsequences {(uk(t), ψℓ)}∞k=1 and {(wk(t), ψℓ)}∞k=1 converge
uniformly to continuous functions (u(t), ψℓ) and (w(t), ψℓ) for each fixed ℓ. By the Can-
tor diagonalization argument and a density argument, this convergence can be gen-
eralized that for each ψ ∈ H , {(uk(t), ψ)}∞k=1 and {(wk(t), ψ)}∞k=1 converge uniformly
to continuous functions (u(t), ψ) and (w(t), ψ). Therefore, we have u ∈ Cw(T;H) and
w ∈ Cw(T;H).

It remains to show the weak convergence of the nonlinear terms f(uk, wk), g(uk, wk).
We first prove uk → u in L2(Q). To do so, we use Friedrich’s inequality, which states
that for any ε > 0, there exists J ∈ N and ϕ1, ϕ2, . . . , ϕJ ∈ H such that for all U ∈ V , the
following inequality holds

∥U∥2H ≤
J∑
j=1

∣∣∣∣ˆ
Ω
Uϕj dx

∣∣∣∣2 + ε∥∇U∥2H .

For Friedrich’s inequality, see e.g. [10]. This inequality with U = uk − u, the uniform
boundedness of {uk}∞k=1 ⊂ L2(0, T ;V ), and uk → u in Cw(T;H) implies that uk → u

in L2(Q). Since we have uk → u a.e. in Q and f1, f2, g1 are continuous, f1(uk) →
f1(u), f2(uk) → f2(u), g1(uk) → g1(u) a.e. in Q are satisfied. We shall show uniform
boundedness in Lp

′
(Q) for f(uk, wk) and uniform boundedness in L2(Q) for g(uk, wk),

which implies f(uk, wk) → f(u,w) weakly in Lp
′
(Q) and g(uk, wk) → g(u,w) weakly in

L2(Q). Fortunately, under the Assumption N, it has already been proved in [5, p.477].
Since the functions uk, wk satisfy that for all φ1 ∈ H1(0, T ;H)∩L2(0, T ;V )∩Lp(Q) and
all φ2 ∈W 1,2(0, T ;H),

ˆ t

0
{(uk, ∂tφ1)− a(uk, φ1)− p′⟨f(uk, wk), φ1⟩p} dτ = −

ˆ t

0
V ′⟨s, φ1⟩V dτ + (uk(t), φ1(t))− (uk(0), φ1(0)),

ˆ t

0
{(wk, ∂tφ2)− (g(uk, wk), φ2)} dτ = (wk(t), φ2(t))− (wk(0), φ2(0)),

for all t ∈ (0, T ), combining above discussions about the weak convergence, we show
the existence of a weak T -periodic solution.

3.4 Regularity of weak periodic solution

In this section, we shall show that for the FitzHugh–Nagumo nonlinearities introduced
in Section 3.1 the weak time-periodic solution constructed in the previous section is
actually a strong solution. In order to do so, we first review the global strong well-
posedness result by Colli Franzone and Savaré [11]. After that, we use a weak-strong
uniqueness argument to show the existence of a strong time-periodic solution for (PABDE)
with FitzHugh–Nagumo nonlinearities. In [11], they considered the initial boundary
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value problem for the bidomain equations of the form

∂tu− div(σi∇ui) + F (u) + θw = si, in (0,∞)× Ω,

∂tu+ div(σe∇ue) + F (u) + θw = −se, in (0,∞)× Ω,

u = ui − ue, in (0,∞)× Ω,

∂tw + γw − ηu = 0, in (0,∞)× Ω,

σi∇ui · ν = gi, σe∇ue · ν = ge, in (0,∞)× ∂Ω,

u(0) = u0, w(0) = w0, in Ω,

(BDE II)

with θ, γ, η > 0.
Let T be a sufficiently large time such that T < T . They regarded the bidomain

equation as the degenerate variational formulation of the form{
(Bu)′ +Au+ Fu = L t ∈ (0, T )

(Bu)(0) = ℓ0,

and constructed the global weak formulation and their regularity.
Let Ω be a Lipschitz domain of Rd, Γ := ∂Ω, and the measurable function σi,e :

Ω → Rd×d satisfy the uniform ellipticity condition. Assume the nonlinear term F is a
continuous function with

F (0) = 0, ∃λF ≥ 0 :
F (x)− F (y)

x− y
≥ −λF , ∀x, y ∈ R, with x ̸= y.(3.4.1)

Their result is as follows.

Theorem 3.4 (Franzone-Savaré ’02 [11]). Assume si,e ∈ L2(0, T ;H), gi,e ∈W 1,1(0, T ;H−1/2(Γ))

satisfy si + se ∈W 1,1(0, T ;H) and the compatibility condition
ˆ
Ω
(si + se) dx+ H−1/2(Γ)⟨gi + ge, 1⟩H1/2(Γ) = 0.

Then for any initial data u0, w0 ∈ H , there uniquely exist a couple

ui,e ∈ L2(0, T ;V ),

ˆ
Ω
ue = 0 a.e t

and

u ∈ C([0, T ];H) ∩ L2(0, T ;V ), ∂tu ∈ L2
loc(0, T ;H),

F (u(t)) ∈ L1(Ω) ∩ V ′ a.e. t ∈ (0, T ),

w, ∂tw ∈ C([0, T ];H),

which solves the bidomain equation in the sense of
ˆ
Ω
(∂tuû+

θ

η
∂twŵ) dx+

ˆ
Ω
F (u)û dx+

∑
i,e

ˆ
Ω
σi,e∇ui,e · ∇ûi,e dx

+
θγ

η

ˆ
Ω
wŵ dx+ θ

ˆ
Ω
(wû− uŵ) dx
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=
∑
i,e

ˆ
Ω
si,eûi,e dx+

∑
i,e

H−1/2(Γ)⟨gi,e, ûi,e⟩H1/2(Γ),

ˆ
Ω
(u(0)û+

θ

η
w(0)ŵ) dx =

ˆ
Ω
(u0û+

θ

η
w0ŵ) dx,

for a.e. t ∈ (0, T ) and all ûi,e ∈ V × V with
´
Ω ûe dx = 0 and û = ûi − ûe and ŵ ∈ H .

Moreover if u0 ∈ V, u0F (u0) ∈ L1(Ω), then

ui,e ∈ C([0, T ];V ), ∂tu ∈ L2(0, T ;H), w ∈ C([0, T ];V ).

Furthermore they derived the regularity results.

Proposition 3.5. In addition to the assumption in the theorem, suppose that d = 3, and the
nonlinear term F has a cubic growth at infinity, i.e.,

0 < lim inf
|r|→∞

F (r)

r3
≤ lim sup

|r|→∞

F (r)

r3
< +∞.

Then the bidomain equation admits a unique strong solution ui,e, u, w. Moreover, it satisfies

−div(σi,e∇ui,e) ∈ L2(0, T ;H)

Remark 3.6. Let Ω be of class C1,1, σi,e be Lipschitz in Ω and gi,e ∈ L2(0, T ;H1/2(Γ)).
Then by the standard regularity theorem, we see

ui,e ∈ L2(0, T ;H2(Ω)).

Remark 3.7. If we look at the function f of the FitzHugh–Nagumo nonlinearity intro-
duced in Section 3.1 as f(u,w) = F (u) + w = u(u − a)(u − 1) + w, then the function
F (u) satisfies the assumptions for the nonlinearity in Proposition 3.5 as well as As-
sumption (3.4.1).

Now, we combine the results from the previous sections to obtain a strong time-
periodic solution for the bidomain equations with FitzHugh–Nagumo type nonlinear-
ities subject to arbitrary large forces. We would like to identify our weak time-periodic
solution (v, z) constructed in Section 3.3 with a strong solution (u,w) to the initial
value problem with initial data v(t0), z(t0) for some t0 > 0 satisfying v(t0) ∈ V and
f(v(t0))v(t0) ∈ L1(Ω). Since ∥f(v)v∥L1(Q) ≤ ∥f(v)∥Lp′ (Q)∥v∥Lp(Q) with p = 4, this guar-
antees the existence of a t0 > 0 such that f(v(t0))(v(t0)) ∈ L1(Ω). So we can use the
theorem by Colli-Franzone and Savaré for the global strong solution with the initial val-
ues v(t0), z(t0). Finally, we show that the weak solution (v, z) coincides with the strong
solution (u,w) and therefore obtain the existence of a strong time-periodic solution. We
follow the approach given in [12].

To be more precise, for given T -time-periodic functions si,e ∈ L2(0, T ;H) with si +
se ∈W 1,1(0, T ;H) and

´
Ω(si + se) dx = 0 for a.e. t, let (v, z) be a weak T -time-periodic

solution of (PABDE) for s = si −Ai(Ai +Ae)
−1(si + se) (∈ L2(T;H)) corresponding to

Theorem 3.3. We take t0 such that v(t0) ∈ V and v(t0)f(v(t0)) ∈ L1(Ω). Since (v, z) is a
weak T -time-periodic solution, it satisfies that for allφ1 ∈W 1,2(t0, T ;H)∩L2(t0, T ;V )∩
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L4(Q) and all φ2 ∈W 1,2(t0, T ;H),

ˆ t

t0

{(v, ∂tφ1)− a(v, φ1)− (f(v, z), φ1)} dτ(3.4.2)

= −
ˆ t

t0

(s(τ), φ1(τ)) dτ + (v(t), φ1(t))− (v(t0), φ1(t0)),

ˆ t

t0

{(z, ∂tφ2)− (g(v, z), φ2)} dτ(3.4.3)

= (z(t), φ2(t))− (z(t0), φ2(t0)),

for all t ∈ (t0, T ), and (v, z) satisfies the following strong energy inequality:

(
∥v(t)∥2H + ∥z(t)∥2H

)
+ 2

ˆ t

t0

a(v(τ), v(τ)) dτ(3.4.4)

+ 2

ˆ t

t0

ˆ
Ω
f(v(τ), z(τ))v(τ) + g(v(τ), z(τ))z(τ) dx dτ

≤∥v(t0)∥2H + ∥z(t0)∥2H + 2

ˆ t

t0

(s(τ), v(τ)) dτ,

for all t ∈ [t0, T ].
We next consider the unique global strong solution

(u,w) ∈
(
W 1,2(t0, T ;H) ∩ L2(t0, T ;H2(Ω))

)
× C1([t0, T ];H)

corresponding to the initial-boundary value problem for the bidomain equation with
initial value (v(t0), z(t0)) and T -periodic right-hand side si,e and gi,e = 0. In the follow-
ing, we show that the weak solution (v, z) agrees with the strong solution (u,w).

Since (u,w) is a strong solution, it satisfies that for all T > t0 and all ϕ1 ∈W 1,2(t0, T ;H)∩
L2(t0, T ;V ) ∩ L4(Q) and all ϕ2 ∈W 1,2(t0, T ;H)

ˆ t

t0

{(u, ∂tϕ1)− a(u, ϕ1)− (f(u,w), ϕ1)} dτ(3.4.5)

= −
ˆ t

t0

(s(τ), ϕ1(τ)) dτ + (u(t), ϕ1(t))− (v(t0), ϕ1(t0)),

ˆ t

t0

{(w, ∂tϕ2)− (g(u,w), ϕ2)} dτ(3.4.6)

= (w(t), ϕ2(t))− (z(t0), ϕ2(t0)),

for all t ∈ (t0, T ), and (u,w) satisfies the following strong energy identity:

(
∥u(t)∥2H + ∥w(t)∥2H

)
+ 2

ˆ t

t0

a(u(τ), u(τ)) dτ(3.4.7)

+ 2

ˆ t

t0

ˆ
Ω
f(u(τ), w(τ))u(τ) + g(u(τ), w(τ))w(τ) dx dτ

=∥v(t0)∥2H + ∥z(t0)∥2H + 2

ˆ t

t0

(s(τ), u(τ)) dτ.
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Next, denote by

vh(t) :=

ˆ T

0
jh(t− t̃)v(t̃) dt̃, zh(t) :=

ˆ T

0
jh(t− t̃)z(t̃) dt̃,

uh(t) :=

ˆ T

0
jh(t− t̃)u(t̃) dt̃, wh(t) :=

ˆ T

0
jh(t− t̃)w(t̃) dt̃

the (Friedrichs) time-mollifier of v, z, u, and w, respectively, where jh ∈ C∞
c (−h, h),

0 < h < T , is even and positive with
´
R jh(t̃) dt̃ = 1. Then, as is well known,

lim
h→0

ˆ T

0
∥vh(τ)− v(τ)∥2V dτ = 0, esssupt∈[0,T ] ∥vh(t)∥2 ≤ esssupt∈[0,T ] ∥v(t)∥2,

(3.4.8)

lim
h→0

ˆ T

0
∥uh(τ)− u(τ)∥2H2 dτ = 0, esssupt∈[0,T ] ∥uh(t)∥V ≤ esssupt∈[0,T ] ∥u(t)∥V ,

(3.4.9)

lim
h→0

ˆ T

0
∥zh(τ)− z(τ)∥2H dτ = 0, lim

h→0

ˆ T

0
∥wh(τ)− w(τ)∥2H dτ = 0.

(3.4.10)

The weak continuity of v and u implies

lim
h→0

(u(t), vh(t)) = lim
h→0

(uh(t), v(t)) = (u(t), v(t)), t ≥ t0,(3.4.11)

lim
h→0

(w(t), zh(t)) = lim
h→0

(wh(t), z(t)) = (w(t), z(t)), t ≥ t0.(3.4.12)

Furthermore since
ˆ t

t0

(u, ∂tvh) dτ = −
ˆ t

t0

(∂tu, vh) dτ + (u(t), vh(t))− (u(t0), vh(t0)),

ˆ t

t0

(w, ∂tzh) dτ = −
ˆ t

t0

(∂tw, zh) dτ + (w(t), zh(t))− (w(t0), zh(t0)),

by taking the limit,

lim
h→0

{ˆ t

t0

(u, ∂tvh) + (∂tu, vh) dτ

}
= (u(t), v(t))− ∥v(t0)∥2H

lim
h→0

{ˆ t

t0

(w, ∂tzh) + (∂tw, zh) dτ

}
= (w(t), z(t))− ∥z(t0)∥2H .

We now replace φ1 by uh in (3.4.2), φ2 by wh in (3.4.3), ϕ1 by vh in (3.4.5), and ϕ2 by
zh in (3.4.6). Then, we sum up the resulting equations, pass to the limit h → 0, and use
the properties of the time-mollifier mentioned above to obtain

ˆ t

t0

{−2a(u, v)− (f(v, z), u)− (f(u,w), v)− (g(v, z), w)− (g(u,w), z)} dτ

=−
ˆ t

t0

(s(τ), u(τ) + v(τ)) dτ + (u(t), v(t))− ∥v(t0)∥2H + (w(t), z(t))− ∥z(t0)∥2H .

(3.4.13)
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To prove (u,w) = (v, z), we calculate

∥u(t)− v(t)∥2H + ∥w(t)− z(t)∥2H + 2

ˆ t

t0

a(u(τ)− v(τ), u(τ)− v(τ)) dτ

=

(
∥u(t)∥2H + ∥w(t)∥2H + 2

ˆ t

t0

a(u(τ), u(τ)) dτ

)
+

(
∥v(t)∥2H + ∥z(t)∥2H + 2

ˆ t

t0

a(v(τ), v(τ)) dτ

)
− 2(u(t), v(t))− 2(w(t), z(t))− 4

ˆ t

t0

a(u(τ), v(τ)) dτ.

For the first two parts, we use the strong energy equality (3.4.7) and the strong energy
inequality (3.4.4), and for the last term, we use the relation (3.4.13). Then, we have

∥u(t)− v(t)∥2H + ∥w(t)− z(t)∥2H + 2

ˆ t

t0

a(u(τ)− v(τ), u(τ)− v(τ)) dτ

≤ 2

ˆ t

t0

{(f(v, z), u) + (f(u,w), v)− (f(u,w), u)− (f(v, z), v)

+ (g(v, z), w) + (g(u,w), z)− (g(u,w), w)− (g(v, z), z)} dτ

≤− 2

ˆ t

t0

(f(u,w)− f(v, z), u− v) + (g(u,w)− g(v, z), w − z) dτ

Here, for the first term we use the Assumption (3.4.1) and Young’s inequality to get

− 2

ˆ t

t0

(f(u,w)− f(v, z), u− v) dτ

≤2λf

ˆ t

t0

∥u(τ)− v(τ)∥2H dτ − 2

ˆ t

t0

(w − z, u− v) dτ

≤2λf

ˆ t

t0

∥u(τ)− v(τ)∥2H dτ +

ˆ t

t0

ε1∥w − z∥2H + C(ε1)∥u− v∥2H dτ

for some constants ε1, C(ε1) > 0. On the other hand since the function g(u,w) =

−ε(ku− w) is linear,

|(g(u,w)− g(v, z), w − z)| ≤ C(∥u− v∥2H + ∥w − z∥2H).

for some C > 0. Therefore, we have

∥u(t)− v(t)∥2H + ∥w(t)− z(t)∥2H + 2

ˆ t

t0

a(u(τ)− v(τ), u(τ)− v(τ)) dτ

≤C
ˆ t

t0

(∥u(τ)− v(τ)∥2H + ∥w(τ)− z(τ)∥2H dτ,

for some C > 0, which is different from the previous constant.
Hence, we are able to apply Gronwall’s lemma to conclude that

u− v ≡ 0, w − z ≡ 0 a.e. in Ω× [t0, T ].

This implies the existence of a strong T -time-periodic solution (u,w) when the source
term si,e is a T -time-periodic function.
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We write down the main theorem of the existence of strong periodic solutions with-
out assuming smallness conditions for the external forces.

Theorem 3.8. Let d = 3, T > 0, and si,e ∈ L2(T;H) with si + se ∈ W 1,1(T;H) and´
Ω(si + se) dx = 0 for a.e. t. Let the conductivity matrices σi,e satisfy Assumption C and the

nonlinear term F satisfy Assumption (3.4.1) and assume that there exist constants C0 ∈ R and
C1 > 0 such that

C0 + C1|u|4 ≤ F (u)u(3.4.14)

for all u ∈ R. Then for the bidomain equations with FitzHugh–Nagumo type

∂tu− div(σi∇ui) + F (u) + w = si, in (0,∞)× Ω,

∂tu+ div(σe∇ue) + F (u) + w = −se, in (0,∞)× Ω,

u = ui − ue, in (0,∞)× Ω,

∂tw − ε(ku− w) = 0, in (0,∞)× Ω,

σi∇ui · ν = 0, σe∇ue · ν = 0, in (0,∞)× ∂Ω,

u(0) = u0, w(0) = w0, in Ω,

there exists a strong T -periodic solution

(ui, ue) ∈ (W 1,2(T;H) ∩ L2(T;H2(Ω)))2 with
ˆ
Ω
ue dx = 0 a.e. t

(u,w) ∈ (W 1,2(T;H) ∩ L2(T;H2(Ω)) ∩ L4(T× Ω))× C1(T;H).

Remark 3.9. The Assumption N of the existence of the weak periodic solutions is re-
placed by (3.4.14).

Remark 3.10. We do not treat the ionic models by Rogers–McCulloch and Aliev-Panfilov
due to the lack of a suitable global well-posedness result for the initial value problem
in the L2 setting.

3.5 Appendix

In this appendix, we check that the three models introduced in Section 3.1 satisfy the
Assumption N. Since the growth conditions (3.3.2)-(3.3.4) are trivial as p = 4, we con-
firm the condition (5.2.5).

3.5.1 FitzHugh–Nagumo model

The FitzHugh–Nagumo type is

f(u,w) = u(u− a)(u− 1) + w

g(u,w) = −ε(ku− w)

with 0 < a < 1 and k, ε > 0. Then, we are able to calculate as follows (r = 1):

f(u,w)u+ g(u,w)w = u4 − (a+ 1)u3 + au2 + uw − εkuw + εw2
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and by

|(a+ 1)u3| ≤ 1

8
u4 + c11,

|au2| ≤ 1

8
u4 + c12,

|uw| ≤ 1

8
u4 +

ε

4
w2 + c13,

|εuw| ≤ 1

8
u4 +

ε

4
w2 + c14,

for some c1i > 0 (i = 1, . . . , 4), we have

f(u,w)u+ g(u,w)w ≥ 1

2
u4 +

ε

2
w2 + c1

for some c1 ∈ R. Therefore, the FitzHugh–Nagumo model satisfies the Assumption N.

3.5.2 Rogers–McCulloch model

The Rogers–McCulloch type is

f(u,w) = bu(u− a)(u− 1) + uw

g(u,w) = −ε(ku− w)

with 0 < a < 1 and b, k, ε > 0. Then, we are able to calculate as follows:

rf(u,w)u+ g(u,w)w = rbu4 − rb(a+ 1)u3 + rbau2 + ru2w − εkuw + εw2

and, based on the calculation

|ru2w| ≤ C2

2
u4 +

r2

2C2
w2,

we choose r, C > 0 depending on b, ε, such that{
c21 := rb− C2

2 > 0,

c22 := ε− r2

2C2 > 0.

By

|rb(a+ 1)u3| ≤ c21
6
u4 + c23,

|rbau2| ≤ c21
6
u4 + c24,

|εkuw| ≤ c21
6
u4 +

c22
2
w2 + c25,

for some c2i > 0 (i = 3, . . . , 5), we have

rf(u,w)u+ g(u,w)w ≥ c21
2
u4 +

c22
2
w2 + c2

for some c2 ∈ R. Therefore, the Rogers–McCulloch model satisfies the Assumption N.
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3.5.3 Aliev–Panfilov model

The modified Aliev–Panfilov type is

f(u,w) = bu(u− a)(u− 1) + uw

g(u,w) = ε(ku(u− 1− d) + w)

with 0 < a, d < 1, b, k, ε > 0, and b > k. Then, we are able to calculate as follows:

rf(u,w)u+ g(u,w)w = rbu4 + rb(a+ 1)u3 + rbau2 + ru2w + εku2w − εk(1 + d)uw + εw2

and, based on the calculation

|(r + εk)u2w| ≤ C2

2
u4 +

(r + εk)2

2C2
w2,

we choose r, C > 0 depending on b, k, ε, such that{
c31 := rb− C2

2 > 0,

c32 := ε− (r+εk)2

2C2 > 0.

Here, the assumption b > k is essential. By

|rb(a+ 1)u3| ≤ c31
6
u4 + c33,

|rbau2| ≤ c31
6
u4 + c34,

|εk(1 + d)uw| ≤ c31
6
u4 +

c32
2
w2 + c35,

for some c3i > 0 (i = 3, . . . , 5), we have

rf(u,w)u+ g(u,w)w ≥ c31
2
u4 +

c32
2
w2 + c3

for some c3 ∈ R. Note that we are not able to take c3i (i = 1, 2) in the case b = k.
Therefore, the modified Aliev-Panfilov model satisfies the Assumption N.
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Chapter 4

Strong well-posedness for the phase-field Navier–
Stokes equations in the maximal regularity class

In this chapter we study the dynamics of vesicle membranes in incompressible viscous
fluids. We prove existence and uniqueness of the local strong solution for this model
coupling of the Navier–Stokes equations with a phase field equation in anLp-Lq setting.
We transform the equation into a quasi-linear parabolic evolution equation and use the
general theory proved by Prüss et al. [16, 23, 25]. Since the operator and the nonlinear
term are analytic, we have that the solution is real analytic in time and space. At last it
is shown that the variational strict stable solution is exponentially stable, provided the
product of the viscosity coefficient and the mobility constant is large.

Keywords: phase-field Navier–Stokes equations; well-posedness; stability

4.1 Introduction

It is important to understand the deformation of vesicle membranes in a liquid in
many biological and physiological applications. The vesicle contains a liquid and is
surrounded by another liquid. The function of the vesicle is to store and/or trans-
port substances. They are not only essential to the function of cells but also interesting
since they change their shapes such as spheres, discocytes, stomatocytes, tori and dou-
ble tori. These are concrete examples of minimizers of different surface energies, such
as the bending elasticity (Willmore, mean curvature square) energy in the calculus of
variations and its different variations like the general Helfrich energy [2, 14, 27, 34]. We
consider that the equilibrium configurations of vesicle membranes can be characterized
the minimizer of the following Helfrich bending elastic energy of the surface:

Eelastic =

ˆ
Γ

k

2
(H − c0)

2dS,

where Γ is the surface of the vesicle membrane, H is the mean curvature of Γ, c0 is
the spontaneous curvature that describes certain physical/chemical difference between
the inside and the outside of the membrane, and k is the bending modulus (bending
rigidity) that depends on the local heterogeneous concentration of the species. Here we
assumed the evolution of the vesicle membrane does not change its topology so that
the energy is simplified. For details, see [9, 27, 34].
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The model which represent the deformation of the vesicle in a liquid was first con-
structed in [8]. They derived the system of the equations via an energetic variational
approach. In this phase field Navier–Stokes equations, the description of the mem-
brane is given the terms of a phase field function φ. The labeling function φ takes value
+1 inside the vesicle membrane and −1 outside, and the thin transition layer of width
is characterized by a small parameter ε. The zero level set of φ ({x | φ(x) = 0}) repre-
sents the surface of the vesicle membrane. The fluid is modeled by the incompressible
Navier–Stokes equations in the whole domain containing the inside and outside of the
vesicle.

The phase field approximation of the Helfrich bending elasticity energy is given by
a modified Willmore energy [10]:

Eε(φ) =

ˆ
Ω

k

2ε

(
ε∆φ+ (

1

ε
φ+ c0

√
2)(1− φ2)

)2

dx.

The convergence from Eε(φ) to Eelastic was studied in [7, 30]. In this chapter, for the
sake of simplicity, we assume that k is a positive constant and c0 = 0. Since the vesicle
preserves its volume and surface area, we use the penalty formulation about its energy
[27]. These two constraint functionals for the vesicle volume and surface area are given
by

A(φ) =

ˆ
Ω
φdx, B(φ) =

ˆ
Ω

ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2dx,

respectively. The modified energy is formulated in the following form:

E(φ) = Eε(φ) +
1

2
M1[A(φ)−A(φ0)]

2 +
1

2
M2[B(φ)−B(φ0)]

2,

where M1 and M2 are two penalty constants and φ0 is the initial phase function.
We consider the phase field Navier–Stokes equations derived from above energy

[8, 32]. Let Ω ⊂ Rn be a bounded C4-domain, the function u be the unknown velocity
field, the function p be the pressure and φ be the phase field function. We denote by
ν the fluid viscosity and γ the mobility coefficient, which are positive constants. The
model is

(PFNS)



∂tu+ (u · ∇)u = ν∆u−∇p+ δE(φ)
δφ ∇φ in [0, T ]× Ω,

div u = 0 in [0, T ]× Ω,

∂tφ+ (u · ∇)φ = −γ δE(φ)
δφ in [0, T ]× Ω,

u = 0 on [0, T ]× ∂Ω,

φ = −1, ∆φ = 0 on [0, T ]× ∂Ω,

u(0) = u0, φ(0) = φ0 in Ω,

where

δE(φ)

δφ
= kg(φ) +M1[A(φ)−A(φ0)] +M2[B(φ)−B(φ0)]f(φ)
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= k

(
ε∆2φ− 1

ε
∆(φ3)− 3

ε
φ2∆φ+

2

ε
∆φ+

1

ε3
(3φ5 − 4φ3 + φ)

)
+M1[A(φ)−A(φ0)] +M2[B(φ)−B(φ0)]f(φ)

=:W (φ)

=: kε∆2φ+ L(φ)

and

f(φ) = −ε∆φ+
1

ε
(φ2 − 1)φ,

g(φ) = −∆f(φ) +
1

ε2
(3φ2 − 1)f(φ).

We note that the term δE(φ)
δφ = W (φ) is the so-called chemical potential and Eε(φ) =

k
2ε

´
Ω |f(φ)|2dx. In this chapter as usual we consider the Dirichlet type for the phase

field function φ and the no-slip boundary condition for the velocity field u.
The well-posedness of the system has been studied in [6, 17, 31]. In [6], they proved

the existence of the global weak solution by using the Galerkin method. With a better
regularity assumption on the weak solutions, as in the case of the conventional Navier–
Stokes equations [28], they proved the uniqueness result. In [17], they proved the local
in time existence and uniqueness of the strong solution in an L2 framework. The idea
was to rewrite (PFNS) as a semi-linear equation for the Stokes equation coupled with
a parabolic equation whose operator is bi-Laplace operator. However, to estimate the
nonlinear term ∆2φ∇φ they needed the higher regularity class for the function φ com-
pared with the usual parabolic equation. More precisely, they proved that if u0, φ0

satisfy u0 ∈ H1
0 (Ω), div u0 = 0, φ0 + 1 ∈ H2+ 3

8 (Ω) ∩ H1
0 (Ω) then (PFNS) has a unique

strong solution {
u ∈ L2(0, T ;H

2(Ω)) ∩H1(0, T ;L2(Ω))

φ ∈ L2(0, T ;H
4+ 3

8 (Ω)) ∩H1(0, T ;H
3
8 (Ω))

for some T = T (∥u0∥H1 , ∥φ0∥
H2+3

8
) > 0. In [31] they considered the (PFNS) in a pe-

riodic box and proved existence/uniqueness of strong solutions and some regularity
criteria. Moreover they investigated the stability of the system near local minimizers of
the elastic bending energy by using Lojasiewicz–Simon-type inequality.

The main purpose of this chapter is to study the existence, uniqueness and regular-
ity of the strong solution to (PFNS) in an Lp-Lq framework as well as their exponential
stability in the n dimension, while papers [6, 17, 31] are L2 setting and n = 3. The main
idea is to consider (PFNS) as a quasi-linear equation not as a semi-linear equation. We
consider the quasi-linear operator A(z)(z = T (u, ϕ)) given by

A(z) =

(
νA −kεPB(ϕ)
0 γkεD

)
,

where A denotes the Stokes operator, D the bi-Laplace operator, P the Helmholtz pro-
jection, and B is given by B(ϕ)h := ∆2h∇ϕ. For the quasi-linear parabolic equation, we
use maximal regularity in a weighted Lp spaces and well-posed result proved by Prüss
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et al. [16,23,25]. This quasi-linear approach has already used to analyze nematic liquid
crystal flows [15] and viscoelastic Poiseuille-type flows [12] as pioneering works. We
employ time weight Lp spaces:

Lp,µ(0, T ;X) := {z : (0, T ) → X | t1−µz ∈ Lp(0, T ;X)},
H1
p,µ(0, T ;X) := {z ∈ Lp,µ(0, T ;X) ∩W 1

1 (0, T ;X) | ż ∈ Lp,µ(0, T ;X)},

for p ∈ (1,∞), µ ∈ (1/p, 1] and a Banach space X . The merit of the time weight is
to observe that the class of initial data can be taken larger and the solution regular-
izes instantly in time. Furthermore, we prove the stationary solution (0, φ∗) is ex-
ponentially stable even under including fluid effect if the product of the coefficients
νγ is sufficiently large and φ∗ is the variational strict stable solution, i.e.φ∗ satisfies
W (φ∗) = 0 and ( δ

2E(φ∗)
δφ2 ψ,ψ) ≥ c∥ψ∥2L2 for some c > 0 and for any ψ ∈ H4

2 (Ω) satisfy-
ing ψ|∂Ω = −1,∆ψ|∂Ω = 0.

Let us state the main results.

Theorem 4.1 (Local existence and uniqueness of strong solutions). Let p, q ∈ (1,∞), µ ∈
(1/p, 1] be 1

2 + 1
p +

n
2q < µ ≤ 1 and assume that
(u0, φ0) ∈ B

2(µ−1/p)
q,p (Ω)×B

4(µ−1/p)
q,p (Ω)

div u0 = 0 in Ω,

u0 = 0 on ∂Ω,

φ0 = −1, ∆φ0 = 0 on ∂Ω.

Then there exists T = T
(
∥u0∥B2(µ−1/p)

q,p
, ∥φ0∥B4(µ−1/p)

q,p

)
> 0 such that the equations (PFNS)

have a unique strong solution
u ∈ H1

p,µ(0, T ;Lq,σ(Ω)) ∩ Lp,µ(0, T ; (H2
q (Ω))

n),

φ ∈ H1
p,µ(0, T ;Lq(Ω)) ∩ Lp,µ(0, T ;H4

q (Ω)),

∇p ∈ Lp,µ(0, T ; (Lq(Ω))
n),

where the interval [0, T ) is a maximal time interval of existence. Moreover the solution depends
continuously on u0 and φ0.

Remark 4.2. The condition 1
2 + 1

p + n
2q < µ ≤ 1 comes from the embedding exponent

such that B2(µ−1/p)
q,p (Ω) ↪→ C1(Ω). Note that this condition implies that the embedding

B
4(µ−1/p)
q,p (Ω) ↪→ C2(Ω).

Theorem 4.3. The solution T (u, φ) in Theorem 4.1 satisfies for each j ∈ N,

tj
[
d

dt

]j (
u

φ

)
∈ H1

p,µ(0, T ;Lq,σ(Ω)× Lq(Ω)) ∩ Lp,µ(0, T ; (H2
q (Ω))

n ×H4
q (Ω)).

Moreover, the solution T (u, φ) is real analytic from (0, T ) to (H2
q (Ω))

n ×H4
q (Ω).

Remark 4.4. By the scaling techniques in time and space, the maximal regularity and
the implicit function theorem, it is proved that T (u, φ) is real analytic in (0, T )× Ω. See
[22] for parabolic equations, and see [24] for Navier–Stokes equations.
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At last we study the stability of the solution near the local minimizers of the elastic
bending energy.

Theorem 4.5. Let p, q ∈ (1,∞), µ ∈ (1/p, 1] satisfy the assumption in Theorem 4.1 and
T (0, φ∗) ∈ {0} × H4

q (Ω) be the variational strictly stable solution of (PFNS) i.e. φ∗ satisfies

W (φ∗) = 0 and ( δ
2E(φ∗)
δφ2 ψ,ψ) ≥ c∥ψ∥2L2 for some c > 0 and for any ψ ∈ H4

2 (Ω) satisfying
ψ|∂Ω = −1,∆ψ|∂Ω = 0. Then there are ε > 0, C > 0 such that for each T (u0, φ0) ∈
B

2(µ−1/p)
q,p (Ω)×B

4(µ−1/p)
q,p (Ω) satisfying ∥u0∥B2(µ−1/p)

q,p
+ ∥φ0 − φ∗∥

B
4(µ−1/p)
q,p

< ε and for any
ν and γ satisfying νγ > C, there exists a unique global solution{

u ∈ H1
p,µ,loc(R+;Lq,σ(Ω)) ∩ Lp,µ,loc(R+; (H

2
q (Ω))

n),

φ ∈ H1
p,µ,loc(R+;Lq(Ω)) ∩ Lp,µ,loc(R+;H

4
q (Ω)).

Furthermore, there is a β > 0 such that{
eβtu ∈ H1

p,µ(R+;Lq,σ(Ω)) ∩ Lp,µ(R+; (H
2
q (Ω))

n) ∩ C0(R+; (B
2(µ−1/p)
q,p (Ω))n),

eβt(φ− φ∗) ∈ H1
p,µ(R+;Lq(Ω)) ∩ Lp,µ(R+;H

4
q (Ω)) ∩ C0(R+;B

4(µ−1/p)
q,p (Ω)).

In particular, the equilibrium T (0, φ∗) is exponentially stable inB2(µ−1/p)
q,p (Ω)×B4(µ−1/p)

q,p (Ω).

In this chapter we are not able to guarantee the existence of the variational strict
stable solution because of the two penalty terms. In [31] they dealt with the case of
c = 0 and other stability result.

4.2 General theory for quasi-linear evolution equations

We explain the theory of the quasi-linear parabolic equation via the maximal regularity.
For details we refer the papers [16, 23]. See also [25].

Let X0 and X1 be Banach spaces such that X1
d
↪→ X0, i.e. X1 is continuously and

densely embedded in X0. Let T > 0 or T = ∞. For a closed linear operator A in X0, we
say A has the property of the maximal Lp,µ-regularity, for short A ∈ MRp,µ(X1, X0), if
for each f ∈ Lp,µ(0, T ;X0) there exists a unique solution u ∈ H1

p,µ(0, T ;X0)∩Lp,µ(0, T ;X1)

of the linear problem u̇ + Au = f (t ∈ (0, T )) with initial value u(0) = 0. For classical
case µ = 1, denote A ∈ MRp(X1, X0). In [16, 23] it was proved that

A ∈ MRp,µ(X1, X0) ⇔ A ∈ MRp(X1, X0) ∀p ∈ (1,∞), µ ∈ (1/p, 1],

and, concerning nontrivial initial data, if A ∈ MRp(X1, X0) then

A ∈ MRp,µ(X1, X0) ⇔ ∀f ∈ Lp,µ(0, T ;X0) ∀u0 ∈ Xγ,µ,

∃!u ∈ H1
p,µ(0, T ;X0) ∩ Lp,µ(0, T ;X1) s.t. u̇+Au = f (t ∈ (0, T )), u(0) = u0,

where Xγ,µ := (X0, X1)µ−1/p,p is the trace space for p ∈ (1,∞) and µ ∈ (1/p, 1]. For
trace spaces, see also [21]. The case µ = 1, denote Xγ := Xγ,1.
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We consider the following quasi-linear parabolic equation (QL):

(QL)

{
ż(t) +A(z(t))z(t) = F (z(t)) t ∈ (0, T ),

z(0) = z0.

Here we impose regularity assumptions

(A−) A ∈ Liploc(Xγ,µ;L(X1, X0)), (F−) F ∈ Liploc(Xγ,µ;X0)

and z0 ∈ Xγ,µ for p ∈ (1,∞), µ ∈ (1/p, 1]. By L(X1, X0) we denote the set of all bounded
linear operator from X1 to X0. We now give existence and uniqueness results for (QL).
Local in time existence and uniqueness of (QL) was shown by Clément and Li [3] in the
case µ = 1 and by Köhne, Prüss and Wilke [16] for the case µ ∈ (1/p, 1].

Proposition 4.6. Let 1 < p < ∞, µ ∈ (1/p, 1], z0 ∈ Xγ,µ, and suppose that the assumption
(A−), (F−) andA(z0) ∈ MRp(X1, X0) are satisfied. Then, there exists a > 0, such that (QL)

admits a unique solution z on J = [0, a] in the regularity class

z ∈ H1
p,µ(J ;X0) ∩ Lp,µ(J ;X1) ↪→ C(J ;Xγ,µ) ∩ C((0, a];Xγ).

The solution depends continuously on z0, and can be extended to a maximal interval of existence
J(z0) = [0, t+(z0)).

Smoothing effects often appear in parabolic problems. The parameter trick method
by Angenent [1] is well known. A similar method has already been used in the study
of Navier–Stokes equation in [19, 20]. We state the regularity of the solution of (QL) in
terms of the regularity of A and F .

We use the following notation to state two propositions:

(Ak) A ∈ Ck(Xγ,µ;L(X1, X0)), (Fk) F ∈ Ck(Xγ,µ;X0)

for k ∈ N ∪ {∞, ω}, where the index ω refers to real analyticity.
Let us recall the definition of the real analytic between Banach spaces [33]. Suppose

X,Y are two Banach spaces. We say the operator T : X → Y is analytic if for any
x0 ∈ X there exists a small neighborhood of x0 such that

T (x0 + h)− T (x0) =
∑
n≥1

Tn(x0)(h, · · · , h) ∀h ∈ X, ∥h∥X < r ≪ 1.

Here Tn(x0) is a continuous symmetrical n-linear operator on Xn → Y and satisfies∑
n≥1

∥Tn(x0)∥L(Xn,Y )∥h∥nX <∞.

Proposition 4.7. Let 1 < p <∞, µ ∈ (1/p, 1], z0 ∈ Xγ,µ, k ∈ N ∪ {∞, ω} and suppose that
the assumption (Ak), (Fk) and A(z0) ∈ MRp(X1, X0) are satisfied. Let z be the solution in
Proposition 4.6 and assume A(z(t)) ∈ MRp(X1, X0) for all t ∈ J . Then

tj
[
d

dt

]j
z ∈ H1

p,µ(J ;X0) ∩ Lp,µ(J ;X1), j ≤ k
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Furthermore, if k = ∞ then z ∈ C∞(J ;X1), and if k = ω then z ∈ Cω(J ;X1).

If we impose the Fréchet differentiability of A and F , then the solution exists glob-
ally provided the initial data is close to an equilibrium point, see [22] for the case µ = 1,
and [16] for the case µ ∈ (1/p, 1]. Let E := {z ∈ X1 | A(z)z = F (z)} be the equilibria of
(QL) and A0 be the linearization of (QL) at z∗ ∈ E , i.e.

A0w = A(z∗)w + (A′(z∗)w)z∗ − F ′(z∗)w, w ∈ X1.

We denote the spectrum of the operator A by σ(A) and denote the resolvent set of the
operator A by ρ(A).

Proposition 4.8. Let 1 < p <∞, µ ∈ (1/p, 1] and z∗ ∈ E be A(z∗) ∈ MRp(X1, X0) on R+

and the assumptions (A1) and (F1) are satisfied. Suppose that σ(A0) ⊂ {λ ∈ C | Reλ > 0}.
Then there is ε > 0 such that for each z0 ∈ Bε(z

∗) ⊂ Xγ,µ there exists a unique global solution
z ∈ H1

p,µ,loc(R+;X0) ∩ Lp,µ,loc(R+;X1) of (QL). Furthermore, there is a β > 0 such that

eβt(z − z∗) ∈ H1
p,µ(R+;X0) ∩ Lp,µ(R+;X1) ∩ C0(R+;Xγ,µ).

In particular, the equilibrium z∗ is exponentially stable in Xγ,µ.

In this proposition, the constant ε > 0 depends only on the maximal regularity
constant of A0 and the local Lipschitz constants of A and F . Here C0(R+;Xγ,µ) is the
space of Xγ,µ-valued continuous function vanishing at the time-infinity.

4.3 Quasilinear Approach for the phase-field Navier–Stokes equa-
tions

4.3.1 Quasilinear formulation

In this section we transform (PFNS) into quasi-linear evolution equations for the un-
known z = T (u, ϕ). Let 1 < q < ∞ and Ω ⊂ Rn be a bounded C4-domain. We choose
the Banach space

X0 := Lq,σ(Ω)× Lq(Ω).

As usual, Lq,σ(Ω) is the subspace of (Lq(Ω))n consisting of solenoidal vector fields. We
denote by P : (Lq(Ω))

n → Lq,σ(Ω) the Helmholtz projection and the Stokes operator
Aq : D(Aq) → Lq,σ(Ω), where D(Aq) = {u ∈ (H2

q (Ω))
n ∩ Lq,σ(Ω) | u = 0 a.e. on ∂Ω},

Aq = −P∆. The maximal Lq-regularity result for the Stokes operator Aq is well-known;
see e.g. [11, 13]. The bi-Laplace operator Dq in Lq(Ω) is defined by Dq = ∆2 with the
domain D(Dq) = {ϕ ∈ H4

q (Ω) | ϕ = ∆ϕ = 0 a.e. on ∂Ω}. The maximal Lq-regularity re-
sult for bi-Laplace operator Dq is also well-known; see e.g. [13]. We choose the Banach
space

X1 := D(Aq)×D(Dq),

equipped with its canonical norms. Then X1
d
↪→ X0.
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For we treat (PFNS) as the quasi-linear equation, we define the operator

A(z) :=

(
νAq −kεPBq(ϕ)

0 γkεDq

)
,

where the operator Bq is given by Bq(ϕ)h := ∆2h∇ϕ. Let ϕ = φ + 1 and apply the
Helmholtz projection P to the first equation in (PFNS), then we are able to rewrite
(PFNS) of the form:

(∗)


d

dt
z +A(z)z = F (z) :=

(
−P((u · ∇)u) + P(L(ϕ− 1)∇ϕ)

−(u · ∇)ϕ− γL(ϕ− 1)

)
t ∈ (0, T ),

z(0) = z0 :=

(
u0
ϕ0

)
:=

(
u0

φ0 + 1

)
.

We show the A(z) has the property of maximal regularity for each z ∈ Xγ,µ and as-
sumptions (Aω) and (Fω). We have that Bq(ϕ) : D(Dq) → (Lq(Ω))

n is bounded for
each ϕ ∈ C1(Ω) and the map ϕ → PBq(ϕ) is real analytic. So A(z) ∈ Cω(Lq,σ(Ω) ×
C1(Ω),L(X1, X0)). By the tri-diagonal structure of A(z) and by the regularity of Bq one
can easily see that A(z) ∈ MRp(X1, X0) for each z = T (u, ϕ) ∈ Lq,σ(Ω) × C1(Ω). In-

deed, from

(
νAq 0

0 γkεDq

)
∈ MRp(X1, X0), for any T (f, g) ∈ Lp(0, T ;X0), we can

take T (ũ, ϕ̃) ∈ H1
p (0, T ;X0) ∩ Lp(0, T ;X1) which is the solution of

d

dt

(
ũ

ϕ̃

)
+

(
νAq 0

0 γkεDq

)(
ũ

ϕ̃

)
=

(
f + kεPBq(ϕ)ϕ

g

)
t ∈ (0, T ),(

ũ

ϕ̃

)
(0) =

(
0

0

)
,

where ϕ is the solution of
d

dt
ϕ+ kγεDqϕ = g t ∈ (0, T ),

ϕ(0) = 0.

Note that kεPBq(ϕ)ϕ ∈ Lp(0, T ;Lq,σ(Ω)) for each ϕ ∈ C1(Ω) and ϕ̃ = ϕ. This implies
that for any T (f, g) ∈ Lp(0, T ;X0), we can take T (ũ, ϕ̃) ∈ H1

p (0, T ;X0) ∩ Lp(0, T ;X1)

which is the solution of
d

dt

(
ũ

ϕ̃

)
+

(
νAq −kεPBq(ϕ)

0 γkεDq

)(
ũ

ϕ̃

)
=

(
f

g

)
t ∈ (0, T ),(

ũ

ϕ̃

)
(0) =

(
0

0

)
.

So A(z) ∈ MRp(X1, X0) for each z = T (u, ϕ) ∈ Lq,σ(Ω)× C1(Ω).
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The nonlinear term F is also real analytic from (C1(Ω))n ×C2(Ω) into X0. If we get
Xγ,µ ↪→ (C1(Ω))n × C2(Ω), then (Aω) and (Fω) hold. The space Xγ,µ is given by

Xγ,µ = (X0, X1)µ−1/p,p = DAq(µ− 1/p, p)×DDq(µ− 1/p, p),

provided p ∈ (1,∞) and µ ∈ (1/p, 1]; see [18, 21]. Here DAq(θ, p) is the real in-
terpolation (Lq,σ(Ω), D(Aq))θ,p and DDq(θ, p) = (Lq(Ω), D(Dq))θ,p. We need to con-
sider two embedding exponent, one is DAq(µ − 1/p, p) ↪→ (C1(Ω))n and the other is
DDq(µ− 1/p, p) ↪→ C2(Ω):

1

2
+

1

p
+
n

2q
< µ ≤ 1 ⇒ DAq(µ− 1/p, p) ↪→ (C1(Ω))n.

1

2
+

1

p
+
n

4q
< µ ≤ 1 ⇒ DDq(µ− 1/p, p) ↪→ C2(Ω).

Note that 1
2 + 1

p +
n
4q <

1
2 + 1

p +
n
2q .

Under the condition 1
2+

1
p+

n
2q < µ ≤ 1, we can characterize the interpolation spaces

by Besov spaces:

u ∈ DAq(µ− 1/p, p) ⇔ u ∈ (B2(µ−1/p)
q,p (Ω))n ∩ Lq,σ(Ω), u = 0, a.e. on ∂Ω,

ϕ ∈ DDq(µ− 1/p, p) ⇔ ϕ ∈ B4(µ−1/p)
q,p (Ω), ϕ = ∆ϕ = 0, a.e. on ∂Ω.

For Besov spaces, see [29].
We are ready to prove well-posedness results in Section 4.1. The proof is based on

propositions in Section 4.2.

Proof of Theorem 4.1. We transformed (PFNS) into the quasi-linear parabolic equation
(∗). The condition z0 ∈ Xγ,µ is equivalent to the conditions in Theorem 4.1 and Ã(z0) ∈
MRp(X1, X0). So we are able to apply Proposition 4.6.

Proof of Theorem 4.3. We have already checked the conditions (Aω), (Fω). Since the so-
lution z(t) ∈ Xγ,µ for all t ∈ J , assumptions in Proposition 4.7 are satisfied.

4.3.2 Spectral analysis of the linearized operator

In order to prove the stability result of Theorem 4.5, we calculate the linearized operator
near the local minimizers of the elastic bending energy. The equilibria E is the set

E = {z∗ = T (0, ϕ∗) ∈ X1 |W (ϕ∗ − 1) = 0}.

The linearized operator A0 at z∗ is given by A0w = A(z∗)z + (A′(z∗)w)z∗ − F ′(z∗)w for
w = T (w1, w2) ∈ X1. By direct calculation

A(z∗)w =

(
−νP∆ −kεP(∆2 · ∇ϕ∗)

0 γkε∆2

)
w

(A′(z∗)w)z∗ =

(
0 −kεP(∆2 · ∇w2)

0 0

)(
0

ϕ∗

)
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=

(
0 −kεP(∆2ϕ∗∇·)
0 0

)
w

F ′(z∗)w =

(
0 −kεP(∆2ϕ∗∇·) + P(G(ϕ∗) · ∇ϕ∗)

−C(ϕ∗) −γG(ϕ∗)

)
w,

where the linear operator C(ϕ∗) and G(ϕ∗) is defined as follows:

C(ϕ∗)w1 = (w1 · ∇)ϕ∗

G(ϕ∗)w2 = G1(ϕ
∗)w2 +M1

ˆ
Ω
w2dx

+M2

{
f(ϕ∗ − 1)

ˆ
Ω
f(ϕ∗ − 1)w2dx+G2(ϕ

∗)w2

}
and

G1(ϕ
∗)w2

= −k
ε

{(
6(ϕ∗ − 1)2 − 2

)
∆w2 + 6∇((ϕ∗ − 1)2) · ∇w2

+
(
3∆((ϕ∗ − 1)2) + 6(ϕ∗ − 1)∆ϕ∗ + (15(ϕ∗ − 1)4 − 12(ϕ∗ − 1)2 + 1)

)
w2

}
G2(ϕ

∗)w2 = [B(ϕ∗ − 1)−B(ϕ0 − 1)]

{
−ε∆w2 +

1

ε

(
3(ϕ∗ − 1)2 − 1

)
w2

}
.

Therefore the linearized operator A0 is

A0 =

(
−νP∆ −P

(
(kε∆2 +G(ϕ∗)) · ∇ϕ∗)

)
C(ϕ∗) γ(kε∆2 +G(ϕ∗))

)
.

Since δ2E(ϕ∗)
δϕ2

= kε∆2 + G(ϕ∗), the realization of this operator A0 in Lq spaces can be
rewritten as

A0 =

 νAq −P
(
δ2E(ϕ∗)
δϕ2

· ∇ϕ∗
)

Cq γ δ
2E(ϕ∗)
δϕ2

 , D(A0) = D(Aq)×D(Dq),

where Cq = C(ϕ∗) with the domain D(Cq) = Lq,σ(Ω).
From now we show that σ(A0) ⊂ {λ ∈ C | Reλ > 0}. Denote Ση,M := {λ =

reiθ ∈ C \ {0} | r ≥ M,η < |θ|} for some M ≥ 0 and η ∈ (0, π/2), and denote
C+ := {λ ∈ C | Reλ > 0} and C− := {λ ∈ C | Reλ ≤ 0}.

Lemma 4.9. Assume that there exists c > 0 such that for all ψ ∈ D(D2),
(
δ2E(ϕ∗)
δϕ2

ψ,ψ
)
≥

c∥ψ∥2L2 . Then σ
(
δ2E(ϕ∗)
δϕ2

)
⊂ C+.

Proof. We consider that G(ϕ∗) is a lower order perturbation of kε∆2. Then for any
0 < η < π/2, there exists M > 0 such that Ση,M ⊂ ρ( δ

2E(ϕ∗)
δϕ2

). Fix λ0 ∈ ρ( δ
2E(ϕ∗)
δϕ2

).

From compactness of the operator (λ0 − δ2E(ϕ∗)
δϕ2

)−1 and Fredholm theory, we have the

injection of the operator λ− δ2E(ϕ∗)
δϕ2

implies λ ∈ ρ( δ
2E(ϕ∗)
δϕ2

). Let ψ ∈ D(Dq) satisfy (λ−
δ2E(ϕ∗)
δϕ2

)ψ = 0. We may assume ψ ∈ D(D2). In fact, the boundedness of Ω implies that
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D(Dq) ⊂ D(D2), when 2 ≤ q < ∞. On the other hand, when 1 < q < 2, by the Sobolev
embedding theorem and bootstrap argument for the equation (λ+λ0− δ2E(ϕ∗)

δϕ2
)ψ = λ0ψ,

we see that ψ ∈ D(D2). From (λ− δ2E(ϕ∗)
δϕ2

)ψ = 0, we see

Reλ∥ψ∥2 −
(
δ2E(ϕ∗)

δϕ2
ψ,ψ

)
= 0

and, from the assumption on δ2E(ϕ∗)
δϕ2

we see ψ = 0 when λ ∈ C−.

Remark 4.10. We have the following resolvent estimate for the operator δ2E(ϕ∗)
δϕ2

:∥∥∥∥∥δ2E(ϕ∗)

δϕ2

(
λ− δ2E(ϕ∗)

δϕ2

)−1
∥∥∥∥∥
L(Lq(Ω))

≤ Cη (∀λ ∈ Ση,0).

Theorem 4.11. Assume that there exists c > 0 such that for all ψ ∈ D(D2),
(
δ2E(ϕ∗)
δϕ2

ψ,ψ
)
≥

c∥ψ∥2L2 . Then there exists C = Cϕ∗ > 0 such that if ν and γ satisfy νγ > C then σ(A0) ⊂ C+.

Proof. By the similar method of Lemma 4.9, it suffices that (λ−A0)z = 0 (z = T (u, ϕ) ∈
X1) implies z = 0 for λ ∈ C−. The second equation of this resolvent equation

(λ− νAq)u+ P
(
δ2E(ϕ∗)

δϕ2
ϕ∇ϕ∗

)
= 0

− Cqu+

(
λ− γ

δ2E(ϕ∗)

δϕ2

)
ϕ = 0

derives

−P

(
δ2E(ϕ∗)

δϕ2

(
λ− γ

δ2E(ϕ∗)

δϕ2

)−1

Cqu∇ϕ∗
)

+ P
(
δ2E(ϕ∗)

δϕ2
ϕ∇ϕ∗

)
= 0.

By subtracting the first equation,(
λ− νAq + P

(
δ2E(ϕ∗)

δϕ2

(
λ− γ

δ2E(ϕ∗)

δϕ2

)−1

Cq · ∇ϕ∗
))

u = 0.

We use the perturbation theory of the generator of analytic semigroups. The calculation∥∥∥∥∥P
(
δ2E(ϕ∗)

δϕ2

(
λ− γ

δ2E(ϕ∗)

δϕ2

)−1

Cq · ∇ϕ∗
)
u

∥∥∥∥∥
Lq,σ

≤∥∇ϕ∗∥∞

∥∥∥∥∥δ2E(ϕ∗)

δϕ2

(
λ− γ

δ2E(ϕ∗)

δϕ2

)−1

Cqu

∥∥∥∥∥
q

≤∥∇ϕ∗∥∞ sup
λ∈C−

∥∥∥∥∥δ2E(ϕ∗)

δϕ2

(
λ− δ2E(ϕ∗)

δϕ2

)−1
∥∥∥∥∥
L(Lq)

1

γ
∥(u · ∇)ϕ∗∥q

≤∥∇ϕ∗∥2∞ sup
λ∈C−

∥∥∥∥∥δ2E(ϕ∗)

δϕ2

(
λ− δ2E(ϕ∗)

δϕ2

)−1
∥∥∥∥∥
L(Lq)

1

γ
∥u∥q
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≤C∥∇ϕ∗∥2∞ sup
λ∈C−

∥∥∥∥∥δ2E(ϕ∗)

δϕ2

(
λ− δ2E(ϕ∗)

δϕ2

)−1
∥∥∥∥∥
L(Lq)

1

νγ
∥νAqu∥q

≤Cϕ∗
1

νγ
∥νAqu∥q

implies that if νγ is sufficiently large, then P
(
δ2E(ϕ∗)
δϕ2

(
λ− γ δ

2E(ϕ∗)
δϕ2

)−1
Cq · ∇ϕ∗

)
is

small perturbation of νAq. So from λ ∈ C− ⊂ ρ(νAq), we have

λ ∈ ρ

(
νAq − P

(
δ2E(ϕ∗)

δϕ2

(
λ− γ

δ2E(ϕ∗)

δϕ2

)−1

Cq · ∇ϕ∗
))

and then u = 0. By lemma 4.9, ϕ = 0. It concludes that σ(A0) ⊂ C+.

Proof of Theorem 4.5. Since ϕ∗ = φ∗ − 1, the proof is straightly based on Proposition
4.8.
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Chapter 5

Global well-posedness for a Cahn–Hilliard equa-
tion on bounded domains with permeable and
non-permeable walls in maximal regularity spaces

We consider the strong solution of the Cahn–Hilliard equation on bounded domains
with permeable and non-permeable walls in maximal Lp regularity spaces. From the
maximal Lp regularity result of the linear equation with the dynamic boundary con-
dition, the fixed point theorem and a priori estimate, we prove that the solution exists
uniquely and globally in time

Keywords: Cahn–Hilliard equation, dynamic boundary condition, global well-posedness,
maximal Lp regularity

5.1 Introduction

Let 0 < T < ∞ be a some fixed time, Ω ⊂ Rn (n ≥ 2) be a bounded domain whose
boundary Γ := ∂Ω is smooth. Denote J := (0, T ), Q := J × Ω and Σ := J × Γ. We
consider the following Cahn–Hilliard equation

∂tu−∆µ = 0 in Q,(5.1.1)

µ = −∆u+ F ′(u) in Q.(5.1.2)

Here u is the order parameter, µ and F are the chemical and physical potentials, respec-
tively. In this chapter we consider one of following two boundary conditions:

∆µ+ b∂νµ+ cµ = 0 on Σ,(5.1.3)

− α∆Γu+ ∂νu+G′(u) = µ/b on Σ,(5.1.4)

or

∆µ+ b∂νµ− c∆Γµ = 0 on Σ,(5.1.5)

− α∆Γu+ ∂νu+G′(u) = µ/b on Σ.(5.1.6)

The first one appears the case that the domain has porous (permeable) walls and the
second one corresponds to non-permeable walls.
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In the boundary conditions, α, b, c are positive constants, ∆Γ is the Laplace–Beltrami
operator on Γ, ν is the unit outward normal vector to Γ and G is the nonlinear term
which comes from the surface energy. A typical example of F and G are F (u) =

(1/4)(u2 − 1)2 and G(u) = (gs/2)u
2 − hsu with gs > 0, hs ̸= 0. We also treat the

case c = 0 in subsection 5.2.4.
Our aim of this chapter is to prove existence and uniqueness of this Cahn–Hilliard

equation with these boundary conditions in maximal Lp spaces for 1 < p < ∞. So far,
the study of the Cahn–Hilliard equation has been considered in L2 frameworks. The
Lp approach has been done by the papers [18, 19] but only for the classical dynamic
boundary condition. In the last decades, other type of boundary conditions has been
considered and discussed in L2 frameworks. See the next paragraph for the previous
works. However, as far as we know, the study of Lp frameworks has not been treated
under our boundary conditions yet. In this chapter we fill this gap by a simple ap-
proach using the linear theory of abstract parabolic equations constructed in the paper
[5]. The authors considered the equations called relaxation type, which contains our
linearized Cahn–Hilliard equation with the boundary conditions we consider. So we
obtain the maximal Lp regularity result on the linearized equations. For the nonlinear
Cahn–Hilliard equation (5.1.1)–(5.1.2) on permeable walls (5.1.3)–(5.1.4) and on non-
permeable walls (5.1.5)–(5.1.6), we prove local existence and uniqueness of solutions
by fixed point argument. The key is to show the contraction property of non-linear
term by restricting a small time interval and taking exponent p large, see Proposition
5.4 and Proposition 5.10. To extend global solutions, we use energy estimates from in-
tegration by parts. Combining with a priori estimates, we claim that the unique local
solution does not blow up at any time, which means the solution is a global solution.

The Cahn–Hilliard equation is known as describing the spinodal decomposition of
binary mixtures, which we can see in the cooling processes of alloys, glasses or poly-
mer mixtures (see [1, 13, 16, 17]). For the study of the Cahn–Hilliard equation, various
boundary conditions has been considered. At first, we would like to mention the fol-
lowing usual boundary conditions:

∂νµ = 0 on Σ,(5.1.7)

∂νu = 0 on Σ.(5.1.8)

The condition (5.1.7) derives that the total mass
´
Ω udx does not change for all time

t > 0. The other condition (5.1.8) is called the variational boundary condition since it
derives that the following bulk free energy

EΩ(u) :=

ˆ
Ω

(
1

2
|∇u|2 + F (u)

)
dx(5.1.9)

does not increase with (5.1.7). For the Cahn–Hilliard equation (5.1.1)–(5.1.2) with (5.1.7)–
(5.1.8), the global well-posedness result and large time behavior were constructed. See
[6, 21, 22].



Global well-posedness for a Cahn–Hilliard equation on bounded domains with permeable and
non-permeable walls in maximal regularity spaces 97

However, in [13] it was proposed by physicists that one should add the following
surface free energy

EΓ(u) :=

ˆ
Γ

(α
2
|∇Γu|2 +G(u)

)
dS(5.1.10)

to the bulk free energy EΩ(u), where ∇Γ is the surface gradient. Together with the
no-flux boundary condition (5.1.7), the total energy E(u) = EΩ(u) +EΓ(u) makes non-
increasing when the dynamic boundary condition

α∆Γu− ∂νu+G′(u) =
1

Γs
ut on Σ,(5.1.11)

is posed, with some Γs > 0. For this problem, see e.g., [3, 18, 20, 23]. We would like to
mention the paper [18]. The authors of [18] obtained results on the maximal Lp regular-
ity of the solution and asymptotic behavior of the solution of this problem. Moreover
it has shown the existence of a global attractor. These results was extended to the non-
isothermal setting by a similar maximal regularity result in [19].

The Wentzell boundary condition (5.1.3) we would like to study was proposed in
the paper [8]. Thanks to the boundary condition (5.1.4), the total energy E(u) is non-
increasing:

d

dt
E(u(t)) = −

ˆ
Ω
|∇µ|2dx− c

b

ˆ
Γ
µ2dS ≤ 0 (t > 0).(5.1.12)

Since d
dt(
´
Ω udx +

´
Γ u

dS
b ) = −c

´
Γ µ

dS
b , the case c = 0 corresponds to the case of the

conservation of the total mass in the bulk and on the boundary. In the paper [8] the
existence and uniqueness of a global solution were proved via the Caginalp type equa-
tion, which is the similar method in [20]. Later in [9], these results were extended under
more general assumptions. In the papers [23](c > 0) and [10](c = 0), it was shown that
each solution of this model converges to a steady state as time goes to infinity and their
convergence rate by using Lojasiewicz–Simon inequality.

In contrast to permeable walls, recently, the Cahn–Hilliard equation (5.1.1)–(5.1.2)
with (5.1.5)–(5.1.6) in the non-permeable walls was considered, e.g., [2,11,12]. The first
boundary condition (5.1.5) represents the Cahn–Hilliard equation on the boundary Γ.
The second boundary condition (5.1.6) called the variational boundary condition (5.1.4)
leads non-increasing forE(u). In this system,

´
Ω udx+

´
Γ u

dS
b is constant. The existence

and uniqueness of weak solutions and their asymptotic behavior were shown in [12].
The well-posedness results for this equation with singular potentials in [4] and numer-
ical results in [7] were also studied. More recently, another boundary condition was
proposed in [14] via an energetic variational approach that combines the least action
principle and Onsager’s principle of maximum energy dissipation.

In this chapter we prove the global existence and uniqueness of the Cahn–Hilliard
equation on permeable and non-permeable walls in maximal Lp regularity spaces. This
article is organized as follows. In Section 5.2, we study the equation on permeable
walls. In subsection 5.2.1, we give the linear theory. We use the general theory of
maximal regularity of relaxation type proved by Denk–Prüss–Zacher [5]. We collect
their result in Appendix A and apply it for the Cahn–Hilliard equation on permeable
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walls in Appendix B. In subsection 5.2.2, we give local well-popsedness of this equation
by using usual fixed point argument. The estimate we use is essentially based on the
paper in [19]. In subsection 5.2.3, we extend this local solution to the global solution
by a energy estimate and a priori estimate. In subsection 5.2.4, we focus on the case
c = 0 in the boundary condition (5.1.3). Since the estimates used in subsection 5.2.3
are different from the case c > 0, we calculate the case c = 0 again. We are able to
get existence and uniqueness result as well. In Section 5.3, we study the equation on
non-permeable walls. The strategy for non-permeable walls is almost same as Section
5.2, so we show a few estimates and give some comment, then we state our results.

Before we study the Cahn–Hilliard equation, we would like to mention about the
equation on the boundary. In this chapter we distinguish u, µ in the domain and uΓ, µΓ
on the boundary, but u|Γ = uΓ, µ|Γ = µΓ, where “|Γ” is the trace operator on the bound-
ary Γ. Moreover for the boundary condition (5.1.3) and (5.1.5), we replace (∆µ)|Γ with
∂tuΓ since ∂tu = ∆µ in the domain Ω. So the equations we analyze are as follows

∂tu = ∆µ, µ = −∆u+ F ′(u) in Q,

∂tuΓ + b∂νµ+ cµΓ = 0, −α∆ΓuΓ + ∂νu+G′(uΓ) =
µΓ
b on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

and 
∂tu = ∆µ, µ = −∆u+ F ′(u) in Q,

∂tuΓ + b∂νµ− c∆ΓµΓ = 0, −α∆ΓuΓ + ∂νu+G′(uΓ) =
µΓ
b on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

Here note that the unknown functions are u and uΓ. We do not use the functions µ and
µΓ except for energy estimates.

Throughout this chapter, we use fractional Sobolev space W s
p (J,X) for a Banach

space X , s ∈ R≥0 \N and 1 < p <∞, which is characterize as follows. Let [s] ∈ N∪ {0}
and {s} ∈ (0, 1) be s = [s] + {s}. Then by using real interpolation method, it is

W s
p (J,X) := (W [s]

p (J,X),W [s]+1
p (J,X)){s},p.

Similarly, Besov space is defined as follows.

Bs
p,p(Ω) := (W [s]

p (Ω),W [s]+1
p (Ω)){s},p.

To treat nonlinear term, let Cm−(R)(m ∈ N) be the space of all functions f ∈ Cm−1(R)
such that ∂αf is Lipschitz continuous for each |α| = m.

5.2 A Cahn–Hilliard equation on permeable walls
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5.2.1 The linear theory

In this section we study the following linearized equation of the form

(∗)


∂tv +∆2v = f in Q,

∂tvΓ − b∂ν∆v + bc∂νv − αbc∆ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

Here the functions f, g, h, v0, v0Γ are given and v, vΓ are unknown. Since this lin-
earized equation is included in the general framework studied by [5], we collect and
write down these results in Appendix A, and apply it in Appendix B. Then we get the
following linear theory.

Theorem 5.1. Let Ω ⊂ Rn be a bounded domain of classC4 and 1 < p <∞ be p ̸= 5/4, 5/2, 5.
Let κ0 = 1/4 − 1/(4p), κ1 = 1/2 − 1/(4p). Then the linearized Cahn–Hilliard equation (∗)
admits a unique solution

(v, vΓ) ∈ Z × ZΓ :=
(
W 1
p (J, Lp(Ω)) ∩ Lp(J,W 4

p (Ω))
)

×
(
W 1+κ0
p (J, Lp(Γ)) ∩W 1

p (J,W
4κ0
p (Γ)) ∩ Lp(J,W 3+4κ0

p (Γ))
)

if and only if

(f, g, h) ∈ X × Y0 × Y1

:= Lp(J, Lp(Ω))× (W κ0
p (J, Lp(Γ)) ∩ Lp(J,W 4κ0(Γ)))

× (W κ1
p (J, Lp(Γ)) ∩ Lp(J,W 4κ1(Γ))),

(v0, v0Γ) ∈ πZ × πZΓ := B4−4/p
p,p (Ω)×B4−4/p

p,p (Γ),

and the compatibility conditions

v0|Γ = v0Γ on Γ if p > 5/4,

− (∆v0)|Γ − b∂νv0Γ + αb∆Γv0Γ = h|t=0 on Γ if p > 5/2,

g|t=0 + b∂ν∆v0 − bc∂νv0 + αbc∆Γv0Γ ∈ B1−5/p
p,p (Γ) if p > 5.

are satisfied.

Remark 5.2. If we use time weighted Lp maximal regularity result, then we are able to
relax the compatibility conditions while the regularity class of the solution for t > 0 is
same, see [15].
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5.2.2 Local well-posedness

In this section we prove the local well-posedness for the Cahn–Hilliard equation on
permeable walls

(CH)per.


∂tu+∆2u = ∆F ′(u) + f in Q,

∂tuΓ − b∂ν∆u+ bc∂νu− αbc∆ΓuΓ = −b∂νF ′(u)− bcG′(uΓ) + g on Σ,

u|Γ = uΓ, −(∆u)|Γ − b∂νu+ αb∆ΓuΓ = −F ′(u)|Γ + bG′(uΓ) on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

Here F ∈ C4−(R), G ∈ C2−(R). The original equation we explained in the introduc-
tion is the case f = g = 0, but we are able to add non-homogeneous terms f, g. We
will prove existence and uniqueness of this solution. So first we need to consider the
compatibility conditions for the boundary. Let (g, u0, u0Γ) ∈ Y0 × πZ × πZΓ satisfy the
following compatibility conditions

u0|Γ = u0Γ on Γ if p > 5/4,(5.2.1)

− (∆u0)|Γ − b∂νu0Γ + αb∆Γu0Γ = −F ′(u0)|Γ + bG′(u0Γ)on Γ if p > 5/2,(5.2.2)

g|t=0 + b∂ν∆u0 − bc∂νu0 + αbc∆Γu0Γ

− b∂νF
′(u0)− bcG′(u0Γ) ∈ B1−5/p

p,p (Γ) if p > 5.(5.2.3)

We use the notation Ja := (0, a) ⊂ J , X(a), Yi(a)(i = 0, 1) and Z(a), ZΓ(a) to indicate
the time interval under consideration.

We can state now the following main result of this section.

Theorem 5.3. Let 1 < p < ∞ be p > (n + 4)/4 and p ̸= 5/2, 5, and let (f, g, u0, u0Γ) ∈
X(T ) × Y0(T ) × πZ × πZΓ satisfy the compatibility conditions (5.2.1)–(5.2.3) and F ∈
C4−(R), G ∈ C2−(R). Then there is an a ∈ (0, T ] and a unique solution (u, uΓ) ∈ Z(a) ×
ZΓ(a) of (CH)per.. Furthermore the solution depends continuously on the data, and if the
data (f, g) are independent of t, the map (u0, u0Γ) 7→ (u(t), uΓ(t)) defines a local semiflow in
the natural phase manifold M defined by πZ × πZΓ and the compatibility conditions (5.2.1)–
(5.2.3).

Proof. The proof is based on the contraction mapping theorem. At first we take the
function (u∗, u∗Γ) ∈ Z(T )× ZΓ(T ) that is the solution of the linearized equation

∂tu
∗ +∆2u∗ = f in Q,

∂tu
∗
Γ − b∂ν∆u

∗ + bc∂νu
∗ − αbc∆Γu

∗
Γ = g − g̃ on Σ,

u∗|Γ = u∗Γ, −(∆u∗)|Γ − b∂νu
∗ + αb∆Γu

∗
Γ = −h̃ on Σ,

u∗(0) = u0 in Ω, u∗Γ(0) = u0Γ on Γ.

Here

g̃ =

{
0 if p < 5,

e−t∆
2
Γ(b∂νF

′(u0) + bcG′(u0Γ)) if 5 < p,
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h̃ =

{
0 if p < 5/2,

e−t∆
2
Γ(F ′(u0)|Γ − bG′(u0Γ)) if 5/2 < p,

are the modified terms, so that we are able to use linear theory. Note that −∆2
Γ is the

generator of an analytic (C0)-semigroup in B1−5/p
p,p (Γ) and B2−5/p

p,p (Γ).
For given a ∈ (0, T ] to be fixed later, we define

E := {(u, uΓ) ∈ Z(a)× ZΓ(a) | u|Γ = uΓ}, 0E := {(u, uΓ) ∈ E | (u, uΓ)|t=0 = (0, 0)}

with canonical norm ∥ · ∥E and

F := X(a)× Y0(a)× Y1(a), 0F := {(f, g, h) ∈ F | h|t=0 = 0}

with norm ∥ · ∥F. Define the linear operator L : E → F by means of

L(v, vΓ) :=

 ∂tv +∆2v

∂tvΓ − b∂ν∆v + bc∂νv − αbc∆ΓvΓ
−(∆v)|Γ − b∂νv + αb∆ΓvΓ

 .
By theorem 5.1, L : 0E → 0F is linear, bounded and bijective, hence an isomorphism.
Next we define the nonlinear mapping N : E× 0E → 0F by

N((u∗, u∗Γ), (v, vΓ)) :=

 ∆F ′(u∗ + v)

−b∂νF ′(u∗ + v)− bcG′(u∗Γ + vΓ) + g̃

−F ′(u∗ + v)|Γ + bG′(u∗Γ + vΓ) + h̃

 .
We will show the key proposition, which needs to use contraction mapping theorem

and to show the range of N is 0F. Let BR((0, 0)) ⊂ 0E be a closed ball with center (0, 0),
radius R > 0, and set BR((u∗, u∗Γ)) := (u∗, u∗Γ) + BR((0, 0)).

Proposition 5.4. Let p > (n + 4)/4, F ∈ C4−(R), G ∈ C2−(R), Ja ⊂ J and R > 0. Then
there exist functions λj = λj(a) with λj(a) → 0 as a → 0, j = 1, · · · , 5 such that for all
(u, uΓ), (v, vΓ) ∈ BR((u∗, u∗Γ)) the following statements hold:

∥∆F ′(u)−∆F ′(v)∥X ≤ λ1(a)∥(u, uΓ)− (v, vΓ)∥E,
∥∂νF ′(u)− ∂νF

′(v)∥Y0 ≤ λ2(a)∥(u, uΓ)− (v, vΓ)∥E,
∥G′(uΓ)−G′(vΓ)∥Y0 ≤ λ3(a)∥(u, uΓ)− (v, vΓ)∥E,

∥F ′(u)|Γ − F ′(v)|Γ∥Y1 ≤ λ4(a)∥(u, uΓ)− (v, vΓ)∥E,
∥G′(uΓ)−G′(vΓ)∥Y1 ≤ λ5(a)∥(u, uΓ)− (v, vΓ)∥E.

The first and second inequalities are the same in [18, Proposition 3.2] and the others
are easily followed.

We see that u = u∗ + v, uΓ = u∗Γ + vΓ is a unique solution of (CH)per. if and only if

L(v, vΓ) = N((u∗, u∗Γ), (v, vΓ)) i.e. (v, vΓ) = L−1N((u∗, u∗Γ), (v, vΓ))(5.2.4)
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since

L(u∗ + v, u∗Γ + vΓ) = L(u∗, u∗Γ) + L(v, vΓ)

=

 f

g − g̃

−h̃

+

 ∆F ′(u∗ + v)

−b∂νF ′(u∗ + v)− bcG′(u∗Γ + vΓ) + g̃

−F ′(u∗ + v)|Γ + bG′(u∗Γ + vΓ) + h̃


=

 ∆F ′(u∗ + v) + f

−b∂νF ′(u∗ + v)− bcG′(u∗Γ + vΓ) + g

−F ′(u∗ + v)|Γ + bG′(u∗Γ + vΓ)

 ,
(u∗ + v, u∗Γ + vΓ)(0) = (u∗, u∗Γ)(0) + (v, vΓ)(0) = (u0, u0Γ).

Define the operator S : BR((0, 0)) → 0E by means of S(v, vΓ) := L−1N((u∗, u∗Γ), (v, vΓ)).
We show that the operator S is a contraction map on BR((0, 0)) with small time interval
Ja.

First we prove that SBR((0, 0)) ⊂ BR((0, 0)) by the following calculation. Let (w,wΓ) ∈
BR((0, 0)).

∥S(w,wΓ)∥E ≤ ∥L−1∥L(F,E)∥N((u∗, u∗Γ), (w,wΓ))∥F
≤ C(∥N((u∗, u∗Γ), (w,wΓ))−N((u∗, u∗Γ), (0, 0))∥F + ∥N((u∗, u∗Γ), (0, 0))∥F)
≤ C(∥∆F ′(u∗ + w)−∆F ′(u∗)∥X + ∥∂νF ′(u∗ + w)− ∂νF

′(u∗)∥Y0
+ ∥G′(u∗Γ + wΓ)−G′(u∗Γ)∥Y0 + ∥F ′(u∗ + w)|Γ − F ′(u∗)|Γ∥Y1 + ∥G′(u∗Γ + wΓ)−G′(u∗Γ)∥Y1
+ ∥∆F ′(u∗)∥X + ∥∂νF ′(u∗)∥Y0 + ∥G′(u∗Γ)∥Y0 + ∥g̃∥Y0
+ ∥F ′(u∗)|Γ∥Y1 + ∥G′(u∗Γ)∥Y1 + ∥h̃∥Y1)

≤ C(λ(a)∥(w,wΓ)∥E + ∥∆F ′(u∗)∥X + ∥∂νF ′(u∗)∥Y0 + ∥G′(u∗Γ)∥Y0 + ∥g̃∥Y0
+ ∥F ′(u∗)|Γ∥Y1 + ∥G′(u∗Γ)∥Y1 + ∥h̃∥Y1)

for some function λ(a), which goes to 0 as a → 0, since (u∗, u∗Γ), (u
∗ + w, u∗Γ + wΓ) ∈

BR((u∗, u∗Γ)) and Proposition 5.4. The remaining terms ∥∆F ′(u∗)∥X(a), ∥∂νF ′(u∗)∥Y0(a),
∥G′(u∗Γ)∥Y0(a), ∥g̃∥Y0(a), ∥F ′(u∗)|Γ∥Y1(a), ∥G′(u∗Γ)∥Y1(a), ∥h̃∥Y1(a) also goes to 0 as a → 0.
So we have ∥S(w,wΓ)∥E ≤ R, i.e. SBR((0, 0)) ⊂ BR((0, 0)) when a is sufficiently small.

We next show the following contraction property. Let (w1, w1Γ), (w2, w2Γ) ∈ BR((0, 0)).

∥S(w1, w1Γ)− S(w2, w2Γ)∥E
≤∥L−1∥L(F,E)∥N((u∗, u∗Γ), (w1, w1Γ))−N((u∗, u∗Γ), (w2, w2Γ))∥F
≤C(∥∆F ′(u∗ + w1)−∆F ′(u∗ + w2)∥X + ∥∂νF ′(u∗ + w1)− ∂νF

′(u∗ + w2)∥Y0
+ ∥G′(u∗Γ + w1Γ)−G′(u∗Γ + w2Γ)∥Y0 + ∥F ′(u∗Γ + w1Γ)|Γ − F ′(u∗Γ + w2Γ)|Γ∥Y1
+ ∥G′(u∗Γ + w1Γ)−G′(u∗Γ + w2Γ)∥Y1)

≤1

2
∥(w1, w1Γ)− (w2, w2Γ)∥E,

provided a is sufficiently small by Proposition 5.4.
Therefore from the fixed point theorem, we get a unique solution (v, vΓ) ∈ BR((0, 0))

such that (v, vΓ) = L−1N((u∗, u∗Γ), (v, vΓ)). The function (u∗, u∗Γ) depends continuously
on the data f, g and (v, vΓ) depends continuously on (u∗, u∗Γ). This implies that the
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unique solution u = u∗ + v and uΓ = u∗Γ + vΓ of (CH)per. depends continuously on the
data as well. If the data f, g are independent of the time, then translation is invariant.
So the solution map (u0, u0Γ) 7→ (u(t), uΓ(t)) defines a local semiflow in the natural
phase manifold πZ × πZΓ and the compatibility conditions (5.2.1)–(5.2.3).

Remark 5.5. This proof also show that the existence of maximal time interval Jmax =

(0, amax), which is characterized by lim
t→amax

u(t) does not exist in πZ

lim
t→amax

uΓ(t) does not exist in πZΓ

and/or ∥(u, uΓ)∥E(amax) = ∞,

if amax < T .

5.2.3 Global well-posedness

In this section we consider the global solution for the equation with non-homogeneous
terms f, g;

∂tu = ∆µ+ f, µ = −∆u+ F ′(u) in Q,

∂tuΓ + b∂νµ+ cµΓ = g, −α∆ΓuΓ + ∂νu+G′(uΓ) =
µΓ
b on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

As we explained in introduction, the unknown functions are only u and uΓ though we
use µ and µΓ. By the subsection 5.2.2 there is a unique solution on some maximal time
interval Jmax = (0, amax). We fix some arbitrary Ja for 0 < a ≤ amax(≤ T ) and show the
boundedness near the point t = a from a priori estimate derived from energy estimate.
Multiplying the equation by u and µ, integration by parts and the boundary conditions
lead

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u)

)
+ |∇µ|22

=−
ˆ
Ω
∇µ · ∇u+

ˆ
Γ
uΓ∂νµ+

ˆ
Γ
∂tuΓ∂νu+

ˆ
Γ
µΓ∂νµ+

ˆ
Ω
fu+

ˆ
Ω
fµ,

⇒ d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ

)
+ |∇µ|22 +

c

b
|µΓ|22,Γ

=−
ˆ
Ω
∇µ · ∇u− c

b

ˆ
Γ
uΓµΓ +

ˆ
Γ
∂tuΓ(∂νu− µΓ

b
) +

ˆ
Ω
fu+

ˆ
Ω
fµ+

1

b

ˆ
Γ
gµΓ

=−
ˆ
Ω
∇µ · ∇u− c

b

ˆ
Γ
uΓµΓ +

ˆ
Γ
∂tuΓ(α∆ΓuΓ +G′(uΓ)) +

ˆ
Ω
fu+

ˆ
Ω
fµ+

1

b

ˆ
Γ
gµΓ

⇒ d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

ˆ
Γ
G(uΓ)

)
+ |∇µ|22 +

c

b
|µΓ|22,Γ

=−
ˆ
Ω
∇µ · ∇u− c

b

ˆ
Γ
uΓµΓ +

ˆ
Ω
fu+

ˆ
Ω
fµ+

1

b

ˆ
Γ
gµΓ.
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For simplicity, we set

E(u, uΓ) :=
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

ˆ
Γ
G(uΓ).

By Poincaré’s inequality |µ|2 ≤ C(|∇µ|2 + |µΓ|2,Γ) and Young’s inequality with ε, we
have

d

dt
E(u, uΓ) + C1(|∇µ|22 + |µΓ|22,Γ) ≤ C2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C3(|f |22 + |g|22,Γ)

for some Ci > 0 (i = 1, 2, 3).
To get energy estimate, we assume that F and G satisfy the following condition:{

F (s) ≥ −c1, c1 > 0, s ∈ R,
G(s) ≥ − 1

2bs
2 − c2, c2 > 0, s ∈ R.

(5.2.5)

Note that the typical example in the introduction satisfies this assumption. Under this
condition, the function E(u, uΓ) is bounded from below. We get the inequality

d

dt
E(u, uΓ) + C1(|∇µ|22 + |µΓ|22,Γ) ≤ C2E(u, uΓ) + C3(|f |22 + |g|22,Γ + 1).

We apply Gronwall’s lemma, then we get energy estimate

E(u, uΓ) ≤ C

(
E(u0, u0Γ) +

ˆ amax

0
(|f |22 + |g|22,Γ + 1)

)
and

(u, uΓ) ∈ L∞(Jamax ,W
1
2 (Ω)×W 1

2 (Γ))(5.2.6)

when (f, g, u0, u0Γ) ∈ X(T ) × Y0(T ) × πZ × πZΓ as p ≥ 2 and p > (n + 4)/4. Here the
constant C depends only on T > 0 and is independent of amax.

We use the following lemma, which is obtained in the paper [18, Lemma 4.1]. To do
so, we have to assume that the dimension n = 2, 3 and some growth condition on F

and G: {
|F ′′′

(s)| ≤ C(1 + |s|β), s ∈ R,
|G′

(s)| ≤ C(1 + |s|β+2), s ∈ R,
with

{
β < 3 in the case n = 3,

β > 0 in the case n = 2.
(5.2.7)

Lemma 5.6. Suppose 2 ≤ p < ∞, n = 2, 3, the function F and G satisfy (5.2.5) and (5.2.7)
and let (u, uΓ) ∈ E(a) be the solution of (CH)per.. Then there exist constants m,C > 0 and
δ ∈ (0, 1), independent of a > 0, such that

∥∆F ′(u)∥X(a) + ∥∂νF ′(u)∥Y0(a) + ∥G′(uΓ)∥Y0(a) + ∥F ′(u)|Γ∥Y1(a) + ∥G′(uΓ)∥Y1(a)
≤C(1 + ∥u∥δZ(a)∥u∥

m
L∞(Ja,W 1

2 (Ω))).

Proof. The estimates of the first term ∥∆F ′(u)∥X(a) and the second term ∥∂νF ′(u)∥Y0(a)
is just in [18, Lemma 4.1]. Since the trace operator is bounded from W

1/2
p (Ja, Lp(Ω)) ∩
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Lp(Ja,W
2
p (Ω)) to Y1, Y1 ⊂ Y0 and u|Γ = uΓ, the other three terms are also estimated.

See [19, Appendix (b)].

Combining maximal Lp regularity estimate,

∥(u, uΓ)∥E(a)
≤C(∥∆F ′(u)∥X(a) + ∥∂νF ′(u)∥Y0(a) + ∥G′(uΓ)∥Y0(a) + ∥F ′(u)|Γ∥Y1(a)

+ ∥G′(uΓ)∥Y1(a) + ∥f∥X(T ) + ∥g∥Y0(T ) + ∥(u0, u0Γ)∥πZ×πZΓ
)

≤C̃(1 + ∥u∥δZ(a)),(5.2.8)

where the constant C̃ is independent of a. Hence ∥u∥Z(a) is bounded and it derives the
boundedness of ∥uΓ∥ZΓ(a). Therefore the solution (u, uΓ) ∈ E(a) is global solution, i.e.
amax = T . We obtained the following first main theorem of this chapter.

Theorem 5.7. Suppose 2 ≤ p <∞, p ̸= 5/2, 5, n = 2, 3 and that the function F andG satisfy
(5.2.5) and (5.2.7). Then for any (f, g, u0, u0Γ) ∈ X(T ) × Y0(T ) × πZ × πZΓ satisfying
the compatibility conditions (5.2.1)–(5.2.3), there exists a unique global solution (u, uΓ) ∈
Z(T ) × ZΓ(T ) of (CH)per.. The solution depends continuously on the given data and if the
data are independent of t, the map (u0, u0Γ) 7→ (u(t), uΓ(t)) defines a global semiflow on the
natural phase manifold πZ × πZΓ and the compatibility conditions (5.2.1)–(5.2.3).

5.2.4 The degenerate case: c = 0

In this section we focus on the case c = 0 in the boundary condition (5.1.3). Almost all
results for now can be applied to this case. The linear theory and local well-posedness
result is completely the same as the case c > 0. The point different from the case c > 0

is the energy estimate. Multiplying the equation by u and µ, integration by parts and
Young’s inequality lead

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

ˆ
Γ
G(uΓ)

)
+ C1|∇µ|22

≤C2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C3|f |22 +

ˆ
Ω
fµ+

1

b

ˆ
Γ
gµΓ

for some Ci > 0 (i = 1, 2, 3). Here we assume
´
Ω fdx+

´
Γ g

dS
b = 0. Then we see

d

dt

ˆ
Ω
udx =

ˆ
Ω
(∆µ+ f)dx

=

ˆ
Γ
∂νµdS +

ˆ
Ω
fdx

⇒ d

dt

(ˆ
Ω
udx+

ˆ
Γ
uΓ
dS

b

)
=

ˆ
Ω
fdx+

ˆ
Γ
g
dS

b
= 0

and
ˆ
Ω
fµ+

1

b

ˆ
Γ
gµΓ =

ˆ
Ω
f(µ− µ) +

1

b

ˆ
Γ
g(µΓ − µ)

≤ C1

2
|∇µ|22 + C4(|f |22 + |g|22),
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where µ = 1
|Ω|
´
Ω µdx and some C4 > 0 by Poincaré’s inequality. This implies that

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

ˆ
Γ
G(uΓ)

)
+ C̃1|∇µ|22

≤C̃2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C̃3(|f |22 + |g|22)

for some C̃i > 0 (i = 1, 2, 3). This inequality deduces a priori estimate (5.2.6) under the
assumption (5.2.5). Thus we have the global well-posedness result for the case c = 0.

Theorem 5.8. Suppose 2 ≤ p <∞, p ̸= 5/2, 5, n = 2, 3 and that the function F andG satisfy
(5.2.5) and (5.2.7). Then for any (f, g, u0, u0Γ) ∈ X(T ) × Y0(T ) × πZ × πZΓ satisfying the
compatibility conditions (5.2.1)–(5.2.3) with c = 0 and

´
Ω fdx +

´
Γ g

dS
b = 0, there exists a

unique global solution (u, uΓ) ∈ Z(T )× ZΓ(T ) of (CH)per. with c = 0.

5.3 A Cahn–Hilliard equation on non-permeable walls

5.3.1 The linear theory

In this section we study the linear theory of the Cahn–Hilliard equation on non-permeable
walls. The linear equation is as follows:

(∗∗)


∂tv +∆2v = f in Q,

∂tvΓ − b∂ν∆v − bc∆Γ∂νv + αbc∆2
ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

We again use the general theory in [5] and the assumption of the theorem is checked in
Appendix C. However we have to assume a condition on the coefficients α, b, c to get
(LS) condition. The assumption is the following:

Assumption (A) The coefficients α, b, c > 0 satisfy αbc < 2(αb+ c).
Let ZΓ :=W 1+κ0

p (J, Lp(Γ)) ∩ Lp(J,W 4+4κ0
p (Γ)) and πZΓ := B

5−5/p
p,p (Γ)

Theorem 5.9. Let Ω ⊂ Rn be a bounded domain of classC5 and 1 < p <∞ be p ̸= 5/4, 5/2, 5.
Suppose that the constants α, b, c > 0 satisfy the Assumption (A). Then the linearized Cahn–
Hilliard equation (∗∗) admits a unique solution (v, vΓ) ∈ Z×ZΓ if and only if (f, g, h) ∈ X×
Y0 × Y1 and (v0, v0Γ) ∈ πZ × πZΓ, and the compatibility conditions

v0|Γ = v0Γ on Γ if p > 5/4,

− (∆v0)|Γ − b∂νv0Γ + αb∆Γv0Γ = h|t=0 on Γ if p > 5/2,

g|t=0 + b∂ν∆v0 − bc∆Γ∂νv0 − αbc∆2
Γv0Γ ∈ B1−5/p

p,p (Γ) if p > 5,

are satisfied.
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5.3.2 The nonlinear theory

In this subsection we state the nonlinear theory. We state the different point from the
case of permeable walls. We need the estimate of the nonlinear term ∆ΓG

′(uΓ) cor-
responding to Proposition 5.4 and Lemma 5.6. From now, we restrict the case that
G(uΓ) = (gs/2)u

2
Γ − hsuΓ with gs > 0, hs ̸= 0. Thus we study the Cahn–Hilliard equa-

tion on non-permeable walls.

(CH)non-per.


∂tu = ∆µ+ f, µ = −∆u+ F ′(u) in Q,

∂tuΓ + b∂νµ− c∆ΓµΓ = g, −α∆ΓuΓ + ∂νu+ gsu
2
Γ − hs =

µΓ
b on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

We see the following proposition.

Proposition 5.10. Let p > (n + 4)/4, Ja ⊂ J and R > 0. Then there exist functions
λ6 = λ6(a) with λ6(a) → 0 as a → 0 such that for all (u, uΓ), (v, vΓ) ∈ BR((u∗, u∗Γ)) the
following statements hold:

∥∆ΓuΓ −∆ΓvΓ∥Y0 ≤ λ6(a)∥(u, uΓ)− (v, vΓ)∥E.

This proposition is enough to show the local well-posedness result. To extend the
global solution, we show the energy estimate. Multiplying the equation by u and µ,
integration by parts and the boundary conditions lead

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

ˆ
Γ
G(uΓ)

)
+ |∇µ|22 +

c

b
|∇ΓµΓ|22,Γ

=−
ˆ
Ω
∇µ · ∇u− c

b

ˆ
Γ
∇ΓuΓ · ∇ΓµΓ +

ˆ
Ω
fu+

ˆ
Ω
fµ+

1

b

ˆ
Γ
guΓ +

1

b

ˆ
Γ
gµΓ.

Here as the case c = 0, we assume that
´
Ω fdx+

´
Γ g

dS
b = 0. Then we have

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

ˆ
Ω
F (u) +

1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

ˆ
Γ
G(uΓ)

)
+ C1(|∇µ|22 + |∇ΓµΓ|22,Γ)

≤C2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C3(|f |22 + |g|22)

for some Ci > 0 (i = 1, 2, 3).
Under the assumption (5.2.5) on F , we see (u, uΓ) ∈ L∞(Jamax ,W

1
2 (Ω) ×W 1

2 (Γ)).
We prepare the following lemma.

Lemma 5.11. Suppose 2 ≤ p <∞, n = 2, 3, let (u, uΓ) ∈ E(a) be the solution of (CH)non-per..
Then there exist constants C > 0 and δ ∈ (0, 1), independent of a > 0, such that

∥∆ΓuΓ∥Y0(a) ≤ C(1 + ∥u∥δZ(a)∥u∥
1−δ
L∞(Ja,W 1

2 (Ω))
).
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Proof. By the trace theory and the mixed derivative theorem, it is enough to see the
existence of 0 < δ < 1

∥u∥
W

3/4
p (Ja,Lp(Ω))

≤ C∥u∥δ
W

7/8
p (Ja,W

1/2
p (Ω))

∥u∥1−δ
L∞(Ja,W 1

2 (Ω))
.

By Gagliardo–Nirenberg’s inequality, we check the existence of δ satisfying{
3
4 − 1

p ≤ δ(78 − 1
p)

−n
p ≤ δ(12 − n

p ) + (1− δ)(1− n
2 ).

Since the second inequality is n
2 −

n
p −1 ≤ δ(n2 −

n
p −

1
2), we choose δ is sufficiently close

to 1, then the inequalities are satisfied.

Combining the estimates in (5.6), we are able to prove the global well-posedness
result.

Theorem 5.12. Suppose 2 ≤ p < ∞, p ̸= 5/2, 5, n = 2, 3 and that the function F satisfy
(5.2.5) and (5.2.7). Suppose that the constants α, b, c > 0 satisfy the Assumption (A). Then for
any (f, g, u0, u0Γ) ∈ X(T )× Y0(T )× πZ × πZΓ satisfying the compatibility conditions

u0|Γ = u0Γ on Γ if p > 5/4,

− (∆u0)|Γ − b∂νu0Γ + αb∆Γu0Γ = −F ′(u0)|Γ + bgsu0Γ − bhs on Γ if p > 5/2,

g|t=0 + b∂ν∆u0 + bc∂νu0 − αbc∆2
Γu0Γ

− b∂νF
′(u0) + bcgs∆Γu0Γ ∈ B1−5/p

p,p (Γ) if p > 5,

and
´
Ω fdx +

´
Γ g

dS
b = 0, there exists a unique global solution (u, uΓ) ∈ Z(T ) × ZΓ(T ) of

(CH)non-per..

5.4 Appendix A

We collect the linear theory of the dynamic boundary condition proved in the papers
[5]. We represent the simplified their result to fit our equations. They studied the
parabolic initial boundary value problems of the general form (so called relaxation type)

∂tu+A(t, x,D)u = f(t, x) in Q,

∂tρ+ B0(t, x,D)u+ C0(t, x,DΓ)ρ = g0(t, x) on Σ,

Bj(t, x,D)u+ Cj(t, x,DΓ)ρ = gj(t, x) (j = 1, · · · ,m) on Σ,

u(0, x) = u0(x) in Ω,

ρ(0, x) = ρ0(x) on Γ,

where

A(t, x,D) =
∑

|α|≤2m

aα(t, x)D
α,

Bj(t, x,D) =
∑

|β|≤mj

bjβ(t, x)D
β,
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Cj(t, x,DΓ) =
∑

|γ|≤kj

cjγ(t, x)D
γ
Γ,

are differential operators of order 2m, 0 ≤ mj < 2m, 0 ≤ kj (j = 0, 1, · · · ,m), re-
spectively, with m ∈ N and mj , kj ∈ N0. The symbols D, respectively DΓ mean −i∇,
respectively −i∇Γ, where ∇ denotes the gradient in Ω and ∇Γ the surface gradient on
Γ. Assume that all boundary operators Bj and at least one Cj are nontrivial, and set
kj = −∞ in case Cj = 0. The initial values u0, ρ0 as well as the right-hand sides f and
gj are given functions.

Let κj := 1 −mj/(2m) − 1/(2mp), lj := kj −mj +m0 and l := maxj=0,1,··· ,mlj . We
state their results limited to the case l ≤ 2m, the coefficients aα, bjβ and cjγ are smooth,
Ω is a bounded domain and u and ρ are C-valued functions, which adopt our case.

The essential assumptions are the normally ellipticity condition (E) and the Lopatinskii–
Shapiro condition (LS), which are necessary for the maximal Lp regularity, hence are
unavoidable. For the case ℓ < 2m, which is just applied to the linearized Cahn–Hilliard
equation on permeable walls, we need another necessary condition called the asymptotic
Lopatinskii–Shapiro condition (LS−∞). Let the subscript # be the principal part of the
corresponding differential operator. The assumptions are as follows.
(E) For all t ∈ J , x ∈ Ω and ξ ∈ Rn, |ξ| = 1, we have

σ (A#(t, x, ξ)) ⊂ C+ := {z ∈ C | Re z > 0}.

(LS) For each fixed t ∈ J and x ∈ Γ, and for all ξ′ ∈ Rn−1, λ ∈ C+ with |ξ′| + |λ| ̸= 0,
the ordinary differential equation in R+ = [0,∞) given by

(λ+A#(t, x, ξ
′, Dy)) v(y) = 0 (y > 0),

B0#(t, x, ξ
′, Dy)v(0) + (λ+ C0#(t, x, ξ′))σ = 0,

Bj#(t, x, ξ′, Dy)v(0) + Cj#(t, x, ξ′)σ = 0 (j = 1, · · · ,m)

has only the trivial solution (v, σ) = (0, 0).
(LS−

∞) Let ℓ < 2m. For all fixed t ∈ J and x ∈ Γ, and for all ξ′ ∈ Rn−1, λ ∈ C+ with
|ξ′|+ |λ| ̸= 0, the ordinary differential equation in R+ = [0,∞) given by{

(λ+A#(t, x, ξ
′, Dy)) v(y) = 0 (y > 0),

Bj#(t, x, ξ′, Dy)v(0) = 0 (j = 1, · · · ,m)

and for |ξ′| = 1 and λ ∈ C+,
A#(t, x, ξ

′, Dy)v(y) = 0 (y > 0),

B0#(t, x, ξ
′, Dy)v(0) + (λ+ C0#(t, x, ξ′))σ = 0,

Bj#(t, x, ξ′, Dy)v(0) + Cj#(t, x, ξ′)σ = 0 (j = 1, · · · ,m)

admit the unique trivial solution (v, σ) = (0, 0).
The existence and uniqueness results of this boundary condition are as follows.

Theorem 5.13 (Denk–Prüss–Zacher). Let Ω ⊂ Rn be a bounded domain of class C2m+l−m0 .
Assume (E), (LS) and for ℓ < 2m the condition (LS−∞) and the coefficients aα, bjβ , cjγ are
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smooth. Let 1 < p < ∞ be such that κj ̸= 1/p, j = 0, 1, · · · ,m. Then the linear equation
admits a unique solution

(u, ρ) ∈ Z × Zρ :=
(
W 1
p (J, Lp(Ω)) ∩ Lp(J,W 2m

p (Ω))
)

×
(
W 1+κ0
p (J, Lp(Γ)) ∩W 1

p (J,W
2mκ0
p (Γ)) ∩ Lp(J,W ℓ+2mκ0

p (Γ))
)

if and only if

(f, g0, g1, · · · , gm) ∈ X × Y0 × Y1 × · · · × Ym

:= Lp(J, Lp(Ω))×⊗m
j=0

(
W

κj
p (J, Lp(Γ)) ∩ Lp(J,W

2mκj
p (Γ))

)
(u0, ρ0) ∈ πZu × πZρ := B2m(1−1/p)

p,p (Ω)×B2mκ0+ℓ(1−1/p)
p,p (Γ),

and the compatibility conditions

Bj(0, x)u0(x) + Cj(0, x)ρ0(x) = gj(0, x), x ∈ Γ, if κj > 1/p, j = 1, 2, · · · ,m,

g0(0, ·)− B0(0, ·)u0 − C0(0, ·)ρ0 ∈ π1Zρ := B2m(κ0−1/p)
p,p (Γ), if κ0 > 1/p,

are satisfied.

In [5], they treated the case l > 2m, non-smooth coefficients case and u, ρ are HT Ba-
nach valued case. However it is sufficient to consider above statement. By the Newton
polygon method, they characterized

Zρ =W 1+κ0
p (J, Lp(Γ)) ∩ Lp(J,W ℓ+2mκ0

p (Γ))

when ℓ = 2m, which is applied to the linearized Cahn–Hilliard equation on non-
permeable walls.

5.5 Appendix B

We apply this general linear theory for the linearized Cahn–Hilliard equation on per-
meable walls:

(∗)per.


∂tv +∆2v = f in Q,

∂tvΓ − b∂ν∆v + bc∂νv − αbc∆ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

This problem fits into the setting A = ∆2, B0 = −b∂ν∆, C0 = −αbc∆Γ, B1 = −(∆·)|Γ,
C1 = αb∆Γ, B2 = 1, C2 = −1, g2 = 0 and m = 2, m0 = 3, k0 = 2, m1 = 2, k1 = 2,
m2 = 0, k2 = 0, ℓ0 = 2, ℓ1 = 3, ℓ2 = 3. Then ℓ = ℓ1 = ℓ2 = 3 < 2m, κ0 = 1/4 − 1/(4p),
κ1 = 1/2− 1/(4p) and κ2 = 1− 1/(4p).

We check the conditions (E) and (LS). Since σ (A#(t, x, ξ)) = σ(|ξ|4) = {1} ⊂ C+ for
ξ ∈ Rn, |ξ| = 1, the condition (E) is satisfied.
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To see (LS) condition, we need to solve the ordinary differential equation(
(λ+ (−|ξ′|2 + ∂2y)

2
)
v(y) = 0 (y > 0),(5.5.1)

− b(−∂y)(−|ξ′|2 + ∂2y)v(0) +
(
(λ− αbc(−|ξ′|2)

)
σ = 0,(5.5.2)

v(0)− σ = 0,(5.5.3)

− (−|ξ′|2 + ∂2y)v(0) + αb(−|ξ′|2)σ = 0.(5.5.4)

For the case λ = 0, from (5.5.1), v(y) = (c1 + c2y)e
−|ξ′|y for some c1, c2 ∈ C. By the

boundary conditions (5.5.2)–(5.5.4),{
−b|ξ′|2(c2 − |ξ′|c1) + b(3|ξ′|2c2 − |ξ′|3c1) + αbc|ξ′|2c1 = 0,

|ξ′|2c1 − (−2|ξ′|c2 + |ξ′|2c1)− αb|ξ′|2c1 = 0.

⇒

{
αcc1 + 2c2 = 0,

αb|ξ′|c1 − 2c2 = 0.

The determinant of the coefficient matrix is −2(αc + αb|ξ′|) ̸= 0. So we have (c1, c2) =

(0, 0), which implies the unique trivial solution (v, σ) = (0, 0).
For the case λ ̸= 0, v(y) = c1e

z1y + c2e
z2y with

zk := −
√

|ξ′|2 + (−1)k−1
√
−λ (k = 1, 2).

Here and hereafter we shall use the argument of the square root of complex numbers
belongs (−π/2, π/2], so that the real part of the square root of complex numbers is non-
negative. By the boundary conditions (5.5.2)–(5.5.4),{

−b|ξ′|2(c1z1 + c2z2) + b(c1z
3
1 + c2z

3
2) + (λ+ αbc|ξ′|2)(c1 + c2) = 0,

|ξ′|2(c1 + c2)− (c1z
2
1 + c2z

2
2)− αb|ξ′|2(c1 + c2) = 0.

⇒

{
bcz1(z

2
1 − |ξ′|2) + bcz2(z

2
2 − |ξ′|2) + (λ+ αbc|ξ′|2)(c1 + c2) = 0,

−c1(z21 − |ξ′|2)− c2(z
2
2 − |ξ′|2)− αb|ξ′|2(c1 + c2) = 0.

Since z2k − |ξ′|2 = (−1)k−1
√
−λ (k = 1, 2), we see{

(λ+ αbc|ξ′|2 + b
√
−λz1)c1 + (λ+ αbc|ξ′|2 − b

√
−λz2)c2 = 0

(αb|ξ′|2 +
√
−λ)c1 + (αb|ξ′|2 −

√
−λ)c2 = 0.

We calculate the determinant of the coefficient matrix:∣∣∣∣∣ λ+ αbc|ξ′|2 + b
√
−λz1 λ+ αbc|ξ′|2 − b

√
−λz2

αb|ξ′|2 +
√
−λ αb|ξ′|2 −

√
−λ

∣∣∣∣∣
=

∣∣∣∣∣ λ+ αbc|ξ′|2 + b
√
−λz1 −b

√
−λ(z1 + z2)

αb|ξ′|2 +
√
−λ −2

√
−λ

∣∣∣∣∣
=−

√
−λ
{
2(λ+ αbc|ξ′|2) + 2b

√
−λz1 − b(z1 + z2)(αb|ξ′|2 +

√
−λ)

}
=−

√
−λ
{
2(λ+ αbc|ξ′|2)− αb2|ξ′|2(z1 + z2) + b

√
−λ(z1 − z2)

}
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=:−
√
−λ((I) + (II) + (III)).

We claim that the real part of the last term (III) is non-negative. Then the determinant
never become zero since the real part of the first term (I) and the second term (II) is
positive. We focus on the sign of the term (III). From the equality

√
−λ(z1 − z2) =

−2λ(z1 + z2)
−1,

sign (Re (III)) = sign (Re (−λ)Re (z1 + z2) + Im (−λ)Im (z1 + z2)).

Here Re (−λ),Re (z1 + z2) ≤ 0 and sign Im (−λ) = sign Im (z1 + z2) since

z1 + z2 = −
√
2|ξ′|2 + 2

√
|ξ′|4 + λ.

This implies sign (Re (III)) is non-negative. This means that (v, σ) = (0, 0), which con-
cludes that the (LS) condition is satisfied. The other condition (LS−∞) is easily checked,
so we skip the calculation.

5.6 Appendix C

We apply this general linear theory for the linearized Cahn–Hilliard equation on non-
permeable walls:

(∗)non-per.


∂tv +∆2v = f in Q,

∂tvΓ − b∂ν∆v − bc∆Γ∂νv + αbc∆2
ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

This problem fits into the setting A = ∆2, B0 = −b∂ν∆ − bc∆Γ∂ν , C0 = αbc∆2
Γ, B1 =

−(∆·)|Γ, C1 = αb∆Γ, B2 = 1, C2 = −1, g2 = 0 andm = 2,m0 = 3, k0 = 4,m1 = 2, k1 = 2,
m2 = 0, k2 = 0, ℓ0 = 4, ℓ1 = 3, ℓ2 = 3. And then ℓ = ℓ0 = 4 = 2m, κ0 = 1/4 − 1/(4p),
κ1 = 1/2− 1/(4p) and κ2 = 1− 1/(4p). The condition (E) is satisfied as before.

To see (LS) condition, we need to solve the ordinary differential equation(
(λ+ (−|ξ′|2 + ∂2y)

2
)
v(y) = 0 (y > 0),(5.6.1)

− b(−∂y)(−|ξ′|2 + ∂2y)v(0)− bc(−|ξ′|2)(−∂y)v(0) +
(
(λ+ αbc(−|ξ′|2)2

)
σ = 0,(5.6.2)

v(0)− σ = 0,(5.6.3)

− (−|ξ′|2 + ∂2y)v(0) + αb(−|ξ′|2)σ = 0.(5.6.4)

For the case λ = 0, v(y) = (c1 + c2y)e
−|ξ′|y for some c1, c2 ∈ C. By the boundary

conditions (5.6.2)–(5.6.4),{
−b|ξ′|2(c2 − |ξ′|c1) + b(3|ξ′|2c2 − |ξ′|3c1)− bc|ξ′|2(c2 − |ξ′|c1) + αbc|ξ′|4c1 = 0,

|ξ′|2c1 − (−2|ξ′|c2 + |ξ′|2c1)− αb|ξ′|2c1 = 0.

⇒

{
c|ξ′|(α|ξ′|+ 1)c1 + (2− c)c2 = 0,

αb|ξ′|c1 − 2c2 = 0.
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The determinant of the coefficient matrix is −|ξ′|(2αc|ξ′| + 2αb + 2c − αbc). So we
assume αbc < 2(αb + c) (Assumption A), then we have (c1, c2) = (0, 0), which implies
the unique trivial solution (v, σ) = (0, 0).

For the case λ ̸= 0, v(y) = c1e
z1y+c2e

z2y with the same zk as before. By the boundary
conditions (5.6.2)–(5.6.4),

−b|ξ′|2(c1z1 + c2z2) + b(c1z
3
1 + c2z

3
2)

−bc|ξ′|2(c1z1 + c2z2) + (λ+ αbc(−|ξ′|2)2)(c1 + c2) = 0,

|ξ′|2(c1 + c2)− (c1z
2
1 + c2z

2
2)− αb|ξ′|2(c1 + c2) = 0.

⇒

{
(λ+ αbc|ξ′|4 + b

√
−λz1 − bc|ξ′|2z1)c1 + (λ+ αbc|ξ′|2 − b

√
−λz2 − bc|ξ′|2)c2 = 0,

(αb|ξ′|2 +
√
−λ)c1 + (αb|ξ′|2 −

√
−λ)c2 = 0.

We calculate the determinant of the coefficient matrix:∣∣∣∣∣ λ+ αbc|ξ′|4 + b
√
−λz1 − bc|ξ′|2z1 λ+ αbc|ξ′|2 − b

√
−λz2 − bc|ξ′|2z2

αb|ξ′|2 +
√
−λ αb|ξ′|2 −

√
−λ

∣∣∣∣∣
=

∣∣∣∣∣ λ+ αbc|ξ′|4 + b
√
−λz1 − bc|ξ′|2z1 −b

√
−λ(z1 + z2) + bc|ξ′|2(z1 − z2)

αb|ξ′|2 +
√
−λ −2

√
−λ

∣∣∣∣∣
=−

√
−λ
{
2(λ+ αbc|ξ′|4) + b

√
−λ(z1 − z2)

−bc|ξ′|2(z1 + z2)− αb2|ξ′|2(z1 + z2) + αb2c|ξ′|4 2

z1 + z2

}
,

where we used z1 − z2 = 2
√
−λ(z1 + z2)

−1. We see the real part of 2(λ + αbc|ξ′|4) +
b
√
−λ(z1 − z2) is positive. We claim that the real part of the others is non-negative by

using the Assumption (A). From the Assumption (A),

Re

(
−bc|ξ′|2(z1 + z2)− αb2|ξ′|2(z1 + z2) + αb2c|ξ′|4 2

z1 + z2

)
≥Re

(
−bc|ξ′|2(z1 + z2)− αb2|ξ′|2(z1 + z2) + 2(αb+ c)b|ξ′|4 2

z1 + z2

)
=(bc|ξ′|2 + αb2)Re

(
4|ξ′|2

z1 + z2
− (z1 + z2)

)
.

Note that

4|ξ′|2

z1 + z2
− (z1 + z2) = 2(z1 + z2)

−1(|ξ′|2 − z1z2),

z1z2 =
√
λ+ |ξ′|4, Re (|ξ′|2− z1z2) ≤ 0 and Im (z1+ z2)Im (|ξ′|2− z1z2) ≥ 0. So we have

SignRe
(
(z1 + z2)

−1(|ξ′|2 − z1z2)
)

=Sign
(
Re (z1 + z2)Re (|ξ′|2 − z1z2) + Im (z1 + z2)Im (|ξ′|2 − z1z2)

)
≥0.

This implies that the determinant of the coefficients never 0 and (v, σ) = (0, 0). So it
was shown (LS) condition.
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Chapter 6

Well-posedness for the quasi-linear parabolic
equations from the theory of maximal Lp reg-
ularity with critical time weights

We construct the local well-posedness for the quasi-linear parabolic evolution equa-
tions with the time-dependent operator and the non-linear terms in time weighted Lp
spaces. Moreover we give a sufficient condition to extend the global solution for the
semi-linear parabolic evolution equations in terms of a priori estimate. This result is
a generalization from the time-independent case and the bi-linear non-linearities in a
series of papers by J. Prüss to the time-independent case and the general non-linearities.

Keywords: maximal Lp regularity with time weights, well-posedness, quasi-linear
parabolic evolution equations

6.1 Introduction

For the quasi-linear parabolic problem there are many papers on the well-posedness
results. At first in the paper [1] they proved existence and uniqueness of the strong
solution from maximal Lp regularity. Later their method using a contraction mapping
theorem was applied to the various equations. Among them, J. Prüss and G. Simon-
ett [10] introduced time weighted maximal Lp regularity and applied it to get well-
posedness in [6, 7, 14]. The merit of the time weight is to reduce the initial regularity
while keeping the regularity of the solution excepting for the behavior near t = 0.
This theory of time weights is useful to consider the global solution and to gain the
compactness properties of orbits. Moreover they proved that the initial regularity is
critical by illustrating a counterexample in spaces strictly larger than the initial spaces
they constructed. They clarified the relationship between the critical spaces, the scal-
ing invariant spaces and the interpolation-extrapolation spaces. The theory of critical
time weights was applied to a lot of equations, e.g. the vorticity equations for the
Navier–Stokes problem, convection-diffusion equations, the Nernst–Planck–Poisson
equations in electro-chemistry, chemotaxis equations, the MHD equations and some
other well-known parabolic equations in [12], the Navier–Stokes equations with the
Navier boundary conditions in [13] and the bidomain equations in [14]. For other time
weighted theory of the Navier–Stokes equations, see [4].
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In a series of papers by J. Prüss, they constructed a framework of the local well-
posedness of the quasilinear parabolic equations of the form

u̇+A(u)u = F (u), t > 0, u(0) = u0,

based on the maximal Lp regularity for the operator A(u0), locally Lipschitz assump-
tions on A and F and Banach’s fixed point theorem with a technique of time weights.
In this paper we generalize above time-independent form to time-dependent form of

u̇+A(t, u)u = F (t, u), t > 0, u(0) = u0,(QL)

and prove the local well-posedness result. By this form we are able to contain a non-
homogeneous term in the equations, i.e. we can consider a effect of a source term. The
assumptions and the proof are almost same as before, but it is important to check well-
posedness of this form. We are able to derive the continuity for the non-homogeneous
terms. After we get the unique local strong solution, we give a sufficient condition to
extend global solution in terms of a priori estimate. However we had to restrict that the
equations are the semi-linear parabolic equations. An assumption on a priori estimate
is also same as [12], but we generalize from the bi-linear (or multi-linear) non-linearities
used in [12] to general non-linearities used in the local well-posedness results.

The outline of this paper is as follows. In section 6.2, we write down some assump-
tions and statements of the theorem of local well-posedness for (QL). In section 6.3, we
prove the local well-posedness. The strategy is to use maximal Lp regularity estimates,
Lipschitz assumptions on A and F and the contraction map as usual. In section 6.4,
we consider the global well-posedness for the general semi-linear parabolic evolution
equations after some preparations. In section 6.5, we apply the local well-posedness for
a quasi-linear heat equation.

6.2 Local well-posedness

Let X0 and X1 be Banach spaces such that dense embedding X1 ↪→ X0 and let 1 < p <

∞ and 1/p < µ ≤ 1. We consider the quasilinear parabolic problems

u̇(t) +A(t, u(t))u(t) = F1(t, u(t)) + F2(u(t)), t > 0,(6.2.1)

u(0) = u0

in weighted Lp-framework, i.e. we look for the solution in the class

u ∈ E1,µ(J) := H1
p,µ(J ;X0) ∩ Lp,µ(J ;X1)(↪→ C(J ;Xγ,µ)).

Here J = (0, T ) denotes the time interval and

Lp,µ(J ;X1) := {u ∈ L1,loc(J ;X1) | t1−µu ∈ Lp(J ;X1)},
H1
p,µ(J ;X0) := {u ∈ Lp,µ(J ;X0) ∩H1

1 (J ;X0) | t1−µu̇ ∈ Lp(J ;X0)},
Xγ,µ := (X0, X1)µ−1/p,p real interpolation space.
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Let Vµ ⊂ Xγ,µ be open. Let Xβ := [X0, X1]β denote the complex interpolation spaces
for β ∈ (0, 1) to treat the part F2, which is the singular part in contrast to the regular
part F1. For a comprehensive interpolation theory, see [15]. We will impose the follow-
ing assumptions.
(H0)A ∈ C(J×Vµ;B(X1, X0)) andF1 : J×Vµ → X0 satisfies assumptions of Caratheodory
type, i.e. F1(·, u) is measurable for each u ∈ Vµ and F1(t, ·) is continuous for a.e. t ∈ J .
(H1) A(t, ·) ∈ Liploc(Vµ;B(X1, X0)) for all t ∈ J , whose Lipschitz constant is uniform in
t, and F1(t, ·) ∈ Liploc(Vµ;X0) for a.e. t ∈ J , whose Lipschitz constant is a function of t
in Lp,µ(J). Namely for all u∗ ∈ Vµ, there exists ε0 > 0 with BXγ,µ

(u∗, ε0) ⊂ Vµ, L > 0

and M ∈ Lp,µ(J) such that for all w1, w2 ∈ B
Xγ,µ

(u∗, ε0),

|A(t, w1)−A(t, w2)|B(X1,X0) ≤ L|w1 − w2|Xγ,µ

for all t ∈ J as well as

|F1(t, w1)− F1(t, w2)|X0 ≤M(t)|w1 − w2|Xγ,µ

for a.e. t ∈ J .
(H2) F2 : Vµ ∩Xβ → X0 satisfies the estimate

|F2(u1)− F2(u2)|X0 ≤ C

m∑
j=1

(
1 + |u1|

ρj
Xβ

+ |u2|
ρj
Xβ

)
|u1 − u2|Xβj

,

for some numbers m ∈ N, ρj ≥ 0, β ∈ (µ − 1/p, 1), βj ∈ [µ − 1/p, β] and a constant
C > 0, which may depend on |ui|Xγ,µ .
(H3) For all j = 1, · · · ,m, we have

ρj(β − (µ− 1/p)) + (βj − (µ− 1/p)) ≤ 1− (µ− 1/p).

When we use this equality for some j (it is called critical case) not strict inequality
(it is called sub-critical case), we have to assume additionally the following structural
condition on the Banach spaces X0 and X1.
(S) The space X0 is of class UMD. The embedding

H1
p (R;X0) ∩ Lp(R;X1) ↪→ H1−β

p (R;Xβ),

is valid for each β ∈ (0, 1), p ∈ (1,∞).
As βj ≤ β < 1, any j with ρj = 0 is subcritical. The assumption (H3) determines the

critical weight µc defined by

µc :=
1

p
+ β −min

j

1− βj
ρj

.

Here we take minimum for j such that ρj ̸= 0. For any µ ∈ [µc, 1] the assumption (H3)
is satisfied. Note that Xγ,µc = (X0, X1)µc−1/p,p and the first real interpolation index
µc − 1/p is independent of p.

The strategy to get well-posedness heavily depends on the maximal Lp,µ-regularity
for the operator. We say that a densely defined closed linear operator A on X0 with
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D(A) = X1 has the property of maximal Lp,µ-regularity, for short A ∈ MRp,µ(X1, X0),
if for each f ∈ E0,µ(R+) := Lp,µ(R+;X0) there exists a unique solution

u ∈ E1,µ(R+) = H1
p,µ(R+;X0) ∩ Lp,µ(R+;X1)

of the linear problem

u̇+Au = f, t > 0, u(0) = 0.

Thanks to [10], it was proved that the class MRp,µ(X1, X0) and MRp(X1, X0) are
equivalent, where MRp(X1, X0) := MRp,1(X1, X0) is a operator space satisfying usual
maximal Lp regularity property. For the nontrivial initial data, u0 ∈ Xγ,µ is the natural
space since for any u ∈ E1,µ(R+), we have u|t=0 ∈ Xγ,µ and vice versa, i.e. x ∈ Xγ,µ

implies e−tAx ∈ E1,µ(R+), see [10, 11]. In many applications the condition of maximal
regularity on R+ is too strong since it means the semigroup e−tA is exponential decay
but we use this notation because it is satisfied in many cases when we add κu for both
sides in the equations (6.2.1) for sufficiently large κ > 0, e.g. [9].

The local well-posedness result is as follows.

Theorem 6.1. Suppose that the structural assumption (S) holds, and assume that hypothesis
(H0)-(H3) are valid. Fix any u0 ∈ Vµ such that A0 := A(0, u0) ∈ MRp,µ(X1, X0) and
F1(·, u0) ∈ E0,µ(J). Then there is T = T (u0) ∈ (0, T ] and ε = ε(u0) ∈ (0, ε0] such that
B
Xγ,µ

(u0, ε) ⊂ Vµ and such that problem (6.2.1) admits a unique solution

u(·, u1) ∈ E1,µ(0, T ) ∩ C([0, T ], Vµ),

for each initial value u1 ∈ B
Xγ,µ

(u0, ε). There is a constant c = c(u0) > 0 such that

∥u(·, u1)− u(·, u2)∥E1,µ(0,T ) ≤ c|u1 − u2|Xγ,µ ,

for all u1, u2 ∈ B
Xγ,µ

(u0, ε). Moreover, for each δ ∈ (0, T ) we have in addition

u ∈ E1,1(δ, T )(↪→ C([δ, T ];Xγ,1),

i.e. the solution regularizes instantaneously.

In particular, by dividing F1(t, u) = F11(t) + F12(u), we get the following corollary.

Corollary 6.2. Suppose that the structural assumption (S) holds, and assume that A ∈ C(J ×
Vµ;B(X1, X0)), (A(t, ·), F12) ∈ Liploc(Vµ;B(X1, X0) × X0) for all t ∈ J , and hypothesis
(H2)-(H3) are valid. Fix any u0 ∈ Vµ such that A0 := A(0, u0) ∈ MRp,µ(X1, X0). Then
for any F11 ∈ Lp,µ(J,X0), the same unique existence statement of the theorem 6.1 for the
quasi-linear parabolic problem

u̇(t) +A(t, u(t))u(t) = F11(t) + F12(u(t)) + F2(u(t)), t > 0,

holds. Moreover there is a constant c = c(u0) > 0 such that

∥u(·, u1, F 1
11)− u(·, u2, F 2

11)∥E1,µ(0,T ) ≤ c(|u1 − u2|Xγ,µ + |F 1
11 − F 2

11|E0,µ(J)),
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i.e. the continuity for the source terms F11 holds.

As another choice, the case that F1(t, u) = F (t) + B(t)u for F ∈ Lp,µ(J ;X0), B ∈
Lp,µ(J ;B(Xγ,µ, X0)) also satisfies the assumption (H0) and (H1).

As we can see in the paper [7, 11], the continuation of local solutions holds.

Corollary 6.3. Let the assumptions of theorem 6.1 be satisfied and assume that A(t, v) ∈
MRp,µ(X1, X0) for each t ∈ J and all v ∈ Vµ. Then the solution u(t) has a maximal interval
of existence J(u0) = [0, t+(u0)), which is characterized by
(i) Global existence: t+(u0) = T ;
(ii) lim inft→t+(u0) distXγ,µ(u(t), ∂Vµ) = 0;
(iii) limt→t+(u0) u(t) does not exist in Xγ,µ.

6.3 Proof of Theorem, local-wellposedness

Proof of Theorem 6.1. The proof is almost same as [7, Theorem 2.1] and [14, Theorem 1.2].
Let f := F (·, u0). We first introduce a reference solution u∗0 ∈ E1,µ(J) as the solution of
the linear problem

ẇ +A0w = f, t ∈ J, w(0) = u0.

Here note that there exists a unique solution w = u∗0 since f ∈ E0,µ(J), u0 ∈ Vµ(⊂ Xγ,µ)

and the operator A0 satisfies maximal Lp,µ regularity property. Let u1 ∈ B
Xγ,µ

(u0, ε)(⊂
Vµ) and a closed ball

Br,T,u1 := {v ∈ E1,µ(0, T ) | v|t=0 = u1, ∥v − u∗0∥E1,µ(0,T ) ≤ r}

for some ε ∈ (0, ε0], r ∈ (0, 1] and T > 0 to be fixed later. As in [7], we shall show that
for all v ∈ Br,T,u1 , it holds that v(t) ∈ B

Xγ,µ
(u0, ε0)(⊂ Vµ) for all t ∈ [0, T ], provided

that r, T, ε > 0 are sufficiently small. To do so, we replace the reference solution u∗1 in
[7] by the solution of

ẇ +A0w = f, t ∈ J, w(0) = u1.

Then we have

∥v − u0∥∞,Xγ,µ

≤∥v − u∗1∥∞,Xγ,µ + ∥u∗1 − u∗0∥∞,Xγ,µ + ∥u∗0 − u0∥∞,Xγ,µ

≤C1∥v − u∗1∥E1,µ(0,T ) + ∥u∗1 − u∗0∥∞,Xγ,µ +

∥∥∥∥e−tA0u0 +

ˆ t

0
e−(t−s)A0f(s)ds− u0

∥∥∥∥
∞,Xγ,µ

≤C1(∥v − u∗0∥E1,µ(0,T ) + ∥u∗0 − u∗1∥E1,µ(0,T )) + ∥u∗1 − u∗0∥∞,Xγ,µ

+ ∥e−tA0u0 − u0∥∞,Xγ,µ + C0∥f∥E0,µ(0,T )

≤C1r + Cγ |u0 − u1|Xγ,µ + ∥e−tA0u0 − u0∥∞,Xγ,µ + C0∥f∥E0,µ(0,T ).

Here we use that C1 and Cγ are independent of T and the maximal Lp,µ regularity for
A0 with its constant C0 > 0 which is also independent of T > 0. The last line can be
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estimated by ε0 when ε, r, T are sufficiently small. In the rest of the proof, we keep this
smallness condition. Note that v(t) ∈ B

Xγ,µ
(u0, ε0) ∩X1(⊂ Vµ ∩Xβ) for a.e. t.

We will prove the existence and uniqueness of the problem (6.2.1) by Banach’s fixed
point theorem. We define a mapping Su1 : Br,T,u1 → E1,µ(0, T ) by Su1v = u, where
v ∈ Br,T,u1 and u is the unique solution of the linear problem

u̇+A0u = F1(t, v) + F2(v) + (A0 −A(t, v))v, t ∈ (0, T ), u(0) = u1.

To use Banach’s fixed point theorem, we need to show the self-mapping property
Su1Br,T,u1 ⊂ Br,T,u1 and the contraction property:

∥Su1v − Su1v∥E1,µ(0,T ) ≤ κ∥v − v∥E1,µ(0,T ),

is valid for some κ ∈ (0, 1) and for all v, v ∈ Br,T,u1 . We will first prove the self-mapping
property. Let v ∈ Br,T,u1 , then we have

∥Su1v − u∗0∥E1,µ(0,T )

≤∥Su1v − u∗1∥E1,µ(0,T ) + ∥u∗1 − u∗0∥E1,µ(0,T )

≤C0

(
∥F1(t, v)− F1(t, u0)∥E0,µ(0,T ) + ∥F2(v)∥E0,µ(0,T ) + ∥(A0 −A(t, v))v∥E0,µ(0,T )

)
+ ∥u∗1 − u∗0∥E1,µ(0,T )

=:I + II + III + IV.

The second term II and the last term IV can be estimated by r/4 under the assumptions
of the theorem and ε and T are sufficiently small, see [6, 7, 14]. We next calculate the
first term I :

∥F1(t, v)− F1(t, u0)∥E0,µ(0,T ) ≤ |M |Lp,µ(0,T )∥v − u0∥L∞(0,T ;Xγ,µ)

≤ |M |Lp,µ(0,T )ε0

Since |M |Lp,µ(0,T ) → 0 as T → 0, we see that the first term I can be estimated by r/4.
The third term III is estimated as follows. Let L̃(T ) := supt∈[0,T ] ∥A0−A(t, u0)∥B(X1,X0).
We have

∥(A0 −A(t, v))v∥E0,µ(0,T )

≤ sup
t∈[0,T ]

(
∥A0 −A(t, u0)∥B(X1,X0) + ∥A(t, u0)−A(t, v(t))∥B(X1,X0)

)
∥v∥Lp,µ(0,T ;X1)

≤
(
L̃(T ) + L∥v − u0∥L∞(0,T ;Xγ,µ)

) (
∥v − u∗0∥Lp,µ(0,T ;X1) + ∥u∗0∥Lp,µ(0,T ;X1)

)
≤
(
L̃(T ) + L

(
C1r + Cγε+ ∥e−tA0u0 − u0∥∞,Xγ,µ + C0∥f∥E0,µ(0,T )

))
×
(
∥v − u∗0∥E1,µ(0,T ) + ∥u∗0∥E1,µ(0,T )

)
≤
(
L̃(T ) + L

(
C1r + Cγε+ ∥e−tA0u0 − u0∥∞,Xγ,µ + C0∥f∥E0,µ(0,T )

)) (
r + ∥u∗0∥E1,µ(0,T )

)
Since L̃(T ), ∥u∗0∥E1,µ(0,T ) → 0 as T → 0, we see that the third term III can be estimated
by r/4 when ε, r, T are sufficiently small. Combining all estimates, we derived the self-
mapping property when ε, r, T are sufficiently small.
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It remains to prove the contraction property and the continuous dependence of the
initial data. Let u2 ∈ B

Xγ,µ
(u0, ε), v ∈ Br,T,u2 . We have

∥Su1v − Su2v∥E1,µ(0,T )

≤∥e−tA0(u1 − u2)∥E1,µ(0,T ) + C0(∥F1(t, v)− F1(t, v)∥E0,µ(0,T ) + ∥F2(v)− F2(v)∥E0,µ(0,T )

+ ∥(A0 −A(t, v))v − (A0 −A(t, v))v∥E0,µ(0,T ))

≤∥e−tA0(u1 − u2)∥E1,µ(0,T ) + C0(∥F1(t, v)− F1(t, v)∥E0,µ(0,T ) + ∥F2(v)− F2(v)∥E0,µ(0,T )

+ ∥(A(t, v)−A0)(v − v)∥E0,µ(0,T ) + ∥(A(t, v)−A(t, v))v∥E0,µ(0,T )).

Note that we can use the completely same argument in [7, 14] even we treat time-
dependent operator A(t, u) and non-linear term F1(t, u). Therefore it has already es-
timated as follows.

∥Su1v − Su2v∥E1,µ(0,T ) ≤
1

2
∥v − v∥E1,µ(0,T ) + c∥u1 − u2∥Xγ,µ(6.3.1)

for some c = c(u0) > 0 when ε, r, T are sufficiently small. In particular, by u1 = u2,
the inequality means that Su1 is the contraction map in Br,T,u1 . So there exists a unique
fixed point ũ ∈ Br,T,u1 such that Su1 ũ = ũ, which is the unique solution of the quasi-
linear parabolic problem (6.2.1) with initial value u1. Furthermore, denoting u(t, u1)

and u(t, u2) by the solutions of (6.2.1) with initial values u1, u2 ∈ B
Xγ,µ

(u0, ε), respec-
tively, the continuous dependence of the initial data follows from (6.3.1).

Remark 6.4. The proof of Corollary 6.2 is straightforward since ∥F1(t, u)−F1(t, v)∥E0,µ(0,T )

in the proof of the theorem 6.1 is replaced by

∥F 1
11 − F 2

11∥E0,µ(0,T ) + ∥F12(v)− F12(v)∥E0,µ(0,T ).

6.4 Global well-posedness

Let t+ ∈ (0, T ] be the maximal time interval of the solution. Let a ∈ (0, t+) be fixed.
By the mixed derivative theorem and Sobolev embedding in weighted spaces, see for
instance [8], we have

E1,µ(0, a) = H1
p,µ(0, a;X0) ∩ Lp,µ(0, a;X1) ↪→ H1−µ

p,µ (0, a;Xµ) ↪→ Lp(0, a;Xµ).

We remind that the space Xµ denote complex interpolation spaces Xµ = [X0, X1]µ.
Conversely, we would like to prove that if t+ < T then u /∈ Lp(0, t+;Xµ). In particu-

lar, the solution exists globally if u ∈ Lp(0, t+;Xµ). This means that the global existence
is equivalent to an integral a priori bound.

In this section we restrict the equations are the semi-linear parabolic evolution equa-
tions

u̇+A(t)u = F1(t, u) + F2(u), t > 0, u(0) = u0,(SL)

and Vµ = Xγ,µ. Here the assumption on F1 and F2 are same as section 6.2. As another
restricted assumption, the operator A belongs to C(J ;B(X1, X0)) and A(s) ∈ BIP(X0)
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with power angle θA < π/2 for all s ∈ J , which is stronger than the maximal Lp
regularity property on some interval. For the class of BIP(X0), see [2, 11].

For the semi-linear equations (SL), we may assume F2(u
∗) = 0 for all u∗ ∈ Xβ

since F̃1(t, u) := F1(t, u) + F2(u
∗) satisfies the assumption (H0) and (H1). Then the

assumption (H2) is

|F2(u)|X0 ≤ C

m∑
j=1

(1 + |u|ρjXβ
)|u|Xβj

.(6.4.1)

Without loss of generality, let ρj ̸= 0. Let

1

r
:=

βj − (µ− 1/p)

1− (µ− 1/p)
,

1

r′
:= ρj

β − (µ− 1/p)

1− (µ− 1/p)
,

1

r′′
:= 1− 1

r
− 1

r′
.

From the definition of µ, βj , β and the assumption (H3), 1/r < 1, 1/r′ < ρj and 0 ≤
1/r′′ < 1. The case 1/r′′ = 0 is the critical case. Multiply the inequality (6.4.1) by t1−µ,
take Lp(0, T ) norm in time and Hölder’s inequality, we have

|F2(u)|E0,µ(0,T ) ≤ C
m∑
j=1

(ˆ T

0
t(1−µ)p(1 + |u(t)|ρjXβ

)p|u(t)|pXβj
dt

)1/p

≤ C

m∑
j=1

κr′′(T )

(
κr′(T ) + ∥u∥ρjLρjpr

′,σ′ (0,T ;Xβ)

)
∥u∥Lpr,σ(0,T ;Xβj

),

where

κℓ(T ) := (

ˆ T

0
t(1−µ)pdt)1/ℓ =

(
T (1−µ)p+1

(1− µ)p+ 1

)1/ℓ

(ℓ = r′, r′′)

σ := 1− 1

r
+
µ

r
, σ′ := 1− 1

ρjr′
+

µ

ρjr′
.

Note that σ > 1/(pr) and σ′ > 1/(ρjpr
′) is admissible and κℓ(T ) → 0 as T → 0 if

1/r′′ ̸= 0.
We would like to use the estimate of the form

∥u∥ρjLρjpr
′,σ′ (0,T ;Xβ)

∥u∥Lpr,σ(0,T ;Xβj
) ≤ C∥u∥ρjLp(0,T ;Xµ)

∥u∥E1,µ(0,T ),(6.4.2)

where C > 0 is independent of T and u. To do so, we use the following interpolation
result.

Lemma 6.5 ([14, Appendix A.1]). Suppose X1 is densely embedded in X0, A : X1 → X0

is bounded abd A ∈ BIP(X0). Let Fj , j = 0, 1 be complete function spaces over an interval
J = (0, a) and let θ ∈ (0, 1). Then

[F0(J,Xβ0),F1(J,Xβ1)]θ ≃ Fθ(J,Xβ), β = (1− θ)β0 + θβ1,

where [·, ·]θ means complex interpolation, Fθ = [F0,F1]θ and Xα = [X0, X1]α for α ∈ (0, 1).
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Using this lemma, the problem is reduced to the existence of α1
j , α

2
j ∈ (0, 1) and

tj , sj ∈ (0, 1) such that

[Lp(0, T ;Xµ),E1,µ(0, T )]tj

↪→ [Lp(0, T ;Xµ),H
1−α1

j
p,µ (0, T ;Xα1

j
)]tj = H

(1−α1
j )tj

p,(1−tj)+µtj (0, T ;X(1−tj)µ+tjα1
j
)

↪→ Lρjpr′,σ′(0, T ;Xβ)

and

[Lp(0, T ;Xµ),E1,µ(0, T )]sj

↪→ [Lp(0, T ;Xµ),H
1−α2

j
p,µ (0, T ;Xα2

j
)]sj = H

(1−α2
j )sj

p,(1−sj)+µsj (0, T ;X(1−sj)µ+sjα2
j
)

↪→ Lpr,σ(0, T ;Xβj )

with ρjtj + sj = 1 since these two complex interpolations imply

∥u∥Lρjpr
′,σ′ (0,T ;Xβ) ≤ C∥u∥1−tjLp(0,T ;Xµ)

∥u∥tjE1,µ(0,T )
,

∥u∥Lpr,σ(0,T ;Xβj
) ≤ C∥u∥1−sjLp(0,T ;Xµ)

∥u∥sjE1,µ(0,T )
,

and therefore the inequality (6.4.2) holds from ρjtj+sj = 1. The constants C may differ
from line to line, but they are independent of T and u. Two time-space embeddings are
satisfied when

α1
j :=

β − µ+ µtj
tj

∈ (0, 1), α2
j :=

βj − µρjtj
1− ρjtj

∈ (0, 1), 0 < tj < min{1/ρj , 1}.

This is guaranteed if tj such that

(0 <)max

{
µ− β

µ
,
β − µ

1− µ

}
< tj < min

{
βj
µρj

,
1− βj

(1− µ)ρj

}
(<

1

ρj
)

exists for all j with ρj ̸= 0. Namely we assume

max

{
µ− β

µ
,
β − µ

1− µ

}
< min

{
βj
µρj

,
1− βj

(1− µ)ρj

}
.(6.4.3)

This is a sufficient condition to show the inequality (6.4.2). The statement of global
well-posedness is as follows.

Theorem 6.6. Assume that (S), (H2)-(H3), (6.4.3) and F1 : J ×Xγ,µ → X0 satisfies assump-
tions Caratheodory type and F1(t, ·) ∈ Liploc(Xγ,µ;X0) for a.e. t ∈ J , whose Lipschitz con-
stant is a function of t in Lp,µ(J). Assume that A ∈ C(J ;B(X1, X0)) and A(s) ∈ BIP(X0)

with power angle θA < π/2. Let u be the unique solution of Theorem 6.1 with maximal time
interval of existence [0, t+) for a semi-linear parabolic equation (SL). Then
(i) u ∈ Lp(0, a;Xµ) for each a < t+.
(ii) If t+ < T then u /∈ Lp(0, t+;Xµ).
In particular, the solution exists globally (t+ = T ) if u ∈ Lp(0, t+;Xµ).
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Proof. We have already mentioned (i) in the beginning of this section. We consider (ii)
that the integral a priori bound implies the global solution. Suppose t+ < T and let
a0 ∈ (0, t+) be fixed. Note that

|F2(u)|E0,µ(a0,a) ≤ C
m∑
j=1

κr′′(a0, a)

(
κr′(a0, a) + ∥u∥ρjLρjpr

′,σ′ (a0,a;Xβ)

)
∥u∥Lpr,σ(a0,a;Xβj

),

with

κℓ(a0, a) := (

ˆ a

a0

(t− a0)
(1−µ)pdt)1/ℓ =

(
(a− a0)

(1−µ)p+1

(1− µ)p+ 1

)1/ℓ

(→ 0 as a0 → a) (ℓ = r′, r′′)

for all a ∈ (a0, t+). The interpolation (6.4.2) implies

|F2(u)|E0,µ(a0,a) ≤ C

m∑
j=1

κr′′(a0, a)
(
κr′(a0, a)∥u∥Lpr,σ(a0,a;Xβj

) + ∥u∥ρjLp(a0,a;Xµ)
∥u∥E1,µ(a0,a)

)
,

where the constant C is independent of a0 and a ∈ (a0, t+). Let M be the supremum
of the constant of maximal regularity of A(s) for the interval [0, t+) which is larger
than other maximal regularity constant for sub-interval of [0, t+). Let t0 ∈ (a0, t+) with
u|t0 ∈ X1 to be fixed later. We use the estimate

∥u∥Lpr,σ(t0,a;Xβj
) ≤ ∥u− u|t0∥Lpr,σ(t0,a;Xβj

) + ∥u|t0∥Lpr,σ(t0,a;Xβj
)

≤ C∥u− u|t0∥E1,µ(t0,a) + ∥u|t0∥Lpr,σ(t0,a;Xβj
)

≤ C∥u∥E1,µ(t0,a) + Cu|t0 (t0, a)

where the constant C is independent of t0, a and the constant Cu|t0 (t0, a) → 0 as t0 → a,
and the other estimate

∥F1(t, u)∥E0,µ(t0,a)

≤∥F1(t, u)− F1(t, u0)∥E0,µ(t0,a) + ∥F1(t, u0)∥E0,µ(t0,a)

≤κp(t0, a)∥u− u0∥L∞(t0,a;Xγ,µ) + ∥F1(t, u0)∥E0,µ(t0,a)

≤κp(t0, a)(C∥u− u|t0∥E1,µ(t0,a) + ∥u|t0 − u0∥L∞(t0,a;Xγ,µ)) + ∥F1(t, u0)∥E0,µ(t0,a)

≤Cκp(t0, a)∥u∥E1,µ(t0,a) + Cu|t0 ,u0,F1
(t0, a)

where the constantC is independent of t0, a and the constants κp(t0, a), Cu|t0 ,u0,F1
(t0, a) →

0 as t0 → a. To treat A(t) we estimate as follows:

∥(A(t0)−A(t))u∥E0,µ(t0,a) ≤ sup
t∈[t0,a]

∥A(t0)−A(t)∥B(X1,X0)∥u∥E1,µ(t0,a)

Here supt∈[t0,a] ∥A(t0)−A(t)∥B(X1,X0) → 0 as t0 → a.
Combining all estimate, by the maximal regularity of A(t0),

∥u∥E1,µ(t0,a)

≤M
(
|u|t0 |Xγ,µ + ∥F1(t, u)∥E0,µ(t0,a) + ∥F2(u)∥E0,µ(t0,a) + ∥(A(t0)−A(t))u∥E0,µ(t0,a)

)
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≤M(|u|t0 |Xγ,µ +K1(t0, a)∥u∥E1,µ(t0,a) +K2(t0, a))

with K1(t0, a),K2(t0, a) → 0 as t0 → a. Remark that the term ∥u∥Lp(t0,a;Xµ) also goes to
zero as t0 → a. Take t0 sufficiently close to t+ and a ∈ (t0, t+). such that K1(t0, a) <

1/(2M). Then we have

∥u∥E1,µ(t0,a) ≤ 2M(|u|t0 |Xγ,µ +K2(t0, a))

≤ 2M(|u|t0 |Xγ,µ + K̃2(t0, T )) (independent of a)

Therefore u ∈ E1,µ(t0, t+), which does not blow-up at t = t+ This contradicts that t+ is
maximal time interval.

Remark 6.7. The assumption (6.4.3) is satisfied when µ = µc, βj = β and maxj ρj < p.
This case with m = 1, ρ1 = 1 is the bi-linear non-linearities (F2 =)G : Xβ ×Xβ → X0 in
[12].

Remark 6.8. We are able to generalize this global well-posedness for the quasilinear
parabolic equations (QL) if

∥(A0 −A(t, u))u∥E0,µ(0,T ) ≤ C(1 + ∥u∥Lp(0,T ;Xµ))∥u∥E1,µ(0,T )

holds for some C > 0 which is independent of T and u.

6.5 Example

In this section we apply the local well-posedness for the quasi-linear heat equation. Let
Ω ⊂ Rd be a smooth bounded domain. Let κ > 2 and a function F : [0, T ) × R → R of
Caratheodory type. A continuous function a : [0, T )× R → R satisfies that there exists
a0 > 0 such that a(t, s) ≥ a0 > 0 for all t, s. We consider the following quasi-linear heat
equation.

(QH)


u′ − a(t, u)∆u = F (t, u) + |∇u|κ in (0, T )× Ω,

∂νu = 0 on (0, T )× ∂Ω,

u(0) = u0.

Let 1 < p, q < ∞. We set X0 := Lq(Ω), X1 := {u ∈ H2
q (Ω) | ∂νu|∂Ω = 0} and Fκ(u) :=

|∇u|κ. Then,

Xβ := [X0, X1]β =

{
H2β
q (Ω) if 2β < 1 + 1/q,

{u ∈ H2β
q (Ω) | ∂νu|∂Ω = 0} if 2β > 1 + 1/q

↪→ H1
κq(Ω) if β =

1

2
+

d

2q

(
1− 1

κ

)
.

Moreover we have the assumption (H2) as follows:

|Fκ(u)|X0 ≤ C|∇u|κκq ≤ C|u|κXβ
,

|Fκ(u)− Fκ(v)|X0 ≤ C(|u|κ−1
Xβ

+ |v|κ−1
Xβ

)|u− v|Xβ
.
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The critical weight µc and the critical space Xγ,µc are determined by

µc :=
1

p
+

d

2q
+

κ− 2

2(κ− 1)
,

Xγ,µc =: νB
d
q
+κ−2

κ−1
q,p (Ω) =

B
d
q
+κ−2

κ−1
q,p (Ω) if dq +

κ−2
κ−1 < 1 + 1

q ,

{u ∈ B
d
q
+κ−2

κ−1
q,p (Ω) | ∂νu|∂Ω = 0} if dq +

κ−2
κ−1 > 1 + 1

q .

The condition 1/p < µc holds from κ > 2 and the conditions β < 1 and µc ≤ 1 are

2

p
+
d

q
≤ κ

κ− 1
.(6.5.1)

The critical space Xγ,µc is compactly embedded into C(Ω) for all p, q ∈ (1,∞), κ >

2. Therefore the operator A defined by A(t, w)u := −a(t, w)∆u satisfies (H0) and the
maximal Lp regularity on some interval, see [3]. Assume that a(t, ·) ∈ Liploc(R;R) for
all t ∈ [0, T ), whose Lipschitz constant is uniform in t and F (t, ·) ∈ Liploc(R;R) for a.e.
t ∈ (0, T ), whose Lipschitz constant is a Lp,µc(0, T ) function. Then the function A and
F satisfy (H0) and (H1) since

a(t, ·) ∈ Liploc(L∞(Ω);L∞(Ω)),

F (t, ·) ∈ Liploc(L∞(Ω);L∞(Ω)) ⊂ Liploc(Xγ,µc ;X0).

The local well-posedness theorem is as follows.

Theorem 6.9. Let κ > 2, p, q ∈ (1,∞) satisfy (6.5.1). Let a and F be a continuous function
and a(t, ·) ∈ Liploc(R;R) for all t ∈ [0, T ), whose Lipschitz constant is uniform in t and
a(t, s) ≥ a0 > 0 for some a0, and F (t, ·) ∈ Liploc(R;R) for a.e. t ∈ (0, T ), whose Lipschitz

constant is a Lp,µc(0, T ) function. Then for any u0 ∈ νB
d
q
+κ−2

κ−1
q,p (Ω), there exists T ∈ (0, T ]

and the unique solution u ∈ E1,µc(0, T ) for the quasi-linear heat equation (QH). The solution
has continuity for the initial data. Moreover the solution can be extended to the maximal time
interval t+ and belongs to the class of

u ∈ C([0, t+); νB
d
q
+κ−2

κ−1
q,p (Ω)) ∩ C((0, t+); νB2(1−1/p)

q,p (Ω)).



References

[1] P. Clément, S. Li, Abstract parabolic quasilinear equations and applications to a groundwater flow
problem, Adv. Math. Sci. Appl. 3. (1993) 17–32.

[2] R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and
parabolic type, Mem. Amer. Math. Soc, (2003).

[3] R. Denk, M. Hieber, J. Prüss, Optimal Lp-Lq-estimates for parabolic boundary value problems with
inhomogeneous data, Math. Z., 257, (2007), no.1, 193–224.

[4] R. Farwig, Y. Giga, P. Y. Hsu, Initial Values for the Navier–Stokes Equations in Spaces with Weights in
Time, Funkcialaj Ekvacioj, 59, (2016), no.2, 199–216.

[5] M. Hieber, J. Prüss, On the bidomain problem with FitzHugh-Nagumo transport. preprint.
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