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Abstract

Let X be a compact C∞ manifold with corners which has two embedded
boundary hypersurfaces ∂0X, ∂1X, and a fibre bundle φ : ∂0X → Y is given. By
using the method of blowing up, we define a pseudodifferential culculus Ψ∗

Φ,b(X)
which is suitable to extend the relative index formula of b-calculus to the case
of manifold with corners. This calculus contains the Φ-calculus of Mazzeo and
Melrose or the (small) b-calculus of Melrose as a special case when ∂1X or
∂0X is empty. As in the case of b-calculus and cusp calculus, this calculus can
be densely embedded into S-calculus of Debord, Lescure and Rochon by using
logarithmic blow-up. We discuss the Fredholm condition of those operators and
gives an explicit formula for the relative index in terms of the logarithmic residue
of the normal operator. As its application, the index theorem of Z/k-manifolds
with boundary is proved.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Blow-up of a manifold with corners . . . . . . . . . . . . . . . . . . . . 5
2.2 Blow-up of a Lie groupoid . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The definition of b-calculus and Φ-calculus . . . . . . . . . . . . . . . . 6
2.4 The scattering calculus and Atiyah-Singer index theorem . . . . . . . 7
2.5 Operator valued logarithmic residual theorem . . . . . . . . . . . . . . 8
2.6 The relative index theorem for b-calculus and the mod k index theorem 9
2.7 The topological index of a Z/k-manifold . . . . . . . . . . . . . . . . . 11

3 The fibred cusp b-calculus 13
3.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Lie groupoid structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The definition of the fibred cusp b-pseudodifferential operators . . . . 17
3.4 Symbols and normal operators . . . . . . . . . . . . . . . . . . . . . . 18
3.5 The Fredholm criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 The relative index theorem . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Application to Z/k-manifolds 24

1 Introduction

As Atiyah and Singer [5] proved, the index problem of an elliptic operator on a closed
manifold can be reduced to the topological K-theory. It is because a pseudodiffer-
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ential operator is Fredholm if and only if its principal symbol is invertible, and the
homotopy class of the principal symbol can be determined topologically. For a mani-
fold with boundaries or corners, we need to impose another invertibility to the normal
operator to obtain a Fredholm property, which can not be characterized topologically
in general. Depending on the normal structure at boundary or corners, various types
of pseudodifferential calculi has been studied [8, 14, 15, 16, 17, 18, 21], and its rela-
tion to the theory of pseudodifferential calculus on a Lie groupoid [24] also has been
studied [4, 9, 23].

What we are particularly interested in here are 0-calculus, b-calculus, scattering
calculus and cusp calculus. Let X be a manifold with boundary (without corners)
and x be a boundary defining function. The corresponding Lie algebroids are given
as follows.

V0(X) := {V ∈ V(X) | V |∂X = 0}
Vb(X) := {V ∈ V(X) | V |∂X is tangent to ∂X}
Vsc(X) := {V ∈ V(X) | V |∂X = 0 and V x ∈ x2C∞(X)}
Vcu(X) := {V ∈ V(X) | V |∂X is tangent to ∂X and V x ∈ x2C∞(X)}

When a fibre bundle φ : ∂X → Y is given, we can also define edge calculus and
fibred cusp calculus. The corresponding Lie algebroid is given by

Ve(X) := {V ∈ V(X) | V |∂X is tangent to the fibre of φ}
VΦ(X) := {V ∈ V(X) | V |∂X is tangent to the fibre of φ and V x ∈ x2C∞(X)}.

0-calculus and b-calculus two extreme cases of the edge calculus when φ = Id or
φ = pt, while scattering calculus and cusp calculus are two extreme cases of the
fibred cusp calculus when φ = Id or φ = pt.

The extension of those calculi to the case of manifold with corners is also consid-
ered by many authors. For b-calculus and cusp calculus, there is a straightforward
extension [15, 14] due to the interchangeability of the blow-ups. For edge calculus or
Φ-calculus, we must impose an additional iterated fibration structure or the higher-
depth stratified pseudomanifold structure to extend those calculus [1, 8].

Let I = 0, b, sc, cu, e or Φ. The enveloping algebra Diff∗
I(X) of VI(X) consists of

differential operators on X, and the I-calculus Ψ∗
I(X) is an algebra of pseudodiffer-

ential operators containing Diff∗
I(X). For P ∈ Ψ∗

I(X), P defines a bounded operator
between a suitable Sobolev spaces. It is Fredholm if and only if its symbol and normal
operator, namely, σ(P ) and N(P ) are invertible (in its closure).

Among those calculi, one of the significant difference is its index problem. Suppose
that the symbol σ is given. For b-calculus and cusp calculus, we can always chose
a Fredholm realization P , and its index problem is (in a special case) equivalent
to the APS index theorem [6]. On the other hand, for 0-calculus and scattering
calculus, we can not take a Fredholm realization in general. Because the operator
N(P ) degenerates to define a vector bundle homomorphism, which is a topological
obstruction. Its index problem is reduced to AS index theorem [5]. Thus, in some
sense, the index problem of edge and Φ-calculus is in between AS and APS index
problem.

The other significant difference is its closedness under the holomorphic functional
calculus. Φ-calculus, including scattering and cusp calculus, is closed under the holo-
morphic functional calculus. On the other hand, edge calculus, including 0 and b-
calculus, is not closed under the the holomorphic functional calculus. In this paper,
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this difference plays an important role to extend the relative index formula for the
manifold with corners.

By using logarithmic blow-up, b-calculus is embedded into a dense subalgebra of
cusp calculus: Ψ∗

b(X) ⊂ Ψ∗
cu(X). For an elliptic P ∈ Ψ∗

b(X), the Fourier (Mellin)
transform of the normal operator defines an entire operator-valued holomorphic func-
tion, namely, N̂(P )(λ) ∈ Ψ∗(∂X) (λ ∈ C). Its relative index formula is given by a
logarithmic residue of the normal operator [18]. Namely,

ind(xβ1

1 Px
−β1

1 )− ind(xβ2

1 Px
−β2

1 ) =
1

2πi
tr

∮
N̂(P )−1(λ)

∂N̂(P )

∂λ
(λ)dλ, (1)

where βi /∈ −ImSpec(N̂(P )) (i = 1, 2), β2 > β1 and the path of integral is chosen so

that its interior contains all poles of N̂(P )−1(λ) such that β1 < −Im(λ) < β2. This
formula was used to define an analytic index of the Z/k-manifold in [10].

On the other hand, for a cusp calculus, N̂(P )(λ) is defined only for R and is only
C∞. As described in [20], to describe the relative index formula for cusp calculus, we
need to investigate the regularized trace, which is written in terms of the asymptotic
behaviour of the divergent integral. Thus, we can not give a convergent integral
formula as in the formula (1).

In this paper, we will define a pseudodifferential calculus which is an appropriate
calculus to extend the relative index formula for b-calculus. Let X be a smooth
compact manifold with corners which has two embedded boundary hypersurfaces
∂0X, ∂1X, and a fibre bundle φ : ∂0X → Y is given. Suppose that the fibre Z of φ is
a closed manifold. Fix a boundary defining function x0 of ∂0X and x1 of ∂1X. SuchX
is called a manifold with boundary. We define a pseudodifferential calculus Ψ∗

Φ,b(X)
of fibred cusp b-pseudodifferential operators. This calculus contains the Φ-calculus of
Mazzeo-Melrose [17] or the (small) b-calculus of Melrose [18] as a special case when
∂1X or ∂0X is empty. As b-calculus can be densely embedded into cusp calculus by
using logarithmic blow-up, fibred cusp b-calculus also can be densely embedded into
a S-calculus of Debord-Lescure-Rochon [8].

Each element P ∈ Ψ0
Φ,b(X) defines a bounded operator.

P : L2
Φ,b(X) → L2

Φ,b(X)

We also define a symbol map σ and two normal maps N0, N1 with respect to two
boundaries ∂0X, ∂1X, which make the following sequences are exact.

0 → Ψ−1
Φ,b(X) → Ψ0

Φ,b(X)
σ−→ S0(Φ,bT ∗X) → 0

0 → x0Ψ
0
Φ,b(X) → Ψ0

Φ,b(X)
N0−−→ Ψ0

sus(Φ,bNY )(∂0X) → 0

0 → x1Ψ
0
Φ,b(X) → Ψ0

Φ,b(X)
N1−−→ Ψ0

Φ,b,inv(∂̃1X) → 0

where Φ,bT ∗X ' T ∗X and Φ,bNY ' R⊕b T ∗Y are vector bundles, sus is a suspended

calculus. ∂̃1X ' ∂1X × [0,∞] is a compactification of the normal bundle of ∂1X. As

∂̃1X is also a manifold with fibred boundary, we can define Ψ0
Φ,b(∂̃1X), and “inv” in

Ψ0
Φ,b,inv(∂̃1X) means the invariance under the action of (0,∞).

We say P ∈ Ψ0
Φ,b(X) is elliptic when σ(P ) is invertible, and fully-elliptic when

in addition, N0(P ) and N̂1(P )(λ) (λ ∈ R) are invertible. Where N̂1(P ) is a Mellin
transform of N1(P ), which is a Ψ0

Φ(∂1X)-valued entire holomorphic function.
As in the case of b-calculus and its variants, the Fredholm condition for this

calculus is given as follows.
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Theorem 1. For P : L2
Φ,b(X) → L2

Φ,b(X) is Fredholm if and only if P is fully elliptic.

We also prove the relative index theorem, which is a generalization of the relative
index for b-calculus [18].

Theorem 2. Let P ∈ Ψ0
Φ,b(X) and suppose σ(P ) and N0(P ) are invertible. Take

any βi /∈ −ImSpec(N̂1(P )) (i = 1, 2), β2 > β1. Then,

ind(xβ1

1 Px
−β1

1 )− ind(xβ2

1 Px
−β2

1 ) =
1

2πi
tr

∮
N̂1(P )

−1(λ)
∂N̂1(P )

∂λ
(λ)dλ, (2)

where the path of integral is chosen so that its interior contains all poles of N̂1(P )
−1(λ)

such that β1 < −Im(λ) < β2.

Briefly, the proof of the relative index theorem is given as follows. As the calculus
of symbols S0 and the calculus of the suspended operators Ψ0

sus is closed under holo-
morphic functional calculus, σ(P )−1 and N0(P )

−1 lies in the same calculus. Thus, we
can construct a parametrix Q such that R := Id−PQ ∈ x∞0 Ψ−∞

Φ,b (X). As R vanishes
at ∞ order at ∂0X, it blows down to define a b-pseudodifferential operator. By using
this fact, the relative index theorem can be proved in the same way as the b-calculus
case.

As the application of the relative index theorem, we will prove the index theorem
for a Z/k-manifold (possibly with boundary), which is a generalization of the index
the for a closed Z/k-manifold by Freed and Melrose [10].

The setting is given as follows. Suppose X is a Z/k manifold, i.e. X is a manifold
with corner and ∂X = ∂0X ∪ ∂1X , ∠X = ∂0X ∩ ∂1X and the diffeomorhpism
∂1X ' kZ is given, where Z is a manifold with boundary and kZ is a disjoint union
of k copies of Z. For φ = Id : ∂0X → ∂0X, we regard X as a manifold with fibred
boundary. And we write Ψ0

sc,b(X;E,F ) = Ψ0
Φ,b(X;E,F ) in this case. A vector

bundle E over X is called Z/k-vector bundle if E|∂1X = kEZ for some vector bundle
EZ → Z. Let E,F are Z/k- vector bundle over X.

We define

Ψ0
sc,b,Z/k(X;E,F ) := {P ∈ Ψ0

sc,b(X;E,F ) | N1(P ) = kQ

for some Q ∈ Ψ0
sc,b(Z̃;E,F ) }. (3)

For P ∈ Ψ0
sc,b,Z/k(X;E,F ) such that σ(P ) and N0(P ) are invertible, ind(x

β
1Px

−β
1 )

mod k ∈ Z/k is independent of β because the right hand side of (2) is always a multiple
of k.

On the other hand, we can define a map

s : {P ∈ Ψ0
sc,b,Z/k(X;E,F ) | σ(P ) and N0(P ) are invertible}/homotopy

→ K(D(TX), ∂0D(TX)), (4)

where the overlines mean the identification of k copies, and TX → X is a vector
bundle. ∂D(TX) = S(TX) ∪D(TX|∂0X) ∪D(TX|∂1X), and ∂0D(TX) := S(TX) ∪
D(TX|∂0X). As in the case of Atiyah-Singer [5] or Freed-Melrose [10], there exists a
topological index map t-ind : K(D(TX), ∂0D(TX)) → Z/k [25]. The index theorem
is given as follows.

Theorem 3. Let P ∈ Ψ0
sc,b,Z/k(X;E,F ) and suppose that σ(P ) and N0(P ) are in-

vertible, then ind(xβ1Px
−β
1 ) mod k = t-ind(s(P )) ∈ Z/k, β /∈ −ImSpec(N̂1(λ)).
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We will demonstrate two different proofs for the index theorem. One way is, as in
Atiyah-Singer or Freed-Melrose, to prove that analytic index satisfies several axioms.
The other way is to reduce to the case of ∂0X = φ by using excision.

This paper is organized as follows. In section 2, we review some preliminary results.
In section 3, we define the fibred cusp b-calculus and investigate its properties. We
will describe the Fredholm criterion and prove the relative index theorem. As its
application, index theorem for a Z/k-manifold (possibly with boundary) is proved in
section 4.

2 Preliminaries

2.1 Blow-up of a manifold with corners

In this section, following [19, 9], we define a spherical blow-up and a normal cone
deformation of a manifold with corners.

Let X be a manifold with embedded corners. A subset Y ⊂ X is called a p-
submanifold of X, if the inclusion is locally diffeomorphic to the embedding Rn× 0×
Rm≥0 × 0 ↪→ Rn+k × Rm+l

≥0 . Importantly, a tubular neighbourhood N+Y ↪→ X can be
defined for a p-submanifold, where N+Y is the inward pointing normal bundle. We
define the (spherical) blow-up of X at Y by

[X;Y ] := SN+Y qX \ Y,

where SN+Y is the sphere bundle of the inward pointing normal bundle. [X;Y ] has
a unique C∞ structure such that for each tubular neighbourhood N+Y ↪→ X, the
map SN+Y × R≥0 → [X;Y ] defined by

(y, η, t) ∈ SN+Y × R≥0 7→

{
(y, η) ∈ SN+Y (t = 0)

(y, tη) ∈ N+Y \ Y ↪→ X \ Y (t 6= 0)

is a deffeomorphism onto the image. In this way, [X,Y ] is a manifold with corners
which has the new boundary hypersurface SN+Y compared to X. The smooth map
β := π q ι : [X,Y ] → X is called a blow-down map, where π : SN+Y → Y ⊂ X is
the projection map and ι : X \ Y → X is the inclusion map.

Similarly, we define the normal cone deformation of X at Y by

DNC(X,Y ) := N+Y qX × R∗.

DNC(X,Y ) has a unique C∞ structure such that for each tubular neighbourhood
N+Y ↪→ X, the map N+Y × R → DNC(X,Y ) defined by

(y, η, t) ∈ N+Y × R 7→

{
(y, η) ∈ N+Y (t = 0)

(y, tη, t) ∈ N+Y × R∗ ↪→ X × R∗ (t 6= 0)

is a deffeomorphism onto the image. Y × R is naturally embedded into DNC(X,Y )
by

(y, t) ∈ Y × R 7→

{
y ∈ Y ⊂ N+Y ⊂ DNC(X,Y ) (t = 0)

(y, t) ∈ Y × R∗ ⊂ DNC(X,Y ) (t 6= 0).

There is a map β := πq ι : DNC(X,Y ) → X×R, where π : N+Y → Y ⊂ X×{0} ⊂
X × R is the projection map and ι : X × R∗ → X × R is the inclusion map.
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s ∈ R∗ acts on (y, η) ∈ N+Y by (y, s−1η) and acts on (x, t) ∈ X × R∗ by (x, st).
These actions smoothly glue and defines the gauge action of R∗ on DNC(X,Y ). The
relation of the blow-up and the normal cone deformation is given by

[X;Y ] = (DNC≥0(X,Y ) \ Y × R≥0) /R>0,

whereDNC≥0(X,Y ) := N+YqX×R≥0 is a codimension 0 submanifold ofDNC(X,Y ).

2.2 Blow-up of a Lie groupoid

In this section, following [9], we discuss a spherical blow-up and a normal cone defor-
mation of a Lie groupoid.

Let G and X be smooth manifolds with corners, and suppose that the Lie groupoid
structure G ⇒ X is given. In this paper we assume that each fibre of the domain map
Gx := {g ∈ G | d(g) = x} is a (possibly non-compact) manifold without boundaries
(or corners).

Let H ⇒ Y be a Lie subgroupoid of G ⇒ X, and suppose that H ⊂ G and Y ⊂ X
is a p-submanifold. Then by naturality of the DNC construction, DNC(G,H) ⇒
DNC(X,Y ) is a Lie groupiod, where the domain map, range map and multiplication
map are given by DNC(d), DNC(r) and DNC(µ).

This procedure cannot be directly carried out for the blow-up case, because the
map Nd : NH → NY has a kernel in general, so SN+H → SN+Y cannot be defined.
Thus, we define

D̃NC(G,H) := DNC(G,H) \
(
DNC(d)−1(Y × R) ∪DNC(r)−1(Y × R)

)
[̃G;H] := D̃NC≥0(G,H)/R>0.

Then D̃NC(G,H) ⇒ DNC(X,Y ) is an open Lie subgroupoid of DNC(G,H), and

[̃G;H] ⇒ [X;Y ] is a Lie groupoid.

2.3 The definition of b-calculus and Φ-calculus

In this section, we review the definition of the b-calculus [18] and Φ-calculus [17], and
discuss its relation to the notion of the pseudodifferential operators on a Lie groupiod
[24]. For simplicity, we assume that the section of an appropriate density bundle is
fixed and ignore the density term in the fibre integrals. We also only consider C-valued
pseudodifferential operators instead of a general vector bundle setting.

Let X be a compact smooth manifold with boundary and fix a boundary defining
function x. Define

X2
b := [X2; (∂X)2].

X2
b has three boundary hyper surfaces L, R and F , corresponding to ∂X×X, X×∂X

and ∂X × ∂X respectively. X is embedded into X2
b by a diagonal map. Then, the

(small) b-calculus is defined by

Ψmb (X) := {k ∈ Im(X2
b , X) | k vanishes at infinity order at L and R},

where Im is the space of m-th order one-step polyhomogenious conormal distribution.
To describe the b-calculus in terms of a Lie groupoid as in [23, 9], let X be

embedded in a closed manifold Z as a codimension 0 submanifold (e.g. Z can be
chosen to be the double of X). Then, Z2 ⇒ Z and (∂X)2 ⇒ ∂X are Lie groupoids,

thus ˜[Z2; (∂X)2] ⇒ [Z, ∂X] is a Lie groupoid as described in section 2.2. Because
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∂X is cutting Z into two different components, [Z, ∂X] = X qX ′ for some manifold

with boundary X ′. The restriction of ˜[Z2; (∂X)2] to X is a Lie groupoid which is
diffeomorphic to X2

b \ L \R:

Gb := ˜[Z2; (∂X)2]|X ' X2
b \ L \R⇒ X.

This groupoid is called a puff groupoid in [23]. By the definition of the (compactly
supported) pseudodifferential operators on a Lie groupoid [24],

Ψmc (Gb) := {k ∈ Im(X2
b , X) | k vanishes identically on some neighbourhood of L and R}

and Ψmc (Gb) ⊂ Ψmb (X) is a subset, which is dense with respect to the operator norm
between the Sobolev spaces.

Suppose further that the fibre bundle φ : ∂X → Y is given. Define

Φ := ∂X ×
Y
∂X = {(x, y) ∈ ∂X × ∂X | φ(x) = φ(y)}

then Φ is naturally embedded into X2
b and we define

X2
Φ := [X2

b ; Φ].

X2
Φ has four boundary hypersurfaces L,R, F and FF where FF is the new face

corresponding to Φ. X is embedded diagonally into X2
Φ. The Φ calculus is defined by

ΨmΦ (X) := {k ∈ Im(X2
Φ, X) | k vanishes at infinity order at L, R and F}.

Φ ⇒ ∂X is a subgroupoid of Gb ⇒ X and [̃Gb; Φ] ⇒ [X, ∂X] = X is a Lie groupoid
which is diffeomorphic to X2

Φ \ L \R \ F :

GΦ := [̃Gb; Φ] ' X2
Φ \ L \R \ F ⇒ X.

Its algebra of pseudodifferential operators are given by

Ψmc (GΦ) := {k ∈ Im(X2
Φ, X) | k vanishes identically on some neighbourhood of L,R and F}.

Thus Ψmc (GΦ) ⊂ ΨmΦ (X) is a dense subset.

2.4 The scattering calculus and Atiyah-Singer index theorem

In this section, we review the Φ-calculus of Mazzeo-Melrose [17], and as a special case,
discuss the index problem for the scattering calculus.

Let X be a compact manifold with boundary, and a fibre bundle φ : ∂X → Y
is given. Fix a boundary defining function x of ∂X. Then we can define a calculus
of Φ-pseudodifferential operators (or fibred cusp pseudodifferential operatos) Ψ∗

Φ(X),
which is a filtered ∗-algebra. Each element P ∈ Ψ0

φ(X) defines a bounded operator.

P : L2
Φ(X) → L2

Φ(X)

There exists two homomorphisms, a symbol map σ and a normal map N which make
the following sequences exact.

0 → Ψ−1
Φ (X) → Ψ0

Φ(X)
σ−→ S0(ΦT ∗X) → 0

0 → xΨ−1
Φ (X) → Ψ0

Φ(X)
N−→ Ψ0

sus(ΦNY )(∂X) → 0
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where ΦT ∗X is a vector bundle over X which is non-canonically isomorphic to T ∗X,
ΦNY is a vector bundle over Y which is non-canonically isomorphic to R⊕ T ∗Y and
Ψ0

sus(ΦNY )(∂X) is a space of ΦNY -suspended pseudodifferential operators on ∂X of

order 0.
We say P ∈ Ψ0

Φ(X) is elliptic if σ(P ) is invertible, and fully elliptic in addition
N(P ) is invertible. It is shown that P : L2

Φ(X) → L2
Φ(X) is Fredholm if and only if

P is fully-elliptic.
In an extreme case when φ is an identity map φ : ∂X → ∂X, the calculus

Ψ0
sc(X) := Ψ0

Φ(X) is called scattering calculus. In this case, as outlined in [21],
the index problem of fully elliptic operator is reduced to the Atiyah-Singer index
theorem. Let us explain it briefly. We can define a map

{P ∈ Ψ0
sc(X) | P is fully elliptic}/homotopy → K(D(TX), ∂D(TX)),

where ∂D(TX) = D(TX|∂X) ∪ S(TX) and D or S means a disk or a sphere bundle
of the vector bundle. The composition of this map and the topological index map [5]
t-ind : K(D(TX), ∂D(TX)) → Z gives the index of fully elliptic operator.

2.5 Operator valued logarithmic residual theorem

In this section, following [11, 19], we discuss about the operator valued logarithmic
residual theorem.

Let Ω ⊂ C be a bounded domain. For a Hilbert space H let L(H) be an algebra
of bounded linear operators. Let A : Ω → L(H) be a continuous map which is
holomorphic on Ω Suppose that A(λ) is invertible for λ ∈ ∂Ω and is Fredholm for
λ ∈ Ω. Then the map A−1(λ) : ∂Ω → L(H) meromorphically extends to Ω. Define

Spec(A) := {λ ∈ Ω | A(λ) is not invertible },

then it is a finite set as poles of a meromorphic function are discrete. For each
λ0 ∈ Spec(A), define a finite dimensional vector space

F (A, λ0) := {f ∈ Mλ0(H)/Oλ0(H) | A(λ)f(λ) is holomorphic at λ0 },

where Mλ0(H) and Oλ0(H) are the space of H-valued meromorphic and holomorphic
germs at λ0. This set is well-defined because if f is holomophic around λ0, A(λ)f(λ)
is holomorphic around λ0.

The operator valued logarithmic residual theorem [11] asserts that

Theorem 4 (Gohberg and Sigal [11]).

1

2πi
tr

∮
∂Ω

A−1(λ)
∂A(λ)

∂λ
dλ =

∑
λ0∈Spec(A)

dimF (A, λ0).

Define Ω∗ := {λ | λ ∈ Ω}, then the map A∗ : Ω∗ → L(H) defined by A∗(λ) :=
(A(λ))∗ is continuous on Ω∗ and holomorphic on Ω∗. Define a sesquilinear form by

(f, g) ∈ F (A, λ0)× F (A∗, λ0) 7→ B(f, g) :=
1

2πi

∮
C

< A(λ)f(λ), g(λ) > dλ ∈ C,

where C is a small circle around λ0. If f or g is holomorphic at λ0 or λ0, then
< A(λ)f(λ), g(λ) >=< f(λ), A∗(λ)g(λ) > is holomorphic at λ0, thus this sesquilinear
form is well-defined. As discussed in [19], this sesquilinear form is non-degenerate.
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Fix g and suppose that B(f, g) = 0 for all f , then for any holomorphic function u(λ)
around λ0, A

−1(λ)u(λ) ∈ F (A, λ0) and the assumption implies that

1

2πi

∮
C

< u(λ), g(λ) > dλ = 0.

As u is arbitrary, g is holomorphic at λ0. Similar result can be proved when f and g
are interchanged, thus the form is non-degenerate.

2.6 The relative index theorem for b-calculus and the mod k
index theorem

In this section, following [19], we briefly review the basic property of b-calculus and the
relative index theorem for b-calculus. The application of the relative index theorem
for Z/k-manifold [10] is also discussed.

Let X be a compact manifold with boundary, and x be its boundary defining
function. Then we can define a small calculus of b-pseudodifferential operators. Each
element P ∈ Ψ0

b(X) defines a bounded operator.

P : L2
b(X) → L2

b(X)

There are two important homomorphisms:the symbol map σ and the normal map N
(or the indicial map). These maps are ∗-homomorphisms of filtered algebras which
make the following sequences exact.

0 → Ψ−1
b (X) → Ψ0

b(X)
σ−→ S0(bT ∗X) → 0

0 → xΨ−1
b (X) → Ψ0

b(X)
N−→ Ψ0

b,inv(∂̃X) → 0

where bT ∗X is a vector bundle over X which is non-canonically isomorphic to T ∗X,

and S0(bT ∗X) is a space of symbols of order 0 over bT ∗X. ∂̃X is a compactification
of the positive normal bundle of ∂X ↪→ X which is non-canonically diffeomorphic to
∂X × [0, 1], and Ψmb,inv(X̃) is an algebra of b-pseudodifferential operators on X̃ which

are invariant under the action of (0,∞) on X̃.
Let P ∈ Ψ0

b(X). P is called elliptic if its symbol is invertible. The Mellin transform
of the normal operator of P

N̂(P ) : C → Ψ0(∂X)

is an entire holomorphic function, and if P is elliptic, N̂(P )(λ) is Fredholm for all
λ ∈ C.

Theorem 5 (Melrose [19]). Let P ∈ Ψ0
b(X), then P defines a bounded linear map

L2
b(X) → L2

b(X). This map is Fredholm if and only if P is elliptic and N̂(P )(λ) is
invertible for all λ ∈ R

Let P ∈ Ψ0
b(X) and β ∈ R, then xβPx−β ∈ Ψ0

b(X) and N̂(xβPx−β)(λ) =

N̂(P )(λ + iβ). Thus, theorem 5 ensures that xβPx−β is Fredholm if and only if

β /∈ −ImSpec(N̂(P )), where Im is the imaginary part map. The relative index theo-
rem asserts that:
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Theorem 6 (Melrose [19]). Let P ∈ Ψ0
b(X) be elliptic and β1, β2 /∈ −ImSpec(N̂(P )), β2 >

β1. Then,

ind(xβ1Px−β1)− ind(xβ2Px−β2) =
1

2πi
tr

∮
N̂(P )−1(λ)

∂N̂(P )

∂λ
(λ)dλ, (5)

where the path of the integral is chosen so that its interior contains all poles of
N̂(P )−1(λ) such that β1 < −Im(λ) < β2.

Proof. We only demonstrate the outline of the proof. We can assume that β2−β1 < 1.
Let u ∈ ker(xβ1Px−β1), i.e. u ∈ xβ1L2

b(X) and Pu = 0. By hypoellipticity of P , u ∈
xβ1H∞

b (X). Let φ be a cut-off function, which is supported in the neighbour hood of

∂X and identically 1 around ∂X. Then, the Mellin transform of φ̂u(λ) is holomorphic

on Im(λ) > −β1. The condition Pu = 0 and β2 − β1 < 1 implies that P (λ)φ̂u(λ)

is holomorphic up to Im(λ) > −β2. In particular, φ̂u(λ) can be meromorphically

extended to Im(λ) > −β2. Thus, for each λ0 ∈ Spec(N̂(P )), −β2 < Imλ0 < −β1.
The map

Γ : u ∈ ker(xβ1Px−β1) 7→
⊕
λ0

(germ of φ̂u at λ0) ∈
⊕
λ0

F (Spec(N̂(P )), λ0)

can be defined. u ∈ xβ2H∞
b (X) ⊂ xβ1H∞

b (X) if and only if φ̂u(λ) can be holomoph-
ically extended to Im(λ) > −β2 if and only if Γ(u) = 0. In particular,

dim Image(Γ) = dimker(xβ1Px−β1)− dimker(xβ2Px−β2).

Similar discussion for P ∗ shows that the map

Γ∗ : v ∈ ker(x−β2P ∗xβ2) 7→
⊕
λ0

(germ of φ̂v at λ0) ∈
⊕
λ0

F (Spec(N̂(P ∗)), λ0)

can be defined and

dim Image(Γ∗) = dimker(x−β2P ∗xβ2)− dimker(x−β1P ∗xβ1)

= dim coker (xβ2Px−β2)− dim coker (xβ1Px−β1).

Then, Image(Γ) and Image(Γ∗) are annihilators of each other with respect to the
sesquilinear form b defined in section 2.5 because

B(Γ(u),Γ∗(v)) =
1

2πi

∮
< N̂(P )(λ)φ̂u(λ), φ̂v(λ) > dλ

=
1

i

∫
∂X×[0,∞]

< N(P )φu, φv > − < φu,N(P ∗)φv >

=
1

i

∫
X

< Pu, v > − < u,P ∗v > .

In particular,∑
λ0

dimF (Spec(N̂(P )), λ0) = dim Image(Γ) + dim Image(Γ∗) =

= ind(xβ1Px−β1)− ind(xβ2Px−β2)

combined with the operator valued logarithmic residual theorem, the proof is com-
pleted.
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Recall that a “closed” Z/k-manifold X is a manifold with boundary such that
∂X is a disjoint union of k copies of a closed manifold Z, ∂X = kZ. Freed and
Melrose [10] introduced a subalgebra of Ψ0

b(X), consists of P ∈ Ψ0
b(X) for which

N(P ) can be written as a direct sum of k copies of some operator. For such an
operator P , ind(xβPx−β) mod k ∈ Z/k is independent of β because right hand side
of the formula (5) is always a multiple of k. They proved the index theorem which
asserts that this Z/k-valued index can be written in terms of topological K-theory.

2.7 The topological index of a Z/k-manifold

In this section, following [7, 10, 25], we discuss about the topological index of a Z/k-
manifold (possibly with boundary).

Let X be a compact smooth manifold with corners with two boundary hyper-
surfaces ∂0X, ∂1X, i.e. ∠X = ∂0X ∩ ∂1X and ∂X = ∂0X ∪ ∂1X. X is called a
Z/k-manifold if a diffeomorphism ∂1X ' kZ is given, where k > 0 is an integer, Z
is a manifold with boundary and kZ is a disjoint union of k copies of Z. X is called
closed as a Z/k-manifold when ∂0X = φ. Note that if X is a Z/k-manifold, ∂0X also
is a Z/k-manifold. Define X = X/ ∼ to be a quotient space obtained by identifying
k-copies in ∂1X.

Lemma 1. There is an exact sequence

→ K∗−1(Z, ∂Z) → K∗(X, ∂X) → K∗(X, ∂0X) → K∗(Z, ∂Z) → (6)

Proof. Consider the exact sequence for the triple (X, ∂X, ∂0X). Then K∗(X, ∂X) '
K∗(X, ∂X) and by excision, K∗(∂X, ∂0X) ' K∗(Z, ∂Z)

A vector bundle p : E → X is called a Z/k-vector bundle if an isomorphism
E|∂1X ' kEZ is given for a vector bundle EZ → Z and p|∂1X = kp. If E → X is
a Z/k-vector bundle, the quotient E → X is a vector bundle (in the usual sense).
The disk bundle of E has a Z/k-structure defined by ∂0D(E) := S(E) ∪ D(E|∂0X),
∂1D(E) := D(E|∂1X) ' kD(EZ) (strictly speaking, we must smooth the corner
S(E) ∩ D(E∂0X) but it will be omitted in the rest of this paper). TX has a Z/k-
vector bundle structure unique up to homotopy. We call X a Spinc Z/k-manifold if
TX has a Spinc structure and is compatible with Z/k structure.

Definition 1. Let X,Y be a compact Z/k-manifold and f : X → Y be a smooth map,
then f is called a Z/k map, if the following conditions are satisfied.

• f(∂1X) ⊂ (∂1Y )

• f |∂1X = kfZ for a smooth map fZ : ZX → ZY .

• The map between normal bundles df : ν(∂1X) → ν(∂1Y ) is an isomorphism on
each fibre.(transversality)

In obvious way, we can define the category of Z/k-manifolds and Z/k-maps.
Next, we define a “model space” L, which is a terminal object of a homotopy

category of Z/k-manifolds. Let l > 0 be an integer and take k point in intDl then
L := Dl×I is a Z/k-manifold defined by ∂1L := ”small neighbourhood of k points” '
kDl, ∂0L := ∂L \ int ∂1L. By the exact sequence (6), we can compute that

K∗(L, ∂1L) '

{
Z/k (∗ ≡ l + 1 mod 2)

0 (∗ ≡ l mod 2).
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Lemma 2. L is a terminal object of a homotopy category of Z/k-manifolds. Namely,
let X be a Z/k-manifold, then there exists a Z/k-map f : X → L which is unique up
to homotopy.

Proof. To prove existence, let x1 be a boundary defining function of ∂1X and a1, . . . ak ∈
∂1L be k points. The neighbourhood of ∂1X is diffeomorphic to kZ × [0, 1). On n-th
copy of Z, define f(y, t) = (an, t) ∈ L for (y, t) ∈ Z × [0, 1). By using cut-off function
it can be easily extended to whole X. Thus existence is proved.

For uniqueness, Let f, g : X → L be Z/k-maps, then tf+(1−t)g is also a Z/k-map,
because L is convex and the transversality is closed under convex combinations.

As in the case of closed manifold, we can define Gysin maps for Spinc Z/k-
manifolds. Detailed arguments can be found in [25].

Definition 2. Let X,Y be Spinc Z/k-manifolds, f : X → Y be a Z/k-map. Then
there is a map f! : K

∗(X, ∂0X) → K∗+dimY−dimX(Y , ∂0Y ) which is characterized by
following properties.

• If f : X → Y and g : Y →W are Z/k-maps, then (g ◦ f)! = g! ◦ f!

• If f : X → Y is an embedding, f! is a composition of the Thom isomorphism
K∗(X, ∂0X) ' K∗+dimY−dimX(D(ν(X)), ∂0D(ν(X))) and

K∗+dimY−dimX(D(ν(X)), ∂0D(ν(X))) → K∗+dimY−dimX(Y , ∂0Y ).

• If X = D(EY ) for a Z/k vector bundle p : EY → Y and f = p|X , then f! is an
(inverse of ) Thom isomorphism.

We can now define a topological index as following. Let X be an even-dimensional
Spinc-manifold and f : X → L be a Z/k-map which is unique up to homotopy, then
f! : K(X, ∂0X) → KdimL(L, ∂0L) = Z/k and we define

t-indcX := f! : K(X, ∂0X) → Z/k.

For a general Z/k-manifold X, D(TX) is a Spinc Z/k-manifold and we can define

t-indX := t-indcD(TX) : K(D(TX), ∂0D(TX)) → Z/k

As in the case of Atiyah-Singer, topological index can be characterized by following
axiomatic properties. Suppose that for each Z/k-manifoldX, indX : K(D(TX), ∂0D(TX)) →
Z/k is given.

Axiom 1. The following diagram commutes.

K(X, ∂X)

indAS
X

��

// K(X, ∂0X)

indX

��
Z // Z/k

where indASX is an Atiyah-Singer index map.

Axiom 2. Let ι : X → Y be a codimension zero embedding and r : K(X, ∂0X) →
K(Y , ∂0Y ) be a naturally defined map, then indX = indY ◦ r

12



Let H be a compact Lie group and P → X be a principal H bundle compatible
with a Z/k-structure. Suppose that a compact H manifold F is given and define
Z := P ×

H
F . Then as in [5, 10, 25], we can define a multiplication

K(D(TX), ∂0D(TX))⊗KH(D(TF ), ∂D(TF )) → K(D(TZ), ∂0D(TZ)).

Also there is a map
µ : R(H) → K(X)

defined by µ(V ) := P ×
H
V .

Axiom 3. Let H,P,Z as above, then for a ∈ K(D(TX), ∂0D(TX)), b ∈ KH(D(TF ), ∂D(TF )),

indZ(ab) = indX(a · µ(indASF (b)))

Proposition 1. If indX satisfies Axiom 1, 2, 3, then indX = t-indX

In [10],the index theorem for a closed Z/k-manifold was proved by showing that an-
alytic index satisfies three similar axioms. In [25], the index theorem for G-equivariant
Z/k-manifold was proved similarly. In this paper, we will prove the index theorem
for a Z/k-manifold (possibly with boundary) in two different ways, one is to use
Proposition 1, the other is to reduce to the case of a closed Z/k-manifold.

3 The fibred cusp b-calculus

In this section, based on the discussion in [17], we define the fibred cusp b-pseudodifferential
operators.

3.1 Settings

Let X be a smooth compact manifold with corners which has two embedded bound-
ary hypersurfaces. Following relations hold where ∂0X and ∂1X are the boundary
hypersurfaces.

∂X = ∂0X ∪ ∂1X , ∠X = ∂0X ∩ ∂1X

Suppose a fibre bundle φ : ∂0X → Y is given, where Y is a compact manifold
with boundary and each fibre Z is a compact manifold without boundary. Suppose
further φ maps the boundary to the boundary, thus restricts to a fibre bundle φ|∠X :
∠X → ∂Y , and the following diagram commutes.

∠X � � //

φ∠X

��

∂0X

φ

��
∂Y � � // Y

We say X is a manifold with fibred boundary in this case.
The whole following discussion can be applied in the case when each fibre φ−1(y)

varies on connected components of Y , but for simplicity, we assume they are all
diffeomorphic to a single closed manifold Z.

Take any boundary defining functions x0, x1 ∈ C∞(X) for ∂0X, ∂1X respectively.
We assume that x1|∂0X is constant on each fibre of φ, which is always possible by
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taking boundary defining function of ∂Y ⊂ Y and pulling it back to ∂0X and extend
it to X.

To describe local properties of X, it is convenient to introduce a “model space”
M as follows.

M := {(x0, x1, y, z) ∈ R≥0×R≥0×Rk−1×Rl}, ∂0M := {x0 = 0}, ∂1M := {x1 = 0},

N := {(x1, y) ∈ R≥0 × Rk−1}, φ : ∂1M → N,

where φ is the projection. Then M is a manifold with fibred boundary (without a
compactness assumption).

For any manifold with fibred boundary X and p ∈ X, their exists an open neigh-
bourhood p ∈ U and diffeomorphism onto open subset of M which preserves the
structure of manifold with fibred boundary. Where “preserving the structure” means
it preserves ∂0, ∂1 and φ, and when p ∈ ∂0X or p ∈ ∂1X, it preserves the function x0
or x1.

We define fibred cusp b-vector fields on X as follows:

VΦ,b(X) = {V ∈ V(X) | V x0 ∈ x20C
∞(X), V |∂0X is tangent to the fibres of φ,

V |∂1X is tangent to ∂1X }, (7)

where V(X) is the space of smooth vector fields on X.
When X = M , it is straightforward to check VΦ,b(M) is freely generated by

x20
∂

∂x0
, x0x1

∂

∂x1
, x0

∂

∂yi
,
∂

∂zj
over C∞(M). Thus their exist a smooth vector bundle

Φ,bTX over X and the isomorphism Γ(X,Φ,b TX) ' VΦ,b(X).
The map Φ,bTX → TX, induced by VΦ,b(X) ↪→ V(X) defines the Lie algebroid

structure on X. Such a structure is called a Lie structure at infinity in [3] and [4].
Although the space VΦ,b(X) depends on the choice of boundary defining function

x0 of ∂0X, the full information of x0 is not needed to determine VΦ,b(X), and we can
prove the following lemma by direct calculation.

Lemma 3. Two choices of boundary defining function of ∂0X, x0 and x̃0 defines a
same space VΦ,b(X) if and only if x̃0/x0 = α ∈ C∞(X) satisfies α|∂0X = φ∗γ for
some γ ∈ C∞(Y ).

On the set

B := {x0 | x0 is a boundary defining function of ∂0X},

the group

G := {α ∈ C∞(X) | α > 0 and α|∂0X is constant on each fibre of φ }

acts by multiplication. The above lemma implies that fixing VΦ,b(X) is equivalent to
fix the G orbit in b.

From now on, we fix the Lie algebroid VΦ,b(X), or equivalently, the G orbit in b.
Next we define the vector bundle over Y by using the local coordinate:

Φ,bNY := span{x20
∂

∂x0
, x0x1

∂

∂x1
, x0

∂

∂yi
}.

By definition,

φ∗(Φ,bNY ) = ker(Φ,bTX|∂0X → TX|∂0X).
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We want to describe this vector bundle without using coordinate. Note that if
we fix x0,

Φ,bNY is clearly isomorphic to R ⊕ bTY . If x̃0 = αx0 is another choice
of boundary defining function where α ∈ G. The coordinate exchange is given as
following.

x20
∂

∂x0
=

1

α
· x̃20

∂

∂x̃0

x0x1
∂

∂x1
=

1

α2

∂α

∂x1
· x̃20x1

∂

∂x̃0
+

1

α
· x̃0x1

∂

∂x1

x0
∂

∂yi
=

1

α2

∂α

∂yi
· x̃20

∂

∂x̃0
+

1

α
· x̃0

∂

∂yi

The group G acts on R⊕ bTY by

(α, τ, η) ∈ G× (R⊕ bTY ) 7→ (τ/γ + dγ · η/γ2, η/γ) ∈ R⊕ bTY,

where γ ∈ C∞(Y ) is defined by φ∗γ = α−1|∂0X and dγ · η is the paring of T ∗Y and
bTY . By the above formula of coordinate exchange, the map

(τ, σ1x1
∂

∂x1
, ηi

∂

∂yi
, x0) ∈ (R⊕ bTY )×

G
B 7→ (τx20

∂

∂x0
, σ1x0x1

∂

∂x1
, x0

∂

∂yi
) ∈ Φ,bNY,

is a well-defined isomorphism. This gives a coordinate-free definition of Φ,bNY .
Let X2

b be a smooth manifold obtained by blowing up ∂0X×∂0X and ∂1X×∂1X
in X ×X.

X2
b = [X2; (∂0X)2, (∂1X)2] , βb : X

2
b → X2

The order of two blow-ups does not matter because ∂0X × ∂0X and ∂1X × ∂1X
intersects transversely (see [19]). X2

b has 6 boundary hypersurfaces L0, F0, R0, L1, F1

and R1, which corresponds to ∂0X ×X, ∂0X × ∂0X,X × ∂0X, ∂1X ×X, ∂1X × ∂1X
, and X × ∂1X respectively, where L, F or R stands for left, front or right.

Define Φ := ∂0X ×
Y
∂0X = {(w,w′) ∈ ∂0X × ∂0X | φ(w) = φ(w′)} ⊂ (∂0X)2.

Then Φ can be lifted to Φb ⊂ (∂0X)2b . The smooth function x′0/x0 : X2
b → [0,∞] is

independent of the choice of x0 when restricted to F0 and there is a diffeomorphism
(∂0X)2b ' {x′0/x0 = 1} ∩ F0.

By regarding Φb as a submanifold of {x′0/x0 = 1} ∩ F0, we define

X2
Φ,b := [X2

b ; Φb] , βφ : X2
Φ,b → X2

b , β := βb ◦ βφ : X2
Φ,b → X2.

X2
Φ,b has 7 boundary hypersurfaces L0, F0, R0, L1, F1, R1 and FF0 where the new

hypersurface FF0 corresponds to Φb.
For a model space M , we describe these blowing-ups explicitly using coordinates.

M2 = {(x0, x1, y, z, x′0, x′1, y′, z′) | x0 ≥ 0, x1 ≥ 0, x′0 ≥ 0, x′1 ≥ 0}
First, the coordinate on M2

b \ L0 \ L1 is given as following.

{(x0, x1, y, z, s0, s1, y′, z′) | x0 ≥ 0, x1 ≥ 0, s0 ≥ 0, s1 ≥ 0}

s0 =
x′0
x0
, s1 =

x′1
x1

In this coordinate, Φb = {x0 = 0, s0 = 1, s1 = 1, y = y′}. Thus, we can give an
explicit coordinate on M2

Φ,b \ L0 \R0 around FF0 as following.

{(x0, x1, y, z, u0, u1, v, w) | x0 ≥ 0, x1 ≥ 0, x0 ·
√
1 + u20 + u21 + v2 < 1}

u0 =
1− s0
x0

=
x0 − x′0
x20

, u1 =
1− s1
x0

=
x1 − x′1
x0x1

, v =
y − y′

x0
, w = z − z′
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3.2 Lie groupoid structure

In this section, by using the above local cooridnate, we give an explicit description of
the structure of the Lie group associated to the fibred cusp b-calculus.

Proposition 2. G := X2
Φ,b \ L0 \ R0 \ L1 \ R1 has a structure of a Lie groupoid by

extending the Lie groupoid structure on intX2. The set of units of G is the lifted
diagonal ∆Φ,b ⊂ X2

Φ,b, and the associated Lie algebroid A(G) is Φ,bTX.

Proof. Recall that the Lie algebroid structure of intX2 is given as follows:

d(x, x′) = x′, r(x, x′) = x

µ((x, x′), (x′, x′′)) = (x, x′′)

u(x) = (x, x)

ι(x, x′) = (x′, x)

where d, r, µ, u and ι are domain, range, multiplication, unit, and inversion map re-
spectively.

By using the coordinate on X2
Φ,b described above, we can compute:

x′0 = x0 − x20u0, x
′
1 = x1 − x0x1u1, y

′ = y − x0v, z
′ = z − w.

x0 − x′′0
x20

= u0+
x′20
x20
u′0,

x1 − x′′1
x0x1

= u1+
x′0x

′
1

x0x1
u′1,

y − y′′

x0
= v+

x′0
x0
v′, z− z′′ = w+w′,

(8)
where

u′0 =
x′0 − x′′0
x′20

, u′1 =
x′1 − x′′1
x′0x

′
1

, v′ =
y′ − y′′

x′0
, w′ = z′ − z′′.

Because x′0/x0 = 1−x0u0 and x′1/x1 = 1−x0u1 are smooth on G, d, r, µ, u and ι can
be extended to G. These maps satisfy the axiom of the Lie groupoid as they satisfy
on the dense subset intX2.

Clearly, the set of units of G is the lifted diagonal

∆Φ,b = {(x0, x1, y, z, u0, u1, v, w) | u0 = u1 = v = w = 0}.

By definition, A(G) is spanned by the restrictions of ∂/∂u0, ∂/∂u1, ∂/∂v and ∂/∂w
to ∆Φ,b.

∂

∂u0
= −x20

∂

∂x′0
,

∂

∂u1
= −x0x1

∂

∂x′1
,

∂

∂vi
= −x0

∂

∂y′
,
∂

∂w
= − ∂

∂z′
(9)

Thus, A(G) = Φ,bTX.

The Lie groupoid structure of G can be described simpler if we use the notion of
blow-up of a Lie groupoid . Let Gb ⇒ X be the b-groupoid, then, as described in
section2.2, Gb is an open subset of X2

b and Gb ⇒ X is a subgroupoid of Gb. Then

G = ˜[Gb; Φb].
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3.3 The definition of the fibred cusp b-pseudodifferential op-
erators

Definition 3. Let E and F are vector bundles over X, and m ∈ R be an arbitrary
real number. Then, the space of fibred cusp b-pseudodifferential operator of order m
from E to F is defined as follows.

ΨmΦ,b(X;E,F ) := {P ∈ Im(X2
Φ,b,∆Φ,b(X);π∗

LF ⊗ π∗
RE

′ ⊗ π∗
R(

Φ,bΩ)),

P ≡ 0 on each boundary hypersurface except for FF0 or F1}

Where πL, πR : X2
Φ,b → X are left and right projection, E′ is a dual of E, Φ,bΩ :=

|ΛdimX |(Φ,bT ∗X) , Im is a space of conormal distribution, and P ≡ 0 means a van-
ishing of infinite order.

In this paper we only consider classical or one-step polyhomogeneous conormal
distribution.

The space of uniformly supported pseudodifferential operator Ψmc (G;E,F ) defined
in [24] and [4] is, by definition,

Ψmc (G;E,F ) = {P ∈ ΨmΦ,b(X;E,F ) | P vanishes identically on the neighborhood

of L0 ∪R0 ∪ L1 ∪R1}. (10)

By definition, Ψmc (G;E,F ) ⊂ ΨmΦ,b(X;E,F ).

Let Ċ∞(X;E) := x∞0 x
∞
1 C

∞(X;E) be a space of smooth section of E which van-
ishes in infinite order on ∂0X and ∂1X. By general theory of conormal distributions
[19], for u ∈ Ċ∞(X;E) we can see that Pu := (πL)∗Pπ

∗
Ru defines continuous linear

operators Ċ∞(X;E) → Ċ∞(X;F ) where (πL)∗ is a fibre integral.
To give an explicit description of P , we assume P is supported in the coordinate

patch {(x0, x1, y, z, u0, u1, v, w)}.
By the condition P ≡ 0 on L0∪R0∪L1∪R1 , P decreases rapidly as u20+u

2
1+|v|2 →

∞. Thus we can Fourier transform with respect to u0, u1, v, w , and P can be written
as following.

P (x0, x1, y, z, u0, u1, v, w) =

∫
eiσ0u0eiσ1u1eiη·veiζwp(x0, x1, y, z, σ0, σ1, η, ζ)

dσ0dσ1dηdζ|du0du1dvdw|
(11)

Note that π∗
R(

Φ,bΩ) is generated by x′−k−2
0 x′−1

1 |dx′0dx′1dy′dz′|. Its restriction to the

fibre of πL is
xk+2
0 x1

x′k+2
0 x′

1

du0du1dvdw, and the coefficient
xk+2
0 x1

x′k+2
0 x′

1

is a non-zero smooth

function, thus we can absorb this coefficient in the symbol term.
For a function u(x0, x1, y, z), the action of P is given by

Pu(x0, x1, y, z) =

∫
eiσ0u0eiσ1u1eiη·veiζwp(x0, x1, y, z, σ0, σ1, η, ζ)

u(x0 − x20u0, x1 − x0x1u1, y − x0v, z − w)dσ0dσ1dηdζ|du0du1dvdw|.

For any complex numbers α and β, xα0 x
β
1Px

−α
0 x−β1 ∈ ΨmΦ,b(X;E,F ), because

x′0/x0 = 1−x0u0 , x′1/x1 = 1−x0u1 and these derivatives are smooth up to FF0 and
F1 and at most polynomial order up to other boundary hypersurfaces. Thus P also
defines an operator xα0 x

β
1C

∞(X;E) → xα0 x
β
1C

∞(X;F ). In particular, we can obtain
three operators,
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P |∂0X : C∞(∂0X;E) → C∞(∂0X;F ),

P |∂1X : C∞(∂1X;E) → C∞(∂1X;F ),

and
P |∠X : C∞(∠X;E) → C∞(∠X;F ),

such that (Pu)|∂0X = P |∂0Xu|∂0X , (Pu)|∂1X = P |∂1Xu|∂1X and (Pu)|∠X = P |∠Xu|∠X
for u ∈ C∞(X;E).

Lemma 4. P |∂0X ∈ Ψmfibre(∂0X;E,F ) , P |∂1X ∈ ΨmΦ (∂1X;E,F ) , P |∠X ∈ Ψmfibre(∠X;E,F )
where Ψmfibre is the space of a family of m-th pseudodifferential operators on each fibre
of φ which depends smoothly on the base points, and ΨmΦ is the space of m-th fibred
cusp pseudodifferential operator.

Proof. By using partition of unity, we can assume P is supported in the coordinate
patch. Let p is a symbol of P as in (11), the symbols of P |∂0X , P |∂1X and P |∂0X
are p(0, x1, y, z, 0, 0, 0, ζ) , p(x0, 0, y, z, σ0, 0, η, ζ) and p(0, 0, y, z, 0, 0, 0, ζ) respectively.

As in [17], we can construct a blow-up X3
Φ,b of X

3

X3
Φ,b := [X3

b ; ΦT ; ΦFT ; ΦST ; ΦCT ; ΦF ; ΦS ; ΦC ].

By using this manifold, we can prove the following proposition exactly parallel as in
[17] or [8].

Proposition 3. Let E,F,G are vector bundles over X ,m,m′ ∈ R , P ∈ ΨmΦ,b(X;E,F )

and Q ∈ Ψm
′

Φ,b(X,F,G) , then Q ◦ P ∈ Ψm+m′

Φ,b (X;E,G).

3.4 Symbols and normal operators

In this section, we define the symbol σ and normal operators N0 and N1. Essentially,
N0(P ) and N1(P ) are restriction of the Schwartz kernel of P to FF0 and F1. A
similar notion is called a normal operator in [17], an indicial operator in [18], and just
a symbol in [8].

As described in [19],[17],[24], we can obtain a symbol homomorphism

σ : ΨmΦ,b(X;E,F ) → Sm(Φ,bT ∗X; Hom (E,F )).

Where Sm(Φ,bT ∗X; Hom (E,F )) is a space of bundle homomorphisms Φ,bT ∗X \ 0 →
Hom(E,F ) which are homogeneous of degree m. The sequence

0 → Ψm−1
Φ,b (X;E,F ) → ΨmΦ,b(X;E,F )

σ−→ Sm(Φ,bT ∗X; Hom (E,F )) → 0

is exact.
Next, we consider a normal operator at ∂0X. Let p ∈ Y , (τ, η̃) ∈ (R ⊕ T ∗Y )y.

Fix any real valued f ∈ C∞(Y ) such that f(p) = τ , df(p) = η̃, and real valued
f̃ ∈ C∞(X) such that φ∗f = f̃ |∂0X . Define

(τ, η̃) ∈ (R⊕ T ∗Y )y

7→ Ñ0(τ, η̃) := [exp(−if̃/x0)P exp(if̃/x0)]|φ−1(p) ∈ Ψm(φ−1(p);E,F ). (12)
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Then, for τ = f(x1, y),σ̃ = ∂
∂x1

f(x1, y) , ξi =
∂
∂yi

f(x1, y), the symbol of Ñ(τ, σ, ξ)

is given by p(0, x1, y, z,−τ, x1σ̃, ξ, η), in particular Ñ0 is well-defined and does not
depend on the choice of f or f̃ and depends smoothly in (τ, η̃).

Note that if (σ̃, ξi) = (σ̃dx1,
∑
ξidyi) is a coordinate for T

∗Y , then (x1σ̃(dx1/x1),
∑
ξidyi)

is a coordinate for bT ∗Y . So if βb : TY → bTY is a blow-down map, the above symbol
expression implies that there is a unique map N̂0 : (R⊕ bT ∗Y )y → Ψm(φ−1(p);E,F )

such that N̂0 ◦ βb = Ñ0, i.e. N̂0(τ, σ, ξ) = Ñ(τ, σ/x1, ξ), and its symbol is given by
p(0, x1, y, z,−τ, σ, ξ, η).

By the fourier transform, it turns out that N̂0 defines a suspended pseudodiffer-
ential operator (see [17]). N0 = N0(P ) ∈ Ψmsus(Φ,bNY )(∂X) , ΦNY ' R ⊕ bT ∗Y . We

say N0(P ) is a normal operator of P on ∂0X.
We obtain the exact sequence

0 → x0Ψ
m
Φ,b(X) → ΨmΦ,b(X)

N0−−→ Ψmsus(Φ,bNY )(∂0X) → 0.

We consider a normal operator of P at ∂1X. For P ∈ ΨmΦ,b(X;E,F ) , λ ∈ C define

N̂1(P )(λ) = [x−iλ1 Pxiλ1 ]|∂1X ∈ ΨmΦ (∂1X;E,F ).

Obviously, N̂1 : C → ΨmΦ (∂1X;E,F ) is an entire holomorphic function.

Let ∂̃1X ' ∂1X × [0,∞] is the compactification of the positive normal bundle of

∂1X ⊂ X, then ∂̃1X obviously has a structure of a manifold with fibred boundary.
Define

ΨmΦ,b,inv(∂̃1X) := {B ∈ ΨmΦ,b(∂̃1X)| b is equivariant with respect to

the (0,∞) action on ∂̃1X }. (13)

Note that the first front faces F1 ⊂ X2
Φ,b and F1 ⊂ ∂̃1X

2

Φ,b are canonically diffeo-

morphic, thus, by Mellin transformation, it turns out that N̂1(P ) defines N1(P ) ∈
ΨmΦ,b,inv(∂̃1X) and the following sequence is exact (see [18] for the detail).

0 → x1Ψ
m
Φ,b(X) → ΨmΦ,b(X)

N1−−→ ΨmΦ,b,inv(∂̃1X) → 0

In a local coordinate, define t := log(1−x0X1)/x0, then t is smooth up to x0 = 0,

and X1 = (1− etx0)/x0 is also smooth up to x0 = 0. Then
x′iλ
1

xiλ
1

= eix0λt

Thus by changing coordinate form X1 to t , (x0, x1, X0, t, y, Y, z, Z) also gives a
coordinate. Define the symbol p̃ of P with respect to this coordinate by following.

P (x0, x1, X0, t, y, Y, z, Z) =

∫
eiσ0X0eiσ1teiηY eiζZ p̃(x0, x1, y, z, σ0, σ1, η, ζ)

dσ0dσ1dηdζ|dX0dtdY dZ|

Then the symbol of N̂1(P )(λ) is p̃(x0, 0, y, z, σ0,−x0λ, η, ζ).
The normal operators N0, N1 can be thought as the restriction to ∂1X, ∂0X, and

the symbol σ can be thought as the restriction to the boundary S(Φ,bT ∗X) of Φ,bT ∗X
at infinity. We want to consider further restriction to the intersection of these two.

As in the case of σ, we can define symbol maps

σ0 : Ψmsus(Φ,bNY )(∂0X;E,F ) → Sm(Φ,bT ∗X|∂0Z ; Hom (E,F ))

19



and
σ1 : ΨmΦ,b,inv(∂̃1X;E,F ) → Sm(Φ,bT ∗X|∂1X ; Hom (E,F )).

To consider the restriction to ∠X, as ∂̃1X is also a manifold with fibred boundary,

we can define a normal operator on ∂0(∂̃1X) = ∠̃X, N0,1 : ΨmΦ,b,inv(∂̃1X;E,F ) →
Ψm

sus(Φ,bN∂̃Y )
(∠̃X;E,F ).

Where ∂̃Y ' ∂Y×[0,∞] ,∠̃X ' ∠X×[0,∞] Note that forQ ∈ ΨmΦ,b,inv(∂̃1X;E,F ),

N0,1(Q) is also equivariant to the action of (0,∞), and (0,∞) acts on ∠̃X or ∂̃Y by
multiplication. So the restriction of N0,1 to the any fibre of φ gives the same value in
Ψmsus(Φ,bN∂Y )(∠X;E,F ), where Φ,bN∂Y := Φ,bNY |∂Y ' R⊕ R⊕ T ∗∂Y .

Thus we can define

N1,0 : ΨmΦ,b,inv(∂̃1X;E,F ) → Ψmsus(Φ,bN∂Y )(∠X;E,F ).

On the other hand we can define

N0,1 : Ψmsus(Φ,bNY )(∂0X;E,F ) → Ψmsus(Φ,bN∂Y )(∠X;E,F )

by restriction.
We can also define the symbol map.

σ0,1 : Ψmsus(Φ,bN∂Y )(∠X;E,F ) → Sm(Φ,bTX|∠X ; Hom (E,F ))

Define following maps by restrictions of symbols.

Sm(Φ,bT ∗X; Hom (E,F )) → Sm(Φ,bT ∗X|∂0X ; Hom (E,F ))

Sm(Φ,bT ∗X; Hom (E,F )) → Sm(Φ,bT ∗X|∂1X ; Hom (E,F ))

Sm(Φ,bT ∗X|∂1X ; Hom (E,F )) → Sm(Φ,bT ∗X|∠X ; Hom (E,F ))

Sm(Φ,bT ∗X|∂0X ; Hom (E,F )) → Sm(Φ,bT ∗X|∠X ; Hom (E,F ))

In summary, we defined 12 maps σ, σ0, σ1, σ0,1, N0, N1, N0,1N1,0 and four restric-
tion maps. It is obvious from the definition that any composition of any com-
posable pair which is defined on same spaces coincides, e.g. N0,1N0 = N1,0N1 or
σ|∂1X = σ0N0. Exact sequences exist for all of these 12 maps as shown in the case
σ,N0 and N1, but we will omit here.

Finally we can consider the joint symbol Jm which is defined as follows.

Jm(X;E,F ) := {(s, n0, n1) ∈ Sm(Φ,bT ∗X; Hom (E,F ))⊕Ψmsus(Φ,bNY )(∂0X;E,F )

⊕ΨmΦ,b,inv(∂̃1X;E,F ) | s|∂1X = σ0(n0), s|∂0X = σ1(n1), N0,1(n0) = N1,0(n1)}

Then the following sequence is exact by the diagram chasing.

0 → x0x1Ψ
m−1
Φ,b (X;E,F ) → ΨmΦ,b(X;E,F )

σ⊕N0⊕N1−−−−−−−→ Jm(X;E,F ) → 0 (14)

20



3.5 The Fredholm criterion

Let X be a manifold with fibred boundary. In this section fix a Riemannian metric
g on Φ,bTX, then g can be considered as a singular metric on TX and intX is a
Riemannian manifold with respect to that metric. We also assume that every complex
vector bundle E on X has a hermitian metric h. Then, we can define the L2 space.

L2
Φ,b(X;E) := {u | u is a measurable section of E and

∫
||u||2dg <∞}

For u, v ∈ L2
Φ,b(X;E), we can define the inner product by (u, v) :=

∫
h(u, v)dg. and

L2
Φ,b(X;E) is a Hilbert space with respect to this inner product.

To prove P is bounded on L2, we need some technical preparations. Consider

the normal operator on ∂1X, N1 : ΨmΦ,b(X;E,F ) → ΨmΦ,b,inv(∂̃1X;E,F ), then as
illustrated in [22], we can define a section of N1 as following. Fix a diffeomorphism

∂̃1X ' ∂1X× [0,∞] and a collar neighbourhood ∂1X× [0,∞] ↪→ X and take a smooth
function ψ on X which is supported in a small neighbourhood of ∂1X and identically
equal to 1 around the neighbourhood of ∂1X. Then the multiplication by ψ can be

regarded as a operator Mψ : C∞(∂̃1X) → C∞(X). Define S : ΨmΦ,b,inv(∂̃1X;E,F ) →
ΨmΦ,b(X;E,F ) by S(B) = MψBM

∗
ψ. By definition S is smooth with respect to the

Frécht space topology.

As in the case of b-calculus, for B ∈ Ψ0
Φ,b,inv(∂̃1X;E,F ) and u ∈ Ċ∞(∂̃1X;E),

the action of b is characterized as follows.

B̂u(λ) = B̂(λ)û(λ)

Where û and B̂u are Mellin transform of u or B̂u, and B̂(λ) = N̂1(B)(λ).

By the coordinate representation given in section 3.4, for λ ∈ R, B̂(λ) is bounded
with respect to the Frćhet space topology on Ψ0

Φ(∂1X;E,F ). By [17], the embedding

Ψ0
Φ(∂1X;E,F ) → L(L2

Φ(∂1X;E), L2
Φ(∂1X;F )) is bounded, thus ||B̂(λ)|| is bounded.

Thus b is also bounded because Mellin transform is an isomorphism on a L2 space.

Proposition 4. For P ∈ Ψ0
Φ,b(X;E,F ), P is bonded as an operator L2

Φ,b(E) →
L2
Φ,b(F ), and the inclusion Ψ0

Φ,b(X;E,F ) → L(L2
Φ,b(E), L2

Φ,b(F )) is a bounded map.

Proof. First, we show the proposition holds for P ∈ xN0 x
N
1 Ψ−N

Φ,b (X;E,F ) when N > 0
is sufficiently large. In this case the Schwartz kernel of P blows down and can be
written as a continuous kernel on X2. Thus the boundedness is obvious.

Secondly, we show the proposition holds for P ∈ xε0x
ε
1Ψ

−ε
Φ,b(X;E,F ) for any ε > 0.

Because ||P ||2 = ||P ∗P || and P ∗P ∈ x2ε0 x
2ε
1 Ψ−2ε , using this discussion recursively,

the boundedness follows by first step.
Lastly, we consider the general case P ∈ Ψ0

Φ,b(X;E,F ). As discussed above,
N1(P ) is bounded with respect to the operator norms, so S(N1(P )) =MψN1(P )M

∗
ψ

is also bounded with respect to operator norms, because Mψ is obviously bounded
with respect to operator norms. By replacing P by P − S(N1(P )), we can assume
that N1(P ) = 0 i.e. P ∈ x1Ψ

0
Φ,b(X;E,F )

Take sufficiently large C > 0 so that C − N0(P
∗P ) and C − σ(P ∗P ) are pos-

itive. Then, we can find a formally self adjoint operator A ∈ Ψ0
Φ,b(X;E,E) such

that N0(A) =
√
C −N1(P ∗P ), N1(A) =

√
C and σ(A) =

√
C − σ(P ∗P ). Note that√

C −N1(P ∗P ) can be defined because the calculus of the suspended pseudodifferen-
tial operator is closed under holomorphic functional calculus. Set B := C−P ∗P −A2

, then N0(B) = N1(B) = σ(B) = 0 so B ∈ x0x1Ψ
−1
Φ,b(X;E,E). Thus b is L2
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bounded by second step. ||Pu||2 = (P ∗Pu, u) = −(Bu, u) + C||u||2 − ||Au||2 ≤
(||B||+ ||C||) · ||u||2

As Ψ0
c(G;E,F ) ⊂ Ψ0

Φ,b(X;E,F ) is obviously dense with respect to the operator
norm, following propositions can be reduced to the general theory of pseudodifferential
operator of a groupoid [24, 13].

Proposition 5. Any one of the 12 maps in the last part of the section 3.4, including
σ, N0 and N1, is bounded with respect to the operator norm.

Theorem 7. P ∈ Ψ0
Φ,b(X;E,F ) is Fredholm if and only if σ(P ) and N0(P ) are

invertible and N̂1(P )(t) is invertible for all t ∈ R.

Proof. As described in [13], by diagram chasing, the L2 completion of the exact
sequence (14) is also exact,

0 → K(X;E,F ) → Ψ
0

Φ,b(X;E,F )
j−→ J

0
(X;E,F ) → 0

where K is the space of compact operators.
Thus P is Fredholm iff j(P ) is invertible iff σ(P ), N0(P ), N1(P ) are invertible in

its L2 closure.
Because S0(Φ,bT ∗X;E,F ) and Ψ0

sus(Φ,bNY )(∂0X;E,F ) are closed under holomor-

phic functional calculus, σ(P ) and N0(P ) are invertible if and only if they are invert-
ible in its completion.

For N1(P ) ∈ Ψ0
Φ,b,inv(∂̃1X;E,F ) , there is an injective ∗-homomorphism defined

by the Mellin transform.

B ∈ Ψ0
Φ,b,inv(∂̃1X;E,F ) → B̂|R ∈ Cb(R,Ψ0

Φ(∂1X;E,F ))

where Cb(R,Ψ0
Φ(∂1X;E,F )) is a space of bounded continuous function from R to

ΨmΦ (∂1X;E,F ). Obviously, the completion of Cb(R,Ψ0
Φ(∂1X;E,F )) is Cb(R,Ψ

0

Φ(∂1X;E,F ))
and the above map extends to an injective *-homomorphism.

Ψ
0

Φ,b,inv(∂̃1X;E,F ) → Cb(R,Ψ
0

Φ(∂1X;E,F )).

ThusN1(P ) is invertible in its completion if and only if its image in Cb(R,Ψ
0

Φ(∂1X;E,F ))
is invertible, and the claim follows.

3.6 The relative index theorem

Lemma 5. Let P ∈ Ψ0
Φ,b(X;E,F ) and suppose that σ(P ) and N0(P ) are invertible.

Then there is a parametrix Q ∈ Ψ0
Φ,b(X;F,E) such that PQ− Id ∈ x∞0 Ψ−∞

Φ,b (X;F, F )

, QP − Id ∈ x∞0 Ψ−∞
Φ,b (X;E,E).

Proof. We construct the right parametrix Q inductively. Take Q0 ∈ Ψ0
Φ,b(X;F,E) so

that σ0(Q0) = σ0(P )
−1, N0(Q0) = σ(P )−1. Then PQ0 − Id ∈ x0Ψ

−1
Φ,b(X;F, F ).

Set R0 := (PQ0 − Id)/x0 ∈ Ψ−1
Φ,b(X;E,E) . Take Q1 ∈ Ψ−1

Φ,b(X;F,E) such that

σ−1(Q1) = −σ0(P )−1σ−1(R0), N0(Q1) = −N0(P )
−1N0(R0). By definition of Q1,

P (Q0 + x0Q1)− Id = x0(R0 + PQ1) ∈ x20Ψ
−2
Φ,b(X;F, F ).

Suppose we constructedQ1, . . . Qn such thatQm ∈ Ψ−m
Φ,b (X;F,E) and P (

∑n
0 x

m
0 Qm)−

Id ∈ xn+1
0 Ψ−n−1

Φ,b (X;F, F ). Set Rn := (P (
∑n

0 x
m
0 Qm) − Id)/xn+1

0 . Take Qn+1 ∈
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Ψ−n−1
Φ,b (X;F,E) such that σ−n−1(Q1) = −σ0(P )−1σ−n−1(Rn), N0(Q1) = −N0(P )

−1N0(Rn).

Then as above, P (
∑n+1

0 xm0 Qm)− Id ∈ xn+2
0 Ψ−n−1

Φ,b (X;F, F ).

Finally define Q :=
∑∞

0 Qm by an asymptotic sum. Then Q ∈ Ψ0
Φ,b(X;F,E)

and PQ − Id ∈ ∩
m
xm0 Ψ−m

Φ,b (X;E,E) = x∞0 Ψ−∞(X;F, F ). As we can construct left

parametrix similarly, Q is actually right and left parametrix.

For the above parametrix Q, define S = Id− PQ ∈ x∞0 Ψ−∞
Φ,b (X;F, F ). Note that

x∞0 Ψ−∞
Φ,b (X;F, F ) = x∞0 Ψ−∞

b (X;F, F ), because the Schwartz kernel of any element

of x∞0 Ψ−∞
Φ,b (X;F, F ) vanishes on FF0 in infinite order and blows down to the kernel

on X2
b .

We can see N̂1(S)(λ) = Id − N̂1(P )(λ)N̂1(Q)(λ) rapidly decreases as |Reλ| → ∞
by the theory of b-calculus. Thus as in [18], we can prove the following lemma.

Lemma 6. Let P ∈ Ψ0
Φ,b(X;E,F ) and suppose that σ(P ) and N0(P ) are invertible.

N̂1(P )(λ)
−1 is a meromorphic map from C to Ψ0

Φ,b(X;F,E). Furthermore, for any

N > 0, there exists C > 0 such that N̂1(P )
−1(λ) exists and bounded on {λ ∈ C |

|Reλ| > C and |Imλ| < N }.
In particular,the number of poles in the strip {λ ∈ C | |Imλ| < N} is finite.

Let P ∈ Ψ0
Φ,b(X;E,F ), and suppose that σ(P ) and N0(P ) are invertible. Ob-

viously, σ(xα1Px
−α
1 ) = σ(P ). Because x1 is constant on each fibre of φ , N0(P )

commutes with xα1 and N0(x
α
1Px

−α
1 ) = N0(P ).

For β ∈ R, N̂1(x
β
1Px

−β
1 )(λ) = N̂1(λ + iβ). By theorem 7 xβ1Px

−β
1 is Fredholm if

and only if β /∈ −ImSpec(N̂1(P )). Where Spec(N̂1(P )) := {λ ∈ C | N̂1(P )(λ) is not invertible}
which is discrete by lemma 6.

Thus, exactly as in [18], we can prove the relative index theorem.

Theorem 8. Let P ∈ Ψ0
Φ,b(X;E,F ) and suppose that σ(P ) and N0(P ) are invertible,

βi /∈ −ImSpecb(P ) (i = 1, 2) β2 > β1 .Then,

ind(xβ1

1 Px
−β1

1 )− ind(xβ2

1 Px
−β2

1 ) =
1

2πi
tr

∮
N̂1(P )

−1(λ)
∂N̂1(P )

∂λ
(λ)dλ,

where ind is the index of Fredholm operator, tr is the trace, and the integral path is
chosen so that its interior contains all poles of N̂(P )−1(λ) such that β1 < −Im(λ) <
β2.

For P ∈ Ψ0
Φ,b(X;E,F ) and I := [δ, γ] ⊂ R , δ < γ be a closed interval. Define

a norm by ||P ||I := supα∈I ||xα1Px−α1 ||, and Ψ0
Φ,b

I
(X;E,F ) be a completion with

respect to that norm. Then N̂1 extends.

N̂1 : Ψ0
Φ,b

I
(X;E,F ) → Holb(R× iI,Ψ

0

Φ(∂1X;E,F )),

where R× iI = {λ ∈ C | δ ≤ Im(λ) ≤ γ} and Holb is a space of bounded continuous
function which is holomorphic in the interior.

To see N̂1 extends to the completion, let P ∈ Ψ0
Φ,b

I
(X;E,F ) and Pn ∈ Ψ0

Φ,b(X;E,F )

such that ||P − Pn||I → 0, then N̂1(Pn)|R×iI is a Cauchy sequence by the definition

of the norm, and uniformly converges to some N̂1(P ). Because uniform limit of holo-

morphic function is holomorphic, N̂1(P ) is holomorphic in the interior.
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Note that σ and N0 also extends because σ(xα1Px
−α
1 ) = σ(P ) and N0(x

α
1Px

−α
1 ) =

N0(P ).

And theorem 8 can be extended to the completion P ∈ Ψ0
Φ,b

I
(X;E,F ), because

both hand side of the equality are continuous with respect to || · ||I and is an integer.

4 Application to Z/k-manifolds

In this section we fix an isomorphism TX = Φ,bT ∗X for simplicity. SupposeX is a Z/k
manifold, i.e. X is a manifold with corner and ∂X = ∂0X ∪ ∂1X , ∠X = ∂0X ∩ ∂1X
and the diffeomorhpism ∂1X ' kZ is given, where Z is a manifold with boundary
and kZ is a disjoint union of k copies of Z. For φ = Id : ∂0X → ∂0X , we regard X
as a manifold with fibred boundary. And we write Ψ0

sc,b(X;E,F ) = Ψ0
Φ,b(X;E,F ) in

this case.
A vector bundle E over X is called Z/k-vector bundle if E|∂1X = kEZ for some

vector bundle EZ → Z. Fix a Z/k-vector bundle structure on TX. Define X be a
quotient of X obtained by identifying k copies of Z in X. Then TX → X descends
to a vector bundle TX → X.

Let E,F are Z/k- vector bundle over X, and P ∈ Ψ0
Φ,b(X;E,F ). Define

Ψ0
sc,b,Z/k(X;E,F ) := {P ∈ Ψ0

sc,b(X;E,F ) | N1(P ) = kQ

for some Q ∈ Ψ0
sc,b(Z̃;E,F ) } (15)

Where kQ = Q ⊕ Q · · · ⊕ Q ∈ Ψ0
sc,b(∂̃1X;E,F ) is defined by using isomorphism

∂1X ' kZ, and Z̃ ' Z × [0,∞].

N̂0(P ) is a bundle homomorphism over ∂0X, N̂0(P ) : R⊕T (∂1X) → ∪
y∈∂0X

Ψ0(φ−1(y);E,F ).

Note that φ−1(y) is one point set in this case. So Ψ0(φ−1(y);E,F ) ' Hom(E,F ).

Under this identification, by the compatibility of N0 and σ, σ(P )(ξ) = limt→∞ N̂0(tξ)
for ξ ∈ S(TX|∂0X).

By above observations, there is a map

s : P ∈ {P ∈ Ψ0
sc,b,Z/k(X;E,F ) | σ(P ) and N0(P ) are invertible }

7→ [E, σ(P ) ∪N0(P ), F ] ∈ K(D(TX), S(TX) ∪D(TX)|∂0X). (16)

Where we regard σ(P ) ∪N0(P ) as a bundle isomorphism between E and F over
S(TX) ∪D(TX)|∂0X .

Let P ∈ Ψ0
sc,b,Z/k(X;E,F ) and suppose that σ(P ) and N0(P ) are invertible.

Then the right hand side of the equality in theorem 8 is always a multiple of k, so
ind(xβ1Px

−β
1 ) mod k ∈ Z/k does not depends on β /∈ −ImSpec(N̂1(P )(λ)). More

strongly, following lemma holds.

Lemma 7. Let P,Q ∈ Ψ0
sc,b,Z/k(X;E,F ) and suppose that σ(P ), σ(Q) and N0(P ), N1(P )

are invertible. If (σ(P ), N0(P )) and (σ(Q), N0(Q)) are homotopic in the space of in-

vertible joint symbols, then ind(xβ1Px
−β
1 ) ≡ ind(xβ1Qx

−β
1 ) mod k for β /∈ −ImSpec(N̂1(P )(λ))∪

−ImSpec(N̂1(Q)(λ))

Proof. Let (st, nt), 0 ≤ t ≤ 1 be a homotopy such that (s0, n0) = (σ(P ), N0(P )) ,
(s1, n1) = (σ(Q), N0(Q)). Take any lift Rt of (st, nt) , i.e. (σ(Rt), N0(Rt)) = (st, nt).
Combining the homotopies (1− t)P + tR0 and tQ+(1− t)R1, we can get a homotopy
St such that S0 = P , S1 = Q and (σ(St), N0(St)) is invertible for all 0 ≤ t ≤ 1.
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Subdivide the interval sufficiently small [t0, t1], . . . , [tm−1, tm] ,0 = t0 < t1 < · · · <
tm−1 < tm = 1 so that we can choose β0, . . . , βm−1 such that xβiStx

−βi is Fredholm
on [ti, ti+1].

Then ind(xβiStx
−βi) is constant on [ti, ti+1] and ind(xβiStix

−βi) ≡ ind(xβi−1Stix
−βi−1)

mod k. Thus ind(xβ0Px−β0) ≡ ind(xβm−1Qx−βm−1) mod k and the claim is proved.

As in [10] or [25], we can define a topological index map.

t-ind : K(D(TX), S(TX) ∪D(TX)|∂0X) → Z/k

And the index theorem can be proved.

Theorem 9. Let P ∈ Ψ0
sc,b,Z/k(X;E,F ) and suppose that σ(P ) and N0(P ) are in-

vertible, then ind(xβ1Px
−β
1 ) mod k = t-ind(s(P )) ∈ Z/k, β /∈ −ImSpec(N̂1(λ)).

Proof. We will demonstrate two different ways to prove the theorem.
The first method is to reduce to the case when ∂0X is empty as in [21]. Embed X

into Y ,where Y is Z/k- manifold such that ∂0Y = φ, e.g. we can take Y as a double of
X. ChooseG so that F⊕G ' Cn , by replacing P by P⊕IdG, we can assume F = Cn is
a trivial bundle. Because D(TX|∂0X) is homotopy equivalent to ∂0X, replacing P by

a homotpic element, we can assume that N̂1(P ) : TX|∂0X → Hom(E,F ) is constant
on each fibre and given by some bundle isomorphism θ : E ' F = Cn.

Using θ, we can extend E onto Y in the obvious way. Take a cut-off function
φ such that φ ≡ 1 near ∂0X. If we choose φ with sufficiently small support, Q :=
θφ + P (1 − φ) is homotopic to P via linear homotopy. Q can be extended to a
b-pseudodifferential operator Q̃ on Y And by construction, under the excision map
K(D(TX), S(TX) ∪ D(TX)|∂0X) → K(D(TY ), S(TY )), σ(Q) is mapped to σ(Q̃)

thus, t-ind(s(Q)) = t-ind(s(Q̃)). Obviously, ind(xβ1Qx
−β
1 ) = ind(xβ1 Q̃x

−β
1 ) for all

β /∈ −ImSpec(Q̂(λ)).

Because ∂0Y is empty, by [10], t-ind(s(Q̃)) = ind(xβ1 Q̃x
−β
1 ) mod k and the theo-

rem is proved.
For the second method, we only give an outline. We define the analytic index

a-ind : K(D(TX), S(TX) ∪ D(TX)|∂0X) → Z/k by a-ind(s(P )) = ind(xβPx−β)

mod k , β /∈ −ImSpec(P̂ (λ)). Then it is well-defined. And we can prove that a-ind
satisfies the axioms as in [5], [10] or [25].

For the part of the axiom about multiplication, we need to be careful. Let W
be a closed manifold, and P ∈ ΨmΦ,b(X;E,F ) , m > 0 . Then in general, as in [5],

P�IdW /∈ ΨmΦ,b(X×W ;E,F ) but it is contained in the completion ΨmΦ,b
I
(X×Z;E,F )

defined in section 3.5 .
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