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Chapter 1

Introduction

The Schrödinger equation on the Euclidean space Rd{
i∂tu(t, x) = (−∆x + V (t, x))u(t, x), (t, x) ∈ R× Rd,
u(0, x) = u0(x), x ∈ Rd

(1.0.1)

has been one of the fundamental equations in quantum physics, and has been
studied by not only many physicists but also mathematicians. If V (t, x) does
not depend on time t, i.e., V (t, x) = V (x), it is well-known that the behavior
of (1.0.1) is determined by the spectral analysis of the Schrödinger operators

−∆x + V (x) on L2(Rd). (1.0.2)

Spectral and scattering properties of (1.0.2) have studied deeply. In partic-
ular, there are a lot of remarkable results in the latter half of the twentieth
century, and we can see those studies in [2] and [7].

On the other hand, discrete Schrödinger operators

H = H0 + V = −∆disc + Vdisc (1.0.3)

are derived from tight-binding approximation of Schrödinger operators which
describe the Hamiltonian of electrons in solid state matters. In many cases,
∆disc is regarded as the discrete Laplacian on the graph in consideration, and
Vdisc as a real-valued function on the graph. It is known that the properties
of discrete Schrödinger operators depend on the shape of graph.

Example 1.0.1. (1) One of the simplest models is the discrete Schrödinger

3



operators on the square lattice Zd: For u ∈ ℓ2(Zd)

Hsqu(x) = Hsq,0u(x) + V u(x)

= − 1

2d

∑
|y−x|=1

u(y) + V (x)u(x), x ∈ Zd.

(2) The discrete Schrödinger operators on the triangular lattice is given
by

Htru(x) = Htr,0u(x) + V u(x)

= −1

6

6∑
j=1

u(x+ nj) + V (x)u(x), x ∈ Z2

for u ∈ ℓ2(Z2). Here n1 = (1, 0), n2 = (−1, 0), n3 = (0, 1), n4 = (0,−1),
n5 = (1,−1), n6 = (−1, 1)．

(3) The discrete Schrödinger operators on the hexagonal lattice describe
a model of tight-binding Hamiltonians of graphene. For u = t(u1, u2) ∈
ℓ2(Z2;C2), we define

Hheu(x1, x2) = Hhe,0u(x1, x2) + V u(x1, x2)

= −1

3

(
u2(x1, x2) + u2(x1 − 1, x2) + u2(x1, x2 − 1)
u1(x1, x2) + u1(x1 + 1, x2) + u1(x1, x2 + 1)

)
+

(
V1(x)u1(x)
V2(x)u2(x)

)
.

We note that each point (x1, x2) ∈ Z2 is equipped with two values u1(x1, x2)
and u2(x1, x2). The former corresponds to the dots in the figure below and
the latter to the squares.

Figure 1.1: Triangular lat-
tice.

Figure 1.2: Hexagonal lat-
tice.

We can find in [1] various examples of discrete Schrödinger operators,
e.g., those on ladders, the diamond lattice, the Kagome lattice.
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This thesis concerns a long-range scattering theory and continuum limit
of discrete Schrödinger operators.

1.1 Backgrounds

1.1.1 Scattering problem

・Known results on (1.0.2)

The following results on the Schrödinger operators (1.0.2) are well-known
(see Dereziński-Gérard [3] and Yafaev [10]).

• If V (x) is short-range, i.e., there exist ρ > 1 and C > 0 such that
|V (x)| ≤ C(1 + |x|)−ρ, then the wave operators

W± := s- lim
t→±∞

eit(−∆x+V (x))e−it(−∆x) (1.1.1)

exist and they are asymptotically complete, i.e., the range RanW± of
W± equals to the absolutely continuous subspace Hac(−∆x + V (x))
of −∆x + V (x).

• If V (x) is long-range, i.e., there exist ρ ∈ (0, 1] and C > 0 such that
|V (x)| ≤ C(1 + |x|)−ρ, it may occur that W± do not exist. However,
if we assume in addition differential condition on V (x), there exist
“modified wave operators” and they are “asymptotically complete”.

Since each element of the absolutely continuous subspace is called a
scattering state, it follows that if (1.1.1) exist and are asymptotically com-
plete, W± give one-to-one correspondings of the scattering states of −∆x

and −∆x+V (x). This is regarded as an analogue of the classical scattering
problem; if V (x) decays at infinity, then it is reasonable to expect that every
classical orbit associated to the Hamiltonian |ξ|2 + V (x) which scatters into
infinity can be approximated by some free orbit.

The second result is also related to the classical scattering problem. In
fact, there are several kinds of modified wave operators and each of them
is constructed from solutions which derive from classical scattering. For ex-
ample, Isozaki-Kitada modifiers [4] require outgoing and incoming solutions
of the eikonal equation

|∇xφ(x, ξ)|2 + V (x) = |ξ|2, (x, ξ) ∈ Rd × Rd. (1.1.2)
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・Known results on discrete Schrödinger operators

Similarly to the Schrödinger operators, a short-range scattering theory for
discrete Schrödinger operators on general lattices works well: If V is short-
range, i.e., there exist ρ > 1 and C > 0 such that |V (x)| ≤ C(1 + |x|)−ρ,
then the wave operators

W± := s- lim
t→±∞

eitHe−itH0

exist and they are asymptotically complete, i.e., RanW± = Hac(H).
On the other hand, there is a known result by Nakamura [5] on a long-

range scattering theory for discrete Schrödinger operators on the square
lattice. Nakamura [5] considered the Hamiltonian hsq(x, ξ) = hsq,0(ξ)+Ṽ (x),
(x, ξ) ∈ Rd × Td, where hsq,0 is a real-valued smooth function on the torus
Td given by the representation of Hsq,0 via the discrete Fourier transform
(see (2.1.2)). Then modified wave operators are made from solutions of the
Hamilton-Jacobi equation

∂tϕ(t, ξ) = hsq(∇ξϕ(t, ξ), ξ).

1.1.2 Continuum limit of discrete Schrödinger operators

Discrete Schrödinger operators have another derivation: a discrete approx-
imation of Schrödinger operators (1.0.2). In particular, it is a reasonable
observation that the discrete Schrödinger operators on the square lattice
hZd = {hn | n ∈ Zd} with width h > 0

Hhu(x) :=h
−2

d∑
j=1

(2u(x)− u(x+ hej)− u(x− hej)) (1.1.3)

+ V (x)u(x), x ∈ hZd, u ∈ ℓ2(hZd)

seems to converge to the Schrödinger operator H = −∆+ V (x). In fact, in
physics research, Schrödinger equations (1.0.1) are usually solved approxi-
mately by numerical computations on the lattice. Furthermore, in mathe-
matics, numerical analysis studies conditions for numerical solutions to be
really approximations of the rigorous solutions.

Our interest is to study a continuum limit of the discrete Schrödinger
operators (1.1.3) from the view point of the spectral theory. We refer to Ra-
binovich [6] as a known result that (1.1.3) tends to the Schrödinger operator
(1.0.2) in the sense of their spectra.
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1.2 Organization of this thesis

The organization of this thesis is as follows. Chapter 2 concerns a long-range
scattering theory for discrete Schrödinger operators of the form

Hu(x) =
∑
y∈Zd

f(y)u(x− y) + V (x)u(x), u ∈ ℓ2(Zd), (1.2.1)

including those on the square and triangular lattices. We prove that, if V
satisfies a long-range condition (2.1.3), then modified wave operators with
Isozaki-Kitada modifiers exist and they are asymptotically complete. We
also show that Isozaki-Kitada modifiers are constructed from solutions to
the eikonal equation

h0(∇ξφ(x, ξ)) + Ṽ (x) = h0(ξ),

where h0(ξ) =
∑

x∈Zd e−ix·ξf(x) and Ṽ ∈ C∞(Rd) is a suitable smooth con-
tinuation of V . In Chapter 3, we consider a long-range scattering theory for
discrete Schrödinger operators on the hexagonal lattice, i.e., the graphene.
Since discrete Schrödinger operators on graphene act on the Hilbert space
ℓ2(Z2;C2), the argument of Chapter 2 cannot be applied directly. However,
we show that if we employ the argument of diagonalization of the free opera-
tor Hhe,0, we can reduce a long-range scattering problem of Hhe to that of a
direct sum of operators of the form (1.2.1). Chapter 4 is devoted to a contin-
uum limit of (1.1.3). Choosing a suitable operator Ph : L2(Rd) → ℓ2(hZd),
we prove that P ∗

h (Hh−µ)−1Ph → (H−µ)−1 as h→ 0 in the operator norm
topology. We note that this convergence is valid if, roughly speaking, V is
bounded from below and diverges at most exponentially at infinity. As a
corollary of the main theorem, we show that the Hausdorff distance between
the spectra of Hh and H tends to 0 as h→ 0.
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Chapter 2

Long-range scattering for
discrete Schrödinger
operators

2.1 Introduction

We consider a class of generalized discrete Schrödinger operators H0 and H
on H = ℓ2(Zd), d ≥ 1,

H0u[x] =
∑
y∈Zd

f [y]u[x− y],

Hu[x] = H0u[x] + V [x]u[x],

(2.1.1)

where f ∈ S (Zd) := {u ∈ ℓ2(Zd) | u[x] = O(⟨x⟩−∞)}, ⟨x⟩ := (1 + |x|2)
1
2 ,

satisfies f [−x] = f [x], x ∈ Zd, and V is a real-valued bounded function on
Zd. Then H0 and H are bounded selfadjoint operators on H.

We define the discrete Fourier transform F by

Fu(ξ) = (2π)−
d
2

∑
x∈Zd

e−ix·ξu[x], ξ ∈ Td = [−π, π)d

for u ∈ ℓ1(Zd). Then F is continuously extended to a unitary operator from
H to L2(Td) and

H0u[x] = F ∗ (h0(·)Fu(·)) [x],
where

h0(ξ) :=
∑
x∈Zd

e−ix·ξf [x], ξ ∈ Td = [−π, π)d. (2.1.2)
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The above condition on f implies h0 is a real-valued smooth function on Td.
We denote by v(ξ) and A(ξ) the generalized velocity and the Hessian of h0,
respectively:

v(ξ) = ∇ξh0(ξ),

A(ξ) = t∇ξ∇ξh0(ξ) = (∂ξj∂ξkh0(ξ))1≤j,k≤d.

The set of threshold energies is denoted by T,

T = {h0(ξ) | ξ ∈ Td, v(ξ) = 0}.

We note T has Lebesgue measure 0 by Sard’s theorem. We first assume the
condition below.

Assumption 2.1.1. The sets {ξ ∈ Td | v(ξ) = 0} and {ξ ∈ Td | detA(ξ) =
0} have d-dimensional Lebesgue measure zero.

The above assumption implies the absence of point and singular contin-
uous spectrum. The following assertion is a generalized version of [13, The-
orem 12.3.2].

Proposition 2.1.2. Suppose that the set {ξ ∈ Td | v(ξ) = 0} has d-
dimensional Lebesgue measure zero. Then H0 has purely absolutely contin-
uous spectrum and σac(H0) = h0(Td), where σac(H0) denotes the absolutely
continuous spectrum of H0.

Proof. Fix a point ξ0 ∈ W := {ξ ∈ Td | v(ξ) ̸= 0}. Then it suffices to
prove C∞

c (U) ⊂ Hac(FH0F
∗) for some neighborhood U ⊂W of ξ0; for any

f ∈ C∞
c (U),

B(σ(H0)) → R, B 7→
∫
h−1
0 (B)∩supp f

|f(ξ)|2dξ

is an absolutely continuous Borel measure. The claim is proved by taking a
local coordinate U ∋ x 7→ (y(x), h0(x)) ∈ Rd−1 × R.

If V [x] decays at infinity, then V is a compact operator on H and hence
σess(H) = σess(H0) = σac(H0) = h0(Td), where σess(H) and σess(H0) de-
notes the essential spectrum of H and H0, respectively. We suppose a long-
range condition on V .

Assumption 2.1.3. There exist Ṽ ∈ C∞(Rd;R) and ε ∈ (0, 1] such that
Ṽ |Zd = V and

|∂αx Ṽ (x)| ≤ Cα⟨x⟩−|α|−ε, x ∈ Rd, α ∈ Zd+,

where Z+ = {0, 1, 2, · · · }.
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Under Assumptions 2.1.1 and 2.1.3, the singular continuous spectrum
of H is empty (see, e.g., [12]). In the following, we write V for Ṽ without
confusion.

Remark 2.1.4. Assumption 2.1.3 is equivalent to the following condition used
in [11],

|∂̃αxV [x] | ≤ C ′
α⟨x⟩−|α|−ε, x ∈ Rd, α ∈ Zd+,

where ∂̃αx = ∂̃α1
x1 · · · ∂̃αd

xd
, and ∂̃xjV [x] = V [x] − V [x− ej ] is the difference

operator with respect to the j-th variable. Here {ej} is the standard orthog-
onal basis of Rd. See [11, Lemma 2.1] for the detail.

In Section 2.2, we construct modified wave operators with time-independent
modifiers, which are proposed by Isozaki and Kitada [6], so called Isozaki-
Kitada modifiers. Isozaki-Kitada modifiers are formally defined by

W±
J = s-lim

t→±∞
eitHJe−itH0 .

We construct J as an operator of the form

Ju [x] = (2π)−d
∫
Td

∑
y∈Zd

ei(φ(x,ξ)−y·ξ)u[y]dξ, (2.1.3)

where the phase function φ is a solution to the eikonal equation

h0(∇xφ(x, ξ)) + V (x) = h0(ξ) (2.1.4)

in the “outgoing” and “incoming” regions and considered in Appendix 2.4.
The next theorem is our main result.

Theorem 2.1.5. Under Assumptions 2.1.1 and 2.1.3, there exists an op-
erator J of the form (2.1.3) such that, for any Γ ⋐ h0(Td)\T, the modified
wave operators

W±
J (Γ) := s-lim

t→±∞
eitHJe−itH0EH0(Γ) (2.1.5)

exist, where EH0 denotes the spectral measure of H0. Furthermore, the fol-
lowing properties hold:

i) Intertwining property: HW±
J (Γ) =W±

J (Γ)H0.

ii) Partial isometries: ∥W±
J (Γ)u∥ = ∥EH0(Γ)u∥.
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iii) Asymptotic completeness: RanW±
J (Γ) = EH(Γ)Hac(H).

Examples 2.1.6. i) In [11], a long-range scattering theory of the standard
difference Laplacian H0u[x] = −1

2

∑
|y−x|=1 u [y] , x ∈ Zd is considered. In

this case, h0(ξ) = −
∑d

j=1 cos ξj satisfies Assumption 2.1.1.
ii) A model for 2-dimensional triangle lattice is expressed by the operator

H0u[x] = −1
6

∑6
j=1 u[x + nj ], x ∈ Z2, where n1 = (1, 0), n2 = (−1, 0),

n3 = (0, 1), n4 = (0,−1), n5 = (1,−1), n6 = (−1, 1) (see, e.g., [2]). Since

h0(ξ) = −1

3
(cos ξ1 + cos ξ2 + cos(ξ1 − ξ2))

in this case, Assumption 2.1.1 is satisfied.

Scattering theory for Schrödinger operators on Rd has been extensively
studied ( [1], [5], [15], [16]). If the perturbation is long-range, i.e., V (x) =
O(⟨x⟩−ε), 0 < ε ≤ 1, then the scattering theory needs a modification
( [5], [6], [16]). Discrete Schrödinger operator describes the state of elec-
trons in solid matters with graph structure. Spectral properties of discrete
Schrödinger operators have been studied in [2], [4], [7], [11], [12], [14].

The main idea of the construction of modifiers is similar to [11]. We
translate H into an operator on the flat torus Td via discrete Fourier trans-
form and consider the corresponding classical mechanics on Td. The proof
is mainly based on [6]. We use the time-decaying method to construct
the phase function φ in the definition of J , and then the stationary phase
method and the Enss method to prove the existence and completeness of
modified wave operators. The construction of φ is given in Appendix 2.4,
which follows the argument of [8]. The main properties of φ is summarized
in Proposition 2.2.1. In Section 2, we prepare some lemmas for the proof
of Theorem 2.1.5. The Poisson summation formula is used to prove that
pseudo-difference operators on Zd are translated to pseudo-differential op-
erators on Td modulo smoothing operators (see the proof of Lemma 2.2.3 in
Appendix 2.5). This enables us to get over the difficulty derived from the
discreteness of Zd. In Section 3, we prove Theorem 2.1.5.

2.2 Preliminaries

We first state a proposition on the Hamilton flow generated by h(x, ξ) :=
h0(ξ) + V (x), which is proved in Appendix 2.4. Here we note that h0,
v and A are extended periodically in ξ from Td = [−π, π)d to Rd, and
we identify integrations on Td with those on [−π, π)d. We also note that
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the following proposition concerns functions on Rd ×
(
Rd\v−1(0)

)
, not on

Zd ×
(
Td\v−1(0)

)
.

We fix χ ∈ C∞(Rd) such that

χ(x) =

{
0 if |x| ≤ 1,

1 if |x| ≥ 2,
(2.2.1)

and we define cos(x, y) := x·y
|x||y| for x, y ∈ Rd\{0}. The following assertion

is an analogue of [6, Theorem 2.5].

Proposition 2.2.1. There exists a real-valued function φ ∈ C∞(Rd ×
(Rd\v−1(0))) satisfying the following properties: Set a > 0. Let φa ∈
C∞(Rd × Rd) be defined by

φa(x, ξ) = (φ(x, ξ)− x · ξ)χ
(
v(ξ)

a

)
+ x · ξ. (2.2.2)

(1) The function φa satisfies

φa(x, ξ + 2πm) = φa(x, ξ) + 2πx ·m, m ∈ Zd, (2.2.3)

|∂αx ∂
β
ξ [φa(x, ξ)− x · ξ] | ≤ Cαβ,a⟨x⟩1−ε−|α|, (2.2.4)

|t∇x∇ξφa(x, ξ)− I| < 1

2
(2.2.5)

for (x, ξ) ∈ Rd × Rd, where |M | :=
(∑d

j,k=1 |Mjk|2
) 1

2
for a matrix M .

(2) We set

Jau [x] := (2π)−d
∫
Td

∑
y∈Zd

ei(φa(x,ξ)−y·ξ)u[y]dξ. (2.2.6)

Then

(HJa − JaH0)u [x] = (2π)−d
∫
Td

∑
y∈Zd

ei(φa(x,ξ)−y·ξ)sa(x, ξ)u [y] dξ, (2.2.7)

where

sa(x, ξ) := e−iφa(x,ξ)H(eiφa(·,ξ)) [x]− h0(ξ) (2.2.8)

=
∑
z∈Zd

f [z]ei(φa(x−z,ξ)−φa(x,ξ)) + V [x]− h0(ξ)

satisfies for |x| ≥ 1 and |v(ξ)| ≥ a

|∂βξ sa(x, ξ)| ≤

{
Cβ,a⟨x⟩−1−ε, | cos(x, v(ξ))| ≥ 1

2 ,

Cβ,a⟨x⟩−ε, | cos(x, v(ξ))| ≤ 1
2 .

(2.2.9)
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We note that φa satisfies the eikonal equation (2.1.4) on {(x, ξ) | |x| ≥
Ra, |v(ξ)| ≥ a, | cos(x, v(ξ))| ≥ 1

2} and that the property is used for the proof
of (2.2.9) in the | cos(x, v(ξ))| ≥ 1

2 case (see Proposition 2.4.9 and (2.4.51)).
In the rest of this section, we prepare some lemmas for the proof of prop-

erties ii) and iii). We choose γ ∈ C∞
c (h0(Td)\T) and ρ± ∈ C∞([−1, 1]; [0, 1])

such that

ρ+(σ) + ρ−(σ) = 1,

ρ+(σ) = 1, σ ∈
[
1

4
, 1

]
,

ρ−(σ) = 1, σ ∈
[
−1,−1

4

]
.

Using γ and ρ±, we define operators with cutoffs in the energy and the
direction of x and v(ξ). We set symbols p± and operators P±, P̃± and
E±(t) by

p±(y, ξ) = γ(h0(ξ))χ(y)ρ±(cos(y, v(ξ))), (2.2.10)

P±u [x] = (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ξp±(y, ξ)u [y] dξ, (2.2.11)

P̃±u [x] = (2π)−d
∫
Td

∑
y∈Zd

ei(x·ξ−φa(y,ξ))p±(y, ξ)u [y] dξ, (2.2.12)

E±(t) = Jae
−itH0P̃±, t ∈ R, (2.2.13)

where Ja is defined by (2.2.6).
We consider properties of these operators. We use the stationary phase

method as in the pseudo-differential operator calculus (see, e.g., [17]). The
following two Lemmas correspond to [6, Proposition 3.4] and [6, Lemma 3.7],
and the proofs are given in Appendix 2.5 (see also [3] and [6]).

Lemma 2.2.2. Ja, P± and P̃± are bounded operators on H.

Lemma 2.2.3. γ(H0) − P+ − P−, P
∗
± − P±, E±(0) − P±, J

∗
aJa − I and

JaJ
∗
a − I are compact operators on H.

The next lemma, corresponding to [6, Proposition 3.8], is an analogue of
the intertwining property of wave operators.

Lemma 2.2.4. For any s ∈ R,

s-lim
t→±∞

eitH0J∗
aE±(t− s) = eisH0P̃±. (2.2.14)
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Proof. The definition of E±(t) implies

eitH0J∗
aE±(t− s) = eitH0J∗

aJae
−i(t−s)H0P̃±

= eitH0(J∗
aJa − I)e−itH0eisH0P̃± + eisH0P̃±.

Since e−itH0u → 0 weakly as t → ±∞ for any u ∈ H = Hac(H0), Lemma
2.2.3 implies that the first term converges strongly to 0 as t→ ±∞.

Next we prove the norm convergence of limt→±∞ eitHE±(t). If we set

G±(t) := (
d

idt
+H)E±(t) = (HJa − JaH0)E±(t),

then we have

eitHE±(t)− P± = E±(0)− P± + i

∫ t

0
eiτHG±(τ)dτ.

The following proposition is analogous to [6, Theorem 3.5], and proves G±(t)
is integrable in {±t ≥ 0}, respectively.

Proposition 2.2.5. G±(t) is norm continuous and compact for any t ∈ R.
Furthermore, G±(t) satisfies

∥G±(t)∥ ≤ C⟨t⟩−1−ε, ±t ≥ 0. (2.2.15)

In particular, eitHE±(t)− P± converges to a compact operator with respect
to the norm topology as t→ ±∞, respectively.

Proof. Let

Φ(x, y, ξ; t) := φa(x, ξ)− th0(ξ)− φa(y, ξ).

Then the definition (2.2.13) of E±(t) implies

G±(t)u[x] = (HJa − JaH0)e
−itH0P̃±u[x]

= (2π)−d
∫
Td

∑
y∈Zd

eiΦ(x,y,ξ;t)sa(x, ξ)p±(y, ξ)u[y]dξ.

The norm continuity of G±(t) is obvious. Furthermore, (2.2.9) implies the
compactness of HJa−JaH0 by the similar argument in the proof of Lemma
2.2.3, hence G±(t) is compact.
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Let us prove (2.2.15). We consider the + case only. The other case
is proved similarly. We use another decomposition ρ± ∈ C∞([−1, 1]; [0, 1])
which is different from ρ± in that

ρ+(σ) + ρ−(σ) = 1,

ρ+(σ) =

{
1, σ ≥ 3

4 ,

0, σ ≤ 1
2 .

We define

s−(x, ξ) := sa(x, ξ)χ{x ̸=0}ρ
−(cos(x, v(ξ))),

s+(x, ξ) := sa(x, ξ)− s−(x, ξ).

We then decompose G+ as

G+(t)u[x] = (2π)−d
∫
Td

∑
y∈Zd

eiΦ(x,y,ξ;t)(s+p+ + s−p+)(x, y, ξ)u[y]dξ

(2.2.16)

=: (F+(t) + F−(t))u[x].

Now we claim that for any t ≥ 0 and ℓ ≥ 0,

∥F+(t)∥ ≤ C⟨at⟩−1−ε, (2.2.17)

∥F−(t)∥ ≤ Cℓ⟨at⟩−ℓ. (2.2.18)

If (2.2.17) and (2.2.18) hold, then (2.2.15) follows from (2.2.16).
For the proof of (2.2.17), we let

ϕ(t; y, ξ) := th0(ξ) + φa(y, ξ)

and set

L1 := ⟨∇ξϕ⟩−2(1−∇ξϕ ·Dξ).

Then (2.2.4) implies on the support of s+(x, ξ)p+(y, ξ),

⟨∇ξϕ⟩−1 ≤ C⟨|y|+ t|v(ξ)|⟩−1.
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Thus, for any ℓ ∈ Z+, we have

F+(t)u[x] = (2π)−d
∫
Td

∑
y∈Zd

Lℓ1(e
−iϕ(t;y,ξ))eiφa(x,ξ)s+(x, ξ)p+(y, ξ)u[y]dξ

= (2π)−d
∫
Td

∑
y∈Zd

e−iϕ(t;y,ξ)(tL1)
ℓ(eiφa(x,ξ)s+(x, ξ)p+(y, ξ))u[y]dξ

= (2π)−d
∫
Td

∑
y∈Zd

eiΦ(t;y,ξ){e−iφa(x,ξ)(tL1)
ℓ(eiφa(x,ξ)s+p+)}u[y]dξ.

The function in {} is a finite sum of functions of the form sℓj(x, ξ)p
ℓ
j(y, ξ; t)

such that {
|∂βξ s

ℓ
j(x, ξ)| ≤ Cβ⟨x⟩ℓ−1−ε,

|∂βξ p
ℓ
j(y, ξ; t)| ≤ Cβ⟨|y|+ t|v(ξ)|⟩−ℓ.

(2.2.19)

Indeed, (2.2.19) follows from (2.2.9) and (2.2.10). Letting

Sℓju[x] := (2π)−d
∫
Td

∑
y∈Zd

ei(φa(x,ξ)−y·ξ)sℓj(x, ξ)u[y]dξ,

P ℓj (t)u[x] := (2π)−d
∫
Td

∑
y∈Zd

ei(x·ξ−φa(y,ξ))pℓj(y, ξ; t)u[y]dξ,

we have

F+(t) =
∑
j

Sℓje
−itH0P ℓj (t).

Furthermore, we have by (2.2.19) and the argument in the proof of Lemma
2.2.2

∥⟨x⟩1+ε−ℓSℓj∥ <∞,

∥P ℓj (t)∥ ≤ Cℓ⟨at⟩−ℓ.

Thus we obtain

∥⟨x⟩1+ε−ℓF+(t)∥ ≤ C ′
ℓ⟨at⟩−ℓ

for any ℓ ∈ Z+. Interpolation with respect to ℓ implies (2.2.17).
For the proof of (2.2.18), we note on the support of s−(x, ξ)p+(y, ξ),

⟨∇ξΦ⟩−1 ≤ C⟨|x− y|+ t|v(ξ)|⟩−1.
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Letting

L2 := ⟨∇ξΦ⟩−2(1 +∇ξΦ ·Dξ),

we have

F−(t)u[x] = (2π)−d
∫
Td

∑
y∈Zd

eiΦ(x,y,ξ;t)(tL2)
ℓ(s−(x, ξ)p+(y, ξ))u[y]dξ

= (2π)−d
∫
Td

∑
y∈Zd

ei(φa(x,ξ)−φa(y,ξ))e−ith0(ξ)(tL2)
ℓ(s−p+)u[y]dξ

for any ℓ ∈ Z+. Since

qℓ(x, y, ξ; t) := e−ith0(ξ)(tL2)
ℓ(s−(x, ξ)p+(y, ξ))

satisfies

|∂βξ q
ℓ(x, y, ξ; t)| ≤ Cℓ,β⟨tv(ξ)⟩|β|−ℓ

for any ℓ ∈ Z+, we obtain (2.2.18) by the argument in the proof of Lemma
2.2.2.

The next proposition claims that any particle in the energy Γ does not
stay in any bounded domain in x.

Proposition 2.2.6. For any R > 0 and ℓ ≥ 0,

∥χ{|x|<R}E±(s)∥ ≤ Cℓ,R⟨s⟩−ℓ, ±s ≥ 0. (2.2.20)

Proof. We prove (2.2.20) for the + case only. We first note

E+(s)u[x] = (2π)−d
∫
Td

∑
y∈Zd

eiΦ(x,y,ξ;s)p+(y, ξ)u[y]dξ,

where Φ(x, y, ξ; t) = φa(x, ξ) − th0(ξ) − φa(y, ξ). We observe that on the
support of p+(y, ξ),

|sv(ξ) +∇ξφa(y, ξ)| ≥ c(|y|+ s|v(ξ)|)

for large s. Then, if |x| ≤ R, we have for s > 0 large enough

|∇ξΦ(x, y, ξ; s)| ≥ c(|y|+ s|v(ξ)|), (y, ξ) ∈ supp p+.

Similarly to the proof of (2.2.18), we obtain (2.2.20).
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2.3 Proof of Theorem 2.1.5

2.3.1 Existence of modified wave operators

We prove the existence of the limit (2.1.5) for the + case only. The other
case is proved similarly. First we fix Γ ⋐ h0(Td)\T. We remark that, for
any u ∈ H such that Fu ∈ C∞(Td) and suppFu ⊂ h−1

0 (Γ), we have

JEH0(Γ)u = Jau (2.3.1)

for some small enough a > 0. Then, to prove the existence of the limit
(2.1.5), it suffices to show that∫ ∞

0

∥∥∥∥ ddt (eitHJe−itH0EH0(Γ)u
)∥∥∥∥ dt (2.3.2)

=

∫ ∞

0

∥∥∥∥ ddt (eitHJae−itH0u
)∥∥∥∥ dt

=

∫ ∞

0
∥eitH(HJa − JaH0)e

−itH0u∥dt

=

∫ ∞

0
∥(HJa − JaH0)e

−itH0u∥dt

is finite for such u. The last equality follows from the fact that eitH is a
unitary operator. Furthermore, by Assumption 2.1.1 and a partition of unity
on Td, we may assume that Fu ∈ C∞(Td) has a sufficiently small support
in {ξ ∈ h−1

0 (Γ) | detA(ξ) ̸= 0}.
Let w(t) := (HJa − JaH0)e

−itH0u. Then (2.2.7) implies

w(t)[x] = (2π)−
d
2

∫
Td

ei(φa(x,ξ)−th0(ξ))sa(x, ξ)Fu(ξ)dξ.

Now we use the stationary phase method. The stationary point ξ = ξ(x, t)
is determined by

1

t
∇ξφa(x, ξ)− v(ξ) = 0. (2.3.3)

We define

Dt := {x ∈ Zd | ∃ξ ∈ suppFu s.t. (2.3.3) holds}.

By (2.2.4), there exists an open set U ⋐ {ξ ∈ h−1
0 (Γ) | detA(ξ) ̸= 0} such

that suppFu ⋐ U and that for t > 0 large enough,

Dt ⊂
{
x | x

t
∈ v(U)

}
=: D′

t.
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On (D′
t)
c, the non stationary phase method implies

|w(t)[x]| ≤ Cℓ⟨|x|+ t⟩−ℓ, x ∈ Zd, t > 0

for any ℓ ≥ 0. Thus we learn for any ℓ ≥ 0

∥χ(D′
t)

cw(t)∥ ≤ C ′
ℓt
−ℓ. (2.3.4)

On D′
t, the stationary phase method implies

w(t)[x] = t−
d
2A(t, x)sa(x, ξ(x, t))Fu(ξ(x, t)) + t−

d
2
−1r(t, x),

where A(t, x) is uniformly bounded in x and t with x ∈ D′
t, and

|r(t, x)| ≤ C sup
|β|≤d+3

sup
ξ∈suppFu

|∂βξ sa(x, ξ)|.

Since cos(x, v(ξ)) ≥ 1
2 for x ∈ D′

t and ξ ∈ suppFu if t is sufficiently large,
we have by (2.2.9)

|sa(x, ξ(x, t))| ≤ C⟨x⟩−1−ε,

|r(t, x)| ≤ C⟨x⟩−1−ε.

We note |x| ∼ t on D′
t and the Lebesgue measure of D′

t is bounded by Ctd.
Thus we learn

∥χD′
t
w(t)∥ ≤

(∫
D′

t

(
Ct−

d
2 ⟨x⟩−1−ε

)2
dx

) 1
2

≤ C ′t−1−ε. (2.3.5)

Hence (2.3.4) and (2.3.5) imply

∥w(t)∥ ≤ ∥χD′
t
w(t)∥+ ∥χ(D′

t)
cw(t)∥ ≤ C ′′t−1−ε,

which proves (2.3.2) is finite. □

2.3.2 Proof of the properties i), ii) and iii)

Proof of i). The intertwining property is proved similarly to the short-range
case (see, e.g., [15]).

Proof of ii). It suffices to show ∥W±
J (Γ)u∥ = ∥u∥ for Fu ∈ C∞(Td) with

suppFu ⊂ h−1
0 (Γ). For such u, Ju = Jau holds for small a > 0. Thus

letting ut = e−itH0u, we learn

∥W±
J (Γ)u∥2 = lim

t→±∞
∥Jaut∥2 = lim

t→±∞
((J∗

aJa − I)ut, ut) + ∥u∥2.

Using w-limt→±∞ ut = 0 and Lemma 2.2.3, we have limt→±∞(J∗
aJa−I)ut =

0. This proves W±
J (Γ) are partial isometries.
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Proof of iii). We prove the asymptotic completeness of W+
J (Γ) only. Since

intertwining property implies RanW+
J (Γ) ⊂ EH(Γ)Hac(H), it suffices to

prove RanW+
J (Γ) ⊃ EH(Γ)Hac(H).

We fix v ∈ Hac(H) and γ ∈ C∞(R) so that γ(H)v = v and supp γ ⊂ Γ.
We set vt := e−itHv for simplicity. Then we show that EH(Γ)Hac(H) ⊂
RanW+

J (Γ) follows from

lim
s→∞

lim sup
t→∞

∥vs − ei(t−s)HE+(t− s)vs∥ = 0. (2.3.6)

First, we observe

∥eitH0J∗
ae

−itHv − eisH0P̃+vs∥
≤ ∥eitH0J∗

a [vt − E+(t− s)vs] ∥+ ∥eitH0J∗
aE+(t− s)vs − eisH0P̃+vs∥.

Lemma 2.2.4 implies the second term tends to 0 as t → ∞. The first term
is estimated by (2.3.6) since

∥eitH0J∗
a [vt − E+(t− s)vs] ∥

≤ ∥eitH0J∗
a∥∥vt − E+(t− s)vs∥

= ∥J∗
a∥∥ei(t−s)H(vt − E+(t− s)vs)∥

= ∥J∗
a∥∥vs − ei(t−s)HE+(t− s)vs∥.

Thus we have

lim
s→∞

lim sup
t→∞

∥eitH0J∗
ae

−itHv − eisH0P̃+vs∥ = 0.

This implies
{
eitH0J∗

ae
−itHv

}
t≥0

is a Cauchy sequence in H, equivalently,
there exists the limit

lim
t→∞

eitH0J∗
ae

−itHv =: Ωav.

Hence we obtain for sufficiently small a > 0,

v =W+
J (Γ)Ωav ∈ RanW+

J (Γ).

In the rest of the proof, we show (2.3.6). Since vs = γ(H)vs, we have

vs − ei(t−s)HE+(t− s)vs =γ(H)vs − ei(t−s)HE+(t− s)vs (2.3.7)

=(γ(H)− γ(H0))vs

+ (γ(H0)− P+ − P−)vs

+ (P+ − ei(t−s)HE+(t− s))vs + P−vs.
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We note w-lims→∞ vs = 0 and γ(H)−γ(H0) is compact by the compactness
of H−H0 = V . We also note γ(H0)−P+−P− is compact by Lemma 2.2.3,
and P+ − ei(t−s)HE+(t − s) converges to a compact operator independent
of s as t → ∞ by Proposition 2.2.5. Thus the terms on the RHS of (2.3.7)
except the last one converge to 0.

To estimate the last term of (2.3.7), we observe

∥P−vs∥2 =(P ∗
−P−vs, vs) (2.3.8)

=((P ∗
− − P−)P−vs, vs)

+ ((P− − e−isHE−(−s))P−vs, vs)

+ (P−vs, E−(−s)∗v).

By the similar argument as above, we learn the first and second terms of
(2.3.8) converge to 0 as s→ ∞. The third term of (2.3.8) is bounded by

|(P−vs, E−(−s)∗v)| (2.3.9)

= |(P−vs, E−(−s)∗(χ{|x|≥R} + χ{|x|<R})v)|
≤ ∥E−(−s)P−vs∥∥χ{|x|≥R}v∥+ ∥P−vs∥∥χ{|x|<R}E−(−s)∥∥v∥
≤ Cv(∥χ{|x|≥R}v∥+ ∥χ{|x|<R}E−(−s)∥)

for any R > 0. Using (2.2.20) and limR→∞ ∥χ{|x|≥R}v∥ = 0, we learn that
(2.3.9) converges to 0 as s→ ∞. Hence we obtain (2.3.6).

2.4 Appendix: Classical mechanics and the con-
struction of phase function

In this appendix, we use the following notations: For ρ ∈ (0, 1), we define

h(x, ξ) =h0(ξ) + V (x),

Vρ(t, x) =V (x)χ(ρx)χ

(
⟨log⟨t⟩⟩x

⟨t⟩

)
,

hρ(t, x, ξ) =h0(ξ) + Vρ(t, x),

∇2
xVρ(t, x) =

t∇x∇xVρ(t, x),

where χ ∈ C∞(Rd) is a fixed function satisfying (2.2.1). Let ε be as in
Assumption 2.1.3. We fix ε0, ε1 > 0 such that ε0 + ε1 < ε.

The construction of time-decaying potential is same as Isozaki and Ki-
tada [6], and is first used by Kitada and Yajima [9]. One of the merits of
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this construction is that Vρ decays with respect to time t almost same as
position x. The next lemma follows from Assumption 2.1.3 with elementary
computations.

Lemma 2.4.1. For any t ∈ R, x ∈ Rd and multi-index α,

|∂αxVρ(t, x)| ≤ Cαmin{ρε0⟨t⟩−|α|−ε1 , ⟨x⟩−|α|−ε}, (2.4.1)

where Cα’s are independent of x, t and ρ.

Let (q, p)(t, s) = (q, p)(t, s;x, ξ) be the solution to the canonical equation
associated to the Hamiltonian hρ:

∂tq(t, s) = ∇ξhρ(t, p(t, s), q(t, s)),
∂tp(t, s) = −∇xhρ(t, p(t, s), q(t, s)),
(q, p)(s, s) = (x, ξ).

This can be rewritten in the integral form:

q(t, s) = x+

∫ t

s
v(p(τ, s))dτ, (2.4.2)

p(t, s) = ξ −
∫ t

s
∇xVρ(τ, q(τ, s))dτ. (2.4.3)

Before proving Proposition 2.2.1, let us describe the outline of this sec-
tion. First, we see in Proposition 2.4.2 that q(t, s) ∼ x + (t − s)v(ξ) and
p(t, s) ∼ ξ for sufficiently small ρ > 0. Then we construct a solution ϕ(t;x, ξ)
of the Hamilton-Jacobi equation (2.4.30) by the method of characteristics.
Also estimates for y(s, t;x, ξ) and η(t, s;x, ξ), characterized by (2.4.21) and
(2.4.22), respectively, are given in Proposition 2.4.3. Using the above ϕ,
we define functions ϕ±(x, ξ) by (2.4.33), and we confirm that ϕ± satisfies
the eikonal equation (2.1.4) and the estimate (2.2.4) in outgoing and incom-
ing region, respectively. Finally, we construct a function φ(x, ξ) such that
Proposition 2.2.1 holds with ϕ± and phase-space cutoffs.

Now, we start with estimates for classical orbits (q, p)(t, s;x, ξ). The
following proposition is the corresponding result of [6, Proposition 2.1].

Proposition 2.4.2. For ρ > 0 small enough, there exist Cℓ > 0 (ℓ ∈ Z+)
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such that, for any x, ξ ∈ Rd, 0 ≤ ±s ≤ ±t and multi-indices α and β,

|p(s, t;x, ξ)− ξ| ≤ C0ρ
ε0⟨s⟩−ε1 , (2.4.4)

|p(t, s;x, ξ)− ξ| ≤ C0ρ
ε0⟨s⟩−ε1 , (2.4.5)

|∂αx [∇xq(s, t;x, ξ)− I] | ≤ C|α|ρ
ε0⟨s⟩−ε1 , (2.4.6)

|∂αx∇xp(s, t;x, ξ)| ≤ C|α|ρ
ε0⟨s⟩−1−ε1 , (2.4.7)

|∂αx ∂
β
ξ [∇xq(t, s;x, ξ)− I] | ≤ C|α|+|β|ρ

ε0⟨s⟩−1−ε1 |t− s|, (2.4.8)

|∂αx ∂
β
ξ∇xp(t, s;x, ξ)| ≤ C|α|+|β|ρ

ε0⟨s⟩−1−ε1 , (2.4.9)

|∂βξ [∇ξq(t, s;x, ξ)− (t− s)A(ξ)] | ≤ C|β|ρ
ε0⟨s⟩−ε1 |t− s|, (2.4.10)

|∂βξ [∇ξp(t, s;x, ξ)− I] | ≤ C|β|ρ
ε0⟨s⟩−ε1 , (2.4.11)

|∂αx ∂
β
ξ [q(t, s;x, ξ)− x− (t− s)v(p(t, s;x, ξ))] | (2.4.12)

≤ C|α|+|β|ρ
ε0 min{|t− s|⟨s⟩−ε1 , ⟨t⟩1−ε1}.

Here, |x| =
(∑d

j=1 |xj |2
) 1

2
for a vector x and |M | =

(∑d
j,k=1 |Mjk|2

) 1
2
for

a matrix M .

Proof. We prove in the 0 ≤ s ≤ t case. The other case is proved similarly.
The proof is decomposed into 5 steps.

Step 1: Proof of (2.4.4) and (2.4.5). The inequalities (2.4.4) and (2.4.5)
are shown by (2.4.1) and

p(t, t′)− ξ = −
∫ t

t′
∇xVρ(τ, q(τ, t

′))dτ, t, t′ ∈ R.

Step 2: Proof of (2.4.6) and (2.4.7). We use the induction with respect
to |α|. First we prove (2.4.6) and (2.4.7) for α = 0. Differentiating (2.4.2)
and (2.4.3) in x, we have{

∇xq(s, t) = I +
∫ s
t A(p(τ, t))∇xp(τ, t)dτ,

∇xp(s, t) = −
∫ s
t ∇2

xVρ(τ, q(τ, t))∇xq(τ, t)dτ.

Letting

Q0(s) := ∇xq(s, t)− I,

P0(s) := ∇xp(s, t),

we observe{
Q0(s) =

∫ s
t A(p(τ, t))P0(τ)dτ,

P0(s) = −
∫ s
t ∇2

xVρ(τ, q(τ, t))Q0(τ)dτ −
∫ s
t ∇2

xVρ(τ, q(τ, t))dτ.
(2.4.13)
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Thus combining the two equations in (2.4.13), we learn

P0(s) = Bt(P0(·))(s) +R0(s),

where

Bt(P (·))(s) := −
∫ s

t
∇2
xVρ(τ, q(τ, t))

[∫ τ

t
A(p(σ, t))P (σ)dσ

]
dτ,

R0(s) := −
∫ s

t
∇2
xVρ(τ, q(τ, t))dτ.

Let ∥M(·)∥0 := sup0≤s≤t⟨s⟩1+ε1 |M(s)| for M ∈ C([0, t] ;Md(R)). Then
(2.4.1) implies

|Bt(P (·))(s)| ≤
∫ t

s
C2ρ

ε0⟨τ⟩−2−ε1
∫ t

τ
|P (σ)|dσdτ

≤ C2ρ
ε0∥P∥0

∫ ∞

s
⟨τ⟩−2−ε1

∫ ∞

τ
⟨σ⟩−1−ε1dσdτ

≤ C2C
′ρε0⟨s⟩−1−2ε1∥P∥0,

|R0(s)| ≤
∫ t

s
C2ρ

ε0⟨τ⟩−2−ε1dτ ≤ Cρε0⟨s⟩−1−ε1 .

If ρ ≤ (2C2C
′)
− 1

ε0 , the operator norm ∥Bt∥0 of Bt with respect to ∥ · ∥0 is
bounded by 1

2 . Hence we obtain

∥P0(·)∥0 = ∥(1−Bt)
−1(R0(·))∥0 ≤

1

1− ∥Bt∥0
∥R0(·)∥0 ≤ 2Cρε0 , (2.4.14)

which proves (2.4.7) for α = 0. The inequality (2.4.6) for α = 0 follows
directly from (2.4.13) and (2.4.14).

Next we confirm the induction is valid. We fix α ∈ Zd+\{0} and assume
that (2.4.6) and (2.4.7) hold for α′ with |α′| < |α|. Differentiating (2.4.13),
we have 

∂αxQ0(s) =
∫ s
t A(p(τ, t))∂

α
xP0(τ)dτ +R0,1(s),

∂αxP0(s) = −
∫ s
t ∇2

xVρ(τ, q(τ, t))∂
α
xQ0(τ)dτ

+R0,21(s) +R0,22(s),
(2.4.15)
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where

R0,1(s) :=
∑

0⪇α′≤α

(
α

α′

)∫ s

t
∂α

′
x [A(p(τ, t))] ∂α−α

′
x P0(τ)dτ,

R0,21(s) :=−
∑

0⪇α′≤α

(
α

α′

)∫ s

t
∂α

′
x

[
∇2
xVρ(τ, q(τ, t))

]
∂α−α

′
x Q0(τ)dτ,

R0,22(s) :=−
∫ s

t
∂αx
[
∇2
xVρ(τ, q(τ, t))

]
dτ,

and
(
α
α′

)
:=
∏d
j=1

αj !
α′
j !(αj−α′

j)!
. By (2.4.1) and assumptions of the induction,

we have

|R0,1(s)| ≤ Cρε0⟨s⟩−1−ε1 ,

|R0,21(s)| ≤
∫ t

s
Cρε0⟨τ⟩−2−ε1 · Cρε0⟨τ⟩−ε1dτ ≤ Cρε0⟨s⟩−1−2ε1 ,

|R0,22(s)| ≤
∫ t

s
Cρε0⟨τ⟩−2−ε1dτ ≤ Cρε0⟨s⟩−1−ε1 .

The similar argument as for α = 0 implies ∥∂αxP0(·)∥0 ≤ Cαρ
ε0 and (2.4.6).

Step 3: Proof of (2.4.10) and (2.4.11). We use the induction with respect
to |β|. First we consider the β = 0 case. Similarly to Step 2, we have{

∇ξq(t, s) =
∫ t
s A(p(τ, s))∇ξp(τ, s)dτ,

∇ξp(t, s) = I −
∫ t
s ∇

2
xVρ(τ, q(τ, s))∇ξq(τ, s)dτ,

equivalently,
Q′(t) =

∫ t
s A(p(τ, s))P

′(τ)dτ −
∫ t
s (A(p(τ, s))−A(ξ))dτ,

P ′(t) = −
∫ t
s ∇

2
xVρ(τ, q(τ, s))Q

′(τ)dτ

−
∫ t
s (τ − s)∇2

xVρ(τ, q(τ, s))A(ξ)dτ,

(2.4.16)

where

Q′(t) := ∇ξq(t, s)− (t− s)A(ξ),

P ′(t) := ∇ξp(t, s)− I.

By (2.4.16), we have

P ′(t) = Bs(P
′(·))(t) +R′(t),
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where

R′(t) := −
∫ t

s
∇2
xVρ(τ, q(τ, s))

∫ τ

s
A(p(σ, s))dσdτ.

Letting ∥M(·)∥1 := supt≥s |M(t)| for M ∈ C([s,∞) ;Md(R)), we have

|Bs(P (·))(t)| ≤
∫ t

s
C2ρ

ε0⟨τ⟩−2−ε1
∫ τ

s
|P (σ)|dσdτ

≤ C2ρ
ε0∥P∥1

∫ t

s
⟨τ⟩−2−ε1(τ − s)dτ

≤ C2C
′ρε1⟨s⟩−ε1∥P∥1,

|R′(t)| ≤
∫ t

s
Cρε1⟨τ⟩−2−ε1(τ − s)dτ ≤ Cρε0⟨s⟩−ε1 .

Thus, if ρ ≤ (2C2C
′)−ε0 , we obtain

∥P ′(·)∥1 = ∥(1−Bs)
−1R′(·)∥1 ≤

1

1− ∥Bs∥1
∥R′(·)∥1 ≤ 2Cρε0⟨s⟩−ε1 .

(2.4.17)

This proves (2.4.11) for β = 0. The inequality (2.4.10) for β = 0 follows
from (2.4.5), (2.4.16) and (2.4.17).

Next we prove the induction works. Differentiating (2.4.16), we have{
∂βξQ

′(t) =
∫ t
s A(p(τ, s))∂

β
ξ P

′(τ)dτ +R′
11(t) +R′

12(t),

∂βξ P
′(t) = −

∫ t
s ∇

2
xVρ(τ, q(τ, s))∂

β
ξQ

′(τ)dτ +R′
21(t) +R′

22(t),
(2.4.18)

where

R′
11(t) :=

∑
0⪇β′≤β

(
β

β′

)∫ t

s
∂β

′

ξ [A(p(τ, s))] ∂β−β
′

ξ P ′(τ)dτ,

R′
12(t) :=

∫ t

s
∂βξ [A(p(τ, s))−A(ξ)] dτ,

R′
21(t) := −

∑
0⪇β′≤β

(
β

β′

)∫ t

s
∂β

′

ξ

[
∇2
xVρ(τ, q(τ, s))

]
∂β−β

′

ξ Q′(τ)dτ,

R′
22(t) := −

∫ t

s
(τ − s)∂βξ

[
∇2
xVρ(τ, q(τ, s))A(ξ)

]
dτ.
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Thus we have

∂βξ P
′(t) = Bs(∂

β
ξ P

′(·))(t)−
∫ t

s
∇2
xVρ(τ, q(τ, s))(R

′
11(τ) +R′

12(τ))dτ

+R′
21(t) +R′

22(t).

If (2.4.10) and (2.4.11) are true for β′ with |β′| < |β|, we learn

|R′
11(t)| ≤ Cρε0⟨s⟩−ε1 |t− s|,

|R′
12(t)| ≤ C sup

|β′|≤|β|

∫ t

s
|∂β

′

ξ [p(τ, s)− ξ] |dτ ≤ Cρε0⟨s⟩−ε1 |t− s|,

|R′
21(t)| ≤

∫ t

s
Cρε0⟨τ⟩−2−ε1 · Cρε0⟨s⟩−ε1 |τ − s|dτ ≤ Cρ2ε0⟨s⟩−2ε1 ,

|R′
22(t)| ≤

∫ t

s
Cρε0⟨τ⟩−2−ε1 |τ − s|dτ ≤ Cρε0⟨s⟩−ε1 .

Using the similar argument as for β = 0, we obtain (2.4.10) and (2.4.11) for
any β.

Step 4: Proof of (2.4.8) and (2.4.9). We use the induction with respect
to |α|+ |β|. In the α = β = 0 case, differentiation in x implies{

∇xq(t, s) = I +
∫ t
s A(p(τ, s))∇xp(τ, s)dτ,

∇xp(t, s) = −
∫ t
s ∇

2
xVρ(τ, q(τ, s))∇xq(τ, s)dτ.

Letting

Q(t) := ∇xq(t, s)− I,

P (t) := ∇xp(t, s),

we observe{
Q(t) =

∫ t
s A(p(τ, s))P (τ)dτ,

P (t) = −
∫ t
s ∇

2
xVρ(τ, q(τ, s))Q(τ)dτ −

∫ t
s ∇

2
xVρ(τ, q(τ, s))dτ.

(2.4.19)

This implies

P (t) = Bs(P (·))(t) +R(t),

where

R(t) := −
∫ t

s
∇2
xVρ(τ, q(τ, s))dτ.
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Since

|R(t)| ≤
∫ t

s
C2ρ

ε0⟨τ⟩−2−ε1dτ ≤ Cρε0⟨s⟩−1−ε1 ,

we have

∥P (·)∥1 = ∥(1−Bs)
−1R∥1 ≤ 2Cρε0⟨s⟩−1−ε1 ,

which proves (2.4.9) for α = β = 0. The inequality (2.4.8) follows from
(2.4.9) and (2.4.19).

We prove the induction with respect to |α|+ |β| works. By (2.4.19), we
have 

∂αx ∂
β
ξQ(t) =

∫ t
s A(p(τ, s))∂

α
x ∂

β
ξ P (τ)dτ +R1(t),

∂αx ∂
β
ξ P (t) = −

∫ t
s ∇

2
xVρ(τ, q(τ, s))∂

α
x ∂

β
ξQ(τ)dτ

+R21(t) +R22(t),

(2.4.20)

where

R1(t) :=
∑

α′≤α,β′≤β,
|α′+β′|≥1

(
α

α′

)(
β

β′

)∫ t

s
∂α

′
x ∂

β′

ξ [A(p(τ, s))] ∂α−α
′

x ∂β−β
′

ξ P (τ)dτ,

R21(t)

:= −
∑

α′≤α,β′≤β,
|α′+β′|≥1

(
α

α′

)(
β

β′

)∫ t

s
∂α

′
x ∂

β′

ξ

[
∇2
xVρ(τ, q(τ, s))

]
∂α−α

′
x ∂α−β

′

ξ Q(τ)dτ,

R22(t) := −
∫ t

s
∂αx ∂

β
ξ

[
∇2
xVρ(τ, q(τ, s))

]
dτ.

Thus we learn

∂αx ∂
β
ξ P (t) = Bs(∂

α
x ∂

β
ξ P (·))(t)−

∫ t

s
∇2
xVρ(τ, q(τ, s))R1(τ)dτ

+R21(t) +R22(t).

By (2.4.10),(2.4.11) and assumptions of the induction, we have

|R1(t)| ≤ Cρε0⟨s⟩−1−ε1 |t− s|,

|R21(t)| ≤
∫ t

s
Cρε0⟨τ⟩−2−ε1 · Cρε0⟨s⟩−1−ε1 |τ − s|dτ ≤ Cρ2ε0⟨s⟩−1−2ε1 ,

|R22(t)| ≤
∫ t

s
Cρε0⟨τ⟩−2−ε1dτ ≤ Cρε0⟨s⟩−1−ε1 .
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Similarly to the argument for α = β = 0, we obtain (2.4.8) and (2.4.9) for
any α and β.

Step 5: Proof of (2.4.12). By (2.4.2) and (2.4.3), we have

q(t, s;x, ξ) = x+

∫ t

s
v(p(τ, s))dτ

= x+

∫ t

s
v

(
p(t, s) +

∫ t

τ
∇xVρ(σ, q(σ, s))dσ

)
dτ.

Thus

q(t, s;x, ξ)− x− (t− s)v(p(t, s))

=

∫ t

s

[
v

(
p(t, s) +

∫ t

τ
∇xVρ(σ, q(σ, s))dσ

)
− v(p(t, s))

]
dτ.

This equality and (2.4.8)-(2.4.11) imply (2.4.12).

Similarly to [6, Proposition 2.2], we observe that, if ρ is small enough,
the maps

y 7→ q(s, t; y, ξ),

η 7→ p(t, s;x, η)

have the corresponding inverses.

Proposition 2.4.3. Fix ρ > 0 so that C0ρ
ε0 < 1

2 holds, where C0 is the
constant in Proposition 2.4.2. Then, for x, ξ ∈ Rd and 0 ≤ ±s ≤ ±t, there
exist y(s, t) = y(s, t;x, ξ) ∈ Rd and η(t, s) = η(t, s;x, ξ) ∈ Rd such that{

q(s, t; y(s, t;x, ξ), ξ) = x, (2.4.21)

p(t, s;x, η(t, s;x, ξ)) = ξ, (2.4.22)

and {
q(t, s;x, η(t, s;x, ξ)) = y(s, t;x, ξ), (2.4.23)

p(s, t; y(s, t;x, ξ), ξ) = η(t, s;x, ξ). (2.4.24)

Furthermore, for any x, ξ ∈ Rd, 0 ≤ ±s ≤ ±t and multi-indices α and β,

|∂αx [∇xy(s, t;x, ξ)− I] | ≤ C ′
αρ

ε0⟨s⟩−ε1 , (2.4.25)

|∂αx ∂
β
ξ∇xη(t, s;x, ξ)| ≤ C ′

αβρ
ε0⟨s⟩−1−ε1 , (2.4.26)

|∂βξ [η(t, s;x, ξ)− ξ] | ≤ C ′
βρ

ε0⟨s⟩−ε1 , (2.4.27)

|∂βξ [y(s, t;x, ξ)− x− (t− s)v(ξ)] | (2.4.28)

≤ C ′
βρ

ε0 min{|t− s|⟨s⟩−ε1 , ⟨t⟩1−ε1}.
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Proof. Step 1. By |∇xq(s, t;x, ξ) − I| < 1
2 , |∇ξp(t, s;x, ξ) − I| < 1

2 and
Schwartz’s global inversion theorem ( [5, Proposition A.7.1]), we have the
existence and uniqueness of y(s, t;x, ξ) and η(t, s;x, ξ) satisfying (2.4.21)
and (2.4.22). The equalities (2.4.23) and (2.4.24) are shown by (2.4.21) and
(2.4.22).

Step 2: Proof of (2.4.25). Differentiation of (2.4.21) in x implies

∇xq(s, t; y(s, t), ξ)∇xy(s, t) = I. (2.4.29)

We have by (2.4.6)

|∇xy(s, t)− I| = |(∇xq(s, t; y(s, t), ξ))
−1 − I|

≤ C|∇xq(s, t; y(s, t), ξ)− I|
≤ Cρε0⟨s⟩−ε1 .

Differentiating (2.4.29), we have for α ̸= 0

∇xq(s, t; y(s, t), ξ)∂
α
x∇xy(s, t)

= −
∑

0⪇α′≤α

(
α

α′

)
∂α

′
x [∇xq(s, t; y(s, t), ξ)] ∂

α−α′
x ∇xy(s, t).

Using (2.4.6) and the induction with respect to |α|, we observe that the RHS
of the above equality is bounded by Cρε0⟨s⟩−ε1 . Thus we have |∂αx∇xy(s, t)| ≤
C ′
αρ

ε0⟨s⟩−ε1 .
Step 3: Proof of (2.4.27). By (2.4.24), we observe for β = 0

|η(t, s)− ξ| = |p(s, t; y(s, t), ξ)− ξ|

=

∣∣∣∣∫ t

s
∇xVρ(τ, q(τ, t; y(s, t), ξ))dτ

∣∣∣∣
≤ Cρε0⟨s⟩−ε1 .

In the case of |β| = 1, we have by differentiation of (2.4.22) in ξ

∇ξp(t, s;x, η(t, s))∇ξη(t, s) = I.

Similarly to Step 2, we obtain by (2.4.11)

|∇ξη(t, s)− I| ≤ C|∇ξp(t, s;x, η(t, s))− I|
≤ Cρε0⟨s⟩−ε1 .
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In the other cases, we learn by (2.4.22)

∇ξp(t, s;x, η(t, s))∂
β
ξ∇ξη(t, s)

= −
∑

0⪇β′≤β

(
β

β′

)
∂β

′

ξ [∇ξp(t, s;x, η(t, s))]∂
β−β′

ξ ∇ξη(t, s), β ̸= 0.

The induction with respect to |β| and (2.4.11) imply each term in the RHS
is bounded by Cρε0⟨s⟩−ε1 . Thus (2.4.27) holds for any β.

Step 4: Proof of (2.4.26). Differentiating (2.4.22) in x, we have

∇xp(t, s;x, η(t, s)) +∇ξp(t, s;x, η(t, s))∇xη(t, s) = 0.

This equality and (2.4.9) imply

|∇xη(t, s)| = |(∇ξp(t, s;x, η(t, s)))
−1∇xp(t, s;x, η(t, s))|

≤ C|∇xp(t, s;x, η(t, s))|
≤ Cρε0⟨s⟩−1−ε1 ,

which proves (2.4.26) for α = β = 0. If α+ β ̸= 0, we have

∇ξp(t, s;x, η(t, s))∂
α
x ∂

β
ξ∇xη(t, s)

=− ∂αx ∂
β
ξ [∇xp(t, s;x, η(t, s))]

−
∑

α′≤α,β′≤β,
|α′+β′|≥1

(
α

α′

)(
β

β′

)
∂α

′
x ∂

β′

ξ [∇ξp(t, s;x, η(t, s))]∂
α−α′
x ∂β−β

′

ξ ∇xη(t, s).

Thus (2.4.26) is proved by (2.4.27), (2.4.9), (2.4.11) and the induction with
respect to |α|+ |β|.

Step 5: Proof of (2.4.28). Similarly to the proof of (2.4.12) in Proposition
2.4.2, we have

y(s, t)− x− (t− s)v(ξ)

= q(t, s;x, η(t, s))− x− (t− s)v(p(t, s;x, η(t, s)))

=

∫ t

s

[
v

(
ξ +

∫ t

τ
∇xVρ(σ, q(σ, s;x, η(t, s)))dσ

)
− v(ξ)

]
dτ.

Using this equality, (2.4.10) and (2.4.27), we obtain (2.4.28).

We define

ϕ(t;x, ξ) := u(t;x, η(t, 0;x, ξ)),
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where

u(t;x, η) := x · η +
∫ t

0
{hρ − x · ∇xhρ}(τ, q(τ, 0;x, η), p(τ, 0;x, η))dτ.

Then a direct calculus implies that ϕ satisfies the Hamilton-Jacobi equation{
∂tϕ(t;x, ξ) = hρ(t,∇ξϕ(t;x, ξ), ξ),
ϕ(0;x, ξ) = x · ξ, (2.4.30)

and the relation between ϕ and the functions y and η in Proposition 2.4.3:{
∇xϕ(t;x, ξ) = η(t, 0;x, ξ),
∇ξϕ(t;x, ξ) = y(0, t;x, ξ).

(2.4.31)

Remark 2.4.4. The relation (2.4.31) and Proposition 2.4.3 imply the estimate

|∂αx ∂
β
ξ [∇xy(s, t;x, ξ)− I] | ≤ C ′

|α|+|β|ρ
ε0⟨s⟩−ε1 (2.4.32)

holds for |β| ≥ 1. Hence (2.4.25) is extended to (2.4.32) for any α and β.

Now, we construct outgoing and incoming solutions of the eikonal equa-
tion (2.1.4).

Lemma 2.4.5. The limits

ϕ±(x, ξ) := lim
t→±∞

(ϕ(t;x, ξ)− ϕ(t; 0, ξ)) (2.4.33)

exist, are smooth in R2d and

ϕ±(x, ξ + 2πm) = ϕ±(x, ξ) + 2πx ·m, x, ξ ∈ Rd, m ∈ Zd. (2.4.34)

Proof. We define

R(t, x, ξ) := ϕ(t;x, ξ)− ϕ(t; 0, ξ).

Then we have

∇xR(t, x, ξ) = η(t, 0;x, ξ) = p(0, t; y(0, t;x, ξ), ξ)

= ξ +

∫ t

0
(∇xVρ)(τ, q(τ, t; y(0, t;x, ξ), ξ))dτ

= ξ +

∫ t

0
(∇xVρ)(τ, q(τ, 0;x, η(t, 0;x, ξ)))dτ.
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Since

|∂αx ∂
β
ξ [(∇xVρ)(τ, q(τ, 0;x, η(t, 0;x, ξ)))]| ≤ Cαβ⟨τ⟩−1−ε1 ,

∇xR(t, x, ξ) converges to a smooth function uniformly in (x, ξ) ∈ R2d. Thus

∂βξ R(t, x, ξ) = x ·
∫ 1

0
∇x∂

β
ξ R(t, θx, ξ)dθ (2.4.35)

converges locally uniformly in R2d. This implies the smoothness of ϕ±.
It is easy to see (2.4.34) if we remark

η(t, 0;x, ξ + 2πm) = η(t, 0;x, ξ) + 2πm,

q(t, 0;x, ξ + 2πm) = q(t, 0;x, ξ)

for x, ξ ∈ Rd, t ∈ R and m ∈ Zd.

Next we consider properties of ϕ± in the “outgoing” and “incoming”
regions. We prepare improved estimates of Proposition 2.4.2 for an orbit
which is outgoing or incoming.

Lemma 2.4.6. Let (q, p)(t) = (q, p)(t, 0;x, ξ) be an orbit satisfying (2.4.2)
and (2.4.3). Suppose

|q(τ)| ≥ b|τ |+ d, ±τ ≥ 0

for some b > 0 and d ≥ 0. Then there exist lαβ, lβ ≥ 2 such that for ±t ≥ 0
and α, β ∈ Nd≥0,

|p(t)− ξ| ≤ Cb−1⟨d⟩−ε, (2.4.36)

|∂αx ∂
β
ξ [∇xq(t)− I] | ≤ Cαβb

−lαβ ⟨d⟩−1−|α|−ε|t|, (2.4.37)

|∂αx ∂
β
ξ∇xp(t)| ≤ Cαβb

−lαβ ⟨d⟩−1−|α|−ε, (2.4.38)

|∂βξ [∇ξq(t)− tA(ξ)] | ≤ Cβb
−lβ ⟨d⟩−ε|t|, (2.4.39)

|∂βξ [∇ξp(t)− I] | ≤ Cβb
−lβ ⟨d⟩−ε. (2.4.40)

Proof. We calculate similarly to Proposition 2.4.2, whereas we use the fol-
lowing estimate instead:

|∂αxVρ(t, q(t))| ≤ Cα⟨q(t)⟩−|α|−ε ≤ Cα⟨b|t|+ d⟩−|α|−ε.
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The next lemma gives improved estimates of Proposition 2.4.3 for out-
going or incoming orbits.

Lemma 2.4.7. Let b, d ≥ 0, b ̸= 0 and x, ξ ∈ Rd satisfy

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ b|τ |+ d, 0 ≤ ±τ ≤ ±t

for any ±t ≥ 0. Then there exist l′αβ, l
′
β ≥ 2 such that, for ±t ≥ 0,

|∂αx ∂
β
ξ [∇xη(t, 0;x, ξ)] | ≤ Cαβb

−l′αβ ⟨d⟩−1−|α|−ε, (2.4.41)

|∂βξ [η(t, 0;x, ξ)− ξ] | ≤ Cβb
−l′β ⟨d⟩−ε. (2.4.42)

Proof. The proofs are similar to those of (2.4.26) and (2.4.27) if we use

|∂αxVρ(τ, q(τ, 0;x, η(t, 0;x, ξ)))| ≤ Cα⟨b|τ |+ d⟩−|α|−ε, 0 ≤ ±τ ≤ ±t.

Using the above two lemmas, we have the estimate of ϕ±(x, ξ)− x · ξ on
the outgoing and incoming region, respectively. See [6, Proposition 2.4] for
the case of Schrödinger operators.

Proposition 2.4.8.

|∂αx ∂
β
ξ [ϕ±(x, ξ)− x · ξ]| ≤ Cαβ|v(ξ)|−lαβ ⟨x⟩1−|α|−ε (2.4.43)

on {(x, ξ) | |x|ε1 |v(ξ)|1−ε1 ≥ Cε1 ,± cos(x, v(ξ)) ≥ 0}, respectively.

Proof. On {(x, ξ) | x, v(ξ) ̸= 0, ± cos(x, v(ξ)) ≥ 0}, (2.4.4), (2.4.5) and
(2.4.12) imply for 0 ≤ ±τ ≤ ±t,

|q(τ, 0;x, η(t, 0;x, ξ))| ≥|x+ τv(p(τ, 0;x, η(t, 0;x, ξ)))| − C0⟨τ⟩1−ε1

=|x+ τv(p(τ, t; y(0, t;x, ξ), ξ))| − C0⟨τ⟩1−ε1

≥|x+ τv(ξ)| − C⟨τ⟩1−ε1 − C0⟨τ⟩1−ε1

≥ 1√
2
(|x|+ |τv(ξ)|)− C⟨τ⟩1−ε1 .

If we remark

|x|+ |τv(ξ)| ≥
(

1

ε1
|x|
)ε1 ( 1

1− ε1
|τv(ξ)|

)1−ε1
=

|x|ε1 |v(ξ)|1−ε1
εε11 (1− ε1)1−ε1

|τ |1−ε1 ,
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we learn for |x|ε1 |v(ξ)|1−ε1 ≥ Cε1

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ 1

2
(|x|+ |τv(ξ)|), 0 ≤ ±τ ≤ ±t. (2.4.44)

Hence the proposition is proved by (2.4.44), (2.4.31), (2.4.33), (2.4.35) and
Lemma 2.4.7.

The following proposition says ϕ± is a solution to the eikonal equation
(2.1.4).

Proposition 2.4.9. For any a > 0, there exists Ra > 1 such that ϕ±
satisfies the eikonal equation

h(x,∇xϕ±(x, ξ)) = h0(ξ) (2.4.45)

on the outgoing (or incoming) region

{(x, ξ) | |x| ≥ Ra, |v(ξ)| ≥ a,± cos(x, v(ξ)) ≥ 0},

respectively.

Proof. By (2.4.31) and (2.4.33), we have

∇xϕ±(x, ξ) = lim
t→±∞

η(t, 0;x, ξ) = lim
t→±∞

p(0, t; y(0, t;x, ξ), ξ).

If |x| ≥ 2ρ−1, then we have by the definition of Vρ

h(x,∇xϕ±(x, ξ)) = lim
t→±∞

hρ(0, x, p(0, t; y(0, t;x, ξ), ξ)). (2.4.46)

Now we claim

E(τ) := hρ(τ, q(τ, t; y(0, t;x, ξ), ξ), p(τ, t; y(0, t;x, ξ), ξ))

= hρ(τ, q(τ, 0;x, η(t, 0;x, ξ)), p(τ, 0;x, η(t, 0;x, ξ)))

is a constant for 0 ≤ ±τ ≤ ±t. A direct calculus implies

dE

dτ
(τ) = ∂thρ(τ, q(τ, 0;x, η(t, 0;x, ξ)), p(τ, 0;x, η(t, 0;x, ξ)))

= ∂tVρ(τ, q(τ, 0;x, η(t, 0;x, ξ))).

We note (2.4.44) holds on {(x, ξ) | |x| ≥ Ra, |v(ξ)| ≥ a, ± cos(x, v(ξ)) ≥ 0}
for Ra large enough, and hence

|q(τ, 0;x, η(t, 0;x, ξ))| ≥ 1

2
(Ra + a|τ |)

≥ 2max{ρ−1,
⟨τ⟩

⟨log⟨τ⟩⟩
}, 0 ≤ ±τ ≤ ±t.
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We also note ∂tVρ(t, x) = 0 if |x| ≥ 2max{ρ−1, ⟨t⟩
⟨log⟨t⟩⟩}. Thus we have

dE
dτ (τ) = 0 if 0 ≤ ±τ ≤ ±t, in particular,

hρ(0, x, p(0, t; y(0, t;x, ξ), ξ)) = E(0) = E(t) (2.4.47)

= hρ(t, y(0, t;x, ξ), ξ).

Hence, (2.4.46) and (2.4.47) imply

h(x,∇xϕ±(x, ξ)) = lim
t→±∞

hρ(t, y(0, t;x, ξ), ξ) = h0(ξ).

Proof of Proposition 2.2.1. Let φ ∈ C∞(Rd × (Rd\v−1(0))) be defined by

φ(x, ξ) = (ϕ+(x, ξ)− x · ξ)χ+(x, ξ) (2.4.48)

+ (ϕ−(x, ξ)− x · ξ)χ−(x, ξ) + x · ξ,

where

χ±(x, ξ) = χ
(
µ|v(ξ)|ℓx

)
ψ±(cos(x, v(ξ))) (2.4.49)

and ψ± ∈ C∞([−1, 1]; [0, 1]) satisfy

ψ±(σ) =

{
1, ±σ ≥ 1

2 ,

0, ±σ ≤ 0.

If µ and ℓ are fixed so that µ is sufficiently small and that ℓ is sufficiently
large, then φ satisfies (2.2.3), (2.2.4) and (2.2.5).

Finally we prove (2.2.9). Let sa be defined by (2.2.8). We decompose sa
by

sa(x, ξ) = s1a(x, ξ) + s2a(x, ξ), (2.4.50)

where

s1a(x, ξ) =
∑
z∈Zd

f [z] ei(φa(x−z,ξ)−φa(x,ξ)) − h0(∇xφa(x, ξ)),

s2a(x, ξ) = h(x,∇xφa(x, ξ))− h0(ξ).

For s2a, (2.4.45) and Assumption 2.1.3 imply for |x| ≥ Ra and β,

∂βξ s
2
a(x, ξ) =

{
0, | cos(x, v(ξ))| ≥ 1

2 ,

O(⟨x⟩−ε), | cos(x, v(ξ))| ≤ 1
2 .

(2.4.51)
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For s1a, we have

s1a(x, ξ) =
∑
z∈Zd

f [z]
(
ei(φa(x−z,ξ)−φa(x,ξ)) − e−iz·∇xφa(x,ξ)

)
=
∑
z∈Zd

f [z] e−iz·∇xφa(x,ξ)
(
eiΦa(x,ξ,z) − 1

)
,

where

Φa(x, ξ, z) = φa(x− z, ξ)− φa(x, ξ) + z · ∇xφa(x, ξ)

= z ·
(∫ 1

0
θ1

∫ 1

0
∇2
xφa(x− θ1θ2z, ξ)dθ2dθ1

)
z.

By (2.2.4), we observe

|∂βξ [e
−iz·∇xφa(x,ξ)]| ≤ Cβ⟨z⟩|β|

and

|∂βξ Φa(x, ξ, z)| ≤Cβ|z|
2

∫ 1

0
θ1

∫ 1

0
⟨x− θ1θ2z⟩−1−εdθ2dθ1

≤Cβ⟨x⟩−1−ε⟨z⟩3+ε.

Thus we obtain

|∂βξ s
1
a(x, ξ)| ≤ Cβ⟨x⟩−1−ε. (2.4.52)

Hence (2.2.9) is proved by (2.4.50), (2.4.51) and (2.4.52).

2.5 Appendix: Proofs of Lemmas 2.2.2 and 2.2.3

2.5.1 Proof of Lemma 2.2.2

First we remark that Ja, P±, P̃± and their formal adjoint operators

J∗
au[x] = (2π)−d

∫
Td

∑
y∈Zd

ei(x·ξ−φa(y,ξ))u[y]dξ,

P ∗
±u[x] = (2π)−d

∫
Td

∑
y∈Zd

ei(x−y)·ξp±(x, ξ)u [y] dξ,

P̃ ∗
±u[x] = (2π)−d

∫
Td

∑
y∈Zd

ei(φa(x,ξ)−y·ξ)p±(x, ξ)u [y] dξ
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map from S (Zd) to itself.
Letting L := ⟨x − y⟩−2(1 + (x − y) · Dξ), Dξ := 1

i∇ξ, we easily see

L
(
ei(x−y)·ξ

)
= ei(x−y)·ξ. Thus we have

P±u [x] =(2π)−d
∫
Td

∑
y∈Zd

Lk
(
ei(x−y)·ξ

)
p±(y, ξ)u [y] dξ

=(2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ξ(L∗)k (p±(y, ξ))u [y] dξ

for any k ∈ N≥0. We define |p±| := sup|β|≤d+1 sup(x,ξ)∈Zd×Td |∂βξ p±(x, ξ)|.
Then we learn that, setting k = d+ 1,

|P±u [x] | ≤ C|p±|
∑
y∈Zd

⟨x− y⟩−d−1|u[x]|.

This and Young’s inequality imply ∥P±u∥ ≤ C|p±|∥u∥, where ∥u∥ :=
(∑

x∈Zd |u[x]|2
) 1

2 .
Hence P± are bounded.

Next we prove P̃± are bounded. A direct calculus implies

P̃ ∗
±P̃±u[x] = (2π)−d

∫
Td

∑
y∈Zd

ei(φa(x,ξ)−φa(y,ξ))p±(x, ξ)p±(y, ξ)u [y] dξ

= (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·η(ξ;x,y)p±(x, ξ)p±(y, ξ)u [y] dξ,

where η in the last equality is defined by

η(ξ;x, y) :=

∫ 1

0
∇xφa(y + θ(x− y), ξ)dθ. (2.5.1)

Then (2.2.5) implies η(·;x, y) : Td → Td has its inverse map ξ(·;x, y).
Changing the variable ξ to η, we have

P̃ ∗
±P̃±u[x] = (2π)−d

∫
Td

∑
y∈Zd

ei(x−y)·ηr(x, y, η)u [y] dη,

where

r(x, y, η) = p±(x, ξ(η;x, y))p±(y, ξ(η;x, y))

∣∣∣∣det(dξdη
)∣∣∣∣ .
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Since (2.2.4) implies ∣∣∣∣∂βη [det(dξdη
)
− 1

]∣∣∣∣ ≤ Cβ⟨x⟩−ε, (2.5.2)

the similar argument for P± proves the boundedness of P̃ ∗
±P̃±. Thus, for

u ∈ S (Zd), we obtain

∥P̃±u∥2 = |(P̃ ∗
±P̃±u, u)| ≤ ∥P̃ ∗

±P̃±∥∥u∥2,

which implies P̃± are bounded. The boundedness of Ja is proved similarly.

2.5.2 Proof of Lemma 2.2.3

Since

γ(H0)− P+ − P− = γ(H0)(1− χ),

the compactness of the support of 1−χ implies P+ +P− − γ(H0) is a finite
rank operator, in particular, a compact operator.

We show P ∗
± − P± are compact. We observe

(P ∗
± − P±)u[x]

= (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ξ(p±(x, ξ)− p±(y, ξ))u [y] dξ

= (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ξ(x− y) ·
∫ 1

0
∇xp±(y + θ(x− y), ξ)dθ u[y]dξ

= (2π)−di

∫
Td

∑
y∈Zd

ei(x−y)·ξ
∫ 1

0
∇ξ · ∇xp±(y + θ(x− y), ξ)dθ u[y]dξ,

where the last equality follows from integral by parts in ξ. Since∣∣∣∣∫ 1

0
∂βξ [∇ξ · ∇xp±(y + θ(x− y), ξ)]dθ

∣∣∣∣ ≤ Cβ

∫ 1

0
⟨y + θ(x− y)⟩−1dθ

≤ C ′
β⟨x⟩−1,

similar argument in Lemma 2.2.2 proves ⟨x⟩(P ∗
±−P±) are bounded. By the

compactness of ⟨x⟩−1 as an operator on H, P ∗
± −P± = ⟨x⟩−1 · ⟨x⟩(P ∗

± −P±)
are compact.
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We next prove the compactness of E±(0)− P±. Using (2.5.1), we have

E±(0)u[x] = JaP̃±u[x]

= (2π)−d
∫
Td

∑
y∈Zd

ei(φa(x,ξ)−φa(y,ξ))p±(y, ξ)u [y] dξ

= (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ηp±(y, ξ(η))

∣∣∣∣det(dξdη
)∣∣∣∣u [y] dη.

Thus

(E±(0)− P±)u[x] = (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ηr(x, y, η)u [y] dη,

where

r(x, y, η) = p±(y, ξ(η))

∣∣∣∣det(dξdη
)∣∣∣∣− p±(y, η).

By (2.5.2), we have |∂βη [r(x, y, η)]| ≤ Cβ⟨x⟩−ε, and hence ⟨x⟩ε(E±(0)− P±)
are bounded. This proves E±(0)− P± are compact.

The compactness of JaJ
∗
a − I is proved similarly to that of E±(0)− P±,

since

(JaJ
∗
a − I)u[x] = (2π)−d

∫
Td

∑
y∈Zd

ei(φa(x,ξ)−φa(y,ξ))u [y] dξ − u[x]

= (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·η
(∣∣∣∣det(dξdη

)∣∣∣∣− 1

)
u [y] dη.

Finally, we prove J∗
aJa − I is compact. Now we mimic the proof of [12,

Lemma 7.1]. For f ∈ L2(Td), we denote

Laf(ξ) = FJ∗
aJaF

∗f(ξ)

= (2π)−d
∑
x∈Zd

∫
Td

ei(φa(x,ξ)−φa(x,η))f(η)dη,

L̃af(ξ) = (2π)−d
∫
Rd

∫
Td

ei(φa(x,ξ)−φa(x,η))f(η)dηdx.

First we show that, for any ψ ∈ C∞(Td) with sufficiently small support,

Ka,ψ := ψ ◦ (La − L̃a)
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is a compact operator on L2(Td). We define Π : L1(Rd) → L1(Td) by

Πf(ξ) :=
∑
m∈Zd

f(ξ + 2πm).

Then (2.2.3) implies

ΠL̃af(ξ) =(2π)−d
∑
m∈Zd

∫
Rd

∫
Td

ei(φa(x,ξ+2πm)−φa(x,η))f(η)dηdx

=(2π)−d
∑
m∈Zd

∫
Rd

∫
Td

ei(φa(x,ξ)+2πx·m−φa(x,η))f(η)dηdx.

Using Poisson’s summation formula∑
m∈Zd

e2πix·m =
∑
m∈Zd

δx−m (2.5.3)

in the sense of distribution, we have

ΠL̃af(ξ) =(2π)−d
∑
x∈Zd

∫
Td

ei(φa(x,ξ)−φa(x,η))f(η)dη = Laf(ξ).

Thus we learn

Ka,ψf(ξ) =ψ ◦ (ΠL̃a − L̃a)f(ξ)

=
∑

m∈Zd\{0}

ψ(ξ)

∫
Rd

∫
Td

ei(φa(x,ξ+2πm)−φa(x,η))f(η)dηdx

=

∫
Td

ka,ψ(ξ, η)f(η)dη,

where the integral kernel

ka,ψ(ξ, η) =
∑

m∈Zd\{0}

ψ(ξ)

∫
Rd

ei(φa(x,ξ+2πm)−φa(x,η))dx

is smooth. This implies the compactness of Ka,ψ.
In order to show the compactness of ψ ◦ (L̃a − I), we note

L̃af(ξ) = (2π)−d
∫
Rd

∫
Td

ei
∫ 1
0 ∇ξφa(x,η+θ(ξ−η))dθ·(ξ−η)f(η)dηdx.
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Letting

y(x; ξ, η) :=

∫ 1

0
∇ξφa(x, η + θ(ξ − η))dθ,

we observe y(·; ξ, η) has its inverse map by (2.2.5). Thus we have

L̃af(ξ) = (2π)−d
∫
Rd

∫
Td

eiy·(ξ−η)
∣∣∣∣det(dxdy

)∣∣∣∣ f(η)dηdy.
This equality and∣∣∣∣∂αy ∂βξ ∂γη [det(dxdy

)
− 1

]∣∣∣∣ ≤ Cαβγ⟨y⟩−|α|−ε

imply the compactness of ψ ◦ (L̃a − I).
Hence, with the help of a partition of unity {ψj}Jj=1 on Td, we observe

J∗
aJa − I = F ∗(La − I)F = F ∗

J∑
j=1

(
Ka,ψj

+ ψj ◦ (L̃a − I)
)
F

is compact.
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Chapter 3

Long-range scattering theory
for discrete Schrödinger
operators on graphene

3.1 Introduction

The aim of this chapter is to consider a long-range scattering theory for
discrete Schrödinger operators on graphene, that is, the hexagonal lattice.
Unlike discrete Schrödinger operators on the square and triangular lattices,
operators on the hexagonal lattice cannot be represented as an operator on
the space of C1-valued functions on Z2, but C2-valued. Because of this as-
pect, a long-range scattering theory for this model cannot be treated as in
the last chapter. In this chapter, we generalize the results of the last chapter,
and in particular we construct Isozaki-Kitada modifiers for the hexagonal
lattice. For a short-range scattering theory for discrete Schrödinger opera-
tors on general lattices, including the hexagonal lattice, see [14]. See also [3]
and [4] for spectral properties of discrete Schrödinger operators on general
lattices.

Let H = ℓ2(Z2;C2). For u ∈ H, we use the notation u =

(
u1
u2

)
,

u1, u2 ∈ ℓ2(Z2). The unperturbed discrete Schrödinger operator H0 on
graphene is described as the negative of the difference Laplacian

H0u[x] = −
(
u2[x] + u2[x− e1] + u2[x− e2]
u1[x] + u1[x+ e1] + u1[x+ e2]

)
, x ∈ Z2, u ∈ H, (3.1.1)

where e1 = (1, 0), e2 = (0, 1). The derivation of H0 is found in e.g. [2]
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and [3]. As is seen later, H0 has purely absolutely continuous spectrum and
σ(H0) = σac(H0) = [−3, 3].

For a function V : Z2 → R2, the corresponding multiplication operator
is also denoted by V :

V u[x] =

(
V1[x]u1[x]
V2[x]u2[x]

)
, (3.1.2)

where V1[x] and V2[x] are the first and second value of V [x]. We set H =
H0 + V . It is known that if V is short-range, i.e., |V [x]| ≤ C⟨x⟩−ρ for some

C > 0 and ρ > 1, where ⟨x⟩ := (1 + |x|2)
1
2 , the wave operators

W± = s-lim
t→±∞

eitHe−itH0

exist and W± are asymptotically complete, i.e., the range of W± equals to
the absolutely continuous subspace of H. In this chapter, we assume the
long-range condition below.

Assumption 3.1.1. The function V has the following representation

V1 = Vℓ + Vs,1, V2 = Vℓ + Vs,2,

where Vℓ and Vs,j satisfy

|∂̃αVℓ[x]| ≤ Cα⟨x⟩−|α|−ρ, x ∈ Z2, α ∈ Z2
+,

|Vs,j [x]| ≤ C⟨x⟩−1−ρ, x ∈ Z2, j = 1, 2

for some ρ ∈ (0, 1] and Cα, C > 0. Here ∂̃α = ∂̃α1
x1 ∂̃

α2
x2 , ∂̃xjW [x] := W [x] −

W [x− ej ].

Remark 3.1.2. The above assumption is invariant under the choice of iso-
morphism between the set of vertices of the hexagonal lattice and Z2×{1, 2}
invariant under the canonical Z2 action. In particular, it follows that the
difference between each pair of the nearest vertices is short-range. We note
that the pair of potentials V1[x] = ⟨x⟩−1 and V2[x] = −⟨x⟩−1, an analog of
Wigner-von Neumann potentials, is not allowed under the above assump-
tion. We also note that, for 1-dimensional discrete Schrödinger operators,
embedded eigenvalues can occur even if |V [x]| ≤ C⟨x⟩−1, x ∈ Z for some
C > 0 (see [11]).

We give notations for the description of the main theorem. Let T =
{0,±1,±3} be the set of threshold energies. For a selfadjoint operator S
and an Borel set I ⊂ R, ES(I) denotes the spectral projection of S onto
I and Hac(S) denotes the absolutely continuous subspace of S. The main
theorem of this chapter is the following.
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Theorem 3.1.3. Assume that V satisfies Assumption 3.1.1. Then for any
open set Γ ⋐ [−3, 3]\T, one can construct a Fredholm operator J on H such
that there exist modified wave operators

W±
J (Γ) := s-lim

t→±∞
eitHJe−itH0EH0(Γ) (3.1.3)

and the following properties hold:
i)Intertwining property HW±

J (Γ) =W±
J (Γ)H0.

ii)Partial isometries ∥W±
J (Γ)u∥ = ∥EH0(Γ)u∥.

iii)Asymptotic completeness RanW±
J (Γ) = EH(Γ)Hac(H).

The above theorem is an analog of [12] and Theorem 2.1.5 in the sense
of a long-range scattering theory for discrete Schrödinger operators. For
a long-range scattering theory for Schrödinger operators on the Euclidean
space, see e.g. [6], [18] and references therein.

We observe spectral properties of the free operator H0, and we show
an abstract form of the operator J in (3.1.3). By F : H → L2(T2;C2),
T2 := [−π, π)2, we denote the discrete Fourier transform

Fu(ξ) =

(
Fu1(ξ)
Fu2(ξ)

)
, ξ ∈ T2, (3.1.4)

Fuj(ξ) = (2π)−1
∑
x∈Z2

e−ix·ξuj [x], j = 1, 2.

Then F ◦H0 ◦ F∗ is a multiplier by the matrix

H0(ξ) =

(
0 α(ξ)

α(ξ) 0

)
, (3.1.5)

where α(ξ) := −(1 + eiξ1 + eiξ2). Note that for each ξ ∈ T2, H0(ξ) is an
Hermitian matrix.

In order to determine the spectrum σ(H0) of H0, we consider the diag-
onalization of matrix at each point in the momentum space T2. We set a
unitary matrix

U(ξ) :=
1√
2

(
1 − α(ξ)

|α(ξ)|
α(ξ)
|α(ξ)| 1

)
, ξ ∈ T2\{α−1(0)}.

Then H0(ξ) is diagonalized by U(ξ); setting p(ξ) := |α(ξ)|, we have

H̃0(ξ) := U(ξ)∗H0(ξ)U(ξ) =

(
p(ξ) 0
0 −p(ξ)

)
, ξ ∈ T2\{α−1(0)}.
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Since α−1(0) = {(±2
3π,∓

2
3π)}, H̃0(ξ) and U(ξ) are defined a.e. in T2. Fur-

thermore p is smooth outside α−1(0) and the set of its critical points

Cr :={ξ ∈ T2\α−1(0) | ∇ξp(ξ) = 0} (3.1.6)

={(0, 0), (−π, 0), (0,−π), (−π,−π)}

has Lebesgue measure zero. Thus H0 has purely absolutely continuous spec-
trum (see Proposition 2.2.1) and

σ(H0) = p(T2\α−1(0)) ∪ (−p(T2\α−1(0))) = [−3, 3]. (3.1.7)

Using the above U , J is formally represented as

J = F∗U(·)F ◦
(
J+ 0
0 J−

)
◦ F∗U(·)∗F,

where

J±u[x] = (2π)−1

∫
T2

eiφ±(x,ξ)Fu(ξ)dξ

and φ±(x, ξ), (x, ξ) ∈ R2 × T2, are outgoing and incoming solution of the
eikonal equation

p(∇xφ) + Ṽℓ(x) = p(ξ),

where Ṽℓ is a suitable smooth extension of Vℓ onto R2. However there are two
technical difficulties. One is the singularity of p(ξ) at α−1(0). The other
is the singularity of U(ξ). The latter is more crucial because we cannot
prove that the difference Vℓ − F∗UF ◦ Vℓ ◦ F∗U∗F is short-range due to the
singularity of U(ξ). We will avoid the above difficulties in Subsection 3.2.1.

We describe the outline of this chapter. The essential idea of proof is
as follows; in order to make the above long-range scattering problem easier,
we replace the free operator H0 to a modified free operator H ′

0 witch can
be diagonalized in the whole momentum space T2. In Subsection 3.2.1, we
construct the modified free operator H ′

0, and the property of H ′
0 is written in

Lemma 3.2.1. Considering the long-range scattering theory for H ′
0 instead

of H0, we can reduce the problem of long-range scattering for operators on
H to that for operators on ℓ2(Z2). Then we will see in Subsection 3.3.1 that
the result of the last chapter is applicable to the above setting. Subsection
3.3.2 concerns a short-range scattering theory. This step is treated with
the limiting absorption principle and Kato’s smooth perturbation theory.
We also use a pseudodifferential calculus prepared in Subsection 3.2.2. In
Appendix 3.4, we show the limiting absorption principle by using the Mourre
theory.
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3.2 Preliminaries

3.2.1 Construction of the modified free operator

Let us fix the open interval Γ ⋐ [−3, 3]\T as in Theorem 3.1.3 and δ :=
dist(0,Γ) = infλ∈Γ |λ|. We construct a modified free operator

H ′
0 := F∗ ◦H ′

0(·) ◦ F,

whereH ′
0(ξ) ∈ C∞(T2;M2(C)) is a simple symmetric matrix for each ξ ∈ T2.

We will choose H ′
0(ξ) so that H ′

0 has the same spectral projection as H0 in
[−3,− δ

2 ] ∪ [ δ2 , 3].

Let κ ∈ C∞ (R≥0;R≥0) be fixed such that suppκ ⊂ [0, δ
2

4 ) and 0 <

E + κ(E)2 < δ2

4 for E ∈ [0, δ
2

4 ). Let us define

H ′(ξ) :=

(
κ(p(ξ)2) α(ξ)
α(ξ) −κ(p(ξ)2)

)
. (3.2.1)

Then H ′(ξ) has two eigenvalues

λ±(ξ) := ±
(
κ(p(ξ)2)2 + p(ξ)2

) 1
2 (3.2.2)

and the corresponding eigenvectors are

f+(ξ) =

(
κ(p(ξ)2) + λ+(ξ)

α(ξ)

)
, f−(ξ) =

(
−α(ξ)

κ(p(ξ)2) + λ+(ξ)

)
.

Therefore letting

U ′(ξ) :=
1

C(ξ)

(
κ(p(ξ)2) + λ+(ξ) −α(ξ)

α(ξ) κ(p(ξ)2) + λ+(ξ)

)
, (3.2.3)

C(ξ) :=
{
p(ξ)2 +

[
κ(p(ξ)2) + λ+(ξ)

]2} 1
2
,

we learn that U ′(ξ) is a unitary matrix-valued smooth function on T2 and

H̃ ′
0(ξ) := U ′(ξ)∗H ′

0(ξ)U
′(ξ) =

(
λ+(ξ) 0
0 λ−(ξ)

)
. (3.2.4)

Note that λ±(ξ) = ±p(ξ) for ξ ∈ p−1
(
( δ2 , 3]

)
by the condition of κ. Thus

we obtain the following lemma.
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Lemma 3.2.1. Let

H ′
0 := F∗H ′

0(·)F, H̃ ′
0 := F∗H̃ ′

0(·)F, U ′ := F∗U ′(·)F (3.2.5)

and

λ± := F ∗λ±(·)F. (3.2.6)

Then

H̃ ′
0 = (U ′)∗H ′

0U
′ =

(
λ+ 0
0 λ−

)
, (3.2.7)

EH0(I) = EH′
0
(I), I ⋐ (−∞,−δ

2
) ∪ (

δ

2
,∞). (3.2.8)

In particular,

e−itH0EH0 (Γ) = e−itH
′
0EH′

0
(Γ) , t ∈ R, (3.2.9)

χ(H0) = χ(H ′
0), χ ∈ C∞

c (Γ). (3.2.10)

3.2.2 Pseudodifferential calculus

In this subsection we prepare an assertion concerning the boundedness of
pseudodifference operators on Zd, d ≥ 1. This lemma is an analog of sym-
bol calculus of pseudodifferential operators on T2. The proof is given in
Appendix 3.5. See also [16, Theorem 4.7.10].

Lemma 3.2.2. Let m1,m2 ∈ R, a : Td × Zd → C, b : Zd → C, and

Op(a)u[x] = (2π)−d
∫
Td

∑
y∈Zd

ei(x−y)·ξa(ξ, y)u[y]dξ,

Op(b)u[x] = b[x]u[x].

Suppose that a(·, y) ∈ C∞(Td) for y ∈ Zd and |∂αξ a(ξ, y)| ≤ Cα⟨y⟩−m1,

|∂̃xjb[x]| ≤ C⟨x⟩−m2 for x ∈ Z2, j = 1, . . . , d, where ∂̃xjb[x] = b[x]−b[x−ej ].
Then, ⟨x⟩p[Op(b),Op(a)]⟨x⟩q is a bounded operator on ℓ2(Zd) if p + q =
m1 +m2.

3.3 Proof of Theorem 3.1.3

First note that the properties i) and ii) are satisfied if the limits (3.1.3) exist.
See [7] and [18] for the proofs.
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We denote by Vℓ the multiplication operator by

(
Vℓ[x]
Vℓ[x]

)
if there is no

risk of confusion. Let

H ′
ℓ := H ′

0 + U ′Vℓ
(
U ′)∗ = U ′

(
H̃ ′

0 + Vℓ

) (
U ′)∗ . (3.3.1)

Then it suffices to prove the following two assertions.

Theorem 3.3.1. One can construct a Fredholm operator J such that there
exist modified wave operators

W ′,±
J,ℓ (Γ) := s-lim

t→±∞
eitH

′
ℓJe−itH

′
0EH′

0
(Γ) (3.3.2)

exist and RanW ′,±
J,ℓ (Γ) = EH′

ℓ
(Γ)Hac(H

′
ℓ).

Theorem 3.3.2. There exist the wave operators

W ′,±
s (Γ) := s-lim

t→±∞
eitHe−itH

′
ℓEac

H′
ℓ
(Γ), (3.3.3)

where Eac
H′

ℓ
(Γ) denotes the spectral projection of H ′

ℓ onto the absolutely con-

tinuous subspace in Γ, and RanW ′,±
s (Γ) = EH(Γ)Hac(H).

Proof of Theorem 3.1.3. It remains to prove W±
J (Γ) = W ′,±

s (Γ)W ′,±
J,ℓ (Γ).

For u ∈ H, it follows from Lemma 3.2.1 that

eitHJe−itH0EH0(Γ)u =eitHJe−itH
′
0EH′

0
(Γ)u

=eitHe−itH
′
ℓ · eitH′

ℓJe−itH
′
0EH′

0
(Γ)u.

Note that by Theorem 3.3.1 there exist T± > 0 such that for ±t > T±,
eitH

′
ℓJe−itH

′
0EH′

0
(Γ)u = W ′,±

J,ℓ (Γ)u + r±(t) and ∥r±(t)∥H → 0 as t → ±∞.
Thus we have for ±t > T±

∥eitHJe−itH0EH0(Γ)u−W ′,±
s (Γ)W ′,±

J,ℓ (Γ)u∥H (3.3.4)

≤
∥∥∥(eitHe−itH′

ℓ −W ′,±
s (Γ)

)
W ′,±
J,ℓ (Γ)u

∥∥∥
H
+ ∥r±(t))∥H.

Since W ′,±
J,ℓ (Γ)u ∈ RanW ′,±

J,ℓ (Γ) = EH′
ℓ
(Γ)Hac(H

′
ℓ), Theorem 3.3.2 implies

that (3.3.4) tends to 0 as t→ ±∞.

In the following, we prove Theorems 3.3.1 and 3.3.2.
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3.3.1 Proof of Theorem 3.3.1

We reduce a long-range scattering problem on H = ℓ2(Z2;C2) into that on
ℓ2(Z2), which is considered in the last chapter.

The existence and completeness of (3.3.2) are equivalent to those of

W̃ ′,±
J̃ ,ℓ

(Γ) := s-lim
t→±∞

eitH̃
′
ℓ J̃e−itH̃

′
0EH̃′

0
(Γ), (3.3.5)

where J̃ = (U ′)∗ JU ′ and

H̃ ′
ℓ :=

(
U ′)∗H ′

ℓU
′ = H̃ ′

0 + Vℓ. (3.3.6)

Indeed, a direct calculus implies

W ′,±
J,ℓ (Γ) = U ′W̃ ′,±

J̃ ,ℓ
(Γ)
(
U ′)∗ . (3.3.7)

Set J̃ =

(
J̃+ 0

0 J̃−

)
, J̃± ∈ B(ℓ2(Z2)). Then the scattering problem of oper-

ators on H is reduced to that on ℓ2(Z2):

W̃±
J̃ ,ℓ

(Γ) (3.3.8)

= s-lim
t→±∞

(
eit(λ++Vℓ)J̃+e

−itλ+Eλ+(Γ) 0

0 eit(λ−+Vℓ)J̃−e
−itλ−Eλ−(Γ)

)
.

Therefore we obtain the following theorem by Theorem 2.1.5.

Theorem 3.3.3. There exist Fredholm operators J̃#, # ∈ {+,−}, of the
form

J̃#v[x] = (2π)−1

∫
T2

eiφ#(x,ξ)Fv(ξ)dξ, v ∈ ℓ2(Z2), (3.3.9)

such that the modified wave operators

W±
ℓ,#(Γ) := s-lim

t→±∞
eit(λ#+Vℓ)J̃#e

−itλ#Eλ#(Γ) (3.3.10)

exist and they are partial isometries from Eλ#(Γ)Hac(λ#) onto Eλ#(Γ)Hac(λ#).

Note that each φ#(x, ξ) in (3.3.9) is constructed as a smooth function
on R2 × T2 which solves the eikonal equation

λ#(∇xφ#(x, ξ)) + Ṽℓ(x) = λ#(ξ) (3.3.11)

on the outgoing and incoming regions, where Ṽℓ ∈ C∞(R2) is an extension
of Vℓ as in Assumption 2.1.3. For detailed properties of J± and φ±, see the
last chapter.

Let J := U ′J̃ (U ′)∗, J̃ :=

(
J̃+ 0

0 J̃−

)
. Then using Theorem 3.3.3 and

(3.3.7), we obtain Theorem 3.3.1.
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3.3.2 Proof of Theorem 3.3.2

Theorem 3.3.2 is proved by Proposition 3.3.4 and the Cook-Kuroda method.
The proof of the next proposition is given in Appendix 3.4.

Proposition 3.3.4. i) H and H ′
ℓ have at most finite discrete eigenvalues

in Γ with counting their multiplicities.
ii) Let s > 1

2 and χ ∈ C∞
c (Γ\σpp(H)) (resp. χ ∈ C∞

c (Γ\σpp(H ′
ℓ))). Then

⟨x⟩−sχ(H) (resp. ⟨x⟩−sχ(H ′
ℓ)) is H(resp. H ′

ℓ)-smooth.

According to Proposition 3.3.4 i) and a density argument, it suffices to
show the existence of wave operators

lim
t→±∞

eitHe−itH
′
ℓu, (3.3.12)

lim
t→±∞

eitH
′
ℓe−itHv (3.3.13)

for u ∈ Hac(H
′
ℓ) and v ∈ Hac(H) such that

χ(H ′
ℓ)u = u, ψ(H)v = v (3.3.14)

with χ ∈ C∞
c (Γ\σpp(H ′

ℓ)) and ψ ∈ C∞
c (Γ\σpp(H)). We prove the existence

of (3.3.12) as t→ ∞ only. The other cases are proved similarly.
By (3.3.14), we have

eitHe−itH
′
ℓu =eitHχ(H ′

ℓ)
3e−itH

′
ℓu (3.3.15)

=eitHχ(H)χ(H ′
0)χ(H

′
ℓ)e

−itH′
ℓu

+ eitH
(
χ(H ′

ℓ)
2 − χ(H)χ(H ′

0)
)
χ(H ′

ℓ)e
−itH′

ℓu.

Since H − H0 = Vℓ and H
′
ℓ − H ′

0 = (U ′)∗ VℓU
′ are compact operators, the

Helffer-Sjöstrand formula implies that χ(H) − χ(H0) = χ(H) − χ(H ′
0) and

χ(H ′
ℓ) − χ(H ′

0) are compact. Thus χ(H ′
ℓ)

2 − χ(H)χ(H ′
0) is also a compact

operator. Note that u ∈ Hac(H
′
ℓ) implies e−itH

′
ℓu → 0 weakly as t → ∞.

Thus the last term of (3.3.15) converges to 0 as t → ∞, and it suffices to
prove the existence of the limit

lim
t→∞

eitHχ(H)χ(H ′
0)χ(H

′
ℓ)e

−itH′
ℓu.

Now we use the Cook-Kuroda method. First note that

eitHχ(H)χ(H ′
0)χ(H

′
ℓ)e

−itH′
ℓu− eit

′Hχ(H)χ(H ′
0)χ(H

′
ℓ)e

−it′H′
ℓu

=

∫ t

t′

d

ds
(eisHχ(H)χ(H ′

0)χ(H
′
ℓ)e

−isH′
ℓu)ds.
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A direct calculus implies

d

dt

(
eitHχ(H)χ(H ′

0)χ(H
′
ℓ)e

−itH′
ℓu
)

= ieitHχ(H)
(
Hχ(H ′

0)− χ(H ′
0)H

′
ℓ

)
χ(H ′

ℓ)e
−itH′

ℓu

= ieitHχ(H)
(
Vsχ(H

′
0) + Vℓχ(H

′
0)− χ(H ′

0)
(
U ′)∗ VℓU ′)χ(H ′

ℓ)e
−itH′

ℓu

= ieitHχ(H)
(
Vsχ(H

′
0) + [Vℓ, χ(H

′
0)
(
U ′)∗]U ′)χ(H ′

ℓ)e
−itH′

ℓu

= ieitH(A∗
1B1 +A∗

2B2)e
−itH′

ℓu,

where γ := 1+ρ
2 and

A1 := ⟨x⟩γVsχ(H), B1 := ⟨x⟩−γχ(H ′
0)χ(H

′
ℓ),

A2 := ⟨x⟩−γχ(H), B2 := ⟨x⟩γ [Vℓ, χ(H ′
0)
(
U ′)∗]U ′χ(H ′

ℓ).

Then by a standard argument of short-range scattering theory (see, e.g.,
[15]), it suffices to prove that each Aj(Bj) is H(H ′

ℓ)-smooth, respectively.
TheH-smoothness of A1 and A2 is a direct consequence of Proposition 3.3.4.
For the H ′

ℓ-smoothness of B1 and B2, note that

B1 = ⟨x⟩−γχ(H ′
0)⟨x⟩γ · ⟨x⟩−γχ(H ′

ℓ),

B2 = ⟨x⟩γ [Vℓ, χ(H ′
0)
(
U ′)∗]U ′⟨x⟩γ · ⟨x⟩−γχ(H ′

ℓ).

Then it follows from Lemma 3.2.2 and Assumption 3.1.1 that ⟨x⟩−γχ(H ′
0)⟨x⟩γ

and ⟨x⟩γ [Vℓ, χ(H ′
0) (U

′)∗]U ′⟨x⟩γ are bounded. Combining this and Proposi-
tion 3.3.4, we obtain the H ′

ℓ-smoothness of B1 and B2.

3.4 Appendix: Mourre theory for H and H ′
ℓ, and

the proof of Proposition 3.3.4

In this appendix, we review the Mourre theory, the limiting absorption prin-
ciple and Kato’s smooth perturbation theory. Let Γ ⋐ σ(H0)\T be an open
interval as in Theorem 3.1.3. For a selfadjoint operator A and n ∈ N, let

Cn(A) = {S ∈ B(H) | R → B(H), t 7→ e−itASeitA is strongly of class Cn},

and C∞(A) := ∩n∈NCn(A). We denote by C1,1(A) the set of the operators
satisfying ∫ 1

0
∥e−itASeitA + eitASe−itA − 2S∥dt

t2
<∞. (3.4.1)

55



Note that C2(A) ⊂ C1,1(A) ⊂ C1(A). We denote by B the Besov space
(D(A),H) 1

2
,1 obtained by real interpolation. We also denote by B∗ its dual.

The definition of real interpolation is found in [1, Section 2.3].
We recall the characterization of Kato smoothness; for a selfadjoint op-

erator H and an H-bounded operator G, we say that G is H-smooth if

C1 :=
1

2π
sup

u∈D(H),∥u∥=1

∫
R

∥∥Ge−itHu∥∥ dt <∞. (3.4.2)

It is known that there are other characterizations of H-smoothness and one
of them is

C2 := sup
λ∈R,ε>0

∥Gδ(λ, ε)G∗∥ <∞, (3.4.3)

moreover C1 = C2, where δ(λ, ε) :=
1

2πi

(
(H − λ− iε)−1 − (H − λ+ iε)−1

)
.

For other characterizations, see [9].
In order to prove Proposition 3.3.4, we apply the two operators H and

H ′
ℓ to Theorem 3.4.1 described below with I ⋐ Γ and a suitable conjugate

operator A. The following theorem is a standard result of the Mourre theory
and is due to [1, Proposition 7.1.3, Corollary 7.2.11, Theorem 7.3.1].

Theorem 3.4.1. Let S ∈ C1,1(A) and I ⊂ R be an open interval. Suppose
that there exist a constant c > 0 and a compact operator K on H such that

ES(I)[S, iA]ES(I) ≥ cES(I) +K. (3.4.4)

Then
i) S has at most a finite number of eigenvalues in I and each eigenvalues in
I has finite multiplicity.
ii) For any λ ∈ I\σpp(S), there exist the weak-* limits in B(B,B∗)

w*- lim
ε→+0

(S − λ∓ iε)−1, (3.4.5)

and the convergence is locally uniform in I\σpp(S). In particular, for any
I ′ ⋐ I\σpp(S), S is purely absolutely continuous in I ′ and

sup
λ∈I′,ε>0

∥(S − λ∓ iε)−1∥B(B,B∗) <∞. (3.4.6)
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We define the conjugate operator A by

A := U ′ ◦ Ã ◦
(
U ′)∗ (3.4.7)

Ã :=

(
Ã+ 0

0 Ã−

)
, (3.4.8)

Ã± :=
1

2

2∑
j=1

(
F ∗(∂ξjλ±)F · xj + xj · F ∗(∂ξjλ±)F

)
, (3.4.9)

where U ′ and λ±(ξ) ∈ C∞(T2) are given by (3.2.2), (3.2.3), (3.2.5), (3.2.6).
Then Nelson’s commutator theorem with the positive selfadjoint operator
⟨x⟩ implies that A is essentially selfadjoint on the Schwarz space on Z2

defined by S(Z2) = {u : Z2 → C2 | supx∈Z2⟨x⟩N |u[x]| <∞ for any N ∈ N}.
First we verify a relation between A and the unperturbed operators H0

and H ′
0.

Lemma 3.4.2. Both H0 and H ′
0 belong to C∞(A). Moreover, let

c := min

{
inf

ξ∈λ−1
+ (Γ)

|∇ξλ+(ξ)|2, inf
ξ∈λ−1

− (Γ)
|∇ξλ−(ξ)|2

}
.

Then, c > 0 and

EH0(Γ)[H0, iA]EH0(Γ) ≥ cEH0(Γ), (3.4.10)

EH′
0
(Γ)[H ′

0, iA]EH′
0
(Γ) ≥ cEH′

0
(Γ). (3.4.11)

Proof. Note that the LHS (resp. RHS) of (3.4.10) equals to the LHS (resp.
RHS) of (3.4.11) by the construction of H ′

0.
Since F∗H0F and F∗H ′

0F are multipliers with smooth symbols on T2

and F∗AF is a differential operator of degree 1 on T2, F∗[H0, iA]F and
F∗[H ′

0, iA]F are also multipliers with smooth symbols. Inductively we see
that H0,H

′
0 ∈ C∞(A).

For the proof of (3.4.11), a direct calculus implies

(U ′)∗[H ′
0, iA]U = [H̃ ′

0, iÃ]

=

(
|∇ξλ+(Dx)|2 0

0 |∇ξλ−(Dx)|2
)
,

(U ′)∗EH′
0
(Γ)U ′ = EH̃′

0
(Γ)

=

(
χλ−1

+ (Γ)(Dx) 0

0 χλ−1
− (Γ)(Dx)

)
,
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where χλ−1
± (Γ) denote the characteristic function of λ−1

± (Γ). Therefore we

obtain

EH′
0
(Γ)[H ′

0, iA]EH′
0
(Γ)

=U ′EH̃′
0
(Γ)[H̃ ′

0, iÃ]EH̃′
0
(Γ)(U ′)∗

=U ′

(
|∇ξλ+(Dx)|2χλ−1

+ (Γ)(Dx) 0

0 |∇ξλ−(Dx)|2χλ−1
− (Γ)(Dx)

)
(U ′)∗

≥U ′cEH̃′
0
(Γ)(U ′)∗

=cEH′
0
(Γ).

We consider commutators of the perturbations Vs, Vℓ and U
′Vℓ (U

′)∗, and
the conjugate operator A. The next lemma claims that the commutators
are small in the sense of the Mourre theory, i.e., compact.

Lemma 3.4.3. Let Vs and Vℓ satisfy the condition in Assumption 3.1.1 with
ρ > 0. Then, for W = Vs, Vℓ and U

′Vℓ (U
′)∗,

⟨x⟩ρ[W, iA] ∈ B(H). (3.4.12)

Proof. First note that(
U ′)∗ [U ′Vℓ

(
U ′)∗ , iA]U ′ = [Vℓ, iÃ] =

(
[Vℓ, iÃ+] 0

0 [Vℓ, iÃ−]

)
. (3.4.13)

Since Ã± = Op(ã±) with some functions ã± on T2×Z2 satisfying the condi-
tion of Lemma 3.2.2 withm1 = 1, it follows that ⟨x⟩1+ρ[Vℓ, iÃ±] are bounded
on ℓ2(Z2). Since

[U ′Vℓ
(
U ′)∗ , iA] = U ′[Vℓ, iÃ]

(
U ′)∗ ,

using Lemma 3.2.2 again shows (3.4.12) for W = U ′Vℓ (U
′)∗. In order to

show (3.4.12) for W = Vℓ or Vs, note that A has the representation

A =

(
Op(a11) Op(a12)
Op(a21) Op(a22)

)
,

where each aij satisfies the condition of Lemma 3.2.2 with m1 = 1. Then
(3.4.12) for W = Vℓ is a direct result of Lemma 3.2.2. The last case is also
proved since ⟨x⟩ρVsA and ⟨x⟩ρAVs are bounded operators by Lemma 3.2.2.
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Using the above lemma, we see that the perturbations are of the class of
C1,1(A).

Lemma 3.4.4. Let Vs and Vℓ satisfy the condition in Assumption 3.1.1 with
ρ > 0. Then Vs, Vℓ and U

′Vℓ (U
′)∗ belong to C1,1(A).

Proof. The proof is motivated by [14, Lemma 6.2]. First we remark that
the operator Λu[x] := ⟨x⟩u[x] satisfies the condition of [5, Theorem 6.1];
the first condition is attained by the unitarity of e−itΛ, t ∈ R, on H, and
the second one that ANΛ−N is a bounded operator on H for some integer
N ≥ 1, follows from Lemma 3.2.2. Thus it suffices to show∫ ∞

1

dλ

λ

∥∥∥∥θ(Λ

λ

)
[W, iA]

∥∥∥∥
B(H)

<∞ (3.4.14)

for W = Vs, Vℓ and U ′Vℓ (U
′)∗ and some θ ∈ C∞

c ((0,∞)) not identically
zero. However this follows from Lemma 3.4.3 and∥∥∥∥θ(Λ

λ

)
[W, iA]

∥∥∥∥
B(H)

≤
∥∥∥∥θ(Λ

λ

)
Λ−ρ

∥∥∥∥
B(H)

∥Λρ[W, iA]∥B(H)

≤ C⟨λ⟩−ρ ∥Λρ[W, iA]∥B(H) .

We have confirmed that Theorem 3.4.1 is applicable to S = H or H ′
ℓ and

A defined by (3.4.7), (3.4.8) and (3.4.9). Therefore we obtain the limiting
absorption principle for H ′

ℓ and H.

Theorem 3.4.5. i) H and H ′
ℓ have finitely many eigenvalues with counting

multiplicity in Γ.
ii) For any I ⋐ Γ\σpp(H), I ′ ⋐ Γ\σpp(H ′

ℓ) and s >
1
2 ,

sup
λ∈I, ε>0

∥∥⟨x⟩−s(H − λ∓ iε)−1⟨x⟩−s
∥∥
B(H)

<∞,

sup
λ′∈I′, ε>0

∥∥⟨x⟩−s(H ′
ℓ − λ′ ∓ iε)−1⟨x⟩−s

∥∥
B(H)

<∞.

Proof. It remains to prove that Hs := ⟨x⟩−sH ⊂ B if s > 1
2 . However

it is shown if we remark that H1 ⊂ D(A) and hence Hs ⊂ (H1,H) 1
2
,1 ⊂

(D(A),H) 1
2
,1 = B.

Proof of Proposition 3.3.4. It suffices to show (3.4.3) for G = ⟨x⟩−sχ(H)
and ⟨x⟩−sχ(H ′

ℓ). However this is proved by Theorem 3.4.5 and the condition
of suppχ.
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Remark 3.4.6. Theorem 3.4.5 may look like a direct consequence of [14].
However the above assertion is more concrete in that the set T = {0,±1,±3}
of threshold energies is explicitly determined.

Remark 3.4.7. For any λ ∈ Γ\σpp(H), λ′ ∈ Γ\σpp(Ĥℓ) and s > 1
2 , there

exist the norm limits

lim
ε↓0

⟨x⟩−s(H − λ∓ iε)−1⟨x⟩−s,

lim
ε↓0

⟨x⟩−s(Ĥℓ − λ′ ∓ iε)−1⟨x⟩−s.

For the proof, see e.g. [3] and [13].

3.5 Appendix: Proof of Lemma 3.2.2

First we observe that

Op(a)u[x] = (2π)−d
∑
y∈Zd

A[x, y]u[y], u ∈ S(Zd),

where

A[x, y] :=

∫
Td

ei(x−y)·ξa(ξ, y)dξ.

A direct calculus implies

(⟨·⟩p[Op(b),Op(a)]⟨·⟩q)u[x] = (2π)−d
∑
y∈Zd

K[x, y]u[y],

where

K[x, y] := ⟨x⟩p⟨y⟩q(W [x]−W [y])A[x, y].

According to Young’s inequality, the boundedness of the operator follows
from the inequalities

sup
y∈Zd

∑
x∈Zd

K[x, y] <∞, (3.5.1)

sup
x∈Zd

∑
y∈Zd

K[x, y] <∞. (3.5.2)
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Let z := x− y, k :=
∑d

j=1 |zj |, and z0 = 0, z1, . . . , zk = z be a path from 0

to z in Zd such that |zi − zi−1| = 1 for i = 1, 2, . . . , k. Then we learn

|W [x]−W [y]| ≤
k∑
i=1

|W [zi + y]−W [zi−1 + y]|

≤ C

k∑
i=1

⟨zi + y⟩−m2

= C
k∑
i=1

⟨zi + y⟩−p⟨zi + y⟩−q+m1

≤ C ′
k∑
i=1

⟨x− y − zi⟩|p|⟨x⟩−p⟨zi⟩|q−m1|⟨y⟩−q+m1

≤ C ′′⟨x− y⟩M ⟨x⟩−p⟨y⟩−q+m1 ,

where M := |p|+ |q−m2|. Note that the second last inequality follows from

⟨x+ y⟩ ≤ Cd⟨x⟩⟨y⟩,
⟨x+ y⟩−1 ≤ Cd⟨x⟩⟨y⟩−1

for x, y ∈ Rd. In order to estimate A[x, y], we observe for α ∈ Zd+

|(x− y)αA[x, y]| =
∣∣∣∣i|α| ∫

Td

ei(x−y)·ξ∂αξ a(ξ, y)dξ

∣∣∣∣ ≤ Cα⟨y⟩−m1 .

Thus we have

|K[x, y]| ≤ C ′′⟨x− y⟩M ⟨y⟩m1 |A[x, y]| ≤ CM,d⟨x− y⟩−d−1.

Hence we obtain (3.5.1) and (3.5.2).
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[3] K. Ando, H. Isozaki, H. Morioka: Spectral properties of Schrödinger
operators on perturbed lattices. Ann. Henri Poincaré 17 (2016), no. 8,
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Chapter 4

On a continuum limit of
discrete Schrödinger
operators on square lattice

4.1 Introduction

Let d ≥ 1, V (x) be a real-valued function on Rd and H be the Schrödinger
operator perturbed with V :

H = H0 + V = −∆+ V (x) (4.1.1)

on H = L2(Rd).
We consider the discretized operatorsH0,h, Vh andHh on the d-dimensional

square lattice hZd with width h > 0. In particular, we call Hh the discrete
Schrödinger operators. The above operators are defined on Hh = ℓ2(hZd)
with norm ∥v∥Hh

= h
d
2

(∑
z∈hZd |v(z)|2

) 1
2 :

H0,hv(z) = h−2
d∑
j=1

(2v(z)− v(z + hej)− v(z − hej)) , (4.1.2)

Vhv(z) = V (z)v(z), (4.1.3)

Hh = H0,h + Vh (4.1.4)

for z ∈ hZd, where {ej}dj=1 ⊂ Zd denotes the canonical basis of Rd. Note

that H0,h denotes the negative of the difference Laplacian on hZd and is
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obtained by a formal calculus of the Taylor expansion

v(x± hej) = v(x)± h∂xjv(x) +
h2

2
∂2xjv(x) +O(h3).

There are studies concerning continuum limits of NLS equations, in many
cases, in the view point of numerical analysis. For the case where the space
is discretized and the time is not, see Bambusi and Penati [2], Hong and
Yang [4] and references therein. For linear discrete Schrödinger operators,
Rabinovich [8] has studied the relation between the essential and discrete
spectra of the discrete and continuum Schrödinger operators, provided V is
bounded and uniformly continuous.

The goal of this chapter is to give a meaning of Hh → H as the width
h of the lattice tends to zero in the spectral theoretical point of view. More
precisely, we establish a continuum limit of discrete Schrödinger operators
Hh defined on Hh with respect of the operator norm topology, and as a
corollary, we observe the asymptotics of the spectrum σ(Hh).

In order to make a relationship between H and Hh, we need some nota-
tions. We set φ ∈ L2(Rd) ∩ L1(Rd) such that

sup
x∈[0,1]d

∑
n∈Zd

|φ(x− n)| <∞, (4.1.5)

and we set

φh,z(x) := φ(h−1(x− z)), h > 0, z ∈ hZd. (4.1.6)

Let Ph = Ph,φ : H → Hh be defined by

Phu(z) := h−d
∫
Rd

φh,z(x)u(x)dx, h > 0, z ∈ hZd. (4.1.7)

Then it follows that Ph is bounded by Young’s inequality and its adjoint is

P ∗
hv(x) =

∑
z∈hZd

φh,z(x)v(z), h > 0, v ∈ Hh. (4.1.8)

We prepare a lemma for Ph.

Lemma 4.1.1. Let φ ∈ L2(Rd)∩L1(Rd) satisfy (4.1.5). Then, the following
are equivalent.

(1) P ∗
h is isometric.
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(2) RanPh = Hh.

(3)
∫
Rd φ(x)φ(x− n)dx = δn,0 for n ∈ Zd.

(4)
∑

n∈Zd |φ̂(ξ + 2πn)|2 = 1 for ξ ∈ Rd, where φ̂(ξ) :=
∫
Rd e

−ix·ξφ(x)dx.

Proof. (1) and (2) are equivalent by the standard properties of adjoint op-

erators. Since (2) implies the orthonormality of the basis {h−
d
2φh,z}z∈hZd ,

we learn ∫
Rd

φ(x)φ(x− n)dx = hd
∫
Rd

φh,0(x)φh,hn(x)dx = δ0,n,

which implies (3). For the equivalence of (3) and (4), we learn by Parseval’s
identity∫

Rd

φ(x)φ(x− n)dx =(2π)−d
∫
Rd

φ̂(ξ)e−in·ξφ̂(ξ)dξ

=(2π)−d
∫
Rd

ein·ξ|φ̂(ξ)|2dξ

=(2π)−d
∫
Td

∑
m∈Zd

ein·(ξ+2πm)|φ̂(ξ + 2πm)|2dξ

=(2π)−d
∫
Td

ein·ξ
∑
m∈Zd

|φ̂(ξ + 2πm)|2dξ,

where Td := [−π, π)d. Since {(2π)−
d
2 ein·ξ}n∈Zd is a complete orthonormal

basis of L2(Td), we conclude that (3) is equivalent to (4).

The next theorem is our main result concerning the asymptotic behavior
of P ∗

h (Hh − µ)−1Ph as h→ 0, where µ ∈ C\R.

Theorem 4.1.2. Suppose that φ satisfies one of the conditions in Lemma
4.1.1, and φ̂ ∈ C∞

c

(
(−2π, 2π)d

)
. Assume that V is a bounded function

from below such that the following hold: Let M := infx∈Rd V (x) − 1. Then
(V (x)−M)−1 is uniformly continuous and for sufficiently small ε > 0 and
C1, C2 > 0,

C1(V (x)−M) ≤ V (y)−M ≤ C2(V (x)−M) if |x− y| < ε. (4.1.9)

Then, for any µ ∈ C\R,

∥P ∗
h (Hh − µ)−1Ph − (H − µ)−1∥B(H) → 0, h→ 0. (4.1.10)
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Furthermore,

∥P ∗
h (Hh,0 − µ)−1Ph − (H0 − µ)−1∥B(H) ≤ Cµh

2, (4.1.11)

∥P ∗
h (Hh − µ)−1Ph − (H − µ)−1∥B(H) ≤ Cµh

β (4.1.12)

for 0 < β < α ≤ 1, provided in addition that (V (x)−M)−1 ∈ C0,α(Rd).

Remark 4.1.3. It does not holds that P ∗
hHhPh → H as h → 0 in the norm

resolvent sense, i.e.

∥(P ∗
hHhPh − µ)−1 − (H − µ)−1∥B(H) → 0, h→ 0.

In fact, the above statement is equivalent to the following assertion: For any
χ ∈ C(R) decaying at ±∞,

χ(P ∗
hHhPh) → χ(H), h→ 0 (4.1.13)

in the operator norm topology. Since a direct calculus implies χ(P ∗
hHhPh) =

P ∗
hχ(Hh)Ph + χ(0)(1− P ∗

hPh), (4.1.13) holds if and only if χ(0) = 0.

Remark 4.1.4. When we consider the strong resolvent convergence, the con-
dition for φ will be relaxed. In particular, for φ satisfying the condition of
Lemma 4.1.1, (P ∗

hH0,hPh − µ)−1 converges strongly to (H0 − µ)−1 if and
only if |φ̂(0)| = 1.

As a corollary of the above theorem, we obtain the asymptotic behavior
of the spectrum of Hh.

Corollary 4.1.5. Under the assumption of Theorem 4.1.2, the following
hold:

(1) Let a, b ∈ R, a < b be not in σ(H). Then a, b /∈ σ(Hh) for sufficiently
small h and

∥P ∗
hEHh

((a, b))Ph − EH((a, b))∥B(H) → 0, h→ 0. (4.1.14)

(2) Let dH(X,Y ) = max
{
supx∈X d(x, Y ), supy∈Y d(y,X)

}
denote the

Hausdorff distance. Then

dH
(
σ((Hh −M)−1), σ((H −M)−1)

)
→ 0, h→ 0. (4.1.15)

Proof. (1) The proof is similar to that of [9, Theorem VIII.23 (b)].
(2) We set Xh := σ((Hh−M)−1) and X := σ((H−M)−1) for simplicity.

Then we have

dH (Xh, X) ≤dH (Xh, Xh ∪ {0}) + dH (Xh ∪ {0}, X)

=d (0, Xh) + dH (Xh ∪ {0}, X) .
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Note that d (0, Xh) ≤ Ch2 if V is bounded and d (0, Xh) = 0 otherwise.
Since Xh ∪ {0} = σ(P ∗

h (Hh −M)−1Ph), it suffices to show for A,B ∈ B(H)

dH(σ(A), σ(B)) ≤ ∥A−B∥B(H). (4.1.16)

Equivalently, it suffices to show that d(µ, σ(B)) > ∥A−B∥ implies µ ∈ ρ(A).
However this is easy to prove since ∥(A−B)(B − µ)−1∥ < 1 and

(A− µ)−1 = (B − µ+A−B)−1

=(B − µ)−1(1 + (A−B)(B − µ)−1)−1

=(B − µ)−1
∞∑
n=0

(−1)n
(
(A−B)(B − µ)−1

)n
.

Examples 4.1.6. (1) The assumption of Theorem 4.1.2 is satisfied if V is a
uniformly continuous bounded function.

(2) One of the most interesting examples is V (x) = C|x|α, C,α > 0.
In particular, the harmonic potential V (x) = |x|2 is suggestive; if a, b ∈ R,
a < b, are not in the spectrum σ(H) = {d, d+ 2, d+ 4, . . . }, then

dH(σ(Hh) ∩ (a, b), σ(H) ∩ (a, b)) ≤ Ca,bh.

Moreover, we can see that for any eigenfunction u of H there exists the
corresponding eigenfunction vh of Hh such that ∥P ∗

hvh − u∥H ≤ Cuh
1−ε for

any ε > 0. Note that, for d = 1, each eigenfunction v of Hh corresponds to
the periodic solution to Mathieu’s differential equation

−g′′(x) + 2h−2(1− coshx)g(x) = λg(x), x ∈ h−1T, (4.1.17)

and λ ∈ σ(Hh) if and only if there exists a periodic solution to (4.1.17).
(3) Theorem 4.1.2 can treat exponentially increasing potentials V (x) =

Ceα|x|. On the other hand, super-exponentially increasing potentials are not
under the assumption.

(4) A constant electric field V (x) = x1 is not treated by Theorem 4.1.2
due to its unboundedness from below.

We describe the outline of this chapter. Sections 4.2 and 4.3 are devoted
to the preparation of lemmas and notations for the proof of Theorem 4.1.2
given in Section 4.4. In Section 4.2, we show that H0 (resp. H0,h) is H-
(resp. Hh-)bounded and the relative bound of H0,h is uniform in h > 0
by their form boundedness and a commutator calculus. In Section 4.3, we
introduce the continuum and discrete Fourier transforms F , Fh and define
Qh = FhPhF

∗ for the proofs of Lemmas 4.4.1 and 4.4.2.
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4.2 Relative boundedness

In this section, we prove the relative boundedness of H and Hh with respect
to H0 and H0,h, respectively. The assertion is the following.

Proposition 4.2.1. Suppose that V is bounded from below and (4.1.9) holds
for some ε > 0 and C1, C2 > 0. Then

∥H0(H + i)−1∥ <∞, (4.2.1)

∥V (H + i)−1∥ <∞, (4.2.2)

sup
h∈(0,1)

∥H0,h(Hh + i)−1∥ <∞, (4.2.3)

sup
h∈(0,1)

∥Vh(Hh + i)−1∥ <∞. (4.2.4)

Note that (4.2.1) (resp. (4.2.3)) is equivalent to (4.2.2) (resp. (4.2.4)).
Since (4.1.9) for some ε > 0 implies (4.1.9) for any ε > 0, we may assume
ε = 1. In order to prove Proposition 4.2.1, we first prepare the claim on the
form boundedness.

Lemma 4.2.2. If V is bounded from below,

∥(H0 + 1)
1
2 (H −M)−

1
2 ∥ <∞, (4.2.5)

∥(V −M)
1
2 (H −M)−

1
2 ∥ <∞, (4.2.6)

sup
h∈(0,1)

∥(H0,h + 1)
1
2 (Hh −M)−

1
2 ∥ <∞, (4.2.7)

sup
h∈(0,1)

∥(Vh −M)
1
2 (Hh −M)−

1
2 ∥ <∞. (4.2.8)

Proof. It is proved by the positivity of V −M and Vh −M :

(u,Hu) ≥ max
{
(u,H0u) +M∥u∥2, (u, V u)

}
,

(v,Hhv) ≥ max
{
(v,H0,hv) +M∥v∥2, (v, Vhv)

}
for u ∈ H and v ∈ Hh.

We also prepare the mollified potential Ṽ with a suitable differential
condition.
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Lemma 4.2.3. Under the assumption of Proposition 4.2.1, there exists Ṽ ∈
C∞(Rd) such that Ṽ (x) ≥ infx∈Rd V (x) and

c(V (x)−M) ≤ Ṽ (x)−M ≤ C(V (x)−M), x ∈ Rd, (4.2.9)

c(Ṽ (x)−M) ≤ Ṽ (y)−M ≤ C(Ṽ (x)−M), |x− y| < 1, (4.2.10)

|∂αx Ṽ (x)|
Ṽ (x)−M

≤ Cα, x ∈ Rd, α ∈ Zd+ = {0, 1, . . . }d (4.2.11)

for some C, c, Cα > 0.

Proof. We set ψ ∈ C∞
c ({|x| < 1}) so that

∫
Rd ψ(x)dx = 1, and let

Ṽ (x) := V ∗ ψ(x) =
∫
Rd

V (x− y)ψ(y)dy.

Since the assumption of V implies that C1(V (x) −M) ≤ V (x − y) −M ≤
C2(V (x)−M) for y ∈ suppψ, we obtain (4.2.9). We can prove (4.2.10) by
(4.2.9) and the assumption of V . If α ̸= 0, we have by (4.2.9) and (4.2.10)

|∂αx Ṽ (x)| =|∂αx (Ṽ (x)−M)|

=

∣∣∣∣∫
Rd

(V (x− y)−M)∂αxψ(y)dy

∣∣∣∣
≤
∫
Rd

C2(V (x)−M)|∂αxψ(y)|dy

≤Cα(V (x)−M)

≤C ′
α(Ṽ (x)−M).

Proof of Proposition 4.2.1. Since (4.2.9) implies (Ṽ −M)(V −M)−1 ∈ B(H)
and suph>0 ∥(Ṽh −M)(Vh −M)−1∥B(Hh) <∞, it suffices to prove the (uni-

form) boundedness of (Ṽ −M)(H −M)−1 and (Ṽh −M)(Hh −M)−1. In
the following, we write W = Ṽ −M and Wh = Ṽh −M for simplicity.

We observe

W (H −M)−1 =W
1
2 (H −M)−1W

1
2 +W

1
2 [W

1
2 , (H −M)−1].

The first term is bounded by (4.2.6) and (4.2.9). The second term is calcu-
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lated as

W
1
2 [W

1
2 , (H −M)−1] (4.2.12)

=W
1
2 (H −M)−1[W

1
2 ,H0](H −M)−1

=W
1
2 (H −M)−1

d∑
j=1

(
(∂xjW

1
2 )∂xj + (∂2xjW

1
2 )
)
(H −M)−1.

Since a simple calculation implies

∂xjW
1
2 (x) =

1

2
W− 1

2 (x)∂xjW (x),

∂2xjW
1
2 (x) = −1

4
W− 3

2 (x)(∂xjW (x))2 +
1

2
W− 1

2 (x)∂2xjW (x),

each term of (4.2.12) is bounded by (4.2.5), (4.2.6), (4.2.9) and (4.2.11).
Thus we obtain (4.2.2).

For the proof of (4.2.4), we calculate

Wh(Hh −M)−1 =W
1
2
h (Hh −M)−1W

1
2
h +W

1
2
h [W

1
2
h , (Hh −M)−1].

It follows from (4.2.8) that the first term is bounded. For the second term,
note that H0,h =

∑d
j=1∇∗

j∇j , where

∇jv(z) :=
1

h
(v(z + hej)− v(z)) , v ∈ Hh.

Then we learn

W
1
2
h [W

1
2
h , (Hh −M)−1] (4.2.13)

=W
1
2
h (Hh −M)−1[W

1
2
h ,H0,h](Hh −M)−1

=
d∑
j=1

W
1
2
h (Hh −M)−1

(
[W

1
2
h ,∇

∗
j ]∇j +∇∗

j [W
1
2
h ,∇j ]

)
(Hh −M)−1.

Since

[W
1
2
h ,∇j ]v(z) =h

−1
(
W

1
2 (z + hej)−W

1
2 (z)

)
v(z + hej),

W
1
2 (z + hej)−W

1
2 (z) =h

∫ 1

0
∂xj

(
W

1
2

)
(z + hθej)dθ

=
1

2
h

∫ 1

0
W− 1

2 (z + hθej)∂xjW (z + hθej)dθ,

the uniform boundedness of (4.2.13) follows from (4.2.7), (4.2.8), (4.2.10)
and (4.2.11). This completes the proof of (4.2.4).
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4.3 continuum and discrete Fourier transforms

We denote by F the continuum Fourier transform from H onto Ĥ = L2(Rd):

Fu(ξ) = (2π)−
d
2 û(ξ) = (2π)−

d
2

∫
Rd

e−ix·ξu(x)dx. (4.3.1)

We set the discrete Fourier transform Fh from Hh onto Ĥh = L2(h−1Td),
Td = [−π, π)d, by

Fhv(ζ) = (2π)−
d
2hd

∑
z∈hZd

e−iz·ζv(z), ζ ∈ h−1Td. (4.3.2)

Then Fh is a unitary operator and

F ∗
hg(z) = (2π)−

d
2

∫
h−1Td

eiz·ζg(ζ)dζ, z ∈ hZd. (4.3.3)

Furthermore we have

H0,hv(z) = F ∗
h (H0,h(·)Fhv(·)) (z), (4.3.4)

where

H0,h(ζ) = 2h−2
d∑
j=1

(1− coshζj), ζ ∈ h−1Td. (4.3.5)

In order to prove Theorem 4.1.2, we prepare a convenient notation. We
set

Qh := FhPhF
∗ : Ĥ → Ĥh. (4.3.6)
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Then we see that for f ∈ S(Rd),

Qhf(ζ) (4.3.7)

=(2π)−
d
2hd

∑
z∈hZd

e−iz·ζ
(
h−d

∫
Rd

φh,z(x)(2π)
− d

2

∫
Rd

eix·ξf(ξ)dξdx

)
=(2π)−d

∑
z∈hZd

e−iz·ζ
∫
Rd

φh,z(x)

∫
Rd

eix·ξf(ξ)dξdx

=(2π)−dhd
∑
z∈hZd

∫
Rd

eiz·(ξ−ζ)φ̂(hξ)f(ξ)dξ

=(2π)−dhd
∑
z∈hZd

∑
n∈Zd

∫
h−1(Td+2πn)

eiz·(ξ−ζ)φ̂(hξ)f(ξ)dξ

=(2π)−dhd
∑
z∈hZd

∑
n∈Zd

∫
h−1Td

eiz·(ξ+2πh−1n−ζ)φ̂(hξ + 2πn)f(ξ + 2πh−1n)dξ

=(2π)−dhd
∑
z∈hZd

∑
n∈Zd

∫
h−1Td

eiz·(ξ−ζ)φ̂(hξ + 2πn)f(ξ + 2πh−1n)dξ

=(2π)−dhd
∑
z∈hZd

∫
h−1Td

eiz·(ξ−ζ)
∑
n∈Zd

φ̂(hξ + 2πn)f(ξ + 2πh−1n)dξ

=
∑
n∈Zd

φ̂(hζ + 2πn)f(ζ + 2πh−1n).

Note that, for g ∈ Ĥh,

Q∗
hg(ξ) = φ̂(hξ)g̃(ξ), ξ ∈ Rd,

where g̃ is the function of g extended periodically from h−1Td onto Rd.

4.4 Proof of Theorem 4.1.2

Let V and φ be as in Theorem 4.1.2. Then we learn

P ∗
h (Hh − µ)−1Ph − (H − µ)−1 (4.4.1)

=P ∗
h (Hh − µ)−1Ph − P ∗

hPh(H − µ)−1 − (1− P ∗
hPh)(H − µ)−1

=P ∗
h

(
(Hh − µ)−1Ph − Ph(H − µ)−1

)
− (1− P ∗

hPh)(H − µ)−1

=P ∗
h (Hh − µ)−1(PhH −HhPh)(H − µ)−1 − (1− P ∗

hPh)(H − µ)−1.

We see by Lemma 4.4.1 and Proposition 4.2.1 that the last term of (4.4.1)
is negligible.
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Lemma 4.4.1. ∥(1− P ∗
hPh)(H0 − µ)−1∥B(H) ≤ Ch2.

Proof. Note that

∥(1− P ∗
hPh)(H0 − µ)−1∥B(H) = ∥(1−Q∗

hQh)(|ξ|2 − µ)−1∥
B(Ĥ),

where Qh is defined by (4.3.6). Let f ∈ Ĥ and g = (|ξ|2 − µ)−1f . Then we
have

(1−Q∗
hQh)g(ξ) =(1− |φ̂(hξ)|2)g(ξ)

− φ̂(hξ)
∑
n ̸=0

φ̂(hξ + 2πn)g(ξ + 2πh−1n).

For the first term, we observe by the assumption of φ that |φ̂(hξ)| = 1
if |ξ| ≤ h−1δ for some small δ > 0. Then it follows that

∥(1− |φ̂(hξ)|2)g(ξ)∥
Ĥ
≤ sup

|ξ|>h−1δ

∣∣|ξ|2 − µ
∣∣−1 ∥f∥

Ĥ
≤ Ch2∥f∥

Ĥ
.

For the second term, we note that the summation on Zd\{0} equals to
that on {1, 0,−1}d\{0}d by the support condition of φ̂. Using the support
condition of φ̂ again, we learn that φ̂(hξ)φ̂(hξ + 2πn) = 0 if |ξ| ≤ h−1δ for
some small δ > 0. Thus the same argument as the first term implies that
the second term is bounded by Ch2.

The first term of (4.4.1) is estimated by Proposition 4.2.1 as

∥(Hh − µ)−1(PhH −HhPh)(H − µ)−1∥B(H,Hh)

≤∥(Hh − µ)−1(PhH0 −H0,hPh)(H − µ)−1∥B(H,Hh)

+ ∥(Hh − µ)−1(PhV − VhPh)(H − µ)−1∥B(H,Hh)

≤C∥(H0,h − µ)−1(PhH0 −H0,hPh)(H0 − µ)−1∥B(H,Hh)

+ C∥(Vh − µ)−1(PhV − VhPh)(V − µ)−1∥B(H,Hh)

=C∥(H0,h − µ)−1Ph − Ph(H0 − µ)−1∥B(H,Hh)

+ C∥(Vh − µ)−1Ph − Ph(V − µ)−1∥B(H,Hh).

Then the two lemmas below complete the proof of Theorem 4.1.2.

Lemma 4.4.2. ∥(H0,h − µ)−1Ph − Ph(H0 − µ)−1∥B(H,Hh) ≤ Ch2.
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Proof. Note that

∥(H0,h − µ)−1Ph − Ph(H0 − µ)−1∥B(H,Hh)

=∥(H0,h(ζ)− µ)−1Qh −Qh(|ξ|2 − µ)−1∥
B(Ĥ,Ĥh)

.

Then we learn (
(H0,h(·)− µ)−1Qh −Qh(|ξ|2 − µ)−1

)
f(ζ) (4.4.2)

=
∑
n∈Zd

A(ζ, n;h)f(ζ + 2πh−1n),

where

A(ζ, n;h) := φ̂(hζ + 2πn)
(
(H0,h(ζ)− µ)−1 − (|ζ + 2πh−1n|2 − µ)−1

)
.

Similarly to Lemma 4.4.1, the summation on Zd equals to that on {1, 0,−1}d.
Since H0,h(ζ) = H0,h(ζ + 2πh−1n), it suffices to consider the bound of

B(ζ;h) := φ̂(hζ)
(
(H0,h(ζ)− µ)−1 − (|ζ|2 − µ)−1

)
.

If we use the formula

H0,h(ζ) =2h−2
d∑
j=1

(1− coshζj)

=2h−2
d∑
j=1

(
1

2
(hζj)

2 − 1

4!

∫ hζj

0
(hζj − y)3 cos ydy

)
,

we learn

|H0,h(ζ)− |ζ|2| =

∣∣∣∣∣∣−12−1h−2
d∑
j=1

∫ hζj

0
(hζj − y)3 cos ydy

∣∣∣∣∣∣
≤48−1h2

d∑
j=1

|ζj |4.

We also learn for ζ ∈ h−1(−2π + ε, 2π − ε)d with ε > 0,

H0,h(ζ) = 4h−2
d∑
j=1

sin2
h

2
ζj ≥ cε|ζ|2
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for some cε > 0. Since supp φ̂(·) ⊂ (−2π + ε, 2π − ε)d for a small ε > 0, we
obtain

|B(ζ;h)| ≤ sup
ζ∈supp φ̂(h·)

∣∣(H0,h(ζ)− µ)−1 − (|ζ|2 − µ)−1
∣∣

≤ sup
ζ∈supp φ̂(h·)

|H0,h(ζ)− µ|−1Ch2|ζ|4
∣∣|ζ|2 − µ

∣∣−1

≤Ch2.

Lemma 4.4.3. If (V (x)−µ)−1 is a uniformly continuous bounded function,

∥(Vh − µ)−1Ph − Ph(V − µ)−1∥B(H,Hh) → 0, h→ 0.

If, in addition, (V (x)− µ)−1 ∈ C0,α(Rd), α ∈ (0, 1],

∥(Vh − µ)−1Ph − Ph(V − µ)−1∥B(H,Hh) ≤ Chα−ε

for any ε > 0.

Proof. A direct calculus implies(
(Vh − µ)−1Ph − Ph(V − µ)−1

)
u(z) =

∫
Rd

K(x, z;h)u(x)dx, (4.4.3)

where

K(x, z;h) := h−d
(
(V (z)− µ)−1 − (V (x)− µ)−1

)
φ(h−1(x− z)).

By Young’s inequality, it suffices to show

sup
z∈hZd

∫
Rd

|K(x, z)|dx→ 0, (4.4.4)

sup
x∈Rd

hd
∑
z∈hZd

|K(x, z)| → 0 (4.4.5)

as h→ 0. Let

R(δ) := sup
x,y∈Rd,|x−y|<δ

∣∣(V (x)− µ)−1 − (V (y)− µ)−1
∣∣ .

Then, since φ ∈ S(Rd), we have for any n ≥ 0

|K(x, z)| ≤ Cnh
−dR(|x− z|)⟨h−1(x− z)⟩−n.
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Thus we obtain for n > d∫
Rd

|K(x, z)|dx =

∫
|x−z|<δ

|K(x, z)|dx+

∫
|x−z|≥δ

|K(x, z)|dx

≤CR(δ)
∫
|y|<h−1δ

⟨y⟩−ndy + C

∫
|y|≥h−1δ

⟨y⟩−ndy

≤CR(δ) + C⟨h−1δ⟩−
n−d
2 .

Similarly, we have for n > d,

hd
∑
z∈hZd

|K(x, z)|

=hd
∑

|x−z|<δ

|K(x, z)|+ hd
∑

|x−z|≥δ

|K(x, z)|

≤CR(δ)hd
∑

|x−z|<δ

⟨h−1(x− z)⟩−n + Chd
∑

|x−z|≥δ

⟨h−1(x− z)⟩−n

≤CR(δ) + C⟨h−1δ⟩−
n−d
2 .

Since R(δ) → 0 as δ → 0, (4.4.4) and (4.4.5) are proved. If (V (x)− µ)−1 ∈
C0,α(Rd), then R(δ) ≤ Cδα for small δ > 0. Thus substituting δ = h1−ε,
ε > 0, we obtain ∥(Vh − µ)−1Ph − Ph(V − µ)−1∥ ≤ Ch(1−ε)α.
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