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Chapter 1

Introduction

1 Many-Particle systems

We consider a problem of N electrons and K static nuclei (Born-Oppenheimer
approximation). The K nuclei have charges Z = (Zy,...,Zk) € (RyU{0})¥
and are located at R = (Ry,..., Rg) € R3* . We use the units h = m = c =
e = 1. These are

e m = mass of the electron

e ¢ = —1x charge of the electron

e h = Planck’s constant divided by 27
e ¢ = speed of light.

The nonrelativistic quantum mechanical model for a molecule is described
by the Hamiltonian

HN.ZB) =Y (—1% - vR<xz->) £ W - a) + U,

2
i=1 1<i<j<N



where A, is the three-dimensional Laplacian with respect to the coordinate
x; € R3 and

o~ 7
j=1 J

1
Wil —3l) = =,
YAV
Ug = Z ey
1<i<j<K |Ri — By

Here Vg(z) is the electron-nucleus attractive Coulomb interaction, W (|x —y|)
is the electron-electron repulsive interaction, and Ug is the nucleus-nucleus
repulsive interaction. For N electrons system, the wave functions obey the
Pauli exclusion principle, that is, ¥» must be anti-symmetric:

for i # j. For the sake of simplicity, we ignore the electron spin. The
subspace of L?(R3M) consisting of all anti-symmetric function is denoted by
AV LA(R3). Tt is well-known that H(N, Z, R) is the self-adjoint operator on
A" L3(R?) and bounded from below.

The ground state energy of the system is given by the bottom of the
spectrum, namely

N
E(N,Z,R) = infspec H(N, Z, R) = inf W, HN, Z, B)Y) 2 S € /\LQ(RS) .
<w? ¢>L2
If E(N, Z, R) is an eigenvalue of H(N, Z, R), the corresponding eigenfunction
is called the ground state.

We are interested in the properties of the ground states of H(N, Z, R).
The HVZ theorem [29] states that the essential spectrum of H(N,Z, R) is
given by

ess.spec H(N, Z,R) = [E(N — 1, Z, R), +00).

In particular, if one cannot move the excess electrons infinitely far away with-
out changing energy, that is, (N, Z,R) < E(N —1,Z, R), then E(N, Z, R)
is the discrete eigenvalue of H(N, Z, R), and therefore there is a ground state
1. In other words, the electrons can be bound by a collection of nuclei.
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Zhislin showed that the binding F(N, Z, R) < E(N — 1, Z, R) occurs if,
at least, N < Z + 1, where Z = Zfil Z;.

On the other hand, it is also known that the system is not bound if for a
given N the total nuclear charge becomes sufficiently small. More precisely,
Lieb [33] proved that the system has no ground state if N > 2Z + K. This
implies instability of the di-anion H?~ (N =3, Z =1, and K = 1). In the
usual fermionic case (electrons system), experimental [3] and numerical [26,
43] evidence suggests that there are no stable di-anions X?~, that is, fermionic
atoms and molecules are not bound if N > Z + c¢K with ¢ close to 1, or
possibly 2. Rigorous proof of this fact (called the ionization conjecture) is
a long standing open problem in mathematical physics literature, except in
the context of approximate theories such as [6,24,25,28,32,49].

Although one might think the bound on the maximum ionization N — Z
is a consequence of Coulomb potential, if particles are boson (i.e., the wave
functions are in the whole of L2(R3V), not A" L2(R?)), the ionization is as
large as N ~ 1.21Z for an atom with large Z. Here 1.217 is exact (the lower
bound was shown by Benguria and Lieb [8], and the upper bound was shown
by Solovej [48], or see [4]). Hence the particle symmetry (the Pauli exclusion
principle) is essential for the ionization conjecture.

Lieb, Sigal, Simon and Thirring [34] showed that the asymptotic neutral-
ity N/Z — 1 as Z — oo for fermion models. Asymptotically, it was improved
to N < Z + O(Z°7) by Seco, Sigal and Solovej [42], and by Fefferman and
Seco [18].

For the molecular case, we define the Born-Oppenheimer energy by

E(N,Z)= inf E(N,Z R).

EeR?)K
Lieb and Thirring [39] showed that a molecule is stable, namely
(a) There is at least one configuration R such that

E(N,Z) = E(N, Z, R).

(b)
E(N,Z) < lim inf{E(N,Z,E): mjx|Ri — Rj| > )\}.
i#]

A—00

Then the asymptotic neutrality was shown by Solovej [47] (for K = 2) and
by Ruskai and Solovej [41] (for all K).
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Intuitively, the stability of atoms and molecules is related to the size of the
system. In order to compute the size of atoms and molecules, Thomas-Fermi
theory is useful.

2 Thomas-Fermi theory

Thomas-Fermi (TF) theory is defined by an energy functional

Eulp) = 137" [ @’ do = [ Vale)ola) o+ D,

where

Dl =5 [ plalle sl ptw)dedy

is the direct Coulomb energy of a charge density. The Thomas-Fermi energy
is defined by

E™(N,Z,R) = inf {ER(p): 0 < p, / p(x)dr =N, p € L5/3(R3)} :
R3

and its minimizer exists if N < Z (see [32,35]).
TF theory is the semiclassical approximation for the many-electrons sys-
tem in the following sense. First, we define the one-particle density matrix

by
’W(x,y) =N @D([E,[L’Q, R 7xN)¢*(y,l'2, . 7$N) dQTg R dl’N

R3(N-1)

for any state ¢ € /\N L?(R3). If we define its density by

pw(a:) =N ‘w(ajax%"'7$N)|2dx2"'d$N
R3(N-1)

then the kinetic energy is asymptotically

1 & 1 3
<w, —3 ;Aj¢> = tr (—§A’m> ~ 1—0(37T2)2/3 /R3 po()’ dx

for large N [35].



Moreover, It was shown (see [27,32,35]) that
E(N,Z.R) = EY(N,Z,R) + Ug + o(Z"°)

under suitable assumptions (for instance, min,; |R; — R;| > ¢Z71/% and N =
Z). If we define V() = Zjil Z;Z|x—Z V3R 7  and pz(x) = Z%p(Z/37)
for given p, then we have the scaling properties

E(pz Vi) = ZTPE™ (p; V)

/Rs po(a) de = Z/Rg p(z) dz.

Let py(z) is the one particle density for the ground state 1. Then, as
Z — 00,

and

22,27 0) = o™ (a),
where p™ is the TF density (minimizer). In other words, py and p™* become
concentrated within a distance Z~1/3 of the various nuclei.

In the TF model, the most noticeable feature is instability of molecules.
Indeed, Teller’s no-binding theorem [32,35] asserts that the TF energy of a
collection of fixed nuclei and TF electrons always strictly decreases if one
arbitrarily separate the nuclei into K independent atoms:

K
E'™(N,Z,R)+Ug > Y Efe.(N;, Z;)

atom
j=1

for any Z]K=1 N; = N. It is usually considered that Teller’s theorem and
instability of any negative ion (if N > Z then no TF minimizer exist) are the
defect of TF theory, but their properties are the very strong tools in mathe-
matical physics. For example, Lieb and Thirring [38] proved the stability of
matter via Thomas-Fermi theory.

Thomas-Fermi theory is the original density functional theory, that is,
the approximation method to represent the ground state energy of many
electrons systems in terms of the one particle density functional.

3 Hartree-Fock theory

We consider an N electrons state ¢» € A L?(R?) normalized as

/3N ’w<l’1,...,l’N)‘2dx1...dwN = 1.
R
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Then the exchange correlation energy X,. is defined by

<,‘7Z}7 Z |‘Tz - IL']‘|_1’I7Z)> = D[pd)] - ch-

1<j

We recall the simplest anti-symmetric function v € A L?(IR3) is Slater deter-
minant, namely

P(x) = (N 2det{ ()},
where N functions ; € L2(R3), i =1,..., N, are orthonormal

/R3 ©i(z) p;(z) dr = 6; ;.

Using this state, we obtain

X, = // @@yl dy,
R3 xR3 |9U - ?J|

z,y) = Z vi(z)ei(y)

We define the general one particle density matrix v as any linear, self-
adjoint operator satisfying 0 < vy < 1 and try = N. The condition of v < 1
is, due to Coleman [15], a representation of the Pauli exclusion principle in
term of one particle density matrices.

The Hartree-Fock (HF) functional is defined by

where

Er' (7) = {tr (—%A - VR> v} + Dlp,] = X(v),

where p,(2) = y(z,x) = 305, Ailw;()]?, with ye; = Ajp;, is the electrons
density of . Hartree-Fock theory is widely used in quantum chemistry and
physics. We note Hartree-Fock theory is not a density functional but a
density matrix functional theory.

The Hartree-Fock energy is defined by

E"(N,Z,R) = inf{€R" (7): v € P},



where
Pyi={1:0<y <1 try =N, tr(=A+ 1)y (=A + 1)"? < o0}

A HF minimizer does exist when N < Z + 1 (see [36]).
Furthermore, by Lieb’s variational principle [31], it holds that

E™(N,Z,R) = mH{€"(7): v € Py, v* =7}

and E(N, Z,R) < E"(N, Z, R)
For the atomic case (K = 1), the ionization conjecture was shown by
Solovej [49]. Moreover, he investigated the radius of atom. Here we define

the radius RUF by
/ P (x)de =1
|z[>RYF

for Hartree-Fock minimizing density p'''. Then Solovej proved that there
exist universal constants C7, Cs such that

C, < RIF <y,

It is believed that this is true for the Hamiltonian H(N, Z, R), but no
proof is known.

As defined before, we set a Born-Oppenheimer energy for Hartree-Fock
functional by

E"(N,Z) = inf {E"(N,Z,R)+ Ug}.

( 7_) Egll&”{{ ( 7_7_)+ E}
Catto and Lions [11-14] give a necessary and sufficient condition for the sta-
bility of molecules in Hartree-Fock theories. Let v(z,y) = Z;V:1 ;i (z)pi(y)*

be a Hartree-Fock state. They showed that any minimizing sequence (R", %)%, C
R3E x (HY(R3))N for EM(N, Z) is relatively compact if and only if

E"(N,Z) < E"'(N = M, Zy) + B (M, Z»)

for all 0 < M < N and for any configuration Z;, Z,.
However, the stability of Hartree-Fock molecule is still open even in the
hydrogen molecule case N =2, K = 2.



4 Miiller theory

Miiller functional which was introduced by Miiller [40] is defined by

Ep (V) = {tr (—%A - VR) ’Y] +Dlp,] = X(v'?),

1/2 // ”71/2 ’ d dy
R3 xR3 ]x—y]

1/2 *
72 (@ ZA/% W) 75 = Aiws-

where

and

The Miiller energy is
EM(N,Z,R) = inf{&} (7): v € Pn}.

It was shown in [21] that Miiller functional has a minimizer if N < Z.

As mentioned above, the Hartree-Fock minimizers are projection v = 2,
and hence EFF () = EF'(7). Thus Miiller functional is a genelarization of HF
functional, and it is always the case EM(N, Z, R) < E"F(N, Z. R).

According to numerical computations, EM(N, Z,R) is always a lower
bound of E(N,Z,R). For N = 2, this lower bound is rigorously proven
by [21].

For the neutral atom N = Z, Siedentop [45] showed the energy asymp-
totics

EM

atom

(Z) = EMF (Z)+0(Z°3) as Z — oo.

atom

In particular, for Z € N

EM

atom

(Z) = Eatom(Z) + 0<Z5/3)

because Euyom(Z) = EIE (Z) + 0(Z°/3) by [5].
An important property of Miiller functional is the convexity. Indeed,

the term D[p,| is strictly convex in p,. According to Fefferman and de la

Llave [17]
|z —y| ™" = / dr / XB..,. (%)xB., (y) dz,
0 R3



and hence we can write

X(412) = / dr / 0z / / 2, yPxs. . () x5, () dz dy.
0 R3 R3xR3

By the Wigner-Yanase-Dyson-Lieb concavity [30], tr(Bfy*/2B+'/?) is a con-
cave function of . Therefore, Y is a convex function of 7.

We note that p.(2)p,(y) — [v*2(z,y)[? is not necessarily positive as a
function of x,y. This nonpositivity prevents the application of “the multi-
plication by |z| strategy” [33] to show a bound on the maximum ionization.

Nevertheless, it was shown the ionization conjecture for atoms [25], that
is, if there is a Miiller minimizer in the atomic case K =1, then N < Z + C.
In addition, a bound on the atomic radii of Miiller atom was proven:

C1 < RY <O,

Here C;, C5 are the universal constants.

The purpose of this thesis is to study the molecular theory for Miiller
functional.

In the Chapter 2, we investigate the Born-Oppenheimer energy of Miiller
functional

EM(N,Z2) = inf {EM(N,Z,R)+ Ug}. (1.1)

E€R3K
We will say that the molecular system is stable if there exists a density-
matrix v with try = N such that E(N, Z) = Eg(y) + Ug for some R € R3~.

Now we set
~ try

Er(Y) = Er(7) + =

and a relaxed problem
ES(N, Z,R) = inf {éﬂ('y): 0<~y<1 try < N} :

Physically, this functional might be interpreted as the binding energy because
it is known

N

N {tr K—%A) 7] T Dlp) = X(412): troy < N} |

Also we define the Born-Oppenheimer energy for this functional by

~

@W!b%ﬂ@ﬂ%@+%} (1.2)

Our results in this thesis are following.
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Theorem (Chapter 2. Theorem 1.1). Any minimizing sequence (R,), C
R3K for (1.2) is bounded if and only if

E<(N,Z) < E(Ny, Zy) + E(Ny, Zy) (1.3)

forall N; > 0,4 = 1,2, such that Ny+No < N and for any configuration Z, =
(Zj(l)a ceey Zj(p)) and é = (Zj(p+1), ceey Zj(K)); jpermumtion Of {1, ce ,K}.

Theorem (Chapter 2. Theorem 1.2). We assume ES(N, Z)=E(N,Z) +
N/8. Then any minimizing sequence (R,), C R3% for (1.1) is bounded if
and only if

E(N.2) < E(Ny, 2)) + E(N, Zy) (1.4)

forall N; > 0,4 = 1,2, such that N;+No = N and for any configuration Z, =
(Zj(l)a ceey Zj(p)) and é = (Zj(p+1), ey Zj(K)); jpermutation Of {1, ce ,K}.

Remark 4.1. For N < Z, a minimizer of the Miiller energy has trace N.

Thus ES(N, Z) = E(N,Z)+ N/8 for N < Z and the molecules are stable
when the binding inequality (1.4) hold.

Theorem (Chapter 2. Theorem 1.3). We assume N < 17 and Zyy, =
min{Z,..., Zx} > coZ with some constants ¢; > 0, i = 1,2, independent
of Z. If there exist a stable configuration R = (Ry,...,Rg) € R** and a
density matriz v € Py such that Eg(y) + Ugp = E(N,Z), then there exist
Coy > 0 depending only on Zy,...,Zk, and K, ¢; > 0 such that

Z —N < CoZ'° (1.5)

for some 6 > 0.
Moreover, if we put Ry = mingg; |R; — Rj|, then there is a constant
C > 0 depending on the same quantities as above Cy so that

Ruin > CZ~1/301=2), (1.6)
where € = 2/77.

Remark 4.2. (1.5) gives a bound on the excess positive charge. The estimate
(1.6) states that the molecular radii in the frame work of the Miiller theory
are much larger than the Thomas-Fermi atomic radii, namely Z~/3. This is
the crucial fact for the proof of (1.5).
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Chapter 2

Binding stability of molecules
in Muiller theory

Abstract. We give a necessary and sufficient condition for the stability of
molecules in Miiller theory. Furthermore, it is shown that if a system is stable
in Born-Oppenheimer approximation, then the bound on the excess positive
charge Z — N < cZ'~¢ follows.

1 Introduction

We consider a molecule with NV > 0 electrons and K nuclei. We say that a
self-adjoint operator « is an one-body density-matrix if 0 <y < 1 on L?*(R?)
and try < 4o00. Then the Miiller functional is defined by

Er(y) = tr K—%A - VR> v} + Dlp,] = X ('),

where D]p,] is the direct part of Coulomb energy defined by

p(2)py(y)
== Py
[py] py py R3xR3 |95 - ?J|

and the Miiller exchange energy is defined by

1/2 // ‘71/2 )‘ Il gr dy
R3xR3 |$—Z/|

92010 Mathematics Subject Classification.81V55, 35Q40
9Key words:Miiller functional, Stability of molecules, Many-electron system
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Here 7'/2(z,y) = Y1y M 2pi(@) i (y), with v = N, and p, (x) = y(z, )
is the one-particle electron density. Our potential is

K
Z|x_R| Zzgzi,

where Z = (Z1,...,Zk) € RE are the charges of fixed nuclei located at
R=(Ry,...,Rg) € R,

For N > 0 (not necessarily integer valued) and Z; > 0, we now define the
ground state energy in Miiller theory by

Egr(N,Z) =inf {Er(v): v € P,try = N}

where P = {v: v =71,0 <~y <1, (=A+ 1)V2y(=A 4+ 1)1/2 € §'}, S* is the
set of trace-class operators. When N < Z it was shown by Frank et. al. [21]
that Er(N, Z) has a minimizer.

In this paper, we will investigate minimization of the Miiller energy over
the nuclear positions R;, that is, the Born-Oppenheimer energy of a molecule
defined as

E(N,Z) :i%f{EE(N,Z)—i—UE}, (2.1)

where Up is the nuclear-nuclear repulsion

ZIR RI

1<)

Our purpose is to explore the stability of molecules in Miiller theories.
Following, we will say that the molecular system is stable if there exists a
density-matrix v with try = N such that E(N, Z) = Ex(y) + Ug for some
R € R3K,

Analogously to a series of works [11-14] by Catto and Lions on the
Thomas-Fermi and Hartree type theories, we prove that any molecular sys-
tem is stable under the Miiller theory if and only if all possible two molecules
can be bound.

It is well-known that, due to the classical work of Lieb and Thirring [39],
neutral atoms and molecules are stable in the nonrelativistic Schrodinger
theory. In particular, it was shown that the R™¢ attractive interaction en-
ergy, among molecules for large separation R, appears from the dipole-dipole
interaction. On the other hand, density-functional theory may not have the
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same feature, since it deals only with single particle densities, as pointed out
in [39]. In Thomas-Fermi theory, two neutral molecules can never be bound
by Teller’s no-binding theorem [32,35]. We refer to [10-14, 32] for other
Thomas-Fermi type theories and Hartree-Fock theories. We recall Miiller
theory is not a density functional but a density-matrix theory. Namely, this
theory describe the energy as a functional of the one-body density matrix
v(z,y), rather than a one-particle density p(z). Our purpose of this paper is
to extend the method of [11-14] to investigate the Miiller theory of molecules.
Let us define

We note that

by [21, Propositon 1], where

Eooly) =1tr (—%A> v+ Dlp,] = X(+'/?).

For technical reason, we set a relaxed problem

~

Bo(N,2) = inf {E<(N. Z,R) + Ur} (2.2)

where

~

E<(N,Z,R) = inf {53(7)5 vye P, try < N}.

For any N > 0, Z > 0, it was shown in [21], ES(N, Z, R) has a minimizer.
Our results are following.

Theorem 1.1. Any minimizing sequence (R,), C R3¥ for (2.2) is bounded
of and only iof R R R

BN, Z) < B(Ny, 1) + B(N, Z) (2.3)
forall N; > 0,4 = 1,2, such that Ny+No < N and for any configuration Z, =
(Zj(l)a ceey Zj(p)) and é = (Zj(p+1)7 ceey Zj(K)); jpermutation Of {1, c ,K}.

As mentioned above, for N < Z, a minimizer of Miiller energy has trace
N. Thus E<(N,Z) = E(N,Z) + N/8 and the molecules are stable when the
binding inequality hold. Moreover,
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Theorem 1.2. We assume E<(N,Z) = E(N,Z) + N/8. Then any mini-
mizing sequence (R,), C R3% for (2.1) is bounded if and only if

E(N,Z) < E(Ny,Zy) + E(N, Z») (2.4)

forall N; > 0,4 = 1,2, such that Ny;+Ny = N and for any configuration Z, =
(Zjys -+ Zjp)) and Zy = (Zjp41), - - - Zj(k)), J permutation of {1,..., K}.

It is expected that the binding occur for N < Z molecules or ions, though
it is an open question. FEven in the Hartree-Fock theory, the stability of
molecules is still open except in special cases [10-14].

One main purpose of this article is the following.

Theorem 1.3 (Bound on the excess positive charge). We assume N < ¢;Z
and Zyin = min{Zy, ..., Zxg} > coZ with some constants ¢; > 0, i = 1,2,
independent of Z. If there exist a stable configuration R = (Ry,...,Rk) €
R3% and a density matriz v € P such that Eg(v) +Ugr = E(N, Z), then there
exist Cy > 0 depending only on Z1, ..., Zx, and K, ¢; > 0 such that

7 — N < CoyzZ'™° (2.5)

for some § > 0.
Moreover, if we put Ry, = min;z; |R; — R;|, then there is a constant
C > 0 depending on the same quantities as above Cy so that

Ruin > Cz~(1/30=2), (2.6)
where € = 2/77.

Remark 1.4. It is expected that if a Miiller minimizer exists, then N < CZ
holds. In fact, for atomic case, if there is a minimizer then N < Z + const.
holds by [25]. However, the proof works only for atomic case, and it is still
an open issue for molecular case.

Remark 1.5. The estimate (2.6) states that the molecular radii in the frame
work of Miiller theory are much larger than the Thomas-Fermi atomic radii,
namely Z~/3. Thus the Thomas-Fermi density of the molecule is of order of
the sum of atomic densities. Solovej and Ruskai [41,47] showed by using this
type estimate that the asymptotic neutrality N — Z = o(Z) for molecules in
nonrelativistic Schrodinger theory.
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2 di-atomic case

First, we consider a simple di-atomic case. Without loss of generality, we
may assume

Z Z YAV
VE(IL)):VR(I’):j_Fm’ UE:UR:%,

where R > 0, and é € R3 is an unit vector. Then our minimizing problem is

~

E-(N,Z) = inf {ES(N, Z,R) + ZlZQ} . (2.7)

R>0 R

In this section our main result is

Theorem 2.1. Any minimizing sequence for (2.7) is bounded if and only if

ES(Na Z) < Eatom(Nla Zl) + Eatom(NQa ZZ)a (28)
for all 0 < N;, 1 = 1,2, such that Ny + Ny < N. Here

Eatom(N, Z) = inf{gatom('y): v € P,try = N},

and

1

~ t
Eatom () = tr <—§A — Z]a;\l) v+ Dlp,]| — X(’yl/z) + ﬂ.

The next Lemma corresponds to the ‘if” part of theorem.
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Lemma 2.2. For all N; > 0, i = 1,2, with Ny + Ny < N, we have

E-(N,Z) < limsup(E<(N, Z, R) + Ug)
Ro ~ (2.9)
S Eatom<N1> Zl) + Eatonl(N27 ZQ)
It immediately follows that

Corollary 2.3. We assume E(N, 7Z) = ES(N, Z). For all N; > 0,1i=1,2,
with N1 + Ny < N, we have
E(N,Z) <limsup(E<(N, Z, R) + Ug)
R—soc (2.10)
S Eatom(Nla Zl) + Eatom(N27 ZQ)

We shall prove Lemma 2.2. The following lemma is obtained by the same
proof in [28, Lemma 1].

Lemma 2.4. Let Z > 0, N > 0 and try = N. Then, for any € > 0 there
exists a o having a compactly supported integral kernel, troc = N and

Er(7) — Er(0)] < e
Proof of Lemma 2.2. 1t is trivial for Ny = 0 (or equivalently, Ny = 0). Let
e>0,N;,>0,i=12 and N; + Ny, < N. We may assume gatom(%) <
Eatom(Ni, Z;) +¢/3, try; = N;, and the kernel of ~; is compactly supported
in a ball with radius r > 0. Let 42, = 7_g7Y2Tr With translation 7. We then
define a trial density-matrix by

YR = M1 + Yop-

Clearly 0 < v < 1, try < N, and y17,, = 0 for large R, by construction.

Thus we can compute X (v /2) X(%l/z) + X(Al/z) Furthermore, it is easy
to see that

Ny N
2D[psy, pr3,) = //R% y Pn )Py )dazd < 12
X

|z — y| ~ R-2r
Using the translation invariant of the functional £, (), we may find
~ YAV ~ AV
ES(N,Z,R)—{— : 2§€R(7R)+ 2
R R
~ AVA
S Z gatom(’%‘) + 2D(p’}’17p§51{> + 1R :
i=1,2
~ NN, YAV,
E atom N'L? Z 3 b
< D Buon(No Z) +2/3+ g + =

i=1,2
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for sufficiently large R > 0. Hence for any given ¢ > 0 and N; + Ny, < N,
it hold that

YAV ~ ~
1}%2) S atom(Nth) +Eatom(N2aZQ) _’_57

lim sup (E\S(N, Z,R) +

R—o0

which shows (2.9).
[

Lemma 2.2 implies that if any minimizing sequence (R,), for (2.7) is
bounded, then binding inequality (2.8) hold. Indeed, assume contrary E (N,Z) =
Eatom(]\fl, 7))+ Eatom(Ng, Zy) for some Ny + Ny < N. Then, by Lemma 2.2,
limRﬁm(Eg(N, Z,R) + Ug) = E(N, Z). This contradicts to the assumption
that any minimizing sequence is bounded. Hence, the ‘if’ part of Theorem

2.1 is followed.

Proof of Theorem 2.1. We shall show that ‘only if’ part. Assume contrary
there is a minimizing sequence (R,,),, for ES(N , Z) so that R,, — co. Then we
may assume that there exist density-matrices v, € P so that Ex, (v)+Ugr, —
ES (N, Z) as n — oo. Using the hydrogen bound, it follows that

Zj€
tr Z;|lz — Rj| 7'y < ﬁtr(—A)y + jg try,

for any positive number € > 0. Hence tr Vgy < /4 tr(—Ay) + Z? /e trr, for
any € > 0. Moreover, the hydrogen bound also implies that

Lemma 2.5 (Lemma 1 of [21]). For any € > 0 it hold that

€ 1
X(41%) < Jtr(=Ay) + Lty

Now we get the following bound as [21, Equation (57)]:

1 ~ 1 1
5 (1= <) (=) < En, (1) + Un, + - (22 N 1) oy (210)

Hence (—A +1)Y2+,(=A+1)"/? is bounded in S*, and thus, by the Banach-
Alaoglu theorem, after passing to a subsequence if necessaly we may assume
that tr Ky, — tr Ky for some « and for any operator K such that (—A +

18



DY2K(—A +1)Y2 is compact. In particular, for any function f € LP(R?)
(3/2 <p < o0)

[ f@o@de =iy s upy= [ f@p@dn @)
R R
We note that 0 <~ <1 and
M:trvgliminftrvn:NSN (2.13)
n—oo

by the lower-semicontinuity of the S' norm.
We may show that v # 0 from [21, Proposition 1]. In fact, for some § > 0

~

Eatom(N7 Zl) S _5
From Lemma 2.2,

lim sup ER(N, Z) < Eatom (N, Zy).

R—o00

Thus, Ex, (1) + Ug, < —¢ for some ¢ > 0 and sufficiently large n. Hence,
we have R
—€ > &g, () + Ur, = —tr VR, Vs

and thus
tr Vg, v > €,

where Vi, = Zy|z|™' + Zs|z — R,e|™". Thus v # 0.
If M = N, then lim,_,o trvy, = try. Thus v, — v as n — oo in S?
by [46, Theorem A.6]. Then

/ py(2)|2 — Rpé| Mdx — 0
R3

by R, — oco. From the lower-semicontinuity of our functionals [21, Proposi-
tion 3], we have

E<(N7 Z) 2 hm lnf é\atom('}/n) Z é\at}om(’)/) 2 Aatom(j\vfa Zl) Z E\<(N, Z);
- n— 00 -

and thus ES(N, Z) = Eatom(ﬁ, Z1) with N < N. Then we have finished the
proof in this case.
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Let
(") + () =1

with x? € C*(R?), radial, x°(0) =1, xX°(r) < 1if r > 0, X°(r) =0 if r > 2.
For each j tr(x°(|z|/L))*~;, is a continuous function of L > 0 which increases
from 0 to trv;. Now tr~y; > M for large j, and thus we can choose L; such
that trv) = tr(x°(z|/L;))*y = M, L; = oo, and then 7 — v in S'. We
write x4 (x/L;) = x"(|z|/L;) and v} = x}7;x} for each v =0, 1.

From the IMS formula,

tr(=Agm) = Y [tr(=A9%) — tr [V 7] -
v=0,1

Clearly,

Dlpy,] = Dlpyol + Dlp,2] +2D(p,0, p,1) = Dlpp] + Dlp,1]

since p4 > 0. For the potential term,

tr(jz] ™ ) = tr(jz] ) + o(D).

and
tr(lz — Rné| 'y,) = tr(|lz — Rpél'y,) +o(1),

because R,, — oo. Indeed, we may split

e Roel o) = [ R
R

3 |$ — Rné|

:/ p'yﬁ(x) _p"z@) X () ) da.
RS |z — R,é| |z — R,é|

We see that the second term converges to 0 by Young’s inequality. For the
first term, we split p.g («) —p, (2) = (v/pg @)+ /0, @) (/g (@) — /> @)).
We know that /g0 — /py strongly in L*(R®) by 70 — ~ in S', and
thus the first term also converges to 0. For the exchange term, we have
X(372) € X((19)12) + X ((v)2) + o(1) as [21]. Let 3 = g, evi7,e. It is
clear that tr~, = K — M with some K < N. By the translation invariants
for the functional £ (), we have

(2.14)

é\Rn (7”) + URn > é\atom(/yg) + (.E/\'atom(§n) + 0(1)
> gatom(%g) + Eatom(K - M, ZQ) + 0(1)
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Hence, again by the lower-semicontinuity, we arrive at
E\< (N7 Z) Z lim inf (E:\atom(fyg) + E\atorn(K - M, ZZ)
- n—oo

Z gatom(V) + E\atom(K - M; ZQ)

Thus E<(N, Z) > Eaom(M, Z1)+ Esom(K — M, Z3) with K < N. By Lemma
2.2, this is equal.
0

We recall E,(N) = —N/8 for the Miiller case X/2. The next theorem
which is the diatomic case of Theorem 1.2 follows.

Theorem 2.6. We assume ES(N, Z) = E(N,Z)+ N/8. Then, any mini-
mizing sequence for (2.1) is bounded if and only if

E(N7 Z) < Eatom<N17 Zl) + Eatom(N27 ZQ) (215>
for all Ny + No =N, 0< N;,i=1,2.

Proof of Theorem 2.6. In the proof of the previous theorem, we may take
K = N when E<(N,Z) = E(N,Z) + N/8. Thus the molecules are stable if
and only if (2.8) hold for all Ny + Ny, = N. Then, the binding (2.15) and
(2.8) are equivalent for Ny + Ny = N. O

3 General case
First, we need the following proposition.
Proposition 3.1. It is always the case
E<(N,2) < E<(Ny, Z,) + E<(N», Zy) (2.16)
for all N; > 0,7 = 1,2, such that N; + Ny < N.

Proof of Proposition 3.1. Let € > 0. As proof of Lemma 2.2, we can take
and R}, ¢ = 1,2, such that

~ ~ 1
gﬂ(%n) + Uﬂ < ES(Ni’Zi> + —,

- n
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1 = 1,2. Moreover, we may assume that their kernel have the compact
support in the ball. Let 43 = 7_py57p, with B € R3. We define v = 47 +4%
as diatomic case. Then, for R" = (R;?(l , R R”p+1 + Bn,R”p+2

By, ..o, Ry + B,,) with large |B,|,

j(p)?

Here we have choosen 3/n
[

Remark 3.2. It is immediately followed the ‘if” part of Theorem 2.3 by this
Lemma. Suppose that any minimizing sequence for (2.2) is bounded in R3%.
If E\S(N, Z) = ES(Nl,é) + ES(NQ,Q) for some configuration, then the
above R" is a minimizing sequence and clearly not bounded.

Proof of Theorem 1.1. We only show the ‘if only’ part by contradiction. Let
Ern(m) + Ugn — E<(N, Z) and suppose this R" is not bounded. As proof
of di-atomic case, we may assume <, — v # 0 in a sense, and the relation
(2.13) holds. If try = M = N, then 7, — v in S*. Then, after passing by
subsequence if necessaly,
E<(N,Z) > liminf(Eg- (1) + Un+) = Er(7),

where R € R35-L) [ is the number of 7 such that |R?| — oo. Hence
ES(N,Z) = E(N Z) with N < N and thus E<(N Z) > ES(N Z) The
proof is done when M = N. B

Next, we consider the case of M < N. We may split v, = 72+, 7Y — v
in St Let J = {j: R remain bounded}, If J = (), passing to a subsequence
if necessary, we may |R}| — oo for all j. Then,

tr(le — Ry "ym) = tr(lz — R y,) +o(1).

as the same reason of (2.14). Thus we get

Err (9a) + Upr > Ex(70) + Exn(42) + Ug, + 0(1)
g

>
> E.(7°) + E(K — M, Z) + o(1).
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Thus R R R

The proof is done.
If J # (), then, by passing to a subsequence if necessary, we may assume
that R} — R; for j € J and |R;| — oo for i ¢ J. Then, for j € J we see that

tr(le — Ry "ym) = tr(lz — ;[ ) + o(1).
For j & J,
e — R|90) = trlla — R21790) + of1).
Hence we arrive at
E<(N,Z) > E(M,Z:) + E(K — M, Zy),
where Zy = {Z;: j € J} and Z, = {Z;: j ¢ J}. This completes the proof.
[

We now turn to the

Proof of Theorem 1.2. If E<(N,Z) = E<(N,Z) + N/3, then we can take
K = N in the above proofs. Therefore, any minimizing sequence is bounded
if and only if the binding condition (2.3) hold for all Ny + Ny = N. For
Ni + Ny = N the condition (2.3) and (2.4) are equivalent. Thus Theorem
1.2 follows. [l

4 A lower bound on the size of molecules
In this section we prove the estimate (2.6) in Theorem 1.3. First, we use the
united atom bound for Miiller theory.

Proposition 4.1 (united atom bound). For any N > 0 and for any config-
uration R € R3%X we have

EE<N7 Z) Z Eatom(N7 Z)
Proof. Let e > 0 and Ex(N, Z) > Er(y) + . Then

Er(7) = i % {tr <—%A — Z|z — le1> v+ Dlpy) = X('/?)

Jj=1

Since the energy of Euom(N, Z) is independent of nucler positions R;, the
conclusion follows. O
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From this bound we have

yAYA
E(N,Z) > Eyom(N, Z -
(N, 2) 2 Euuom )+|Ri_Rj‘

where Ry, = |R; — R;|. We now deduce from Lemma 2.5 that

1 N
Buan(¥,2) 2 tr (~ 32 ) 7 = t(Zlel )y + Dlp] - 5.

For the bound of kinetic energy term, we need the

Theorem 4.2 (Lieb-Thirring kinetic energy inequality [37]).

A 3
t - > _Z 5/3 d
' < 2 7) 10 /]R3 pr() x7

with a constant L (see [16,19)]).

Hence we infer that

N
Eaon(N, Z) > iC p(:c)5/3 dx — tr(Z|x!71)’y + Dlp| — —.
10 ]R?’ 4:

Next, we introduce the Thomas-Fermi (TF) theory [32,35] by

%ﬂm—im#WM/

=1 g p(z)*? du +/ Vr(z)p(x) dx + Dp],

RS

and define the lowest energy by
ELF(N,Z, A) = inf {5?(/)): 0< p,/ p(x)dr = N,p € L5/3(R3)} :
R R s

From the scaling property of Thomas-Fermi functional [32], we see ELY (N, Z, A) >
—CZ"3. Consequently, we arrive at

Z:7;

E(N,Z) > -CZ"® 4 2L
|Ri — R

Hence we have |R; — R;| > CZ~1/3,

Next, we shall improve this bound by comparison with Thomas-Fermi
theory. In order to compare our functional with Thomas-Fermi one, we need
the following semiclassical approximation. The following results are taken
from [49, Lemma 8.2] (we use the optimal § > 0 as in [25, Lemma 11]).
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Lemma 4.3. For fized s > 0 and smooth g: R® — [0,1] satisfying supp g C
{lz| < s}, [¢* =1, [|Vg]* < Cs™? it follows that

(i) For any V:R> — R with [V],, [V —V x ¢*]. € L*? and for any
0<~y<1

r (—é - v) v > —=2°%(157%) 7" /[V]i/2 — Cs?try

2
e/ mi”)% (fi- V*gﬂi/z)m ,

where the symbol [x] stands for max{0,x}.

(i) If [V]y € L2 N L32, then there is a density matriz v so that p, =
22 (6m) VI x g7,

A
. (—W) < 2P2(5m)7! / VIV 4 os? [V
We introduce the TF potential for the molecule as the function

K TF
— leO y
o) = > zhe— R - | Pual¥)
i=1 R

Y,
s v — vy

where plF is the unique minimizing density for E™™(N, Z, R) = E'Y(N, Z, R, 1)

mol

(when N > Z we take the minimizer for the neutral molecule). First, we
shall show that

Lemma 4.4. For any configuration R € R3% and density-matriz v we have

Er(Y) = E™ (pit) + D [py — pmy] — CZ*/M, (2.17)

Proof of Lemma 2.17. We can write

A
Er(y) =tr (_E — tpgl> v+ D [pv — PEEJ - D [PEEJ _ X(71/2)_

According to N < C'Z, we may bound the exchange term by

X(,Yl/2> < 025/3'
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Indeed, we infer from Hardy’s inequality that

12(y
// [ERRCTII,
R3xR3 ‘53 - Z/‘
1V2(z, )2 1/2
RJXRJ R3xR3 |ZL' - y|

< AN (tr(— A)'y)l/z

We recall tr(—A)y < CZ7/3 by the energy bound.
Next, from Lemma 4.3 (i) we have

A
tr (—5 — o1 + (N, Z,E)) v

> 215" [ (bt~ u(N. 2B - O5 Pty

¢ (/[gogl — N 2, R)]5/2>3/5 (/[90301 Pt * 9 ]5/2)2/5.

Here p(N, Z, R) > 0 is the chemical potential for the molecule. Tt is known
(see [32]) that the functions plF and plF satisfy the TF equation

P (2)72 = 2253(67%) 2P [y () — (N, Z, B)]+. (2.18)

Using the TF equation and scaling property in Thomas-Fermi theory, we
have

[t - w2, < ¢ [y < ez

Since Vg is superharmonic, it follows that VR Ve *g? > 0 by the maximum
principle. To see this, we note that Vi x ¢° is a contlnuous function going
to zero at infinity, and therefore v := Vg — Vg x g* — 00 as * — R; for any
i. Since v is continuous away from the R;, A = {x: ¢)(x) < 0} is open and
disjoint from the R;. Thus —Ay) < 0 on A. It is clear that ¢¥(xz) — 0 as
|z| — oo and hence A is empty by the maximum principle. Hence ¢ > 0.

From the fact that pIF () ~ |z — R;| 72 near the R; [32] we can repeat
the above arguments for 1 = pyc; — pug * |21 Thus, prg * |2 — prg *
g*x x|t > 0. We recall Newton’s theorem

L dv(y) ) _ _
_ -1 _ 1 1
[t = 2 minlaf )
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for any x € R3. Then

K
Vi — Vg * g SZZj (\x—Rj|*1]1(|a:—Rj] gs)). (2.19)
j=1

Using this bound, we obtain

/[9051121 — oI % g% < /[VR— Vi x g1
K

§Z5/2Z/ |z — R;|™*?dx

< C’Z5/251/2,

where we have used the convexity of 2°/2. Hence

A
tr (—5 - @f&) v > —2"2(157%) 7! /[90351 —u(N,Z,R)? — Cs72Z

— CZY¥5sY5 — (N, Z, R)N.
Optimizing over s > 0 we get

A
w(-5-vm)

> —2°/2(157%) 7! / e — (N, Z, R)* = w(N, 2, R)N — 0z
3 5/3 5/2
— @R [ ()"~ v 2. 1)
— w(N,Z, R)N — C 7>/
Using the relation obtained from the TF equation

3
~u(N.ZBIN~D [685] = 1 6/3) 6w [ (355)7 - [ pthvarD [o25)].

we learn

A
tr (=5 - ¢85 ) 7 2 €7 + D [py - 5] - 027
which shows (2.17).
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We denote

mol atorn

K
D(N,Z,R) = ESS(N, Z, F) - mf{ Ebu »:ZNFN}

It was shown in [41, Proof of Theorem 8| that for any pair (R;, R;) from R
there is a decomposition (Ny, ..., Ni) with } . N; = N so that

From the result in [7] I" is smallest in the neutral case. It was shown in [9]
that T(N; + N;, (Zi, Z;),l(R;, R;))I" is an increasing function of [ for the
neutral case. By |R; — R;| > Co(Z; + Z;)7'3, with (R;, R;) = R(Z; +
Z)Y3|R; — Rj| 7Y (Ry, R;), we see R > Cy. We put 2 = (Z; + Z;) " (Zi, Z;)
and r;; == |R; — R;|"*(Ri, R;) for convenience. Then
D(Ni + N, (Zi, Z), (Ri, Ry)) > (Zi + Z;)°T (1, 25, Rzj)
> |Rl - Rjr?CgF(lv@? CO@)
— C’RZ — Rj|_7.

Here we have used the scaling property of Thomas-Fermi theory.
Combining these results,

)+ Ug > Z Exr (Ni, Zi) = CZ®M + D [p, — pri] + OR,!

min*

Next, we show the upper bound for the energy of Miiller atom.

Lemma 4.5. For any N >0 and Z > 0
Eatom(N, Z) < Ejb (N, Z) + CZM5 (2.20)

atom

Proof. First, we introduce the reduced Hartree-Fock functional by

1
N () = o (=38 = ZIal ) 9+ Dlp
It is clear that

Eatom(N Z) < mf{SRHF( ) 0< v < 1’ try = N}

atom
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We introduce the atomic Thomas-Fermi potential by

QOE'L[;}EIH('I) = Z|"E|_1 - pg‘tFom * |J]|_17
where patom 1S the minimizer for atomic (K = 1) Thomas-Fermi functional
EI¥ (N,Z) (in the negative ionic situation N > Z, we take the neutral TF
minimizer). We apply Lemma 4.3 (2) with V = @lF — 1 (1 is the chemical
potential for the TF atom) and a spherically symmetric ¢ to obtain a density

matrix 7'. Because of the Thomas-Fermi equation we see that

py = 222(67%) " (o — 1Y% % 97 = P < G-

tr’y/:/pw/:/pg;Fom:Na

lnf{gRHF<'y) 0< v < 1, try = N} < ERHF(’y/),

Since

we obtain

Again, by Lemma 4.3 (ii),
SRHF(,VI) < 23/2(57r2)_1 /[V]im i 03_2/[\/]1/2

- /lel‘l(pﬁm * g*(2)) dz + D [pagom * 9°]

< 232(5r2) ! / VIY? - / [Patom — H]Patom () dz — pN
~ D] + 2 [al = lal T ) ) o

+Cs7? / Patom

— 22157 [[olh, WY = D [plh,] - uN

+082/p§£m+2/(!$|1 = |2 % ¢*) Patom

= 8t + €57 [ b 2 [[(al = lal o
(2.21)

In the second inequality, we have used
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(0% % 2] * gz —y) < |z —y| 7!, (2.22)

as an operator and function. This is shown, for instance, by using the Fourier
transform. By Newton’s theorem,

0 < fa|™" = |27 g = [a| M L(J2] < 5).

Then, by the Holder inequality,

7 / (o™ = || % @)pTE,.

<z(/ <p3£m>5/3)3/5 (et =1l *g2>5/2)2/5 s
<oz( <Z|x|-1>5/2)3/5 ( /| B \x|-5/2)2/5 &

< C’Z5/251/2,

where we have used the Thomas-Fermi equation in the second inequality.
Thus, after optimization in s,

N () < €38, (A8 + C21,

atom
This shows the desired upper bound. Il

Inserting this, we obtain

min*

K
E(N,Z) 2 Y Euow(N;, Z;) — CZ%/" 4 Dlp, — pX5) + ORL.  (2.24)
j=1

This completes the proof.

Remark 4.6. It immediately follows that
Dlpy — pri) < CZ%/M, (2.25)

and Ry, > CZ~0/30-9) with ¢ = 2/77. These bounds are the crucial
ingredients for comparring with Thomas-Fermi theory.
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5 Bound on the Excess Positive Charge

We assume that the molecule is stable in a configuration B € R3K and
N < Z. Let v be a minimizer for the stable molecule. The next lemma
allows us to localize the Miiller functional [25, Lemma 6.

Lemma 5.1 (IMS-type formula). For any quadratic partition of unity Z?:o 9?- =
1 with VO; € L™ and for any density matriz v € S*, we have

Z Er(070;) — Er(7)

< [ SV @Po ) da

n

()2 (12 (1 2 z N2
b3 [ S e DO g,

|z — |

1<j

(2.26)

As in [41] we choose smooth localizing function 0 < 6; € C*(R?), j =
0, ..., K having the following properties.

(i) For j > 1 we have 6;(z) = 6(|x — R;|/Rmin), with smooth 6 satisfying
0<f#<landf(t)=1ift <1/5and 6(t) =0ift > 1/4.
(i) Y%, 0;(x)? =1 (which defines ).
These properties imply
(iii) |VO,(z)| < CR}, for all j.
For any M, + My < M we have
Eatom(M> S Eatom(M1> + Eoo(MQ)

The proof of this is the same as Proposition 3.1 (or, see [28, Lemma 2]).
Using proposition 3.1, we have

M)~

Er(y) +U.

Eatom(Nj7 Zj)
1

<.
I

2
(Eatom(Njgl)a Zj) + EOO(NJ( ))

M)~

1

.
Il
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for a minimizer v and for any ZJK:I(N]O) + NJ@)) = N. We note that

K K ar(2)
N; N®
@)y _ _ i _ — @)
2 Ee(N) = =3 S = = = BV
7=1 7j=1
and take N;l) =tr(0;70,), 7 =1,..., K, and N® = tr(6y76,). Then
K
Er(V) +Ur < Eatom(0570;) + Exc(B0700) (2.27)
j=1

Combining (2.27) and the IMS-type formula in Lemma 5.1

K
0 S Z gatom(ej’ye‘) + 800(00’790) - 5&(7) - UR
J=1

K
=Y Erl0,70;) + tr(Vabyybo) — Er(7) — Un
7=0

ZQ( ) ZQ( ) (2.28)
+ / —_— d:z:—i—/ dx>
ZK< oo — RO E L e R
K
/ Zwe o)Ppy(x)de+ Y I+ > Iy,
R? 1<i<j<K j=1
where we have denoted
[Z--::——J—k/— d+/ J p~ () dx
TR A Y A .
L L0 X X
R3xR3 lz —yl
and
Z;00(x)
Iy = S d
0y /RS|1,_R|"/()I’
] P OO g,
R3 xR3 [z — |
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For the first term in (2.28) we learn from the property (iii) of the functions
Qj that

K
| 2198 ) do < ONRE, (2.30)
j=0

where the constant C' depends on K. For estimate the contributions from /;;
we use the following properties in [41, Section 4]. We now define N ... NZLF

to be the positive numbers that minimize Z]K:1 Eom(NT, Z;) under the

constraint ZJK:1 N/¥ = N. Then it is well-known that all the chemical
potential faom (N}, Z;) for the atoms will be identical

,U/atom(N]TFazj) :ﬂmol(Nazaoo)a j=1..., K

Lemma 5.2 (Lemma 9 in [41]). Let piF| be the TF density for the molecular.

mol

If CZ7Y3 < R < Rpin/2 then we have for all j =1,..., K
/ oo (x) dz = NJ'¥ + O(R?) (2.31)
|I*Rj|<R/
and if |x — R;| > 3Rmin/4
[ ke ldy = (VORI (232
ly—R;|<R

Also we will need the

Lemma 5.3 (Proposition 10 in [41]). If pime(N, Z,00) > 0 then there are

positive constants k, k' > 0 depending on Zy, ..., Zx such that
TF
pe 2N (2.33)
Z; — NI¥ '

for all i # j. If pma(N, Z,00) = 0 then Z; = N]TF.
In order to compare with Thomas-Fermi theory, we use the

Lemma 5.4. Let 3 > 0 and R(Z) = (BZ7/30=9)) with a < ¢ = 2/77 in
the previous bound (2.25). For any fized 1 < j < K let \(x) be a function
satisfying

(a) X € C®(R3) with 0 < \(z) < 1.
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(b) supp A C {z: |z — R;| < R(Z)}.
Then there exist C' > 0 and a > 0 such that for all small o < ¢,

(i)

[ (o) = )N o] < 02070 (2.34)
R3
(it) If ly — R;| > R(Z), we have
/ pw(l‘) — pgf)l(x))\(x) dr| < CZlfa’y _ Rj‘fli (235>
RS |z —y|

For the proof we need the following Lemma for Coulomb potential (see [24,
Lemma 18]).

Lemma 5.5 (Coulomb potential estimate). For every f € L°/3(R*)NLS/>(R3)
and € R®, we have

[ @y dy' < CIIFIPE, (1| D)™, (2.36)

y|<|z| |I - |

Proof of Lemma 5.4. First, we introduce the function
b= [ AW
ly|<r |ZE - y|

Applying the Coulomb potential estimate with f(y) = (p,(y+ R;) — prt (y +
R;))A(y + R;), we have

/ () — peer(y) A(y) dy
|

D, =
PN = f et T (= Ry
< O FI35, (x| D(f)) /12,

1,5/3

By Newton’s theorem, we have

/| e )(Pv(y) — Pt (¥)A(y) dy

_ dv 05 (Y) — Pt ()
= n) [ /. nreni Ry —(y — Ry ") W

—R(Z / —@R (Z))

SCR( )13/12||p’Y pmol||5/6 ( |: pTF})1/12'

L5/3 mol
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Combining this with (2.25) and the kinetic estimates

[ mteysar<czi, [ g < oz,
R3 R3

we find

[ 0nl0) = SN | < Oz
R3

Since 179/132 = 49/36 — 1/198, we have

/R (2(9) = Pra(¥)AW) dy‘ < ORI 711 /1955130736,

Thus if we choose o < 2/143, the conclusion (i) follows.
Next, we use the well-known property for subharmonic function (see [24,
Lemma 6.5]).

Lemma 5.6. Let f be the real-valued function on R3. If f is subharmonic
for |x| > r, continuous for |x| > r, and vanishing at infinity, then we have
sup |z f(y) = sup |z f ().
x|>r x|=r
We note that —A®,.(z) = 14, (x)f(x) and thus harmonic for |z| > 7.

From the Coulomb estimate with » = R(Z) and +f(y) = £(p,(y + R;) —
Pk (y + Rj))Ay + R;) we conclude that, on |y — R;| > R(Z),

/ p7<$) B pggl(‘r))\(x) dr

E— < CZ49/3671/198|y . Rj|71R(Z)13/12

S Czl—a|y - Rj|_17
which shows (ii). O

For applying Lemma 5.2 and Lemma 2.34 we choose a and (3 so that
Ruin > 3R(Z). If we define 0;(z) = 0(|x — R;|/R(Z)) for j > 1 then

[ asaro@ydn = [ 8o, (e) - o) do

+ | 05(2)* e () dz



: K
Thus since Y.~ N = N we conclude

< [ o) (1 —20}(9:)2) do
=o(Z).

We also get from (2.35) in Lemma 5.4 that

/ 0;(x)%p,(x) dp = N +0(2)
gs |7 — Ry IR — Rj|

Using these estimates, we may find

/ 6;(@)’py(2) / 0i@)’py()

) 2_ Q. 2
P [ BRI,
R3 ’.’13 — Rz’
_ NJF + O(Z).
|Ri — Rl

Next, we estimate the error term for direct part for /;;. Combining this
and (2.32) in Lemma 5.2,
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/ / 0:(2)*0;(y)’p ()P2(y) dy

|z — y|

- / /R » 0:(2)*0;(y)*p ()Pr(y) a0

B [z — |

(20 . (2N\2 ,TF
> / / 0:2)°0;9) ol ()2 ) .
R3xR3 |z =y

2z
- = 0.(x)d
|R1—Rj| Rgp’}’(‘r) ](SL’) T

> (NJF 1 0(2)) /R % dx

Czlfa

_— 0.(x)? dx.
|R’L_Rj| ]R3p7(x) ](]}) T

Together with (2.37), we obtain

/ / 0:i(2)*60,(y)*p(2)p2(y) dy

R3xR3 |$ N y|
_ (NI 4 o(Z)(NJF +0(2)) — o 27)
= |R; — Rj| |

For the exchange term in (2.29), we simply use

// 0;(x)*(Iy'? (2, y)I?0:(y)? dx dy

[z =yl
2 // 2(.1/2 2
< — 0. (x)? |y (x, y)|? dz dy
‘RZ_RJ’ RIxRS ]( ) | ( )‘
2
=—= [ 9:(x)? d
’RZ_RJ| RS ](l') p"/(x) L

Thus we arrive at the following estimate for the interaction of two screened
nuclei

2.38
v |Ri — R, (2:3%)
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Repeating these arguments,

(Z; — N]TF +0(Z))o(Z) + o(Z?)
|R; — R '

Io; < (2.39)

Inserting the estimates (2.30), (2.38) and (2.39) into (2.28), we get

0> >

1<i<j<K

Czl+1/3(1 €) R;un

(Z; = NF + 0(2))(Z; — NJ'F + 0(2)) + o(Z?)
|Ri — Rj

If we write Ryin = |Ri, — Rj,| then

(Zio - NzTO‘F)(Z - NTF)leln
< >

(Z; — N")(Z; — NJT)
1<i<j<K |Ri — Ry

<Oz 52 (Z; = N'O)R.L + CZ* R 1

min

for some small § > 0.

If Z;, — Nii¥ < CZ'7°, we find from Lemma 5.3 that Z; — NJ* < CZ'~°
for all 4. If Z;; — NI > CZ'~°, then we divide the above inequality by
Ziy — Ni¥ and get Z;, — Ni" < C’Z1 ~9 because of Lemma 5.3. Again, by
Lemma 5. 3, we see that Z; — NI¥ < CZ179 for all i = 1,..., K. Finally,
summing this inequality over i, we obtain the desired bound on the excess
positive charge

Z — N < const.Z' 9.
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