
博士論文

論文題目

Binding stability of molecules in

density-matrix-functional theories

（密度行列汎関数理論における分子の安定性）

氏　名　後藤　ゆきみ



Acknowlegement

I deeply thank my advisor Shu Nakamura for many suggestions and discus-
sions, and also for his utmost patience and kindness. I am equally indebted
to Heinz Siedentop, Johannes Hogreve, Phan Thành Nam, Masao Hirokawa,
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Chapter 1

Introduction

1 Many-Particle systems

We consider a problem ofN electrons andK static nuclei (Born-Oppenheimer
approximation). The K nuclei have charges Z = (Z1, . . . , ZK) ∈ (R+∪{0})K
and are located at R = (R1, . . . , RK) ∈ R3K . We use the units ℏ = m = c =
e = 1. These are

• m = mass of the electron

• e = −1× charge of the electron

• ℏ = Planck’s constant divided by 2π

• c = speed of light.

The nonrelativistic quantum mechanical model for a molecule is described
by the Hamiltonian

H(N,Z,R) :=
N∑
i=1

(
−1

2
∆xi − VR(xi)

)
+

∑
1≤i<j≤N

W (|xi − xj|) + UR,
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where ∆xi is the three-dimensional Laplacian with respect to the coordinate
xi ∈ R3 and

VR(x) :=
K∑
j=1

Zj
|x−Rj|

,

W (|x− y|) := 1

|x− y|
,

UR :=
∑

1≤i<j≤K

ZiZj
|Ri −Rj|

.

Here VR(x) is the electron-nucleus attractive Coulomb interaction,W (|x−y|)
is the electron-electron repulsive interaction, and UR is the nucleus-nucleus
repulsive interaction. For N electrons system, the wave functions obey the
Pauli exclusion principle, that is, ψ must be anti-symmetric:

ψ(. . . , xi, . . . , xj, . . . ) = −ψ(. . . , xj, . . . , xi, . . . )

for i ̸= j. For the sake of simplicity, we ignore the electron spin. The
subspace of L2(R3N) consisting of all anti-symmetric function is denoted by∧N L2(R3). It is well-known that H(N,Z,R) is the self-adjoint operator on∧N L2(R3) and bounded from below.

The ground state energy of the system is given by the bottom of the
spectrum, namely

E(N,Z,R) := inf specH(N,Z,R) = inf

{
⟨ψ,H(N,Z,R)ψ⟩L2

⟨ψ, ψ⟩L2

: ψ ∈
N∧
L2(R3)

}
.

If E(N,Z,R) is an eigenvalue ofH(N,Z,R), the corresponding eigenfunction
is called the ground state.

We are interested in the properties of the ground states of H(N,Z,R).
The HVZ theorem [29] states that the essential spectrum of H(N,Z,R) is
given by

ess.specH(N,Z,R) = [E(N − 1, Z,R),+∞).

In particular, if one cannot move the excess electrons infinitely far away with-
out changing energy, that is, E(N,Z,R) < E(N − 1, Z,R), then E(N,Z,R)
is the discrete eigenvalue of H(N,Z,R), and therefore there is a ground state
ψ. In other words, the electrons can be bound by a collection of nuclei.
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Zhislin showed that the binding E(N,Z,R) < E(N − 1, Z,R) occurs if,
at least, N < Z + 1, where Z =

∑K
j=1 Zj.

On the other hand, it is also known that the system is not bound if for a
given N the total nuclear charge becomes sufficiently small. More precisely,
Lieb [33] proved that the system has no ground state if N ≥ 2Z +K. This
implies instability of the di-anion H2− (N = 3, Z = 1, and K = 1). In the
usual fermionic case (electrons system), experimental [3] and numerical [26,
43] evidence suggests that there are no stable di-anions X2−, that is, fermionic
atoms and molecules are not bound if N > Z + cK with c close to 1, or
possibly 2. Rigorous proof of this fact (called the ionization conjecture) is
a long standing open problem in mathematical physics literature, except in
the context of approximate theories such as [6, 24,25,28,32,49].

Although one might think the bound on the maximum ionization N −Z
is a consequence of Coulomb potential, if particles are boson (i.e., the wave
functions are in the whole of L2(R3N), not

∧N L2(R3)), the ionization is as
large as N ∼ 1.21Z for an atom with large Z. Here 1.21Z is exact (the lower
bound was shown by Benguria and Lieb [8], and the upper bound was shown
by Solovej [48], or see [4]). Hence the particle symmetry (the Pauli exclusion
principle) is essential for the ionization conjecture.

Lieb, Sigal, Simon and Thirring [34] showed that the asymptotic neutral-
ity N/Z → 1 as Z → ∞ for fermion models. Asymptotically, it was improved
to N ≤ Z +O(Z5/7) by Seco, Sigal and Solovej [42], and by Fefferman and
Seco [18].

For the molecular case, we define the Born-Oppenheimer energy by

E(N,Z) := inf
R∈R3K

E(N,Z,R).

Lieb and Thirring [39] showed that a molecule is stable, namely

(a) There is at least one configuration R such that

E(N,Z) = E(N,Z,R).

(b)

E(N,Z) < lim
λ→∞

inf

{
E(N,Z,R) : max

i ̸=j
|Ri −Rj| > λ

}
.

Then the asymptotic neutrality was shown by Solovej [47] (for K = 2) and
by Ruskai and Solovej [41] (for all K).
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Intuitively, the stability of atoms and molecules is related to the size of the
system. In order to compute the size of atoms and molecules, Thomas-Fermi
theory is useful.

2 Thomas-Fermi theory

Thomas-Fermi (TF) theory is defined by an energy functional

ER(ρ) :=
3

10
(3π2)2/3

∫
R3

ρ(x)5/3 dx−
∫
R3

VR(x)ρ(x) dx+D[ρ],

where

D[ρ] :=
1

2

∫∫
R3×R3

ρ(x)|x− y|−1ρ(y) dx dy

is the direct Coulomb energy of a charge density. The Thomas-Fermi energy
is defined by

ETF(N,Z,R) := inf

{
ER(ρ) : 0 ≤ ρ,

∫
R3

ρ(x) dx = N, ρ ∈ L5/3(R3)

}
,

and its minimizer exists if N ≤ Z (see [32,35]).
TF theory is the semiclassical approximation for the many-electrons sys-

tem in the following sense. First, we define the one-particle density matrix
by

γψ(x, y) := N

∫
R3(N−1)

ψ(x, x2, . . . , xN)ψ
∗(y, x2, . . . , xN) dx2 · · · dxN

for any state ψ ∈
∧N L2(R3). If we define its density by

ρψ(x) := N

∫
R3(N−1)

|ψ(x, x2, . . . , xN)|2 dx2 · · · dxN

then the kinetic energy is asymptotically⟨
ψ,−1

2

N∑
j=1

∆jψ

⟩
= tr

(
−1

2
∆γψ

)
∼ 3

10
(3π2)2/3

∫
R3

ρψ(x)
5/3 dx

for large N [35].
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Moreover, It was shown (see [27,32,35]) that

E(N,Z,R) = ETF(N,Z,R) + UR + o(Z7/3)

under suitable assumptions (for instance, mini≠j |Ri−Rj| > cZ−1/3 and N =

Z). If we define V Z
R (x) :=

∑K
j=1 ZjZ|x−Z−1/3Rj|−1 and ρZ(x) := Z2ρ(Z1/3x)

for given ρ, then we have the scaling properties

ETF(ρZ ;V
Z
R ) = Z7/3ETF(ρ;VR)

and ∫
R3

ρZ(x) dx = Z

∫
R3

ρ(x) dx.

Let ρψ(x) is the one particle density for the ground state ψ. Then, as
Z → ∞,

Z−2ρψ(Z
−1/3x) → ρTF(x),

where ρTF is the TF density (minimizer). In other words, ρψ and ρTF become
concentrated within a distance Z−1/3 of the various nuclei.

In the TF model, the most noticeable feature is instability of molecules.
Indeed, Teller’s no-binding theorem [32, 35] asserts that the TF energy of a
collection of fixed nuclei and TF electrons always strictly decreases if one
arbitrarily separate the nuclei into K independent atoms:

ETF(N,Z,R) + UR >
K∑
j=1

ETF
atom(Nj, Zj)

for any
∑K

j=1Nj = N . It is usually considered that Teller’s theorem and
instability of any negative ion (if N > Z then no TF minimizer exist) are the
defect of TF theory, but their properties are the very strong tools in mathe-
matical physics. For example, Lieb and Thirring [38] proved the stability of
matter via Thomas-Fermi theory.

Thomas-Fermi theory is the original density functional theory, that is,
the approximation method to represent the ground state energy of many
electrons systems in terms of the one particle density functional.

3 Hartree-Fock theory

We consider an N electrons state ψ ∈
∧
L2(R3) normalized as∫

R3N

|ψ(x1, . . . , xN)|2 dx1 · · · dxN = 1.
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Then the exchange correlation energy Xxc is defined by⟨
ψ,
∑
i<j

|xi − xj|−1ψ

⟩
= D[ρψ]−Xxc.

We recall the simplest anti-symmetric function ψ ∈
∧
L2(R3) is Slater deter-

minant, namely
ψ(x) = (N !)−1/2det{φi(xj)}Ni,j=1,

where N functions φi ∈ L2(R3), i = 1, . . . , N , are orthonormal∫
R3

φi(x)
∗φj(x) dx = δi,j.

Using this state, we obtain

Xxc = X(γψ) :=
1

2

∫∫
R3×R3

|γψ(x, y)|2

|x− y|
dx dy,

where

γ(x, y) =
N∑
i=1

φi(x)φi(y)
∗.

We define the general one particle density matrix γ as any linear, self-
adjoint operator satisfying 0 ≤ γ ≤ 1 and tr γ = N . The condition of γ ≤ 1
is, due to Coleman [15], a representation of the Pauli exclusion principle in
term of one particle density matrices.

The Hartree-Fock (HF) functional is defined by

EHF
R (γ) :=

[
tr

(
−1

2
∆− VR

)
γ

]
+D[ργ]−X(γ),

where ργ(x) = γ(x, x) =
∑

j≥1 λj|φj(x)|2, with γφj = λjφj, is the electrons
density of γ. Hartree-Fock theory is widely used in quantum chemistry and
physics. We note Hartree-Fock theory is not a density functional but a
density matrix functional theory.

The Hartree-Fock energy is defined by

EHF(N,Z,R) := inf{EHF
R (γ) : γ ∈ PN},
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where

PN := {γ : 0 ≤ γ ≤ 1, tr γ = N, tr(−∆+ 1)1/2γ(−∆+ 1)1/2 <∞}.

A HF minimizer does exist when N < Z + 1 (see [36]).
Furthermore, by Lieb’s variational principle [31], it holds that

EHF(N,Z,R) = inf{EHF
R (γ) : γ ∈ PN , γ2 = γ}

and E(N,Z,R) ≤ EHF(N,Z,R).
For the atomic case (K = 1), the ionization conjecture was shown by

Solovej [49]. Moreover, he investigated the radius of atom. Here we define
the radius RHF

Z by ∫
|x|≥RHF

Z

ρHF(x) dx = 1

for Hartree-Fock minimizing density ρHF. Then Solovej proved that there
exist universal constants C1, C2 such that

C1 ≤ RHF
Z ≤ C2.

It is believed that this is true for the Hamiltonian H(N,Z,R), but no
proof is known.

As defined before, we set a Born-Oppenheimer energy for Hartree-Fock
functional by

EHF(N,Z) := inf
R∈R3K

{EHF(N,Z,R) + UR}.

Catto and Lions [11–14] give a necessary and sufficient condition for the sta-
bility of molecules in Hartree-Fock theories. Let γ(x, y) =

∑N
j=1 φj(x)φj(y)

∗

be a Hartree-Fock state. They showed that any minimizing sequence (Rn, φnj )
∞
n=1 ⊂

R3K × (H1(R3))N for EHF(N,Z) is relatively compact if and only if

EHF(N,Z) < EHF(N −M,Z1) + EHF(M,Z2)

for all 0 ≤M ≤ N and for any configuration Z1, Z2.
However, the stability of Hartree-Fock molecule is still open even in the

hydrogen molecule case N = 2, K = 2.
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4 Müller theory

Müller functional which was introduced by Müller [40] is defined by

EM
R (γ) :=

[
tr

(
−1

2
∆− VR

)
γ

]
+D[ργ]−X(γ1/2),

where

X(γ1/2) :=
1

2

∫∫
R3×R3

|γ1/2(x, y)|2

|x− y|
dx dy

and

γ1/2(x, y) =
∞∑
j=1

λ
1/2
j φj(x)φj(y)

∗, γφj = λjφj.

The Müller energy is

EM(N,Z,R) = inf{EM
R (γ) : γ ∈ PN}.

It was shown in [21] that Müller functional has a minimizer if N ≤ Z.
As mentioned above, the Hartree-Fock minimizers are projection γ = γ2,

and hence EHF
R (γ) = EM

R (γ). Thus Müller functional is a genelarization of HF

functional, and it is always the case EM(N,Z,R) ≤ EHF(N,Z,R).
According to numerical computations, EM(N,Z,R) is always a lower

bound of E(N,Z,R). For N = 2, this lower bound is rigorously proven
by [21].

For the neutral atom N = Z, Siedentop [45] showed the energy asymp-
totics

EM
atom(Z) = EHF

atom(Z) + o(Z5/3) as Z → ∞.

In particular, for Z ∈ N

EM
atom(Z) = Eatom(Z) + o(Z5/3)

because Eatom(Z) = EHF
atom(Z) + o(Z5/3) by [5].

An important property of Müller functional is the convexity. Indeed,
the term D[ργ] is strictly convex in ργ. According to Fefferman and de la
Llave [17]

|x− y|−1 =

∫ ∞

0

dr

∫
R3

χBz,r(x)χBz,r(y) dz,
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and hence we can write

X(γ1/2) =

∫ ∞

0

dr

∫
R3

dz

∫∫
R3×R3

|γ1/2(x, y|2χBz,r(x)χBz,r(y) dx dy.

By the Wigner-Yanase-Dyson-Lieb concavity [30], tr(B†γ1/2Bγ1/2) is a con-
cave function of γ. Therefore, EM

R is a convex function of γ.

We note that ργ(x)ργ(y) − |γ1/2(x, y)|2 is not necessarily positive as a
function of x, y. This nonpositivity prevents the application of “the multi-
plication by |x| strategy” [33] to show a bound on the maximum ionization.

Nevertheless, it was shown the ionization conjecture for atoms [25], that
is, if there is a Müller minimizer in the atomic case K = 1, then N ≤ Z +C.
In addition, a bound on the atomic radii of Müller atom was proven:

C1 ≤ RM
Z ≤ C2.

Here C1, C2 are the universal constants.

The purpose of this thesis is to study the molecular theory for Müller
functional.

In the Chapter 2, we investigate the Born-Oppenheimer energy of Müller
functional

EM(N,Z) := inf
R∈R3K

{EM(N,Z,R) + UR}. (1.1)

We will say that the molecular system is stable if there exists a density-
matrix γ with tr γ = N such that E(N,Z) = ER(γ) +UR for some R ∈ R3K .

Now we set

ÊR(γ) = ER(γ) +
tr γ

8
,

and a relaxed problem

Ê≤(N,Z,R) = inf
{
ÊR(γ) : 0 ≤ γ ≤ 1, tr γ ≤ N

}
.

Physically, this functional might be interpreted as the binding energy because
it is known

−N
8

= inf

{
tr

[(
−1

2
∆

)
γ

]
+D[ργ]−X(γ1/2) : tr γ ≤ N

}
.

Also we define the Born-Oppenheimer energy for this functional by

Ê≤(N,Z) = inf
R

{
Ê≤(N,Z,R) + UR

}
. (1.2)

Our results in this thesis are following.
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Theorem (Chapter 2. Theorem 1.1). Any minimizing sequence (Rn)n ⊂
R3K for (1.2) is bounded if and only if

Ê≤(N,Z) < Ê(N1, Z1) + Ê(N2, Z2) (1.3)

for all Ni ≥ 0, i = 1, 2, such that N1+N2 ≤ N and for any configuration Z1 =
(Zj(1), . . . , Zj(p)) and Z2 = (Zj(p+1), . . . , Zj(K)), j permutation of {1, . . . , K}.

Theorem (Chapter 2. Theorem 1.2). We assume Ê≤(N,Z) = E(N,Z) +
N/8. Then any minimizing sequence (Rn)n ⊂ R3K for (1.1) is bounded if
and only if

E(N,Z) < E(N1, Z1) + E(N2, Z2) (1.4)

for all Ni ≥ 0, i = 1, 2, such that N1+N2 = N and for any configuration Z1 =
(Zj(1), . . . , Zj(p)) and Z2 = (Zj(p+1), . . . , Zj(K)), j permutation of {1, . . . , K}.

Remark 4.1. For N ≤ Z, a minimizer of the Müller energy has trace N .
Thus Ê≤(N,Z) = E(N,Z) + N/8 for N ≤ Z and the molecules are stable
when the binding inequality (1.4) hold.

Theorem (Chapter 2. Theorem 1.3). We assume N ≤ c1Z and Zmin :=
min{Z1, . . . , ZK} ≥ c2Z with some constants ci > 0, i = 1, 2, independent
of Z. If there exist a stable configuration R = (R1, . . . , RK) ∈ R3K and a
density matrix γ ∈ PN such that ER(γ) + UR = E(N,Z), then there exist
C0 > 0 depending only on Z1, . . . , ZK, and K, ci > 0 such that

Z −N ≤ C0Z
1−δ (1.5)

for some δ > 0.
Moreover, if we put Rmin := mini ̸=j |Ri − Rj|, then there is a constant

C > 0 depending on the same quantities as above C0 so that

Rmin > CZ−(1/3)(1−ε), (1.6)

where ε = 2/77.

Remark 4.2. (1.5) gives a bound on the excess positive charge. The estimate
(1.6) states that the molecular radii in the frame work of the Müller theory
are much larger than the Thomas-Fermi atomic radii, namely Z−1/3. This is
the crucial fact for the proof of (1.5).
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Chapter 2

Binding stability of molecules
in Müller theory

Abstract. We give a necessary and sufficient condition for the stability of
molecules in Müller theory. Furthermore, it is shown that if a system is stable
in Born-Oppenheimer approximation, then the bound on the excess positive
charge Z −N ≤ cZ1−ε follows.

1 Introduction

We consider a molecule with N > 0 electrons and K nuclei. We say that a
self-adjoint operator γ is an one-body density-matrix if 0 ≤ γ ≤ 1 on L2(R3)
and tr γ < +∞. Then the Müller functional is defined by

ER(γ) = tr

[(
−1

2
∆− VR

)
γ

]
+D[ργ]−X(γ1/2),

where D[ργ] is the direct part of Coulomb energy defined by

D[ργ] = D(ργ, ργ) =
1

2

∫∫
R3×R3

ργ(x)ργ(y)

|x− y|
dxdy

and the Müller exchange energy is defined by

X(γ1/2) =
1

2

∫∫
R3×R3

|γ1/2(x, y)|2

|x− y|
dxdy.

02010 Mathematics Subject Classification.81V55, 35Q40
0Key words:Müller functional, Stability of molecules, Many-electron system
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Here γ1/2(x, y) =
∑

i≥1 λ
1/2
i φi(x)φ

∗
i (y), with γφi = λiφi, and ργ(x) = γ(x, x)

is the one-particle electron density. Our potential is

VR(x) =
K∑
i=1

Zi
|x−Ri|

, Z =
K∑
i=1

Zi,

where Z = (Z1, . . . , ZK) ∈ RK
+ are the charges of fixed nuclei located at

R = (R1, . . . , RK) ∈ R3K .
For N > 0 (not necessarily integer valued) and Zi ≥ 0, we now define the

ground state energy in Müller theory by

ER(N,Z) = inf {ER(γ) : γ ∈ P , tr γ = N}

where P = {γ : γ = γ†, 0 ≤ γ ≤ 1, (−∆+ 1)1/2γ(−∆+ 1)1/2 ∈ S1}, S1 is the
set of trace-class operators. When N ≤ Z, it was shown by Frank et. al. [21]
that ER(N,Z) has a minimizer.

In this paper, we will investigate minimization of the Müller energy over
the nuclear positions Rj, that is, the Born-Oppenheimer energy of a molecule
defined as

E(N,Z) = inf
R

{ER(N,Z) + UR} , (2.1)

where UR is the nuclear-nuclear repulsion

UR =
∑
i<j

ZiZj
|Ri −Rj|

.

Our purpose is to explore the stability of molecules in Müller theories.
Following, we will say that the molecular system is stable if there exists a
density-matrix γ with tr γ = N such that E(N,Z) = ER(γ) + UR for some
R ∈ R3K .

Analogously to a series of works [11–14] by Catto and Lions on the
Thomas-Fermi and Hartree type theories, we prove that any molecular sys-
tem is stable under the Müller theory if and only if all possible two molecules
can be bound.

It is well-known that, due to the classical work of Lieb and Thirring [39],
neutral atoms and molecules are stable in the nonrelativistic Schrödinger
theory. In particular, it was shown that the R−6 attractive interaction en-
ergy, among molecules for large separation R, appears from the dipole-dipole
interaction. On the other hand, density-functional theory may not have the
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same feature, since it deals only with single particle densities, as pointed out
in [39]. In Thomas-Fermi theory, two neutral molecules can never be bound
by Teller’s no-binding theorem [32, 35]. We refer to [10–14, 32] for other
Thomas-Fermi type theories and Hartree-Fock theories. We recall Müller
theory is not a density functional but a density-matrix theory. Namely, this
theory describe the energy as a functional of the one-body density matrix
γ(x, y), rather than a one-particle density ρ(x). Our purpose of this paper is
to extend the method of [11–14] to investigate the Müller theory of molecules.

Let us define

ÊR(γ) = ER(γ) +
tr γ

8
.

We note that

−N
8

= E∞(N) = inf {E∞(γ) : tr γ = N}

by [21, Propositon 1], where

E∞(γ) := tr

(
−1

2
∆

)
γ +D[ργ]−X(γ1/2).

For technical reason, we set a relaxed problem

Ê≤(N,Z) = inf
R

{
Ê≤(N,Z,R) + UR

}
, (2.2)

where
Ê≤(N,Z,R) = inf

{
ÊR(γ) : γ ∈ P , tr γ ≤ N

}
.

For any N > 0, Z > 0, it was shown in [21], Ê≤(N,Z,R) has a minimizer.
Our results are following.

Theorem 1.1. Any minimizing sequence (Rn)n ⊂ R3K for (2.2) is bounded
if and only if

Ê≤(N,Z) < Ê(N1, Z1) + Ê(N2, Z2) (2.3)

for all Ni ≥ 0, i = 1, 2, such that N1+N2 ≤ N and for any configuration Z1 =
(Zj(1), . . . , Zj(p)) and Z2 = (Zj(p+1), . . . , Zj(K)), j permutation of {1, . . . , K}.

As mentioned above, for N ≤ Z, a minimizer of Müller energy has trace
N . Thus Ê≤(N,Z) = E(N,Z) +N/8 and the molecules are stable when the
binding inequality hold. Moreover,
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Theorem 1.2. We assume Ê≤(N,Z) = E(N,Z) + N/8. Then any mini-
mizing sequence (Rn)n ⊂ R3K for (2.1) is bounded if and only if

E(N,Z) < E(N1, Z1) + E(N2, Z2) (2.4)

for all Ni ≥ 0, i = 1, 2, such that N1+N2 = N and for any configuration Z1 =
(Zj(1), . . . , Zj(p)) and Z2 = (Zj(p+1), . . . , Zj(K)), j permutation of {1, . . . , K}.

It is expected that the binding occur for N ≤ Z molecules or ions, though
it is an open question. Even in the Hartree-Fock theory, the stability of
molecules is still open except in special cases [10–14].

One main purpose of this article is the following.

Theorem 1.3 (Bound on the excess positive charge). We assume N ≤ c1Z
and Zmin := min{Z1, . . . , ZK} ≥ c2Z with some constants ci > 0, i = 1, 2,
independent of Z. If there exist a stable configuration R = (R1, . . . , RK) ∈
R3K and a density matrix γ ∈ P such that ER(γ)+UR = E(N,Z), then there
exist C0 > 0 depending only on Z1, . . . , ZK, and K, ci > 0 such that

Z −N ≤ C0Z
1−δ (2.5)

for some δ > 0.
Moreover, if we put Rmin := mini ̸=j |Ri − Rj|, then there is a constant

C > 0 depending on the same quantities as above C0 so that

Rmin > CZ−(1/3)(1−ε), (2.6)

where ε = 2/77.

Remark 1.4. It is expected that if a Müller minimizer exists, then N ≤ CZ
holds. In fact, for atomic case, if there is a minimizer then N ≤ Z + const.
holds by [25]. However, the proof works only for atomic case, and it is still
an open issue for molecular case.

Remark 1.5. The estimate (2.6) states that the molecular radii in the frame
work of Müller theory are much larger than the Thomas-Fermi atomic radii,
namely Z−1/3. Thus the Thomas-Fermi density of the molecule is of order of
the sum of atomic densities. Solovej and Ruskai [41,47] showed by using this
type estimate that the asymptotic neutrality N −Z = o(Z) for molecules in
nonrelativistic Schrödinger theory.
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2 di-atomic case

First, we consider a simple di-atomic case. Without loss of generality, we
may assume

VR(x) = VR(x) =
Z1

|x|
+

Z2

|x−Rê|
, UR = UR =

Z1Z2

R
,

where R > 0, and ê ∈ R3 is an unit vector. Then our minimizing problem is

Ê≤(N,Z) = inf
R>0

{
Ê≤(N,Z,R) +

Z1Z2

R

}
. (2.7)

In this section our main result is

Theorem 2.1. Any minimizing sequence for (2.7) is bounded if and only if

Ê≤(N,Z) < Êatom(N1, Z1) + Êatom(N2, Z2), (2.8)

for all 0 ≤ Ni, i = 1, 2, such that N1 +N2 ≤ N . Here

Êatom(N,Z) = inf{Êatom(γ) : γ ∈ P , tr γ = N},

and

Êatom(γ) = tr

(
−1

2
∆− Z|x|−1

)
γ +D[ργ]−X(γ1/2) +

tr γ

8
.

The next Lemma corresponds to the ‘if’ part of theorem.
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Lemma 2.2. For all Ni ≥ 0, i = 1, 2, with N1 +N2 ≤ N , we have

Ê≤(N,Z) ≤ lim sup
R→∞

(Ê≤(N,Z,R) + UR)

≤ Êatom(N1, Z1) + Êatom(N2, Z2).
(2.9)

It immediately follows that

Corollary 2.3. We assume Ê(N,Z) = Ê≤(N,Z). For all Ni ≥ 0, i = 1, 2,
with N1 +N2 ≤ N , we have

E(N,Z) ≤ lim sup
R→∞

(E≤(N,Z,R) + UR)

≤ Eatom(N1, Z1) + Eatom(N2, Z2).
(2.10)

We shall prove Lemma 2.2. The following lemma is obtained by the same
proof in [28, Lemma 1].

Lemma 2.4. Let Z ≥ 0, N > 0 and tr γ = N . Then, for any ε > 0 there
exists a σ having a compactly supported integral kernel, trσ = N and

|ER(γ)− ER(σ)| ≤ ε.

Proof of Lemma 2.2. It is trivial for N1 = 0 (or equivalently, N2 = 0). Let

ε > 0, Ni > 0, i = 1, 2, and N1 + N2 ≤ N . We may assume Êatom(γi) ≤
Êatom(Ni, Zi) + ε/3, tr γi = Ni, and the kernel of γi is compactly supported
in a ball with radius r > 0. Let γ̂2R = τ−Rγ2τR with translation τ . We then
define a trial density-matrix by

γR = γ1 + γ̂2R .

Clearly 0 ≤ γ ≤ 1, tr γ ≤ N , and γ1γ̂2R = 0 for large R, by construction.

Thus we can compute X(γ
1/2
R ) = X(γ

1/2
1 ) + X(γ̂

1/2
2R

). Furthermore, it is easy
to see that

2D[ργ1 , ργ̂2R ] =

∫∫
R3×R3

ργ1(x)ργ̂2R(y)

|x− y|
dx dy ≤ N1N2

R− 2r
.

Using the translation invariant of the functional E∞(γ), we may find

Ê≤(N,Z,R) +
Z1Z2

R
≤ ÊR(γR) +

Z1Z2

R

≤
∑
i=1,2

Êatom(γi) + 2D(ργ1 , ργ̂2R) +
Z1Z2

R

≤
∑
i=1,2

Êatom(Ni, Zi) + ε/3 +
N1N2

R− 2r
+
Z1Z2

R
,
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for sufficiently large R > 0. Hence for any given ε > 0 and N1+N2 ≤ N ,
it hold that

lim sup
R→∞

(
Ê≤(N,Z,R) +

Z1Z2

R

)
≤ Êatom(N1, Z1) + Êatom(N2, Z2) + ε,

which shows (2.9).

Lemma 2.2 implies that if any minimizing sequence (Rn)n for (2.7) is

bounded, then binding inequality (2.8) hold. Indeed, assume contrary Ê(N,Z) =

Êatom(N1, Z1) + Êatom(N2, Z2) for some N1 +N2 ≤ N . Then, by Lemma 2.2,

limR→∞(Ê≤(N,Z,R) + UR) = Ê(N,Z). This contradicts to the assumption
that any minimizing sequence is bounded. Hence, the ‘if’ part of Theorem
2.1 is followed.

Proof of Theorem 2.1. We shall show that ‘only if’ part. Assume contrary
there is a minimizing sequence (Rn)n for Ê≤(N,Z) so that Rn → ∞. Then we

may assume that there exist density-matrices γn ∈ P so that ÊRn(γ)+URn →
Ê≤(N,Z) as n→ ∞. Using the hydrogen bound, it follows that

trZj|x−Rj|−1γ ≤ Zjε

4Z
tr(−∆)γ +

ZjZ

ε
tr γ,

for any positive number ε > 0. Hence trVRγ ≤ ε/4 tr(−∆γ) + Z2/ε tr γ, for
any ε > 0. Moreover, the hydrogen bound also implies that

Lemma 2.5 (Lemma 1 of [21]). For any ε > 0 it hold that

X(γ1/2) ≤ ε

4
tr(−∆γ) +

1

4ε
tr γ.

Now we get the following bound as [21, Equation (57)]:

1

2
(1− ε) tr(−∆)γn ≤ ÊRn(γn) + URn +

1

ε

(
Z2 +

1

4

)
tr γn (2.11)

Hence (−∆+1)1/2γn(−∆+1)1/2 is bounded in S1, and thus, by the Banach-
Alaoglu theorem, after passing to a subsequence if necessaly we may assume
that trKγn → trKγ for some γ and for any operator K such that (−∆ +
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1)1/2K(−∆ + 1)1/2 is compact. In particular, for any function f ∈ Lp(R3)
(3/2 ≤ p <∞)∫

R3

f(x)ργn(x) dx = tr fγn → tr fγ =

∫
R3

f(x)ργ(x) dx. (2.12)

We note that 0 ≤ γ ≤ 1 and

M = tr γ ≤ lim inf
n→∞

tr γn = Ñ ≤ N (2.13)

by the lower-semicontinuity of the S1 norm.
We may show that γ ̸≡ 0 from [21, Proposition 1]. In fact, for some δ > 0

Êatom(N,Z1) ≤ −δ.

From Lemma 2.2,

lim sup
R→∞

ÊR(N,Z) ≤ Êatom(N,Z1).

Thus, ÊRn(γn) + URn ≤ −ε for some ε > 0 and sufficiently large n. Hence,
we have

−ε ≥ ÊRn(γn) + URn ≥ − trVRnγn,

and thus
trVRnγn ≥ ε,

where VRn = Z1|x|−1 + Z2|x−Rne|−1. Thus γ ̸≡ 0.

If M = Ñ , then limn→∞ tr γn = tr γ. Thus γn → γ as n → ∞ in S1

by [46, Theorem A.6]. Then∫
R3

ργn(x)|x−Rnê|−1dx→ 0

by Rn → ∞. From the lower-semicontinuity of our functionals [21, Proposi-
tion 3], we have

Ê≤(N,Z) ≥ lim inf
n→∞

Êatom(γn) ≥ Êatom(γ) ≥ Êatom(Ñ , Z1) ≥ Ê≤(N,Z),

and thus Ê≤(N,Z) = Êatom(Ñ , Z1) with Ñ ≤ N . Then we have finished the
proof in this case.
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Let
(χ0)2 + (χ1)2 = 1

with χ0 ∈ C∞(R3), radial, χ0(0) = 1, χ0(r) < 1 if r > 0, χ0(r) = 0 if r ≥ 2.
For each j tr(χ0(|x|/L))2γj, is a continuous function of L > 0 which increases
from 0 to tr γj. Now tr γj > M for large j, and thus we can choose Lj such
that tr γ0j := tr(χ0(|x|/Lj))2γ = M , Lj → ∞, and then γ0j → γ in S1. We
write χνj (x/Lj) := χν(|x|/Lj) and γνj = χνjγjχ

ν
j for each ν = 0, 1.

From the IMS formula,

tr(−∆γn) =
∑
ν=0,1

[
tr(−∆γνN)− tr |∇χνn|2γn

]
.

Clearly,

D[ργj ] = D[ργ0j ] +D[ργ1j ] + 2D(ργ0j , ργ1j ) ≥ D[ργ0j ] +D[ργ1j ]

since ρνγj ≥ 0. For the potential term,

tr(|x|−1γn) = tr(|x|−1γ0n) + o(1).

and
tr(|x−Rnê|−1γn) = tr(|x−Rnê|−1γ1n) + o(1),

because Rn → ∞. Indeed, we may split

tr(|x−Rnê|−1γ0n) =

∫
R3

ργ0n(x)

|x−Rnê|
dx

=

∫
R3

(
ργ0n(x)− ργ(x)

|x−Rnê|
+

ργ(x)

|x−Rnê|

)
dx.

(2.14)

We see that the second term converges to 0 by Young’s inequality. For the
first term, we split ργ0n(x)−ργ(x) = (

√
ργ0n(x)+

√
ργ(x))(

√
ργ0n(x)−

√
ργ(x)).

We know that
√
ργ0n → √

ργ strongly in L2(R3) by γ0n → γ in S1, and
thus the first term also converges to 0. For the exchange term, we have
X(γ

1/2
j ) ≤ X((γ0j )

1/2)+X((γ1j )
1/2)+o(1) as [21]. Let γ̃n = τ−Rnêγ

1
nτRnê. It is

clear that tr γ̃n = K −M with some K ≤ N . By the translation invariants
for the functional E∞(γ), we have

ÊRn(γn) + URn ≥ Êatom(γ0n) + Êatom(γ̃n) + o(1)

≥ Êatom(γ0n) + Êatom(K −M ;Z2) + o(1).
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Hence, again by the lower-semicontinuity, we arrive at

Ê≤(N,Z) ≥ lim inf
n→∞

Êatom(γ0n) + Êatom(K −M,Z2)

≥ Êatom(γ) + Êatom(K −M,Z2).

Thus Ê≤(N,Z) ≥ Êatom(M,Z1)+Êatom(K−M,Z2) withK ≤ N . By Lemma
2.2, this is equal.

We recall E∞(N) = −N/8 for the Müller case X1/2. The next theorem
which is the diatomic case of Theorem 1.2 follows.

Theorem 2.6. We assume Ê≤(N,Z) = E(N,Z) + N/8. Then, any mini-
mizing sequence for (2.1) is bounded if and only if

E(N,Z) < Eatom(N1, Z1) + Eatom(N2, Z2) (2.15)

for all N1 +N2 = N , 0 ≤ Ni, i = 1, 2.

Proof of Theorem 2.6. In the proof of the previous theorem, we may take
K = N when Ê≤(N,Z) = E(N,Z) +N/8. Thus the molecules are stable if
and only if (2.8) hold for all N1 + N2 = N . Then, the binding (2.15) and
(2.8) are equivalent for N1 +N2 = N .

3 General case

First, we need the following proposition.

Proposition 3.1. It is always the case

Ê≤(N,Z) ≤ Ê≤(N1, Z1) + Ê≤(N2, Z2) (2.16)

for all Ni ≥ 0, i = 1, 2, such that N1 +N2 ≤ N .

Proof of Proposition 3.1. Let ε > 0. As proof of Lemma 2.2, we can take γni
and Rn

i , i = 1, 2, such that

ÊRn
i
(γni ) + URn

i
≤ Ê≤(Ni, Zi) +

1

n
,
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i = 1, 2. Moreover, we may assume that their kernel have the compact
support in the ball. Let γ̂n2 = τ−Bγ

n
2 τB, with B ∈ R3. We define γn = γn1 + γ̂

n
2

as diatomic case. Then, for Rn = (Rn
j(1), . . . , R

n
j(p), R

n
j(p+1) + Bn, R

n
j(p+2) +

Bn, . . . , R
n
j(K) +Bn) with large |Bn|,

Ê≤(N,Z) ≤ ÊRn(N,Z) + URn ≤ ÊRn(γn) + URn

≤ Ê≤(N1, Z1) + Ê≤(N2, Z2) +
3

n

≤ Ê≤(N1, Z1) + Ê≤(N2, Z2) + ε.

Here we have choosen 3/n ≤ ε.

Remark 3.2. It is immediately followed the ‘if’ part of Theorem 2.3 by this
Lemma. Suppose that any minimizing sequence for (2.2) is bounded in R3K .

If Ê≤(N,Z) = Ê≤(N1, Z1) + Ê≤(N2, Z2) for some configuration, then the
above Rn is a minimizing sequence and clearly not bounded.

Proof of Theorem 1.1. We only show the ‘if only’ part by contradiction. Let
ÊRn(γn) + URn → Ê≤(N,Z) and suppose this Rn is not bounded. As proof
of di-atomic case, we may assume γn → γ ̸≡ 0 in a sense, and the relation
(2.13) holds. If tr γ = M = Ñ , then γn → γ in S1. Then, after passing by
subsequence if necessaly,

Ê≤(N,Z) ≥ lim inf
n→∞

(ÊRn(γn) + URn) ≥ ÊR(γ),

where R ∈ R3(K−L), L is the number of i such that |Rn
i | → ∞. Hence

Ê≤(N,Z) = Ê(Ñ , Z̃) with Ñ ≤ N and thus Ê≤(N,Z) ≥ Ê≤(N, Z̃). The

proof is done when M = Ñ .
Next, we consider the case ofM < Ñ . We may split γn = γ0n+γ

1
n, γ

0
n → γ

in S1. Let J = {j : Rn
j remain bounded}, If J = ∅, passing to a subsequence

if necessary, we may |Rn
j | → ∞ for all j. Then,

tr(|x−Rn
j |−1γn) = tr(|x−Rn

j |−1γ1n) + o(1).

as the same reason of (2.14). Thus we get

ÊRn(γn) + URn ≥ Ê∞(γ0n) + ÊRn(γ1n) + URn
+ o(1)

≥ Ê∞(γ0n) + Ê(K −M,Z) + o(1).
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Thus
Ê≤(N,Z) ≥ Ê∞(M) + Ê(K −M,Z).

The proof is done.
If J ̸= ∅, then, by passing to a subsequence if necessary, we may assume

that Rn
j → Rj for j ∈ J and |Ri| → ∞ for i ̸∈ J . Then, for j ∈ J we see that

tr(|x−Rn
j |−1γn) = tr(|x−Rj|−1γ0n) + o(1).

For j ̸∈ J ,
tr(|x−Rn

j |−1γn) = tr(|x−Rn
j |−1γ1n) + o(1).

Hence we arrive at

Ê≤(N,Z) ≥ Ê(M,Z1) + Ê(K −M,Z2),

where Z1 = {Zj : j ∈ J} and Z2 = {Zj : j ̸∈ J}. This completes the proof.

We now turn to the

Proof of Theorem 1.2. If Ê≤(N,Z) = E≤(N,Z) + N/8, then we can take
K = N in the above proofs. Therefore, any minimizing sequence is bounded
if and only if the binding condition (2.3) hold for all N1 + N2 = N . For
N1 + N2 = N the condition (2.3) and (2.4) are equivalent. Thus Theorem
1.2 follows.

4 A lower bound on the size of molecules

In this section we prove the estimate (2.6) in Theorem 1.3. First, we use the
united atom bound for Müller theory.

Proposition 4.1 (united atom bound). For any N > 0 and for any config-
uration R ∈ R3K we have

ER(N,Z) ≥ Eatom(N,Z).

Proof. Let ε > 0 and ER(N,Z) ≥ ER(γ) + ε. Then

ER(γ) =
K∑
j=1

Zj
Z

[
tr

(
−1

2
∆− Z|x−Rj|−1

)
γ +D[ργ]−X(γ1/2)

]
.

Since the energy of Eatom(N,Z) is independent of nucler positions Rj, the
conclusion follows.
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From this bound we have

E(N,Z) ≥ Eatom(N,Z) +
ZiZj

|Ri −Rj|

where Rmin = |Ri −Rj|. We now deduce from Lemma 2.5 that

Eatom(N,Z) ≥ tr

(
−1

4
∆

)
γ − tr(Z|x|−1)γ +D[ργ]−

N

4
.

For the bound of kinetic energy term, we need the

Theorem 4.2 (Lieb-Thirring kinetic energy inequality [37]).

tr

(
−∆

2
γ

)
≥ 3

10
L

∫
R3

ργ(x)
5/3 dx,

with a constant L (see [16,19]).

Hence we infer that

Eatom(N,Z) ≥
3

10
C

∫
R3

ρ(x)5/3 dx− tr(Z|x|−1)γ +D[ρ]− N

4
.

Next, we introduce the Thomas-Fermi (TF) theory [32,35] by

ETFR (ρ) =
3

10
(3π2)2/3A

∫
R3

ρ(x)5/3 dx+

∫
R3

VR(x)ρ(x) dx+D[ρ],

and define the lowest energy by

ETF
R (N,Z,A) = inf

{
ETFR (ρ) : 0 ≤ ρ,

∫
R3

ρ(x) dx = N, ρ ∈ L5/3(R3)

}
.

From the scaling property of Thomas-Fermi functional [32], we see ETF
atom(N,Z,A) ≥

−CZ7/3. Consequently, we arrive at

E(N,Z) ≥ −CZ7/3 +
ZiZj

|Ri −Rj|
.

Hence we have |Ri −Rj| ≥ CZ−1/3.
Next, we shall improve this bound by comparison with Thomas-Fermi

theory. In order to compare our functional with Thomas-Fermi one, we need
the following semiclassical approximation. The following results are taken
from [49, Lemma 8.2] (we use the optimal δ > 0 as in [25, Lemma 11]).
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Lemma 4.3. For fixed s > 0 and smooth g : R3 → [0, 1] satisfying supp g ⊂
{|x| < s},

∫
g2 = 1,

∫
|∇g|2 ≤ Cs−2 it follows that

(i) For any V : R3 → R with [V ]+, [V − V ⋆ g2]+ ∈ L5/2 and for any
0 ≤ γ ≤ 1

tr

(
−∆

2
− V

)
γ ≥ −25/2(15π2)−1

∫
[V ]

5/2
+ − Cs−2 tr γ

− C

(∫
[V ]

5/2
+

)3/5(∫
[V − V ⋆ g2]

5/2
+

)2/5

,

where the symbol [x]+ stands for max{0, x}.

(ii) If [V ]+ ∈ L5/2 ∩ L3/2, then there is a density matrix γ so that ργ =

25/2(6π2)−1[V ]
3/2
+ ⋆ g2,

tr

(
−∆

2
γ

)
≤ 23/2(5π2)−1

∫
[V ]

5/2
+ + Cs−2

∫
[V ]

3/2
+

We introduce the TF potential for the molecule as the function

φTF
mol(x) :=

K∑
i=1

Zi|x−Ri|−1 −
∫
R3

ρTF
mol(y)

|x− y|
dy,

where ρTF
mol is the unique minimizing density for ETF(N,Z,R) = ETF(N,Z,R, 1)

(when N > Z we take the minimizer for the neutral molecule). First, we
shall show that

Lemma 4.4. For any configuration R ∈ R3K and density-matrix γ we have

ER(γ) ≥ ETF(ρTF
mol) +D

[
ργ − ρTF

mol

]
− CZ25/11. (2.17)

Proof of Lemma 2.17. We can write

ER(γ) = tr

(
−∆

2
− φTF

mol

)
γ +D

[
ργ − ρTF

mol

]
−D

[
ρTF
mol

]
−X(γ1/2).

According to N ≤ CZ, we may bound the exchange term by

X(γ1/2) ≤ CZ5/3.
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Indeed, we infer from Hardy’s inequality that∫∫
R3×R3

|γ1/2(x, y)|2

|x− y|
dx dy

≤
(∫∫

R3×R3

|γ1/2(x, y)|2 dx dy
)1/2(∫∫

R3×R3

|γ1/2(x, y)|2

|x− y|2
dx dy

)1/2

≤ 4N1/2(tr(−∆)γ)1/2.

We recall tr(−∆)γ ≤ CZ7/3 by the energy bound.
Next, from Lemma 4.3 (i) we have

tr

(
−∆

2
− φTF

mol + µ(N,Z,R)

)
γ

≥ −25/2(15π)−1

∫
[φTF

mol − µ(N,Z,R)]
5/2
+ − Cs−2 tr γ

− C

(∫
[φTF

mol − µ(N,Z,R)]
5/2
+

)3/5(∫
[φTF

mol − φTF
mol ⋆ g

2]
5/2
+

)2/5

.

Here µ(N,Z,R) ≥ 0 is the chemical potential for the molecule. It is known
(see [32]) that the functions ρTF

mol and φ
TF
mol satisfy the TF equation

ρTF
mol(x)

2/3 = 25/3(6π2)−2/3[φTF
mol(x)− µ(N,Z,R)]+. (2.18)

Using the TF equation and scaling property in Thomas-Fermi theory, we
have ∫

[φTF
mol − µ(N,Z,R)]

5/2
+ ≤ C

∫
(ρTF

mol)
5/3 ≤ CZ7/3.

Since VR is superharmonic, it follows that VR−VR ⋆ g
2 ≥ 0 by the maximum

principle. To see this, we note that VR ⋆ g
2 is a continuous function going

to zero at infinity, and therefore ψ := VR − VR ⋆ g
2 → ∞ as x → Ri for any

i. Since ψ is continuous away from the Ri, A := {x : ψ(x) < 0} is open and
disjoint from the Ri. Thus −∆ψ ≤ 0 on A. It is clear that ψ(x) → 0 as
|x| → ∞ and hence A is empty by the maximum principle. Hence ψ ≥ 0.

From the fact that ρTF
mol(x) ∼ |x−Rj|−3/2 near the Rj [32], we can repeat

the above arguments for ψ = ρTF
mol − ρTF

mol ⋆ |x|−1. Thus, ρTF
mol ⋆ |x|−1 − ρTF

mol ⋆
g2 ⋆ |x|−1 ≥ 0. We recall Newton’s theorem∫

S2
|x− y|−1dν(y)

4π
= min(|x|−1, |y|−1)
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for any x ∈ R3. Then

VR − VR ⋆ g
2 ≤

K∑
j=1

Zj
(
|x−Rj|−11(|x−Rj| ≤ s)

)
. (2.19)

Using this bound, we obtain

∫
[φTF

mol − φTF
mol ⋆ g

2]
5/2
+ ≤

∫
[VR − VR ⋆ g

2]
5/2
+

≤ Z5/2

K∑
i=1

∫
|x−Ri|≤s

|x−Ri|−5/2 dx

≤ CZ5/2s1/2,

where we have used the convexity of x5/2. Hence

tr

(
−∆

2
− φTF

mol

)
γ ≥ −25/2(15π2)−1

∫
[φTF

mol − µ(N,Z,R)]
5/2
+ − Cs−2Z

− CZ12/5s1/5 − µ(N,Z,R)N.

Optimizing over s > 0 we get

tr

(
−∆

2
− φTF

mol

)
γ

≥ −25/2(15π2)−1

∫
[φTF

mol − µ(N,Z,R)]
5/2
+ − µ(N,Z,R)N − CZ25/11

= − 3

10
(2/3)(3π2)2/3

∫ [(
ρTF
mol

)5/3 − µ(N,Z,R)
]5/2
+

− µ(N,Z,R)N − CZ25/11

Using the relation obtained from the TF equation

−µ(N,Z,R)N−D
[
ρTF
mol

]
=

3

10
(5/3)(3π2)2/3

∫ (
ρTF
mol

)5/3−∫ ρTF
molVR+D

[
ρTF
mol

]
,

we learn

tr

(
−∆

2
− φTF

mol

)
γ ≥ ETF(ρTF

mol) +D
[
ργ − ρTF

mol

]
− CZ25/11,

which shows (2.17).
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We denote

Γ(N,Z,R) := ETF
mol(N,Z,R)− inf

{
K∑
j=1

ETF
atom(Nj, Zj) :

K∑
j=1

Nj = N

}
.

It was shown in [41, Proof of Theorem 8] that for any pair (Ri, Rj) from R
there is a decomposition (N1, . . . , NK) with

∑
j Nj = N so that

Γ(N,Z,R) ≥ Γ(Ni +Nj, (Zi, Zj), (Ri, Rj)).

From the result in [7] Γ is smallest in the neutral case. It was shown in [9]
that Γ(Ni + Nj, (Zi, Zj), l(Ri, Rj))l

7 is an increasing function of l for the
neutral case. By |Ri − Rj| > C0(Zi + Zj)

−1/3, with (Ri, Rj) = R(Zi +
Zj)

−1/3|Ri−Rj|−1(Ri, Rj), we see R > C0. We put zij := (Zi+Zj)
−1(Zi, Zj)

and rij := |Ri −Rj|−1(Ri, Rj) for convenience. Then

Γ(Ni +Nj, (Zi, Zj), (Ri, Rj)) ≥ (Zi + Zj)
7/3Γ(1, zij, Rzij)

≥ |Ri −Rj|−7C7
0Γ(1, zij, C0rij)

= C|Ri −Rj|−7.

Here we have used the scaling property of Thomas-Fermi theory.
Combining these results,

ER(γ) + UR ≥
K∑
i=1

ETF
atom(Ni, Zi)− CZ25/11 +D

[
ργ − ρTF

mol

]
+ CR−7

min.

Next, we show the upper bound for the energy of Müller atom.

Lemma 4.5. For any N > 0 and Z > 0

Eatom(N,Z) ≤ ETF
atom(N,Z) + CZ11/5. (2.20)

Proof. First, we introduce the reduced Hartree-Fock functional by

ERHF
atom(γ) := tr

(
−1

2
∆− Z|x|−1

)
γ +D[ργ].

It is clear that

Eatom(N,Z) ≤ inf{ERHF
atom(γ) : 0 ≤ γ ≤ 1, tr γ = N}
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We introduce the atomic Thomas-Fermi potential by

φTF
atom(x) = Z|x|−1 − ρTF

atom ⋆ |x|−1,

where ρatom is the minimizer for atomic (K = 1) Thomas-Fermi functional
ETF

atom(N,Z) (in the negative ionic situation N > Z, we take the neutral TF
minimizer). We apply Lemma 4.3 (2) with V = φTF

atom − µ (µ is the chemical
potential for the TF atom) and a spherically symmetric g to obtain a density
matrix γ′. Because of the Thomas-Fermi equation we see that

ργ′ = 25/2(6π2)−1(φTF
atom − µ)3/2 ⋆ g2 = ρTF

atom ⋆ g
2.

Since

tr γ′ =

∫
ργ′ =

∫
ρTF
atom = N,

we obtain
inf{ERHF(γ) : 0 ≤ γ ≤ 1, tr γ = N} ≤ ERHF(γ′).

Again, by Lemma 4.3 (ii),

ERHF(γ′) ≤ 23/2(5π2)−1

∫
[V ]

5/2
+ + Cs−2

∫
[V ]

3/2
+

−
∫
Z|x|−1(ρTF

atom ⋆ g
2(x)) dx+D

[
ρTF
atom ⋆ g

2
]

≤ 23/2(5π2)−1

∫
[V ]

5/2
+ −

∫
[φTF

atom − µ]ρTF
atom(x) dx− µN

−D
[
ρTF
atom

]
+ Z

∫
(|x|−1 − |x|−1 ⋆ g2)ρTF

atom(x) dx

+ Cs−2

∫
ρTF
atom

= −25/2(15π2)−1

∫
[φTF

atom − µ]
5/2
+ −D

[
ρTF
atom

]
− µN

+ Cs−2

∫
ρTF
atom + Z

∫
(|x|−1 − |x|−1 ⋆ g2)ρTF

atom

= ETF
atom(ρ

TF
atom) + Cs−2

∫
ρTF
atom + Z

∫
(|x|−1 − |x|−1 ⋆ g2)ρTF

atom.

(2.21)

In the second inequality, we have used
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[g2 ⋆ |x|−1 ⋆ g2](x− y) ≤ |x− y|−1, (2.22)

as an operator and function. This is shown, for instance, by using the Fourier
transform. By Newton’s theorem,

0 ≤ |x|−1 − |x|−1 ⋆ g2 = |x|−11(|x| ≤ s).

Then, by the Hölder inequality,

Z

∫
(|x|−1 − |x|−1 ⋆ g2)ρTF

atom

≤ Z

(∫
(ρTF

atom)
5/3

)3/5(∫
(|x|−1 − |x|−1 ⋆ g2)5/2

)2/5

≤ CZ

(∫
(Z|x|−1)5/2

)3/5(∫
|x|≤s

|x|−5/2

)2/5

dx

≤ CZ5/2s1/2,

(2.23)

where we have used the Thomas-Fermi equation in the second inequality.
Thus, after optimization in s,

ERHF(γ′) ≤ ETF
atom(ρ

TF
atom) + CZ11/5.

This shows the desired upper bound.

Inserting this, we obtain

E(N,Z) ≥
K∑
j=1

Eatom(Nj, Zj)− CZ25/11 +D[ργ − ρTF
mol] + CR−7

min. (2.24)

This completes the proof.

Remark 4.6. It immediately follows that

D[ργ − ρTF
mol] ≤ CZ25/11, (2.25)

and Rmin ≥ CZ−(1/3)(1−ε) with ε = 2/77. These bounds are the crucial
ingredients for comparring with Thomas-Fermi theory.
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5 Bound on the Excess Positive Charge

We assume that the molecule is stable in a configuration R ∈ R3K and
N < Z. Let γ be a minimizer for the stable molecule. The next lemma
allows us to localize the Müller functional [25, Lemma 6].

Lemma 5.1 (IMS-type formula). For any quadratic partition of unity
∑n

j=0 θ
2
j =

1 with ∇θj ∈ L∞ and for any density matrix γ ∈ S1, we have

n∑
j=0

ER(θjγθj)− ER(γ)

≤
∫
R3

n∑
j=0

|∇θj(x)|2ργ(x) dx

+
n∑
i<j

∫∫
R3×R3

θj(x)
2(|γ1/2(x, y)|2 − ργ(x)ργ(y))θj(y)

2

|x− y|
dx dy

(2.26)

As in [41] we choose smooth localizing function 0 ≤ θj ∈ C∞(R3), j =
0, . . . , K having the following properties.

(i) For j ≥ 1 we have θj(x) = θ(|x− Rj|/Rmin), with smooth θ satisfying
0 ≤ θ ≤ 1 and θ(t) = 1 if t < 1/5 and θ(t) = 0 if t > 1/4.

(ii)
∑K

j=0 θj(x)
2 = 1 (which defines θ0).

These properties imply

(iii) |∇θj(x)| ≤ CR−1
min for all j.

For any M1 +M2 ≤M we have

Eatom(M) ≤ Eatom(M1) + E∞(M2).

The proof of this is the same as Proposition 3.1 (or, see [28, Lemma 2]).
Using proposition 3.1, we have

ER(γ) + UR ≤
K∑
j=1

Eatom(Nj, Zj)

≤
K∑
j=1

(Eatom(N
(1)
j , Zj) + E∞(N

(2)
j )
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for a minimizer γ and for any
∑K

j=1(N
(1)
j +N

(2)
j ) = N . We note that

K∑
j=1

E∞(N
(2)
j ) = −

K∑
j=1

N
(2)
j

8
= −N

(2)

8
= E∞(N (2))

and take N
(1)
j = tr(θjγθj), j = 1, . . . , K, and N (2) = tr(θ0γθ0). Then

ER(γ) + UR ≤
K∑
j=1

Eatom(θjγθj) + E∞(θ0γθ0) (2.27)

Combining (2.27) and the IMS-type formula in Lemma 5.1

0 ≤
K∑
j=1

Eatom(θjγθj) + E∞(θ0γθ0)− ER(γ)− UR

=
K∑
j=0

ER(θjγθj) + tr(VRθ0γθ0)− ER(γ)− UR

+
∑

1≤i<j≤K

(∫
R3

Ziθj(x)
2

|x−Rj|
ργ(x) dx+

∫
R3

Zjθi(x)
2

|x−Ri|
ργ(x) dx

)

≤
∫
R3

K∑
j=0

|∇θj(x)|2ργ(x) dx+
∑

1≤i<j≤K

Iij +
K∑
j=1

I0j,

(2.28)

where we have denoted

Iij :=− ZiZj
|Ri −Rj|

+

∫
R3

Ziθj(x)
2

|x−Rj|
ργ(x) dx+

∫
R3

Zjθi(x)
2

|x−Ri|
ργ(x) dx

+

∫∫
R3×R3

θi(x)
2(|γ1/2(x, y)|2 − ργ(x)ργ(y))θj(y)

2

|x− y|
dx dy

(2.29)

and

I0j :=

∫
R3

Zjθ0(x)
2

|x−Rj|
ργ(x) dx

+

∫∫
R3×R3

θ0(x)
2(|γ1/2(x, y)|2 − ργ(x)ργ(y))θj(y)

2

|x− y|
dx dy
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For the first term in (2.28) we learn from the property (iii) of the functions
θj that ∫

R3

K∑
j=0

|∇θj(x)|2ργ(x) dx ≤ CNR−2
min, (2.30)

where the constant C depends on K. For estimate the contributions from Iij
we use the following properties in [41, Section 4]. We now defineNTF

1 , . . . , NTF
K

to be the positive numbers that minimize
∑K

j=1E
TF
atom(N

TF
j , Zj) under the

constraint
∑K

j=1N
TF
j = N . Then it is well-known that all the chemical

potential µatom(N
TF
j , Zj) for the atoms will be identical

µatom(N
TF
j , Zj) = µmol(N,Z,∞), j = 1, . . . , K.

Lemma 5.2 (Lemma 9 in [41]). Let ρTF
mol be the TF density for the molecular.

If CZ−1/3 < R′ < Rmin/2 then we have for all j = 1, . . . , K∫
|x−Rj |<R′

ρTF
mol(x) dx = NTF

j +O(R′−3) (2.31)

and if |x−Rj| > 3Rmin/4∫
|y−Rj |<R′

ρTF
mol(y)|x− y| dy = (NTF

j +O(R′−3))|x−Rj|−1 (2.32)

Also we will need the

Lemma 5.3 (Proposition 10 in [41]). If µmol(N,Z,∞) > 0 then there are
positive constants κ, κ′ > 0 depending on Z1, . . . , ZK such that

κ <
Zj −NTF

j

Zi −NTF
i

< κ′ (2.33)

for all i ̸= j. If µmol(N,Z,∞) = 0 then Zj = NTF
j .

In order to compare with Thomas-Fermi theory, we use the

Lemma 5.4. Let β > 0 and R(Z) = (βZ−1/3(1−α)) with α < ε = 2/77 in
the previous bound (2.25). For any fixed 1 ≤ j ≤ K let λ(x) be a function
satisfying

(a) λ ∈ C∞(R3) with 0 ≤ λ(x) ≤ 1.
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(b) suppλ ⊂ {x : |x−Rj| < R(Z)}.
Then there exist C > 0 and a > 0 such that for all small α < ε,

(i) ∣∣∣∣∫
R3

(ργ(x)− ρTF
mol(x))λ(x) dx

∣∣∣∣ ≤ CZ(1−a). (2.34)

(ii) If |y −Rj| > R(Z), we have∣∣∣∣∫
R3

ργ(x)− ρTF
mol(x)

|x− y|
λ(x) dx

∣∣∣∣ ≤ CZ1−a|y −Rj|−1. (2.35)

For the proof we need the following Lemma for Coulomb potential (see [24,
Lemma 18]).

Lemma 5.5 (Coulomb potential estimate). For every f ∈ L5/3(R3)∩L6/5(R3)
and x ∈ R3, we have∣∣∣∣∫

|y|<|x|

f(y)

|x− y|
dy

∣∣∣∣ ≤ C∥f∥5/6
L5/3(|x|D(f))1/12. (2.36)

Proof of Lemma 5.4. First, we introduce the function

Φr(x) :=

∫
|y|<r

f(y)

|x− y|
dy

Applying the Coulomb potential estimate with f(y) = (ργ(y+Rj)−ρTF
mol(y+

Rj))λ(y +Rj), we have

|Φ|x|(x)| =

∣∣∣∣∣
∫
|y−Rj |<|x|

ργ(y)− ρTF
mol(y)

|x− (y −Rj)|
λ(y) dy

∣∣∣∣∣
≤ C∥f∥5/6

L5/3(|x|D(f))1/12.

By Newton’s theorem, we have∫
|y−Rj |<R(Z)

(ργ(y)− ρTF
mol(y))λ(y) dy

= R(Z)

∫
S2

dν

4π

∫
|y−Rj |<R(Z)

ργ(y)− ρTF
mol(y)

|R(Z)ν − (y −Rj)|
λ(y) dy

= R(Z)

∫
S2

dν

4π
ΦR(Z)(R(Z)ν)

≤ CR(Z)13/12∥ργ − ρTF
mol∥

5/6

L5/3

(
D
[
ργ − ρTF

mol

])1/12
.
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Combining this with (2.25) and the kinetic estimates∫
R3

ργ(x)
5/3 dx ≤ CZ7/3,

∫
R3

ρTF
mol(x)

5/3 dx ≤ CZ7/3,

we find ∣∣∣∣∫
R3

(ργ(y)− ρTF
mol(y))λ(y) dy

∣∣∣∣ ≤ CR(Z)13/12Z179/132.

Since 179/132 = 49/36− 1/198, we have∣∣∣∣∫
R3

(ργ(y)− ρTF
mol(y))λ(y) dy

∣∣∣∣ ≤ Cβ13/12Z1−1/198+13α/36.

Thus if we choose α < 2/143, the conclusion (i) follows.
Next, we use the well-known property for subharmonic function (see [24,

Lemma 6.5]).

Lemma 5.6. Let f be the real-valued function on R3. If f is subharmonic
for |x| > r, continuous for |x| ≥ r, and vanishing at infinity, then we have

sup
|x|≥r

|x|f(y) = sup
|x|=r

|x|f(x).

We note that −∆Φr(x) = 1|x|<r(x)f(x) and thus harmonic for |x| > r.
From the Coulomb estimate with r = R(Z) and ±f(y) = ±(ργ(y + Rj) −
ρTF
mol(y +Rj))λ(y +Rj) we conclude that, on |y −Rj| > R(Z),

∣∣∣∣∫
R3

ργ(x)− ρTF
mol(x)

|x− y|
λ(x) dx

∣∣∣∣ ≤ CZ49/36−1/198|y −Rj|−1R(Z)13/12

≤ CZ1−a|y −Rj|−1,

which shows (ii).

For applying Lemma 5.2 and Lemma 2.34 we choose α and β so that
Rmin > 3R(Z). If we define θ̃j(x) = θ(|x−Rj|/R(Z)) for j ≥ 1 then∫

R3

θ̃j(x)
2ργ(x) dx =

∫
R3

θ̃j(x)
2(ργ(x)− ρTF

mol(x)) dx

+

∫
R3

θ̃j(x)
2ρTF

mol(x) dx

= NTF
j + o(Z).
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Thus since
∑K

j=1N
TF
j = N we conclude

0 ≤
K∑
j=1

∫
R3

ργ(x)(θj(x)
2 − θ̃j(x)

2) dx

≤
∫
R3

ργ(x)

(
1−

K∑
j=1

θ̃j(x)
2

)
dx

= o(Z).

We also get from (2.35) in Lemma 5.4 that∫
R3

θ̃j(x)
2ργ(x)

|x−Ri|
dx =

NTF
j + o(Z)

|Ri −Rj|
.

Using these estimates, we may find

∫
R3

θj(x)
2ργ(x)

|x−Ri|
dx =

∫
R3

θ̃j(x)
2ργ(x)

|x−Ri|
dx

+

∫
R3

(θj(x)
2 − θ̃j(x)

2)ργ(x)

|x−Ri|
dx

=
NTF
j + o(Z)

|Ri −Rj|
.

(2.37)

Next, we estimate the error term for direct part for Iij. Combining this
and (2.32) in Lemma 5.2,
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∫∫
R3×R3

θi(x)
2θj(y)

2ργ(x)ργ(y)

|x− y|
dx dy

≥
∫∫

R3×R3

θ̃i(x)
2θj(y)

2ργ(x)ργ(y)

|x− y|
dx dy

≥
∫∫

R3×R3

θ̃i(x)
2θj(y)

2ρTF
mol(x)ργ(y)

|x− y|
dx dy

− CZ1−a

|Ri −Rj|

∫
R3

ργ(x)θj(x)
2 dx

≥ (NTF
i + o(Z))

∫
R3

ργ(x)θj(x)
2

|x−Ri|
dx

− CZ1−a

|Ri −Rj|

∫
R3

ργ(x)θj(x)
2 dx.

Together with (2.37), we obtain∫∫
R3×R3

θi(x)
2θj(y)

2ργ(x)ργ(y)

|x− y|
dx dy

≥
(NTF

i + o(Z))(NTF
j + o(Z))− o(Z2)

|Ri −Rj|
.

For the exchange term in (2.29), we simply use∫∫
R3×R3

θj(x)
2(|γ1/2(x, y)|2θi(y)2

|x− y|
dx dy

≤ 2

|Ri −Rj|

∫∫
R3×R3

θj(x)
2|γ1/2(x, y)|2 dx dy

=
2

|Ri −Rj|

∫
R3

θj(x)
2ργ(x) dx

Thus we arrive at the following estimate for the interaction of two screened
nuclei

Iij ≤
−(Zi −NTF

i + o(Z))(Zj −NTF
j + o(Z)) + o(Z2)

|Ri −Rj|
(2.38)
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Repeating these arguments,

I0j ≤
(Zj −NTF

j + o(Z))o(Z) + o(Z2)

|Ri −Rj|
. (2.39)

Inserting the estimates (2.30), (2.38) and (2.39) into (2.28), we get

0 ≥
∑

1≤i<j≤K

(Zi −NTF
i + o(Z))(Zj −NTF

j + o(Z)) + o(Z2)

|Ri −Rj|

− CZ1+1/3(1−ε)R−1
min

If we write Rmin = |Ri0 −Rj0| then

(Zi0 −NTF
i0

)(Zj0 −NTF
j0

)R−1
min

≤
∑

1≤i<j≤K

(Zi −NTF
i )(Zj −NTF

j )

|Ri −Rj|

≤ CZ1−δ
K∑
j=1

(Zj −NTF
j )R−1

min + CZ2(1−δ)R−1
min

for some small δ > 0.
If Zi0 −NTF

i0
≤ CZ1−δ, we find from Lemma 5.3 that Zi −NTF

i ≤ CZ1−δ

for all i. If Zi0 − NTF
i0

≥ CZ1−δ, then we divide the above inequality by
Zi0 − NTF

i0
and get Zj0 − NTF

j0
≤ CZ1−δ because of Lemma 5.3. Again, by

Lemma 5.3, we see that Zi − NTF
i ≤ CZ1−δ for all i = 1, . . . , K. Finally,

summing this inequality over i, we obtain the desired bound on the excess
positive charge

Z −N ≤ const.Z1−δ.
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