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Preface

This thesis consists of four chapters. In Chapter 1 and 2 we study a family of symmetric functions {g
(k)
� }

called K-theoretic k-Schur functions (or K-k-Schur functions for short), which is a K-theoretic and a�ne
deformation of another family of symmetric functions called Schur functions. Although the K-k-Schur func-
tions were introduced in the context of the geometry of a�ne Grassmannians, our focus is their combinatorial
treatment and the proofs of the results are based on purely combinatorial arguments related to some fine
structures on the a�ne symmetric groups.

In Chapter 3 and 4 of the thesis we return to the non-a�ne case; the dual stable Grothendieck polynomials

g� are a K-theoretic deformation of Schur functions and can be considered as a certain limit of K-k-Schur
functions. We give some properties of these functions that are absent in the a�ne case, related to the Hopf
algebra structure of the ring of symmetric functions.

History

The Schur functions s� are a family of symmetric functions parametrized by integer partitions and among
the most important objects in algebraic combinatorics; while written as weight generating functions of
semi-standard tableaux and possessing many combinatorial properties such as the Pieri formula and the
Littlewood–Richardson rule, they simultaneously represent the irreducible characters of the symmetric groups,
the irreducible characters of the general linear groups, and the cohomology Schubert class in the Grassmanni-
ans (of type A). There has been a trend to generalize this classical setting, and we focus on two (independent)
directions generalizing the connection between the Schur functions and geometry of Grassmannians: namely,
(1) to consider K-theoretic analogue, i.e. to consider K-theory instead of cohomology, and (2) to consider
a�ne analogue, i.e. to consider a�ne Grassmannians instead of Grassmannians.

The K-theoretic analogue of the Schur functions is the stable Grothendieck polynomials G� introduced by
Fomin–Kirillov [FK96], which are symmetric power series obtained as the stable limit of the Grothendieck
polynomials of Lascoux–Schützenberger [LS82]. These G� represent the K-cohomology classes of structure
sheaves of Schubert varieties of the Grassmannians, and combinatorially they are an inhomogeneous defor-
mation of s�, in that G� is a symmetric power series whose lowest degree part is s�. In [Buc02], Buch gave a
formula for G� as signed weight generating functions of set-valued tableaux. Unlike the Schur functions, these
G� are not self-dual under the Hall inner product (that is, the inner product ( , ) on the ring of symmetric
functions that satisfies (h�,mµ) = ��µ where h� and mµ are the complete and monomial symmetric func-
tions); their dual basis g�, first explicitly introduced in Lam–Pylyavskyy [LP07] and called the dual stable

Grothendieck polynomials, are another inhomogeneous deformation of the Schur functions s� whose highest

degree term are s�, and they represents K-homology classes of ideal sheaves of boundaries of Schubert va-
rieties. Via duality, the generating function formula for G� using set-valued tableaux translates to the Pieri
formula for g� using set-valued strips, giving a characterization of g�.

The a�ne analogue of the classical settings is another topic that has recently been studied intensively.

Combinatorially the role of Schur functions is played by k-Schur functions s
(k)
� and their dual, dual k-Schur

functions (or a�ne Schur functions) eF (k)
� . Historically k-Schur functions were first introduced by Lascoux,

Lapointe and Morse [LLM03] in their study on Macdonald polynomial positivity which was seemingly unre-
lated to Schubert calculus, and subsequent studies (see [Lam06,LM05,LM07] for example) revealed that the
combinatorial backbone of k-Schur theory lies in the setting of type A a�ne Weyl groups (i.e. a�ne symmetric
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groups) and led to several (conjecturally equivalent) characterizations of these functions: notably, eF (k)
� are

generating functions of a�ne tableaux (also known as weak tableaux or k-tableaux in literature), which is

an a�ne-type deformation of semistandard tableaux, and dually, s(k)� can be characterized by the Pieri rule
using a�ne strips (or weak strips). The role of these functions in a�ne Schubert calculus is established in
a paper of Lam [Lam08] in which he proved that k-Schur (resp. dual k-Schur) functions correspond to the

Schubert basis of homology (resp. cohomology) of the a�ne Grassmannian of type A
(1)

k . Moreover, Lam and
Shimozono [LS12] showed that k-Schur functions play a central role in the explicit description of the Peterson
isomorphism.

These developments have analogue in K-theory. Lam, Schilling and Shimozono [LSS10] established the
identification between the K-cohomology classes of the structure sheaves of the Schubert varieties in the
a�ne Grassmannian and a family of symmetric power series called a�ne stable Grothendieck polynomials

G
(k)
� . They also defined the K-k-Schur functions (or dual a�ne stable Grothendieck polynomials) g

(k)
� as

the dual basis to G
(k)
� via the Hall inner product. The K-k-Schur functions form a basis of K-homology

of the a�ne Grassmannians, representing the class of ideal sheaves of boundaries of the Schubert varieties.

Combinatorially G
(k)
� are written as generating functions of a�ne set-valued tableaux [Mor12], which in some

sense unifies the notions of a�ne tableaux and set-valued tableaux. We remark that generating function

formulas for g� and s
(k)
� are given in [LP07] and [LLMS10], using reverse plane partitions and strong marked

tableaux, respectively. The K-k-Schur functions g(k)� , however, are currently only defined via duality (i.e. by
Pieri rules using a�ne set-valued strips) and no combinatorial formula (i.e. as generating functions) is known.

These situations can be depicted as below:

s� Schur

(
G� stable Grothendieck

g� dual stable Grothendieck

(
eF (k)
� a�ne Schur (dual k-Schur)

s
(k)
� dual a�ne Schur (k-Schur)

8
<

:
G

(k)
� a�ne stable Grothendieck

g
(k)
�

dual a�ne stable Grothendieck
(K-k-Schur)

K-theoretic deformation

K-theoretic deformation

a�ne deformation a�ne deformation

Results in this thesis

First, in Chapter 1 and 2, we consider the K-theoretic a�ne setting. In Chapter 1, we propose to consider

a new basis consisting of the sums of K-k-Schur functions
P

µ� g
(k)
µ and denote these sums by eg(k)� , where

 comes from the strong (Bruhat) order on the a�ne symmetric groups, and prove properties of this basis
such as

• the Pieri rule, i.e. a formula for the product eg(k)
(a)eg

(k)
� , and

• a k-rectangle factorization formula: eg(k)Rt[� = eg(k)Rt
eg(k)� where Rt = (tk+1�t).

Notably, the k-rectangle factorization formula for eg(k)� holds in the same simple form as that for k-Schur

functions s(k)Rt[� = s
(k)
Rt

s
(k)
� , while that for the single K-k-Schur functions g(k)� does not (see (1.1.3)).

The Pieri rule for eg(k)� also has a simple form compared to that for the original K-k-Schur functions g(k)� ,

in that the product eg(k)
(a)eg

(k)
� is written as both a multiplicity-free sum over the order ideal generated by the

leading terms (that is, the terms appearing in the highest-degree part), when expanded with the basis g(k)µ ;

and an alternating sum of meets of the leading terms, when expanded with the basis eg(k)µ .
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The factorization formula for eg(k)� is easily deduced from the Pieri formula, as discussed in Section 1.6.
The proof of the Pieri formula (in Section 1.5) is based on some properties on the strong and weak orderings of
(arbitrary) Coxeter groups and arguments on some fine structures of the a�ne symmetric groups, developed
in the first half (Section 1.3 and 1.4) of Chapter 1. Notably, in Section 1.3, for any Coxeter group W and
any x, y 2W , we prove the existence of the elements

min


{z 2W | x  z �L y} and max


{z 2W | x �L z  y},

analogous to the join and meet. Here  and L denote the strong order and (left) weak order of W . Besides
these elements are explicitly written by using the anti-Demazure action explained in the preliminary section
(Section 1.2). In Section 1.4 we focus on the a�ne symmetric groups and prove some properties on the poset
structure of the weak strips (over a fixed partition). A technical feature of this section is the use of k-codes,
a powerful tool to treat the a�ne symmetric groups.

In Chapter 2 we provide alternative (and shorter) proofs of the Pieri rule and the k-rectangle factorization

formula for eg(k)� , by showing corresponding formulas for non-commutative K-k-Schur functions, which are
the correspondents of K-k-Schur functions realized in a certain commutative subring (called the K-a�ne

Fomin–Stanley algebra) of a certain non-commutative ring called the 0-Hecke algebra. The arguments in
Chapter 2 uses the results in the first half (Section 1.3 and 1.4) of Chapter 1, and can replace the arguments
in the latter half (Section 1.5 and 1.6) of Chapter 1.

Next, in Chapter 3 and 4, we consider the non-a�ne case. Since for any � it holds g(k)� = g� and G
(k)
� = G�

for su�ciently large k, by letting k !1 some results from the a�ne case reduce to results in the non-a�ne
case; for example, with similar notation eg� =

P
µ⇢� gµ, the Pieri rule for eg� has the same expression as

that for eg(k)� , in which the non-leading terms (i.e. terms with non-highest degree) are obtained by taking an
alternating sum of meets of the leading terms (i.e. terms with the highest degree). On the other hand, in the
non-a�ne case there are properties that are absent in the a�ne case. Notably,

(A) The bases g� and eg� have the same product structure constants, i.e. the linear map I defined by g� 7! eg�
is an algebra automorphism on the ring of symmetric functions that sends the complete symmetric
function hi to hi + hi�1 + · · ·+ h1 + h0.

(B) The Pieri rule for G� has a quite similar expression to that for g�, in that the non-leading terms
(i.e. terms with non-lowest degree) are obtained by taking an alternating sum of joins of the leading
terms (i.e. terms with the lowest degree).

In Chapter 3 we explain that the ring automorphism in (A) is written as both

(a) the substitution f(x) 7! f(1, x), (that is, f(x1, x2, · · · ) 7! f(1, x1, x2, · · · )), and

(b) the map H(1)?, where H(1) =
P

i hi,

where the linear map F
? is the adjoint of the multiplication map (F ·). The equivalence of two maps in

(a) and (b) is previously known (more generally, H(t)?(f(x)) = f(t, x) where H(t) =
P

i t
i
hi). The key

observation to show I(f(x)) = f(1, x) is that the substitution f 7! f(1, 0, 0, · · · ) maps g�/µ to 1 for any
skew shape �/µ; then since I is a certain composition of this map and the coproduct on ⇤ it follows that
I = (f(x) 7! f(1, x)). We also give:

• formulas for the image of g�/µ under I (and more generally H(t)?), which generalizes I(g�) =
P

⌫⇢� g⌫ .

• similar formulas for the inverse automorphism E(�t)?, where E(�t) =
P

i(�t)
i
ei = H(t)�1.

• presentations of the maps (H(t)·) and (E(�t)·) with respect to the basis {G�}, by the adjointness of
(F ·) and F

? and the duality between G� and g�.

In Chapter 4 we give a short proof of (B), by showing that the coe�cients appearing in the Pieri rules for
G� and g� are the values of the Möbius functions of certain posets of horizontal strips (over a fixed partition).
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Chapter 1

A Pieri formula and a factorization
formula for sums of K-theoretic
k-Schur functions

Abstract

We consider the sum
P

µ� g
(k)
µ , which we denote by eg(k)� , of Lam–Schilling–Shimozono’s K-k-Schur (K-

theoretic k-Schur) functions over a principal order ideal of the poset of k-bounded partitions under the

strong (Bruhat) order, and give Pieri-type formulas for eg(k)� (Theorem 1.1.3 and 1.1.4) and a k-rectangle
factorization formula (Theorem 1.1.5), mainly using combinatorial properties of the strong (Bruhat) and
weak orderings on the a�ne symmetric groups.

1.1 Introduction

Let k be a positive integer. K-k-Schur functions g
(k)
� are inhomogeneous symmetric functions parametrized by

k-bounded partitions �, namely by the weakly decreasing strictly positive integer sequences � = (�1, . . . ,�l),
l 2 Z�0, whose terms are all bounded by k. They are K-theoretic analogues, in the sense mentioned in the

history section of Preface, of another family of symmetric functions called k-Schur functions s
(k)
� , which are

homogeneous and also parametrized by k-bounded partitions. The K-k-Schur functions are introduced in
[LSS10] and characterized by a Pieri-type formula (Definition 1.2.19).

Among the k-bounded partitions, those of the form (tk+1�t) = (t, . . . , t| {z }
k+1�t

) for 1  t  k, called k-rectangles

and denoted by Rt, play a special role. A notable property is the k-rectangle factorization for k-Schur
functions [LM07, Theorem 40]: if a k-bounded partition has the form Rt [ �, where the symbol [ denotes
the operation of concatenating the two sequences and reordering the terms in the weakly decreasing order,
then the corresponding k-Schur function factorizes as follows:

s
(k)
Rt[� = s

(k)
Rt

s
(k)
� . (1.1.1)

It is natural to consider K-theoretic version of this formula. For several reasons listed below, it seems to

make more sense to consider, in this regard, the sum of K-k-Schur functions
P

µ� g
(k)
µ rather than the K-

k-Schur function g
(k)
� (here  denotes the strong order, also known as the Bruhat order, which is transferred

from that of the a�ne symmetric group S̃k+1 through the bijection Pk ' S̃k+1/Sk+1 where Pk denotes the
set of k-bounded partitions. See Section 1.2.1.1 and 1.2.2.3 for the details):
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• Connection to the K-Peterson isomorphism.

The (original) Peterson isomorphism, first presented by Peterson in his lectures at MIT and then
published by Lam and Shimozono [LS10], states that the homology of the a�ne Grassmannian is
isomorphic to the quantum cohomology of the flag variety after appropriate localization. As its K-
theoretic version, an isomorphism between theK-homology of the a�ne Grassmannian and the quantum
K-theory of the flag manifold, up to appropriate localization, is conjectured and called K-Peterson

isomorphism:

– In their attempt in [LLMS18] to verify the coincidence of the Schubert structure constants in
the K-homology of the a�ne Grassmannian and the quantum K-theory of the flag manifold in
torus-equivariant settings, Lam, Li, Mihalcea and Shimozono proved a special case of Theorem
1.1.5 for SL2 (i.e. the case k = 1) with explicit calculations, in the context of geometry:

OxOt�↵_ = Oxt�↵_ , (1.1.2)

where x is any a�ne Grassmannian element in the a�ne Weyl group, Ox is the Schubert class of
structure sheaves on the a�ne Grassmannian and t�↵_ is the translation by the negative of the
simple coroot of SL2. (See also Remark 1.2.14.)

– In [IIM18], Ikeda, Iwao and Maeno gave an explicit ring isomorphism, after appropriate localiza-
tion, between the K-homology of the a�ne Grassmannian and the presentation of the quantum
K-theory of the flag manifold that is conjectured by Kirillov and Maeno and proved by Ander-
son, Chen, and Tseng [ACT], as well as a conjectural description of the image of the quantum
Grothendieck polynomials, which is conjectured to be the quantum Schubert classes. These pre-
sentations notably involve the dual stable Grothendieck polynomials gRt and their sum

P
µ⇢Rt

gµ

corresponding to the k-rectangles Rt. Note that µ ⇢ Rt () µ  Rt, and that it is conjectured

that g(k)� = g� for � ⇢ Rt.

Remark 1.1.1. After this article was submitted, there appeared a preprint [Kat] by Syu Kato in which
he claims to have proved conjectures in [LLMS18] and in particular the factorization property for the
structure sheaves in general type.

• Natural appearances of
P

µ� g
(k)
µ in k-rectangle factorization formulas of g

(k)
� .

It is suggested in [LSS10, Remark 7.4] that the K-k-Schur functions should also possess similar prop-

erties to (1.1.1), including the divisibility of g
(k)
Rt[� by g

(k)
Rt

, for which the author’s preceding work
[Taka,Takb] gives an a�rmative answer.

Let us review the results of [Taka, Takb]. It is proved that g
(k)
Rt

divides g
(k)
Rt[� in the ring ⇤(k) =

Z[h1, . . . , hk], of which the K-k-Schur functions {g
(k)
µ }µ2Pk form a basis. However, unlike (1.1.1), the

quotient g(k)Rt[�/g
(k)
Rt

is not a single term g
(k)
� but in general a linear combination of K-k-Schur functions

with leading term g
(k)
� : for any � 2 Pk,

g
(k)
Rt[� = g

(k)
Rt

✓
g
(k)
� +

X

µ

a�µg
(k)
µ

◆
, (1.1.3)

where the summation is taken with all µ 2 Pk such that |µ| < |�|, with some coe�cients a�µ (which also
depends on t). A special yet important case is the factorization of multiple k-rectangles: for 1  t  k

and a > 1,

g
(k)
Ra

t
= g

(k)
Rt

✓ X

µ⇢Rt

g
(k)
µ

◆a�1

,

where R
a
t = Rt [ · · · [ Rt (a times). Note that µ ⇢ Rt () µ  Rt. Furthermore, it is conjectured

that the set of µ appearing in (1.1.3) forms an interval under the strong order: namely, for any � 2 Pk
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and 1  t  k, we expect there to exist ⌫ 2 Pk such that

g
(k)
Rt[� = g

(k)
Rt

X

⌫µ�

g
(k)
µ .

These observations suggest the usefulness of Definition 1.1.2 below.

1.1.1 Main results

Let , L, and R be the strong, left weak, and right weak order on the a�ne symmetric group S̃k+1 (see
Section 1.2.1.1 for the details).

From the observation above, we introduce the notation eg(k)� for the sum of K-k-Schur functions over the
order ideal generated by � under the strong order , which are the main objects of study in this chapter.

Definition 1.1.2. For any � 2 Pk, we write eg(k)� =
X

µ�

g
(k)
µ .

Our first main theorem is a Pieri-type formula for eg(k)� . We start with the Pieri rule for g(k)� [LSS10,Mor12]:
for � 2 Pk and 1  r  k,

g
(k)
� hr =

X

(A,µ)

(�1)|�|+r�|µ|
g
(k)
µ , (1.1.4)

summed over all pairs (A, µ) such that (µ/�, A) are a�ne set-valued strips of size r (see Definition 1.2.7 and
1.2.19 for more details). Note that this is an inhomogeneous version of the Pieri rule for the k-Schur functions

s
(k)
� , that is, s(k)� hr =

P
s
(k)
µ where the summation is taken over all µ such that µ/� are weak strips of size r

(see Definition 1.2.6 and 1.2.17). In terms of eg(k)� , this rule (1.1.4) becomes relatively simple:

Theorem 1.1.3. Let � 2 Pk and 1  r  k, and define ehr = h0 + h1 + · · ·+ hr. Then

eg(k)�
ehr =

X

µ

g
(k)
µ ,

summed over µ 2 Pk such that µ   for some  2 Pk such that /� is a weak strip of size r.

To express its right-hand side as a linear combination of {eg(k)µ }µ, we recall that the weak strips over �
correspond to certain proper subsets of I = {0, 1, . . . , k}: for  2 Pk, /� is a weak strip if and only if there
exists A ( I such that  = dA� �L �, where dA is the cyclically decreasing permutation corresponding to A

(see Section 1.2.2.2, 1.2.2.3, and 1.2.2.4 for the details).

Theorem 1.1.4. With the setting in Theorem 1.1.3, we let dA1�, dA2�, . . . be all weak strips of size r over

�. Then

eg(k)�
ehr =

X

m�1

(�1)m�1
X

a1<···<am

eg(k)dAa1\···\Aam
�.

✓
=
X

a

eg(k)dAa�
�

X

a<b

eg(k)dAa\Ab
� +

X

a<b<c

eg(k)dAa\Ab\Ac�
� · · ·

◆

Moreover dAa\Ab\...� = (dAa�) ^ (dAb�) ^ . . . , where ^ denotes the meet in the poset Pk with the strong

order. See also Proposition 1.1.6.

Our second main theorem is the validity of the k-rectangle factorization formula for eg(k)� , which takes the
same simple form as that for k-Schur functions (1.1.1):

Theorem 1.1.5. For any � 2 Pk and 1  t  k, we have

eg(k)Rt[� = eg(k)Rt
eg(k)� .
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It is easy to deduce Theorem 1.1.5 from Theorem 1.1.4, as discussed in Section 1.6. The proof of Theorem
1.1.3 and 1.1.4, on the other hand, is the technical heart of this chapter and requires auxiliary work on the
strong and weak orderings on the set of a�ne permutations as well as the structure of the set of weak strips,
which are discussed in Section 1.3 and 1.4.

This chapter is organized as follows.
In Section 1.2, we review some notations and facts from the combinatorial background. In Section 1.2.1

we treat arbitrary Coxeter groups and their strong and weak orderings. It also contains quick reviews on the
generalized quotients [BW88] and the Demazure products. Section 1.2.2 contains notations specific to the
a�ne symmetric groups and a review on their Young-diagrammatic treatment. In Section 1.2.3 we briefly
review the Pieri-type formulas for k-Schur and K-k-Schur functions.

Section 1.3 contains technical lemmas on the strong and weak orders on arbitrary Coxeter groups. In
Section 1.3.1 the lattice property of the weak order is reviewed. Although it is known that the quotient of an
a�ne Weyl group by its corresponding finite Weyl group forms a lattice under the weak order [Wau99], we
include another proof for the type a�ne A using the k-Schur functions. Section 1.3.2 contains basic properties
of the Demazure and anti-Demazure actions. In Section 1.3.3 we show the existence, for any elements x, y of
any Coxeter group W , of min{z 2W | x  z �L y} and max{z 2W | x �L z  y}, analogous to the join
and meet. In Section 1.3.4 we consider an “interval-flipping” map �z : [e, z]L �! [e, z]R; x 7! zx

�1 for any
z in an arbitrary Coxeter group W , and show that �z is anti-isomorphic under the strong order and that if
x, y 2 [e, z] have a meet x^ y in the strong order then �z maps x^ y to the join �z(x)_�z(y) of �z(x) and
�z(y) in the strong order taken in W . In Section 1.3.5 we show the Chain Property of lower weak intervals,
analogous to the Chain Property of the generalized quotients (see Section 1.2.1.2).

In Section 1.4, we focus on the a�ne symmetric groups and give results on the structure of the set of
weak strips, which includes:

Proposition 1.1.6 (⇢ Proposition 1.4.2). For any � 2 Pk and A,B ( I with dA�/� and dB�/� are weak

strips,

(1) dA\B�/� and dA[B�/� are weak strips.

(2) dA\B� = dA� ^ dB� under the strong order.

Proposition 1.1.7 (⇢ Proposition 1.4.12). For any � 2 Pk, there exists i� 2 I (= {0, 1, . . . , k}) such that

i� /2 A for any weak strip dA�/�.

Section 1.5 and 1.6 are devoted to proving the Pieri-type formula for eg(k)� (Theorem 1.1.3 and 1.1.4) and

the k-rectangle factorization formula for eg(k)� (Theorem 1.1.5), respectively.

1.2 Preliminaries

In this section we review some requisite combinatorial background.

1.2.1 Coxeter groups

For basic definitions for the Coxeter groups we refer the reader to [BB05] or [Hum90].

1.2.1.1 Strong and weak orderings

Let (W,S) be a Coxeter group, T = {wsw
�1

| w 2 W} its set of reflections, and l : W �! Z�0 its length
function. The left weak order (or simply left order) L, right weak order (or right order) R, and strong

order (or Bruhat order)  on W are generated by the covering relations:

u <·Lv () l(v) = l(u) + 1, v = su for some s 2 S,

u <·Rv () l(v) = l(u) + 1, v = us for some s 2 S,

u <· v () l(v) = l(u) + 1, v = tu for some t 2 T.

10



Note that the definition of the strong order looks di↵erent from but coincides with the classical one.
A few observations follow immediately: for u, v 2W ,

u L v () l(vu�1) + l(u) = l(v), (1.2.1)

u R v () l(u) + l(u�1
v) = l(v), (1.2.2)

u R uv () l(u) + l(v) = l(uv) () v L uv. (1.2.3)

We often use these equivalences without any mention. Using this translation from the weak order to length
conditions, we can easily prove the following lemma:

Lemma 1.2.1. For x, y, z 2W , we have

(1) z L yz L xyz () y L xy and z L xyz.

(2) z �L yz �L xyz () y L xy and z �L xyz.

We often use the following notation taken from [BW88]: for w 2 W we let hwi denote any reduced
expression for w, and huihvi the concatenation of reduced expressions for u and v. Hence, saying that huihvi
is reduced means l(u) + l(v) = l(uv).

For u, v 2W with u L v the set {w 2W | u L w L v} is called a left interval and denoted by [u, v]L.
We define a right interval [u, v]R and a strong (or Bruhat) interval [u, v] similarly. We shall use the notation
[u,1)L to denote the set {w 2W | u L w}, and define [u,1)R and [u,1) similarly.

In this chapter we heavily use some well-known results on the strong and weak orderings on Coxeter
groups described below. See, for example, [BB05] for details. Let v, w 2W .

Strong Exchange Property. Suppose w = s1s2 . . . sk (si 2 S) and t 2 T . If l(tw) < l(w), then tw =
s1 . . . bsi . . . sk for some i 2 {1, · · · , k}. Furthermore, if s1s2 . . . sk is a reduced expression then i is uniquely
determined.

Subword Property. Let w = s1s2 . . . sk be a reduced expression. Then v  w if and only if there exists a
reduced expression v = si1si2 . . . sil with 1  i1 < i2 < · · · < il  k.

Chain Property.
1 If v  w, then there exists a chain v = x0 <· x1 <· . . . <· xk = w.

Lifting Property (also known as Z-property). Let s 2 S. If sv > v and sw > w, then the following are
equivalent: (1) v  w, (2) v  sw, and (3) sv  sw.

1.2.1.2 Generalized quotients

For any subset V ⇢W , let

W/V = {w 2W | l(wv) = l(w) + l(v) for all v 2 V }.

The subsets of the form W/V are called (right) generalized quotients [BW88]. Similarly the sets of the form

V \W = {w 2W | l(vw) = l(v) + l(w) for all v 2 V }

are called left generalized quotients. Note that, when V = WJ , the parabolic subgroup corresponding to J ⇢ I,
the generalized quotient W/WJ is just the parabolic quotient W J , namely the set of shortest representatives
collected from all cosets wWJ .

It is shown in [BW88, Lemma 2.2] that if a, b, v 2 W satisfy l(av) = l(a) + l(v) and l(bv) = l(b) + l(v),
then av < bv () a < b. An immediate consequence is

W/{v} ' [v,1)L;w 7! wv (1.2.4)

under the strong order as well as the left weak order.

Chain Property for generalized quotients ([BW88, Corollary 3.5]). If u,w 2 W/V and u < w, then there
exists a chain u = x0 <· x1 <· . . . <· xk = w with xi 2W/V for all i.

1With the definition of  we employed here, this is trivial.
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1.2.1.3 The 0-Hecke algebra and the Demazure product

The 0-Hecke algebra H associated to (W,S) is the associative algebra generated by {vs | s 2 S} subject to
the quadratic relations v2s = �vs and the braid relations of (W,S), that is, vsvtvs . . .| {z }

m

= vtvsvt . . .| {z }
m

for s, t 2 S

where m = ms,t is the order of st in W . For w 2W we can define without ambiguity vw 2 H to be vs1 . . . vsn
where s1 . . . sn is any reduced expression for w. Furthermore, the elements {vw | w 2W} form a basis of H.
The Demazure product (or Hecke product) ⇤ on W describes the multiplication of basis elements in H: for
x, y 2 W , x ⇤ y 2 W is such that vxvy = ±vx⇤y. Some properties on the Demazure product can be found in
[KM04,BM15].

We explicitly prepare the notation to denote the left multiplication in the Demazure product: for s 2 S,
we define the Demazure action �s : W �!W by

�s(x) = s ⇤ x =

(
x (if x > sx)

sx (if x < sx)
.

Similarly we define the anti-Demazure action  s : W �!W by

 s(x) =

(
sx (if x > sx)

x (if x < sx)
.

These maps {�s}s and { s}s satisfy the quadratic relations �2s = �s,  2

s =  s and the braid relations
of (W,S); a direct proof (found on [Ste07, Proposition 2.1]) of this (for  ) is that both  s t s . . . and
 t s t . . . (products of ms,t factors) send x 2 W to the shortest (resp. longest, if we consider � instead of
 ) element of the parabolic coset W{s,t}x. Therefore we can define without ambiguity �x, x : W �!W for
x 2 W by �x = �s1 . . .�sn and  x =  s1 . . . sn where x = s1 . . . sn is any reduced expression. Similarly we
define the right Demazure and anti-Demazure actions �Rs , 

R
s : W �! W for s 2 S by �Rs (x) = �s(x�1)�1

and  
R
s (x) =  s(x�1)�1, that is, �Rs (x) = xs if x < xs, etc. We also define �Rx and  

R
x to be �Rsn . . .�

R
s1

and  
R
sn . . . 

R
s1 (mind the order of composition) where x = s1 . . . sn is any reduced expression. Note that

�x(y) = x ⇤ y = �
R
y (x). When S is indexed by a set I, i.e.S = {si | i 2 I}, we often write �i = �si and

 i =  si .
The following lemma is essentially given in [BW88, Theorem 4.2], and explicitly in [BM15, Proposition

3.1(e)]:

Lemma 1.2.2. Let x, y, z 2 W with x ⇤ y = z, that is, �x(y) = z = �
R
y (x). Let x

0 = zy
�1

and y
0 = x

�1
z,

that is, z = xy
0 = x

0
y. Then we have

(1) x, x
0
R z.

(2) y, y
0
L z.

(3) l(z) = l(x) + l(y0) = l(x0) + l(y).

(4) x
0
 x.

(5) y
0
 y.

Proof. It follows easily from the definition of ⇤ and the Subword Property.

The proof of the following lemma is easy and similar to that of Lemma 1.2.2.

Lemma 1.2.3. Let x, y, z 2W with  x(y) = z. Let x
0 = zy

�1
, that is, z = x

0
y. Then we have

(1) x
0
 x.

(2) z L y.

(3) x
0�1
R y.

We see more properties of �x, x in Section 1.3.2.
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1.2.2 A�ne symmetric groups

In this section we briefly review the connection between a�ne permutations, bounded partitions and core
partitions. We refer the reader to [LLM+14, Chapter 2] and [Den12] for the details.

Hereafter we fix a positive integer k.

1.2.2.1 A�ne symmetric group

Let I = Zk+1 = {0, 1, . . . , k}, where each of 0, 1, . . . , k should be understood to represent its coset modulo
k + 1. Let [p, q] = {p, p + 1, . . . , q � 1, q} ( I for p 6= q � 1. For example, [4, 2] = {4, 5, 0, 1, 2} if k = 5. A
subset A ⇢ I is called connected if A = [p, q] for some p, q. A connected component of A ( I is a maximal
connected subset of A.

The a�ne symmetric group S̃k+1 is a group generated by the generators {si | i 2 I} subject to the
relations s

2

i = 1, sisi+1si = si+1sisi+1, sisj = sjsi for i � j 6= 0,±1, and its elements are called a�ne

permutations. We sometimes write sij... instead of sisj · · · . The parabolic quotient S̃k+1/Sk+1, where Sk+1

is the symmetric group hs1, . . . , ski as a subgroup of S̃k+1, is denoted by S̃
�
k+1

and its elements are called
a�ne Grassmannian elements.

For x 2 S̃k+1, the set of right descents DR(x) is {i 2 I | x > xsi} (( I). The set of left descents DL(x) is
defined similarly. For i 2 I, an element w 2 S̃k+1 is called i-dominant if DR(w) ⇢ {i}. Note that an a�ne
permutation is 0-dominant if and only if it is a�ne Grassmannian.

1.2.2.2 Cyclically decreasing elements

A word a = a1a2 . . . am with letters from I is called cyclically decreasing (resp. cyclically increasing) if
a1, a2, . . . , am are distinct and any j 2 I does not precede j + 1 (resp. j � 1) in a. For A ( I, the cyclically

decreasing element dA is defined to be si1si2 . . . sim where A = {i1, i2, . . . , im} and the word i1i2 . . . im is
cyclically decreasing. The cyclically increasing element uA = simsim�1 . . . si1 is defined similarly. Note that
these definitions are independent of the choice of the word.

Example 1.2.4. Let k = 5 and A = {0, 1, 3, 5} ( Z6. The possible cyclically decreasing words for A are 1053,
1035, 1305 and 3105, and hence dA = s1s0s5s3 = s1s0s3s5 = s1s3s0s5 = s3s1s0s5.

1.2.2.3 Connection to bounded partitions and core partitions

In this section we review the bijection between the set of k-bounded partitions, k + 1-core partitions and
a�ne Grassmannian elements in S̃k+1. For the details see [LLM+14, Chapter 2] and references given there.

A partition � = (�1 � �2 � · · · ) is a weakly decreasing sequence in Z�0 with
P

i �i < 1, and is often
identified with its Young diagram {(i, j) 2 (Z>0)2 | 1  j  �i}. A partition � is called k-bounded if �1  k.
Let Pk be the set of all k-bounded partitions. An r-core (or simply a core if no confusion can arise) is a
partition none of whose cells have a hook length equal to r. We denote by Cr the set of all r-core partitions.

Now we recall the bijection
Ck+1 ' Pk ' S̃

�
k+1

. (1.2.5)

The map p : Ck+1 �! Pk; 7! � is defined by �i = #{j | (i, j) 2 , hook(i,j)()  k}. In fact p is bijective
and the inverse map c = p�1 : Pk �! Ck+1 is algorithmically described as a “sliding cells” procedure.

The map s : S̃�
k+1
�! Ck+1 is constructed via an action of S̃k+1 on Ck+1: for  2 Ck+1 and i 2 I, we

define si · to be  with all its addable (resp. removable) corners with residue i added (resp. removed), where
the residue of a cell (i, j) is j � i mod k + 1. In fact this gives a well-defined S̃k+1-action on Ck+1, which
induces the bijection s : S̃�

k+1
�! Ck+1;w 7! w ·?.

The map Pk �! S̃
�
k+1

;� 7! w� is given by w� = si1si2 . . . sil , where (i1, i2, . . . , il) is the sequence obtained
by reading the residues of the cells in �, from the shortest row to the largest, and within each row from right
to left. See [LM05, Corollary 48] for the proof.

For � 2 Pk, the k-transpose of � is p(c(�)0) and denoted by �!k . (Here µ
0 denotes the transpose of a

partition µ.)
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0 1 2 3 0
3 0
2

0 1 2
3 0
2

s203210

c(�) � w�

Figure 1.1: k = 3, � = (3, 2, 1) 2 P3, c(�) = (5, 2, 1) 2 C4, and w� = s203210 2 S̃
�
4
.

Example 1.2.5. Let k = 3 and � = (3, 2, 1) 2 P3. The corresponding 4-core partition and a�ne permutation
are c(�) = (5, 2, 1) 2 C4 and w� = s203210 2 S̃

�
4
. (See Figure 1.1.)

1.2.2.4 Weak strips

Definition 1.2.6. For v, w 2 S̃
�
k+1

, we say v/w is a weak strip (or a�ne strip) of size r if v = dAw �L w

for some A ( I with |A| = r. We also say v is a weak strip of size r over w.

Definition 1.2.7. For v, w 2 S̃
�
k+1

and A ( I, we say (v/w,A) is an a�ne set-valued strip of size r if
v = dA ⇤ w (= �dA(w)) and |A| = r. We also say (v,A) is a a�ne set-valued strip of size r over w.

Note that if (v/w,A) is an a�ne set-valued strip of size r then v/w is an a�ne strip of size  r.

Remark 1.2.8. Identifying �, c(�) and w� through the bijection Pk ' Ck+1 ' S̃
�
k+1

, we often say µ/�

(resp./�) is a weak strip for �, µ 2 Pk (resp., � 2 Ck+1), etc.

Remark 1.2.9. Regarding v, w 2 S̃
�
k+1

as bounded (or core) partitions as above, we see these notions are
variants of the horizontal strip. For example, wµ/w� is a weak strip if and only if the corresponding cores
c(µ)/c(�) form a horizontal strip and wµ �L w�, and the term “a�ne set-valued” originates in a�ne set-
valued tableaux. See, for example, [LLM+14,Mor12] for more details.

Example 1.2.10. Let k = 3 and � = (3, 2, 1) 2 P3, and thus w� = s203210 and c(�) = (5, 2, 1). Figure 1.2 lists
all v such that v/w� is a weak strip (the corresponding core partitions are displayed).

1.2.2.5 k-codes

The notion of k-codes was studied by T.Denton in [Den12]. We follow his definition and summarize the
results relevant to our present work here.

A k-code is a function ↵ : I �! Z�0 such that there exists at least one i 2 I with ↵(i) = 0. We often write
↵i = ↵(i). The diagram of a k-code ↵ is the Ferrers diagram on a cylinder with k+1 columns indexed by I,
where the i-th column contains ↵i boxes. A k-code ↵ may be identified with its filling, which is the diagram
of ↵ with all its boxes marked with their residues, that is, i� j (2 I) for one in the i-th column and j-th row.
A flattening of the diagram of a k-code ↵ is what is obtained by cutting out a column with no boxes (that is,
column j with ↵j = 0). A reading word of ↵ is obtained by reading the rows of a flattening of ↵ from right
to left, beginning with the last row. Note that, though a k-code may have multiple columns with no boxes,
the a�ne permutation given by the reading word of ↵ is independent of the choice of a flattening. Indeed,
for a k-code ↵ with m rows, letting Ai be the set of the residues of the boxes in the i-th row in the diagram
of ↵, we have that dAm · · · dA2dA1 is the a�ne permutation corresponding to ↵. In fact this correspondence
is bijective (Theorem 1.2.11); an algorithm to obtain a k-code from an a�ne permutation is explained below.

Maximizing moves.

For a cyclically decreasing decomposition w = dAm · · · dA1 , there corresponds a “skew k-code diagram”,
that is, a set of boxes in the cylinder with k + 1 columns indexed by I in which Ai is the set of the residues
of the boxes in the i-th row. To justify it to the bottom, we consider the following “two-row moves”: pick
any consecutive two rows Aa and Aa+1, and let i, j 2 I with j 6= i� 1. Then,
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0 1 2 3 0 1
3 0 1
2 3
1

w�

0 1 2 3 0 1 2
3 0 1 2
2 3
1
0

d{1}w�

0 1 2 3 0 1
3 0 1
2 3
1

d{3}w�

0 1 2 3 0 1 2
3 0 1 2
2 3 0
1 2
0

d{1,3}w�

0 1 2 3 0 1 2 3
3 0 1 2 3
2 3
1
0

d{1,2}w�

0 1 2 3 0 1 2 3 0
3 0 1 2 3 0
2 3 0
1 2
0

d{1,2,3}w�

s1
s3

s3 s1
s2

s3

Figure 1.2: The weak strips over w� where � = (3, 2, 1). Left weak covers are represented as solid lines, and
strong covers are solid or dotted lines. A solid edge between v and w is labelled with si if v = siw.
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1 3 4
0 3

2

Figure 1.3: RD(w) where k = 3 and w = s2s30s431

(1) if i � 1 /2 Aa+1, [i, j] ⇢ Aa+1, [i + 1, j] ⇢ Aa, and i, j + 1 /2 Aa, then we replace Aa and Aa+1 with
Aa [ {i} and Aa+1 \ {j}, reflecting the equation (sjsj�1 . . . si)(sj . . . si+1) = (sj�1 . . . si)(sj . . . si+1si).

. . .

. . .

i+ 1

i

j

j � 1 j

. . .

. . .

i i+ 1

i

j

j � 1

(2) if i � 1 /2 Aa+1, [i, j] ⇢ Aa+1, [i, j] ⇢ Aa, and j + 1 /2 Aa, then we conclude this decomposition
does not give a reduced expression, reflecting the fact that (sjsj�1 . . . si)(sj . . . si+1si) is not a reduced
expression.

. . .

. . .

i i+ 1

i

j

j � 1 j

: not reduced

Note that these moves look simpler when i = j:

(1)
i

i

,

(2)
i

i
: not reduced

.

It is shown in [Den12, Section 3] that, for any decomposition w = dAm · · · dA1 that gives a reduced
expression, we can apply a finite series of moves of type (1) to justify its diagram to the bottom and obtain a
k-code, which is in fact uniquely determined from w and denoted by RD(w), and gives the maximal decreasing

decomposition w = dBn · · · dB1 , that is, the vector (|B1|, · · · , |Bn|) is maximal in the lexicographical order
among such decompositions for w. Furthermore, this procedure bijectively maps a�ne permutations to
k-codes:

Theorem 1.2.11 ([Den12, Theorem 38]). The map w 7! RD(w) gives a bijection between S̃k+1 and the set

of k-codes.

Example 1.2.12. Let k = 3 and w = s2s30s431 (this expression gives the maximal decreasing decomposition).
Then RD(w) = (0, 2, 0, 1, 3). (See Figure 1.3)

Note that this construction also works if maximal decreasing decomposition is replaced with maximal

increasing decompositions, that is, the unique decomposition w = uBn · · ·uB1 into cyclically increasing ele-
ments with l(w) = l(uBn) + · · ·+ l(uB1) and the vector (|B1|, . . . , |Bn|) being maximal in the lexicographical
order, by modifying the notion of the filling of a k-code so that the box in the i-th column and j-th row is
marked with j� i instead of i� j. The resulting k-code is denoted by RI(w). The map w 7! RI(w) also gives
a bijection between S̃k+1 and the set of k-codes.

It is proved [Den12, Corollary 39] that w 2 S̃k+1 is i-dominant if and only if the flattening of the
corresponding k-code RD(w) forms a k-bounded partition with residue i in its lower left box, that is, RD(w)i �
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0 1 2
3 0
2 3
1
0

0 3
1 0
2 1
3
0
1

RD(w) RI(w)c(sh(RD(w))) c(sh(RI(w)))

c c(·0)

Figure 1.4:

RD(w)i+1 � · · · � RD(w)i�2 � RD(w)i�1 = 0. When i = 0, this mapping from 0-dominant permutations
to k-bounded partitions coincides with the one described earlier in Section 1.2.2.3. Moreover, it is proved
[Den12, Proposition 51] that, for w 2 S̃

�
k+1

the two corresponding k-codes RD(w) and RI(w), regarded as k-
bounded partitions, are transformed into each other by taking the k-transpose: sh(RI(w)) = (sh(RD(w)))!k

where sh(↵) 2 Pk is defined by sh(↵)j = |{i | ↵i � j}|.
It is also proved in [Den12, Proposition 56] that if x L y then RD(x) ⇢ RD(y) and RI(x) ⇢ RI(y). Here

the inclusion of k-codes should be understood as that of their (Ferrers) diagrams.

Example 1.2.13. Let k = 3 and w = s0s1s32s03s210 = s1s0s3s12s01s30 (these presentations give the maximal
decreasing and increasing decompositions). Then RD(w) = (5, 3, 1, 0) and RI(w) = (6, 3, 0, 0), and thus
sh(RD(w)) = (3, 2, 2, 1, 1) = (2, 2, 2, 1, 1, 1)!3 = sh(RI(w))!3 . (See Figure 1.4)

1.2.2.6 k-rectangles

The partition (tk+1�t) = (t, t, . . . , t) 2 Pk, for 1  t  k, is denoted by Rt and called a k-rectangle.

Remark 1.2.14. Consider the a�ne permutation wRi corresponding to the k-rectangle Ri under the bijection
(1.2.5). In fact wRi is congruent, in the extended a�ne Weyl group, to the translation t�$_

i
by the negative

of a fundamental coweight, modulo left multiplication by the length zero elements.

The next lemma describes the mapping � 7! Rt [ � in terms of a�ne permutations. For A ⇢ I and
0  t  k, we write A+ t = {a+ t | a 2 A} (⇢ I).

Lemma 1.2.15. Let 1  t  k. Define a group isomorphism

ft : S̃k+1 �! S̃k+1 ; si 7! si+t for i 2 I.

For any � 2 Pk, we have

wRt[� = ft(w�)wRt .

Proof. Let dAm · · · dA1 and dBk+1�t · · · dB1 be the maximal decreasing decompositions of w� and wRt . Then
dAm+t · · · dA1+t is the maximal decomposition of ft(w�). Stacking the k-code diagram of ft(w�) on top
of that of wRt , we obtain the diagram (not necessarily justified to the bottom) corresponding to the (not
necessarily maximal) decreasing decomposition ft(w�)wRt = dAm+t · · · dA1+tdBk+1�t · · · dB1 (See Figure 1.5).
With maximizing moves, we can justify the diagram to obtain one with shape Rt [ �, which corresponds to
the maximal decomposition of wRt[�.

The next lemma explains the correspondence between weak strips over � and weak strips over Rt [ �.

Lemma 1.2.16. Let � 2 Pk.

(1) For A ( I, if dA�/� is a weak strip then Rt [ (dA�) = dA+t(Rt [ �).

Moreover, let dA1�, dA2�, . . . be the list of all weak strips over � (of size r).
(2) Rt [ (dA1�), Rt [ (dA2�), . . . is the list of all weak strips over Rt [ � (of size r).
(3) dA1+t(Rt [ �), dA2+t(Rt [ �), . . . is the list of all weak strips over Rt [ � (of size r).

17



0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0
0 1 2 3 4 5
5 0 1 2 3 4

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0
0 1 2 3 4 5
5 0 1 2 3 4

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0
0 1 2 3 4 5
5 0 1 2 3 4

0 1 2 3 4 5
5 0 1 2 3 4
4 5 0 1 2 3
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0
0 1 2 3 4 5
5 0 1 2 3 4

. . .

ft(w�) · wRt

wRt[�

Figure 1.5: Justifying process with maximizing moves, where k = 5, t = 2, R2 = (24), and � = (4, 3, 3, 1).

Proof. (2) is [LM04, Theorem 20]. (3) follows from (1) and (2).
To prove (1), it su�ces to show the case |A| = 1, that is, Rt [ (si�) = si+t(Rt [ �) if si� �L �. This is

essentially shown in the process of proving [LM04, Theorem 20] by seeing correspondence between addable
corners of c(�) with residue i and addable corners of c(Rt[�) with residue i+t, yet we here give another proof:
by Lemma 1.2.15, it follows wRt[(si�) = ft(wsi�)wRt = ft(siw�)wRt = si+tft(w�)wRt = si+twRt[�.

1.2.3 Symmetric functions

For basic definitions for symmetric functions, see for instance [Mac95, Chapter I].

1.2.3.1 Symmetric functions

Let ⇤ = Z[h1, h2, . . . ] be the ring of symmetric functions, generated by the complete symmetric functions

hr =
P

i1i2···ir
xi1 . . . xir . For a partition � we set h� = h�1h�2 . . . h�l(�)

. The set {h�}�2P forms a
Z-basis of ⇤.

1.2.3.2 Schur functions

The Schur functions {s�}�2P are the family of symmetric functions satisfying the Pieri rule:

hrs� =
X

µ/�:horizontal strip of size r

sµ.

1.2.3.3 k-Schur functions

We recall a characterization of k-Schur functions given in [LM07], since it is a model for and has a relationship
with K-k-Schur functions.
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Definition 1.2.17 (the k-Schur function via the k-Pieri rule). k-Schur functions {s(k)w }w2S̃�
k+1

are the family

of symmetric functions such that

s
(k)
e = 1,

hrs
(k)
w =

X

v

s
(k)
v for 0  r  k and w 2 S̃

�
k+1

,

summed over v 2 S̃
�
k+1

such that v/w is a weak strip of size r.

It is known that {s
(k)
w }w2S̃�

k+1
forms a basis of ⇤(k) = Z[h1, . . . , hk] ⇢ ⇤, and s

(k)
w is homogeneous of

degree l(w). We regard s
(k)
� as s(k)w� for � 2 Pk. It is proved in [LM07, Theorem 40] that

Proposition 1.2.18 (the k-rectangle property). For 1  t  k and � 2 Pk, we have s
(k)
Rt[� = s

(k)
Rt

s
(k)
� (=

sRts
(k)
� ).

1.2.3.4 K-k-Schur functions

In this chapter we employ the following characterization with the Pieri rule ([LSS10, Corollary 7.6], [Mor12,
Corollary 50]) of the K-k-Schur function as its definition.

Definition 1.2.19 (the K-k-Schur function via the K-k-Pieri rule). K-k-Schur functions {g
(k)
w }w2S̃�

k+1
are

the family of symmetric functions such that g(k)e = 1 and

hr · g
(k)
w =

X

(A,v)

(�1)r+l(w)�l(v)
g
(k)
v ,

for w 2 S̃
�
k+1

and 0  r  k, summed over v 2 S̃
�
k+1

and A ( I such that (v/w,A) is an a�ne set-valued
strip of size r.

It is known that {g(k)w }w2S̃�
k+1

forms a basis of ⇤(k). Besides, though g
(k)
w is an inhomogeneous symmetric

function in general, the degree of g(k)w is l(w) and its homogeneous part of highest degree is equal to s
(k)
w . In

this chapter, for f =
P

w cwg
(k)
w 2 ⇤(k) we write [g(k)v ](f) = cv.

1.3 Properties of the strong and weak orderings on Coxeter groups

In this section we let (W,S) be an arbitrary Coxeter group.
Recall that for a poset (P,) and a subset A ⇢ P , if the set {z 2 P | z  y for any y 2 A} has the

maximum element z0 then z0 is called the meet of A and is denoted by
V

A, and if {z 2 P | z � y for any y 2

A} has the minimum element then it is called the join of A and denoted by
W
A. When A = {x, y}, its meet

and join are simply called the meet and join of x and y, and denoted by x ^ y and x _ y. A poset for which
any nonempty subset has the meet is called a complete meet-semilattice. A poset for which any two elements
have the meet and join is called a lattice. A subset of a complete meet-semilattice has the join if it has a
common upper bound, since the join is the meet of all its common upper bounds then.

In this chapter we denote the meet of x, y 2W under the strong (resp. left, right) order by x^y (resp.x^Ly,
x ^R y) and call it the strong meet (resp. left meet, right meet) of {x, y}. We define x _ y, x _L y and x _R y

similarly.

1.3.1 Lattice property of the weak order

It is known that the weak order on any Coxeter group or its parabolic quotient forms complete meet-
semilattices (see, for example, [BB05, Theorem 3.2.1]). The join of two elements in them, however, does not
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always exist, but it is known that the quotient of an a�ne Weyl group by its corresponding finite Weyl group
forms a lattice under the weak order [Wau99]. We here include another proof for the type a�ne A case for
the sake of completeness.

Lemma 1.3.1. For any v, w 2 S̃
�
k+1

, their join v _L w under the left weak order exists.

Proof. Since S̃�
k+1

is a complete meet-semilattice, it remains to show the existence of a common upper bound

of v and w under the left order. Let s
(k)
v and s

(k)
w denote the k-Schur functions corresponding to v and w,

respectively. In the expansion of their product in the k-Schur function basis s
(k)
v s

(k)
w =

P
u c

u
vws

(k)
u , every u

appearing in the right-hand side satisfies w L u because s
(k)
v can be written as a polynomial in h1, . . . , hk

and by the Pieri rule his
(k)
x is in general a linear combination of s(k)y with y �L x. By the same reason we

have v L u.

We proved the following corollary in the proof of the lemma above:

Corollary 1.3.2. For any v, w 2 S̃
�
k+1

, every u appearing with a nonzero coe�cient in the right-hand side

of s
(k)
v s

(k)
w =

P
u c

u
vws

(k)
u satisfies u �L v _L w.

With the K-k-Pieri rule instead of the k-Pieri in hand, the same holds for the K-k-Schur functions:

Corollary 1.3.3. For any v, w 2 S̃
�
k+1

, every u appearing with a nonzero coe�cient in the right-hand side

of g
(k)
v g

(k)
w =

P
u d

u
vwg

(k)
u satisfies u �L v _L w.

1.3.2 Properties of Demazure and anti-Demazure actions

Lemma 1.3.4. Let x 2W and �x, x be the Demazure and anti-Demazure actions defined in Section 1.2.1.3.

(1) �x(w) �L w and  x(w) L w for any w 2W .

(2) �x and  x are order-preserving under . Namely, if v  w then �x(v)  �x(w) and  x(v)   x(w).

(3) For any y 2 W , the map (x 7! �x(y)) is order-preserving and the map (x 7!  x(y)) is order-reversing

under .

(4) �x x�1(y) � y and  x�1�x(y)  y for any y 2W .

(5) �x preserves strong meets and  x preserves strong joins. Namely, for v, w 2W ,

(a) if v ^ w exists then �x(v) ^ �x(w) exists and equals to �x(v ^ w).

(b) if v _ w exists then  x(v) _  x(w) exists and equals to  x(v _ w).

Remark 1.3.5. This lemma also works for �Rx and  R
x instead of �x and  x.

Remark 1.3.6. For the statements on �x, (1) of this lemma is done in [BM15, Proposition 3.1(d)]; (2) and
(3) in [BM15, Proposition 3.1(c)].

Proof. (1) is clear from the definition of �s and  s. (2) is from the Lifting Property. (3) is clear from (1)
and the Subword Property. For (4), the case x = s 2 S is clear from the definition of �s, s, and the general
case follows from this and (2).

For (5)(a), it su�ces to prove it when x = s 2 S. Write simply � = �s and  =  s. Assume v ^w exists.
We have �(v ^ w)  �(v),�(w) by (2). To show that �(v ^ w) is the meet of �(v) and �(w), take arbitrary
u with u  �(v),�(w). Then  (u)   (v), (w) from the Lifting Property, and hence  (u)  v, w, which
implies  (u)  v ^ w. Applying �, we have �(u) = �( (u))  �(v ^ w), and hence u  �(v ^ w). (5)(b) is
essentially the same as (5)(a).
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Remark 1.3.7. The map �x (resp. x) does not preserve strong joins (resp.meets) in general. For example,
letting W = S4, we have s212 ^ s232 = s2 but  2(s212) ^  2(s232) = s12 ^ s32 = s2 6=  2(s2), where we write
sij... instead of sisj · · · . Mapping everything above via x 7! xw0 where w0 is the longest element of W , we
obtain a counterexample for �x preserving joins.

Corollary 1.3.8. Let u, v, x, y 2 W with huihxi and hvihyi reduced and ux = vy (or namely, u L ux =
vy �L v). Then u � v () x  y.

Proof. By Lemma 1.3.4(3) we have u � v () u
�1
� v

�1 =) (x =) u�1(ux)   v�1(vy) (= y). The
other direction is similar.

1.3.3 Half-strong, half-weak meets and joins

Analogous to the meets and joins under the weak order, we show the existence of the minimum element
(under ) of the set

{z 2W | x  z �L y},

and the maximum of

{z 2W | x �L z  y}.

Remark 1.3.9. The existence of such elements may have been known, but we have not been able to find an
appropriate reference. M. Shimozono explicitly used part (1) of the following key proposition, in his Sage
implementation to compute the Deodhar lift [Deo87]. Upon our request for information, he sent us a proof
of (1) [Shi], which we include here since we find it better than our original proof. We thank him for his
permission for us to use it in our paper.

Proposition 1.3.10. Let x, y 2W .

(1) The set {u 2W | x  �u(y)} has the minimum element  
R
y�1(x) under the strong order.

(2) The set {u 2W |  u�1(x)  y} has the minimum element  
R
y�1(x) under the strong order.

Proof. (1): We prove it by induction on l(y). The base case l(y) = 0 being clear, we assume l(y) > 0. Take

s 2 S such that y > ys. Let x
0 =  

R
s (x) (= min(x, xs)) and y

0 = ys. Since y = y
0
⇤ s, for any u we see

u ⇤ y = u ⇤ y
0
⇤ s, whence by the Lifting Property x  u ⇤ y () x

0
 u ⇤ y

0. Hence D(x, y) = D(x0
, y

0) where

D(x, y) = {u 2W | x  �u(y) (= u ⇤ y)}.

By the induction hypothesis it follows that D(x, y) = D(x0
, y

0) has the minimum element  R
y0�1(x0), which

equals to  R
y�1(x).

(2): Let E(x, y) = {u 2 W |  u�1(x)  y}. It su�ces to show D(x, y) = E(x, y). By Lemma 1.3.4(2),(4) we
have x  �u(y) =)  u�1(x)   u�1�u(y)  y and  u�1(x)  y =) x  �u u�1(x)  �u(y).

Proposition 1.3.11. Let x, y 2W .

(1) The set {z 2W | x  z �L y} has the minimum element  
R
y�1(x)y under the strong order.

(2) The set {z 2W | x �L z  y} has the maximum element
�
 
R
y�1(x)

��1

x under the strong order.

Proof. (1): By (1.2.4), we have D(x, y) � {u | x  uy �L y} ' {z | x  z �L y}; u 7! uy, where
the isomorphism is under . The minimum element u of D(x, y) satisfies u ⇤ y = uy i.e.uy �L y, since
otherwise (u⇤y)y�1 is a smaller element of D(x, y) by Lemma 1.2.2. Hence by Proposition 1.3.10(1) we have
 
R
y�1(x)y = min{z | x  z �L y}.

(2): By Corollary 1.3.8 we have E(x, y) � {u | x �L u
�1

x  y} '
anti

{z | x �L z  y}; u 7! u
�1

x,

where the anti-isomorphism is under . For a similar reason to (1) we have max{z | x �L z  y} =
(min E(x, y))�1

x = ( R
y�1(x))�1

x.
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From the proposition above, we define

xS_L y = yL_S x := min


{z 2W | x  z �L y} =  
R
y�1(x)y,

xL^S y = yS^L x := max


{z 2W | x �L z  y} =
�
 
R
y�1(x)

��1

x.

We define xS_R y and xS^R y similarly.

1.3.4 Flipping lower weak intervals

For any z 2W , define the map
�z : [e, z]L �! [e, z]R;x 7! zx

�1

and its inverse
 z : [e, z]R �! [e, z]L; y 7! y

�1
z.

Proposition 1.3.12 below demonstrates that these maps behave well along with the strong order on W

and its meet/join operations.

Proposition 1.3.12. Let z 2W .

(1) �z and  z are anti-isomorphisms under the strong order.

(2) l(�z(x)) = l(z)� l(x) for any x 2 [e, z]L and l( z(y)) = l(z)� l(y) for any y 2 [e, z]R.

(3) �z and  z send strong meets to strong joins. Namely,

(a) for x, y 2 [e, z]L such that x ^ y exists and x ^ y 2 [e, z]L, we have �z(x ^ y) = �z(x) _ �z(y).

(b) for x, y 2 [e, z]R such that x ^ y exists and x ^ y 2 [e, z]R, we have  z(x ^ y) =  z(x) _ z(y).

(Note that the meets and joins are not taken in [e, z]L or [e, z]R but in W .)

Proof. (1) is done in Corollary 1.3.8, and (2) is obvious.
For (3), we only prove (a) since (b) is shown similarly. Let x, y, x ^ y 2 [e, z]L. From (1) it follows that

�z(x ^ y) � �z(x),�z(y). To show the minimality of �z(x ^ y), let us take arbitrary w 2 W such that
w � �z(x),�z(y). From Proposition 1.3.11, we can let w0 = zR^S w. Since �z(x),�z(y) 2 [e, z]R \ [e, w], we
have �z(x),�z(y)  w

0. Since w0
R z, applying  z (= ��1

z ), we have x, y �  z(w0). Hence x^y �  z(w0).
Applying �z, we have �z(x ^ y)  w

0, and hence �z(x ^ y)  w. Therefore �z(x ^ y) is the join of
{�z(x),�z(y)}.

Remark 1.3.13. It seems to be true that �z and  z send strong joins to strong meets. Its proof would require
that there be the strong-minimum element of {z | x  z L y} and the strong-maximum of {z | x L z  y}

for any x, y 2W , analogous to Proposition 1.3.11.

1.3.5 Chain Property for lower weak intervals

In this section we prove the Chain Property for the lower weak intervals [e, u]L and [e, u]R for an arbitrary
Coxeter group W and its element u 2 W . This can be regarded as a dual statement to the Chain Property
for certain generalized quotients, since [e, u]L = {x | x L u} whereas the poset W/{u}, formed with the
strong order, is isomorphic to {x | x �L u} with the same order. Besides it is shown in [BW88, Corollary 4.5]
that the class of right generalized quotients and lower left intervals coincide for finite W , so that the validity
of the claim is known for finite Coxeter groups. When W is infinite, however, these do not coincide, as we
give a counterexample below. Beforehand we recall [BW88, Theorem 4.10]: for any Coxeter group W , the
left generalized quotients and the right generalized quotients are in bijection by U 7! W/U and V \W  [ V ,
and a subset U ⇢W is a right generalized quotient if and only if U = W/(U\W ).
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0 1 k. . .

0

RD(z�1
w0)

s0

0 k
. . .1 k 0

RD(z�1
w0s0)

justify

Figure 1.6: Inserting s0 into RD(z�1
w0) and justifying it to obtain a k-code for z�1

w0s0

Example 1.3.14. Let W = S̃k+1 = hs0, s1, . . . , ski. Let w0 be the longest element of Sk+1 = hs1, . . . , ski.
From the following claim it follows that any right generalized quotient of S̃k+1 containing w0 also contains
s0w0, so that Sk+1 = [e, w0]L is not a right generalized quotient of S̃k+1.

Claim. For any z 2 S̃k+1, the product hw0ihzi is reduced if and only if hs0w0ihzi is reduced.

Proof of Claim. The “if” direction is clear. Toward the “only if” direction, assume hw0ihzi is reduced, that
is, hz�1

ihw0i is reduced. Since z
�1

w0 �L w0, we have RD(z�1
w0) � RD(w0). Hence, since the first row of

RD(w0) is {1, . . . , k} and the rows of a k-code are proper subsets of {0, 1, . . . , k}, the first row of RD(z�1
w0)

is also {1, . . . , k}. Thus, inserting s0 into RD(z�1
w0) from the bottom (see Figure 1.6) and justifying it to

the bottom with maximizing moves, we successfully obtain RD(z�1
w0s0), the i-th column of which is

• the k-th column of RD(z�1
w0) with an s0 added, when i = 0,

• the i-th column of RD(z�1
w0) when i = 1, . . . , k � 1,

• empty when i = k.

In particular hz�1
w0ihs0i is reduced. Since hz�1

ihw0i is also reduced, we have hz�1
ihw0ihs0i is reduced, and

hence so is hs0ihw0ihzi, as desired.

The proof of the following proposition is parallel to that of [BW88, Theorem 3.4]. Beforehand we recall
that, for x, y 2 W with x � y and any fixed reduced expression x = s1 . . . sm, there exists 1  j1 < j2 <

· · · < jl  m such that x = y
(0)

·> y
(1)

·> · · · ·> y
(l) = y where

y
(a) = s1 . . .csj1 . . . csja . . . sm.

See, for example, [BW88, Section 3] or [BW82] for the details.

Proposition 1.3.15. Let u, x, y 2 W with xu, yu L u and xu  yu. Note that xu  yu () x
�1
�

y
�1
() x � y for xu, yu L u. Fix a reduced expression for x = s1 . . . sm and take y

(0)
, . . . , y

(l)
as in the

paragraph immediately above. Then y
(a)

u L u for any a.

Proof. Suppose to the contrary that there exists a such that y(a)u 6L u. Since y
(l)
u = yu L u, we can take

such a that y(a)u 6L u and y
(a+1)

u L u.
Since xu L u, we have sja+1 . . . smu L u. Hence there exists p < ja such that

spzu 6L u and zu L u, (1.3.1)

where we put
z = sp+1 . . . csja . . . sja+1 . . . sm,

where there may be more indices omitted between sp+1 and csja (including sp+1), according to the omissions
in y

(a) = s1 . . .csj1 . . . csja . . . sm. Since y
(a+1)

u L u, we have

spbzu L u and bzu L u, (1.3.2)
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where we put
bz = sp+1 . . . csja . . . [sja+1 . . . sm.

We have zu <· spzu by (1.3.1) and bzu ·> spbzu by (1.3.2). Besides, since y
(a)

·> y
(a+1) it follows z ·> bz,

and thereby zu <· bzu. Hence we have spzu = bzu by the Lifting Property and length arguments. Therefore
spz = bz <· z, which contradicts the fact that spz is a consecutive subword of a reduced expression for y(a).

As a corollary, we have the Chain Property for weak lower intervals:

Theorem 1.3.16. For any u 2 W , the interval [e, u]L (resp. [e, u]R) under the left (resp. right) weak order

has the Chain Property.

Proof. The statement for left lower intervals follows from Proposition 1.3.15 and that {x 2W | xu L u} =
[e, u�1]L for u 2 W , which follows from xu L u () x

�1
R u () x L u

�1. The statement for right
intervals is proved by a parallel argument.

1.4 Properties of the weak strips

Hereafter we restrict our attention to S̃k+1 rather than general Coxeter groups and let W = S̃k+1 and
W

� = S̃
�
k+1

. In Section 1.2.2 we put I = Zk+1 = {0, 1, . . . , k} and let dA denote the cyclically decreasing
element corresponding to A ( I.

In this section we prove some properties on weak strips. First we define for any u 2W ,

Zu,+ = {v 2W | v = dAu �L u for 9A ( I},

Z
0
u,+ = {A ( I | dAu �L u} = {A ( I | dAu 2 Zu,+},

Zu,� = {v 2W | v = d
�1

A u L u for 9A ( I},

Z
0
u,� = {A ( I | d

�1

A u L u} = {A ( I | d
�1

A u 2 Zu,�}.

It is an immediate observation from the Subword Property that

• The map (Z 0
u,+,⇢) �! (Zu,+,) ; A 7! dAu is an isomorphism of posets.

• The map (Z 0
u,�,⇢) �! (Zu,�,) ; A 7! d

�1

A u is an anti-isomorphism of posets.

Since if u 2W
� and v L u then v 2W

�, for u 2W
� we have

Zu,� = {v | u/v is a weak strip}.

On the other hand, the set Zu,+ does not coincide with the set of v such that v/u is a weak strip. More
precisely, for u 2W

� we have by definition

v/u is a weak strip () v 2 Zu,+ and v 2W
�
.

Recalling that v 2W
�
() vw

J
0
�L w

J
0
where J = {1, . . . , k} and w

J
0
is the longest element of WJ = Sk+1,

by Lemma 1.2.1 we have

v/u is a weak strip () vw
J
0
2 ZuwJ

0 ,+

() v = dAu with A 2 Z
0
uwJ

0 ,+.

In other words, defining

Z
�
u,+ = {v | v/u is a weak strip},

Z
0�
u,+ = {A ( I | dAu/u is a weak strip} = {A ( I | dAu 2 Z

�
u,+},

we have

Z
�
u,+ ' ZuwJ

0 ,+ ; v 7! vw
J
0
,

Z
0�
u,+ = Z

0
uwJ

0 ,+.
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3 12
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Figure 1.7: The posets Z�
u,+ (' ZuwJ

0 ,+) and Z
0�
u,+ (= Z

0
uwJ

0 ,+
) for u = w� where k = 3 and � = (3, 2, 1) 2 P3

(and w
J
0
is the longest element of S4). Left weak covers are represented as solid lines, and strong covers are

solid or dotted lines. A solid edge between v and w is labelled with i if v = siw.

Example 1.4.1. Figure 1.7 illustrates the same example as Example 1.2.10.

From the example above, we would expect these properties:

(1) Z
0
u,± is closed under intersection and union.

(2) Z
0
u,± has the maximum element.

(3) Zu,± and Z
0
u,± have the Chain Property. (See Section 1.4.3 for the details.)

(1), (2), (3) are proved in Section 1.4.1, 1.4.2, 1.4.3, respectively.

1.4.1 Intersection and union

In this section we prove the following proposition as the compilation of Lemma 1.4.5, 1.4.9 and 1.4.10.

Proposition 1.4.2. For u 2W , we have

(1) A,B 2 Z
0
u,± and A [B 6= I =) A [B 2 Z

0
u,±.

(2) A,B 2 Z
0
u,± =) A \B 2 Z

0
u,±.

(3) A,B 2 Z
0
u,+ =) dA\Bu = (dAu) ^ (dBu).

(4) A,B 2 Z
0
u,� =) d

�1

A\Bu = (d�1

A u) _ (d�1

B u).

In this section we say A,B ⇢ I are strongly disjoint if for any i 2 A and j 2 B it holds that i� j 6⌘ 0,±1,
and x, y 2 W are strongly commutative if any Coxeter generator si appearing in a reduced expression of x
and any sj appearing in that of y satisfy i� j 6⌘ 0,±1. The next lemma is straightforward.

Lemma 1.4.3. Let A,B ( I and x, y 2W .

(1) If A,B are strongly disjoint, then dA, dB are strongly commutative.

(2) For the decomposition A = A1 t · · ·tAm into connected components, A1, . . . , Am are pairwise strongly

disjoint and dA1 , . . . , dAm are pairwise strongly commutative.

(3) For x
0
 x and y

0
 y, if x, y are strongly commutative then so are x

0
, y

0
.
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(4) If x, y are strongly commutative, then x, y are commutative and l(xy) = l(x) + l(y).

Lemma 1.4.4. Let x, y, z 2W with x, y strongly commutative. Then

(1) z L xyz () z L xz, yz.

(2) z �L xyz () z �L xz, yz.

Proof. We only prove (1) since (2) is shown similarly.
The “only if” direction immediately follows by the definition of the weak order and commutativity of x, y.

We prove the “if” direction by induction on l(x) + l(y). It is clear when l(x) = 0 or l(y) = 0. In particular
the case l(x) + l(y)  1 is done and we may assume l(x) + l(y) � 2 and l(x), l(y) > 0.
Step A: the case l(x) + l(y) = 2, i.e. l(x) = l(y) = 1.

We can write x = si and y = sj with si 6= sj , sisj = sjsi from the strong commutativity. We have
siz, sjz �L z by the assumption. Hence z 2 W/W{i,j}, where W{i,j} = hsi, sji = {e, si, sj , sisj}. Therefore
sisjz �L z.
Step B: the case l(x) + l(y) > 2.

From the commutativity of x, y we may assume l(y) � l(x); in particular l(y) > 1. Take a reduced
expression of y = si1 . . . sil and put y0 = si1 . . . sil�1 , z

0 = silz. Since z L yz and sil L y, we have z L z
0.

Now we can obtain z
0
L xy

0
z
0, which implies z L z

0
L xy

0
z
0 = xyz as desired, by applying the induction

hypothesis for (x, y, z) := (x, y0, z0), having its assumption satisfied as follows:

• x, y
0 are strongly commutative.

Proof. From Lemma 1.4.3 (3).

• z
0
L y

0
z
0.

Proof. Since z L yz and sil L y, by Lemma 1.2.1(1) we have z
0 = silz L yz = y

0
z
0.

• z
0
L xz

0.
Proof. Since l(x) + l(y) > l(x) + l(sil), we can obtain z L xz

0 by applying the induction hypothesis
for (x, y, z) := (x, sil , z), having that its assumption described below is clearly satisfied:

– x and sil are strongly commutative.

– z L xz.

– z L silz.

Besides sil L xsil , hence we have z
0
L xz

0 by Lemma 1.2.1(1).

Lemma 1.4.5. Let w 2W and A,B ( I with w L dAw, dBw.

(1) w L dA\Bw.

(2) The element dA\Bw is the strong meet of dAw and dBw.

Remark 1.4.6. The same statement with all dX replaced with uX is proved similarly.

Remark 1.4.7. It does not generally hold that if w L xw, yw and x ^ y exists then w L (x ^ y)w; a
counterexample is W = S4, x = s21, y = s23, w = s2.

Proof. (1): Within this proof we say x 2W satisfies (⇤) if w L xw.
Decomposing A,B into connected components A = A1 t · · · t Am and B = B1 t · · · t Bn, we have

A \B =
F

i,j(Ai \Bj). Each nonempty Ai \Bj has at most two connected components, each component C
of which satisfies dAi = xdC for some x 2W or dBj = ydC for some y 2W as easily seen. Having that both
dA (�L dAi) and dB (�L dBj ) satisfy (⇤) and that lower bounds in L inherit (⇤), we see each dC satisfies
(⇤). Besides (Ai \ Bj) \ (Ai0 \ Bj0) = (Ai \ Ai0) \ (Bj \ Bj0) is empty unless (i, j) = (i0, j0), we thus have
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A\B decomposes as A\B = C1 t · · ·tCl into connected components, where each dCi satisfies (⇤). Now it
follows from Lemma 1.4.4 (1) that dA\B = dC1 . . . dCl satisfies (⇤), as desired.
(2): By the Subword Property we have dA\B = dA ^ dB . From the assumption and (1), we have �Rw(dX) =
dXw for X = A,B,A \B. Hence by Lemma 1.3.4 (5) we have dA\Bw = dAw ^ dBw.

Corollary 1.4.8. Let � 2 Pk, and 
(1)

,
(2)

be weak strips over �. Write 
(i) = dAi� for each i with Ai ( I.

Then dA1\A2� is a weak strip over � and is the meet of 
(1)

,
(2)

in the poset Pk with the strong order:


(1)
^ 

(2) = dA1\A2�.

Proof. Let w� 2W
� be the a�ne Grassmannian permutation corresponding to �, and w0 the longest element

of Sk+1. By Lemma 1.2.1, the condition dA�/� is a weak strip is equivalent to dAw�w0 �L w�w0. From
this and Lemma 1.4.5(1) we see dA1\A2�/� is a weak strip. From Lemma 1.4.5(2) we have dA1\A2w� =
(dA1w�) ^ (dA2w�) in W . Since W

�
⇢W is a subposet, this is also the meet in W

�
' Pk.

Lemma 1.4.9. Let w 2W and A,B ( I with d
�1

A w, d
�1

B w L w.

(1) d
�1

A\Bw L w.

(2) The element d
�1

A\Bw is the strong join of d
�1

A w and d
�1

B w.

Proof. (1) is proved parallelly to Lemma 1.4.5 (1), making use of Lemma 1.4.4(2) instead of Lemma 1.4.4(1).
Next we show (2). We have d

�1

A w, d
�1

B w, d
�1

A\Bw 2 [e, w]L by (1). The map �w in Lemma 1.3.12 sends
d
�1

A w, d
�1

B w, d
�1

A\Bw to dA, dB , dA\B respectively. Since dA\B = dA^dB , sending them back via  w, we have
d
�1

A\Bw = (d�1

A w) _ (d�1

B w) by Lemma 1.3.12(3).

Lemma 1.4.10. Let u 2W and A,B ( I with A [B 6= I.

(1) If dAu, dBu �L u, then dA[Bu �L u.

(2) If d
�1

A u, d
�1

B u L u, then d
�1

A[Bu L u.

Proof. We only give a proof of (1) since that of (2) is quite similar.
Assume dAu, dBu �L u. Take the decomposition A = A1t · · ·tAm and B = B1t · · ·tBn into connected

components. Since dAi L dA, we have dAiu �L u for any i, and similarly dBju �L u for any j. Since
A[B = (. . . (A[B1)[ . . . )[Bn, we only need to prove it when B is connected. Assume B is connected. It is
also easy to see, from Lemma 1.4.3 and Lemma 1.4.4(1), that it su�ces to prove it when A, B and A[B are
connected. We therefore assume A, B and A [ B are connected. The case A ⇢ B or B ⇢ A being clear, we
assume A 6⇢ B and B 6⇢ A; namely we let A = [i, j] and B = [p, q] with p  i  q + 1  j + 1 without loss of
generality, where we employ an ordering r+1 < · · · < k < 0 < · · · < r� 1 of I \ {r} with an arbitrarily fixed
element r 2 I \ (A [ B). Since dB = sq . . . sp �L si�1 . . . sp = dB\A and dBu �L u, we have dB\Au �L u.
Hence we may replace B by B \A (= [p, i� 1]).

Let B0 = B \ {i� 1} = [p, i� 2] and u
0 = dB0u. Since dB0 L dB and dBu �L u, it follows that u0

�L u.
Since si�1u

0 = dBu �L u and dAu
0 = dAdB0u �L u, the latter of which is from Lemma 1.4.4 (1), it easily

follows that si�1u
0
�L u

0 and dAu
0
�L u

0 from Lemma 1.2.1.
Toward a contradiction, suppose dA[Bu 6�L u. Then we have dAsi�1u

0
6�L u

0 since dA[Bu = dAsi�1u
0

and u L u
0. Since si�1u

0
�L u

0, there exists a 2 [i, j] such that xsi�1u
0
�L u

0 and saxsi�1u
0
6�L u

0, which
implies saxsi�1u

0
<· xsi�1u

0, where we write x = sa�1sa�2 . . . si+1si. On the other hand, since dAu
0
�L u

0

we have saxu
0
�L u

0 and xu
0
�L u

0. Besides we have xsi�1u
0
·> xu

0 from the Subword Property. Hence the
Lifting Property implies that xu0

 saxsi�1u
0, which is actually an equality since both sides have the same

length. Therefore we have (sa�1sa�2 . . . si+1si =) x = saxsi�1 (= sasa�1 . . . sisi�1), which is absurd.

Remark 1.4.11. Unlike the “cap” case, it does not always hold that dA[Bu = (dAu) _ (dBu) in (1), or
d
�1

A[Bu = (d�1

A u)^ (d�1

B u) in (2). A counterexample for (1) is given by W = S3, u = e, A = {1} and B = {2}.
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Figure 1.8: An example where k = 3, � = (3, 2, 1) and c(�) = (5, 2, 1). The dotted shape on the left figure
represents c((k) [ �), and the solid one does c(�). In this case w(k)[� = s3s2s1w� = d{1,2,3}w� and therefore
i
+

w�
= 0.

1.4.2 Non-appearing indices

Proposition 1.4.12. (1) For any w 2 W , there exists i
�
w 2 I such that i

�
w /2 A for any A ( I with

d
�1

A w L w.

(2) For any w 2W
�
, there exists i

+

w 2 I such that i
+

w /2 A for any A ( I with dAw �L w and dAw 2W
�
.

Proof. (1): For any A ( I, we have

d
�1

A w L w () dA R w

() uA L w
�1

=) RI(uA) ⇢ RI(w�1),

and the last condition is equivalent to A being included by the first row of RI(w�1). Hence we can take i
�
w

from the complement of the first row of RI(w�1).
(2): By Lemma 1.3.1 we may take z :=

W
L{dAw | A ( I s.t. dAw �L w, dAw 2 W

�
}, the left join of all

weak strips over w. Take any A ( I such that dAw �L w and dAw 2 W
�. Since w, dAw L z, we have

zw
�1
�R z(dAw)�1 = zw

�1
uA, which is equivalent to wz

�1
�L dAwz

�1. Hence, similarly to the proof of
(1) we have A is a subset of the first row of RD((wz�1)�1) = RD(zw�1), which is a proper subset of I and
independent of A, and therefore we can take i

+

w from its complement.

Remark 1.4.13. The index i
+

w in (2) above is in fact uniquely determined as follows: a bounded partition
� 2 Pk, corresponding to a 0-dominant a�ne permutation w� 2 W

�, has the unique weak strip of size k,
namely (k)[ �. Since the corresponding core c((k)[ �) has k more boxes in the first row than c(�) does, the
only possibility for i+w�

is what is determined by the following equivalent descriptions:

• The residue of the rightmost box in the first row of c(�).

• The negative of the residue written in the leftmost box in the last row of RI(w�) = �
!k .

• m � 1, where w� = uAm . . . uA1 is the maximal increasing decomposition for w�. (Note that Am =
{i, i+ 1, . . . ,m� 2,m� 1} for some i.)

Remark 1.4.14. We cannot drop the assumption on 0-dominantness of dAw in (2) of the proposition. For
example, let k = 3 and w = s3s0. Then w = u{3,0} is the maximal increasing decomposition and hence i

+

w

should be 0, but d{0}w = s0s3s0 �L w.

Corollary 1.4.15. Let u 2W .

(1) Z
0
u,+ has the maximum element under ⇢. Hence, Zu,+ has the maximum element under .

(2) Z
0
u,� has the maximum element under ⇢. Hence, Zu,� has the minimum element under .

Proof. By Proposition 1.4.2 (1) and Proposition 1.4.12.
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1.4.3 Chain Property

Recall that an order ideal of a poset P is a subset X ⇢ P such that if x 2 X and y  x then y 2 X, and an
order filter of P is a subset X ⇢ P such that if x 2 X and y � x then y 2 X.

Proposition 1.4.16. The sets Zu,+ and Zu,� have the Chain Property. Namely, for any x, y 2 Zu,± such

that x  y, there exists a sequence x = z
(0)

<· z
(1)

<· . . . <· z
(l) = y such that z

(i)
2 Zu,± for any i.

Proof. First we note a few immediate observations:

• For a poset P and a subposet Q ⇢ P , if A ⇢ P is an order ideal then A \Q is an order ideal of Q.

• If a subset X of a Coxeter group W has the Chain Property and Y ⇢ X is an order ideal, then Y also
has the Chain Property.

Let D = {dA | A ( I}. Since D ⇢ W is an order ideal, the set {dA | dA R u} = D \ [e, u]R is an order
ideal of [e, u]R and hence has the Chain Property since so does [e, u]R as proved in Theorem 1.3.16. Hence
Zu,� also has the Chain Property since it is the image of {dA | dA R u} under the the anti-isomorphism
 u : [e, u]R �! [e, u]L;x 7! x

�1
u.

Similarly, the set {dA | dAu �L u} = D \ (W/{u}) has the Chain Property since it is an order ideal of
W/{u}, which has the Chain Property [BW88, Corollary 3.5]. Hence, since Zu,+ is the image of {dA | dAu �L

u} under the isomorphism (·u) : W/{u} �! [u,1)L, we conclude that Zu,+ has the Chain Property.

From the isomorphism (Zu,+,) ' (Z 0
u,+,⇢) and the anti-isomorphism (Zu,�,) '

anti

(Z 0
u,�,⇢), we have

the Chain Property for Z 0
u,±:

Corollary 1.4.17. The sets Z
0
u,+ and Z

0
u,� have the Chain Property. Namely, for any A,B 2 Z

0
u,± with

A ⇢ B, there exists a sequence A = C
(0)
⇢· C

(1)
⇢· . . . ⇢· C

(l) = B such that C
(i)
2 Z

0
u,± for any i.

1.5 Proof of the Pieri rule for eg(k)
�

This section is devoted for the proof of Theorem 1.1.3 and 1.1.4.

1.5.1 Outline

Recall the K-k-Pieri rule (Definition 1.2.19): for v 2W
� and 0  i  k,

g
(k)
v hi =

X

A⇢I,|A|=i
dA⇤v2W�

(�1)i�(l(dA⇤v)�l(v))
g
(k)
dA⇤v. (1.5.1)

Let w = w� 2 W
� be the a�ne Grassmannian element corresponding to �. Summing (1.5.1) up over

v 2W
�
\ [e, w] and i 2 {0, 1, . . . , r}, we have

eg(k)w
ehr =

X

vw
v2W�

X

A⇢I,|A|r
dA⇤v2W�

(�1)|A|�(l(dA⇤v)�l(v))
g
(k)
dA⇤v,

and its coe�cient of g(k)u (for u 2W
�) is

[g(k)u ](eg(k)w
ehr) =

X

vw
v2W�

X

A⇢I,|A|r
u=dA⇤v

(�1)|A|�(l(u)�l(v))
. (1.5.2)

We shall illustrate, in the example below, that if the summation above is not empty then there are exactly
one larger number of pairs (v,A) with (�1)|A|�(l(u)�l(v)) = +1 than those with (�1)|A|�(l(u)�l(v)) = �1, and
consequently the value of the summation in (1.5.2) is equal to 1.
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? e

s0

s10 s30

s210 s310 s230

s3210 s0310 s2310 s1230

0

1 3

2 3 1 2

3 0 2 1

Figure 1.9: The poset of 4-cores (and corresponding elements in S̃
�
4
) up to those of size 4. The left weak

covers are represented by solid lines, and the strong covers are dotted or solid lines. A solid edge labelled
with i corresponds to the left multiplication by si.

Example 1.5.1. Let k = 3 and u = s310 = w� 2 S̃
�
4
where � = (2, 1) 2 P3. Table 1.1 lists the pairs (v,A)

such that dA ⇤ v = u, organized according to the size of A. Apparently there are the same number of pairs
(v,A) with |A| = r

0 and (�1)|A|�(l(u)�l(v)) = +1, and those with |A| = r
0 and (�1)|A|�(l(u)�l(v)) = �1, for

each fixed r
0
> 0. Furthermore, introducing the condition v  w for w = s210, say, we see that the set of the

pairs (v,A) with dA ⇤ v = u and v  w is {(s10, {3}), (s0, {1, 3}), (s10, {1, 3})}, and that the number of such
pairs (v,A) with |A| = r

0 and (�1)|A|�(l(u)�l(v)) = +1 and those with |A| = r
0 and (�1)|A|�(l(u)�l(v)) = �1

coincide whenever r0 6= 1, and di↵er by 1 when r
0 = 1.

(v,A) (�1)|A|�(l(u)�l(v))

|A| = 0 (s310,?) +1
|A| = 1 (s30, {1}) +1

(s310, {1}) �1
(s10, {3}) +1
(s310, {3}) �1

|A| = 2 (s0, {1, 3}) +1
(s10, {1, 3}) �1
(s30, {1, 3}) �1
(s310, {1, 3}) +1

Table 1.1: The list of (v,A) such that dA ⇤ v = u, where u = s310.

According to the observation above, for u 2W
� and A ( I we let

XA,u = {v 2W | dA ⇤ v = u} = {v 2W | �dA(v) = u},

YA,u = XA,u \ [e, w],
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and

X
0
A,u = {B ( I | d

�1

B u 2 XA,u},

Y
0
A,u = {B ( I | d

�1

B u 2 YA,u}.

Note that, for any v 2 XA,u, Lemma 1.3.4(1) implies v L u, and hence it follows from u 2W
� that v 2W

�.
Hence

[g(k)u ](eg(k)w
ehr) =

X

|A|r

X

v2YA,u

(�1)|A|�(l(u)�l(v))
. (1.5.3)

The flow of the proof is as follows:

Step 1. Every element of XA,u has the form d
�1

B u with B ⇢ A, and thereby XA,u is anti-isomorphic to the
subposet X 0

A,u of [?, A] by d
�1

B u 7! B.

Step 2. The poset X 0
A,u ⇢ [?, A] has the minimum element B and is a boolean poset; X 0

A,u = [B,A].

Step 3. The subset YA,u of XA,u being an order ideal, its image Y
0
A,u under XA,u ' X

0
A,u is an order filter of

X
0
A,u. Moreover Y 0

A,u is closed under intersection, reflecting join-closedness of YA,u. Hence Y
0
A,u is also

a boolean poset. Therefore, the value of the summation over v 2 YA,u in (1.5.3) is 0 unless |YA,u| = 1
since its summands cancel out, and 1 if |YA,u| = 1.

Step 4. If u  dBw for some B ( I with |B| = r and dBw �L w, then there uniquely exists A such that
|YA,u| = 1, and hence the value of the right-hand side in (1.5.3) is 1. If there does not exist such B,
then neither does such A, and hence (1.5.3) is 0.

Remark 1.5.2. The set XA,u is a fiber of the Demazure action �dA . In Step 2 (Corollary 1.5.11) this fiber
is shown to be a boolean poset. Meanwhile, for the longest element wJ of a finite parabolic subgroup WJ ,
any fiber of its Demazure action �wJ is a parabolic coset WJx, whence isomorphic to WJ . More generally it
might be interesting to find fibers of the Demazure action �w of an arbitrary element w.

1.5.2 Proof of Theorem 1.1.3 and 1.1.4

We fix u 2W
�.

1.5.2.1 Step 1

We fix A ( I. Since YA,u ⇢ XA,u, the summation over v in (1.5.3) is 0 when XA,u = ?. We hence assume
XA,u 6= ?, since otherwise such A does not contribute to the value of the right-hand side of (1.5.3). Take
arbitrary v 2 XA,u. From Lemma 1.2.2 and the definition of XA,u we have

(1) v, d
�1

A u L u,

(2) d
�1

A u  v.

From Proposition 1.3.12 (1) and (1) above, (2) is equivalent to

(3) uv
�1
 dA.

The Subword Property and (3) imply uv
�1 = dB , or equivalently v = d

�1

B u, for some B ⇢ A. We have
A,B 2 Z

0
u,� from (1).

The argument above is restated as follows (see also Figure 1.10):

Lemma 1.5.3. (1) XA,u 6= ? =) A 2 Z
0
u,�.

(2) XA,u ⇢ [d�1

A u, u].

(3) (X 0
A,u,⇢) and (XA,u,) are anti-isomorphic by B 7! d

�1

B u.
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B 7�! d
�1

B u

2 2

[?, I) � Z
0
u,� '

anti

Zu,� ⇢ [e, u]L

⇢ ⇢ ⇢ ⇢

[?, A] � X
0
A,u '

anti

XA,u ⇢ [e, u]L \ [d�1

A u, u]

⇢ ⇢

Y
0
A,u '

anti

YA,u = XA,u \ [e, w]

Figure 1.10: Relation between Zu,�, Z
0
u,�, XA,u, X

0
A,u, YA,u, Y

0
A,u.

u

1 3 5

01 31 51 35

301 501 351

4501 3501

34501

w

[e, w]

Zu,� \ [e, w]

Figure 1.11: Each vertex labelled with i1 . . . im represents si1 . . . simu 2 Zu,�. Left covers are represented
by solid edges, and strong covers are dotted or solid edges.

(4) X
0
A,u ⇢ [?, A].

(5) X
0
A,u ⇢ Z

0
u,�.

Proof. It remains to show that the mapping B 7! d
�1

B u in (3) is order-reversing, which follows from Propo-
sition 1.3.12 (1) and the Subword Property.

1.5.2.2 Step 2 and 3

Let us start with an example to describe the situation.

Example 1.5.4. Let k = 5, � = (5, 3, 2, 1), µ = (5, 2, 2, 2), u = w� and w = wµ (see Figure 1.11). When
A = {5, 0, 1}2, for example, XA,u = YA,u = {s1u, s01u, s51u, s501u} and X

0
A,u = Y

0
A,u = [{1}, {5, 0, 1}].

Similarly, when A = {3, 5, 1} we see X
0
A,u = [?, {3, 5, 1}] and Y

0
A,u = [{1}, {3, 5, 1}].

Lemma 1.5.5. XA and YA are convex under the strong order. Namely, if v  v
0
 v

00
and v, v

00
2 XA (resp.

YA) then v
0
2 XA (resp. YA).

2In this example we follow the cyclic ordering 3 < 4 < 5 < 0 < 1 on I \ {2}, as we see i�u = 2, i.e. every element of Z0
u,� is a

subset of I \ {2}.
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Proof. It follows from Lemma 1.3.4(2).

Remark 1.5.6. It is not a very immediate consequence of Lemma 1.5.5 that X 0
A,u and Y

0
A,u are convex in the

boolean poset [?, I], yet it is shown to be true in Corollary 1.5.11.

In this section we write {i1, . . . , im}< to denote the set {i1, . . . , im} for which the condition that (i1, . . . , im)
is cyclically increasing is imposed.

Lemma 1.5.7. (1) B,C 2 X
0
A,u =) B \ C 2 X

0
A,u.

(2) B,C 2 Y
0
A,u =) B \ C 2 Y

0
A,u.

Proof. We prove (1) by induction on |A|. The base case A = ? is clear. Assume |A| = m > 0. Write
A = {i1, . . . , im}<. We need to show �dA(d

�1

B\Cu) = u if �dA(d
�1

B u) = u and �dA(d
�1

B u) = u for B,C ⇢ A.
Note that B \C 2 Z

0
u,� by Lemma 1.5.3(5). Let A0 = A \ {i1}, B

0 = B \ {i1}, C 0 = C \ {i1}, B00 = B [ {i1}

and C
00 = C [ {i1}. Note that �dA = �im . . .�i1 = �dA0�i1 .

Claim 1. (a) �i1(d
�1

B u) = d
�1

B0 u and �i1(d
�1

C u) = d
�1

C0 u. (b) B00
, C

00
2 Z

0
u,�.

Proof of Claim 1. We only give a proof of the statement for B since that for C is the same.
(Case 1) When i1 2 B, we see d

�1

B00u = d
�1

B u = si1d
�1

B0 u <· d
�1

B0 u, and hence both (a) and (b) are clear.
(Case 2) When i1 /2 B, we claim that si1d

�1

B u < d
�1

B u; suppose, on the contrary, si1d
�1

B u > d
�1

B u. Then we
have si1d

�1

B u 6L u since l(si1d
�1

B u) > l(u)� l(si1d
�1

B ). On the other hand, u = �dA(d
�1

B u) = �dA0 (si1d
�1

B u)
since si1d

�1

B u > d
�1

B u, and therefore si1d
�1

B u L u by Lemma 1.2.2, which is in contradiction.
Therefore si1d

�1

B u < d
�1

B u. Now (a) is clear since d
�1

B u = d
�1

B0 u, and (b) follows from d
�1

B00u = si1d
�1

B u.
Claim 1 is proved.

Claim 2. �i1(d
�1

B\Cu) = d
�1

B0\C0u.

Proof of Claim 2. By Claim 1(b) and Proposition 1.4.2 (2), we have B00
\C

00
2 Z

0
u,�, that is, u �L d

�1

B00\C00u.

Since B00
\C

00 = (B0
\C

0)[{i1}, we have d
�1

B00\C00 = si1d
�1

B0\C0 ·> d
�1

B0\C0 , and hence d�1

B00\C00u = si1d
�1

B0\C0u <·

d
�1

B0\C0u by Lemma 1.2.1. Noting that B \ C = B
0
\ C

0 or B
00
\ C

00, in either case �i1(d
�1

B\Cu) = d
�1

B0\C0u.
Claim 2 is proved.

Claim 3. B
0
\ C

0
2 X

0
A0,u.

Proof of Claim 3. By Claim 1(a) and that B 2 X
0
A,u, we have u = �dA(d

�1

B u) = �dA0�i1(d
�1

B u) = �dA0 (d
�1

B0 u),
and hence B

0
2 X

0
A0,u. Similarly C

0
2 X

0
A0,u. Hence B

0
\ C

0
2 X

0
A0,u by the induction hypothesis. Claim 3

is proved.

Now we have

�dA(d
�1

B\Cu) = �dA0�i1(d
�1

B\Cu)

= �dA0 (d
�1

B0\C0u) (by Claim 2)

= u. (by Claim 3)

Hence (1) is proved. (2) follows from (1) and the definition of join and YA,u.

Lemma 1.5.8. Let A,A
0
2 Z

0
u,� with A

0
⇢ A and |A \A

0
| = 1. Then A

0
2 X

0
A,u.

Proof. Let A = {i1, . . . , im}< and A
0 = {i1, . . . ,

bik, . . . , im}<.
Since u �L d

�1

A0 u = si1 . . .csik . . . simu,

• �ij (sij . . . sik�1sik+1 . . . simu) = sij+1 . . . sik�1sik+1 . . . simu for 1  j < k,

• �ij (sij . . . simu) = sij+1 . . . simu for k < j  m.

Since u �L d
�1

A u = si1 . . . simu,

• �ik(sik+1 . . . simu) = sik+1 . . . simu.
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u

d
�1

B0 u

i1

d
�1

B u

d
�1

C0 u

i1

d
�1

C u

d
�1

B0\C0u

i1

d
�1

B\Cu

(When i1 2 B \ C)

u

d
�1

B u

i1

d
�1

B00u

d
�1

C0 u

i1

d
�1

C u

d
�1

B\Cu

i1

d
�1

B00\C00u

(When i1 /2 B and i1 2 C)

Figure 1.12: For Lemma 1.5.7

u

im

ik+1

ik

ik�1

i1

d
�1

A u

ik�1

i1

d
�1

A0 u

Figure 1.13: For Lemma 1.5.8

Hence

�dA(d
�1

A0 u) = �im . . .�ik+1�ik�ik�1 . . .�i1(si1 . . . sik�1sik+1 . . . simu)

= �im . . .�ik+1�ik(sik+1 . . . simu)

= �im . . .�ik+1(sik+1 . . . simu)

= u.

Lemma 1.5.9. Let A = {i1, . . . , im}< 2 Z
0
u,� and B 2 X

0
A,u. By Lemma 1.5.3(4) we can write B =

{i1, . . . ,
cij1 , . . . ,cijl , . . . , im} for some 1  j1 < · · · < jl  m. Let A

(a) = {ija+1, ija+2, . . . , im�1, im} and

B
(a) = B \A

(a) = {ija+1, . . . ,
dija+1 , . . . ,

cijl , . . . , im} for each a 2 {1, . . . , l}. Then, for each 1  a  l,

sijad
�1

B(a)u < d
�1

B(a)u.

Proof. We carry out induction on l = |A \ B|, with trivial base case l = 0. Assume l > 0. From Lemma
1.5.3(5), we have u �L d

�1

B u = si1 . . . sij1�1d
�1

B(1)u, and hence d
�1

B(1)u �L si1 . . . sij1�1d
�1

B(1)u by Lemma 1.2.1.
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u

im

ija+1

d
�1

B(a)u

ija�1 ija

ij1+1

d
�1

B(1)u

ij1�1 ij1

i1

d
�1

B u

Figure 1.14: For Lemma 1.5.9

Hence

u = �dA(d
�1

B u)

= �d
A(1)

�ij1
�ij1�1 . . .�i1(si1 . . . sij1�1d

�1

B(1)u)

= �d
A(1)

�ij1
(d�1

B(1)u). (1.5.4)

We now claim sij1
d
�1

B(1)u < d
�1

B(1)u; suppose to the contrary that sij1
d
�1

B(1)u > d
�1

B(1)u. Then we have

sij1
d
�1

B(1)u 6L u since l(sij1d
�1

B(1)u) > l(u) � l(sij1d
�1

B(1)). On the other hand, sij1d
�1

B(1)u > d
�1

B(1)u implies

�ij1
(d�1

B(1)u) = sij1
d
�1

B(1)u, which implies �d
A(1)

(sij1d
�1

B(1)u) = u by (1.5.4), which implies sij1
d
�1

B(1)u L u by
Lemma 1.2.2, which is in contradiction.

Therefore sij1
d
�1

B(1)u < d
�1

B(1)u, that is, �ij1 (d
�1

B(1)u) = d
�1

B(1)u, and hence �d
A(1)

(d�1

B(1)u) = u by (1.5.4).

Hence, since |A
(1)

\ B
(1)

| = |A \ B| � 1, we obtain sijad
�1

B(a)u < d
�1

B(a)u for a = 2, . . . , l by the induction

hypothesis applied for (A,B) := (A(1)
, B

(1)).

Lemma 1.5.10. Let A,B 2 Z
0
u,� with B ⇢ A. The following are equivalent:

(1) B 2 X
0
A,u.

(2) B [ {i} 2 Z
0
u,� for any i 2 A \B.

(3) B [ {i} 2 X
0
A,u for any i 2 A \B.

(4) A \ {i} 2 Z
0
u,� for any i 2 A \B.

(5) A \ {i} 2 X
0
A,u for any i 2 A \B.

(6) [B,A] ⇢ Z
0
u,�.
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(7) [B,A] ⇢ X
0
A,u.

Proof. (2) () (4) () (6): (6) =) (4) and (6) =) (2) are obvious. (2) =) (4) =) (6) is from
Lemma 1.4.2(1).
(1) =) (2): We use the notations A(a) and B

(a) in Lemma 1.5.9. From Lemma 1.5.9 we have {ija}[B
(a)
2

Z
0
u,� for any a, and hence B [ {ija} = ({ija} [B

(a)) [B 2 Z
0
u,� by Proposition 1.4.2(1).

(1) =) (7): We already proved (1) =) (2) () (6). Hence, since A,B 2 X
0
A,u and [B,A] ⇢ Z

0
u,�, by

Lemma 1.5.5 we have [B,A] ⇢ X
0
A,u.

(1) () (3) () (5) () (7): It is obvious that (7) =) (3), (5). From Lemma 1.5.7(1) we have (3) =)
(1) and (5) =) (1). Besides we already proved (1) =) (7).
(4) =) (5): By Lemma 1.5.8.

We write
T
X =

T
x2X x for a set X of sets.

Corollary 1.5.11. We have X
0
A,u = [

T
X

0
A,u, A] if X

0
A,u 6= ?, and Y

0
A,u = [

T
Y

0
A,u, A] if Y

0
A,u 6= ?. In

particular, X
0
A,u and Y

0
A,u are isomorphic to boolean posets, and therefore so are XA,u and YA,u.

Proof. Assume Y
0
A,u is nonempty. Then Y

0
A,u has the minimum element C =

T
Y

0
A,u by Lemma 1.5.7(2). By

Lemma 1.5.10(1) =) (7) we have [C,A] ⇢ X
0
A,u. Moreover, since YA,u is an order ideal of XA,u we have

Y
0
A,u is an order filter of X 0

A,u, and therefore [C,A] ⇢ Y
0
A,u. The opposite inclusion Y

0
A,u ⇢ [C,A] is implied

by minimality of C. Therefore Y
0
A,u = [C,A].

It is proved similarly that X 0
A,u = [

T
X

0
A,u, A] whenever X

0
A,u 6= ?.

Therefore we have
X

v2YA,u

(�1)|A|�(l(u)�l(v)) =
X

B2Y 0
A,u

(�1)|A|�(l(u)�l(d�1
B u)) (1.5.5)

=
X

B2Y 0
A,u

(�1)|A|�|B|

=

(
1 if |Y 0

A,u| = 1,

0 otherwise,

=

(
1 if |YA,u| = 1,

0 otherwise.

1.5.2.3 Step 4

Next we discuss which A satisfies the condition |YA,u| = 1.
Since Zu,� ⇢ [e, u]L is an order filter, so is Zu,� \ [e, w] ⇢ [e, u]L \ [e, w]. Hence, if (wS^L u =)

max([e, u]L\[e, w]) /2 Zu,�, then Zu,�\[e, w] = ?, and hence YA,u = ? for any A since YA,u = XA,u\[e, w] ⇢
Zu,� \ [e, w]. We hence assume wS^L u 2 Zu,� and write wS^L u = d

�1

A0
u with A0 2 Z

0
u,�. Write

Z
w
u,� = Zu,� \ [e, w]. Note that wS^L u = maxZw

u,�.

Example 1.5.12. Recall Example 1.5.4. In that case max(Zu,� \ [e, w]) = s1u and hence A0 = {1}. It is
easily checked that X{1},u = {u, s1u} and Y{1},u = {s1u}.

Lemma 1.5.13. |YA,u| = 1 () A = A0.

Proof. ( =) ): Clearly d
�1

A0
u 2 YA0,u. On the contrary, take any v 2 YA0,u. Then v = d

�1

B u for some
B 2 Y

0
A0,u

. Since Y
0
A0,u

⇢ X
0
A0,u

⇢ [?, A0], we have B ⇢ A0. On the other hand, since v 2 YA0,u =

XA0,u \ [e, w] ⇢ Z
w
u,�, we have v  maxZw

u,� = d
�1

A0
u, and hence B � A0. Therefore B = A0.

((= ): If A /2 Z
0
u,�, then |YA,u|  |XA,u| = 0 from Lemma 1.5.3(1). We hence assume A 2 Z

0
u,�. Then

d
�1

A u 2 Zu,�.
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If d�1

A u 6 w, then YA,u = ? since d
�1

A u is the minimum element of XA,u and YA,u = XA,u \ [e, w] is an
order ideal of XA,u.

Hence we assume d�1

A u  w. Since d�1

A0
u = maxZw

u,�, we have d
�1

A u  d
�1

A0
u, and hence A0 ⇢ A. Suppose

A0 ( A. By Corollary 1.4.17 there exists an A
0
2 Z

0
u,� such that A0 ⇢ A

0
⇢ A and |A \A

0
| = 1. By Lemma

1.5.8 and that d�1

A0 u  d
�1

A0
u  w we have d

�1

A0 u 2 YA,u. Hence YA,u � {d
�1

A u, d
�1

A0 u}.

Therefore, substituting (1.5.5) and the result of Lemma 1.5.13 into the right-hand side of (1.5.3) and
noting that |A0| = l(u)� l(wS^L u), we have

[g(k)u ](eg(k)w
ehr) =

(
1 if wS^L u 2 Zu,� and l(u)� l(wS^L u)  r,

0 otherwise.

Finally, we show the following:

Lemma 1.5.14. The following are equivalent:

(1) wS^L u 2 Zu,� and l(u)� l(wS^L u)  r.

(2) There exists A such that |A|  r and u �L d
�1

A u  w.

(3) There exists A such that |A|  r and u  dAw �L w.

(4) There exists A such that |A| = r and u  dAw �L w.

Proof. (1)() (2): Clear.
(3)() (4): (4) =) (3) is obvious. (3) =) (4) follows from the fact Z 0

u,+ has the Chain Property and the
maximum element of size k, which corresponds to the maximum element of Zu,+.
(2) =) (3): Assume u �L d

�1

A u  w. Then u = �dA(d
�1

A u)  �dA(w) by Lemma 1.3.4(2). Besides, we have
�dA(w) = dBw �L w for some B ⇢ A by Lemma 1.2.2, and |B|  |A|  r.
(3) =) (2): Proved similarly to (2) =) (3), with Lemma 1.2.3 instead of Lemma 1.2.2.

Now we finished, from Lemma 1.5.14 (1)() (4), the proof of Theorem 1.1.3:

eg(k)w
ehr =

X

u

g
(k)
u ,

summed over u 2W
� such that u  dAw for some A ( I with |A| = r and dAw �L w.

Theorem 1.1.4 follows from Theorem 1.1.3, Corollary 1.4.8, and the Inclusion-Exclusion Principle.

1.6 Proof of the k-rectangle factorization formula

This section is devoted for the proof of Theorem 1.1.5.
The idea of the proof is similar to that of Proposition 1.2.18; we consider a linear map ⇥ : ⇤(k) �! ⇤(k)

extending eg(k)� 7! eg(k)Rt[�, having that {eg(k)� }�2Pk forms a basis of ⇤(k). It su�ces to show ⇥ is a ⇤(k)-

homomorphism, since it implies eg(k)Rt[� = ⇥(eg(k)� ) = eg(k)� ⇥(1) = eg(k)� ⇥(eg(k)? ) = eg(k)� eg(k)Rt
. Since {ehi}1ik

generate ⇤(k), we only need to show

⇥(ehreg(k)� ) = ehr⇥(eg(k)� ). (1.6.1)

Let dA1�, dA2�, . . . be the list of all weak strips over � of size r. Applying Theorem 1.1.4 to both sides of
(1.6.1), we have

(LHS) = ⇥

 
X

a

eg(k)dAa�
�

X

a<b

eg(k)dAa\Ab
� + · · ·

!

=
X

a

eg(k)Rt[(dAa�)
�

X

a<b

eg(k)Rt[(dAa\Ab
�) + · · · , (1.6.2)
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and by Lemma 1.2.16 (3) we have

(RHS) = ehreg(k)Rt[�

=
X

a

eg(k)dAa+t(Rt[�) �

X

a<b

eg(k)d(Aa+t)\(Ab+t)(Rt[�) + · · · . (1.6.3)

Since (Aa + t) \ (Ab + t) \ · · · = (Aa \Ab \ · · · ) + t, by Lemma 1.2.16 (1) we have (1.6.2) = (1.6.3).
Now Theorem 1.1.5 is proved.
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Chapter 2

Alternative proofs using
non-commutative K-k-Schur functions

2.1 Introduction

The contents of this chapter give an alternative for the latter half (Section 1.5 and 1.6) of Chapter 1, giving
another proof for the Pieri formula (Theorem 1.1.4) and the k-rectangle factorization formula (Theorem
1.1.5) for K-k-Schur functions, using the non-commutative K-k-Schur functions which is also introduced in
[LSS10].

2.2 Coxeter groups and 0-Hecke algebras

We follow the notations in Chapter 1 and recall some here; see Section 1.2 in Chapter 1 for undefined
notations.

Let (W,S) be an arbitrary Coxeter group and H the associated 0-Hecke algebra; the associative algebra
H is generated by {Ts | s 2 S} subject to the quadratic relation T

2

s = �Ts and the braid relations of (W,S).
For w 2W the element Tw 2 H is defined without ambiguity to be Ts1 · · ·Tsl where w = s1 · · · sl is a reduced
expression. Then {Tw | w 2W} form a basis: H =

L
w2W ZTw.

Let eTs = 1 + Ts. Then these eTs satisfy eT 2

s = eTs and the braid relations of W . Hence we can define
without ambiguity eTw = eTs1 . . .

eTsl for w 2 W where w = s1 . . . sl is a reduced expression. By the definition

of the Demazure product ⇤ we have eTv
eTw = eTv⇤w, and in particular eTv

eTw = eTvw when hvihwi is reduced.
The following fact is standard (for the proof, see for example [Ste07]):

eTw =
X

vw

Tv. (2.2.1)

Lemma 2.2.3 below plays a crucial role in the arguments in the rest of this chapter.

Lemma 2.2.1. Let v, w 2W and s 2 S. If hvihsi, hsihwi and hvihwi are reduced then so is hvihsihwi.

Proof. Suppose to the contrary that hvihsi, hsihwi and hvihwi are reduced but hvihsihwi is not. Take a
reduced expression v = s1 . . . sm. Then there exists l 2 {1, . . . ,m} such that hsl+1 . . . smihsihwi is reduced
and hsl . . . smihsihwi is not. Write v

0 = sl+1 . . . sm and t = sl. Since v
0
L tv

0
L v, that hvihsi and

hvihwi are reduced implies that so are htihv0ihsi and htihv0ihwi. Since hv0ihwi and hv0ihsihwi are reduced,
we have v

0
w <· v

0
sw by the Subword Property. Since hv0ihsihwi is reduced and htv0ihsihwi is not, we have

tv
0
sw <· v

0
sw. Since htihv0ihwi is reduced, we have v

0
w <· tv

0
w. Hence by the Lifting Property we have

tv
0
sw � v

0
w. Since v0w and tv

0
sw have the same length, we have v0w = tv

0
sw, which implies v0 = tv

0
s, which

contradicts the fact that htihv0ihsi is reduced.
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Remark 2.2.2. It does not always hold that for u, v, w 2W if hvihui, huihwi and hvihwi are reduced then so
is hvihuihwi; a counterexample is v = s2, u = s12 and w = s1 where W = S3.

Lemma 2.2.3. For v, w 2W , if hvihwi is not reduced then Tv
eTw = 0.

Proof. We induct on l(w). The case l(w) = 0 is clear. When l(w) = 1, we can write w = s 2 S. By the
assumption we have vs < v and hence Tv

eTs = Tv(1 + Ts) = Tv + TvTs = Tv � Tv = 0.
Next we assume l(w) > 1. Take an s 2 S such that sw < w, and write w

0 = sw. When vs < v, we have
Tv
eTs = 0 by the induction hypothesis, and hence Tv

eTw = Tv
eTs
eTw0 = 0. When vs > v, by the assumption

and Lemma 2.2.1 we have hvihw0
i is not reduced, whence by the induction hypothesis Tv

eTw0 = 0. Besides,
since vw = vsw

0 clearly hvsihw0
i is not reduced, hence Tvs

eTw0 = 0 by the induction hypothesis. Hence we
have

Tv
eTw = Tv

eTs
eTw0 = Tv(1 + Ts) eTw0 = Tv

eTw0 + Tvs
eTw0 = 0,

completing the induction.

2.3 K-a�ne Fomin–Stanley algebras and non-commutative K-k-
Schur functions

Hereafter we let W = S̃k+1 = hs0, s1, · · · , ski and W
� = S̃

�
k+1

.
Denote by K the associated 0-Hecke algebra: K = hT0, T1, . . . , Tki =

L
w2W ZTw. Here we simply wrote

Ti = Tsi . Let km =
P

|A|=m TdA (2 K) for m = 1, . . . , k, where A runs over subsets of Zk+1 = {0, 1, . . . , k}
with size m, and dA (2 W ) denotes the corresponding cyclically decreasing element (see Section 1.2.2.2).
Then these k1, . . . ,kk commute with each other (see [Lam06, Section 18.4] or [LSS10, Section 7]). The K-

a�ne Fomin–Stanley subalgebra L (⇢ K) is defined to be hk1, . . . ,kki. Note that these K and L are denoted
by K0 and L0 in [LSS10].

Theorem 2.3.1 ([LSS10, Theorem 7.17]). There is a Hopf isomorphism

� : ⇤(k) = Z[h1, . . . , hk] �! L = hk1, . . . ,kki ; hi 7! ki. (2.3.1)

We do not review their coalgebra structure here as we need not. The non-commutative K-k-Schur function

g(k)
� are defined to be �(g(k)� ) 2 L. Let J be the Z-submodule of K spanned by non-a�ne-Grassmannian

elements {Tw | w /2W
�
}:

J =
M

w2W\W�

ZTw (⇢ K). (2.3.2)

Since J is a left ideal of K, we have

y ⌘ y
0 mod J =) xy ⌘ xy

0 mod J (for x, y, y0 2 K). (2.3.3)

With the identification Pk ' S̃
�
k+1

; � 7! w� in (1.2.5), for � 2 Pk we denote Tw� by T�, and eTw� by eT�.
The following fact is crucial:

Theorem 2.3.2 (a corollary of [LSS10, Proposition 7.16]). g(k)
� ⌘ T� mod J for any � 2 Pk.

This theorem states the non-commutative K-k-Schur functions have the unique term Tw with w a�ne
Grassmannian, and moreover, an element of L is determined by its congruence class modulo J : since

{g
(k)
� }�2Pk is a basis of ⇤(k), by Theorem 2.3.1 it follows that {g(k)

� }�2Pk is a basis of L. Hence, for f 2 L,

f ⌘

X

�2Pk

a�T� mod J =) f =
X

�2Pk

a�g
(k)
� . (2.3.4)

In particular, for f, f 0
2 L,

f ⌘ f
0 mod J () f = f

0
. (2.3.5)
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Recall the definition eg(k)� =
P

µ� g
(k)
µ . We define eg(k)

� := �(eg(k)� ) =
P

µ� g
(k)
µ . By (2.2.1) and Theorem

2.3.2 we have
eg(k)
� ⌘ eT� mod J. (2.3.6)

Note that eT� (=
P

vw�
Tv) is not equal to

P
µ� Tµ (=

P
vw�,v2W� Tv), but equal modulo J .

Let w0 be the longest element of Sk+1. Recall that w 2W
� if and only if hwihw0i is reduced.

Lemma 2.3.3. Let x 2 K. Then x 2 J if and only if x eTw0 = 0.

Proof. Write x =
P

w2W awTw. Then x eTw0 =
P

w2W awTw
eTw0 =

P
w2W� awTw

eTw0 , where the last equation

is by Lemma 2.2.3. Since for each w 2 W
� we can write Tw

eTw0 = Tww0 +
P

v<ww0
cw,vTv with some

coe�cients cw,v, from the linear independence of {Tww0}w2W� we conclude that {Tw
eTw0}w2W� are linearly

independent. Hence x 2 J () aw = 0 (8w 2W
�) () x eTw0 = 0.

Lemma 2.3.4. For v 2W and w 2W
�
, if vw /2W

�
then Tv

eTw 2 J .

Proof. If hvihwi is not reduced then Tv
eTw = 0 by Lemma 2.2.3. Assume hvihwi is reduced and vw /2 W

�,
i.e. hvihwihw0i is not reduced. By the assumption hwihw0i is reduced. Hence hvihww0i is not reduced, which
implies Tv

eTww0 = 0 by Lemma 2.2.3, and hence Tv
eTw 2 J by Lemma 2.3.3.

2.4 k-rectangle factorization formula

In this section we give an alternative proof of the k-rectangle factorization formula (Theorem 1.1.5). Via the

isomorphism (2.3.1), it su�ces to show eg(k)
Rt[� = eg(k)

Rt
eg(k)
� for � 2 Pk and 1  t  k.

The lemma below is standard; see for example the proof of [Lam08, Proposition 4.5]. A more intuitive
proof is one using the k-code, explained below.

Lemma 2.4.1. For v 2W and 1  t  k, if vwRt �L wRt and vwRt 2W
�
then v is t-dominant.

Proof. It su�ces to show that if i 6= t then siwRt < wRt or siwRt /2 W
�, which is straightforward to check

by stacking the k-code diagram of si on that of wRt and justifying them with maximizing moves, similarly
to Lemma 1.2.15.

Define an group automorphism � : W �! W ; si 7! si+1. By abusing the notation we also define an
algebra automorphism � : K �! K by Ti 7! Ti+1, so that �(Tw) = T�(w). Note that �k+1 = id and � maps
an i-dominant element to an (i+ 1)-dominant element. Since the only 0-dominant element appearing in the

expansion of g(k)
� with the basis {Tw}w2W is T� (Theorem 2.3.2) and elements of L are invariant under �,

the only t-dominant element in the expansion of g(k)
� with the basis {Tw}w2W is �t(T�). (2.4.1)

Now we have the following equalities in which the modulus of congruences is J in (2.3.2):

eg(k)
� eg(k)

Rt
⌘ eg(k)

�
eTRt (by (2.3.3) and (2.3.6)) (2.4.2)

=
X

µ�

g(k)
µ
eTRt (by definition) (2.4.3)

⌘

X

µ�

�
t(Tµ) eTRt (by (2.4.1) and Lemma 2.3.4 and 2.4.1) (2.4.4)

= �
t
⇣X

µ�

Tµ

⌘
eTRt , (2.4.5)
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and

eg(k)
Rt[� ⌘

eTRt[� (by (2.3.6)) (2.4.6)

= eT�t(w�)
eTRt (by Proposition 1.2.15) (2.4.7)

= �
t( eT�) eTRt . (2.4.8)

Since eT� =
P

vw�
Tv ⌘

P
µ� Tµ mod J , the elements �t( eT�) and �

t(
P

µ� Tµ) are congruent modulo

�
t(J), the Z-span of non-t-dominant elements. Hence, by Lemma 2.3.4 and 2.4.1 we have (2.4.5) ⌘ (2.4.8)

mod J , and therefore eg(k)
� eg(k)

Rt
= eg(k)

Rt[� by (2.3.5), reproving Theorem 1.1.5.

2.5 Pieri formula for eg(k)
�

In this section we give an alternative proof for the Pieri formula for eg(k)� (Theorem 1.1.4). Again, it su�ces
to show it in the non-commutative version.

Fix � 2 Pk. Let us recall some results from Section 1.4 in Chapter 1. Let

Z = {A ( Zk+1 | dA�/� is a weak strip} = {A ( Zk+1 | hdAihw�w0i is reduced}. (2.5.1)

This Z is denoted by Z
0�
w�,+ = Z

0
w�w0,+ in Section 1.4 in Chapter 1. Then this Z is closed under intersection

(Proposition 1.4.2), i.e.
A,B 2 Z =) A \B 2 Z. (2.5.2)

Note that for any A,B ( Zk+1 it holds dA  dB if and only if A ⇢ B by the Subword Property, and hence
dA ^ dB = dA\B where ^ is the meet under the strong order .

Next we fix a 2 {1, · · · , k} and let dA1�, dA2�, · · · be the list of all weak strips of size a over �,
i.e.A1, A2, · · · be the elements of Z with size a. Let us briefly write Ai,j,··· = Ai \Aj \ · · · .

In what follows the modulus of all congruences is J , defined in (2.3.2). For A 2 Z we let

bTdA =
X

B2Z
B⇢A

TdB . (2.5.3)

Since eTdA =
P

B⇢A TdB , by Lemma 2.3.4 and the definition of Z we have

bTdA
eT� ⌘

eTdA
eT�. (2.5.4)

Moreover, by (2.5.2) and the Inclusion-Exclusion Principle we have

X

A2Z
|A|a

TdA =
X

i

bTdAi
�

X

i<j

bTdAi,j
+
X

i<j<l

bTdAi,j,l
� · · · . (2.5.5)
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Note that g(k)
(a) = ka and hence eg(k)

(a) =
P

0ia ki. Now we have

eg(k)
(a)eg

(k)
� ⌘

X

0ia

ki
eT� (by (2.3.3) and (2.3.6)) (2.5.6)

=
X

|A|a

TdA
eT� (by the definition of ka) (2.5.7)

⌘

X

A2Z
|A|a

TdA
eT�. (by Lemma 2.3.4) (2.5.8)

=
⇣X

i

bTdAi
�

X

i<j

bTdAi,j
+
X

i<j<l

bTdAi,j,l
� · · ·

⌘
eT� (by (2.5.5)) (2.5.9)

=
X

i

bTdAi

eT� �

X

i<j

bTdAi,j

eT� +
X

i<j<l

bTdAi,j,l

eT� � · · · (2.5.10)

⌘

X

i

eTdAi

eT� �

X

i<j

eTdAi,j

eT� +
X

i<j<l

eTdAi,j,l

eT� � · · · (by (2.5.4)) (2.5.11)

=
X

i

eTdAi�
�

X

i<j

eTdAi,j�
+
X

i<j<l

eTdAi,j,l
� � · · · (2.5.12)

⌘

X

i

eg(k)
dAi�

�

X

i<j

eg(k)
dAi,j�

+
X

i<j<l

eg(k)
dAi,j,l

� � · · · . (by (2.3.6)) (2.5.13)

Hence by (2.3.5) we have

eg(k)
(a)eg

(k)
� =

X

i

eg(k)
dAi�

�

X

i<j

eg(k)
dAi,j�

+
X

i<j<l

eg(k)
dAi,j,l

� � · · · ,

reproving the Pieri rule (Theorem 1.1.4).
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Chapter 3

Automorphisms on the ring of
symmetric functions and stable and
dual stable Grothendieck polynomials

3.1 Introduction

The stable Grothendieck polynomials G� and the dual stable Grothendieck polynomials g� are certain families
of inhomogeneous symmetric functions parametrized by interger partitions �. They are certain K-theoretic
deformations of the Schur functions and dual to each other via the Hall inner product.

A notable property of the dual stable Grothendieck polynomials is that g� and their sums
P

µ⇢� gµ have
the same product structure constants, i.e. the linear map I defined by

I : ⇤ �! ⇤ ; g� 7!
X

µ⇢�

gµ (3.1.1)

is a ring automorphism on the ring of symmetric functions ⇤. (We note that they represent K-homology
classes of boundary ideal sheaves and structure sheaves of Schubert varieties in the Grassmannians. See
Remark 3.2.7.)

In this chapter we explain that the map I above is written as both

(a) the substitution f(x) 7! f(1, x), (that is, f(x1, x2, · · · ) 7! f(1, x1, x2, · · · )), and

(b) the map H(1)?, where H(1) =
P

i hi,

where the linear map F
? : ⇤ �! ⇤ is the adjoint of the multiplication map (F ·) : b⇤ �! b⇤, where b⇤ is the

completion of ⇤. The equivalence of two maps in (a) and (b) is previously known in a more general form
((3.3.1) and (3.3.2)): H(t)?(f(x)) = f(t, x) where H(t) =

P
i t

i
hi. The key observation to show I(f(x)) =

f(1, x) is that the substitution f 7! f(1, 0, 0, · · · ) maps g�/µ to 1 for any skew shape �/µ (Proposition 3.4.1);
then since I is a certain composition of this map and the coproduct on ⇤ it follows that I = (f(x) 7! f(1, x)).

We also give:

• formulas for the image of g�/µ under I (and more generally H(t)?), which generalizes I(g�) =
P

⌫⇢� g⌫ .
((3.4.10) and Proposition 3.4.3)

• similar formulas for the inverse automorphism E(�t)?, where E(�t) =
P

i(�t)
i
ei = H(t)�1. (Propo-

sition 3.5.3)

• presentations of the maps (H(t)·) and (E(�t)·) with respect to the basis {G�}, by the adjointness of
(F ·) and F

? and the duality between G� and g�. ((3.4.11) and (3.5.3))
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Organization

In Section 3.2 we recall Hopf algebras, symmetric functions and stable Grothendieck and dual stable Grothendieck
polynomials. In Section 3.3 we recall algebra automorphisms H(t)? and E(t)?, with some relevant argu-
ments included in Section 3.7 as an appendix. In Section 3.4 we give descriptions for the maps H(t)? and
(H(t)·) and prove I = (f(x) 7! f(1, x)) = H(1)?. In Section 3.5 we treat E(t)? and (E(t)·) and give similar
presentations. In Section 3.6 we give some examples.

3.2 Preliminaries

Throughout this chapter, we fix a commutative ring K and assume that any modules, algebras, morphisms
etc. are over K.

3.2.1 Hopf algebra

We recall some generalities on the Hopf algebra. For more details we refer the reader to [Swe69,Abe80,GR]
for example.

An algebra A is a K-module equipped with a product (or multiplication) m = mA : A ⌦ A �! A and a
unit u = uA : K �! A satisfying m� (m⌦ id) = m� (id⌦m) and m� (id⌦u) = id = m� (u⌦ id). A coalgebra

C is a K-module equipped with a coproduct (or comultiplication) � = �C : C �! C ⌦ C and a counit

✏ = ✏C : C �! K satisfying (�⌦ id) �� = (id⌦�) �� and (id⌦ ✏) �� = id = (✏⌦ id) ��. A K-linear map
' : A �! B between algebras is an algebra morphism if ' �mA = mB � ('⌦') and ' �uA = uB . A K-linear
map ' : C �! D between coalgebras is a coalgebra morphism if (' ⌦ ') � �C = �D � ' and ✏C = ✏D � '.
A K-module A equipped with m,u,�, ✏ is a bialgebra if (A,m, u) is an algebra, (A,�, ✏) is a coalgebra, and
the following equivalent conditions hold: (a) �, ✏ are algebra morphisms; (b) m,u are coalgebra morphisms.
A bialgebra A equipped with an antipode map S : A �! A satisfying m � (S⌦ id) �� = u � ✏ is called a Hopf

algebra.

3.2.1.1 duals

For a K-module A, let A⇤ = Hom(A,K) = {f : A �! K : K-linear} and ( , ) = ( , )A : A⇤
⇥A �! K ; (f, a) =

f(a). For a graded K-module A =
L

n�0
An, we denote by A

o the graded dual
L

n A
⇤
n, and A is called of

finite type if every An is a finite free K-module. For any coalgebra C, its dual C⇤ is an algebra by

(mC⇤(f ⌦ g), a)C = (f ⌦ g,�C(a))C⌦C (3.2.1)

for f, g 2 C
⇤ and a 2 C. If an algebra A is a finite free K-module (resp.A is a graded algebra of finite type),

then its dual A⇤ (resp. graded dual Ao) is a coalgebra by

(�A⇤(f), a⌦ b)A⌦A = (f, ab)A (3.2.2)

for f 2 A
⇤ (resp.Ao) and a, b 2 A.

For a coalgebra C and an algebra A, the space of linear maps Hom(C,A) becomes an associative algebra
by the convolution product ⇤ defined by f ⇤ g = mA � (f ⌦ g) ��C . Then uA � ✏C is the identity for ⇤, and
the convolution product on C

⇤ = Hom(C,K) coincides with the product given in (3.2.1).

3.2.1.2 Module and comodule morphisms

For a coalgebra C, a linear map � : C �! C is C-comodule morphism if � �� = (�⌦ id) ��. For an algebra
A, a linear map  : A �! A is A-module morphism if  �m = m � ( ⌦ id).

Lemma 3.2.1. Let C be a coalgebra and C
⇤
its dual algebra. For a linear map � : C �! C, the following

are equivalent: (1) � : C �! C is a C-comodule morphism. (2) �⇤ : C⇤
�! C

⇤
is a C

⇤
-module morphism.
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Proof. It easily follows from (f,�(a)) = (�⇤(f), a) and (m(f ⌦ g), a) = (f ⌦ g,�(a)) (for f, g 2 C
⇤ and

a 2 C).

For a coalgebra C and f 2 C
⇤, the map f

? : C �! C is defined by f
?(c) =

P
(c)(f, c1)c2 where we

write �(c) =
P

(c) c1 ⌦ c2 by the Sweedler notation. In other words f
? = (f ⌦ id) � �. By (3.2.1), f? is

the adjoint of (f ·) : C⇤
�! C

⇤ ; g 7! fg, i.e. (fg, c) = (g, f?(c)). Since the multiplication map (f ·) is a C
⇤-

module morphism, by Lemma 3.2.1 we see that f? is a C-comodule morphism. Conversely, any C-comodule
endomorphism on C has the form f

?:

Lemma 3.2.2. (1) For an algebra A, if  : A �! A is an A-module morphism then  is the multiplication

by  (1A).
(2) For a coalgebra C, if � : C �! C is a C-comodule morphism then � = (�⇤(1C⇤))?.

Proof. (1) is clear. (2) follows from (1), Lemma 3.2.1 and the adjointness of (�⇤(1)·) and �⇤(1)?.

3.2.2 Symmetric functions

For basic definitions for symmetric functions, see for instance [Mac95, Chapter I].
Let ⇤ (= ⇤(x) = ⇤K = ⇤K(x)) be the ring of symmetric functions, namely the set of all symmetric

formal power series of bounded degree in variable x = (x1, x2, . . . ) with coe�cients in K. We omit the
variable x when no confusion arise. Let b⇤ be its completion, consisting of all symmetric formal power series
(with possibly unbounded degree). The Schur functions s� (� 2 P) are a family of homogeneous symmetric
functions satisfying ⇤ =

L
�2P Ks� and b⇤ =

Q
�2P Ks�.

The Hall inner product ( , ) is a bilinear form on ⇤ for which the Schur functions form an orthonormal
basis, i.e. (s�, sµ) = ��µ. This is naturally extended to ( , ) : b⇤⇥ ⇤ �! K, whence we can identify b⇤ with ⇤⇤

and ⇤ with ⇤o =
L

n�0
⇤⇤
n. Here ⇤n denotes the homogeneous component of ⇤ with degree n.

The ring ⇤ is a Hopf algebra with a product m : ⇤⌦ ⇤ �! ⇤ ; f ⌦ g 7! fg, a unit u : K �! ⇤ ; 1 7! 1, a
coproduct � : ⇤ = ⇤(x) �! ⇤(x, y) ,! ⇤(x)⌦ ⇤(y) ; f(x) 7! f(x, y), a counit ✏ : ⇤ �! K ; f 7! f(0, 0, . . . ),
i.e. ✏(s�) = ��?, and an antipode S : ⇤ �! ⇤ ; s� 7! (�1)|�|s�0 . Here �0 denotes the transpose of � 2 P.
The coincidence between the coe�cients in the Littlewood-Richardson rules sµs⌫ =

P
� c

�
µ⌫s� and �(s�) =P

µ,⌫ c
�
µ⌫sµ ⌦ s⌫ implies that ⇤ is self-dual, i.e. the Hopf structure on ⇤o via (3.2.1) and (3.2.2) coincides

with one coming from the identification ⇤ ' ⇤o. Note that b⇤ ' ⇤⇤ is an algebra but not a coalgebra, since
if f 2 b⇤ has unbounded degree then f(x, y) may be unable to be written as a finite sum of f1(x)f2(y) for
f1, f2 2

b⇤.
For F 2 b⇤, we have linear maps

• (F,�) : ⇤ �! K ; f 7! (F, f), and
• F

? : ⇤ �! ⇤ ; f 7!
P

(F, f1)f2

where we put �(f) =
P

f1 ⌦ f2 for f 2 ⇤ by the Sweedler notation. By the identification b⇤ ' ⇤⇤ this
notation is the same as given in Section 3.2.1. Note that

F
? = ((F,�)⌦ id) �� = (id⌦ (F,�)) �� (3.2.3)

where the second equality is by cocommutativity. We also have

(F,�) = ✏ � F
? (3.2.4)

since ✏ �F? = ✏ � ((F,�)⌦ id) �� = ((F,�)⌦ ✏) �� = (F,�) ⇤ ✏ = (F,�). The following lemma is standard:

Lemma 3.2.3. For F,G 2 b⇤,

(1) (FG,�) = (F,�) ⇤ (G,�) where ⇤ denotes the convolution product on Hom(⇤,K).
(2) (FG)? = G

?
� F

? (= F
?
�G

?).
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By arguments in Section 3.2.1.2 we have the following lemmas.

Lemma 3.2.4. For F 2 b⇤,

(1) F
? : ⇤ �! ⇤ is a ⇤-comodule morphism.

(2) (F?)⇤ = (F ·). Namely (FG, f) = (G,F
?(f)) for G 2 b⇤ and f 2 ⇤.

Lemma 3.2.5. Let � : ⇤ �! ⇤ be a ⇤-comodule morphism. Then the dual map �
⇤ : b⇤ �! b⇤ is the multipli-

cation by �
⇤(1). Moreover � = (�⇤(1))?.

3.2.3 Stable and dual stable Grothendieck polynomials

The stable Grothendieck polynomials (parametrized by permutations) were introduced by Fomin and Kirillov
[FK96] as a stable limit of the Grothendieck polynomials of Lascoux–Schützenberger [LS82]. In [Buc02,
Theorem 3.1] Buch gave a combinatorial description of the stable Grothendieck polynomials G� for partitions
as (signed) generating functions of so-called set-valued tableaux. We do not review the detail here and just
recall some of its properties: G� 2

b⇤ (although G� /2 ⇤ if � 6= ?), G� is an infinite linear combination of
{sµ}µ2P whose lowest degree component is s�. Hence b⇤ =

Q
�2P KG�, i.e. every element in b⇤ is uniquely

written as an infinite linear combination of G�. Moreover the span
L

� KG� (⇢ b⇤) is a bialgebra, in particular
the expansion of the product GµG⌫ =

P
� c

�
µ⌫G� and the coproduct �(G�) =

P
µ,⌫ d

�
µ⌫Gµ ⌦G⌫ are finite.

Next we recall the dual stable Grothendieck polynomial g�/µ. For a skew shape �/µ, a reverse plane

partition of shape �/µ is a filling of the boxes in �/µ with positive integers such that the numbers are weakly
increasing in every row and column.

Definition 3.2.6 ([LP07]). For a skew shape �/µ, the dual stable Grothendieck polynomial g�/µ is defined
by

g�/µ =
X

T

x
T
, (3.2.5)

summed over reverse plane partitions T of shape �/µ, where x
T =

Q
i x

T (i)
i where T (i) is the number of

columns of T that contain i.

When µ = ? we write g� = g�/?. It is shown in [LP07] that g�/µ 2 ⇤ and g� has the highest degree
component s� and forms a basis of ⇤ that is dual to G� via the Hall inner product:

(G�, gµ) = ��µ. (3.2.6)

Hence the product (resp. coproduct) structure constants for {G�} coincide with the coproduct (resp. product)
structure constants for {g�}: gµg⌫ =

P
� d

�
µ⌫g� and �(g�) =

P
µ,⌫ c

�
µ⌫gµ ⌦ g⌫ .

As stated in (3.1.1), we denote by I the linear map ⇤ �! ⇤ defined by I(g�) =
P

µ⇢� gµ. Note that the

inverse map is given by I
�1(g�) =

P
�/µ: rook strip

(�1)|�/µ|gµ. Here �/µ is called a rook strip if any cell of
�/µ is removable corner of �.

Remark 3.2.7. We recall geometric interpretations of G� and g�. Let Gr(k, n) be the Grassmannian of k-
dimensional subspaces of Cn, R = (n� k)k the rectangle of shape (n� k)⇥ k, and O� (� ⇢ R) the structure
sheaves of Schubert varieties of Gr(k, n). The K-theory K

⇤(Gr(k, n)), the Grothendieck group of algebraic
vector bundles on Gr(k, n), has a basis {[O�]}�⇢R, and the surjection

L
�2P ZG� �! K

⇤(Gr(k, n)) =L
�⇢R Z[O�] that maps G� to [O�] (which is considered as 0 if � 6⇢ R) is an algebra homomorphism [Buc02].
There is another basis of K

⇤(Gr(k, n)) consisting of the classes [I�] of ideal sheaves of boundaries of
Schubert varieties. In [Buc02, Section 8] it is shown that the bases {[O�]}�⇢R and {[I�]}�⇢R relates to each
other by [O�] =

P
�⇢µ⇢R[Iµ] and that they are dual: more precisely ([O�], [Iµ̃]) = ��µ where µ̃ = (n � k �

µk, · · · , n� k� µ1) is the rotated complement of µ ⇢ R and the pairing ( , ) is defined by (↵,�) = ⇢⇤(↵⌦ �)
where ⇢⇤ is the pushforward to a point.
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The K-homology K⇤(Gr(k, n)), the Grothendieck group of coherent sheaves, is naturally isomorphic to
K

⇤(Gr(k, n)). Lam and Pylyavskyy proved in [LP07, Theorem 9.16] that the surjection ⇤ =
L

�2P Zg� �!
K⇤(Gr(k, n)) =

L
µ⇢R Z[Iµ] that maps g� to [I�̃] (which is considered as 0 if � ⇢ R) identifies the coproduct

and product on ⇤ with the pushforwards of the diagonal embedding map and the direct sum map.
Since µ ⇢ � () µ̃ � �̃, under this identification we see that

P
µ⇢� gµ 2 ⇤ corresponds to [O�̃] 2

K⇤(Gr(k, n)).

3.3 Automorphisms H
?(t) and E

?(t)

There are well-known generating functions

H(t) =
X

i�0

t
i
hi, E(t) =

X

i�0

t
i
ei

where t 2 K (hence H(t), E(t) 2 b⇤). Let

H
?(t) := H(t)? =

X

i�0

t
i
h
?
i , E

?(t) := E(t)? =
X

i�0

t
i
e
?
i .

It is known (see [Mac95, Chapter 1.5, Example 29]) that

H
?(t), E?(t) : ⇤ �! ⇤ are ring automorphisms, (3.3.1)

H
?(t)(f(x1, x2, · · · )) = f(t, x1, x2, · · · ) for f 2 ⇤. (3.3.2)

(The proof of (3.3.1) was as follows: for F 2 b⇤, the map F
? : ⇤ �! ⇤ is an algebra automorphism if and only

if F (x, y) = F (x)F (y) and F (0) = 1, and it is easy to see that H(t) and E(t) satisfy them. See Section 3.7 for
more details. To show (3.3.2), it then su�ces to consider the case where f = hn, which is straightforward.)

From (3.3.1), (3.3.2) and (3.2.4) we have

(H(t),�), (E(t),�) : ⇤ �! K are ring homomorphisms, (3.3.3)

(H(t), f) = f(t, 0, 0, · · · ). (3.3.4)

Since H(t)E(�t) = 1, by Lemma 3.2.3 and the fact that the counit is the identity with respect to the
convolution product we have

Lemma 3.3.1. (1) (H(t),�) ⇤ (E(�t),�) = ✏, where ✏ : ⇤ �! K is the counit.

(2) H(t)? � E(�t)? = id⇤.

Remark 3.3.2. We give here a note on the relation between H
?(t) and E

?(t).
Let � : ⇤ �! ⇤ be a graded self-adjoint algebra endomorphism. Then � naturally extends to an algebra

endomorphism on b⇤, and for F 2 b⇤ we have

(�(F ),�) = (F,�) � �, � � (�(F ))? = F
?
� �.

(Proof. For F,G 2 b⇤ and f 2 ⇤ we have (�(F ), f) = (F,�(f)) and (G,��(�(F ))?(f)) = (�(G), (�(F ))?(f)) =
(�(F )�(G), f) = (�(FG), f) = (FG,�(f)) = (G,F

?
� �(f)).)

Define an algebra homomorphism �t : ⇤ �! ⇤ ; f(x) 7! f(tx), where x = (x1, x2, . . . ) and tx =
(tx1, tx2, . . . ). Clearly �t is graded, and since (�t(s�), sµ) = t

|�|
��µ = (s�,�t(sµ)) it is self-adjoint. Since

H(t) = �t(H(1)) and E(t) = �t(E(1)), we have

(H(t),�) = (H(1),�) � �t, �t �H(t)? = H(1)? � �t,

(E(t),�) = (E(1),�) � �t, �t � E(t)? = E(1)? � �t.

Since ! : ⇤ �! ⇤ ; hi 7! ei is a graded self-adjoint algebra involution which sends H(t) to E(t), it follows

(H(t),�) � ! = (E(t),�), H
?(t) � ! = ! � E

?(t). (3.3.5)

Remark 3.3.3. By (3.3.4) it follows that (H(t), hi) = t
i for i � 0, (H(t), ei) = 0 for i � 2, and (H(t), pi) = t

i

for i � 1.
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3.4 Descriptions of H(t), (H(t),�) and H(t)?

We start with the following observation. Let c(�/µ) denote the number of columns in the skew shape �/µ.

Proposition 3.4.1. The algebra homomorphism (H(t),�) satisfies (H(t), g�/µ) = t
c(�/µ)

for any skew shape

�/µ, and in particular (H(t), g�) = t
c(�)

for any � 2 P.

Proof. By (3.3.4) we have (H(t), g�/µ) = g�/µ(t, 0, 0, · · · ). By (3.2.5), it is the generating function of reverse
plane partitions on �/µ filled with one alphabet 1. Clearly there is exactly one such filling, whose weight is

x
c(�/µ)
1

. Hence g�/µ(t, 0, 0, · · · ) = t
c(�/µ).

Since {g�}� is a basis of ⇤ and {G�}� is their dual (3.2.6), from Proposition 3.4.1 we have

(H(t),�) =
⇣X

�2P
t
c(�)

G�,�

⌘
, (3.4.1)

whence
H(t) =

X

�2P
t
c(�)

G�. (3.4.2)

Another consequence of the proposition above is formulas on the structure constants in gµg⌫ =
P

� d
�
µ⌫g�

and g�/µ =
P

⌫ c
�
µ⌫g⌫ :

Corollary 3.4.2. (1) For any µ, ⌫ 2 P, we have t
c(µ)+c(⌫) =

P
� d

�
µ⌫t

c(�)
.

(2) For any �, µ 2 P, we have t
c(�/µ) =

P
⌫ c

�
µ⌫t

c(⌫)
.

3.4.1 Proof of I = H(1)?

Next we give another description of the map I : g� 7!
P

µ⇢� gµ.
For a skew shape �/µ and a totally ordered set X called alphabets (most commonly {1, 2, 3, . . . }), we

shall denote by RPP(�/µ,X) the set of reverse plane partition of shape �/µ where each box is filled with an
element of X. The expression (3.2.5) of g�/µ as a generating function of reverse plane partitions implies

�(g�/µ) =
X

µ⇢⌫⇢�

g�/⌫ ⌦ g⌫/µ, (3.4.3)

since we have a natural bijection between RPP(�/µ, {1, 2, · · · , 10, 20, . . . }) and
F

µ⇢⌫⇢� RPP(⌫/µ, {1, 2, · · · })⇥
RPP(�/⌫, {10, 20, · · · }) where 1 < 2 < · · · < 10 < 20 < · · · .

Proposition 3.4.3. The algebra automorphism H(t)? : ⇤ �! ⇤ satisfies

H(t)?(g�/µ) =
X

µ⇢⌫⇢�

t
c(�/⌫)

g⌫/µ =
X

µ⇢⌫⇢�

t
c(⌫/µ)

g�/⌫ (3.4.4)

for any µ ⇢ �. In particular,

H(t)?(g�) =
X

⌫⇢�

t
c(�/⌫)

g⌫ =
X

⌫⇢�

t
c(⌫)

g�/⌫ (3.4.5)

for any � 2 P.

Proof. By (3.2.3), we have by applying (H(t),�)⌦ id to (3.4.3) that

H
?(t)(g�/µ) =

X

µ⇢⌫⇢�

(H(t), g�/⌫) · g⌫/µ =
X

µ⇢⌫⇢�

t
c(�/⌫)

g⌫/µ, (3.4.6)
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where the last equation is by Proposition 3.4.1. Similarly, by applying (id⌦ (H(t),�)) to (3.4.3) we have

H
?(t)(g�/µ) =

X

µ⇢⌫⇢�

g�/⌫ · (H(t), g⌫/µ) =
X

µ⇢⌫⇢�

t
c(⌫/µ)

g�/⌫ . (3.4.7)

Setting µ = ? and t = 1 in (3.4.6), for any � 2 P we have

H
?(1)(g�) =

X

⌫⇢�

g⌫

⇣
= I(g�)

⌘
.

Since {g�}� form a basis of ⇤, this implies

Proposition 3.4.4. We have

I = H
?(1) =

�
f(x) 7! f(1, x)

�
. (3.4.8)

Besides, since H(1) =
P

� G� by (3.4.2), we have

I =
X

�2P
G

?
� . (3.4.9)

In particular (3.4.8) shows that I : ⇤ �! ⇤ is a ring automorphism. Moreover, (3.4.6), (3.4.7) and (3.4.8)
imply that for any skew shape �/µ

I(g�/µ) =
X

µ⇢⌫⇢�

g⌫/µ =
X

µ⇢⌫⇢�

g�/⌫ . (3.4.10)

In Example 3.6.1 we see an example for the identity (3.4.10).

Remark 3.4.5. (1) By Lemma 3.2.4, I is a ⇤-comodule automorphism. With the second equality of (3.4.8),
we can see each side of the following equality (the condition for being comodule morphisms)

� � I = (I ⌦ id⇤) �� = (id⇤ ⌦ I) ��

maps f(x) 2 ⇤(x) to f(1, x, y) 2 ⇤(x)⌦ ⇤(y).
(2) By (3.2.6) and �(g�) =

P
⌫ g⌫ ⌦ g�/⌫ (by (3.4.3)), we have G

?
µ (g�) = g�/µ. Here we consider g�/µ = 0

if µ 6⇢ �. Since F
? (for F 2 b⇤) commute each other, I commutes with G

?
µ . Hence, by applying G

?
µ to the

equation I(g�) =
P

⌫⇢� g⌫ we have

I(g�/µ) = I(G?
µ (g�)) = G

?
µ (I(g�)) = G

?
µ

⇣X

⌫⇢�

g⌫

⌘
=
X

⌫⇢�

G
?
µ (g⌫) =

X

⌫⇢�

g⌫/µ,

re-proving the first equation in (3.4.10). Similarly, by applying I =
P

⌫ G
?
⌫ to g� we get a special case of the

second equation of (3.4.10):

I(g�) =
X

⌫

G
?
⌫ (g�) =

X

⌫

g�/⌫ .

3.4.2 Dual map

Recall that H?(t) : ⇤ �! ⇤ and (H(t)·) : b⇤ �! b⇤ are adjoint (Lemma 3.2.4 (2)). By (3.2.6) and H(t)?(gµ) =P
�⇢µ t

c(µ/�)
g� shown in (3.4.5) we have

H(t)G� =
X

�⇢µ

t
c(µ/�)

Gµ. (3.4.11)

Note that (3.4.2) is obtained by setting � = ? in (3.4.11). By (3.4.2) and (3.4.11) we have for any � 2 P

⇣X

µ2P
t
c(µ)

Gµ

⌘
G� =

X

�⇢µ

t
c(µ/�)

Gµ. (3.4.12)

50



Remark 3.4.6. Since I = H
?(1) it follows that I⇤ = (H(1)·) =

�
(
P

� G�) ·
�
, and (3.4.12) specializes to

✓
I
⇤(G�) =

◆ �X

µ2P
Gµ

�
G� =

X

�⇢µ

Gµ (3.4.13)

which appeared in [Buc02, Section 8].

3.5 Description of E(t), (E(t),�) and E(t)?

In this section we give descriptions using G� and g� for the element E(t) and maps (E(t),�) and E
?(t).

Note that by I = H
?(1) and I

⇤ = (H(1)·) it follows that I�1 = E
?(�1) and (I⇤)�1 = (E(�1)·).

We postpone the proof of the following proposition until Section 3.5.1.

Proposition 3.5.1. The ring homomorphism (E(t),�) : ⇤ �! K satisfies

(E(t), g�/µ) =

(
t
c(�/µ)(t+ 1)|�/µ|�c(�/µ)

if �/µ is a vertical strip,

0 otherwise

for any skew shape �/µ. In particular, for any � 2 P,

(E(t), g�) =

8
><

>:

1 if � = ?,

t(t+ 1)n�1
if � = (1n) (n � 1),

0 otherwise.

Remark 3.5.2. (1) By (3.3.5) and Remark 3.3.3 it follows that (E(t), ei) = t
i for i � 0, (E(t), hi) = 0 for

i � 2, and (E(t), pi) = (�1)i�1
t
i for i � 1.

(2) Setting t = �1 in Proposition 3.5.1, we have (E(�1), g�/µ) = (�1)|�/µ| if �/µ is a rook strip, and
(E(�1), g�/µ) = 0 otherwise. In particular (E(�1), g?) = 1, (E(�1), g(1)) = �1, and (E(�1), g�) = 0 for
any � 2 P with |�| > 1.
(3) Unlike (3.3.4), there is no a1, a2, · · · 2 R such that (E(�1), f) = f(a1, a2, . . . ), since such numbers should
satisfy �1 = (E(�1), p2) = a

2

1
+ a

2

2
+ · · · .

Before proving Proposition 3.5.1, we give as its corollaries descriptions for E(t) and E(t)?.

Proposition 3.5.3. The ring automorphism E(t)? : ⇤ �! ⇤ satisfies

E(t)?(g�/µ) =
X

µ⇢⌫⇢�
�/⌫: vertical strip

t
c(�/⌫)(t+ 1)|�/⌫|�c(�/⌫)

g⌫/µ

=
X

µ⇢⌫⇢�
⌫/µ: vertical strip

t
c(⌫/µ)(t+ 1)|⌫/µ|�c(⌫/µ)

g�/⌫

for any skew shape �/µ. In particular, for any � 2 P,

E(t)?(g�) =
X

⌫⇢�
�/⌫: vertical strip

t
c(�/⌫)(t+ 1)|�/⌫|�c(�/⌫)

g⌫ (3.5.1)

=

(
g� +

Pl(�)
k=1

t(t+ 1)k�1
g�/(1k) if � 6= ?,

g? if � = ?.

Proof. Proved similarly to Proposition 3.4.3, with Proposition 3.5.1 in hand.

Now we have a description of E(�1)? = I
�1 by setting t = �1 in the proposition above.

51



Corollary 3.5.4. The ring automorphism E(�1)? = I
�1 : ⇤ �! ⇤ satisfies

I
�1(g�/µ) =

X

µ⇢⌫⇢�
�/⌫: rook strip

(�1)|�/⌫|g⌫/µ =
X

µ⇢⌫⇢�
⌫/µ: rook strip

(�1)|⌫/µ|g�/µ.

In particular, when µ = ? we have

I
�1(g�) =

X

�/⌫: rook strip

(�1)|�/⌫|g⌫ =

(
g� � g�/(1) if � 6= ?,

1 if � = ?.
(3.5.2)

Since E
?(t) and (E(t)·) are adjoint, by (3.5.1) and (3.2.6) we have the following:

Proposition 3.5.5. The element E(t) =
P

i�0
t
i
ei 2

b⇤ satisfies

E(t)G� =
X

µ/�: vertical strip

t
c(µ/�)(t+ 1)|µ/�|�c(µ/�)

Gµ. (3.5.3)

In particular, setting � = ? we have

E(t) = 1 +
X

n�1

t(t+ 1)n�1
G(1n),

and hence ⇣
1 +

X

n�1

t(t+ 1)n�1
G(1n)

⌘
G� =

X

µ/�: vertical strip

t
c(µ/�)(t+ 1)|µ/�|�c(µ/�)

Gµ. (3.5.4)

Remark 3.5.6. Setting t = �1, Proposition 3.5.5 specializes to E(�1) = 1�G1 and

E(�1)G� = (1�G1)G� =
X

µ/�: rook strip

(�1)|µ/�|Gµ, (3.5.5)

which appeared in [Buc02, Section 8].

3.5.1 Proof of Proposition 3.5.1

We recall the incidence algebras (see [Sta12, Chapter 3.6] for details). Let Int(P) = {(µ,�) 2 P⇥P | µ ⇢ �},
consisting of all comparable (ordered) pairs in P (or equivalently all skew shapes, by identifying (µ,�)
with �/µ). The incidence algebra I(P) = I(P,K) is the algebra of all functions f : Int(P) �! K where
multiplication is defined by the convolution

(fg)(µ,�) =
X

µ⇢⌫⇢�

f(µ, ⌫)g(⌫,�). (3.5.6)

Then I(P,K) is an associative algebra with two-sided identity � := ((µ,�) 7! �µ�).
A linear function f : ⇤ �! K can be considered as an element of I(P,K) by setting f(µ,�) = f(g�/µ).

Then the convolution product ⇤ on Hom(⇤,K) coincides with the multiplication on I(P) due to (3.4.3),
i.e. this inclusion Hom(⇤,K) �! I(P) is as algebras.1 Note that the counit ✏ 2 Hom(⇤,K) is mapped to
� 2 I(P).

1 Since �(s�/µ) =
P

⌫ s�/⌫ ⌦ s⌫/µ, by setting f(µ,�) = f(s�/µ) we can obtain another algebra inclusion, although we do
not use it.
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Proof of Proposition 3.5.1. Define it, jt 2 I(P) by

it(µ,�) = t
c(�/µ)

and

jt(µ,�) =

(
(�1)|�/µ|tc(�/µ)(t� 1)|�/µ|�c(�/µ) if �/µ is a vertical strip,

0 otherwise.

By Proposition 3.4.1 (H(t),�) 2 Hom(⇤,K) corresponds to it 2 I(P). Since (H(t),�) ⇤ (E(�t),�) = ✏,
it su�ces to show that itjt = � in order to prove that (E(�t),�) corresponds to jt, whence Proposition 3.5.1
follows by replacing t with �t.

By the definitions of it and jt and (3.5.6)

(itjt)(µ,�) =
X

µ⇢⌫⇢�
�/⌫: vertical strip

t
c(⌫/µ)(�1)|�/⌫|tc(�/⌫)(t� 1)|�/⌫|�c(�/⌫)

. (3.5.7)

We need to show that the value of the right-hand side of (3.5.7) is �µ�. It is clear that if µ = � then the
value of (3.5.7) is 1. Assume µ ( �. Since the value of (3.5.7) is invariant under removal of empty rows in
the skew shape �/µ, we can assume there is a box in the first row of �/µ, i.e.�1 > µ1. Let p be the index of
the rightmost column of �, i.e.�1 = p. Note that �0p > 0 = µ

0
p. Let �̃ be the partition obtained by removing

the p-th (rightmost) column of �, i.e. �̃i = min(�i, p� 1). (Note: in the figure below and hereafter we display
Young diagrams in the French notation.)

�
0
p

p = �1

�/µ

µ

For a vertical strip �/⌫ with µ ⇢ ⌫, by removing the p-th column of ⌫ (let ⌫̃ denote the resulting shape)
we get a vertical strip �̃/⌫̃ that satisfies µ ⇢ ⌫̃ and ⌫̃0p�1

� �
0
p. Conversely, for any vertical strip �̃/ with

µ ⇢  and 0p�1
� �

0
p and any integer 0  i  �

0
p, by adding i boxes in the p-th column of  we get the shape

+ (1i), for which �/(+ (1i)) is a vertical strip. Therefore we have a bijection

{⌫ | µ ⇢ ⌫ ⇢ �, �/⌫: vertical strip} ' { | µ ⇢  ⇢ �̃, �̃/: vertical strip, 0p�1
� �

0
p}⇥ {0, 1, . . . ,�0p}

(3.5.8)
in which ⌫ corresponds to (⌫̃, ⌫0p), where ⌫̃ is ⌫ with its p-th column removed. For ⌫ in the left-hand side of
(3.5.8), it is easy to see that

c(⌫/µ) = c(⌫̃/µ) + �
⇥
⌫
0
p > 0

⇤
,

|�/⌫| = |�̃/⌫̃|+ �
0
p � ⌫

0
p,

c(�/⌫) = c(�̃/⌫̃) + �
⇥
⌫
0
p < �

0
p

⇤
,

where we use the notation � [P ] = 1 if P is true and � [P ] = 0 if P is false for a condition P .
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Write simply A = { | µ ⇢  ⇢ �̃, �̃/: vertical strip, 0p�1
� �

0
p}. Substituting these to (3.5.7), we have

(RHS of (3.5.7)) =
X

2A

�0
pX

i=0

t
c(/µ)+�[i>0](�1)|�̃/|+�0

p�i
t
c(�̃/)+�[i<�0

p](t� 1)|�̃/|+�0
p�i�(c(�̃/)+�[i<�0

p])

=
X

2A

(�1)|�̃/|tc(/µ)+c(�̃/)(t� 1)|�̃/|�c(�̃/)

�0
pX

i=0

(�1)�
0
p�i

t
�[i>0]+�[i<�0

p](t� 1)�
0
p�i��[i<�0

p]

| {z }
(X)

.

We shall show (X) = 0. Letting q = �
0
p (> 0) and j = q � i we rewrite (X) as

(X) =
qX

j=0

(�1)jt�[j>0]+�[j<q](t� 1)j��[j>0]
. (3.5.9)

It is easy to check (3.5.9) = 0 when q = 1. When q � 2, by checking

(�1)qt(t� 1)q�1 + (�1)q�1
t
2(t� 1)q�2 = (�1)q�1

t(t� 1)q�2
,

we can carry induction on q to obtain (3.5.9) = 0.
Therefore we conclude (3.5.7) = 0 if �/µ 6= ?, finishing the proof of Proposition 3.5.1.

3.6 Example

We display Young diagrams in the French notation.

Example 3.6.1. Let �/µ = (3, 2, 1)/(1) = . We shall verify (3.4.10) for this �/µ by expanding each term
into a linear combination of {g⌫}. We can check

g = g + g + g � g � g � g + g , (3.6.1)

using recursively the Pieri formula for skew dual stable Grothendieck polynomials [Yel, Theorem 7.1]

hkgµ/⌫ =
X

�/µ: horizontal strip

⌫/⌘: vertical strip

(�1)k�|�/µ|
✓
a(�//µ)� a(⌫0//⌘0)� |⌫/⌘|

k � |�/µ|� |⌫/⌘|

◆
g�/⌘, (3.6.2)

where a(↵//�) is the number of i � 1 satisfying �i > ↵i+1 and �i > �i+1, and the binomial coe�cient
�m
n

�
is

considered as 0 when n < 0. (Note: another way to check (3.6.1) is to use (3.5.2).)
Applying I to (3.6.1) and using I(g) =

P
↵⇢ g↵, we compute the first term of (3.4.10) as

I(g ) = I(g + g + g � g � g � g + g )

=
X

⇢

g +
X

⇢

g +
X

⇢

g �

X

⇢

g �

X

⇢

g �

X

⇢

g +
X

⇢

g

=
X

2[?, ][[?, ][[?, ]

g. (3.6.3)
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Next we compute the second term of (3.4.10),
P

(1)⇢⌫⇢(3,2,1) g⌫/(1). Again using (3.6.2) we have

g = g + g + g � g � g � g + g ,

g = g + g � g , g = g + g � g , g = g + g � g ,

g = g + g � g , g = g , g = g + g � g ,

g = g , g = g + g � g , g = g ,

g = g , g = g , g = g?.

Summing them up, we have

X

⇢⌫⇢

g⌫/ =
X

2[?, ][[?, ][[?, ]

g. (3.6.4)

Finally we compute the last term of (3.4.10),
P

(1)⇢⌫⇢(3,2,1) g(3,2,1)/⌫ . We can check

g = g?, g = g , g = g , g = g ,

g = g + g � g , g = g + g � g , g = g + g � g ,

g = g , g = g + 2g + g � 2g � 2g + g , g = g ,

g = g + g + g � 2g , g = g + g + g � 2g ,

g = g + g + g � g � g � g + g .

Summing them up, we have

X

⇢⌫⇢

g

/⌫

=
X

2[?, ][[?, ][[?, ]

g. (3.6.5)

Hence we see (3.6.3) = (3.6.4) = (3.6.5), verifying (3.4.10).

Remark 3.6.2. From (3.6.3) in the example above and a Pieri-type formula given later in Proposition 4.3.2
(I(g�)I(g(k)) =

P
µ gµ, summed over µ satisfying the set di↵erence µ\� is a horizontal strip of size  k), one

may expect positivity in the expansions I(g�/µ) =
P

⌫ c̃
�
µ⌫g⌫ and I(gµ)I(g⌫) =

P
� d̃

�
µ⌫g� (note that c̃

�
µ⌫ =P

µ⇢⇢� c
�
,⌫ =

P
µ⇢⇢� c


µ,⌫ and d̃

�
µ⌫ =

P
↵⇢µ
�⇢⌫

d
�
↵,�). However, neither hold in general; a counterexample for

the former is c̃(53221)
(321),(321) = �1, and one for the latter is d̃(5321)

(321),(321) = �1.

3.7 Appendix: Group-like elements in b⇤ and automorphisms on ⇤

An element a of a coalgebra (A,�, ✏) is called group-like if �(a) = a⌦ a and ✏(a) = 1. The set of group-like
elements in a Hopf algebra forms a group; if a and b are group-like then so are ab and S(a) = a

�1. If A
is a bialgebra and a 2 A is group-like then the multiplication map La : A �! A ; b 7! ab is a coalgebra
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morphism since � � La(b) = �(ab) = �(a)�(b) = (a⌦ a)�(b) = (La ⌦ La) ��(b), and hence the dual map
L
⇤
a : A

⇤
�! A

⇤ is an algebra morphism.
Although b⇤ is not a coalgebra, we shall also say F 2 b⇤ is group-like if F (x, y) = F (x)F (y) and its

constant term F (0) is 1. Again, here we mean F (x) = F (x1, x2, · · · ), F (y) = F (y1, y2, · · · ), F (x, y) =
F (x1, x2, · · · , y1, y2, · · · ) and F (0) = F (0, 0, · · · ). Then these elements satisfy expected properties seen above:

Lemma 3.7.1. For group-like elements F, F
0
2 b⇤,

(1) FF
0
is group-like.

(2) S(F ) = F
�1

is group-like. Here we extend the antipode S : ⇤ �! ⇤ ; s� 7! (�1)|�|s�0 to b⇤ �! b⇤.

Proof. (1) By FF
0(x, y) = F (x, y)F 0(x, y) = F (x)F (y)F 0(x)F 0(y) = FF

0(x)·FF
0(y) and FF

0(0) = F (0)F 0(0) =
1.
(2) Write F =

P
� A�s� with A� 2 K (possibly an infinite sum).

Since F (x, y) =
P

� A�s�(x, y) =
P

� A�
P

µ,⌫ c
�
µ⌫sµ(x)s⌫(y) =

P
µ,⌫

�P
� A�c

�
µ⌫

�
sµ(x)s⌫(y) and F (x)F (y) =�P

µ Aµsµ(x)
��P

⌫ A⌫s⌫(y)
�
=
P

µ,⌫ AµA⌫sµ(x)s⌫(y), it follows that

F =
X

�

A�s� is group-like () A? = 1 and AµA⌫ =
X

�

A�c
�
µ⌫ for 8µ, ⌫. (3.7.1)

Let F 0 := S(F ) =
P

A�(�1)|�|s�0 . Similarly we can see that F 0 is group-like if and only if A? = 1 and
AµA⌫ =

P
� A�c

�0

µ0⌫0 for any µ, ⌫. Since c
�
µ⌫ = c

�0

µ0⌫0 it follows that F 0 is group-like.

Since �(s�) =
P

µ,⌫ c
�
µ⌫sµ ⌦ s⌫ , by applying m � (id ⌦ S) we have

P
µ,⌫(�1)

|⌫|
c
�
µ⌫sµs⌫0 = m � (id ⌦

S) � �(s�) = u � ✏(s�) = ��,?. From this and (3.7.1) we have FF
0 =

�P
µ Aµsµ

��P
⌫(�1)

|⌫|
A⌫s⌫0

�
=P

µ,⌫(�1)
|⌫|
AµA⌫sµs⌫0 =

P
µ,⌫

P
�(�1)

|⌫|
c
�
µ⌫A�sµs⌫0 =

P
� A�

�P
µ,⌫(�1)

|⌫|
c
�
µ⌫sµs⌫0

�
=
P

� A���,? =

A? = 1. Hence F
0 = F

�1.

Lemma 3.7.2. For F 2 b⇤, the followings are equivalent.

(1) F 2 b⇤ is group-like.

(2) (F,�) : ⇤ �! K is an algebra homomorphism.

(3) F
? : ⇤ �! ⇤ is an algebra automorphism.

Proof. (1) () (2) Again we write F =
P

� A�s� with A� 2 K. (2) is equivalent to (F, 1) = 1 and

(F, sµ)(F, s⌫) = (F, sµs⌫) for any µ, ⌫, which is equivalent to (3.7.1) since sµs⌫ =
P

� c
�
µ⌫s�.

(2) =) (3) Since (F,�) : ⇤ �! K and id⇤ : ⇤ �! ⇤ are algebra morphisms, (F,�) ⌦ id⇤ : ⇤ ⌦ ⇤ �! ⇤ is
an algebra morphism. Since � : ⇤ �! ⇤ ⌦ ⇤ is an algebra morphism by the axiom of bialgebras, it follows
that F? = ((F,�)⌦ id) �� is an algebra morphism.

By S(F ) = F
�1 and Lemma 3.2.3 (2) we have S(F )? = (F?)�1. Hence F

? is invertible.
(3) =) (2) By (3.2.4) and the axiom of bialgebras that ✏ : ⇤ �! K is an algebra morphism, it follows that

(F,�) = ✏ � F
? is an algebra morphism.

Remark 3.7.3. There is no group-like element in ⇤ except 1 since f(x, y) = f(x)f(y) implies deg(f) =
deg(f) + deg(f).

Remark 3.7.4. By Lemma 3.2.4 and 3.2.5, an algebra automorphism on ⇤ is of the form F
? for some F 2 b⇤

if and only if it is a ⇤-comodule morphism.

By Lemma 3.7.2, the following lemma implies that H?(t) and E
?(t) are algebra automorphisms on ⇤.

Lemma 3.7.5. The elements H(t), E(t) 2 b⇤ are group-like.

Proof. By �(hk) =
P

i+j=k hi ⌦ hj , we have H(t)(x, y) =
P

k�0
t
k
hk(x, y) =

P
k�0

t
k
P

i+j=k hi(x)hj(y) =�P
i�0

t
i
hi(x)

��P
j�0

t
j
hj(y)

�
=
�
H(t)(x)

��
H(t)(y)

�
. The proof for E(t) is similar.
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Chapter 4

On the Pieri rules of stable and dual
stable Grothendieck polynomials

4.1 Introduction

The stable Grothendieck polynomials G� and the dual stable Grothendieck polynomials g� are certain families
of inhomogeneous symmetric functions parametrized by interger partitions �. They are certain K-theoretic
deformations of the Schur functions and dual to each other via the Hall inner product.

The Pieri formulas for G� and g� ((4.2.1) and (4.2.2)) involve certain binomials coe�cients, and we show
in this chapter that these coe�cients are the values of the Möbius functions of certain posets of horizontal
strips (Lemma 4.3.1), and hence the Pieri formulas can be rewritten as certain multiplicity-free sums ((4.3.6)
and (4.3.9)) by using certain sums eg� =

P
µ⇢� gµ and eG� =

P
µ�� Gµ; or, as alternating sums of meets/joins

of the leading terms (Proposition 4.3.2 and 4.3.3).

4.2 Stable and dual stable Grothendieck polynomials

We follow the settings in Chapter 3; see Section 3.2 for undefined notations. In particular, see Section 3.2.3
for the stable Grothendieck polynomials G� and the dual stable Grothendieck polynomials g�.

Let P be the set of integer partitions. For partitions �, µ 2 P, the inclusion � ⇢ µ means �i  µi for all
i, and �\µ and �[µ (2 P) are given by (�\µ)i = min(�i, µi) and (�[µ)i = max(�i, µi) for all i. In other
words, \ and [ are the meet and join of the poset (P,⇢).

4.2.1 Pieri rules

The (row) Pieri formula for G� was given by Lenart [Len00, Theorem 3.2]: for any partition � 2 P and
integer a � 0,

G(a)G� =
X

µ/�: horizontal strip

(�1)|µ/�|�a

✓
r(µ/�)� 1

|µ/�|� a

◆
Gµ, (4.2.1)

where r(µ/�) denotes the number of the rows in the skew shape µ/�. Subsequently, the (row) Pieri formula
for g� is given in [Buc02, Corollary 7.1] (as a formula for dµ�,(a), the coproduct structure constants for G�):

g(a)g� =
X

µ/�: horizontal strip

(�1)a�|µ/�|
✓

r(�/µ̄)

a� |µ/�|

◆
gµ, (4.2.2)

where µ̄ = (µ2, µ3, . . . ).
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4.2.2 Their sums

For � 2 P we let
eg� =

X

µ⇢�

gµ (2 ⇤), eG� =
X

µ��

Gµ (2 b⇤).

In Chapter 3 it is shown (see Proposition 3.4.4 and (3.4.13)) that

H(1)?(g�) = eg�, (4.2.3)

H(1)G� = eG�. (4.2.4)

Here H(1) =
P

i�0
hi =

P
�2P G�. Recall that H(1)? : ⇤ �! ⇤ is an algebra automorphism. We remark

that the equality (4.2.4) appeared in [Buc02, Section 8].

4.3 Description for the Pieri coe�cients

In this section we give an explanation for the Pieri coe�cients for G� (4.2.1) and g� (4.2.2); their non-leading
terms (higher-degree terms for the case of G�; lower-degree terms for the case of g�) are obtained by taking
an alternating sum of meets/joins of the leading terms ((4.3.8) and (4.3.11)). Another equivalent description
is that the product eG�G(a) (resp. eg�eg(a)) is expanded into a certain multiplicity-free sum of Gµ (resp. gµ)
((4.3.6) and (4.3.9)).

The key fact is that the coe�cients in the Pieri rule (4.2.1) and (4.2.2) are values of the Möbius functions
of certain posets of horizontal strips over �: for � 2 P and a 2 Z>0, let

HS(�) = {µ 2 P | µ/� is a horizontal strip}, (4.3.1)

HSa(�) = {µ 2 HS(�) | |µ/�|  a}, cHSa(�) = HSa(�) t {1̂}, (4.3.2)

HS�a(�) = {µ 2 HS(�) | |µ/�| � a}, cHS�a(�) = HS�a(�) t {0̂}. (4.3.3)

Here 0̂ and 1̂ are the minimum and maximal elements. For a poset P , let µP denote its Möbius function (see
Section 4.4). Then we have

Lemma 4.3.1. (1) For any µ 2 HS�a(�), we have c
µ
�,(a) = �µcHS�a(�)

(0̂, µ). That is,

X

µ�⌫2HS�a(�)

c
⌫
�,(a) = 1. (4.3.4)

(2) For any µ 2 HSa(�), we have d
µ
�,(a) = �µcHSa(�)

(µ, 1̂). That is,

X

µ⇢⌫2HSa(�)

d
⌫
�,(a) = 1. (4.3.5)

Before proving Lemma 4.3.1 we show the following propositions. Let �(1),�(2), · · · be the list of all
horizontal strips over � of size a. Then

Proposition 4.3.2. We have

eg(a)eg� =
X

µ⇢�(i) for 9i

gµ (4.3.6)

=
X

i

egµ(i) �

X

i<j

egµ(i)\µ(j) +
X

i<j<k

egµ(i)\µ(j)\µ(k) � · · · , (4.3.7)

and

g(a)g� =
X

i

g�(i) �

X

i<j

g�(i)\�(j) +
X

i<j<k

g�(i)\�(j)\�(k) � · · · . (4.3.8)
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Proposition 4.3.3. We have

G(a)
eG� =

X

µ��(i) for 9i

Gµ (4.3.9)

=
X

i

eG�(i) �

X

i<j

eG�(i)[�(j) +
X

i<j<k

eG�(i)[�(j)[�(k) � · · · , (4.3.10)

and

G(a)G� =
X

i

G�(i) �

X

i<j

G�(i)[�(j) +
X

i<j<k

G�(i)[�(j)[�(k) � · · · (4.3.11)

Note that the left-hand side of (4.3.9) is not eG(a)
eG� but G(a)

eG� while that of (4.3.6) is eg(a)eg�, reflecting
the fact that the map G� 7!

eG� is a module morphism while g� 7! eg� is a ring morphism.

Remark 4.3.4. The equations (4.3.6) and (4.3.7) are mere specializations of corresponding results (Theorem

1.1.3 and 1.1.4) for a�ne dual stable Grothendieck polynomials (also known as K-k-Schur functions) g
(k)
�

shown in Chapter 1, but here we give another proof since it is easier and also applicable to G�. It is also

notable that in the a�ne case (that is, for g
(k)
� ), equations of the form (4.3.6) and (4.3.7) hold but (4.3.8)

does not.

Proof of Proposition 4.3.2. The right-hand sides of (4.3.6) and (4.3.7) are equal by the Inclusion-Exclusion
Principle, and (4.3.7) and (4.3.8) are equivalent by (4.2.3).

Let P be the order ideal of P generated by {�
(1)

,�
(2)

, · · · } (i.e. the set of µ 2 P satisfying µ ⇢ �
(i) for

some i) and bP = P t {1̂} where 1̂ is the maximum element. Note that {�(1),�(2), · · · } is the set of coatoms

in bP and cHSa(�) (⇢ bP ) is closed under meet. Then

eg�eg(a) =
X

⌫

d
⌫
�,(a)eg⌫ ((4.2.2) and (4.2.3)) (4.3.12)

= �
X

⌫

µcHSa(�)
(⌫, 1̂)eg⌫ (Lemma 4.3.1 (2)) (4.3.13)

= �
X

⌫

µ bP (⌫, 1̂)eg⌫ (Lemma 4.4.1 (3)) (4.3.14)

=
X

µ2P

gµ. (Lemma 4.4.1 (1)) (4.3.15)

Hence (4.3.6) follows.

Proof of Proposition 4.3.3. Similarly to Proposition 4.3.2, the equivalence of (4.3.9), (4.3.10) and (4.3.11)
follows and we have by (4.2.1), (4.2.4), Lemma 4.3.1 (1) and Lemma 4.4.1 (with all ordering reversed)

eG�G(a) =
X

⌫

c
⌫
�,(a)

eG⌫ =
X

µ2Q

Gµ, (4.3.16)

where Q is the order filter of P generated by {�
(1)

,�
(2)

, · · · }, i.e. the set of µ 2 P satisfying µ � �
(i) for some

i. Hence (4.3.9) follows.

Proof of Lemma 4.3.1. Fix � 2 P. Let r0 < r1 < · · · < rt be the row indices for which rows there are addable
corners of �, i.e.�ri�1 > �ri (we consider �0 =1, whence r0 = 1). Let ni = �ri�1 � �ri , i.e. the number of
boxes that can be added to � in the ri-th row (we consider n0 =1). Then

HS(�) ' {(b0, . . . , bt) 2 Zt+1
| 0  bi  ni (for 0  i  t)},
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where (b0, . . . , bt) in the right-hand side corresponds to the partition obtained by adding bi boxes to � in the
ri-th row.

bt

nt
b1

n1
b0�

Under this correspondence µ 7! (b0, . . . , bt) and ⌫ 7! (c0, . . . , ct), we have ⌫ ⇢ µ () ci  bi (for all i)
and

|⌫/�| =
tX

i=0

ci, r(⌫/�) =
tX

i=0

� [ci > 0] , r(�/⌫̄) =
tX

i=1

� [ci < ni] , (4.3.17)

where we use the notation � [P ] = 1 if P is true and � [P ] = 0 if P is false for a condition P .
Now we prove (4.3.4). For µ 2 HS�a(�) by (4.3.17) we have

(LHS of (4.3.4)) =
X

⌫2HS�a(�)
⌫⇢µ

(�1)|⌫/�|�a

✓
r(⌫/�)� 1

|⌫/�|� a

◆
(4.3.18)

=
X

0c0b0

X

0c1b1

· · ·

X

0ctbt

�

"
tX

i=0

ci � a

#
(�1)

Pt
i=0 ci�a

✓Pt
i=0

� [ci > 0]� 1
Pt

i=0
ci � a

◆
. (4.3.19)

Applying Lemma 4.3.5 below to simplify the summation on ct, we have

=
X

0c0b0

· · ·

X

0ct�1bt�1

�

"
bt +

t�1X

i=0

ci � a

#
(�1)bt+

Pt�1
i=0 ci�a

✓Pt�1

i=0
� [ci > 0]� 1

bt +
Pt�1

i=0
ci � a

◆
.

(4.3.20)

Repeating this to simplify the summations on c0, . . . , ct�1, we have

= . . . (4.3.21)

= �

"
tX

i=0

bi � a

#
(�1)

Pt
i=0 bi�a

✓
�1Pt

i=0
bi � a

◆
(4.3.22)

= �

"
tX

i=0

bi � a

#
= � [|µ/�| � a] = 1. (4.3.23)

Hence (4.3.4) is proved.
Next we prove (4.3.5). By similar arguments we have

(LHS of (4.3.5)) =
X

b0c0n0

X

b1c1n1

· · ·

X

btctnt

�

"
tX

i=0

ci  a

#
(�1)a�

Pt
i=0 ci

✓Pt
i=1

� [ci < ni]

a�
Pt

i=0
ci

◆
. (4.3.24)

Note that this is actually a finite sum despite n0 =1, and we can replace n0 with a su�ciently large positive
integer without changing the value of (4.3.24). Noticing � [c0 < n0] = 1 for any c0 that contributes to the
summation (4.3.24), and letting b

0
i = ni � bi, c0i = ni � ci and a

0 = (
Pt

i=0
ni)� a, we have

(4.3.24) =
X

0c00b00

X

0c01b01

· · ·

X

0c0tb0t

�

"
tX

i=0

c
0
i � a

0

#
(�1)

Pt
i=0 c0i�a0

✓Pt
i=0

� [c0i > 0]� 1
Pt

i=0
c
0
i � a0

◆
. (4.3.25)
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Since this summation is of the same form as (4.3.19), by the same arguments we have

= �

"
tX

i=0

b
0
i � a

0

#
= �

"
tX

i=0

bi  a

#
= � [|µ/�|  a] = 1. (4.3.26)

Hence (4.3.5) is proved.

Lemma 4.3.5. For R, q, b, b
0
2 Z with b

0
 b, we have

X

b0xb

� [x � R] (�1)x�R

✓
q + � [x > b

0]

x�R

◆
= � [b � R] (�1)b�R

✓
q

b�R

◆
,

where we use the notation � [P ] = 1 if P is true and � [P ] = 0 if P is false for a condition P .

Proof. We carry induction on b� b
0. The lemma is clear when b

0 = b. When b
0
< b, it is easy to check

�� [b0 � R]

✓
q

b0 �R

◆
+ � [b0 + 1 � R]

✓
q + 1

b0 + 1�R

◆
= � [b0 + 1 � R]

✓
q

b0 + 1�R

◆
.

Hence we can replace b
0 with b

0 + 1, completing the proof.

4.4 Appendix: Möbius function of a poset

For basic definitions for posets we refer the reader to [Sta12, Chapter 3].
For a locally finite (i.e. every interval is finite) poset P , the Möbius function µP (x, y) (for x, y 2 P with

x  y) is characterized by X

xzy

µP (x, z) = �xy for any x  y,

or equivalently X

xzy

µP (z, y) = �xy for any x  y. (4.4.1)

Lemma 4.4.1. Let bP be a locally finite poset with the maximum element 1̂. Let P = bP \{1̂} and {x1, · · · , xn}

be the maximal elements in P , i.e. the coatoms in bP . Consider formal variables {g(s) | s 2 bP} and let

eg(t) =
P

st g(s) for t 2 bP .

(1) We have

X

s2P

g(s) = �
X

s2P

µ bP (s, 1̂)eg(s). (4.4.2)

(2) Assume that P admits the meet operation ^. Then

X

s2P

g(s) =
X

m�1

(�1)m�1
X

i1<···<im

eg(xi1 ^ · · · ^ xim) (4.4.3)

✓
=
X

i

eg(xi)�
X

i<j

eg(xi ^ xj) +
X

i<j<k

eg(xi ^ xj ^ xk)� . . . ,

◆
(4.4.4)

(3) In the same situation as (2), µ bP (s, 1̂) = 0 unless s is of the form s = xi1 ^ · · · ^ xil , and

µ bP (s, 1̂) = µ bP 0(s, 1̂) (4.4.5)

for any subposet bP 0
of bP that contains all elements of the form xi1 ^ · · · ^ xil (including 1̂ as the meet of an

empty set).
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Proof. It is known (see [Sta12, Proposition 3.7.1] for example) that

g(t) =
X

st

µ bP (s, t)eg(s) (for 8t 2 bP ). (4.4.6)

Hence we have
X

s2P

g(s) = eg(1̂)� g(1̂) = eg(1̂)�
X

s2 bP

µ bP (s, 1̂)eg(s) = �
X

s2P

µ bP (s, 1̂)eg(s), (4.4.7)

proving (1). (2) is by the Inclusion-Exclusion Principle. (3) follows from (1) and (2).
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