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Chapter 1

Introduction

The Schrédinger equation on the Euclidean space R?

u(0,2) = up(z), = €R? (1.0.1)

{i@tu(t,x) = (=Ap + V(t,2))ut,z), (tz)€ R xR,
has been one of the fundamental equations in quantum physics, and has been
studied by not only many physicists but also mathematicians. If V (¢, x) does
not depend on time ¢, i.e., V(¢t,z) = V(z), it is well-known that the behavior
of (1.0.1) is determined by the spectral analysis of the Schrédinger operators

—A,+V(z) on L*RY). (1.0.2)

Spectral and scattering properties of (1.0.2) have studied deeply. In partic-
ular, there are a lot of remarkable results in the latter half of the twentieth
century, and we can see those studies in [2] and [7].

On the other hand, discrete Schrédinger operators

H = H() +V = _Adisc + Vdisc (103)

are derived from tight-binding approximation of Schrédinger operators which
describe the Hamiltonian of electrons in solid state matters. In many cases,
Agisc is regarded as the discrete Laplacian on the graph in consideration, and
Viisc as a real-valued function on the graph. It is known that the properties
of discrete Schrédinger operators depend on the shape of graph.

Example 1.0.1. (1) One of the simplest models is the discrete Schrédinger



operators on the square lattice Z%: For u € ((Z4)

Hyqu(z) = Hggou(x) + Vu(x)
1
=5 Z u(y) + V(z)u(z), z ez
ly—=z|=1
(2) The discrete Schrodinger operators on the triangular lattice is given

by
Hyu(z) = Hyrou(z) + Vu(z)

6
= _é z:lu(x +n;) + V(z)u(z), z€Z?
=

for u € £2(Z?%). Here n; = (1,0), ng = (—1,0), ng = (0,1), ngy = (0, 1),
ns = (1,—1), ng = (=1, 1).

(3) The discrete Schrédinger operators on the hexagonal lattice describe
a model of tight-binding Hamiltonians of graphene. For u = '(uj,us) €
0%(Z?%,C?), we define

Hpeu(xy, w2) = Hpe gu(xy, 22) + Vu(wy, 22)

1 ( ug(z1, T2) + ug(xy — 1, 29) 4+ ug(z1, 20 — 1) ) N < Vi(z)uy () >

3\ w(wy, o) Fug (g + 1, 20) + ug (g, 29 + 1) Va(x)ua(z)

We note that each point (x1,z2) € Z? is equipped with two values uj (21, x2)
and wuz(x1,x2). The former corresponds to the dots in the figure below and

the latter to the squares.
3)
2)
2) 0
gh
£ 1)
Figure 1.1: Triangular lat-  Figure 1.2: Hexagonal lat-

0)
tice. tice.

We can find in [1] various examples of discrete Schrodinger operators,
e.g., those on ladders, the diamond lattice, the Kagome lattice.



This thesis concerns a long-range scattering theory and continuum limit
of discrete Schrédinger operators.

1.1 Backgrounds

1.1.1 Scattering problem
* Known results on (1.0.2)

The following results on the Schrédinger operators (1.0.2) are well-known
(see Derezinski-Gérard [3] and Yafaev [10]).

e If V(z) is short-range, i.e., there exist p > 1 and C' > 0 such that
|V(x)] < C(1+ |z|)~”, then the wave operators

W= im it (— DtV (@) o —it(~Aa) (1.1.1)

exist and they are asymptotically complete, i.e., the range Ran W* of
W equals to the absolutely continuous subspace Hye(—A; + V(z))
of —A, + V(x).

o If V(x) is long-range, i.e., there exist p € (0,1] and C > 0 such that
|V (z)] < C(1+ |z|)~", it may occur that W do not exist. However,
if we assume in addition differential condition on V(z), there exist
“modified wave operators” and they are “asymptotically complete”.

Since each element of the absolutely continuous subspace is called a
scattering state, it follows that if (1.1.1) exist and are asymptotically com-
plete, W¥ give one-to-one correspondings of the scattering states of —A,
and —A, + V(z). This is regarded as an analogue of the classical scattering
problem; if V' (z) decays at infinity, then it is reasonable to expect that every
classical orbit associated to the Hamiltonian |¢|? + V (x) which scatters into
infinity can be approximated by some free orbit.

The second result is also related to the classical scattering problem. In
fact, there are several kinds of modified wave operators and each of them
is constructed from solutions which derive from classical scattering. For ex-
ample, Isozaki-Kitada modifiers [4] require outgoing and incoming solutions
of the eikonal equation

IVoo(z, &2+ V(z) = |€, (,€) e RT xR% (1.1.2)



- Known results on discrete Schrodinger operators

Similarly to the Schrédinger operators, a short-range scattering theory for
discrete Schrodinger operators on general lattices works well: If V' is short-
range, i.e., there exist p > 1 and C > 0 such that |V (z)| < C(1 + |z|)~*,
then the wave operators
Wt =5 lim ete7itHo
t—+o0
exist and they are asymptotically complete, i.e., Ran W+ = H,.(H).

On the other hand, there is a known result by Nakamura [5] on a long-
range scattering theory for discrete Schrodinger operators on the square
lattice. Nakamura [5] considered the Hamiltonian hg, (2, &) = hsg0(€)+V (2),
(z,€) € RY x T?, where hg, is a real-valued smooth function on the torus
T? given by the representation of H. sq,0 via the discrete Fourier transform
(see (2.1.2)). Then modified wave operators are made from solutions of the
Hamilton-Jacobi equation

at¢(t7 5) = hsq(V§¢(t, €)7 é-)

1.1.2 Continuum limit of discrete Schrodinger operators

Discrete Schrédinger operators have another derivation: a discrete approx-
imation of Schrodinger operators (1.0.2). In particular, it is a reasonable
observation that the discrete Schrodinger operators on the square lattice
hZ? = {hn | n € Z4} with width h > 0

d
Hyu(z) :==h~>> " (2u(x) — u(z + he;) — u(z — he;)) (1.1.3)
j=1
+ V(z)u(z), = € hZ¢, u e (*(hZ?)
seems to converge to the Schrodinger operator H = —A + V(z). In fact, in

physics research, Schrodinger equations (1.0.1) are usually solved approxi-
mately by numerical computations on the lattice. Furthermore, in mathe-
matics, numerical analysis studies conditions for numerical solutions to be
really approximations of the rigorous solutions.

Our interest is to study a continuum limit of the discrete Schrodinger
operators (1.1.3) from the view point of the spectral theory. We refer to Ra-
binovich [6] as a known result that (1.1.3) tends to the Schrédinger operator
(1.0.2) in the sense of their spectra.



1.2 Organization of this thesis

The organization of this thesis is as follows. Chapter 2 concerns a long-range
scattering theory for discrete Schrédinger operators of the form

Hu(z) = > fy)ulz —y) + V(z)u(z), ue (2%, (1.2.1)
yEZA

including those on the square and triangular lattices. We prove that, if V
satisfies a long-range condition (2.1.3), then modified wave operators with
Isozaki-Kitada modifiers exist and they are asymptotically complete. We
also show that Isozaki-Kitada modifiers are constructed from solutions to
the eikonal equation

ho(Vep(z,€)) + V(x) = ho(§),

where ho(§) =Y, cza e @ f(x) and V € C=(R%) is a suitable smooth con-
tinuation of V. In Chapter 3, we consider a long-range scattering theory for
discrete Schrodinger operators on the hexagonal lattice, i.e., the graphene.
Since discrete Schrodinger operators on graphene act on the Hilbert space
?%(7?%;C?), the argument of Chapter 2 cannot be applied directly. However,
we show that if we employ the argument of diagonalization of the free opera-
tor Hpe 0, we can reduce a long-range scattering problem of Hj, to that of a
direct sum of operators of the form (1.2.1). Chapter 4 is devoted to a contin-
uum limit of (1.1.3). Choosing a suitable operator Py, : L?(RY) — ¢2(hZ%),
we prove that Py (Hy, —pu) " P, — (H —p)~! as h — 0 in the operator norm
topology. We note that this convergence is valid if, roughly speaking, V is
bounded from below and diverges at most exponentially at infinity. As a
corollary of the main theorem, we show that the Hausdorff distance between
the spectra of Hy and H tends to 0 as h — 0.
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Chapter 2

Long-range scattering for
discrete Schrodinger
operators

2.1 Introduction

We consider a class of generalized discrete Schrodinger operators Hy and H
on H = (2(Z%), d > 1,

{Houm = > flylulz -y,

yezZd (2.1.1)
Hulz] = Houlx] + V[z]u|x],
where f € .Z(Z9) := {u € %(Z9) | u[z] = O((z)~>®)}, (x) := (1 + \x|2)%,

satisfies f[—2] = f[z], x € Z%, and V is a real-valued bounded function on
Z%. Then Hy and H are bounded selfadjoint operators on K.
We define the discrete Fourier transform F' by

Fu(€) = (2m)7% Y e ®ufz], ¢eT!=[-mmn)
xcZd

for v € £*(Z%). Then F is continuously extended to a unitary operator from
H to L2(T9) and
Houlz] = F (ho(-) Fu(-)) 2],

where

ho(§) == > e ™ fla], £eT?=[-mm)" (2.1.2)

x€Z4



The above condition on f implies hq is a real-valued smooth function on T¢.
We denote by v(£) and A(&) the generalized velocity and the Hessian of hyg,
respectively:

v(§) = Veho(),
A(€) = "VeVeho(€) = (906, h0(€))1<)k<a-
The set of threshold energies is denoted by 7,

T = {ho(€) | € € T% v(¢) = 0}.

We note T has Lebesgue measure 0 by Sard’s theorem. We first assume the
condition below.

Assumption 2.1.1. The sets {¢£ € T | v(¢) = 0} and {¢€ € T? | det A(¢) =
0} have d-dimensional Lebesgue measure zero.

The above assumption implies the absence of point and singular contin-
uous spectrum. The following assertion is a generalized version of [13, The-
orem 12.3.2].

Proposition 2.1.2. Suppose that the set {¢ € T? | v(&) = 0} has d-
dimensional Lebesgue measure zero. Then Hg has purely absolutely contin-
uous spectrum and oa(Ho) = ho(T?), where oa.(Hg) denotes the absolutely
continuous spectrum of Hy.

Proof. Fix a point & € W := {¢€ € T¢ | v(¢) # 0}. Then it suffices to
prove C°(U) C Hoo(F HoF™) for some neighborhood U C W of &; for any
fecxU),
Blo(Ho) + R, B [ F(©)de
hy * (B)Nsupp f
is an absolutely continuous Borel measure. The claim is proved by taking a

local coordinate U > x + (y(z), ho(z)) € R x R. O

If V]z] decays at infinity, then V is a compact operator on H and hence
Oess(H) = Oess(Ho) = 0ac(Ho) = ho(T?), where 0ess(H) and oess(Hp) de-
notes the essential spectrum of H and Hj, respectively. We suppose a long-
range condition on V.

Assumption 2.1.3. There exist V € C®°(R%R) and ¢ € (0,1] such that
Vga =V and

2, —la]—e d d
102V ()] < Colz)~l=2, 2 eRY, a ez,
where Z, = {0,1,2,--- }.

10



Under Assumptions 2.1.1 and 2.1.3, the singular continuous spectrum
of H is empty (see, e.g., [12]). In the following, we write V for V without
confusion.

Remark 2.1.4. Assumption 2.1.3 is equivalent to the following condition used
in [11],

e —|a]— d d
02V [z]| < C" () ~lel =2, reRY a€Zf,
where 9% = 55‘11 . 5?;, and 5ij [z] = V [z] — V [z — ¢j] is the difference

operator with respect to the j-th variable. Here {e;} is the standard orthog-
onal basis of R%. See [11, Lemma 2.1] for the detail.

In Section 2.2, we construct modified wave operators with time-independent
modifiers, which are proposed by Isozaki and Kitada [6], so called Isozaki-
Kitada modifiers. Isozaki-Kitada modifiers are formally defined by

ch = s-lim e®H je—itHo,
t—+oo

We construct J as an operator of the form
Julz] = (27r)_d/ Z e P@E) =y [y]de, (2.1.3)
T yezZd

where the phase function ¢ is a solution to the eikonal equation

ho(Vap(,8)) + V(2) = ho(§) (2.1.4)

in the “outgoing” and “incoming” regions and considered in Appendix 2.4.
The next theorem is our main result.

Theorem 2.1.5. Under Assumptions 2.1.1 and 2.1.8, there exists an op-
erator J of the form (2.1.8) such that, for any T' € ho(T)\T, the modified
wave operators

WE(T) :=s-lim e je "o py () (2.1.5)

t—+o0

exist, where Ep, denotes the spectral measure of Hy. Furthermore, the fol-
lowing properties hold:

i) Intertwining property: HWJi(F) = WjE(F)HO.

it) Partial isometries: HW}(F)UH = ||Em, (T)ul|.

11



iti) Asymptotic completeness: Ran Wi (I') = Ep(T)Hae(H).

Ezamples 2.1.6. i) In [11], a long-range scattering theory of the standard
difference Laplacian Houlz] = —3 Dy—a=1 vyl T € Z% is considered. In

this case, ho(§) = — Z;l:l cos §; satisfies Assumption 2.1.1.

ii) A model for 2-dimensional triangle lattice is expressed by the operator
Houlz] = —% 2]621 ulz + nj], * € Z*, where ny = (1,0), n2 = (—1,0),
n3 = (0,1), ng = (0,—1), n5 = (1,—1), ng = (—1,1) (see, e.g., [2]). Since

ho(§) = —%(cos &1+ cos&s + cos(é1 — &2))

in this case, Assumption 2.1.1 is satisfied.

Scattering theory for Schrédinger operators on R? has been extensively
studied ( [1], [5], [15], [16]). If the perturbation is long-range, i.e., V(x) =
O(z)7¢), 0 < ¢ < 1, then the scattering theory needs a modification
( 5], [6], [16]). Discrete Schrodinger operator describes the state of elec-
trons in solid matters with graph structure. Spectral properties of discrete
Schrodinger operators have been studied in [2], [4], [7], [11], [12], [14].

The main idea of the construction of modifiers is similar to [11]. We
translate H into an operator on the flat torus T¢ via discrete Fourier trans-
form and consider the corresponding classical mechanics on T¢. The proof
is mainly based on [6]. We use the time-decaying method to construct
the phase function ¢ in the definition of J, and then the stationary phase
method and the Enss method to prove the existence and completeness of
modified wave operators. The construction of ¢ is given in Appendix 2.4,
which follows the argument of [8]. The main properties of ¢ is summarized
in Proposition 2.2.1. In Section 2, we prepare some lemmas for the proof
of Theorem 2.1.5. The Poisson summation formula is used to prove that
pseudo-difference operators on Z% are translated to pseudo-differential op-
erators on T¢ modulo smoothing operators (see the proof of Lemma 2.2.3 in
Appendix 2.5). This enables us to get over the difficulty derived from the
discreteness of Z¢. In Section 3, we prove Theorem 2.1.5.

2.2 Preliminaries

We first state a proposition on the Hamilton flow generated by h(x,§) :=
ho(¢) + V(x), which is proved in Appendix 2.4. Here we note that hy,
v and A are extended periodically in ¢ from T¢ = [—7,7)¢ to RY, and
we identify integrations on T¢ with those on [—m,7)%. We also note that

12



the following proposition concerns functions on R? x (R%\v~1(0)), not on
Z% x (T"\v=1(0)).
We fix x € C*°(R?) such that

0 if |z| <1,
x) = - 2.2.1
x(@) {1 if 2] > 2, (22.1)

and we define cos(z,y) := |Z’Hy| for 2,y € RN{0}. The following assertion
is an analogue of [6, Theorem 2.5].

Proposition 2.2.1. There exists a real-valued function ¢ € C™®(R? x

(RN\v=Y(0))) satisfying the following properties: Set a > 0. Let p, €
C=(R? x R?) be defined by

b0 =@ o ox (D) sae @22

(1) The function ¢, satisfies

Qalx, € + 2mm) = pa(z,€) + 21z -m, m € 79, (2.2.3)

020 [palw,€) — 3+ €]| < Cagafw)' =1, (22.4)
1

|thV§goa(x,€) - I‘ < 5 (2'2'5)

1
for (z,€) € R x R, where |M| := (Z;{k:l |Mjk|2) * for a matriz M.
(2) We set

Jau [z] := (27)~ / > eilale vy [y de. (2.2.6)
yeZd
Then
(HJy — JuHo)u[z] = (2m)~ / D e g (m Sulylde, (2.2.7)
y€eZ?
where
sa(@, ) = efwv@m #e00) 2] — ho(©) (228)
— Z flz)eiPa@=28=¢a(@8) LV [2] — ho(€)
2€74

satisfies for || > 1 and |v(§)] > a

Cpafz)™17%, | cos(z,v(€))

865,1 x, <
| 3 (=)l < {C/J’,a<$>€7 | cos(,v(§))

13



We note that ¢, satisfies the eikonal equation (2.1.4) on {(z,&) | |z| >
R, |v(€)| > a,|cos(z,v(€))| > 3} and that the property is used for the proof
of (2.2.9) in the | cos(z,v(€))| > % case (see Proposition 2.4.9 and (2.4.51)).

In the rest of this section, we prepare some lemmas for the proof of prop-
erties ii) and iii). We choose v € C°(ho(T%)\T) and p+ € C>([—1,1];[0,1])
such that

p+(0) +p-(0) =1,
1
p+(o)=1, o€ |:471:| )
(0)=1, o€ |-1,—
p—(o)=1, o ik
Using v and p+, we define operators with cutoffs in the energy and the

direction of = and v(¢). We set symbols py and operators Py, Py and
EL(t) by

p+(y,€) = v(ho(§))x(y)p+(cos(y, v(£))), (2.2.10)

Peale] = (2m)0 [ 7 @0y, €ulylde (2.2.11)
T y€EZ4a

Peale = 20y [ 30 a0y, gullds. (22.1)
T yezZd

Ei(t)= Jee Hopy  teR, (2.2.13)

where J, is defined by (2.2.6).

We consider properties of these operators. We use the stationary phase
method as in the pseudo-differential operator calculus (see, e.g., [17]). The
following two Lemmas correspond to [6, Proposition 3.4] and [6, Lemma 3.7,
and the proofs are given in Appendix 2.5 (see also [3] and [6]).

Lemma 2.2.2. J,, Py and ]5i are bounded operators on JH.

Lemma 2.2.3. v(Hy) — Py — P_, P{ — Py, E+(0) — Py, J}J, — I and
Jodi; — I are compact operators on J.

The next lemma, corresponding to [6, Proposition 3.8], is an analogue of
the intertwining property of wave operators.

Lemma 2.2.4. For any s € R,

s-lim o J*EL (t — 5) = eiHop,, (2.2.14)

t—+o0

14



Proof. The definition of E4(t) implies
eitHOJ;Ei(t —s5) = eitHo J;Jae*i(t*S)HOPi
— eitHo(J*Ja _ I)e—itHoeiSHopi + eisf‘lopi
o .

Since e~#Hoqy, — 0 weakly as t — oo for any u € H = H,.(Hp), Lemma
2.2.3 implies that the first term converges strongly to 0 as t — Foc. O

Next we prove the norm convergence of lim; 4 ethp, (t). If we set

Galt) 1= (o + H)Ex(t) = (HJu — JuHo) E(0),

then we have
t
eMEL(t) — Py = E+(0) — Py 41 / ™G (T)dr.
0
The following proposition is analogous to [6, Theorem 3.5], and proves G4 (t)
is integrable in {4t > 0}, respectively.

Proposition 2.2.5. G4 (t) is norm continuous and compact for any t € R.
Furthermore, G4 (t) satisfies

GL(t)|| < C@)~1°, £t >0. (2.2.15)

In particular, e E.(t) — Py converges to a compact operator with respect
to the norm topology as t — +oo, respectively.

Proof. Let
®(z,y,&t) := walz, &) — tho(§) — waly, §).
Then the definition (2.2.13) of E(¢) implies
Gi(tulz] = (HJ, — J,Hy)e "Ho P[]
=)0 [ 5 s, (0, s 3, uly e

yeZ

The norm continuity of G4 () is obvious. Furthermore, (2.2.9) implies the
compactness of HJ, — J,Hgy by the similar argument in the proof of Lemma
2.2.3, hence G4 (t) is compact.

15



Let us prove (2.2.15). We consider the + case only. The other case
is proved similarly. We use another decomposition p* € C*([-1,1];[0,1])
which is different from p4 in that

We define

s (2,8) = sa(2, )X {az01p” (cos(z,v(§))),
Si(x,&) = sq(x,§) — s—(x,8).

We then decompose G as

Go(tyula] = (2m) " [ 37 I sy + 5 p ) Dl

y€zZ4
(2.2.16)
=: (Fy(t) + F_(t))u[z].
Now we claim that for any ¢ > 0 and ¢ > 0,
1P (1)) < Clat) ™', (2.2.17)
IF_(t)]| < Celat) ™. (2.2.18)

If (2.2.17) and (2.2.18) hold, then (2.2.15) follows from (2.2.16).
For the proof of (2.2.17), we let

o(t;y,&) = tho(&) + va(y, &)

and set
Ly := (Ved)"*(1 = Ve - D).
Then (2.2.4) implies on the support of sy (x,&)p+(y,§),

(Vep) ™ < Oyl +tlo(€)) "

16



Thus, for any ¢ € Z,, we have

Fi(t)ule] = ()0 [ 7 L (e 90w o, . 3. € ol

yeZd

= (am) [ 3 O (s (o ()l

yeZd

= (am)t [ 3 ) (O L) (9D Yyl
y€Zd

The function in {} is a finite sum of functions of the form sﬁ (z, f)pg(y, &t)
such that

{‘8%(“)' P (2219)

102 (4, &) < Cillyl + Hlo(€))~.
Indeed, (2.2.19) follows from (2.2.9) and (2.2.10). Letting

Sfu[x] = (2m) ¢ /Td Z ei(%(g’“’f)‘yf)s?(m,E)U[y]dﬁ,

yezZd

Pl = (2m) 0 [ 37 e g, gityulylae,

y€eZd

we have
Fi(t) =) Ste ™opl(t).
J
Furthermore, we have by (2.2.19) and the argument in the proof of Lemma
2.2.2

I{z) =851 < oo,

IPLOI| < Cofaty™.
Thus we obtain
[{a) T P (1)) < Cpfat) ™

for any ¢ € Z, . Interpolation with respect to ¢ implies (2.2.17).
For the proof of (2.2.18), we note on the support of s_(z,&)p4(y, &),

(Ve@)™ < Oflz — y| +tlo(€)) 7
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Letting

Ly = (V@) 2(14 V@ - Dy),

we have
P (tpule] = )70 [ 37 M0 Ly) (5 (o, €)p ()l
yeZd
= (27r)—d/ Z H(#a(@8)=0a(y£) =itho(€) ([ )V (s_p_ Yu[y]dE
e yeZd

for any ¢ € Z. Since
q'(2,y,&1) = e MO (" Ly)(s_(2,6)p1 (,€))
satisfies
107" (,y,&1)] < Cop(tv()P~*

for any ¢ € Z,, we obtain (2.2.18) by the argument in the proof of Lemma
2.2.2. O

The next proposition claims that any particle in the energy I' does not
stay in any bounded domain in =x.

Proposition 2.2.6. For any R > 0 and £ > 0,
IX{z|<my Ex(s)]| < Cor(s)™, Ls>0. (2.2.20)
Proof. We prove (2.2.20) for the + case only. We first note
Bols)ule] = ()~ [ 37 ey, (g, €)ulylds.
y€Zd4

where ®(x,y,&;t) = @o(,€) — tho(§) — waly,&). We observe that on the
support of p (y, &),

[s0(§) + Vepa(y, §)| = cllyl + s|v(€)])

for large s. Then, if |z| < R, we have for s > 0 large enough

Ve®(z,y,&8) = c(lyl + slv(©)]),  (y,€) € suppp.

Similarly to the proof of (2.2.18), we obtain (2.2.20). O
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2.3 Proof of Theorem 2.1.5

2.3.1 Existence of modified wave operators

We prove the existence of the limit (2.1.5) for the + case only. The other
case is proved similarly. First we fix I' € ho(T%)\T. We remark that, for
any u € 3 such that Fu € C*(T¢) and supp Fu C hal(F), we have

JEg,(T)u = Jyu (2.3.1)

for some small enough a > 0. Then, to prove the existence of the limit
(2.1.5), it suffices to show that

|l d ) »

:/ Hdt (6ltHJae—ltH0u)
0
=/ |

— / e (H J, — JuHo)e tHoy)|dt
0

dt (2.3.2)

dt

_ / (H T, — JuHo)e Hou| dt
0

is finite for such u. The last equality follows from the fact that e is a
unitary operator. Furthermore, by Assumption 2.1.1 and a partition of unity
on T?, we may assume that Fu € C°°(T?) has a sufficiently small support

in {¢€ € by ' (T) | det A(€) # 0}.
Let w(t) := (HJ, — J,Hg)e oy, Then (2.2.7) implies

w(tfe] = (2m)F [ o0, (0, €) Fu(€)i.

Now we use the stationary phase method. The stationary point £ = &£(x, t)
is determined by

1
7 Vegal(z,§) —v(€) = 0. (2.3.3)
We define
Dy :={z € Z% | 3¢ € supp Fu s.t. (2.3.3) holds}.

By (2.2.4), there exists an open set U € {¢ € hy'(T') | det A(¢) # 0} such
that supp F'u € U and that for ¢t > 0 large enough,

D; C {az \ % € v(U)} =: Dj.
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On (Dj)¢, the non stationary phase method implies
lw(t)[z]] < Cellz| +t)7 zeZ t>0
for any ¢ > 0. Thus we learn for any ¢ > 0
X (Dycw(t)]| < ot (2.3.4)
On Dy, the stationary phase method implies
w(t)[z] = tEA(L 2)sa(z, E(z, t)) Fu(E(z, 1)+t 27 r(t, 2),
where A(t,x) is uniformly bounded in z and ¢ with x € Dj, and

r(t,2)| <C sup  sup [ sa(w, ).
|B|<d+3 £€supp Fu

Since cos(z,v(£)) > % for 2 € D} and & € supp Fu if ¢ is sufficiently large,
we have by (2.2.9)

|sa(@, & (2, 1)) < Cla) 1%,
Ir(t,x)| < C(x>_1_€.

We note |z| ~ t on D} and the Lebesgue measure of D), is bounded by Ct9.
Thus we learn

Ixpyw(®)] < (/D (Ct—§<x>—1—f)2dag> < 't (2.3.5)

Hence (2.3.4) and (2.3.5) imply
lo@)ll < Ixpyw®] + Ix@oyewd)l < O,
which proves (2.3.2) is finite. O

2.3.2 Proof of the properties i), ii) and iii)

Proof of i). The intertwining property is proved similarly to the short-range
case (see, e.g., [15]). O

Proof of ii). Tt suffices to show ||W}(I’)u\| = ||u|| for Fu € C*(T%) with
supp F'u C hal(F). For such u, Ju = Jyu holds for small a > 0. Thus
letting u; = e "oy, we learn

W5 (O)ull? = T o> = Tim (e~ Due, ) + ]

li
t—+o0

Using w-lim;_, 400 uy = 0 and Lemma 2.2.3, we have limy_, 1 oo (JJy — I uy =
0. This proves Wj[ (T") are partial isometries. O
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Proof of iii). We prove the asymptotic completeness of W}r (T") only. Since
intertwining property implies Ran W () C Eg(I)Hac(H), it suffices to
prove Ran W1 (T') D Eg(D)Hao(H).

We fix v € Hac(H) and v € C*°(R) so that v(H)v = v and suppy C I.
We set v; := e~y for simplicity. Then we show that Eg(T')Ha.(H) C
Ran W (T') follows from

lim limsup |jvs — e/ E_(t — s)v || = 0. (2.3.6)

5700 t—oo
First, we observe
|[eitHo J¥e=itHy _ gisHo By |
< (it 72 [y — Ba(t — s)ua] || + |70 T2 B4 (¢ — s)o, — €570 Py .

Lemma 2.2.4 implies the second term tends to 0 as t — oo. The first term
is estimated by (2.3.6) since

0 T [vy — B (t — s)vs] |

< [l gz [lve — B (t — s)vs]

= | Tz e (v, — By (t— s)v,)|

= || JZ|||vs — eCIHE (¢ — 5)vs].
Thus we have

lim limsup |0 e Hy — isHop gy || = 0.
S0 oo

This implies {e”HO Jre—itH v} >0 1s a Cauchy sequence in 3, equivalently,
there exists the limit a

tlim e!tHo pre=itHy —. Q.
— 00

Hence we obtain for sufficiently small a > 0,
v=W;([)Q% € Ran W (T).
In the rest of the proof, we show (2.3.6). Since vy = v(H )vs, we have
vs — IR (1 — s)v, =y(H)vs — B (£ — s)u, (2.3.7)
=(v(H) = v(Ho))vs
)



We note w-limgs_,oo vs = 0 and v(H) —y(Hy) is compact by the compactness
of H— Hy = V. We also note v(Hy) — Py — P_ is compact by Lemma 2.2.3,
and Py — ellt—s)H E, (t — s) converges to a compact operator independent
of s as t — oo by Proposition 2.2.5. Thus the terms on the RHS of (2.3.7)
except the last one converge to 0.

To estimate the last term of (2.3.7), we observe

|P_vs||? =(P* P_vs,vs) (2.3.8)
=((PX = P-)P_vs,v,)
+ (P- — e ™1 E_(—s))P_v,,v,)
+ (P_vs, E_(—5)").
By the similar argument as above, we learn the first and second terms of
(2.3.8) converge to 0 as s — oco. The third term of (2.3.8) is bounded by
|(P_vs, E_(—s)*v)| (2.3.9)
= |(P-vs, E_(=5)"(X{je|>R} + X{|z|<r})V)|
< [E-(=s)P-vsllIxgj21> ryvll + [P-vs [l IX {121 < ry E-(=3) [[|v]
< CollIxgai=ryll + X {12/ <Ry E- (=9)I])

for any R > 0. Using (2.2.20) and impg s || X{jz|>r V]| = 0, we learn that
(2.3.9) converges to 0 as s — co. Hence we obtain (2.3.6). O

2.4 Appendix: Classical mechanics and the con-
struction of phase function

In this appendix, we use the following notations: For p € (0,1), we define
h(z, &) =ho(§) + V(z),
log(t))x
Vi(t.0) =Vion(pa (ELT).

)
ho(t, 2, &) =ho(§) + Vp(t, @),
V2V, (t,x) ="'V Vo V,(t, ),
where x € C®(R?) is a fixed function satisfying (2.2.1). Let ¢ be as in
Assumption 2.1.3. We fix €g,e1 > 0 such that eg + 1 < e.

The construction of time-decaying potential is same as Isozaki and Ki-
tada [6], and is first used by Kitada and Yajima [9]. One of the merits of
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this construction is that V), decays with respect to time ¢ almost same as
position z. The next lemma follows from Assumption 2.1.3 with elementary
computations.

Lemma 2.4.1. For anyt € R, z € R% and multi-indez o,
02V, (t, )| < Co min{p (t)~Io1=e1 (z)~lel==} (2.4.1)
where Cy’s are independent of x, t and p.

Let (¢,p)(t,s) = (q,p)(t, s; z,£) be the solution to the canonical equation
associated to the Hamiltonian h,:

oq(t, s) = Vehy(t,p(t, 5),q(t, 5)),
Orp(t, s) hp(t, p(t,s),q(t, s)),

= p
(¢, p)(s,8) = (z,8).

This can be rewritten in the integral form:

Veh
-V
(z

q(t,s) =z +/ v(p(T,s))dr, (2.4.2)
p(t,s) =§€ — Vo V(7 q(T,s))dr. (2.4.3)

Before proving Proposition 2.2.1, let us describe the outline of this sec-
tion. First, we see in Proposition 2.4.2 that q(¢,s) ~ = + (t — s)v(&) and
p(t, s) ~ & for sufficiently small p > 0. Then we construct a solution ¢(¢; z, §)
of the Hamilton-Jacobi equation (2.4.30) by the method of characteristics.
Also estimates for y(s,t;x,§) and n(t, s; x, ), characterized by (2.4.21) and
(2.4.22), respectively, are given in Proposition 2.4.3. Using the above ¢,
we define functions ¢4 (z,£) by (2.4.33), and we confirm that ¢+ satisfies
the eikonal equation (2.1.4) and the estimate (2.2.4) in outgoing and incom-
ing region, respectively. Finally, we construct a function ¢(z,§) such that
Proposition 2.2.1 holds with ¢4 and phase-space cutoffs.

Now, we start with estimates for classical orbits (q,p)(t,s;x,&). The
following proposition is the corresponding result of [6, Proposition 2.1].

Proposition 2.4.2. For p > 0 small enough, there exist Cy > 0 (£ € Zy)
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such that, for any x,& € R%, 0 < 4+s < £t and multi-indices o and B,

[p(s,t2,€) — €] < Cop™ ()™, (2.4.4)
p(t, 52, €) — €] < Cop™ ()™, (2.4.5)
109 [V, t52,€) — I < Clayp™(s) ™, (2.4.6)
00V ap(s, t5.2,€)] < Clagp™(s) 77, (2.4.7)
1050, [Vaa(t, s:2,€) = I]| < Clapyip0™(s) "= |t — s, (24.8)
10207 ap(t, 552, €)| < Clajrgp™ ()17, (2.4.9)
07 [Veq(t, s:2,€) — (t— $)AE)]| < Clgp™(s) ™t — s,  (2.4.10)
|0§ [Vep(t,s;x,8) — I1] < Cigp™ (s) ™, (2.4.11)
020 la(t, 512,6) —a — (t = s)v(p(t, 552, )] | (2.4.12)

< Clajpp™ min{[t — s|(s) 7=, (£)1 71},
1 1
Here, |x| = (Z?Zl ]xj]2) * for a vector x and |M| = <Z;-l7k:1 \Mjk\z)z for
a matriz M.

Proof. We prove in the 0 < s < t case. The other case is proved similarly.
The proof is decomposed into 5 steps.

Step 1: Proof of (2.4.4) and (2.4.5). The inequalities (2.4.4) and (2.4.5)
are shown by (2.4.1) and

t
pltt) — €= — / VoV (ra(rt))dr, ¢ € R.
t/

Step 2: Proof of (2.4.6) and (2.4.7). We use the induction with respect
to |a|. First we prove (2.4.6) and (2.4.7) for @ = 0. Differentiating (2.4.2)
and (2.4.3) in z, we have

{ Vaq(s,t) =T+ [ A(p(T,1))Vap(r, t)dr,
Vap(s,t) = = [ VaVo(1,q(7,1))Vaq(T, t)dr.

Letting

we observe

{ Qo= Ji Aoy o1y
Py(s) = — fts ViVP(T,q(T,t))QQ(T>dT — fts V%VP(T,(](T, t))dr. o
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Thus combining the two equations in (2.4.13), we learn
Po(s) = Be(Po(-))(s) + Ro(s),

where
B(PO)) =~ [ V2 a(r) | [ Ao Pos| ar
/ V2V, (1, q(T,t))dr.

Let [M()o i= suppeece ()1 |M(s)] for M € C(0,]; My(R)). Then
(2.4.1) implies

|B;(P </ Cop®o ()72~ 61/ |P(0)|dodr
saww%/<ﬂ*ﬂ/<w*ﬂwm

s

< G20 (5) 7171 Pllo,

t
| Ro(s)| < / Cop® ()27 C1dr < Cp(s)~17°1,

If p < (2C’2C’) , the operator norm || B;||p of B; with respect to || - ||o is
bounded by 1 5 Hence we obtain

1Po(-)lo = [I(1 = By) " (Ro(-)llo < %HRO(’)HO <20p%, (2.4.14)
L —|[Btllo

which proves (2.4.7) for « = 0. The inequality (2.4.6) for « = 0 follows
directly from (2.4.13) and (2.4.14).

Next we confirm the induction is valid. We fix o € Z4\{0} and assume
that (2.4.6) and (2.4.7) hold for o/ with |o/| < |«|. Differentiating (2.4.13),
we have

3“@0(5) I Alp(r, t))aapo( )dT + Ro1(s),
OYPy(s) = — [ V2V, (1,q(7,1))03 Qo (7)dT (2.4.15)
+Ro21(s) + Ro22(5),
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Roa(s):= ) <a> :3?/ [A(p(7,1))] 02~ Py (r)dr,

Ro21(s) := — Z (3,) /ts 0% [V2V,(r,q(r,1))] 98~ Qo(7)dr

0<a/'<a

Roas(s) = — /t o V2V, (g, 0))] .

and (%) := T4 0‘73'! By (2.4.1) and assumptions of the induction,

o J=1 ol (a;—al)l
we have

[Ro1(s)| < Cp™(s)~1°,

t
[Ro21(s)] < / Cp(r) 2751 . Cp™(r) " tdr < Cp=(s) 1721,
t
| Ro,22(s)| < / Cp™ (1)~ 27%1dr < Cp(s)~17¢1,

The similar argument as for o = 0 implies [|0$ Py(+)[jo < Cop®™® and (2.4.6).
Step 3: Proof of (2.4.10) and (2.4.11). We use the induction with respect
to |B]. First we consider the § = 0 case. Similarly to Step 2, we have

Veqlt,s) = [ Alp(r, s Vgp( s)dr,
pr( —I fs V2V, (7, q(7, 5))Veq(r, s)dr,

equivalently,

Q’(t) f§A<<,s>> ((r)dr — [LA(p(7, ) — A(£))dr,
(1) = = [, VEVo(ra(r, )@ (1)dr (2.4.16)
— [1(r = $)V2V,(7,q(7, 5)) A(&)dr,

where

By (2.4.16), we have



where

R'(t) = —/ V2V, (7, q(T,s)) /T A(p(o, s))dodr.

Letting ||[M(-)[|1 := supy>4 |[M(t)| for M € C([s,00); Mg(R)), we have

IBL(P()(1)] < / Copo(r) =21 / " |P(o)\dodr

t
< Cop Pl [ ()72 = s)ar

S

< CyC"p 1 (s) | P|1,
t
|R'(t)] S/ Cp™(r) 27 (1 — s)dr < Cp™(s)~°".

Thus, if p < (202C")7¢°, we obtain

1

HP,(‘)Hl = H(l - Bs)_lR,(‘)Hl < m

IR ()l < 2Cp™(s)~"".
(2.4.17)

This proves (2.4.11) for § = 0. The inequality (2.4.10) for 5 = 0 follows
from (2.4.5), (2.4.16) and (2.4.17).
Next we prove the induction works. Differentiating (2.4.16), we have

20Q/(t) = [ Alp(r, ) aﬁp’( )T+ Ry (1) + Rip(t), (2.4.18)
P (1) = — [ V2V, (r,q(r. )OLQ (T)dr + Ry (1) + Rip(t),
where
() = ( /> 9 [Alp(r, )19 P'(r)dr,
H 0<p'<B B /

0= [ 0 140(r,9) ~ AE]ar,
) =— 3 (5) [0 [Fratron) 9 Qe

0$p'<p

t
() = — / (r — )¢ [V2V, (7, g, )) A(€)] .
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Thus we have

t
0P (1) = BOIPO)0) — [ VAV, (ralr )iy () + Rio(r))dr
+ Ry (t) + Roy(t).
If (2.4.10) and (2.4.11) are true for g’ with |8| < |5, we learn
[Ryy (t)] < Cp™(s) "' [t — ],

RL,(0] < C sup /\aﬂ (7,8) — ] |dr < Cp™(s) 1|t — 5],
915181

BL(O1 < [ 0ol Cp oAl —sldr < O (5) 7,
t
Rn(®)] < [ Coolr) 2 21 = sldr < Cpo )

Using the similar argument as for 5 = 0, we obtain (2.4.10) and (2.4.11) for

any .
Step 4: Proof of (2.4.8) and (2.4.9). We use the induction with respect
to |a| +|8|. In the o = B = 0 case, differentiation in x implies

Vaeq(t,s) =1+ f A(p(t,s))Vap(T, s)dr,
pr(t = —f V2 ,q(T1,8))Vaq(T, s)dr.

Letting

Q(t) = qu(t, 8) -1,
P(t) = pr(t, s)’

we observe

Q1) = [} Alp(r, ) P(r)dr,
{ P(t) = = [ V2V, (r.a(r. )Qr)dr — [ V2Vy(r.q(r. . O

This implies

where

t
- [ s,
S
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Since
t
R(t)| < / Cop™ (r)~2~1dr < Cp™{s)~ 151,

we have
IPO = 111 = BRIy < 207 (s) 7,

which proves (2.4.9) for « = f = 0. The inequality (2.4.8) follows from
(2.4.9) and (2.4.19).

We prove the induction with respect to |a| + |3| works. By (2.4.19), we
have

020.Q(t) = [} A(p(, $))020¢ P(r)dr + Ry (t),
020 P(t) = — [{ V2V,(7,q(r,$))050; Q(r)dr (2.4.20)
+Ro1(t) + Raa(t),

where

m= 5 (9)(5) [ ool o or e

o'<a,B'<B,
la’+p"1>1

R (t)
=y <O‘><§,> / ta;;’af’ [V2V,(7,q(r,5))] 92~ 987 Q(r)dr,

a/
o/<a,B'<B,
o/ +5|>1

Rao(t) == — / t 020; [V2V,(7,q(r,5))] dr.
Thus we learn
029 P(t) = By(030, P(-))(t) — /t VaV,(7,q(7, 5)) Ru(7)dr
+ Ra1(t) + Roa(t).
By (2.4.10),(2.4.11) and assumptions of the induction, we have
[Ri(t)] < Cp™(s)~ 7t — s,

t
Ra(®)] < [ Cpolr) 750 Cpo(s) 12T — sldr < Oppos) 1,

t
| Raa(1)] < / Cp™ (1)~ 27%1dr < Cp(s)~17%1,
S
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Similarly to the argument for « = § = 0, we obtain (2.4.8) and (2.4.9) for
any « and f.
Step 5: Proof of (2.4.12). By (2.4.2) and (2.4.3), we have

a(t,sim,6) =2+ / o(p(r, s))dr

—a+ /:v <p(t,s) + /Tt V.V, (0, q(o, s))da) dr.

Thus
q(t, s;2,8) —x — (t — s)v(p(t, 5))
_ / t [v (p(t,s) + / VLV (0 (0, s))da> _ v(p(t,s))} ar.

This equality and (2.4.8)-(2.4.11) imply (2.4.12). O

Similarly to [6, Proposition 2.2], we observe that, if p is small enough,
the maps

y = q(s,t;y,6),
n = p(t, s;z,n)
have the corresponding inverses.

Proposition 2.4.3. Fiz p > 0 so that Cyp®® < % holds, where Cy is the
constant in Proposition 2.4.2. Then, for x,& € R? and 0 < +s < +t, there
exist y(s,t) = y(s,t;2,&) € R and n(t,s) = n(t,s;x,&) € R? such that

{ q(s,t;y(s, t;2,6),§) = =, (2.4.21)
p(t, s;z,n(t, 852, 8)) =&, (2.4.22)
and
q(t,s;m,n(t, s52,8)) = y(s, 42, ), (2.4.23)
{ p(s tiy(s, t;w,€),8) = n(t, s;2, ). (2.4.24)
Furthermore, for any z,& € R%, 0 < +s < 4+t and multi-indices o and (3,
103 [Vay(s, tx,€) — 11| < Cop™(s) ™", (2.4.25)
10207 Van(t, 52, €)] < Clgp™(s)™' 7, (2.4.26)
107 [n(t, 532, €) — €] < Chp™(s) ™, (2.4.27)
107 [y(s., t;2,6) — 2 — (t— s)v(¢)]| (2.4.28)

< Cpp™ min{[t — s|(s) ", (tyl=e1},
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Proof. Step 1. By |V.q(s,t;2,&) — I]| < %, |Vep(t,s;2,8) — 1| < % and
Schwartz’s global inversion theorem ( [5, Proposition A.7.1]), we have the
existence and uniqueness of y(s,t;x,€&) and n(t,s;z,§) satisfying (2.4.21)
and (2.4.22). The equalities (2.4.23) and (2.4.24) are shown by (2.4.21) and
(2.4.22).

Step 2: Proof of (2.4.25). Differentiation of (2.4.21) in x implies

Vq(s, t;y(s, 1), ) Vay(s, t) = 1. (2.4.29)
We have by (2.4.6)

IVaey(s,t) —I| = |(Vaq(s, t;y(s,t),€) " — 1|
< CIVeq(s, t;y(s,1),&) — 1|
< Cp™(s)~"".

Differentiating (2.4.29), we have for a # 0
Vaq(s; ty(s,1),§)0; Vay(s, 1)
« ’ o
—— 3 () Wttt v(e10). 01 Va0

0<a/'<a

Using (2.4.6) and the induction with respect to ||, we observe that the RHS
of the above equality is bounded by Cp®(s)~¢!. Thus we have |05V y(s, t)| <
Cop™(s) .

Step 3: Proof of (2.4.27). By (2.4.24), we observe for § =0

’n(t? S) - 5‘ = ‘p(s,t;y(s,t),ﬁ) - 5‘

t
= / VIVP(T, Q(T,t;y(svt)ag))dT
< Cp™(s)~=

In the case of |5| = 1, we have by differentiation of (2.4.22) in &
Vep(t, s;z,n(t, 8))Ven(t, s) = 1.
Similarly to Step 2, we obtain by (2.4.11)

(Ven(t,s) — I| < C|Vep(t,s;z,n(t, s)) — 1
< Cp™(s)~"t.
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In the other cases, we learn by (2.4.22)
Vep(t, s;z,n(t, 5))0L Ven(t, s)

== 2 (5,)65’[%10@,s;x,n@,s))]a?ﬁ’vgn@,s), B#0.
056'<p

The induction with respect to |8| and (2.4.11) imply each term in the RHS
is bounded by Cp®°(s)~¢!. Thus (2.4.27) holds for any g.
Step 4: Proof of (2.4.26). Differentiating (2.4.22) in x, we have
pr(t, 55T, 77(757 3)) + v§p(t, S5, 77(75, 5))v9€77(t7 5) =0.
This equality and (2.4.9) imply
IVan(t,s)| = [(Vep(t, s;x,n(t, )" Vap(t, s;,n(t, s))|
< C|Vap(t, sy, n(t, 5))]
< ol o,

which proves (2.4.26) for a = 5 =0. If a4+ 5 # 0, we have
Vep(t, s;z,n(t, )05, Van(t, 5)
= — 020; [Vap(t, 52, 1(t, 5))]
- (a) (6 )afs’af’ [Vep(t, sy2,n(t, )]0~ 0 Van(t, 5).

/ !/
(6%
o/ <a,B'<B, p
o/ +8'|>1

Thus (2.4.26) is proved by (2.4.27), (2.4.9), (2.4.11) and the induction with
respect to |a| + |B].

Step 5: Proof of (2.4.28). Similarly to the proof of (2.4.12) in Proposition
2.4.2, we have

y(s,t) —x — (t — s)v(§)
= Q(t7 S n(ta 5)) — T = (t - S)U(p(t¢ I n(tv 8)))

_ /St [v <g + /Tt Vgng(a,q(a,s;x,n(t7s)))da> - v(ﬁ)} dr.

Using this equality, (2.4.10) and (2.4.27), we obtain (2.4.28). O

‘We define
o(t; 2, &) := ult; z,n(t,0;7,5)),
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where
t
u(t;x,m) ==z -0+ / {hy, —x - Vah,}(1,q(7,0;2,n), p(1,0; 2,1))dT.
0

Then a direct calculus implies that ¢ satisfies the Hamilton-Jacobi equation

8t¢(t7 z, 5) = hP(ta V§¢(t, z, 6)7 5)1
| soa Late (24:30)
and the relation between ¢ and the functions y and 7n in Proposition 2.4.3:
Vao(t;x,8) = n(t, 052, ),
R (243

Remark 2.4.4. The relation (2.4.31) and Proposition 2.4.3 imply the estimate
020 [Vay(s. t:2,6) = I]| < Clyyy 0 ()~ (24.32)

holds for || > 1. Hence (2.4.25) is extended to (2.4.32) for any « and f.

Now, we construct outgoing and incoming solutions of the eikonal equa-
tion (2.1.4).

Lemma 2.4.5. The limits
0s(,€) == lim (o(t:2,€) — 6(1:0,)) (2.4.33)
exist, are smooth in R%4 and
pi(x, & +2mm) = dpu(x,6) + 27z -m, xR mezd  (2.4.34)
Proof. We define
R(t,x,€) == o(t;2,£) — ¢(£;0,).

Then we have
Ve R(t, 2,8) = n(t,0;2,&) = p(0,t;y(0,t;2,),)

t
. /0 (VaV)) (s a(r £ (0, £ 2,€), €))dr

t
:§+/0 (VaVo) (7, q(1,052,n(t, 05 2,€)) )dT.
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Since
202V V,) (7 a(r, 05, m(t, 03, )| < Caslr) ™72,

V. R(t,z,£) converges to a smooth function uniformly in (z,¢) € R??. Thus
1
Rt w,€) = / VL0 R(t, 0, €)d0 (2.4.35)
0

converges locally uniformly in R2¢. This implies the smoothness of ¢ .
It is easy to see (2.4.34) if we remark

n(t,0;x,& + 2mm) = n(t, 0;z,&) + 27m,
q(t, 052, + 2mm) = q(t,0; 2, &)

for z,£ € R%, t € R and m € Z°. ]

Next we consider properties of ¢+ in the “outgoing” and “incoming”
regions. We prepare improved estimates of Proposition 2.4.2 for an orbit
which is outgoing or incoming.

Lemma 2.4.6. Let (¢,p)(t) = (¢,p)(t,0;2,£) be an orbit satisfying (2.4.2)
and (2.4.3). Suppose

lg(1)[ = bl7[ +d, +7>0

for some b >0 and d > 0. Then there exist log,lg > 2 such that for £t >0
and o, B € N‘éo,
Ip(t) — €] < Cb 1 {d)~°, ( )
10207 [Voq(t) — 1] | < Cagb™les (@)1 1012, (2.4.37)
1090, Vap(t)] < Cogb'os (d) =110l (2.4.38)
|3§’8 [Veq(t) — tA(E)]| < Cab™'e (d)°[t], ( )
10 [Vep(t) — I]| < Cab™"2(d) . (2.4.40)

Proof. We calculate similarly to Proposition 2.4.2, whereas we use the fol-
lowing estimate instead:

102V, (t,q(t))] < Calg(t)) 175 < Co(blt] + d) 1175,

34



The next lemma gives improved estimates of Proposition 2.4.3 for out-
going or incoming orbits.

Lemma 2.4.7. Let b,d >0, b # 0 and z, £ € R? satisfy
lg(7,0;2,n(t,0;2,8))| > blr|+d, 0<+7 <+t
for any £t > 0. Then there exist l;,5,1; > 2 such that, for £t > 0,
050¢ [Van(t, 052, €)]| < Capb™'es (d) =711, (2441)
10 [n(t, 052,€) — €] | < Cb ™" (d) =, (2.4.42)
Proof. The proofs are similar to those of (2.4.26) and (2.4.27) if we use
09V, (1, q(7,0; 2, (t, 0; 2, )))| < Calblr| +dy~1=2, 0 < 47 < +¢.
0

Using the above two lemmas, we have the estimate of ¢4 (z,£) —z- & on
the outgoing and incoming region, respectively. See [6, Proposition 2.4] for
the case of Schrodinger operators.

Proposition 2.4.8.
1050¢ [¢(2,€) — x - ]| < Caplv(€)| o8 () 7101~ (2.4.43)
on {(x,&) | |x[Fv(€)|1751 > C¢,, £ cos(x,v(€)) > 0}, respectively.

Proof. On {(z,§) | z,v(§) # 0, £cos(z,v(§)) > 0}, (2.4.4), (2.4.5) and
(2.4.12) imply for 0 < 7 < +¢,

lq(7,0;z,n(t,0; 2, §))

>z + mo(p(T,0;2,1(t, 0; 2, €)))| — Co(r)=1
=|z 4+ o(p(1, t; Y(0, t; 2, ), £))| — Co(r)' =
>z +70(8)| = Clr)! = = Co(r)' ™=

>—=(lz| + |Tv(€)]) — C(r)' =

Sl

If we remark

1 €1 1 1—e1 €1 l—e1
o+ @12 (2l) (2 m@l) = A,

— & et (I —ep)t—=

35



we learn for |z|*t|v(¢)|}~51 > C.,
1
la(7, 052, n(t,0;2,€))| = S (|2 +[Tv(€)]), O<Er<+t.  (24.44)

Hence the proposition is proved by (2.4.44), (2.4.31), (2.4.33), (2.4.35) and
Lemma 2.4.7. O

The following proposition says ¢+ is a solution to the eikonal equation
(2.1.4).

Proposition 2.4.9. For any a > 0, there exists R, > 1 such that ¢+
satisfies the eikonal equation

h(z, Vi (z,§)) = ho(§) (2.4.45)
on the outgoing (or incoming) region
{(z,€) | |z = Ra, |v(§)| = a,£cos(z,v(¢)) = 0},
respectively.

Proof. By (2.4.31) and (2.4.33), we have
Vege(z,6) = lim n(t,0;2,6) = lim p(0,4y(0,42,€), ).
If |z| > 2p~1, then we have by the definition of V,
h(, Vb (x,€)) = lim hy(0,2,p(0,y(0,t2,8),£)). (2.4.46)
—+o0

Now we claim

E() = hy(1,q(7,£;y(0,t;2,€), ), p(7, £ y(0, ; 2, €), §))

= hp(7,q(7,0;2,n(t,0; 2, €)), p(7, 0; 2, 1(t, 05 2, €)))

is a constant for 0 < 47 < £t. A direct calculus implies

d
9B () = Oy . a7, 05 0(0,0:2,). p(r, 02, m(t, 052, €)))
= 8th(7—7 Q(Ta 07 z, n(tv 07 x, 5)))

We note (2.4.44) holds on {(z,§) | |z| > Rq, |[v(§)| > a, £cos(z,v(€)) > 0}
for R, large enough, and hence

1
’CJ(770§$a77(t7 0,1’,5))’ 2 i(RUL + Cl|7'|)

1 (1)

,m}, 0 <47 < 4t

> 2max{p~
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We also note 9,V,(t,z) = 0 if |x| > 2max{p~ !, Tos @)
%(7) =0if 0 < +7 < +t¢, in particular,

Og } Thus we have

ho(0,2,p(0,t;9(0, 1 2,€),€)) = E(0) = E(t) (2.4.47)
= hy(t,y(0,%;7,£), §).
Hence, (2.4.46) and (2.4.47) imply
h(a, Vage(z, ) = lim hy(t,y(0,8;7,8),) = ho()-
O
Proof of Proposition 2.2.1. Let ¢ € C*®(R? x (R"\v~1(0))) be defined by

p(,8) = (o4 (2,8) — 2 - x4 (2,8) (2.4.48)
+ (¢_($,£) — € £)X—(x7§) +T- 57

where
v (€)= x (lv(©)|'z ) v (cos(z, v(€)) (2.4.49)
and g € C*([-1,1];[0,1]) satisty
1, +o>41
velo) = {O, +o < 5

If p and ¢ are fixed so that p is sufficiently small and that ¢ is sufficiently
large, then ¢ satisfies (2.2.3), (2.2.4) and (2.2.5).

Finally we prove (2.2.9). Let s, be defined by (2.2.8). We decompose s,
by

sa(2,€) = 54(2,€) + 55(2,€), (2.4.50)

where

=Y fla] ez 70e@) _ (V04 (,€)),

z€Z4
sa(®,€) = h(z, Varpa(,€)) — ho(§).
For s2, (2.4.45) and Assumption 2.1.3 imply for |z| > R, and §,

952 (x, 6) = 0, | cos(z,v())| > 3, )
i {O(@C)E), | cos(x, v(€))| < L. (2.4.51)
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For s., we have

Z flz ( (pa(z—2,8)—pa(z.£)) _e—iz-vz%(;ﬁ,g)>

2€74

_Zf e~z Vopa(z ,@(z <xsz>_1),

2€Z4

where

@a(:v,f,z) = goa(:v - Zag) - QOa(.%',f) +z- Vw(,Da(ZL‘,g)

1 1
— . </ 91/ V20, (z — 91622,§)d92d01> 2
0 0

By (2.2.4), we observe
9= Vo= ]| < Cpz)

and

00, (,£, 2) §Cg|z|2/0191 /01@ — 01052) " d0,d0,
<Cpla) 15 ().
Thus we obtain
10 54, €)] < Cl) ™= (2.4.52)
Hence (2.2.9) is proved by (2.4.50), (2.4.51) and (2.4.52). O

2.5 Appendix: Proofs of Lemmas 2.2.2 and 2.2.3

2.5.1 Proof of Lemma 2.2.2
First we remark that J,, Py, P+ and their formal adjoint operators
Jiu (2m)~ / Z l(@E=¢a(y,6)) uly]de,

yezZd

Prafe] = (2 [ 30 0 @, uly) e

yezZd

Prula] = (27)" / S POV (o, €)u [y de

y€Z4
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map from . ( ) to itself.
Letting L = (z — y) 2(1 + (z — y) - D¢), D¢ := V¢, we easily see
L(e (z—y)- &) = ( )€, Thus we have

Peala] =m0 [ 57 1 (70) pfy. ulal de

y€Z4

—(2m) /Z DL (pi(y, €)) uly] de

y€eZa

for any k € N>o. We define [pi| := sup|gj<gi1 SUP(g ¢)czd x4 |8§pi(ac,§)].
Then we learn that, setting k =d + 1,

|Preufz]| < Clpx| D (x =)~ fula]].
y€Z4

This and Young’s inequality imply || Piu| < Clp+|[ull, where |[u]| := (3,cz4 [ulz]?)2.

Hence Py are boungied.
Next we prove Py are bounded. A direct calculus implies

Py Pyufa] = (27)° / S ilea@O- a0, (2, €)pa (y, € [y] de

y€Z4

(2m)" / S e NE (2, €)pa (y, Eu Ly de,

y€Zd

where 7 in the last equality is defined by

1
n(E;,y) = /0 Voaly + 0z — y),€)db. (2.5.1)

Then (2.2.5) implies n(;;x,y) : T¢ — T¢ has its inverse map &(-;z,v).
Changing the variable £ to n, we have

PLPiula] = (20" [ 37 e gnuly]dn
y€Z4

where

r(z,y,m) = p+(x, £ 2, 9))p+(y, £ (052, 9))

()]
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Since (2.2.4) implies

of [det (jﬁ) - 1” < Cylx) e, (2.5.2)

the similar argument for Py proves the boundedness of pj;]si. Thus, for
u € .7 (Z%), we obtain

1Psull® = |(PEPru,w)| < || PEPy|||ull?,

which implies Py are bounded. The boundedness of J, is proved similarly.
O

2.5.2 Proof of Lemma 2.2.3

Since

v(Ho) — Py — P— =~(Ho)(1 - x),

the compactness of the support of 1 — y implies Py + P_ — v(Hj) is a finite
rank operator, in particular, a compact operator.
We show P} — P, are compact. We observe

(Pf — Py)ula]

= (m | > et —1pi<y, &)uly] de

= (2m)™ /1I ) gzjd A CEVE /0 Vap(y + 0(x = y), §)d0 uly]ds
1

= (2m)~% /T ) gzjd e!lrs /0 Ve Vapa(y + 0(z = y), £)d0 uly)de,

where the last equality follows from integral by parts in £. Since

1 1
/0 O [Ve - Vape(y+0(x — y),f)]d9’ < CB/O (y+0(x—vy)) 'do

< Ch(x) ™,

similar argument in Lemma 2.2.2 proves (x)(Pf — Py) are bounded. By the
compactness of (x)~! as an operator on H, Pf — Py = (z)~ - (2)(P} — Py)
are compact.
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We next prove the compactness of Ey(0) — Py. Using (2.5.1), we have
Ex(0)ulz] = JoPrula]
(2m)~ / Z Upa(@E)=0aWEp | (y, O)u[y] dE

yeZd
d
en [ ;Zj i)y (g, € () det(df) uly] dn.
Thus
(P(0) = Pojule] = )~ [ 37 (e, njulol d,
y€eZd
where

r(z,y,m) = p+(y,£(n))

det (ji)‘ —p+(y,m).

By (2.5.2), we have |8§[r(m,y,n)” < Cg(z)~¢, and hence (x)°(E+(0) — Py)
are bounded. This proves E4(0) — Py are compact.

The compactness of J,J} — I is proved similarly to that of F1(0) — Py,
since

(JoJ* — Dulz] = (27)~ / Ze Ya(2,€)—Pa(y,8)) u[y] d€ — ulz]

y€zZ4

o e (o (2] e

y€Z4

Finally, we prove J}J, — I is compact. Now we mimic the proof of [12
Lemma 7.1]. For f € L?(T%), we denote

Laf(§) = FJgJuF" f(§)

(2m)~ Z/ (pal@)=alem) £(p)dp,

x€Z4

Lof @ = ™ [ [ o070 sy
R4 JTd

First we show that, for any ¢ € C°°(T%) with sufficiently small support,

Ko =10 (Lg— Lqg)
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is a compact operator on L?(T%). We define 11 : L'(RY) — L(T%) by

= Z f(&+2mm).

meZd

Then (2.2.3) implies

L. f(€) =2m)~" 3 /R ) /T el nerammmeds) f(n)dnda

meZd
/ / i(pa(®,§)+2mT-m—pa (2, "))f(n)dnda:.
Rd JTd

meZd

Using Poisson’s summation formula

PR N - (2.5.3)

meZzZd meZd

in the sense of distribution, we have

HELf(6) =(2m) 4 3 / (pa(®)=pale) £ ()dy = Lo f(€).

z€Z4
Thus we learn
Kapf(§) =to (HL — L)
= / / el(pal&+2mm)—pa(z, ”))f(n)dnd:v
Rd JTd

mEZd\{O}

= [ Fus(Em)fapin,

where the integral kernel

kow(E,m) = @Z} / i(pa(&+2mm)—pa(®,n)) 1
»(&m) > N

mezd\ {0}

is smooth. This implies the compactness of Ko
In order to show the compactness of ¢ o (L, — I'), we note

Lof(&) = (27?)_d/ / eilo Vewa(@nt0(E=m)do-(€=1) ¢ () dnda.
Re JTd

42



Letting

1
Y &m) = /O Vewalw,n + 0(€ — 1))do,

we observe y(+;&,n) has its inverse map by (2.2.5). Thus we have

Lof(€) = (2m)~" /R d /T erte)

This equality and

det (Z) ‘ f(m)dndy.

dx

000, 0) [det ( dy) - 1] ‘ < Clagy (y) 7ol

imply the compactness of 1 o (L, — I).

Hence, with the help of a partition of unity {1}

-1 on T?, we observe

J
Jido—1=FL,~)F=FY" (ij + a0 (La— I)) F
j=1

is compact. ]
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Chapter 3

Long-range scattering theory
for discrete Schrodinger
operators on graphene

3.1 Introduction

The aim of this chapter is to consider a long-range scattering theory for
discrete Schrodinger operators on graphene, that is, the hexagonal lattice.
Unlike discrete Schrodinger operators on the square and triangular lattices,
operators on the hexagonal lattice cannot be represented as an operator on
the space of Cl-valued functions on Z?, but C2-valued. Because of this as-
pect, a long-range scattering theory for this model cannot be treated as in
the last chapter. In this chapter, we generalize the results of the last chapter,
and in particular we construct Isozaki-Kitada modifiers for the hexagonal
lattice. For a short-range scattering theory for discrete Schrodinger opera-
tors on general lattices, including the hexagonal lattice, see [14]. See also [3]
and [4] for spectral properties of discrete Schrédinger operators on general
lattices.

Let H = ¢*(Z*;C?). For u € H, we use the notation u = ( Zl >,
2

uy,uz € £2(Z%). The unperturbed discrete Schrédinger operator Hy on
graphene is described as the negative of the difference Laplacian

Houlz] = — ( Zﬁﬂ j: Z?E;zﬂ i Z?E J_r Zj ) , zeZlueX, (3.1.1)

where e; = (1,0), e2 = (0,1). The derivation of Hy is found in e.g. [2]
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and [3]. As is seen later, Hy has purely absolutely continuous spectrum and
U(HO) = Uac(HO) = [*3’ 3]

For a function V : Z? — R2, the corresponding multiplication operator
is also denoted by V:

Va[z|ug[z]
where Vj[z] and V[z] are the first and second value of V[z]. We set H =
Hp + V. It is known that if V' is short-range, i.e., |V]z]| < C(x)~" for some
C >0 and p > 1, where (z) := (1 + |m|2)%, the wave operators

WE = s-lim et —itHo
t—too

Vulz] = ( Vile]u 2] ) , (3.1.2)

exist and W* are asymptotically complete, i.e., the range of W+ equals to
the absolutely continuous subspace of H. In this chapter, we assume the
long-range condition below.

Assumption 3.1.1. The function V has the following representation
Vi=Ve+Vs1, Vao=Vi+ Vso,
where V and V; ; satisfy

0°Vy[z]| < Cola)~lel=r w e 7% acZ?,
Vijlz]| < Cla)™'7°, zeZ? j=1,2

for some p € (0,1] and Cy, C' > 0. Here 9% = 021032, (iv]W[x] = Wiz] —
Wiz — e;].

Remark 3.1.2. The above assumption is invariant under the choice of iso-
morphism between the set of vertices of the hexagonal lattice and Z2 x {1, 2}
invariant under the canonical Z? action. In particular, it follows that the
difference between each pair of the nearest vertices is short-range. We note
that the pair of potentials Vi[z] = (z)~! and Va[z] = —(z)~!, an analog of
Wigner-von Neumann potentials, is not allowed under the above assump-
tion. We also note that, for 1-dimensional discrete Schrodinger operators,
embedded eigenvalues can occur even if |V[z]| < C(z)~!, x € Z for some
C > 0 (see [11]).

We give notations for the description of the main theorem. Let T =
{0,+1,£3} be the set of threshold energies. For a selfadjoint operator S
and an Borel set I C R, FEg(I) denotes the spectral projection of S onto
I and H,c(S) denotes the absolutely continuous subspace of S. The main
theorem of this chapter is the following.
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Theorem 3.1.3. Assume that V' satisfies Assumption 3.1.1. Then for any
open set I' € [—3,3]|\T, one can construct a Fredholm operator J on H such
that there exist modified wave operators
+ N itH —1itHg
W) = s-lim e jeitho g, (1) (3.1.3)

and the following properties hold:

i)Intertwining property HW}(I’) = WjE(F)Ho.

i) Partial isometries |W3(D)ul| = || Eg, (T)ul|.

iii) Asymptotic completeness Ran W}(I’) = Eu(T)Hae(H).

The above theorem is an analog of [12] and Theorem 2.1.5 in the sense
of a long-range scattering theory for discrete Schrédinger operators. For
a long-range scattering theory for Schrodinger operators on the Euclidean
space, see e.g. [6], [18] and references therein.

We observe spectral properties of the free operator Hy, and we show
an abstract form of the operator J in (3.1.3). By F : H — L?(T?;C?),

T? := [, )2, we denote the discrete Fourier transform
Fu
Fu(E) = < Fu;gg > £eT?, (3.1.4)
Fu;(&) = (2m) ! Z e Tuylx], j=1,2.
z€Z?

Then F o Hy o F* is a multiplier by the matrix

_( 0 al®
where a(€) := —(1 + €1 + €2). Note that for each ¢ € T2, Hy(¢) is an
Hermitian matrix.

In order to determine the spectrum o(Hy) of Hy, we consider the diag-
onalization of matrix at each point in the momentum space T2. We set a
unitary matrix

ve) =~ | _'ﬁl ¢ € T\{a(0)}
Cva\glg v ) '

Then Hy(€) is diagonalized by U(&); setting p(€) := |a(§)|, we have

©) = e Hlou(e = (7 V). ee A O,
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Since a~1(0) = {(£r, F3m)}, Hy(€) and U(€) are defined a.e. in T2. Fur-
thermore p is smooth outside a~!(0) and the set of its critical points
Cri={¢ € TA\a"(0) | Vep(€) = 0} (3.1.6)
:{(07 0)7 (=, 0)7 (07 _W)v (—7T, _ﬂ)}

has Lebesgue measure zero. Thus Hy has purely absolutely continuous spec-
trum (see Proposition 2.2.1) and

o(Ho) = p(T*\a~1(0)) U (=p(T*\a~1(0))) = [-3,3]. (3.1.7)
Using the above U, J is formally represented as
J=FU()TFo (‘JJ JO ) o F*U()* 7,

where

Jru[z] = (27r)1/ "+ @8 oy (€)de
TQ
and ¢4 (x,§), (z,€) € R? x T2, are outgoing and incoming solution of the
eikonal equation

p(Vap) + Vi(z) = p(€),

where V} is a suitable smooth extension of V; onto R2. However there are two
technical difficulties. One is the singularity of p(¢) at a=1(0). The other
is the singularity of U(§). The latter is more crucial because we cannot
prove that the difference Vy — F*UJF o Vy o F¥*U*TF is short-range due to the
singularity of U(§). We will avoid the above difficulties in Subsection 3.2.1.

We describe the outline of this chapter. The essential idea of proof is
as follows; in order to make the above long-range scattering problem easier,
we replace the free operator Hy to a modified free operator H|, witch can
be diagonalized in the whole momentum space T2. In Subsection 3.2.1, we
construct the modified free operator Hy, and the property of H| is written in
Lemma 3.2.1. Considering the long-range scattering theory for H|, instead
of Hy, we can reduce the problem of long-range scattering for operators on
3 to that for operators on £?(Z?). Then we will see in Subsection 3.3.1 that
the result of the last chapter is applicable to the above setting. Subsection
3.3.2 concerns a short-range scattering theory. This step is treated with
the limiting absorption principle and Kato’s smooth perturbation theory.
We also use a pseudodifferential calculus prepared in Subsection 3.2.2. In
Appendix 3.4, we show the limiting absorption principle by using the Mourre
theory.
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3.2 Preliminaries

3.2.1 Construction of the modified free operator

Let us fix the open interval I' € [—3,3]\T as in Theorem 3.1.3 and ¢ :=
dist(0,I") = infer |A|. We construct a modified free operator

Hy = 50 H() o F.

where H)\(&) € C°°(T?; M3(C)) is a simple symmetric matrix for each ¢ € T?.
We will choose H|(§) so that H|, has the same spectral projection as Hp in
[-3,~§1U 5,31 2

Let k € C™ (Rxp;Rxg) be fixed such that suppx C [0,%) and 0 <

E+ k(E)? < % for E € [0, %) Let us define

Then H'(£) has two eigenvalues

[N

A (€) = £ (r(p(€)*)? + p(€)?) (32.2)
and the corresponding eigenvectors are
_ (50(©)?) + A+ (8) _ —a(§)
1@ = (06 ) 0= (e o)
Therefore letting
1) e L (K(P(E)?) + A () —a(§)
"5 < o o ene) 029
P(©)? + [k(p(©)) + A+ ()]}
we learn that U’(¢) is a unitary matrix-valued smooth function on T? and
e =vermero- (MY ). 62

Note that Ay (&) = +p(&) for € € p~! ((2, ]) by the condition of x. Thus
we obtain the following lemma.
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Lemma 3.2.1. Let

H) := F*H\(\F, Hy:=FH)\F, U :=FU(F (3.2.5)
and
A = F*AL())F. (3.2.6)
Then
H) = (U)*H\U' = (AO* AO) : (3.2.7)
Ep,(I) = B (I), 1 € (—o0, —g) U (g,oo). (3.2.8)

In particular,

e gy, () = e Ey, (), teR, (3.2.9)
X(Ho) = x(Hp), x € C(T). (3.2.10)

3.2.2 Pseudodifferential calculus

In this subsection we prepare an assertion concerning the boundedness of
pseudodifference operators on Z%, d > 1. This lemma is an analog of sym-
bol calculus of pseudodifferential operators on T2. The proof is given in
Appendix 3.5. See also [16, Theorem 4.7.10].

Lemma 3.2.2. Let mi,me €R, a:T*x Z* - C, b:Z% — C, and

Op(a)ulz] = (2r) /‘Ejézy al€,y)uly)de,

y€Z4

Suppose that a(-,y) € C®(T?) for y € Z¢ and 0ga(&,y)| < Caly)™™,
\5ij[x]| < Clx)™™ forz e Z? j=1,...,d, where d, ;blx] = blx] —blr—ey].
Then, (x)?[Op(b),Op(a)|{z)? is a bounded operator on (*(Z%) if p+q =
m1 + ms.

3.3 Proof of Theorem 3.1.3

First note that the properties i) and ii) are satisfied if the limits (3.1.3) exist.
See [7] and [18] for the proofs.
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We denote by V; the multiplication operator by <“§Z E) if there is no
l

risk of confusion. Let
Hy:=H)+ UV, (U)" = U’ (ﬁg + w) )" (3.3.1)
Then it suffices to prove the following two assertions.

Theorem 3.3.1. One can construct a Fredholm operator J such that there
exist modified wave operators

Wi (D) i=s-lim e je~ "0 gy, (I) (3.3.2)

t—+oo
exist and Ran W}’f(f‘) = Epy(I)Hac(Hy).
Theorem 3.3.2. There exist the wave operators

W) = s-lim ™ e H: i (D), (3.3.3)

t—+oo

where Eff(T') denotes the spectral projection of H; onto the absolutely con-
e
tinuous subspace in T, and Ran W= (T) = Eg(T)H o (H).

Proof of Theorem 3.1.3. It remains to prove WjE(F) = Wéi(F)Wgzt(F)
For u € H, it follows from Lemma 3.2.1 that

. . ) o
ethje thoEHO (F)u :ethJe thOEHé (F)u
: eyt T/ it/
:ethe itH), eZtHfje thOEHé (F)u

Note that by Theorem 3.3.1 there exist T+ > 0 such that for +¢ > Ty,
ethzje—ltHOEH(/)(F)u = W}}F(I‘)u +ry(t) and ||re(t)|lsc — 0 as t — £oo.
Thus we have for £+t > Ty

e Je~ o By, (T)u — W (D)W (D)ulls (3.34)

< H (eitHefitng _ Ws"i(f‘)> W(’]:zjt(r)uH% + {7 ()] 5¢-

Since W7 (I)u € Ran W/ (T') = By (T)Hac(Hy), Theorem 3.3.2 implies
that (3.3.4) tends to 0 as t — £o0. O

In the following, we prove Theorems 3.3.1 and 3.3.2.
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3.3.1 Proof of Theorem 3.3.1

We reduce a long-range scattering problem on H = ¢?(Z?;C?) into that on
¢%(7?%), which is considered in the last chapter.
The existence and completeness of (3.3.2) are equivalent to those of

WD) = slim " Je o B, (1), (3.3.5)

J, t—=oo
where J = (U’)* JU’ and
o= (U HU' = Hy+ V. (3.3.6)
Indeed, a direct calculus implies

*

Wiy (D) = U’W}j(r) )", (3.3.7)

Set J = <J+ Y >, Ji € B(£%(Z?)). Then the scattering problem of oper-

0 J-
ators on H is reduced to that on ¢?(Z?):
7t
ij(P) (3.3.8)
i eit()\++\/g)j+e—it)\+ E,\+ (F) 0
e < 0 etA-+Ve) J_e—itA- EA_(F)> '

Therefore we obtain the following theorem by Theorem 2.1.5.

Theorem 3.3.3. There exist Fredholm operators j#, # € {+,-}, of the
form

Jyvlz] = (2m) 7! / e# @ py()de, v e (Z?), (3.3.9)
T2
such that the modified wave operators
W, () = s-lim e tVD) e~ By, (T) (3.3.10)

exist and they are partial isometries from Ey, (I')Hac(Ag) onto By, (I)Hac(Ag).

Note that each x4 (x,€) in (3.3.9) is constructed as a smooth function
on R? x T? which solves the eikonal equation

A (Vopu(,6)) + Vi(z) = A (€) (3.3.11)

on the outgoing and incoming regions, where V; € C°°(R?) is an extension
of Vp as in Assumption 2.1.3. For detailed properties of J+ and ¢, see the
last chapter.

Let J = U'J (U, J = <JO+ Jp> Then using Theorem 3.3.3 and
(3.3.7), we obtain Theorem 3.3.1. O



3.3.2 Proof of Theorem 3.3.2

Theorem 3.3.2 is proved by Proposition 3.3.4 and the Cook-Kuroda method.
The proof of the next proposition is given in Appendix 3.4.

Proposition 3.3.4. i) H and H, have at most finite discrete eigenvalues
i I with counting their multzplzcztzes

ii) Let s > % and x € CZ(T\opp(H)) (resp. x € C(T\opp(Hy))). Then
() ~°x(H) (resp. (x)~°x(H})) is H(resp. H})-smooth.

According to Proposition 3.3.4 i) and a density argument, it suffices to
show the existence of wave operators

lim e ey, (3.3.12)
t—+o0

lim ety (3.3.13)
t—+o0

for u € Hac(Hy) and v € Hyc(H) such that
x(Hpu=wu, (H)v=uv (3.3.14)

with x € C°(I'\opp(Hy)) and ¢ € C°(I'\opp(H)). We prove the existence
of (3.3.12) as t — oo only. The other cases are proved similarly.
By (3.3.14), we have

et g=itHyy, —tH y (H)3e= iy, (3.3.15)
=X (H)x(Ho)x (Hy)e "Hiu
+ ™ (X(H})? = x(H)x(Hp)) x(Hp)e™eu.

Since H — Hy = V; and H, — H, = (U’)" V,U' are compact operators, the
Helffer-Sjostrand formula implies that x(H) — x(Ho) = x(H) — x(H}) and
X(H}) — x(H}) are compact. Thus x(H,)?> — x(H)x(H}) is also a compact
operator. Note that u € Hq.(H;) implies e Hyy — (0 weakly as t — oo.
Thus the last term of (3.3.15) converges to 0 as ¢ — oo, and it suffices to
prove the existence of the limit

hm M (H ) (HY) x (H})e iy

t—o0

Now we use the Cook-Kuroda method. First note that
"\ (H)x (HY)x(Hp)e ™" Heu — ey (H)x(HY)x (Hy)e ™" M
t

).

(e x(H)x (H)) x (H})e " Mew)ds.

%\&
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A direct calculus implies

- (e“Hx<H>x<Ho>x<H e i)

— ie" "\ (H) (Hx(Hy) — x(H) Hp) x(Hp)e™"iu

= ie" X (H) (Vix(Hp) + Vex(Hg) — x(Hg) (U')" VeU’) < Hy)e "M
= i (H) (Vox(Hg) + [Vi, x(Hy) (U) U") x(Hp)e™ " Hiu

- ie“H(A*{Bl +Ang)e e
where v := 132 and
Ay = (2) Vex(H),  Bi:= ()" "x(Hg)x(Hy),
Ag = (&) x(H),  Bs:= (2)"[Vi, x(Hp) (U')|U'x(H)).

Then by a standard argument of short-range scattering theory (see, e.g.,
[15]), it suffices to prove that each A;(B;) is H(Hj)-smooth, respectively.
The H-smoothness of A; and As is a direct consequence of Proposition 3.3.4.
For the H z—smoothness of By and By, note that

By = (z) "x(Hp)(x)" - (x) " "x(Hy),
By = ()" [Vi, x(Hp) (U")"1U ()" - ()77 x (H}).

Then it follows from Lemma 3.2.2 and Assumption 3.1.1 that (x) ™7 x(Hp)(x)”
and (z)7[Vy, x(H}) (U')*]U’(x)" are bounded. Combining this and Proposi-
tion 3.3.4, we obtain the Hlf—smoothness of By and Bs. O

3.4 Appendix: Mourre theory for H and H;, and
the proof of Proposition 3.3.4

In this appendix, we review the Mourre theory, the limiting absorption prin-
ciple and Kato’s smooth perturbation theory. Let I' € o(Hp)\T be an open
interval as in Theorem 3.1.3. For a selfadjoint operator A and n € N, let

C™(A) ={S € B(H) | R — B(H),t — e 4 5e is strongly of class C"},

and C®(A) := NyenC™(A). We denote by CL1(A) the set of the operators
satisfying

1
A , , ) dt
/ |e”#ASeA 4 eitAge—itA _ 25’||t—2 < 00. (3.4.1)
0
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Note that C?(A) C €L1(A) ¢ C'(A). We denote by B the Besov space
(D(A),H) 11 obtained by real interpolation. We also denote by B* its dual.
The definition of real interpolation is found in [1, Section 2.3].

We recall the characterization of Kato smoothness; for a selfadjoint op-
erator H and an H-bounded operator G, we say that G is H-smooth if

Cy: ! sup / HGe*itHuH dt < oo. (3.4.2)
R

2T wep(H),Jul=1

It is known that there are other characterizations of H-smoothness and one
of them is

Cy:= sup [|Gé(\ e)G*|| < oo, (3.4.3)
AER >0

moreover C; = Cy, where §(\,¢) := 55 (H — A —ig)"! — (H — A +ie) 7).
For other characterizations, see [9].

In order to prove Proposition 3.3.4, we apply the two operators H and
Hj to Theorem 3.4.1 described below with I € I" and a suitable conjugate
operator A. The following theorem is a standard result of the Mourre theory

and is due to [1, Proposition 7.1.3, Corollary 7.2.11, Theorem 7.3.1].

Theorem 3.4.1. Let S € CH1(A) and I C R be an open interval. Suppose
that there exist a constant ¢ > 0 and a compact operator K on H such that

Es(I)[S,iA|Es(I) > cEs(I) + K. (3.4.4)

Then

i) S has at most a finite number of eigenvalues in I and each eigenvalues in
I has finite multiplicity.

ii) For any X € I\opp(S), there exist the weak-* limits in B(B, B*)

T . - n—1
w 51—1}20(5 AFie) (3.4.5)

and the convergence is locally uniform in I\op,(S). In particular, for any
I' @ I\opp(S), S is purely absolutely continuous in I' and

sup [|(S = AFie) p,pe) < 0. (3.4.6)
AeT >0
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We define the conjugate operator A by

A:=Uo0Ao (U/)* (3.4.7)

i (A0

fm (i 0), s

_ 13

A= 53 (F'(0gAe)F -+ ;- FH (9 \)F) (3.4.9)
j=1

where U’ and A\. (&) € C*°(T?) are given by (3.2.2), (3.2.3), (3.2.5), (3.2.6).
Then Nelson’s commutator theorem with the positive selfadjoint operator
(r) implies that A is essentially selfadjoint on the Schwarz space on Z?2
defined by 8§(Z?) = {u : Z? — C? | sup ez (z)"|u[z]| < oo for any N € N}.

First we verify a relation between A and the unperturbed operators Hy
and H).

Lemma 3.4.2. Both Hy and H{ belong to C*°(A). Moreover, let

c:i=min{ inf |VeAp (93, inf Ve (9.
gext! () gex_! (D)
Then, ¢ > 0 and
EHO (P)[H@,iA]EHO (F) > CEHO (P), (3.4.10)
By (D)[H, iA]Epy (T) > cEpyy (T). (3.4.11)

Proof. Note that the LHS (resp. RHS) of (3.4.10) equals to the LHS (resp.
RHS) of (3.4.11) by the construction of H.

Since F*HoF and F*H)JF are multipliers with smooth symbols on T?
and F*ATF is a differential operator of degree 1 on T?, F*[Hy,iA]F and
F*[H,iA]F are also multipliers with smooth symbols. Inductively we see
that Hy, H) € C*(A).

For the proof of (3.4.11), a direct calculus implies

(U')*[Hy,iAJU = [Hp, iA]
_ (\V§A+(sz)|2 0 )
0 [VeA—(D2)? )
(U") By (DU = Eg, ()



where Xa1!(r) denote the characteristic function of AEI(F). Therefore we
obtain

Epgy(T) [Hy, i A) gy (T)
=U' By, (0)[Hp, 1] By (T) (U

2
o (VAP 0(D2) N 'y
0 ’Vg)\_(Dz)’ X)\:l(F)(Dm)
I 1\ *

We consider commutators of the perturbations V, Vy and U'V; (U’ )*, and
the conjugate operator A. The next lemma claims that the commutators
are small in the sense of the Mourre theory, i.e., compact.

Lemma 3.4.3. Let Vs and Vy satisfy the condition in Assumption 8.1.1 with
p>0. Then, for W =V, Vy and U'V, (U")",

()W, 1A] € B(H). (3.4.12)
Proof. First note that
(U) [0V, (U)" AU = [V, i) = <[V€’ éA” v, (Z’ A_O . (3.4.13)

Since A = Op(a+) with some functions a4 on T2 x Z2 satisfying the condi-
tion of Lemma 3.2.2 with m; = 1, it follows that (z)!**[V},iA1] are bounded
on %(Z?). Since

[U'V, (U')",iA] = U'[Vy,iA] (U')",

using Lemma 3.2.2 again shows (3.4.12) for W = U'V, (U’)*. In order to
show (3.4.12) for W =V} or V;, note that A has the representation

_ Op(an) Op(au)
A= (Op(am) OP(CLQz)) ’

where each a;; satisfies the condition of Lemma 3.2.2 with m; = 1. Then
(3.4.12) for W = Vj is a direct result of Lemma 3.2.2. The last case is also
proved since (z)?V;A and (x)? AV are bounded operators by Lemma 3.2.2.

O
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Using the above lemma, we see that the perturbations are of the class of

CLL(A).

Lemma 3.4.4. Let Vs and V; satisfy the condition in Assumption 3.1.1 with
p>0. Then Vi, Vi and U'V, (U')" belong to C11(A).

Proof. The proof is motivated by [14, Lemma 6.2]. First we remark that
the operator Aulz] := (z)ulz| satisfies the condition of [5, Theorem 6.1];
the first condition is attained by the unitarity of e=®*, ¢t € R, on K, and
the second one that ANA~™" is a bounded operator on 3 for some integer
N > 1, follows from Lemma 3.2.2. Thus it suffices to show

[ 2

for W = Vs, Vp and U'V, (U’')* and some 6 € C°((0,00)) not identically
zero. However this follows from Lemma 3.4.3 and

o (3) mia, <[o (5) =
A B(30) A B3¢

S O PN IW, i Al g g -

< o0 (3.4.14)

B(H)

| [AP[W, 1A |5 5¢)

O]

We have confirmed that Theorem 3.4.1 is applicable to S = H or H; and
A defined by (3.4.7), (3.4.8) and (3.4.9). Therefore we obtain the limiting
absorption principle for H; and H.

Theorem 3.4.5. i) H and H; have finitely many eigenvalues with counting
multiplicity in T.
it) For any I € I'\op,(H), I' € T\oyp(H)) and s > 3,

s H . )\ . —1 —S < ,
,\esll,lg>0”<m> ( Fie) (@) HB(H) >

—s =1\ —s
X )y <o

Proof. 1t remains to prove that Hy := (z) *H C B if s > 3. However
it is shown if we remark that 3; C D(A) and hence Hy C (Hi,H)1, C
3

(D(4),301, = B. O

Proof of Proposition 3.3.4. It suffices to show (3.4.3) for G = (z) *x(H)
and (z)~°x(H,). However this is proved by Theorem 3.4.5 and the condition
of supp x. O
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Remark 3.4.6. Theorem 3.4.5 may look like a direct consequence of [14].
However the above assertion is more concrete in that the set 7 = {0, £1, £3}
of threshold energies is explicitly determined.

Remark 3.4.7. For any \ € T\opp(H), N € T\opp(Hy) and s > %, there
exist the norm limits

16%1@_5(1{ ~AFie) Ha) ™,

lim(z) = (Hy — N F ie) " Ha) 5.
el0

For the proof, see e.g. [3] and [13].

3.5 Appendix: Proof of Lemma 3.2.2

First we observe that

Op(a)ulz] = (2m)~* > Alz,yluly], u e 8(Z7),
y€Z4

where
Aley) = [ %€ g)de.
Td
A direct calculus implies

(¢-)P[0p(b), Op(@))(-)ulz] = (2m)~ Y Kz, yluly],

yezd
where
Klz,y| := ()" (y)!(W[z] - Wly])Alz, y].

According to Young’s inequality, the boundedness of the operator follows
from the inequalities

sup Z Klz,y] < oo, (3.5.1)
yGZdzEZd
sup Z Klz,y] < oc. (3.5.2)
xEZd yEZd
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Let z:=x —y, k:= Z,;l:l \;j\, and 20 = 0,2',...,2F = 2 be a path from 0
to z in Z% such that |2* — 2*"!| =1 for i = 1,2,...,k. Then we learn

k
W] =Wyl < 3 IWE+ 9] = W+ g

k
<CY (F 4y
=1

k
=C) (' +y) Pyt
1=1

k

< 'Y o —y = ) (e ) e
i=1

< C"(x — )M (z) 7P (y) et
where M := |p|+ |¢ —mz2|. Note that the second last inequality follows from

(@) (),

(x+vy) <Cy
Calz)(y) "

<
(x+y) ' <

for z,y € R% In order to estimate A[z,y], we observe for o € Zi

|(z —y)* Alz, y]| =

ol [ et ogale g < Caly) ™
’]I‘d
Thus we have
K [z,y]] < C"(x—y)M (y)™ |Alz,y]] < Carale —y)~ "

Hence we obtain (3.5.1) and (3.5.2). O
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Chapter 4

On a continuum limit of
discrete Schrodinger
operators on square lattice

4.1 Introduction

Let d > 1, V(x) be a real-valued function on R% and H be the Schrédinger
operator perturbed with V:

H=Hy+V=-A+V() (4.1.1)

on H = L%(R?).

We consider the discretized operators Hy j, V}, and Hj, on the d-dimensional
square lattice hZ? with width h > 0. In particular, we call Hj, the discrete
Schrédinger operators. The above operators are defined on Hj;, = ¢2(hZ%)

. d 3
with norm ||v|g, = h>2 (Zzeth ‘U(Z)|2) i

d
Hypo(z) = B2 (20(2) — v(z + he;j) — v(z — hey)), (4.1.2)
j=1
Vio(z) = V(z)v(z), (4.1.3)
Hyp=Hop+ Vi

for 2 € hZ?, where {ej}?zl C Z® denotes the canonical basis of R?. Note
that Hyj denotes the negative of the difference Laplacian on hZ¢ and is
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obtained by a formal calculus of the Taylor expansion

v(x £ hej) = v(z) £ hody,v(z) + h;f)gjv(ac) + O(h3).

There are studies concerning continuum limits of NLS equations, in many
cases, in the view point of numerical analysis. For the case where the space
is discretized and the time is not, see Bambusi and Penati [2], Hong and
Yang [4] and references therein. For linear discrete Schrédinger operators,
Rabinovich [8] has studied the relation between the essential and discrete
spectra of the discrete and continuum Schrodinger operators, provided V' is
bounded and uniformly continuous.

The goal of this chapter is to give a meaning of H, — H as the width
h of the lattice tends to zero in the spectral theoretical point of view. More
precisely, we establish a continuum limit of discrete Schrédinger operators
Hj, defined on Hj, with respect of the operator norm topology, and as a
corollary, we observe the asymptotics of the spectrum o(Hyp,).

In order to make a relationship between H and Hj, we need some nota-
tions. We set ¢ € L2(R%) N L'(R%) such that

sup Z lp(z —n)| < oo, (4.1.5)
mE[O,l}dnezd
and we set
on:(z) = (h Yz —2)), h>0, zehZ". (4.1.6)

Let P, = Pp, , : H — H}, be defined by
Pru(z) := h_d/ on-(x)u(x)dr, h>0, € hzs. (4.1.7)
R4

Then it follows that P, is bounded by Young’s inequality and its adjoint is

Pro() = Y enz(@)v(2), h>0, veEIHp. (4.1.8)
2EhZ4

We prepare a lemma for Pj,.

Lemma 4.1.1. Let p € L*(RY)NLY(R?) satisfy (4.1.5). Then, the following
are equivalent.

(1) Py is isometric.
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(2) Ran P, = Hp,.
(3) fRd o(x)p(z —n)de = 0p 0 forn € 7.
(4) Yoneza |Q(€+2mn) > =1 for € € RY, where $(£) := [pae ™ Ep(x)dx.

Proof. (1) and (2) are equivalent by the standard properties of adjoint op-

erators. Since (2) implies the orthonormality of the basis {h_%@h’z}zehzd,
we learn

/ o(x)p(r —n)dr = hd/ ©h,0(T)@h pn(x)dx = d0 n,
R4 Rd

which implies (3). For the equivalence of (3) and (4), we learn by Parseval’s
identity

/ () — n)de =(2m) / (&) EB(E)de
Rd

Rd

—(2 —d n-&| 2d

e [ enelple)ae

:(27r)d/ E ei"'(5+2”m)|¢>(§+2ﬂm)]2d§
Td

meZd

—m) 0 [ ™S (6 + 2mm)P

meZ?
where T¢ := [—7, 7). Since {(QW)_gei”f}neZd is a complete orthonormal
basis of L2(T%), we conclude that (3) is equivalent to (4). O

The next theorem is our main result concerning the asymptotic behavior
of P}(Hp — )~ Py as h — 0, where u € C\R.

Theorem 4.1.2. Suppose that ¢ satisfies one of the conditions in Lemma
4.1.1, and ¢ € C ((—2#,2#)61). Assume that 'V is a bounded function
from below such that the following hold: Let M := inf cpa V(x) — 1. Then
(V(x) — M)~ is uniformly continuous and for sufficiently small ¢ > 0 and

01,02 > 0,
Ci(V(x) = M) <V(y) —M < Co(V(z)— M) if |[x—y|<e. (4.1.9)
Then, for any p € C\R,

125 (Hpy — )™ By — (H = 1) sy — 0, h — 0. (4.1.10)
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Furthermore,

1P (Hpo — 1)~ Py — (Ho — 1)~ [l 53y < Cuh?, (4.1.11)
1Py (Hp — ) Py — (H — ) lgae) < Cuht” (4.1.12)
for 0 < B < a <1, provided in addition that (V(z) — M)~ € CO¥(R?).
Remark 4.1.3. It does not holds that Py Hy, P, — H as h — 0 in the norm
resolvent sense, i.e.
(P HpPy — 1)~ = (H = ) "Ml ge) = 0, = — 0.

In fact, the above statement is equivalent to the following assertion: For any
X € C(R) decaying at +oo,
in the operator norm topology. Since a direct calculus implies x (P Hy, Py) =
Prx(Hp)Pp + x(0)(1 — P Py), (4.1.13) holds if and only if x(0) = 0.
Remark 4.1.4. When we consider the strong resolvent convergence, the con-
dition for ¢ will be relaxed. In particular, for ¢ satisfying the condition of
Lemma 4.1.1, (PfHopP, — pu)~! converges strongly to (Ho — p)~! if and
only if |¢(0)] = 1.

As a corollary of the above theorem, we obtain the asymptotic behavior

of the spectrum of Hy,.

Corollary 4.1.5. Under the assumption of Theorem 4.1.2, the following
hold:

(1) Let a,b € R, a < b be not in o(H). Then a,b ¢ o(Hp) for sufficiently
small h and

| Py En, ((a,b)) P — Ey((a,b))|ls@ey — 0, h—0. (4.1.14)

(2) Let dp(X,Y) = max {sup,cx d(z,Y),sup,cy d(y,X)} denote the
Hausdorff distance. Then

dy (o((Hp — M) 1), 0((H—M)™") =0, h—0. (4.1.15)

Proof. (1) The proof is similar to that of [9, Theorem VIIL.23 (b)].
(2) We set X, .= o((Hp,— M)~ ') and X := o((H — M)™!) for simplicity.
Then we have
dy (X, X) <du (Xp, Xp, U{0}) + du (X5 U {0}, X)
=d (0, Xp) + du (Xp U {0}, X) .
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Note that d (0, X;,) < Ch? if V is bounded and d (0, X;) = 0 otherwise.
Since X5, U {0} = o(P;(Hy, — M)~ Py,), it suffices to show for 4, B € B(H)

du(o(A),0(B)) < [|A — Bllg)- (4.1.16)

Equivalently, it suffices to show that d(u,o(B)) > ||A— B|| implies pu € p(A).
However this is easy to prove since ||[(4A — B)(B — u)7!|| < 1 and

(A-p)'=B-p+A-B)~"
=B-pw 1+ A-B)(B - H!

=B-u)' Y ()" (A-B)(B-u")".

n=0

O]

Ezamples 4.1.6. (1) The assumption of Theorem 4.1.2 is satisfied if V' is a
uniformly continuous bounded function.

(2) One of the most interesting examples is V(z) = Clz|%, C,a > 0.
In particular, the harmonic potential V (z) = |z|? is suggestive; if a,b € R,
a < b, are not in the spectrum o(H) = {d,d + 2,d + 4, ...}, then

dyt(o(Hy) N (a,b), 0 (H) 0 (a,)) < Cyph.

Moreover, we can see that for any eigenfunction u of H there exists the
corresponding eigenfunction vy, of Hj, such that || Pyvy — ullsc < C,h'~¢ for
any € > 0. Note that, for d = 1, each eigenfunction v of Hy corresponds to
the periodic solution to Mathieu’s differential equation

—g"(x) + 2h7%(1 — cos hx)g(x) = A\g(z), =€ h™'T, (4.1.17)

and A € o(Hy) if and only if there exists a periodic solution to (4.1.17).

(3) Theorem 4.1.2 can treat exponentially increasing potentials V(x) =
Ce®*l, On the other hand, super-exponentially increasing potentials are not
under the assumption.

(4) A constant electric field V(x) = 1 is not treated by Theorem 4.1.2
due to its unboundedness from below.

We describe the outline of this chapter. Sections 4.2 and 4.3 are devoted
to the preparation of lemmas and notations for the proof of Theorem 4.1.2
given in Section 4.4. In Section 4.2, we show that Hy (resp. Hyyp) is H-
(resp. Hp-)bounded and the relative bound of Hyy, is uniform in A > 0
by their form boundedness and a commutator calculus. In Section 4.3, we
introduce the continuum and discrete Fourier transforms F', F} and define
Qy, = Fp Py F* for the proofs of Lemmas 4.4.1 and 4.4.2.
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4.2 Relative boundedness

In this section, we prove the relative boundedness of H and H}, with respect
to Hy and H , respectively. The assertion is the following.

Proposition 4.2.1. Suppose that V is bounded from below and (4.1.9) holds
for some ¢ >0 and Cy,Cy > 0. Then

| Ho(H + i)} < oo, (4.2.1)
IV(H +i)7 < oo, (4.2.2)
sup || Hon(Hp +14) ™" < oo, (4.2.3)
he(0,1)
sup ||V (Hyp, +14) 7| < oo. (4.2.4)
he(0,1)

Note that (4.2.1) (resp. (4.2.3)) is equivalent to (4.2.2) (resp. (4.2.4)).
Since (4.1.9) for some € > 0 implies (4.1.9) for any € > 0, we may assume
€ = 1. In order to prove Proposition 4.2.1, we first prepare the claim on the
form boundedness.

Lemma 4.2.2. If V is bounded from below,

I(Ho +1)2(H — M)~ < oo, (4.2.5)
|(V = M)3 (H = M)~3|| < o0, (4.2.6)
sup [|(Hop + 1)% (Hy, — M)™2| < oo, (4.2.7)
he(0,1)
sup ||(Vi, — M)Z(Hy — M)~ < oo, (4.2.8)
he(0,1)

Proof. 1t is proved by the positivity of V. — M and V;, — M:

(u> HU) 2 max {(uv HOU) + MHUHQa (’LL, Vu)} ’
(v, Hyv) > max { (v, Hy pv) + M|[v||?, (v, Viv)}

for u € H and v € Hy,. O

We also prepare the mollified potential V with a suitable differential
condition.

69



Lemma 4.2.3. Under the assumption of Proposition 4.2.1, there exists Ve
C>®(R?) such that V(x) > inf, cpa V(z) and

c(V(z)— M) <V(z)— M < C(V(zx)— M), zecR?, (4.2.9)
c(V(z)=M)<V(y)—M<C(V(z)—M), |z—y| <1, (4.2.10)
|3§Y‘N/($)| d d _ d

V(m)—MSCO” reR,aezd ={0,1,...} (4.2.11)

for some C,¢c,Cy > 0.

Proof. We set ¢ € C°({|z]| < 1}) so that [pq 9 (x)dz = 1, and let

Vie)=Vay(e) = | V(e =y)vly)dy.
Since the assumption of V' implies that C1(V(z) — M) <V(rx —y) — M <
Cy(V(x) — M) for y € supp ), we obtain (4.2.9). We can prove (4.2.10) by
(4.2.9) and the assumption of V. If a # 0, we have by (4.2.9) and (4.2.10)

|02V (x)| =105 (V(2) — M)

=9 - a0azedy

< | CalViw) = M) w)ldy

SCa(V(x) - M)
<Co(V(z) = M).

O]

Proof of Proposition 4.2.1. Since (4.2.9) implies (V —M)(V —M)~! € B(H)
and supj,~q ||(Vi, — M) (V}, — M) 5(¢,) < oo, it suffices to prove the (uni-
form) boundedness of (V — M)(H — M)~" and (V}, — M)(H, — M)~'. In
the following, we write W =V — M and W), = Vj, — M for simplicity.

We observe

W(H— M) =W2(H - M)"'W2 +W2[Ws, (H-— M)

The first term is bounded by (4.2.6) and (4.2.9). The second term is calcu-
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lated as
(W2, (H - M)™] (4.2.12)
(H — M)~ W3, Ho)(H — M)~

w
=W

[STEE ST

d
W3 (H = M) ™03 (00, W3)0,, + (02, W4)) (7 — 2) .
j=1

Since a simple calculation implies
1 1.1
0z, W2(z) = §W 2(2)0z; W (),
1 1
02, W3 (@) = — W3 (2) (9, W (@) + W2 ()0, W(a),

each term of (4.2.12) is bounded by (4.2.5), (4.2.6), (4.2.9) and (4.2.11).
Thus we obtain (4.2.2).
For the proof of (4.2.4), we calculate

1 1 1 1
Wi(Hp — M)t =W2(Hp — M)'"W2 + W2 W2, (H, — M),

It follows from (4.2.8) that the first term is bounded. For the second term,
note that Hyp = Z;lzl ViV, where

V0(z) = % (v(z + hej) —v(2)) 5 v € Hp.

Then we learn
1 1
W2 (W2, (Hy, — M)~ (4.2.13)
1 1
=W2(Hp — M) W2, Hopl(Hy — M)™!

d 1 1 1
=S w2y (I, V519, 4 VRV (o )
j=1
Since
1
W2,V Ju(z) =h~! (W%(z + hej) — W%(z)) v(z + hej),
1 1 1 1
Wizt hes) = W) =h [0, (W3) (= + hoes o
0
1 1 1
:2h/0 W2 (2 + hlej) 0y ;W (2 + hbe;)do,

the uniform boundedness of (4.2.13) follows from (4.2.7), (4.2.8), (4.2.10)
and (4.2.11). This completes the proof of (4.2.4). O
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4.3 continuum and discrete Fourier transforms

We denote by F the continuum Fourier transform from H onto H = L2(R%):
d d

Pu(€) = (27)%a(8) = (27) 8 /R ) da, (4.3.1)

We set the discrete Fourier transform F}, from H;, onto Hj, = L?(h~1T9),
Td ::L_Waﬂ)dvby

F(@) = 2n) 2kt 3 e#(z), ¢eh T (432)
zehZ4

Then Fj, is a unitary operator and

1S9

Frg(z) = (2m) 8 / ¢i#g()dC, = € hZd, (4.3.3)
h—1Td
Furthermore we have

Ho pv(z) = Fy, (Hon(-)Fro(+)) (2), (4.3.4)

where
d
Ho (¢ Z (1 —cosh¢j), ¢eh'T (4.3.5)

In order to prove Theorem 4.1.2, we prepare a convenient notation. We
set

Qn := FyPyF* - H — 3. (4.3.6)
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Then we see that for f € S(R?),

Qnf(C) (4.3.7)
SCORIAD D (h—d Pn=(@)(2m) 2 ei’”ff(ﬁ)dfd:v>
z€hZ4 /R /Rd
—em S = G [ e s
PI YA
SR Sl R (3FOL:
2€hZ4
SCORDID I e (OB (hE) £ (€)de
2chzd nega Y (T4+2mn)
=(2m)~nt Z/ 2 (E2mh == 5 E o) F(€ + 2mh I n)de
z€hZ4 nezd le
—2m) =t 3 Y / =€ OB(RE T 2mn) F(€ + 2rh " n)de
2€hZ4 nezd le
=(2m)~nt / O " p(hé + 2mn) f(€ + 2mh n)d¢
zehzd e nezd
= Z (hC + 27n) f(C + 27h™tn).
nezd

Note that, for g € ﬂ:fh,
Q9(6) = 2(h)3(6), € R,

where § is the function of ¢ extended periodically from A~ 'T¢ onto R

4.4 Proof of Theorem 4.1.2

Let V and ¢ be as in Theorem 4.1.2. Then we learn
Py (Hy — 1)~ Py — (H — )™ (4.4.1)
P (Hp — )" Py — PiPu(H — p)™" — (1= P{Py)(H — )~
=Py (Hp — )" Py — Po(H —p)™") = (1= Py P)(H — )"
=Py (Hy — ) (PoH — HpPy)(H — p) ™" = (1 = Py By)(H — )~

We see by Lemma 4.4.1 and Proposition 4.2.1 that the last term of (4.4.1)
is negligible.
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Lemma 4.4.1. ||[(1 — Py Py)(Ho — p) "l < Ch2.

Proof. Note that
(L = By Po)(Ho — )~ ooy = (1 — QRQn) (€1 = 1)l )0

where @y, is defined by (4.3.6). Let f € H and g = (|¢|? — 1)~ f. Then we
have

(1 - Qr@n)g(&) =(1 — |2(hE)1*)g(€)
— @(he) Y " p(hé +2mn)g(& + 2wh ).
n#0

For the first term, we observe by the assumption of ¢ that |p(hg)| = 1
if |¢| < h™14 for some small § > 0. Then it follows that

(1= 12(h)P)g(©)llse < sup |16 = | " 1 Fllsc < CR2|IF s
|E|>h—18

For the second term, we note that the summation on Z%\{0} equals to
that on {1,0, —1}%\{0}¢ by the support condition of (. Using the support
condition of ¢ again, we learn that ¢(h€)p(hé + 27n) = 0 if |¢] < AL for
some small § > 0. Thus the same argument as the first term implies that
the second term is bounded by Ch?2. O

The first term of (4.4.1) is estimated by Proposition 4.2.1 as

I(Hp — )" (PoH — HpPy)(H — 1)l 3¢.90,)
<||(Hp — )~ (PuHo — Hop Pr)(H — 1)~ {|5(3¢,9¢,)
+|(Hp — )" (V. = Vi Po) (H — 1)l e 56,
<C||(Hop — 1)~ (PoHo — HonPo)(Ho — 1)~ ls(3¢.30,)
+ Cll(Vie = ) (PuV = Vi Pu)(V — )"l (ac ac,)
=C||(Hos — 1) " P — Po(Ho — 1) s 9e.30,)
+C| (Vi — 1) Py = Pu(V = 1) " lm3e.30,)-

Then the two lemmas below complete the proof of Theorem 4.1.2.

Lemma 4.4.2. |[(Ho — 1)~ ' Py — Po(Ho — 1) s ae,a0,) < Ch2.
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Proof. Note that

I(Hop, — )" Py — Po(Ho — 1) lnacac,)
=[|(Hon(Q) = )" Qn — Qu(I€1* = 1) s, )

Then we learn

((Hon() = )7 Qn — Qu(€* = ™) £(C) (4.4.2)
=Y A h) f(C+2mh ),
nezd

where
A(¢,m;h) == @(h¢ + 2mn) (Hon(¢) — ) = (I +2rh n* — p)71) .

Similarly to Lemma 4.4.1, the summation on Z? equals to that on {1,0, —1}%.
Since Ho ,(¢) = Hon(¢ + 2mh~1n), it suffices to consider the bound of

B(¢;h) = @(h¢) (Hon(¢) — )™ = (I¢P =) 71).

If we use the formula

d
Hop(¢) =202 (1 — cos h¢)
j—l

h¢;
=252 Z < th 1 / (h¢; — y)3 cos ydy> )

we learn

|Hon(Q) = ¢ = |-127 R~ 22/ (h¢; — y)? cos ydy
<487 1p? Z <1
j=1

We also learn for ¢ € h™1(—27 + ¢, 27 — &)? with € > 0,

d
_ .o h
Ho(¢) = 4h™2) Jsin® D¢ > e[’
=1
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for some c. > 0. Since supp $(-) C (=27 + ¢, 27 — £)¢ for a small € > 0, we
obtain

IB(G;h)| < sup  |[(Hop(¢Q) — )™ = (1P = )7
¢esupp @(h-)

< sup  [Hou(Q) — pl7'CRACIMICP — 1|
¢esupp ¢(h-)
<Ch?.

1

O
Lemma 4.4.3. If (V(z)—p) "t is a uniformly continuous bounded function,
1(Vi = 1) Po = Pu(V = 1) Hlsseoc,) = 0, h = 0.
If, in addition, (V(z) — p)~t € CO*(R?), a € (0,1],
(Vi — 1) Py = Pu(V — )"l m(acge,) < ChO°
for any € > 0.

Proof. A direct calculus implies

(Vn— 1) Py — Py(V — ) M u(z) = y K(x, z; h)u(z)dz, (4.4.3)

where

K(z,2h) =0 ((V(z) =)~ = (V(2) = )7 1) p(h~ (2 — 2)).

By Young’s inequality, it suffices to show

sup |K(x, z)|dz — 0, (4.4.4)
2€hZd JRY
sup h* Y |K(z,2)] = 0 (4.4.5)
v€R chza
as h — 0. Let
R():=  sup  [(V(&)—p) ' =(V(y-mw|.

z,yERL|z—y|<§
Then, since ¢ € $(R%), we have for any n >0

K (2, 2)] < Cah™R(|z — 2|)(h ™! (& — 2)) "
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Thus we obtain for n > d

Kaoldo= [ [Kaolde+ [ K@)
R4 |z—z|<6

|x—z|>6

<CR(5) / (y)"dy + C (y) " dy
ly|<h—16 ly|>h—16
n—d
T2,

<CR(8) + C(h™15)

Similarly, we have for n > d,

WS K (@, 2)]

z€hZ4

=h? > |K(z,2)|+h? Y |K(x,2)|

|z—z|<8 |z—z|>8

<CR@ER Y (Wl @—2)"+Ch" > (W (z—2) "
|z—z|< lz—2]>0

<CR(5) + C(h™ ')

_n—d
2 .

Since R(6) — 0 as 6 — 0, (4.4.4) and (4.4.5) are proved. If (V(z) —p)~t €
CY*(R?), then R(5) < C§* for small 6 > 0. Thus substituting § = h'~¢,
£ > 0, we obtain |[(Vj, — p) " Py — Po(V — p)~ 1| < ChU—9),

O
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