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1 Introduction

Let Q be a parabolic subgroup of a real reductive Lie group G and H a closed
subgroup of G. The aim of this thesis is to study the relationship between the orbit
decompositions on flag varieties G/Q with respect to H-action and the behavior of
the multiplicities of the induced representations of G from Q-representations in the
regular representations on G/H.

1.1 Three conditions (iQ), (iiQ) and (iiiQ)

In the field of global analysis on homogeneous spaces, a rich theory has been de-
veloped by the I. M. Gelfand school and Harish-Chandra for group manifolds, by
S. Helgason for Riemannian symmetric spaces, and in the framework of semisimple
symmetric spaces by Flensted-Jensen, T. Oshima and P. Delorme among others. In
the late 80s, T. Kobayashi raised a problem on what is the “most general frame-
work” in which we could expect reasonable and detailed analysis of function spaces
on G/H. As a solution to this problem, Kobayashi and Oshima established a finite-
ness criterion for multiplicities of the regular representation on a homogeneous space
G/H.

Fact 1.1.1 ([23, Theorem A]). Suppose that G and H are defined algebraically over
R. Then the following two conditions on the pair (G,H) are equivalent:

(i) dimHomG(π,C
∞(G/H, τ)) < ∞ for any (π, τ) ∈ Ĝsmooth × Ĥalg,

(ii) G/H is real spherical.

Here Ĝsmooth denotes the set of equivalence classes of irreducible smooth admis-
sible Fréchet representations of G with moderate growth, and Ĥalg that of alge-

braic irreducible finite-dimensional representations of H. Given τ ∈ Ĥalg, we write
C∞(G/H, τ) for the Fréchet space of smooth sections of the G-homogeneous vector
bundle over G/H associated to τ . The terminology real sphericity was introduced
by Kobayashi [19] in his study of a broader framework for global analysis on homo-
geneous spaces than the usual (e.g., semisimple symmetric spaces).

Definition 1.1.2. A homogeneous space G/H is real spherical if a minimal parabolic
subgroup P of G has an open orbit on G/H.

As we have seen, real spherical homogeneous spaces are one important class of
homogeneous spaces in the sense that the all multiplicities of the regular representa-
tion on them are finite. The theory of real spherical homogeneous spaces was actively
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studied in the last decade and applied to the theory of blanching laws of infinite-
dimensional representations. For example, Kobayashi and T. Matsuki classified the
pairs (G,H) such that G×H/diag(H) is real spherical in [22], and symmetry break-
ing operators were classified in [25, 26] for the first time by Kobayashi and B. Speh
in the framework of real spherical homogeneous spaces.

The following is one of the characterizations of real spherical homogeneous spaces.
This is a consequence of the rank one reduction of Matsuki [29] and the classification
of real spherical homogeneous spaces of real rank one by B. Kimelfeld [17].

Fact 1.1.3 ([3]). For the pair (G,H), the following two conditions are equivalent:

(ii) G/H is real spherical,

(iii) #(H\G/P ) < ∞.

Therefore, for a minimal parabolic subgroup P , the three conditions (i), (ii), and
(iii) are equivalent by Facts 1.1.1 and 1.1.3 (see Figure 1.1 below). We recall that
the regular representation L2(G/H) may be decomposed into irreducible tempered
representations when H is “small”, but may need more singular representations such
as unitarily induced representations from general parabolic subgroups when H is
“large”, see [2] for the precise criterion. Thus we ask a question what will happen to
the relationship among the three conditions, if we replace P by a general parabolic
subgroup Q of G. This is one of the main interests of this thesis. There is an
obvious extension of the conditions (ii) and (iii) to a general parabolic subgroup Q
(see Definition 1.1.5 below). In order to formulate a variant of (i) for a parabolic
subgroup Q of G, we review the notion of Q-series.

Definition 1.1.4 ([20, Def. 6.6]). Let π ∈ Ĝsmooth. We say that π belongs to Q-
series if π occurs as a subquotient of the degenerate principal series representation
C∞(G/Q, τ) for some τ ∈ Q̂f .

Here Q̂f is the set of equivalence classes of irreducible finite dimensional rep-
resentations of Q. Set ĜQ

smooth := {π ∈ Ĝsmooth | π belongs toQ-series}. Obviously,

ĜQ
smooth ⊃ ĜQ′

smooth if Q ⊂ Q′. Moreover, ĜQ
smooth is equal to Ĝsmooth if Q = P (minimal

parabolic) by Harish-Chandra’s subquotient theorem [9] and to Ĝf if Q = G.

Definition 1.1.5. For a parabolic subgroup Q of G, we define three conditions (iQ),
(iiQ), and (iiiQ) as follows:

(iQ) dimHomG(π,C
∞(G/H, τ)) < ∞ for all (π, τ) ∈ ĜQ

smooth × Ĥalg,
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(iiQ) Q has an open orbit on G/H,

(iiiQ) #(H\G/Q) < ∞.

Then we consider the following problem.

Question. Determine the relationship among the three conditions (iQ), (iiQ) and
(iiiQ).

The conditions (iQ), (iiQ), and (iiiQ) reduce to (i), (ii), and (iii), respectively,
if Q = P (minimal parabolic), and we have seen in Facts 1.1.1 and 1.1.3 that the
following equivalences hold for Q = P ,

(iP ) ⇐⇒ (iiP ) ⇐⇒ (iiiP ).

Furthermore, if Q = G, the condition (iQ) automatically holds by the Frobenius
reciprocity, while (iiQ) and (iiiQ) are obvious. Hence

(iG) ⇐⇒ (iiG) ⇐⇒ (iiiG).

For a general parabolic subgroup Q, clearly, (iiiQ) implies (iiQ). However there is an
easy counterexample for the converse statement.

Example 1.1.6. The projective space RP2 = SL(3,R)/Q splits into an open orbit
and continuously many fixed points of the unipotent radical H of Q.

On the other hand, the implication (iQ) ⇒ (iiQ) holds. To see this, we define a

subset Ĥf(G) of Ĥf by

Ĥf(G) := {τ ∈ Ĥf | τ appears as a quotient of some element of Ĝf}.

The implication (iQ) ⇒ (iiQ) is derived from the following stronger assertion.

Fact 1.1.7 ([20, Cor. 6.8]). If there exists τ ∈ Ĥf(G) such that for all π ∈ ĜQ
smooth,

dimHomG(π,C
∞(G/H, τ)) < ∞, then Q has an open orbit on G/Q, namely, (iiQ)

holds.

We summarize the known relationship among the three conditions as follows.
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1.2 Main Theorems on the relationship between the condi-
tions (iQ) and (iiiQ)

Figure 1.2 indicates that the relationship between the conditions (iQ) and (iiiQ) is
unsettled for a general parabolic Q of G. In this thesis, we give a partial answer for
this, namely, we prove theorems below.

Theorem 1.2.1. Let Q be a maximal parabolic subgroup of G = SL(2n,R) such
that G/Q is isomorphic to the real projective space RP2n−1. Then if n ≥ 2, there
exists an algebraic subgroup H of G satisfying the following two conditions:

1) #(H\G/Q) < ∞,

2) dimHomG(C
∞(G/Q, χ), C∞(G/H)) = ∞ for some class-one character χ of Q.

Furthermore, if n ≥ 3, H satisfies the following condition:

2’) dimHomG(C
∞(G/Q, χ), C∞(G/H)) = ∞ for any class-one character χ of Q.

Here a one-dimensional representation χ ofQ is referred to as a class-one character
if χ is trivial on Q ∩K, where K is a maximal compact subgroup. We note that χ
is of class one if and only if C∞(G/Q, χ) has a nonzero K-fixed vector.

Theorem 1.2.2. Let G be a real reductive algebraic group, H a real algebraic
subgroup and Q a parabolic subgroup of G.

(1) If the number of orientable p-dimensional H-orbits on G/Q is infinite, then for
0 ≤ p < dimG/Q,

dimHomG(C
∞(G/Q,∧p(g/q)∨), C∞(G/H)) = ∞.

(2) If the number of transverse orientable p-dimensional H-orbits on G/Q is infinite,
then for 0 ≤ p < dimG/Q,

dimHomG(C
∞(G/Q,∧p(g/q)∨ ⊗ or), C∞(G/H)) = ∞.

Theorem 1.2.1 implies that (iiiQ) ⇒ (iQ) does not hold. Theorem 1.2.2 gives an
affirmative answer under certain mild condition on orientation for the implication
(iQ) ⇒ (iiiQ). Figures below summarize the relationship among the three conditions.
In Figure 1.3, the symbol ∆ on the arrow means that the implication is proved under
an additional assumption of orientation.
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1.3 Uniform boundedness of the multiplicities for induced
representations

Let GC and HC be complexifications of G and H, respectively. By finding upper and
lower estimates of the dimensions of HomG(π,C

∞(G/H, τ)), Kobayashi and Oshima
also established the criterion for the uniform boundedness of the multiplicities of
induced representations.

Fact 1.3.1. Suppose that G and H are defined algebraically over R. Then the
following two conditions on the pair (G,H) are equivalent:

(i) sup
τ∈Ĥalg

sup
π∈Ĝsmooth

1

dim τ
dimHomG(π,C

∞(G/H, τ)) < ∞,

(ii) GC/HC is spherical.

Here a homogeneous space GC/HC is called spherical if a Borel subgroup B of
GC has an open orbit on GC/HC.

Remark 1.3.2. GC/HC is spherical if and only if #(HC\GC/B) < ∞ holds [6, 29,
33]. This is a special case of Fact 1.1.3.

1.4 Main Theorems on uniform boundedness of the multi-
plicities

Fact 1.3.1 implies that the finiteness of the number of HC-orbits on GC/B charac-
terizes the uniformly bounded multiplicity property of the regular representation on
G/H. Motivated by this result, we prove the following uniformly bounded multiplic-
ity property of Q-series representations in the regular representations on G/H.

Theorem 1.4.1. Let Q be a parabolic subgroup of a real reductive Lie group G and
H a closed subgroup of G. Suppose #(HC\GC/QC) < ∞. Then we have

sup
(η,τ)∈Q̂f×Ĥf

1

dim η · dim τ
dimHomG(C

∞(G/Q, η), C∞(G/H, τ)) < ∞.
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For the proof of this theorem, we also prove the following uniform boundedness
of the dimensions of the spaces of group invariant hyperfunctions. We write BM for
the sheaf of Sato’s hyperfunctions on a real analytic manifold M .

Theorem 1.4.2. Let M be a real analytic manifold, X a complexification of M and
U a relatively compact open semianalytic set of M . Suppose that a complex Lie
group HC acts on X with #(HC\X) < ∞. Then there exists C > 0 such that for
any τ ∈ ĥf , the following inequality holds:

dim(BM(U)⊗ τ)h < C · dim τ.

Here we say that a complex manifold X is a complexification of a real analytic
manifold M if X contains M and the tangent space TxX at x is equal to TxM ⊕√
−1TxM for any x ∈ M ⊂ X. We give another proof of (b)⇒(a) in Fact 1.3.1 as

a corollary of Theorem 1.4.2. A. Aizenbud, D. Gourevitch and A. Minchenko gave
another proof of a weaker version of (b)⇒(a) in Fact 1.3.1 using the theory of D-
modules and the universality of the Weil representation in [1]. This is different from
the proof of this thesis which uses the theory of the multiplicities of D-modules.

As we have seen above, the orbit decomposition of H on G/P and its complexi-
fication have information of harmonic analysis on G/H. In particular, the finiteness
of the number of H-orbits on G/P (resp.HC-orbits on GC/B) characterizes the finite
(resp. bounded) multiplicity property of the regular representations on G/H. More-
over #(HC\GC/PC) < ∞ also implies the bounded multiplicity property. Therefore
we want to know how the multiplicities behave in the intermediate case, namely, the
case that #(H\G/P ) < ∞ although #(HC\GC/PC) = ∞. Thus we are interested
in finding such subgroups H of G. The following proposition gives examples.

Proposition 1.4.3. Let G be a real reductive Lie group without compact factors, Q
a parabolic subgroup of G and Q = MAN its Langlands decomposition. Then the
following four conditions on Q are equivalent:

(i) m is abelian,

(ii) #(ACNC\GC/QC) < ∞,

(iii) GC/NC is spherical,

(iv) GC/ACNC is spherical.

Although this is known by experts, we give two proofs of Proposition 1.4.3. One
is a representation theoretic proof and the other is a geometric proof.
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For any real reductive Lie group G, we have #(AN\G/P ) < ∞ by the Bruhat
decomposition, where P is a minimal parabolic subgroup of G (for example, see
[18, Thm. 7.40]). Therefore Proposition 1.4.3 implies that the number of AN -orbits
on G/P is finite but the number of ACNC-orbits on GC/PC is infinite if G is not
quasi-split, namely, m is not abelian.

Remark 1.4.4. Let G be the special indefinite unitary group SU(1, n). Then it is
pointed out that #(NC\GC/PC) = ∞ holds if n ≥ 3 by Matsuki [29, Remark 7].

References

[1] A. Aizenbud, D. Gourevitch, A. Minchenko, Holonomicity of relative characters
and applications to multiplicity bounds for spherical pairs, Selecta Math. (N.S.)
22 (2016), no. 4, 2325–2345.

[2] Y. Benoist, T. Kobayashi, Tempered reductive homogeneous spaces, J. Eur.
Math. Soc. (JEMS) 17 (2015), no. 12, 3015–3036.

[3] F. Bien, Orbit, multiplicities, and differential operators, Representation theory
of groups and algebras, 199–227, Contemp. Math., 145, Amer. Math. Soc., Prov-
idence, RI, 1993.

[4] E. Bierstone, P. D. Milman, Semianalytic and subanalytic sets. Inst.
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