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Preface

In classical dynamics, one studies topological and analytic properties of or-
bits of points under self-maps of manifolds. In arithmetic dynamics, we
study arithmetic properties of orbits of rational points under self-maps of
algebraic varieties defined over number fields. Many of the motivating prob-
lems in arithmetic dynamics come via analogy with classical problems in
arithmetic geometry, especially deep results on properties of abelian vari-
eties. An Abelian variety X with multiplication by n map can be considered
as a discrete dynamical system, and we can formulate dynamical analogues
of classical notions and theorems on abelian varieties. For instance, the
Néron-Tate height functions on abelian varieties are fundamental tool to
study arithmetic of abelian varieties, and the dynamical analogues of them
are called (dynamical) canonical height functions.

Let us consider a dominant rational map f: X --» X defined over Q.
It is important to understand the asymptotic behavior of Weil height func-
tions on the orbit {f"(P)} where P € X(Q) is a point whose f-orbit is
well-defined. (For example, we need to know the growing rate of certain
height function to define/study the canonical height function of a dynam-
ical system.) A measure of the growing rate of height functions along an
orbit is arithmetic degree which is introduced by Silverman in [50]. In [50],
he expects that the arithmetic degrees of any Zariski dense orbits are equal
to the dynamical degree of the self-map. A refined version of this conjecture
was formulated by Kawaguchi and Silverman in [29]. Related topics are
studied in [23,24, 27, 28, 29, B85, 86, 38Y, 40, 47, 47, 50, b1).

In this paper, we prove several properties of arithmetic degree, and study
arithmetic degrees of self-morphisms of surfaces and semi-abelian varieties.
In these cases, we prove the conjecture. Problems over number fields often
have natural analogues over function fields. We also discuss the function
field analogue of arithmetic degree.

The content of this paper is as follows. In Chapter O, we collect some
definitions and basic properties of several notions that are used throughout



this paper. We also introduce the Kawaguchi-Silverman conjecture, which
is the central problem in this paper.

In Chapter B, we prove several upper bounds of the sequence {hx (f™(P))}
where hy is an arbitrary ample Weil height function on X, and as a con-
sequence we get the inequality @¢(P) < §; where @y(P) is the upper arith-
metic degree. As a corollary, we prove convergence of dynamical canonical
heights under some assumptions. This chapter is based on [3Y].

In Chapter B, we prove Kawaguchi-Silverman conjecture for endomor-
phism of smooth projective surfaces. We investigate endomorphisms of sur-
faces by using classification of surfaces. We also prove that there exists at
least one point such that its arithmetic degree is equal to the dynamical
degree when the self-map is a morphism. This chapter is based on [A0].

In Chapter B, we discuss the function filed analogue of arithmetic degrees.
We give another proof of the inequality a¢(P) < d; by using a model over
a curve. We also prove that the set of points whose arithmetic degree is
equal to the dynamical degree is Zariski dense when the coefficient field of
the function field is uncountable. The key is that we can translate height
theoretic problems into a geometric problems on models over curves. This
chapter is based on [41].

In Chapter B, we prove Kawaguchi-Silverman conjecture for endomor-
phism (not necessarily a group homomorphism) of semi-abelian varieties.
Moreover, we determine the set of arithmetic degrees of such endomorphisms
and characterize preperiodic points in terms of its arithmetic degree (under
an assumption that is naturally needed). We deduce the problem to the case
where the self-morphism is a group homomorphism and its minimal poly-
nomial is a power of an irreducible polynomial. For such a self-morphism,
we calculate the arithmetic degrees by using Silverman’s results on group
endomorphisms of algebraic tori [60] and Kawaguchi-Silverman’s results on
group endomorphisms of abelian varieties [28]. This chapter is based on [A7].
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Chapter 1

Preliminaries

We give definitions of some notions that are used throughout this paper.

1.1 Dynamical degrees

Let X be a smooth projective variety defined over an algebraically closed
field of characteristic zero and f: X --+ X a (not necessarily dominant)
rational map. We define pull-back f*: N'(X) — N'(X) as follows, where
N'(X) is the group of divisors modulo numerical equivalence. Take a reso-
lution of indeterminacy m: X’ — X of f with X’ smooth projective. Write
f' = f om. Then we define f* = m, o f*. This is independent of the choice
of resolution.

Definition 1.1.1. Let f: X --+ X be a dominant rational map. Fix an
ample divisor H on X. Then the (first) dynamical degree of f is

T 7\ * . ppdim X—1\1/n
op = lim ((f")"H - H )
This is independent of the choice of H. We refer to [8,9,57], [I3, §4] for
basic properties of dynamical degrees.

Remark 1.1.2.

(1) There are other definitions of dynamical degree. Fix a norm [|-|| on
Hom(N'(X)g, N'(X)r), where N'(X)r = N'(X)®zR. Then §; =
limy, 00 H(f")*”l/” When f is a morphism, d7 is the spectral radius
of f*: NY{(X)g — N1(X)g. If the ground field is C, this is equal to
the spectral radius of f*: HY(X) — HYY(X) (cf. [13, §4]).
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(2) If f is a morphism, we have dp» = 0% for every n > 1 since (f")" =
(fm.
(3) Let p((f™)*) be the spectral radius of the linear self-map (f")*: N*(X)g —

N'(X)g. The dynamical degree & is equal to the limit lim,, o (p((f™)*))"/".
( [I2, Proposition 1.2 (iii)], [29, Remark 7])

(4) Dynamical degree is a birational invariant. That is, let 7: X --» X’
be a birational map and f: X --+» X a dominant rational map and set
fl'=mofor !: X" --5 X'. Then 67 = ;.

(5) Let X,Y be smooth projective varieties and f: X --» X, g: Y --» Y
dominant rational maps. Let fxg: X XY --+ X XY be the product of
f and g. Then, by definition, it is easy to see that 07, = max{dy, d}.

1.2 Height functions

We briefly recall the definition of Weil height function. Standard references
for Weil height functions are [H,19,37], for example.

The height function on a projective space PV (Q) is
_ 1
PY@Q —R; (zg::zn) — mZbgmax{]a:g\y, oo lenle}
’ v

where K is a number field (finite extension of Q contained in the fixed
algebraic closure Q) containing the coordinates o, ..., zy, the sum runs
over all places v of K, and | |, is the absolute value associated with v
normalized as follows:

2] # (O [py)~ %) if v is non-archimedian
x|y =
oy ()| if v archimedian.

Here Oy is the ring of integers of K. When v is non-archimedian, p, is the
maximal ideal corresponding to v and ord, is the valuation associated with
v. When v is archimedian, o, is the embedding of K into C corresponding to
v. This definition is independent of the choice of homogeneous coordinates
and the number field K.

Let X be a projective variety over Q. A Cartier R-divisor D on X
determines a (logarithmic) Weil height function hp up to bounded functions
as follows. When D is a very ample integral divisor, hp is the composite of
the embedding by |D| and the height on the projective space we have just
defined. For a general D, we write
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m
D= aH, (1.2.1)
=1

where a; are real numbers and H; are very ample divisors. Then we define

hp =Y aihp,.
i=1

The function hp does not depend on the choice of the representation (I—21)
up to bounded function. We call any representative of the class hp modulo
bounded functions a height function associated with D. We call a height
function associated with an ample divisor an ample height function.

1.3 Arithmetic degrees

In this section, the ground field is Q.

Definition 1.3.1. Let f: X --+ X be a dominant rational self-map of a
smooth projective variety.

(1) We write X¢(Q) = {P € X(Q) | f"(P) ¢ Iy for every n > 0} where
Iy is the indeterminacy locus of f.

(2) Let H be an ample divisor on X and take a Weil height function hpy

associated with H. The arithmetic degree as(P) of f at P € X;(Q)
is defined by

o (P) = lim max{L,hyr(f"(P)}/"

if the limit exists. Since the convergence of this limit is not proved in
general, we introduce the following:

af(P) = limsup max{1, hH(f”(P))}l/n,

n—00

a(P) = liminf max{1, hy (f*(P))}"/".

We call @y (P) the upper arithmetic degree and a ¢(P) the lower arith-
metic degree. The definitions of the (upper, lower) arithmetic de-
grees do not depend on the choice of H and hy ( [29, Proposition
12] [@0, Theorem 3.4]).
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In [29], Kawaguchi and Silverman formulated the following conjecture.

Conjecture 1.3.2 (Kawaguchi-Silverman conjecture (KSC)). Let X be a
smooth projective variety and f: X --+ X a dominant rational map, both

defined over Q. Let P € X;(Q).
(1) The limit defining ay(P) exists.
(2) The arithmetic degree op(P) is an algebraic integer.

(3) The collections of arithmetic degrees {a(Q) | Q € X¢(Q)} is a finite
set.

(4) If the orbit O¢(P) = {f"(P) | n=0,1,2,...} is Zariski dense in X,
then ap(P) = 05.

This conjecture, especially the last part, is the central problem in this
paper.

Remark 1.3.3. This conjecture is proved in the following situations:

1) NY(X)g =R and f is a morphism [27].

(1) N
(2) f: PN --5 PV is a monomial map and P € G (Q) [50].
(3) X is a surface and f is a morphism (Chapter B, [25,40]).
(4)

4) X =P and f is a rational map extending a regular affine automor-
phism [27].

(5) X is an abelian variety [2R,51].
(6) X is a hyper-Ké&hler variety and f is an automorphism [35].

(7) X is a semi-abelian variety and f is a self-morphism (Chapter B, [47]).
(The conjecture actually makes sense when X is quasi-projective.)

(8) f is an endomorphism and X is the product [[;"; X; of smooth pro-
jective varieties, with the assumption that each variety X; satisfies one
of the following conditions [47] :

e the first Betti number of (X;)c is zero and the Néron—Severi group
of X; has rank one,

e X, is an abelian variety,

e X, is an Enriques surface, or

10
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e X, is a K3 surface.

(9) f is an endomorphism and X is the product X; x Xy of positive di-
mensional varieties such that one of X; or Xs is of general type [27].
(In fact, there do not exist Zariski dense forward f-orbits on such
X1 X XQ)

When f is a morphism, the first three parts of Conjecture [C32 are proved
by Kawaguchi and Silverman in [28] (cf. Remark 2T4). See [27,35,40,42,50]
for more details and results related to this conjecture.

Remark 1.3.4. Recently, Lesieutre and Satriano found a counter example
to Conjecture 32 (B) [36]. That is, there exists a dominant rational self-
map such that the set of arithmetic degrees is infinite. In chapter B, however,
we prove that the set of arithmetic degrees of a self-morphism of a semi-
abelian variety is finite.

Remark 1.3.5. Let X be a smooth projective variety over an algebraically
closed field of characteristic zero. Assume x(X) > 0. Let ® : X --» W
be the litaka fibration of X, and f: X --» X a dominant rational self-
map on X. Then standard argument of pluricanonical system shows that
f induces a birational map g: W --» W such that go ® = ® o f. By
[@6, Theorem A], this ¢ is an automorphism of finite order. This implies
that any dominant rational self-maps on a smooth projective varieties of
positive Kodaira dimension have no Zariski dense orbits. So the last part of
Conjecture =32 has meaning for smooth projective varieties of non-positive
Kodaira dimension.

Notation

In this paper, a variety over a field k means an irreducible reduced sep-
arated scheme of finite type over k. The following is a list of the notation
that we use throughout this paper.

e Let X, Y be projective varieties over an algebraically closed field k and
f: X --» Y be a rational map.

(1) The group of Cartier divisors on X modulo numerical equivalence
is denoted by N*(X). When X is smooth, the Neron-Severi group
of X is denoted by NS(X).

(2) Linear equivalence of divisors is denoted by ~; Q-linear equiv-
alence and R-linear equivalence are denoted by ~q,~r respec-
tively; numerical equivalence is denoted by =.

11
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(3) The indeterminacy locus of f is denoted by Iy.

(4) When Y = X and P € X (k) is a point such that f™(P) ¢ Iy for
all n > 0, the (forward) orbit {P, f(P), f2(P),...} is denoted by
Of(P). We say P is preperiodic under f if the orbit Of(P) is
finite. This is equivalent to f"(P) = f™(P) for some n # m > 0.

(5) We write Xf(k) ={P € X(k) | f*(P) ¢ I for every n > 0}.

e Let f, g and h be real-valued functions on a set S. The equality
f = g+ O(h) means that there is a positive constant C' such that
|f(z) — g(z)| < C|h(z)| for every x € S. The equality f = g+ O(1)
means that there is a positive constant C’ such that |f(z) —g(x)| < C’
for every x € S.

e Let M be a Z-module. We write Mg = M®zQ, Mr = M®zR, and
SO on.

12



Chapter 2

Upper bound of arithmetic
degrees

2.1 Summary

Let X be a smooth projective variety and f: X --+ X a dominant rational
map, both defined over Q.

In this chapter, we give upper bounds of heights of f"(P) in terms of d;
(see Theorem PI). Actually, this theorem is stated as Theorem 1 in [29].
However, the proof of Theorem 1 in [29] unfortunately contains a mistake
(cf. Remark 212). In this chapter, we give a correct proof of Theorem 1
in [29].

Let hx be the height function associated with an ample divisor on X.
We write hl = max{hx,1}.

The main theorem of this chapter is the following.

Theorem 2.1.1. Let f: X --+ X be a dominant rational map defined over
Q. For any € > 0, there exists C > 0 such that
h (f"(P)) < C(of + €)"hy (P)

for alln >0 and P € X#(Q). In particular, for any P € X;(Q), we have
af(P) < 5f.

Remark 2.1.2. This theorem is stated as Theorem 1 in [29], but unfor-
tunately their proof is incorrect. Precisely, in the proof of Theorem 24
(Theorem 1) in [29], the constant C and therefore Cg depends on m. Thus
one can not conclude the equality limmﬁoo(CgrmT)l/ ™l — 1 which is a key
in the argument of the proof in [29].

13
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If f is a morphism, we have the following slightly stronger inequalities.

Theorem 2.1.3. Let f: X — X be a surjective morphism. Let r =
dim NY(X)r be the Picard number of X.

1) When ér =1, there exists a constant C > 0 such that
f

W (f"(P)) < Cn* hi(P)

foralln >1 and P € X(Q).
(2) Assume that 0y > 1. Then there exists a constant C' > 0 such that
hL(f"(P)) < On"16}h (P)

for alln >1 and P € X(Q).

Remark 2.1.4. In [28], Kawaguchi and Silverman prove a similar inequality
under the same assumption of Theorem PZI=3. Moreover, they prove that
the arithmetic degree af(P) exists and is equal to one of the eigenvalues of
the linear map f*: N1(X)g — NY(X)g.

Remark 2.1.5. The exponent 27 in Theorem P13 (1) is the best possible.
For example, let X be an elliptic curve with identity element 0 € X and
P € X a non-torsion point. Let f = Tp: X — X be the translation by P.
Then, 05 = 1 since f* = id. Let h be the Neron-Tate height on X. Then
ht(f(0)) = At (nP) = max{1,n?h(P)}.

If the Picard number of X is one, we have the following stronger inequal-
ities.

Theorem 2.1.6. Let X be a smooth projective variety of Picard number
one. Let f: X --» X be a dominant rational map.

(1) For a positive integer k > 0, there exists a constant C > 0 such that

W (f(P)) < On?p((f*))"*hy (P)

for all P € X;(Q) andn > 1.

(2) Let k > 0 be a positive integer. Assume that p((f*)*) > 1. Then there
exists a constant C > 0 such that

WL (fM(P)) < Cp((fF) )" h (P)
for all P € X;(Q) and n > 0.

14



CHAPTER 2. UPPER BOUND OF ARITHMETIC DEGREES

A dominant rational map f is said to be algebraically stable if (f™)* =
(f*)": NY(X)r — NYX)g for all n > 0. In this case, 6; = p(f*). As a
corollary of Theorem P, we get the following.

Proposition 2.1.7. Assume that the Picard number of X is one and let
f: X -—» X be an algebraically stable dominant rational map with d; > 1.

Then the limit L n(p
hix,s(P) = lim X(J;n( )
n o f

exists for all P € X¢(Q).
More generally,

Proposition 2.1.8. Let X be a smooth projective variety over Q. Let
[: X --» X be a dominant rational self-map defined over Q. Assume oy > 1
and there exists a nef R-divisor H on X such that f*H = 6yH. Fir a height

function hyg associated with H. Then for any P € X;(Q), the limit

e (P tim PP

converges or diverges to —oo.
Question. Are there any examples that the limits diverge to —oo ?

The function }ALX7 ¢ is the function which is called the canonical height
function in [60]. The canonical height functions of dynamical systems of
self-morphisms are systematically studied in [[7]. On the other hand, little is
known about the canonical heights of rational maps. There are several recent
studies on them. In [23, Theorem D], it is proved that any birational self-
maps of surfaces with dynamical degree greater than one admit canonical
heights up to birational conjugate. In [26], the canonical heights of regular
affine automorphisms are studied in detail.

We prove Theorem P13 in §22, Theorem P11 in §223, Theorem T4
and Proposition 2170, T8 in §24. In the proof of Theorem T8, we use
the computation in the proof of Theorem P23 in §P73.

In this chapter, we give a method to estimate hy(f™(P)) in terms of
the behavior of f on the group N!(X)g by controlling error terms arising
from divisors numerically equivalent to zero. We give an expression of error
terms as a linear combinations of fixed height functions whose coefficients
can be controlled easily.

15
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Remark 2.1.9 (Other ground fields). All of the results and arguments
in this chapter remain valid without change for other ground fields K of
characteristic 0 where K is a field with a set of non-trivial absolute values
satisfying the product formula. The main theorems (Theorem 21, Z1T°3)
also hold over a field of positive characteristic, see Appendix ZZ22.

Notation.

|| ||  For areal vector v € R™ or a real matrix M € M, xm(R),
||v|] and || M || are the maximum among the absolute values
of the coordinates.

(,)  Fortwo column vectors v = ‘(vy,...,v,), w = t(wy, ..., wy,)
of the same size, we write (v,w) = > v;w;. We use this
notation whenever the multiplication v;w; is defined (e.g.
v; are real numbers, and w; are R-divisors or real valued
functions). Similarly, for a real matrix M and a vector w
whose entries are divisors or real valued functions, Mw is
defined in the obvious manner.

ho f  For a column vector valued function h = (hy,..., h,) on a
set X and a map f to X, we write ho f =!(hiof,... hyo
f)-

2.2 Endomorphism case

We first treat the case where f is a morphism. The purpose of this section
is to prove the following theorem.

Theorem 2.2.1 (Theorem Z13). Let X be a projective variety over Q and
f: X — X be a surjective morphism defined over Q. Let 05 be the spectral
radius of f*: NY(X)r — NY(X)r. (Actually, §¢ is equal to the dynamical
degree of f which is defined by taking a resolution of singularities.) Let
r = dim N'(X)g be the Picard number of X. Fiz an ample height function
hx on X.

(1) When 6y =1, there exists a constant C > 0 such that
W (f"(P)) < Cn* hi(P)

foralln >1 and P € X(Q).

16



CHAPTER 2. UPPER BOUND OF ARITHMETIC DEGREES

(2) Assume that 6y > 1. Then there exists a constant C' > 0 such that

h (f"(P)) < On"16}h (P)

foralln >1 and P € X(Q).

Proof. Let Dy, ..., D, be R-divisors which form a basis for N!(X)g. Let H
be an ample divisor on X such that H+D;, H—D; (i = 1,...,r) are ample.
For R-divisors «, 8, a =  means « and  are numerically equivalent. Let
[*D; =31 agiDy, and A = (ag;),;. We can write H = Y., ¢;D;. Then

C1 D1
< 2 Dy .
f*H = ZZCjaijk = <A . s . > = <A5, D> .
j=1 k=1 : :
Cr D,
Let
E=f"H-— <A5,13> (2.2.1)
T
Ei=f"Di— ) apDy. (2.2.2)
k=1
Then
Ey
. Es -
E = . = f*D—"'AD
E,

Note that E, E; are numerically zero.

The choice of Height functions.

First, we take and fix height functions hp,, ... hp, associated with Dy, ..., D,.
Next, we take and fix a height function hpy associated with H so that
hg > 1, hg > |hp,| (: =1,...7). Then hp, o f, hy o f are height functions
associated with f*D; and f*H. We write

hp,
hD,

hp

T

17
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We define
hg =hygo f—(AZ hp) (2.2.3)
hg,
hEg, ¢
hg,

Then, by (2220)(EZ22), hg and hg, are height functions associated with E
and F;. Now, since F, F; are numerically zero, there exists a constant C' > 0

such that for all Q € X (Q)
he(@Q)] < /(@) (2.25)
\he,(Q) < Vhu(Q) i=1,...,m (2.2.6)
See for example [9, Theorem B.5.9] and Proposition PCA3.

Let us begin the estimation of hg (f™(P)). Let P € X(Q) be an arbitrary
point. Then we have

hir(f(P)) = hp(P) + (AZhpg) (P).
For n > 2, we have
hu(f*(P))
=(ha o f)(f*1(P)) = (A¢hp) (f*~1(P))
+ (A2 hpgo f) (f"72(P)) — (A%E hy) (f*72(P))

) (F(P)) = (A" h) (F(P))
)

(
(A"1G Ahg + hy) (P) by (27273) (2=23)
(
(
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By (2-23)(220)
[(A™Ehg) Q) < || A™ [Vhu(Q) for @ € X(Q).
Also, by the choice of hyr and hp,, we have
(A& hp) (P)] < r?|@||A™ | (P).
Thus
hu(f*(P)) < C (Var(F"T(P) + 2@l AN b (F72(P)) + -+ (2.2.7)
2@ A" 2 B (FP)) + 21| A" R (P) ) + 2@ A [ (P).

For simplicity, we write 0 = d¢. Let p(f*) be the spectral radius of the
linear map f*: N1(X)g — N'(X)g. Let p(A) be the spectral radius of
the matrix A. By definition, we have § = p(f*) = p(A4) = lim, .o || A™||'/™.

Note that
el A _ el At
krflp(A)k kr—1§k
is bounded with respect to k > 0.
Let C1 = supys {r?||c]|[|A%||/k"—16%}. Set Cy = max{1,Cy,CCy, CY.
Then dividing inequality (Z227) by n" 16", we get

hu(f"(P))

nrflén (228)
r2lle At
S c < nr—ldn hH(P)+
7@2_:2 P AR S ha(FR(P) (n =1 — k)T TRTD/2
— (n - 1= k.)rdnflfk kr—15k nr7161+k/2

hu(fr=1(P)) (n—1)tb/2 N r2liefllAn P)

(n — 1)r=1gn—1 pr-151+(n-1)/2 nr—1lgn hu
hH fk ) (n —1— k,)r—lk(r—l)/Q

(V + Z kr—18k nr—1§1+k/2

ha(f7=1(P)) (n 1)~V
]

19
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First we assume that § > 1. Then k(’"*l)/2/51+k/2 is bounded with
respect to k. Thus, there exists a constant C5 > 0 which is independent of
n, P so that

ha(f™ [h
%— <V +Z h}lr 15k +hH )

Applying Lemma PZ5 to the sequence

ao = hu(P),
Gy, = hH(f”(P))/n’”(S" (n>1),

there exists a constant Cy > 0 independent of n, P such that
hu(f"(P)) 2
W < Cyn hH(P)

for all n > 1. Again from (E°XR),

ElH(r—1)/2

hu(F(P)) _ o, <\/ﬁ+zm ST +hH(P)>.

nr— 15n

Since Y270, K1+ 1)/2/61+k/2 is convergent, there exists a constant Cs > 0
1ndependent of n, P such that

hu(f"(P))

< P).
nr—ldn —C5hH< )

Thus hy(f*(P)) < Csn""16"hy(P). Now, since hy and hx are ample
height functions and we take hy > 1, there exists an integer m > 0 such
that

th > h+, mh} > hH.

Thus
L (f(P)) < mhy(f"(P)) < mCsn™ 26" hy (P) < m?Csn” 16" h i (P).

This completes the proof of Theorem PZ2T(2).

20
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Now assume that § = 1. Dividing both sides of (ZZ28) by n" !, we get

n2r72 k2r72 n2r72

ha("(P) _ g, (m LN B (FP) (0 =1 = ke
- r—1

(fHP) (=) hH<P>>

(TL _ 1)2r—2 n2r—2 nr—l

3 v

By Lemma 22572, there exists a constant Cg > 0 independent of n, P such
that
hi(f*(P)) < Cen* hy(P) for all n > 1.

By the same argument at the end of the proof of (2), this proves Theorem
221(1). ]

2.3 Rational self-map case

Now we prove the main theorem of this chapter.

Theorem 2.3.1 (Theorem EZI). Let X be a smooth projective variety over
Q and f: X --» X be a dominant rational map defined over Q. Let dr be the
first dynamical degree of f. Fixz an ample height function hx on X. Then,
for any € > 0, there exists C > 0 such that

Wy (F"(P)) < C(o5 +€)"hL (P)
for alln >0 and P € X;(Q). In particular, for any P € X;(Q), we have
ay(P) < dy.
We deduce this theorem from the following theorem.

Theorem 2.3.2. Let X be a smooth projective variety over Q and f: X --»
X be a dominant rational map defined over Q with first dynamical degree
dr. Fixz an ample height function hx on X. Then, for any e > 0, there ewist
a positive integer k and a constant C > 0 such that

B (f™(P)) < OS5 + ™ h (P)

for alln >0 and P € X;(Q).
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Lemma 2.3.3. In the situation of Theorem ZZ33, there exists a constant
Co > 1 such that
B (F1(P)) < Cihk(P)

for alln >0 and P € X;(Q).

Proof. Let H be an ample divisor on X. Take a height function hy associ-
ated with H so that hy > 1. Let hy«g be a height function associated with
f*H. Then, from [29, Proposition 21]

ha(f(P)) < hp«u(P) 4+ O(1)

for all P € X¢(Q). Here O(1) is a bounded function on X;(Q) which
depends on f, H, f*H, hy, hy-g but is independent of P. Since H is ample
and hy > 1, for a sufficiently large Cy > 1, we have

hpeu(P)+ O(1) < Cohu(P)

for all P € X¢(Q). Thus, we get

hua(f(P)) < Cohu(P)

for all P € X¢(Q). Therefore
ha(f*(P)) < Cohu(P).

By the same argument at the end of the proof of Theorem P21(2), this
proves the statement. O

Proof of Theorem 2233 —> Theorem ZZ31. From Theorem EZ32, for any
€ > 0, there exist a positive integer k and a positive constant C' > 0 such
that

W (f™(P)) < C (65 + €)™ hy (P)

for all n > 0 and P € X;(Q). For any integer m > 0, we write m =
gk+1t,g>0,0 <t <k. Let Cy be the constant in Lemma Z=333. Then for

any Pc Xf(@),

WX (f™(P)) < C(05 + TR (f1(P))
< CCy(0 + ) ™hy (P)
< COFH6y + €)™h%(P).

This proves the first statement in Theorem P23
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The second statement is an easy consequence of the first one. That is,

@s(P) = limsup hi (f"(P))"/"

n—oo

< limsup (Ch% (P))"" (67 + ¢)

n—o0

=05 +e
Since € is arbitrary, we get a¢(P) < dy. O

Before starting the proof of Theorem PZ32, we prove an interesting corol-
lary.

Corollary 2.3.4. In the situation of Theorem [Z-33,

ay(P) = limsup h{ (f™*(P))Y"* = @ (P)H*

n—oo
for any k > 0 and any point P € X;(Q).

Proof. We compute

&y (P) = limsup W (£ (P) /™
— i ht nk+i P 1/nk+i
im sup max x(f"(P))

< limsup m (Céh}(f”k(P)))l/"kH by Lemma 2233

ax
n—oo 0<i<k

< lim sup(Cg_lh}(fnk(P)))l/nk

n—oo

= lim sup h (f"™*(P))Y/*

n—oo

< @f(P).
Then we have @ ;(P) = limsup,,_,,, b (f"F(P))}/™F = afk(P)l/k_ O
Now we turn to the proof of Theorem PZ32.

Proof of Theorem ZZ32. Let D1, ..., D, be very ample divisors on X which
forms a basis for N'(X)g. Take an ample divisor H on X so that H+D;, i =
1,...,r are ample and if we write H = Y., ¢;D; then ¢; > 0.

We take a resolution of indeterminacy p: ¥ — X of f as follows. p is
a sequence of blowing ups at smooth centers and the images of centers in X
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are contained in the indeterminacy locus Iy of f. Let g = f o p.

Let Exc(p) be the exceptional locus of p. By the negativity lemma (see for
example [31, Lemma 3.39]),

Zi =p*ps+g*D; — 9" D;

is an effective divisor on Y whose support is contained in Exc(p). Let F; =
g*D; fori=1,...,r. Then,

0. F, — F; = 7. (2.3.1)

Take divisors Fy.1,...,FsonY sothat [, ..., F, forms a basis for N*(Y)g.
There exists an ample Q-divisor H' on Y such that p* H — H' is an effective
Q-divisor whose support is contained in Exc(p). Indeed, take an effective
p-exceptional divisor G such that —G is p-ample. (For the existence of such
a divisor, see for example [31, Lemma 2.62]). Then, for sufficiently large
N>0,H = —%G + p* H satisfies desired properties. Let

S
gDi= > amiFm (i=1,...7) (2.3.2)
m=1
T
pFj =Y Dy (j=1,...,9) (2.3.3)
=1

and

A = (ami)mi S X r-matrix

B = (bj);; r x s-matrix.

By the definition of F}, A is the following form.

A= . (2.3.4)
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Note that BA is the representation matrix of f* with respect to the basis
Dy, ..., D,. We write

Dy Iy 1 Z
. Do 5 Fy Co - Z3
D = . 7F - . 75‘: . 7Z = .
D, F, cr Z,
Let
E=g'H - <A€, ﬁ> (2.3.5)
£y
. E} . ﬁ
E'=| | =p.F -"BD. (2.3.6)
E;

These are numerically zero divisors.

The choice of height functions.

Fix height functions hp,,...,hp, associated with Dy,...,D,. Fix a
height function hy associated with H so that hy > 1 and hy > |hp,| for
t=1,...,r. Note that hp,,...,hp, and hy are independent of f.

We define hg; = hp;og, j=1,...,r. These are height functions asso-
ciated with Fj. For j =r+1,...,s, fix any height functions hp, associated
with Fj. Fix height functions hy, p; associated with p.Fj for j = 1,...,s.
We write

hD1 hFl h‘p*Fl

th hF2 hp*Fz
hf) = : , hﬁ = , hp*ﬁ = )

hDr th hp*FS
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Define

hg
hg, t

hp=| .* |=h, z'Bh; (2.3.7)
hE;
th hP*Fl hFl
hz hy, P hp

hZ = :2 = p: 2 op— :2 . (2.3.9)
hZ?" hP*Fr hF,»

By (223M), (234) and (2230), hE; is a height function associated with
B} for j=1,...,s, hp is the one with £ and hz, is the one with Z; for i =
1,...,r. By adding a bounded function to h,, r,, we may assume that hz, >
0on Y \ Z; (see for example [T9, Theorem B.3.2(e)]). Fix a height function
hi > 1 associated with H'. Fix a height function hy«p_ g associated with
p*H — H' so that hp~g_p > 0 on Y \ Exc(p). Note that there exists a
constant v > 0 such that

hH op 2 hp*H—H’ + hH/ — 7 on Y(@) (2310)

Since F, E; are numerically zero, there exists a constant C' > 0 such that

\he| < GV hw (2.3.11)

b | < Vi (2.3.12)

Let M (f) be the representation matrix of the linear map f*: N'(X)g —
N'(X)g with respect to the basis D1, ..., D,.

Claim 2.3.5. Let R = max{1,7%|l|||M(f)||}. Then there exists K > 0
such that
hi(f"(P)) < Kn*R"hg(P)

for allm >1 and P € X¢(Q). Note that the constant K depends on f but
hig,r,¢ and D1, ..., D, do not depend on f.

Proof of the claim. Let P € X;(Q). Note that p~! is defined at f'(P) for
every ¢ > 0. Forn > 1

hu(f"(P)) (2.3.13)
—(hir 0 )(p "M (P)) = (AZh, pop) (07 NP + (AGR, 1) (£77(P)
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)

— (A8 1, o) (NP +hep” P (P) + (BAT ) (77 (P)
+(A¢hg) (/"7 (P))

by (2=33),

= (2. ~hy) (7 "N P) + hp(p™ 17U P)) + (BAG hy) (F77H(P)
+ (@ Ahg) (f71(P))

since hz, > 0 on Y \ Exc(p),

<hg(p ' f*H(P)) + (BAGhg) (f*H(P)) + (¢ "Ahg) (f"H(P))

by (r/ 3 m)(r/ 3 |||)(r/ 3 |7|),

<r?|@l| BA|hr (f"H(P) + A/ hu(f=1(P)) + O/ ha (p~ L (f7=1(P)))

by (E2310) and hy«g—pr > 0 on Y\ Exc(p)

<r?|l@llll BAllhz (£~ (P)) + rll AV har (fr =1 (P)) + GV b (F7=(

Note that C,~ depend on f. On the other hand, r, H,D1,...,D,, and hg
do not depend on f. Thus ¢ also does not depend on f.

Since BA is the representation matrix of f* with respect to D1, ..., D,,
BA = M(f) and R = max{1,72|&|||[BA||}. Then, dividing the both sides
of (Z2313) by R", we get

hu (f"(P)) <hH(f”‘1(P))

Rn — Rn— 1
fn 1 hH fn 1
+rjaje L) Lt et N
Let b n(p
ap = M for n > 0.

R')’L
Then a,, > 0 and ag = hy(P) and the sequence (a,), satisfies the following
inequality.

an < an—1 +7r)|¢|C/an—1 + C/an—1 +~
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By Lemma P00, there exist a constant K > 0 independent of n, P such
that
an < Kn2a0 for all n > 1.

Therefore
hi(f"(P)) < Kn’R"hy(P).
Thus we get the claim. O

Now, fix any positive real number ¢ > 0. Let 0 = d¢. Let M(f*) be
the representation matrix of (f¥)*: N'(X)g — N'(X)g with respect to
the basis D, ..., D,. Since limj_,o || M (f*)||'/* = §, there exists a positive
integer k£ > 0 such that

M)
— 1. 2.3.14
Gl < (23.14)
Fix such a k. We apply the claim to f* in the place of f. Then,

R
(64 ¢)k

Recall R = max{1,72||c]|||M(f*)||}. Thus, by (Z314)

R
(0 +e)k

ha(F5(P)) < Kn? ( ) (51 /" hir(P).

<1.

Thus there exists a constant K’ such that

R n
Kn?2 | — < K’
" <<5+e)’“) =

hy(ff(P)) < K'(6 + )" hy (P).

for all n. Then we get

By the same argument at the end of the proof of Theorem PZZ(2), this
proves Theorem PZZ32(2).
O

Remark 2.3.6. One can prove Theorem E=3T over any ground field K such
that Weil height functions can be defined. If the characteristic of K is zero,
the same proof works. For the case when the characteristic of K is positive,
see Appendix 202
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2.4 Picard rank one case

When the Picard number of X is one, we can say much more about the
behavior of the sequence {hx (f"(P))}n.

Theorem 2.4.1 (Theorem 2TR). Let X be a smooth projective variety over

Q of Picard number one. Let f: X --» X be a dominant rational self-map
defined over Q. Fixz an ample height function hx on X.

(1) For any positive integer k > 0, there exists a constant C > 0 such that

W (f(P)) < Cn?p((f*))"*h (P)

for all P € X;(Q) and n > 1.

(2) Let k > 0 be a positive integer. Assume that p((f*)*) > 1. Then there
exists a constant C > 0 such that

WL (fM(P)) < Cp((f*)" )" h% (P)
for all P € X;(Q) and n > 0.

Proof. We use the notation in the proof of Theorem EZ=3. For simplicity, we
write pp = p((f*)*) for k > 0. We apply (22313) to f*. By the assumption
r =1, thus BA = p is a real number. By (E2313),

hia(f™8(P)) = = crhz, (0~ fFOD(P) + hp(p™ ' fF70(P)) - (24.1)
+ prerhp, (FFD(P)) + crhp (fH=D(P))
)

<prethp, (fHOD(P)) + G hyr (FO-D(P)) + 4
+ e1Gy b (-0 (P))

Let N = ¢; D1 — H. By the definition of ¢y, this is a numerically zero divisor.
Define

hN = Clhpl — hH.

Then, this is a height function associated with N. Thus there exists a

constant C' > 0 such that B
lhn| < Vi
Then

hir(f™(P)) <pehi(F*0D(P)) + G g (FE-D(P))
+ G har(F0D(P)) + 5 + 1O b (Fon=D ().
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Divide both sides of this inequality by pi. By Lemma P25, there exists a
constant K > 0 (which is independent of n, P, but depends on k) such that

har(F5(P)) < Kn2p** by (P) for all n > 1. (2.4.2)

By the same argument as in (Proof of Theorem 2232 —>Theorem 2=3T),
we can prove the first statement.
Now assume pg > 1. Then

hu(f™(P)) < hu (fF=D(P)) N (5+C+010) Ve (fFr-D(P)) n a
[/ ot oi Py
By (Z222),

V(D (P)) </ Rhig(P)(n — 1) /2
and thus

V3

i { (5 +C+ qC) \/hH(fk(z_l)(P)) + C‘ﬁ}

n=1 pk pk
© ~ Khy(P)(n—1 p(nfl)/2
<> (C+C+c10) ()~ Dy il
Pk Py
n=1 k k

Since pr > 1, there exists a constant K 1 (independent of n, P) such that

M < K1hy(P)
Py '

Thus SR
hi(f5(P)) < Kip{™*hir(P).

By the same argument as in (Proof of Theorem 2232 = Theorem 2=3T),

we can prove the second statement.
O

Now, we prove the convergence of canonical heights.

Proposition 2.4.2 (Proposition E1°4). Let X and f be as in Theorem
BZ1. Assume f is algebraically stable and 6y > 1. Fix an ample height
function hx on X. Then

. o hx (FM(P)

hxs(P) = g

exists for all P € X¢(Q).
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Proof. Since any ample heights are bounded below, this follows from the
following more general statement. O

Proposition 2.4.3. Let X be a smooth projective variety over Q. Let
f: X --» X be a dominant rational self-map defined over Q. Assume oy > 1
and there exists a nef R-divisor H on X such that f*H = 0;H. Fiz a height

function hy associated with H. Then for any P € X;(Q), the limit
(P
L ha((P))

n—00 5?

converges or diverges to —oo.

Proof. We take a resolution of indeterminacy p: ¥ — X of f so that p is
an isomorphism outside the indeterminacy locus Iy of f:

Write ¢ = f o p. By negativity lemma, p*p.g*H — g*H is a p-exceptional
effective divisor on Y. Then as in the proof of [?, Proposition 21], we have
haof < hpepg+O(1) on X \ Iy where hy and hy«g are height functions
associated with H and f*H. Fix an ample height hx on X. Since f*H =

drH, we have hpp — 0hy = O ( h}) Thus, we have

hHOfS(thH-f—O(\/h}) OHX\If.

Write B = hy o f —d7hy. Then, for any P € Xy,

i
L

har(f () = 07 (b (F*TH(P)) = 6sha (F(P))) + 63ha (P)

= 3" R B(FA(P)) + 6Fha(P).
k

T
= O

Il
o

Take € > 0 so that,/d7 + € < 6. By Theorem EZI, there exists C' > 0 such
that B(f*(P)) < C\/3; + ¢ for all k > 0. Set

B(H(P)
N

31
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Note that a; is bounded above. Then

5f k=0 5

e ()

:hH(p)Jri Z ak<‘/5f+€>k_ Z (_ak)<,/6f+e)k

1) 1) 1)
F | o<k<n—1 f 0<k<n—1 f
ap>0 ar<0

1

The first summation in the bracket is convergent since ay is bounded above
and the second summation is monotonically increasing. Hence, the claim
follows.

O
2.5 Appendix

2.5.1 Lemmas

Lemma 2.5.1. Let (an)n>0 be a sequence of positive real numbers with
ag > 1 which satisfies

anp < an—1+Cq (\/an—l +vap—1 + 02)

for alln > 1. Heﬁe C1,Cy are non-negative constants. Then there exists a
positive constant C' depending only on Cq, Cs such that

a, < C~’n2a0
for all n > 1.

Proof. Let C > 0 be a large positive constant which we will see how large
it should be later. Let b, = a,/Cn? for n > 1. Then

1)\? —1 (s
<|{1-—-— _ _ -
bn_ < 7'l,> bn 1+Cl Cn 5 < bn 1+\/bn 1+C(n—1)2>

for n > 2.
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If, say, C' > max{9C%, C2}, then we can easily show that b, < max{b,_1,1}.
Thus we get a, = Cn?b, < Cn?max{1,b;} = n?max{C,a;}. Since a; <
ao (1 +Ci(1+V1+ 02)), we have a, < n?max{C,Cao} = Cn?aq if C >
max{9C’127 Cy, 1+ Cl(l +v1+ Cg)}

]

Lemma 2.5.2. Let (ap)n>0 be a positive real sequence with ag > 1 which
satisfies

an < Clag +v/ag +/a1 + -+ +/an—1) foralln >1

where C' is a positive constant. For any C > 1 such that C > max{%Q, 1+
C}, we have N
an < Cnlag  for alln > 1.

Proof. Let (bn)n>0 be a sequence such that

b():ao

bnzc(bo+\/%+-~+ bn,l) for all n > 1.

Then clearly a, < b, for all n > 0. By the definition of b,, we have
bpi1 = by + C/b,. Thus the statement follows from Lemma 251 and its
proof. O

2.5.2 Positive characteristic

In this section, we briefly remark how to modify the proof of Theorem 2232
when the ground field has positive characteristic. Let K be an algebraically
closed field with height function (e.g. F,(t) the algebraic closure of the
function field over a finite field).

Proposition 2.5.3. Let f: X --» Z be a dominant rational map of smooth
projective varieties over K.

(1) Let Y be a projective variety with a birational morphism p: Y — X
and a morphism g: Y — Z such that fop = g. For a Cartier divisor
D on Z, we define f*D = p[g*D]. Here [¢g* D] is the codimension one
cycle associated with the Cartier divisor g*D. Then, the divisor f*D
is independent of the choice of Y.

(2) Let I' € X x Z be the graph of f. For a Cartier divisor D on Z, we
have f*D = pry, (prsD - T).
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(3) The map f* induces a homomorphism f*: NY(Z) — NY(X). This
definition of pull-back coincides the definition in [8,53].

For a dominant rational self-map f: X --+ X, let p: ¥ — X be a blow-
up of X with a suitable ideal sheaf 7 whose support is the indeterminacy
locus Iy. More precisely, take an embedding i: X — PN. Then the linear
system defining the morphism io f: X \ Iy — P is uniquely extended
to a linear system on X. Then we can take Z to be the base ideal of this
linear system. Then there exists a surjective morphism ¢g: ¥ — X such
that g = f op. Using this setting, we can argue as in the proof of Theorem
=372

The only non-trivial point is the following. In the proof, we need to
bound height functions associated with numerically zero divisors. Precisely,
we need the inequality (22311). On a smooth projective variety, this is well-
known (see for example [19]). Now we need this inequality on Y, which is
possibly singular. Actually, this inequality holds on any projective variety.

Lemma 2.5.4 (see for example [0, Theorem 9.5.4]). Let Y be a normal
projective variety over an algebraically closed field. Then there exists a mor-
phism a: Y — A with A is an Abelian variety with the following property.
For any line bundle L on'Y which s algebraically equivalent to zero, there
exists a line bundle M on A which is algebraically equivalent to zero such
that L ~ o* M.

By this lemma and the argument in the proof of [T9, Theorem B.5.9], we
can easily prove the following.

Proposition 2.5.5. Let Y be a projective variety over K and E, H divisors
on Y with E numerically equivalent to zero and H ample. Fix height func-
tions hg, hi associated with these divisors with hyg > 1. Then there exists
a positive constant C > 0 such that

lhe| < Cv/hu

on Y(K).
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Chapter 3

Endomorphisms on smooth
projective surfaces

(Joint work with Kaoru Sano and Takahiro Shibata.)

3.1 Summary

Let k be a number field, X a smooth projective variety over k,and f: X --»
X a dominant rational self-map on X over k. B
Let H be an ample divisor on X defined over k. Recall that the (first)
dynamical degree of f is defined by
6f -— lim ((fn)*H . HdimX—l)l/n.

n—o0

The arithmetic degree of f at a k-rational point P € X (k) is defined by

. H + (s 1/n
ap(P):= Tim hp(f"(P))
if the limit on the right hand side exists. Here, hy: X (k) — [0,00) is the
(absolute logarithmic) Weil height function associated with H, and we put
h}; == max{hg,1}.
In this chapter, we consider the following part of Kawaguchi-Silverman
conjecture.

Conjecture 3.1.1. For every k-rational point P € X(k), the arithmetic
degree ag(P) exists. Moreover, if the forward f-orbit O¢(P) is Zariski dense
in X, the arithmetic degree of(P) is equal to the dynamical degree 6y, i.e.,
we have
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Remark 3.1.2. We have in general ay(P) < dy (see Chapter B, [29, Theo-
rem 4], [8Y, Theorem 1.4]). Hence, in order to prove Conjecture BT, it is
enough to prove the opposite inequality a s (P) > dy.

In this chapter, we prove Conjecture B for any endomorphism on any
smooth projective surface:

Theorem 3.1.3. Let k be a number field, X a smooth projective surface
overk, and f: X — X a surjective endomorphism on X. Then Conjecture

BT holds for f.

Remark 3.1.4. Kawaguchi proved Conjecture BT for automorphism of
smooth projective surfaces [Z4].

As by-products of our arguments, we also obtain the following two cases
for which Conjecture BT holds:

Theorem 3.1.5 (Theorem B20). Let k be a number field, X a smooth pro-
jective irrational surface over k, and f: X --+ X a birational automorphism
on X. Then Conjecture @I holds for f.

Theorem 3.1.6 (Theorem B277). Let k be a number field, X a smooth
projective toric variety over k, and f: X — X a toric surjective endomor-
phism on X. Then Conjecture BT holds for f.

In [37], Lin gives a precise description of the arithmetic degrees of toric
self-maps on toric varieties.

As we will see in the proof of Theorem B3, there does not always
exist a Zariski dense orbit for a given self-map. For instance, a self-map
cannot have a Zariski dense orbit if it is a self-map over a variety of positive
Kodaira dimension. So it is also important to consider whether a self-map
has a k-rational point whose orbit has full arithmetic complexity, that is,
whose arithmetic degree coincides with the dynamical degree. We prove that
such a point always exists for any surjective endomorphism on any smooth
projective variety.

Theorem 3.1.7. Let k be a number field, X a smooth projective variety
over k, and f: X — X a surjective endomorphism on X. Then there
exists a k-rational point P € X (k) such that af(P) = 5.

If f is an automorphism, we can construct a “large” collection of points
whose orbits have full arithmetic complexity.
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Theorem 3.1.8. Let k be a number field, X a smooth projective variety over
k, and f: X — X an automorphism. Then there exists a subset S C X (k)
which satisfies all of the following conditions.

(1) For every P € S, ay(P) = 6y.
(2) For P,Q € S with P # Q, Of(P)NOf(Q) = 0.
(3) S is Zariski dense in X.

Notation

e Throughout this chapter, we fix a number field k.

e A wvariety always means an integral separated scheme of finite type
over k in this chapter.

e An endomorphism on a variety X means a morphism from X to itself
defined over k. A non-invertible endomorphism is a surjective endo-
morphism which is not an automorphism.

e A curve (resp. surface) simply means a smooth projective variety of
dimension 1 (resp. dimension 2) unless otherwise stated.

e For any curve C, the genus of C' is denoted by g(C).

e When we say that P is a point of X or write as P € X, it means that
P is a k-valued point of X.

Outline of this chapter

In Section B, at first we recall some lemmata about reduction for Conjec-
ture B, which were proved in [#7] and [61]. Then, we prove the birational
invariance of arithmetic degree. As its corollary, we prove Theorem BTH
by reducing to the automorphism case, using minimal models. And we also
prove Theorem BTH. In Section B33, by using the Enriques classification
of smooth projective surfaces, we reduce Theorem B3 to three cases, i.e.
the case of P'-bundles, hyperelliptic surfaces, and surfaces of Kodaira di-
mension one. In Section B4 we recall fundamental properties of P'-bundles
over curves. In Section B, Section B8, and Section B7, we prove Theorem
B3 in each case explained in Section B33. Finally, in Section B, we prove
Theorem BT74 and Theorem BT3. In the proof of Theorem BT, we use a
nef R-divisor D that satisfiesf*D = 6D.
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3.2 Some reductions for Conjecture 311

3.2.1 Reductions

We recall some lemmata which are useful to reduce the proof of some cases
of Conjecture BTl to easier cases.

Lemma 3.2.1. Let X be a smooth projective variety and f: X — X a
surjective endomorphism. Then Conjecture 311 holds for f if and only if
Congecture I holds for f! for somet > 1.

Proof. See [&1, Lemma 3.3]. O
Lemma 3.2.2 ( [61, Lemma 6]). Let ¥: X — Y be a finite morphism

between smooth projective varieties. Let fx: X — X and fy: Y — Y be
surjective endomorphisms on X and 'Y, respectively. Assume that Yo fx =

frov.
(i) For any P € X(k), we have ay, (P) = oy, (¢(P)).

(ii) Assume that 1 is surjective. Then Conjecture BT holds for fx if
and only if Conjecture @I holds for fy.

Proof. (i) Take any point P € X (k). Let H be an ample divisor on Y. Then
Y*H is an ample divisor on X. Hence we have

apc(P) = Tim il (f5(P)Y"
= lim hj (o fY(P))/"
= lim Ay (f3 o (P)"/"
= agy (Y(P)).

(ii) For a point P € X (k), the forward fx-orbit Oy, (P) is Zariski dense
in X if and only if the forward fy-orbit Oy, (¢(P)) is Zariski dense in Y
since v is a finite surjective morphism. Moreover we have dim X = dimY.
So we obtain

(SfX = nh_ggo((f;l()*w*ﬂ— . (¢*H)dimx_1)1/n
= h_)m (w*(f{})*H (w*H)dimY_l)l/n
lim (deg(s)((f§)*H - HA™Y 1) 1m

= Oy
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Therefore the assertion follows. O

3.2.2 Birational invariance of the arithmetic degree

We show that the arithmetic degree is invariant under birational conjugacy.

Lemma 3.2.3. Let pu: X --» Y be a birational map of smooth projective
varieties. Take Weil height functions hx, hy associated with ample divisors
Hx,Hy on X,Y, respectively. Then there are constants M € Rsg and
M’ € R such that

hx(P) > Mhy (u(P)) + M’

for any P € X (k) \ I,(k).

Proof. Replacing Hy by a positive multiple, we may assume that Hy is
very ample. Take a smooth projective variety Z and a birational morphism
p: Z — X such that p is isomorphic over X \ I, and ¢ = pop: Z — Y is
a morphism. Let {F;}7_; be the collection of prime p-exceptional divisors.
We take Hy as not containing ¢(F;) for any i, so ¢*Hy does not contain
F; for any ¢. Then FE = p*p.q*Hy — q"Hy is an effective divisor contained
in the exceptional locus of p. Take a sufficiently large integer N such that
NHx — p.q*Hy is very ample. Then, for P € X (k) \ I, we have

W (P) = 01y gy (P) + By (P)) + O(1)
> gy (P) +O(1)
= Syt (07 (P) + O()
= hey (7 (P)) + s (P) + 0(1)

- %hyw)) + hp(p 1 (P)) + O(1).

We know that hp > O(1 ) on Z(E) \ Supp E (cf. [19, Theorem B.3.2(e)]).
Since Supp E C p~(1,,), hg(p~'(P)) > O(1) for P € X (k) \ I,,. Finally, we
obtain that hx (P) > (1/N)hy (u(P)) + O(1) for P € X (k) \ 1. O

Theorem 3.2.4. Let f: X --» X and g: Y --» Y be dominant rational
self-maps on smooth projective varieties and p: X --+Y a birational map
such that go = po f.
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(i) Let U C X be a Zariski open subset such that ply: U — p(U) is
an isomorphism. Then aj(P) = ay(u(P)) and a;(P) = a,(u(P)) for
P e Xy¢(k)Npt(Yy(k)) such that Op(P) C U(k).

(ii) Take P € Xs(k)Np 1 (Y,y(k)). Assume that O(P) is Zariski dense in
X and both ay(P) and ag(u(P)) exist. Then oyp(P) = ag(u(P)).

Proof. (i) Using Lemma B3 for both u and pu~!, there are constants
My, L, € Ryy and My, Ly € R such that

Mihy (u(P)) + Mz < hx(P) < Lihy (u(P)) + L2 (%)

for P € U(k). The claimed equalities follow from (x).
(ii) Since Of(P) is Zariski dense in X, we can take a subsequence
{f™(P)} of {f"(P)}n contained in U. Using () again, it follows that

ay(P) = lim KL (f(P)Y™ = lim B (g™ (u(P)™ = g u(P)).
0

Remark 3.2.5. In [50], Silverman dealt with a height function on G}, in-
duced by an open immersion Gj;, — P" and proved Conjecture B for
monomial maps on GJ,. It seems that it had not be checked in the lit-
erature that the arithmetic degrees of endomorphisms on quasi-projective
varieties do not depend on the choice of open immersions to projective va-
rieties. Now by Theorem B=2A4, the arithmetic degree of a rational self-map
on a quasi-projective variety at a point does not depend on the choice of an
open immersion of the quasi-projective variety to a projective variety. Fur-
thermore, by the birational invariance of dynamical degrees, we can state
Conjecture BT for rational self-maps on quasi-projective varieties, such as
semi-abelian varieties.

3.2.3 Applications of the birational invariance

In this subsection, we prove Theorem B3 and Theorem B8 as applica-
tions of Theorem B=24.

Theorem 3.2.6 (Theorem BT3). Let X be an irrational surface and f: X --»
X a birational automorphism on X. Then Conjecture @1 holds for f.

Proof. Take a point P € X (k). If O¢(P) is finite, the limit o ¢(P) exists and
is equal to 1. Next, assume that the closure O(P) of O(P) has dimension
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1. Let Z be the normalization of O;(P) and v: Z — X the induced
morphism. Then an endomorphism ¢g: Z — Z satisfying vog = forv is
induced. Take a point P’ € Z such that v(P’) = P. Then oy(P’) = as(P)
since v is finite by Lemma B3 (i). It follows from [28, Theorem 2] that
ag(P') exists (note that [28, Theorem 2] holds for possibly non-surjective
endomorphisms on possibly reducible normal varieties). Therefore a(P)
exists.

Finally, assume that O7(P) is Zariski dense. If 6y = 1, then 1 < a;(P) <
af(P) <05 =1 by Remark BT2, so a¢(P) exists and af(P) =d7 = 1. So
we may assume that dy > 1. Since X is irrational and 0y > 1, x(X) must
be non-negative (cf. [U, Theorem 0.4, Proposition 7.1 and Theorem 7.2]).
Take a birational morphism p: X — Y to the minimal model Y of X
and let g: Y --+ Y be the birational automorphism on Y defined as g =
po fou~!. Then g is in fact an automorphism since, if g has indeterminacy,
Y must have a Ky-negative curve. It is obvious that Og4(u(P)) is also
Zariski dense in Y. Since p(Exc(u)) is a finite set, there is a positive integer
no such that u(f™(P)) = ¢"(u(P)) ¢ p(Exc(p)) for n > ng. So we have
f™(P) ¢ Exc(u) for n > ng. Replacing P by f™(P), we may assume that
Of(P) ¢ X \ Exc(u). Applying Theorem BZ34 (i) to P, it follows that
af(P) = ag(u(P)). We know that ay(u(P)) exists since g is a morphism.
So ay(P) also exists. The equality ay(u(P)) = g4 holds as a consequence of
Conjecture BT for automorphisms on surfaces (cf. Remark BT4). Since
the dynamical degree is invariant under birational conjugacy, it follows that
dy = 6. So we obtain the equality a¢(P) = d;. O

Theorem 3.2.7 (Theorem BTR). Let X be a smooth projective toric variety
and f: X — X a toric surjective endomorphism on X. Then Conjecture
@I holds for f.

Proof. Let G¢, C X be the torus embedded as an open dense subset in
X. Then f ]G% : G4 — G¢ is a homomorphism of algebraic groups by
assumtion. Let an C P9 be the natural embedding of Gﬁl to the projective
space P? and ¢: P? --» P? be the induced rational self-map. Then g is a
monomial map.

Take P € X (k) such that O (P) is Zariski dense. Note that o f(P) exists
since f is a morphism. Since Of(P) is Zariski dense and f(G%,) C G, there
is a positive integer ng such that f*(P) € G¢, for n > ng. By replacing P
by f™0(P), we may assume that O;(P) C G%,. Applying Theorem B24 (i)
to P, it follows that af(P) = ay(P).

The equality a4(P) = d, holds as a consequence of Conjecture BT
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for monomial maps (cf. Remark 233 (2)). Since the dynamical degree is
invariant under birational conjugacy, it follows that 6, = d;. So we obtain
the equality ay(P) = d;. O

3.3 Endomorphisms on surfaces

We start to prove Theorem BI=3. Since Conjecture B for automorphisms
on surfaces is already proved by Kawaguchi (see Remark BT4), it is sufficient
to prove Theorem B3 for non-invertible endomorphisms, that is, surjective
endomorphisms which are not automorphisms.
Let f: X — X be a non-invertible endomorphism on a surface. We
divide the proof of Theorem B3 according to the Kodaira dimension of X.
(I) K(X) = —o0; we need the following result due to Nakayama.

Lemma 3.3.1 (cf. [45, Proposition 10]). Let f: X — X be a non-invertible
endomorphism on a surface X with k(X) = —oo. Then there is a positive
integer m such that f™(E) = E for any irreducible curve E on X with
negative self-intersection.

Proof. See [A3, Proposition 10]. O

Let u: X — X’ be the contraction of a (—1)-curve F on X. By Lemma
B33, there is a positive integer m such that f™(E) = E. Then f™ induces
an endomorphism f’: X’ — X’ such that po f™ = f’ o yu. Using Lemma
B2 and Theorem B=Z4, the assertion of Theorem B3 for f follows from
that for f’. Continuing this process, we may assume that X is relatively
minimal.

When X is irrational and relatively minimal, X is a P!-bundle over a
curve C' with ¢g(C) > 1.

When X is rational and relatively minimal, X is isomorphic to P? or
the Hirzebruch surface F,, = P(Op1 & Op1(—n)) for some n > 0 with n # 1.
Note that Conjecture BT holds for surjective endomorphisms on projective
spaces (see Remark 2373 ().

(IT) k(X)) = 0; for surfaces with non-negative Kodaira dimension, we use
the following result due to Fujimoto.

Lemma 3.3.2 (cf. [I4, Lemma 2.3 and Proposition 3.1]). Let f: X — X
be a non-invertible endomorphism on a surface X with k(X) > 0. Then X
is mintmal and f is étale.

Proof. See |14, Lemma 2.3 and Proposition 3.1] O
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So X is either an abelian surface, a hyperelliptic surface, a K3 surface, or
an Enriques surface. Since f is étale, we have x(X, Ox) = deg(f)x (X, Ox).
Now deg(f) > 2 by assumption, so x(X,Ox) = 0 (cf. [14, Corollary 2.4]).
Hence X must be either an abelian surface or a hyperelliptic surface because
K3 surfaces and Enriques surfaces have non-zero Euler characteristics. Note
that Conjecture BT is valid for endomorphisms on abelian varieties (see
Remark 33 (H)).

(III) k(X) = 1; this case will be treated in Section B72.

(IV) k(X)) = 2; the following fact is well-known.

Lemma 3.3.3. Let X be a smooth projective variety of general type. Then
any surjective endomorphism on X is an automorphism. Furthermore, the
group of automorphisms Aut(X) on X has finite order.

Proof. See [14, Proposition 2.6], [22, Theorem 11.12], or [B8, Corollary 2].
O

So there is no non-invertible endomorphism on X. As a summary, the
remaining cases for the proof of Theorem B3 are the following:

e Non-invertible endomorphisms on P!-bundles over a curve.

e Non-invertible endomorphisms on hyperelliptic surfaces.

e Non-invertible endomorphisms on surfaces of Kodaira dimension 1.
These three cases are studied in Sections B2-B74 below.

Remark 3.3.4. Fujimoto and Nakayama gave a complete classification of
surfaces which admit non-invertible endomorphisms (cf. [I, Theorem 1.1],
[T2, Proposition 3.3], [45, Theorem 3|, and [I5, Appendix to Section 4]).

3.4 Some properties of P!-bundles over curves

In this section, we recall and prove some properties of P!-bundles (see [IR,

Chapter V.2], [20], [21] for details). In this section, let X be a P'-bundle
over a curve C. Let m: X — C be the projection.

Proposition 3.4.1. We can represent X as X = P(E), where £ is a locally
free sheaf of rank 2 on C such that H°(E) # 0 but H'(E ® L) = 0 for all
invertible sheaves L on C with deg L < 0. The integer e := — deg & does not
depend on the choice of such £. Furthermore, there is a section o: C — X
with image Cy such that Ox(Cy) = Ox(1).
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Proof. See [IR, Proposition 2.8]. O

Lemma 3.4.2. The Picard group and the Néron—Severi group of X have
the following structure:
Pic(X) = Z & m* Pic(C),
NS(X)2Zaen*NS(C)=ZZdZ.

Furthermore, the image Cy of the section o: C — X in Proposition 3.4.1
generates the first direct factor of Pic(X) and NS(X).

Proof. See [I8, V, Proposition 2.3]. O

Lemma 3.4.3. Let I € NS(X) be a fiber 7 1(p) = 7*p over a point p €
C(k), and e the integer defined in Proposition B-Z-1. Then the intersection
numbers of generators of NS(X) are as follows.

F.-F=0,
F-Cy=1,
Co-Co = —e.

Proof. 1t is easy to see that the equalities F'- F' = 0 and F' - Cy = 1 hold.
For the last equality, see [IR, V, Proposition 2.9)]. O

We say that f preserves fibers if there is an endomorphism fo on C' such
that mo f = fo o m. In our situation, since there is a section o: C — X,
f preserves fibers if and only if, for any point p € C, there is a point ¢ € C
such that f(7=1(p)) C 7~ 1(q).

The following lemma appears in [, p. 18] in more general form. But we
need it only in the case of P!-bundles on a curve, and the proof in general
case is similar to our case. So we deal only with the case of P!-bundle on a
curve.

Lemma 3.4.4. For any surjective endomorphism f on X, the iterate f>
preserves fibers.

Proof. By the projection formula, the fibers of 7: X — C can be charac-
terized as connected curves having intersection number zero with any fiber
F, =7*p, p € C. Hence, to check that the iterate f? sends fibers to fibers, it
suffices to show that (f2)*(7* NS(C)r) = 7* NS(C)r. Now dim NS(X)g = 2
and the set of the numerical classes in X with self-intersection zero forms
two lines, one of which is 7* NS(C)g, and f* fixes or interchanges them. So
(f?)* fixes 7 NS(C)g. 0
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The following might be well-known, but we give a proof for the reader’s
convenience.

Lemma 3.4.5. A surjective endomorphism f preserves fibers if and only
if there exists a non-zero integer a such that f*F = aF. Here, F is the
numerical class of a fiber.

Proof. Assume f*F = aF. For any point p € C, we set F), := n~1(p) = n*p.
If f does not preserve fibers, there is a point p € C such that f(F},) - F > 0.
Now we can calculate the intersection number as follows:

0=F-aF =F-(f*F)=F, (f*F)
= (fFp) - F =deg(f|F,) - (f(Fp) - F) > 0.

This is a contradiction. Hence f preserves fibers.
Next, assume that f preserves fibers. Write f*F = aF + bCy. Then we
can also calculate the intersection number as follows:

b=F-(aF +bCo)=F - f*F = (f.F) - F
=deg(f|r)- (F'- F)=0.

Further, by the injectivity of f*, we have a # 0. The proof is complete. [

Lemma 3.4.6. If £ splits, i.e., if there is an invertible sheaf L on C such
that £ = Oc & L, the invariant e of X =P(&) is non-negative.

Proof. See [I8, V, Example 2.11.3]. O

Lemma 3.4.7. Assume that e > 0. Then for a divisor D = aF + bCy €
NS(X), the following properties are equivalent.

e D is ample.
e a>be and b > 0.

In other words, the nef cone of X is generated by F and eF + Cy.

Proof. See [I8, V, Proposition 2.20]. O
We can prove a result stronger than Lemma B2 as follows.

Lemma 3.4.8. Assume that e > 0. Then any surjective endomorphism
f: X — X preserves fibers.
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Proof. By Lemma B2, it is enough to prove f*F = aF for some integer
a > 0. We can write f*F = aF + bCy for some integers a,b > 0.
Since we have

aF +bCy = (a — be)F + b(eF + Cp)

and f preserves the nef cone and the ample cone, either of the equalities
a—be =0 or b=0 holds.
We have

0=deg(f)(F-F) = (fof"F) - F
(f F) ( ) (CLF + bCo) . (aF + bCo)
= 2ab — b%e = b(2a — be).

So either of the equalities b = 0 or 2a — be = 0 holds.

If we have b # 0, we have a — be = 0 and 2a — be = 0. So we get a = 0.
But since e # 0, we obtain b = 0. This is a contradiction. Consequently, we
get b=0and f*F =aF. O

Lemma 3.4.9. Fiz a fiber F' = F), for a pointp € C(k). Let f be a surjective
endomorphism on X preserving fibers, fo the endomorphism on C satisfying
wof = foom, fr:= flp: F — f(F) the restriction of f to the fiber F. Set
f*F =aF and f*Cy = cF +dCy. Then we have a = deg(fc), d = deg(fr),
deg(f) = ad, and 65 = max{a,d}.

Proof. Our assertions follow from the following equalities of divisor classes
in NS(X') and of intersection numbers:

aF = f*F = f*7*p
=" fep = 7" (deg(fc)p)
= deg(fc)m"p = deg(fo)F,
deg(f)F = fuf"F = fuf*n"p
= fim" fop = fam* (deg(fo)p)
= deg(fo) fi " = deg(fc) deg(fr) f(F)
= deg(fc) deg(fF)

deg(f) = deg(f)Co - F = (fuf"Co) -
=(f"Co) - (f* ) (cF +dCy) - aF = ad.

The last assertion 6 = max{a,d} follows from the functoriality of f* and
the equality 6 = limy, 00 p((f™)*)/™ = p(f*) (cf. Remark [CI2 (). O
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Lemma 3.4.10. We use the notation in Lemma B.4.9. Assume that e > 0.
Then both F' and Cy are eigenvectors of f*: NS(X)r —> NS(X)r. Further,
if e is positive, then we have deg(fc) = deg(fr).

Proof. Set f*F = aF and f*Cy = c¢F + dCj in NS(X). Then we have

—ead = —edeg f = (f«f*Ch) - C
= (f*Cp)? = (cF 4 dCy)* = 2¢cd — ed?.

Hence, we get ¢ = e(d — a)/2. We have the following equalities in NS(X):
ff(eF + Cy) = aeF + (cF + dCy) = (ae + ¢)F + dCy.

By the fact that f*D is ample if and only if D is ample, it follows that
el 4+ Cy is an eigenvector of f*. Thus, we have

de =ae+c=ae+e(ld—a)/2=e(d+a)/2.

Therefore, the equality e(d — a) = 0 holds. So ¢ =e(d — a)/2 = 0 holds.
Further, we assume that e > 0. Then it follows that d —a = 0. So we
have deg(fc) = a = d = deg(fr). O

The following lemma is used in Subsection B2.

Lemma 3.4.11. Let £ be a non-trivial invertible sheaf of degree 0 on a
curve C with g(C) > 1, E=0c @ L, and X =P(E). Let Cy, Cy be sections
corresponding to the projections £ — L and & — O¢. If 0: C — X s
a section such that (o(C))? = 0, then o(C) is equal to Co or Cy.

Proof. Note that e = 0 in this case and thus (C2) = 0. Moreover, Ox (Cp)
Ox(1) and Ox(C1) = Ox(1)@n*L~L. Set 0(C) = aCy + bF. Then a =
(0(C) - F) = 1 and 2ab = (6(C)?) = 0. Thus ¢(C) = Cy. Therefore,
Ox(c(C)) =2 Ox(Co)@m*N for some invertible sheaf N of degree 0 on C.
Then

0+# HY(X,0x(c(C))) = H(C, 1.0x(Co)@N)
= H°(C, (LDOc) @ N)

and this implies N' = O¢ or N = £~ Hence Ox(c(C)) is isomorphic
to Ox(Cp) or Ox(Co)@m* L1 = Ox(C1). Since £ is non-trivial, we have
H°(Ox(Cy)) = H°(Ox(C1)) = k and we get o(C) = Cy or Cy. O
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3.5 Pl-bundles over curves

In this section, we prove Conjecture BT for non-invertible endomorphisms
on P'-bundles over curves. We divide the proof according to the genus of
the base curve.

3.5.1 P!-bundles over P!

Theorem 3.5.1. Let m: X — P! be a P'-bundle over P! and f: X — X
be a non-invertible endomorphism. Then Conjecture BT holds for f.

Proof. Take a locally free sheaf £ of rank 2 on P! such that X = P(€) and
deg€ = —e (cf. Proposition BZ). Then & splits (see [I¥, V. Corollary
2.14]). When X is isomorphic to P! x P, i.e. the case of e = 0, the assertion
holds by [27, Theorem 1.3]. When X is not isomorphic to P! xP!, i.e. the case
of e > 0, the endomorphism f preserves fibers and induces an endomorphism
fp1 on the base curve P!. By Lemma BZ10, we have 0f = 0y, . Fix a point
p € P! and set F = n*p. Let P € X (k) be a point whose forward f-orbit is
Zariski dense in X. Then the forward fpi-orbit of 7 (P) is also Zariski dense
in P'. Now the assertion follows from the following computation.
af(P) = lim he(f*(P)"" = lim heep(f(P)M"
n—oo

n—oo

= lim hy(m o f1(P)Y" = lim hy(fi o m(P))Y" =8y, = by.

n—oo

3.5.2 Pl-bundles over genus one curves

In this subsection, we prove Conjecture BI1 for any endomorphisms on a
P!'-bundle on a curve C of genus one.

The following result is due to Amerik. Note that Amerik in fact proved
it for P'-bundles over varieties of arbitrary dimension (cf. [1]).

Lemma 3.5.2. Let X = P(£) be a P*-bundle over a curve C. If X has a
fiber-preserving surjective endomorphism whose restriction to a general fiber
has degree greater than 1, then £ splits into a direct sum of two line bundles
after a finite base change. Furthermore, if € is semistable, then £ splits into
a direct sum of two line bundles after an étale base change.

Proof. See [, Theorem 2 and Proposition 2.4]. O
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Lemma 3.5.3. Let E be a curve of genus one with an endomorphism
fiE — E. If g: E' — FE 1is a finite étale covering of E, there exists
a finite étale covering h: E"” — E' and an endomorphism f': B — E"
such that fogoh = go ho f'. Furthermore, we can take h as satisfying
E"=F.

Proof. At first, since E’ is an étale covering of genus one curve E, E’ is also a
genus one curve. By fixing a rational point p € E'(k) and g(p) € E(k), these
curves F and E’ are regarded as elliptic curves, and g can be regarded as an
isogeny between elliptic curves. Let h := §: E — E’ be the dual isogeny of
g. The morphism f is decomposed as f = 7.0 for a homomorphism ¢ and
a translation map 7. by ¢ € E(k). Fix a rational point ¢’ € E(k) such that
[deg(g)](¢) = ¢ and consider the translation map 7., where [deg(g)] is the
multiplication by deg(g). We set f’ = 7o o 1). Then we have the following

equalities.

fogoh=T1.,01ogog
= 1.0 o [deg(g)] = 7. o [deg(g)] o ¢
= [deg(g)]oreov =goho .

This is what we want. O

Proposition 3.5.4. Let £ be a locally free sheaf of rank 2 on a genus
one curve C and X = P(E). Suppose Conjecture @I holds for any non-
invertible endomorphism on X with € = Oc ® L where L is a line bundle
of degree zero on C. Then Conjecture BT holds for any non-invertible
endomorphism on X =P(E) for any E.

Proof. By Lemma BZ4 and Lemma B, we may assume that f preserves
fibers. We can prove Conjecture B0 in the case of deg(f|r) = 1 in the
same way as in the case of g(C) = 0 since deg(f|r) = 1 < deg(fc). Since
we are considering the case of g(C) = 1, if £ is indecomposable, then &
is semistable (see [43, 10.2 (c), 10.49] or [IR, V. Exercise 2.8 (c)]). By
Lemma B5H2, if deg(f|r) > 1 and £ is indecomposable, there is a finite étale
covering g: E — C satisfying that £ x¢ X 2 P(Og @ L) for an invertible
sheaf £ over E. Furthermore, by Lemma Bh3, we can take F equal to
C and there is an endomorphism f/,: C — C satisfying fcog = go f,.
Then by the universality of cartesian product X x¢ ,C, we have an induced
endomorphism f': X x¢ 4, C — X x¢ 4 C. By Lemma BZ3, it is enough
to prove Conjecture B for the endomorphism f/. Thus, we may assume
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that & is decomposable, i.e., X 2 P(O¢c @ L). Then the invariant e is non-
negative by Lemma BZ8. When e is positive, by the same method as the
proof of Theorem B3 in the case of g(C) = 0, the proof is complete. When
e = 0, we have deg £ = 0 and the assertion holds by the assumption. O

In the rest of this subsection, we keep the following notation. Let C' be
a genus one curve and £ an invertible sheaf on C' with degree 0. Let X =
P(Oc & L) = Proj(Sym(O¢ @ L)) and m: X — C the projection. When £
is trivial, we have X = C' x P!, and by [27, Theorem1.3], Conjecture BT is
true for X. Thus we may assume £ is non-trivial. In this case, we have two
sections of m: X — C corresponding to the projections O¢c & L — L and
Oc ® L — O¢. Let Cy and C1 denote the images of these sections. Then
we have Ox(Cp) = Ox(1) and Ox(Cy) = Ox(1)®@7*L~1. Since L is non-
trivial, we have Cy # (. But since deg L = 0, Cy and C] are numerically
equivalent. Thus (Cp - C1) = (C?) = 0 and therefore Co N Cy = ().

Let f be a non-invertible endomorphism on X such that there is a sur-
jective endomorphism fo: C — C' with mo f = foom.

Lemma 3.5.5. When L is a torsion element of PicC, Conjecture B11
holds for f.

Proof. We fix an algebraic group structure on C. Since L is torsion, there
exists a positive integer n > 0 such that [n|*L£ = O¢. Then the base change
of 7: X — C by [n]: C — C is the trivial P-bundle P! x C — C.
Applying Lemma B33 to g = [n], we get a finite morphism h: C — C' such
that the base change of 7: X — C' by h: C — C'is P! xC — C and there
exists a finite morphism f/,: C — C with fcoh = ho f{,. Then f induces
a non-invertible endomorphism f’: P! x ¢ — P! x C. By [¢7, Theorem
1.3], Conjecture BT holds for f’. By Lemma B2, Conjecture BT holds
also for f. O

Now, let F' be the numerical class of a fiber of 7. By Lemma B2 10, we
have

f*F =aF,
f Co = bCy

for some integers a,b > 1. Note that a = deg fc, b = deg f|r and ab = deg f
(cf. Lemma BZ9).

Lemma 3.5.6.
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(1) One of the equalities f(Cy) = Co, f(Cp) = Ci and f(Co) N Cy =
f(Co) N Cy =0 holds. The same is true for f(Cy).

(2) If f(Co)NC; =0 fori=0,1, then the base change of m: X — C by
fo: C — C is isomorphic to P' x C. In particular, f&L = Oc¢ and
L is a torsion element of PicC. The same conclusion holds under the
assumption that f(C1) N C; =0 fori=0,1.

Proof. (1) Since f*C; = bC;, Cop = C and (C2) = 0, we have (f.C;-C;) =0
for every i and j. Thus the assertion follows.

(2) Assume f(Co)NC; =0 for i = 0, 1. Consider the following Cartesian
diagram.

Then Y is a P'-bundle over C associated with the vector bundle O¢ @ foL.
The pull-backs C; = ¢g~(C;),i = 0,1 are sections of 7’. By the projection
formula, we have (C?) = 0. Let o: C — X be the section with o(C) = Cj.
Since o f oo = fc, we get a section s: C — Y of 7.

C

o

s X

id

f

y 2. Xx
i ™

C ——C

fe

Note that g(s(C)) = f(Cy) # Co, C1. Thus s(C), C, Cy are distinct sections
of ©’. Moreover, by the projection formula, we have (s(C) - Cj) = 0. Thus
we have three sections which are numerically equivalent to each other. Then
Lemma BZ T implies f5L = Oc and Y 2 P! x C. Since f%: Pic’C —
Pic® C is an isogeny, the kernel of f¢ is finite and thus £ is a torsion element
of PicC. U

Lemma 3.5.7.

(1) Suppose that
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e L is non-torsion in PicC,
e f(Cy) =Cy or Cy, and
° f(Cl) = C() or 01.

Then f(Co) = Cy and f(Cy) = C1, or f(Co) = C1 and f(C1) = Co.

(2) If the equalities f(Cy) = Co and f(C1) = Cy hold, then f*C; ~q bC;
fori=20 and 1.
Proof. (1) Assume that f(Cy) = Cp and f(C1) = Cp. Then f.Cy = aCy
and f.Cq = aCp as cycles. Since ff: Pic’ C — Pic C is surjective, there
exists a degree zero divisor M on C such that fZOc(M) = L. Then Cy ~
Co — 7 f&:M. Hence

aCo = f:C1 ~ (fCo — fum* feM) = (aCp — fur™ f&M)
and
0~ fim™ foM ~ fof*n* M ~ (deg f)m* M.

Thus 7*M is torsion and so is M. This implies that £ is torsion, which
contradicts the assumption.

The same argument shows that the case when f(Cp) = C and f(C1) =
C'1 does not occur.

(2) In this case, we have f,Cy ~ aCp. We can write f*Cy ~ bCy + 7*D
for some degree zero divisor D on C. Thus

(deg f)Co ~ fof*Co ~ abCy + fum*D = (deg f)Co + fom*D

and f,m*D ~ 0. Since f5: Pic’ C — Pic C is surjective, there exists a
degree zero divisor D' on C' such that fD’ ~ D. Then

0~ fur™ D ~ for* oD ~ fof*n* D' ~ (deg f)r* D'

Hence 7D’ ~g 0 and D’ ~g 0. Therefore D ~g 0 and f*Cy ~g bCo.
Similarly, we have f*C7 ~q bC}. O

Lemma 3.5.8. Suppose a < b. If f*C; ~q bC; for i = 0,1, the line bundle
L is a torsion element of Pic C.

Proof. Let L be a divisor on C such that Oc(L) = L. Note that C; ~
Co — m*L. Thus

'L ~ f*(Co — C1) ~g bCy — bCy ~ br* L
and f&L ~gq bL hold.

Thus, from the following lemma, £ is a torsion element. O
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Lemma 3.5.9. Let a,b be integers such that 1 < a < b. Let C be a curve of
genus one defined over an algebraically closed field k. Let fo: C — C be
an endomorphism of deg fo = a. If L is a divisor on C of degree O satisfying

f&L ~q bL,
the divisor L is a torsion element of Pic’(C)

Proof. By the definition of Q-linear equivalence, we have firL ~ brL for
some positive integer 7. Since the curve C'is of genus one, the group Pic’(C)
is an elliptic curve. Assume the (group) endomorphism

f& —[b]: Pic’(C) — Pic(0)

is the 0 map. Then we have the equalities a = deg fc = deg f§, = deg[b] =
b?. But this contradicts to the inequality 1 < a < b. Hence the map f} — [b]
is an isogeny, and Ker(f% — [b]) € Pic’(C) is a finite group scheme. In
particular, the order of rL € Ker(f& — [b])(k) is finite. Thus, L is a torsion
element. O

Remark 3.5.10. We can actually prove the following. Let X be a smooth
projective variety over Q and f: X — X be a surjective morphism over Q
with first dynamical degree é. If an R-divisor D on X satisfies

f*D ~g AD
for some A\ > 4, then one has D ~p 0.

Sketch of the proof. Consider the canonical height

~

n(P) = lim ho(f"(P)/A"

where hp is a height associated with D (cf. [@]). If hp(P) # 0 for some P,
then we can prove as(P) > X. This contradicts the fact § > @¢(P) and the
assumption A > ¢. Thus one has hp = 0 and therefore hp = hp + O(1) =
O(1). By a theorem of Serre, we get D ~pg 0 (see [49, 2.9. Theorem]). O

Proposition 3.5.11. Let L be an invertible sheaf of degree zero on a genus
one curve C and X = P(O¢ & L). For any non-invertible endomorphism
f: X — X, Conjecture @I holds.

Proof. By Lemma BT3 3 and Proposition B39 we may assume a > b. In
this case, 0y = a and Conjecture BT can be proved as in the proof of
Proposition B ]
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Proof of Theorem 13 for P'-bundles over genus one curves. As we argued
at the first of Section BZ3, we may assume that the endomorphism f: X —
X is not an automorphism. Then the assertion follows from Proposition
B4 and Proposition BZT1. O

Remark 3.5.12. In the above setting, the line bundle £ is actually an
eigenvector for f& up to linear equivalence. More precisely, for a P!'-bundle
m: X = P(Oc @ L) — C over a curve C with degL = 0 and an en-
domorphism f: X — X that induces an endomorphism fo: C — C,
there exists an integer ¢ such that f5£ = L£'. Indeed, let Cp and Cy
be the sections defined above. Since (f*(Cp) - Cp) = 0, we can write
Ox(f7HCp)) =& Ox(mCo)@n*N for some integer m and degree zero line
bundle A/ on C. Since

0 # H(Ox(f~(Ch))) = H(Ox (mCo)@m*N)

= H(Sym™(Oc © L)@N) = @ HO(L'&N),
=0

we have N' 2 L7 for some —m < r < 0. Thus f*Ox(Cy) = Ox(mCo)@m*L".
The key is the calculation of global sections using projection formula. Since
Ox(cl) = O)((C())@)?T*ﬁ*l, we have W*OX(mCl) = W*OX(mC())(X)E*m.
Moreover, since Cy and C are numerically equivalent, we can similarly get
[*Ox(Ch) =2 Ox(mCp)@n*L? for some integer s. Thus, f*n*L = 7*L" 5.
Therefore, 7* f5,.L = 7*L"°. Since 7*: PicC — Pic X is injective, we get
foL= LT3,

3.5.3 P!-bundles over curves of genus > 2
By the following proposition, Conjecture BT trivially holds in this case.

Proposition 3.5.13. Let C be a curve with g(C) > 2 and 7: X — C' be
a P'-bundle over C. Let f: X — X be a surjective endomorphism. Then
there exists an integer t > 0 such that f' is a morphism over C, that is, f!
satisfies mo f' = 7. In particular, f admits no Zariski dense orbit.

Proof. By Lemma B2, we may assume that f induces a surjective endo-
morphism fo: C'— C with wo f = fo om. Since C is of general type, fo
is an automorphism of finite order and the assertion follows. 0

Remark 3.5.14. One can also show that any surjective endomorphism over
a curve of genus at least two admits no dense orbit by using the Mordell
conjecture (Faltings’s theorem).
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3.6 Hyperelliptic surfaces

Theorem 3.6.1. Let X be a hyperelliptic surface and f: X — X a non-
invertible endomorphism on X. Then Conjecture @12 holds for f.

Proof. Let m: X — FE be the Albanese map of X. By the universality of =,
there is a morphism g: £ — F satisfying wo f = gow. It is well-known that
FE is a genus one curve, 7 is a surjective morphism with connected fibers,
and there is an étale cover ¢: B/ — F such that X' = X xp B/ = F x F/,
where F' is a genus one curve (cf. [2, Chapter 10]). In particular, X’ is an
abelian surface. By Lemma B3, taking a further étale base change, we may
assume that there is an endomorphism h: £/ — E’ such that ¢goh = go ¢.
Let n': X’ — E’ and 9: X’ — X be the induced morphisms. Then,
by the universality of fiber products, there is a morphism f': X' — X’
satisfying 7’ o f' = 7’ o h and v o f' = f o). Applying Lemma B2, it is
enough to prove Conjecture BT for the endomorphism f’. Since X’ is an
abelian variety, this holds by [28, Corollary 31] and [61, Theorem 2. O

3.7 Surfaces with x(X) =1

Let f: X — X be a non-invertible endomorphism on a surface X with
k(X) = 1. In this section we shall prove that f does not admit any Zariski
dense forward f-orbit. Although this result is a special case of [46, Theorem
A] (see Remark [31), we will give a simpler proof of it.

By Lemma BZ32, X is minimal and f is étale. Since deg(f) > 2, we have
(X, 0x) =0.

Let ¢ = Pk s X — PN = PHY(X,mKx) be the Iitaka fibration
of X and set Cy = ¢(X). Since f is étale, it induces an automorphism
g: PNV — PN such that ¢o f = go ¢ (cf. [I6, Lemma 3.1]). The restriction
of g to Cy gives an automorphism f¢,: Cy — Cp such that ¢o f = fc, 0 .
Take the normalization v: C — Cp of Cy. Then ¢ factors as X — C' —»
Cp and 7 is an elliptic fibration. Moreover, f¢, lifts to an automorphism
fo: C — C such that mo f = foom.

So we obtain an elliptic fibration 7: X — C' and an automorphism f¢
on C' such that wo f = fo o7 In this situation, the following holds.

Theorem 3.7.1. Let X be a surface with k(X) =1, m: X — C an elliptic
fibration, f: X — X a non-invertible endomorphism, and fo: C — C
an automorphism such that T o f = foon. Then f& = idc for a positive
integer t.
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Proof. Let {P,..., P} be the points over which the fibers of 7 are multiple
fibers (possibly r = 0, i.e. m does not have any multiple fibers). We denote
by m; denotes the multiplicity of the fiber 7*P; for every i. Then we have
the canonical bundle formula:

mi—l ¥

,
Ky =r"(Kc+L)+> TP,

=1

m;

where L is a divisor on C' such that deg(L) = x(X,Ox). Then deg(L) =0
because f is étale and deg(f) > 2 (cf. Lemma B=33). Since x(X) = 1, the
divisor Kc + L+ >, mrjl_ll% must have positive degree. So we have

i

2g(C) - 1)+ 3 i

2", > 0. ()

For any i, set Q; = fal(]%). Then 7*Q; = 7*f&P = f*1*F; is a
multiple fiber. So (fo)l¢p,,.. p,} is a permutation of { P, ..., P} since fc is
an automorphism.

We divide the proof into three cases according to the genus g(C) of C":

(1) g(C) > 2; then the automorphism group of C'is finite. So f& = id¢
for a positive integer t.

(2) g(C) = 1; by (x), it follows that » > 1. For a suitable ¢, all P; are
fixed points of ff,. We put the algebraic group structure on C' such that
Py is the identity element. Then f£ is a group automorphism on C. So
f& = id¢ for a suitable s since the group of group automorphisms on C' is
finite.

(3) g(C) = 0; again by (x), it follows that » > 3. For a suitable ¢, all
P, are fixed points of f. Then ff fixes at least three points, which implies
that fé is in fact the identity map. O

Immediately we obtain the following corollary.

Corollary 3.7.2. Let f: X — X be a non-invertible endomorphism on
a surface X with k(X) = 1. Then there does not exist any Zariski dense
f-orbit.

Therefore Conjecture BT trivially holds for non-invertible endomor-
phisms on surfaces of Kodaira dimension 1.
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3.8 Existence of a rational point P satisfying a(P)
O

In this section, we prove Theorem B4 and Theorem BTR. Theorem B4
follows from the following lemma. A subset ¥ C V(k) is called a set of
bounded height if for some (or, equivalently, any) ample divisor A on V', the
height function h 4 associated with A is a bounded function on X.

Lemma 3.8.1. Let X be a smooth projective variety and f: X — X a
surjective endomorphism with 6y > 1. Let D # 0 be a nef R-divisor such
that f*D = 0;D. LetV C X be a closed subvariety of positive dimension
such that (DY™V.V) > 0. Then there exists a non-empty open subset U C 'V
and a set ¥ C U(k) of bounded height such that for every P € U(k)\ ¥ we
have ay(P) = 05.

Remark 3.8.2. By Perron-Frobenius-type result of [4, Theorem]|, there is a
nef R-divisor D # 0 satisfying the condition f*D = 67D since f* preserves
the nef cone.

Proof. Fix a height function hp associated with D. For every P € X (k),
the following limit exists (cf. [29, Theorem 5]).

. (P
h(p) = 1 B P)
n—00 o
f
The function A has the following properties (cf. [29, Theorem 5)).

(i) h = hp + O(v/hy) where H is any ample divisor on X and hy > 1 is
a height function associated with H.

(ii) If 2(P) > 0, then a;(P) = d;.

Since (DY™V . V) > 0, we have (D]|y™™") > 0 and D|y is big. Thus
we can write D]y ~g A+ E with an ample R-divisor A and an effective
R-divisor E on V. Therefore we have

hlyg = ha+he+0(/ha)

where h4, hg are height functions associated with A, £ and h4 is taken to
be hy > 1. In partmular there exists a positive real number B > 0 such
that hy + hg — h|v < Bv/h4. Then we have the following inclusions.

{PeV(k) | h(P) <0} C{PeV(k)|ha(P)+hu(P) < By/ha(P)}
C Supp EU{P € V(k) | ha(P) < B\/ha(P)}
= Supp EU{P € V(k) | ha(P) < B%}.
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Hence we can take U = V' \ Supp E and ¥ = {P € U(k) | h(P) < 0}. O

Corollary 3.8.3. Let X be a smooth projective variety of dimension N and
f: X — X a surjective endomorphism. Let C' be a irreducible curve which
18 a complete intersection of ample effective divisors Hy,...,Hy_1 on X.
Then for infinitely many points P on C, we have ay(P) = dy.

Proof. We may assume d;y > 1. Let D be as in Lemma B=. Then (D-C) =
(D-Hy---Hyn_1) > 0 (cf. [29, Lemma 20]). Since C(k) is not a set of bounded
height, the assertion follows from Lemma B=X. O

To prove Theorem BT, we need the following theorem which is a corol-
lary of the dynamical Mordell-Lang conjecture for étale finite morphisms.

Theorem 3.8.4 (Bell-Ghioca—Tucker [8, Corollary 1.4]). Let f: X — X

be an étale finite morphism of smooth projective variety X. Let P € X (k).
If the orbit O¢(P) is Zariski dense in X, then any proper closed subvariety
of X intersects O¢(P) in at most finitely many points.

Proof of Theorem BI18. We may assume dim X > 2. Since we are working
over k, we can write the set of all proper subvarieties of X as

(VicX|i=0,1,2,...}.

By Corollary B83, we can take a point Py € X \ Vj such that a¢(P) = dy.
Assume we can construct Py, ..., P, satisfying the following conditions.

(1) ap(P;) =6f fori=0,...,n.
(2) Op(P) NOf(Py) =0 for i # j.
(3) Pp¢ V;fori=0,...,n.

Now, take a complete intersection curve C' C X satisfying the following
conditions.

e Fori=0,...,n,C ¢ OsP)if O;(P,) # X.

e Fori=0,...,n,C ¢ Op1(F)if Op1(P;) # X.
o (C gZ Vn+1.
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By Theorem B3, if O+ (F;) is Zariski dense in X, then O+ () NC is a
finite set. By Corollary B=X33, there exists a point

PoppeC\ | |J op@)u | Op1(P)UVopy
0<i<n 0<i<n

such that of(P,11) = 07. Then Fy,..., P,41 satisfy the same conditions.
Therefore we get a subset S = {P; | i =0,1,2,...} of X which satisfies the
desired conditions. O
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Chapter 4

Function filed analogues
(Joint work with Kaoru Sano and Takahiro Shibata.)

4.1 Summary

In this chapter, we consider the function filed analogue of arithmetic degree
and Kawaguchi-Silverman conjecture. Let w be the algebraic closure of
one dimensional function field of characteristic zero. Let X be a smooth
projective variety over w Fix a height hx > 1 on X associated to an
ample divisor (cf. Definition B273). Given a dominant rational self-map
f:X --» X on X and a point P € X(k(t)), we study how the height
hx (f™(P)) varies as m grows. The (upper/lower) arithmetic degree of f at

P are defined in the same way as follows:

@y (P) = limsup hx (f™(P))"/™,

m—0o0
a(P) = liminf hx (f(P))"/™

If @y (P) = as(P), then we set ay(P) = ay(P), call it the arithmetic degree
of f at P. For details, see Definition BZ3T (ii).

The proof of inequality af(P) < §; in (Chapter B, [39]) works over any
field where height functions can be defined. In this chapter, we give another
proof of it. This proof works only over function fields of characteristic zero,
but it is simple and short.

Theorem A (= Theorem BZ). Let X be a smooth projective variety over
k(t) and f a dominant rational self-map on X. Then we have

ay(P) <oy
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for any P € Xy. Here Xy is the set of rational points for which the f-orbits
are well-defined (cf. Notation and Conventions below).

Given the above inequality, it is natural to ask when a rational point
has maximal arithmetic degree, that is to say, the arithmetic degree of the
rational point attains the dynamical degree. Actually, Kawaguchi and Sil-
verman conjecture does not hold in general over k(t) (cf. Example E=34).
Nevertheless, we obtain a sufficient condition for a rational point to have
maximal arithmetic degree as a geometric condition of the corresponding
section of a model of X over a curve.

Theorem B (= Theorem B5). Let X be a smooth projective variety over
k(t) and f a dominant rational self-map on X. Let (X¢ = C, fc) be a
model of (X, f) over a curve C' (cf. Definition [-Z-3). Take a rational point
P € Xy corresponding to a section o : C — X¢ of m (cf. Proposition
(i)). Assume that

e o(C)NIpm =2 for every m > 1 and
o (E-0(C)) >0 for any E € Eff(X¢) \ {0}.
Then a¢(P) exists and of(P) = &y.

For a self-map on a projective space, we will give some other sufficient
conditions (Theorem B62 and Theorem BTG 4).

We can also consider how many points obtain maximal arithmetic degree.
More precisely, we can ask whether there is a Zariski dense set of points with
maximal arithmetic degree and pairwise disjoint orbits (Problem BZ77T). It
is only known for some particular cases over number fields (cf. [27, Theorem
3] and [40, Theorem 1.7]). Here we prove the following result, which gives
a positive answer of the question when the base field is a function field over
an uncountable algebraically closed field of characteristic zero.

Theorem C (= Theorem BZ72). Assume that k is an uncountable alge-
braically closed field of characteristic zero. Let X be a smooth projective
variety over W and f a dominant rational self-map on X. Then there
exists a subset S C Xy such that

o of(P) exists and ay(P) = 05 for every P € S,
e O¢(P)NOs(Q) =2 if P,Q € S and P # Q, and

e S is a Zariski dense subset of X.
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Moreover, we can take such points over a fixed function field for a self-
map on a smooth projective rational variety (Theorem B73).

To prove our main results, we use the the following geometric interpre-
tation. A variety X over a function field K = K(C) of a curve C can be
seen as the generic fiber of a fibration 7 : X — C, and then a K-rational
point P of X corresponds to a section o of w. In this situation, the height
hx(P) of P is equal to deg(c*H), where H is a m-ample Cartier divisor on
X. So arithmetic degrees are described as the limits of the degrees of certain
divisors.

Notation and Conventions.

e Throughout this chapter, k denotes an algebraically closed field of
characteristic zero, and k(t) denotes the algebraic closure of the ratio-
nal function field of one variable over k.

e In this chapter, a dynamical system means the pair (X, f) of a smooth
projective variety X and a dominant rational self-map f on X.

e For any R-valued function h(x), we set h*(z) = max{h(z),1}.

e A curve means a smooth projective variety of dimension one unless
otherwise stated.

4.2 Height functions for varieties over function fields

In this section, we recall the (Weil) height functions on projective varieties
over Wt), as well as a description of height using the degree of a divisor on a
curve. The content of this section can be found for example in [32, Chapter
3, §3] and [19, B.10].

First, we define the height functions on projective spaces over function
fields.

Definition 4.2.1. Let C be a curve over k. Take P € P"(K(C)) with
homogeneous coordinates P = (fo : f1 : -+ : fn), where f; € K(C). We
define the height function on P"(K(C)) relative to K(C) as

hicy(P) = Z —min{v,(fo), ..., vp(fn)},
peC
where v, (f) is the multiplicity of f at p € C(k).

We define the (absolute) height function on P"(k(¢)) as follows:
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Definition 4.2.2. Take P € P"(k(t)). We define the height function on
P™(k(t)) as
1

(K - k(D))

where K is a finite extension field of k(t) such that P € P"(K). Note that
h(P) is independent of the choice of K.

h(P) = hi (P),

We also define the height function associated to a Cartier divisor up to
the difference of a bounded function.

Definition 4.2.3. Let X be a projective variety over k(t).
(i) Let A be a base point free Cartier divisor on X. We define a height
function on X associated to A as

ha=nhoda,

where ¢4 is a morphism associated to |A|. hy4 is well-defined up to a bounded
function.
(ii) Let D be a Cartier divisor on X. We define a height function on X
associated to D as
hp =ho¢s—hoog,

where A, B are base point free Cartier divisors such that D ~ A — B and
®4,¢p are morphisms associated to |A| and |B| respectively. Note that we
can always take such A and B, and hp is well-defined up to a bounded
function.

In what follows, we see that a height on a function field can be described
as the degree of certain divisor on a curve. The following proposition follows
from an elementary scheme-theoretic argument.

Proposition 4.2.4. Let C be a curve over k and set K = K(C).

(i) Letm: X — C be a surjective morphism from a projective variety X to
C and X, the generic fiber of m. Then X, (K) corresponds one-to-one
to the set of sections of .

(ii) Let Yy be a projective variety over k and set Y = Yy X K. Then
Yi (K) corresponds one-to-one to the set of k-morphisms from C' to
Y.

The following is a description of the height on a projective space in terms
of the degree of a divisor.
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Proposition 4.2.5 (cf. [19, Lemma B.10.1]). Let C' be a curve and set
K = K(C). Take P € P"(K) and let g : C — P} be the corresponding

morphism. Let h : P"(k(t)) — R be the natural height function on the
projective space. Then we have

1
WP) = me77 deg(gO(1)).
[K - k(2)]

By Proposition 24, we have h(P) > 0 for any P € P*(K). Fur-
thermore, for a rational point P € P"(K) corresponding to a morphism
g:C — PP P eP(k) if and only if g is a constant map. So we obtain the
following.

Proposition 4.2.6.

(i) h(P) >0 for any P € P"(k(t)).

(i) For P € P"(k(t)), h(P) =0 if and only if P € P"(k).

We give a description of height by the degree of a divisor for a projective
variety over k(t).

Definition 4.2.7. Let X be a projective variety over k t) and H an ample

er k(
Cartier divisor on X. We define a function hy : X(k(t)) — R>o as follows.

(i) A model (Xc = C,Hc) of (X,H) over a curve C is a projective
variety X¢ over k with a surjection 7 : X¢ — C whose geometric
generic fiber is X, and a m-ample Cartier divisor Ho on X¢ such that
(X — Xc)*HC ~ H.

(ii) Fix a model (X¢ = C, H¢) of (X, H) over a curve C. For any P €
X (k(t)), take a curve Cy with K(C7) D K(C) and the section o1 of
e, » XoxcCh — O corresponding to P, and set Hoy, = (XoxcCy —

Xc)*HC and

hy(P) = Mdeg(UfH(Jl)-

Proposition 4.2.8. Notation is as in Definition f.2.1. Then hy is a well-
defined height function associated to H.
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Proof. Take any point P € X (k(t)). Take curves C; with K(C;) D K(C)
and the sections o; of 7¢, : X, = Xo X¢ C; = C; for @ = 1,2. To see the
well-definedness of hg, we may assume that K(Cs) D K(C).

CQLC&

T
P2 P

Xe, Xc, Xc
s @2 cy 1 C
Set Ho, = Y{Hc and He, = v5Hc,. Then
deg(U;HCb) _ deg(gb;Uchl)
[K(C2) 1 k()] [K(C2) : K(C)][K(Ch) : k(t)]
_ deg(o7Hey)
[K(Ch) : k()]

So it follows that hg (P) is well-defined.
Take a sufficiently large integer N such that there is a morphism i¢ :
Xc — PP x C over C with LEOPg(l) ~x NHg. Take a Cartier divisor

D¢ on C such that ¢,O0pn (1) ~ NHc + 7*De. Let ¢+ X — PZ(T) be the

base change of (o by Speck(t) — C. Then the function %h ot is a height
function associated to H. «(P) € P"(k(t)) corresponds to the morphism
PIpn 0LCy © 01 C1 — P}, where 1, be the base change of vc by C7 — C.

We compute

1 deg((prpz oLcy © 01)*(’)11»2(1))
N TR (GYI0)
_ deg(of(NHg, +¢in" D))
N[K(Ch) : k(t)]
_ deg(0](NHg,)) + [K(Ch) : K(C)]deg(Dc)
N[K(Cy) : k(t)]
deg(Dc)
NIK(C) : k(t)]

(by Proposition B23)

= hu(P) +

So hy is a height function associated to H. O
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4.3 Arithmetic degrees for dynamical systems over
function fields

Arithmetic degree is defined in the same way as when the ground field is Q.

Definition 4.3.1. Let (X, f) be a dynamical system over k(¢). Take an
ample Cartier divisor H on X and a rational point P € X;. The arithmetic
degree of f at P is defined as

— 1 +(fm 1/m
as(P) = T hfy(f™(P)"™,
where hy is a height function associated to H. Note that we do not know
whether the limit converges. Similarly, a;(P), a;(P) are defined as

@y (P) = limsup hj; (f™(P))"/™,

m—0o0
ap(P) = liminf Aj (f™(P)"™.

Remark 4.3.2. In the notation of Definition E=37T, ay(P), oy (P) and a¢(P)
are independent of the choices of H and hy (cf. [29, Proposition 14]).

As in the number field case, we consider:

Problem 4.3.3. Let (X, f) be a dynamical system over k(t). Take a point
P € Xy. When the equality o f(P) =y holds?

The following examples show that Conjecture (@) is not true over
function fields.

Example 4.3.4. (i) Let f : ]P’}C(T) — ]P’}C(T) be a surjective endomorphism with

8¢ > 1. Take a k-valued non-preperiodic point P € P!(k). Then O (P) is

Zariski dense in Pllv(—t), but af(P) =1 < dy.
(ii) Define f : Ai(—t) — Ai(T) as f(z,y) = (22,y%). Then f naturally

: . P2 2 _ :
extends to the morphism f : IP’m — ]P’@ and 0y = 3. Take a point

P = (t,2) € A%(k(t)). Then f™(P) = (¢*",2%") and

ay(P) = lim max{deg(t?"), deg(2*")}V/™ = lim (2™)/™ = 2.

m m— 00

We show that Of(P) = {(t2",23")}%°_,, is dense in Pi(—t). It is enough to

show that Of(P) is dense in Az(t). Suppose Of(P) is contained in the zero
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locus of a polynomial ¢(¢,z,y) € k(t)[z,y]. Multiplying ¢ with a polynomial
in k[t], we may assume that ¢ € k[t,x,y|. Set ¢(t,z,y) = o (t,y)x" +
Gr_12" - go(t,y), b (t,y) # 0. By assumption, ¢(t,t2",23") =0 as
a polynomial in k[t]. Since

deg("") > deg(p(t, 2", 2°") = ¢,(£,2°")¢*"") = deg(— (¢, 2% )t*"")

for sufficiently large m, it follows that ¢, (t, 23" )t?"" = 0 as a polynomial in
k[t] for sufficiently large m. Therefore ¢, (t,y) = 0 as a polynomial in k[t, y],

which is a contradiction. So O¢(P) is Zariski dense in PZ(T)'

4.4 A fundamental inequality

There is a fundamental inequality between arithmetic degrees and dynamical
degrees:

Theorem 4.4.1 ( [29, Theorem 4] and [8Y]). K denotes an algebraically
closed field where heights are well-defined. Let (X, f) be a dynamical system
over K. Then

af(P) < (Sf

holds for any P € Xy.

We will give another proof of the inequality over k(t).

Theorem 4.4.2. Let (X, f) be a dynamical system over k(t). Then the
inequality
af(P) < 5f

holds for any P € X;.

To prove Theorem BE-A3, we prepare some lemmas. To begin with, we
define a model of a dynamical system over k(t).

Definition 4.4.3. Let (X, f) be a dynamical system over k(t). A model
of (X, f) over a curve C is a pair (X¢ =+ C, f) of a surjective morphism
m: Xo — C from a smooth projective k-variety X to C' and a dominant

rational self-map fo : X¢o --+ X¢ over C such that X¢ x¢ k(t) = X and

the base change of fc along Speck(t) — C is equal to f.

Lemma 4.4.4. Let (X, f) be a dynamical system over k(t). Then there
exists a model of (X, f) over a curve C.

Such a model is obtained by resolution of singularities.
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Lemma 4.4.5 (cf. [29, Proposition 19]). Let f: X --»Y and g:Y --» Z
be dominant rational maps of smooth projective varieties. Take a Cartier
divisor H on Z and a curve C on X.

(i) If C ¢ Iy, f(C) ¢ Iy and H is nef, then
((go f)*H-C) < (f*g"H - C).
(i) If CN 1y =@ and f(C)N 1y =@, then

((go f)*H-C) = (f"g"H - C).

Proof. Since a nef divisor is the limit of a sequence of ample divisors, we
may assume that H is ample.

Xl/
“’l X
X -ty

X-==2Y-=-Z

In the above diagram, f : X’ — Y (resp. §: Y’ — Z) is an elimination of
indeterminacy of f (resp. g) by blowing up smooth centers in Iy (resp. 1),
h=v"'ofopu, and h: X" — Y’ is an elimination of indeterminacy of k by
blowing up smooth centers in I,. Then

(o /)'H-C < [ H-C (1)
— (pop)u(goh) H -C < puf'vug"H-C
= W GH-C < puffrg H - C.
Here po f*ve§*H = paplpf* f*rog*H = popl. WV v §* H. Set
E=v'v.g*H — §*H,
then (1) is equivalent to the inequality
N*N;B*E -C > 0.

By negativity lemma (cf. [T, Lemma 3.39]), E is an effective and v-exceptional
divisor. Take a curve C’ on X’ such that pu(C’) = C and a curve C” on X”
such that p/(C") = C".
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v(h(C") = f(1'(C") = F(C") = f(C) & Iy, so h(C") ¢ Exc(v). In
particular, A(C") ¢ Supp E and then C” ¢ Supp h*E Hence

= pu(p/'(C")) ¢ u(p' (Supp h*E)) = Supp pp,h*E

This implies (1).
(ii) is obvious since flc : C — f(C) and gl¢) = f(C) — Y are mor-
phisms. O

The following lemma is a variant of Lemma B=473.

Lemma 4.4.6. Let f : X --» Y be a dominant rational map of smooth
projective varieties and g : C — X a morphism from a curve C. Take a
Cartier divisor H on'Y.

(i) If g(C) ¢ Iy and H is nef, then

deg((f o g)"H) < deg(g"f*"H).
(i) If (C) N I; = @, then

deg((f 0 g)"H) = deg(g"f"H).

Proof. (i) Since a nef divisor is the limit of a sequence of ample divisors, we
may assume that H is ample.

X/
AN
w
ctux- 13y

In the above diagram, f : X’ — Y is an elimination of indeterminacy of

f by blowing up smooth centers in Iy, and we can define the composition

g = p o g by the assumption that g(C') ¢ Iy. Moreover it is a morphism.
We compute

deg(g*f*H) — deg((f 0 9)"H) = deg(§"p*w. f*H — §* [*H)
= deg(7°E),

where we set E = p*u, f*H — f*H. By negativity lemma(cf. [31, Lemma
3.39]), E is an effective and p-exceptional divisor on X’. Moreover §(C) ¢
Supp E since u(§(C)) = g(C) ¢ Iy and p(E) C Iy. So deg(g*E) > 0.

(ii) is obvious since both g : €' = ¢(C) and flyc) : 9(C) — Y are
morphisms. O
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Lemma 4.4.7. Let X be a smooth projective variety with an ample Cartier
divisor H. Eff(X) C NY(X)r denotes the pseudo-effective cone of X. Take
a 1-cycle Z € N1(X)r. Then there is a constant M > 0 such that

(E . Z) < M(E . HdimX—l)
holds for any E € Eff(X).
Proof. Note that (E-HdimX*l)i 0 for any E € Eff(X)\{0} (see [29, Lemma
20]). We define a function f : Eff(X) \ {0} = R as

E-Z
f(E):(E,(];]dim))(—l)'

Take a norm ||-|| on N1(X)g and set S = {E € Eff(X)| ||E|| = 1}. Then we
can take an upper bound M > 0 of f|g since S is compact. But f satisfies
f(cE) = f(E) for E € NY(X)g and ¢ > 0, so M is in fact an upper bound
of f. This implies the claim. O

Lemma 4.4.8. Let (X, f) be a dynamical system over k(t) with a model
(Xc = C, fc) over a curve C or k. Then §p = &y,

Proof. We define the k-th dynamical degree and the k-th relative dynamical
degree:
Me(fe) = lim ((f&)HE - HETHY™,
m—ro0

Aelfelm) = lim ((f8)HE - HE " F)Ym.

Note that A\ (fc) = 0¢,.
Set n = dim X. Take an ample divisor Ho on X¢ and a general fiber F
of 7. Fix an integer m > 0. Take an elimination of indeterminacy of f&":

/\

—————— +»Xco

Pulling it back along w — C, we get the following diagram:
X1 xo
pT Tpc
r—=r, T'c
|
X —— Xco

g
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Set H = n*Hc. We can show that g*n* = nig¢ and p.ni = n*pc«. So we
have

(f")*H = p.g"n"He = pargeHe = n'pesgcHe = n*(f¢)" He-
So ((f™)*H-H"™") = (n*(f&)* He - (n*He)" ™). Hence ((f™)"H-H"™') is
equal to the coefficient of the monomial ¢ - - - ¢,, for the numerical polynomial

XX, i (f&)*Ho + tan*He + - + ton* He).

For any Cartier divisor D on X and a general fiber F' of w, the equality
X(X,n*D) = x(F, D|r) holds. So

XX, tin* (f&) He +tan*He + -+ + t,n*He)

= x(F t1(f&") Helr +t2Helr + -+t Helr).
Hence we have (n*(f&)*Hc - (n*HC)"_l) = ((f&)*HclF - (HC|F)”_1) =
((fen*He - HE - F), and so Ai(f) = Mi(folm).
On the other hand, by [62, Theorem 1.4],
A (fo) = max{ i (folm)do(ide), Ao (fel|m) A (ide)}
= max{A(folm), 1}
= M (folm).

Note that A\;(id¢) =1 for all ¢ and A\o(fc|m) = 1 by definition. So
or = M(f) = M(felm) = M(fe) = b
O

Proof of Theorem .7.3. Take P € Xy. Put n = dim X. By Lemma EZ4,
we can take a model (X¢ = C, f¢) over a curve C. We may assume that P
corresponds to a section o : C' — X of 7.

Take an ample Cartier divisor He on X¢ and set H = (X — X¢)*He.
By Lemma B,

6 = 850 = lim ((f8)"He - HE)™.
On the other hand, by Proposition I=238,
@y (P) = limsup hj, (f™(P))/™

m—ro0

= limsup deg™ (& 0 0)* He) /™.

m—0o0
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Note that Im(o) ¢ Iym since P ¢ Iym. By Lemma B28 (i),

deg((f¢' 0 0)"He) < deg(o™(f&')"He) = (/&) He - 0.C).

It is obvious that (f&)*Hc € Eff(X¢) for every m. So, by Lemma B2,
there is a constant M > 0 such that the inequality

((f&")"He - 0.C) < M((f&')"He - HE)
holds for every m. Therefore we have

as(P) < limsup((f2)" He - 0,C) /™

m—r 00

< limsup(M ((f&)"He - HE))Y™

m— 00

= lim sup((f&)*He - H2)Y™

m—o0

:5fc
=0y.

4.5 A sufficient condition

Let (X, f) be a dynamical system over k(t). In this section, we give a
sufficient condition for a rational point P € X to have maximal arithmetic
degree.

Theorem 4.5.1. Let (X, f) be a dynamical system over k(t) and (Xg =
C, fc) a model of (X, f) over a curve C. Take a rational point P € Xy
corresponding to a section o : C — X of m. Assume that

e o(C)NIfm =2 for everym > 1 and

e (E-0(C)) >0 for any E € Eff(X¢) \ {0}.
Then a¢(P) exists and of(P) = dy.

We prepare the following lemma.

Lemma 4.5.2. Let X be a smooth projective variety and Z C X a I-cycle
such that (E - Z) > 0 for any E € Eff(X) \ {0}. We define a non-negative
function || - ||z : N (X)r — R as

llv||z = inf{(v1 - Z) + (v2- Z) | v = v1 — va, v1, vy are effective classes}.
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(i) ||v||lz = (v- Z) for any effective class v € N*(X)g.
(ii) || - ||z is a norm on N'(X)g.

Proof. (i) For effective classes v1, v9 such that v = v; — v, we have (v-Z) =
(v1-Z)=(v2-Z) < (v1-Z)+ (v2-Z). So ||v]|z = (v-2).
(ii) It is easy to see that

e |[cv||z = |c| - |Jv||z for any ¢ € R and v € N1(X)g and
o |[v+wllz <||v||lz + ||w||z for any v, w € N*(X)g.
Take v € N'(X)g and assume that ||v||z = 0. Then we have
{o 0 {vg 1o C NH (X
such that v = v} — v, for every n and

lim ((vf - Z) + (v, - Z)) = 0.

n—oo
So lim, oo (vE - Z) = 0. Since (w- Z) > 0 for any w € Eff(X) \ {0}, it
follows that lim,, o v;7 = 0. Therefore v = lim, o (v;y —v,;) = 0. So || ||z
satisfies the conditions of norm. O

Proof of Theorem G-51. Set n = dim X. We have
df =65, (by Lemma BZR)
= lim ((2)"He - HE)™
S [[(72) Holljfy'- (by Lemma @52 (i)
Note that || - || gy is a norm since (E'- Hg) > 0 for every E € Eff(Xe) \ {0}
(cf. [29, Lemma 20]). We obtain

6 = Tim ||(f&) Hollygy  (since || - ||y is equivalent to || - [|o(c))
= lim ((f¢)"He - o(C)"/™  (by Lemma 52 (1))
= lim_deg™(o*(f&)"Ho)"™
= lim deg™((f& 0 0)"Hc)"/™ (by Lemma BT (if))
= n}gnoo R (f™(P)Y™  (by Proposition E=23)
= ay(P).
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4.6 Arithmetic degrees for projective spaces

In this section, we study arithmetic degrees for dynamical systems on pro-
jective spaces.

At first, we give some sufficient conditions for a rational point to have
maximal arithmetic degree.

Lemma 4.6.1. Let C be a curve. Set X = P} x C. Take an pseudo-
effective Cartier divisor E on X and a general fiber F' of m = pro. Then
Ox(E) = Ox(d) ® Ox(eF) for some d,e € Z>g.

Proof. 1t is sufficient to prove the claim for effective divisors, so we may as-
sume that E is effective. Since Pic(X) is generated by Ox (1) and 7* Pic(C),
there are an integer d and a divisor D¢ on C such that Ox(F) = Ox(d) ®
7m™*Oc(D¢). Set e = deg Deo. Then Ox(E) = Ox(d) ® Ox(eF).

Since E|r is effective and Op(E|r) = Opz(d), d > 0. By projection
formula,

m:(Ox(d) © 7 Oc(De)) = m(Ox (d)) @ Oc(De) = SHOE™) @ Oc(De).

Since HO(C, YO ™) ® Oc(D¢)) = H)(X, Ox(d) @ m*Oc(Dc)) # 0, De
is effective. So e = deg D¢ > 0. 0

Theorem 4.6.2. Let (X = PZ(T)’ f) be a dynamical system over k(t) and

(Xc =P xC el fc) a model of (X, f) over a curve C. Take a morphism
g : C =P} corresponding to a rational point Py € Xy and set oy = (g,id¢) :
C— Xc.

(i) Assume that g is non-constant and Im(og) NIpm = & for everym > 1.
Then oy (Py) exists and op(Py) = dy.

(i) Assume the following conditions.

(x) For every m > 0, prpyn offt ooy is non-constant.

(xx) There is a sequence of positive integers my < ma < ... such that
Im(fg”“oag)ﬂlf;nkﬂ—mk = & for every k > 1 and limg_, o0 (Mg /miy1) =
0.

(x % x) The limit ay(Py) exists.

Then the equality ay(Py) = d¢ holds.
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Proof. (i) Let F be a general fiber of pro. Then

Eff(Xc) = R>00x (F) + R>00x (1)

by Lemma EG. It is obvious that o, satisfies the assuption of Theorem
570, So (i) follows from Theorem A5

(ii) For m > 1, set (f&#)*Ox,(1) = Ox,(dn) ® Ox,(enF). Then
dpm, €m > 0 by Lemma BB, It is clear that (f)*Ox (1) = Ox(d,,), and so

5p = lim ((f™)*Ox(1)-Ox ()" HY™ = 1lim d}/™.

m—00 m—00

Set by, = deg((f& 0 0y)*Ox,(1)). By (%), by, > 1 for every m. So we
have
ay(Py) = lim max{by,, 1}1/™ = lim bL/m.

For k > 1, set I, = mg1 — mg. We compute

(f&" ' 0 04)"Oxc (1))

f¢ 0 16 0 04) Oxc (1))

f&Fo ag)*(fg“)*oxc(l)) (by (%) and Lemma B=278 (ii))
= deg((fl* 0 04)"Ox,(dy,) @ Ox, (e, F))

> deg((fi* 004)"Ox.(dy,))
= dlkbmk

> dy, -

b = deg

Mp+1
= deg
= deg

~—~~ ~~ —~~

Note that limy_,o I = 00 by the assumption that limy_,oo(mg/miy1) = 0.
Hence

. 1 .
ar(Py) = W}gnoo(bm) m  (by Proposition B=2R)
1

- kh—g)lo(bmkﬂ) T

: (=)
> lim (dlk) k Mh+1
k—o0

=0f.
Combining with Theorem B2, it follows that af(P,;) = 5. O

Next, we show that a sufficiently general morphism g : C' — P} of a
given sufficiently large degree corresponds to a rational point of maximal
arithmetic degree.
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Definition 4.6.3. Let C be a curve of genus g(C) over k and d,n positive
integers. Mory(C,IP}) denotes the set of morphisms g : €' — P} such that
deg(g7O(1)) = d.

Mory(C,P}) has a structure of k-variety with the evaluation e : Mory(C, P}) x
C — P} which maps (g,p) to g(p). Moreover, if Morg(C,P}) is non-empty,
we have
dim Morg(C,P;) > (n+ 1)d + n(1 — g(C))

(ct. [31, 1.1]).

Theorem 4.6.4. Let (X = PZ(T)’ f) be a dynamical system over k(t) and

(Xe =P x C25 C, fo) a model of (X, f) over a curve C of genus g(C).
Take a positive integer d satisfying d > %ﬁfl). P, € X(k(t)) denotes the
rational point corresponding to g € Mor(C,IP}). Then ay(Py,) exists and

ar(Py) =05 for a sufficiently general g € Morg(C,P}).

Proof. Let M C Morg(C,P}) be an irreducible component of maximal di-
mension. Then dim M > 0 by assumption. Set ® = (e,id¢) : M x C — X,
where e is the evaluation. For any g € M and p € Aut(P}), we have
deg(g*p*Opn (1)) = deg(g*Opn (1)) = d, so Aut(P}) acts on M. Fix go € M.
For any (z,p) € X¢, we can take p € Aut(P}) such that p(go(p)) = . Then
®(pogo,p) = ((pogo)(p),p) = (x,p). So it follows that ® is surjective.

For every m > 1, we compute

dim @' (Ipm) < (dim(M x C) — dim X¢) + dim I
< (dim M + 1 — dim X¢) + dim X¢ — 2
=dim M — 1.
Hence prM(CD_l(IfrCn)) C M is a proper subset of M for every m > 1.
For g € M, 04 = (g,id¢) : C — X denotes the corresponding section
of pr. For g € M, we have
O'g(C) ﬂ[fg} =g <— O({g} xCO) ﬁ]fgz =9
= {gIxCnd(Ip) =0
= g & pry (@ (Ipm)).

Set (f&)*Ox.(1) = Ox,(dmn) ® Ox,(emF'), where F' is a general fiber of
pre. Then dp, e, > 0 by Lemma BB, Take g € M\U,,>; prM(CD_l(Ifg)).
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We compute
ap(Py) = lgri}iglof deg((f& o ag)*OXC(l))i/m (by Proposition I°ZR)
= lim inf deg(o F2)*Ox,.(1)Y™  (by Lemma B2 (ii))
= hmmf(OXc( m) ® Ox (emF) - ag*C)i/m
> hm 1nf((9xc(dm) Jg*C')l/m
= lim nf (dn(Ox,. (1) - 04.C)) "
= lim inf d}/™
m—s00

= 5;.

Note that (Ox.(1) - 04«C) = (Opp(1) - g.C) > 0 since d = deg(g) > 0.
Combining with Theorem BEZ32, it follows that a¢(Fy) exists and ayf(FP,) =
d¢. O

4.7 Construction of orbits

In this section, we consider a problem on the existence of the rational points
of maximal arithmetic degree.

Problem 4.7.1. Let (X, f) be a dynamical system over Q. Is there a subset
S C Xy such that

o ay(P) exists and ay(P) = dy for every P € S,
e O¢(P)N0y(Q) =0 if P,Q € S and P # (@, and
e S is a Zariski dense subset of X.

or not?

The above problem is studied in some papers over Q (cf. [27, Theorem
3] and [0, Theorem 1.7]). We give an affirmative answer for any dynamical
system over w, where k is an uncountable algebraically closed field of
characteristic 0.

Theorem 4.7.2. Assume that k is an uncountable algebraically closed field
of characteristic zero. Let (X, f) be a dynamical system over k(t). Then
there exists a subset S C Xy such that
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o ay(P) exists and of(P) = dy for every P € S,
e O¢(P)NOy(Q) =2 if P,Q €S and P # Q, and
e S is a Zariski dense subset of X.

Lemma 4.7.3. Let k be an uncountable algebraically closed field and X an
algebraic scheme of positive dimension over k. Let Zy,Zs,... C X be proper
closed subsets of X. Then |J, Z; # X and there exists a countable set M of
k-valued points of X \ \U; Zi such that M is Zariski dense in X .

Proof. Replacing X by an affine open subset, we may assume that X is
affine. By Noether’s normalization lemma, there is a finite cover ¢ : X —
A}. Replacing X and Z1, Zo, ... by A} and ¢(Z1), $(Z2), . .., we may assume
that X = A}

We prove the claim by induction on n. Assume that n = 1. Then Z;(k)
is a finite set for every i and Aj(k) = k is uncountable, so |J; Z; # A}. We
take an infinite subset M of AL(k) \ U, Zi(k). Then M is a Zariski dense
subset of A}c.

Assume that the claim holds for A}ﬁ, A%, e ,AZ‘I. Define p : Al — AZ‘I
and ¢ : A} — A}{ as p(x1,...,xn) = (z1,...,2p—1) and q(x1,...,2,) =
zn. Let {Zi}; (vesp. {Z}/}x) be the subset of {Z;}; such that p(Z}) #
AP (vesp. p(Z)) = A1), Let Wi € A?™! be the set of points w €
Az_l such that the fiber (P|Z;’)_1(w) = p~Hw) N Z} of plzy over w has
positive dimension. Then W}, is a proper closed subset of Az_l. By induction
hypothesis, |J ; QS(Z;-) UU, Wi # AZ‘I and we can take a countable subset
M c APTHE) \ (Uj 6(Z5) (k) U Uy Wi(k)) such that M" = {am}_; is
Zariski dense in A}~'. For every m and k, p~!(a,,) N Z) # AL since ay, ¢
Wi. So Umvk(p_l(am) N Z!) ¢ Ai and we can take a countable subset
M" C Ap(k) \ Ui (0™ am) (k) N Z}!(k)) such that M" is Zariski dense in
A}, by induction hypothesis. Set M = M’ x M” C A"' x A}. Then it is
clear that M satisfies the claim. O

Proof of Theorem [-7.3. Take a model (X¢, e Co, fc,) of (X, f) over a
curve Cy. For any curve C' with a finite morphism C' — Cy, (X¢ X, fo)
denotes the pull-back of (X¢, e Co, fc,) by C — Cp and ¢ : Xo — X¢,
denote the projection. For a section ¢ : C — X and a finite morphism
C' — C of curves, (0)¢r : €' — X X C' denotes the pull-back of o by
' —=C.

By Lemma B3, we can take a countable subset M = {a;}2; C X¢,
such that
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e M is Zariski dense in X¢, and
° q; gffg for every m > 1 and ¢ > 1.
0

We will construct rational points Py, P», ... € X inductively. Let Cp —
Cy1 — -+ = C1 — Oy be a sequence of finite morphisms of curves and
P; € X a rational point corresponding to a section o; : C; — X¢, of m¢, for
each 1 < i < k. Assume that Py,..., P, € X satisfy the following condition

%)k

PZ'EXffOI“lgigki,

ap(P;) =6p for 1 <i <k,

Op(P)NOy(P;) =@ if 1 <i,j<kandi#j, and

a; € Im(¢c, o) for 1 <i < k.

Set n = dim X. Note that X¢, is smooth outside a finite union of fibers of
T, -

Let py : X — X¢, be a resolution of (X¢, )red Whose exceptional locus
is contained in a finite union of fibers of 7, . By blowing up a point in (pj o
Ve, ) Hakt1), we may assume that (p o ¥, ) " (ars1) has codimension 1.
We take a very ample divisor H on X} and suitable members Hy,..., H, €
|H|, and set Cxy1 = HiN---NH,. Let ¢ : Cxy1 — X}, denote the inclusion.
We can choose Hi, ..., H, satisfying

(I) Ck41 is a smooth and irreducible curve satisfying Im(7¢, opgot) = C,

) Cit1 € pgl(fa)_l(lfck) for all m > 0,
(ITI) Cx1 NI m =@ for all m > 1,
)

Cry1 € (f,g”l)_l(lm(flzn op,;1 o (0i)c,)) for all m,m’ and 1 < i < F,
and

(V) ag+1 € Im (v, o pg o ¢).
Set ¢ = mc, opr ot : Cppq1 — Ck. Then we obtain the following diagram:

CkJrl LOL
\%\J

chkJrl *> Xck

\ lﬂ'ck_H J{wck
@

Ci1 — Cy
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Here, X¢, ., = X¢, X¢, Crky1 and op41 is the unique morphism which makes
the above diagram commutative. Let Py, € X be the rational point of X
corresponding to ox11. By (II), Im(ox41) € (fg?cﬂ)*l(ffck“) for every
m > 0. Hence, Im(fgz+1 °o0kt1) & IkaH and so f™(Pyy1) € Iy for every
m > 0. Therefore, Py11 € X;.

Let pri1 @ Xgp41 — Xc,,, be aresolution of (X¢,  , )red Whose exceptional
locus is over a finite union of fibers of m¢, ., and 0 = plzl 0 opp+1 becomes
a morphism. Then we obtain the following diagram:

0
Xpy1 — Xg

lpkﬁ»l ka
P

b
Xck+1 XCk - XC’O

¢

Cr+1 Ck Co

Set fr =Py 0 fcy, © Phs fot1 = Piyq © fCruss © Phs1 and o} = pjy © Opp1.
Fix a positive integer m. Then it follows that pyofo fi" ;o0 | = pro fi ot
Since py, is birational, we have 6o f;"} | o0y, 41 = fi'ot. Take an ample divisor
A on Xjq such that A — 0*H is ample. We compute

deg(fl?:—l o UZ+1)*A 2 deg(fl?—li-l ° 02+1)*9*H
=deg(fo fiy00p ) H
= deg(f;" ot)"H.

By (III) and Lemma B4 (ii), we have
deg(f{" 01) H = deg " (f")"H = ((fi")"H - H" ™).

Now, (Xg41 Ok 1 Pt Ci+1, fr+1) 1s a model of (X, f) and ‘712;+1 is a

section of m¢, ., o pry1 corresponding to Pyyq. Therefore
ar(Pry1) = lqigljo%f deg((fiiq o afcﬂ)*A)l/m (by Proposition I-ZR)
> liminf((f")*H - H*1)1/m
m—00
=0y, = 05.

So af(Pyyq) exists and of(Ppy1) = 0.
Fix i € {0,...,k} and m,m’ > 0. By (IV), Im(f" o) # Im(f" op; ' o
(0i)c,,) = Im(f" opl;1 o (04)c, © ¢). Since py, is birational and the images of
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both f,;”' ovand f;" o plzl o (03)c, © ¢ intersects the isomorphic locus of py,
we have

Im(pg o f,?"‘/ o) # Im(pg o fi* opl,;1 o (04)c, © @).
On the other hand,

I !
profi or=1po fB oo

and
pro fi* Oplzl o (Uz‘)Ck op=1o0 fg;Jrl o (O'Z‘)Ck_H.

So Im(¢ o f& 0 onsr) # Im(y o f& 0 (0i)cy,,), and so fE | o ok #
fé,,, ©(0i)cy,,- This means that ™ (Pey1) # f™(P;). Hence Of(Pyy1) N
Set Yr1 = Y o1, Then iy 0ok = P opror. By (V), ai €

Im(¢gy1 © ogt1). As a consequence, Py, ..., Py satisfies (%)gi1.
Continuing this process, we obtain a subset S = {P, P»,...} C Xy,
a sequence --- — (C7 — (Y of finite morphisms of curves, and sections

o; : C; = X, corresponding to P; for each ¢ > 1 such that
o ay(P;) = 65 for every 1,
e O¢(P)NO¢s(P;) = ifi#j, and
e a; € Im(¢¢, o 0;) for every i.

So it is enough to show that S is a Zariski dense subset of X. Let Z C X
be a proper closed subset of X. We take a finite cover C' — C{ such that Z
lifts to a proper closed subset Z¢ C X¢ = X¢, X¢, C. Since ¥c(Zc) is a
proper closed subset of X¢,, a; € ¥c(Z¢) for some i. Take a curve C’ with
finite morphisms C’ — C and C’ — C; which makes the following diagram

commutative:
/ C\
c’ Cy
o

Set Zor = Zo X ¢ C'c Xer. Since a; € Im(¢c/ o (Ui)c/) and a; & Qﬂc(ZC') =
Yor(Zer), Im((oi)cr) € Zer. So Py & Z. Therefore S is a Zariski dense
subset of X. O
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Theorem B2 includes the following result.

Corollary 4.7.4. Assume that k is an uncountable algebraically closed field
of characteristic zero. Let (X, f) be a dynamical system over k(t). Then
there exists a rational point P € Xy such that ay(P) = dy.

For a dynamical system on a rational variety, we can take a subset S as
in the statement of Theorem E-72 over a fixed function field.

Theorem 4.7.5. Assume that k is an uncountable algebraically closed field
of characteristic zero. Let (X, f) be a dynamical system over k(t) such that
X s rational. Then there exists a subset S C Xy such that

o There exists a function field K of a curve over k and a model Xg of
X over K such that all points in S are defined over K,

o af(P) =6y for every P € S,

e S is a Zariski dense subset of X, and

e Of(P)NOy(Q)=@ if P,Q €S and P # Q.
We need a result in [40].

Theorem 4.7.6 ( [40, Theorem 3.4 (i)]). Let f: X --» X andg: Y --» Y be
dominant rational self-maps on smooth projective varieties and ¢: Y --+ X
a birational map such that pog = fo¢. Let V C Y be an open subset
such that ¢ly : V — ¢(V') is an isomorphism. Then 0y(Q) = af(¢(Q)) and
0,(Q) = a(6(Q) for any Q € Y, N ¢~ 1(X;) satisfying Oy(Q) C V.

Proof of Theorem G 7.3. Let ¢ : Y = PZ(T) --+ X be a birational map.
Set g = ¢~ 1o fo¢. Take open subsets U C X and V C Y such that
¢|ly : V — U is isomorphic. We can take a curve C, a model (X¢ el fo)
(resp. Yo =P} x C ¢ 0, g¢)) of (X, f) (resp. (Y, g)), alift Ug (resp. Ve)
of U (resp. V), and a birational map ¢¢ : Yo --» X¢ such that ¢c|y, :
Vo — Ug is isomorphic.

Set Z¢ = Yo \ Vo. By Lemma B3, we can take a countable subset
M = {a; = (bj,¢;)}52, C Vo such that

e M is Zariski dense in Y,
e a; & (98) (I, UZc)U ¢51(f6”)_1(lfc) for every m > 0, and

o b ¢ prPZ(Igrcn) for every m > 1 and ¢ > 1.
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Note that prpz(]—ggl) is a proper closed subset of P} for every m because
dim Igm <n —1. For m > 1, let Jp, C PIrpn (Igm) be the closed subset over
2. We take a point ¢ € C such that g # ¢; for all i and fo|r, : Fy --» Fy
is well-defined and dominant, where Fj denotes the fiber of pro : Yo — C
over q.

Assume that we have sections 7, . . ., 7 of pro corresponding to Q1, ..., Qx €
Y which satisfy the condition (*):

which the fibers of prpn | 1,m have positive dimensions. Then COdim[kaL Im >

e Qi €Y,N¢ 1 (Xy) such that Oy(Q;) C V for 1 <i <k,
o 0y(Q;) =04 for 1 <i <k,

e 04(Qi)N0y(Q;) =2 if 1 <i,j<kandi#j, and

o a; € Im(m) for 1 <i<k.

We take general hyperplanes Hi,...,H, 1 of P}!. Then we have a line
L=HyNn---NH,_1 CP;. We can choose Hy,...,Hy, 1 as satisfying

(1) L & prpp(Igz) and LN Jp, = @ for every m = 1,
(I) L x{q} ¢ (ggll\pq)*l(lm(gg? o7;) N Fy) for every m,m’ > 0 and 1 <
i <k, and
(ITT) bjyq € L.

Note that Im(g¢* o 7;) N Fy is a point since g/ o 7; is a section of prg. By (I),
Igm N (L x C) CY is a finite set. Set U, (Igm N (L x C)) = {(z;,y;)};-
We can construct a finite cover ¢ : C' — L satisfying

(1) ¢(ck+1) = brta,
(2) ¢(y;) # x; for every j, and
(3) (¢(a),9) & (9™ |r,) " (Im(g™ o 73) N Fy) for every m,m’ and 1 <i < k,
by composing a fixed finite morphism C' — L with a suitable automorphism
on L.
id
Set 711 : C ((b’—>0) L xC — X¢c and let Qi1 € P*(K) be the cor-

responding rational point. Then agi1 € Im(741) by (1). Since ap41 €

(98) ™ (Lge U Ze) U () (Ugo), Im(g 0 Thst) & Ige U Zc and Im(fF o
¢c o Tp+1) & If, for every m > 0. Hence Qpi1 € Y, N ¢~ (Xy) such that
Oy¢(Qr4+1) C V. Furthermore, Im(7;11) N Ipm = @ for every m by (2).
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Therefore agy(Qr41) exists and ag(Qp+1) = dg by Theorem BB (i). More-
over, (g% o T11)(q) # (¢ o 7;)(q) for every m,m’ and 1 <i < k by (3). In
particular, it follows that gg' oTpy1 # g ot for every m,m/ and 1 <i < k.
This means that Og(Qr+1) N Oy(Qi) = @ for 1 < i < k. As a consequence,
{71, .. Tk, Tkt1} satisfies (%)g41.

Continuing this process, we obtain morphisms 7y, 7o,... and a subset
T = {Ql,QQ, .. } cvVn Yg. Set P, = (Z)(QZ) and S = {Pl,PQ, .. } Then P,
corresponds to a section o; = ¢coT;. Since Q; € Ygﬁgb_l(Xf) and Oy(Q;) C
V, ag(Qi) = af(P;) by Theorem BZZB. So we have ayf(P;) = 6. For 4,
with i # j, Og(Q;i) N Oy4(Q;) = @ implies that Of(F;) N O¢(Pj) = @. Since
pi € Im(7;) for every 4, | J, Im(7;) is Zariski dense in Yo and so |J; Im(o;) is
Zariski dense in X. So S is Zariski dense in X. Therefore S satisfies the
claim. O
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Chapter 5

Self-morphisms of
semi-abelian varieties

(Joint work with Kaoru Sano.)

5.1 Summary

Let X be a smooth projective variety and f: X --» X a rational self-map,
both defined over Q. Fix a Weil height function hyx associated with an
ample divisor on X. Let A(f) be the set of the arithmetic degrees of f, i.e.

A(f) ={as(x) | € X with f"(x) & I for every n > 0}

where Iy is the indeterminacy locus of f. Determining the set A(f) for a
given f is an interesting problem. In [40, Theorem 1.6], we proved that for
any surjective morphism f, there exists a point x € X such that ay(z) = dy.
When X is a toric variety and f is a self-rational map on X that is induced
by a group homomorphism of the algebraic torus, the set A(f) is completely
determined [37,50].

When X is quasi-projective, the arithmetic degrees and dynamical de-
grees can be defined by taking a smooth compactification of X. In this
chapter, we prove Conjecture 232 (KSC) for self-morphisms of semi-abelian
varieties and determine the set A(f).

Theorem 5.1.1. Let X be a semi-abelian variety and f: X — X a self-
morphism (not necessarily surjective), both defined over Q.

(1) For every x € X(Q), the arithmetic degree ay¢(x) exists. Moreover,
we can write f = T, o g where Ty, is the translation by a point a €
X(Q) and g is a group homomorphism (c.f. [6, Lemma 5.4.8]). Then
A(f) = Alg)-
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(2) Suppose f is surjective. Then for any point x € X(Q) with Zariski
dense f-orbit, we have ag(x) = dy.

(3) Suppose f is a group homomorphism. Let F(t) be the monic minimal
polynomial of f as an element of End(X)®7zQ and

F(t) = tOF () - Fp(t)*

the irreducible decomposition in Q[t] where eg > 0 and e; > 0 for
i=1,...,r. Let p(F;) be the mazimum among the absolute values of
the roots of F;. Then we have

A(f) - {17:0(F1)7:0(F1)2a st 7P(Fr)a p(FT)2}'

More precisely, set

Xi= fOR(f) - Fa () Fa () - B (f) 7 (X).

Define

{p(F;)} if X is an algebraic torus,
A = < {p(F)*} if X; is an abelian variety,
{p(Fy), p(F3)%} otherwise.

Then we have

A(f)={1}UA U---UA,.

Remark 5.1.2. Actually, in the situation of Theorem 511 (3), f is conju-
gate by an isogeny to a group homomorphism of the form

fox- - xfri XgXx-+xX, — Xgx--xX,
where A(fo) = {1} and A(f;) = {1} UA; fori=1,...,r.

We can characterize the set of points whose arithmetic degrees are equal
to 1 as follows (cf. [AR] for related results).

Theorem 5.1.3. Let X be a semi-abelian variety and f: X — X a sur-
jective morphism both defined over Q. Write f = T, o g where T, is the

translation by a € X(Q) and g is a surjective group endomorphism of X.
Suppose that the minimal polynomial of g has no irreducible factor that is

a cyclotomic polynomial. Then there exists a point b € X (Q) such that, for

any x € X(Q), the following are equivalent:
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(1) ap(z) =1;
(2) # Op(z) < o0;

(3) z € b+ X(Q)tors-

Here X (Q)iors is the set of torsion points.

Remark 5.1.4. It is easy to see that when f is a surjective group homo-
morphism, we can take b = 0.

Remark 5.1.5. If the minimal polynomial of g has irreducible factor that is
a cyclotomic polynomial, then one of f; in Remark B2 (applied to f = g)
has dynamical degree 1.

To prove the above theorems, we calculate the dynamical degrees of
self-morphisms of semi-abelian varieties.

Theorem 5.1.6. Let X be a semi-abelian variety over an algebraically
closed field of characteristic zero.

(1) Let f: X — X be a surjective group homomorphism. Let

0 T XT3 A 0

be an exact sequence where T is a torus and A is an abelian variety.
Then f induces surjective group homomorphisms

fT::f|T:T—)T
g A— A

with gom =mo f. Then we have
b5 = max{;, 07,

Moreover, let Pr and P4 be the monic minimal polynomials of fr and g
as elements of End(T)g and End(A)q respectively. Then, 65, = p(Pr)
and 54 = p(Pa)?.

(2) Let f: X — X be a surjective group homomorphism and a € X a
closed point. Then 1,05 = 7.

Remark 5.1.7. The description of 4, in Theorem BTH(1) is well-known
(see for example [b0]).
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The outline of this chapter is as follows. In §6, we fix notation, and
summarize basic properties of arithmetic degrees for later use. In §b3,
we prove a lemma that says every group homomorphism of a semi-abelian
variety “splits into rather simple ones”. In §6-4, we prove our main theorems
for isogenies of abelian varieties. We use these to prove the main theorems.
In §67571, we calculate the first dynamical degrees of self-morphisms of semi-
abelian varieties and prove Theorem BT8. In §65532, we prove Theorem b1
and bT3.

5.2 Notation and Preliminaries

5.2.1 Notation

In this chapter, the ground field is either Q or an arbitrary algebraically
closed field of characteristic zero. A variety is a separated irreducible reduced
scheme of finite type over an algebraically closed field k. Let X be a variety
over k and f: X --» X a rational map. We use the following notation:

CH'(X)  The group of codimension one cycles on X modulo rational
equivalence is denoted by CH'(X).

p(T)  For an endomorphism 7: V' — V of a finite dimensional
real vector space V, the maximum among the absolute
values of the eigenvalues of T is called the spectral radius
of T" and denoted by p(T).

p(F)  For a polynomial F' € C[t], the maximum among the abso-
lute values of the roots of F' is denoted by p(F') and called
the spectral radius of F.

T, Let X be a commutative algebraic group and a € X (k) a
point. The translation by a is denoted by Tj,.

5.2.2 Arithmetic degrees

In this subsection, the ground field is Q. We give the definition of arithmetic
degrees when the variety is not necessarily projective.

Definition 5.2.1. Let f: X --» X be a rational self-map of a smooth
quasi-projective variety.

(1) A point z € X¢(Q) is called f-preperiodic if the orbit O¢(z) = {f"(z) |
n > 0} is a finite set.
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(2) Fix a smooth projective variety X and an open embedding X C X.
Let H be an ample divisor on X and take a Weil height function hy

associated with H. The arithmetic degree ay(z) of f at x € X;(Q) is
defined by

ay() = lim max{1, hy(f"(@)}""

if the limit exists. Since the convergence of this limit is not proved in
general, we introduce the following:

af(fU) = lim sup max{1, hH(fn($))}1/n7

n—oo
a(z) = liminf max{1, hy (f"())}/".
n—oo
We call @y(r) the upper arithmetic degree and a () the lower arith-
metic degree. The definitions of the (upper, lower) arithmetic de-

grees do not depend on the choice of X, H and hy ( [29, Proposition
12] [0, Theorem 3.4]).

(3) Suppose that a¢(z) exists for every x € X;(Q). Then we write A(f) =

{as(z) [z € Xp(Q)}.

Re(m)ark 5.2.2. By definition, 1 < a;(z) < @y(z). When x is f-preperiodic,
ap(x) = 1.

Lemma 5.2.3. Let X,Y be smooth quasi-projective varieties and f: X --+

X, g:Y --»Y rational maps. Let x € X¢(Q) and y € Yy(Q). If ay(x) and
ay(y) ewxist, then ayyg(x,y) also exists and

afxg(e,y) = max{oy(z), ag(y)}-

Proof. 1t is enough to prove when X, Y are projective. Take ample divisors
Hx, Hy on X,Y respectively. Fix associated height functions hg, , hg, so
that hg, > 1 and hg, > 1. Then h := hpy, o pry +hg, o pry is an ample
height function on X x Y. Then

Tim A((F % )" (@ 9) V" = T (hary (7 (2) + hary (6" (5) /"
= masc{ lim Ay, (/"(2))"/", im g, (6" ()"} = max{as(x), ag (1))

O
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Lemma 5.2.4. Consider the following commutative diagram

y-25y
X---X
!

where X,Y are smooth quasi-projective varieties, f,qg rational maps and 7

a surjective morphism. Let y € Yg(Q) be a point such that w(y) € X;(Q).
Then

ay(y)

a ay(x)
a,(y)

>
ng(x).

Proof. We may assume X,Y are projective. Take an ample divisor Hx on
X and fix an associated height function hp, with hy, > 1. Take an ample
divisor Hy on Y so that Hy — 7n*Hx is ample. Then we can take a height
function hp, associated with Hy so that hpy, > hg, om. Then

() =limsup Ay (f"(2))"/" = Tim sup by (m(g" (1)) /"
< limsup ha, (9" ()™ = @y(y).
n—o0
The second inequality can be proved similarly. O

Lemma 5.2.5. Consider the following commutative diagram

y-25y
X---X
!

where X, Y are smooth projective varieties and f, g rational maps. Suppose
there exists a non-empty open subset U C X such that w: V := 7= 1(U) —
U is finite.

Let y € Y(Q) such that y € Y,(Q), = :=m(y) € X;(Q), O4(y) CV and
Of(x) CU. If ag(y) exists, then ay(x) also exists and ay(y) = of(x).

Proof. Take an ample divisor H on X and let hy be a height function
associated with H. We choose hy so that hg > 1. Then we have

ha(f"(x)) = hu(7(9"(y))) = haer (9" (y))- (5.2.1)
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Here we choose h+g so that hy«g = hy o .

Let Y L Z —2+ X be the Stein factorization of 7. Then 3: V —

a~!(U) is an isomorphism. Let v: Z —» Z be a resolution of singularities
that is a composite of blow-ups with center in the singular locus of Z. In
particular, the blow-up centers do not intersect with a=1(U). Let u: Y —
Y be a resolution of indeterminacy of ¥ --+» Z that is a composite of blow-
ups along smooth centers outside V. The situation is summarized in the

following diagram:
Y
AN
Y Z
NA
m Z
e

X
Then, since v is a sequence of blow-ups and «*H is ample (lgecause a is
finite), there exists an effective v-exceptional Q-divisor E), on Z such that

v'a*H — E,

is ample (cf. [I¥, IT Proposition 7.10 (b)]). Also, since Z is smooth, there
exists an effective Q-divisor EE on Y that is S-exceptional such that

B*(v*a*H - E,) — Ej
is ample. (To see this, use [31, Lemma 2.62] or write B as a blow up along an

ideal and apply [IR, IT Proposition 7.10 (b)].) Set A = 8*(v*a*H — E,) —E3

and F = g*EV + EE' Then A is ample, F is effective, Supp ENp~ (V) =0
and p*m*H = A+ E.

Lety = Y(y). Let g = u~togou: Y --» Y be the rational map induced
by g. (Since g(y) € V and p is isomorphic over V, u~!ogopu is well-defined.)
Then by [40, Theorem 3.4(i)], ag(y) exists and equals agy(y) since agy(y)
exists. (Note that [40, Theorem 3.4(i)] works for possibly non-dominant
rational maps f, g.) Choose height function hai g so that haip = hr-gop.
Then

hae11 (9" (y)) = haye (9" (Y))- (5.2.2)
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Since the g-orbit of 3 does not intersect with Supp F, we have

have(g" (V) = ha(g"(y)) + O(1) (5.2.3)

where h 4 is a height associated with A. Here, we use the fact that any height
function associated with an effective divisor is bounded below outside the
support of the divisor (cf. [I9, Theorem B.3.2.(e)]). If C' > 0 is a positive
number with CA — (A + E) is ample, we have

has (@ @) < Cha@ @) + O(1). (5.2.4)
By (B2270), (6232), (6223) and (5Z4), we have

ha(g"(y)) + O(1) < hu(f*(x)) < Cha(g"(y)) + O(1).

- n

Since ag(y) = lim, 0o max{l, ha(g (7)) }/™ exists and is equal to ay(y),
we get lim, o0 hH(f"(x))l/" = ay(y). O
5.2.3 Kawaguchi-Silverman conjecture

We restate Kawaguchi-Silverman conjecture (Conjecture [-32) when the
variety is not necessarily projective.

Conjecture 5.2.6. Let X be a smooth quasi-projective variety and f: X --»
X a dominant rational map, both defined over Q. Let x € X¢(Q).

(1) The limit defining op(x) exists.
(2) The arithmetic degree af(x) is an algebraic integer.

(3) If the orbit Op(x) = {f™(x) | n = 0,1,2,...} is Zariski dense in X,
then ag(x) = 0f.

The following results are used later.

Theorem 5.2.7. [28, Theorem 4/, [50, Theorem 4, Corollary 32/, [51,
Theorem 2]

(1) For any self-morphisms of abelian varieties, Conjecture BZ28 is true.

(2) Let X be an algebraic torus and f: X — X be a group homomor-
phism. Then Conjecture BZ@ is true for f. Moreover, let F(t)
be the minimal monic polynomial of f as an element of End(X)q
and F(t) = tOF(t)' --- F.(t)°" the irreducible decomposition. Then

A(f) = {17:0(F1)7 ce p(FT)}
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5.3 Splitting lemma

In this section, the ground field is an algebraically closed field of character-
istic zero. Let X be a a semi-abelian variety, i.e. a commutative algebraic
group that is an extension of an abelian variety by an algebraic torus. Note
that X is divisible i.e. the morphism X — X;x — nx is surjective for
every n > 0.

Lemma 5.3.1. Let f: X — X be a group homomorphism. Let F(t) € Z][t]
be a polynomial such that F(f) =0 in End(X). Suppose F(t) = Fi(t)Fs(t)
where Fy, Fy € Z[t] are coprime in Q[t]. Set X1 = Fo(f)(X) and Xy =
Fi(f)(X). Then X = X1 + X2 and X1 N Xo is finite. In other words, the
morphism X1 X X9 — X (x1,22) = 1 + x2 is an isogeny.

Proof. The proof of [61, Lemma 3.1] works for semi-abelian varieties. O

In the situation of Lemma B33, write f; = f|x,. Then F;(f;) = 0 and
we have the following commutative diagram:

Xl XXQle XX2

Wl JW

X—f>X.

Here 7 is the isogeny defined by 7(x1,x2) = x1 + 2.

Since X is divisible, we have End(X) C End(X)®zQ. Let f € End(X)
and F(t) € Z[t] be the monic minimal polynomial of f as an element of
End(X)®zQ. (The monic minimal polynomial has integer coefficients be-
cause those of endomorphisms of a torus and an abelian variety have integer
coefficients.) Let

F(t) = Fo(t)* Fa ()t - Fr()™

be the decomposition into irreducible factors where Fy(t) = ¢, eg > 0, €; >
0,s = 1,...,7 and Fj(t) are distinct monic irreducible polynomials. Note
that r is possibly zero. Set

Xi = Fo(f)* - Frr ()5 Fin ()41 - () (X)

and f; = flx,. Here, X; are also (semi-)abelian varieties since they are
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images of a (semi-)abelian variety. Then we get the commutative diagram

XO X e XXTMXO X oo XXT
l lﬂ
X X
f
where 7(zg,...,2,) = o+ - -+ax,. Note that the monic minimal polynomial

of f; as an element of End(X;)®zQ is F;(t)®. Note that f is surjective
if and only if ¢y = 0 and if this is the case, we have d; = 0 x..xf, =
max{dy,...,0¢ } (cf. Remark 12 (5)).

5.4 Arithmetic and dynamical degrees of isogenies
of abelian varieties

Theorem 5.4.1 (Theorem BT(3) for abelian varieties). Let X be an
abelian variety and f: X — X be a group homomorphism, both defined
over Q. Let F(t) be the monic minimal polynomial of f as an element of
End(X)q and

F(t) =t°F (t)* - F.(t)*

the irreducible decomposition in Q[t] where eg > 0 ande; > 0 fori=1,...,r.
Then we have

A(f) = {1710(F1)27 s p(FT)Z}

Theorem 5.4.2 (Theorem b3 for isogenies of abelian varieties). Let X be
an abelian variety and f: X — X a surjective group homomorphism, both
defined over Q. Suppose that the minimal polynomial of f has no irreducible

factor that is a cyclotomic polynomial. Then for any x € X(Q),

ap(z) =1 <= # Of(z) <0 <= z € X(Q)tors

where X (Q)iors s the set of torsion points.

Lemma 5.4.3. Let X be an abelian variety of dimension g over an al-
gebraically closed field of characteristic zero and f: X — X a surjective
group homomorphism. Let P(t) be the monic minimal polynomial of f as
an element of End(X)q, which has integer coefficient, and p the mazimum
among the absolute values of the roots of P(t). Then we have 5§ = p>.
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Remark 5.4.4. The minimal polynomial of f as an element of End(X)qg
is equal to the minimal polynomial of T;(f) for every prime number [. If
the ground field is C, these are also equal to the minimal polynomial of the
analytic representation of f.

Proof. By the Lefschetz principle, we may assume that the ground field is
C. Let X = CY9/A, where A is a lattice in C9. Let f.: A — A be the
rational representation and f,: C9 — CY the analytic representation of f.

We have a natural isomorphism H"(X;Z) ~ Homz(A\" A, Z) (cf. [24, §1
(4)]). If we identify H"(X;Z) with Homz(A" A,Z) by this isomorphism,
then f*: H"(X;Z) — H"(X;Z) is (A" fr)*. Therefore, the eigenvalues of
f* are products of r eigenvalues of f,. Since fu|o = f, the characteristic
polynomial of f, as an R-linear map is Q(t)Q(t) where Q(t) is the character-
istic polynomial of f, as a C-linear map. (Take a basis ey, ..., eq4 of C9 so that
fa is represented by an upper triangular matrix. Then compute the char-
acteristic polynomial of f,, f, using bases {e1,... ez}, {e1,ie1,...,eq,i€4}
respectively.) Note that the set of roots of P(t) and Q(¢) are the same.
Therefore, the spectral radius of f*: H*(X;Z)®zR — H?*(X;Z)®zR is
equal to the square of spectral radius of f.. Note that the spectral radius
of f* ~ H*(X;Z) is equal to the spectral radius of f* ~ H%'(X) (cf. the
inequality above Proposition 4.4 in [I3]), this proves the theorem. O

Now, let X be an abelian variety and f: X — X a group homomor-
phism, both defined over Q. Let F(t) be the monic minimal polynomial of
f and

F(t) =t°F (t) - F.(t)°r

the decomposition into irreducible factors in Q[¢]. Here F; are distinct monic
irreducible polynomial in Z[t] with F;(0) # 0. Write Fy(t) = t. Set

Xi=Fo(f)* - Fiaa(f)“ Fia ()7 - B ()™ (X).
Then by §3, we have the following commutative diagram:

XOX"'XXTM)

]

X

Xox -+ x X,

!

Here, the vertical arrows are isogenies. Note that the minimal polynomial
of fl is Fi(t)ei.

f
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Lemma 5.4.5. Let f: X — X be a surjective group homomorphism over
Q such that the minimal polynomial of f is the form of F(t)¢ where F is
an irreducible monic polynomial in Z[t]. For any x € X(Q), if ay(x) < dy,
then x is a torsion point. In particular, x is an f-preperiodic point and

ap(z) =1.

Remark 5.4.6. Note that af(x) < §¢ happens only if 6§ > 1. In the above
situation, 0y = 1 if and only if F'(¢) is a cyclotomic polynomial. This follows
from Lemma B273 and the fact that if the absolute value of every root of an
irreducible monic polynomial with integer coefficients is less than or equal
to one, then the polynomial is cyclotomic.

Proof. We prove the claim by induction on dim X. If dim X = 0, there
is nothing to prove. Suppose dimX = d > 0 and the claim holds for
dimension < d. Take a nef R-divisor D such that f*D = ;D. Let q be the
quadratic part of the canonical height of D, i.e. ¢(x) = lim,,_,o0 hp(nz)/n?.
By [?8, Theorem 29, Lemma 31|, there exists an f-invariant subabelian
variety Y C X such that

{z € X(Q) | q(z) = 0} =Y (Q) + X (Qsors-

Assume af(x) < 0. Then x = y + z for some y € Y(Q) and some torsion
point z. It is enough to show that y is a torsion point. If Y is a point, we are
done. Suppose dimY > 0. Since Y is f-invariant, the minimal polynomial
of fly divides F'(¢)¢ and is not equal to 1. Thus ds, = &5 > ay(z) =
ar(y) = ag, (y). Here, we use the fact that ap(r) = as(y + 2) = as(y).
This follows from the definition of arithmetic degree and the fact that the
Neron-Tate height associated with a symmetric ample divisor is invariant
under the translation by a torsion point. By the induction hypothesis, y is
a torsion point. O

Proof of Theorem pZ-1. We use the notation of §3. Set f; = f|x,. By [b1,
Lemma 6], A(f) = A(fox---xf;). Since af,(0) = 1 and oy xc...x £, (T05 - - -, 1)
max{a,(zo),...,ay (z,)} (see Lemma 623), we have A(fo x -+ x f,) =
A(fo)U---UA(fr). Note that A(fo) = {1} since fi° = 0. By Lemma 623
and the fact that there always exists a point whose arithmetic degree equals
the dynamical degree (cf. [28, Corollary 32] or [0, Theorem 1.6]), we have
A(fi) =A{1,64} fori=1,...,r. Thus A(f) = {1,64,...,05}. By Lemma
6473, &y, is equal to p(F;)>. O

Proof of Theorem pZ-3. By §3, we may assume the minimal polynomial of
f is the form of F(¢)¢ where F' is an irreducible polynomial that is not
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cyclotomic. Then p(F) is greater than one. Thus 65 > 1. By Lemma 5273,
if a¢(z) =1 then x is a torsion point. O

5.5 Arithmetic and dynamical degrees of self-morphisms
of semi-abelian varieties
5.5.1 Dynamical degrees

In this subsection, the ground field is an algebraically closed field of charac-
teristic zero.

Proposition 5.5.1. Let X be a semi-abelian variety. Let f: X — X be a
surjective group homomorphism. Let

0 T X-"5A 0

be an exact sequence where T is a torus and A is an abelian variety. Then
f induces surjective group homomorphisms

fT::f’T:T—>T
g A— A

with gomw =mwo f. Then we have
(Sf = max{ég,éfT}

Remark 5.5.2. This follows from the product formula of dynamical degrees
( [0, Theorem 1.1]) and [0, Remark 3.4]. To apply [0, Remark 3.4], just
take the standard compactification of X as in [64, §2 (2.3)]. The proofs
of [T0, Theorem 1.1] and [I0, Remark 3.4] are based on analytic methods,
so we give an algebraic proof of Proposition B2 below.

Lemma 5.5.3. Let X - ! Y -2527 be rational maps of smooth projec-
tive varieties. Suppose f(X \ If) ¢ 1, where Iy, 1, are the indeterminacy
loci of f,g. Then for any free divisor H on Z, we have

(9o f)"H < f*(g"H).

Here, for divisor classes A and B, A < B means B — A is represented by
an effective divisor.
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Proof. Take resolutions wx,my as follows:

X

1\

where X,Y are smooth projective varieties and 7y : (Y \ ) =Y\ I,
Then

X - —> A

(go f)*H = nx,[*§*H
[ (¢"H) =nx.f myny.g H.

Since g*H is free, the divisor 7y 7y ,g*H — g* H is represented by an effective
divisor with support contained in the exceptional locus Exc(my) of my. Since
f(X) ¢ Exc(ny), we have mx, f*(nyny.g*H — g"H) > 0. O

Proof of Proposition B2a1. We will write the multiplication of the groups
X, A, T by addition. Take a non-empty open subset U C A and a section
s: U — = 1(U) of 7. (There exists such a section because of the structure
theorem of semi-abelian varieties [64, Lemma 2.2].) Then

7l U) —————UxT
w %
Pr———— (n(P), P — s(n(P))).

By this isomorphism, f is conjugate to the rational map

(o) > (g(a), fr(y) + h(z))

where h(z) = f(s(x)) — s(g(x)). Note that h is defined on V := U N g~ (V)
and h(V) C T. Fix a compactification T'C T = P! x --- x P1. The rational
map A x T --» A x T defined by f is also denoted by f.

Claim 5.5.4. Let m: T x T --» T be the rational map defined by the
multiplication morphism T x T — T. Then, for any divisor D on T,
m*D ~ pr] D + pr5 D.
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Proof. We can write m*D ~ pr] Di + pr3 Do where Dy, Dy are divisors
on T. Let 1 € T be the neutral element. Let i: T — T x T be the

map defined by i(t) = (¢,1). Then, i(T) N I, = (. Therefore, we have
Dy ~ i*m*D = (moi)*D = D. In the same way, we can show that Dy ~ D.
|

SincefT is a product of IE, we have CH'(A x T) = pri; CH'(4) @
pry CHY(T) ~ CH'(A) @ CHY(T).

Claim 5.5.5. We have

F_ (97 M\~ 17 1 1
7 _<0 f;>.CH (A) & CHY(T) —> CH'(A) & CH(T).

Proof. 1t is enough to prove the following two statements:
(1) f* pri Ha = prj g*H 4 for every ample divisor H4 on A.

(2) f* pr} H = pri] h*H+prj frHe in CH!(A xT) for every very ample
divisor Hz on T.

(1) Since pr; is a morphism, we have
frori Ha = (pryof)"Ha = (gopry)"Ha = pri g Ha.
(2) First, in CH!(A x T), we have
f*pr3 Hy = (pryof)"Hy
= (mo(hx fr))" Hg
< (h x fr)*m"Hz by Lemma 653
= (h x fr)*(pr] Hy + prj H7) by Claim b54
pri h* Hz + pry frHr.

Now take an effective divisor E on A x T that represents the class (h x
fr)*m*Hz — (mo (h x fr))*Hz. For a general closed point a € A, Supp £
does not contain {a} x T. Let iq: T = {a} x T C A x T be the inclusion.
Since i F is effective, we have

io(f" pry Hy) < ig(pri h*Hy + pry frHy) = frHy

Similarly, if b € T is a general closed point and j,: A= A x {b} C A x T is
the inclusion, we have

gy (f* pra Hr) < gy (pr1 h* Hy + pry frHyp) = h* Hy.
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Therefore, if we write f* pry Hy = pri D1 + prj Dy where Dy and D, are
divisor classes on A and T respectively, we have proved

Dy < h*Hg, Dy < fiHy.

On the other hand, for a general a € V C A, {a} x T is not contained
in the indeterminacy locus of f, and pryof o i, = Tj(g) o fr. Here, the
translation 7},,) defines an automorphism on 7' and induces identity on
CHY(T). Thus

frHz = 1T Hy = (Tha) © fr)" Hy
= (pr2 Of o ia)*HT = (f © ia)* prE HT
< i f*pri Hx by Lemma 553
=i, (pr] D1 + pr5 Dy) = Ds.
Hence we get Dy < frHz < Dy and therefore Dy = f1.Hr.

__ Similarly, since A x {1} is not contained in the indeterminacy locus of
f, we have

h*Hyp = (pryof o j1)*Hy = (f o j1)" prs Hy
< jif*prs Hr by Lemma 6573
= ji(pri D1+ pr5 D) = D1.
Thus Dy = h* Ho.

Note that (f7) = f" Set h, = f"os— sog". Then we have

=" i)

Note also that N'(A x T) = (CHY(A)/ =) @ CHYT) and the action of

(f)* on N'(A x T) is in the same form. By [29, Theorem 15], 5f~ =

limy o0 P((F™)* 31 (asc) Y™ Thus

57 = 67 = lim max{p((g")* lys(a)). p((F) s gr)} " = max{dy. 37, ).
O

Lemma 5.5.6. Let f: X — X be a surjective group homomorphism of a
semi-abelian variety X and a € X a closed point. Then 07,0r = d.
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Proof. Let X be the standard compactification of X as in |64, §2 (2.3)].
Then T, extends to an automorphism of X, which we also denote by T}, and
the pull-back T/ : N1(X) — N!(X) is the identity. (We can deduce these
facts from the description of the group law in terms of the compactification,
cf. [64, the proof of Proposition 2.6].) Thus, as an endomorphisms of N (X),
we have

(Tao ") = (Tyo ") = (f") o Ty = (f")"
where b =a + f(a) + -+ f""!(a). Therefore,
0,0 = lim [[((Zuo /") Y™ = Tim [|(f")7|Y" = &

where ||-|| is a norm on Endg(N(X)g). O

Proof of Theorem BE1d. (2) is Lemma B5@. (1) follows from Proposition
b5, Lemma 23 and Remark 174 L]

5.5.2 Kawaguchi-Silverman conjecture and arithmetic degrees

In this subsection, the ground field is Q.

Lemma 5.5.7. Let f: X — X be a surjective group homomorphism of a
semi-abelian variety. Fix an exact sequence

0 T XT3 A 0.

The morphisms induced by f is denoted by

fTi T—T

g: A— A.
Suppose the minimal polynomial of f as an element of End(X)®zQ is the
form of F(t)¢ where F(t) is a monic irreducible polynomial that is not cy-

clotomic and e > 0. (Note that the minimal polynomial is automatically
monic with integer coefficient because it is the case for fr and g.) Then, for

x € X(Q), either
(1) Oy(m(x)) is infinite and op(x) = ¢ or,

(2) m(x) is a torsion point and ay(x) =1 or dy,.
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Moreover,

(Lo(F)} X =T,
A(f) = L0700} = AL p(F)?}  if X = 4,
{1, p(F), p(F)?} otherwise.

Lemma 5.5.8. Let X be a semi-abelian variety and f: X — X bea

surjective group homomorphism. Let x € X(Q) be a point and n > 0 a
positive integer. If oy(nx) exists, then oayf(x) also exists and of(nx) =
ap(z).

Proof. Let X” and X’ be smooth projectivization of X such that the multi-
plication morphism [n]: X — X becomes a morphism 7: X” — X’. Let
f": X" — X" and f': X’ — X' be the dominant rational maps induced
by f. Since f is a group homomorphism, we have f’om = wo f”. Moreover,
we have 771(X) = X since [n]: X — X is finite. By Lemma 523, we get
the assertion. O

Proof of Lemma B-0-1. First of all, we have
57 = max{dy, 7, = max{p(F)2, p(F)} = p(F)? = 3,

(see Theorem B274(2), Proposition 651, Lemma 62-3). By Lemma 5473,
we have

1 if 7(z) is torsion
0y (m () = { o .

g =0f otherwise.
Note that, by Lemma B2, we have ayz(m(z)) < as(xr) < dy. Thus, if
ag(m(z)) = df, af(x) exists and is equal to dy.

Now, suppose m(z) is a torsion point. Take a positive integer n such
that nm(xz) = 0. Then nx € T and therefore af(nz) = ay, (nx) exists and is
equal to 1 or p(F) = dy, (Theorem B274(2)). By Lemma bR, af(x) exists
and is equal to 1 or 6.

The claim A(f) = {1,dy,,05} follows from the facts that A(fr)
{1,6¢,} (Theorem BZW(2)), A(g) = {1,04} (Lemma bZ43) and ay(x)
ag(m(z)) (Lemma 624).

v

Lemma 5.5.9. Let f: X — X be a group homomorphism of a semi-abelian
variety. Let F(t) be the minimal monic polynomial of f. Assume F(1) # 1.
Let a € X(Q) be any point. Then there exists a point b € X (Q) such that
h :=Tyo (T, o f)oT_y is a group homomorphism. For every such b, the

minimal polynomial of h is also F(t).
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Proof. Since F'(1) # 1, f—id is surjective. For any b € X (Q) with f(b)—b =
a, the morphism T} o (T, o f) o T_} is a group homomorphism.

Now we prove the second part. By symmetry, it is enough to prove
F(h) = 0. We have

h" = Tb o (Ta o f)n ] T_b = Tb o Ta+f(a)+---+f"—1(a) o fn o T_b.

Note that since h is a group homomorphism, we have h(0) = 0, in other
words, a = (f —id)(b). Thus

h' = Tb o Tfn(b),b o fn o T_b = Tfn(b) o fn ] T_b.

Therefore, for any = € X(Q)

O]

Proof of Theorem BI. Let X be a semi-abelian variety and first assume
f: X — X is a group homomorphism. We use the notation of §633. Apply
Lemma BZ3 for a suitable smooth compactification of

XOX“'XXTMXOX"’XXT

1 !

X
By Lemma B574, oy (x) exists for every i and every point z € X;(Q).
Therefore, by Lemma 623 and Lemma 523, A(f) = A(fo x -+ X fr) =
A(fo)U---UA(f). Since fy is nilpotent, A(fy) = {1}. If F; is a cyclotomic
polynomial, then d7, = 1 and A(f;) = {1}. Therefore by Lemma b5, we
have

f

A(f) =A(f)U---UA(f)
={1}UA4AU---UA,.

Now, consider any self-morphism of X. Any self-morphism is the form

of T, o f where Ty, is the translation by a € X(Q) and f is a group homo-
morphism (c.f. [B, Lemma 5.4.8]). There exist points a; € X;(Q) such that
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w(ag,...,a,) = ap+ -+ a, = a. Then we have the following commutative
diagram:
T XX T,
XOX"'XXT fox-xfr XOX"'XXTL)XOX"'XXT
l lw lw
X X X.

! To

As above, we have A(T, o f) = A((Ty, o fo) X -++ X (Ty, © fr)). Since fo
is nilpotent, every orbit of Tg, o fop is finite and therefore A(T,, o fo) =
{1} = A(fo). If Fi(t) is a cyclotomic polynomial, by Lemma B58 we have
o1, of; = 05, = 1 and therefore A(Ty, o f;) = {1} = A(f;). If Fi(t),i > 1
is not a cyclotomic polynomial, by Lemma 6559, T, o f; is conjugate by a
translation to a group homomorphism h; with minimal polynomial F*. In
particular, A(Ty, o fi) = A(h;) = A(fi). Therefore

A((Tao o fo) X -+ x (Ta, © f'r)) = A(Toy 0 fo)U---UA(T,, o fr)
AU U+ UA(S) = A()).

If the Ty o f-orbit of a point x € X (Q) is Zariski dense, then by Lemma
b3 and Lemma b571, we have

af(x) = max{dy, = 0y, | Fj is not a cyclotomic polynomial} = dy.
O

Proof of Theorem BEI-3. Since F(1) # 1, by Lemma 559, there exists a
point b € X(Q) such that T_; o f o T} is a group homomorphism. Thus
it is enough to prove the equivalence of (1), (2) and (3) for every group
homomorphism f and b = 0. (3) = (2). This follows from the fact that the
set of n-torsion points of X is finite for each n > 0 and that the image of an n-
torsion point by a group homomorphism is also an n-torsion point. (2) = (1)
is trivial. To prove (1) = (3), let z € X(Q) be a point with af(z) = 1.
By §3, we may assume that the minimal polynomial of f is the form of
F(t)¢ where F' is an irreducible monic polynomial that is not cyclotomic.
We use the notation of Lemma 6E557d. By Theorem 6472 and the inequality
af(z) > ag(p(x)), p(x) is a torsion point. Take n > 0 so that np(x) = 0.
Then nz € T. By Lemma 6538, oy, (nx) = ay(nx) = ay(x) = 1. Since the
minimal polynomial of fr divides F'(¢)¢, we can use [b, Proposition 21(d)]

and have nx € T(Q)ors. Hence x € X (Q)toys- O
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