博士論文

ハイスループットシーケンシングを利用した 新規ウイルスの検出

大場 真己

略	·語-		覧	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 1
緒	言	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 3
第	;—j	章		ハ	イ	ス	ル	·	プ	ッ ッ	ኑ	シ	·	ケ	ン	シ	ン	グ	用	新	規	ウ	イ	ル	ス	検	出	法	の	開	発	•	•	•	•	•	• 7
	序詞	論	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 8
	材制	斜	お	よ	び	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10
	結	果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	考纲	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	図	表	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
第	<u>_</u> i	章		п	ウ	モ	IJ	か	ŝ	の	新	規	•	希	少	ウ	イ	ル	ス	の	検	出	•	•	•	•	•	•	•	•	•	•	•	•	•	•	44
	序詞	論	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	45
	材制	钭	お	よ	び	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	48
	結り	果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	53
	考貕	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	55
	<u>ال</u>	表	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	59
第	Ξi	章		ブ	タ	か	ŝ	の	新	規	•	希	少	ウ	イ	ル	ス	の	検	出	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	65
	序詞	論	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	66
	材制	钭	お	よ	び	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	68
	結り	果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	71
	考纲	察	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	77

目次

	図表	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81
総	括・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	95
謝	辞・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	98
参	考文	献	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	99

略語一覧

Cap; キャプシドタンパク質

ds; double-stranded

DSN; Duplex specific nuclease

EMCV; encephalomyocarditis virus

FSfaCV-J1; fur seal feces-associated circular DNA virus JPN1

IASV; immunodeficiency-associated stool virus

IRES; internal ribosome entry site

MDBK; Madin-Darby bovine kidney cells

ML; maximum-likelihood, 最尤

NGS; next generation sequencer

PfaIV; porcine feces-associated IASV-like virus

PLCP; パパイン様プロテアーゼ

PMWS; postweaning multisystemic wasting syndrome

PPV; porcine parvovirus

PTV; orcine teschovirus

PTV_Im1-1; PTV_JPN / Ishi-Im1-1 / 2015

PTV_Ka2; PTV_JPN / Ishi-Ka2 / 2006

PTV_Ka1; PTV_JPN / Ishi-Ka1 / 2006

RACE; rapid amplification of cDNA ends, cDNA 末端法

Rep; レプリケーションタンパク質

SARS; severe acute respiratory syndrome

SFTSV ; severe fever with thrombocytopenia syndrome virus

ss; single-stranded

STV; soft tick bunyavirus

緒言

近年、NGS が感染症の研究分野で広く利用されるようになり、数多くの新しいウイル スが発見されてきた (Blinkova et al., 2010, Geoch et al., 2000, Ng et al., 2009)。NGS はハイスループットシーケンシングによりサンプル中の核酸配列を網羅的に決定できる ので、従来のサンガー法でダイレクトシーケンシングする際に必要不可欠なプライマー 配列としてのターゲットの遺伝子配列さえ不要であるという特徴を持つ。ハイスループ ットシーケンシングは、この点を考えると従来のサンガー法に比べて格段に効率良く核 酸配列を決定できる手法であるといえる。その一方で、臨床サンプルの血液や糞便から 抽出した核酸をそのまま NGS 用ライブラリーの調整に使用した場合には、ウイルスの リードが極端に少なくなってしまうという欠点がある。ハイスループットシーケンシン グによって得られるターゲットウイルスのリード数は、サンプル中の全核酸のうちに占 める各ターゲットウイルス核酸の相対的な量に依存することが報告されている(Zhang et al., 2014)。すなわち、サンプル中のターゲットウイルスの相対核酸濃度が高ければ ターゲットウイルス由来のリードも多くなるが、血液や糞便など、サンプルにターゲッ トウイルス以外のウイルスや宿主細胞や細菌が多く含まれている場合にはそれらに由来 するリードがターゲットウイルス由来リード数を減少させてしまうというのがその理由 である (Zhang et al., 2017)。

ハイスループットシーケンシングに供されるサンプルの背景は様々である。たとえば、 集団下痢症が発生している豚舎で飼養されている幼齢豚由来の糞便サンプルの場合には 原因ウイルスが大量に含まれているので、NGS 解析により原因ウイルスのリードが比 較的容易に得られ、ウイルスゲノムの塩基配列をほぼ全長にわたり決定できる場合があ る。逆に、ウイルスの量が非常に少ないことが予測される、臨床症状を何も呈していな い動物の血液や糞便のサンプルを NGS 解析すると、宿主細胞や細菌由来のゲノムのリ ードばかりが得られてしまう。検体から抽出した核酸を一律にハイスループットシーケ ンシングしても必ずしもウイルスのリードが得られるとは限らないので、NGS を用い ることで検体中の全ての核酸の塩基配列が明らかになるというイメージは誤りである。

このようにウイルスを NGS で解析する際には、① サンプル中の相対的濃度が低いウ イルスゲノムは検出されにくい、② 1回のランでは DNA もしくは RNA のどちらかー 方しかシーケンシングができない(現在世界的に最も使用されているイルミナ社の MiSeq の場合)、③ ss 構造のウイルスゲノムのシーケンシングは難しい、という問題点 がある。本研究では、これらの問題点を克服するために 2 種類のサンプル前処理方法を 開発した。

2018 年 9 月、25 年ぶりに国内で豚コレラが発生した。豚コレラは classical swine fever virus により起こるブタおよびイノシシの熱性伝染病で、強い伝染力と高い致死率 が特徴である (Blome et al., 2017)。発生から1年が経った現在でも、発生自治体によ る封じ込めは成功しておらず、沈静化の兆しが見えるどころか更なる感染拡大が報告さ れている。養豚場の外では豚コレラウイルスに感染して死亡したイノシシが発見されて おり、また捕獲された生存イノシシからも PCR で豚コレラ陽性となった例が多数報告 されている。これらのことを考えると、感染拡大の原因の一つがイノシシであることが 容易に想像でき、引き続き予断を許さない状況であることがわかる。一方、鳥インフル エンザは渡り鳥と屋外の放し飼い家禽の間で池の水を介して avian influenza virus の 感染が成立する (Sakoda et al., 2012)。このように家畜や家禽であっても、防ぎきれな い野生動物との関わりにより感染症の脅威に絶えずさらされている。 近年、野生動物の中でもウイルスの媒介動物としてコウモリが注目されている。コウ モリはさまざまなウイルスのレゼルボアとして知られている。翼手目に属し、世界中で 齧歯類に次いで数の多い哺乳類である。鳥類のように飛翔するが、哺乳類なので鳥類よ りもヒトや家畜に感染する病原体を保有している可能性がある。また、蚊やダニなど病 原体を媒介する節足動物に比較するとはるかに長い距離を飛ぶことができるので病原体 を越境させる可能性がある。コウモリが関係する代表的なウイルスとしては重症急性呼 吸器症候群 (SARS) の原因である SARS coronavirus や ebolavirus、nipahvirus が挙 げられる。SARS coronavirus はキクガシラコウモリに感染していた bat coronavirus が 変異してヒトやハクビシンにも感染できるようになったと考えられている (Li et al., 2005)。ebolavirus はコウモリからのウイルス分離に成功していないが、抗体陽性のコ ウモリが存在することからレゼルボアになっている可能性が高い (De et al., 2018)。 nipahvirus はコウモリからブタに感染し、さらにヒトへ感染していくことが知られてい る (Nahar et al., 2017)。このように、コウモリはウイルスの伝播に重要な役割を果た している。

東京農工大学農学部附属国際家畜感染症防疫研究教育センターでは、国内のブタやウ シなどの主要家畜から NGS や網羅的リアルタイム PCR 法を用いて新規・希少ウイルス を報告してきた (Nagai et.al., 2015, Naoi et al., 2016, Ito et al., 2017)。これは日本の ように高度に管理されている畜産の現場においても家畜は新しいウイルスに感染 / 保 有していることを示している。例えば私が関与したプロジェクトでは、ブタの正常糞便 の中から porcine enterovirus のゲノムに porcine torovirus の PLCP の遺伝子が挿入さ れているウイルスを発見した。enterovirus はゲノムのほぼ全長からポリプロテインが 翻訳され、ウイルスと宿主細胞のプロテアーゼによってプロセッシングを受け機能的な 蛋白質が生成される。porcine enterovirus に挿入された PLCP はウイルスのプロテア ーゼが認識するアミノ酸配列を有していたことから、巧妙な遺伝子組換えが起こったと 想像される (Tsuchiaka et al., 2018)。私はその他にもブタの新しい picornavirus を発 見する研究にも携わった (Naoi et al., 2016)。ブタを感染源とする人獣共通感染症のウ イルスには nipahvirus、Japanese encephalitis virus、influenza virus などがあり、養 豚場のブタも野生動物と同様にウイルスの保有動物として重要である。このように、ブ タには様々な種類のウイルスが感染していることが明らかになってきているが、さらに 解析を進めることで未知のウイルスを発見できる確率は高い。

以上のことから本研究では、動物の検体から NGS を用いてウイルスを検出する際の 問題点を新しい方法を開発することにより解決すること、従来の方法とこれらの新規方 法を用いてコウモリとブタから新規・希少ウイルスを検出することを目的とした。

第一章では、新規 ss DNA ウイルスを検出するために、dsDNA を特異的に切断する DSN を利用した DSN-NGS 法を開発した。また、様々な生物由来ゲノムが含まれてい るサンプルからウイルス遺伝子のみを multiplex PCR により選択的に増幅する方法、 multiplex PCR-NGS 法を開発した。

第二章では、コウモリが住み着いた国内宿泊施設屋根裏の、コウモリが出入りする開 ロ部付近で採取されたコウモリマルヒメダニの内臓と体液から NGS の従来法を用いて 新しいブニヤウイルス科^{注)}のウイルス(STV)を発見した。また、multiplex PCR-NGS 法を用いて台湾にて採取したユビナガコウモリの糞便核酸から EMCV を検出した。

第三章では、国内の養豚場の子ブタから糞便を採集し、DSN-NGS 法により、日本で 初めての報告となる希少ウイルス、FSfaCV-J1 及び PfaIV を発見した。また、NGS の 従来法を用いて porcine teschovirus の新しい種を発見した。 注)本博士論文中のウイルス分類の記載は、各研究をまとめた当時の分類となっているため、最新の ICTV による分類とは一部異なる。

第一章 ハイスループットシーケンシング用の新規ウイルス検出法の開発

序論

NGS 解析においてウイルスゲノムを効率良く検出する方法を開発するために、ウイル スをゲノム構造から ssDNA ウイルス、dsDNA ウイルス、ssRNA ウイルス、dsRNA ウ イルスの4種類に分けた(図 1-1)。私が所属する東京農工大学農学部附属国際家畜感染 症防疫研究教育センターでは dsRNA ウイルスを効率良く検出する方法については S1 nuclease を使用した方法が (Shimada et al., 2015)、ssRNA ウイルスについては RiboMinus (Thermo Fisher Scientific, MA, USA) を使用した方法が (論文未発表) そ れぞれすでに開発されている。dsDNA ウイルスのゲノムを効率よく検出する方法は、 SureSelect (Agilent Technologies, CA, USA) を設計し使用している (Oba, Tsuchiaka et al., 2017)。

ハイスループットシーケンシングによって得られるターゲットウイルスのリード数は、 サンプル中の全核酸のうちに占める各ターゲットウイルス核酸の相対的な量に依存する ことが報告されている(Zhang et al., 2014)。すなわち、サンプル中のターゲットウイ ルス核酸の相対濃度が高ければターゲットウイルス由来のリードも多くなるが、サンプ ルにターゲットウイルス以外のウイルスや宿主細胞や細菌が多く含まれている場合には それらに由来するリードがターゲットウイルス由来リード数を減少させてしまう。そこ で本研究では ssDNA を特異的に検出できる方法の開発を目的として、ハイスループッ トシーケンシングの際に ssDNA の濃度を相対的に上げるために宿主ゲノム由来の dsDNA ゲノム量を少なくすることを目指した。

DSN(Evrogen JSC, Moscow, Russia) はカムチャッカカニの膵臓から抽出された酵素で、dsDNA を特異的に切断するが ssDNA と ssRNA と dsRNA は切断しない(Shagin

et al., 2002)。このように DSN はサンプル内の dsDNA を分解することにより、ssDNA ウイルスゲノムの相対的な分子数を上昇させる。分解された dsDNA は DNA 精製キッ トを用いることにより除去される。さらに ssDNA をランダムに増幅する Phi29 酵素を 用いて, dsDNA に変換しながら増幅する。この dsDNA を NGS で解析する。本法を DSN-NGS 法と呼び、既知の ssDNA ウイルスを用いて本法の有用性を検証した。

また、上記の4つのウイルス型の全てを網羅的に検出できる方法を確立するために、 multiplex PCR を利用した NGS の前処理方法を開発した。multiplex PCR とは、1 つ の PCR 反応液に複数のプライマーセットを入れ、複数の遺伝子を増幅する PCR 法で ある。近年、自然界においてウイルスが本来の宿主以外の動物で見つかることが多いた め、ブタやコウモリから他動物種に感染するウイルスが検出される可能性がある。そこ で、multiplex PCR 法では検出対象とするウイルスを家畜から鳥類・哺乳類全般に拡大 し、縮重プライマーを用いて 137 属のウイルスを対象に約 700 本のプライマーをデザ インした。従来法では multiplex PCR のプロダクトの塩基配列を決定する際には、電気 泳動したアガロースゲルから目的のバンドを切り出し精製した後に PCR に用いたプラ イマーでシーケンシングするところであるが、本研究のように約 700 本のプライマーを 使用する場合、アガロースゲルからのバンドの切り出しは実質的に不可能である。そこ で、multiplex PCR 反応後にすべての反応液をまとめて DNA 精製しハイスループット シーケンシングのテンプレートとすることでこの問題を解決した。本法を multiplex PCR-NGS 法と呼び、その有用性を確認した。

10

材料と方法

1 DSN-NGS 法

1-1 開発用サンプル

ssDNA ウイルスとしてブタパルボ生ワクチン中の porcine parvovirus (PPV)、宿主 の dsDNA ゲノムのソースとして MDBK を使用した。それぞれ High Pure Viral Nucleic Acid Kit (Roche, Basel, CA) および QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany)を用いて核酸を抽出した。いずれも製品プロトコールに従って実施した。PPV と MDBK の核酸溶液を各 4µl ずつ混合した 8 µl の核酸混合溶液 (PPV+MDBK) およ び PPV と nuclease free 水を各 4µl ずつ (PPV+nfw)、MDBK と nuclease free 水を各 4µl ずつ混合した核酸混合溶液 (MDBK+nfw) をそれぞれ DSN 処理群と非処理群に供 するため 2 本ずつ調整した。

1-2 DSN 処理

3 種の核酸混合溶液を DSN 処理群と非処理群に分け、DSN 処理群には 1µl の DSN solution と 1µl の 10×DSN master buffer (どちらも Evrogen JSC, Moscow, Russia) を加えた。DSN 非処理群には DSN solution の代わりに nuclease free 水 1µl と 10× DSN master buffer 1µl を加えた。両群ともに 35℃で 10 分インキュベートし、さらに 5µl の stop solution を加えて 35℃、5 分で不活化した。その後に Monofas DNA 精製 キット I (Monofas I) (GL Sciences, Tokyo, Japan) で精製した。溶出には 40µl の nuclease free 水を使用した。この後は DSN 処理群と非処理群とで同じ工程を行った。 つまり GenomiPhi V2 DNA Amplification Kit (GE Healthcare, Little Chalfont, U.K.) を製品プロトコールどおりに使用して DNA の増幅と 2nd strand の合成を行った。その後、再度 Monofas I で精製し、Qubit 2.0 Fluorometer (Thermo Fisher Scientific)で 濃度を測定した。

1-3 Real-time PCR

各核酸混合溶液の DSN 処理、非処理における PPV、MDBK 抽出核酸量の変化を SYBR Green Real-time PCR、TaqMan Real-time PCR を用いて確認した。なお、MDBK に ついては 8-actin 遺伝子領域の塩基配列の DNA 量を指標として dsDNA 量を推定した。 DSN 処理後の Monofas I の溶出量は、溶出後のサンプル 1µl あたりの PPV および MDBK 抽出核酸量が処理群と非処理群とで等量(1µl)となるよう 40µl とした(Monofas I の回収量による影響を除く)。PPV は既報のプライマーセット (Song et al., 2010) の うち Forward (NS1-FP; 5' -GAAGACTGGATGATGACAGATCCA-3') と Reverse (NS1-RP; 5' -TGCTGTTTTTGTTCTTGCTAGAGTAA-3') のみを使用して SYBR Green Realtime PCR を実施し、Ct 値を比較した。8-actin は KerstinWernike et al. (2011) のプ ライマーセット (ACT2-1030-F; 5' -AGCGCAAGTACTCCGTGTG-3', ACT-1081probe: 3'-FAM-TCGCTGTCCACCTTCCAGCAGATGT-TAMURA-5', ACT-1135-R; 5'-CGGACTCATCGTACTCCTGCTT-3') を使用し定量した。定量に使用するスタンダード DNA は Integrated DNA Technologies 社から購入した。PCR の条件は、いずれも 95℃ 10 分間の熱変性の後、95℃ 15 秒、58℃ 20 秒、72℃ 35 秒を 40 サイクルとした。

2 multiplex PCR-NGS 法

2-1-1 開発用サンプル

東京農工大学農学部附属国際家畜感染症防疫研究教育センターにて保有してある分離 ウイルス株および生ワクチンを使用した(表 1-1)。High Pure Viral Nucleic Acid Kit (Roche)を使用して DNA あるいは RNA (DNA / RNA)を抽出した。RNA ウイルス については Super Script III Reverse Transcriptase (Thermo Fisher Scientific) によ りランダムプライマーを使用して cDNA を合成した。multiplex PCR のテンプレート として cDNA と抽出 DNA / RNA を等量ずつ混合した。

2-1-2 検証用サンプル

国内 4 農場の 3 週齢未満の 7 頭の子ブタの下痢便を使用した。便は滅菌 PBS で 10% の乳剤に調整し、1,500 rpm で 15 分間遠心した。上清 200 μl から High Pure Viral Nucleic Acid Kit (Roche)を使用して DNA/RNA を抽出した。

2-2 プライマーの設計

multiplex PCR-NGS 法に使用するプライマーの設計に際しては、ICTV Master Species List (https://talk.ictvonline.org/files/master-species-lists/) を参照して哺乳類 及び鳥類に感染し得るウイルス属から 137 属を選定した。GenBank で RefSeq に指定 されているウイルス株を選定したウイルス属ごとにセットにして塩基配列のデータセッ トを作成しプライマー設計に使用した。設計には複数のウイルス株を検出するための縮 重プライマーを設計するために開発された CoCoMo プライマー設計アルゴリズム (Jimba M et al., 2010) と CLC genomic Workbench 6.5.1 (CLC bio) を使用した。1 属あたり RefSeq ウイルスが 1 つしかない場合には、同じ属の別のウイルス株もデー タセットに加えた。プロダクトサイズは最大でも 1,000bp を超えないようにした。 multiplex PCR に供した全プライマーを表 1-3-1~1-3-9 に示す。後の検証の結果を踏 まえ、herpesvirus、adenovirus、orthoreovirus、bornavirus は設計したプライマーの 他に既報のユニバーサルプライマーも使用した(Devanter et al., 1996, Mizutani et al., 1999, Spinner et al., 2001, Weissenböck et al., 2009, Wellehan et al., 2004)。

約 700 本のプライマーを使った multiplex PCR を1枚の 96 well プレートで行え るよう、well ごとにあらかじめプライマーミックスを作成した。1 well に入れるプライ マーが最大 10 本までとなるよう、ウイルス属ごとに混合した(表 1-3-1~1-3-11)。さ らに PCR に使用するプライマーを 10 μ M に調整し、0.2 ml の 8 連チューブに分注し た。

2-3 multiplex PCR

multiplex PCR は Multiplex PCR Assay Kit (TaKaRa) を使用して行った。1 well あたり Multiplex PCR Mix 1 を 0.125 μ l、 Multiplex PCR Mix 2 を 12.5 μ l、cDNA と抽出 DNA/RNA の混合物を 1 μ l、10 μ M のプライマーミックス を 10 μ l および nuclease free 水を 1.375 μ l 混合した。 反応時間は 94°C 90 秒の初期変性の後、94°C 30 秒、45°C 90 秒、72°C 90 秒 を 40 サイクル実施し、最終伸長を 72°C 10 分間行っ た。

multiplex PCR 終了後の反応液を全 well (94well) から回収し混合した。100 bp 未 満のプライマーダイマーを除くため、80% エタノールを使用して Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA) を用いて精製した。

2-4 NGS 用ライブラリーの調整

multiplex PCR-NGS 法、従来法ともにライブラリー調整には NEBNext Ultra RNA Library Prep Kit for Illumina (NEW ENGLAND Bio Labs)を使用した。従来法(前 処理なし)のサンプルは製品プロトコールどおりに、multiplex PCR-NGS 法のサンプ ルは製品プロトコールを一部改変して使用した。具体的には end repair 以降のみを実施 した。

2-5 ハイスループットシーケンシング及びデータ解析

開発用サンプルのハイスループットシーケンシングは MiSeq Reagent Kit v2 (150 サ イクル) (Illumina) を使用しペアエンドシーケンシングとした。検証用ブタサンプルの ハイスループットシーケンシングでは multiplex PCR 法と従来法 (前処理無し) のそれ ぞれに別々のインデックスをつけて、同時にシーケンシングを実施した。こちらは MiSeq Reagent Kit v2 (300 サイクル) (Illumina) を使用しペアエンドシーケンシング とした。得られた各リードについて MiSeq レポーターを用いて FASTAQ 形式ファイ ルとして出力し、CLC genomic Workbench 6.5.1 (CLC bio) を用いて解析した。各リ ードに対してクオリティーの低い配列をトリミングするためのコマンドを実行した。

multiplex PCR-NGS 法ではプライマー設計に使用したすべてのウイルスゲノム配列 を参照配列としてリードをマッピングした。このデータセットをマッピングデータセッ トと呼ぶこととした(表 1-4-1~1-4-4)。

マッピングされた結果のうちコンセンサス長 200 以上、マッピングリード数 100 以 上の条件を満たす参照配列をそのウイルスゲノムが検出された可能性があるものとし、 参照配列ごとにマッピング画像の確認を行った。マッピング画像においては multiplex PCR プロダクトのサイズに合う距離を置いて forward 端と reverse 端の両方にリード のマッピングがみられるものを陽性と判断した(図 1-2)。従来法ではトリミングしたリ ードから *De novo* assembly コマンドによってコンティグを作成し、インターネット上 の NCBI BLASTn にて検索を行った。minimum contig length は 500 とした。

結 果

1 DSN-NGS 法

1-1 DSN-NGS 法の開発

NGS解析において宿主細胞や細菌のゲノムDNAを可能な限りシーケンシングするこ となく、ウイルスゲノムを増幅してシーケンシングできる方法を開発することを目的と して、DSN を採用した。DSN は核酸溶液中の dsDNA 構造核酸を消化するが、ssDNA ウイルス核酸は消化しない特性を持つ酵素である。これを利用して ssDNA ウイルスを 含むサンプルにおける ssDNA ウイルス核酸の相対濃度を高めることを目指した。

開発に際して、ssDNA ウイルスとして PPV と dsDNA ゲノムとして MDBK から抽 出した DNA を混合し、DSN の処理の条件検討を行った。DSN 処理後の PPV と MDBK の DNA 量を TaqMan Real-timePCR と SYBR Green Real-timePCR を用いて定量およ び半定量した。なお、MDBK の DNA 量は 6-actin で定量した。DSN 処理後の Monofas I の溶出量は、この時点でのサンプル中の核酸量が 1µl となるようにした (Monofas I の 回収量による影響を除く)。DSN 添加後のインキュベート温度については 35、40、45、 45、50、55、60、65℃の 8 つの条件で試験したところ、35℃10 分でインキュベートし た場合に最も効率よく DSN の効果が得られることが明らかになった。つまりこの条件 で得たテンプレートを Real-time PCR すると、最も PPV 量を減らすことなく 6-actin 量を減らせる結果となった。具体的には 8-actin 量が 10^{2.5}copies/µl から 10⁰copies/µl に 減少した (図 1-3)。この結果から、DSN-NGS 法は ssDNA を効率良く検出できること を示せた。

1-2 DSN-NGS 法の検証

本研究で使用する Miseq は、従来法におけるライブラリー調整キットへの鋳型として ssDNA が対応していない。このため DSN 処理サンプルと非処理サンプルをハイスルー プットシーケンシングして比較することは現実的に不可能である。よって NGS を使用 した検証は実施せず、DSN-NGS 法の目的における DSN の有用性を Real-timePCR で 検証するまでにとどめた。

2. multiplex PCR-NGS 法

2-1 multiplex PCR-NGS 法の開発

NGS 解析において、可能な限り宿主細胞のゲノム DNA をシーケンシングすることな く、ウイルスゲノムを増幅してシーケンシングできる方法を開発することを目的として、 NGS の前処理に multiplex PCR を採用した。

開発の際には、作成した約 700 本のプライマーが互いに干渉せずに働くかを Akabane virus、bovine viral diarrhea virus、bovine rotavirus A、pneumonia virus of mice、 bovine adenovirus、bovine coronavirus、bovine torovirus、bovine enterovirus、bovine rhinitis A、bovine parainfluenza 3、bovine respiratory syncytial virus、mammalian orthoreovirus、bovine herpesvirus 1、canine distemper virus、canine adenovirus type 2、canine parainfluenzavirus、canine parvovirus、feline herpesvirus 1、feline calicivirus、feline parvovirus(表 1-1)の混合物をテンプレートとして使用し条件検討 を実施した。まず multiplex PCR のプロダクトを電気泳動し、想定サイズのバンドが現 れるかを確認した(data not shown)。アニーリング温度は 45℃と 50℃を試し、より確 実にバンドが得られた 45℃を採用することとした(data not shown)。バンドとして目 視できなかったウイルスを含む属については新たなプライマーを設計、もしくは既報の ユニバーサルプライマーを multiplex PCR のプライマーミックスに加えた。続いて同じ テンプレートを使用して新たなプライマーをプライマーミックスに追加した multiplex PCR を実施し、そのプロダクトをハイスループットシーケンシングした。得られたリー ド数は 50,602,224 であった。全リードを加えたテンプレートの参照配列にマッピング したところ、殆どのウイルスでマッピングコンセンサス長が 200 をこえ、マッピングリ ード数も 100 をこえていた。しかし mammalian orthoreovirus のみがコンセンサス長も 200 に満たず、マッピングリード数も著しく少なかった(表 1-5)。そこで mammalian orthoreovirus については既報のユニバーサルプライマー(Spinner M. L et al., 2001)をプ ライマーミックスに加えることとした。

2-2 multiplex PCR-NGS 法の検証

開発した multiplex PCR-NGS 法の有用性についてブタの糞便サンプルで検討を行っ た。先の検証後 orthoreovirus のプライマーを加えたプライマーセットを使用した。 multiplex PCR-NGS 法によって得られたリード数は 5,866,908 であった。全リードを マッピングデータセット内の参照配列にマッピングした。マッピングに使用されたリー ド数は 200,747 であった。マッピングリードのコンセンサス長 200 以上、マッピングリ ード数 100 以上の条件を満たす参照配列数は 21 であった。これらについて参照配列ご とにマッピング 画像の確認を行った。Rotavirus、Kobuvirus、Enterovirus、 Mamastrovirus、Circovirus の各属のウイルスが陽性と判断された(図 1-2)。マッピン グによって得られたコンセンサス配列と参照配列を BLASTn で比較したところ、最も 一致率の低いものは 90%であった。 一方、従来法によって得られたリード数とコンティグ数はそれぞれ 4,586,838 およ び 19,080 であった。得られたコンティグは NCBI からダウンロードしたウイルスデー タベース内で BLASTn 検索を実施し、このうち E-value が 1.0E-10 以下のコンティ グに対しインターネット上の NCBI にて再度 BLASTn 検索を実施した。ウイルスに相 同性を示す E-value が 1.0E-10 以下のものを陽性と判断した。multiplex PCR-NGS 法における陽性ウイルスとの比較を表 1-6 に示す。表中 Genus No.の記載のあるウイル スはプライマー設計をされているウイルスであるため、multiplex PCR-NGS 法ではこ れらがすべて陽性となっている。一方従来法では、プライマー設計対象のウイルスのう ち Circovirus 属と Mastastrovirus 属の検出はできなかった。

multiplex PCR-NGS 法で陽性と判断された各ウイルス属について、multiplex PCR のプロダクトを電気泳動し想定サイズの PCR プロダクトが得られているかについて 確認したところ、陽性と判断されたいずれのウイルス属についても想定サイズのバンド が確認された (図 1-4)。

考察

本研究では、NGS を用いてウイルスを検出するときに生じる宿主細胞あるいは細菌 由来のゲノムがウイルスの検出を妨げるという問題を解決するために2つの方法を開発 した。

DSN-NGS 法は ssDNA を検出することを目的として開発した。一般に NGS は哺乳類 細胞や細菌、真菌などの dsDNA ゲノムの解析や mRNA など ssRNA のトランスクリプ トーム解析に使用されることが多い。それゆえ、ssDNA は NGS のライブラリー作製時 の鋳型にはなりにくい。ssDNA ウイルスはパルボウイルス科とサーコウイルス科など で構成されている。porcine parvovirus は雌ブタに異常産を起こし (Mészáros et al., 2017) porcine circovirus 2 は離乳後多臓器消耗症候群の原因となる (Fenaux et al., 2000, Fenaux et al., 2003, Reuter et al., 2014)。また、Chicken anaemia virus は養鶏に貧血 や免疫抑制を起こす (Noteborn et al., 1995, Lien et al., 2012)。このように ssDNA ウ イルスには家畜にとって注意すべきウイルスが含まれている。

本研究で使用した DSN は核酸溶液中の dsDNA 構造核酸を分解するが、ssDNA ウイ ルス核酸は分解しない特性を持つ酵素である。DSN の酵素活性至適温度は 55 C~65 C と説明されている。私が実際に検証を行った際には、55 C~65 Cでは dsDNA の指標と して用いた B-actin はあまり減少せず、ssDNA ウイルスの代表として用いた PPV の濃 度が非処理に比べて減少してしまった。そこで温度条件の検討の結果 35 C での反応とし た。また、Real-time PCR のテンプレートとしては問題とならなかった ssDNA 構造の ゲノムはそのまま NGS 用ライブラリー調整には使用できず、2 本鎖目の合成が必須で あったため GenomiPhi V2 DNA Amplification Kit を使用した。GenomiPhi V2 DNA Amplification Kit の使用によって ssDNA の 2 本鎖目が合成されるだけでなくテンプレ ートが増幅されるため、サンプル中のウイルス数が著しく少ない場合でも NGS で検出 できることを目指した。このように DSN を用いて ssDNA を検出するための最適条件 を決定した。MiSeq の場合、1 回の解析で 2000 万リードの塩基配列の情報を得ること ができる。それゆえ、本法のようにサンプル中の dsDNA 量を減らすことにより ssDNA を解析することは可能である。

さらに本研究ではウイルス検出の網羅性を高めるために multiplex PCR-NGS 法を開 発した。すでにのべ約 60 サンプルのウイルス検索を multiplex PCR-NGS 法によって 実施している(表 1-2)。multiplex PCR は複数のプライマーをひとつのチューブにいれ て PCR を行うので、プライマーの相性が重要とされていた。それゆえ、multiplex PCR の検出系を開発する際には詳細な条件検討が必要であった。しかし、近年 multiplex PCR の効率は PCR 用バッファーを最適化することで解決することが明らかになり、現在、 数社の試薬メーカーから最適化されたバッファーが販売されている。本研究では TaKaRa 社の製品を採用した。プライマーの設計には CoCoMo および CLC genomic Workbench 6.5.1 を利用した。CoCoMo は酪農学園大学の遠藤大二教授らによって作成 された最適なプライマーの設計ソフトである。CoCoMoによるプライマー設計を利用し た牛白血病ウイルスの qPCR はキット販売されている(Yuan et al., 2015, Sakai et al., 2015)。プライマーの設計にあたり、CoCoMo は保存領域が明確なデータセットを用い た場合に威力を発揮するソフトであるが、プライマー設計にあたって使用したウイルス 属ごとのデータセットの中には多様性があるものも多く、CoCoMo だけでは対応できな かった。CLC genomic Workbench 6.5.1 はどのようなデータセットでもプライマーの作 成が可能だが、好スコアのプライマーセット以外を働かせるにはバッファーや温度の条

件の設定が難しい。multiplex PCR-NGS 法ではすべてのプライマーを同条件で働かせ なくてはならないため、本来であれば CoCoMo で設計不可能なデータセットのプライマ ーは、本研究に合う条件で設計するのはかなり困難であるといえるだろう。検証は 17 属 20 種のウイルスで実施したが、残り 120 属の未検証のプライマーの中にうまく働かな いものが含まれている可能性は否定できない。特に CoCoMo で設計されていないプライ マーについては適宜見直していくべきと考えている。

また、今回検出対象としていなかったウイルス属や今後新たに発見されるウイルスに ついても、哺乳類や鳥類への感染に対する報告がされたなどの場合には、適宜プライマ ーを追加しながら運用していく予定である。

multiplex PCR-NGS 法は哺乳類と鳥類に感染するほとんどのウイルスを理論的に検 出できるという利点がある一方で、PCR プロダクトの塩基配列を決定することからウイ ルスゲノムの全長を決定できないという欠点がある。しかし、multiplex PCR-NGS 法 で陽性と判断されたウイルス属については新たにプライマーを設定してコンベンショナ ル PCR を実施し、ダイレクトシーケンシングすることでウイルス種を特定できる。 multiplex PCR-NGS 法で NGS 解析の際に実施するマッピングでは参照配列との一致 率が 90%のウイルス株も検出できた。これは、 multiplex PCR-NGS 法が半特異的であ り、プライマー設計に使用したウイルス株以外のウイルスも検出できることを示唆して いる。このように multiplex PCR-NGS 法は効率的かつ網羅的にターゲットウイルスゲ ノム断片を獲得できる方法であるといえる。

23

図 1-1 ゲノム構造によるウイルス分類とサンプルの前処理

ウイルスをそのゲノム構造から4種に分けた。レトロウイルスは対象外とした。

図 1-2 ブタ検証用サンプルにおける multiplex PCR-NGS 法マッピング画像

A は Enterovirus、B は Rotavirus、C は Circovirus、D は Kobuvirus、E は Mamastrovirus、F は Herpesvirus を参 照配列としてリードをマッピングした。A~E は陽性例、F は陰性例を示す。

想定される PCR プロダクトの長さの両端にリード(200 リード以上)がマッピングされており、マッピングコンセン サス長が 150 を超えたものを陽性と判断する。リードの色は、赤が forward 側からのシーケンス、緑が reverse 側から のシーケンス、青がペアシーケンス、黄色は非特異的なシーケンスをそれぞれ示す。

図 1-3 Real-time PCR による DSN 処理効果の検討

左は β-actin (Taqman Real-time PCR)、右は PPV (SYBR Green Real-time PCR) における検証の結果を示す。βactin は既知の濃度の合成 DNA をスタンダードとして使用した。 a: DSN 非処理 Genome 含サンプル×2、b: DSN 処理 Genome 含サンプル×2、c: DSN 処理 PPV 含サンプル×2 および DSN 非処理 PPV 含サンプル×1、d: DSN 非処理 PPV 含サンプル×1

図 1-4 multiplex PCR 法における PCR product の泳動

Aはプライマーミックス No. (表 1-3-1~1-3-9 参照), Bは PCR の想定プロダクトサイズを示す。 陽性例では想定されるサイズの PCR プロダクトが確認できた。

27

表 1-1 multiplex PCR-NGS 法開発に使用したウイルス

No.	target	origin	group	family	genus	genus No.
1	akabane virus	culture supernatant	(-)ssRNA	Bunyaviridae	Orthobunyavirus	144
2	bovine viral diarrhea virus	culture supernatant	(+)ssRNA	Flaviviridae	Pestivirus	203
3	bovine rotavirus A	culture supernatant	dsRNA	Reoviridae	Rotavirus	95
4	pneumonia virus of mice(PVM)	culture supernatant	(-)ssRNA	Paramyxoviridae	Pneumovirus	135
5	bovine adenovirus	culture supernatant	dsDNA	Adenoviridae	Atadenovirus	35
6	bovine coronavirus	culture supernatant	(+)ssRNA	Coronaviridae	Coronavirus	192
7	bovine torovirus	culture supernatant	(+)ssRNA	Coronaviridae	Totovirus	196
8	bovine enterovirus	culture supernatant	(+)ssRNA	Picovirnaviridae	Enterovirus	156
9	bovine rhinitis A(BRAV)	culture supernatant	(+)ssRNA	Picornaviridae	Aphthovirus	149
10	bovine parainfluenza 3(BPIV3)	culture supernatant	(-)ssRNA	Paramyxoviridae	Respirovirus	131
11	bovine respiratory syncytial virus(BRSV)	culture supernatant	(-)ssRNA	Paramyxoviridae	Pneumovirus	135
12	mammalian orthoreovirus(MRV)	culture supernatant	dsRNA	Reoviridae	Orthoreovirus	101
13	bovine herpesvirus 1 (IBR)	culture supernatant	dsDNA	Herpesviridae	Varicellovirus	20
14	canine distemper virus	vaccine	(–)ssRNA	Paramyxoviridae	Morbillivirus	130
15	canine adenovirus type 2	vaccine	dsDNA	Adenoviridae	Mastadenovirus	35
16	canine parainfluenzavirus	vaccine	(–)ssRNA	Paramyxoviridae	Respiro/Rubulavirus	131/132
17	canine parvovirus	vaccine	ssDNA	Parvoviridae	Protoparvovirus	80
18	feline herpesvirus 1	vaccine	dsDNA	Herpesviridae	Varicellovirus	20
19	feline calicivirus	vaccine	(+)ssRNA	Caliciviridae	Vesivirus	185
20	feline parvovirus	vaccine	ssDNA	Parvoviridae	Protoparvovirus	80

genus No. は表 1-3-1~1-3-9の genus No. に対応している

No.	animal	origin	cartridge	number of reads	detected viruses
1	cow	feces	150 v3	4,288,224	calicivirus, kobuvirus, hungarovirus
2	cow	serum	150 v3	8,871,644	-
3	cow	liver	150 v3	7,882,282	_
4	goat	blood	150 v3	5,862,934	-
5	elephant	blood, nasal discharge, oral swab, oral abscess swab, nasal swab	150 v3	7,022,422	-
6	tuna	culture supernatant	150 v3	8,327,456	-
7	pig	feces	150 v3	7,347,476	kobuvirus, rotavirus A, enterovirus
8	pig	feces	150 v3	7,063,832	kobuvirus, enterovirus, circovirus, astrovirus
9	cat	various organs	150 v3	8,294,906	-
10	bat	feces	300micro	1,389,170	black beetle virus, picornavirus, polyomavirus, mastadenovirus
11	bat	feces	300micro	1,088,682	picornavirus, polyomavirus
12	bat	feces	300micro	1,072,458	picornavirus, polyomavirus
13	cow	nasal swab	300micro	1,633,120	rhinovirus
14	hedgehog	nasal swab	300micro	1,648,226	adenovirus
15	hedgehog, sugar glider, guinea pig, degu	pharyngeal swabs, stools, pharyngeal mucus, nasal discharge	300micro	1,655,762	-
16	bat	feces	300micro	3,016,110	-
17	hedgehog, pygmy opossum	feces	300micro	5,787,330	_

表 1-2 multiplex PCR-NGS 法解析サンプル一覧

※検出されたウイルスには PCR で確認していないものも含む。

表 1-3-1 multiplex PCR-NGS 法に使用したプライマー(1)

Genome	order	<u>family</u>	subfamily	<u>Genus</u> <u>No.</u>	genus	27	<u>イマー配列F</u>	<u>プラ-</u>	<u>プライマー配列R</u>			
	Unassigned Unassigned Unassigned	Poxviridae Asfarviridae Iridoviridae	Chordopoxvirinae	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015	Avipoxvirus Capripoxvirus Crocodylipoxvirus Leporipoxvirus Leporipoxvirus Orthopoxvirus Parapoxvirus Suipoxvirus Yatapoxvirus Aafoivrus Ranavirus Inidovirus Chlorindovirus							
	Herpesvirales	Herpesviridae	Alphaherpesvirinae	010	Iltovirus	017 ilto 2618 F	GGGSGTRGATWTRGTMMGSAAR	017 ilto 2939 R	YTCGYKCSGMGCRRYYTTYTTY	-		
				018	Mardivirus Simplexvirus	018_mardi1_1_68159F 018_mardi1_2_67828F 019_simplex_200_F	CGTATCCTGCATYACRCTACGG CCATATCTTGAACRACGGCAAT AGAGGSSVCRSGSVNNSMSSGM	018_mardi1_1_68726R 018_mardi1_2_68308R 019_simplex_1051_R	CATGACMGAAGTRGGKGAAGCT AAATTCGGRTAYCARATGCGTG CGSRSBTGSRSNVGCSYSYYVB	017018019		
				020	Varicellovirus	DFA	GAYTTYGCNAGYYTNTAYCC	KG1	GTCTTGCTCACCAGNTCNACNCCYT			
				020	Vanoonovnido	ILK	TCCTGGACAAGCAGCARNYSGCNM	NAA		020-U		
			Betaherpesvirinae	021	Cytomegalovirus	021_cytom1_1_102245F 021_cytom1_2_102246F	TRCCKCCDATGATYTCGTCCAT GTRCCKCCDATGATYTCGTCCA	021_cytom1_1_101937R 021_cytom1_2_101937R	AGGCSTTYAACACCATYCTGGG AGGCSTTYAACACCATYCTGGG	001000		
				022	Muromegalovirus	022_murom1_1_67942F	AGTTGATYTTGCACAGGAGACG	022_murom1_1_68314R	TGTCTGAAGTAYTGCGATCCGA	021022		
						022_murom1_2_67942F	AGTTGATYTTGCACAGGAGACG	022_murom1_2_68315R	ATGTCTGAAGTAYTGCGATCCG			
				023	Proboscivirus	024 roseo1 1 137665E	ACCOCCGTACMCACTGACCTTT	024 roseo1 1 140943P	GCGGCAACCGCAGTTYCTGTTT			
				024	Roseolovirus	024 roseo1 2 137664F	ACCGCGGTACMCACTGACCTT	024_roseo1_2_140943R	GCGGCAACCGCAGTTYCTGTTT			
			Gammaherpesvirinae	025	Lymphocryptovirus	025_lymph4_1_124268F	CCATRATCTGGTTGTCRGCCTC	025_lymph4_1_124618R	AYGCYCCKCCCATGTTTATCCT	024025		
						025_lymph4_2_123025F	AGHGCGCARACRTACTGACCCA	025_lymph4_2_123493R	CYGTGCACCGRCTRATGGTGGG			
				026	Macavirus	026_macav1_1_52150F	ATAGAGACSGGCYTGAGCTACA	026_macav1_1_52970R	ACYGGRGCCACTTCTTCAATAA			
						026_macav1_2_52150F	ATAGAGACSGGCYTGAGCTACA	026_macav1_2_52969R	CYGGRGCCACTTCTTCAATAAA	-026027		
				027	Percavirus	027_perca1_1_3040F	AAACTCACCMGTACGCTCTACC	027_perca1_1_3602R	TGGMACGTCATCTCTGGCCAAT			
				020	Dhadia a dia a	027_percal_2_3043F		027_percal_2_3604R				
				028	Rhadinovirus	028 rhadi3 2 56186E		028 rhadi3 2 56962P				
						028 rhadi1 1 14970F	GGACRGMMYTGGAGTTTGACTG	028 rhadi1 1 15734R	TGGCCAGCTTGGCTATYTCCGA	028		
						028 rhadi1 2 14971F	GACRGMMYTGGAGTTTGACTGC	028 rhadi1 2 15734R	TGGCCAGCTTGGCTATYTCCGA			
		Alloherpesvirid	ae	029	Batrachovirus	029_batracho_797_F	KYGYTSTWTSSRGRYGKGGGYG	029_batracho_1498_R	SWSGTGSRKGTGYGSGKSGT	020026		
						029_batracho_2399_F	RSMRGTGGTGRTGGTRRGAWR	029_batracho_3105_R	MCCGCWMMYTSGACRCMRTR	029030		
				030	Cyprinivirus							
				031	Ictalurivirus							
		Malaaaharnaay	ividee	032	Salmonivirus							
		walaconerpesv	indae	033	Aurivirus							
	Unassigned	Adenoviridae		035	Atadenovirus	035 atade4 1 15480F	ATGGCRGCTAGYTACAACCAAG	035 atade4 1 16011R	TAATTCCACTGCGGGTAGGTTG			
						035_atade4_2_17364F	ACTTTGAACCCATGAGCAGGCA	035_atade4_2_17813R	TAATTCCACTGCGGGTAGGTTG	0.05		
						035_atade1_1_16831F	ATGGCWGCYAATTATAATCAAG	035_atade1_1_17345R	CTHGTYGGTTGATTRATAACAA	035		
						035_atade1_2_16831F	ATGGCWGCYAATTATAATCAAG	035_atade1_2_17346R	TCTHGTYGGTTGATTRATAACA			
						polFouter	TNMGNGGNGGNMGNTGYTAYCC	polRouter	GTDGCRAANSHNCCRTABARNGMRT	035-U		
				036	Aviadenovirus	036_aviad1_1_21742F	ARYTTYATGCCMATGGATCACA	036_aviad1_1_22222R	ARTTGTAGTTSGTSGCCATCTG	029036		
				027	lehteden evinue	036_aviad1_2_22199F	I Y CAGA I GGCBACVAAC I ACAA	036_aviad1_2_22669R	CGAARTWDATSACCATGCTGTG			

表 1-3-2 multiplex PCR-NGS 法に使用したプライマー (2)

Genome order		family	<u>subfamily</u>	<u>Genus</u> <u>No.</u>	genus	2	プライマー配列F	2	<u> ライマー配列R</u>	primer Mix No.
				038	Mastadenovirus	038_masta24_1_5617F	GCRCACARATTRTCTGTTTCTA	038_masta24_1_6235R	ATGACATHTGTGGCATGTATGC	r
						038_masta24_2_5617F	GCRCACARATTRTCTGTTTCTA	038_masta24_2_6236R	TATGACATHTGTGGCATGTATG	000
						038_masta2_1_19957F	CYAACATGCTNTACCCCATHCC	038_masta2_1_20308R	ARRAACCAGTCYTTGGTCATGT	038
						038_masta2_2_19956F	GCYAACATGCTNTACCCCATHC	038_masta2_2_20308R	ARRAACCAGTCYTTGGTCATGT	
				039	Siadenovirus	039_siade1_1_8529F	CWGTGWATTGTGTTAAATGCAT	039_siade1_1_8942R	TTTCWGTATAATCHGCATCTCT	020
						039_siade1_2_8528F	TCWGTGWATTGTGTTAAATGCA	039_siade1_2_8942R	TTTCWGTATAATCHGCATCTCT	039
dsDNA	Unassigned	Polyomaviridae		040	Polyomavirus	040_polyo12_1_787F	TTTACCTGGGATGYTGTCAGAA	040_polyo12_1_1365R	GRATAGGTYTCTATTACCTCTG	
						040_polyo12_2_787F	TTTACCTGGGATGYTGTCAGAA	040_polyo12_2_1352R	TTACCTCWGCAGATTCATCTGT	040-1
						040_polyo5_1_3613F	CRCCTGACTGGATGCTTCCTTT	040_polyo5_1_2914R	TTTCATTYYTDGADGGGTCTGG	040 1
						040_polyo5_2_3612F	RCCTGACTGGATGCTTCCTTTA	040_polyo5_2_2914R	TTTCATTYYTDGADGGGTCTGG	
						040_polyo23_1_3017F	TGATCTCKCAAATTATCTAAAT	040_polyo23_1_3780R	CCTTATRRACTTATAGAAGAAA	
						040_polyo23_2_3016F	ATGATCTCKCAAATTATCTAAA	040_polyo23_2_3780R	CCTTATRRACTTATAGAAGAAA	040-2
						040_polyo22_1_1942F	YTRATGTGGGAAGCAATTAGTG	040_polyo22_1_2299R	CWGTGTARCTGCCAAARTATCT	040 2
						040_polyo22_2_1945F	ATGTGGGAAGCAATTAGTGTAA	040_polyo22_2_2299R	CWGTGTARCTGCCAAARTATCT	
						040_polyo10_1_559F	TCAGGAATAGAAGCWTTAGCTC	040_polyo10_1_1073R	TKGGAGGCGCCATTTAACCTTA	
						040_polyo10_2_559F	TCAGGAATAGAAGCWTTAGCTC	040_polyo10_2_1047R	TAAAGGGAGCATCCARTCAGGT	040-3
						040_polyo3_1_841F	AAACTGTTWCAGGTGYCAGTGC	040_polyo3_1_1431R	TTARAGGAAGCATCCARTCTTG	040 0
						040_polyo3_2_841F	AAACTGTTWCAGGTGYCAGTGC	040_polyo3_2_1429R	ARAGGAAGCATCCARTCTTGAG	
						040_polyo11_1_1344F	ATTTTGAAAATGCYAGRTGGGC	040_polyo11_1_1668R	GGGSCATCTTCCTCTTCTA	
						040_polyo11_2_1266F	TWGCCMKRTATTTTGAAAATGC	040_polyo11_2_1602R	GGGSCATCTTCCTCTTCTA	040-4
						040_polyo4_1_3474F	CWGCMACYTTRTTCCAATTACA	040_polyo4_1_3888R	GATAGTCCTWCTGAYHTKCCTT	040 4
						040_polyo4_2_3473F	TCWGCMACYTTRTTCCAATTAC	040_polyo4_2_3888R	GATAGTCCTWCTGAYHTKCCTT	
						040_polyo15_1_1178F	GACTGGTTRCTYCCTTTGCTTT	040_polyo15_1_1601R	TTTGCAGCTAACTGCTTCCCAC	
						040_polyo15_2_1178F	GACTGGTTRCTYCCTTTGCTTT	040_polyo15_2_1600R	TTGCAGCTAACTGCTTCCCACA	040-5
						040_polyo1_1_4344F	CTATTRCTAAAYACAGCWTGAC	040_polyo1_1_4758R	TTGYTACTGCWTTGAYTGCTTC	
						040_polyo1_2_4396F	CYTTDGGGTCTTCTACCTTTCT	040_polyo1_2_4758R	TTGYTACTGCWTTGAYTGCTTC	
dsDNA	Unassigned	Papillomaviridae		041	Alphapapillomavirus					
				042	Betapapillomavirus					
				043	Gammapapillomavirus					
				044	Deltapapillomavirus					
				045	Epsilonpapillomavirus					
				046	Etapapillomavirus					
				047	Iotapapillomavirus					
				048	Kappapapillomavirus					
				049	Lambdapapiliomavirus					
				050	Mupapillomavirus					
				051	Nupapillomavirus					
				052	Omikronpapiliomavirus	5				
				053	Pipapiliomavirus					
				054	I netapapiliomavirus					
				055	Alpapillomavirus					
	I for a section state	A		056	Zetapapiliomavirus					
	Unassigned	Ascoviridae		057	Ascovirus					
ssDNA										
	Unassigned	Circoviridae		058	Gyrovirus	058_gyrov1_1_76F	CGCTCGCGATYYGTCGAAGGCG	058_gyrov1_1_355R	CCTACYGCCGWCCGGTATGYGC	059
						058_gyrov1_2_61F	CRRATCGCTCGACTKCGCTCGC	058_gyrov1_2_355R	CCTACYGCCGWCCGGTATGYGC	000
				059	Circovirus	059_circo3_1_296F	AAGGAACYGAYCAGCAGAATAA	059_circo3_1_724R	ACARTCTCAGTAGATCATCCCA	_
						059_circo3_2_299F	GAACYGAYCAGCAGAATAAAGA	059_circo3_2_724R	ACARTCTCAGTAGATCATCCCA	059-1
						059_circo2_1_92F	MTTAATAACCCTACCTTTGAAG	059_circo2_1_588R	AATTCAAAYRCRTAACGGCTCT	
				_		059_circo2_2_92F	MTTAATAACCCTACCTTTGAAG	059_circo2_2_587R	ATTCAAAYRCRTAACGGCTCTT	
						059_circo1_1_373F	GTTGCCGCSGTGAARGCCGGAA	059_circo1_1_741R	CTTMGACGTRAACTCCACATAV	059-2
						059_circo1_2_374F	TTGCCGCSGTGAARGCCGGAAG	059_circo1_2_741R	CTTMGACGTRAACTCCACATAV	

表 1-3-3 multiplex PCR-NGS 法に使用したプライマー (3)

Genome	order	family	subfamily	<u>Genus</u> <u>No.</u>	genus		<u>プライマー配列F</u>		<u>プライマー配列R</u>	primer Mix No.
	Unassigned	Anelloviridae Parvoviridae	Densovirinae	060 061 062 063 064 065 066 067 068 069 070 071 072 073	Alphatorquevirus Betatorquevirus Gammatorquevirus Epsilontorquevirus Iotatorquevirus Iotatorquevirus Zetatorquevirus Ambidensovirus Brevidensovirus Iteradensovirus Iteradensovirus					
ssDNA			Parvovirinae	074	Amdoparvovirus	074_amdop1_1_1698F	TTAAAGCCATTACTGGAGGTGG	074_amdop1_1_2376R	ATAAACACGTGTCTTGGAGCAC	074
						074_amdop1_2_1699F	TAAAGCCATTACTGGAGGTGGT	074_amdop1_2_2376R	ATAAACACGTGTCTTGGAGCAC	074
				075	Aveparvovirus					
				076	Bocaparvovirus	076_bocap2_1_3224F	GCGGTAACTTTGCGCRTGCCGT	076_bocap2_1_3925R	GCGTCCARGGAAAGGCGTGTTC	_
						076_bocap2_2_2435F	CGRGASGGAGCATGGAACGTCT	076_bocap2_2_3245R	ACGGCAYGCGCAAAGTTACCGC	076
						076_bocap1_1_2546F	AYACTGTRTTCAGTCAACACAG	076_bocap1_1_2905R	TTTCARCAGCAGAAAGCATTTC	
						076_bocap1_2_2546F	AYACTGTRTTCAGTCAACACAG	076_bocap1_2_2911R	CCATRSTTTCARCAGCAGAAAG	
				077	Copiparvovirus					
				078	Dependoparvovirus	078_depen6_1_2728F	CCTCRGGWGATTGGCATTGCGA	078_depen6_1_3082R	ACGGTGSWGGTGAGRTTGTTGG	_
						078_depen6_2_2729F	CTCRGGWGATTGGCATTGCGAT	078_depen6_2_3082R	ACGGTGSWGGTGAGRTTGTTGG	078079
				079	Erythroparvovirus	079_eryth1_1_2168F	AGAACTCAGTGAAAGCAGCTTT	079_eryth1_1_2604R	ATCCAGACAGGTAAGCACATTT	
						079_eryth1_2_2067F	GATTTCCCTGGAATWAATGCAG	079_eryth1_2_2604R	ATCCAGACAGGTAAGCACATTT	
				080	Protoparvovirus	080_proto3_1_1185F	CAGAYAGTTATATWGAAATGAT	080_proto3_1_1788R	TCTCTTATTGGTTGTGTATGTT	
						080_proto3_2_1183F	WCCAGAYAGTTATATWGAAATG	080_proto3_2_1788R	TCTCTTATTGGTTGTGTATGTT	080-1
						080_proto2_1_3255F	AACTATACAACAACGACCTAAC	080_proto2_1_3640R	AGGATTWCCAATRTGTCTAGAA	
						080_proto2_2_1018F	AGAAACMGCWAAAGAAATAACT	080_proto2_2_1544R	ATTGGTTTACTTGAGTTCCAAA	
						080_proto1_1_759F	TAWCACCAGCTGAAAGAATTAA	080_proto1_1_1203R	ATTTCAATRTAACTGTCTGGCT	080-2
						080_proto1_2_1878F	TGGTRAAGAAYGGTTACCAATC	080_proto1_2_2553R	AGCAGSAGAGAAGTACAGGTAA	
dsDNA, (+)	ssRNA with R1	Г		081	Tetraparvovirus					
	Unassigned	Hepadnaviridae	e	082	Orthohepadnavirus					
				083	Avihepadnavirus					
		Retroviridae	Orthoretrovirinae	084	Alpharetrovirus					
				085	Betaretrovirus					
				086	Deltaretrovirus					
				087	Epsilonretrovirus					
				088	Gammaretrovirus					
				089	Lentivirus					
			Spumaretrovirinae	090	Spumavirus					
askna	Unaccigned	Pooviridaa	Sadaraaviirinaa	001	Cardoroovinus					
	unassigned	reoviridae	Seuoreovirinae	097	Mimoreovirus					
				092	Orbivirus	093 orbiv2 1 10625	ATACGGATTATTTCGATCCACC	093 orbiv2 1 1884P	CGTAMCGATAAGTATCATAACA	
				033	OTDIVITUS	002 orbiv2 2 10625	TATACGGATTATTTCGATCCAC	002 orbiv2 2 1600P		-
				-		093_0rbiv2_2_1002F	TTAAGATGACTCAGCAATCCAT	092 orbiv1 1 441P		093
						093_orbiv1_1_2F	TAGATGACTCAGCAATGGATG	093 orbiv1 2 441R	GATCROGTACAAATTGAATTCT	-
				094	Phytoreovirus	000_010101_2_01		000_01001_2_4411	GATOROGIAOAAATTGAATTOT	
				554	i nytoreo virus					
表 1-3-4 multiplex PCR-NGS 法に使用したプライマー(4)

Genome	order	family	<u>subfamily</u>	<u>Genus</u> <u>No.</u>	genus	<u>us</u> プライマー配列F		プライ	(マー配列R	primer Mix No.
dsRNA				095	Rotavirus	095_rotaA1_1_21F	GGGAAGTAYAATCTAATCTTGT	095_rotaA1_1_462R	ACCARAACATRACTGCATTTAA	
						095_rotaA1_2_21F	GGGAAGTAYAATCTAATCTTGT	095_rotaA1_2_463R	AACCARAACATRACTGCATTTA	rota-1
						095_rotaC1_1_2403F	ATTGCRAAATCACCRCAATTTA	095_rotaC1_1_2961R	ATCTGTCATGYTTATACATCTG	rota
						095_rotaC1_2_2404F	TTGCRAAATCACCRCAATTTAA	095_rotaC1_2_2961R	ATCTGTCATGYTTATACATCTG	
						095_rotaG1_1_1775F	CRATTGATGAAGCGAGAGAAGA	095_rotaG1_1_2407R	TTGARGCTGAAGGTGGTATTAG	roto_2
						095_rotaG1_2_1632F	CCGCTAAAGCYGCATCTTTAAC	095_rotaG1_2_2078R	CATCTCCATCAACYCGCATATG	rota-z
						095_rotap1_1_57F	TTTGTTTATAATTCRCAATCTG	095_rotap1_1_622R	TAATAYGGTTTATCTTTCATTA	
						095_rotap1_2_1641F	TTAGATATGYTGGCTAATATGA	095_rotap1_2_2242R	ACAGATGTCATYTGTATAATTT	
						095_rotap1_1_1785F	GCAATYAAAGAAGCTAGAACGA	095_rotap1_1_1970R	ACCTGATGCAACTCCATGATAT	rota-3
						095_rotap1_2_1560F	GCCGCARTTCAACACACAATAG	095_rotap1_2_2342R	TGCAGCCGARTAGATAAGTGAG	
						095_rota-B-Con_200-222_F 095_rota-B-Con_196-219_F	RMKWGMWWMDKYWHHRWSTMTWV RDWWRMKWGMWWMDKYWHHRWSTM	095_rota-B-Con_953-970_R 095 rota-B-Con_955-972 R	KRWRTRKWHGTWGGWGMR TTKRWRTRKWHGTWGGWG	
						095 rota-D.F-Con 1511-1530	FCRYMRKCWWMKCARYTACTR	095 rota-D.F-Con 2113-2133	RMGYMGTTKKWTGWKTYCTYTT	rota-4
						095 rota-D.F-Con 2065-2082	FGGWGGWMGWMTKTWTTTT	095 rota-D.F-Con 2065-2084	R CTAAAAWAMAKWCKWCCWCC	-
				096	Seadornavirus	096 seadorna 530 F	TRVKRYWGYWGCWGAYGGWKYD	096 seadorna 1124R	CAWDGCYMRKSHWYGBKSAGCR	096
			Spinareovirinae	097	Aquareovirus					
				098	Coltivirus	098 colti5 1 551F	TMTGGCCMARTGGTAGTGGACA	098 colti5 1 1082R	ATGAGGTASAGCTCACCAGGCC	
						098 colti5 2 25F	CCTRCGTTCAGCATCATGTTTG	098 colti5 2 683R	ACATAACTYTTCACATCCCACT	-
						098 colti3 1 1574F	GAATCOWCAGCAGRTCTGTCAG	098 colti3 1 2289B	AGACCCAGTGAAACCACTCAGC	098-1
						098 colti3 2 2268E	GCTGAGTGGTTTCACTGGGTCT	098 colti3 2 2625B	CCATYCCCTCKGAGTCAGTCAT	
						098 colti2 1 993E	TGGCYKTAGGAACKATGGATAC	098 colti2 1 1631R	CCTCGAACAGCTCAGGCATAGA	-
						098 colti2 2 1085E		098 colti2 2 1629R	TCGAACAGCTCAGGCATAGAAT	
						098 colti4 1 25E		098 colti4 1 636R	CAACATAGTMACRGCACCATGA	-
						098 colti4 2 33E		098 colti4 2 635P		098-2
						098 colti1 1 33E		098 colti1 1 718P		000 2
						098 colti1 2 39F	ATGCCGGCTCTTGCTATAATCG	098 colti1 2 717R	CAAYCTTCARTGACTGACCGAA	-
				099	Cypovirus	000_00111_2_001	Andeeddororraenanared	000_0011_2_71711	0,0000000000000000000000000000000000000	
				100	Fijivirus					
				101	Orthoreovirus	101_orthoreo_mam_762F	RYTRGYRARRYTDGGRGTV	101_orthoreo_mam_1460R	RRTTCARCACCCAYYTRR	_
						101_orthoreo_mam_1132F	TCCKTCRARYRTGCCTCCY	101_orthoreo_mam_1923R	TCYTCRCAHCCRCACCAY	101-1
						101_orthoreo_mam_539F	GCRTCHACTYTRTCRTTY	101_orthoreo_mam_1518R	GAYGTRTRNGARAAHGGY	
						101_orthoreo_mam_2583F	RAYDGGYGARASYGTRGGB	101_orthoreo_mam_3045R	WARTGAYGGRGGRTTGTG	
						101_orthoreo_avi_1925F	TGTTYGTRTGYYTRYTGG	101_orthoreo_avi_2307R	RTTYARGGTKGGATTRGTR	_
						101_orthoreo_avi_291F	YAGYGAYGGRAARGAYGGV	101_orthoreo_avi911R	GGRAARGGAGTHGTDATG	101-2
						101_orthoreo_avi_236F	CATYRTNYTRCTYCCYYC	101_orthoreo_avi_602R	AAARCARCCRACRTAYACAC	101 2
						101_orthoreo_avi_1671F	RTTGGTGGYGTRYTRTTY	101_orthoreo_avi_2121R	GRTARTGYTGRAAGGGRG	
						REOL3F	CAGTCGACACATTTGTGGTC	REOL3R	GCGTACTGACGTGGATCATA	101-U
dsRNA	Unassigned	Birnaviridae		102 103 104 105 106 107 108 109	Idnoreovirus Dinovernavirus Oryzavirus Mycoreovirus Avibirnavirus Blosnavirus Entomobirnavirus					
	Unassigned	Picobirnavirida		110	Picobirnavirus	110_picobirna_seg1_2222_F	CCTCACCATCCATACCTTCTTC	110_picobirna_seg1_2513_R	TAACGCACACACACCCCA	110205
						110_picobirna_seg2_1130_F	ACCATACCACTCTTAACCC	110_picobirna_seg2_1420_R	CCATCTTCTCACCCCATAC	110205
(-)ssRNA					ĺ					
	Mononegavirales	Bornaviridae		111	Bornavirus	BDV A1	GTCACGGCGATATGTTTC	BDV D1	CTTCTTACTCCAGTAAAACGC	111
						ABV-NF	CATGAGGCTATWGATTGGATTA	ABV-NR	TAGCCNGCCMKTGTWGGRTTYT	111
		Rhabdoviridae		112	Vesiculovirus	112_vesic2_1_6403F	CATTGATTATGAGAAATGGAAC	112_vesic2_1_6939R	AARATGGGAAYTTTCCCATAAT	
						112_vesic2_2_5767F	TAGTGATTTGGCWAGRATTGTA	112_vesic2_2_6432R	TGATGRTTGTTCCATTTCTCAT	112-1
						112 vesic4 1 6597F	TCACCAGCGGAAAGAATCCAAT	112 vesic4 1 7160R	CATGTSACTCKAGACCATCTTT	
						112_vesic4_2_6596F	ATCACCAGCGGAAAGAATCCAA	112_vesic4_2_7160R	CATGTSACTCKAGACCATCTTT	
						112_vesic1_1_138F	GAATATCCAGCTGAYTACTTCA	112_vesic1_1_681R	TYTTGAACATGTGGAAGAACAT	112-2
						112_vesic1_2_138F	GAATATCCAGCTGAYTACTTCA	112_vesic1_2_686R	ATGYTTYTTGAACATGTGGAAG	1

表 1-3-5 multiplex PCR-NGS 法に使用したプライマー(5)

<u>Genome</u>	order	family	subfamily	<u>Genus</u> <u>No.</u>	genus	<u>プライマー配列F</u>		<u>プ</u>	primer Mix No.	
				113	Ephemerovirus	113_ephem2_1_9589F	AAGTCATTCMTATGATAGATCA	113_ephem2_1_10017R	TTATTCCACTTCTCATAATCCA	
						113_ephem2_2_9589F	AAGTCATTCMTATGATAGATCA	113_ephem2_2_10016R	TATTCCACTTCTCATAATCCAA	112
						113_ephem1_1_9543F	TTGATATWCCKGATATGATTGA	113_ephem1_1_10019R	ARTTATTCCATTTYTCATAATC	
						113_ephem1_2_9543F	TTGATATWCCKGATATGATTGA	113_ephem1_2_10021R	ATARTTATTCCATTTYTCATAA	
				114	Sigmavirus	•	•	•	•	
				115	Tibrovirus	•		•		
				116	Tupavirus	•	•	•	•	
				117	Perhabdovirus	•	•	•	•	
				118	Sprivivirus	•	•			
				119	Cytorhabdovirus					
				120	Lyssavirus	120_lyssa2_1_10242F	AGGACRARATGGGTRGATCAAG	120_lyssa2_1_10650R	ARGCCATSARRTCATTCACCTC	
						120_lyssa2_2_10242F	AGGACRARATGGGTRGATCAAG	120_lyssa2_2_10651R	GARGCCATSARRTCATTCACCT	120-1
						120_lyssa9_1_7264F	TGGAYTAYGAGAAGTGGAACAA	120_lyssa9_1_7849R	ACTCTYGCCCATCTYTTAGATT	120 1
						120_lyssa9_2_7287F	ACTCYAGAGTGACYTATGCTTT	120_lyssa9_2_7899R	ACTCTYGCCCATCTYTTAGATT	
						120_lyssa6_1_655F	AATTGGAGYACAATTCCAAACT	120_lyssa6_1_1229R	ACWGTTCCATCATCWGCCAATG	
						120_lyssa6_2_656F	ATTGGAGYACAATTCCAAACTT	120_lyssa6_2_1229R	ACWGTTCCATCATCWGCCAATG	120-2
						120_lyssa1_1_8361F	ATHAGGAAGGCYYTKTATGATG	120_lyssa1_1_8975R	ATGRACATTKGTSACYTTCTCC	120 2
						120_lyssa1_2_8362F	THAGGAAGGCYYTKTATGATGA	120_lyssa1_2_8975R	ATGRACATTKGTSACYTTCTCC	
				121	Novirhabdovirus	•	•	•	•	•
(-)ssRNA		Filoviridae		123	Cuevavirus	123 cueva 4330 F	CAGGAACAAGCACAAAGGGC	123 cueva 5076 R	GCAGCACCTTGTTGTTGGAG	
						123 cueva 9194 F	CCCAAGGCAAGGTTCAAACG	123 cueva 10115 R	TGTTCGTTGTTCGGATCGGT	123129
				124	Ebolavirus	124 ebola3 1 13434F	GGTGAGAATGCYACTGTTAGAG	124 ebola3 1 13809R	GATTRTCACCCATTACCGCAGA	· ·
						124 ebola3 2 12772F	ATMATCTTTGARACATATTGTG	124 ebola3 2 13512R	AATAAAWGGAGCTGTAAACTCA	
						124 ebola1 1 3629F	CAACCACCACCTGGACCATCAC	124 ebola1 1 4034R	TGTCACCWCGAGAGCGGATGTG	124
						124 ebola1 2 3632F	CCACCACCTGGACCATCACTTT	124 ebola1 2 4035R	ATGTCACCWCGAGAGCGGATGT	
				125	Marburgvirus	125 marbu1 1 1480F	AATGATCCATTTGCACTGCTGA	125 marbu1 1 1876R	CACCATYTACATCACCAATACT	
					Ŭ	125 marbu1 2 1474F	GACTTGAATGATCCATTTGCAC	125 marbu1 2 1876R	CACCATYTACATCACCAATACT	125127
		Paramyxoviridae	Paramyxovirinae	126	Aquaparamyxovirus					
				127	Avulavirus	127_avula1_1_10787F	CCATYAGGTCAGACACATTCTT	127_avula1_1_11552R	AGCCCTTGAATTTGCTTTCTCC	105107
						127 avula1 2 11142F	YAACCTTCAATACTCAAGGCTC	127 avula1 2 11552R	AGCCCTTGAATTTGCTTTCTCC	125127
				128	Ferlavirus					
				129	Henipavirus	129_henip1_1_14777F	TTGACAGGTGCYAGAGAGGAAA	129_henip1_1_15360R	ARGTACCAAGCYTCATACCAAC	100
						129_henip1_2_14782F	AGGTGCYAGAGAGGAAATTGCT	129_henip1_2_15360R	ARGTACCAAGCYTCATACCAAC	129
				130	Morbillivirus	130 morbi2 1 836F	CCMGGGAACAAACCYAGGATTG	130 morbi2 1 1223R	CTGAYCTCCTSACCATCTCTTG	
						130 morbi2 2 836F	CCMGGGAACAAACCYAGGATTG	130 morbi2 2 1227R	CCTGCWGATCTYCTGACCATCT	130-1
						130_morbi4_1_2135F	TCATGTTTATGATCACAGCGGT	130_morbi4_1_2758R	ATGTCTTGGAYATCSGAGAACA	
						130_morbi4_2_2184F	GACTCTATCMTGGTTCAATCAG	130_morbi4_2_2758R	ATGTCTTGGAYATCSGAGAACA	
						130_morbi1_1_11031F	AGTAYTGCCTGAATTGGAGATA	130_morbi1_1_11621R	CATCYACTATTGTTTCTGACCA	130-2
						130_morbi1_2_11031F	AGTAYTGCCTGAATTGGAGATA	130_morbi1_2_11622R	TCATCYACTATTGTTTCTGACC	
				131	Respirovirus	131_respi4_1_880F	YCAGATYGTTGGGAAYTACATC	131_respi4_1_1203R	AACATTTCMATATCCAGATAWG	
						131_respi4_2_881F	CAGATTGTWGGRAAYTACATCA	131_respi4_2_1203R	AACATTTCMATATCCAGATAWG	101
						131_respi1_1_10207F	ATATGAAAGAYAAAGCATTATC	131_respi1_1_10636R	GAATTATTGTAYAYYTCATTAT	131
						131_respi1_2_10204F	TYTATATGAAAGAYAAAGCATT	131_respi1_2_10636R	GAATTATTGTAYAYYTCATTAT	
				132	Rubulavirus	132_rubul3_1_152F	ACTGTGCAAGGATGTCTTCCGT	132_rubul3_1_971R	AARAATGCACTCATTCCGGCAT	
						132 rubul3 2 154F	TGTGCAAGGATGTCTTCCGTGT	132 rubul3 2 971R	AARAATGCACTCATTCCGGCAT	100
						132_rubul1_1_10404F	AAGCTTYGATKCWGACCCAGGT	132_rubul1_1_10794R	CTCYTTGAACARCTTSCCTGCA	132
						132_rubul1_2_10404F	AAGCTTYGATKCWGACCCAGGT	132_rubul1_2_10792R	CYTTGAACARCTTSCCTGCATG	
				133	TPMV-like viruses					
			Pneumovirinae	134	Metapneumovirus	134_metaneomo_1890_F	RGAYGCAATGRTWGGSWTRAGR	134_metaneumo_2317_R	GGWGGTGTRTTGGYYTGR	
				135	Pneumovirus	135_pneum4_1_11860F	ACCATAGTGATTACCATACTAA	135_pneum4_1_12669R	CTGTTTACTACTCAGAAACAAT	
						135_pneum4_2_11860F	ACCATAGTGATTACCATACTAA	135_pneum4_2_12201R	CAATAATGAGTCTATGTTTGCA	134135
						135_pneum1_1_10177F	CTYAGTGTAGGTAGRATGTTTG	135_pneum1_1_10640R	TCDATACCACCCATATGATATC	
						135_pneum1_2_13275F	TTGGGTWGTYAAYATAGATTAT	135_pneum1_2_14075R	CTTARAAAYTCAATWGGTAAAC	

表 1-3-6 multiplex PCR-NGS 法に使用したプライマー(6)

Unseigned Othersponde 138 Influence voir A 138 Influence voir A 138 Influence voir A 138 Influence voir A I38 IA Concentration of the set of the se	Genome	order	family	<u>subfamily</u>	<u>Genus</u> <u>No.</u>	<u>genus</u>	<u>プライマー配列F</u>		プラ	<u>イマー配列R</u>	<u>primer Mix</u> No.
Image: space in the space is the s		Unassigned	Orthomyxoviridae		136	Influenza virus A	136_inflA1-3_1016_F	AYGAYRGMWCHRGCARTWGYVR	136_inflA1-3_1395_R	ACYWKWDRYRCCACAAAACACA	
Image: Sec: Sec: Sec: Sec: Sec: Sec: Sec: Se							136_inflA4-6_756_F	CCRCTRTAHCCWSWCCAVTCAK	136_inflA4-6_1249_R	ACYGATGGVYCDRSYRMTGGR	106107
Image: Solution of the					137	Influenza virus B	137_influB_seg3_491_F	AGGAAGGAAAAGGGAGAG	137_influB_seg3_859_R	CAGACATGAGGAGAAAGG	130137
Image: Section of the sectio							137_influB_seg6_706_F	CACACAACATCCTAAGAACACA	137_influB_seg6_1290_R	AGCCAAAAGAATACCAACCA	
Instrume					138	Influenza virus C	138_influC_1274_F	ACGCCCCTGCAACAATAA	138_influC_seg1_2206_R	GCCCAAATCCCACATCAA	120160
C: Jes RNA Image: Constraint of the service of the servi							138_influC_seg2_293_F	AGAAAAGAATGGGGGAAGG	138_influC_seg2_860_R	GGCATTGAGAGAAGTAACAG	138100
Chesigned Interview Interview <thinterview< th=""> <thinterview< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td>139</td><td>Isavirus</td><td></td><td></td><td></td><td></td><td></td></thi<></thinterview<></thinterview<>					139	Isavirus					
C) JesRNA Interpretation Interpretati					140	Quaranjavirus					
Unassigned Unassigned Intervirus Intervirus <thintervirus< th=""> Intervirus Intervir</thintervirus<>	(-)ssRNA				141	Thogotovirus	141_thogoto_seg3_1027F	GGGTAGAGGAAGAGATGG	141_thogoto_seg3_1535_R	GTAAATTGATGCTGGCTGT	
Unassigned Burgwindee 142 Hattavius 143 Hents (1984) CMG/MMCD/MMCB/MG/BG/GGTHGT 142 RefRefHick/GW/GTH/GGCDDBW 144 Orthoburgwinia 144 0rthoburgwinia 144 0rthoburgwinia 144 0rthoburgwinia 144 0rthoburgwinia 144							141_thogoto_seg4_708_F	AGGAGAAAGGAAGACCAAGA	141_thogoto_seg4_1346_R	ACCACAAAAGACCAACCA	141142143
Interview Interview <t< td=""><td></td><td>Unassigned</td><td>Bunyaviridae</td><td></td><td>142</td><td>Hantavirus</td><td>142_hanta_583_F</td><td>GYMVRMGDWMHSMDGGBGTHGT</td><td>142_hanta_1054_R</td><td>KRKRHHGGWGTHTCWGGDDDBW</td><td></td></t<>		Unassigned	Bunyaviridae		142	Hantavirus	142_hanta_583_F	GYMVRMGDWMHSMDGGBGTHGT	142_hanta_1054_R	KRKRHHGGWGTHTCWGGDDDBW	
Image: Section of the sectio					143	Nairovirus	143_nairo_L_4964_F	CAGGCYTKAMYBTWGTYTWYGR	143_nairo_L_5480_R	ARDARYCGCAGCWTSCKKBTMK	
Image: Section of the sectio					144	Orthobunyavirus	144_ortho3_1_2628F	GCAAACCCAGAATTTGTTGATG	144_ortho3_1_3424R	GTRTAATTRAGATTCCCTTGCA	_
Image: Constraint of the second sec							144_ortho3_2_2626F	GCAAACCCAGAATTTGTTGATG	144_ortho3_2_3115R	TATAYGTGATCATATGGCTTGC	144-1
Interview Interview <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>144_ortho2_1_3147F</td><td>AAATAAATGCAGACATGTCAAA</td><td>144_ortho2_1_3671R</td><td>TATATGTTTTYTTCATRTTTGC</td><td></td></t<>							144_ortho2_1_3147F	AAATAAATGCAGACATGTCAAA	144_ortho2_1_3671R	TATATGTTTTYTTCATRTTTGC	
Interview Interview <thinterview< th=""> <thinterview< th=""> <thi< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>144_ortho2_2_3146F</td><td>GAAATAAATGCAGACATGTCAA</td><td>144_ortho2_2_3671R</td><td>TATATGTTTTYTTCATRTTTGC</td><td></td></thi<></thinterview<></thinterview<>							144_ortho2_2_3146F	GAAATAAATGCAGACATGTCAA	144_ortho2_2_3671R	TATATGTTTTYTTCATRTTTGC	
Image: Construction of the second s							144_ortho4_1_3164F	MWTGGGGWTGYGAAGAATGGGG	144_ortho4_1_3551R	GCATGACAAATATAATCAAATT	
Interview Interview <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>144_ortho4_2_3164F</td><td>MWTGGGGWTGYGAAGAATGGGG</td><td>144_ortho4_2_3552R</td><td>TGCATGACAAATATAATCAAAT</td><td>144-2</td></t<>							144_ortho4_2_3164F	MWTGGGGWTGYGAAGAATGGGG	144_ortho4_2_3552R	TGCATGACAAATATAATCAAAT	144-2
International and the spiles 1:237F TGTTGYTAGAGTGTTGTTGCTC International 2:09R GAGTGATCCATTSTTGWGGAGT International and the spiles 1:237F TGTTGYTAGAGGAAGCAA International 2:09R GAGTGATCCATCSTTTGWGGAGT International and the spiles 1:2502F ATGAYGTGTTGTGAGAGAACA International 2:09R GAGTGATGCACCACCCCCCCCCCCCCCCCCCCCCCCCCC							144_ortho1_1_159F	YYGYTAGAGTCTTCTTCCTCAA	144_ortho1_1_629R	GAGTCATCCAYTSTTCWGCAGT	
Interpret Interpret <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>144_ortho1_2_137F</td><td>TGTTGYTAGAGTCTTCTTCCTC</td><td>144_ortho1_2_609R</td><td>GAGTCATCCAYTSTTCWGCAGT</td><td></td></t<>							144_ortho1_2_137F	TGTTGYTAGAGTCTTCTTCCTC	144_ortho1_2_609R	GAGTCATCCAYTSTTCWGCAGT	
Image: Construct of the second seco					145	Phlebovirus	145_phleb3_1_2502F	ATGAYGTGTCTTGCAGAAGCAA	145_phleb3_1_3289R	ATTGGAACTCTCTAGCCCGAAG	_
Image: Section of the sectin of the section of the							145_phleb3_2_2502F	ATGAYGTGTCTTGCAGAAGCAA	145_phleb3_2_3285R	GAACTCTCTAGCCCGAAGACTA	145-1
Image: Spin State							145_phleb2_1_50F	TTAAGGAGTTCGGTGAGGACAT	145_phleb2_1_566R	TGGGTGAAGTAGAATTGCCAGA	
Image: Construct of the synthest 12822F GGARGAGTTTGAAGAATGTCGG 145 phleb 1 2039R AGTGGTGTAATGSCCTTGGTTG 145 phleb 1 2039R AGTGGTGTAATGSCCTTGGTT 145 phleb 1 2039R IAGTGGTGTAATGSCCTTGGTT 145 phleb 1 2039R IAGTGGTGGGTGGGTGGGTGGGTGGTGGT 145 phleb 1 2039R IAGTGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG							145_phleb2_2_44F	ATATCCTTAAGGAGTTCGGTGA	145_phleb2_2_566R	TGGGTGAAGTAGAATTGCCAGA	
Image: Second							145_phleb4_1_2622F	GGARGAGTTTGAAGAATCTCGC	145_phleb4_1_3039R	AGTGGTGTAATGSCCTTGGTTC	
Image: Construct of the second sec							145_phleb4_2_3151F	AACAGCATTGCAAAGCATAAAG	145_phleb4_2_3592R	TGAAYTCTGARTTGTATTCACA	145-2
Id5_phleb1_2_3205F ATAAAGAAGAAGAAGAAGAAGAAGAGAGAGAGACCC 145_phleb1_2_3025R TTTGTWACAAARTGGCCTTGGT Unassigned Id7 Arenavirus Id7_arena_3865_F TTHCCYCGAACYTGYTCTTTR Id7_arena_4746_R YRMYTCWGTTWGCCARMTRWOW Id7157 Unassigned Id8 Hepatitis D Id7 Arenavirus Id7157 (+)assigned Id8 Hepatitis D Id7157 Id7157 Id7157 (+)assigned Id9 Aphthovirus Id9_aphtho.3220_F IMMYSYKGWRTGGGATRYHGGYY Id9_aphtho.3765_R GGGGTGGTGGAAAYTYD Id9151 (+)asRNA I51 Aquamavirus I51_avihe1_1_008F CTGGTCGAGTCCCAYACACTAT I51_avihe1_1_1217R GTGTTRGTGCGSAGATCCAAG Id9151 I50 Aquamavirus I51_avihe1_2_008F CTGGTCGAGTCCCAYACACTAT I51_avihe1_2_1217R GTGTTRGTGCGAGCGATCCAAGA Id9151 I52 Avisivirus I53_cardi1_2.7664F AGATTACWCCTGCYAACAGAC I53_cardi1_2.8008R TAAMRCGTTGCGATCCGATCCGATCGA Id9151 I53 Cardiovirus I53_cardi1_2.7664F AGATTACWCCTGCYAACAGAC I54_cosa_276_R DGTCATKSYNGTHRWGWGMN I53154155 I54 Cosavirus I54_cosa_1830_F <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>145_phleb1_1_2305F</td><td>ATAAAGAAGAAGARACWGAGCC</td><td>145_phleb1_1_3024R</td><td>TTGTWACAAARTGGCCTTGGTT</td><td>140 2</td></td<>							145_phleb1_1_2305F	ATAAAGAAGAAGARACWGAGCC	145_phleb1_1_3024R	TTGTWACAAARTGGCCTTGGTT	140 2
Ide Tospovinus 147 Arenavirudae 149 Aphthovirus 1149 Aphthovirus 1149 Aphthovirus 1149 Aphthovirus 1149 Aphthovirus 1151 Avihepatovirus 1151 Avihepatovirus 1151 Avihepatovirus 1151 Avihepatovirus 1151 Avihepatovirus 1153 Cardio vi							145_phleb1_2_2305F	ATAAAGAAGAAGARACWGAGCC	145_phleb1_2_3025R	TTTGTWACAAARTGGCCTTGGT	
Unassigned Arenavirus 147. arena.3865 F TTHCCYCCAACYTGYTCTTR 147. arena.4746 R YRMYTCWGTTWGCCARMTRWCW [147157 Unassigned 148 Hepatitis D 148 Hepatitis D 147. arena.4746 R YRMYTCWGTTWGCCARMTRWCW [147157 (+)seRNA 148 Hepatitis D 148 Hepatitis D 149. aphtho.3220 F MMYSYKGWRTGGGATRYHGGV 149. aphtho.3765 R GGGGTGGTGAAAYTYD [149151 Picornavirales 150 Aquamavirus 151 avihe1.1 608F CTGGTGGAGTCCCAYACACTAT 151 avihe1.1.1217R GTGTTRGTGGGSAGATCCAAGA [149151 151 Avihepatovirus 151 avihe1.2 608F CTGGTGGAGTCCCAYACACTAT 151 avihe1.2 1219R CGGTTRGTGGGSAGATCCAAGA [149151 152 Avisivirus 151 avihe1.2 608F CTGGTCGAGTCCCAYACAACTAT 151 avihe1.2 1219R CGGTTGGGAGTCCGATCGA [149151 153 Cardiovirus 153 cardil.1.7665F AGATTACWCCTGCYAACAAGA 153. cardi.1.8008R TAAMRCGTTGCGATCCGATCGA [149151 154 Cosavirus 154 cosa.1930 F ACHTB&CCYTTYCAYDMNGGN 154. cosa.2767 R DGCATCATKYWGTHRWGCWGMM [153154155 155 dicip1.2.1319F GGAGTACYGATACAGCTGTA					146	Tospovirus					
Unassigned 148 Hepatitis D (+)ssRNA Picornavirales Picornavirales 149 Aphthovirus 149.aphtho.320.F MMYSYKGWRTGGGATRYHGGY 149.aphtho.3765.R GGGGTGGTAAAYTYD 149151 (+)ssRNA 150 Aquamavirus 151 Avihepatovirus 151 avihe1 1.608F CTGGTCGAGTCCCAYACACTAT 151 avihe1 1.1217R GTGTTRGTGCGSAGATCCAAGA 149151 152 Avisivirus 151 avihe1 2.608F CTGGTCGAGTCCCAYACACACTAT 151 avihe1 2.1219R CWGTGTTRGTGCGATCGGAGAGTCCGAAGA 149151 152 Avisivirus 153 cardi1.17665F AGATTACWCCTGCYAACAGAGA 153 cardi1.2.8008R TAAMRCGTTGCGATCCGATCGA 149151 153 Cardiovirus 153 cardi1.2.7664F AAGATTACWCCTGCYAACAAGAGA 153 cardi1.2.8008R TAAMRCGTTGCGATCCGATCGA 153154155 154 Cosavirus 154 cosa 1930 F ACHTEBCCYTTYCAYDADNIGGN 154 cosa 2767 R DGTCATKSYWGTHRYWGCWMM 153154155 155 Dicipivirus 155 dicip1.2.1319F CAGTGGTATAGCGYAAGGCGAT 155 dicip1.2.1319F CAGTGGGYAAGAGGGGTTACTACACAGTGGTATCCCACACTTRGCGCGATACGA 156 156 156 156 156 156 156 156 156		Unassigned	Arenaviridae		147	Arenavirus	147_arena_3865_F	TTHCCYCCAACYTGYTCTTTR	147_arena_4746_R	YRMYTCWGTTWGCCARMTRWCW	147157
Image: Construint of the second sec			Unassigned		148	Hepatitis D					
(+) ssRNA Image: constraint of the stress of the stres											
Picornavirales Picornavirulae 149 Aptheboryus 149_aphtho_3220_F MMYSYKGWRTGGGATRYHGGVY 149_aphtho_3765_R GGGGTGGTGGTAAAYTYD 149151 150 Aquamavirus 151 Avihepatovirus 151 avihe1_1.608F CTGGTCGAGTCCCAYACACTAT 151 avihe1_1.1217R GTGTTRGTGCGSAGATCCAAGA 149151 161 Avihepatovirus 151 avihe1_2.608F CTGGTCGAGTCCCAYACACTAT 151 avihe1_2.1219R CWGTGTTRGTGCGATCCGATCCGAA 149151 162 Avisivirus 153 Cardiovirus 153_cardil_2.7664F AGATTACWCCTGCYAACAAGAG 153_cardil_2.8008R TAAMRCGTTGCGATCCGATCGAA 153154155 163 Cosavirus 154_cosa.1930_F ACHTCBCCYTTYCAYDMNGGN 154_cosa.2767_R DGTCATKSYWGTHRYWGOWGMN 153154155 164 155 Dicipivirus 155 dicipl_1.1867F CAGTGGTACGYAAGTCGTATA 155 dicipl_1.1208R TCAACAGCGTGTACTGGTCCCCCC 153154155 164 156 Enterovirus 156_enter2.1.31F GGGGCCACGTGGCGATAGTAC 155_dicipl_1.21729R CAGTGGTCTTCAAACGTTGGCGGTAC 156 161 156 Enterovirus 156_enter2.1.31F RGGGCCACGTGGCGGTGGCGTGGCGTGGTGGTGGTGGTAC 156_enter2.2.638R CACGGGGTCCAAAGTGATC </td <td>(+)ssRNA</td> <td></td>	(+)ssRNA										
150 Aquinavirus 151 Avinepatovirus 151 avine 1 608F CTGGTCGAGTCCCAYACACTAT 151 avine 1 1217R GTGTTRGTGCGSAGATCCAAGAA 149151 151 Avinepatovirus 151 avine 1 2.08F CTGGTCGAGTCCCAYACACTAT 151 avine 1 1219R CWGTGTTRGTGCGSAGATCCAA 149151 152 Avisivirus 153 cardii 1 2.08F CTGGTCGACTCGCYAACAAGAC 153 cardii 1 8008R TAAMRCGTTGCGATCCGATCCGA 149151 153 Cardiovirus 153 cardii 2,7664F AGATTACWCCTGCYAACAAGAA 153 cardii 2,8008R TAAMRCGTTGCGATCCGATCGA 154 Cosavirus 154 cosa 1930 F ACHTOBCCYTYCAYDMNGGN 154 cosa 2767.R DGTCATKSYWGTHRYWGCWGMMN 153154155 155 Dicipivirus 155 dicipi 1.1807F CAGTCGTATGCGYGATACGCAT 155 dicipi 1.1340R TCAACAGGTGATCATCGC 155 Dicipivirus 156 dicipi 1.807F CAGTCGTATGCYGATACAGCTGTTGAT 155 dicipi 1.1340R TCAACAGTGATCACTTCGCCGTACCGCAT 156 Enterovirus 156 enter2 1.31F RGGGCCACGTGGCGTTGAT 155 dicipi 1.2124P CAGGTGTTCCGAATGCGATAGTCCT 156 enterovirus		Picornavirales	Picornaviridae		149	Aphthovirus	149_aphtho_3220_F	MMYSYKGWRTGGGATRYHGGVY	149_aphtho_3765_R	GGGGTGGTGGTAAAYTYD	149151
Image: constraint of the second se					150	Aquamavirus					
151 151_avihe1_2_608F CTGGTCGAGTCCCAYACACTAT 151_avihe1_2_1219R CWGTGTTRGTGCGGAGTCCGAA 1001 152 Avisivirus 152_cardil_1_7665F AGATTACWCCTGCYAACAAGAC 153_cardil_2_8008R TAAMRCGTTGCGATCCGATCGAA 153 Cardiovirus 153_cardil_2_7664F AAGATTACWCCTGCYAACAAGAC 153_cardil_2_8008R TAAMRCGTTGCGATCCGATCGAA 154 Cosavirus 154_cosa.1930.F ACHTOBCCYTYCAYDMNGGN 154_cosa.2767.R DGTCATKSYWGTHRYWGCWGMMN 153154155 155 Dicipivirus 155_dicipl_1.867F CAGTCGTAATGCGYAACAGCTGTTA 155_dicipl_2.1729R CAGTGGTCTTTCTYAACTGGCC 156 Enterovirus 156_enter2_1.31F GGAGTACYGATACAGCTGTTGA 155_dicipl_2.1729R CAGTGGTCCCAAAGTTAGCC 156 Enterovirus 156_enter2_1.31F RGGGCCACGTGGCGGTAGTAC 156_enter2_1.613R CCGCCTCCAACTTRGGCGTTAC 156 enter2_1.31F RGGGCCACGTGGCCGYTAGTACC 156_enter2_638R CACGGGGTCCAAAGTGATCT 156 156 enter2_1.63F HRGTAMCYTTGTRCGCCTTG 156_enter2_538R TAGATAKCRCAATTCAGGG 156 156 156_enter1_2.63F HRGTAMCYTTGTRCGCCTTGTT 156_enter1_553R TTRGATTAKCCRCATTCAGG 156 <					151	Avihepatovirus	151_avihe1_1_608F	CTGGTCGAGTCCCAYACACTAT	151_avihe1_1_1217R	GTGTTRGTGCGSAGATCCAAGA	149151
152 Avisivirus 153 Cardiovirus 153_cardil_1_7665F AGATTACWCCTGCYAACAAGAC 153_cardil_1_8008R TAAMRCGTTGCGATCCGATCGA 153 Cardiovirus 153_cardil_2_7664F AAGATTACWCCTGCYAACAAGAC 153_cardil_2_8008R TAAMRCGTTGCGATCCGATCGA 154 Cosavirus 154_cosa 1930 F ACHTOBCCYTYCAYDMNGGN 154_cosa 2767 R DGTCATKSYWGTHRYWGCWGMM 153/s154155 155 Dicipi/rus 155_dicip1_1_867F CAGTCGTAATGCGYAAGTCCAT 155_dicip1_1_1729R CAGTGGTCTTTCTVAACTGGC 155 Dicipi/srus 155_dicip1_1_87F CAGTCGTGTGAA 155_dicip1_1_1729R CAGTGGTCTTTCTVAACTGGC 155 Dicipi/srus 156_enter2_1_319F GGAGTACYGATACYGATACACTGTTGA 155_dicip1_2_1729R CAGTGGTCACAATTGCGGTTAC 156 Enterovirus 156_enter2_1_31F RGGGCCACGTGGCGYTAGTAC 156_enter2_6018R CACGGGTGACCGAAAGTGACT 156_enter2_2_6018R CACGGGTGACCGAAAGTGACT 156_enter2_2_6018R CACGGGTGACCGAATAGTGCT 156_enter1_2_65F HRGTAMCYTTGTRGGCCTTT 156_enter1_1_553R TTRGGATTAKCCRCATTCAGG 156_enter1_2_65F VHRGTACCYTTGTRGGCCTTT 156_enter1_2_554R GTTRGGTACAACCAATGACCATTCAGCAATTCAGGG 156_enter1_2_554R GTCACGAAGCCAATGACCAATGACCAATGACCAATGACCC							151_avihe1_2_608F	CTGGTCGAGTCCCAYACACTAT	151_avihe1_2_1219R	CWGTGTTRGTGCGSAGATCCAA	
Image: construct of the second sec					152	Avisivirus					-,
Image: Construct of the second sec					153	Cardiovirus	153_cardi1_1_7665F	AGATTACWCCTGCYAACAAGAC	153_cardi1_1_8008R	TAAMRCGTTGCGATCCGATCGA	
Image: Construct of the co							153_cardi1_2_7664F	AAGATTACWCCTGCYAACAAGA	153_cardi1_2_8008R	TAAMRCGTTGCGATCCGATCGA	_
Image: constraint of the second se					154	Cosavirus	154_cosa_1930_F	ACHTCBCCYTTYCAYDMNGGN	154_cosa_2767_R	DGTCATKSYWGTHRYWGCWGMN	153154155
Image: Constraint of the second se					155	Dicipivirus	155_dicip1_1_867F	CAGTCGTAATGCGYAAGTCCAT	155_dicip1_1_1340R	TCAACAGCTGTATCRGTACTCC	_
156 Enterovirus 156_enter2_1.31F RGGGCCACGTGGCGYTAGTAC 156_enter2_1.618R CCGCCTCCAACTTRCGCGTTAC 156 156_enter2_2.60F CGYTAGWACCTTGTACGCCCG 156_enter2_2.638R CACGGRGTACCGAAAGTAGTGCT 156 156_enter1_1.63F HRGTAMCYTTGTRCGCOWRTT 156_enter1_1.553R TTRGATTAKCCRCATTCAGGG 156 156_enter1_2.62F VHRGTACCYTTGTRCGCCTRTT 156_enter1_2.554R GTTRRGRTTAKCCRCATTCAGG 157 Erbovirus 157_erbov1 1.7886F CATTGGTTCAGCCGTTGCT 157_erbov1 2.7895R ACTCCAGCGGTCCAAACTGAAC 157 Erbovirus 157_erbov1 1.7804F CATTGGTTCAGCCATTGGTCAGCATTGGT 157_erbov1 2.7895R TGAACCAATGCACT					_		155_dicip1_2_1319F	GGAGTACYGATACAGCTGTTGA	155_dicip1_2_1729R	CAGTGGTCTTTCTYAACTTGGC	
Image: Construct of the second sec					156	Enterovirus	156_enter2_1_31F	RGGGCCCACGTGGCGYTAGTAC	156_enter2_1_613R	CCGCCTCCAACTTRCGCGTTAC	_
Image: Constraint of the second se							156_enter2_2_60F	CGYTAGWACCTTTGTACGCCTG	156_enter2_2_638R	CACGGRGTACCGAAAGTAGTCT	156
Image: Constraint of the state of							156_enter1_1_63F	HRGTAMCYTTGTRCGCCWRTTT	156_enter1_1_553R	TTRGGATTAKCCRCATTCAGGG	
157 Erbovirus 157 erbov1 17886F CATTGGTTCAGCCGTTGGTTGC 157 erbov1 1 8568R ACTCCAGCGGTCCAAGATGAAC 147157							156_enter1_2_62F	VHRGTACCYTTGTRCGCCTRTT	156_enter1_2_554R	GTTRRGRTTAKCCRCATTCAGG	
157 erboy1 2 7503F TCATTGTTTGCACAGATTGGTA 157 erboy1 2 7895R TGAACCAATGCCTAATCCATTG		-			157	Erbovirus	157_erbov1_1_7886F	CATTGGTTCAGCCGTTGGTTGC	157_erbov1_1_8568R	ACTCCAGCGGTCCAAGATGAAC	147157
			157_erbov1_2_7503F TCATTGTTTGCACAGATTGGTA		157_erbov1_2_7895R	TGAACCAATGCCTAATCCATTG					

表 1-3-7 multiplex PCR-NGS 法に使用したプライマー (7)

Genome	order	family	<u>subfamily</u>	<u>Genus</u> <u>No.</u>	genus	n <u>us</u> プライマー配列F		2	<u>プライマー配列R</u>	<u>primer Mix</u> No.
(+)ssRNA				159	Hepatovirus	159_hepat3_1_338F	CTCATATTGAGAGATACCTCCA	159_hepat3_1_1111R	CACCTTRATYCTCACAACATTA	
						159_hepat3_2_337F	ACTCATATTGAGAGATACCTCC	159_hepat3_2_1111R	CACCTTRATYCTCACAACATTA	159-1
						159_hepat2_1_5081F	AARAATGTTRTMAAATTGGATG	159_hepat2_1_5799R	TCCACTTTAGTAATTCTTTGAG	
						159_hepat2_2_5081F	AARAATGTTRTMAAATTGGATG	159_hepat2_2_5805R	GTGAATTCCACTTTAGTAATTC	
						159_hepat1_1_1395F	AGGAATGAATTTMGAATTTCAA	159_hepat1_1_2022R	GACTTAATCTRTTGTATACAAA	159-2
						159_hepat1_2_932F	WACWGATGCTTTATTTCATGAA	159_hepat1_2_1416R	TTGAAATTCKAAATTCATTCCT	
				160	Hunnivirus	160_hunni1_1_6889F	TTGGATTTGATGATGTGGCCTT	160_hunni1_1_7211R	CCATTCAAAGGTTCCACTCTTT	138160
						160_hunni1_2_6887F	GCTTGGATTTGATGATGTGGCC	160_hunni1_2_7213R	GTCCATTCAAAGGTTCCACTCT	130100
				161	Kobuvirus	161_kobuv3_1_2037F	CAACACTGGAAGAYCCGCGCCG	161_kobuv3_1_2716R	GCCTGTGGCTGGAGTGCCAAGG	
						161_kobuv3_2_2037F	CAACACTGGAAGAYCCGCGCCG	161_kobuv3_2_2713R	TGTGGCTGGAGTGCCAAGGAGG	161-1
						161_kobuv4_1_7597F	TCTGGACTACAAGTGYTTTGAT	161_kobuv4_1_8041R	TTTGAGGAAGGTGACTTCATAG	
						161_kobuv4_2_4951F	CCCGTGGTGGTCTACCTCTACG	161_kobuv4_2_5346R	GGTGACGTTGATCCGMAGGTGG	
						161_kobuv1_1_7120F	GGTGGWCTCATYGAGTACATGC	161_kobuv1_1_7694R	GGCACRAACCARCGTTTCAGAA	161-2
						161_kobuv1_2_6715F	TTCCTYAAACACAAYAAGGGAG	161_kobuv1_2_7249R	ARTCCARATCAAAGACTTGAGG	
				162	Kunsagivirus					
				163	Megrivirus	•	•	•	•	•
				164	Mischivirus	164_mischi_3949_F	GCAAACAACTTCGGGGCAAT	164_mischi_4754_R	GGTCCAAGCTTCGGAGTCAA	
						164_mischi_1178_F	GTACCCCACTGCCCTTTCTC	164_mischi_1956_R	CTGGGTGTTTATGGCCGAGT	104105
				165	Mosavirus	165_mosav1_1_7723F	GTCTGACTCRGACCACGTCTAC	165_mosav1_1_8182R	CGCGACACTCCTCACCTTGTCA	164165
						165_mosav1_2_7723F	GTCTGACTCRGACCACGTCTAC	165_mosav1_2_8180R	CGACACTCCTCACCTTGTCAGG	
				166	Oscivirus					
				167	Parechovirus	167_parecho_593_F	DRWGGYYYRGRTATGWCRGSCY	167_parecho_1442_R	CCTGRGWWGTYKYKGCYRMRT	7
				168	Pasivirus	168 pasiv1 1 4374F	TATACTACCAATGGTTATGACT	168 pasiv1 1 4867R	GARTAATGCTGGAATTCATTAT	167168170
						168 pasiv1 2 5490F	CTTTATGGYTTTGTCGAACAGG	168 pasiv1 2 6083R	CARCAAATTCTTCCAGTCAGCA	
				169	Passerivirus					
				170	Rosavirus	170 rosav1 1 6307F	GCAATGCYCATGGCTTCAAAGA	170 rosav1 1 6645R	AATAACCTGGCATGGTCATCGC	
						170 rosav1 2 6628F	TGACCATGCCAGGTTATTGCGG	170 rosav1 2 7104R	GGTTCATGTCCARGCCATCCAT	16/1681/0
				171	Sakobuvirus					
				172	Salivirus	172 saliv1 1 2282F	GCGTGCRCAATTGGCTCGAGTA	172 saliv1 1 2610R	GGTRGARTCGCCATTCACATCC	1
						172 saliv1 2 2284F	GTGCRCAATTGGCTCGAGTACG	172 saliv1 2 2610R	GGTRGARTCGCCATTCACATCC	-
				173	Sapelovirus	173 sapelo 7485 F	TGGTGATGGWDYMWVWGGDTW	173 sapelo 8190 R	ATTGCAVCCMACHSMWSMWCCW	172173174
				174	Senecavirus	174 senec1 1 3591F	GTTCARCAGACCTGGAGAAAGT	174 senec1 1 3914R	CCAGTCTTTGACTKTGTCCATG	-
						174 senec1 2 3125F	CCAGGCTTCYAGCTTTGTCTAC	174 senec1 2 3914R	CCAGTCTTTGACTKTGTCCATG	-
				175	Sicinivirus	11120010012201201	oonadorronnaorranonno	1112001100122_001111	contartor real contrarto on ra	
				176	Teschovirus	176 tesch1 1 5121E	AGAAYATAGTGGARATGACATA	176 tesch1 1 5719B	AAARTCTGYTTTCTGCACATCA	P
					100011011100	176 tesch1 2 5124F	AYATAGTGGARATGACATATGA	176 tesch1 2 5719R	AAARTCTGYTTTCTGCACATCA	
				177	Tremovirus	177 tremo1 1 2448F	CATCRGTRGGTGCCATTAGGTT	177 tremo1 1 3194R	CCATCATYGTTGTRGTCATGGC	1/61//
						177 tremo1 2 4902F	CMTAYATYCTGATGCCATATCA	177 tremo1 2 5399R	TTGTGAYCACTCTRGAAATTGC	-
		Dicistroviridae		178	Aparavirus					
				179	Cripavirus	+	*	•	+	•
		Iflaviridae		180	Iflavirus	+	*	•	*	•
(+)ssRNA	Unassigned	Caliciviridae		181	Lagovirus	181 Jagov1 1 1203F	ATGAAGGGYGCTGGSAAGCTCA	181 Jagov1 1 1783R	TTGTCACAGTTGAGDGGGCACG	r
. ,						181 Jagov1 2 5275F	RWTTTGTGAATGTTATGGAGGG	181 Jagov1 2 5959R	ACRAACTCAAAGTCYTCACTTG	- · · · · · · · ·
				182	Nebovirus	182 neboy1 1 77F	GGCTCCAGTTGTTTCCAGAGAT	182 neboy1 1 535B	TTGCCYTTGTAGGAGGTGTCAT	181182
				102	1100011100	182 nebov1 2 5638E	ACACCCTGTCGGTCACAGTGCA	182 nebov1 2 6039B	CRTCCGGTTCRGTGTCTGATTG	-
				183	Norovirus	183 noro 1997 E	AATSMWCMWRSCCCMGYSCCM	183 noro 2392 B	TWTGWBMCMYRBMMYGYYGGCK	r
						183 noro 5100 F	GAYSMGKYWGGGTKSYAMGGYM	183 noro 5462 R	ATYSRCKYTTGRYGYWGCGY	
				184	Sapovirus	184 sapov1 1 13F	TGGCTTCCAAGCCATTCTACCC	184 sapov1 1 597P	TAACCACCTGACGCCACATGGC	183184
				10-7	Supovirus	184 sapov1 2 269F	CACAACGTTCCGTGAGCTGTTT	184 sapov1 2 852P	CTTCAACCARAGCAGTGACTGT	-
				185	Vesivirus	185 vesiv5 1 1343F	WCYTCTGCWACTCAGAAATGCT	185 yesiy5 1 2014P	CTCATCAATGATGCAAACCTCG	
				100	100111100	185 vesiv5 2 1343F	WCYTCTGCWACTCAGAAATGCT	185 vesiv5 2 2010P	TCAATGATGCAAACCTCGTTGC	185-1
						185 yesiy3 1 3670F	YGCTGAAGCCGAGGGAAACGTT	185 yesiy3 1 4052P	CRTACGGTAAWCCGCAGTCTCC	
						185 yesiy3 2 4974F		185 yesiy3 2 5544P		
						185 vesiv1 1 4891F		185 yesiy1 1 5372P	TTYTCYGCTTTGATRTAGTAGA	185-2
				-						

表 1-3-8 multiplex PCR-NGS 法に使用したプライマー (8)

Unassigned Heasevide 188 Ortholege Site / Particle Site / Partin/ Particle Site / Partin/ Particle Site / Particle S	Genome	order	family	subfamily	Genus No.	genus	2	<u> ライマー配列F</u>	2	<u>ライマー配列R</u>	primer Mix No.
Image: Instrume		Unassigned	Hepeviridae		186	Orthohepevirus	186 orthohepe 5604 F	TCTTCGGTTGCTTCTGGGAC	186 orthohepe 5932 R	CGATAATGGAGGCGCTCACT	,
Unassimed Astrovinde 187 Astrovinde 187 Astrovinde 187 avail 1, 53447 COCGTAGCAQQACTAGCAQCACC CocgTAGCAQQACTAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQCACC CocgTAGCAQATAGCAQATAGCAGTAGCACCACC CocgTAGCAQATAGCAGTAGCACCACC CocgTAGCAQATAGCAGTAGCACCACC CocgTAGCAQATAGCAGTAGCACCACC CocgTAGCAQATAGCAGTAGCACCACCACC CocgTAGCAQATAGCAGTAGCACCACCACCACC CocgTAGCAQATAGCAGTAGCACCACCACCACCACCACCACCACCACCACCACCACCA							186_orthohepe_4596_F	AGAAGCATTCTGGTGAGCCC	186_orthohepe_5061_R	TCGGCAATGGTCTGAAGCAT	100107
Image: second		Unassigned	Astroviridae		187	Avastrovirus	187_avast1_1_5384F	TCCCGTAGCAGGAGTAGGAGCA	187_avast1_1_5948R	CAGGGTCAACATTCCACCACCC	100107
Image: Section of the sectio							187_avast1_2_5385F	CCCGTAGCAGGAGTAGGAGCAG	187_avast1_2_5948R	CAGGGTCAACATTCCACCACCC	
Image: Section of the sectio					188	Mamastrovirus	188_mamas5_1_3611F	CCACAAGTGGTATGTTGACAAC	188_mamas5_1_4091R	CTGATAACACAGGAGTTTCCCA	
Image: Section of the sectio							188_mamas5_2_3611F	CCACAAGTGGTATGTTGACAAC	188_mamas5_2_4092R	ACTGATAACACAGGAGTTTCCC	100_1
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>188_mamas3_1_3432F</td><td>TTGTTGAGTTTGATTGGACACG</td><td>188_mamas3_1_4060R</td><td>TATGCGGTAGCAAAGGAGTTTC</td><td>188-1</td></th<>							188_mamas3_1_3432F	TTGTTGAGTTTGATTGGACACG	188_mamas3_1_4060R	TATGCGGTAGCAAAGGAGTTTC	188-1
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="2">188_mamas3_2_3432F TTGTTGAGTTTGATTGGACACG 188</td><td>188_mamas3_2_4052R</td><td>AGCAAAGGAGTTTCCCATACAG</td><td></td></th<>							188_mamas3_2_3432F TTGTTGAGTTTGATTGGACACG 188		188_mamas3_2_4052R	AGCAAAGGAGTTTCCCATACAG	
Image: Section of the sectin of the section of the section							188_mamas7_1_4388F AGGAGGGATTAGAGGGTCCACG 188		188_mamas7_1_4813R	CRTTGGTGTCSGTCATCCACCA	
Index Image: Image							188_mamas7_2_4388F	AGGAGGGATTAGAGGGTCCACG	188_mamas7_2_4814R	TCRTTGGTGTCSGTCATCCACC	100-0
Image: second							188_mamas4_1_3363F	AATGTGGKTGGWCACCAATGGA	188_mamas4_1_4025R	GGAGTTTCCCATGGAGTGATTC	100-2
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>188_mamas4_2_3362F</td><td>CAATGTGGKTGGWCACCAATGG</td><td>188_mamas4_2_4030R</td><td>GCAYAGGAGTTTCCCATGGAGT</td><td></td></th<>							188_mamas4_2_3362F	CAATGTGGKTGGWCACCAATGG	188_mamas4_2_4030R	GCAYAGGAGTTTCCCATGGAGT	
Index Index Instant Instant <thinstant< th=""> <thinstant< th=""> <thinsta< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>188_mamas1_1_3470F</td><td>TGGCTYCAAGCYTTYGAGTTTG</td><td>188_mamas1_1_3946R</td><td>CCAAAGAYGATCCAGCTGCTCA</td><td></td></thinsta<></thinstant<></thinstant<>							188_mamas1_1_3470F	TGGCTYCAAGCYTTYGAGTTTG	188_mamas1_1_3946R	CCAAAGAYGATCCAGCTGCTCA	
Image: Section of the section of t							188_mamas1_2_3470F	TGGCTYCAAGCYTTYGAGTTTG	188_mamas1_2_3947R	TCCAAAGAYGATCCAGCTGCTC	199-2
Unassigned Nodwiride 188 Betanodavirus 198 Destandavirus CATTCAATGGTGGTTCACCAG 188 Mamass 2.3554 CAATCGTGGTTCGCAAGAGG Unassigned Nodwiride 190 Alphanodavirus 190 alpha 2.668F CTCTTGTGGTTGACAGGGTGG 190 alpha 2.1014R TTGGTATAACAGGCRTTTGGAT 190 Nidovirales Coronavirinae 191 Alphanodavirus 191 alpha 2.2668F CTCTTGTGGTGACAGGCTGGG 190 alpha 2.1104R TTGGTATAACAGGCRTTTGGAT Nidovirales Coronavirinae 191 Alphacoronavirus 191 alpha 2.21014R TGGTAGGATDAGCGGTTGGAT 190 alpha 2.1204F Nidovirales Coronavirinae 191 Alphacoronavirus 191 alpha 2.1204F TTTGAGGATGGTGTGAGGTGAGGTGAGGTGAGGTGAGG							188_mamas8_1_3257F	CATTCAATGGTGGCTTCACCAG	188_mamas8_1_3649R	TGTCGTCTCCATAGACGATGGT	100 5
Unassigned Nodaviridae 189 Betamodavirus Unassigned Nodaviridae 180 alpha2 2 de8F CTCTTGTTGGTTAGATGGTGT 190 alpha2 2.1013R TGGTATAGATGGCGTTTGGAT Nidovirales Coronavirinae 191 alpha5 1.12067 AnAACCACCHYCTOTARAATAGT 191 alpha5 1.12067 ACACCACCHYCTOTARAATAGT 191 alpha5 1.12067 ACACACCACCACCACCACCACCACCACCACCACCACCAC							188_mamas8_2_3257F	CATTCAATGGTGGCTTCACCAG	188_mamas8_2_3654R	CAATCTGTCGTCTCCATAGACG	
(+) seRNA 190 Albhanodavirus 190 abpha2 1688F CTCTTCTTGGTTAQATGGTGT 190 abpha2 1.014R TGGTATACATGGCRTTTGGA 190 Nidovirales Coronavirdae 190 abpha2 2.668F CTCTTCTTGGTTAQATGGCGT 190 abpha2 2.1013R TGGTATACATGGCRTTTGGA 190 Nidovirales Coronavirdae 191 Albhaconavirus 191 abpha3 2.1246F TYTATCCGCTGCAGAGCCTGCG 190 abpha3 1.0622R TAAACTGATCYTCTARAATGT Nidovirales Coronavirus 191 abpha3 2.1246F TYTATCCGCTGCAGAGCCTGCG 191 abpha3 1.0622R TAAACTGATCYTCTARAATGT 191 abpha3 5.10627R TAAACTGATCYTCTAGTTAGAGTTAGAGCTTAGACGAGCTGCG 191 abpha3 1.0622R TAAACTGATCYTCTAGTTAGAGTTAGA 191 191 abpha3 5.10627R TGATATAACTGACGATTGAGGATGAGAGTGATGT 191 abpha3 5.10627R TGATATAACTGACGATTGAGGATTGAGGATTGAGGATGAGGAGTGAGT		Unassigned	Nodaviridae		189	Betanodavirus					
(+) Image: I					190	Alphanodavirus	190_alpha2_1_668F	CTCTTGTTGGTTTAGATGGTGT	190_alpha2_1_1014R	TTGGTATAACATGGCRTTTGGA	
Image: Section of the sectin of the section of the							190_alpha2_2_668F	CTCTTGTTGGTTTAGATGGTGT	190_alpha2_2_1013R	TGGTATAACATGGCRTTTGGAT	190
Nidovirales Coronavirinae Image: Ima							190_alpha1_1_246F	TYTATCCGCTTGACAGCCTGCG	190_alpha1_1_834R	TCTGGACAATCRGTCCACGGTC	
Nidovirales Coronavirinae 191 Alphacoronavirus 191 alpha51.9997F AAATTGTCTKCTTAGGCTTAAA 191.abha51.10822F TAARGTCACYCTCTAGATGATAGATAGT 191.abha51.10822F Image: Strain							190_alpha1_2_246F	TYTATCCGCTTGACAGCCTGCG	190_alpha1_2_718R	GCTAGCGATRAACTCRCCAGCT	
Image: Construct of the image is a second of the		Nidovirales	Coronaviridae	Coronavirinae	191	Alphacoronavirus	191_alpha5_1_9997F	AAATTGTCTKCTTAGGCTTAAA	191_alpha5_1_10622R	TAAACTCATCYTCTARAATAGT	·
Image: State in the state							191_alpha5_2_11208F	CIAICAIGIIYIIAGCIAGAGC	191_alpha5_2_11830R	ATARGCRGCATATGATGGTAAA	191-1
Image: Construct of the interval of the interva					_		191_alpha16_1_14/81F	TTTCAAGGAAGGGTCYTCAGTT	191_alpha16_1_15205R	GACGATIRGICATIGIGCIAAG	
(+)seRNA 191 alpha1 1 1/2200F ARCGYA1HGIDCAGA1GIGTIG 191 alpha1 1 1/223R ACATRICVACATIRCAAITCCA 191-2 (+)seRNA 192 Betacoronavirus 192 betac1 1 14919F MATGCTGCTATTAVAM 192 betac1 1 15227R ACATRICVACATIRCAAITCCA (+)seRNA 192 Betacoronavirus 192 betac1 1 14919F MATGCTGCTATYACWGATTAYA 192 betac1 2 15228R ACATVCQDQGCTCTATTCTTAGC 192 Betacoronavirus 192 betac1 3 14919F MATGCTGCTATYACWGATTAYA 192 betac1 3 15228R CAGTVCQDQGCTCTATTCTTAGC 192 Betacoronavirus 192 betac2 - 26701F TTAACAATGCYCTTKRGCTAT 192 betac2 - 26829R AAQAAGMACTWATRGCACCAAA 192 betac2 - 26701F TTAACAATGCYCTTKRGCTAT 192 betac2 - 28830R AAQAAGMACTWATRGCACCAAA 192-2 193 Detacoronavirus 193 deta1 1 2332F TTGTTGCTATGGYWTACCYA 193 deta1 1 12708R GCHGCTTCMCCATCTGCATAT 193-1 193 deta1 2 12332F TTGTTGCTATGGYWTACCYA 193 deta1 2 17309R GDGTGAGAAWGCATGCTTAT 193-1 193 deta1 2 1232F TTGTTGGTATGTGWTACCYA 193 deta1 2 17309R GDGTGAGAAWGCATGCTTAT 193-1 193 deta2 1 7280F GYTGACTATGTTTGGAAYTG 193 deta2 1 7399R GDGTGAGAAWGCATGCTTAT 193-2 193 deta2 1 7280F GYTGAC					_		191_alpha16_2_14781F	TTTCAAGGAAGGGTCYTCAGTT	191_alpha16_2_15301R	ACATAAAGTCCCAACCACCATA	101.0
(+)ssRNA 192 betacoronavirus 193_abpla1_2,1720P ARGGYA1HGIDCAGA GIG11G 191_abpla1_2,1722P AGTVCGDQGCTCATTCAGCA (+)ssRNA 192 betacl 192_betacl 192_betacl <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>191_alpha1_1_1/260F</td><td>ARCGYATHGIDCAGATGIGIIG</td><td>191_alpha1_1_1/923R</td><td>TACATRICVACATIRCAATICC</td><td>191-2</td></td<>							191_alpha1_1_1/260F	ARCGYATHGIDCAGATGIGIIG	191_alpha1_1_1/923R	TACATRICVACATIRCAATICC	191-2
(+)sertNA 192 Betacoronavirus 192, betac1, 14919F MATGCTGCTATACWAGATTAYA 192, betac1, 15227R ACAGTVCQDGTCTATTCTTAGC 192-1 Image: Construct of the construct of	(.) 				100		191_alpha1_2_1/260F	ARCGYATHGIDCAGATGIGIIG	191_alpha1_2_1/922R	ACATRICVACATIRCAATICCA	
192 beta 1 2 149 19+ MATGCTGCTATYAQWGATTAYA 192 beta 2 1 2529R CAGTVCGDGCTCTATTATG 192-1 192 beta 2 1 349 19+ MATGCTGCTATYAQWGATTAYA 192 beta 2 1 5229R CAGTVCGDGCTCTATTAGC 192-1 192 beta 2 1 349 19+ MATGCTGCTATYAQWGATTAYA 192 beta 2 1 5229R CAGTVCGDGCTCTATTAGC 192-1 192 beta 2 1 26001F TTAACAATGCYCTTKRTGCTAT 192 beta 2 2 26830R AAQAAGMACTWATRGCACCAAA 192-2 193 beta 2 1 26001F TTAACAATGCYCTTKRTGCTAT 192 beta 2 2 26830R AAQAAGMACTWATRGCACCAAA 192-2 193 beta 1 1 232F TTGTTTGCTATGTGWTACCYA 193 deta 1 2 1200R GCHGCTTMCCACTATTGCATAT 193-1 193 deta 1 3 1233F TTGTTTGCTATGTGWTACCYA 193 deta 1 2 1200R CHGCTTMCCATATAT 193-1 193 deta 1 1 1220F GYTGGATATGTTTGGAATTG 193 deta 1 2 1200R GCHGCTTATACACTAT 193-1 193 deta 1 1 1232F TTGTTGCTATGTGWTACCYA 193 deta 1 1 200R GCHGCTATAAAGGCGCTTAT 193-1 193 deta 1 1 1220F GYTGGATATGTTTTGGAAYTG 193 deta 2 17397R GDGTGAAAWGCATGCTTAT 193-1 193 deta 2 17280F GYTGACTATGTTTTGGAAYTG 193 deta 2 17397R G	(+)ssRNA				192	Betacoronavirus	192_betac1_1_14919F	MATGCTGCTATYACWGATTAYA	192_betac1_1_15227R	AGIVCGDGCICIATICTIAGCA	
192 betac1 3 14919F MAI GC1GC1A1YACWGATLAYA 192 betac2 1 315228C CAGIV0G0GC1C1A11C11AGC 192 betac2 1 26701F TTAACAATGCYCTTKRTGCTAT 192 betac2 2 26830R AAGAAGMACTWATRGCACCAAA 192 betac2 2 26701F TTAACAATGCYCTTKRTGCTAT 192 betac2 2 26830R CAGAGAMACTWATRGCACCAAA 193 Deltacoronavirus 192 betac2 2 26701F TTAACAATGCYCTTKRTGCTAT 192 betac2 2 26830R CAGAGAMACTWATRGCACCAAA 193 Deltacoronavirus 193 deta1 1 12332F TTGTTTGCTATGTGYWTACCYA 193 deta1 2 12707R CHGCTTCMCCATCTTGCATAT 193 deta1 2 12332F TTGTTTGCTATGTGYWTACCYA 193 deta1 2 12707R CHGCTTCMCCATCTTGCATATA 193-1 193 deta1 2 1332F TTGTTTGCTATGTGYWTACCYA 193 deta1 2 12707R CHGCTTCMCCATCTTGCATATA 193-1 193 deta1 2 1332F TTGTTTGCTATGTYWTACCYA 193 deta1 2 12707R CHGCTTCMCCATCTTGCATATA 193-1 193 deta2 1 17280F GYTGACTATGTTTTGGAAYTG 193 deta2 1 17399R GDGTGAGAAWGCATGCTTAT 193-2 193 deta2 1 17280F GYTGACTATGTTTTGGAAYTG 193 deta2 1 1739R GDGTGAGAAWGCATGCTTAT 193-2 193 deta2 1 17280F GYTGACTATGTTTTGGAAYTG 193 deta2 1 1739R GTGGAGAAAWGCATGCTTATTATA 193-2 194 dammacononavirus							192_betac1_2_14919F	MAIGCIGCIATYACWGATTAYA	192_betac1_2_15229R	ACAGIVCGDGCICIAIICIIAG	192-1
Image: Set as 2-1 26 / 01F Image: Set as 2-1 /					_		192_betac1_3_14919F	MAIGCIGCIAIYACWGAIIAYA	192_betac1_3_15228R		
192_betac2_2_20/01F 11AACAA1GYCTTK1GU1A1 192_betac2_2_20830F AAAGAAGMACIWA1RGACAAA 192-2 193 193 193_betac2_2_207/01F 11AACAA1GYCTTK1GU1A1 192_betac2_2_20830F GCAGAATTRGTWGACCAAA 192-2 193 193 Detacoronavirus 193_deta1_1_12332F TTGTTTGCTATGTGYWTACCYA 193_deta1_1_12708R GCAGAATTRGTWGACCACTGCATATA 193-1 193 0etacoronavirus 193_deta1_2_12332F TTGTTTGCTATGTGYWTACCYA 193_deta1_3_12696R TCYTGCATATAGTARAAGTGSC 193 deta2_1_17280F GYTTGACTATGTTTTGGAAYTG 193_deta2_1_17280F GYTTGACTATGTTTTGGAAYTG 193_deta2_1_17397R GDGTGAGAAAWGCATGCTTAT 193-2 194 193_deta2_1_17280F GYTTGACTATGTTTTGGAAYTG 193_deta2_1_17397R GTGAGAAAWGCATGCTTAT 193-2 195 detac2_3_17280F GYTTGACTATGTTTTGGAAYTG 193_deta2_1_7397R GTGAGCAAAWGCATGGTTAT 193-2 194 gamma1_1_15012F AAGAGCTTGCTCAGAAATGTGT 194_gamma1_1_15012F TCAGAGACTGTGAAT 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_gamma1_1_15012F 194_ga							192_betac2=1_26/01F	TTAACAATGCYCTTKRTGCTAT	192_betac2=1_26829R	AAGAAGMACTWATRGCACCAAA	100.0
Image: State in the state					_		192_betac2_2_26701F	TIAACAATGCYCTIKRIGCIAT	192_betac2_2_26830R	AAAGAAGMACTWATRGCACCAA	192-2
193 Detadoronavirus 193. deta1 / 12332F TIGITTGGTAIGIGTWIACCTA 193. deta1 / 1270/R CHGCTTGMCAICTGCAICTGGAIA 193 deta1 / 12332F TIGITTGGTAIGIGTWIACCTA 193. deta1 / 1270/R CHGCTTGMCCAICTGGAIATA 193. 193 deta1 / 12332F TIGITTGGTAIGIGTWIACCTA 193. deta1 / 1270/R CHGCTTGMCCAITGGAIATA 193. 193 deta1 / 12332F TIGITTGGTAIGTGYWIACCYA 193. deta1 / 1290/R CDGTGAGAAWGCATGCTTAIT 193. 193 deta2 / 17280F GYTIGACTAIGTTTTGGAAYTG 193. deta2 / 1740/R GDGTGAGAAWGCATGCTTAIT 193. 194 gammaconavirus 194. gammal / 15012F AGAGCTTCTCAGAATAGTAGTG 194. gammal / 15711R TGGACCTAACAGGATCAACAGCT 194. 194 gammaconavirus 194. gammal / 15012F AAGAGCTTCTCAGAATAGGTAGGA 194. gammal / 1608/R TGCACTAAAGGATCAACAGCT 194. 194 Gammacoronavirus 194. gammal / 15012F AAGAGCTTCTCAGAATAGGAAGCATCAACAGCAT 194. gammal / 1608/R TGCACTAAAGGATCAACAGCAT 194. 194 Gammacoronavirus 194. gammal / 15012F TGAGAGAAGCATGCAGCA 194. gammal / 1608/R TGCACTAAAGGATCAACAGCAC					100	D. It.	192_betac2_3_26378F		192_betac2_3_26846R		
Image: State in the state					193	Deltacoronavirus	193_delta1_1_12332F	TTOTTTOOTATOTOVWTACCYA	193_delta1_1_12708R	GCHGCTTCMCCATCTTGCATAT	102-1
Image: State in the state							193_delta1_2_12332F	TTOTTTOOTATOTOVATAOOVA	193_delta1_2_12/0/R		192-1
Image: Strate in the state in the strate					_		193_delta1_3_12332F		193_deita1_3_12090R		
Image: State in the state i					_		193_delta2_1_1/280F		193_delta2_1_17399R	GDGTGAGAAAWGCATGCTTATT	102-2
Image: State of the state					_		193_delta2_2_1/280F	GITIGACTATGTTTTGGAATTG	193_delta2_2_17400R	GGDGTGAGAAAWGCATGCTTAT	193-2
Torovirinae 195 Bafinivirus 194, gammal 1 150/12* AddAGCT11CLAGAATAGGCT 194, gammal 1 150/18* TIGACCT1ACLAGTCT1ACTA					104	0	193_delta2_3_17260F		193_ueita2_3_17397R		· ·
Torovirinae 195 Bafinivirus TO Activity TO Activity <thto< td=""><td></td><td></td><td></td><td></td><td>194</td><td>Gammacoronavirus</td><td>194_gamma1_1_15012F</td><td></td><td>104 gamma1_1_10/11R</td><td></td><td>194</td></thto<>					194	Gammacoronavirus	194_gamma1_1_15012F		104 gamma1_1_10/11R		194
Interviside 199 Datimitivities 196 torov1_1_9844F TGATGAAGTCYTCTGATGTAGT 196 torov1_1_10389R AAATATARGCATTCTCACCCTC Arteriviride 196 Torovirus 196 torov1_2_16354F ATATCAACCAGARTTYTTTAAT 196 torov1_2_16784R TTYTACACTGRTATATACAAAAT 196197 Arteriviride 197 Arterivirius 197_arteri 8645_F YGCGYKGAYWBHMGSYSYGAY 197_arteri 8969_R GTVVMNRKGGTSRCRGTTTGYM				Toroviringo	105	Refinivirue	194_gamma1_2_15090F	TAGAAGAAGTAGTAGGTGGA	194_gamma1_2_16087R	TTOACATAAAGCATCAACAGCT	-
Intervivide 190 Intervivide 190 Intervivide 190 Intervivide				rorovirinae	195	Torovinus	196 torov1 1 9844E	TGATGAAGTCYTCTGATCTACT	196 torov1 1 10299P	AAATATARGOATTOTOACOOTO	
Arteriviridae 197 Arterivirus 197, arteri 8645, F YGCGYKGAYWBHMGSYSYGAY 197, arteri 8969, R GTVVMNRKGGTSRCRGTTTGYM					190	Torovirus	106 40001 1 2 162545		106 terrent 0 16794D		106107
Nucervinuad 197 Arterivinus 197 arteri ova r industri industri 197 arteri osa n GTVMINRAGI SKORGTTI GTM			Artorivirida-		107	Artoniviruo	107 ortori 9645 E	VGCGVKGAVWEHMGSVSVCAV	107 ortori 2060 P		100107
			Mesoniviridae		192	Alphamesonivirus	137_arter[0045_P		137_arten_0309_R	GI V WWWWWWGGGI SRORGI I TGTW	
Roliviriae 199 Okaviris			Roniviridae		199	Okavirus	•	•	•	•	•

表 1-3-9 multiplex PCR-NGS 法に使用したプライマー(9)

Genome	order	family	subfamily	<u>Genus</u> <u>No.</u>	genus	プライマー配列F		2	<u>プライマー配列R</u>	primer Mix No.
	Unassigned	Flaviviridae		200	Hepacivirus	200_hepac1_1_145F	GTCTKCGGAACCGGTGAGTACA	200_hepac1_1_725R	CGCABGTHAGGGTATSGATGAC	200202
						200_hepac1_2_283F	YGGTACTGCCTGATAGGGTGCT	200_hepac1_2_725R	CGCABGTHAGGGTATSGATGAC	200202
				201	Flavivirus	201_flavi10_1_8985F	GCCATMTGGTAYATGTGGCTTG	201_flavi10_1_9568R	ACCACRCAGTCATCWCCACTGA	
						201_flavi10_2_8926F	ACATGATGGGAAAGMGAGAGAA	201_flavi10_2_9568R	ACCACRCAGTCATCWCCACTGA	
						201_flavi2_1_9031F	ABTGYGTGTACAWCATGATGGG	201_flavi2_1_9751R	TTNGCCATGTCATTSAGRAAGT	201-1
						201_flavi2_2_9079F	GYMGGGCMATYTGGTACATGTG	201_flavi2_2_9753R	GCTCCCAYTCBCCVATGTCCTT	
						201_flavi7_1_9150F	TYTGGTACATGTGGTTGGGAGC	201_flavi7_1_9569R	TRGTSAMGGTGTTCAGGGCATA	
						201_flavi7_2_9150F	TYTGGTACATGTGGTTGGGAGC	201_flavi7_2_9562R	GGTGTTCAGGGCATAWGTGACC	
						201_flavi14_1_9441F	CATYTCACGRGAAGACCAGAGA	201_flavi14_1_10075R	CYCCTTTWCCATGGATGGACCA	
						201_flavi14_2_9441F	CATYTCACGRGAAGACCAGAGA	201_flavi14_2_10125R	AATCCACACSCGRTTCCACACT	201-2
						201_flavi6_1_8756F	ATGACWGAYACRACTCCATTTG	201_flavi6_1_9107R	TYTCTCTYTTKCCCATCATGTT	
						201_flavi6_2_8474F	TAYCATGGMAGCTATGAAGTGA	201_flavi6_2_8940R	TTYTCTCTYTTKCCCATCATGT	
						201_flavi15_1_341F	AGAAAGACATCATCCAAGCCAT	201_flavi15_1_967R	TGTACARTGGTTCCACAAATTC	
						201_flavi15_2_341F	AGAAAGACATCATCCAAGCCAT	201_flavi15_2_963R	CARTGGTTCCACAAATTCTCCT	201-2
						201_flavi8_1_8622F	CARAGRGTGTTTAAAGAGAAAG	201_flavi8_1_9064R	GASACCCAGTGRTCTTCATTTA	201-3
						201_flavi8_2_8623F	ARAGRGTGTTTAAAGAGAAAGT	201_flavi8_2_9064R	GASACCCAGTGRTCTTCATTTA	
				202	Pegivirus	202_pegiv1_1_7791F	TGTAAGRCCACATGCTGCCATG	202_pegiv1_1_8186R	GTKATRCTACTRTCGAAGCAGG	200202
						202_pegiv1_2_7790F	CTGTAAGRCCACATGCTGCCAT	202_pegiv1_2_8186R	GTKATRCTACTRTCGAAGCAGG	200202
				203	Pestivirus	203_pesti5_1_10691F	ACAGCAATACCAAAGAATGAGA	203_pesti5_1_11129R	TMCCTCTYTGTCCTTKTCTTAT	
						203_pesti5_2_10688F	GAAACAGCAATACCAAAGAATG	203_pesti5_2_11129R	TMCCTCTYTGTCCTTKTCTTAT	202
						203_pesti1_1_365F	CTCTGCTGTACATGGMACATGG	203_pesti1_1_1438R	GTTRCACCAWCCRTGYTTGTTC	203
						203_pesti1_2_365F	CTCTGCTGTACATGGMACATGG	203_pesti1_2_1380R	GTCTTYTCACTHGCRTCCATCA	
	Unassigned	Togaviridae		204	Alphavirus	204_alpha2_1_2266F	AGYGGAAARAAAGAAAACTGYC	204_alpha2_1_2783R	GCRGCWGCTGTCATGACYTCGT	
						204_alpha2_2_2306F	AGYGGAAARAAAGAAAACTGYC	204_alpha2_2_2832R	GCWGCTGTCATGACYTCGTKTC	
						204_alpha9_1_7904F	ATGAAACCWGCMCACGTGAAAG	204_alpha9_1_8249R	CCATRTCTTTGTTCCAGGTGAC	204-1
						204_alpha9_2_7803F	GTCACTGGGTACGCCTGCCTGG	204_alpha9_2_8184R	CCATRTCTTTGTTCCAGGTGAC	
						204_alpha11_1_2839F	ACAACGAGCTCATGACTGCGGC	204_alpha11_1_3266R	AGCCGAATGCGGCTTGTCCTCT	
						204_alpha11_2_2074F	TCTACTACAAGCTTGTTGACGC	204_alpha11_2_2587R	TGGTTCACACATCCGACTTGTT	
						204_alpha4_1_134F	AGCAGGTCACWCCKAATGACCA	204_alpha4_1_925R	TSCCSGGGCTBATKGTGATCTT	
						204_alpha4_2_136F	TCACWCCKAATGACCATGCTAA	204_alpha4_2_577R	TCGAATCCTATCCARTAYACTG	204-2
						204_alpha1_1_149F ATGACCAYGCYAATGCBAGAGC 204_a		204_alpha1_1_644R	TCRTCKGCCCARTTKGTGTTGT	
						204_alpha1_2_149F	ATGACCAYGCYAATGCBAGAGC	204_alpha1_2_643R	CRTCKGCCCARTTKGTGTTGTA	
				205	Rubivirus	205_rubiv1_1_1055F	CCTAYTGCAAGACCCTGAGCCC	205_rubiv1_1_1384R	CGTCCTGYTCCCACTCCTCCAT	205
						205 rubiv1 2 5747F	CYTGCGCCGAAGACTACCGCGC	205 rubiv1 2 6548R	TGGAGGTCCTCCATRGTGATGG	205

※表中網掛け部分はプライマー設計対象外ウイルス属を示す。

表 1-4-1 multiplex PCR-NGS 法におけるマッピング参照配列(1)

No.	Accession										
	No.										
1	NC_006573.1	66	NC_004905.2	131	NC_006311.1	196	NC_022037.1	261	NC_009489.1	326	NC_012802.1
2	NC_006572.1	67	NC_007380.1	132	NC_006310.1	197	NC_009895.1	262	NC_007620.1	327	NC_012801.1
3	NC_013058.1	68	NC_007381.1	133	NC_006309.1	198	NC_009894.1	263	NC_006430.1	328	NC_012798.1
4	NC_013057.1	69	NC_007382.1	134	NC_006308.1	199	NC_009896.1	264	NC_006428.1	329	NC_025961.1
5	NC_018711.1	70	NC_007361.1	135	NC_006307.1	200	NC_005777.1	265	NC_004074.1	330	NC_012800.1
6	NC_018710.1	71	NC_007370.1	136	NC_006306.2	201	NC_005776.1	266	NC_002200.1	331	NC_011550.1
7	NC_028245.1	72	NC_007366.1	137	NC_009528.2	202	NC_004110.1	267	NC_006508.1	332	NC_011549.1
8	NC_025407.1	73	NC_007367.1	138	NC_006429.1	203	NC_004109.1	268	NC_006507.1	333	NC_016992.1
9	NC_025390.1	74	NC_007372.1	139	NC_025408.1	204	NC_004108.1	269	NC_006506.1	334	NC_016991.1
10	NC_025374.1	75	NC_007369.1	140	NC_025385.1	205	NC_014395.1	270	NC_006504.1	335	NC_016990.1
11	NC_025373.1	76	NC_007374.1	141	NC_025377.1	206	NC_014396.1	271	NC_006496.1	336	NC_016996.1
12	NC_025363.1	77	NC_007368.1	142	NC_025365.1	207	NC_014397.1	272	NC_006495.1	337	NC_016995.1
13	NC_025361.1	78	NC_007373.1	143	NC_025251.1	208	NC_006319.1	273	NC_028255.1	338	NC_016994.1
14	NC_025349.1	79	NC_007378.1	144	NC_020810.1	209	NC_006320.1	274	NC_025394.1	339	NC_016993.1
15	NC_025347.1	80	NC_007377.1	145	NC_020809.1	210	NC_006318.1	275	NC_025392.1	340	NC_021178.1
16	NC_019531.1	81	NC_007376.1	146	NC_020808.1	211	NC_005214.1	276	NC_025378.1	341	NC_008714.1
17	NC_005036.1	82	NC_007375.1	147	NC_020807.1	212	NC_027203.1	277	NC_025364.1	342	NC_003988.1
18	NC_003043.1	83	NC_007363.1	148	NC_018629.1	213	NC_027202.1	278	NC_025353.1	343	NC_001430.1
19	NC_002617.1	84	NC_007362.1	149	NC_009527.1	214	NC_027201.1	279	NC_025255.1	344	NC_001859.1
20	NC_016144.1	85	NC_007360.1	150	NC_003243.1	215	NC_027142.1	280	NC_024473.1	345	NC_024073.1
21	NC_002549.1	86	NC_007359.1	151	NC_001542.1	216	NC_027141.1	281	NC_022755.1	346	NC_021220.1
22	NC_014373.1	87	NC_007358.1	152	NC_024781.1	217	NC_027140.1	282	NC_020806.1	347	NC_013695.1
23	NC_014372.1	88	NC_007364.1	153	NC_001608.3	218	NC_022632.1	283	NC_020805.1	348	NC_010415.1
24	NC_006432.1	89	NC_004907.1	154	NC_007652.1	219	NC_024496.1	284	NC_001560.1	349	NC_009996.1
25	NC_004161.1	90	NC_004906.1	155	NC_004148.2	220	NC_024495.1	285	NC_004142.1	350	NC_004441.1
26	NC_028246.1	91	NC_002023.1	156	NC_028249.1	221	NC_024494.1	286	NC_002691.1	351	NC_001617.1
27	NC_028241.1	92	NC_002022.1	157	NC_006383.2	222	NC_023635.1	287	NC_002037.1	352	NC_001612.1
28	NC_028239.1	93	NC_002021.1	158	NC_025264.1	223	NC_023634.1	288	NC_001411.2	353	NC_001490.1
29	NC_025400.1	94	NC_002020.1	159	NC_001498.1	224	NC_023633.1	289	NC_004144.1	354	NC_001472.1
30	NC_025396.1	95	NC_002019.1	160	NC_006296.2	225	NC_022631.1	290	NC_004145.1	355	NC_002058.3
31	NC_025358.1	96	NC_002018.1	161	NC_005283.1	226	NC_022630.1	291	NC_004146.1	356	NC_003983.1
32	NC_017685.1	97	NC_002017.1	162	NC_001921.1	227	NC_015452.1	292	NC_003692.1	357	NC_001451.1
33	NC_017714.1	98	NC_002016.1	163	NC_004159.1	228	NC_015451.1	293	NC_003691.1	358	NC_010800.1
34	NC_002526.1	99	NC_004911.1	164	NC_004158.1	229	NC_015450.1	294	NC_002690.1	359	NC_010646.1
35	NC_005236.1	100	NC_004908.1	165	NC_004157.1	230	NC_015413.1	295	NC_004004.1	360	NC_028981.1
36	NC_005228.1	101	NC_004912.1	166	NC_025833.1	231	NC_015412.1	296	NC_010354.1	361	NC_028366.1
37	NC_005226.1	102	NC_004910.1	167	NC_025832.1	232	NC_015411.1	297	NC_003982.1	362	NC_028365.1
38	NC_005217.1	103	NC_004909.1	168	NC_025831.1	233	NC_015374.1	298	NC_012437.1	363	NC_028364.1
39	NC_005216.1	104	NC_026438.1	169	NC_005301.3	234	NC_015373.1	299	NC_005790.1	364	NC_028363.1
40	NC_005215.1	105	NC_026437.1	170	NC_005300.2	235	NC_015375.1	300	NC_003790.1	365	NC_027818.1
41	NC_005224.1	106	NC_026436.1	171	NC_005302.1	236	NC_005221.1	301	NC_002470.1	366	NC_001489.1
42	NC_005223.1	107	NC_026435.1	172	NC_005775.1	237	NC_005220.1	302	NC_008250.2	367	NC_025675.1
43	NC_003466.1	108	NC_026434.1	173	NC_001927.1	238	NC_018138.1	303	AC_000192.1	368	NC_018668.1
44	NC_005234.1	109	NC_026433.1	174	NC_001926.1	239	NC_018137.1	304	NC_026011.1	369	NC_027919.1
45	NC_005233.1	110	NC_026432.1	175	NC_001925.1	240	NC_018136.1	305	NC_006577.2	370	NC_027918.1
46	NC_005235.1	111	NC_026431.1	176	NC_024076.1	241	NC_025344.1	306	NC_003045.1	371	NC_027054.1
47	NC_005227.2	112	NC_026429.1	177	NC_024075.1	242	NC_006579.1	307	NC_025217.1	372	NC_023422.1
48	NC_010708.1	113	NC_026428.1	178	NC_024074.1	243	NC_001989.1	308	NC_019843.3	373	NC_011829.1
49	NC_010707.1	114	NC_026427.1	179	NC_022597.1	244	NC_001803.1	309	NC_022643.1	374	NC_016769.1
50	NC_010704.1	115	NC_026426.1	180	NC_022596.1	245	NC_001781.1	310	NC_005147.1	375	NC_015936.1
51	NC_006437.1	116	NC_026425.1	181	NC_022595.1	246	NC_028362.1	311	NC_012936.1	376	NC_004421.1
52	NC_006435.1	117	NC_026424.1	182	NC_018478.1	247	NC_001796.2	312	NC_010327.1	377	NC_001918.1
53	NC_006433.1	118	NC_026423.1	183	NC_018477.1	248	NC_025402.1	313	NC_009021.1	378	NC_011704.1
54	NC_005238.1	119	NC_026422.1	184	NC_018476.1	249	NC_003461.1	314	NC_009020.1	379	NC_001543.1
55	NC_005237.1	120	NC_007371.1	185	NC_018467.1	250	NC_002161.1	315	NC_009019.1	380	NC_002615.1
56	NC_005225.1	121	NC_007357.1	186	NC_018466.1	251	NC_001552.1	316	NC_008315.1	381	NC_027711.1
57	NC_005222.1	122	NC_002207.1	187	NC_018465.1	252	NC_003443.1	317	NC_007732.1	382	NC_013443.1
58	NC_005219.1	123	NC_002204.1	188	NC_018464.1	253	NC_025410.1	318	NC_004718.3	383	NC_026814.1
59	NC_005218.1	124	NC_002211.1	189	NC_018463.1	254	NC_025404.1	319	NC_001846.1	384	NC_004579.1
60	NC_003468.2	125	NC_002210.1	190	NC_018462.1	255	NC_025403.1	320	NC_017083.1	385	NC_001943.1
61	NC_003467.2	126	NC_002209.1	191	NC_018461.1	256	NC_025350.1	321	NC_001366.1	386	NC_024701.1
62	NC 025352 1	127	NC 002208.1	192	NC 018460.1	257	NC 025348.1	322	NC 009448.2	387	NC 025379.1
63	NC 025351 1	128	NC 002206.1	193	NC 018459.1	258	NC 025343.1	323	NC 010810.1	388	NC 025346.1
64	NC 001906 3	129	NC 002205 1	194	NC 022039 1	259	NC 021928 1	324	NC 001479 1	389	NC 024472 1
65	NC_002728.1	130	NC_006312.1	195	NC_022038.1	260	NC_009640.1	325	NC_023984.1	390	NC_024297.1

表 1-4-2 multiplex PCR-NGS 法におけるマッピング参照配列(2)

No.	Accession No.	No.	Accession No.	No.	Accession No.	No.	Accession No.	No.	Accession No.	No.	Accession No.
391	NC_023675.1	456	NC_022103.1	521	NC_001437.1	586	NC_002685.2	651	AC_000001.1	716	NC_026012.1
392	NC_023674.1	457	NC_003436.1	522	NC_012932.1	587	NC_001813.1	652	NC_022266.1	717	NC_001515.2
393	NC_023632.1	458	NC_023760.1	523	NC_021069.1	588	NC_000899.1	653	NC_021168.1	718	NC_010277.2
394	NC_023631.1	459	NC_018871.1	524	NC_023439.1	589	NC_001720.1	654	NC_020485.1	719	NC_001663.2
395	NC_023630.1	460	NC_002306.3	525	NC_023424.1	590	NC_024486.1	655	NC_016895.1	720	NC_025892.1
396	NC_023629.1	461	NC_009657.1	526	NC_018705.3	591	NC_014564.2	656	NC_015932.1	721	NC_025899.1
397	NC_022249.1	462	NC_010438.1	527	NC_009029.2	592	NC_024474.1	657	NC_015225.1	722	NC_025898.1
398	NC_019494.1	463	NC_010437.1	528	NC_015843.2	593	AC_000014.1	658	NC_014899.1	723	NC_025897.1
399	NC_016896.1	464	NC_010436.1	529	NC_009028.2	594	AC_000013.1	659	NC_017825.1	724	NC_025896.1
400	NC_002469.1	465	NC_009988.1	530	NC_009026.2	595	NC_022613.1	660	NC_010956.1	/25	NC_025895.1
401	NC_023987.1	466	NC_005831.2	531	NC_008604.2	596	NC_022612.1	661	NC_0068/9.1	/26	NC_025894.1
402	NC_00/916.1	467	NC_002645.1	532	NC_007181	597	NC_021221.1	662	AC_000020.1	727	NC_025368.1
403	NC_004064.1	408	NC_013528.1	524	NC_008718.1	598	NC_015222.1	664	AC_000019.1	720	NC_023811.1
404	NC_001050.2	409	NC 012501.1	525	NC 0160071	599	NC_013323.1	665	AC_000018.1	729	NC 010059 1
405	NC 003976 2	470	NC 016960 1	536	NC 006947.1	601	NC 0082101	666	AC_000017.1	730	NC 019857 1
400	NC 0018971	471	NC 0169621	537	NC 006551.1	602	NC 008210.1	667	AC_0000101	732	NC 019856 1
408	NC 0214821	473	NC 016961 1	538	NC 005064 1	603	NC 0270161	668	AC 000008 1	733	NC 019855 1
409	NC 018226 1	474	NC 003908 1	539	NC 005062 1	604	NC 0127832	669	AC 000007 1	734	NC 019853 1
410	NC 024070 1	475	NC 003900 1	540	NC 005039 1	605	NC 016448 1	670	AC 000006 1	735	NC 019851 1
411	NC 025114.1	476	NC 003899.1	541	NC 004355.1	606	NC 006273.2	671	AC 000003.1	736	NC 019850.1
412	NC 012957.1	477	NC 003215.1	542	NC 004119.1	607	NC 003521.1	672	NC 003266.2	737	NC 025380.1
413	NC 012986.1	478	NC 001786.1	543	NC 003690.1	608	NC 016447.1	673	NC 006144.1	738	NC 018102.1
414	NC_006553.1	479	NC_001449.1	544	NC_003687.1	609	NC_006150.1	674	NC_001876.1	739	NC_023845.1
415	NC_004451.1	480	NC_024887.1	545	NC_003635.1	610	NC_006623.1	675	NC_001734.1	740	NC_023008.1
416	NC_003987.1	481	NC_023812.1	546	NC_017086.1	611	NC_005264.1	676	NC_001460.1	741	NC_022519.1
417	NC_027026.1	482	NC_016959.1	547	NC_026797.1	612	NC_007605.1	677	NC_001454.1	742	NC_020890.1
418	NC_017936.1	483	NC_006558.1	548	NC_021153.1	613	NC_004367.1	678	NC_001405.1	743	NC_004763.2
419	NC_006554.1	484	NC_004162.2	549	NC_004102.1	614	NC_009334.1	679	NC_019559.1	744	NC_019844.1
420	NC_006269.1	485	NC_003930.1	550	NC_024889.1	615	NC_006146.1	680	NC_027200.1	745	NC_020106.1
421	NC_010624.1	486	NC_003433.1	551	NC_025673.1	616	NC_007646.1	681	NC_004065.1	746	NC_013796.1
422	NC_000940.1	487	NC_003417.1	552	NC_025672.1	617	NC_002531.1	682	NC_002512.2	747	NC_020071.1
423	NC_011349.1	488	NC_001547.1	553	NC_009824.1	618	NC_024303.1	683	NC_026421.1	748	NC_020070.1
424	NC_003985.1	489	NC_001544.1	555	NC_009827.1	619	NC_024382.1	605	NC_001050.2	749	NC_020069.1
425	NC_003990.1	490	NC 002002 2	555	NC_009823.1	621	NC_024450.1	600	NC 026472 1	750	NC_0200667.1
420	NC 0110501	491	NC 0016391	557	NC 009825.1	622	NC 002229 3	687	NC 028635 1	752	NC 020066 1
428	NC 001481 2	493	NC 0019611	558	JQ814851 1	623	NC 0026411	688	NC 0281271	753	NC 020065 1
429	NC 004541 1	494	NC 002532.2	559	KT818608 1	624	NC 002577 1	689	NC 0281231	754	NC 0076111
430	NC 004542.1	495	NC 027999.1	560	NC 027998.1	625	NC 028113.1	690	NC 028122.1	755	NC 015150.1
431	NC 002551.1	496	NC 001474.2	561	NC 021154.1	626	NC 028107.1	691	NC 028121.1	756	NC 014743.1
432	NC_025676.1	497	NC_002640.1	562	NC_001837.1	627	NC_028105.1	692	NC_028120.1	757	NC_011310.1
433	NC_019712.1	498	NC_001563.2	563	NC_025679.1	628	NC_028103.1	693	NC_028119.1	758	NC_014361.1
434	NC_008580.1	499	NC_001477.1	564	NC_024377.1	629	NC_028102.1	694	NC_028117.1	759	NC_017982.1
435	NC_028918.1	500	NC_027819.1	565	NC_020902.1	630	NC_027708.1	695	NC_026762.1	760	NC_009951.1
436	NC_028909.1	501	NC_027817.1	566	NC_001710.1	631	NC_027705.1	696	NC_026770.1	761	NC_009539.1
437	NC_028893.1	502	NC_001475.2	567	NC_012812.1	632	AC_000191.1	697	NC_026769.1	762	NC_009238.1
438	NC_028884.1	503	NC_009942.1	568	NC_003679.1	633	AC_000190.1	698	NC_026768.1	763	NC_001505.2
439	NC_028873.1	504	NC_027709.1	569	NC_003678.1	634	AC_000189.1	699	NC_026767.1	764	NC_001699.1
440	NC_028866.1	505	NC_012735.1	570	NC_002657.1	635	NC_024150.1	700	NC_026766.1	765	NC_001669.1
441	NC_028858.1	506	NC_012671.1	571	NC_002032.1	636	NC_011202.1	701	NC_027532.1	766	NC_002665.1
442	NC_028845.1	507	NC_012534.1	5/2	NC_001461.1	637	NC_011203.1	/02	NC_02/531.1	/6/	NC_001987.1
443	NC_028839.1	508	NC_012533.1	5/3	NC_025677.1	638	NC_025828.1	703	NC_024118.1	768	NC_001350.1
444	NC_028833.1	509	NC_012532.1	5/4	NC_024018.2	640	NC_025827.1	704	NC_026944.1	/69	NC_015049.1
440	NC 0299141	510	NC 026623 1	576	NC 0197131	6/11	NC 002702 1	705	NC 025900 1	771	NC 0003331
440	NC 0288111	512	NC 026620 1	577	NC 001545 2	642	NC 002513 1	707	NC 025700 1	779	NC 003401 1
448	NC 028806 1	513	NC 003996 1	578	NC 022787 1	643	NC 000942 1	708	NC 013439 1	773	NC 001664 2
449	NC 028797 1	514	NC 0036751	579	NC 007447 1	644	NC 025678 1	709	NC 001538 1	774	NC 001716 2
450	NC 028790 1	515	NC 003676 1	580	NC 025962 1	645	NC 012959 1	710	NC 001442 1	775	NC 000898 1
451	NC 028781.1	516	NC 000943 1	581	NC 024684.1	646	AC 000005.1	711	NC 026244.1	776	NC 016437.1
452	NC_028771.1	517	NC_001809.1	582	NC_020074.1	647	AC_000002.1	712	NC_025370.1	777	NC_015455.1
453	NC_028761.1	518	NC_001672.1	583	AC_000004.1	648	NC_012584.1	713	NC_014406.1	778	AC_000016.1
454	NC_028756.1	519	NC_002031.1	584	NC_009989.1	649	AC_000012.1	714	NC_014407.1	779	NC_002501.1
455	NC 028752.1	520	NC 001564.1	585	NC 004037.2	650	AC 000009.1	715	NC 026015.1	780	NC 001958.1

表 1-4-3 multiplex PCR-NGS 法におけるマッピング参照配列(3)

Na	Accession	Na	Accession	Na	Accession	Na	Accession	Na	Accession	Na	Accession
NO.	No.	NO.	No.	NO.	No.	NO.	No.	NO.	No.	NO.	No.
781	NC_001806.2	846	NC_027805.1	911	NC_022627.1	976	NC_006022.1	1041	NC_015129.1	1106	NC_021548.1
782	NC_001798.2	847	NC_027804.1	912	NC_022626.1	977	NC_006015.1	1042	NC_015128.1	1107	NC_021547.1
783	NC_024306.1	848	NC_027803.1	913	NC_022625.1	978	NC_006014.1	1043	NC_015127.1	1108	NC_021546.1
784	NC_014567.1	849	NC_027562.1	914	NC_022624.1	979	NC_006013.1	1044	NC_015126.1	1109	NC_021545.1
785	C_007653.1	850	NC_027561.1	915	NC_022623.1	980	NC_006010.1	1045	NC_014236.1	1110	NC_021544.1
786	NC_006560.1	851	NC_027560.1	916	NC_022622.1	981	NC_006008.1	1046	NC_014237.1	1111	NC_021543.1
787	NC_004812.1	852	NC_027559.1	917	NC_022621.1	982	NC_006007.1	1047	NC_014238.1	1112	NC_021542.1
788	NC_001847.1	853	NC_027558.1	918	NC_022620.1	983	NC_006021.1	1048	NC_014239.1	1113	NC_021541.1
789	NC_001348.1	854	NC_027557.1	919	NC_022562.1	984	NC_006020.1	1049	NC_014240.1	1114	NC_011505.2
790	NC_024771.1	855	NC_027556.1	920	NC_022561.1	985	NC_013234.1	1050	NC_014241.1	1115	NC_011504.2
791	NC_011644.1	856	NC_027555.1	921	NC_022560.1	986	NC_013233.1	1051	NC_014242.1	1116	NC_011509.2
792	NC_013590.2	857	NC_027554.1	922	NC_022559.1	987	NC_013232.1	1052	NC_014243.1	1117	NC_011508.2
793	NC_017826.1	858	NC_027553.1	923	NC_022558.1	988	NC_013231.1	1053	NC_014245.1	1118	NC_011507.2
794	NC_002686.2	859	NC_027552.1	924	NC_022557.1	989	NC_013230.1	1054	NC_014244.1	1119	NC_011506.2
795	NC_005261.2	860	NC_027551.1	925	NC_022556.1	990	NC_013229.1	1055	NC_007027.1	1120	NC_011503.2
796	NC_006151.1	861	NC_027550.1	926	NC_022555.1	991	NC_013228.1	1056	NC_007026.1	1121	NC_011502.2
797	NC_001491.2	862	NC_027549.1	927	NC_022554.1	992	NC_013227.1	1057	NC_026830.1	1122	NC_011501.2
798	NC_001844.1	863	NC_027548.1	928	NC_022553.1	993	NC_013226.1	1058	NC_026829.1	1123	NC_011500.2
799	NC_004191.1	864	NC_027547.1	929	NC_014524.1	994	NC_013225.1	1059	NC_026828.1	1124	NC_011510.2
800	NC_004190.1	865	NC_027546.1	930	NC_014529.1	995	NC_025810.1	1060	NC_026827.1	1125	NC_014511.1
801	NC_004189.1	866	NC_027545.1	931	NC_014530.1	996	NC_025809.1	1061	NC_026826.1	1126	NC_007572.1
802	NC_004188.1	867	NC_027544.1	932	NC_014531.1	997	NC_025808.1	1062	NC_026825.1	1127	NC_007571.1
803	NC_004187.1	868	NC_027543.1	933	NC_014528.1	998	NC_025807.1	1063	NC_026824.1	1128	NC_007570.1
804	NC_004186.1	869	NC_027542.1	934	NC_014527.1	999	NC_025806.1	1064	NC_026823.1	1129	NC_007543.1
805	NC_004185.1	870	NC_027541.1	935	NC_014526.1	1000	NC_025805.1	1065	NC_026822.1	1130	NC_007544.1
806	NC 004184.1	871	NC 027540.1	936	NC 014525.1	1001	NC 025804.1	1066	NC 026821.1	1131	NC 007545.1
807	NC 004183.1	872	NC 027539.1	937	NC 014522.1	1002	NC 025803.1	1067	NC 026820.1	1132	NC 007546.1
808	NC 004182.1	873	NC 027538.1	938	NC 014523.1	1003	NC 025802.1	1068	NC 014512.1	1133	NC 007558.1
809	NC 004181.1	874	NC 027537.1	939	NC 012755.1	1004	NC 025801.1	1069	NC 014513.1	1134	NC 007557.1
810	NC 004180.1	875	NC 027536.1	940	NC 012754.1	1005	NC 023822.1	1070	NC 014514.1	1135	NC 007556.1
811	NC 003707.1	876	NC 027535.1	941	NC 007757.1	1006	NC 023821.1	1071	NC 014515.1	1136	NC 007555.1
812	NC 003706.1	877	NC 027534.1	942	NC 007756.1	1007	NC 023820.1	1072	NC 014516.1	1137	NC 007554.1
813	NC 003705.1	878	NC 027533.1	943	NC 007755.1	1008	NC 023819.1	1073	NC 014517.1	1138	NC 007553.1
814	NC 003704.1	879	NC 013405.1	944	NC 007754.1	1009	NC 023818.1	1074	NC 014518.1	1139	NC 007552.1
815	NC 003703.1	880	NC 013404.1	945	NC 007753.1	1010	NC 023817.1	1075	NC 014519.1	1140	NC 007551.1
816	NC 003702.1	881	NC 013403.1	946	NC 007752.1	1011	NC 023816.1	1076	NC 014520.1	1141	NC 007550.1
817	NC 003701.1	882	NC 013402.1	947	NC 007751.1	1012	NC 023815.1	1077	NC 014521.1	1142	NC 007549.1
818	NC 003700.1	883	NC 013401.1	948	NC 007750.1	1013	NC 023814.1	1078	NC 007569.1	1143	NC 007548.1
819	NC 003699.1	884	NC 013400.1	949	NC 007749.1	1014	NC 023813.1	1079	NC 007574.1	1144	NC 007573.1
820	NC 003698.1	885	NC 013399.1	950	NC 007748.1	1015	NC 020445.1	1080	NC 007547.1	1145	NC 004205.1
821	NC 003697.1	886	NC 013398.1	951	NC 007665.1	1016	NC 020439.1	1081	NC 021590.1	1146	NC 004221.1
822	NC 003696.1	887	NC 013397.1	952	NC 007664.1	1017	NC 020448.1	1082	NC 021589.1	1147	NC 004220.1
823	NC 006009.1	888	NC 013396.1	953	NC 007663.1	1018	NC 020447.1	1083	NC 021588.1	1148	NC 004219.1
824	NC 005995.1	889	NC 024510.1	954	NC 007662.1	1019	NC 020446.1	1084	NC 021587.1	1149	NC 004218.1
825	NC 005994.1	890	NC 024509.1	955	NC 007661.1	1020	NC 020444.1	1085	NC 021586 1	1150	NC 004217.1
826	NC 005993.1	891	NC 024508.1	956	NC 007660.1	1021	NC 020443.1	1086	NC 021585.1	1151	NC 004211.1
827	NC 005992.1	892	NC 024507.1	957	NC 007659.1	1022	NC 020442.1	1087	NC 021584.1	1152	NC 004204.1
828	NC 005991.1	893	NC 024506.1	958	NC 007658.1	1023	NC 020441.1	1088	NC 021583.1	1153	NC 004203.1
829	NC 006018.1	894	NC 024505.1	959	NC 007657.1	1024	NC 020440.1	1089	NC 021582.1	1154	NC 004202.1
830	C 006017.1	895	NC 024504.1	960	NC 007656.1	1025	NC 015886.1	1090	NC 021581.1	1155	NC 004200.1
831	NC 006016.1	896	NC 024503.1	961	NC 006024.2	1026	NC 015885.1	1091	NC 021580.1	1156	NC 004198.1
832	NC 005996.1	897	NC 024500.1	962	NC 005990.1	1027	NC 015884.1	1092	NC 021635.1	1157	NC 007741.1
833	NC 006012.1	898	NC 024499.1	963	NC 006019.1	1028	NC 015883.1	1093	NC 021634.1	1158	NC 007740.1
834	NC 005989.1	899	NC 022642.1	964	NC 006006.1	1029	NC 015882.1	1094	NC 021633.1	1159	NC 007739.1
835	NC 005988.1	900	NC 022641.1	965	NC 006005.1	1030	NC 015881.1	1095	NC 021632.1	1160	NC 007738.1
836	NC_005987.1	901	NC_022640.1	966	NC_006004.1	1031	NC_015880.1	1096	NC_021631.1	1161	NC_007737.1
837	NC 005986.1	902	NC 022639.1	967	NC 006003.1	1032	NC 015879.1	1097	NC 021630.1	1162	NC 007736.1
838	NC_006011.1	903	NC_022638.1	968	NC_006002.1	1033	NC_015878.1	1098	NC_021629.1	1163	NC_007747.1
839	NC 0278151	904	NC 022637 1	969	NC 006001 1	1034	NC 015877 1	1099	NC 021628 1	1164	NC 007746 1
840	NC 027814.1	905	NC 022634.1	970	NC 006000.1	1035	NC 015135.1	1100	NC 021627.1	1165	NC 007745.1
841	NC 027813.1	906	NC 022636.1	971	NC 005999.1	1036	NC 015134.1	1101	NC 021626.1	1166	NC 007744.1
842	NC 027812.1	907	NC 022635.1	972	NC 005998.1	1037	NC 015133.1	1102	NC 021625.1	1167	NC 007743.1
843	NC 0278111	908	NC 022633 1	973	NC 005997 1	1038	NC 015132 1	1103	NC 021551 1	1168	NC 007742 1
844	NC 027807.1	909	NC 022629.1	974	NC 006025.1	1039	NC 015131.1	1104	NC 021550 1	1169	NC 004216.1
845	NC_027806.1	910	NC_022628.1	975	NC_006023.1	1040	NC_015130.1	1105	NC_021549.1	1170	NC_004215.1

表 1-4-4 multiplex PCR-NGS 法におけるマッピング参照配列(4)

No	Accession	No	Accession	No	Accession	No	Accession
	No.		No.		No.		No.
1171	NC_004214.1	1236	NC_006152.1	1301	KF791261	1366	KF979338.1
1172	NC_004213.1	1237	NC_006148.1	1302	JX204738	1367	AY275539.1
1173	NC_004212.1	1238	NC_005889.1	1303	KJ476699	1368	KC757344.1
1174	NC_004210.1	1239	NC_004828.1	1304	KT428308	1369	GQ914053.2
1175	NC_004209.1	1240	NC_002077.1	1305	KJ865906	1370	AF296118.1
1176	NC_004208.1	1241	NC_001829.1	1306	KF741706	1371	AF231768.1
1177	NC_004207.1	1242	NC_001729.1	1307	KR997899	1372	AF361253.1
1178	NC_004206.1	1243	NC_001701.1	1308	KF741696	1373	EU755009.1
1179	NC_004199.1	1244	NC_000883.2	1309	KF741766	1374	HQ654774.1
1180	NC_004201.1	1245	NC_004295.1	1310	KF741716	1375	KP995438.1
1181	NC_025825.1	1246	NC_027430.1	1311	KF741726	1376	JN819203.1
1182	NC_001662.1	1247	NC_001427.1	1312	KM877325	1377	KT757282.1
1183	NC_028973.1	1248	NC_025215.1	1313	KF741756	1378	KR063109.1
1184	NC_028101.1	1249	NC_022789.1	1314	KR052714.1	1379	KC667560.1
1185	NC_016647.1	1250	NC_022788.1	1315	NC_021541.1	1380	DQ641257.1
1186	NC_012042.1	1251	NC_015630.1	1316	GQ358721.1	1381	AB928205.1
1187	NC_020499.1	1252	NC_018401.1	1317	NC_014511.1	1382	AF435866.1
1188	NC_024453.1	1253	NC_015396.1	1318	GU733443.1	1383	JN635296.1
1189	NC_014358.1	1254	NC_017091.1	1319	NC_021625.1	1384	KM259923.1
1190	NC_012564.1	1255	NC_028650.1	1320	JN596591.1		
1191	NC_012729.2	1256	NC_026815.1	1321	M77280.1		
1192	NC_023673.1	1257	NC_004713.1	1322	LC010984.1		
1193	NC_022800.1	1258	NC_001718.1	1323	AF006073.1		
1194	NC_016032.1	1259	NC_001358.1	1324	D00540.1		
1195	NC_016031.1	1260	NC_023860.1	1325	KJ495690.1		
1196	NC_017823.1	1261	NC_025965.1	1326	KR902507.1		
1197	NC_007455.1	1262	NC_024454.1	1327	KP941111.1		
1198	NC_004442.1	1263	NC_023020.1	1328	KJ495689.1		
1199	NC_001540.1	1264	NC_011619.1	1329	KR902508.1		
1200	NC_028045.1	1265	NC_011618.1	1330	AB576629.1		
1201	NC_023421.1	1266	NC_008186.1	1331	M32805.1		
1202	NC_026945.1	1267	NC_008185.1	1332	JX971580.1		
1203	NC_025792.1	1268	NC_001630.1	1333	JN974795.2		
1204	NC_025791.1	1269	NC_001539.1	1334	JN974793.2		
1205	NC_008522.1	1270	NC_001510.1	1335	KJ466982.1		
1206	NC_008521.1	1271	KM820747	1336	KF500218.1		
1207	NC_025247.1	1272	KM820757	1337	KC876010.1		
1208	NC_025246.1	1273	KP208817	1338	NC_021590.1		
1209	NC_023885.1	1274	KU194661	1339	JN596592.1		
1210	NC_024694.1	1275	NC_013227	1340	KJ752084.1		
1211	NC_022897.1	1276	KT224507	1341	KP982879.1		
1212	NC 021206.1	1277	KM087108	1342	AB738412.1		
1213	NC 020904.1	1278	KT900698	1343	KP988013.1		
1214	NC 020099.1	1279	KJ476702	1344	KP776593.1		
1215	NC_017843.2	1280	KP731614	1345	AB576629.1		
1216	NC_015399.1	1281	KJ874315	1346	AB874611.1		
1217	NC_013774.1	1282	KJ874323	1347	KM116026.1		
1218	NC_008375.1	1283	KJ874325	1348	DQ205221.1		
1219	NC_008033.1	1284	KR997922	1349	AB573079.1		
1220	NC_007220.1	1285	KM877328	1350	JN872865.1		
1221	NC_006561.1	1286	KP173686	1351	KJ450842.1		
1222	NC_005148.1	1287	KT224504	1352	KJ450831.1		
1223	NC_005053.1	1288	JX028412	1353	KM504278.1		
1224	NC 003410.1	1289	NC 013225	1354	U20228.1		
1225	NC 003054.1	1290	KT444572	1355	M28061.1		
1226	NC 001792 2	1291	KT444562	1356	AF170575.2		
1227	NC 002361 1	1292	KT444552	1357	M28061.1		
1228	NC 001944 1	1293	KT444542	1358	AF170576.2		
1229	NC 027429 1	1294	KT444532	1359	EU3056161		
1230	NC 001401 2	1295	KT444522	1360	KR733243 1		
1231	NC 014468 1	1296	KP208814	1361	KR733227 1		
1232	NC 006263 1	1297	KP208804	1362	KP9764101		
1233	NC 006261 1	1298	KM820754	1363	KJ577172 1		
1234	NC 006260 1	1299	KM820744	1364	KJ577164 1		
1235	NC 006147 2	1300	KM087105	1365	AY517471 1		
0 0							

	Namo	Consensus	Total read	Single	Reads in	Average	Reference
	Name	length	count	reads	pairs	coverage	length
NC_009894	Akabane virus	1307	27106	10522	16584	274.7236459	6868
NC_001461	BVDV	1632	247868	238488	9380	1363.84069	12573
NC_011507	Bovine Rota A	570	413738	16022	397716	9355.067535	3302
NC_006579	PVM	1727	1562987	35887	1527100	7903.08438	14885
NC_001989	BRSV	711	726	726	0	1.212945839	15140
NC_002161	BPIV3	1399	540550	21658	518892	2621.144928	15456
NC_001921	Canine distemper virus	1804	564433	24713	539720	2656.727151	15690
NC_002685	BAV	1620	92311	90657	1654	214.129293	31301
NC_001859	Bovine enterovirus	868	2110563	554063	1556500	19904.47761	7414
JN936206 B	RAV	2431	13529	2923	10606	108.2717241	7250
JX204738 m	ammalian orthoreo virus	77	7	7	0	0.03425013	3854
NC_001847	IBR	9150	35923	31053	4870	18.39800888	135301
NC_013590	Feline herpesvirus 1	38048	429020	241860	187160	211.742174	135797
AC_000020	CAV2	5334	122489	8733	113756	259.0156435	31323
NC_001539	Canine parvovirus	2850	188828	13642	175186	2612.412737	5323
NC_001481	Feline calicivirus	368	26517	26517	0	75.96720031	7683
NC_003045	Bovine coronavirus	1481	2363413	61779	2301634	5719.76908	31028
LC088095 B	ovine torovirus	1708	524423	22295	502128	1381.23269	28308
JQ743328 pa	arainflu 5(canine parainflu)	720	167	29	138	0.664370983	15246
GQ857595 F	eline parvovirus	379	117	55	62	3.166951567	1755

表 1-5 multiplex PCR-NGS 法開発用ウイルス NGS リードマッピング結果

mammalian orthoreo virus は、陽性の条件である、マッピングコンセンサス長 200 以上マッピングリード数 100 以上を 満たさなかった。

Genus No.	genus(species)	multiplex PCR− NGS法	従来法(RNAseq)
59	Circovirus	+	_
95	Rotavirus	+	+
156	Enterovirus	+	+
161	Kobuvirus	+	+
188	Mamastrovirus	+	_
-*	(unidentifiedvirus)	_	+
-*	(Porcine endogenous retrovirus)	_	+
	(IAS virus)	_	+

表 1-6 multiplex PCR-NGS 法と従来法の比較

※はプライマー設計対象外のため Genus No. がない。すなわち multiplex PCR-NGS 法では検出されない。

第二章 コウモリからの新規・希少ウイルスの検出

序 論

ヒトに感染症を引き起こす病原体の半分が人獣共通感染症であり、新興感染症の約半 数が人獣共通感染症である(Taylor et al., 2001, Mandl et al., 2018)。このように人獣 共通感染症は人類にとって大きな脅威となっている。コウモリは数多くの病原体を運ぶ と考えられている。コウモリは翼手目に属し、世界中で齧歯目に次いで数の多い哺乳類 である。近年、コウモリが人獣共通感染症のレゼルボアとして注目されてきたのは、① lyssavirus (Davis et al., 2013a, Davis et al., 2013b; Albas et al., 2011; Almeida et al., 2011; Almeida et al., 2005) 🗞 henipavirus (Roche et al., 2015; Breed et al., 2011; Rahman et al., 2010), coronavirus (Anthony et al., 2017, Chen et al., 2016, Anindita et al., 2015, Annan et al., 2013, Anthony et al., 2013), ebolavirus (Han et al., 2015), picornavirus (Wu et al., 2012; Lau et al., 2011) などをヒトに感染させることを示唆す る論文が報告されていること、② 人と同じ哺乳類なので、同様に空を飛ぶ鳥類よりもヒ トに感染する病原体を保有している可能性があること、③ コウモリがヒトを噛むこと によって人獣共通感染症の病原体を感染させる危険性があるばかりでなく、空から病原 体を含んだ糞尿を撒き散らすので感染が成立しやすいこと、④ コウモリは蚊やダニな ど病原体を媒介する節足動物に比較するとはるかに長い飛行距離を飛ぶことができるこ と、すなわち病原体が越境する可能性があること、⑤ コウモリは集団で密集して生活す るのでいったん感染症がコウモリの集団に入るとパンデミックを起こしやすいこと、な どの理由が挙げられる。

コウモリのウイルス感染症に関する研究は ebolavirus と SARS coronavirus の出現を 契機に盛んになった。SARS coronavirus が世界中に感染拡大した 2003 年から数年後に NGS が急速に普及し始めた。SARS coronavirus の起源はキクガシラコウモリに感染し ている bat coronavirus であることが明らかになり(Luk et al., 2019)、コウモリの保有 するウイルスを NGS で検出する論文が数多く報告された。そして、哺乳類に感染する ウイルスと同じ科に属するウイルスが多くコウモリに感染していることが明らかになり、 毎年コウモリに感染するウイルスについての論文が報告され続けている(Mendenhallet al., 2019)。それゆえ、コウモリにはまだ明らかになっていない未知のウイルスが存在し ていると考えられる。しかし、その一方でウイルスを検出するための NGS の技術は大 きく進歩していないのも事実である。そこで、第一章では新たに DSN-NGS 法と multiplex PCR-NGS 法を開発した。

コウモリは、いくつかの人獣共通感染症ウイルスのレゼルボアであることが知られて いる。その中でも lyssavirus は特に注目されている。lyssavirus はラブドウイルス科 Lyssavirus 属に属するウイルスであり、rabies virus が含まれている。狂犬病は致死率 がほぼ 100%であることから、rabies virus に近縁なウイルスについては注意が必要で ある。Lyssavirus 属には 7 つの遺伝子型があり(Zhang et al., 2017)、ICTV では 16 種 類のウイルス種に分類されている(https://talk.ictvonline.org/)。1 型には rabies virus、 2 型には Lagos bat virus、3 型には Mokola virus、4 型には Duvenhage virus、5 型に は European bat lyssavirus serotype 1、6 型には European bat lyssavirus serotype 2 が属している。7 型には Australian bat lyssavirus が属している(Zhang et al., 2017)。 この他にも新たに報告されている lyssavirus はあり、今後も新たな遺伝子型・種類の lyssavirus が発見される可能性がある。そこで、本研究ではコウモリが保有しているウ イルスをより網羅的に検出するために multiplex PCR-NGS 法の中に lyssavirus に共通 な領域を増幅できるプライマーを追加すると同時に、13 種類の lyssavirus をそれぞれ 検出できるプライマーセットを独立して検出するシステム (multiplex PCR-NGS for bat viruses) を構築した。

コウモリは哺乳類なので、吸血節足動物がウイルスを媒介する可能性がある。すなわ ち、コウモリによる人獣共通感染症の原因ウイルスはコウモリから咬傷・糞尿などを介 してヒトに直接感染する場合と、蚊やダニなどを介して間接的に感染する場合がある。

ダニが媒介するウイルスとしてブニヤウイルス科のウイルスが良く知られている。 ブニヤウイルス科のウイルスには Crimean-Congo hemorrhagic fever virus や Akabane virus などヒトや家畜に重大な被害を及ぼすものが多い (Horne KM et al., 2014)。その 中でも、特に近年の日本では severe fever with thrombocytopenia syndrome virus (SFTSV) が注目されている。SFTS は、2011 年に報告されたが、その患者の発生は 2006 年にさかのぼるとされている (Yu et al., 2011, Liu et al., 2012)。それからわずか 一年で日本国内の患者が SFTS と診断された (Takahashi et al., 2013)。その後も国内 での患者は増え続けており、毎年死亡例が後を絶たない。コウモリを吸血するダニはヒ トを刺すこともある。そこで本章ではコウモリを吸血するダニも研究対象としてウイル スの検出を試みた。

本章では、国内外のコウモリ検体およびダニを対象に第一章で新たに開発した方法で 新規・希少ウイルスの検出を試みた。なお、DSN-NGS 法および multiplex PCR-NGS 法は NGS の前処理に時間と費用がかかることから、ウイルスの分離が強く疑われる細 胞の培養上清については、検体中に大量のウイルスが含まれていることが想定されるの でこれらの前処理を行うことなく従来の方法で NGS 解析を実施した。

※ なお、本章 STV の研究発表の後に ICTV によってウイルスの新しい分類が発表された。本章におけるブニヤウイルス科、Nairovirus 属、Hantavirus 属、は、現在それ

ぞれブニヤウイルス目、ナイロウイルス科、ハンタウイルス科、となっており、

Phlebovirus 属はフェニュイウイルス科 Phlebovirus 属となっている。

材料および方法

1 核酸の抽出及び cDNA 合成

1-1 コウモリ関連サンプル1

サンプリングはインドネシアで行われた。インドネシアの森林省の許可を得て複数種 類のコウモリ 142 頭を捕捉し、安楽死処置後に脳乳剤を作製した。核酸の抽出には High Pure Viral Nucleic Acid Kit (Roche) を使用した。 Super Script III Reverse Transcriptase (Thermo Fisher Scientific) によりランダムプライマーを使用して cDNA を合成した。合成された cDNA は 10 頭分ずつプールし PCR のテンプレートとした。

1-2 コウモリ関連サンプル2

台湾のサンプルは National Chung Hsing University (台湾)の Wong 教授と National Taiwan Normal University (台湾)の Wu 教授から使用許可を受け分与された。サンプリングは台湾の桃園市 Dasi 地区および新北市 Ruifang 地区にある 2 つの洞窟で実施された。排泄物が堆積し固化したグアノを洞窟のいくつかの地点で無作為に収集したものをプールした。韓国の済州島の洞窟のグアノサンプルは Institute of Science Education, Jeju National University (韓国)の Oh 教授から使用許可を受け分与された。日本の奈良県西吉野、同川上市、福井県鯖江市の洞窟でもサンプリングを行った。日本国内の糞便グアノサンプリングについては地権者の許可を得て実施した。High Pure Viral Nucleic Acid Kit (Roche)を用いてプールしたグアノから核酸を抽出し、TURBO DNA-free キット (Life Technologies, CA, USA)で精製し、サンプル中の核酸

を RNA のみとした。Super Script IV Reverse Transcriptase (Thermo Fisher Scientific) によりランダムプライマーを使用して cDNA を合成した。

1-3 コウモリ関連サンプル3

2011年に国内のコウモリが住み着いた宿泊施設に許可を得、屋根裏の、コウモリが出 入りする開口部付近でコウモリマルヒメダニ (*Argas vespertilionis*)を採取した。18 匹 のコウモリマルヒメダニの内臓と体液をショ糖リン酸グルコース溶液中でホモジナイズ したのち、ホモジネートを遠心分離し、上清を Vero 細胞に接種した。1 週間間隔の盲継 代の2代目接種後3日目に CPE が観察されたため上清を回収した(図2-1)。High Pure Viral Nucleic Acid Kit (Roche)を使用して培養上清から全 RNA を抽出した。NGS 用 ライブラリー調整には NEBNext Ultra RNA Library Prep kit (New England BioLabs, Ipswich, MA, USA)を使用した。いずれも製品プロトコール通りに実施した。

2 シーケンシング

2-1 コウモリ関連サンプル1

コウモリ関連サンプル 1 から lyssavirus を検出する目的で multiplex PCR-NGS for batviruses を構築した。GenBank に Refseq として登録されている lyssavirus のうち、 ゲノム全長が明らかとなっている 17 種 (表 2-1) すべてを検出するためのプライマーセ ットを構築した。まず、① multiplex PCR-NGS 法のうち Lyssavirus 属に関係するプ ライマーを抜粋し、それに ② 既報 (Vázquez-Morón et al., 2006) の lyssavirus 用プ ライマーを加え、最後に ③ 既報のプライマーでカバーされていない 6 種を検出するた めの nested PCR プライマーを設計し、追加した (表 2-2)。 これらプライマーセットを用いて、コウモリの脳乳剤由来の cDNA を PCR した。PCR の酵素は GoTaq Colorless Master Mix (Promega, Madison, WI, USA) を使用し、テ ンプレートとして cDNA を 1µl 使用した。 nested PCR の 2nd PCR のテンプレートに は 1µl の 1st PCR のプロダクトを使用した。反応条件は、いずれも 95℃ で 2 分の熱 変性の後、 95℃ 30 秒、55℃ (既報のプライマーのみ 53℃) 30 秒、72℃ 30 秒を 35 サイクル実施し、最後に 72℃で 5 分の伸長を行った。

2-2 コウモリ関連サンプル2

2-2-1 NGS 用ライブラリー調整、ハイスループットシーケンシング

コウモリ関連サンプル 2 は multiplex PCR-NGS 法で解析を行った。multiplex PCR は Multiplex PCR Assay Kit (TaKaRa)を使用して行った。1well あたり Multiplex PCR Mix 1 を 0.125µl、Multiplex PCR Mix 2 を 12.5µl、cDNA の混合物を 1µl、10µM のプライマーmix を 10µl および nuclease free 水を 1.375µl 混合した。 反応時間は 94℃ 90 秒の初期変性の後、94℃ 30 秒、 45℃ 90 秒、72℃ 90 秒を 40 サイクル実施 し、最終伸長を 72℃ 10 分行った。ライブラリー調整には NEBNext Ultra DNA Library Prep Kit for Illumina (NEW ENGLAND Bio Labs)を一部改変して使用した。具体的 にはマニュアルに記載されている end repair 以降のみを実施した。MiSeq Reagent Kit v2 (300 サイクル)(Illumina)を使用し MiSeq bench-top sequencer (Illumina) にて、 ペアエンドシーケンシングを実施した。得られた各リードについては MiSeq レポータ ーを用いて FASTAQ 形式ファイルとして出力し、CLC genomic Workbench 6.5.1 (CLC bio)を用いて解析した。マッピングデータセット内の配列すべてに対しリードをマッピ ングした。マッピングされた結果のうちコンセンサス長 200 以上、マッピングリード数 100以上の条件を満たす参照配列をそのウイルスゲノムが検出された可能性があるもの とし、参照配列ごとにマッピング画像の確認を行った。マッピング画像においては multiplex PCR プロダクトのサイズに合う距離を置いて forward 端と reverse 端の両方 にリードのマッピングがみられるものを陽性と判断した(図1-4)。

2-2-2 EMCV の保存領域における PCR

encephalomyocarditis virus (EMCV) 遺伝子の検出は、抽出核酸を SuperScript IV First-Strand Synthesis System (Thermo Fisher Scientific) によって逆転写反応し、 EMCV の高度に保存された領域 (Liu et al., 2016, Duke et al., 1992) を PCR によって 増幅することによって行った。プライマー情報を表 2-3 に示す。PCR は KOD-Plus-Neo (ToYoBo, Japan)を使用し、94℃ で 2 分の熱変性の後、98℃ 10 秒、58℃ 30 秒、 68℃ 30 秒を 35 サイクル、72℃で 5 分の伸長を行った。台湾の洞窟サンプルだけでな く、韓国および日本のサンプルについても同様の PCR を実施した。

2-3 コウモリ関連サンプル3

2-3-1 NGS 用ライブラリー調整、ハイスループットシーケンシング

NGS 用ライブラリー調整には NEBNext Ultra RNA Library Prep kit (New England BioLabs) を使用した。いずれも製品プロトコール通りに実施した。MiSeq Reagent Kit Nano v2 (300cycles) を用いて MiSeq bench-top sequencer (Illumina) にてシーケン シングを行った。得られた各リードについては MiSeq レポーターを用いて FASTAQ 形 式ファイルとして出力し、CLC Genomic Workbench 6.5.1 (CLC bio) を用いて解析し た。CLC Genomics Workbench 6.5.1(CLC bio)の *de novo* assembly コマンド(minimum contig length 1000) によってコンティグを作成した。得られたすべてのコンティグに対 して The National Center for Biotechnology Information (NCBI) の BLASTn 検索 (https://blast.ncbi.nlm.nih.gov/Blast.cgi) を実施した。

2-3-2 系統解析

セグメントLの塩基配列のORF部分のみの系統解析を実施した。系統発生解析は、 MEGA6ソフトウェアの最尤法(ML)を用いて行った。系統樹の信頼性は、1000回反 復によるブートストラップ解析によって評価した(Felsenstein, 1985)。

結 果

1 コウモリ関連サンプル1

コウモリ関連サンプル1について、multiplex PCR-NGS for batviruses のシステムに おいて Lyssavirus の検出を試みたが、陽性結果は得られなかった。

2 コウモリ関連サンプル 2~encephalomyocarditis virus の検出~

台湾の2つの洞窟から得られたグアノサンプル抽出核酸を multipex PCR したプロダ クトをハイスループットシーケンシングし、得られたリードをマッピングデータセット の各ウイルス配列にマッピングした。2つの洞窟(台湾1と台湾2)のどちらのサンプ ルも200以上のリードが参照配列 EMCV に対しプライマーによる PCR 想定プロダク トサイズどおりの間隔をもってマッピングされていた。

EMCV ゲノムの存在を確認するために、EMCV の保存された領域を増幅するプライ マーセット(表 2·3)を使用して PCR を実施したところ、プロモーター領域のプライマ ーのみから想定サイズのバンドを得た(図 2·2A)。EMCV ゲノムがげっ歯類、コキクガ シラコウモリおよびユビナガコウモリのゲノムに組み込まれている可能性を排除するた めに、得られた配列に対して BLASTn 検索を実施し、その結果、これらの動物のゲノ ムに EMCV 様の配列が存在しないことを確認した(data not shown)。

EMCV ゲノムの存在をさらに確認するために、日本と韓国の洞窟からもグアノサンプ ルを採取し、PCR を実施した。全ての洞窟で PCR 陽性であり(図 2-2B)、PCR プロダ クトをシーケンシングした結果 EMCV の塩基配列と一致した。

サンプリングした地域には主にユビナガコウモリおよびキクガシラコウモリ (*Rhinolophus ferrumequinum*) が棲息していたが、これらのコウモリを捕獲して直腸 便を採取することができなかったので、本研究では糞便グアノを用いた解析を行った。 それゆえ、ウイルスゲノムの供給源がこれらのコウモリであるかを検証する必要があっ た。グアノはコウモリ以外にもげっ歯類からの排泄物で構成されているかもしれない。 収集したグアノを構成した動物種を決定するために、ミトコンドリア遺伝子、チトクロ ーム c オキシダーゼ I (COI)の 5'末端および 3'末端領域に基づく DNA バーコード領域 の NGS 解析を実施した。台湾に生息している、あるいは生息が予想される哺乳類 75 種の DNA バーコード領域の塩基配列にマッピングを実施した。COI の最大種内距離は 0.00-11.00%の間とした(Yassin et al., 2010)。89% 以上の相同性を示した 10 のコン センサス配列のうちの4つは、BLASTn による確認の結果もユビナガコウモリと一致し (97.60% · 100%)、残り6つはBLASTnの結果昆虫およびクモ類と高い相同性を示し た。また、89%未満の結果を示した配列は、BLASTn により昆虫やサソリや線虫などの 哺乳類以外の生物の塩基配列と相同性が高いことが分かった。これらの結果より、グア ノがユビナガコウモリ以外の脊椎動物の排泄物を含む可能性は非常に低いことが示唆さ れた (data not shown)。

3 コウモリ関連サンプル 3~新規 soft tick bunyavirus の検出~

総リード数は 7,400,954 であった。CLC Genomics Workbench 6.5 (CLC bio) の *de novo* assembly コマンド (minimum contig length 1000) によって得られたコンティグ 数は 14 であった。得られたすべてのコンティグに対する BLASTn 検索の結果、3 つの コンティグが Issyk-Kul virus のセグメント L (Accession No. KF892055.1), セグメ ントM (Accession No. KF892056.1), セグメントS (Accession No. 892057.1) とそ れぞれ 77%、76%、79%の相同性を示した。これらのコンティグを構成するリード数は、 それぞれ 333,028 リード、72,551 リード、53,314 リードであった。この新しいウイル スを soft tick bunyavirus (STV) と名付け、各セグメントの塩基配列を DNA Data Bank of Japan (DDBJ: http://www.ddbj.nig.ac.jp/index-j.html) に登録した (Accession No. LC027467, LC027466, LC027465)。セグメント L の ORF 部分のみの塩基配列による 系統解析の結果を図 2-3 に示した。 考察

multiplex PCR-NGS 法は、ハイスループットシーケンシングのテンプレートとして multiplex PCR のプロダクトを使用することによりサンプル中のウイルスゲノムの相対 的濃度を高めることができる。一方で、血液や糞便などの臨床サンプル中の宿主細胞や 細菌や食物残渣などに由来するゲノムの相対的濃度を下げるため、NGS 解析する際に 現れるターゲットウイルス以外のゲノムに由来するリードを減らすことができる。さら に、NGS では検出できないほどにターゲットウイルスゲノム濃度が低いサンプルから でもコンベンショナル PCR では検出ができるという報告がある (Wylie et al., 2012)。 本研究の multiplex PCR-NGS 法ではターゲットウイルスゲノム断片をあらかじめ増幅 させてからハイスループットシーケンシングすることで、より高感度にターゲットウイ ルスを検出できる。第一章でのブタサンプルによる検証により、プライマーとして設計 されているウイルス属に関しては multiplex PCR-NGS 法の方が従来法よりも確実にウ イルスゲノム断片を検出できると考えられた。

本章では台湾の桃園市および新北市内の洞窟で採取されたユビナガコウモリ (*Miniopterus fuliginosus*)の糞便サンプルにおけるウイルスの検出を実施した。

EMCV はピコルナウイルス科 Cardiovirus 属の ssRNA (+) virus である (Billinis et al., 2004)。齧歯類のウイルスと考えられているが (Liu et al., 2017)、サルを含む広範囲の宿主に感染する (Liu et al., 2017)。また、心筋炎、脳炎、神経疾患、生殖障害および糖尿病を引き起こす人獣共通のウイルスである (Luo et al., 2017)。自然界ではウイルスが失活しにくいことや、過酷な環境で数日間感染性を保持し続けるため、本研究

で採取したグアノ中の EMCV は動物やヒトに感染する可能性がある (Carocci and Bakkali-Kassimi, 2012)。

コウモリは遠距離を飛ぶ能力を有すること(Calisher et al., 2006)と船舶および船積 みコンテナに誤って棲息し大陸間を移動することがあるので、国境を越えてウイルスを 運搬する(Constantine 2003)。本章における研究では、EMCV ゲノムが韓国と日本の サンプルにも見出されたため、このようなコウモリによるウイルスの移動が考えられる。 また、これらの国の間でのコウモリの移動については、コウモリミトコンドリアの遺伝 子の分析結果から以前に報告されている(Iida et al., 2017)。

本章における研究は、台湾、韓国、および日本のユビナガコウモリが EMCV を保有し ていることを示唆しており、ユビナガコウモリは東アジアで広く EMCV の自然宿主の 1 つである可能性がある。新興感染症の原因ウイルスのレゼルボアとして注目されてい るコウモリからこのようなウイルスが発見されたことは公衆衛生上非常に重要である (前田ら 2011)。

一方、国内のコウモリコロニーの生息場所から採取されたコウモリマルヒメダニの内 臓と体液から Vero 細胞を用いてウイルス分離を試みた際の培養上清サンプルから NGS 従来法によりブニヤウイルス科の新しいウイルス STV を検出した。ブニヤウイルス科 には蚊やダニなどの節足動物により媒介されるウイルスが多く含まれ、Nairovirus 属の Crimean-Congo hemorrhagic fever virus のほか、Orthobunyavirus 属の akabane virus や Hantavirus 属 の hantaan virus、 Phlebovirus 属 の severe fever with thrombocytopenia syndrome virus (SFTSV) など、ヒトや家畜に重大な被害を及ぼす ものが多い (Horne KM et al., 2014)。 ブニヤウイルス科各ウイルスのセグメントLのアミノ酸系統解析によると、STV はヒ トに頭痛や発熱を引き起こす Issyk-kul virus (Atkinson et al., 2015) に最も近縁であ り、家畜に重篤な症状を引き起こすウイルスを多く含む Nairovirus 属のクラスターに 含まれることが示された。このウイルスがダニやコウモリ、その他の哺乳類等に対する 病原性を示すかは不明である。しかし、培養細胞に細胞傷害性を示したことから、何ら かの宿主に対して病原性を示す可能性は否定できない。今後、実験動物を用いて明らか にする必要がある。

STV の L・M・S のセグメントに相当するコンティグは、それぞれがほぼ完全長であ った。3 つのコンティグを構成するリード数は合わせて 458,893 であり、これは全リー ド数 740,954 の 6 割以上にも上った。ウイルス分離後の細胞培養上清から抽出した核酸 であったことが、ターゲットウイルス由来のリードを多く獲得できた理由であると考え られた。このように、あらかじめ多くのターゲットウイルス由来の核酸が含まれている ことが予測されるサンプルでは、サンプル前処理をしないハイスループットシーケンシ ングでも十分な結果が得られることが明らかとなった。ただし、すべての新興感染症ウ イルスが容易にウイルス分離できるとは限らず、またウイルス分離には時間がかかるた め、第一章に示したような multiplex PCR-NGS 法のような網羅的なウイルス検出法を 適宜使用することは迅速な判断が要求される場合には必要である。

図 2-1 コウモリマルヒメダニのホモジネートを接種した Vero 細胞の変化

均一に発育していた Vero 細胞(左)が斑状に脱落し明るく見えている(右)

図 2-2 台湾、韓国、日本のコウモリ関連サンプルにおける EMCV 遺伝子の増幅

MEGA6 を使用し Maximum likelihood 法(1000replicates)にて算出した。使用したウイルスの Accession No. は次のとお りである。CCHFV GU477492, Hazara virus DQ076419.1 NSDV EU697951.1 Kupe virus EU257628.1 Dugbe virus U15018.1 Erve virus JF 911697.1 Issyk_Kul virus KF892055.1 Rift valley virus JF311376.1 SFTSV JQ684871.1 Hantaan virus JQ083393.1 Schmallenberg virus KC355457.1 Akabene virus AB190458.1 Tomato spotted wilt virus KC261962.1

表 2-1 multiplex PCR-NGS for batviruses 対象のウイルス

<u> </u>		
No.	Genus	Virus (Abbreviation)
1	Lyssavirus	Aravan virus
2		Australian bat lyssavirus
3		Bokeloh bat lyssavirus
4		Duvenhage virus
5		European bat lyssavirus 1
6		European bat lyssavirus 2
7		Gannoruwa bat lyssavirus
8		Ikoma lyssavirus
9		Irkut virus
10		Khujand virus
11		Lagos bat virus
12		Lleida bat lyssavirus
13		Lyssavirus Ozernoe
14		Mokola virus
15		Rabies virus
16		Shimoni bat virus
17		West Caucasian bat virus

表 2-2 multiplex PCR-NGS for batviruses のプライマー一覧

name(Forward)	sequence(5'→3')	name(Reverse)	sequence(5'→3')	product size	origin
120_lyssa2_1_10242F	AGGACRARATGGGTRGATCAAG	120_lyssa2_1_10650R	ARGCCATSARRTCATTCACCTC	408bp	
120_lyssa2_2_10242F	AGGACRARATGGGTRGATCAAG	120_lyssa2_2_10651R	GARGCCATSARRTCATTCACCT	409bp	
120_lyssa9_1_7264F	TGGAYTAYGAGAAGTGGAACAA	120_lyssa9_1_7849R	ACTCTYGCCCATCTYTTAGATT	585bp	
120_lyssa9_2_7287F	ACTCYAGAGTGACYTATGCTTT	120_lyssa9_2_7899R	ACTCTYGCCCATCTYTTAGATT	612bp	this study
120_lyssa6_1_655F	AATTGGAGYACAATTCCAAACT	120_lyssa6_1_1229R	ACWGTTCCATCATCWGCCAATG	575bp	this study
120_lyssa6_2_656F	ATTGGAGYACAATTCCAAACTT	120_lyssa6_2_1229R	ACWGTTCCATCATCWGCCAATG	574bp	
120_lyssa1_1_8361F	ATHAGGAAGGCYYTKTATGATG	120_lyssa1_1_8975R	ATGRACATTKGTSACYTTCTCC	615bp	
120_lyssa1_2_8362F	THAGGAAGGCYYTKTATGATGA	120_lyssa1_2_8975R	ATGRACATTKGTSACYTTCTCC	614bp	
GRAB1F	AARATNGTRGARCAYCACAC	GRAB1R	GCRTTSGANGARTAAGGAGA		.S.V'azquez-
GRAB2F	AARATGTGYGCIAAYTGGAG	GRAB2R	TCYTGHCCIGGCTCRAACAT	260bp	Mor'on et al., 2006
Ikoma_outer4694F	TAGAGTTTATACTGTTAAGAGG	Ikoma_outer4970R	TTTAACGGTTACTGGCCTGAGAAATG		1
Ikoma_inner4721F	AGGCTTCGTGAGGGTTCTATGAATG	Ikoma_inner4941R	CGGAGAAGCGCTGGATCCAAGAATG	221bp	
Shimoni_outer1502F	CTTCAATCCTTCCCTCCAAGATGAG	Shimoni_outer1773R	AGGTAGGTAAAACTCGTCCTCAGAG		
Shimoni_inner1528F	AAGGGGCTTATTCATCCGAGTTCC	Shimoni_inner1746R	GCTCTCCCTTCATCTCCGATCCTGA	219bp	this study
Ganno_outer2570F	CCCCCAGATGACGACGATCTATGG	Ganno_outer2855R	GTGTTCTCCTCAGCTTATATACCCAG		this study
Ganno_inner2606F	GAGTATGTTCCATTAACAGAGGTCAG	Ganno_inner2813R	CAGGAGCTCCCGACAAAGCTAGGCC	208bp	
Lleida_outer4274F	ACACGGGCACTACAAATCAGTATCG	Lleida_outer4563R	CCCTCATATGCAACTGAATGAACTCA		
Lleida_inner4306F	CTGAGATTCTTCCTACCCCTATATG	Lleida_inner4532R	CTCTGAAGAAGGGTCTGTATCATCC	227bp	

product **EMCV** genes Forward Primer $(5' \rightarrow 3')$ Reverse Primer $(5' \rightarrow 3')$ size TGAATGTCGTGAAGGAAGCAGT ACCTCGACTAAACACATGT 315bp Promoter Promoter (nested) TGGAAGCTTCTTGAAGACA AGATCAGATCCCATACAAT 240bp ATTCCACCTCCTCAGACAAGA AGCTAGCAATGGAAGCATAT 206bp 1A 2B TTCATGTTTAGACCAAGGAAACA AGAGATTGTGGGAAACCGT 432bp 2B (nested) AGACCCAAGGAGCGGCAGTGT TGTCTTGAACTTAGCTGCTAT 361bp 3A/B TCCAGTAGACGAGGTCAGT TGAATGTCCAACAACTGCA 321bp 3A/B (nested) TCCAGCAGCTTAAAGCAAGACA AACTCTCGCCGTCTCATTGTA 256bp

表 2-3 EMCV 保存領域のプライマー一覧

第三章 ブタからの新規・希少ウイルスの検出

序論

第一章では新規・希少ウイルスを NGS で検出するための新しい方法を開発し、第二 章ではこれらの方法を用いてコウモリを対象に2種類のウイルスを検出した。世界的に コウモリはウイルスを運び、ヒトや動物に感染させるレゼルボアとして重要である (Plowright et al., 2015)。日本にもコウモリが棲息し Coronavirus などを保有してい ることは明らかになっているが (Shirato et al., 2012)、現在までに国内においてコウモ リ由来の人獣共通感染症が発生したという報告はない。そこで、本章では国内で人獣共 通感染症の原因ウイルスを保有しており、しかもヒトに近いところで生活している動物 の一つとして家畜のブタを対象として、新規・希少ウイルスの検出を試みた。

日本において養豚場のブタは高度に衛生管理されていることから、ブタに感染してい るウイルスをすべて把握していると考えている研究者は多い。しかし、東京農工大学農 学部附属国際家畜感染症防疫研究教育センターでは 2012 年から現在に至るまで国内の 養豚場の糞便から様々な新規・希少ウイルスを検出してきた。例えば、ブタの正常便か ら、porcine Group A rotavirus のセグメントと human Group A rotavirus のセグメン トがひとつのウイルス粒子に入り込んだリアソータントウイルスが検出されている (Nagai et al., 2015)。養豚場においてブタとヒトは非常に近いところで生活している。 このリアソータントウイルスは、porcine Group A rotavirus に感染しているブタが human Group A rotavirus を経口的に取りこみ、2つのウイルスが豚の腸管の細胞に同 時に感染してリアソートメントを起こした結果、糞便中に排出されたと考えられる。こ のウイルスは NSP 5 の非翻訳領域がそれまでに発見されていた porcine Group A rotavirus より長いために超短 RNA 電気泳動型を示した。このウイルスは正常便から検
出されたので、病原性については不明である。さらに、世界的に検出例の少ない porcine Group C rotavirus の新しい遺伝子型も発見されている(Niira et al., 2016)。一方、ウ シの糞便からウシとブタとヒツジの astrovirus のゲノムの組換えによって出来たと考 えられるウイルスが検出されている(Nagai et al., 2015)。また、ブタから発見された picornavirus はリスザルのウイルスに近縁であった(Naoi et al., 2016)。この他にも、 緒言で述べた porcine torovirus と porcine enterovirus のゲノムの組換えが起こってい ることが明らかにされている(Shang et al., 2017)。このようにブタの腸管に感染する ウイルスは、ヒトを含めて動物間を渡り歩きゲノムの組換えを起こしていると推測され る。ウイルスゲノムの組換えは新たな病原性の獲得と臓器嗜好性の拡大を起こす可能性 がある。

このような知見から、国内の養豚場のブタには未知・既知のウイルスが存在している 可能性が高いと考えた。そこで本章では、NGSにおいてサンプルの前処理を行わない従 来法、第一章で開発したDSN-NGS法を用いてウイルスの網羅的検出を実施した。なお、 multiplex PCR-NGS 法を用いたブタ検体のウイルス網羅的検出法も実施したが、既知 のウイルスは検出されたが、新規ウイルスは検出されなかったので、本章では結果を割 愛した。

※ なお、本章サーコウイルスの研究発表の後に ICTV によってウイルスの新しい分類 が発表された。これにより、FSfaCV は、現在サーコウイルス科ではなくジェノモウイ ルス科 Gemycircularvirus 属のウイルスとして分類されている。

材料および方法

1 核酸の抽出

1-1 ブタサンプル1

2014-2016 年に、鳥取県(6 農場)と石川県(6 農場)にて下痢の有無にかかわらず、 2~120 日齢のブタ 222 頭よりサンプリングされた糞便試料を使用した。同サンプルか らはメタゲノミクス解析により複数のウイルスが検出され報告されている(Nagai et al., 2015, Tsuchiaka et al., 2018)。糞便は PBS により 10%の乳剤に調整し、遠心した上清 から直接抽出した RNA をサンプルとして使用した。

1-2 ブタサンプル2

2014年1月から2月にかけて日本の9つの農場から収集された子ブタの糞便85頭分 をサンプルとして使用した。同じサンプル群から新しい porcine rotavirus、astrovirus、 posavirus をすでに発見し報告している(Ito et al., 2017, Nagai et al., 2015, Sano et al., 2016)。糞便は滅菌 PBS にて 10%の乳剤に調整し、その上清を核酸抽出に使用し た。核酸は High Pure Viral Nucleic Nucleic Acid Kit (Roche) および DNA mini Kit (QIAGEN)を用いて抽出した。いずれも製品プロトコールに従って実施した。

抽出した核酸を混合して 2 つのサンプルプールを作製した。各サンプルプール中の dsDNA 量を DSN solution 1µl で処理できる最大量の 500ng 程度となるよう調整した。 具体的には、サンプルプール1にはサンプル ID 1-1、2-1、3-1、4-1、5-1、6-1、7-1、 8-1 の 8 サンプルを各 10µl ずつ、サンプルプール 2 にはサンプル 2-2、5-2、6-2、7-2 の 4 サンプルを各 200µl ずつそれぞれ混合した。

2 NGS 用ライブラリー調整、ハイスループットシーケンシング

2-1 ブタサンプル1

ブタサンプル 1 ではサンプルの前処理をしない NGS 従来法を用いた。NGS 用ライブ ラリー調整には NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs)を使用し、製品プロトコールに従った。151 ペアエンドリードを用いたハイス ループットシーケンシングは、MiSeq benchtop sequencer (Illumina) で行った。

2-2 ブタサンプル2

ブタサンプル 2 は DSN-NGS 法を用いた。各サンプルプールはエバポレーターで濃縮 し、液量を 8µl に調整した。その後、第一章で述べた方法により DSN 処理を実施した。 簡単に述べると、8µl の核酸混合溶液に 1µl の DSN solution と 1µl の 10×DSN master buffer を加え、35℃で 10 分間インキュベートし、GenomiPhi V2 DNA Amplification Kit (GE Healthcare) を使用して DNA の増幅と 2nd strand の合成を行った。NGS 用 ライブラリー調整には、NexteraXT DNA sample prep kit (Illumina) を製造業者のプ ロトコールに従って使用した。サンプルプール毎にインデックスを付加した DNA ライ ブラリーは、MiSeq benchtop sequencer にて MiSeq Reagent Kit v2 (50 サイクル) を 使用してシーケンシングされた。

3 データ解析

3-1 ブタサンプル1

データは CLC Genomics Workbench 7.5.5 (CLC bio) で解析された。トリミングさ れたリードは、CLC Genomics Workbench のデフォルトパラメータを用いた *de novo* assembly コマンドによってコンティグに組み立てられた。生成されたコンティグは、最 も厳しいパラメータ設定にて参照配列にマッピングすることによって評価した。不十分 なデプス (<3) を有する 5' および 3' 配列は省略した。ゲノムの 5' 末端を得るために、 市販のキット (5'-Full RACE Core Set, TaKaRa Bio, Otsu, Japan) を用いて cDNA 末 端法 (RACE) の迅速増幅を行った。

塩基および推定アミノ酸配列は、ClustalW(Thompson et al., 1997) においてアラ イメントした。5' UTR における RNA の二次構造は、mfold によって予測した (Zuker, 2003)。系統発生解析は、MEGA 7 ソフトウェア(Kumar et al., 2016)の最尤法(ML) を用いて行った。系統樹の信頼性は、1000 回反復によるブートストラップ解析によって 評価した(Felsenstein, 1985)。ペアワイズ配列同一性は、CLC Genomics Workbench 6.5.1 (CLC bio) を用いて計算した。

3-2 ブタサンプル2

得られたリードは、CLC Genomics Workbench 6.5.1 (CLC bio) において、ワードサ イズ 50、minimum contig length 200bp 設定で *de novo* assembly コマンドによってコ ンティグに組み立てられた。得られたコンティグの相同性検索は NCBI ウェブサイト上 の BLASTn プログラムを用いて行った。

結 果

1 ブタサンプル 1~新規 porcine teschovirus の発見~

1-1 コンティグの組み立て

鳥取県(6 農場)と石川県(6 農場)にて下痢の有無にかかわらず、2~120日齢のブ タ 222 頭よりサンプリングされた糞便試料を NGS 解析したところ、ほぼ完全長の約 6, 000 塩基長を超す porcine teschovirus (PTV)に相同性を有する 8 つのコンティグと、 同じく PTV に相同性を示す、P1 全長を含むコンティグ 2 つが得られた。得られたコン ティグを表 3-1 に示す。これらのサンプルからは PTV 以外にも sapovirus、enterovirus G、posavirus、rotavirus、porcine astrovirus、picobirnavirus、Aichivirus C、sapelovirus が検出された。

1-2 全ゲノムの決定

PTV_JPN / Ishi-Ka2 / 2006 (PTV_Ka2) を含むサンプルについて 5' RACE を実施し て、5' 末端の塩基配列を決定した。3' 末端には polyA が付加されていたので、polyA 配 列を 3' 末端の配列とした。このようにして得られた PTV_Ka2 の完全長のゲノムの塩 基配列は、polyA を除いて 7,203 nt 長であり、5' UTR (424nt) および 3' UTR (125nt) に挟まれた polyprotein 前駆体である 2,217 aa をコードする 6,651 nt を含む単一の ORF を有していた (図 3-1)。

1-3 ペアワイズ配列同一性

ペアワイズ配列同一性は、CLC Genomics Workbench 6.5.1 を用いて計算した。 PTV_Ka2 は、他の PTV に相同性のある 3 つのコンティグである PTV_JPN / Ishi·Ka1 (PTV_Ka1)、PTV_JPN / Ishi·Ta1 (PTV_Ta1) および PTV_JPN / Ishi·Ta2 (PTV_Ta2) と高い配列同一性を示したが、既存の PTV 株に対する相同性は 75% 未満であった。も う 1 つの PTV 様配列 PTV_JPN / Ishi·Im1·1 / 2015 (PTV_Im1·1) も既存 PTV 株と の相同性は 77% 未満、Ka2 との相同性は 75.4% と低かった。これらの既存 PTV 株と 低い相同性を示す株を PTV 様株と呼ぶことにした。

1-4 RNA 二次構造分析

mfold によって予測された PTV_Ka2 の IRES の二次構造を、代表的な PTV-1 Talfan 株 (AF231769) と比較すると、PTV_Ka2 は典型的な IV 型 IRES を有し、その基底 領域および頂点は Talfan 株のものと同一であった (図 3-2)。 PTV_Ka2 の Kozak 配列 は AUUAUGG、Talfan 株では ACCAUGG であった。この塩基配列の差が翻訳にどの ような影響を及ぼすかについては今後の研究課題である。18S rRNA の 3' 末端と相互 作用し、適切な翻訳開始に重要な役割を果たすと考えられる短いオリゴビリミジン配列 (CUUU) (Scheper et al., 1994) は、両ウイルスの開始コドンの 22 nt 上流に見出さ れた (図 3-2)。

1-5 系統解析

PTV 様ウイルスの完全な polyprotein のアミノ酸配列を MEGA7 でピコルナウイル ススーパーグループ 1 のウイルスとアライメントし、ML 法で系統解析を実施した。5 つの PTV 様ウイルス(PTV_Ka1, Ka2, Ta1, Ta2 および Im1-1)は、5 株とも *Teschovirus* A と同じ大きなまとまりを形成したが、そのまとまりはスーパーグループ 1 内の他の picornavirus とは遠く離れて位置した(図 3-3)。また、5 つの PTV 様ウイルスは、大 きなまとまりの中で既存の Teschovirus A 株とは完全に独立したクラスターを形成して いることが明らかになった。さらに VP1、P1、2C および 3CDa 領域における系統樹解 析では PTV 様ウイルスが Teschovirus A 株と異なるグループであることが明らかにな った(図 3·4~3·7)。P1 アミノ酸の配列同一性について、PTV_Im1·1 群と PTV_Ka、 Ta 群は、PTV 1 · PTV 13 に対してそれぞれ 75.2 · 79.0% および 66.2 · 70.6% の相 同性を示したが、PTV1 - PTV13 間の相同性は 76.5 - 92.1%であった。 2Cのアミノ酸 の配列同一性は、PTV_Im1-1 群, PTV_Ka, Ta 群と PTV1 - PTV13 に対する配列同一性 が 86.6 - 92.8%および 88.9 - 92.8%であり PTV1 - PTV13 間(93.2 - 100%)のものよ りも低かったが、この 2C のアミノ酸配列の PTV 様と PTV1 - PTV13 の配列同一性は P1、2C、3CDのそれより高かった。PTV1 · PTV13間では、3Cにおいて93.2 · 100% の配列同一性および 3D において 95.8 - 100%の配列同一性を示したが、PTV_Im1-1 群 および PTV Ka、Ta 群と PTV1 · PTV13 間では、71.1 · 81.0%および 71.1 · 81.0% (3C) 83.4 - 86.3%および 83.9 - 86.7% (3D)の配列同一性であった。

これらの結果から、本研究で検出された PTV 様ウイルスは新規 PTV であることが示された。

2 ブタサンプル2

2-1 サンプルプール 1~fur seal feces-associated circular DNA virus JPN1 の検出~ 2-1-1 コンティグの組み立て

8 頭のブタ糞便核酸 mix サンプルを DSN-NGS 法により NGS 解析した結果、 1,767,619 のリードと 1,113 のコンティグが得られた。これらのコンティグを NCBI ウ ェブサイトの BLSATn プログラムで解析したところ、14 のコンティグが ssDNA ウイ ルスに相同性を示した。カットオフ値は E-value < 1.0E-5 とした。表 3-2 には各コンテ ィグに対して最も高い相同性を示すウイルス株を記載した。最も低い E-value を示すコ ンティグ (contig 1002) が、fur seal faeces associated circular DNA virus (FSfaCV) (Accession No.KF246569) に最も高い相同性を示した。

2-1-2 全ゲノムの決定

FSfaCV に相同性を示す ssDNA ウイルスの全ゲノム配列を決定するために、NGS か ら得られた塩基配列情報に基づいて新たに設計したプライマーを用いて Overlapping PCR を行った (data not shown)。 PCR プロダクトをサンガーシーケンシングするこ とによりウイルス全ゲノムの塩基配列を決定した。図 3-8 にレプリケーションタンパク 質 (Rep) およびキャプシドタンパク質 (Cap) をコードする 2 つのオープンリーディン グフレームを示した。ゲノム全体では FSfaCV の塩基配列と約 92%の相同性を示した。 このウイルスを fur seal feces-associated circular DNA virus JPN1 (FSfaCV-J1) と命 名し、全ゲノム配列を DDBJ に登録した (Accession No. LC133373)。

2-1-3 FSfaCV-J1 の保有率調査

図 3-8 に示すプライマー(1002f; 5'-ctgtatccgctcgccttgaa-3' および 1002r; 5'cggagaatttaaagtcattgtcaac-3')を用いて PCR を実施し、日本の農場のブタにおける FSfaCV-J1の保有率について検討した。バンドが得られたサンプルではダイレクトシー ケンシングにより FSfaCV-J1 と一致することを確認した。サンプルプール1に使用した 8 頭を含む合計 85 頭の子ブタの糞便から抽出した DNA サンプルについて FSfaCV-J1 の陽性率を検討したところ、65 頭 (76%)のブタで FSfaCV-J1 が検出された。なお、 農場間において保有率と塩基配列の有意な差は認められなかった (data not shown)。

2-2 サンプルプール 2 ~ porcine feces-associated IASV-like virus の検出~

2-2-1 コンティグの組み立て

4 頭のブタ糞便核酸 mix サンプルを用いて DSN-NGS 法により NGS 解析した結果、 502,419 のリードと 1,628 のコンティグが得られた。これらのコンティグを NCBI ウェ ブサイトの BLASTn プログラムで解析したところ、そのうち 5 つのコンティグが immunodeficiency-associated stool virus (IASV) (Accession No.KJ003983.1) に相同 性を示した (E-value<1.0E-10)。各コンティグの長さは 320、300、285、250、284bp であった (表 3-3)。

2-2-2 IASV に相同性を示すフラグメントの増幅

NGS から得られたデータを確認するために、NGS で得られたリードを IASV ゲノム 配列にマッピングして得たコンセンサス配列から PCR プライマー (IAS_F; 5'-TTGGAGTCCAGGCAAGGTTA-3'および IAS_R; 5'-CCTGCAAGTTTACCTGTAGC-3')を設計し、PCR を実施した。電気泳動の結果、4 サンプルすべてに予測サイズ 789bp のバンドが確認された (図 3-9)。4 つの PCR プロダクトから 1 つを任意に選択し、ダ イレクトシーケンシングを実施した。得られた塩基配列は、インターネット上の BLASTn によって IASV のゲノム配列と約 70%の相同性を示した。そこで、今回検出 された配列を有する新規ウイルスを porcine feces-associated IASV-like virus (PfaIV) と命名し、その塩基配列を DDBJ に登録した (Accession No.LC318452)。

2-2-3 IASV および PfaIV のアライメント

IASV および PfaIV の塩基配列と推定アミノ酸配列をアライメントし、図 3-10 に示し た。これらの 2 つのウイルスの推定上のアミノ酸配列は BLASTp アルゴリズムに従う と約 67%の相同性を有していた。IASV と PfaIV のコンセンサスアミノ酸配列の最大連 続長は 26 残基であった。BLASTx においてこの推定上のタンパク質の機能を予測した が、結果は得られなかった。

2-2-4 PfaIV の保有率調査

日本の農場のブタにおける PfaIV の保有率を調査するために、85 頭分の DNA につい て IAS_F および IAS_R プライマーを用いた PCR を実施し、塩基配列をダイレクトシ ーケンシングで決定した。ダイレクトシーケンシングで決定した配列が IASV に相同性 を示したサンプルを陽性と定義した。 85 頭のうち 62 頭(72.9%)が PfaIV 陽性とな り、下痢および健康な便のいずれからも PfaIV 遺伝子断片が検出された(表 3-4)。 考察

本研究では国内の養豚場のブタ糞便から PTV 様ウイルスおよび PfaIV の 2 つの新規 ウイルスを検出し、これに FSfaCV-J1 を含めた計 3 つのウイルスを日本で初めて報告 した。

新規 PTV は 5 つの養豚場で 7 頭(3.2%)のブタから検出された。PTV はポリオ脳炎、繁殖障害および胃腸障害を起こすが、健康なブタの糞便中にも検出されることが知られている。PTV が属する Teschovirus 属は現在 94 種を含む 40 属(2018 年 2 月現在)を構成するピコルナウイルス科のメンバーである。現在、ピコルナウイルス科は系統発生的に 6 つのスーパーグループに分けられている。Teschovirus 属は、Aphthovirus、Bovivirus、Cardiovirus、Cosavirus、Erbovirus、Hunnivirus、Mischivirus、Mosavirus、Senecavirus、Torchivirus、Aimelvirus、Malagasivirus および Tottorivirus (http://www.picornaviridae) 属とともにピコルナウイルススーパーグループ 1 に分類されている。Teschovirus 属には単一種の Teschovirus A のみが属し、現在、この中では交差中和試験において少なくとも異なる 13 の血清型が知られている(Boros et al., 2012, Cano-Gómez et al., 2017, Zell et al., 2001)。

PTV は、約 7.1kb の長さの ssRNA(+) ゲノムを有する非エンベロープウイルスであ る。PTV ゲノムは、ウイルスゲノム翻訳に必要とされるリーダー(L) タンパク質、構 造タンパク質(VP1~VP4)をコードする P1 領域、および非構造タンパク質である 2A ~2C および 3A~3Dをコードする P2 領域および P3 領域を含む単一のオープンリーデ ィングフレーム(ORF)から成る。 5' UTR は、ウイルスゲノム翻訳に必要な IRES を 含む(Chard et al., 2006, Fernandez-Miragall et al., 2009, Pisarev et al., 2003, Kaku et al., 2001)。現在、IRES は、核酸および構造的特徴ならびに翻訳開始機構(Yu et al., 2011, Sweeney et al., 2011)によって 5 つのタイプに分類されている。5' UTR および 3' UTR の一部の配列は相同的な RNA 組換えによって同属内で交換されたと考えられ、 1 つの属には同一の IRES 構造が存在するとされる。

本研究では、下痢の有無にかかわらず日本のブタ糞便試料中から新規 PTV を同定し た。コード領域のアミノ酸配列全長の系統発生解析により、これらの新たに同定された ウイルスは Teschovirus A とは遠く離れており、ピコルナウイルススーパーグループ 1 内の既存の PTV または他の属の株とも同一のクラスターに属さなかった。ピコルナウ イルス科のこれらの新規 PTV は IV 型 IRES および保存された特徴的モチーフを共有し ているが、既存の PTV 株間でアミノ酸配列の相同性が高く保たれている 3C および 3D (それぞれ 93.2・100%, 95.8・100%) において PTV 様ウイルスと既存 PTV 株間の配 列の相同性は低かった (77.1・81.0%および 84.3・86.7%)。これらのデータは、新たに 同定されたウイルスが Teschovirus 属に属するが、新規ウイルスであることを示してい る。

本章では ssDNA ウイルスゲノムを効率的に検出できる DSN-NGS 法を用いて、2 つ のサンプルプールのブタ糞便抽出核酸を解析した。サンプルプール 1 からは circovirus の一種である FSfaCV-J1 を検出した。circovirus はサーコウイルス科に属する環状 ssDNA ウイルスであり、様々な哺乳動物、鳥類、爬虫類、魚類および環境から分離され ている (Blinkova et al., 2010, Ng et al., 2009, Rose et al., 2012, Whon et al., 2012, Woods et al., 1994)。ブタの Circovirus の中でも Porcine circovirus 2 (PCV-2) は離乳 豚に Postweaning multisystemic wasting syndrome (PMWS) を引き起こすことが知 られているが (Fenaux et al., 2000, Fenaux et al., 2003, Reuter et al., 2014)、それ以 外の circovirus については病原性がないと考えられているため報告は少ない。そのよう な中、FSfaCV-J1 は本研究における検出が日本で初めての報告となった。ニュージーラ ンドのオットセイの糞便から検出されたウイルスの近縁ウイルスが日本のブタの糞便か ら検出されたことは非常に興味深いことである。さらに、9 農場 85 頭のブタの糞便か ら抽出した DNA サンプルについて FSfaCV-J1 の保有率を PCR にて検索したところ、 65 頭 (76%) のブタが FSfaCV-J1 陽性であった。このことから FSfaCV-J1 が日本の 養豚場に広く蔓延していることが示唆された。FSfaCV については 1 頭のオットセイか らの検出報告であり、病原性や他のオットセイにおける陽性率などの情報は得られてい ない。なぜ、ニュージーランドの水生野生動物と日本の家畜であるブタから同じウイル スが検出されるのか、オットセイの食餌と日本のブタの餌に共通点があるのかなど、不 明な点は多い。しかし、日本のブタに広く蔓延しているこのウイルスが何かのきっかけ で病原性を持ちうるのかどうかについては注意深く監視していく必要があるかもしれな い。

ー方、IASV の情報は GenBank 上に unclassified の環状 dsDNA ゲノムを有するゲ ノム長 99,915bp のウイルスとして示されている(Hemert et al., 2014)。IASV はオラ ンダの病院に受診したヒト免疫不全ウイルスに感染した計 6 名の下痢 / 非下痢の患者 の糞便から検出されており(Hemert et al., 2014)、IASV の GenBank データは KJ003983.1 のみである。IASV に相同性を示すいくつかのリードがスウェーデンにお ける NGS を用いたブタの糞便抽出核酸解析データ中に見いだされている。しかし、健 康なブタ 3 頭から得られたこれらのリードについての塩基配列に関する詳細な情報は 報告されていない(Karlsson et al., 2016)。IASV の病原性およびその人獣共通感染症 の可能性は不明である。本研究では DSN 処理後のサンプルから PfaIV が検出されたの で、当初 PfaIV ゲノムは ssDNA であろうと推察していた。しかしながら、IASV は dsDNA ウイルスとして GenBank に登録されていた。そこで、IASV が dsDNA か ssDNA ウイルスであるかを確認するために、PfaIV 含むサンプル中の DNA について dsDNA を切断する制限酵素 (Nde I) で処理した後に、制限酵素部位の外側に新た設計したプラ イマーを用いて PCR を実施したところ、PCR プロダクトは得られなかった (data not shown)。それゆえ、PfaIV は dsDNA ゲノムを有する可能性が高いと考えられた。dsDNA ウイルスの PfaIV が DSN 処理をしても検出された理由は、PfaIV の複製中にヘリカー ゼ活性によって形成される部分的な ss 構造領域が存在していたためか、あるいは DSN 処理が不十分であったためではないかと推測している。

85 頭のブタにおける PfaIV の保有率は 72.9%であり、サンプルプール1 における FSfaCV-J1 の 76%とは同じくらい高率であった。PfaIV および FSfaCV-J1 の両方が 検出されたブタも多く (data not shown)、両ウイルスに共感染していた可能性が示唆さ れた。糞便の性状 (下痢もしくは軟便, 普通便) と糞便中の FSfaCV-J1 および PfaIV の存在との間に明確な相関は示されなかったため、両ウイルスはブタに下痢を起こさな い可能性が高いと考えられた。

以上の結果から、DSN-NGS 法は効率的に ssDNA ウイルスを検出できる方法であ ると同時に、ライブラリー調整のキットの都合で実施困難であった ssDNA ゲノムのハ イスループットシーケンシングも可能とする方法であることが示された。

図 3-1 PTV のゲノム構造

PTV_Ka2 は polyprotein 前駆体である 2,217 aa をコードする 6,651 nt を 含む単一の ORF を有していた。polyprotein には、構造タンパク質をコード する P1 および非構造タンパク質をコードする P2、P3 が含まれている。5' UTR には IRES を持つ。

図 3-2 IRES (internal ribosome entry site) の構造解析

mfoldにより予測された IRES の構造を既存 PTV1 Talfan 株と PTV_JPN/Ishi-Ka2/2005 とで比較した。 両者は典型的な IV 型 IRES を有し、その基底領域および頂点は同一であった。

図 3-3 ピコルナウイルススーパーグループ1 各ウイルスによる 系統樹

polyprotein 全長のアミノ酸配列による系統樹。teschovirus の中で PTV 様 ウイルスは既存 PTV と異なるクラスターを形成している。

図 3-4 本研究の PTV および PTV 様ウイルスと既存 PTV の系統樹 1

VP1 のアミノ酸配列を使用した。PTV_HaKka2-1、Mol2-2-1、Ishi-Im1-1(青色)と PTV_Ka1、Ka2、Ta1、Ta2(赤色)で示した PTV 様ウイルスは既存 PTV と全く別のクラス ターを形成した。PTV_Ishi-Im7、Ishi-Im9(緑)、Mol2-2-2(紫)は既存 PTV と同じク ラスターに分類された。

図 3-5 本研究の PTV および PTV 様ウイルスと既存 PTV の系統樹 2

P1のアミノ酸配列を使用した。PTV_HaKka2-1、Mol2-2-1、Ishi-Im1-1(青色) と PTV_Ka1、Ka2、Ta1、Ta2(赤色)で示した PTV 様ウイルスは既存 PTV と全く別 のクラスターを形成した。PTV_Ishi-Im7、Ishi-Im9(緑)、Mol2-2-2(紫)は既 存 PTV と同じクラスターに分類された。

図 3-6 本研究の PTV および PTV 様ウイルスと既存 PTV の系統樹 3

2Cのアミノ酸配列を使用した。PTV_HaKka2-1、Mol2-2-1、Ishi-Im1-1(青色) とPTV_Ka1、Ka2、Ta1、Ta2(赤色)で示した PTV 様ウイルスは既存 PTV と全く別 のクラスターを形成した。PTV_Ishi-Im7、Ishi-Im9(緑)は既存 PTV と同じクラス ターに分類された。

図 3-7 本研究の PTV および PTV 様ウイルスと既存 PTV の系統樹 4

3CD のアミノ酸配列を使用した。PTV_HaKka2-1、Mol2-2-1、Ishi-Im1-1(青色) と PTV_Ka1、Ka2、Ta1、Ta2(赤色)で示した PTV 様ウイルスは既存 PTV と全く別 のクラスターを形成した。PTV_Ishi-Im7、Ishi-Im9(緑)は既存 PTV と同じクラ スターに分類された。

図 3-8 FSfaCV-J1のゲノム構造

コンティグ内に設計したプライマー 1002 f と 1002 r はオーバー ラッピング PCR と FSfaCV-J1 の保有率調査の両方で用いた。

図 3-9 PfaIV の遺伝子断片検出

サンプルプール2に含まれている4頭から PfaIVの遺伝子断片が検出された。

図 3-10 IASV および PfaIV の塩基配列(上)と 推定アミノ酸配列(下)のアライメント

IASV と PfaIV の遺伝子断片について、塩基配列とアミノ酸配列をそれ ぞれ BLASTn と BLASTp アルゴリズムでアライメントした。コンセンサス アミノ酸配列の最大連続長箇所を **し**で示す。

	Reads and sequer	nces obtained fr	om deep sequencing	DDBJ		
contig name	Total reads	Teschovirus reads	Sequence Length (excluding poly-A)	Accession No.	Co-infection with other viruses	
JPN/Ishi-Im7/2016	1, 554, 736	38, 424	7, 104	LC386152	Sapovirus, Enterovirus G, Posavirus, Rotavirus A	
JPN/Ishi-Im9/2016	1, 759, 264	1, 497	7, 096	LC386153	Sapovirus, Enterovirus G, Picobirnavirus, Aichivirus C, Rotavirus A	
JPN/Ishi-Ka1/2015	1, 401, 774	4, 301	7, 138	LC386154	Aichivirus C, Sapelovirus	
JPN/Ishi-Ka2/2015	2,678,468	5, 215	7,203	LC386155	Aichivirus C, Enterovirus G	
JPN/Ishi-Ta1/2016	939, 382	1, 402	7, 163	LC386156	Aichivirus C	
JPN/Ishi-Ta2/2016	1, 199, 614	144, 555	7, 154	LC386157	Aichivirus C	
JPN/Ishi-Im1-1/2015	1, 809, 416	922	6, 820	LC386158	Sapovirus, Porcine astrovirus, Picobirnavirus, Posavirus	
JPN/MoI2-2-1/2015	1 405 204	823	6,445	LC386159	Porcine astrovirus, Sapelovirus,	
JPN/MoI2-2-2/2015	1, 495, 594	209	3, 342	LC386160	Enterovirus G, Rotavirus C	
JPN/HkKa2-1/2015	1, 128, 024	438	3, 663	LC386161	Sapovirus, Porcine astrovirus, Picobirnavirus, Posavirus	

表 3-1 PTV に相同性を示すコンティグ一覧

表 3-2 ブタサンプル 2 サンプルプール 1 における ssDNA ウイルスに相同性を示すコンティグ一覧

contig No.	length	description	Accession No.	E-value
contig 1002	361	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	1.10E-147
contig 287	352	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	4.00E-145
contig 913	251	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	1.70E-114
contig 314	322	Porcine stool-associated circular virus 2 isolate TP3, complete genome	KJ577818	1.70E-112
contig 262	361	Porcine stool-associated circular virus 3 isolate L2T, complete genome	KC545230	1.75E-63
contig 249	1185	Porcine stool-associated circular virus 2 isolate TP3, complete genome	KJ577818	3.09E-60
contig 691	269	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	8.37E-33
contig 415	837	Odonata-associated circular virus-17 isolate OdasCV-17-US-1619LM1-12, complete genome	KM598400	5.12E-24
contig 98	663	Po-Circo-like virus 21, complete genome	JF713716	1.95E-22
contig 1	254	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	7.85E-21
contig 80	889	Dromedary stool-associated circular ssDNA virus isolate DcSCV_c1566, complete genome	KM573776	8.36E-13
contig 280	556	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	9.10E-13
contig 79	884	Dromedary stool-associated circular ssDNA virus isolate DcSCV_c1566, complete genome	KM573776	4.33E-10
 contig 269	355	Fur seal faeces associated circular DNA virus isolate as50, complete genome	KF246569	1.64E-09

(cut off E-value < 1.0E-5)

表 3-3 ブタサンプル2サンプルプール2におけるウイルスに相同性を示すコンティグ一覧

contig No.	length	description	Accession No.	E-value
contig 1386	320	IAS virus, complete genome	KJ003983.1	1.34E-52
contig 1536	300	IAS virus, complete genome	KJ003983.1	5.57E-37
contig 470	957	Porcine serum-associated circular virus isolate BR6, complete genome	KU203356.1	3.71E-32
contig 1408	285	IAS virus, complete genome	KJ003983.1	3.02E-26
contig 1309	250	IAS virus, complete genome	KJ003983.1	4.73E-17
contig 268	284	IAS virus, complete genome	KJ003983.1	6.88E-13
contig 1462	252	Gokushovirus WZ-2015a isolate 33Mky03, complete genome	KT264781.1	3.97E-12
contig 1474	268	IAS virus, complete genome	KJ003983.1	5.90E-10

(cut off E-value < 1.0E-10)

	diarrhea	healthy	Total
PfaIV(+)	23	39	62
PfaIV(-)	9	14	23
Total	32	53	85

表 3-4 国内ブタにおける PfaIV 遺伝子の保有頭数と便性状

(number of heads)

総括

本研究では、生物学のさまざまな分野で広く使用されているハイスループットシーケ ンシングを利用してウイルスゲノム検出を行った。同時に、ターゲットウイルスゲノム 検出のためのハイスループットシーケンシングが、血液や糞便などの臨床サンプルを用 いた場合に宿主のゲノムがウイルスゲノムの検出を妨げる等の理由からその能力を発揮 しきれないことがあるという問題点を解決するために、新しいサンプル前処理方法を開 発し野生のコウモリおよび家畜のブタの糞便サンプルから新規・希少ウイルスを検出し た。

第一章ではウイルスをゲノム性状から ssDNA ウイルス・dsDNA ウイルス・ssRNA ウイルス・dsRNA ウイルスの 4 種類に分けることで、それぞれをターゲットとするサ ンプルの前処理方法を個別に実施すればより効率的にターゲットウイルスゲノムを獲得 し得るであろうことに着目し、この 4 種類の中で特に ssDNA ウイルスゲノムを効率的 にサンプルから検出するための前処理方法である DSN-NGS 法を開発し、その有用性 を検証した。NGS はライブラリー調整キットの都合上、基本的に ssDNA ゲノムをシ ーケンシングすることができない。DSN-NGS 法はこの問題点を解消しつつ効率的に ssDNA ウイルスゲノムを検出できることを明らかにした。さらに、dsDNA ウイルス を含めたウイルスの検出方法として、multiplex PCR-NGS 法を開発した。この方法 は、鳥類および哺乳類に感染の可能性のあるウイルス属 137 属について約 700 本の multiplex PCR 用プライマーを設計し、 multiplex PCR のプロダクトをハイスループ ットシーケンシングすることで効率的にウイルスゲノムの断片を検出する方法である。

第二章では、コウモリの糞便やコウモリを吸血するダニから、本研究で開発した multiplex PCR-NGS 法と従来の NGS 法を用いて、EMCV および STV を検出した。 EMCV は台湾で採取したユビナガコウモリ(*Miniopterus fuliginosus*)の糞便から検 出された。EMCV はヒトへの感染の危険もあるウイルスである。さらに、日本と韓国 の洞窟から採取したサンプルからも EMCV が検出された。これらの結果は、台湾、韓 国および日本のユビナガコウモリが EMCV を保有していることを示唆しており、ユビ ナガコウモリは東アジアで広く EMCV の自然宿主の1つである可能性がある。新興感 染症の原因ウイルスのレゼルボアとして注目されているコウモリからこのようなウイル スが発見されたことは公衆衛生上、非常に重要である。また、国内のコウモリコロニー の生息場所から採取されたコウモリマルヒメダニからウイルス分離した培養上清サンプ ルから検出された STV は、系統解析の結果、ブニヤウイルス科 Nairovirus 属の Issyk-kul virus というヒトに発熱等の症状を示すウイルスに最も近縁であることを明 らかにした。このウイルスがダニやコウモリ、その他の哺乳類等に対して病原性を示す かは不明である。しかし、培養細胞に細胞傷害性を示したことから、何らかの宿主に対 して病原性を示す可能性は否定できない。今後、実験動物を用いて明らかにする必要が ある。

第三章では、ブタの糞便から従来のNGS 法と DSN-NGS 法を用いて、新しい porcine teschovirus (PTV) と日本で初めての報告となる fur seal feces-associated circular DNA virus JPN1 (FSfaCV-J1) および porcine feces-associated IASV-like virus (PfaIV)を発見した。FSfaCV-J1 および PfaIV は、日本の養豚場に広く蔓延 していることも明らかとなった。PTV はポリオ脳炎、繁殖障害および胃腸障害を起こ すが、健康なブタの糞便中にも検出されることが知られている。新しい PTV の病原

性は全く不明であるため、更なる研究が求められる。FSfaCV-J1 および PfaIV に病 原性がある可能性は今のところは低い。しかし、広く日本の養豚場に蔓延している両ウ イルスが何かのきっかけで病原性を持ちうるのかどうかについては注意深く監視してい く必要があろう。

以上のように、本研究では、動物の検体から NGS を用いてウイルスを検出する際の 問題点を DSN-NGS 法と multiplex PCR-NGS 法という 2 つの新しいサンプル前処理 方法を開発することによって解決し、従来の方法とこれらの新規方法を用いてコウモリ とブタから新規・希少ウイルスを検出した。また、これによりコウモリやブタにはまだ 知られていないウイルスが相当数存在している可能性が示された。このことは、新興ウ イルス感染症発生の脅威は常にあることを明らかにしたといえるだろう。今回ブタで発 見されたウイルスは、今のところどれもブタに症状を引き起こしたり、人へ感染したり する可能性は低いと考えられるが、これらのウイルスが変異を起こすことによりブタに 重篤な症状を引き起こしたり、人獣共通ウイルス感染症の原因になる可能性は否定でき ない。また、コウモリは多様なウイルスのレゼルボアとして知られているが、今回コウ モリおよびコウモリに付着するダニから発見されたウイルスはいずれも人への感染、発 症の可能性が否定できないウイルスであった。コウモリの保有するウイルスが家畜に感 染することが新興ウイルス感染症発生の原因の一つと言われている(Banyard et al., 2014, Plowright et al., 2015) ことからも、今後も、本研究で開発した方法などを用い て、コウモリやブタなどに感染しているウイルスを網羅的に検出しその情報を蓄積する ことは、新たなウイルス感染症の防疫に重要であると考えられる。

謝辞

本論文を作成するにあたり、ご指導ご鞭撻を賜りました東京大学大学院農学生命科 学研究科実験動物学研究室教授 久和茂先生に深甚の謝辞を表します。

各実験の実施やデータ解析等にあたっては、名古屋大学農学部資源生物科学科動物形 態学研究室教授 本道栄一先生、山口大学共同獣学部獣医微生物学分野教授 前田健先 生、麻布大学獣医学部獣医学科伝染病学研究室教授 長井誠先生、東京農工大学獣医微 生物学研究室准教授 古谷哲也先生、国立感染症研究所細菌第1部 川端寛樹先生、国 立感染症研究所ウイルス1部 安藤秀二先生、鳥取県倉吉家畜保健衛生所 増田恒幸先 生、岐阜大学大学院連合獣医学研究科准教授 大谷賢司先生、 Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Dr. Shinji Makino, Centre for Infection and Immunity, Mailman School of Public Health, Columbia University, Dr. Atsushi Okumura を始めとする多くの 方々から多大なご協力を頂きました。心より感謝申し上げます。

最後に本研究を遂行するにあたり、日頃からご指導ご鞭撻を賜りました東京農工大学 農学部附属国際家畜感染症防疫研究教育センター教授 水谷哲也先生、准教授 大松勉 先生並びに同センター職員の皆さまおよび学生諸氏に謹んで感謝の意を表します。

参考文献

- Albas, A., Campos, A. C., Araujo, D. B., Rodrigues, C. S., Sodre, M. M., Durigon, E.
 L., Favoretto, S. R., 2011. Molecular characterization of rabies virus isolated from non-haematophagous bats in Brazil. Rev Soc Bras Med Trop. 44, 678-683.
- Almeida, M. F., Favoretto, S. R., Martorelli, L. F., Trezza-Netto, J., Campos, A. C.,
 Ozahata, C. H., Sodre, M. M., Kataoka, A. P., Sacramento, D. R., Durigon, E. L.,
 2011. Characterization of rabies virus isolated from a colony of *Eptesicus furinalis*bats in Brazil. Rev Inst Med Trop Sao Paulo. 53, 31-37.
- Almeida, M. F., Martorelli, L. F. A., Aires, C. C., Sallum, P. C., Durigon, E. L., Massad,
 E., 2005. Experimental rabies infection in haematophagous bats *Desmodus rotundus*. Epidemiol Infect. 133, 523-527.
- Anindita, P. D., Sasaki, M., Setiyono, A., Handharyani, E., Orba, Y., Kobayashi, S.,
 Rahmadani, I., Taha, S., Adiani, S., Subangkit, M., Nakamura, I., Sawa, H.,
 Kimura, T., 2015. Detection of coronavirus genomes in moluccan naked-backed
 fruit bats in Indonesia. Arch Virol. 160, 1113-1118.
- Annan, A., Baldwin, H. J., Corman, V. M., Klose, S. M., Owusu, M., Nkrumah, E. E., Badu, E. K., Anti, P., Agbenyega, O., Meyer, B., Oppong, S., Sarkodie, Y. A., Kalko,

- E. K., Lina, P. H., Godlevska, E. V., Reusken, C., Seebens, A., Gloza-Rausch, F., Vallo, P., Tschapka, M., Drosten, C.,Drexler, J. F., 2013. Human betacoronavirus 2c emc/2012-related viruses in bats, Ghana and Europe. Emerg Infect Dis. 19, 456-459.
- Anthony, S. J., Gilardi, K., Menachery, V. D., Goldstein, T., Ssebide, B., Mbabazi, R., Navarrete-Macias, I., Liang, E., Wells, H., Hicks, A., Petrosov, A., Byarugaba, D. K., Debbink, K., Dinnon, K. H., Scobey, T., Randell, S. H., Yount, B. L., Cranfield, M., Johnson, C. K., Baric, R. S., Lipkin, W. I., Mazet, J. A., 2017. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio. 8, e00373-17.
- Anthony, S. J., Ojeda-Flores, R., Rico-Chavez, O., Navarrete-Macias, I., Zambrana-Torrelio, C. M., Rostal, M. K., Epstein, J. H., Tipps, T., Liang, E., Sanchez-Leon, M., Sotomayor-Bonilla, J., Aguirre, A. A., Avila-Flores, R., Medellin, R. A., Goldstein, T., Suzan, G., Daszak, P.,Lipkin, W. I., 2013. Coronaviruses in bats from Mexico. J Gen Virol. 94, 1028-1038.
- Atkinson, B., Marston, D. A., Ellis, R. J., Fooks, A. R., Hewson, R., 2015. Complete Genomic Sequence of Issyk-Kul Virus. Genome Announc. 3, e00662-15.

- Banyard, A. C., Evans, J. S., Luo, T. R., Fooks, A. R., 2014. Lyssaviruses and bats: emergence and zoonotic threat. Viruses. 6, 2974-2990.
- Billinis, C., Leontides, L., Psychas, V., Spyrou, V., Kostoulas, P., Koenen, F., Papadopoulos, O., 2004. Effect of challenge dose and age in experimental infection of pigs with encephalomyocarditis virus. Vet Microbiol. 99, 187-195.
- Blinkova, O., Victoria, J., Li, Y., Keele, B. F., Sanz, C., Ndjango, J. B. N., Peeters, M., Travis, D., Lonsdorf, E.V., Wilson, M. L., Pusey, A. E., Hahn, B. H. and Delwart, E. L. 2010. Novel circular DNA viruses in stool samples of wild-living chimpanzees. J Gen Virol. 91, 74-86.
- Blome, S., Staubach, C., Henke, J., Carlson, J., Beer, M. 2017. Classical Swine Fever-An Updated Review. Viruses. 9, pii: E86.
- Breed, A. C., Breed, M. F., Meers, J., Field, H. E., 2011. Evidence of endemic hendra virus infection in flying-foxes (*Pteropus conspicillatus*) --implications for disease risk management. PLoS One. 6, e28816.
- Boros, Nemes, C., Pankovics, P., Kapusinszky, B., Delwart, E., Reuter, G., 2012. Porcine teschovirus in wild boars in Hungary. Arch. Virol. 157, 1573–1578.

- Cano-Gómez, C., Fernández-Pinero, J., García-Casado, M.A., Zell, R., Jiménez-Clavero, M. A., 2017. Characterization of PTV-12, a newly described porcine teschovirus serotype: in vivo infection and cross-protection studies. J Gen. Virol. 98, 1636-1645.
- Chen, Y. N., Phuong, V. N., Chen, H. C., Chou, C. H., Cheng, H. C., Wu, C. H., 2016. Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. Zoonoses Public Health. 63, 608-615.
- Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., Schountz, T., 2006. Bats: Important reservoir hosts of emerging viruses. Clin Microbiol Rev. 19, 531-545.
- Carocci, M., Bakkali-Kassimi, L., 2012. The encephalomyocarditis virus. Virulence. 3, 351-367
- Chard, L. S., Kaku, Y., Jones, B., Nayak, A., Belsham, G. J., 2006. Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J Virol. 80, 1271–1279.
- Constantine, D. G., 2003. Geographic translocation of bats: Known and potential problems. Emerg Infect Dis. 9, 17-21.
- Davis, A. D., Gordy, P. A., Bowen, R. A., 2013a. Unique characteristics of bat rabies viruses in big brown bats (*Eptesicus fuscus*) . Arch Virol. 158, 809-820.
- Davis, A. D., Jarvis, J. A., Pouliott, C., Rudd, R. J., 2013b. Rabies virus infection in eptesicus fuscus bats born in captivity (naive bats) . PLoS One. 8, e64808.
- De Nys, H. M., Kingebeni, P. M., Keita, A. K., Butel, C., Thaurignac, G., Villabona-Arenas, C. J., Lemarcis, T., Geraerts, M., Vidal, N., Esteban, A., Bourgarel, M., Roger, F., Leendertz, F., Diallo, R., Ndimbo-Kumugo, S. P., Nsio-Mbeta, J., Tagg, N., Koivogui, L., Toure, A., Delaporte, E., Ahuka-Mundeke, S., Tamfum, J. M., Mpoudi-Ngole, E., Ayouba, A., Peeters, M., 2018. Survey of ebola viruses in frugivorous and insectivorous bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015-2017. Emerg Infect Dis. 24, 2228-2240.
- Duke, G. M., Hoffman, M. A., Palmenberg, A. C., 1992. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J Virol. 66, 1602-1609.

- Felsenstein, J., 1995. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791
- Fenaux, M., Halbur, P. G., Gill, M., Toth, T. E. Meng, X. J., 2000. Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with postweaning wultisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR-restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2, J. Clin. Microbiol. 38, 2494–2503.
- Fenaux, M., Opriessnig, T., Halbur, P. G., Meng, X. J., 2003. Immunogenicity and pathogenicity of chimeric infectious DNA clones of pathogenic porcine circovirus type 2 (PCV2) and nonpathogenic PCV1 in weanling pigs. J. Virol. 77, 11232– 11243.
- Fernández-Miragall, O., de López Quinto, S., Martínez-Salas, E., 2009. Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res. 139, 172– 182.
- Geoch, D. J. M. C, Dolan, A., Ralph, A. C., 2000. Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol. 74, 10401–10406.

- Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W., Yu, X. J., 2015.Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205, 1-6.
- Hemert, F. J., Chung, K., Cotton, M., Snijders, F., Sol, C. J., van der Hoek, L., 2014. Unexplained diarrhoea in HIV-1 infected individuals. BMC Infect Dis. 14, 22.
- Horne, K. M., Vanlandingham, D. L., 2014. Bunyavirus-vector interactions. Viruses. 13, 4373-4397.
- Iida, K., Kobayashi, R., Hengjan, Y., Nagata, N., Yonemitsu, K., Nunome, M., Kuwata,
 R., Suzuki, K., Ichiyanagi, K., Maeda, K., Ohmori, Y., Hondo, E., 2017. The genetic diversity of d-loop sequences in eastern bent-winged bats (*Miniopterus fuliginosus*)
 living in Wakayama prefecture, Japan. J Vet Med Sci. 79, 1142-1145.
- Ito, M., Kuroda, M., Masuda, T., Akagami, M., Haga, K., Tsuchiaka, S., Kishimoto, M., Naoi, Y., Sano, K., Omatsu, T., Katayama, Y., Oba, M., Aoki, H., Ichimaru, T., Mukono, I., Ouchi, Y., Yamasato, H., Shirai, J., Katayama, K., Mizutani, T., Nagai, M., 2017. Whole genome analysis of porcine astroviruses detected in Japanese pigs reveals genetic diversity and possible intra-genotypic recombination. Infect Genet Evol. 50, 38-48.

- Jimba, M., Takeshima, S., Matoba, K., Endoh, D., Aida, Y., 2010. BLV-CoCoMo-qPCR : Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm, Retrovirology. 7, 91.
- Kaku, Y., Chard, L. S., Inoue, T., Belsham, G. J., 2001. Unique characteristics of a picornavirus internal ribosome entry site from the porcine teschovirus-1 talfan. J. Virol. 76, 11721–11728.
- Karlsson, O. E., Larsson, J., Hayer, J., Berg, M., Jacobson, M., 2016. The intestinal eukaryotic virome in healthy and diarrhoeic neonatal piglets. PLoS One. 11, e0151481.
- Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 33, 1870-1874.
- Lau, S. K., Woo, P. C., Lai, K. K., Huang, Y., Yip, C. C., Shek, C. T., Lee, P., Lam, C. S., Chan, K. H., Yuen, K. Y., 2011. Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol. 85, 8819-8828.
- Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang,

S., Wang, L. F., 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science. 310, 676-679.

- Lien, Y. Y., Huang, C. H., Sun, F. C., Sheu, S. C., Lu, T. C., Lee, M. S., Hsueh, S. C., Chen, H. J., Lee, M. S., 2012. Development and characterization of a potential diagnostic monoclonal antibody against capsid protein VP1 of the chicken anemia virus. J Vet Sci. 13, 73-79.
- Liu, H., He, X., Song, X., Xu, L., Zhang, Y., Zhou, G., Zhu, W., Chang, C., Yin, Z., Shi,
 Y., Wang, C., Chang, H., 2016. Isolation and molecular and phylogenetic analyses
 of encephalomyocarditis virus from wild boar in central China. Infect Genet Evol.
 40, 67-72.
- Liu, H., Li, Y., Zhang, G., Sang, S., Wang, C., Chang, H., 2017. Complete genome sequences and phylogenetic analysis of encephalomyocarditis virus strains isolated from pigs and rats origin. Infect Genet Evol. 55, 277-280.
- Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P., Woo, P. C. Y., 2019. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 71, 21-30.

- Liu Y., Li Q., Hu W., Wu J., Wang Y., Mei L., Walker D.H., Ren J., Wang Y., Yu X.J., 2012. Person-to-person transmission of severe fever with thrombocytopenia syndrome virus. Vector Borne Zoonotic Dis. 12, 156-160.
- Luo, Y. K., Liang, L., Tang, Q. H., Zhou, L., Shi, L. J., Cong, Y. Y., Lin, W. C., Cui, S. J., 2017. Isolation and characterization of encephalomyocarditis virus from dogs in China. Sci Rep. 7, 438.
- Mendenhall, I. H., Wen, D. L. H., Jayakumar, J., Gunalan, V., Wang, L., Mauer-Stroh, S., Su, Y. C. F., Smith, G. J. D., 2019. Diversity and evolution of viral pathogen community in Cave Nectar Bats (*Eonycteris spelaea*). Viruses. 11, 250.
- Mandl, J. N., Schneider, C., Schneider, D. S., Baker, M. L., 2018. Going to bat(s) for studies of disease tolerance. Front Immunol. 9, 2112.
- Mészáros, I., Olasz, F., Cságola, A., Tijssen, P., Zádori, Z., 2017. Biology of Porcine parvovirus (Ungulate parvovirus 1). Viruses. 9, 393.
- Nagai, M., Shimada, S., Fujii, Y., Moriyama, H., Oba, M., Katayama, Y., Tsuchiaka, S., Okazaki, S., Omatsu, T., Furuya, T., Koyama, S., Shirai, J., Katayama, K., Mizutani, T., 2015. H2 genotypes of G4P[6], G5P[7], and G9[23] porcine rotaviruses show super-short RNA electropherotypes. Vet Microbiol. 176, 250–256.

- Nahar, N., Asaduzzaman, M., Sultana, R., Garcia, F., Paul, R. C., Abedin, J., Sazzad,
 H. M. S., Rahman, M., Gurley, E. S., Luby, S. P., 2017. A large-scale behavior change intervention to prevent Nipah transmission in Bangladesh: components and costs. BMC Res Notes. 10, 225.
- Naoi, Y., Kishimoto, M., Masuda, T., Ito, M., Tsuchiaka, S., Sano, K., Yamasato, H.,
 Omatsu, T., Aoki, H., Furuya, T., Katayama, Y., Oba, M., Okada, T., Shirai, J.,
 Mizutani, T., Nagai, M., 2016. Characterization and phylogenetic analysis of a novel picornavirus from swine feces in Japan. Arch Virol. 6, 1685-1690.
- Ng, T. F. F., Manire, C., Borrowman, K., Langer, T., Ehrhart, L. and Breitbart, M., 2009. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics. J Virol. 83, 2500–2509.
- Niira, K., Ito, M., Masuda, T., Saitou, T., Abe, T., Komoto, S., Sato, M., Yamasato, H., Kishimoto, M., Naoi, Y., Sano, K., Tuchiaka, S., Okada, T., Omatsu, T., Furuya, T., Aoki, H., Katayama, Y., Oba, M., Shirai, J., Taniguchi, K., Mizutani, T., Nagai, M., 2016. Whole genome sequences of Japanese porcine species C rotaviruses reveal a high diversity of genotypes of individual genes and will contribute to a comprehensive, generally accepted classification system. Infect Genet Evol. 44, 106-113.

- Noteborn, M. H., Koch, G., 1995. Chicken anaemia virus infection: molecular basis of pathogenicity. Avian Pathol. 24, 11-31.
- Oba M., Tsuchiaka S., Omatsu T., Katayama Y., Otomaru K., Hirata T., Aoki H., Murata Y., Makino S., Nagai M., Mizutani T., 2018. A new comprehensive method for detection of livestock-related pathogenic viruses using a target enrichment system. Biochem Biophys Res Commun. 495, 1871-1877.
- Pisarev, A. V., Chard, L. S., Kaku, Y., Johns, H. L., Shatsky, I. N., Belsham, G. J., 2003. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol. 78, 4487-4497.
- Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L.,
 Middleton, D., Reid, P. A., McFarlane, R. A., Martin, G., Tabor, G. M., Skerratt, L.
 F., Anderson, D. L., Crameri, G., Quammen, D., Jordan, D., Freeman, P., Wang, L.
 F., Epstein, J. H., Marsh, G. A., Kung, N. Y., McCallum, H., 2015. Ecological
 dynamics of emerging bat virus spillover. Proc Biol Sci. 282, 20142124.
- Rahman, S. A., Hassan, S. S., Olival, K. J., Mohamed, M., Chang, L. Y., Hassan, L.,
 Saad, N. M., Shohaimi, S. A., Mamat, Z. C., Naim, M. S., Epstein, J. H., Suri, A.
 S., Field, H. E., Daszak, P. G., 2010. Henipavirus ecology research,

Characterization of nipah virus from naturally infected pteropus vampyrus bats, Malaysia. Emerg Infect Dis. 16, 1990-1993.

- Reuter, G., Boros, Á., Delwar, E., Pankovics, P., 2014. Novel circular single-stranded DNA virus from turkey faeces. Arch Virol. 159, 2161–2164.
- Roche, S. E., Costard, S., Meers, J., Field, H. E. Breed, A. C., 2015. Assessing the risk of nipah virus establishment in Australian flying-foxes. Epidemiol Infect. 143, 2213-2226.
- Rose, N., Opriessnig, T., Grasland, B. and Jestin, A., 2012. Epidemiology and transmission of porcine circovirus type 2 (PCV2) . Virus Res. 164, 78–89.
- Sakoda, Y., Ito, H., Uchida, Y., Okamatsu, M., Yamamoto, N., Soda, K., Nomura, N.,
 Kuribayashi, S., Shichinohe, S., Sunden, Y., Umemura, T., Usui, T., Ozaki, H.,
 Yamaguchi, T., Murase, T., Ito, T., Saito, T., Takada, A., Kida, H., 2012.
 Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory
 water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan.
 J Gen Virol. 93, 541-550.
- Sano, K., Naoi, Y., Kishimoto, M., Masuda, T., Tanabe, H., Ito, M., Niira, K., Haga, K., Asano, K., Tsuchiaka, S., Omatsu, T., Furuya, T., Katayama, Y., Oba, M., Ouchi,

Y., Yamasato, H., Ishida, M., Shirai, J., Katayama, K., Mizutani, T., Nagai, M., 2016. Identification of further diversity among posaviruses. Arch Virol. 161, 3541–3548.

- Sakai, K., Hagiwara, K., Omatsu, T., Hamasaki, C., Kuwata, R., Shimoda, H., Suzuki,
 K., Endoh, D., Nagata, N., Nagai, M., Katayama, Y., Oba, M., Kurane, I., Saijo,
 M., Morikawa, S., Mizutani, T., Maeda, K., 2015. Isolation and characterization of
 a novel rhabdovirus from a wild boar (Sus scrofa) in Japan. Vet Microbiol. 179, 197-203.
- Scheper, G. C., Voorma, H. O., Thomas, A. A. M., 1994. Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Lett. 352, 271–275.
- Shagin, D. A., Rebrikov, D. V., Kozhemyako, V. B., Altshuler, I. M., Shcheglov, A. S.,
 Zhulidov, P. A., Bogdanova, E. A., Staroverov, D. B., Rasskazov, V. A., Lukyanov,
 S., 2002. A novel method for SNP detection using a new duplex-specific nuclease
 from crab hepatopancreas. Genome Res. 12, 1935–1942.
- Shang, P., Misra, S., Hause, B., Fang, Y., 2017. A naturally occurring recombinant enterovirus expresses a Torovirus deubiquitinase. J Virol. 91, e00450–17.

- Shimada, S., Nagai, M., Moriyama, H., Fukuhara, T., Koyama, S., Omatsu, T., Furuya,
 T., Shirai, J., Mizutani, T., 2015. Use of S1 nuclease in deep sequencing for
 detection of double-stranded RNA viruses. J Vet Med Sci. 77, 1163-1166.
- Shirato, K., Maeda, K., Tsuda, S., Suzuki, K., Watanabe, S., Shimoda, H., Ueda, N.,
 Iha, K., Taniguchi, S., Kyuwa, S., Endoh, D., Matsuyama, S., Kurane, I., Saijo, M.,
 Morikawa, S., Yoshikawa, Y., Akashi, H., Mizutani, T., 2012. Detection of bat
 coronaviruses from Miniopterus fuliginosus in Japan. Virus Genes. 44, 40-44.
- Song, C., Zhu, C., Zhang, C., Cui, S., 2010. Detection of porcine parvovirus using a Taqman-based real-time PCR with primers and probe designed for the NS1 gene. Virol J. 7, 353.
- Spinner, M. L, Giovanni, G. D. D. I., 2001. Detection and identification of mammalian Reoviruses in surface water by combined cell culture and reverse transcription-PCR. Appl Environ Microbiol. 67, 3016-3020.
- Taylor, L. H., Latham, S. M., Woolhouse, M. E., 2001. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 356, 983-989.
- Takahashi, T., Maeda, K., Suzuki, T., Ishido, A., Shigeoka, T., Tominaga, T., Kamei, T., Honda, M., Ninomiya, D., Sakai, T., Senba, T., Kaneyuki, S., Sakaguchi, S.,

- Satoh, A., Hosokawa, T., Kawabe, Y., Kurihara, S., Izumikawa, K., Kohno, S., Azuma, T., Suemori, K., Yasukawa, M., Mizutani, T., Omatsu, T., Katayama, Y., Miyahara, M., Ijuin, M., Doi, K., Okuda, M., Umeki, K., Saito, T., Fukushima, K., Nakajima, K., Yoshikawa, T., Tani, H., Fukushi, S., Fukuma, A., Ogata, M., Shimojima, M., Nakajima, N., Nagata, N., Katano, H., Fukumoto, H., Sato, Y., Hasegawa, H., Yamagishi, T., Oishi, K., Kurane, I., Morikawa, S., Saijo, M., 2014. The first identification and retrospective study of Severe Fever with Thrombocytopenia Syndrome in Japan. J Infect Dis. 209, 816-827.
- Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G., 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.
- Tsuchiaka, S., Naoi, Y., Imai, R., Masuda, T., Ito, M., Akagami, M., Ouchi, Y., Ishii,
 K., Sakaguchi, S., Omatsu, T., Katayama, Y., Oba, M., Shirai, J., Satani, Y.,
 Takashima, Y., Taniguchi, Y., Takasu, M., Madarame, H., Sunaga, F., Aoki, H.,
 Makino, S., Mizutani, T., Nagai, M., 2018. Genetic diversity and recombination of
 enterovirus G strains in Japanese pigs: High prevalence of strains carrying a
 papain-like cysteine protease sequence in the enterovirus G population. PLoS One.
 13, e0190819.

Vázquez-Morón, S., Avellón, A., Echevarría, J. E., 2006. RT-PCR for detection of all seven genotypes of Lyssavirus genus. J Virol Methods. 135, 281-287.

Mendenhall, I., H., Wen, D., L., H., Jayakumar, J., Gunalan, V., Wang, L., Mauer-Stroh, S., Su, Y., C., F., Smith, G., J., D., 2019. Diversity and evolution of viral pathogen community in Cave nectar bats (Eonycteris spelaea). Viruses. 11, E250.

- Whon, T. W., Kim, M. S., Roh, S. W., Shin, N. R., Lee, H. W. and Bae, J. W., 2012. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J Virol. 86, 8221–8231.
- Woods, L. W., Latimer, K. S., Niagro, F. D., Riddell, C., Crowley, A. M., Anderson, M. L., Daft, B. M., Moore, J. D., Campagnoli, R. P. and Nordhausen, R. W., 1994. A retrospective study of circovirus infection in pigeons: nine cases (1986-1993) . J
 Vet Diagn Invest. 6, 156–164.
- Wu, Z., Ren, X., Yang, L., Hu, Y., Yang, J., He, G., Zhang, J., Dong, J., Sun, L., Du, J.,
 Liu, L., Xue, Y., Wang, J., Yang, F., Zhang, S., Jin, Q., 2012. Virome analysis for
 identification of novel mammalian viruses in bat species from Chinese provinces.
 J Virol. 86, 10999-11012.

- Wylie, K. M., Mihindukulasuriya, K. A., Sodergren, E., Weinstock, G. M., Storch, G. A., 2012. Sequence analysis of the human virome in febrile and afebrile children.PLoS One. 7, e27735.
- Xue-Jie, Y., Mi-Fang, L., Shou-Yin, Z., Yan, L., Jian-Dong, L., Yu-Lan, S., Lihong, Z., Quan-Fu, Z., Vsevolod, L., Chuan, L., Jing, Q., Qun, L., Yan-Ping, Z., Rong, H., Wei, W., Qin, W., Fa-Xian, Z., Xian-Jun, W., Biao, K., Shi-Wen, W., Kang-Lin, W., Huai-Qi, J., Jin-Xin, L., Wen-Wu, Y., Hang, Z., Xu-Hua, G., Jia-Fa, L., Zhen-Qiang, B., Guo-Hua, L., Jun, R., Hua, W., Zhuo, Z., Jing-Dong, S., Jin-Rong, H., Tao, W., Jing-Shan, Z., Xiu-Ping, F., Li-Na, S., Xiao-Ping, D., Zi-Jian, F., Wei-Zhong, Y., Tao, H., Yu, Z., David, H. W., Yu, W., De-Xin, L., 2011. Fever with Thrombocytopenia Associated with a Novel Bunyavirus in China. N Engl J Med. 364, 1523-1532.
- Yassin, A., Markow, T.A., Narechania, A., O'Grady, P. M., DeSalle, R., 2010. The genus Drosophila as a model for testing tree- and character-based methods of species identification using DNA barcoding. Mol Phylogenet Evol. 57, 509-517.
- Yuan, Y., Kitamura-Muramatsu, Y., Saito, S., Ishizaki, H., Nakano, M., Haga, S., Matoba, K., Ohno, A., Murakami, H., Takeshima, S. N., Aida, Y., 2015. Detection of the BLV provirus from nasal secretion and saliva samples using BLV-CoCoMo-

qPCR-2: Comparison with blood samples from the same cattle. Virus Res.210, 248-254.

- Zell, R., Delwart, E., Gorbalenya, A. E., Hovi, T., King, A. M. Q., Knowles, N. J., Lindberg, A. M., Pallansch, M. A., Palmenberg, A. C., Reuter, G., Simmonds, P., Skern, T., Stanway, G., Yamashita, T., 2017. ICTV Virus Taxonomy Profile: Picornaviridae. J Gen Virol. 98, 2421–2422.
- Zhang, J. M., Zhang, Z. S., Deng, Y. Q., Wu, S. L., Wang, W., Yan, Y. S., 2017. Incidence of human rabies and characterization of rabies virus nucleoprotein gene in dogs in Fujian province, southeast China, 2002-2012. BMC Infect Dis. 17, 599.
- Zhang, S., Bai, R., Feng, R., Zhang, H., Liu, L., 2014. Detection and evolutionary analysis of picobirnaviruses in treated wastewater. Microb Biotechnol. 8, 474-482.
- Zhang, W., Yang, S., Shan, T., Hou, R., Liu, Z., Li, W., Guo, L., Wang, Y., Chen, P.,
 Wang, X., Feng, F., Wang, H., Chen, C., Shen, Q., Zhou, C., Hua, X., Cui, L., Deng,
 X., Zhang, Z., Qi, D., Delwart, E., 2017. Virome comparisons in wild-diseased and
 healthy captive giant pandas. Microbiome. 5, 90.
- Zuker, M., 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

前田健,水谷哲也,田口文広.,2011.コウモリ由来のウイルスとその感染症,獣医疫学

雑誌. 15, 88-93.