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In the 20th Century, cities and mobility services have dramatically changed by
the penetration of “automobiles”, even though they actually are the “automobiles
manipulated by human beings.” In the coming age, penetrating of the true “auto-
mobiles”, namely automated-vehicles (AVs), and mobility services using such vehi-
cles as well-controllable tools, they will change again, dramatically. In this thesis,
we try to show the direction of transportation research in such age and propose
mechanisms, as well as algorithms, that make important roles in such a new type
of mobility society. Specifically, we try to construct dynamic traffic allocation algo-
rithms that effectively utilize the limited traffic resources while considering users’
behavioral choice in the traffic network.

The penetration of AVs arises issues both in urban and suburban areas. In ur-
ban areas, the traffic volume of automobiles may increase with the improvement of
convenience by AVs. Thus a traffic control is required which disperses the traffics
concentrating at specific points. In Chapter 3, we propose a traffic control algorithm
to prevent the occurrence of gridlock phenomena due to traffic concentration in ur-
ban over-saturated networks. Meanwhile, in the suburbs, efficient mobility services
that aggregate the travel demands of multiple users are desired in order to realize the
fruitful activities of users with limited traffic resources. In Chapter 4, we propose an
algorithm that realizes efficient traffic resource allocation while considering space–
time constraints of each user in a suburban area with sparse supply and demand.
In both settings, the important point to note is the non-cooperative relationship be-
tween administrators of traffic controls or services and users actually using traffic
resources. The “price of anarchy” defined as the gap between the system optimal
and the user equilibrium state grows larger along with the improvement in conve-
nience due to the spread of AVs. To compensate the gap, the pricing mechanism
plays an important role. In Chapter 5, we propose a dynamic pricing algorithm
to appropriately operate limited traffic resources on the premise of selfish decision
making by users.
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Chapter 1

Introduction

Advanced information technologies have recently led to the great change in the way
of traffic services. In the past several decades, private owned and manually driven
automobiles played a key role of traffic situations in many areas in the world. A
great deal of effort has been devoted to developing better traffic control systems that
control such automobiles, e.g., by traffic signals. On the contrary, two keywords, re-
lated to the automobile, that have attracted great attention recently are “automation”
and “sharing.” Automated vehicles can communicate to other vehicles and/or road
infrastructures by themselves and thus the way of traffic control is greatly chang-
ing. The sharing system of automobiles relief the fixed pattern of usage of traffic
resources by users. Users do not have to select the same traffic mode in both of out-
ward and backward trip. This increases the importance of traffic services that treat
multi-modal transportation resources, rather than traffic controls that only control
the road traffics. Indeed, the concept of such mobility services, that is so-called “Mo-
bility as a Service (MaaS)” has recently been emerging and growing. However, there
exists no small example in which the newly introduced services end up in failure
because of the reaction of the self-interested users to the policy. It implies that the
behavior of users of systems should be well-considered in designing such systems.

In this chapter, we introduce the background of our study, present the scope of
the thesis, and show the outline of the thesis.

1.1 Background

Automated driving technology (Burns, 2013) has received considerable attention
from industry and academia as a decisive factor in solving the various problems of
a motorized society, and is expected to have wide-ranging effects such as reducing
traffic accidents, eliminating traffic jams, and improving the environment. However,
pessimistic scenarios also exist. For instance, in the case of unexpected accidents or
disasters, many automated vehicles (AVs) making emergency stops may decrease
the road network capacity and cause traffic congestion. Additionally, in a society
where automated driving systems have become common, persons who could not
previously drive automobiles, such as children, the elderly, or those without drivers’
licenses, will be able to travel freely, so it is possible that traffic will dramatically in-
crease (Harper et al., 2016). Therefore, especially in cities, the construction of traffic
control systems adapted to the presence of AVs is essential.

Fig. 1.1 shows examples of decision-making by an automobile driver. Decision-
making related to driving is mainly divided into pre-trip and en-route decision-
making. Pre-trip decision-making includes deciding whether to make the trip ("Trip
Execution Decision") and deciding the destination of the trip ("Destination Choice"),
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FIGURE 1.1: Decision-Making and Control Methods in Automobile
Driving Behavior

as well as "Departure Time Choice" and "Pre-Trip Route Choice." En-route decision-
making includes route changing based on information received during the trip ("En-
Route Route Choice"), as well as Maneuver Planning, which includes items such as
"Intersection Entrance Decision" and "Passing Decision," and vehicle behavior de-
cision, which includes items such as "Speed Selection" and "Lane Changing." In a
traffic system that includes AVs, some of the decision-making authority previously
held by drivers is transferred to the system. For example, with current ACC (Adap-
tive Cruise Control) systems, the decision-making authority of "Speed Selection" is
transferred to the system. Additionally, with the AVs under current development, it
is assumed that decision-making authority related to all aspects of "Vehicle Behavior
Decision," including "Speed Selection" and "Lane Changing," could be transferred to
the system. Finally, in the future, decision-making related to "Route Choice" may
also be transferred to an automated driving system. When a society implements au-
tomated driving, it is necessary to define which parts of the decision-making func-
tions previously performed by drivers will become the responsibility of the auto-
mated driving system.

A traffic control system is a system that participates in the driver’s decision-
making to improve traffic conditions. Fig. 1.1 shows specific examples of traffic con-
trol methods related to decision-making. Existing traffic control methods include,
for example, traffic control involved in pre-trip decision-making (such as congestion
fees and presentation of pre-trip route guidance information), en-route route choice



1.1. Background 3

(real-time route guidance information and ramp metering), vehicle movement plan-
ning (intersection control), and vehicle behavior (speed control and lane change con-
trol). Among these traffic control methods, intersection control using traffic signals
has traditionally played a large role in cities. At an intersection without traffic sig-
nals, the driver has all the decision-making authority; the driver must determine
what the surrounding conditions are, and the intersection is crossed with caution.
Conversely, at an intersection controlled by a traffic signal, the decision-making au-
thority for "the decision to enter the intersection" is transferred to the system. The
driver entrusts the decision-making to the signal, proceeding into the intersection
on a green light, or stopping on a red light. The control system controls the traf-
fic flow in the city by using the traffic signal parameters of "signal cycle," "offset,"
and "split" as control variables. Now, suppose that an intersection is controlled by
an automated driving system. In this case, the driver transfers not only "the deci-
sion to enter the intersection," but also the "vehicle behavior decision" to the system.
The system controls traffic flow in the city by directly using the speeds and loca-
tions of all the vehicles as control variables. With such control, the executable space
of optimization problems is obviously larger than that of the traffic signal control,
and better traffic conditions should therefore be realizable. Thus, there have been
many reports regarding intersection control for automated driving systems (Chen
and Cheng, 2010; Dresner and Stone, 2008).

However, there exist three problems when a traffic control method adapted to a
single intersection is extended to the traffic control for an entire city. First, in a city
with a high-density road network, describing traffic phenomena is extremely com-
plicated. In such a complicated road network, the traffic conditions change dynam-
ically, and vehicle queues lengthen with time. If the vehicle queues reach upstream
intersections, the effect extends further to multiple upstream links, and chaotic traf-
fic conditions occur. This phenomenon may occur habitually, because the demand
exceeds the supply capacity of the road network, or it may unexpectedly occur ow-
ing to a major event, traffic accident, or disaster. In this paper, we call a road network
beset with such congestion an "oversaturated network". Oversaturated networks are
characterized by the "unsteady traffic flow" and "chaotic growth of vehicle queues"
described above, so a traffic control system which can appropriately manage such
situations is required.

The second problem is the interaction between traffic control and drivers’ decision-
making. As already mentioned, decision-making related to driving includes many
activities, and it is difficult for a system to control all decision-making. For exam-
ple, even if an automated driving system is optimized for "vehicle behavior deci-
sion," "route choice," and "departure time selection," it may still be the driver who
chooses the "destination" and determines whether the trip is necessary in the first
place. As shown in Fig. 1.1, the actual congestion of the roads reflects the results of
decision-making by drivers. In general, because traffic control uses the (current or
past) road congestion status as input information, a traffic control system that can
appropriately process such information becomes a complicated system that includes
a driver’s decision-making in a feedback loop.

Even if the vehicle population consisted solely of AVs, similar problems would
occur. Imagine two types of decision-making policies for an AV: a "system-optimized
type" and a "user-optimized type." In the automated driving society of the future that
many people vaguely imagine, the automobiles that travel around the city will be ve-
hicles of the "system-optimized type" that are under central control, always provid-
ing smooth traffic flow. However, the current AVs are essentially "user-optimized"
vehicles, performing decision-making that will increase the satisfaction of the user



4 Chapter 1. Introduction

as much as possible within the perceived environment and traffic control frame-
work. Such user-optimized decision-making processes may include, for example,
shortest-time route choice and speed control that maintains a pleasant environment
within the vehicle. Therefore, traffic control systems will include the behavior of
"user-optimized" vehicles in a feedback loop, which will present the same problems
as decision-making by drivers.

The third problem is the amount of computation. In a complicated road network
with many vehicles, it is difficult to achieve traffic flow optimization control in which
the behaviors of all the vehicles are used as parameters. Adding the two problems
already mentioned, the amount of computation for a traffic control algorithm would
be extremely large.

In this thesis, we show the direction of traffic controls and services with cities
in which AVs are broadly introduced. We show that well-structured traffic con-
trols/services are desired to achieve the ideal traffic situation in the coming age.
Namely, the traffic controls by traffic administrators that aims to maximize social
welfare and the mobility services by operators that aims to maximize the utility of
their customers should be coordinated by using a well-controllable AVs. The al-
gorithms related to control AVs are well-studied. With the penetration of AVs, the
decision-making of driving such as acceleration and deceleration will be transferred
from drivers to automated systems and thus traffic situations will become more and
more controllable. However, the traffic controls/services considering higher-level
decision-making of people such as route-choice or traffic-mode choice and so on,
have not been well-studied. To address these problems, we specifically show the
algorithms for traffic controls and services that appropriately considers users’ be-
havioral choice in the traffic network.

1.2 Scope of the thesis

In this thesis, we focus on a traffic controls/services with limited traffic resources.
One instance of such cases that we consider in this thesis is the traffic control in a
large city with the densely distributed road network. In such a city, the limited road
traffic capacities cause to the severe traffic conditions, such as heavy traffic jams
and tragic traffic accidents. To avoid such a situation, a strand of works related to
the traffic control of large cities has been studied. However, there are still many
cities that are suffered by severe traffic jams in the city center. Especially, it is well-
known that once the road-network falls into the over-saturated states, namely the
number of vehicles located on the road networks excesses a specific level, the traffic
situations become chaotic and difficult to control. A traffic control algorithm that
can avoid this chaotic situation is needed. Another instance that we consider in this
thesis is the ride share service in suburban areas. Unlike urban areas with a large
number of users and drivers, the myopic and trip-based matching algorithms fail in
such areas. To increase the sanctification of users with limited traffic resources, the
service operator should focus more on the heterogeneity of users. The space–time
constraint of each user plays an important role in the service operation.

To tackle these situations, we have to consider the behavior of users dynamically
reacting to dynamic environments. In this thesis, we thus present dynamic capacity
control of traffic resources focusing on the behavior of users that can be implemented
to traffic controls/services.
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1.3 Contributions of the thesis

To address the problems that are described in the previous part, we make the fol-
lowing contributions in this thesis.

• We organize a strand of works related to the traffic control systems considering
the behavior of users reacted to the control, traffic control systems intended to
apply to the oversaturated traffic situations, and traffic control systems that
can treat advanced automated vehicles. We also organize the works related
to activity-based travel analysis in which the travel demands are regarded as
the derived demand of activities. Based on that, we present the way the traffic
controls/services should be in a coming age.

• We present a novel traffic signal control algorithm that can be used in an over-
saturated road network with limited capacity. We then evaluate some algo-
rithms including our proposed one, considering the drivers react to the control
and show the importance of the consideration of such behavior of drivers.

• We propose a novel traffic service algorithm that can appropriately allocate
limited traffic resources to heterogeneous users that can be expressed as a util-
ity maximizer and have individual private preferences and constraints. The
proposed search-based algorithm can compute the efficient utilization of traf-
fic resources considering the activity-based user behavior model.

• We propose dynamic pricing mechanisms for mobility service. While the pro-
posed mechanisms are based on auction theory, they consider the specific fea-
tures in the domain of mobility services, that is, the strong space–time con-
straints and dynamically changing environments.

1.4 Outline of the thesis

This thesis consists of following chapters.
In Chapter 2, we review the related work. We review conventional traffic control

schemes that focus on the chaotic traffic situations in saturated-networks in large
cities, and advanced traffic control schemes that directly control the motion of au-
tomated vehicles. We first show a strand of works that focus on the traffic control
systems considering the behaviors of users. A traditional combined traffic control
and traffic assignment problems are included in this part. We present dynamic in-
teractions between the traffic control and users, focusing on the timing of traffic
control and the reaction of users to the control. We formulate it in a game-theoretic
form, considering that the users are self-interested utility-maximizer. Then we show
the state-of-the-art of activity-based utility model of traffic users. In contrast with
the traditional trip-based utility model by which the traffic controls are formulated
to minimize travel costs, we can treat traffic control that aims to maximize utilities
of users by considering activity-based utility model.

In Chapter 3, we present dynamic traffic signal controls in unsteady and over-
saturated road networks, focusing on closed-loop structures in road networks and
vehicle queue advancement in these loops. We propose a novel traffic control algo-
rithm called Z-control, which prevents gridlock and minimizes the total time spent
based on a model predictive scheme. Moreover, we evaluated some algorithms in-
cluding our proposed Z-control, considering two extreme scenarios, “non-reactive”
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scenario where drivers do not react to traffic conditions in the network and “re-
active” scenario where drivers are assumed to have perfect information about the
traffic conditions in the network and react to it.

In Chapter 4, we present dynamic matching algorithms for the ridesharing ser-
vice in suburb areas. Under the sparse ridesharing market where the common my-
opic and trip-based matching algorithms fail, we propose a mechanism that satis-
fies both users’ space and time constraints and the capacity constraints of traffic
resources at any time. We also propose a solution algorithm based on a graph-
algorithms to solve this problem.

In Chapter 5, we present pricing algorithms for the integrated mobility services
that treat not only automobiles but also various traffic mode in cities, as are often
mentioned to MaaS (mobility as a service). We formalize Activity-chain auction that
aims to achieve the socially optimal allocation of time-dependent traffic resources
considering the self-interested behavior of users with private information. Espe-
cially, we focus on the situations where mechanism cannot know the type of users
until they report their preferences and constraints to the booking system and pro-
pose a sequential mechanism that maximizes the discounted social welfare under
the strategic behaviors of selfish users.

Finally, in Chapter 6, we conclude this series of studies and present the future
works.
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Chapter 2

Literature Review

In this chapter, we review the related work. We first organize the related works that
focus on the traffic control systems considering the behaviors of users. We formal-
ize the dynamic interaction between traffic controls and users in a game-theoretic
form, assuming that the users are self-interested utility-maximizer. We then show
the state-of-the-art of activity-based utility model of traffic users. In contrast with
the traditional trip-based utility model by which the traffic controls are formulated
to minimize travel costs, we can treat traffic control that aims to maximize utilities
of users by considering activity-based utility model.

2.1 Traffic Control Methods for Oversaturated Networks

There have been many studies regarding traffic control methods for oversaturated
networks. This section focuses on the relationship between traffic control and driver
decision-making to summarize previous research, and then presents a basic plan for
introducing an automated driving system into a city.

2.1.1 Traffic Signal Control

Traffic signal control (Papageorgiou et al., 2007, 2003) is the most important and ba-
sic method for controlling traffic in the complicated road network of a city, and aims
to achieve smooth traffic flow by transferring the decision-making authority related
to entering an intersection from the driver to the system. SCOOT (Hunt et al., 1982,
1981) present an example of typical traffic control, where the objective function is
represented as a performance index (PI) that comprises items such as total travel
time and the number of signal stops. The control variables are "cycle length," "split,"
and "offset," and items such as the law of conservation of traffic volume and the
shortest green-light time are used in the constraint condition formulas. As shown
in the top portion of Table 2.1, many traffic signal control algorithms have been im-
plemented, but these are generally algorithms that assume the road network is not
saturated, and are therefore unsuitable for the control of oversaturated networks.

As shown in the bottom portion of Table 2.1, there have also been various studies
on signal processing for oversaturated networks. This research is mainly divided
into a problem of minimizing total travel time, or a queue management problem.
Next, we summarize each of these.
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Research that Formalizes Traffic Control as a Total Travel Time Minimization Prob-
lem

First, we present research examples that formalize traffic signal control as a total
travel time minimization problem and attempt to derive a solution. Gazis (1964)
proposed a store-and-forward model (SFM) that expresses the capacity of a link con-
trolled by a traffic signal as the product of a saturation capacity and the signal green-
time ratio (split ratio). Using this model, a graphical solution method is used to de-
termine the signal split that minimizes the total travel time in a road network of two
intersections without left or right turns. D’ans and Gazis (1976) formalized traffic
control with vehicle queue length as the state variable in a similar two-intersection
network without turns, and showed that the optimal split can be calculated as a
linear programming (LP) problem. They also formalized traffic control with a total
travel time minimization problem for general networks without left and right turns,
but did not present a solution method. Michalopoulos and Stephanopoulos (1977)
used optimal control theory (Kirk, 2012) for a two-intersection network with left
and right turns, and presented the properties of solutions for optimal traffic control.
They showed that if vehicle queue capacity constraints are introduced into multiple
links, then the constraint condition for the total travel time minimization problem
contains a delay term for the state variable. Therefore, the existence of a solution
is not guaranteed, and optimal control becomes extremely complicated. Chang and
Lin (2000) used discrete-time SFM for one oversaturated intersection and calculated
an appropriate split by successive optimization. Chang and Sun (2004) applied this
method to a control method that is envisioned to be applied to TRANSYT-7F (Wal-
lace et al., 1984), and its effectiveness was evaluated by simulation. Liu et al. (2008)
formalized a throughput maximization problem and an equivalent total travel time
minimization problem as an LP problem, using one oversaturated intersection.

This line of research uses SFM to express traffic flow, and aims to find a solution
for the total travel time minimization problem. In the case of one intersection, the
goal has been achieved, but for multiple intersections, the optimization problem
becomes complicated, requiring a delay term in the state variable, such that finding
the optimal solution becomes difficult. In addition, SFM cannot express signal offset
or cycle length, and thus for offset and cycle length control, a different algorithm is
needed.

Lo (1999, 2001) modeled the dynamics of traffic flow using a cell-transmission
model (Daganzo, 1994, 1995) for a general network without left and right turns, and
formalized signal control that minimizes the total travel time as a mixed integer pro-
gramming (MIP) problem. Lo et al. (2001) expanded this to networks with left and
right turns, and showed a method for deriving appropriate signal parameters using
a genetic algorithm (GA). In their research, the traffic flow dynamics are expressed
in detail, but the required amount of computation makes it difficult to apply to a
large-scale network.

Research that Formalizes Traffic Control as a Queue Management Problem

As shown so far, it is generally difficult to find a solution to the total travel time
minimization problem for an oversaturated network. Therefore, there has been re-
search to treat traffic signal control as a queue management (Quinn, 1992) problem,
specifying an objective function other than total travel time minimization.
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Singh and Tamura (1974) formalized traffic control in an oversaturated network
as a time-delay system (Richard, 2003) optimization problem that attempted to min-
imize vehicle queue length. They expressed the condition of an entire discrete-time
network as a linear system with a delay term and used numerical calculation to
determine the dynamically optimized control method for a network with three in-
tersections. Because vehicle queue extension that interferes with the traffic flow of
an upstream intersection (queue spillback) is the most significant cause of traffic
congestion, Rathi (1988) proposed controls that reduced the frequency and effect of
queue spillback. Specifically, by using a traffic flow model that introduced an ad-
justable parameter α to express the distribution of traffic during each cycle, on top
of an SFM base, splits were calculated to minimize the effect of queue spillback.
Optimal offset was separately considered by using kinematic wave (KW) logic, and
was formalized for a network of two intersections. However, deriving the same
type of solution for a general network would be difficult, thus this only qualitatively
demonstrated the idea that, as the probability of occurrence of queue spillback in-
creases, a "reverse" offset setting is desirable. In order to eliminate wasted green
signal time (de facto red) caused by queue spillback, Abu-Lebdeh and Benekohal
(1997) proposed a traffic signal control model that adaptively changed splits and
offsets corresponding to vehicle queue length and traffic demand, and calculated a
solution by using a GA. In order to suppress the risk of queue spillback, Aboudolas
et al. (2009, 2010) proposed traffic control in which vehicle queue balance within a
network, i.e., relative queue balance (RQB), was used as an evaluation reference, and
used a model prediction control framework to predict future traffic conditions.

These methods consider unsteady traffic flow and the behavior of vehicle queues,
and appear to be highly compatible with oversaturated networks. However, de-
pending on the traffic conditions and the network, control that targets queue man-
agement itself may not be able to achieve appropriate results. Acceptable results
may also not be obtained when higher-level decision-making such as destination
choice and route choice are taken into account. Section 2.2 considers these points.

2.1.2 Ramp Metering

Ramp metering is a general traffic control method associated with traffic signal con-
trol. This is a method of proactively preventing the occurrence of a traffic jam on
an expressway by controlling the amount of traffic that enters the expressway from
entrance ramps. It aims to control expressway density and facilitate smooth traffic
flow by transferring the driver’s decision-making authority related to route choice
to the system. Wattleworth (1965) divided an expressway into several intervals and
expressed the amount of traffic qj in interval j ∈ J by the formula

qj = ∑
i∈I

αijrj (2.1)

where rj is the traffic volume that enters from entrance ramp i ∈ I and αij ∈ [0, 1]
is the fraction of vehicles that pass through interval j of the expressway considering
all vehicles that entered from entrance ramp i. If αij ∈ [0, 1] is known, such as from
past statistical data, then by establishing the constraint condition

∀j : qj ≤ qcap,j (2.2)

which involves the traffic capacity qcap,j for interval j, it is possible to perform en-
trance control that does not allow a traffic jam to occur on the expressway. The
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target variable for the control may be, for example, maximizing the amount of enter-
ing traffic, or maximizing the total travel distance, and such optimization problems
can be formalized as LP problems.

This method hypothesizes steady traffic flow, which rules out application to con-
ditions in which traffic quantity changes. With regard to this problem, Papageorgiou
(1980) formalized the problem by considering the time for a vehicle that entered
from entrance ramp i to reach interval j on the expressway. However, this research
assumes that the demand up to a future point in time is known, and thus it cannot
be applied to unexpected phenomena such as accidents.

Papageorgiou et al. (1991, 1997) proposed a feedback control named "ALINEA"
that maintained the traffic density in downstream intervals at an optimal value for
one entrance ramp, and demonstrated its effectiveness. Additionally, Benmohamed
and Meerkov (1994) proposed a ramp metering strategy that considered fairness
across the entrance ramps within a network, using a similar local feedback control
formula.

Ramp metering aims to prevent an oversaturated condition from arising on a
priority route. There is also research that considers the relationship between traffic
control performed by a traffic manager and a driver’s route choice behavior. How-
ever, while research is progressing on relatively simple networks, such as city ex-
pressways, there has not been progress with respect to complicated networks, such
as the general roads of a city center.

2.1.3 Congestion Fees

In all the controls discussed so far, some type of decision-making during the trip was
transferred to the system. By contrast, a congestion fee is an indirect traffic control
that affects pre-trip decision-making, such as destination choice and trip execution
decision. The purpose of this method is to prevent the road network of a city center
from falling into an oversaturated condition by suppressing the amount of traffic
that enters a certain area of the city. For example, Daganzo (2007) focused on the
relationship

g = G(ρ) (2.3)

between the traffic density ρ of a city center area and the amount of traffic, g, flowing
out of that area, and presented a method of controlling traffic density in order to
maximize the amount of traffic flowing out. Formula 2.3 is called a macroscopic
fundamental diagram (MFD) (Geroliminis and Daganzo, 2008) of the road network,
and it has been shown both theoretically and experimentally that, if the traffic within
the target area is homogeneous and in steady state, then the above formula becomes
a convex-upward function that has a maximum value of gmax = G(ρ0) for some
ρ = ρ0.

A congestion fee is an effective traffic control method in cities that experience
severe traffic jams, and demand suppression and congestion relief have been ob-
served in many cities, such as London and Singapore. Additionally, these cities im-
plement measures to adjust demand, such as dynamic pricing measures that change
road travel fees according to conditions, travel prohibition measures on certain days
based on vehicle license plate numbers, and requests for self-imposed restrictions on
travel during special events. When demand adjustment is successful, the network
maintains a state that is not oversaturated, and smooth traffic flow can be main-
tained. However, this type of method is not a control aimed at oversaturated net-
works, and if a network falls into an oversaturated condition, for example, due to an
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unexpected event, accident, or disaster, more aggressive traffic control is necessary
to quickly eliminate the congestion. Furthermore, the methods to appropriately de-
termine the area to be controlled and the specific methods of implementing entrance
control are unclear.

2.1.4 Direct Control of Vehicle Behavior

Direct control of vehicle behavior refers to methods where a system directly controls
decision-making related to vehicle behavior (such as acceleration, braking, and lane
changing), and specifically includes items such as "speed control" and "lane change
control." This has already been partially implemented in systems such as ACC and
Lane Keeping Assist (LKA), but one can expect its importance to increase greatly
with the introduction of automated driving.

Speed Control

It is thought that speed control will greatly affect other traffic control methods by
transferring decision-making authority concerning speed selection from a human
driver, whose probabilistic behavior is highly uncertain, to a system that can pro-
vide deterministic behavior (Varaiya, 1993). The following Gazis–Herman–Rothery
model (Gazis et al., 1959) is a representative example of a vehicle tracking model
(Brackstone and McDonald, 1999).

an(t) = cvm
n (t)

∆v(t− T)
∆xl(t− T)

(2.4)

Here, an(t) is the acceleration of vehicle n at time t, and this equation shows its
relationship to the speed vn(t) of vehicle n, and to the relative speed ∆v(t− T) and
relative position ∆x(t− T) (inter-vehicle distance), relative to vehicle n− 1 located
in front at time t − T. T is the driver’s response time. It is reasonable to consider
that an automated driving system can not only shorten the response time T, but
also suppress variations in T. For example, Shladover et al. (1991), hypothesizing an
expressway populated only by AVs, presented an algorithm for controlling groups
of vehicles that can maintain a shorter inter-vehicle distance than when humans are
driving. This method increases traffic density and traffic capacity using automated
speed control.

By contrast, for cities, deceleration control and variable speed control have been
proposed to avoid excessive congestion by maintaining the traffic density at an ap-
propriate level. For example, Chien et al. (1997) hypothesized the Automated High-
way System, in which a traffic manager can fully control the speed of an automobile,
and presented an algorithm for maintaining the density of each link on a network at
a desired value, whereas Hegyi et al. (2005) presented an algorithm that uses vari-
able speed limit control to maintain traffic density at an appropriate level, thereby
improving total travel time. These examples illustrate that when considering com-
plicated city networks, it is not necessary to increase traffic density and traffic capac-
ity, but rather control them to achieve appropriate levels.

Lane Change Control

It is thought that lane change control will effectively use road space and increase traf-
fic network capacity by transferring the decision-making authority from the driver
to the system. For example, Hall and Lotspeich (1996) demonstrated a lane use
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assignment method for optimizing traffic capacity when the traffic demand was
known, and Ramaswamy et al. (1997) formalized lane assignment as a travel time
minimization problem. Roncoli et al. (2015a,b)presented an optimization algorithm
that segmented each lane into fixed distances and specified a desired traffic density
for each.

Integrated Vehicle Behavior Control

There have also been many proposals for integrated vehicle behavior control sys-
tems that include both the speed control and lane change control methods discussed
above. The purpose of this research is both to assign routes to vehicles and to deter-
mine vehicle movement planning (maneuvering) and vehicle behaviors for travers-
ing those routes. That is, the system holds the decision-making authority not only
for vehicle behavior decisions, but also for vehicle movement planning. Katrakazas
et al. (2015) provide a detailed review of such research.

Whereas all of the research discussed so far has focused on individual vehi-
cles, other studies have focused on traffic control that aims to eliminate congestion
over an entire road network by using methods of information transmission, such
as vehicle-to-vehicle communication and road-to-vehicle communication (Li et al.,
2014). There are many examples of research into traffic control methods for one
intersection, such as vehicle group control (for example, Jiang et al. (2006))), road-
to-vehicle cooperation control (for example, Li and Wang (2006)), and vehicle-to-
vehicle cooperation control (for example, Dresner and Stone (2008)). For trunk roads
with continuous signals, there has been research (for example, Asadi and Vahidi
(2011)) into minimizing signal stops by transmitting signal display timing to vehi-
cles.

2.1.5 Summary of Traffic Control Methods for Oversaturated Networks

This section has discussed “traffic signal control", “ramp metering", “congestion
fees" and “direct control of vehicle behavior" as traffic control methods for over-
saturated networks, describing the decision-making relationship between the traf-
fic control system and the driver. Each type of control aims at improving traffic
conditions by transferring part of the decision-making related to the driving behav-
iors shown in Fig. 1.1 from the driver to the system. There has been much research
into methods that increase traffic density and traffic capacity by introducing auto-
mated driving technology. For example, systems have been presented that optimize
decision-making related to “maneuver planning" and “vehicle behavior decision"
with the purpose of “maximizing traffic capacity." However, as has been indicated
in this section, in city centers with complicated road networks, local maximization
of traffic capacity does not necessarily lead to improvement of traffic conditions for
the city as a whole. Traffic control must cover the entire network, such as by us-
ing “speed reduction control" to maintain appropriate traffic densities, and traffic
signal control to appropriately control vehicle queues. Currently, the traffic control
systems of cities mainly use decision-making related to “route choice" and “intersec-
tion control," and the driver owns the decision-making related to “vehicle behavior
decision." However, in a traffic system that controls AVs, it is possible to implement
traffic control systems that also hold decision-making authority related to “vehicle
behavior decision." By exploiting this advantage, traffic control methods that react to
dynamically changing traffic situations and quickly lead to appropriate traffic den-
sity levels in the complicated road networks of cities are possible.
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2.2 Traffic Control Considering the Behaviors of User-Optimized
Agents

There have been various reports on traffic control that treat the driver as a “user-
optimized agent.” This section will review this research, and present a basic idea for
traffic control that includes user-optimized agents in a feedback loop.

2.2.1 Traffic control and traffic assignment

The interaction between traffic control and the decision-making of drivers will now
be formalized to describe the form that traffic control should take.

We consider a set of drivers I = {1, . . . , Ī} in the traffic society to be controlled,
and use a = {a1, . . . a Ī} to denote their actions. Let c be the traffic control that is
actually executed. The condition of the society is determined by the traffic control
and the drivers’ action, and thus the achieved total social welfare can be expressed as
a function SW(c, a). Using this expression, the types of traffic control shown earlier,
“direct control of vehicle behavior,” “traffic signal control,” and “ramp metering”
can be expressed in the form of the traffic control [TC] problem shown below.

[TC]

max
c∈C

SW(c, a) (2.5)

s.t. hj(c, a) ≤ 0, j = {1, 2, . . . , k}, (2.6)

where k denotes the number of constraints, hj(·) denotes the function of jth con-
straint, and C denotes a set of feasible traffic control. This type of traffic control aims
to maximize the value of the objective function SW(c, a) under multiple constraint
conditions, such as traffic capacity constraints and the law of conservation of traffic
volume, when the drivers’ action a is steady and known. The optimal traffic control
pattern c∗ is obtained from the solution of the [TC] problem. This type of problem
does not consider the reactions of drivers to the traffic control that is executed.

On the other hand, “congestion fees” can be viewed as a traffic assignment prob-
lem in which the traffic control c is known. In this problem, the achieved traffic flow
pattern is described by the Nash equilibrium condition in the form shown below.

[UE] (Nash Equilibrium Condition )

∀i, ai ∈ Ai : Ui(c, a∗) ≥ Ui(c, ai, a∗−i) (2.7)

Here, Ai is a set of executable decision-making for driver i, ai ∈ Ai is the action of
driver i whereas a−i is the action of drivers other than i, and Ui(c, a) is the utility to
user i of a and c. In formula (2.7) the Nash equilibrium condition a∗ is the condition
where no driver can increase its own utility by changing its own behavior. Apart
from “congestion fees,” another example of the user equilibrium [UE] type of control
is a “Route Guidance Information System (Papageorgiou et al., 2007, 2003).” This
method is traffic control that affects the driver’s decision-making related to route
choice by providing information regarding the degree of congestion and the required
time for each route.

In a steady network, the equilibrium condition that arises when the driver’s be-
havior is deterministic is known as a Wardrop equilibrium, and can be expressed in
the framework of “Congestion game (Rosenthal, 1973).” Or, in a steady network, the
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equilibrium condition that arises when the driver’s behavior is probabilistic is called
a probabilistic user equilibrium condition.

Examples of studies demonstrating route choice behavior with a probabilistic,
discrete selection model include the Multi-Term Logit Model and the Nested Logit
Model, which are based on the Generalized Extreme Value theory of McFadden
(1978) and on the Mixed Logit Model proposed by McFadden (1989). On the other
hand, Dial (1971) presented an algorithm that avoided the process of enumerating
routes, and instead probabilistically distributed traffic volume over all paths that did
not involve going back (efficient paths). It was later shown by Van Vliet (1981) that
this model was equivalent to the Logit Model. Additionally, Akamatsu (1996) pro-
posed a Logit-type probabilistic traffic assignment method in networks that have
cyclic patterns, and Fosgerau et al. (2013) proposed the Recursive Logit Model, in
which the ultimately obtained path is the result of successive forward-path selection
for each node, and also proposed a traffic assignment method that did not list selec-
tion branches. In order to understand the type of society that can be achieved by the
[UE] type of traffic control, it is effective to use these methods.

2.2.2 Optimal control

Thus far, we have reviewed the [TC] type of control and the [UE] type of control.
However, with the introduction of automated driving technology, the term “society-
optimized” control has recently come into use. This concept can be formalized with
the following type of society-optimized [SO] problem.

[SO]

max
c∈C,a∈A

SW(c, a) (2.8)

s.t. hj(c, a) ≤ 0, j = {1, 2, . . . , k}, (2.9)

where A denotes a set of executable joint actions by all drivers.
This problem takes a form similar to the [TC] problem, but the executable space

of the optimization is different. In the [TC] problem, the driver’s action a is known
and the optimal control pattern is found from within the executable space of controls
C. The [SO] problem also considers changes in the driver’s decision-making and
seeks a combination of optimal traffic control c∗ and drivers’ action a∗ within the
ranges of the executable spaces C and A. The executable space of the [SO] problem
includes the executable space of the [TC] problem, and [SO] will therefore always
yield a condition that is equal to or better than that of [TC]; if one assumes that A
includes all the action of all the players in the traffic society, then the condition that
can be achieved with the [SO] type of traffic control is a society-optimized condition.

As an example of a method that achieves this type of society-optimized condition
by incorporating a centralized control in a future automated driving system, there is
the game theoretic idea of “mechanism design.” The Vickrey-Clarke-Groves (VCG)
mechanism (Clarke, 1971; Groves, 1973; Vickrey, 1961), which is a basic method of
this type, derives the decision-making that can achieve society-optimized condi-
tions by assigning to each user a cost that corresponds to the externality that the
user contributes to the society. Yang and Wang (2011), based on a similar idea, pro-
posed a “tradable travel credits system ” that achieves society-optimized conditions
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when “route choice” and “departure time selection” represent the driver’s decision-
making space. Additionally, assuming that the road network is always in an un-
saturated state, Wada and Akamatsu (2013) proposed a transaction algorithm for
implementing a similar system.

However, such approaches present two problems. First, there is the computa-
tional difficulty of applying these methods to the general networks in an actual city.
Especially, if we apply it to an unsteady oversaturated network, it is necessary to
solve the [SO] problem dynamically. There have been many studies (Friesz et al.,
1989; Merchant and Nemhauser, 1978) on the dynamically society-optimized con-
trol [DSO] problem, which considers vehicle control and route choice as the driver’s
decision-making space. Lovell and Daganzo (2000) formalized DSO assignment by
considering a FIFO (First-in First-out) constraint, and showed that an exact solution
can be obtained for networks with a single origin or destination, or with a single bot-
tleneck. But they also mentioned that model construction and its numerical analysis
for a general network are difficult owing to a lack of convexity.

As for the second problem, the difficulty of allowing traffic control to control
all of the driver’s action remains. The action of a driver related to traffic behavior
includes many activities. No matter how advanced the system, part of the decision-
making of action a will remain with the driver, making it difficult to construct a
system that implements an optimal condition across the entire action space A.
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2.2.3 Traffic control with a user equilibrium constraint

As shown in the previous section, it is difficult to implement society-optimized [SO]
control across a driver’s entire action space. On the other hand, it is possible to im-
plement conditions as close to [SO] as possible by considering the driver’s reaction
to traffic control. Based on this idea, there are many reports on research into the
“combined traffic control and assignment problem,” which simultaneously consid-
ers the traffic control problem and the traffic assignment problem, and examples of
this are shown in Table 2.2. Among the many studies into network design and traffic
signal control, the first to mention this type of control was Allsop (1974). Allsop for-
malized the relationship between the user’s route choice behavior, which changes
day to day, and traffic signal control parameters as a bi-level problem. In detail,
he introduced traffic signal control formalized by [TC] as an upper-level problem
and expressed users’ reactions formalized by [UE] as a lower-level problem, and ob-
tained optimal traffic control parameters by iterated calculations of these upper and
lower problems. In a similar manner, Smith (1978, 1979) focused on the convergence
properties of the bi-level problem. He demonstrated that this problem does not gen-
erally converge if the objective of the traffic control is minimizing total travel time,
or if Webster’s method (Webster, 1958) is adapted as the control policy, but it gener-
ally converges if the objective is maximizing network-capacity. Smith and Van Vuren
(1993) finally defined the conditions to be satisfied by the control objective function
and by the link cost function that allow the iterative calculation to converge.

The iterative calculations performed in this line of research can be considered in
the framework of “Cournot competition”, and the equilibrium conditions that the
solution (c∗, a∗) should satisfy can be expressed as follows (Chen and Ben-Akiva,
1998):

[Nash–Cournot Equilibrium Conditions]

∀c ∈ C : SW(c∗, a∗) ≥ SW(c, a∗) (2.10)
∀i, ai ∈ Ai : Ui(c∗, a∗) ≥ Ui(c∗, ai, a∗−i) (2.11)

A solution (c∗, a∗) that satisfies these conditions will be a fixed point that cannot
be changed in either the upper-level [TC] or lower-level [UE] problem.

On the other hand, Fisk (1984) treated this as a problem in which a traffic man-
ager incorporates the reaction of the driver to the traffic control system and then the
optimal traffic control parameters are derived, as formalized by using the Stackel-
berg game shown below (Chen and Ben-Akiva, 1998).

[Stackelberg game]

max
c∈C

SW(c, a) (2.12)

s.t. hj(c, a) ≤ 0, j = {1, 2, . . . , k} (2.13)
∀i, ai ∈ Ai : Ui(c, a) ≥ Ui(c, ai, a−i) (2.14)

This is a mathematical programming problem with equilibrium constraints (MPEC),
where combining the user equilibrium problem [UE] with the constraint conditions
for the optimal control problem [TC], and the calculated solution c∗, together with
the drivers’ action a∗ at that time, is called the Stackelberg equilibrium solution.
The Stackelberg equilibrium and the Nash-Cournot equilibrium use the same user
equilibrium condition formulas (2.11 and 2.14), but in the Stackelberg equilibrium,
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the objective function is maximized by using formula (2.12). The following relation-
ship therefore exists between the Stackelberg equilibrium solution (c∗ST, a∗ST) and the
Nash–Cournot equilibrium solution (c∗NC, a∗NC):

SW(c∗ST, a∗ST) ≥ SW(c∗NC, a∗NC) (2.15)

In other words, the system can achieve the Stackelberg equilibrium condition, which
is better than the Nash–Cournot equilibrium, by having a traffic manager first incor-
porate the reaction of the driver. The Stackelberg equilibrium solution is not a fixed
point of the upper-level [TC] problem; therefore, it cannot be found by iterative cal-
culation of the upper-level and lower-level problems, and an algorithm for finding
the solution is needed. The same type of problem has been considered not just for the
traffic signal control problem, but also for network design problems and, as shown
in Table 2.2, many heuristic algorithms have been proposed for finding the Stack-
elberg equilibrium solution. Some are summarized in the review of Mitsakis et al.
(2011).

Considering the society with AVs, we may have to consider decision-making
which is much higher than those shown in Fig. 1.1. For instance, Chen et al. (2017,
2016) formalized the relationship between the policy-maker which introduce exclu-
sive AV lanes to the city and users considering replacing their conventional vehicles
to AVs, as a Stackelberg game. As we can see from this work, many problems in-
cluding higher decision-making can be treated by the framework discussed in this
part.

2.2.4 Traffic Control Considering Dynamic Behaviors of User-Optimized
Agents

In order to control an oversaturated network, the methods mentioned in Section 2.2.3
are extended to a dynamic framework that handles unsteady conditions. In this part,
we consider the discrete time step {ts, . . . , te}, where ts and te denotes the initial and
the final stage of the control.

Dynamically User-Optimized Allocation and Dynamic User Equilibrium Alloca-
tion

First, we present a brief summary of dynamically user-optimized (DUO) allocation
and dynamic user equilibrium (DUE) allocation. The time-varying traffic control c
is known, and the problem is to find the driver’s action a = {a1, . . . , a Ī}, where the
action of driver i is denoted by ai = {ai,ts , . . . , ai,te}. The set of executable strategies
for driver i at time t is expressed as Ai,t, and the actually executed action is ai,t ∈ Ai,t.
The following formula expresses the network condition st at time t, which depends
on the traffic control and the decision-making for a time span t′ ≤ t.

st = S(c(t′), a(t′)|t′ ≤ t) (2.16)

DUO allocation uses a strategy in which each user optimizes its own utility Ui(ai,t, st)
based on the current network condition st. An example of a utility function Ui(ai,t, st)
is the estimated travel time (under the current network condition st) from the current
location to the destination. The strategy a∗i,t of driver i at time t is expressed as:
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[DUO]

∀i, t : a∗i,t = argmax
ai,t∈Ai,t

Ui(ai,t, st) (2.17)

Because the network condition st changes with time, each driver’s strategy also
changes, regardless of past decisions. That is, DUO allocation is a traffic allocation
method that assumes “myopic” driver decision-making.

On the other hand, the DUE condition is expressed as follows:

[DUE]

∀i, t, ai,t ∈ Ai,t : Ui(c, a∗i,t, a∗−i,t) ≥ Ui(c, ai,t, a∗−i,t) (2.18)

The DUE condition is an ex post facto evaluation standard, in which anyone can not
increase one’s own ultimate utility by taking another strategy ai,t 6= a∗i at any time.
The optimal strategy for driver i is to take ai,t = a∗i,t which is the element of optimal
action a∗i = {a∗i,ts

, . . . , a∗i,te
} at every time t. In other words, DUE is an equilibrium

condition for the case that hypothesizes that all drivers completely and accurately
predict future conditions in order to optimize their own behavior. DUE has been
defined in various ways depending on the hypotheses concerning the details and
timing of the driver’s strategy. Akamatsu (1995) formalized DUE conditions for a
problem in which, while traveling, the driver successively changes the route along
the way. On the other hand, Friesz et al. (2011) formalized DUE conditions for a
problem in which a driver who has a desired time of arrival at a destination simul-
taneously chooses a departure time and a route to use. However, the latter does not
consider route changes after departure.

Optimal control under the equilibrium constraints

In the case of day-to-day control for habitually oversaturated conditions, it is possi-
ble to treat driver behavior as a problem that is repeated every day. Therefore, the
[DUE] equilibrium condition achieved by a “best response” strategy for each driver
would be useful as a model that expresses the actual traffic conditions. Thus, the
traffic control that should be sought is formalized in the following [DTC − DUE]
format.

[DTC− DUE]

c∗ = argmax
c∈C

∫ te

ts

SW(c, a∗, t)dt (2.19)

s.t. hj(c, a, t) ≤ 0, j = {1, 2, . . . , k} (2.20)
∀i, t, ai,t ∈ Ai,t : Ui(c, a∗i,t, a∗−i,t) ≥ Ui(c, ai,t, a∗−i,t) (2.21)

Ukkusuri et al. (2013) and Han et al. (2015) formalized the [DTC-DUE] type of
traffic control and proposed various heuristic solution methods. With regard to
specific methods of DUE allocation originally presented by Horowitz (1984), there
is a series of studies (Peeta and Ziliaskopoulos, 2001), such as Hu and Mahmas-
sani (1997), who considered day-to-day reactions to information presentation, and
Huang and Lam (2002), who considered FIFO conditions and vehicle queues. These
studies are useful to implement [DTC− DUE] type of control in the real world.
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Optimal control under the myopic behaviors of agents

For unexpected oversaturated conditions that occur, such as due to an unexpected
event, the driver’s within-day behavior pattern is important. Considering that the
driver’s behavior will be even more myopic, and that traffic control and the driver’s
decision-making will be frequently updated while affecting each other, traffic as-
signment based on equilibrium conditions is unsuitable; rather, the [DUO] type of
allocation, which models the driver’s myopic optimization reactions, will be use-
ful. In this case, traffic control can be formalized with the following [DTC− DUO]
model.

[DTC− DUO]

c∗ = argmax
c∈C

∫ te

ts

SW(c, a∗, t)dt (2.22)

s.t. hj(c, a, t) ≤ 0, j = {1, 2, . . . , k} (2.23)
∀i, t : a∗i,t = argmax

ai,t∈Ai,t

Ui(ai,t, st) (2.24)

Chen and Ben-Akiva (1998) formalized a [DTC−DUO] type of control and demon-
strated its effectiveness using a simple network. Gartner and Stamatiadis (1998)
similarly formalized a [DTC − DUO] type of control, and proposed looking for a
solution by model prediction. In this type of traffic control, a model that expresses
successive optimal reactions of a driver is very important. As an example of such a
model, Hato et al. (1999) considered “travel time recognition methods,” “informa-
tion system accuracy,” and “driver heterogeneity,” and modeled driver route choice
behavior based on information from multiple information sources.

When the future is uncertain, in order to know a user’s expected utility, it is
necessary to know the user’s own perceived probability of all the conditions that
may occur; however, it is difficult to know these probabilities. When a user predicts
future conditions, various types of information services as well as the user’s own ex-
periences and the experiences of others are used. If the same road is repeatedly used,
then the driver already has abundant knowledge, including the degree of congestion
by day and by time period, methods of interpreting information obtained from in-
formation boards, etc. However, under unexpected conditions, that knowledge is
not very useful. Most drivers who experience such uncertain circumstances try to
obtain and use more information in order to reduce the degree of uncertainty, and
select measures best-suited for themselves. For example, it is known from research
into road selection that the road choices searched by a user crossing an unknown
location are wider than for a user who knows the area well (Bonsall et al., 1997), and
that a user under time constraints avoids the usual roads. However, there are more
than a few users who react to uncertainty as a “game,” and use aggressive behav-
ior (e.g., frequent route changing) depending on the situation (Bonsall, 2004). Hara
and Kuwahara (2015), using actual data from the time of the Great East Japan Earth-
quake, analyzed the behavior of drivers in severe congestion, and demonstrated
that the route choice behavior of drivers in unexpected oversaturated conditions is
totally different from that under normal circumstances. Additionally, Oyama et al.
(2016) focused on this type of myopic behavior and presented a route-choice behav-
ior mode using a time discount factor.
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2.2.5 Summary of the Effect of User-Optimized Agents

This section has considered the effect of user-optimized agents on traffic control,
and has summarized methods of traffic control for oversaturated networks. For ha-
bitually oversaturated conditions, the [DTC − DUE] type of traffic control, which
hypothesizes dynamic equilibrium conditions, is appropriate, and it appears that
traffic control methods such as dynamic congestion fees are effective. On the other
hand, for unexpected oversaturated conditions, the [DTC − DUO] type of traffic
control, which assumes myopic optimal reactions of drivers, is appropriate. To im-
plement such traffic control, a system that observes traffic conditions in real time,
immediately extracts the differences between what occurs habitually and what does
not, and instantaneously studies the behavior of a user-optimized agent at a given
time based on the obtained data is required.

This section has collectively summarized both human drivers and AVs that rep-
resent user-optimized agents. The behavior of human drivers has been observed to
have limited rationality and a large degree of uncertainty, and is therefore difficult
to model. However, the behavior of AVs is more rational, and therefore model-
ing it is relatively easy. Accordingly, when constructing a traffic control system, it
is desirable to introduce traffic control methods that hypothesize the optimal re-
actions of a “user-optimized AV.” In particular, considering cases in which both
“user-optimized” and “society-optimized” AVs coexist, a traffic control method that
does not consider the optimal reaction of a “user-optimized AV” could put “society-
optimized AVs” at a severe disadvantage. This should be well-considered when
designing a traffic control system with AVs.

2.3 Fog Computing

As shown in the previous sections, implementing a traffic control system for a city is
an extremely complicated problem that must take into account an unsteady network
and simultaneously consider the dynamic traffic control and dynamic traffic alloca-
tion problems. In particular, in the [DTC− DUO] model that considers within-day
behavior, it is necessary to observe the driver’s behavior in real time, predict any
myopic reactions, and provide quick feedback to the traffic control system. This
requires cooperative control between a centrally-managed system with overall con-
trol, and local control systems that implement quick control in appropriately sized
subareas. It is important to have not only this hierarchical centralized/localized
interaction, but also cooperative local–local control. In particular, under oversatu-
rated conditions, it is desirable to adaptively configure such a cooperative network
according to the situation.

As a method of implementing such a system, attention has recently focused on
the idea of “Fog computing (Bonomi et al., 2012),” as shown in Fig. 2.1. This sys-
tem guarantees service with low delay by distributing computing resources close to
users as cores for integrating multiple sensors and actuators. Additionally, this sys-
tem aims at total optimization by performing cooperative network control among
multiple cores, as well as with a higher-level cloud system. If such a system is as-
sumed, then traffic control for an oversaturated network can appropriately imple-
ment the two problems of “dynamic traffic control” and “dynamic traffic allocation”
in each of three hierarchical levels: a “cloud layer,” a “fog layer,” and an “edge
layer.” The cloud layer must understand the many conditions obtained from the
lower-level fog and edge layers, divide the optimal traffic control into sub-problems
of appropriate size, and present them to the corresponding cores. For example, in
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FIGURE 2.1: Fog Computing

the field of security games (Tambe, 2011) there have been many reports of research
that formalizes a Stackelberg game, which includes uncertain human behavior, as
MIP problems of appropriate sizes (Paruchuri et al., 2008; Pita et al., 2009), and this
may be applicable to traffic control for a city. The fog layer requires area networking
that is appropriate for congestion conditions, and encompasses control algorithms
that can be implemented with low delay. It is also possible to apply the idea of
self-adaptive systems (De Lemos et al., 2013; Kramer and Magee, 2007; Salehie and
Tahvildari, 2009). Regarding such systems, research progress is being made on sen-
sor networks that generate effective information by integrating the information of
many sensors (Sohrabi et al., 2000; Yick et al., 2008), and in the field of software en-
gineering. For the traffic control of a city, an example of a specific control variable
that ties together a higher-level layer and a lower-level layer is “traffic density.” In
order to achieve the optimal condition in the city network at the higher-level layer,
the fog layer is responsible for finding values for the appropriate traffic density in
each area and transmitting them to the lower-level layer. The edge layer would both
sense driver behavior and implement direct control of vehicle behavior. Research is
needed in areas such as intersection control (Dresner and Stone, 2005) and platoon
control (Shladover et al., 1991)that have anticipated automated driving.

In a city with a complicated network, rather than a traffic control system that
maximizes local traffic capacity, a system that can quickly achieve the appropriate
traffic density received from the higher-level layer is required.

2.4 Activity-based travel analysis

Some earlier studies of activity-based travel analysis have considered the problem of
traffic assignment on a time–space expanded network. Here, we review these works,
which contrast with traditional trip-based analysis in their framing of a trip as the
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derived demand of users’ activities and try to model travelers’ time usage within
their daily activities. However, the choice set of such models becomes extensive,
so the concept of a time–space prism (Hägerstrand, 1970) becomes vital. The earli-
est studies of activity-based travel analysis were reviewed extensively in Kitamura
(1988).

2.4.1 Activity-based utility model (ABM)

Axhausen and Gärling (1992) classified activity analysis into two conceptual frame-
works: utility-maximization and electric. The former assumes that people choose to
spend their time in a way that maximizes utility within their time–space constraints,
whereas the latter addresses the scheduling process explicitly. Although the prob-
lems discussed in these frameworks are indeed difficult to come to grips with, their
solutions are essential for enabling policy makers to appropriately manage traffic
demand generated from household activities. Kitamura et al. (1996) proposed an
activity-based utility model that replicates adaptive time-of-day dynamics, and in-
troduced a simulator that offers dynamic and integrated forecasting of elements
such as transportation and land use. Recker (2001) discussed the relationship be-
tween trip-based and activity-based travel analysis and demonstrated that activity-
based travel analysis can be formalized with mathematical programming based on
traditional trip-based modeling methodologies with the addition of temporal and
spatial constraints.

2.4.2 Space-time expanded network

The space-time expanded network is key to solving various problems formulated
by the activity-based utility model. Such approaches were originally employed to
solve dynamic traffic assignment (DTA) problems in many dynamic user equilib-
rium (DUE) models (Drissi-Kaitouni, 1993; Yang and Meng, 1998). This method
is well-suited to activity-based travel analysis because it expressly considers time–
space prism constraints. Indeed, Lam and Yin (2001) formulated the combined ac-
tivity/route choice problem as the ideal DUE and provided a method for solving
this problem using a space–time extended network. Moreover, Arentze and Tim-
mermans (2004) introduced the multistate supernetwork, which can represent mul-
timodal transport system with sequential activities; this model was inspired by the
supernetwork concept introduced by Sheffi (1985), which aims to enrich network
representations in order to model traffic mode choices. In the multistate supernet-
work, each node expresses a combination of an activity state and a vehicle state,
and each link expresses a transition between states. Thus, the choice of sequential
activities is expressed as a trajectory in the supernetwork and complete trip chains
that involve multiple transport modes can be obtained as a least-cost path. Liu et al.
(2015) later formalized dynamic activity travel assignment as a discrete-time DUE
problem on a multistate supernetwork. Oyama et al. (2016) proposed trajectory-
oriented traffic management in which traveler activity is expressed as a trajectory
in the time–space expanded network and travelers’ behavior choices are modeled
recursively with a discount rate. Hara and Hato (2017) considered optimal user and
vehicle assignments for a car-sharing service by introducing the temporal and spa-
tial connection of users with a vehicle with a time–space expanded network. Thus,
activity-based analysis by the time–space expanded network is not only used to ex-
press multimodal and multistate behavior, but also to develop urban planning or
traffic service policies that consider user heterogeneity.
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2.5 Discussions

This chapter has summarized the problems and future directions of traffic control
systems for cities that include AVs, considering that some parts of decision-making
are transferred from users to systems.

First, we organize the existing works of traffic control for cities with densely
distributed vehicles that do not consider AVs. In cities that have complicated road
networks, maximization of local traffic capacity is not necessarily good for the traf-
fic environment of the entire network. Rather, the control of traffic density, such as
“speed control” and “vehicle-queue control” plays an important role in such road
networks. Some works focus on the interaction between each driver and the traffic
operator and formulate it as a bi-level optimization problem. By contrast, many ex-
isting works considering AVs propose algorithms that aim to increase the capacity
of links or intersections, focusing on that the uncertainty of vehicle behavior due to
human drivers will decrease with the penetration of AVs. However, most of these
works only focus on the decision-making of drivers related to the vehicle behav-
ior. Thus, they do not show how AVs will be introduced to cities with complicated
road networks and how the system including AVs works in people with higher-
level decision-making, such as route-choice, traffic-mode choice, and trip-making
decision.

Nowadays, the route-choice algorithm that is conventionally implemented to
the navigation system equipped with each vehicle is transferring to the centrally
controlled servers in car OEMs. Also, new types of mobility services, such as ride-
sharing or MaaS (Mobility as a Service) are widely introduced. Considering these
trends, it can be said that the higher-level decision-making, such as route-choice and
traffic-mode choice will be transferred gradually from users to systems.

Considering these situations, in this chapter, we clarified that traffic services in
coming age should consider the “traffic control system with AVs” not only as the
control that enlarge the capacity of links and intersections by the transfer of lower-
level decision-making from drivers to the system, but also as the “Traffic services”
that provide a pleasant mobility experience for people in cities by the transfer of
higher-level decision-making. Such a traffic service will be implemented by traf-
fic service operators that aim to maximize the utility of their customers, based on
a traffic systems or equipment developed by the traffic administrator that aims to
maximize social welfare, and AVs are included in such systems as a tool. Highly
controllable AVs contribute to both of traffic service operators and the traffic admin-
istrator. The traffic administrator may be able to control traffic density in oversatu-
rated road network by using AVs, while traffic operators may control AVs to provide
appropriate services to heterogeneous customers that have heterogeneity to the ori-
gin, the destination, departure and arrival time, and the favor of the scenery around
the road. Thus, the traffic phenomenon in cities with AVs can be expressed as the
interaction between the traffic control by the traffic administrator that aims to max-
imize social welfare and traffic services by service operators that aims to maximize
the utility of customers.

As shown in this chapter, the behavior of the users plays an important role in
the scene of transportation. To consider the traffic services in coming age with the
penetration of automated vehicles or the concept of MaaS (Mobility as a Service), we
have to re-organize existing works in the related fields, as well as propose algorithms
that can be implemented to the realistic situations in cities, focusing on the behavior
of users. We try to tackle these problems in the following chapters of this theses.
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Chapter 3

Dynamic Traffic Control in
Unsteady Networks with
Closed-loop Structures

In this chapter, we propose a dynamic traffic control algorithm in unsteady and over-
saturated road network, as is the algorithm for traffic administrators. Specifically, we
focus on closed-loop structures that are made by multiple links in the road network
and propose an algorithm that aims to prevent gridlock phenomenon.

The content of this chapter has been presented in Hayakawa and Hato (2018c),
Evaluation of dynamic traffic control in unsteady networks with closed-loop structures,
Transportation Research Board 97th Annual Meeting, Washington D.C.. A part of the
content is published as Hayakawa and Hato (2017), Traffic control in oversaturated net-
works with closed-loop structures, Journal of JSCE D3 (in Japanese).

We propose a novel traffic control algorithm that can be used in oversaturated
road networks in large cities. For sophisticated traffic control, it is important to con-
sider the dynamic behavior of vehicle queues. Such queues obstruct traffic flow in
various directions, making the traffic situation chaotic. This results in severe traffic
congestion, or so-called gridlock. In this study, we focus on closed-loop structures
in road networks and vehicle queue advancement in these loops. We formalize the
occurrence of gridlock in one-way road networks, and propose a traffic control algo-
rithm called Z-control, which prevents gridlock and minimizes the total time spent
based on a model predictive scheme. Moreover, we evaluated some algorithms for
dynamic traffic control, including our proposed Z-control and some benchmarks.
To do so, we conducted numerical experiments, considering two extreme scenarios
pertaining to the behavior of drivers. In a “non-reactive” scenario, where drivers
do not react to traffic conditions in the network, we showed that the proposed Z-
control outperformed other benchmark algorithms. However, in a “reactive” sce-
nario, where drivers are assumed to have perfect information about the traffic condi-
tions in the network and react to it, no algorithm performed better than the situation
without any control. Our research shows that to treat oversaturated traffic in cities
suitably, it is important to control, or at least consider, the route-choice behavior of
drivers, which may be achieved with automated vehicles.

3.1 Introduction

In a large city with a densely distributed road network, traffic jams at local spots can
spread to wider areas, significantly influencing the economy(Hartgen et al., 2009). In
particular, if the road network is oversaturated by many vehicles, the traffic flow is
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obstructed by vehicle queues, rapidly exacerbating the situation. We call this type of
road network, in which there is an excess of demand over supply, an “oversaturated
network.”

In oversaturated networks, vehicle queues that are formed at intersections or
merging sections interfere with the traffic flow in other directions, bringing vehicles
to a standstill despite green traffic signals. As a result, vehicle queues increase in
many directions, ultimately resulting in traffic paralysis, or so-called gridlock (Da-
ganzo, 1996; Mahmassani et al., 2013). The definition of “gridlock” is unclear, but in
this chapter, we refer to the state where widespread vehicle queues seriously con-
gest traffic conditions as the “broad sense of the gridlock phenomenon,” and the
state where the traffic throughput falls to zero from congestion as the “narrow sense
of the gridlock phenomenon,” consistent with Mahmassani et al. (2013).

One basic idea for traffic control when addressing oversaturated networks is den-
sity control using a macroscopic fundamental diagram (MFD)(Daganzo, 2007). This
idea is well known to be effective with uniform and steady traffic. However, to the
best of our knowledge, no concrete traffic control algorithm that uses an MFD has
been developed to achieve appropriate density control in non-uniform and unsteady
traffic situations.

On the other hand, a considerable body of work has proposed traffic signal algo-
rithms for oversaturated networks. For instance, Gazis (1964) proposed a basic idea
to obtain a green split to minimize the total time spent in a network with two inter-
sections and without (right and left) turning, using a graphical scheme. However,
considering vehicle queues and turning in a general network with multiple inter-
sections, the optimal problem with the objective function to minimize the total time
spent is complicated by delay terms for state variables(Lovell and Daganzo, 2000),
making it difficult to solve the optimal problem analytically. By contrast, Singh and
Tamura (1974) treats traffic control in oversaturated networks as a problem of queue
management(Quinn, 1992), and formalizes it as an optimal problem of time-delay
systems(Richard, 2003) to minimize the total length of the vehicle queue. This ap-
proach considers unsteady traffic flow and the dynamic behavior of vehicle queues.
However, the approach does not aim to minimize the total time spent, and conse-
quently fails, depending on the shape or congested situation of the road network.

In addition, in oversaturated networks, especially in unexpected cases, drivers
adopt reactive behavior to the traffic conditions of the network(Bonsall, 2004; Hara
and Kuwahara, 2015). However, most existing work proposes traffic signal algo-
rithms for oversaturated networks, assuming that traffic flow, including user route
selection, is given. Thus, the effectiveness of such algorithms at dealing with reactive
drivers should be discussed.

To address these shortcomings, we proposed an algorithm of traffic control in
oversaturated networks with closed-loop structures. Based on the study, we make
the following novel contributions.

• We focus on closed-loop structures in road networks and vehicle queues ad-
vancing in these loops, and formalize the occurrence condition of the gridlock
phenomenon in one-way road networks.

• Considering this condition, we propose a traffic control algorithm, called Z-
control, which minimizes the total time spent based on a model predictive
scheme.

• In a numerical study, we evaluate dynamic traffic control algorithms, including
the proposed Z-control, considering two scenarios: a scenario where drivers
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do not react to the traffic conditions of the network, and a scenario where they
do. Furthermore, we discuss the basic policy required for traffic control in
unsteady networks.

3.2 Related Work

In this section, we discuss works relating to our research. The section is divided into
three parts: existing works related to the gridlock phenomenon, traffic signal algo-
rithms for oversaturated networks, and the combined traffic control and assignment
problem.

3.2.1 Gridlock phenomenon

Regarding gridlock, Daganzo (1996) considers a highway network with multiple
on and off ramps, showing the occurrence of traffic self-destruction from merging.
Given a closed-loop road network, the half-life period of traffic volume along the
main track can be expressed by the merging rate of an on ramp and the diversion
rate of an off ramp. Limiting traffic flow on the main track is essential to prevent
gridlock. However, this work considers a network with a single closed-loop, and
cannot be applied to a more general network with multiple closed-loops, where the
traffic flowing out from a closed-loop is at the same time the traffic flowing into
another closed-loop.

By contrast, Daganzo (2007) considers gridlock from a macroscopic perspective,
using an MFD. However, no concrete traffic control algorithm has been proposed
based on this research.

In this chapter, we show the occurrence condition of the gridlock phenomenon in
a general network with multiple closed-loops, with state variables that can be used
for concrete traffic signal control. Considering this condition, we propose a traffic
control algorithm to prevent gridlock.

3.2.2 Traffic signal algorithms for oversaturated networks

As explained in the previous section, traffic signal algorithms for oversaturated net-
works are divided into algorithms that minimize the total spent time(Chang and Lin,
2000; D’ans and Gazis, 1976; Gazis, 1964; Lo, 2001; Michalopoulos and Stephanopou-
los, 1977) and algorithms based on queue management(Aboudolas et al., 2010; Abu-
Lebdeh and Benekohal, 1997; Rathi, 1988; Singh and Tamura, 1974). Generally, the
former are difficult to apply in complicated networks, because the calculation cost
is too high. In such networks, the latter are more suitable. In particular, Aboudolas
et al. (2010) proposes a model-predictive traffic control algorithm that aims at balanc-
ing vehicle queue occupancy among all links in the network, considering unsteady
traffic flow and the chaotic behavior of a vehicle queue.

However, many existing works, including Aboudolas et al. (2010), consider the
queue management with a link unit, and no work to our knowledge has proposed
queue management strategies to prevent gridlock, while focusing on the geographic
relations between links. In addition, in many algorithms for oversaturated networks,
the route-choice behavior of users is given as an input, and the reactive behavior of
users is not appropriately considered. In this chapter, we tackle these problems.

To treat a complicated oversaturated situation, all works shown in this part pro-
pose algorithms that control a green split for each link, instead of a green split for
each signal phase that includes a combination of links at an intersection. Similar to
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FIGURE 3.1: Fundamental diagllam

these works, we exclusively consider one-way networks in which a green split for
each link can be independently controlled.

3.2.3 Combined traffic control and assignment problem

The importance of considering the reactive behavior of drivers, such as route choice,
for traffic control algorithms is well-known(Smith, 1978), as confirmed by Braess’s
paradox(Frank, 1981). This type of problem is called as the combined traffic control
and assignment problem, first considered in Allsop (1974) for traffic signal control.
In that work, the problem is formalized as a bi-level optimization problem, and a
method is proposed to obtain traffic control parameters with iterative calculations of
these upper and lower problems. Similarly, Smith and Van Vuren (1993) summarizes
the conditions for objective functions and link cost functions, on which the iterative
calculations converge. If this type of iterative calculation is used to solve the bi-
level problem, the solution coincides with the Cournot–Nash equilibrium, where the
solution is a fixed point that does not update either the upper and lower problem.

On the other hand, Fisk (1984) formalizes this problem as a Stackelberg game, in
which the traffic controller takes the reactive behavior of drivers into consideration
in advance. In this case, because the solution is not a fixed point, many heuristic
algorithms are proposed (Ceylan and Bell, 2004; Mitsakis et al., 2011; Ukkusuri et al.,
2013; Yang and Yagar, 1995).

However, none of the research above focuses on oversaturated networks with
multiple nodes and links. Thus, it remains unclear how robust these methods are to
the reactive behavior of drivers in oversaturated networks. In the numerical study
below, we tackle this problem.

3.3 Closed-loop Structures and the Gridlock Phenomenon

In this section, we first introduce the basic network and traffic flow model. A state
variable in this model considers the property of time-delay, in order to express the
development of a queue of vehicles in an over-saturated network. Then, we focus on
the closed-loop structures in the network and describe the process of gridlock and a
policy designed to prevent it.

3.3.1 Network and traffic flow model

We consider a network (N, E) with a set N of nodes and a set E of links. The set
N of nodes has k nodes. We assume a triangular fundamental diagram for the links
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TABLE 3.1: Notations in Chapter 3

Parameter Notation Unit
Link parameters

Length of link i αi m
Saturated flow rate of link i f s

i veh./s
Saturated space density of link i ρmax

i veh./m
Maximum number of vehicles in link i nmax

i = ρmax
i αi veh.

Velocity of the forward wave in link i wi m/s
Velocity of the backward wave in link i w′i m/s
Transit time of the forward wave in link i τi = αi/wi s
Transit time of the backward wave in link i τ′i = αi/w′i s

Traffic signal parameters at time t
Fraction of the right of priority given to link i gi(t) −

Link flow parameters at time t
Cumulative arrivals at link i Ji(t) veh.
Arrival rate at link i λi(t) = d

dt Ji(t) veh./s
Arrival rate at link i from link j λ

〈j〉
i (t) veh./s

Cumulative departures from link i Di(t) veh.
Departure rate from link i µi(t) = d

dt Di(t) veh./s
Departure rate from link i to link j µ

〈j〉
i (t) veh./s

Demand at link i qi(t) veh./s
Number of vehicles in link i ni(t) = Ji(t)− Di(t) veh.
Proposed state variable at link i xi(t) = Ji(t− τi)− Di(t) veh.
Proposed state variable at link i yi(t) = Ji(t)− Di(t− τ′i ) veh.

(See Figure 3.1) and denote the link parameters and link flow parameters as shown
in Table 4.1.

Based on Kinematic Wave Theory (Newell, 1993), the following equations hold:

Ji(t− τi)− Di(t) ≥ 0. (3.1)

Ji(t)− Di(t− τ′i ) ≤ nmax
i . (3.2)

We use P(t) to denote a transition matrix between links, where P(t) is a K × K
matrix, and the element pij(t) = µ

〈j〉
i (t)/µi(t) denotes the ratio of the arrival at link

j from link i to all departures from link i. The transition matrix P(t) satisfies the
following equation:

∀i : ∑
j∈E

pij ≤ 1. (3.3)

The inequality only holds for nodes that are destinations for some traffic. Traffic
volume µi(1 − ∑j∈E pij) is absorbed in the node between links i and j. The flow
conservation at nodes is expressed as

λi(t) = ∑
j∈E

pji(t) · µj(t) + qi(t), (3.4)

or also expressed as,
λ(t) = µ(t) · P(t) + q(t), (3.5)

by using λ(t) = [λ1(t), . . . , λK(t)], µ(t) = [µ1(t), . . . , µK(t)], q(t) = [q1(t), . . . , qK(t)].
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FIGURE 3.2: State variables on cumulative arrival and departure

curves

3.3.2 State variables considering time-delay

Considering the time-delay of a vehicle queue within the link, we introduce the
following state variables ni(t), xi(t), yi(t):

ni(t) = Ji(t)− Di(t), (3.6)

xi(t) = Ji(t− τi)− Di(t), (3.7)

yi(t) = Ji(t)− Di(t− τ′i ). (3.8)

We show these state variables on cumulative arrival and departure curves in
Fig. 3.2. From Eqs. (3.1) and (3.2), the following equations hold:

xi(t) ≥ 0, (3.9)

yi(t) ≤ nmax
i . (3.10)

If the equality in Eq. (3.9) holds, there is no vehicle queue downstream from link i. In
this chapter, we call this state the “free-flow state.” On the other hand, if the equality
in Eq. (3.10) holds, the vehicle queue fills all over link i. In this chapter, we call this
state a “saturated state.”

The maximum departure rate Xi(t) and the maximum arrival rate Yi(t) of link
i ∈ E are stated as follows(Kuwahara and Akamatsu, 2001):

Xi(t) =

{
gi(t) · f s

i if xi(t) > 0 or λi(t− τi) ≥ gi(t) · f s
i

λi(t− τi) otherwise
(3.11)

Yi(t) =

{
f s
i if yi(t) < nmax

i

µi(t− τ′i ) otherwise
(3.12)
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FIGURE 3.3: Closed-loop structures in a network

Here, gi(t) denotes the green split for link i. For Xi(t) and Yi(t), the equations stated
must always be satisfied.

∀t, i ∈ E : µi(t) ≤ Xi(t), (3.13)

∀t, i ∈ E : λi(t) ≤ Yi(t). (3.14)

3.3.3 Closed-loop structures in the network

We use R = {1, 2, · · · , m} ⊂ E to denote a set of m links that form a closed-loop,
as shown in Fig. 3.3. In this chapter, we call this loop “closed-loop R.” In network
(N, E), there are many such closed-loops. We useR to denote a set of these closed-
loops.

Next, we focus on a specific closed-loop R = {1, 2, · · · , m} ⊂ E, in which the
downstream of link i ∈ R is connected to the upstream of link i + 1 ∈ R, as shown
in Fig. 3.3. In the equations stated in this section, we regard link m + 1 as link 1, and
we regard link m + k as link k.

We introduce variables ζi(t) and ηi(t), as follows:

ζi(t) =
µ
〈i+1〉
i (t)
µi(t)

, ηi(t) =
λ
〈i〉
i+1(t)

λi+1(t)
, (3.15)

where ζi(t) is the ratio of departure flow inside the loop, and ηi(t) is the ratio of
arrival flow inside the loop. Naturally, 0 ≤ ζi(t) ≤ 1 and 0 ≤ ηi(t) ≤ 1 hold. In
addition, by

∀t : ζi(t) · µi(t) = µ
〈i+1〉
i (t) = λ

〈i〉
i+1(t) = ηi(t) · λi+1(t), (3.16)
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and Eq (3.14),

µi(t) =
ηi(t)
ζi(t)

λi+1(t) ≤
ηi(t)
ζi(t)

Yi+1(t), (3.17)

holds.

3.3.4 Occurrence condition of the gridlock phenomenon

Assume that link i + 1 is in a “saturated state” at time t. That is, yi+1(t) = nmax
i+1 .

Then, by Eqs. (3.12) and (3.17),

µi(t) ≤
ηi(t)
ζi(t)

· µi+1(t− τ′i+1), (3.18)

holds. Further assume that link i + 2 is also in a “saturated state” at time t− τ′i+1.
That is, yi+2(t− τ′i+1) = nmax

i+2 . Then,

µi(t) ≤
ηi(t)
ζi(t)

·
ηi+1(t− τ′i+1)

ζi+1(t− τ′i+1)
· µi+2(t− τ′i+1 − τ′i+2), (3.19)

holds. Now, we introduce variables τ′ij = −τ′i +∑
j
k=i τ′k and τ′R = ∑k∈R τ′k, and adopt

the similar assumption for all over the link in the closed-loop R. Then, assume that
∀k ∈ R : yk+1(t− τ′ik) = nmax

k+1,

µi(t) ≤ ∏
k∈R

ηk(t− τ′ik)

ζk(t− τ′ik)
· µi(t− τ′R) (3.20)

holds. Here, we define variables ZR,i(t) and BR,i(t) as follows:

ZR,i(t) =
∑k∈R yk+1(t− τ′ik)

∑k∈R nmax
k+1

, (3.21)

BR,i(t) = ∏
k∈R

ηk(t− τ′ik)

ζk(t− τ′ik)
. (3.22)

Given these, under the assumption that ZR,i(t) = 1,

µi(t) ≤ BR,i(t)µi(t− τ′R) (3.23)

holds, and, if ∀t : BR,i(t) < 1, then limt→∞ µi(t) = 0. That is, when both ∀t :
ZR,i(t) = 1 and ∀t : BR,i(t) < 1 hold, the departure flows of all links in the closed-
loop decrease to zero, and “the narrow sense of the gridlock phenomenon” is gener-
ated.

3.3.5 Strategies to prevent gridlock phenomenon

From the above, strategies to prevent gridlock in the closed-loopR can be classified
into two categories: one aiming at BR,i(t) ≥ 1, and the other at ZR,i(t) < 1.

Strategies designed to satisfy BR,i(t) ≥ 1 control ζi(t) and ηi(t), which refer to
the fraction of flow entering and leaving the closed-loop R 1 . More simply, this
can be achieved by giving priority to the traffic flowing out from the closed-loop.

1 If we assume that ζi(t) and ηi(t) for all links in the closed-loop are uniform and steady, BR,i(t)
coincides with the parameter f j introduced by Daganzo (1996).
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This strategy is very common in roundabouts in many countries. However, it is not
trivial to apply this strategy to more complex road networks in cities. For instance,
in a city grid network, traffic flowing out from a closed-loop is also traffic flowing
into another closed-loop. Thus, it is challenging to define the priority.

On the other hand, strategies designed to satisfy ZR,i(t) < 1 manage the traffic
queue by introducing a constraint, such that

∀t, i ∈ R; ZR,i(t) < 1, (3.24)

for a loop R. If this constraint is applied to a network with multiple closed-loop
structures, the constraints are stated as

∀t,R ∈R, i ∈ R; ZR,i(t) < 1. (3.25)

Here,R = {R1,R2, . . . ,RM} denotes the set of all closed-loops existing in the net-
work. For every time step, each closed loop R ∈ R has as many constraints as the
number of links included in R. Consequently, there are too many constraints in the
whole network. To decrease the number of constraints, we introduce

Z̃R(t) =
∑k∈R yk(t)
∑k∈R nmax

k
, (3.26)

which ignores the delay between links τ′ik in Eq. (3.21). We then propose a set of
constraints, such that

∀t,R ∈R; Z̃R(t) ≤ 1− ε, (3.27)

where ε > 0 is the arbitrarily set by the controller. Note that, although we ignore
the delay between links in the definition of Z̃R(t), we still consider the delay within
the link by the state variable yk(t). From the definition of yk(t), Z̃R(t) = 1 means
that all links in the closed-loop are in a “saturated state.” Thus, while Eq. (3.25) is a
set of constraints designed to prevent the “narrow sense of gridlock,” Eq. (3.27) is a
set of constraints designed to prevent the “broad sense of gridlock.” From Eq. (3.27),
the number of constraints is reduced to the number of closed-loops in the network.
In the next section, we propose a traffic control algorithm that can prevent gridlock,
using Eq. (3.27).

3.4 Proposed Control Algorithm (Z-control)

In this section, we describe Z-control, a traffic control algorithm for oversaturated
networks with closed-loop structures, using the parameter Z̃R introduced in the pre-
vious section. Z-control is designed to minimize the total time spent by all drivers,
with constraints stated by Eq. (3.27) to prevent gridlock. We discuss the concrete
algorithm for Z-control in the following parts.

3.4.1 Formulation as a linear programming problem

In this part, we formalize Z-control as a linear programming problem. We con-
sider a model with discrete time steps T = {t0, . . . t f } with time unit ∆t. The con-
trol variables are the split g = [g(t0), . . . , g(t f )] from the traffic signal with g(t) =
[g1(t), . . . , gK(t)]. Here, gi(t) is the fraction of the right of priority given to link i ∈ E
at t ∈ T. Traffic control designed to minimize the total time spent by all users can be
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formalized as the following optimization problem [min-TT]:

max
g ∑

t∈T
∑
i∈E

(−ni(t)) (3.28)

s.t. λ(t) = µ(t)P(t) + q(t), ∀t ∈ T (3.29)
n(t + ∆t) = n(t) + λ(t)− µ(t), ∀t ∈ T′ (3.30)
x(t) = n(t)− λcum(t), ∀t ∈ T (3.31)
y(t) = n(t) + µcum(t), ∀t ∈ T (3.32)
µi(t) = f s

i · gi(t), ∀i ∈ E, ∀t ∈ T (3.33)

∑
j∈I(k)

gi(t) ≤ 1, ∀k ∈ N, ∀t ∈ T (3.34)

Z̃R(t) ≤ 1− ε, ∀R ∈R, ∀t ∈ T (3.35)
xi(t) ≥ 0, ∀i ∈ E, ∀t ∈ T (3.36)
yi(t) ≤ nmax

i , ∀i ∈ E, ∀t ∈ T (3.37)
0 ≤ µi(t) ≤ f s

i , ∀i ∈ E, ∀t ∈ T (3.38)
0 ≤ λi(t) ≤ f s

i , ∀i ∈ E, ∀t ∈ T (3.39)
ni(0) = 0 ∀i ∈ E (3.40)

where n(t) = [n1(t), . . . , nK(t)], x(t) = [x1(t), . . . , xK(t)], y(t) = [y1(t), . . . , yK(t)].
Eq. (3.29) expresses flow conservation. Eq. (3.30) is the state equation expressed in
the discrete time model, where T′ = {t0, . . . t f − ∆t)}. Eqs. (3.31) and (3.32) express
the constraints introduced by the definition of x and y. The elements λcum

i (t) and
µcum

i (t) of λcum(t) and µcum(t) are defined as

λcum
i (t) =

t

∑
t′=t−τi+1

λi(t′), (3.41)

and

µcum
i (t) =

t

∑
t′=t−τ′i +1

µi(t′). (3.42)

Eq. (3.33) expresses the relation between the signal split and the departure flow, and
Eq. (3.34) expresses the capacity constraints on the nodes, where I(k) ⊂ E is the set of
all links flowing into node k. Here, we define the constraint (3.33) by an equality, and
we define constraint (3.34) by an inequality. This means that the obtained solution
is a minimum green split without any de-facto red. The total inflow volume to each
link can be limited by setting left side of Eq. (3.34) strictly smaller than 1. Finally,
Eq. (3.35) expresses the constraints designed to prevent gridlock, given by Eq. (3.27).

Because the objective function and all constraints are linear, this optimization
problem can be solved as a linear programming problem, given the demands q =
[q(t0), . . . , q(t f )] and the transition matrix P = [P(t0), . . . , P(t f )] at all times, the
number of vehicles n(t0), the cumulative arrivals and departures λcum(t0) and µcum(t0)
at time t0, and the link property s = [s1, . . . , sK] and nmax = [nmax

1 , . . . , nmax
K ].

3.4.2 Model predictive framework

Z-control is embedded in a rolling-horizon scheme, with time unit tu and control
time length th. At time t0, the algorithm solves the optimization problem [min-TT],
based on the transition matrix P(t0), initial conditions n(t0), λcum(t0) and µcum(t0),
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and control time T = {t0, . . . , t0 + th}. From the obtained g, the values {g(t0), . . . g(t0 +
tu)} are applied to the system. The values {g(t0 + tu + 1), . . . g(t0 + th)} are dis-
missed, and the optimization problem is solved at time t0 + tu based on renewed
transition matrix P(t0 + tu), initial conditions n(t0 + tu), λcum(t0 + tu) and µcum(t0 +
tu), and control time T = {t0 + tu, . . . , t0 + tu + th}.

3.5 Numerical Experiments

In this section, we evaluate our proposed Z-control with numerical experiments. In
many cases, when traffic signal control algorithms are evaluated by generic micro-
scopic traffic simulators, the settings of cycle-lengths and offsets of traffic signals
considerably influence the results. Oversaturated networks are especially sensitive
to these parameters, making it difficult to evaluate algorithms with generic simula-
tors. Thus, we used a simple traffic simulation that does not consider cycle-lengths
and offsets, in order to evaluate Z-control that only controls the splits of traffic sig-
nals. Consequently, the evaluation considers only control splits for traffic signals.

In addition, because the drivers’ choice of routes significantly influences traffic
in oversaturated networks, we considered two scenarios pertaining to route choice
for our evaluation.

3.5.1 Traffic simulation model

In our traffic simulation model, we considered discrete time and continuous traffic
volume. For traffic flow, we considered non-linear constraints, such as physical-
queue conditions and First-In First-Out (FIFO) conditions, in addition to the basic
model stated in the previous section. The physical-queue conditions were as follows,
using X(t) and Y(t) defined by Eqs. (3.11) and (3.12).

∀i ∈ E : µi(t) ≤ Xi(t), (3.43)

∀i ∈ E : λi(t) ≤ Yi(t), (3.44)

∀i ∈ E : (µi(t)− Xi(t)) · ∏
k∈O(i)

(λk(t)−Yk(t)) = 0, (3.45)

where O(i) ⊂ E denotes the set of all links flowing out from link i. The FIFO condi-
tion for continuous time systems is expressed as follows(Kuwahara and Akamatsu,
2001):

µd
i (t)

µi(t)
=

λd
i (t− Ti(t))

λi(t− Ti(t))
, (3.46)

where Ti(t) is the transit time of link i for the traffic leaving from link i at time t, and
index d expresses the traffic destination. This condition is stated as follows, when it
is applied to discrete time systems:

∀t′ ≤ t such that A(t′ − ∆t) < D(t) + µ(t + ∆t) ≤ A(t′) :

µd
i (t + ∆t) = max

(
Jd
i (t
′ − ∆t)− Dd

i (t), 0
)
+

λd
i (t
′)

λi(t′)
µi(t + ∆t).

(3.47)

We used this condition in this numerical experiment. In addition, we assumed that
the merging ratio from multiple links to a saturated link was equal. Given these
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FIGURE 3.4: Sample network

TABLE 3.2: OD table, [veh./h]

Destination
(5) (6) (7) (8)

(1) 200 200 0 200
Origin (2) 100 100 400 0

(3) 0 100 400 100
(4) 100 0 400 100

conditions, µi(t) and λk(t) can be uniquely determined. In the numerical study, we
set the time step ∆t at 1 second.

3.5.2 Network and demand

A sample network for this numerical study is shown in Fig. 3.4. The network is
symmetric, with 64 links and 56 nodes, including origin nodes 1 to 4 and destina-
tion nodes 5 to 8. The set of directed links 101 to 113 connects the origin node 1 to
destination node 5, and links 201 to 213, 301 to 313, and 401 to 413, with connec-
tions between the origin node and destination node as well. In addition, the set of
directed links 501 to 512 forms an one-way ring. All nodes except origin nodes and
destination nodes are controlled by traffic signals. All links have the same parame-
ters: length l = 100 (m), saturated flow rate f s = 1800 (veh./h), and space capacity
nmax = 15 (veh.). The transit time of the forward and backward waves is τ = 10 (s)
and τ′ = 20 (s), respectively. The demands at t = 0 are shown in Table 3.2. The
traffic volume entering the network from each origin node 1 to 4 is equal, but their
destinations are uneven, and more traffic is absorbed in node 7 than in other desti-
nation nodes. At 0 ≤ t < 600 and 1200 ≤ t < 3600, the demands are fixed, as shown
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in Table 3.2, and at 600 ≤ t < 1200, there is 4.5 times as much demand as that shown
in Table 3.2 loaded on the network.

3.5.3 Route choice model and scenarios

When drivers face extremely heavy traffic, their choice set of routes becomes more
diverse (Bonsall, 2004). Some research (Hara and Kuwahara, 2015; Oyama et al.,
2016) has modeled this kind of route choice behavior. In this chapter, we omit de-
tails from such models. Rather, we consider two extreme scenarios: a non-reactive
scenario, where drivers do not react to the traffic in the network at all; and a reac-
tive scenario, where drivers have perfect information regarding the traffic and react
to it. Route choice behavior is classified into two types: pre-trip and en-route. In
over-saturated networks, however, en-route route choices have more influence on
the networks. In this study, then, we adopt a recursive logit model (Fosgerau et al.,
2013), and calculate the transition probability from link i ∈ E to link j ∈ E for a
driver with destination d ∈ N at time t as follows:

Pd(j|i) = e
1
θ{v(j)+Vd(j)}

∑j′∈O(i) e
1
θ{v(j′)+Vd(j′)} , (3.48)

where v(j) is the link cost of link j, and Vd(j) is the expected utility of selecting link
j for the driver with destination d, which is defined as

Vd(j) = E
[

max
j′∈O(j)

(v(j′) + Vd(j′) + θε(j′))
]
, (3.49)

where E[·] is an expected value function, ε is distributed under a Gumbel distribu-
tion, and θ ≥ 0 is a scale parameter of the Gumbel distribution. In the non-reactive
scenario, we define the link cost function as the normalized link length, i.e.,v(i) =
αi/αnorm, where αnorm = 1000(m). In the reactive scenario, by contrast, we define the
link cost function as the travel time of the link, i.e., v(i, t) = Ti(t− ∆t)/Tnorm, where
Ti(t− ∆t) is the observed travel time of link i at time t− ∆t, and Tnorm = 100(s). In
both scenarios, we changed the scale parameter within the range 0.1 ≤ θ ≤ 0.24 to
study the sensitivity of the algorithms to θ.

3.5.4 Algorithm evaluation and benchmark

Our proposed Z-control requires as inputs the demand q(t) and link transition prob-
ability P(t) for t0 ≤ t ≤ t f (= t0 + th). Therefore, these must be estimated. We as-
sumed that the demand is precisely known beforehand to the systems, i.e., ∀t ∈ T :
q̂(t) = q(t), where q̂(t) denotes the estimated value of q(t). For the link transition
probability, we used the probability observed immediately before as the estimated
value:

∀t ∈ T : P̂(t) = P(t0 − ∆t), (3.50)

where P̂(t) denotes the estimated value of P(t). In the study, we set the time unit
for model-predictive control to tu = 10(s). To avoid an extreme situation, we set a
minimum green split gmin = 0.1. That is, if the value gi for link i is smaller than gmin,
we apply gmin to the link.

As a benchmark, we adopted the QPC-B algorithm, referred to in Aboudolas
et al. (2010), which also uses a model-predictive framework. The objective function
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of QPC-B is set to balance queue occupancy among all links in the network. In addi-
tion to this, we evaluated a variant of QPC-B with an objective function to minimize
the total time spent. We refer to the former as relative queue balance (RQB)-control
, and the latter as total time spent (TTS)-control. The objective function for RQB-
control is stated as follows:

min
g ∑

t∈T
∑
i∈E

n2
i (t)

nmax
i

, (3.51)

where ni(t) is the number of vehicles in link i defined by Eq. (3.6). The objective
function of TTS-control coincides with Z-control, and is defined by Eq. (3.28). The
constraints for Z-control are defined by Eqs. (3.29)–(3.39). For RQB- and TTS-control,
however, we removed the constraint (3.35) insofar as it focuses on closed-loops. Fur-
thermore, rather than the link capacity constraints (3.31), (3.32), (3.36), and (3.37)
which consider the time delay within links, we applied simple link capacity con-
straints expressed as

∀i ∈ E, t ∈ T; 0 ≤ ni(t) ≤ nmax
i . (3.52)

Other settings were kept the same as Z-control, namely, the estimated demand,
the link transition probability, the time unit for the model predictive system, and the
minimum green split.

In addition to mechanism stated above, we considered a “no-control” situation,
where all splits for all signals were fixed at 0.5.

Z-control and TTS-control were formalized as linear programming problems,
and RQB-control was formalized as a quadratic programming problem. To solve
these problems, we used Gurobi, a generic solver 2.

3.5.5 Evaluation criterion

As the criterion for the evaluation, we measured the total time spent by all users in
the network during the evaluation time 0 ≤ t ≤ Te. That is,

∑
0≤t≤Te

∑
i∈E

(−ni(t)). (3.53)

In the numerical study, we set Te = 3600(s).

3.5.6 Results

In this section, we present the results for the non-reactive and reactive scenarios. The
non-reactive scenario focuses on the basic behavior of the parameter Z̃R against the
congested situation of the network, in order to evaluate the basic idea of Z-control.
Our evaluation of the reactive scenario was intended to observe the influence of
drivers who react to the congested situation in a network generated with traffic con-
trol, in order to reveal any outstanding issues with Z-control.

Non-reactive scenario

First, we evaluated the algorithms in a non-reactive scenario. The total time spent is
shown in Fig. 3.5. When θ ≤ 0.14, RQB-control achieved the best performance, but
its performance decreased as θ increased. On the other hand, Z-control performed
well when θ ≤ 0.18. Although Z-control had the same objective function as TTS-
control, Z-control performed better than TTS-control in most cases.

2http://gurobi.com

http://gurobi.com
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Z-control: Proposed control algorithm to minimize total time spent,
considering time delay within links and constraints to prevent gridlock

TTS-control: Control algorithm to minimize total time spent
RQB-control: Control algorithm to balance the queue occupancy of links
No control: Fixed splits of all signals at 0.5

FIGURE 3.5: Total time spent (non-reactive scenario)

To see this in more detail, in Fig. 3.6, we show the value Z̃R calculated in each
algorithm when θ = 0.16. Under this condition, “the narrow sense of gridlock phe-
nomenon” is generated exclusively in the case of “no control." There were a total of
16 closed-loops in our sample network, and Z̃R was calculated for each loop R. In
Fig. 3.6, all of these 16 values are superimposed. In the case of “no control,” after
time t = 600, when demand increased, Z̃R0 for loop R0 increased rapidly and soon
became Z̃R0 = 1. This loop R0 is formed by links {107, 207, 307, 407} located at the
center of the network. As Z̃R0 approached 1, Z̃R for other loops decreased. We can
interpret this to mean that the traffic entering the network decreased as a result of
the narrow sense of gridlock generated at loop R0. In the case of TTS-control and
RQB-control, the narrow sense of gridlock was avoided, but Z̃R remained high. In
the case of RQB-control, Z̃R0 = 1.0 held, generating the broad sense of gridlock. In
the case of Z-control, Z̃R for all loops retained low values, contributing to a decrease
in the total time spent.

As shown above, the value of Z̃R is closely connected to the gridlock phenomenon
in the network. It can therefore be said that a control algorithm that adopts Z̃R can
prevent gridlock.
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(a) No control (b) TTS-control

(c) RQB-control (d) Z-control

FIGURE 3.6: Value of Z̃R, when θ = 0.16
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FIGURE 3.7: Total time spent (reactive scenario)

Reactive scenario

Next, we evaluated the algorithms in a reactive scenario. The total time spent is
shown in Fig. 3.7. Unlike in the non-reactive scenario, “no control” performed best
among all algorithms. The proposed Z-control performed better than TTS-control,
but both algorithms performed much worse than “no control.” Even RQB-control,
the best of the three algorithms, performed worse than “no control.” To better un-
derstand these results, we focused on the route choice probability of traffic flow
from node 3 to node 7. When flowing out from link 305, vehicles in this traffic flow
decided between going straight and flowing into link 306, or turning right and flow-
ing into link 502. The probability of selecting link 306 is shown in Fig. 3.8. In this
figure, the results for the non-reactive scenario are superimposed onto the simu-
lated results for the case of Z-control and “no control” in the reactive scenario. After
t = 600, when demand increased, the probability perturbed over the short term
with “no control.” However, this probability perturbs over the long term with Z-
control, and to a greater extent. We next focused on two routes: Route A, comprising
links {306, 307, 308}; and Route B, comprising links {502, 503, 504, 505, 506, 507, 508}.
These routes are the main routes for vehicles selecting links 306 and 502, respectively.
The travel time for both routes is shown in Fig. 3.9. In the case of “no control,” the
travel time of both routes maintained an equilibrium, as a result of the choice of the
users. In the case of Z-control, by contrast, there was a large gap between the travel
time of each route. In this study, we used Eq. (3.50) as the estimated link transition
probability P̂. However, in oversaturated networks, the link transition probability
changes quickly and significantly, owing to congested traffic. The gap between the
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FIGURE 3.8: Transition probability from link 305 to 306

(A) No control (B) Z-control

FIGURE 3.9: Travel time of Route A and Route B

actual transition probability P and its estimated value P̂ amplifies the perturbation,
exacerbating the congestion. Comparing Figs. 3.5 and 3.7, the total time spent in the
reactive scenario was much shorter than that in the non-reactive scenario under most
conditions. The decision to find a detour away from the congestion considerably in-
fluences the network. Thus, traffic control algorithms for oversaturated networks
should carefully consider this behavior.

3.5.7 Discussion of user behavior

As explained in the previous section, when users react to congestion, simple traffic
control to prevent gridlock is ineffective. Assuming that the behavior of users is
influenced by the state of the network, the link transition probability P is expressed
as

P(t + ∆t) = P(s(t)), (3.54)
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FIGURE 3.10: Grid network

where s(t) is a state variable for the network. For instance, assuming that users can
obtain information regarding link occupancy and link travel time after time t− tp,
s(t) is a function of { n(t− tp), . . . , n(t) } and { T(t− tp), . . . , T(t) }. Therefore, P can
be expressed as

P(t + ∆t) = P(n(t− tp), . . . , n(t), T(t− tp), . . . , T(t)), (3.55)

where T(t) = [T1(t), . . . , TK(t)].
Given the above, optimal traffic control considering user behavior can be formal-

ized as

max
g ∑

t∈T
∑
i∈E

(−ni(t)), (3.56)

s.t. Eqs.(3.29) to (3.39), and (3.55).

The problem of obtaining the function P is a well-known traffic assignment prob-
lem. If users are assumed to have perfect information, this problem can be inter-
preted as the problem of obtaining the state of dynamic user equilibrium. Given
this, the traffic control stated above can be interpreted as a Stackelberg game. This
assumption is suitable for habitually oversaturated networks. Commonly, the func-
tion P is non-linear. Thus, heuristic algorithms are often adopted to solve this kind
of problem(Ceylan and Bell, 2004; Mitsakis et al., 2011; Ukkusuri et al., 2013; Yang
and Yagar, 1995). On the other hand, when treating oversaturated networks caused
by unexpected situations such as accidents or disasters, it is natural to assume that
the information users have is limited and imperfect. In this case, obtaining the func-
tion P is considered a traffic assignment problem that assumes that users react my-
opically to the traffic situation they face. For instance, Hato et al. (1999) and Oyama
et al. (2016) analyze the route choice model of drivers in such situations.

3.6 Evaluation in a grid network

In this section, we evaluate our proposed Z-control in a grid network to analysis the
condition where many closed-loops interfere with each other. The network is shown
in Fig. 3.10. The link parameter is the same as that in Section 3.5. The network has
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12 origin and 12 destination nodes, thus has 144 origin-destination (OD) pairs. We
consider a scenario in which the demand heading to the left side of this network
is heavier than that heading other directions. Specifically, we set the demand of
3.8[veh./h] to all OD pair except the three destination nodes in the left side, shown in
red in Fig. 3.10. For these three destination nodes, we set four times much demand,
that is 15.2[veh./h], from all origin nodes. We set the demands at 0 ≤ t < 3600,
and at 600 ≤ t < 1200, we set twice much demand as stated above. We use the
same traffic simulator stated in Section 3.5, and consider non-reactive and reactive
scenarios as is similar to that section.

3.6.1 Non-reactive scenario

We first evaluate Z-control in the non-reactive scenario where users do not react
to the congestion. The cumulative flow with and without Z-control is shown in
Fig. 3.11. As is shown in Fig. 3.11(a), the flow volume falls into zero in the case
without any control, which means that the gridlock phenomenon occurs. In contrast,
as is shown in Fig. 3.11(b), the congestion are released in the case with Z-control.
Fig. 3.12 shows the congestion in the network in these cases. The color in each link
shows the density as is illustrated in Fig. 3.13

The value Z̃R for all loops in the network in these cases are shown in Fig. 3.14.
Fig. 3.15 shows the distribution of Z̃R values. In the figures, solid lines shows the
average of Z̃R values of all loops, dotted lines shows the standard deviations, and
dashed lines shows the maximum and minimum values. As is shown in Fig. 3.14(a),
in the case without any control, once the Z̃R value of a specific loop reaches to one,
the loop falls into the gridlock. The Z̃R of other loops are slightly decreased after that
and reaches a steady state where no traffic flows. The loop fallen in to the gridlock
is observed to be a left bottom grid in Fig. 3.12(a-ii), and the steady state are shown
in Fig. 3.12(a-iii). In contrast in the case with Z-control, as is shown in Fig. 3.15(b),
Z̃R values of all links do not reach to one. The traffic is well-distributed as is shown
in Fig. 3.12(b-ii). Here, we can see that the Z-control works well in the non-reactive
scenario, as is similar to the results shown in Section 3.5.
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FIGURE 3.11: Cumulative flow in non-reactive scenario
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FIGURE 3.12: Congestion in non-reactive scenario
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(a) No control (b) Z-control

FIGURE 3.14: Z-values in non-reactive scenario
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FIGURE 3.15: Average and distribution of Z-values in non-reactive
scenario

3.6.2 Reactive scenario

We then evaluate Z-control in the reactive scenario where users react to the conges-
tion. Here we consider two cases with respect to the time-discounted rate β of users,
which represents the extent of the myopic decision of users. In irregular conditions,
such as under disasters, it is known that the users’ route choice decisions become
more myopic and the time-discounted rate becomes lower than in a regular condi-
tions (Oyama and Hato, 2017). We evaluate two cases, β = 0.8 which represents the
regular conditions and β = 0.2 which represents the irregular conditions.

Regular conditions

The cumulative flow in the regular condition where β = 0.8 is shown in Fig. 3.16.
Unlike in the non-reactive scenario, gridlock phenomenon does not occur both with
and without Z-control. Even so, it can be seen that the congestion is slightly miti-
gated by the Z-control.
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FIGURE 3.16: Cumulative flow in reactive scenario (β = 0.8)
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FIGURE 3.17: Congestion in reactive scenario (β = 0.8)
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(a) No control (b) Z-control

FIGURE 3.18: Z-values in reactive scenario (β = 0.8)
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FIGURE 3.19: Average and distribution of Z-values in reactive sce-
nario (β = 0.8)

The congestion and the value Z̃R for all loops in the network in these cases are
shown in Fig. 3.17 and Fig. 3.18. In addition, Fig. 3.19 shows the distribution of Z̃R
values. In the figures, solid lines shows the average of Z̃R values of all loops, dotted
lines shows the standard deviations, and dashed lines shows the maximum and
minimum values. From Fig. 3.17(a-ii) and (b-ii), it can be seen that the congestion in
the left side where the demands concentrate are well-distributed by the Z-control.
It results in an early mitigation of the congestion, as is shown in Fig. 3.17(a-iii) and
(b-iii). Fig. 3.18 and Fig. 3.19 also shows that the congestion is well-distributed to all
loops in the network by the Z-control.

Irregular conditions

The cumulative flow in the irregular condition where β = 0.2 is shown in Fig. 3.20.
Comparing to the regular condition, the congestion is heaver because of the users’
myopic behavior. In this case, the Z-control works much better than the regular case.
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FIGURE 3.20: Cumulative flow in reactive scenario (β = 0.2)
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FIGURE 3.21: Congestion in reactive scenario (β = 0.2)
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(a) No control (b) Z-control

FIGURE 3.22: Z-values in reactive scenario (β = 0.2)
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FIGURE 3.23: Average and distribution of Z-values in reactive sce-
nario (β = 0.2)

The congestion and the value Z̃R for all loops in the network in these cases are
shown in Fig. 3.21 and Fig. 3.22. In addition, Fig. 3.23 shows the distribution of
Z̃R values. In the figures, solid lines shows the average of Z̃R values of all loops,
dotted lines shows the standard deviations, and dashed lines shows the maximum
and minimum values. Because of the myopic behavior of users, the congestion are
distributed over the whole network in both cases with and without Z-control. How-
ever, as is shown in Fig. 3.20(b), the Z-control can well-distribute the congestion
while keeping the total flow volume in the network. Thus, the Z-control works well
in irregular conditions.
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3.7 Conclusions

In this chapter, we proposed a traffic control algorithm for oversaturated networks
with closed-loop structures. We introduced state variables that consider the time-
delay property to address the dynamic behavior of vehicle queues. Using these
variables, we described the process of gridlock, using the parameters BR,i and ZR,i
to characterize the phenomenon. Then, we introduced the parameter Z̃R, which is
an approximation of ZR,i, and proposed a traffic control algorithm called Z-control
that uses this parameter. The algorithm was formalized as a linear programming
problem, such that it can be applied to large networks, provided that the demand q
and link transition probability P are set properly.

We evaluated the algorithm with numerical experiments, considering two sce-
narios: a non-reactive scenario, where drivers do not react to traffic conditions in the
network; and a reactive scenario where drivers are assumed to have perfect infor-
mation about the traffic conditions in the network and react to it. In the non-reactive
scenario, we showed that our proposed parameter Z̃R is effective at preventing grid-
lock. Indeed, Z-control outperformed other benchmark algorithms. We also showed
that the Z-control works well in the reactive scenario with a complicated network
where many closed-loops interfere with each other. Especially, it works much better
in irregular conditions where the users’ behavior become myopic.

However, it still has many points to be improved. In this study, we adopted
model-predictive control, using the observed link transition probability P(t0 − ∆t)
as a estimate value P̂(t). The difference between P̂(t) and the actual link transition
probability P(t) resulted in the algorithm’s poor performance. To improve this situ-
ation, the drivers’ reaction to the congested network should be considered in future
estimations of the link transition probability. This can be formalized as a bi-level
optimal problem, also known as the combined traffic control and traffic assignment
problem. When treating habitually oversaturated networks, this bi-level problem
can be formalized as a Stackelberg game. When treating unexpected oversaturated
networks, moreover, myopic driving behavior should be considered in the bi-level
problem. In both cases, the problem becomes very complicated, suggesting the need
for heuristic algorithms or traffic simulations. The basic idea for our proposed Z-
control can be easily implemented in such systems, and in future research, we will
evaluate the performance of such traffic control systems.

Furthermore, our results can inform policy pertaining to the introduction of auto-
mated vehicles (AVs) in large cities. A discussion of AV decision-making regarding
route-choice has not been well developed. Our results suggest that the central con-
trol of an AVs’ route choice is important to avoid situations such as those observed
in our “reactive scenario,” where drivers were assumed to have perfect information
about the traffic conditions in the network and react to it. Indeed, this scenario ap-
propriately describes a world with “selfish” AV behavior. Even if the authority to
choose the route remains with the AV, the route-choice model for AVs will probably
be much more simple and rational than that of human drivers. As such, traffic con-
trol that considers the route choice of AVs can be established with rational models
to ease traffic congestion.
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Chapter 4

Search-based optimization of
activity-based dynamic trip
matching in sparse ridesharing
markets

In this chapter, we present an algorithm for the ridesharing service operated in sub-
urb areas. Specifically, we formalize a dynamic trip matching problem between cus-
tomers and drivers and propose a search-based solution algorithm for the problem.

The content of this chapter is prepared to be submitted to Transportation Research
Part C: Emerging Technologies.

We explore the dynamic trip matching problem between customers and drivers in
sparse ride sharing markets. In sparse ride sharing markets like in suburbs, common
trip-based myopic matching algorithm may force customers to wait an extremely
long time. To avoid this, we take an approach of activity-based travel analysis that
can describe a series of trips and activities of each customer and thus can consider
the connectivity of multiple trips. We formulate the matching problem as a dynamic
optimization problem that aims to minimize time-discounted total travel cost under
capacity constraints of vehicles and space–time constraints of users and drivers. We
then focus on the settings where the service operator knows appearance probabili-
ties of users. In such cases, the optimal policy cannot be realized by common mixed
integer programming (MIP) solvers. We propose a search-based solution algorithm
that uses the data structure represented by the zero-suppressed binary decision dia-
gram (ZDD). In numerical studies, we show that our proposed algorithm performs
better than both static and dynamic benchmarks that can be solved by common MIP
solvers, and obtains near-optimal solutions.

4.1 Introduction

With the widespread of on-demand ridesharing services, it becomes a significant
challenge for the service operators to obtain a dynamic algorithm that sequentially
and efficiently operates their traffic resources. For on-demand bus services, there
exist many works (Horn, 2002; Sayarshad and Chow, 2015) that extend the static
framework of Dial-a-ride problem (DARP)(Cordeau and Laporte, 2007; Ho et al.,
2018) or Pickup and Delivery Problem with Time Windows (PDPTW) (Dumas et al.,
1991) to dynamic conditions. For ride-sharing services, other works (Alonso-Mora
et al., 2017; Kamar and Horvitz, 2009; Pelzer et al., 2015; Santi et al., 2014) present
algorithms that myopically match drivers and customers to minimize the sum of
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waiting and traveling time. However, these works consider trip-based demand and
thus do not consider the correlation of a series of trips made by customers.

Such trip-based algorithms cause fatal problems in a sparse market like suburbs
where there are not many drivers and customers at the same time and location. For
example, users who success booking their outbound trips from their home may fail
to book their return trips because of the shortage of drivers. To avoid such situations,
a framework is required that guarantees complete each customer’s itinerary with
multiple sub-trips within the customer’s space–time constraints. A trivial solution
to this problem is an advance reservation system by which customers can book and
fix all sub-trips in advance. However, the customers often change minds during
their series of itineraries, for example, they may find another place to visit or may
go back their home earlier. The advance reservation systems cannot support such
demands and cause opportunity losses of customers, especially in sparse markets.
A flexible operation is desired that dynamically adapt to the flexible demands while
guaranteeing the completion of all customers’ trips even in the worst case.

To consider a series of trip by customers, the framework of activity-based model
(Axhausen and Gärling, 1992; Kitamura et al., 1996) are well-studied. In this frame-
work, individuals are considered as utility-maximizer within a space–time prism
constraints (Hägerstrand, 1970) derived from their home locations and mandatory
activities. The trip is considered as a derived demand of customers’ activities. Thus
the quantity of trips made by all customers depends on provided transportation
services. Kang et al. (2013) formulate this as activity-based network design prob-
lems that consist of network design problem and household activity pattern prob-
lem (HAPP) (Recker, 1995). Liu et al. (2018) formulate it as an optimization problem
with considering the HAPP as constraints, and present an efficient solution algo-
rithm. However, these works consider static conditions in which all information
about household members are fixed and given in advance, and do not consider dy-
namic conditions.

In this chapter, we propose a dynamic matching algorithm to operate a rideshar-
ing service efficiently in sparse ridesharing markets in suburb areas. Our proposed
algorithm adaptively minimizes time-discounted total travel cost of all drivers and
users with guaranteeing the completion of all accepted users’ trips.

To aim this, we make the following contributions:

• We first formulate the dynamic trip assignment problem in sparse ridesharing
markets that aims to minimize time-discounted total travel cost with consider-
ing space–time constraints of both users and drivers.

• We propose a search-based algorithm to solve this problem. The algorithm
provides anytime feasible solution owing to the full-search using a data struc-
ture called zero-suppressed binary decision diagram (ZDD) (Minato, 1993, 2001).

• We numerically show that our proposed algorithm realizes efficient matching
between drivers and users. The algorithm makes sequential but non-myopic
decisions and thus makes appropriate judges whether it should accept or reject
users.

The remainder of this chapter is organized as follows. In Section 4.2, we state the
ridesharing services for members only that we consider in this chapter, showing an
example that illustrates the necessity of flexible booking systems. In Section 4.3, we
state the mathematical model for the flexible booking systems that aims to minimize
time-discounted total travel cost. In Section 4.4, we propose a solution algorithm
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TABLE 4.1: Notations

Time horizon
T = {1, . . . , T̄} Discretized time horizon
β Time-discounted rate

Network
N Set of nodes in the road network
E Set of links in the road network
I(n) ⊂ E Set of inflow links to node n ∈ N
O(n) ⊂ E Set of outflow links from node n ∈ N
τe ∈N travel time of edge e ∈ E

Individuals
I = ID ∪ IU Set of individuals
ID Set of drivers
IU Set of users
IU
=t ⊆ IU Set of users whose active time-window starts at time t ∈ T

ĪU ⊆ IU Set of users who do not require trips
Parameters of drivers and users
Travel costs

CM
i ∈ R Travel cost of individual i ∈ I per a unit time

CA
i ∈ R<0 Value (i.e., negative travel cost) of user i ∈ IU completing all mandatory activities in Ai

CS
i,n ∈ R Travel cost of individual i ∈ I staying at node n ∈ N

C̃S
i,n ∈ R Estimated travel cost of individual i ∈ I staying at node n ∈ N in advance

Ci Set of travel costs of individual i, including CM
i , CS

i,n for all n ∈ N , and CA
i

ρ Correlation coefficients between the true travel cost CS
i,n and the estimated travel cost C̃S

i,n
Space–time constraints

Hi ∈ N Home location, i.e., origin and destination node, of individual i ∈ I
Ti = [tb

i , te
i ] Active time duration of individual i ∈ I

Li Set of feasible trip-paths for individual i ∈ I
Parameters of drivers

Qi ∈N The capacity, i.e., the number of users, that driver i ∈ ID can serve
Parameters of users

Ji Number of mandatory activities for user i ∈ IU

Ai = {ai,1, . . . , ai,Ji} Set of mandatory activities for user i ∈ IU

nai,j ∈ N The location of the mandatory activity ai,j ∈ Ai

Tai,j = [tb
ai,j

, te
ai,j
] The time-window of the mandatory activity ai,j ∈ Ai

pi The appearance probability of user i ∈ IU

Decision variables
δi ∈ {0, 1} Binary indicator variable whether the request of individual i ∈ I makes her trip
ηi,e,t ∈ {0, 1} Binary indicator variable whether individual i ∈ I flows into link e ∈ E at time t
θi,n,t ∈ {0, 1} Binary indicator variable whether individual i ∈ I stays at node n ∈ N at time t

that can efficiently solve the problem. In Section 4.5, we numerically demonstrate
the performance of our proposed algorithm. Finally, in Section 4.6, we conclude this
chapter and discuss the potential direction of the extension of this work.

4.2 Problem statement

In this section, we show an overview of the ridesharing service in suburbs that we
discuss in this chapter. The notations introduced in this chapter is shown in Table 4.1.
The service is offered by a service operator which match users with drivers. Both
users and drivers have to register as a member of the service in advance. Users
can require a series of trips, among which some mandatory activities are included,
at any time. For each users’ request, the operator can decide whether it accepts or
rejects the request. From the operator’s point of view, it is desirable that multiple
users share their trips to reduce the travel cost. Thus, the operator tries to bundle
their trips, as far as it satisfies their constraints. It can also reject users’ request if the
operation cost is too much.

To consider the heterogeneity of users and drivers, we introduce three types of
travel costs. The first is the travel cost per unit time during moving denoted by CM

i ∈



58
Chapter 4. Search-based optimization of activity-based dynamic trip matching in

sparse ridesharing markets

/** 1 

A 

B 

C 
Travel time: 
𝜏𝜏𝐴𝐴𝐴𝐴 = 𝜏𝜏𝐶𝐶𝐴𝐴 = 2 

Travel time: 
𝜏𝜏𝐴𝐴𝐴𝐴 = 𝜏𝜏𝐵𝐵𝐵𝐵 = 2 

Travel time: 
𝜏𝜏𝐵𝐵𝐵𝐵 = 𝜏𝜏𝐶𝐶𝐶𝐶 = 1 

FIGURE 4.1: Sample network and the link travel time

R, which represents the value of time of each individual. The second is the value,
i.e., negative cost, of completing all mandatory activities denoted by CA

i ∈ R<0,
which is considered only for users, not for drivers. The third is the cost of staying
at each node denoted by CS

i,n ∈ R. For drivers, it represents the cost of waiting. For
users, it represents the value of optional activities executed on each node. We call
the negative cost for users staying at each node as VoS (Value of staying). We assume
that the true VoS is not revealed before the user actually visits the location.

The operator has perfect knowledge of drivers. It also knows a set of registered
users IU and the home locations Hi and active time duration Ti of each user i ∈
IU . It has perfect knowledge of mandatory activities Ai, for example going to the
school or office, but does not know about their optional activities, for example going
shopping. Through the usage history, it knows the appearance probability pi of each
user but does not know whether a certain user actually appears, until the beginning
time tb

i of the active time duration Ti. It also has information about the travel cost of
each user. However, it does not know the user’s true VoS CS

i,n until the user i visits
the node n. Instead, the estimated VoS denoted by C̃S

i,n is given in advance.
In the following part, we show an example that illustrates the case we focus on

this chapter.

4.2.1 Motivating example

Network

A road network (N , E) with three nodes and six edges is given as shown in Fig. 4.1.
The travel time τe of each edge e ∈ E is given in the figure. The travel time of each
edge is assumed to be constant.

Space–time constraints of drivers and users

Assume a service with one driver X and two users 1 and 2. The parameters are
given in Table 4.2 and 4.3. Both drivers and users have their own home location
and active time-window. Each user i has Ji mandatory activities, and the location
and time-window of each mandatory activities ai,j are given. The time–space paths
of drivers and users are spatially and temporarily constrained (Hägerstrand, 1970)
by the home location, active time-window and mandatory activities. This setting is
consistent with existed works (Kang et al., 2013; Liu et al., 2018; Recker, 1995).

Appearance probability and travel costs

The cost of travel CM
i and cost of waiting CS

i,n for driver X is shown in Table 4.2. As
is shown in the table, it cost 100 per unit time while the Driver X moves and costs 50
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TABLE 4.2: Parameters of the Driver X

Driver X
Home location Node B HX = B
Active time-window [0,12] TX = [0, 12]
Service capacity 2 QX = 2
Cost of travel 100 CM

X = 100
Cost of waiting 50 CS

X,A = 50, CS
X,B = 0, CS

X,C = 50

TABLE 4.3: Parameters of the User 1 and 2

User 1 User2
Home location Node A Node A H1 = H2 = A
Active time-window [0,10] [1,10] T1 = [0, 10], T2 = [1, 10]
Appearance probability 0.9 0.5 p1 = 0.9, p2 = 0.5
Number of mandatory activities 1 1 J1 = J2 = 1
Mandatory activity Location Node B Node C na1,1 = B, na2,1 = C

Time-window [5,6] [4,5] [tb
a1,1

, te
a1,1

] = [5, 6], [tb
a2,1

, te
a2,1

] = [4, 5]
Value 400 600 CA

1 = −400, CA
2 = −600

Cost of travel 5 5 CM
1 = 20, CM

2 = 20
Value of staying (VoS) at Node A 0 0 CS

1,A = 0, CS
2,A = 0

Priori information
Estimated VoS at Node B 50 40 C̃S

1,B = −50, C̃S
2,B = −40

Estimated VoS at Node C 40 50 C̃S
1,C = −40, C̃S

2,C = −50
True values revealing after the visit

True VoS at Node B 26 51 CS
1,B = −26, CS

2,B = −51
True VoS at Node C 62 48 CS

1,C = −62, CS
2,C = −48

per unit time if the Driver X waits at Node A or C. Without loss of generality, we set
the cost is zero if drivers spend time on their own home location.

The appearance probability and travel costs of users are shown in Table 4.3. We
set the VoS at the users’ home location is zero without loss of generality. Because the
true VoS CS

i,n is not revealed before the user actually visit the location, the estimated
VoS C̃S

i,n is given as shown in Table 4.3.

4.2.2 Matching between users and drivers

Assuming that both User 1 and 2 appear, the optimal matching is shown in Fig. 4.2(a).
The driver X firstly takes both users to Node C, and then takes User 1 to Node B. Af-
ter a time-unit, the driver takes User 1 back to Node C and takes both users to back
to Node A after the staying at Node C for a time-unit. By these itineraries, the travel
costs of User 1, 2 and Driver X are −458, −828, and 1050 and thus the total travel
cost is −236. However, this result is not trivially obtained by common matching
algorithms.

For example, the first-come first-serve (FCFS) algorithm is often adopted, by
which each user’s itinerary is fixed greedily to minimize her cost in order of the
appearance. By this algorithm, the itinerary of User 1 with T1 = [0, 10] is fixed at
t = 0 based on her estimated VoS. Driver X is assigned for the round trip of User 1,
as shown in Fig. 4.2(b). So, the user 2 with T2 = [1, 10] appearing at t = 1 is rejected
because no drivers can serve her. The travel costs of User 1 and Driver X are −484
and 800, and the total travel cost is 316.

Another common algorithm is that tries to calculate optimal operation using es-
timated VoS known in advance, assuming that all users will appear. We call this
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FIGURE 4.2: Trip plans for the case study

algorithm as pre-fixed. The itineraries calculated by this algorithm are shown in
Fig. 4.2(c). The travel costs of User 1, 2 and Driver X are −453, −761, and 1100,
and the total travel cost is −114. All of them are higher than the optimal allocation
case shown in Fig. 4.2(a), which is caused by the gap between the estimated and true
VoS. It can be seen that this algorithm may not achieve optimal matching even if the
information about the appearance of users is exactly given.

Now we consider an algorithm that can achieve the optimal matching in this
case. The algorithm should make decisions sequentially considering newly revealed
information about users’ true VoS at each time. Unlike the FCFS algorithm, it should
have some redundancy to accept later users. For example in this case, the operator
can accept User 1’s request at t = 0 without fixing the itinerary but with guarantee-
ing that User 1 can complete her itinerary within her space–time constraints. The
operator present the itinerary shown in Fig. 4.2(b) if User 2 does not appears at t = 1
and present the itinerary shown in Fig. 4.2(b) based on the estimated VoS if User
2 appears. Note that both of them satisfies the space–time constraints of User 1.
Now assume that the User 2 appears and the operator adopt the itineraries show in
Fig. 4.2(c). In this case, User 1 is firstly taken to Node C and the true VoS at Node
C is revealed. Then, the User 1 visits Node B and the true VoS at Node B is also
revealed. As shown in Table 4.3, for User 1, the true VoS at Node C is higher than
the estimated one while the true VoS at Node B is lower. At this point, User 1 notices
that it is better to spend time at Node C instead staying at Node B. If the algorithm
can re-calculate the itineraries at this point, the operator can offer a better services.
In this case, indeed, the itineraries shown in Fig. 4.2(a) is better not only for User 1
but also for User 2 and Driver X.

The case stated above illustrates two essential problems observed in sparse rideshar-
ing markets. The first is the uncertainty of the appearance of users that often causes
the inefficient traffic operation. The second is users’ mind-changing in the middle
of their trips, which should be considered to improve the quality of the service. To
address these problems, we propose an algorithm by which, the itineraries are re-
calculated at each time with guaranteeing all accepted users’ space–time constraints
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at any time. We call booking systems using such algorithms as floating booking systems
(Hayakawa and Hato, 2018b).

4.3 Model of the floating booking system

In this section, we show the dynamic optimization model that achieves the concept
of the floating booking system mentioned in the previous section.

4.3.1 Benchmark offline model

We first show the benchmark offline model that minimizes the total travel cost (TTC),
given the perfect knowledge about both drivers and users.

Offline optimal

min
δ,η,θ

TTC = ∑
i∈I

(δi(CA
i + ∑

t∈Ti

(∑
e∈E

ηi,e,tτeCM
i + ∑

n∈N
θi,n,tCS

i,n))) (4.1)

s.t:
∀e ∈ E , ∀t ∈ T : ∑

i∈IU

ηi,e,t ≤ ∑
i∈ID

Qiηi,e,t, (4.2)

∀n ∈ N , ∀i ∈ I, ∀t ∈ T : (θi,n,t + ∑
e∈O(n)

ηi,e,t)− (θi,n,t−1 + ∑
e∈I(n)

ηi,e,t−τe) =


δi if t = tb

i
−δi if t = te

i
0 otherwise

(4.3)
∀n ∈ N , ∀i ∈ I : θi,n,T̄ = 0, (4.4)

∀e ∈ E , ∀i ∈ I : ηi,e,T̄ = 0, (4.5)

∀i ∈ IU , ∀ai,j ∈ Ai : ∑
t=[tb

ai,j ,t
e
ai,j−1]

θi,nai,j ,t
≥ δi (4.6)

∀i ∈ ID, δi = 1 (4.7)

∀i ∈ ĪU , δi = 0 (4.8)

The decision variables δi ∈ (0, 1), ηi,e,t ∈ (0, 1) and θi,n,t ∈ (0, 1) represent the
acceptance of individual i’s request, flowing into link e at time t, and staying at
node n at time t, respectively. For all drivers i ∈ ID, δi = 1. Eq. 4.2 expresses the
capacity constraints. Eq. 4.3 expresses the flow conservation. Eq. 4.6 expresses the
constraints such that users have to spend at least one time step to complete their
mandatory activities. Eq. 4.7 shows that all drivers appears and Eq. 4.8 expresses
the user who do not require the trip. The travel costs of users who does not appear
and are rejected are zero because the cost of staying their own home-location is set
to zero, as stated in Section 4.2.1.

4.3.2 Dynamic model for floating booking systems

To establish algorithms that re-calculate users’ itineraries at each time, we extend the
static model to dynamic settings. The objective function at any time t is given as:

min
δ≥t,η≥t,θ≥t

TTCt = E

[T̄i−1

∑
t′=t

βt−t′( ∑
i∈I=t

δiCA
i + ∑

i∈I
δi(∑

e∈E
ηi,e,t′τeCM

i + ∑
n∈N

θi,n,t′CS
i,n))

]
,

(4.9)
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FIGURE 4.3: Framework of the proposed algorithms

where δ≥t, η≥t and θ≥t represents the decisions at and after the current time t. E[·]
is the expectation with respect to the given future demand model, specifically the
appearance probability of users. The time-discount rate β is assumed to be common
over all users and drivers.

By Bellman’s principle of optimality (Bellman, 1957), this objective function is
rewritten as a recursive form, as follows.

Dynamic model

min
δt,ηt,θt

TTCt = ∑
i∈I

δi(∑
e∈E

ηi,e,t′τeCM
i + ∑

n∈N
θi,n,t′CS

i,n) + ∑
i∈I=t

δiCA
i + min

δ>t,η>t,θ>t

TTCt+1,

(4.10)
s.t: Eqs. 4.2 to 4.8.

While the objective function is time-decomposed, the constraints are not time-
decomposed. Thus the capacity constraints and space–time constraints in future
time t′ > t should be taken consideration into the decisions at each time t.

Here, we focus on the constraints about the users’ appearance given by Eq. 4.8.
If the information about users’ appearance is given exactly, the model is a common
mixed integer programming (MIP) model and thus the solution can be obtained by
common MIP solvers. However, if there is uncertainty on the users’ appearance, the
model cannot be solved trivially. We propose a solution algorithm for this problem
in the following section.

4.4 Solution algorithms

In this section, we show search-based algorithms that obtains anytime feasible solu-
tion of the dynamic model shown in the previous section. Our proposed algorithm
consists of two parts, trip-chain generator and trip plan optimizer, as shown in Fig. 4.3.
Trip-chain generator is set to all users and drivers. At each time, it enumerates a set of
itineraries that satisfies the space–time constraints of each individual. Trip plan op-
timizer decides the optimal policy at each time, collecting the set of itineraries of all
individuals enumerated by their trip-chain generators. The combinations of itineraries
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(b) Trip-plans expressed by the binary decision tree

FIGURE 4.4: Trip-plan enumeration using the ZDD

of all individuals are presented with considering capacity constraints. In the follow-
ing parts, we show the algorithm in detail.

4.4.1 Trip-chain generator

Trip-chain generator set at each individual outputs a set of feasible itineraries Li that
satisfies the space–time constraints. It considers the home-location and active time-
window of individuals, and also considers mandatory activities for users. The feasi-
ble itineraries are greatly lessen by the space–time prism constraints (Hägerstrand,
1970) derived from this information and are expressed as the sparse graph in an
space–time expanded network.

Let me show an example. We consider a simple network with only 2 nodes A
and B, and a link with τAB = 1. Given an individual that start from Node A at t = 0
and arrive at Node B at t = 2, the space–time expanded network is shown as in
Fig. 4.4(a). In this figure, actions of the individual are displayed. For example, the
actions et=0

AA and et=0
AB represents that the staying at Node A and the moving along

the Link AB at t = 0, respectively. A series of actions for the individual is shown
in Fig. 4.4(b), using a binary decision diagram. The arrows express the binary-
decisions, specifically, the solid arrow represents that the action is taken while the



64
Chapter 4. Search-based optimization of activity-based dynamic trip matching in

sparse ridesharing markets

/** 1 

𝑡𝑡 = 0 

𝑡𝑡 = 1 

𝑡𝑡 = 2 

𝑡𝑡 = 3 

𝑡𝑡 = 4 

𝑡𝑡 = 5 

𝒆𝒆AA𝑡𝑡=0 

𝒆𝒆AB𝑡𝑡=0 

𝒆𝒆AC𝑡𝑡=0 

𝒆𝒆AB𝑡𝑡=1 

𝒆𝒆AA𝑡𝑡=5 

1 0 

𝒆𝒆BB𝑡𝑡=2 

𝒆𝒆BA𝑡𝑡=3 

𝒆𝒆BB𝑡𝑡=3 

𝒆𝒆BC𝑡𝑡=3 

𝒆𝒆BA𝑡𝑡=4 

𝒆𝒆CB𝑡𝑡=2 

𝒆𝒆CA𝑡𝑡=4 

Accept or reject 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  

FIGURE 4.5: A set of trip-chains for user 3

dashed arrow represents that the action is not taken. The numbers in {0, 1} shown
in the bottom express whether the plan is feasible or not. For example, an itinerary
displayed in red in the figure means that the individual moves from Node A to Node
B at t = 0 and stays at Node B at t = 1. In this case, two itineraries shown in red
and green in Fig. 4.4(a) and (b) are feasible. As is shown in Fig. 4.4(b), feasible paths
with spatial and temporal connection are very sparse in the binary-decision tree. By
using the ZDD data structure (Minato, 1993), such a sparse graph is represented in a
compact form as shown in Fig. 4.4(c).

Let me show an another example. Assume the road network shown in Fig. 4.1
and an User 3 shown in Table 4.4. Using the ZDD data structure, the feasible itineraries
of this user is expressed as shown in Fig. 4.5. The top node in the figure represents
the decision whether this user is accepted or rejected. Two red arrows in the figure
represents the staying at Node B during time [2, 4], which is the time-window of the
mandatory activity. All paths connected ‘1’ at the bottom pass at least one red arrow,
which means that the mandatory activity is completed. The itineraries of Driver Y

TABLE 4.4: Parameters of user 3, driver X and driver Y

Home location Active time-window Mandatory activities
Location Time-window

User 3 Node A [0,6] Node B [2,4]
Driver Y Node A [0,5]
Driver Z Node A [1,6]
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FIGURE 4.6: A set of trip-chains for Drivers Y and Z

and Z, whose parameters are given in Table 4.4, are similarly enumerated as shown
in Fig. 4.6.

Thus, the trip-chain generator of each individual enumerates all feasible paths that
satisfies space–time constraints given by Eq. 4.3 to 4.6. Using the ZDD data structure,
the enumerated paths are kept in a compact form.

4.4.2 Trip-plan optimizer

At each time, Trip-plan optimizer calculates the optimal action for all individuals
based on the model shown in Section 4.3.2. For each individual, all itineraries satisfy-
ing space–time constraints given by Eqs. 4.3 to 4.6 are enumerated by the trip-chain
generator. Trip-plan optimizer select the combination of these itineraries that mini-
mizes time-discounted travel cost given by Eq. 4.10 with satisfying capacity con-
straints given by Eq. 4.2 and appearance constraints given by Eqs. 4.7 and 4.8. The
user appearance constraints Eq. 4.8 are considered by taking multiple scenario with
respect to future users. The overall algorithm is shown in Algorithm 1.

The algorithm has a variableZ that represents the combination of feasible itineraries
by all individuals. All combination of feasible itineraries enumerated by all drivers
are saved using ZDD data structure (Line 1). Then the itineraries of each user
are combined to this with checking the capacity constraints (Line 2 to 5). Thus
all feasible combination of itineraries are enumerated that satisfy both space–time
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Algorithm 1 Algorithm
1: Z ← Πi∈ID Li
2: for all i ∈ IU do
3: Z ← Z × Li
4: Z ← Z \ CAPACITYVIOLATIONSET(Z) {Capacity constraints}
5: end for
6: for t = 1 to T̄ − 1 do
7: Zw ←WeightCosts(Z , Ct)
8: Zt ← FeasibleActions(Z) {Feasible combination of actions at the current time}
9: ∀{δ′t, η′t, θ′t} ∈ Zt : Score({δ′t, η′t, θ′t})← 0

10: for m = 1 to M do
11: Īm ← SampleAbsentUsers(IU

>t) {Sample a set of absent users}
12: for {δ′t, η′t, θ′t} ∈ {∆t, Ht, Θt} do
13: Score({δ′t, η′t, θ′t})← Score({δ′t, η′t, θ′t}) + TTCt(Zw, {δ′t, η′t, θ′t}, Īm)
14: end for
15: end for
16: {δt, ηt, θt} = argmin{δ

′
t ,η
′
t ,θ
′
t}∈Zt

Score({δ′t, η′t, θ′t}) {Optimal policy}

17: Z ← UPDATE(Z , {δt, ηt, θt})
18: end for

and capacity constraints. The set operations using this part can be computed effi-
ciently by using ZDD data structure 1. In the instance with User 3, Driver Y and
Driver Z shown in Table 4.4, which is introduced in the previous section, the feasible
itineraries can be enumerated as shown in Fig. 4.7(a). From this, the algorithm select
feasible combination of itineraries that satisfy capacity constraints.

At each time, the algorithm weight the cost Ct revealed at that time to Z (Line
7). This process can be simply executed by weighting the cost to all edge shown in
Fig. 4.7(a). Then, the algorithm extracts the combinatorial actionZt of all individuals
existing at that time (Line 8) and calculate the score of each action {δ′t, η′t, θ′t} ∈ Zt
(Line 9 to 15). We take multi-scenario approach (Chang et al., 2000), that is, take the
total sum of travel cost calculated in multiple scenario with respect to the appearance
of future users. For example in the instance of Fig. 4.7(a), if the trip request of User
3 is accepted and the trip from Node A to Node B is presented at t = 0, the feasible
itineraries for all individuals are shown in Fig. 4.7(b). The feasible itineraries of
Driver Y is largely decreased because she has to carry User 3 from Node A to Node
B at t = 0. The return trip of User 3 shown in blue and green arrows in Fig. 4.7(b) is
also flexibly reserved in the enumerated combination of itineraries although this is
not shown in the figure. By contrast, if the trip from Node A to Node C is presented
at t = 0, the feasible itineraries for all individuals are shown in Fig. 4.7(c). In this
case, the following itinerary of User 3 is fixed as is shown in the figure. The return
trip from Node B to Node A at t = 4 should be served by Driver Z. Thus the feasible
itineraries of Driver Z are largely decreased. Thus, the feasible combination of future
itineraries are enumerated for each action. Using this, the minimum total travel cost
for each scenario can be easily obtained as a shortest path problem. We use the total
sum of the cost over all M scenarios as the score of the action. The action with the
minimum score is executed (Line 16).

1A software package ‘Graphillion’ for these set operations are provided at https://github.com/
takemaru/graphillion/wiki

https://github.com/takemaru/graphillion/wiki
https://github.com/takemaru/graphillion/wiki
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FIGURE 4.7: A set of combinations of trip-chains among agents
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TABLE 4.5: Parameters of the Drivers

Driver 1 Driver 2 Driver 3 Driver 4
Home location Node A Node B Node C Node C
Active time-window [0,9] [0,9] [0,5] [4,9]
Service capacity 3 6 3 3
Cost of travel 5 7 5 5
Cost of waiting 2 2 2 2

TABLE 4.6: User categories

Category 1 Category 2 Category 3
Home location Node B Node B Node C
Start time of active time-window 0 to 2 0 to 1 0 to 2
End time of active time-window 5 to 7 3 to 4 5 to 7
Appearance probability U (0.5, 1.0) U (0.5, 1.0) U (0.5, 1.0)
Mandatory activity Location Node A Node C Node A

Time-window [4,5] [2,7] [4,5]
Value 20 20 20

Cost of travel 1 1 1
True value of staying at Node A U (−10, 10) 0 U (−10, 10)

Node B 0 0 U (−10, 10)
Node C U (−10, 10) U (−10, 10) 0

4.5 Numerical Examples

4.5.1 Experimental setup

Assume a network shown in Fig. 4.1. There are four drivers shown in Table 4.5.
There are three categories of users, which are shown in Table 4.6. We vary the num-
ber of users of each category in this numerical study. The mandatory activity of
users in each category is given as shown in Table 4.6. However, the optional location
where each user desires to visit depends on the VoS at each node and thus is not
known to the operator. Each user’s start and end time of the active time-window is
set randomly within the range shown in Table 4.6. The user’s true VoS at each node
is drawn from a uniform distribution on [−10, 10], such that CS

i,n ∼ U (−10, 10). The
estimated VoS C̃S

i,n is given by C̃S
i,n = ρCS

i,n +
√

1− ρ2 · x, where ρ is a correlation
coefficient and x is drawn from a uniform distribution on [−10, 10]. The appearance
probability of each user is drawn from a uniform distribution on [0.5, 1.0], such that
pi ∼ U (0.5, 1.0).

4.5.2 Algorithms

We compare the performance of the algorithm from Section 4.4, called Proposed,
with benchmark algorithms shown in Table 4.7. In the table, we show three static
and three dynamic algorithms. Offline optimal (OPT) algorithm is the benchmark
assuming that the operator has perfect knowledge of users, including both the ap-
pearance and true VoS. Optimal under the estimated VoS (OPT-est) algorithm as-
sumes that the operator has perfect knowledge of users’ appearance but does not
know the true VoS. These algorithms statically optimizes the traffic assignment by
solving Offline optimal optimization problem shown in Section 4.3.1 based on the true
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FIGURE 4.8: Efficiency of the algorithms over number of users

VoS in OPT and the estimated VoS in OPT-est. Pre-fixed (Pre-fixed) algorithm as-
sumes no knowledge of either users’ appearance and the true VoS. They solve the
Offline optimal based on the estimated VoS, assuming that all users appear. The triv-
ial dynamic benchmark algorithm is First-come first-serve (FCFS) that decides and
fixes each user’s itineraries to minimize the user’s travel at the start time of each
user’s active time-window. The algorithm only users estimated VoS of each user.
Sequential algorithm myopically solves the dynamic optimization problem shown
in Section 4.3.2 at each time, only considering users who have already started their
trips. In addition to the estimated VoS of users, the true VoS can be used for the
optimization after the VoS is revealed. This algorithm can be solved by any MIP
solver. Our proposed algorithm (Proposed) uses the information of prior probabil-
ity of users’ appearance. The service is expected to be more efficient because of this
information, although it causes a difficulty to be solved by common MIP solvers.

4.5.3 Results

Efficiency

We evaluate the efficiency of our proposed algorithms. Here, we define efficiency as
the negative total travel cost, i.e., social welfare, achieved by each mechanism as a

TABLE 4.7: Evaluated algorithms

Appearance Value of staying at nodes (VoS) MIP solvers
Static algorithms

Offline optimal (OPT) perfect knowledge true VoS X
Optimal under the estimated VoS (OPT-est) perfect knowledge estimated VoS X
Pre-fixed (Pre-fixed) all users estimated VoS X

Dynamic algorithms
First come first serve (FCFS) - estimated VoS X
Sequential (Sequential) - estimated and revealed VoS X
Proposed (Proposed) prior probability estimated and revealed VoS
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FIGURE 4.9: Efficiency of the algorithms over correlation coefficient
between the true and the estimated VoS

proportion of the offline-optimal (OPT). We consider a case where ρ = 0.6, and vary
the number of users from 3 to 21. The number of users of each category is set to be
the same. The experiment was repeated 100 trials for each setting. The results are
shown in Fig. 4.8. The plots in these figures show the mean value of the trials and
the error bars express 95% confidence.

The gap between OPT-est and OPT (i.e., 1.0) shows the loss derived from the gap
between estimated and true VoS, which is decreasing with the number of users. The
gap between Pre-fixed and OPT-est shows the loss derived from the information of
the appearance of users. It seems much larger than the gap derived from the inaccu-
rate VoS. The efficiency of Pre-fixed is negative when the number of users is small,
which means that the algorithm makes a deficit because of the non-appearance of
users. A trivial dynamic algorithm, FCFS, performs much worse because it does not
have any information about future users. Sequential algorithm performs better be-
cause it sequentially recalculate the optimization problem using information about
revealed VoS and newly appearing users. This myopic approach performs better
than static Pre-fixed algorithm if the number of users is small, but performs worse
if the number of users is large. Our Proposed algorithm performs better by consid-
ering the appearance probability of future users. Fig. 4.9 shows the efficiency with
varying correlation ρ between the estimated and the true VoS, where the number of
users is set to nine. As is seen in this figure, the trend is consistent with the accuracy
of the estimated VoS.

Reject rate

Fig. 4.10 shows the reject rate of each algorithm. Here, the reject rate represents the
ratio of rejected users per all appeared users. When the number of users is small,
the mechanism can improve its efficiency by rejecting some users to assure the cost.
By contrast, when the number of users is large, it may reject some users because of
the shortage of drivers. As is shown in Fig. 4.10, the rejection rate by the optimal
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FIGURE 4.10: Rejection rate of the algorithms

solution (OPT) is concave with respect to the number of users, that is the adequate
number of users exists to the supply condition. Similarly, the rejection rates by other
static algorithms, OPT-est and Pre-fixed are also concave. However, in the case of
the Pre-fixed algorithm, the number of users that achieve the least rejection rate is
fewer than the optimal solution. It can be seen that the Pre-fixed algorithm can
treat less users than the optimal algorithm. The rejection rate by common myopic
dynamic algorithms, FCFS and Sequential, are extensively high because of the my-
opic feature. However, our Proposed dynamic algorithm achieve much lower and
near-optimal rejection rate because of the non-myopic feature. The rejection rate is
concave and the adequate number of users are consistent with the optimal solution.

4.6 Conclusions and discussions

In this study, we proposed a dynamic matching algorithm for sparse ridesharing
markets. In contrast to existing trip-based algorithms, we took the approach of
active-based travel analysis to consider the connectivity of trips of each user and
driver. We formulate the dynamic optimization problem for ridesharing services
that realizes the floating booking system which aims to minimize time-discounted to-
tal travel cost by all users and drivers under the dynamic environment. We showed
a search-based algorithm that solves the optimization model using the ZDD data
structure. In numerical studies, we showed that our proposed algorithm performs
better than both static and dynamic benchmarks that can be solved by common MIP
solvers, and obtains near-optimal solutions.

Our proposed framework brings up various directions for discussion. The first
is the non-cooperative settings among users, drivers, and the service operator. Al-
though we assume the cooperative settings in this chapter, users can be better-off
by strategically reporting their demand. Thus the pricing algorithm that promotes
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users’ truthful reports should be discussed. To this end, Bergemann and Välimäki
(2010) proposed the pivot mechanism by which strategy-proofness of users is guar-
anteed, in that customers can never be better-off by misreporting. Our proposed
framework that aims to minimize expected time-discounted total travel costs is con-
sistent with this mechanism. Given that, we can design a mobility system that
achieves social optimal states by the best response strategy of self-interested cus-
tomers (Hayakawa and Hato, 2018a). In considering the pricing algorithm, it is nat-
ural to focus on the profit of the operator. The operator of mobility services may not
hold a fixed number of traffic resources but procure them flexibly. In such a setting,
the combined procurement, pricing, and allocation problems should be considered,
which bring up a trade-off between the profit of the operator and the benefit of its
customers (Hayakawa et al., 2015, 2018).

The second is the discussion on the applications. Our proposed framework
presents the possibilities of many emerging applications. One instance is the electric
vehicle (EV) dispatch problems for car-sharing or ride-sharing services. EVs have a
limited cruising distance depending on their battery capacities and thus, they have
to return to a charging station before the battery runs out. Thus, the executable tra-
jectory of vehicles is expressed in space–time prism constraints based on a series of
customers and charging stations. The problem is formulated as a combination of
the matching between vehicles and customers, routing, and selecting charging sta-
tions problems. This setting provides a lot of non-linear constraints and thus, our
proposed search-based algorithm is effective.

The third is the discussion on the various types of space–time prism constraints.
Hägerstrand (1970) introduced three types of space–time prism constraints, namely,
“capability constraints”, “coupling constraints” and “authority constraints.” In this
chapter, we consider the “capability constraints” of vehicles and “coupling con-
straints” between users and drivers. However, by introducing other types of con-
straints, our proposed framework becomes more resourceful. Considering “cou-
pling constraints” between multiple users, we can express the activities with fami-
lies and friends. If we introduce “authority constraints,” we can discuss far wider
problems. For example, it can be used as a tool to design premium charge for lim-
ited priority members. It may also be useful to discuss the diversity of mobility ser-
vices aiming to realize services for all people, including the elderly, children, hand-
icapped persons, and so on. Emerging technologies in the coming age, including
automated vehicles, can provide mobility services for people who cannot have their
own driver’s licenses, and our proposed framework can be extended to evaluate the
possibility of such achievements by new services.

However, our study still has many limitations. The first and the most impor-
tant problem to be discussed is the method to measure the utility of activities. In
the earlier study, Kitamura and Supernak (1997) presented the concept of “tempo-
ral utility profiles” of activities and travel, and empirically discussed it using data
obtained in the San Diego Zoo, and after that, many studies approached this prob-
lem (Chikaraishi, 2018). With recent progress in information technologies, a data
driven approach for this problem is promising. Another limitation to be discussed
is solution algorithms to solve the problems more efficiently. Depending on appli-
cations, the search-based algorithms should be refined. Heuristic approach such as
A∗-based algorithms can potentially be expanded to our settings. In the future, we
plan to explore these problems.
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Chapter 5

Mechanism Design of Mobility
Services Incorporating Behavioral
Time Preference

In this chapter, we present a conceptual framework for the dynamic traffic resources
allocation problem in the mobility as a service (MaaS) setting. We discuss it using
activity-based model (Kitamura et al., 1996) by which the heterogeneity among users
and the relation between a series of transfers are represented. We also introduce the
framework of game theory to capture the elasticity of demands influenced by the
price of services.

A part of the content of this chapter has been presented in Hayakawa and Hato
(2018a), Auction-based implementation of traffic services to maximize activity-based social
welfare, The 7th Symposium of the European Association for Research in Transportation
(hEART2018), Athens, and the preprint is published as Hayakawa and Hato (2018b),
Dynamic traffic resources allocation under elastic demand of users with space-time prism
constraints.

We present a conceptual framework for the combined problem of traffic resource
allocation and pricing for dynamic on-demand traffic services, often referred to as
Mobility as a Service (MaaS), considering users with heterogeneous preferences and
space–time constraints. We express the users’ successive actions and transfers by us-
ing activity-based travel analysis and formulate the problem as trip-chain auctions.
Using the formulation, we seek the mechanisms that reasonably give priority to late-
coming high-value users by providing incentives to the early-coming low-valued
users, unlike the common first-come first-served mechanism that always gives pri-
ority to the early-coming users. We characterize the optimal and truthful mecha-
nisms in the MaaS settings that achieve system optimal state spontaneously under
the capacity constraints of traffic resources and space–time constraints of users by
the actions of the selfish user agents. We then introduce two optimal and truthful
mechanisms, one of which guarantees non-negative ex-post revenue and the other
guarantees non-negative ex-post utility of agents. We subsequently numerically eval-
uate them and discuss the properties required by the MaaS applications.

5.1 Introduction

Recently, transportation services under which multiple traffic mode services are pro-
vided by a service operator through mobile apps are often called Mobility as a Ser-
vice (MaaS). For the operators of such systems, it is a significant challenge to dynam-
ically allocate traffic resources with limited capacity to users having heterogeneous
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preferences and constraints. To this end, there exist numerous studies such as those
on the dial-a-ride problem (Cordeau and Laporte, 2007; Ho et al., 2018) or dynamic
ridesharing (Agatz et al., 2012). However, these works assume users are homoge-
neous; for example, a fixed admissible travel delay is set for all users. They also
assume that trip-based demand, such as origin-destination tables, is given determin-
istically or stochastically and does not depend on the quality of services. However,
real-world users are heterogeneous and decide to whether use the service or not de-
pending on its quality. Specifically, users often make this decision by considering
an entire trip-chain, which consists of successive transfers and activities. In other
words, the users decide to use a traffic service if it provides an overall valuable ex-
perience. For example, a user books a taxi to a dinner with friends at a restaurant
but would not use the taxi if the dinner is canceled. Considering that the trip is de-
rived demand, the MaaS is required to provide value from its usage. To address this
problem, we propose a conceptual framework by using activity-based travel analy-
sis (Kitamura et al., 1996), in which heterogeneous users have their own space–time
prism constraints (Hägerstrand, 1970). Specifically, we characterize mechanisms that
satisfy the capacity constraints of traffic resources and the space–time constraints of
users at any time. If the MaaS system is operated by such mechanisms, users can
know in advance whether their trip-chain, for example, going shopping on the way
to going to see movie and returning home before dinner, is executable or not under
the capacity constraints of traffic resources and can thus decide whether to use the
service.

The another important element that influences decision making is the price of
the service. Users may accept a less preferable trip-plan if costs are lower, thus a
well-defined pricing mechanism might lead to the efficient use of limited traffic re-
sources. Akamatsu and Wada (2017) proposed a demand response scheme based on
the Vickrey–Clarke–Groves (VCG) mechanism (Clarke, 1971; Groves, 1973; Vickrey,
1961) in a static setting. The VCG is a mechanism that optimally allocates resources
based on reported user types and charges the externality that each user gives to the
society. The VCG mechanism is known to be dominant strategy incentive compat-
ible, meaning users can maximize their utility by the truthful report of their types.
Using this mechanism, the system optimal (SO) state is achieved as an user equilib-
rium (UE) derived by the selfish behavior of each agent. The dynamic pivot (Berge-
mann and Välimäki, 2010) and online VCG (Parkes and Singh, 2004) mechanisms
extend the VCG mechanism to dynamic settings. Both mechanisms are Bayesian–
Nash incentive compatible (BNIC), meaning the dynamic SO state is achieved by
the selfish strategy of agents. The properties of these mechanisms are explained in
detail by Cavallo et al. (2009). However, no existing studies indicate the effective-
ness of introducing these mechanisms into transportation systems such as MaaS, in
which heterogeneous users require a series of trips within their space–time prism
constraints. In this chapter, we thus consider an on-demand mobility service that re-
quires the sequential decision-making of the operator, and discuss the allocation and
pricing mechanisms that achieve the dynamic SO state under the selfish behavior of
users. Specifically, we apply the RC-optimal mechanism combined with the pricing
algorithms that are adopted in the dynamic pivot (Bergemann and Välimäki, 2010)
and online VCG (Parkes and Singh, 2004) mechanisms, and discuss the conceptual
property of the system.

Overall, this chapter makes the following contributions:



5.2. Literature review 75

• We characterize, for the first time, a class of dynamic activity-based traffic re-
sources allocation mechanisms that guarantee the satisfaction of both, space–
time prism constraints of customers and capacity constraints of traffic resources
at any time, in its sequential decision-making.

• We propose a framework of activity-based trip-chain auctions. The proposed
concept supports the pricing scheme introduced under MaaS, in which users
have flexibility in their trips and may give way to other users depending on
price. We characterize a class of BNIC mechanisms in the settings of activity-
based trip-chain auctions. We provide solution algorithms that allocates traffic
resources efficiently by rationally reallocating previously assigned traffic re-
sources to late-coming high-value customers.

• We introduce two pricing algorithms, both satisfying the property stated above.
We evaluate them numerically and discuss their natures from the viewpoint of
traffic services providers.

• We numerically show that our proposed solution algorithm can keep more
than trillions of combinatorial trip options of current and future agents in ra-
tional computational time. We also numerically explore the trade-off between
allocation efficiency and computational costs of our proposed wide range al-
gorithms.

5.2 Literature review

There are many studies on transportation research that design incentives through
which a socially optimal state is achieved voluntarily by self-interested users (Pigou,
1920). A representative study of this approach is the tradable credit scheme pro-
posed by Yang and Wang (2011), wherein tradable credits are initially distributed to
users, and optimal traffic condition can thus always be achieved if credits are op-
timally distributed. And this approach is extended by many works, for example,
He et al. (2013); Nie and Yin (2013); Wu et al. (2012). By contrast, Akamatsu and
Wada (2017) proposed a demand management scheme employing tradable bottle-
neck permits based on the VCG mechanism, in which traffic conditions are opti-
mized without prior knowledge of travel demands. Further, Hara and Hato (2017)
had a similar approach to car-sharing. However, these studies consider static set-
tings, that is, those in which the traffic resources and the demand reported by users
are statically given to the operator. The pricing scheme for traffic services in which
the operator dynamically allocate traffic resources to users based on the sequentially
revealed demand has not been well studied.

There are also several studies that proposed auction-based pricing algorithms
for transportation services, mainly considering ridesharing. Kamar and Horvitz
(2009) introduced the VCG-based payments to optimize shared plans for rideshar-
ing. Kleiner et al. (2011) proposed the modified second-prize scheme to achieve ef-
ficient allocation in dynamic ridesharing. Further, Asghari et al. (2016) proposed an
auction-based pricing mechanism for ridesharing services that maximizes the rev-
enue of the platform provider. However, these studies assume trip-based demand
is given and, thus, the connectivity of successive trips made by heterogeneous users
with space–time constraints is not considered. Ma et al. (2018) proposed a spatio-
temporal pricing for ridesharing that is incentive compatible for drivers with unique
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FIGURE 5.1: System overview

time preferences, considering successive trips. However, it also assumes the fixed
trip-based demands are given.

In this chapter, we discuss the mechanism design of mobility services that con-
sider the activity-based utilities of heterogeneous users with time–space prism con-
straints, extending the basic idea of Hayakawa and Hato (2018a).

5.3 System overview

We consider a MaaS system, which is implemented by a traffic service operator,
whose overview is shown in Fig. 5.1. As shown in this figure, the mobile app for
the service is installed on the mobile phones of users, and also equips the activity
logger and individual utility estimator. As a user books a trip, the mobile app gen-
erates a set of candidate trip-plans based on the preference and constraints that are
generated at both users’ direct requests and the estimated preference of users. Then,
the mobile app reports the set of trip-plans and the reward function to the central
server of the operator. As it receives the request, the operator determines whether to
accept or reject the request. If the request is accepted, the operator sequentially de-
termines traffic allocation. The operator grants to all accepted agents one trip from
the reported candidate trip plans, regardless of the behavior of other users that re-
port subsequently. Additionally, the operator decides the payment the user pays for
the service. In what follows, we explain the system model of our MaaS settings.

5.3.1 Traffic network model

We assume that decisions are made at discrete time steps t ∈ T = {0, 1, . . . , T̄},
where T is the set of all time steps. The traffic network is expressed by a directed
graph G = (N , E). It can represent multiple traffic modes by a concept of supernet-
work (Arentze and Timmermans, 2004; Sheffi, 1985). The service operator, having a
limited capacity of traffic resources for each edge and each time in the network, allo-
cates the resource for each user. Since the traffic capacity constraints are strictly kept
in the allocation, we do not consider congestion and assume that the travel time of
each edge remains constant. We use τe to denote the travel time of edge e ∈ E . Some
facilities on node n ∈ N may have an active time duration, such as for example, the
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FIGURE 5.2: Space–time prism constraints

opening time of a restaurant. We use bn ⊂ T to denote the active time duration of
node n.

5.3.2 User agent model

We consider a set of user agents denoted by I. Each user has its space–time prism
constraints(Hägerstrand, 1970), that is, constraints related to the location and time of
the trip. We show examples of space–time constraint in Fig. 5.2 as follows. Fig. 5.2(a)
shows the space–time constraint derived from the set of origin, destination, and ac-
tive time duration, and Fig. 5.2(b) the constraints with given additional activity dur-
ing the active time duration. As such, the space–time prism of users in which users
can execute some activities is tightened by taking a specific activity. Therefore, the
users of transportation services are considered to be utility-maximizers within the
given space–time prism constraints (Lam and Yin, 2001). We use Ti = {tB

i , . . . , tE
i } ⊂

T to denote the active time duration of agent i ∈ I, where tB
i and tE

i are the beginning
and the end of the active time duration, respectively. The origin and destination of
agent i are denoted by Oi and Di, respectively.

State transition

We introduce si,t ∈ Si to denote the state of agent i ∈ I at time t ∈ T, where the state
is a multi-dimensional index including for example, location l, traffic mode m, and so
on. Si denotes a set of states that agent i can take. We introduce the location function
λ(·), namely the location l of an agent with state si,t is obtained by l = λ(si,t). Note
that l can be the middle of an edge when τe ≥ 2. The action that agent i with state si,t
takes at time t is denoted by ai,t ∈ Γ(si,t) ⊂ Ai, where Γ(si,t) is a set of actions that
the agent can take at that time and Ai : Si → Si denotes a set of actions that agent
i can take under all possible states. Taking action ai,t ∈ Γ(si,t), the state of the agent
transits from state si,t to state si,t+1 ∈ Si. We use S =

⋃
i∈I Si to denote a set of states

for all agents and A =
⋃

i∈I Ai to denote a set of actions taken by all agents.
As actions of agents, we consider Moving and Staying. We use AM

i ⊂ Ai to
denote a set of Moving actions of agent i while AS

i ⊂ Ai to denote a set of Staying
actions, where Ai = AM

i ∪AS
i . A set of staying actions AS

i expresses a stay of agent
i on any node n ∈ N , potentially, doing some activity. We assume that the staying
actions are taken only on any node n ∈ N in the traffic network G and are not taken
anywhere else such as, for example, in the middle of a edge. In contrast, moving
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action ai,t ∈ AM
i is taken along any edge e ∈ E in the traffic network G. We introduce

the edge function η(·). The edge e ∈ E , related to action ai,t ∈ AM
i of an agent, is

obtained by e = η(ai,t). For any staying action ai,t ∈ AS
i , η(ai,t) = ∅.

Given that, we introduce a function δ : S ×A× E → {0, 1} to express the rela-
tionship between actions and edges, as follows:

δ(si,t, ai,t, e) =

{
1 if λ(si,t) ∈ N , and η(ai,t) = e
0 otherwise.

(5.1)

Specifically, δ(si,t, ai,t, e) = 1 if an agent i that is located on any node in the traffic
network at time t take a moving action related to edge e at that time, and otherwise
δ(si,t, ai,t, e) = 0. Given that, the traffic volume Fe,t that flows into edge e at time t is
expressed as:

Fe,t = ∑
i∈I

δ(si,t, ai,t, e). (5.2)

We assume that an agent starting the moving action at time t ∈ T along a edge e
continues the action until it reaches the end of the edge at time t + τe and does not
change the action in the middle of the edge.

Given these notations, the activity-based reward function of agent i is denoted
by Ri : Si ×Ai × T → R.

Trip plan

A series of state-action transitions li during active time duration Ti = [tB
i , tE

i ] is de-
noted by;

li = {si,tB
i
, ai,tB

i
, . . . , si,tE

i −1, ai,tE
i −1, si,tE

i
} ∈ Li, (5.3)

where Li is the set of all state-action transitions that the agent can take within its
space–time prism constraints bonded by the origin Oi, the destination Di, the active
time duration Ti, and other constraints for example derived by some mandatory
activities. The series of state-action transitions li expresses a trip-chain during the
active time duration, which we subsequently call a trip-plan. Considering time t
such that tB

i ≤ t < tE
i , a trip-plan after time t is denoted by l〈t〉i , so that:

l〈t〉i = {si,t, ai,t, . . . , si,tE
i −1, ai,tE

i −1, si,tE
i
} ∈ L〈t〉i , (5.4)

where L〈t〉i denotes a set of executable trip-plans after time t, while keeping the
space–time prism constraints. Consequently, agent type i is denoted by θi = {Ri, Li}.

Each agent reports its type to the operator at an arbitrary timing after the begin-
ning of its active time duration, tB

i . We consider agents to be strategic and able to
misreport their type. We use θ̂i = {R̂i, L̂i} to denote the report of an agent. Here, we
assume a limited misreport (Parkes, 2007) for the set of trip plans, that is, the agent
can only report a subset of the true set of trip-plans, formally:

L̂i,⊂ Li. (5.5)

The above is a natural assumption in this setting, because the agent does not usu-
ally report the undesirable trip-plan but report a limited set of trip-plans, typically
reporting only the most desirable trip-plan, which leads to increasing its utility in
existing booking systems operated on the first-come first-served (FCFS) basis.
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FIGURE 5.3: Traffic resource capacity of various traffic mode

5.3.3 Operator model

The service operator sequentially receives the agents’ report and is required to allo-
cate traffic resources for each user adequately at each time. In this part, we focus on
the operator and introduce the model of the traffic resources capacity and its alloca-
tion.

Capacity of traffic resources

In this part, we explain the capacity of traffic resources. We use Ce,t to denote the
traffic capacity of edge e ∈ E at time t ∈ T, namely at most Ce,t users can flow
into edge e at time t. Here, the capacity of traffic resources is a generalized concept
of the road capacity for private vehicles, transportation capacity of scheduled bus
services, acceptable volume of users of ride-share services, and so on. The traffic
volume Fe,t on edge e at time t is defined as Fe,t = ∑i∈I δ(si,t, ai,t, e) by Eq. 5.2. For
example, given the space-time trajectories of private vehicles as shown in Fig.5.3(a),
five vehicles flow into link e at time t, and thus the traffic volume is obtained as
Fe,t = 5, assuming that each vehicle is occupied by only one person. In this case, the
traffic capacity Ce,t coincides with the link capacity, that is, the maximum number
of vehicles that can flow into the link within a unit time, and is constant over time.
In the case of scheduled buses, the space–time trajectories of which are shown in
Fig.5.3(b), the traffic volume is obtained as Fe,t = 10, since one bus with the capacity
of 10 flows in to the link at time t. In this case, the traffic capacity Ce,t is controlled by
the service operator by changing the frequency and size of buses, and can be time-
dependent. Finally, in the example of ride-share services, the space–time trajectories
of which are shown in Fig.5.3(c), the traffic volume is obtained as Fe,t = 3 since three
users share the vehicles that starts moving along the link e at time t. In this case, the
traffic capacity Ce,t is also time-dependent and is determined by the combinatorial
matching of trips by users. The method of bundling the trips of users are studied in
many works (Alonso-Mora et al., 2017; Hara and Hato, 2017; Santi et al., 2014).

The assignment of the spatial road capacity for each traffic mode is also an impor-
tant problem to be studied. For example, traffic operators can assign road capacity
to private vehicles, scheduled buses or ride share services, by setting bus priority
lanes or high-occupancy vehicle (HOV) lanes. With the widened reach of automated
vehicles (AVs) as a result of which road capacity can possibly be increased, the as-
signment of priority lanes for AVs are also considered (Chen et al., 2016). To make
the discussion simple, in this chapter, we assume that the traffic capacity of each
traffic mode is given and represented by the capacity of edge Ce,t, note that an edge
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represents the transfer made by a traffic mode. Specifically, our proposed frame-
work discusses the allocation of limited traffic resources to users with heterogeneous
space–time prism constraints. However, this framework can be generalized to the
settings where the capacity Ce,t of each traffic mode is not given and only the con-
straints, such as road capacities, the number of vehicles, or total budgets, are given,
which we discuss in Section 5.6

Allocation of traffic resources

Under capacity constraints, while collecting the agents’ reports, the operator dy-
namically decides whether it accepts or rejects the requests. For all agents whose
reports are accepted, the operator allocates traffic resources and determines the pay-
ments. Once the operator accepts the request of agent i ∈ I, it guarantees the agent
is assigned any trip within the set of candidate trip-plans Li, meaning the agent can
finish its trip within its time–space prism constraints.

We assume the operator has a predicted demand model D̃t that represents stochas-
tic information about agents reporting after time t. However, the operator does not
know the accurate agent types until their report. We use Ireported

t = {1, 2, . . . , Īt} to
denote the set of all agents that report to the operator by time t, and θ̂t = {θ̂1, θ̂2, . . . , θ̂ Īt

}
to denote all reports the operator has received from agents until time t. Then, we use
It for the set of agents existing at time t, that is, all agents with tB

i ≤ t ≤ tE
i − 1, ex-

cept agents that are rejected before time t. We further assume the operator knows
the state si,t of agent i ∈ It at time t that has already reported, which is natural under
the assumption that the operator provides traffic services for all agents. We use St to
denote the joint state of all existing agents i ∈ It. The operator then decides the joint
action πt for all existing agents i ∈ It as:

πt = π(θ̂t, St, D̃t), (5.6)

where πi,t ∈ Γ(si,t), the elements of πt, are the action allocated to agent i at time t.
To guarantee service quality for users even in the worst case scenario, the deci-

sion has to satisfy the space–time prism constraints of users and capacity constraints
of traffic resources at any time. Formally, the space–time prism constraints are given
by;

∀i ∈ It, ∃l〈t〉i ∈ {L〈t〉i ∪ l〈t〉i,Reject}, πi,t ∈ l〈t〉i , (5.7)

, where l〈t〉i,Reject denotes that the report of agent i at time t is rejected. This constraint
means that there exists at least one executable trip plan for all existing agents, ex-
cept for the agents rejected at time t. By contrast, the capacity constraints of traffic
resources are given by;

∃l〈t〉It
∈ L〈t〉It

, ∀e ∈ E , ∀t′ ≥ t : ∑
i∈It

∑
(si,t′ ,πi,t′ )∈l〈t〉i

δ(si,t′ , πi,t′ , e) ≤ Ce,t′ , (5.8)

, where δ : S ×A×E → {0, 1} expresses the spatial relationship between the actions
and edges. This constraint means that there are joint trip plans across all accepted
agents, which do not violate the capacity of traffic resources, not only at the current
time but also at any time in the future.
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In addition to determining the allocation of traffic resources, the operator also
determines the payment xi,t, that is, the payment of agent i at time t, so that

xi,t = xi(θ̂t, St, D̃t), (5.9)

and charges it to the agent at each time.

5.3.4 Definitions of utility and social welfare

We assume the agents are self-interested and rational utility maximizers. The ex-post
utility Ui of agent i, which is allocated the trip plan li = {si,tB

i
, πi,tB

i
, . . . , si,tE

i −1, πi,tE
i −1, si,tE

i
}

and charged xi = {xi,tB
i
, . . . , xi,tE

i −1}, is expressed as

Ui =
tE
i −1

∑
t=tB

i

{Ri(si,t, πi,t, t)− xi,t}. (5.10)

Given the time-discount rate β (Rust, 1994), the discount utility DUi,t of agent i at
time t is expressed as

DUi,t =
tE
i −1

∑
t′=t

βt′−t{Ri(si,t′ , πi,t′ , t′)− xi,t′}, (5.11)

where β is the time discount rate. We assume that β is common for all users and the
operator.

Hence, we define social welfare as the summation of utilities achieved by all
agents and the operator. Namely, the ex-post total social welfare SW achieved by
allocation π is stated as:

SW(π|s0) = ∑
i∈I

Ui + ∑
t∈T

∑
i∈It

xi,t = ∑
t∈T

∑
i∈It

Ri(si,t, πi,t, t) = ∑
t∈T

R(st, πt), (5.12)

where π = {π1, . . . , π T̄−1} denotes the allocations to all agents at all times and
R(st, πt) = ∑i∈It

Ri(st, πi,t, t) denotes the sum of rewards of all agents given allo-
cation πt under state st. Here, s0 denotes the given initial state. As shown in this
equation, payment xi,t is canceled out between agents and the operator, and social
welfare is expressed by the summation of the rewards received by all agents. As the
operator makes sequential decisions at each time, we consider the discounted social
welfare DSWt as follows:

DSWt = DSW(πt, πt+1, . . . , π T̄ |st) =
T̄−1

∑
t′=t

βt′−tR(st′ , πt′). (5.13)

5.3.5 Strategic behavior

As previously stated, we assume the agent can strategically misreport its type, θ̂i 6=
θi. We use θ−i and θ̂−i to denote the type and reports of all agents except agent i. The
reports of all agents are expressed as {θ̂i, θ̂−i} and the ex-post utility of agent i, which
misreports θ̂i, is expressed as:

Ui(π({θ̂i, θ̂−i}), θi) = ∑
t∈Ti

{Ri(πi,t({θ̂i, θ̂−i}), θi)− xi,t({θ̂i, θ̂−i})}, (5.14)
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where πi,t({θ̂i, θ̂−i}) and xi,t({θ̂i, θ̂−i}) are the the allocation and the payment given
the reports of all agents. Similarly, the discounted utility of agent i that misreports
θ̂i at time t is expressed as:

DUi(π({θ̂i, θ̂−i}), θi) =
tE
i −1

∑
t′=t

βt′−t{Ri(πi,t({θ̂i, θ̂−i}), θi)− xi,t({θ̂i, θ̂−i})}. (5.15)

We aim to design a mechanism that is BNIC, meaning agents can maximize their
expected discounted utility by truthfully reporting their own types if all other agents
truthfully report θ̂−i = θ−i (Bergemann and Välimäki, 2010; Parkes and Singh, 2004).
Formally, this is written as

∀θi, θ̂i, θ−i : E
[
DUi(π({θi, θ−i}), θi)

]
≥ E

[
DUi(π({θ̂i, θ−i}), θi)

]
, (5.16)

where E[·] expresses expectation with respect to unrevealed future demands.
We also aim to establish individual rationality (IR), that is, an agent’s utility is

guaranteed to be non-negative when it reports truthfully. We introduce two IR con-
cepts: ex-post and ex-ante IR. The former guarantees the ex-post utility is non-negative
regardless of the reports of other agents, whereas for the latter the expected discount
utility is non-negative assuming the truthful report of all other agents. Formally, ex-
post IR is expressed as

∀θi, θ̂−i : Ui(π({θi, θ̂−i}), θi) ≥ 0, (5.17)

whereas ex-ante IR is written as

∀θi, θ−i : E
[
DUi(π({θi, θ−i}), θi, )

]
≥ 0. (5.18)

The IR property is important for penetrating the system because people may hesitate
to participate if the system may result in negative utility.

5.3.6 Optimal and truthful mechanisms in the MaaS settings

We now define the optimal and truthful mechanisms in the MaaS settings, using the
definition of the BNIC introduced in the previous part and the RC-optimal allocation
introduced in Hayakawa and Hato (2018b).

Definition 1 (Optimal and truthful mechanism in the MaaS settings). We say that
a mechanism is optimal and truthful in the MaaS settings, if the mechanism achieves the
RC-optimal allocation and is BNIC.

If a mechanism is RC-optimal and BNIC, the Bayesian–Nash equilibrium is spon-
taneously achieved by truthful reports from all agents and the achieved equilibrium
state coincides with the SO states under the time–space constraints of users and ca-
pacity constraints of traffic resources.

5.4 Mechanisms

Here, we introduce optimal and truthful mechanisms in the MaaS settings defined
in the previous section. Specifically, we adopt the dynamic pivot (Bergemann and
Välimäki, 2010) and online VCG (Parkes and Singh, 2004) mechanisms, which ex-
tend the VCG mechanism (Clarke, 1971; Groves, 1973; Vickrey, 1961) that is incentive-
compatible and maximizes social welfare in static settings.
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5.4.1 Efficient allocation that sequentially maximizes social welfare

Both the dynamic pivot and online VCG mechanisms adopt an efficient allocation,
which is defined as maximizing the expected discounted social welfare at any time.
Formally, this is described as follows:

πt = argmax
π′ t∈Γ(St)

E
[
DSWt

]
, (5.19)

where Γ(St) is a set of executable joint actions of all agents at time t. From Eq. 5.13,
the efficient allocation in our setting is expressed as:

πt = argmax
π′ t∈Γ(st)

E

[
T̄−1

∑
t′=t

βt′−tR(st′ , πt′)

]
. (5.20)

By Bellman’s principle of optimality, it can be reformulated as a recursive form:

πt = argmax
π′ t∈Γ(st)

[
R(st, π′t) + β ·V(T (st, π′t))], (5.21)

where T (st, πt) denotes the state at time t + 1, given the state st and action πt at
time t, and V(st) is a value function given by:

V(st) = E

[
T̄

∑
t′=t

βt′−tR(st′ , πt′)

]
. (5.22)

In the MaaS setting, the efficient allocation maximizes the expected discounted so-
cial welfare given by Eq. 5.21, while satisfying the space–time constraints of all users
given by Eq. 5.7 and capacity constraints of traffic resources given by Eq. 5.8 at
any time. Such an allocation mechanism is defined as the RC-optimal mechanism
in Hayakawa and Hato (2018b).

5.4.2 Incentive compatible pricing schemes

Here, we show the pricing schemes adopted under the dynamic pivot and online
VCG mechanisms, both achieving BNIC under RC-optimal allocation (Cavallo et al.,
2009). We subsequently interpret these schemes from the viewpoint of applications
related to transportation systems.

Dynamic pivot mechanism

First, we introduce the dynamic pivot mechanism (Bergemann and Välimäki, 2010).
The pricing function of this mechanism is:

xi,t = −R−i(πt)− β ·V−i(T (st, πt)) + V−i(st), (5.23)

where R−i denotes the total rewards by all agents, except i. Further, V−i(st) denotes
the value function of the virtual market assuming that agent i does not exist under
the state st. The first two terms in this equation show the expected discounted re-
wards for all agents, except i, given the joint action πt at time t. Specifically, the
first term shows the rewards of the current time step and the second term shows
the expected future rewards. By contrast, the third term shows the expected dis-
counted rewards of all agents, except i, at the current time, assuming that agent i
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does not exist. Therefore, the payment given by Eq. 5.23 shows the marginal dis-
counted externalities that agent i gives to the market. The final payment xi of agent
i is determined by xi = ∑t∈Ti

xi,t.
The dynamic pivot mechanism that makes efficient allocations and charges pay-

ments as per Eq. 5.23 is BNIC. Additionally, under common settings, where agents
can decide whether they participate on the market or not at each time, the mecha-
nism is ex-ante IR, meaning that the expected utility of agents is guaranteed to be
non-negative (Bergemann and Välimäki, 2010). However, in the transportation sys-
tem, agents cannot cancel their trips at an arbitrarily timing. They can only can-
cel when reaching specific places, for example, their home or some hotels where to
stay or continue traveling otherwise. The RC-optimal allocation mechanism consid-
ers such situations and allocates traffic resources so that all agents can finish their
trips within their initially reported set of trip-plans. However, because each agent is
charged marginal discounted externalities each time, the charged amount may ex-
ceed the discounted expected utility if a large number of high-value agents appears
after starting the trip. Therefore, the dynamic pivot mechanism is ex-ante IR, mean-
ing that the expected utility at the time of report is non-negative but the achieved
ex-post utility can become negative. By contrast, because the payment of each agent
at each time is non-negative, the ex-post revenue of the service operator is guaran-
teed to be non-negative. Further, this mechanism can treat the dynamic type of agents,
meaning the agents can report their types (i.e., the reward functions and space–time
constraints) at any time.

Online VCG mechanism

Here, we introduce the online VCG mechanism (Parkes and Singh, 2004). The pric-
ing function of this mechanism is:

xi,t =

{
Ri(πi,t)−V(st) + V−i(st) (t = tB

i )

Ri(πi,t) (otherwise).
(5.24)

Namely, agents pay the expected externalities at point tB
i when reporting, and then

pay as much as the obtained rewards in the following time step. The final payment
xi of agent i is determined by xi = ∑t∈Ti

xi,t.
The online VCG mechanism that makes efficient allocations and charges pay-

ments as per Eq. 5.24 is BNIC, same as for the dynamic pivot mechanism. However,
in contrast to the dynamic pivot mechanism, it is ex-post IR, meaning the ex-post util-
ity of agents is guaranteed to be non-negative if the agents report truthfully. There-
fore, the online VCG mechanism with the RC-optimal allocation in the transportation
system guarantees agents can finish their trip with (weakly) positive utility, if once
accepted at the beginning. Practically, this can be implemented by the partly refund
system. The service operator collects the maximum payment xmax

i at the beginning
given by:

xmax
i = max

li∈Li
∑

πi,t∈li

Ri(πi,t)−V(stB
i
) + V−i(stB

i
), (5.25)

which is achieved by the best allocation for agent i, and refund xmax
i − xi depending

on the inconvenience it has as a results. In any case, the utility of agents is fixed as
V(stB

i
)− V−i(stB

i
), being non-negative. This is similar to the collecting volunteer at

the airport when the seats on an airplane are overbooked: part of the payment are
refunded to the passengers who accept an alternative flight to compensate for the
inconvenience. In contrast to the dynamic pivot mechanism, the ex-post revenue of
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TABLE 5.1: Summary of the proposed framework of the solution al-
gorithms

Myopic/ Reports at Maximum Computational Efficiency
Non-Myopic a time-step options to keep complexity of allocation

1 small low FCFS
Sequential N

Myopic ∞ l l1
Simultaneous N large high∞ l1 middle middleSequential N

Non-Myopic ∞ l l1
Simultaneous N extra large extra high∞ Optimal

the service operator could be negative, although the discounted expected revenue
is non-negative at any time. This mechanism can only treat the static type of agents,
meaning the agents can report their types only at the beginning at their trip and
cannot modify them during the trip.

5.4.3 Solution algorithm

As previously shown, the RC-optimal allocation is adopted both in the dynamic pivot
and online VCG mechanisms. The RC-optimal allocation can be obtained by a solu-
tion algorithm using the ZDD data structure, as is similar to algorithms shown in
Chapter 4. Although payments under the dynamic pivot and online VCG mecha-
nisms stated in the previous sections include several optimization processes, they
can be calculated efficiently by a search-based algorithm using the ZDD data struc-
ture.

In addition to the RC-optimal allocation, some approximation algorithms can be
considered (Hayakawa and Hato, 2018b). Per agent algorithm makes decisions for
each agent separately to avoid the combinatorial explosion derived from the joint
actions Γ(st) of all agents existing at time t. Branch cutting algorithm introduces the
limitation Nmax

branch on the number of options. Namely, the number of options that the
enumerated plan Z always keeps;

|Z| ≤ Nmax
branch. (5.26)

If the number of options exceeds Nmax
branch, the only Nmax

branch options are left and the rest
are cut off. There are various ways to select Nmax

branch options, for example, to select the
highest Nmax

branch options in terms of rewards, to select Nmax
branch options randomly, or to

use a combination of these two methods.

5.4.4 Property of proposed solution algorithms

The proposed framework of the solution algorithms, including the approximation
algorithms, are summarized in Table 5.1. Our proposed framework provides myopic/non-
myopic algorithms that process the information reported from agents at the same
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FIGURE 5.4: Sample network

time-step sequentially or simultaneously and keep the pre-defined maximum op-
tions. The framework provides a wide range of trade-offs between the computa-
tional complexity and the efficiency of allocation. At the simplest, the myopic algo-
rithm that sequentially processes reports at a time-step and keeps only one option
coincides with the FCFS algorithm that requires a low computational complexity, but
is not efficient. In contrast, a non-myopic algorithm that simultaneously processes
reports at a time-step and does not limit the number of options, achieves the optimal
allocation that maximizes the discounted social welfare but requires extremely high
computational efforts. As shown in Table 5.1, we provide wide-range algorithms
between these two extreme cases. All of these algorithms are feasible and can be
interrelatedly implemented by a search-based algorithm.

5.5 Numerical analysis

In a numerical analysis, we consider a simple network representing the setting where
the trip demands of tourists interferes with the background trip demand of com-
muters. In the study, we use Graphillion1, a Python software package on search,
optimization, and enumeration using ZDD.

5.5.1 Experimental setup

Fist, we introduce a simple experimental setting to evaluate the basic performance
of the proposed algorithm. In this setting, we set T̄ = 8. Specifically, we consider
discrete time T = {0, 1, . . . , 8} in this analysis. We also assume that the time discount
rate is β = 1. We show the experimental setup for the static agent-type setting in
Table 5.2, which we state in detail in the following parts.

Network

The considered sample network is shown in Fig. 5.4. The numbers in brackets in
Fig. 5.4(a) show the required travel time on each edge. The capacity of traffic re-
sources, that is, the possible number of agents using the edge simultaneously at one
time step is shown in Fig. 5.4(b). We assume that the capacity is constant over time.
In this numerical study, we consider Nodes A and D to be residential and office ar-
eas, and Nodes B and C to be amusement areas. We set the active time for the facility
on Node B as bB = {3, 4, 5}, while the facilities on other nodes are set to be active for
the entire time duration in T.

1https://github.com/takemaru/graphillion

https://github.com/takemaru/graphillion
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Passing and cruising agents

We consider two types of agents, passing and cruising agents, denoted by IP and
IC, respectively, on the condition that IP ∪ IC = I. The main objective of passing
agents is to move between places. The origin and destination of passing agents are
different. In contrast, the main objective of cruising agents is spending time at some
places, enriching their experience by cruising around. The origin and destination
of cruising agents are the same. A key motivating example for this setting is the
demand response services in tourist sites. Passing agents express the background
traffic demand that is represented by morning or evening commuters, and the cruis-
ing agents express tourists cruising multiple areas in the network. In the following
section, we describe the agents in this analysis in detail.

• Passing Agents

In our analysis, we introduce passing agents as background traffic. We con-
sider two types of passing agents, namely, traveling from Node A to Node D
and vice versa, representing morning and evening commuters. Sets of these
agents are denoted by IAD

P and IDA
P , respectively, on the condition that IAD

P ∪
IDA
P = IP. For each agent i ∈ IAD

P traveling from Node A to Node D with the
value vi = {vA

i , vB
i , vC

i , vD
i , }, we set the values as follows:

vA
i = 0, vB

i = 0, vC
i = 0, vD

i ∼ N(250, 10000), (5.27)

where N(µ, σ2) means the normal distribution with the mean of µ and the
variance of σ2. Similarly, for each agent i ∈ IDA

P , we set the values as follows:

vA
i ∼ N(250, 10000), vB

i = 0, vC
i = 0, vD

i = 0. (5.28)

We assume that the departure time tB
i of each agent i ∈ IAD

P is distributed
uniformly in {0, 1, 2} whereas the departure time tB

i of each agent i ∈ IDA
P is

distributed uniformly in {2, 3, 4}. The agents cannot stay at the origin, in that
they have to start immediately after they request the trip. We further assume
that the deadline for the trip tE

i is set by tE
i = tB

i + 4 for all passing agents i ∈ IP,
meaning that passing agents have an upper-limit travel time of 4. However,
they have to spend the final time-step to stay at the destination.

• Cruising Agents

Unlike passing agents, we introduce cruising agents as visitors that have a
large amount of flexibility on their trips. The efficiency of traffic services can
be improved by using this flexibility effectively. We assume that the origin and
destination of all cruising agents is Node A, representing the visitor staying
at Node A and intending to cruise the area nearby. The main purpose of the
cruising agents is visiting the facility on Node B. Thus, we set the constraints
so that all the cruising agents must spend at least one time step at Node B
during active time b(B), except when the agents cannot obtain a permit and
thus, cancel their trips. We set the value of these agents as follows:

vA
i ∼ N(50, 400), vB

i ∼ N(200, 6400), vC
i ∼ N(100, 1600), vD

i ∼ N(50, 400).
(5.29)

We assume that the departure time tB
i of each agent i ∈ IC is distributed uni-

formly in {0, 1, 2} and the deadline for trip tE
i is set by tE

i = tB
i + 6, meaning

that the cruising agents have an upper-limit travel time of 6.
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FIGURE 5.5: Efficiency in static agent-type setting

In this setting, passing agents traveling from Node A to Node D interfere with
the cruising agents when they depart from Node A; passing agents traveling from
Node D to Node A interfere with cruising agents when they arrive at Node D. Thus,
appropriate control of traffic resources is desired.

5.5.2 Results

In this part, we present the results of the numerical analysis and discuss the advan-
tage of our proposed mechanism over the benchmark mechanism.

Efficiency

First, we evaluate the efficiency of our proposed algorithms in static agent-type setting.
Here, we define efficiency as the total social welfare achieved by each mechanism as
a proportion of the offline-optimal welfare. We consider two cases, with the ratio of
10% or 20% of cruising agents over all agents, and vary the number of agents from 10
to 40. The experiment was repeated 10 trials for each setting. The results of Proposed
and Per agent algorithms in myopic and non-myopic settings are shown in Fig. 5.5.
The results in settings where the fraction of cruising agents is 0.1 and 0.2 are shown
in Fig. 5.5(a) and Fig. 5.5(b), respectively. The efficiency of the FCFS mechanism is
also shown in the same figure. The plots in these figures show the mean value of the
trials and the error bars express 95% confidence.

As seen in Fig. 5.5, the efficiency of FCFS decreases with the interference of
agents. On the other hand, Proposed (myopic) achieves better efficiency than FCFS
does, and Proposed (non-myopic) retains almost the same quality as the optimal alloca-
tion does. While the proposed mechanism guarantees the minimum service quality
to the early-coming agents with space–time prism constraints, it takes later-coming
high-valued agents into consideration in its decision-making and thus, achieves high
efficiency.

As for the Per agent approximation, Per agent (myopic) results in losses in the
efficiency that is almost near the level of FCFS, while Per agent (non-myopic) does
not result in losses in efficiency. Although the decision-making process in Per agent
algorithm is divided for each agent, the information of all agents reporting at the
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FIGURE 5.7: Efficiency of Branch cutting algorithms

same time-step is taken into consideration in the non-myopic algorithm and thus,
the efficiency loss is suppressed.

In Fig. 5.6, we show the number of enumerated executable plans that keep space–
time constraints and capacity constraints considered in the numerical analysis stated
above. As the number of agents increases, the number of executable plans also in-
creases extensively, owing to the combinatorial nature of the problem. It reaches
1.13× 1017 when the number of agents is 40 and the fraction of cruising agents is
0.2. Proposed (non-myopic) offers a full-search of all these plans for making decisions
and thus achieves the highest efficiency. On the other hand, Proposed (myopic) makes
decisions myopically, but keeps all executable plans in the future, under the given
myopic states with all agents reported until that time. This results in higher effi-
ciency when compared to the FCFS.

Then, we evaluate the performance of Branch cutting approximation as intro-
duced into Per agent (myopic) and Per agent (non-myopic) algorithms, running a nu-
merical experiment in the same condition as in Fig. 5.5. For each algorithm, we vary
the maximum branch Nmax

branch from 1 to 100, and evaluate the performance. In this
analysis, we choose the highest Nmax

branch branches in terms of the expected discounted
social welfare at each step of the mechanism. The results are shown in Fig. 5.7.
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FIGURE 5.8: Rejection rate

Note that, in this figure, the Per agent (myopic) algorithm with maximum branch
Nmax

branch = 1 coincides with the FCFS mechanism. As we can see from this figure, the
efficiency decreases as the maximum branch decreases. In these settings, the perfor-
mance of the Branch cutting algorithm with maximum branch Nmax

branch = 10 is fairly
close to the performance, without the limitation of the maximum branch in myopic
settings, but it still has a gap in non-myopic settings. In the setting where the fraction
of cruising agents is 0.1 (Fig. 5.7(a)), the results with maximum branch Nmax

branch = 3
outperform the results of FCFS in myopic settings. It implies that our proposed al-
gorithms may achieve considerably higher efficiency than FCFS, by keeping just a
few options, depending on the situation.

Rejection rate

In Fig. 5.8, we show the rejection rate as the fraction of the number of rejected agents
over the number of all agents, by each algorithm. In Fig. 5.8(a), where the fraction of
cruising agents is 0.1, the rejection rates of our proposed algorithms are lower than
the FCFS. In contrast, in Fig. 5.8(b), where the fraction of cruising agents is 0.2, the
rejection rates of our proposed non-myopic algorithms are lower, but those of our
proposed myopic algorithms are higher than FCFS. In both cases, the rejection rate of
our proposed non-myopic algorithms are higher than myopic algorithms when the
number of agents is small, in the range from 20 to 25 in Fig. 5.8(a) or from 15 to 20 in
Fig. 5.8(b). We can see from this, that the non-myopic mechanism makes decisions
to reject early-coming agents to keep traffic resources for later-coming high-value
agents in order to achieve high efficiency.

As we can seen from Fig. 5.8, in our experimental settings, the rejection rate is
considerably high and exceeds 0.4 in the largest settings. It seems to be too high if
the discussion is based on an emerged demand, for example, the actual records of
taxi services in the real world. However, in this chapter, we aim to consider hidden
demands that have not emerged because users give up on traveling before they re-
quest the service, making judgments that the trip would possibly suffer their space–
time constraints. Considering that such potential users may become customers if
the mobility services are improved, the rejection rates in Fig. 5.8 are rational. In
such settings with high rejection rates, it is difficult to solve the combined problems
of finding a combination of feasible agents and allocating traffic resources for those
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FIGURE 5.9: Calculation Time

agents using ILP. Graph-based algorithms, including our proposed algorithms using
the ZDD, are appropriate in these settings.

Calculation time

We show the calculation time of the proposed mechanism in Fig. 5.9. All the analy-
sis was performed on a machine with an Intel(R)Xeon(R)E5-2690v4 CPU@2.60GHz,
using a single core, and 56GB of RAM. As we can see from these figures, the calcu-
lation time of the proposed non-myopic algorithm becomes large as the number of
agents increases, while that of the proposed myopic algorithm stays small. How-
ever, considering that the non-myopic algorithm treats more than a trillion options
(as shown in Fig. 5.6) of the future combinatorial behavior of agents and repeats the
optimization process for each action plan and each sample scenario, the calculation
time is still small, owing to the nature of the ZDD.

As we have shown, our proposed non-myopic algorithm takes a large amount of
computation time, but has high performance, while the basic FCFS mechanism can
compute faster, but results in poor performance. Within the trade-off between the
performance and computation time, our proposed framework offers a wide range of
options. We can achieve better performance by adopting a myopic mechanism with
an appropriate maximum branch. Depending on the situation, such as for example,
a car-sharing service for limited pre-described customers in which we have enough
time to compute, we can introduce a non-myopic mechanism to achieve better per-
formance.

Payment

First, we demonstrate the numerical analysis in a setting with five cruising and two
passing agents, and examine the reward, payment, and utility of all agents under
the dynamic pivot and online VCG mechanisms. The results are shown in Table 5.3.
Because both mechanisms execute the same RC-optimal allocation, the rewards the
agents obtain are the same. The dynamic pivot mechanism charges the externality
that each agent gives each time and, thus, the payment of agents is (weakly) positive.
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TABLE 5.3: Example result for the two pricing algorithms

Dynamic Pivot Online VCG
Agent ID Reward Payment Utility Payment Utility

0 288 172 116 148 140
1 948 464 484 440 508
2 293 207 86 207 86
3 469 218 251 218 251
4 207 6 201 -319 526
5 328 17 311 0 328
6 548 63 485 112 436
7 204 0 204 -14 218

Summation 3285 1147 2138 792 2493
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FIGURE 5.10: Revenue achieved under the two pricing algorithms

By contrast, the online VCG mechanism fixes the maximum payment at the begin-
ning, when agents request trips, and compensates dis-utility if their plan has to be
changed due to high-value later-coming agents. Therefore, the payment of agents
may become negative, as per Table 5.3.

Second, we show the achieved revenue by the dynamic pivot and online VCG
mechanisms, varying the number of agents from five to 40 in Fig. 5.10. The frac-
tion of cruising agents is set to 10% of all agents. The achieved social welfare by
the RC-optimal allocation is shown by the red line in the figure, and the revenues
achieved by the two algorithms are shown together. As per Eq. 5.12, social welfare
is defined as the summation of the utilities of all agents and the revenue of the oper-
ator. Therefore, the total utilities of all agents can also be identified from this figure
as the difference between the social welfare and revenue. Because the achieved so-
cial welfare is the same for both algorithms, there is a trade-off between the utility
of agents and revenue of the operator. As per Fig. 5.10, revenue under the online
VCG mechanism is lower than that under the dynamic pivot mechanism. When the
number of cruising agents increases, the revenue of the dynamic pivot sometimes
exceeds social welfare, meaning that the summation of total utility for all agents
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becomes negative. On the other hand, the revenue for online VCG may become neg-
ative when the number of cruising agents is small. These results express the nature
of these two algorithms well, as stated in Section 5.4.

5.6 Conclusions and discussion

In this study, we addressed dynamic traffic resource allocation problems with strict
capacity constraints and elastic demand of users with space–time prism constraints
who require the guarantee of service quality in the worst cases. We characterized
this problem by using activity-based user model, in which the relationship between
the successive transfers generated from activities was considered. In many settings,
this problem includes many non-linear constraints. Thus we take an approach that
does not use the ILP, but uses graph algorithms.

In such a setting, we characterize mechanisms that strictly keep both, space–time
prism constraints of customers and capacity constraints of traffic resources. We also
showed the RC-optimal mechanism that maximizes the discounted social welfare by
keeping these constraints.

In several studies, we showed that our proposed model can keep more than tril-
lions of combinatorial trip options of current and future agents in rational compu-
tational time, and can thus be used effectively in settings with high rejection rates,
meaning that this mechanism can be used for focusing on the behavior of latent cus-
tomers who have not used mobility services so far. Specifically, our proposed frame-
work is effective as a demand prediction tool that can consider induced demands
depending on the service quality.

We also showed that our proposed Per agent approximation algorithm when in-
troduced to the non-myopic algorithm, is effective. Commonly, the operator can
achieve high efficiency by treating agents reporting in certain durations simultane-
ously in its decision-making, but it requires high computational costs. Our proposed
mechanism solves this problem by making decisions at each agent using information
from multiple agents. This approach is effective in designing mobility services with
a fixed small number of customers, such as car-sharing systems with specified resi-
dents. In such settings, the space–time prism constraints of customers can be highly
predictable by observing the daily active patterns of specified customers and thus,
the non-myopic algorithm is suitable.

Moreover, we showed that the Per agent approximation algorithm introduced
to the myopic algorithm performs much better than the common FCFS mechanism
does, in settings where the type of agents changes dynamically. This approach is
effective in designing mobility services for unspecified many customers, such as
shared taxi systems in large cities. In such settings, our proposed floating book-
ing system can provide a lot of flexibility to customers. Customers can arbitrarily
change the booking as far as it does not bother other users, and in case the change is
rejected, the space–time constraints that the customer originally registered are still
guaranteed.

We further discuss the pricing schemes of transportation services such as MaaS.
We focus on the connectivity of trips by heterogeneous users and identify a frame-
work of activity-based trip-chain auctions. Using the proposed framework, the ser-
vice operator realizes a floating type booking system that gives priority flexibly to
late-coming high-value users by providing incentives to the early-coming low-value
users. Specifically, we show a class of mechanisms under which the socially opti-
mal states are achieved by the Bayesian–Nash equilibrium under the best-response
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strategy of all agents, while satisfying the strict space–time constraints of users and
capacity constraints of traffic resources at any time. It is noteworthy that users are
guaranteed to increase their utility by reporting more options that can be acceptable
within their own space–time constraints. This leads the operator to allocate traffic
resources more efficiently. In the numerical analysis, we examine two mechanisms—
the dynamic pivot and online VCG—and discuss the difference between them. The
dynamic pivot mechanism guarantees that the ex-post revenue of the operator is non-
negative, while the ex-post total utility of all agents may become negative. By con-
trast, the online VCG mechanism guarantees that the ex-post utility of each agent is
non-negative, while the ex-post the revenue of the operator may become negative.
Considering transportation services, the decision of users of whether they execute a
trip or not is important, because once users start their trips they cannot arbitrarily
leave from the networks. From this viewpoint, the online VCG mechanism, which
provides important information on the maximum payment, is suitable for trans-
portation services. However, the online VCG mechanism cannot treat the dynamic
type of agents, as opposed to the dynamic pivot mechanism. It is also important
in transportation services that the user has flexibility on trips. In this respect, the
dynamic pivot is superior to the online VCG mechanism. In future work, we plan
to explore the pricing scheme that satisfies both of these properties. The price-based
mechanism proposed by Hayakawa et al. (2018) is a possible direction to achieve
this scope. Further, we only consider the mechanism design of the demand side and
ignore the supply side in this study, but the latter should also be considered in future
studies.
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Chapter 6

Conclusions and Future Works

Through the whole part of this thesis, we have discussed the dynamic capacity con-
trol of traffic resources, focusing on the behavior of users. In a coming age with the
penetrations of automated and/or shared vehicles, the way of mobility services may
change drastically. The administrator or operator of the service will have to focus
much on the behavior of users that react to the services. In Chapter 3, we introduced
a time-delayed control variables to consider the congestion arises one intersection
after another along the time axis. Using the variables, we proposed a traffic control
algorithm that prevents the gridlock phenomena and efficiently utilizes the limited
road resources for a large quantity of demand in a dense city. In Chapter 4, we
proposed a traffic service algorithm that efficiently utilizes limited traffic resources
while considering the heterogeneity of decision making by users, which develop
along the time axis. In Chapter 5, we proposed a dynamic pricing algorithm to in-
duce the user’s dynamic decision making to the system optimal state. All of these
problems are difficult to solve by existed works targeting aggregate traffic volume
and trip-based demands. In this thesis, we thus tried to understand the dynamic
characteristics of traffic phenomena developed along the time axis. We formulated
the desired traffic controls and transportation services and proposed solution algo-
rithms for them.

There remained plenty of challenges for establishing a basic policy of future traf-
fic controls/services. About the traffic control algorithm for unsteady over-saturated
road network mentioned in Chapter 3, a series of future works should be done,
which consider the sequential route-choice behavior of drivers, self-organized im-
plementation of each closed loop structures, and so on. About the ridesharing ser-
vice algorithm presented in Chapter 4, future studies are desired, which focus on a
various type of space–time constraints. About the multi-modal traffic service algo-
rithm mentioned in Chapter 5, a future work should be studied in detail, which shed
light on the reword function of users by exploring the data taken by the real world
is desired. Moreover, the computational burdensomeness of the algorithm.

Conventionally, the transportation systems have tried to transport as many peo-
ple in as short time as possible. The performance of the traffic control algorithms
have been evaluated based on the total travel time. The system that can minimize
the total travel time of all users has been regarded as a good system. The heterogene-
ity of users is not taken into consideration in the process, and the care for vulnerable
users such as elderly people or children is not enough. The mobility services in com-
ing ages uses a plenty of computing resources and a large amount of data to provide
customized experience for each user. It may be different between urban and sub-
urban areas or vulnerable and non-handicapped users. To this end, it is necessary
to develop a technology to estimate the value of each user’s activity, using accumu-
lated data of users who repeatedly use the service. It is also desirable to develop
a recommendation system that presents customized trip plans for each user. Such
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recommendation systems provide an alternative set of activities that users have not
been aware of, which may increase not only the utility of the use but also the utility
of the whole society.

Furthermore, a work that attempts to implement such basic concept to the real
world is also needed. To do so, in addition to deepening the basic research, many
steady works is desired, e.g., collecting the various needs in the community that the
service will be introduced in. We would like to contribute our effort to solve such
problems, in order to realize a good mobility scene for everybody, including elderly
people and young children, in a coming age.
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