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NOMENCLATURE 

𝐶u Tangential velocity (m/s) 

𝐶z Vertical (axial) velocity (m/s) 

𝐶u0 Maximum tangential velocity given at the inlet boundary of the simplified 

computational model (m/s) 

𝐶z0 (Uniform) axial velocity given at the inlet boundary of the simplified 

computational model (m/s) 

𝐶u0base
 Maximum tangential velocity given at the inlet boundary of the simplified 

computational model of baseline case 2 (m/s) 

𝐶z0base
 (Uniform) axial velocity given at the inlet boundary of the simplified 

computational model of baseline case 2 (m/s) 

CS Smagorinsky coefficient [-] 

𝐷b Opening diameter of bellmouth (mm) 

𝐷p Diameter of outlet (suction) pipe (mm) 

𝐹D Froude number defined by average velocity at, and diameter of, bellmouth 

[-] 

ℎ Water depth (mm) 

ℎ1 Height under bellmouth inlet (mm) 

ℎ2 Submergence of bellmouth inlet (mm) 
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d𝑃 Static pressure drop at the vortex core (Pa) 

d𝐶P Static pressure drop at the vortex core normalized by the dynamic 

pressure, 
1

2
𝜌𝐶u0

2  [-] 

𝑃 Static pressure (Pa) 

𝑅 Radius [-] 

𝑅0 Radius where the tangential velocity takes its maximum value (vortex-

core radius) [-] 

𝑅e Initial Reynolds number defined by 𝑅e ≡
𝐶u0𝑅0

𝜈
 [-] 

𝑆 
Initial swirl number defined by S ≡

∫ 2𝜋𝑟2𝐶z0𝐶ud𝑟
R0
0

∫ 2𝜋𝑟R0𝐶z0𝐶z0d𝑟
R0
0

=
𝐶u0base

𝐶z0base

×
𝛼

2𝛽
 [-] 

𝑆ij Rate of strain (1/s) 

𝑡 Time (s) 

𝑢, 𝑣, 𝑤 Velocity components, respectively, in main-stream, lateral direction and 

vertical  directions (m/s) 

𝑢i Velocity components, respectively, in 𝑥i directions (m/s) 

𝑢in Inlet velocity of pump sump (m/s)  

𝑢𝑏 Average velocity at bellmouth inlet (m/s) 

𝑊 Width of pump sump (mm) 

X, Y, Z Coordinates, respectively, in main-stream, lateral direction and vertical  

directions (mm) 
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𝑥i Cartesian coordinates (mm) 

𝛼 𝐶u0 normalized by that in baseline case 2 [-] 

𝛽 𝐶z0 normalized by that in baseline case 2 [-] 

∆ Width of the grid-scale filter (m) 

𝜈 Kinematic viscosity of the working fluid (water) (m2/s) 

𝜈SGS Sub-grid scale kinematic viscosity of the working fluid (water) (m2/s) 

𝜌 Density of the working fluid (water) (kg/m3) 

𝜔x, 𝜔Y, 𝜔𝑍 Vorticity components, respectively, in main-stream, lateral direction and 

vertical directions (1/s) 
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Abstruct 

 

Their origin, formation mechanism, and dynamics have been clarified by large-eddy 

simulation (LES) applied to two different computational models for suction vortices that 

appear in a pump sump. The first one is a pump-sump model composed of a 2,610 mm-long 

water channel of rectangular cross section with a width of 300 mm and a water depth of 100 

mm and a vertical suction (outlet) pipe with a 100 mm diameter installed at its downstream 

end. At the upstream end of the channel, a uniform velocity of 0.37 m/s is given, and 2 billion 

hexahedral elements with maximum resolution of 0.225 mm are applied to the whole model 

pump-sump. LES with different wall boundary conditions have revealed that the origin of a 

submerged vortex is the mean shear of the approaching boundary layers that develop on the 

bottom and side walls of the pump sump. Detailed investigations of flow fields computed for 

a long time period have revealed that deviation of the mean flow that approaches under the 

suction pipe triggers conversion of the axis of the vorticity that is originally aligned to the 

lateral direction in the approaching boundary layers to that aligned to the vertical direction. 

The local acceleration of the vertical flow stretches the afore-mentioned vertical vortex, 

which results in formation of a submerged vortex. The separated flows downstream of the 

suction pipe generate vertical vorticity and forms an air-entrained vortex when such a vortex 

is sucked into the suction pipe. The second one is a simplified computational model 

composed of a paraboloid of revolution and aims to accurately simulate the stretch of the 

viscous core of a submerged vortex that has appeared under the suction pipe of the pump-

sump model. It has a much higher grid resolution of 15 micrometres. While the viscous core 

of the submerged vortex computed by the whole pump-sump model has only reduced to a 

minimum radius of 3 mm and the minimum pressure has decreased by only 5 kPa, that 

computed by the simplified model has reduced to a minimum radius of 0.75 mm and the 

minimum pressure has decreased by as much as 100 kPa. This implies that cavitation could 

have been initiated in the viscous core, if it had been taken into account, as is observed in the 

pump-sump experiment at the same condition. Parametric studies with different initial swirl 

numbers varied from 0.12 to 16.3 have clarified the behavior of a submerged vortex. It is 
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found that a strong submerged vortex appears only at a relatively small range of the swirl-

number from 1.25 to 3. 
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Chapter 1. Introductions 

 

Submerged vortices and air-entrained vortices (hereafter, they are referred to as “suction 

vortices”) that appear in a pump sump may cause noise and vibrations, and at the worst case, 

damage the pump system. In particular, increase in the approaching flow velocity, which is 

often times adopted for reducing the construction cost of a pump sump, significantly 

increases the risk for suction vortices to be formed. Therefore, at an early stage of its design, 

occurrence of the suction vortices must be considered for a pump sump. 

Occurrences of suction vortices have been conventionally evaluated by model pump-sump 

experiments. By recent speedup of high-end computers, numerical methods have also been 

applied to the prediction of the suction vortices in a pump sump. Table 1 lists the numerical 

investigations of pump-sump flows published recently. Ansar et al. measured the velocity 

fields in a test pump sump by Acoustic Doppler Velocimeter (ADV) [1], and they showed 

that a potential-flow analysis could predict the flow patterns in the test pump sump [2] (see 

Figure 1.1). Reynolds Averaged Navier-Stokes Simulation (RANS), which is a method on a 

time-average basis, has been mainly adopted [3-6]. In computations based on RANS, 

occurrence of suction vortices is judged typically by visualizing streamlines, distribution of 

the static pressure and/or that of the vorticity for the computed steady flow field. 

Constantinescu et al. investigated accuracy of the flow fields in a test pump sump predicted 

by several two-equation RANS models, all based on linear eddy viscosity model [3]. 

Okamura et al. performed benchmark tests by model-sump experiments and numerical 

simulations based on several RANS turbulence models [4] and identified those conditions 

under which submerged and/or air-entrained vortices occurred in their experiments. Shin 

investigated the effects of the flow rate and the water level on air-entrained vortices by 

measurements and numerical simulations based on k-omega SST turbulence model and a 

Volume of Fraction (VOF) method. He showed that a larger flow rate and a lower water level 

enhanced generations of air-entrained vortices [5]. Wu et al. also performed VOF 

computations of three pump-sump flows with different flow rates and water levels combined 

with Detached Eddy Simulation (DES) and unsteady RANS [6]. They showed that DES had 
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a better accuracy for predicting the internal flow and the free surface of the pump sumps 

because DES could capture dynamics of energetically important eddies in the pump-sump. 

With a few exceptions described shortly, most of the recent numerical investigations of a 

pump-sump flow found in the literature adopted two-equation RANS turbulence models. 

However, as Strasser pointed out in [7], this class of turbulence model has a shortcoming that 

it lacks in the ability to accurately represent the anisotropic nature of turbulence caused by a 

strong curvature of the streamlines and/or rapid changes in the strain rate, both of which seem 

crucial in a pump-sump flow. 

A time-averaged method may become a useful tool for evaluating the possibility of suction 

vortices occurrence because it can compute relatively large-scale flow structures that depend 

on the geometries of a pump sump, and the occurrence of suction vortices are presumably 

determined by such flow structures. However, it is less likely that a time-averaged method 

can accurately predict the behavior of suction vortices, which are essentially in unsteady 

motion, and it is obvious that appearance or disappearance of suction vortices cannot be 

predicted by such a time-average method. 

As a more advanced numerical method, a Large-Eddy Simulation (LES) approach has also 

been applied to the prediction of the unsteady flows in a pump sump [8-11]. Computations 

with LES have realized better predictions of the velocity fields of the approaching flow in 

pump sumps and succeeded in predicting unsteady suction vortices. For example, Qiang et 

al showed that the locations, shapes and sizes of suction vortices could be predicted by 

comparing measurements and flow fields computed by LES. They found secondary vortex 

were generated around primary vortex by analyzing dynamics of vortices motions (see Figure 

1.2). 

As mentioned above, RANS approach has successfully presented suction vortices 

occurrence, and LES approach could simulate dynamic of suction vortices. However, neither 

the fundamental origin of suction vortices nor their formation/dissipation processes have 

been clarified in the previous reports. The objective of this research is to clarify the origin, 

formation/dissipation and dynamics of suction vortices in a pump sump. As will be shown in 

this paper, it is also essential to capture the dynamics of the viscous vortex core to accurately 

predict the velocity profile and the static-pressure drop in a suction vortex, which requires 

use of a very high grid resolution. For using high grid resolution , we perform LES using a 
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computational grid of up to 2 billion grids, which is about hundred times larger than the latest 

other researches (Table 1.1), in this research. 

To further investigate suction vortices in a pump sump, Wall-Resolved Large-Eddy 

Simulations (WR-LES), which uses a maximum of 2 billion grids, have been applied to two 

different computational models in the present study. The first one is a pump-sump model. 

LES performed for a long period of time with different wall boundary conditions have clearly 

identified the origin and formation process both of a submerged vortex and an air-entrained 

vortex. The second one is a simplified computational model composed of a paraboloid of 

revolution and aims to accurately simulate the stretch of the viscous core of a submerged 

vortex that has appeared under the suction pipe of the above-mentioned pump-sump model. 

It has a much higher grid resolution than the pump-sump model and can resolve the dynamics 

of the viscous core of a submerged vortex. Parametric studies with different initial swirl 

numbers varied from 0.12 to 16.3 have clarified the behavior of a submerged vortex, and 

those condition under which a strong submerged vortex is formed. 

 

Table 1.1. Numerical investigations of pump-sump flows published recently [2-6, 8-11]. 

Authors Year 
Turbulence 

Model 

Free-

surface 

Method 

Number of 

Grids 

Reference 

No. 

Ansar et al. 2002 Inviscid - 7.8×104 [2] 

Constantinescu et al. 2000 RANS - 5.5×105 [3] 

Okamura et al. 2007 RANS - 2.7×106 [4] 

Shin 2018 RANS VOF 8.5×105 [5] 

Wu et al. 2019 RANS/DES VOF 6.7×106 [6] 

Tokyay et al. 2006 LES - 5.0×106 [8] 

Nakayama et al. 2010 LES - 4.6×105 [9] 

Chuang et al. 2014 LES VOF 2.0×106 [10] 

Qiang et al. 2019 LES - 1.2×107 [11] 
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Figure 1.1.  Measurement points of velocity (left) and comparison of velocity profiles 

(right) in a pump sump model [1, 2]. 

 

 
Figure 1.2. Computational model (left) and vortices structures visualized by the 2nd 

invariance (right) computed by large-eddy simulation [11]. 
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Chapter 2. Prediction Methods 

 

The unsteady flows in a pump-sump model and a simplified model, which will be explained 

in detail, respectively, in “Chapter 3 Origin and Formation of Suction Vortices” and “Chapter 

4 Dynamics of a Submerged Vortex”, is predicted by solving numerically the continuity and 

Navier-Stokes equations of an incompressible fluid for spatially filtered velocity components 

and static pressure as shown below: 

 

∂𝑢i

∂𝑥i
= 0         (1) 

 

∂𝑢i

∂𝑡
+

∂

∂𝑥j
(�̅�i�̅�j) = −

1

𝜌

∂�̅�

𝑥i
+

∂

∂𝑥j
{(ν + νSGS) (

∂𝑢i

∂𝑥j
+

∂𝑢j

∂𝑥i
)}  (2) 

 

where �̅�𝑖are the grid-scale velocity components represented in the Cartesian coordinates and 

�̅� is the grid-scale static pressure. ρ and ν respectively denote the density and kinematic 

viscosity of the fluid. 𝜈𝑆𝐺𝑆  is the sub-grid scale eddy viscosity and modeled after 

Smagorinsky as follows: 

 

𝜈SGS = (CS∆)2(2𝑆i̅j𝑆i̅j)
0.5      (3) 

 

𝑆�̅�𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)        (4) 

 

where 𝑆�̅�𝑗 denotes the rate of strain, and ∆ is the width of the grid-scale filter. Smagorinsky 

coefficient, 𝐶𝑠 , is computed as a function of time and space, based on the Dynamic 

Smagorinsky Model (DSM), originally proposed by Germano et al. [12], and later modified 

by Lilly [13]. DSM has been known to have a problem associated with its numerical 

instability, which is primary caused by negative values computed for the Smagorinsky 
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coefficient, 𝐶𝑠, by this model. Several methods to avoid this numerical instability associated 

with DSM have been proposed in the literature, which includes to clip a negative value of 𝐶𝑠 

(lower-bound 𝐶𝑠  by zero) [14] and to apply spatial averaging to 𝐶𝑠  [15]. In the present 

application of DSM, local (spatial) averaging is first applied to the values of 𝐶𝑠 computed by 

DSM and second clipping is also applied after the local averaging is done. 

As mentioned already, one of the objectives of the present study is to clarify the dynamics of 

the viscous core of a submerged vortex. The work done to the viscous core primarily balances 

the sum of the increase in the kinetic energy and dissipation to heat. The minimum radius of 

the viscous core is realized when all the work done to the viscous core balances the 

dissipation. With this regard, the sub-grid scale eddy viscosity should appropriately be 

dampened in the viscous core region, which, we have confirmed, is achieved by the DSM. 

For solving the above-mentioned set of equations, we use Front Flow/ Blue (FFB), a general-

purpose LES solver based on the Finite Element Method (FEM) and developed by one of the 

authors, Kato et al. [16, 17]. The fractional-step method is applied to solve for the pressure, 

and the Crank–Nicholson method is used to integrate the spatially-filtered Navier-Stokes 

equations for implicit time march. The numerical method has the second-order accuracy both 

in space and time. Detailed descriptions on the flow solver are given by Kato et al. [16, 17]. 

The leading truncating error associated with a second-order scheme in space is, in general, 

the third-order dispersion error, namely, error in the phase velocity. Dispersion error often 

times become a serious problem, in particular, for computing propagation of sound waves. 

For such a case, spectral methods [e.g. 18] and/or a high-order compact scheme [19] are often 

times used because these methods produce no or little dispersion/dissipation errors. It is, 

however, difficult to apply a spectral method or a high-order compact scheme to industrial 

problems with complicated geometries as in the present study. On the other hand, we have 

proved, through many applications to various engineering flows, that LES with second-order 

accuracy both in time and space can produce a solution with a satisfactory accuracy if the 

numerical grids are sufficiently fine to adequately resolve the turbulent eddies responsible to 

the production of turbulence in the boundary layer. These applications include 

turbomachinery flows [20, 21], automobile flows [22, 23], ship-hydrodynamics flows and 

others [24, 25, 26]. The use of the second-order method to the present numerical 

investigations thus can be justified. 
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A submerged vortex formed in the model pump sump as well as in actual pump sumps is 

normally identified by occurrence of cavitation in its core region, which may also be 

influenced by the air resolved in the water to a certain extent. On the other hand, air is 

entrained in the core of an air-entrained vortex as its name implies. In the present study, 

however, we investigate the drop of the static pressure due solely to the vortical dynamics by 

applying single-phase LES, and neither the effects of cavitation nor the free-surface is taken 

into account. These effects on the vortical dynamics still remain as an open question. 
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Chapter 3. Origin and formation of suction vortices 

 

As mentioned above, the origin and formation mechanism of suction vortices that appear in 

a pump sump will firstly be investigated by large-eddy simulations applied to a model pump 

sump, which will be described in this section. 

 

3.1 Model Pump Sump and Operating Condition 

 

The model pump sump that Okamura et al. examined [4] is set as the benchmark case in the 

present study. Figure 3.1 and Table 3.2, respectively, show the specifications of the model 

pump sump and photos of the experimental apparatus together with suction vortices 

visualized in their experiment [4]. Among those cases studied by Okamura et al. [4], the 

operation condition with an inlet velocity 𝑢𝑖𝑛 of 0.37 m/s and the water depth h of 150 mm 

is selected in the present study. The opening diameter of the bellmouth, 𝐷𝑏 , is 150 mm, and 

the average inlet velocity there, 𝑢𝑏, is 0.94 m/s, except for Cases E and F, which results in 

the Froude number 𝐹𝐷, defined by the opening diameter of the bellmouth and the average 

velocity there, of 0.78. Hereafter, the non-dimensional length normalized by using the 

opening diameter of the bellmouth (𝐷𝑏=150 mm) will also be presented for reference. The 

height under the bellmouth inlet, ℎ1 , is set to 100 mm (0.67 𝐷𝑏 ), and therefore, the 

submergence of the bellmouth inlet, ℎ2 (the distance between the bellmouth inlet and the 

water surface) is 50 mm (0.33𝐷𝑏). For this condition, both submerged and air-entrained 

vortices are confirmed to take place in their experiment [4]. In addition to this case, a large-

eddy simulation with a different height under the bellmouth inlet, ℎ1, and that with a different 

submergence of the bellmouth inlet, ℎ2, are performed in order to confirm the formation 

processes of suction vortices that have been identified in this study. 
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Figure 3.1. Model pump sump (left) and visualized submerged (middle) and air-

entrained (right) vortices taken from Okamura et al., 2007 [4]. 

 

Table 3.2. Specifications of test pump sump. 

Diameter of bellmouth opening 𝐷b 150 mm 

Diameter of outlet (suction) pipe 𝐷p 100 mm (0.67𝐷b) 

Width of pump sump 𝑊 300 mm (2.00𝐷b) 

Water depth ℎ 150 mm (1.00𝐷b) 

Height under bellmouth inlet ℎ1 100 mm (0.67𝐷b) 

Submergence of bellmouth inlet ℎ2 50 mm (0.33𝐷b) 

Inlet velocity of pump sump 𝑢in 0.37 m/s 

Average velocity at bellmouth inlet 𝑢b 0.94 m/s 

Froude number 𝐹D defined by 𝐷b and 𝑢b 0.78 
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3.2 Computational Model 

 

Figure 3.2 shows the computational model of the pump sump. The X coordinate is set in 

parallel to the centerline of the rectangular channel, and its origin is set at the projected center 

of the axis of the suction pipe on the bottom of the channel. The Y, and Z axes are, respectively, 

set to the lateral and vertical directions. The inlet boundary is set at X=2,500 mm (16.67𝑫𝐛) 

where a uniform velocity of 0.37 m/s is prescribed as in the experiment. As shown in Figure 

3.2-(c), the suction pipe is installed 110 mm (0.73𝑫𝐛 ) upstream of the back wall of the 

rectangular channel with an offset of 10 mm (0.067𝑫𝐛) in the positive Y direction. In the 

present study, the pump in the suction pipe is not modeled, and instead, out-flow boundary 

conditions are prescribed at the outlet of the suction pipe at a height of Z = 2,000 mm 

(13.33𝑫𝐛), where the fluid traction and the static pressure are both assumed to be zero. As 

can be seen in Figure 3.1, the experimental pump-sump model is composed of an open 

channel, and therefore, it has a free water surface at the top. In the present numerical 

investigations, however, the effects of the free water surface are not taken into account, and 

therefore, the effects of the gravity force are not considered, either. Instead, the slip boundary 

condition is given at the top boundary of the rectangular channel set at a height of Z = 150 

mm (1.00𝑫𝐛). In the actual pump sump, the free water surface is most likely to influence the 

formation of an air-entrained vortex near the suction pipe. However, we believe that the 

origin and the formation mechanism of an air-entrained vortex, which will be identified and 

detailed in subsection “3. 9 Origin and Formation Mechanism of an Air-entrained Vortex”, is 

still valid at least to a certain extent. The no-slip boundary condition is given on the remaining 

boundaries of the computational model, namely, on the bottom, side, and end surfaces of the 

rectangular channel, and on the inner and outer surfaces of the suction pipe. 

The Reynolds number defined by the uniform velocity given at the inlet boundary 

(=0.37 m/s) and the distance between the inlet boundary and the projected center of the axis 

of the suction pipe (=2,500 mm= 16.67𝐷b ) is approximately 1.01106 with water at the 

ambient temperature. It is not certain if the boundary layers that develop on the bottom and 

side walls of the rectangular channel have become turbulent by the time when they approach 
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the suction pipe in the model pump-sump experiment, and therefore, both laminar boundary 

layer and turbulent boundary layer are considered in the present study. For the latter, at the 

bottom and side walls of the rectangular channel, the boundary layers are trapped by a step 

with a height of 5 mm (0.033𝐷b) and a width of 5 mm (0.033𝐷b) installed 300 mm (2.00𝐷b) 

downstream of the inlet boundary. Figure 3.3-(a) shows the computational mesh around the 

step. The height of the step is approximately the same as the thickness (4.5 mm=0.03𝐷b) of 

the approaching laminar boundary layer, estimated as being that of the Blasius solution [27] 

with an assumption that the pressure gradient in the main-stream direction is negligibly small. 

The size of the eddies of the production scale in the turbulent boundary layer is estimated as 

2 mm (0.013𝐷b). The grid resolution of the present LES is 0.45 mm (0.003𝐷b) and 0.225 

mm (0.0015𝐷b), which we believe is sufficiently fine to revolve the above-mentioned eddies 

in the turbulent boundary layers. Figure 3.3-(a) and 3-(b) show the computational grids, 

respectively near the bottom wall of the rectangular channel and near the bellmouth. For 

visibility, the computational mesh is shown every two and four grid lines, respectively, for 

the 0.45 mm (0.003𝐷b) resolution mesh and for the 0.225 mm (0.0015𝐷b) resolution mesh. 
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(a) Entire model and close-up view near bellmouth 

 

(b) X-Z section near the bellmouth 

 

(c) X-Y section near the bellmouth 

Figure 3.2. Computational model for LES of internal flows of test pump sump. 
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(a) bottom and side wall near the step 

 

(b) bellmouth and intake pipe 

Figure 3.3. Computational grids for LES of internal flows of test pump sump (thinning-out 

grids are plotted for visibility). 
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(a) Bellmouth 

 

(b) Grids in Case A 

 

(c) Grids in Case D 

Figure 3.4. Comparison of computational grids on bellmouth surface in Case A and Case D. 
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3.3 Computational Conditions 

 

Table 3.3 summarizes all the cases studied by the large-eddy simulations for the pump sump. 

Case A is the baseline case and has a step to promote transition to turbulence, for which 

description has already been given. Case B does not have a step to prompt the boundary-layer 

transition, and therefore, the boundary layers on the bottom and side walls of the rectangular 

channel remain laminar until they approach the suction pipe. For Case C, the moving-wall 

boundary condition is set on the bottom and side walls of the rectangular channel, for which 

they move at the same velocity as the inlet velocity, and therefore, no boundary layer 

develops in this case. Cases A, B, and C are set for identifying the origin of a submerged 

vortex. In particular, by comparing the results obtained in Cases A and B, the contributions 

of the turbulent eddies in the approaching boundary layers to the formation of a submerged 

vortex will be identified. No turbulent eddies nor mean shear develop near the bottom and 

side walls in the rectangular channel for Case C, and therefore their contributions to the 

formation of a submerged vortex will be denied if a submerged vortex is formed in this case. 

Note that even in this case, the global shear that is caused by the asymmetry of the suction-

pipe installation, as shown in Figure 3.2, exists. 

The grid resolution is 0.45 mm (0.003𝐷b ) and identical for Cases A, B and C, which 

prevents effects of the grid resolution from influencing these results. The hexahedral 

elements are used in the present LES and the number of the elements is approximately 250 

million in Cases A, B, and C. A time increment of 0.08 msec. is set for these cases. All the 

computations are continued for a time period of 3.2 seconds, which needed 40,000 time 

integrations (time steps) and corresponds to a non-dimensional time of 7.89 defined by the 

inlet velocity (0.37 m/s) given at the inlet boundary of the rectangular channel and the 

opening diameter of the bellmouth (150 mm), and occurrence of a submerged vortex and air-

entrained vortex is investigated. In particular, the computation is continued for a longer time 

period of 16 seconds for Case A to investigate the appearance as well as the disappearance 

of the suction vortices. 



29 

 

All of the numerical investigations presented in this paper were made on “K-computer”. K-

computer was composed of 888,128 computing nodes (SPARC 64 VIIIfx), each of which 

accommodated 8 processing cores. One computing node had a theoretical peak performance 

of 128 GFLOPS. Cases A, B, and C took approximately 0.565 seconds per time step and 

these cases took a total of 6.3 hours for computing for 40,000 time steps with 4,092 

computing nodes dedicated for each of the cases. 

Case D has a twice-finer grid resolution than other cases and is intended to investigate the 

effects of the grid resolution on the behavior of the suction vortices. Finally, Cases E and F, 

respectively, have a different height under the bellmouth inlet, ℎ1 , and a different 

submergence of the bellmouth inlet, ℎ2 . These cases are set to confirm the formation 

processes of suction vortices that have been identified in this study, as already mentioned. 

 

Table 3.3. Summary of test cases for pump-sump model LES. 

Case 

Name 

Num. of 

Grids 

Grid 

Resolution 

Approaching 

B.L. 

h1  

[mm] 

h2  

[mm] 

Cal. 

Time 

[sec.] 

Case A 0.25 

billion 

0.450 mm Turbulent 100 

(0.67𝐷b) 

50 

(0.33𝐷b) 

16.00 

Case B 0.25 

billion 

0.450 mm Laminar 100 

(0.67𝐷b) 

50 

(0.33𝐷b) 

3.20 

Case C 0.25 

billion 

0.450 mm No B.L. 

(moving-wall) 

100 

(0.67𝐷b) 

50 

(0.33𝐷b) 

3.20 

Case D 2.00 

billion 

0.225 mm Turbulent 100 

(0.67𝐷b) 

50 

(0.33𝐷b) 

0.34 

Case E 0.25 

billion 

0.450 mm Turbulent 150 

(1.00𝐷b) 

50 

(0.33𝐷b) 

0.65 

Case F 0.25 

billion 

0.450 mm Turbulent 100 

(1.00𝐷b) 

100 

(0.67𝐷b) 

0.65 
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3.4 Grid-independence Study 

 

Although the grid resolution in all the cases is sufficiently fine to resolve the streamwise 

vortices in the turbulent boundary layers that develop (if they do) on the bottom and side 

walls of the rectangular channel, which used in Case D has twice finer grid resolution than 

other cases. By comparing results of Case A and Case D, for which all the computational 

conditions are identical and only their grid resolutions are different, the effects of the grid 

resolution on the behavior of the suction vortices will be identified. Figure 3.4 compares the 

surface grid near the bellmouth of the suction pipe for Case A and Case D. The grid size in 

the lateral direction is 0.225 mm (0.0015𝐷b) and the number of the grids is approximately 2 

billion in Case D. Figure 3.4-(b) and 4-(c) are enlarged view of the area enclosed by the 

rectangle in Figure 3.4-(a). 

Computations both for Case A and Case D start from an identical flow field, in which a 

submerged vortex as well as two air-entrained vortices are confirmed to exist. Figure 3.5 

compares an instantaneous flow field computed, respectively, by Case A (left) and Case D 

(right) after a sufficiently long period of time of 0.34 seconds has passed since their 

computations are initiated. By checking the temporal variations of the velocity components 

and the static pressure at several monitoring points set upstream of the suction pipe, it is 

confirmed that the flow computed for both Case A and Case D has reached, by this time, a 

statistically steady state. The instantaneous flow fields are visualized by iso-surfaces of the 

Laplacian of the static pressures colored by the vorticity component 𝜔Z  in the vertical 

direction (hereafter, referred to as “vertical vorticity”). The value of the Laplacian of the static 

pressure used for iso-surface is 4.0 × 104 normalized by inflow velocity of 0.37 m/s and the 

width of the pump sump, 0.3 m in Figure 3.5.  We confirmed that occurrence of suction 

vortices could be presented with the value of the normalized Laplacian of the static pressure 

between 1. 0 × 104 and 1.6 × 105 (see Figure 3.6). Hereafter we will use the value 4. 0 × 104 

for iso-surface of the Laplacian of the static pressure in this paper. The vorticity normalized 

by the inflow velocity of 0.37 m/s and the width of the pump sump, 0.3 m will be presented, 

hereafter throughout in this paper. The vortex colored in blue rotates in the clockwise 

direction when it is viewed from the top (positive Z axis), (hereafter, the sense of rotation of 



31 

 

a vortex will be described when it is viewed from the top unless otherwise stated) and those 

in red do in the counterclockwise direction. The same method to visualize suction vortices 

will be used in the following figures, and therefore, their caption will be simplified as 

“visualized vortices”. It is confirmed that essentially identical vortical structures are 

computed in Case A and Case D. Although not shown in a figure, no substantial difference is 

confirmed between the vortices visualized in Case A and those in Case D at other instances. 

To quantitatively compare their results, Figure 3.7 shows, on its left, the distributions of the 

average tangential velocities on a horizontal plane at a height of 90 mm (0.6𝐷b) from the 

bottom wall of the rectangular channel, obtained in Case A and Case D. The average is taken 

for the flow fields computed after the computed time of 0.34 seconds for both cases in the 

following manner. For each instantaneous flow field at this horizontal plane, the point where 

the static pressure is minimum is firstly identified and regarded as the center of the submerged 

vortex. Then, the tangential velocity at an individual radius is regarded as the circumferential 

velocity of the vortex and it is averaged in the circumferential direction as well as in time for 

200 instantaneous flow fields separated by 4 msec interval. 

As is inferred from Figure 6, the averaged distributions in the circumferential velocities 

obtained in Case A and Case D are essentially identical. Figure 3.8 compares the temporal 

variations of the minimum static pressure on the same horizontal plane computed in Case A 

and Case D. In the time period shown in this figure, a submerged vortex stably exists in both 

Case A and Case D, and therefore, the minimum static pressure appears at the center of the 

submerged vortex. The origin of the horizontal axis (𝑡 = 0 ) denotes the time when the 

computations are initiated from the given initial flow field. At 𝑡 = 0.16  seconds, the 

minimum static pressures computed in Case A and Case D start to deviate, and that computed 

in Case D, which has a higher grid resolution, is lower by a maximum difference of about 

600 Pa than that computed in Case A. This means that the submerged vortex is stretched more 

in Case D than in Case A. But, the drops in the static pressure are approximately 3 kPa in 

both cases, which is about only 3% of the atmospheric pressure. 

From these grid-independence studies, it is concluded that the computational grid in Cases 

A, B, and C is sufficiently fine to predict large vortical structures that develop in the model 

pump sump, and to investigate the origin and formation/dissipation mechanism of the suction 

vortices. However, please recall that the generation of vapor phase, namely, the occurrence 
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of cavitation at the vortex core, is not taken into account. Therefore, even if the minimum 

static pressure becomes lower than the saturated vapor pressure at the ambient temperature, 

the viscous core would not expand, and the tangential velocity would not decrease. 

Meanwhile, the static pressure computed at the viscous core only reduces by 3% of the 

atmospheric pressure as already mentioned. This pressure drop is far smaller than the one for 

which the initiation of cavitation can be expected. The results from the grid-independence 

studies described above do not necessarily guarantee that the present numerical grid is 

sufficiently fine to accurately predict the stretch of the viscous core, and the stretch of the 

viscous core is most likely to have been underpredicted in the present large-eddy simulations 

applied to the whole pump-sump model. This can also be confirmed by the fact that the 

minimum static pressure computed in Case D is lower than that computed in Case A (see 

Figure 3.7) although the tangential velocities are almost the same for both cases (see Figure 

3.8). The dynamics of the viscous core of a submerged vortex will be investigated in detail 

by the large-eddy simulations applied to the simplified computational model described in the 

next chapter. 
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(a) Case A 

 

(b) Case D 

Figure 3.5. Instantaneous flow fields visualized by iso-surfaces of Laplacian of static 

pressure colored by vertical vorticity computed for Case A (top) and Case D 

(bottom) at t= 0.34 sec.. 
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(a) Δ𝑝 = 1.0 × 104 

 

(b) Δ𝑝 = 4.0 × 104 

 

(c) Δ𝑝 = 1.6 × 105 

Figure 3.6. Visualized suction vortices by iso-surface of Laplacian of pressure Δ𝑝 with 

different its values in Case A. 
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Figure 3.7. Averaged radial distributions of tangential velocity around center of a 

submerged vortex for Case A and Case D. 

 

 

Figure 3.8. Temporal variation of minimum static pressure (right) computed on a horizontal 

plane 90 mm (0.4𝐷𝑏) above the bottom wall of model pump sump for Case A 

and Case D. 

  

0

0.5

1

1.5

2

0 20 40 60

C
u

[m
/s

]

R [mm]

Case A

Case D

-4000

-3000

-2000

-1000

0

0 0.1 0.2 0.3 0.4

M
in

im
u

m
 P

re
ss

u
re

 [
P

a
]

Time [sec]

Case A

Case D



36 

 

 

3.5 Origin of a Submerged Vortex 

 

As mentioned in “3.3 Computational Conditions”, Cases A, B, and C have different wall 

boundary conditions and are intended to identify the origin of a submerged vortex. Figure 

3.9 compares instantaneous distributions of streamwise vorticity, 𝜔x, computed in Case A on 

a cross section at X=2,100 mm (=14.0𝐷b, Figure 3.9 -(a)), X=1,200 mm (=8.0𝐷b, Figure 3.9 

-(b)), and X=300 mm (=2.0𝐷b, Figure 3.9 -(c)), and that computed in Case B on a cross 

section at X=300 mm (=2.0𝐷b , Figure 3.9 -(d)). Streamwise vortices with a diameter of 

approximately 2 mm (0.013𝐷b ) and a separation of approximately 10 mm (0.067𝐷b ) are 

confirmed to exist in the boundary layer computed in Case A downstream of the step, and its 

time-averaged velocity profile also confirms that the boundary layer computed in Case A 

becomes turbulent downstream of the step (not shown in this paper). As they approach the 

suction pipe, the size of the streamwise vortices becomes larger because the upward flow 

towards the suction pipe decreases the velocity shear near the bottom wall. To the contrary, 

no streamwise vortices are confirmed in the boundary layers computed in Case B, and its 

time-averaged velocity profiles also confirm that the boundary layer computed in Case B 

remains laminar (not shown in this paper). Although not shown in a figure, the velocity 

profiles computed in Case C have no velocity shear near the bottom and side walls of the  

rectangular channel. 

Figure 3.10 shows typical suction vortices computed and visualized in each of Cases A, B, 

and C. In Cases A and B, for which the boundary layer develops on the bottom wall of the 

pump sump, a submerged vortex that has its one end of the vortex line on the bottom wall is 

formed. On the other hand, no submerged vortex is confirmed in Case C for which no velocity 

shear exists near the bottom wall of the pump sump. During the entire period of time 

investigated in this study, no submerged vortex is formed in Case C. From these observations, 

the origin of a submerged vortex has been identified to be the mean shear of the velocity 

profiles in the boundary layer that develops on the bottom wall of the pump sump, and it is 

concluded that the streamwise vortices in the turbulent boundary layer make no direct 

contribution to the formation of a submerged vortex. Please note, however, that the 
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submerged vortex computed in Case A is apparently stronger than that computed in Case B. 

This is presumably because the mean velocity shear near the bottom wall of the pump sump 

computed in Case A, where the boundary layer on the bottom wall is turbulent, is stronger 

than that computed in Case B, where the boundary layer on the bottom wall is laminar. With 

this regard, the mechanism for a submerged vortex to be formed from the mean shear in the 

boundary layer will be detailed in the next subsection. In this case study, the suction pipe is 

installed near the side wall of the pump sump, and in such a case, a submerged vortex that is 

formed from the mean shear in the boundary layer on the side wall is likely to be formed. 

Further research may be warranted to investigate formation of a submerged vortex with such 

an origin. 
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(a) Vorticity ωx at X=2,100 mm in Case A 

 

(b) Vorticity ωx at X=1,200 mm in Case A 

 

(c) Vorticity ωx at X=300 mm in Case A 

 

(d) Vorticity ωx at X=300 mm in Case B 

Figure 3.9. Instantaneous streamwise vorticities computed in Case A ((a)-(c)) and Case B 

(d). 
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(a) Turbulent boundary layer (Case A) 

 

(b) Laminar boundary layer (Case B) 

 

(c) No boundary layer (Case C) 

Figure 3.10. Visualized suction vortices in Case A, Case B and Case C.   
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3.6 Formation Mechanism of a Sub-merged Vortex 

 

The mechanism for a submerged vortex to be formed will be investigated in detail in this 

subsection. The approaching boundary layer that develops in an actual pump sump has a 

Reynolds number at least by one order higher than that studied in this paper, and is most 

likely turbulent. To investigate the formation mechanism of a submerged vortex, the large-

eddy simulation in Case A is performed for a long time period and the computed flow fields 

are investigated in detail. Please note that turbulent boundary layers develop on the bottom 

and side walls of the pump sump in this case and virtually the same vortical structures are 

computed as those computed in Case D, which has twice finer grid resolution as shown in 

Figure 3.5. The computation is continued for 200,000 time steps (16 seconds) with a time 

increment of 0.08 msec., which corresponds to a dimensionless time of approximately 40 

based on the inlet velocity given for the rectangular channel (0.37 m/s) and the opening 

diameter of the bellmouth (150 mm). A total of 4,000 instantaneous flow fields are output 

every 50 time steps with an interval of 4 msec. for subsequent investigations. 

As already mentioned, the origin of a submerged vortex is the local shear in the boundary 

layers that develop in the pump sump, and turbulent eddies make no direct contributions to 

the formation of a submerged vortex. It is also confirmed in the large-eddy simulation 

performed for a long period of time that once they are formed, submerged vortices stably 

exist for a long time, and therefore, the unsteadiness of the flow is not presumably playing 

an essential role in the formation of a submerged vortex. 

The boundary layer on the bottom wall of the pump sump has a mean velocity shear with a 

vorticity in the lateral direction, 𝜔Y. For a submerged vortex to be formed from this lateral 

vorticity, 𝜔Y, it is necessary for this to be converted to a vertical vorticity, 𝜔Z, and the vortex 

is stretched in its axial direction. We will therefore investigate this mechanism by using the 

transport equation of the vorticity vector, obtained by taking rotation of the Navier-Stokes 

equation as shown below, and applying them to the time averaged flow. 

 

(�⃗� ∙ ∇)�⃗⃗� = (�⃗⃗� ∙ ∇)�⃗� + 𝜈∇2�⃗⃗�       (5) 
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where �⃗� , and �⃗⃗�  respectively denote the velocity and vorticity vectors in the time average 

flow. 

The left-hand side of equation (5) represents the change of the vorticity vector along a 

streamline while the first and second terms in the right-hand side, respectively, represent the 

change of the axis of the vortex and dissipation of the vorticity vector due to the viscous 

diffusion. As already stated, in the time-averaged boundary layer profile on the bottom wall 

of the pump sump, only the lateral vorticity component, 𝜔Y, exists. For the vertical vorticity, 

𝜔Z, to be produced, the axis of the vorticity vector should have been converted from the 

lateral direction to the vertical direction. The viscous diffusion term, namely, the second term 

in the right-hand side of equation (4), does not have such a function, and also the effects of 

viscous diffusion is negligibly small in a large-scale flow. Therefore, the vertical vorticity, 

𝜔Z, should have been produced by the right-hand terms in the following equation (6). 

 

𝑢
𝜕𝜔𝑍

𝜕𝑥
+ 𝑣

𝜕𝜔𝑍

𝜕𝑦
+ 𝑤

𝜕𝜔𝑍

𝜕𝑧
= 𝜔X

𝜕𝑤

𝜕𝑥
+ 𝜔Y

𝜕𝑤

𝜕𝑦
+ 𝜔Z

𝜕𝑤

𝜕𝑧
   (6) 

 

where 𝑢, 𝑣 and 𝑤 are, respectively, the streamwise, lateral, and vertical velocity components, 

and 𝜔Z is the vertical vorticity component. 

Figure 3.11 shows distributions of each of the vorticity components and the gradients of the 

vertical velocity on a horizontal plane 1 mm (0.0067𝐷b) above the bottom wall of the pump 

sump, which compose the right-hand side of equation (6). The flow fields are averaged during 

a time period from t=0.0 sec to t=0.8 sec. where a submerged vortex rotating in the clockwise 

direction stably exists. The two circles in these figures are the projected lines of the inner and 

outer walls the suction pipe, and the main-flow direction is from the right to the left (negative 

X directions). The rounded rectangles in the bottom figure are drawn to clearly identify the 

sign of the gradients of the vertical velocity. The distributions of 𝜔X  and 𝜔Y  take the 

minimum and maximum values at a radius approximately one-third of the inner radius of the 

suction pipe from its center, which indicates that vorticity vector is aligned in the radial 

direction on this plane. On the other hand, the gradients of the vertical velocity shown at the 

bottom figures indicate that the vertical velocity is accelerated from all the peripheral 

directions toward the center of the suction pipe. From these observations, it is concluded that 
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the lateral vorticity 𝜔Y that originally exists in the approaching boundary layer on the bottom 

wall rotates around the axis of the suction pipe due to the asymmetry of the pump sump, and 

forms vorticity vector with its axis aligned to the radial direction around the projected center 

of the suction pipe. This vorticity vector is then turned to the vertical direction due to the 

radial gradients of the vertical velocity (denoted by the first and second terms in equation 

(6)), and forms vertical vorticity, 𝜔Z. The vertical vorticity 𝜔Z is finally increased due to the 

acceleration of the vertical velocity denoted by 𝜕𝑤/𝜕𝑧. Namely, the vortex is stretched in the 

vertical direction. This is the mechanism for a submerged vortex to be formed from the lateral 

vorticity, which originally exists in the approaching boundary layer on the bottom wall of the 

pump sump. 

Further detailed studies are made to clarify the mechanism for the velocity vector with its 

axis aligned to the radial direction to be formed around the projected center of the suction 

pipe near the bottom wall of the pump sump. As shown in the top left figure in Figure 3.11, 

the streamwise vorticity, 𝜔X, takes the positive maximum value upstream of the projected 

center of the suction pipe (right-hand side of the white circles in bottom figures). The change 

in the streamwise vorticity 𝜔X along a streamline is represented by the following equation 

(7). 

 

𝑢
𝜕𝜔X

𝜕𝑥
+ 𝑣

𝜕𝜔X

𝜕𝑦
+ 𝑤

𝜕𝜔X

𝜕𝑧
= 𝜔X

𝜕𝑢

𝜕𝑥
+ 𝜔Y

𝜕𝑢

𝜕𝑦
+ 𝜔Z

𝜕𝑢

𝜕𝑧
   (7) 

 

Apart from the projected center of the suction pipe, only the second term exists in the right-

hand side of this equation because both 𝜔X  and 𝜔Z  are initially zero. Figure 3.12 shows 

distributions of 𝜔Y and 𝜕𝑢/𝜕𝑦, which compose the right-hand side of equation (7). The flow 

fields are averaged over the same period of time as for the previous figure (Figure 3.11), but, 

these distributions are presented in a wider region to understand the growth of each term. 

The lateral gradient of the streamwise velocity is positive in the region enclosed by the 

rounded rectangle in the right figure. This means that more flow flows through the wider 

region (with negative Y coordinates) where the flow velocity becomes higher and less flow 

flows through the narrower region (with positive Y coordinates) where the flow velocity 

becomes lower. Please recall that the main-flow direction is the negative X direction. Mainly 

in this region, the streamwise vorticity 𝜔X is produced by the second term in equation (7). In 
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a similar manner, vorticity vector with its axis aligned in the radial direction is formed around 

the projected center of the suction pipe, due to the unevenness of the main flow. 

To confirm the formation mechanism described above, the temporal evolution of the vorticity 

vector 𝜔Z with its axis aligned to the radial direction and that of acceleration of the vertical 

velocity are investigated in a time period when a submerged vortex is formed. Figure 3.13 

shows the distributions of the vertical vorticity (top) and vertical acceleration of the vertical 

velocity (bottom) on a horizontal plane 1 mm (0.0067𝐷b) above the bottom wall of the pump 

sump as in the previous figures for subsequent three periods of time of 0.8 seconds. Iso-

surfaces of the vertical vorticity is also superimposed in these figures. Please note that these 

iso-surfaces are identical in the top and bottom figures. During the time period of 4.8 sec to 

5.6 sec (left), no submerged vortex is confirmed by the iso-surfaces of the vertical vorticity. 

A submerged vortex is formed in the time period of 5.6 sec to 6.4 sec (middle), and it grows 

in the time period of 6.4 sec to 7.2 sec (right). When the submerged vortex is formed and 

grows, 𝜔Z and 𝜕𝑤/𝜕𝑧, also become large around the projected center of the suction pipe. In 

particular, it is interesting to note that 𝜔Z  converted from 𝜔Y in a way explained above 

already exists near the bottom wall of the pump sump in the time period of 4.8 sec to 5.6 sec 

when a submerged vortex has not been formed. On the other hand, the region with vertical 

acceleration first appears near the inlet of the suction pipe, grows in the downward direction, 

and finally reaches the bottom wall, when the vortex with vertical vorticity 𝜔Z is stretched 

and a strong submerged vortex is formed.  

From the temporal evolution of iso-surface of vertical vorticity shown in Figure 3.13, the 

formation of submerged vortex seems to be started from higher location and proceeded to the 

bottom wall. Figure 3.14 shows the temporal evolution of time-averaged vertical vorticity 

𝜔Z on horizontal planes with a height of 1mm, 40mm and 80mm. At the beginning of the 

formation of the submerged vortex (T= 4.0 ~ 4.8 sec), strong vorticity (please see region 

colored by blue, which corresponds to negative vertical vorticity 𝜔Z) is appeared on only 

higher horizontal planes with 40mm and 80mm. Figure 3.15 shows the temporal evolution 

of time-averaged 𝜕𝑤/𝜕𝑧 on those horizontal planes. The reason for larger vertical vorticity 

at higher location at the beginning of vortex formation is larger 𝜕𝑤/𝜕𝑧 (vertical acceleration) 

there shown in Figure 3.15. The strong acceleration near the bottom wall at the time period 

T=5.6 ~ 6.4 and 6.4 ~ 7.2 shown in Figure 3.15 indicates that strong acceleration near the 
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bottom wall is essential for formation of submerged vortex. This analysis indicates that 

concentration of vertical vorticity near the bottom wall and stretch of vortex due to vertical 

acceleration are occurred at the same time, and finally a submerged vortex is generated by 

strong vertical acceleration near the bottom wall.  

The formation mechanism of a submerged vortex identified in the present study supports, 

with a clear and logical basis, countermeasures for formation of a submerged vortex in a 

pump sump, such as reduction in the vertical velocity near the bottom wall, mitigation of the 

mean velocity shear in the approaching boundary layers, and prevention of the asymmetry 

that may trigger conversion of the axis of the vorticity. Although some of them may have 

been put into practice empirically, the authors believe that they can be used more effectively 

with these findings presented in this paper. 
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Figure 3.11. Distributions of vorticity (𝜔i) and gradient of axial velocity (𝜕𝑤 𝜕𝑥𝑖⁄ ) on horizontal 

plane with a height of 1mm (0.0067𝐷b), averaged during 0 sec and 0.8 sec when a 

clock-wise submerged vortex continues to exist. 

 

 

Figure 3.12. Distributions of vorticity components ωx, ωy  and gradient of mainstream 

velocity (𝜕𝑢 𝜕⁄ 𝑦) on horizontal plane with a height of 1mm (0.0067𝐷b ), 

averaged during 0 sec and 0.8 sec when a clock-wise submerged vortex 

continues to exist. 
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Figure 3.13. Temporal evolution of time-averaged 𝜔z (top) and 𝜕𝑤 𝜕𝑧⁄  (bottom) on 

horizontal plane with a height of 1mm (0.0067𝐷b), together with iso-surface 

of vertical vorticity ωz during t = 4.8 sec and t = 7.2 sec. 
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Figure 3.14. Temporal evolution of time-averaged 𝜔z on horizontal planes with a height of 

1mm, 40mm and 80mm together with iso-surface of vertical vorticity ωz 

during t = 4.0 sec and t = 7.2 sec. 
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Figure 3.15. Temporal evolution of time-averaged  𝜕𝑤 𝜕𝑧⁄  on horizontal planes with a 

height of 1mm, 40mm and 80mm together with iso-surface of vertical 

vorticity ωz during t = 4.0 sec and t = 7.2 sec. 
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3.7 Dissipation Mechanism of a Sub-merged Vortex 

 

Case studies are also made using the flow fields obtained by the large-eddy simulation done 

in the long period of time to identify the mechanism for a submerged vortex once formed to 

be dissipated.  

 
(a) T=2.52 sec 

 
 (b) T=2.92 sec 

 
(c) T=3.32 sec (d) T=3.72 sec 

 
(e) T=4.02 sec 

 
(f) T=4.32 sec 

Figure 3.16 shows one such example when two counter-rotating submerged vortices approach 
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each other and finally, one of the two vortices is dissipated. In the time period of T=2.52 sec. 

to 3.32 sec., two counter-rotating vortices exist and approach each other. In the time period 

of T=3.72 sec. to 4.02 sec. they merge, and at the time of T=4.32 sec. after the merge, only 

the submerged vortex rotating in the counterclockwise direction shown in red exists and that 

rotating in the clockwise direction shown in blue is dissipated. The submerged vortex rotating 

in the counterclockwise direction is also weakened after the merge. In other cases, the 

submerged vortex rotating in the clockwise direction exists after the merge, or, both 

submerged vortices are dissipated after the merge. The merge of two counter-rotating 

submerged vortices is confirmed to be one of the causes of the dissipation of a submerged 

vortex. But, further investigation is needed to thoroughly understand the dissipation 

mechanism of a submerged vortex in a pump sump. 
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(a) T=2.52 sec 

 
 (b) T=2.92 sec 

 
(c) T=3.32 sec (d) T=3.72 sec 

 
(e) T=4.02 sec 

 
(f) T=4.32 sec 

Figure 3.16. Visualized disappearance of two submerged vortices with clockwise (blue) and 

counter-clockwise (red) sense of rotation. 
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3.8 Correlation of Vertical Vorticity and Occurrence of a 

Submerged Vortex 

 

To further investigate the formation and dissipation of a submerged vortex in a pump sump, 

the temporal variation of the maximum and minimum vertical vorticity on a horizontal plane 

at a high of 6 mm (0.04𝐷b), 30 mm (0.20𝐷b), and 60 mm (0.40𝐷b) are shown in Figure 13. 

The vertical vorticity has been normalized by the inflow velocity of the pump sump (0.37 

m/s) and the width of the pump sump (0.3 m), as already mentioned. The blue and red lines, 

respectively, represent the minimum and maximum values, which correspond to the 

submerged vortex (if it exists) rotating in the clockwise and counterclockwise directions. The 

vertical vorticity with a clockwise sense of rotation shown in blue is generally stronger than 

that with a counterclockwise sense of rotation shown in red. This is because the suction pipe 

is installed with an offset of 10 mm (0.067𝐷b) in the positive Y direction, and therefore, more 

flow turns from the wider region (with negative Y coordinates) in the clockwise direction 

and flows toward the suction pipe, and less flow turns from the narrower region (with positive 

Y coordinates) in the counterclockwise direction and flows toward the suction pipe. Figure 

3.18 shows the vortical structures visualized at T=3.20 sec. (left) and T=7.52 sec. (right), 

respectively when the vertical vorticity with the counterclockwise sense of rotation takes its 

maximum value and when that with the clockwise sense of rotation takes its minimum value. 

At both instances, a submerged vortex with a counterclockwise sense of rotation (left) and 

that with a clockwise sense of rotation (right) exist. It is confirmed, from the detailed 

investigations of the flow fields and the temporal variations in the vertical vorticity at other 

instances, that when the absolute value of the vertical vorticity near the bottom wall is high, 

a strong submerged vortex exists in the pump sump. 
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Figure 3.17. Temporal evolution of computed maximum vertical vorticity with clockwise 

(blue) and counterclockwise (red) rotation horizontal planes at Z=6 mm 

(=0.04𝐷b, bottom), 30 mm (=0.20𝐷b, middle) and 60 mm (=0.4𝐷b, top). 
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(a) T=3.30 sec 

 

(b) T=7.52 sec 

 

Figure 3.18. Submerged vortices visualized when vertical vorticities takes a maximum 

value on z=6 mm (0.047𝐷b) plane.  
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3.9 Origin and Formation Mechanism of an Air-entrained 

Vortex 

 

Finally, the origin and formation mechanism of an air-entrained vortex will be described 

in this subsection. The instantaneous flow fields computed by the long-term large-eddy 

simulation (denoted as Case A) described in the previous subsections are also investigated to 

identify the origin and formation mechanism of an air-entrained vortex. For this case, the 

water depth ℎ is set to 150 mm (1.00𝐷b), the height under the bellmouth inlet, ℎ1, is set to 

100 mm (0.67𝐷b ), and therefore the submergence of the bellmouth inlet (the distance 

between the bellmouth inlet and the water surface), ℎ2,  is 50 mm (0.33𝐷b ), as shown in 

Figure 2 and Table 2. 

Figure 15-(a) and (b) show air-entrained vortices visualized at two different instances, for 

each of which 200 flow fields are averaged over 0.8 seconds. The top figures show the 

vortical structures while the bottom figures show the distributions of the vertical vorticity on 

the top boundary of the computational domain, which corresponds to the water surface 

(hereafter, simply referred to as “water surface”). Please recall that as already described, the 

slip wall boundary condition is given on this surface and the effects of free water surface is 

not taken into account in this study. Red color indicates a positive vertical vorticity, namely, 

a vortex rotating in the counterclockwise direction while blue color indicates a negative 

vertical vorticity, namely, a vortex rotating in the clockwise direction. At the time T=1.52 sec. 

when the instantaneous distribution of the vertical vorticity on the water surface is shown in 

the bottom of Figure 3.19-(a), the maximum vertical vorticity with a counterclockwise sense 

of rotation is high in the region with positive Y coordinates on the water surface, and an air-

entrained vortex is formed from the point where the vertical vorticity is the maximum on the 

water surface. At the same instance, the absolute value of the minimum vertical vorticity with 

a clockwise sense of rotation is also high in the region with negative Y coordinates, and 

another air-entrained vortex is formed behind the suction pipe. This air-entrained vortex is 

not visible in Figure 3.19-(a) because the suction pipe blocks its view. On the other hand, at 

T=2.32 sec. when the instantaneous distribution of the vertical vorticity on the water surface 
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is shown in the bottom of Figure 3.19-(b), the absolute value of the minimum vertical 

vorticities or the maximum vertical vorticities is high only in the region with negative Y 

coordinates and it is low in the region with positive Y coordinates. At this instance, an air-

entrained vortex is formed only in the region with negative Y coordinates as is confirmed in 

the right of Figure 3.19-(c). This air-entrained vortex is not visible in Figure 3.19-(b) because 

the suction pipe blocks its view. 

Figure 16 shows the temporal variations of absolute values of the maximum and minimum 

vertical vorticity (hereafter, simply referred to as “maximum vertical vorticity”) in the black 

rectangles shown in Figure 3.19-(a) and (b), for which the vertical vorticity is normalized by 

the inflow velocity (0.37 m/s) and the width of the pump sump (0.3 m), as already mentioned. 

Figure 3.20, at the upper figure, shows the variation of the maximum vertical vorticity in the 

narrower side (region with positive Y coordinates) while at the lower it shows that in the 

wider side (region with negative Y coordinates). The blue line denoted by “CW” shows 

negative vertical vorticity, namely, a vortex rotating in the clockwise direction while the red 

line denoted by “CCW” shows positive vertical vorticity, namely, a vortex rotating in the 

counterclockwise direction. 

In the region with positive Y coordinates on the water surface, a trace of an air-entrained 

vortex rotating in the counterclockwise direction is identified in some instances, but, that of 

a vortex rotating in the clockwise direction is hardly confirmed. To the contrary, in the region 

with negative Y coordinates on the water surface, a trace of an air-entrained vortex rotating 

in the clockwise direction is identified in some instances, but, that of a vortex rotating in the 

counterclockwise direction is hardly confirmed. 

Detailed investigations are made on the relation between the instantaneous distribution in the 

vertical vorticity on the water surface and occurrence of an air-entrained vortex for the entire 

period of time. It has been clarified that an air-entrained vortex is formed when the maximum 

vertical vorticity is high on the water surface, which appears to be the trace of its one end of 

the vortex line on the water surface. From these detailed investigations, the origin of an air-

entrained vortex is the strong vertical vorticity that appears in the separated flow downstream 

of the suction pipe. When this is sucked by the flow towards the inlet of the suction pipe, and 

stretched in the direction of the vortical axis, an air-entrained vortex is formed. 
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(a) T=1.52 sec (b) T=2.32 sec 

 

 
(c) T=2.32 sec (viewed from negative Y direction) 

Figure 3.19. Air-entrained vortices and vertical vorticity on water surface visualized at two 

different instances. 
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Figure 3.20. Temporal variation of maximum vertical vorticity on water surface enclosed 

by rectangles shown in Figure 3.16. 

  



59 

 

 

3.10 Effects of Height and Submergence of Bellmouth 

Inlet  

 

To validate the formation mechanisms of a submerged vortex and an air-entrained vortex, 

large-eddy simulations with a different height and a different submergence of the bellmouth 

inlet are also performed in Case E and Case F as found in Table 3. In Case E, the height under 

bellmouth inlet, namely, the distance between the bottom wall and the inlet of the bellmouth 

inlet, ℎ1 , is changed from 100 mm (0.67𝐷b ) to 150 mm (1.00𝐷b ) while in Case F, the 

submergence of bellmouth inlet, namely, the distance between the bellmouth inlet and the 

water surface , ℎ2, is changed from 50 mm (0.33𝐷b) to 100 mm (0.67𝐷b). In both cases, the 

water depth ℎ  is the same and it is 200 mm (1.33𝐷b ). Case E is intended to weaken the 

vertical acceleration near the projected center of the suction pipe on the bottom wall where 

the vertical vorticity is formed from the lateral vorticity in the boundary layer. Case F is 

intended to weaken the acceleration of the flow toward the inlet of the bellmouth from the 

water surface where the separated flow forms the origin of an air-entrained vortex. 

Figure 3.21 represents typical vortical structures visualized in Case E (left) and Case F 

(right). As is expected, no submerged vortex exists in Case E while no air-entrained vortex 

exists in Case F. The vortex pointed by the arrow in Figure 3.21-(b) is not an air-entrained 

vortex, but, a submerged vortex with its one end on the side wall of the pump sump. These 

computations are continued for a time period of 0.65 seconds. But, no submerged vortex with 

its one end on the bottom wall of the pump sump is formed in Case E, and no air-entrained 

vortex is formed in Case F. Note however that the computed time of 0.65 seconds for Case E 

and Case F is shorter than that in Case A, for which the computation is continued for 16 

seconds, and therefore, the conclusions presented in this subsection may include some 

uncertainty on the occurrence of a submerged vortex and that of an air-entrained vortex in 

Case E as well as in Case F. 

Figure 3.22 compares the distribution in the vertical vorticity, 𝜔Z, and that in the vertical 

gradient of the vertical velocity, 𝜕𝑤/𝜕𝑧, on a plane 1 mm (0.067𝐷b) above the bottom wall. 

Iso-surfaces of the vertical vorticity is also superimposed in these figures. The results in Case 
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A are re-presentation of the right most of Figure 3.13. Flow fields are averaged over a time 

period from T=0.34 sec. to 0.64 sec. for Case E. Vorticity vector with its axis aligned to the 

radial direction and the vertical gradient of the vertical velocity are formed around the 

projected center of the suction pipe near the bottom wall in Case A while such flow structures 

are not confirmed in Case E, for which the distance between the bottom wall and the inlet of 

the suction pipe is increased by a half compared with Case A. This weakens the acceleration 

of the vertical velocity near the bottom wall of the pump sump. As clarified in the previous 

subsections, three major elements are needed for a submerged vortex to be formed in a pump 

sump: the mean shear in the approaching boundary layers, the change in the axis of the 

vorticity vector from the lateral to vertical directions, and finally, the acceleration of the flow 

in the vertical direction (stretch of the vortex with a vertical vorticity vector). In Case E, the 

final element is not met, and no submerged vortex is formed in this case. 

Figure 3.23 compares, between Case A and Case F, the vortical structures in the pump sump 

and the distribution of the vertical vorticity on several horizontal planes at a height between 

the inlet of the bellmouth and the water surface. Both a submerged vortex and air-entrained 

vortex exist in Case A while only a submerged vortex exists and no air-entrained vortex exists 

in Case F. In both Case A and Case F, the main flow separates behind the suction pipe, and 

a region with a strong vertical vorticity appears in the separated flow in Case A (Figure 3.23-

(a)) while such a region is not identified in Case F. The strong vertical vorticity that appears 

on the water surface is one end of an air-entrained vortex formed in the pump sump. Although 

further investigation with a longer computed time is needed to take the effects of water 

surface into account for the formation of an air-entrained vortex, the origin and formation 

mechanism of an air-entrained vortex identified in the present study seems still valid in an 

actual pump sump subjected to these effects of the water surface. In Case F, the flow toward 

the inlet of the suction pipe is weakened due to the longer distance between the inlet of the 

suction pipe and water surface, and as a result, no air-entrained vortex is formed in this case. 
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(a) Case E 

 

(b) Case F 

Figure 3.21. Submerged and air-entrained vortices visualized in Case E and Case F. 
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Figure 3.22. Time-averaged ωz and 𝜕𝑤 𝜕𝑧⁄  on horizontal plane with a height of 1mm 

(0.0067𝐷b) together with iso-surface of vertical vorticity 𝜔z for Case A and 

Case E. 
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(a) Case A 

 

(b) Case F 

Figure 3.23. Air-entrained vortices and vertical vorticity on horizontal cross sections for 

Case A and Case F. 
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Chapter 4. Dynamics of a submerged vortex 

 

In the previous chapter, the origin and formation mechanism of a submerged vortex as well 

as those of an air-entrained vortex have been identified. In this chapter, the dynamics of a 

submerged vortex will be investigated in detail by large-eddy simulations applied to a 

simplified computational model, which is intended to represent the stretch of a submerged 

vortex under the suction pipe in the pump-sump model. A particular attention will be placed 

on the growth of the viscous core of the vortex, which results in the drop of the static pressure 

and on the effects of unsteady motion of the vortex on the growth of the viscous core. 

 

 

4.1 Static-pressure Drop in Vortex Core in Model Pump 

Sump 

 

To discuss its dynamics, the growth of the radial distributions of the velocity components 

and static pressure of a submerged vortex computed by the large-eddy simulation applied to 

the pump-sump model is investigated in detail. Figure 4.1 shows the radial distributions of 

the tangential and vertical velocities and the static pressure of a submerged vortex computed 

at heights of 6 mm (0.04𝐷b), 30 mm (0.20𝐷b) and 90 mm (0.60𝐷b) from the bottom wall. 

These profiles are averaged over a sufficiently long period of time as well as for the 

circumferential direction around the center of the submerged vortex identified as the point 

where the static pressure is minimum. The submerged vortex that appears under the suction 

pipe is accelerated in the vertical direction. Namely, the vertical velocity of the vortex almost 

linearly increases with the increasing height from the bottom wall where it is zero. The 

distribution of the tangential velocity 𝐶u is close to the one of the Rankine vortex composed 

of a combination of the forced vortex and the free vortex. The static pressure is the difference 

from a reference point at R = 54 mm (0.36𝐷b), where it is not affected by the vortex. The 

static pressure becomes minimum at the center of the submerged vortex. The decrease in the 
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static pressure (hereafter, referred to simply as “pressure drop”) from the reference point is 

only 5 kPa, which corresponds to 5% of the atmospheric pressure. Occurrence of a submerged 

vortex is normally identified by the cavitation in model pump-sump experiments. In such a 

case, the pressure at the center of the vortex should have decreased to the saturated vapor 

pressure of water at the ambient temperature, and the pressure drop should be as big as 

approximately the atmospheric pressure. Therefore, the pressure drop of 5% of the 

atmospheric pressure is too small. One of the possible reasons of the underprediction of the 

pressure drop is the insufficient grid resolution. The radius where the tangential velocity 

reaches its maximum is about 3 ~ 4 mm (0.020𝐷b~ 0.027𝐷b) in the computations. Hereafter, 

the region within this radius will be referred to as “vortex core”. The grid resolution (0.225 

mm=0.0015𝐷b ) of the large-eddy simulations applied to the whole pump-sump model is 

sufficiently fine to resolve the streamwise vortices in the turbulent boundary layers on the 

bottom and side walls of the pump-sump model. However, it is presumably insufficient to 

represent the sharp gradients of the tangential as well as axial velocities near the vortex core, 

which has motivated us to further investigate the dynamics of the submerged vortex by 

applying large-eddy simulations with even finer grid resolution as will be described below. 
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(a) Tangential velocity Cu (b) Vertical velocity Cz 

 

 

(c) Static pressure  

Figure 4.1. Radial distributions of velocity components and static pressure of a submerged 

vortex computed in pump-sump model. 
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4.2 Computational Model 

 

Large-eddy simulations of a submerged vortex with a grid resolution of 0.015 mm 

(1.0 × 10−4𝐷b), which is about fifteen times finer than those applied to the whole pump-

sump model, are performed. If this grid resolution had been applied to the whole pump-sump 

model, the number of the computational grids would have exceeded 500 billion, which is not 

feasible, at least at this moment. Therefore, a simplified computational model, which is 

intended to represent the stretch of a submerged vortex under the suction pipe of the pump-

sump model, is instead used in the present study. The simplified computational model is a 

paraboloid of revolution. With this shape, a constant gradient of the vertical velocity averaged 

over the cross section in the vertical direction is achieved, which represents the stretch of a 

submerged vortex formed near the bottom wall of the pump-sump model. The radius R of the 

paraboloid can be represented by the following function of the height Z. 

 

𝑅(𝑍) = 𝑅1√𝑍1/√𝑍      (8) 

 

where R1 and Z1 are, respectively, the radius and the height of a reference horizontal plane 

set in the simplified computational model. As shown in Figure 4.2, this reference plane is set 

as the inlet boundary where the radius and the height are, respectively, R1 = 30 mm (0.20𝐷b) 

and Z1 = 30 mm (0.20𝐷b). This means that the inlet boundary of the simplified computational 

model has a radius of 30 mm (0.20𝐷b) and is placed at 30 mm (0.20𝐷b) above the bottom 

wall of the pump-sump model. The main region of the simplified computational model is 

from Z = Z1 = 30 mm (0.20𝐷b ) to Z = 100 mm (0.33𝐷b ) where Z = 100 mm (0.33𝐷b ) 

corresponds to the height ℎ1of the inlet of the suction pipe. The cross-sectional area at a 

height Z is inversely proportional to the height Z. Therefore, the averaged vertical velocity 

Cz is proportional to the height Z by the conservation of mass (i. e. by the continuity equation). 

At the inlet boundary of the simplified computational model, the vertical velocity is set 

uniform, the radial velocity to zero, and the tangential velocity to that of a Rankine vortex as 

described by the following equation (9), 
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𝐶𝑧,𝑖𝑛𝑙𝑒𝑡 = 𝐶𝑧0           

 

𝐶u,inlet = {
𝐶𝑢0

𝑟

𝑅0
  (𝑟 < 𝑅0)

𝐶𝑢0
𝑅0

𝑟
  (𝑟 ≥ 𝑅0)

      (9) 

 

𝐶𝑟,𝑖𝑛𝑙𝑒𝑡 = 0           

 

where Cz0 is the axial velocity given at the inlet boundary, and is set to 0.6 m/s. R0 is the 

radius at the interface between the forced-vortex and free-vortex regions while Cu0 is the 

tangential velocity at the radius R0. Cu0 and R0 are set, respectively, 2.94 m/s and 3.0 mm 

(0.02𝐷b ). These boundary conditions represent the initial velocity distributions of the 

submerged vortex computed by the large-eddy simulation applied to the pump-sump model 

shown in Figure 4.1. Note that the tangential velocity Cu0 of 2.94 m/s, prescribed at the inlet 

of the simplified model, is higher than the peak tangential velocity shown in Figure 4.1 (a). 

It is assumed that the vortex core is not accurately computed in the large-eddy simulation of 

the whole pump-sump model due to its insufficient grid resolution. Rather than taking the 

peak tangential velocity computed by the LES, tangential-velocity profile is reconstructed 

with an assumption that it is of the Rankine vortex. In this way, the tangential velocity at the 

interface between the forced- and free-vortex regions is determined. 

For the initial flow field, both vertical velocity Cz and radial velocity are set to zero. The 

tangential velocity Cu is set to that of the Rankine vortex. The initial static pressure is set 

such that the radial pressure gradient and the centrifugal force balance with each other as 

shown in equation (10). 

 

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = {

1

2
𝜌𝐶𝑢0

2 (
𝑅

𝑅0
)
2

  (𝑟 < 𝑅0)

1

2
𝜌𝐶𝑢0

2 {2 − (
𝑅0

𝑅
)
2

}  (𝑟 ≥ 𝑅0)
    (10) 
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Figure 4.2. Simplified computational model for a single submerged vortex 
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4.3 Computational Conditions 

 

Hereafter, the computation case described in the previous subsection will be referred to as 

the “baseline case 2”, which is also named Case G (after the final Case F for the whole pump-

sump LES). To investigate appropriate numerical parameters such as the grid resolution and 

the time increment, a parameter study regarding numerical conditions is firstly made for the 

baseline case 2. A grid-independence study, where the grid resolution is varied from 3.75 

micrometers to 150 micrometres, has clarified that that grid resolution finer than 15 

micrometres is required for an accurate prediction of the submerged vortex. The results of 

this grid-independence study will be described later in a following subsection. The effects of 

the time increment are also investigated by using different time increments of 3.1 micro 

seconds and 12 micro seconds with the grid resolution of 15 micrometres. It is found that a 

larger time increment (12 micro seconds) leads to underprediction of the pressure drop and 

that the time increment must be equal to or smaller than 3.1 microseconds to accurately 

predict the motions of the submerged vortex. Therefore, the grid resolution is set to 15 

micrometres and the time increment is set to 3.1 microseconds for the baseline case 2 as well 

as for other cases described below. 

In addition to the baseline case 2, the following two case studies are performed. In the first 

case, hereafter referred to as “Case H”, the maximum tangential velocity given at the inlet 

boundary, Cu0, is varied, and in the second case, hereafter referred to as “Case I”, the vertical 

velocity, Cz0 is varied while the maximum tangential velocity is kept constant. In both cases, 

the swirl number, which is defined by the following equation (11) and represents the ratio of 

the angular momentum flux to the product of the radius of the vortex core and axial 

momentum flux, varies. 

 

𝑆 ≡
∫ 2𝜋𝑟2𝐶𝑧𝐶𝑢𝑑𝑟
𝑟=𝑅0
𝑟=0

𝑅0 ∫ 2𝜋𝑟𝐶𝑧𝐶𝑧𝑑𝑟
𝑟=𝑅0
𝑟=0

       (11) 

 

Case H and Case I will be, respectively, prescribed by the following parameters α and β, 

which are, respectively, the ratios of the tangential and vertical velocities given at the inlet 
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boundary to those for the baseline case 2 shown as follows. 

 

𝛼 ≡ 𝐶𝑢0/𝐶𝑢0_𝑏𝑎𝑠𝑒       (12) 

𝛽 ≡ 𝐶𝑧0/𝐶𝑧0_𝑏𝑎𝑠𝑒       (13) 

 

The swirl number defined by equation (11) increases when α is increased. Note that when 

α is changed, the Reynolds number, based on the initial radius of the vortex core and the 

initial maximum tangential velocity, as well as the dynamic pressure, based on the initial 

maximum tangential velocity, also changes. It is intended to investigate the effects only of 

the swirl number in Case I, by keeping the Reynolds number and the dynamic pressure 

constant. The computational cases of the large-eddy simulations of the simplified model are 

summarized in Table 4.4 while the swirl numbers and Reynolds numbers for Cases H and I 

are shown in Figure 4.3. 

 

Table 4.4. Summary of test cases for simplified model LES. 

Case Name grid 

resolution 

[μm] 

time increment  

[sec.] 
tangential 

-velocity ratio 

α 

axial-velocity 

ratio β 

Baseline case 2 

(Case G) 

15 3.1×10-6 1.0  

(Cu0 = 2.94 

m/s) 

1.0 

 (Cz0 = 0.6 m/s) 

Case H 15 3.1×10-6 0.05 ~ 1.50 1.0 

Case I 15 3.1×10-6 1.0 0.15 ~ 2.2 
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Figure 4.3. Swirl numbers and Reynolds numbers studied in Case G through Case I. 

  



73 

 

 

4.4 Results of Baseline Case 2 

 

The results computed by the baseline case 2 with the grid resolution of 15 micrometres and 

the time increment of 3.1 microseconds will firstly be described in this subsection. The results 

of the parameter study made to determine the above-mentioned grid resolution and time 

increment will then be described in the next subsection, 4.5. 

Figure 4.4 shows typical instantaneous distributions in the vertical (left) and tangential 

(right) velocities on the horizontal plane at a height of 60 mm (0.40𝐷b ), namely 30 mm 

(0.20𝐷b) downstream of the inlet boundary of the simplified model, computed by the baseline 

case 2. The radius of the three circles shown in Figure 4.4.  are, respectively, 0.6 mm 

(0.004𝐷b ) , 1.5 mm (0.01𝐷b ) and 3.0 mm (0.02𝐷b ). Figure 4.5 shows variation of the 

difference in the static pressure at the center and that at a reference point located at a radius 

of 15 mm (0.10𝐷b) from the center. As mentioned above, the tangential-velocity distribution 

of a Rankine vortex with the core size of 3 mm (0.02𝐷b) is described at the inlet boundary. 

At 30 mm (0.20𝐷b ) downstream of the inlet boundary, the radius of the vortex core has 

become smaller than 1 mm (0.0067𝐷b) and the maximum vertical velocity becomes about 5 

time larger on the plane at the height of 60 mm (=0.4𝐷b), 30 mm (=0.2𝐷b) downstream of 

the inlet boundary, than that given at the inlet boundary. The center of the computed vortex 

is not located at the center of the computational domain, and is rotating similarly to the 

submerged vortex computed in the LES applied to the whole pump-sump model. Namely, 

the vortex computed by the simplified model is also in precession motion. The time averaged 

static-pressure drop shown in Figure 4.5 is 106.4 kPa and its root mean square (RMS) value 

is 3.93 kPa (3.7 % of the time-averaged value). The static pressure does not become below 

the vapor pressure in the experiments since cavitation takes place when the static pressure 

reaches the vapor pressure of water. The static pressure computed in this study becomes 

below the vapor pressure since the cavitation is not considered in this study as already 

mentioned. 

Figure 4.6 compares the radial distributions of the time-averaged tangential velocity and 

static pressure on the horizontal plane at the height of 60 mm (=0.4𝐷b) computed in the LES 
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of the whole test pump sump and those in this simplified model. Note that the horizontal axis 

is plotted in the logarithmic scale to clarify the difference of the distributions in the vortex 

core. As shown in Figure 4.1, in the pump-sump computations, the size of the vortex core 

does not change between the horizontal planes at the heights of 30 mm (0.2𝐷b) and 60 mm 

(0.4𝐷b ) from the bottom wall, and therefore the maximum tangential velocity does not 

increase between the two planes. As a result, the static pressure drops only by about 5 kPa. 

On the other hand, in the simplified computational model, the radius of the vortex core 

becomes about 0.75 mm (0.005𝐷b) on the plane at the height of 60 mm (0.4𝐷b), which is 

about one-fourth of that given at the inlet boundary. By the conservation of angular 

momentum, the tangential velocity therefore becomes 8 m/s, which is almost 5 times larger 

than that computed in the pump-sump model. The resulting pressure drop is 106.4 kPa, which 

is about 27 time larger than that computed in the pump-sump model. 
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(a) vertical velocity Cz 

 

(b) tangential velocity Cu 

Figure 4.4. Instantaneous vertical (left) and tangential (right) velocities on cross section at 

height z=60 mm (0.4𝐷b) in baseline case 2. 
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Figure 4.5. Time series of static pressure drop at center of computational domain at height 

of z=60 mm (0.4𝐷b) in baseline case 2. 

 

  

(a) tangential velocity Cu (b) static pressure 

Figure 4.6. Comparisons of time and circumferentially averaged radial distribution of 

tangential velocity and static pressure drop on horizontal plane at Z = 60 mm 

(0.4𝐷b) in pump-sump (baseline case) and simplified model (baseline case2). 
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4.5 Effects of Grid Resolution and Time increment on 

Stretch of Submerged Vortex 

 

The grid-dependence tests are performed for the baseline case 2 where the grid resolution 

is varied in a range of 3.75 ~ 150 micrometres. Figure 4.7 shows the time series of the 

pressure drops computed with different grid resolutions. The pressure drops are almost the 

same as that for the 15 micrometres case if the grid resolution is finer than 15 micrometres 

while they are considerably smaller than that with 15 micrometres case if the grid resolution 

is coarser than 30 micrometres. Figure 4.8 compres the static pressure drop with different grid 

resolutions in the pump sump model and the simplified model. It is therefore decided to use 

the computational grid with the resolution of 15 micrometres in this study. 

While it is set to 3.1 micro seconds in the grid-dependence tests described above, the time 

increment is also varied to investigate its effects on the vortical dynamics. Figure 4.9 

compares time series of the pressure drops computed with different time increments. In this 

test, grid resolution is set to 15 micrometres. The pressure drop is considerably decreased 

with the time increment of 12 micro seconds, which is about four times larger than the 

selected time increment of 3.1 micro seconds. Figure 4.10 compares the instantaneous 

distributions of the tangential velocity Cu on the cross section at height Z=60 mm (0.4𝐷b). 

The vortex core is enlarged with the larger time increment where the tangential velocity is 

lower (right in Figure 4.10) than the one with the smaller time increment (left in Figure 4.10), 

which has resulted in the smaller pressure drop as confirmed In Figure 4.9. Figure 4.11 and 

Figure 4.12 respectively show a time series and frequency spectrum of the axial velocity at 

the center on the cross section at height of Z=60 mm (0.4𝐷b). In Figure 4.11 and Figure 4.12, 

the axial velocity is normalized by the axial velocity, 𝐶z0, given at the inlet boundary for 

baseline case 2. There is a peak of the velocity fluctuation at about 1 kHz in the case with the 

smaller time increment. This peak is shifted to a lower frequency and the amplitude of the 

peak increases in the case with the larger time increment. The motions of vortex cannot be 

resolved with the larger time increment, and as a result, the computed velocity fluctuation 
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has a larger scale (a lower frequency) and a larger amplitude. The larger velocity fluctuation 

has enlarged the vortex core. 

 

 

(a) grid resolution of 150, 75, 30 and 15 micrometres 

 

(b) grid resolution of 15, 7.5 and 3.75 micrometres 

Figure 4.7. Time series of static pressure at center of computational domain at Z=60 mm 

(0.4𝐷b) in baseline case 2 with different grid resolutions. 
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Figure 4.8. Static pressure drop at vortex core of a submerged vortex computed in the pump 

sump model and the simplified model 

 

 

Figure 4.9. Time series of static pressure at center of computational domain at Z=60 mm 

(0.4𝐷b) in baseline case 2 with different time increments. 
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(a) dt = 3.1 microseconds 

 

(b) dt = 12 microseconds 

Figure 4.10. Instantaneous tangential velocity on cross section at height Z=60 mm (0.4𝐷b) in  

baseline case 2 with different time increment. 
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Figure 4.11. Fluctuations of axial velocity at the center on the cross section at height Z=60 

mm (0.4𝐷b) in the baseline case 2 with the different time increment. 

 

 

Figure 4.12. Frequency spectra of axial velocity at the center on the cross section at height 

Z=60 mm (0.4𝐷b) in the baseline case 2 with the different time increment.  
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4.6 Effects of Swirl Velocity on Growth of Vortex 

 

The results computed by changing the maximum tangential velocity Cu0 given at the inlet 

boundary will be described in this subsection to understand the formation condition of a 

submerged vortex in a pump sump. The parameter α, which represents the tangential-velocity 

ratio given at the inlet boundary as described in subsection 4. 3, is proportional to the swirl 

number S defined by equation (11). α is varied in a range of 0.05 ~ 1.5, which corresponds 

to the swirl-number range of S = 0.12 ~ 3.68. The Reynolds number and dynamic pressure 

both defined by the initial maximum tangential velocity also change with the change of α. 

Figure 4.13 shows the relationships between the static-pressure drop on the plane at the height 

of 60 mm (0.4𝐷b) and the value of parameter α. Figure 4.13 (a) shows the absolute value of 

the pressure drop while Figure 4.13 (b) shows the pressure drop normalized by the dynamic 

pressure computed by the given maximum tangential velocity Cu0 for each case. 

The radial distributions of the tangential and vertical velocities and static pressure are 

analyzed in detail for typical 12 cases (out of 22 total cases computed). Figure 4.14 shows 

the time averaged tangential (left) and vertical (right) velocity on the horizontal plane at the 

height of 60 mm (0.4𝐷b). The tangential and vertical velocities are, respectively, normalized 

by Cu0 and Cz0 given at the inlet boundary in each case. The tangential-velocity distributions 

of the free vortex and Burgers vortex [28] are also plotted for reference in these figures. 

Burgers vortex is an asymptotic solution of the vortex stretched under a constant vertical-

velocity gradient and is given by the following equation. 

 

𝐶𝑢 =
𝐶𝑢0𝑅0

𝑅
{1 − 𝑒𝑥𝑝 (−

𝑅2

𝑅1
2)}      (14) 

𝑅1
2 =

4𝜈

(
𝜕𝐶𝑧
𝜕𝑧

)
        (15) 

 

where R0 and Cu0 is the initial radius of the vortex core and the tangential velocity at the 

radius of R0. Burgers vortex is an ideal vortex that is fully stretched in the vertical direction, 

and thus equation (14) does not depend on the height Z. The velocity distribution computed 
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by this study should have become the one represented by Burgers vortex if the simplified 

model had an enough length for the stretch of the vortex and the steady state were maintained. 

However, the velocity distributions of the vortex computed in the simplified model are 

remarkably different from the one of Burgers vortex as will be detailed later in this subsection. 

Figure 4.15 shows the time-averaged distributions of the static pressure difference between 

the center and a reference point at a radius of 10 mm (0.067𝐷b) on the horizontal plane at the 

height of 60 mm (0.4𝐷b) in these 12 cases. The absolute values of the pressure drop are 

plotted in the left figures while those normalized by the dynamic pressure that corresponds 

to the maximum tangential velocity Cu0 given at the inlet boundary are plotted in the right 

figures. By analyzing these plots, it is found that the following equation, which represents 

the balance between the pressure gradient and the centrifugal force, holds for all the cases. 

 

𝜕𝑃

𝜕𝑟
≅ −𝜌

𝐶𝑢
2

𝑟
       (16)  

 

The static pressure at radius R can be obtained by integrating equation (16) and it is 

represented by the following equation (17). 

 

𝑃(𝑅) ≅ −∫ 𝜌
𝐶𝑢

2

𝑟
𝑑𝑟

𝑟=∞

𝑟=𝑅
     (17) 

 

The larger the tangential velocity is, the larger the pressure drop at the center becomes. In 

these case studies, the maximum tangential velocity Cu0, given at the same radius R0 on the 

inlet boundary, becomes larger with increasing value of α. The absolute value of the pressure 

drop plotted in the left figures represents combined effects of the increase in the maximum 

tangential velocity given at the inlet boundary and those of the vortex stretch while the 

normalized pressure drop plotted in the right figures purely represent those of the vortex 

stretch. By carefully investigating the changes in these distributions of the velocities and 

static pressure, and change in the flow fields by movies (not shown in this paper), the 

conditions of formation process of a submerged vortex can be classified into the following 

four regimes: 

(1) Steady-state condition 
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The vortex keeps a steady state for α  smaller than 0.4, which corresponds to the swirl 

number smaller than 0.98. The distribution of the tangential velocity can be represented by 

that of the Rankine vortex. With increasing value of α, the radius of the vortex core becomes 

smaller and for the maximum α of 0.4, it becomes about 2 mm (0.013𝐷b). At the radius of 

about 2 mm (0.013𝐷b), which is outside the vortex core, the tangential velocities are about 

2.6 times larger than the vertical velocity for α = 0.4. The pressure drop is 4 kPa for α = 0.4, 

which is only 4 % of the atmospheric pressure. 

(2) Transitional-state condition 

For α larger than 0.45, the vortex starts precession motion and it simultaneously starts 

alternative stretching and shrinking in the vertical direction. The stretching leads to a 

smaller radius of the vortex core, resulting in a considerably larger tangential velocity and 

pressure drop. Under this condition, the tangential-velocity distribution can no longer be 

represented by that of the Rankine vortex, and the radius where the tangential velocity 

takes its maximum moves towards the center, and it becomes substantially smaller (0.5 

mm =0.033𝐷b  ~ 1.5 mm=0.010𝐷b ) than that of the Rankine vortex. As a result, the 

pressure drop rapidly increases with increasing value of α. The pressure drop for α = 0.6 

is about 40 kPa, which is ten times larger than that under the steady-state condition. 

However, the pressure drop in this condition is still smaller than the atmospheric pressure. 

(3) Equilibrium-state condition 

For α = 0.65 ~ 0.85, which corresponds to the swirl number of 1.59 ~ 2.08, the absolute 

value of the pressure drop keeps increasing with increasing value of α. On the other hand, 

the normalized pressure drops are almost constant and the radius where the tangential 

velocity takes its maximum does not move. The normalized tangential velocity becomes 

constant with increasing value of α. Under this condition, the effects of the vortex stretch 

due to the vertical acceleration and those of the centrifugal force presumably balance with 

each other, and therefore, no further shrink of the vortex core occurs. 

(4) Expanding-state conditions 

For α = 1.00 ~ 1.50, which corresponds to the swirl number of 2.45 ~ 3.68, the absolute 

values of the pressure drop slightly increase with increasing value of α. However, the size 

of the vortex core increases with increasing value of α, resulting in a sudden decrease of 

the normalized pressure drop. The tangential-velocity distributions return to the one close 
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to the Rankine vortex as is under the steady-state condition for α smaller than 0.4. Note 

that α = 1.0 corresponds to the baseline case 2 described in subsection 4.4. Figure 4.16 

shows the change in the radius of the vortex core on the horizontal plane at the height of 

60 mm (=0.4𝐷b) with the change in the value of α. 
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(a) Pressure drop 

 

(b) Normalized pressure drop 

Figure 4.13. Effects of circulation given at inlet boundary on pressure drops at center on 

cross section at Z = 60 mm (0.4𝐷b).  
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(a-1) Cu with 𝛂 of 0.05, 0.25 and 0.40 (b-1) Cz with 𝛂 of 0.05, 0.25 and 
0.40 

  

(a-2) Cu with 𝛂 of 0.45, 0.50 and 0.60 (b-2) Cz with 𝛂 of 0.45, 0.50 and 
0.60 

  

(a-3) Cu with 𝛂 of 0.65, 0.75 and 0.85 (b-3) Cz with 𝛂 of 0.65, 0.75 and 
0.85 

  

(a-4) Cu with 𝛂 of 1.00, 1.25 and 1.50 (b-4) Cz with 𝛂 of 1.00, 1.25 and 
1.50 

Figure 4.14. Comparisons of radial distributions of tangential (left) and vertical (right) 

velocities on horizontal plane at height of 60 mm (0.4𝐷b) in Case H.   
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(a-1) dP with α of 0.05, 0.25 and 0.40 (b-1) dCP with α of 0.05, 0.25 and 0.40 

  
(a-2) dP with α of 0.45, 0.50 and 0.60 (b-2) dCP with α of 0.45, 0.50 and 0.60 

  
(a-3) dP with α of 0.65, 0.75 and 0.85 (b-3) dCP with α of 0.65, 0.75 and 0.85 

  
(a-4) dP with α of 1.00, 1.25 and 1.50 (b-4) dCP with α of 1.00, 1.25 and 1.50 

Figure 4.15. Comparisons of radial distributions in pressure drop (left) and normalized 

pressure drop (right) on horizontal plane at height of 60 mm (0.4𝐷b) in Case H. 
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Figure 4.16. Radius of vortex core computed on horizontal plane at the height of 60 mm 

(0.4𝐷b) in case H. 
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4.7 Effects of Axial Velocity on Growth of Vortex 

 

In case I, the vertical velocity Cz0 given at the inlet boundary is varied while the maximum 

tangential velocity Cu0 and the radius of the vortex core R0 are kept constant. While both 

swirl number and Reynolds number change in Case H described in the previous subsection, 

only the swirl number changes in Case I. Therefore, the effects only of the swirl number on 

the dynamics of the vortex should appear in this case, which will be described in this 

subsection. 

Figure 4.17 plots, against the swirl number, S, the normalized pressure drop on the 

horizontal plane at the height of 60 mm (0.4𝐷b). The results from Case H and those from 

Case I fall in a line. The agreement of the normalized pressure drop in the two cases indicates 

that the normalized pressure drops are little affected by the Reynolds number in the range 

investigated in this study, and it is determined solely by the swirl number. With decreasing 

vertical velocity given at the inlet boundary, which corresponds to increase in the swirl 

number, the normalized pressure drop rapidly increases until the swirl number reaches 1.25. 

Beyond this swirl number, the normalized pressure drop starts to decrease. In Case I, the 

equilibrium-state condition identified in Case H is not clearly observed. However, it is 

confirmed from both results from Case H and Case I that the vortex is in precession motion 

accompanied by alternative vertical stretch and shrink in a relatively narrow range of the 

swirl number from 1.25 to 3.0. Only when this condition is met, the vortex grows and as a 

result, the static pressure at the vortex core substantially decreases. 

Finally, in actual pump sumps, cavitation is likely to occur in the vortex core, which is not 

considered in the present study. When cavitation occurs in its core, the vortex becomes 

presumably weakened because the larger mass of water moves outward. The narrow peak of 

the normalized pressure drop shown in Figure 4.17 may also be changed due to the cavitation. 

Unsteady motions of the submerged vortex subject to cavitation phenomena will be 

investigated in the future study.  



91 

 

 

 

Figure 4.17. Normalized pressure drop plotted against swirl numbers in case H and case I. 

Mark in red indicates baseline case 2. 
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4.8 Stretch of Vortex Core due to Unsteady Vortical 

Motion 

 

In subsection 4.6, it is shown that a sudden pressure drop takes place when the vortex starts 

unsteady motion. The unsteady motion of the vortex that leads to the enhanced pressure drop 

will be investigated in detail in this subsection. Figure 4.18 shows the frequency spectra of 

the normalized axial-velocity fluctuation at the center of the plane at the height Z=60 mm 

(0.4𝐷b) in Case H. The frequency spectrum with α = 0.3, for which the vortex is still steady, 

has no significant power. The frequency spectra with α = 0.4 and 0.6 begin to have significant 

power. Especially, the frequency spectrum with α = 0.6 obeys the -5/3 power law in the 

frequency range of 100 Hz and 4 kHz, which is the theoretical decay of the turbulence kinetic 

energy in the inertial subrange. The frequency spectra with α =0.75 and 1.0 in Figure 35 (b) 

also obey the -5/3 power law. This indicates the vortex with α equal to, or larger than, 0.6 is 

in a turbulent motion. Figure 4.19 shows instantaneous distributions of the tangential and 

radial velocities at height Z=60 mm (0.4𝐷b) with α = 0.6. The vortex is not homogeneous in 

the tangential direction. Figure 4.20 shows distributions of the fluctuating tangential and 

radial velocities with α = 0.6. The fluctuating velocity is defined by the difference between 

instantaneous and time-averaged velocities. A negative correlation between the fluctuating 

tangential and radial velocities is confirmed at around R=0.6 mm (0.4𝐷b). Namely, there is 

an inward flow (Cr < 0) where the tangential velocity Cu is larger than the average. On the 

other hand, there is an outward flow (Cr > 0) where the tangential velocity Cu is smaller than 

the average. These negative correlations indicate that the angular momentum is transported 

inward at this instance. Figure 4.21 shows the radial distribution of the product of the 

fluctuating tangential and radial velocities. The radial distribution is computed by taking an 

average over the tangential direction at each radius, and it is normalized by the maximum 

RMS (Root Mean Square) of the tangential and radial velocities, which are also computed in 

the tangential direction. Figure 4.22 shows the radial distributions of RMS of the tangential 

and radial velocities. The maximum values in the RMS of the tangential and radial velocities 

are, respectively, 0.19 m/s and 0.50 m/s. The tangentially averaged product of the fluctuating 
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tangential and radial velocities has a negative cross correlation peaked at around R = 0.6 mm 

(0.004𝐷b ). This negative cross correlations between the tangential and radial velocities 

transports the angular momentum inward, just as in a turbulent boundary layer, turbulent 

eddies transport streamwise momentum towards the wall, which in this case leads to a 

remarkable growth of the vortex core.  
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(a) 𝛼 = 0.3, 0.4, 0.6 

 

(b) 𝛼 = 0.75, 1.0 

Figure 4.18. Frequency spectra of normalized axial-velocity fluctuation at center on 

horizontal plane at height Z = 60 mm (0.4𝐷b) with α of 0.3, 0.4, 0.6, 0.75 and 

1.0. 
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(a) Tangential velocity Cu 

 

(b) Radial velocity Cr 

Figure 4.19. Instantaneous distributions of tangential and radial velocities on horizontal 

plane at height Z = 60 mm (0.4𝐷b) with α of 0.6.  
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(a) Tangential velocity dCu 

 

(b) Radial Velocity dCr 

Figure 4.20. Instantaneous distribution of fluctuating tangential and radial velocities on 

horizontal plane at height Z = 60 mm (0.4𝐷b) with α of 0.6. 
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Figure 4.21. Tangentially averaged product of fluctuating tangential and radial velocities on 

horizontal plane at height Z = 60 mm (0.4𝐷b) with α of 0.6. 

 

 

 

Figure 4.22. RMS of tangential and radial velocities on horizontal plane at height Z = 60 

mm (0.4𝐷b) with α of 0.6. 
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Chapter 5. Conclusions 

To identify the origin of the suction vortices that are formed in a pump sump, wall-resolved 

LES is performed for a whole pump-sump model with three different wall boundary 

conditions for the approaching boundary layers to the suction pipe. These large-eddy 

simulations reveal that the fundamental origin of a submerged vortex is the vorticity in the 

mean shear of the approaching boundary layer. The computation continued for a long period 

of time period has identified the formation mechanism of a submerged vortex: the vorticity 

in the approaching boundary layer with its axis originally aligned in the lateral direction 

changes its axis to the radial direction around the projected center of the suction pipe due to 

the geometrical asymmetry of the pump sump, and then, it further changes its axis in the 

vertical direction in the flow converging to the inlet of the suction pipe, and finally, by the 

vertical acceleration of the flow, the vortex is stretched and, as a result, a strong submerged 

vortex is formed. On the other hand, the origin of an air-entrained vortex has been identified 

as the vertical vorticity in the separated flow behind the suction pipe. When it is sucked 

toward the inlet of the suction pipe, the vortex is stretched in the axial direction, and as a 

result, an air-entrained vortex is formed. 

While the origin and formation process of suction vortices have been identified in the LES 

applied to the whole pump-sump model, the computed pressure drop of the submerged vortex 

is about 5kPa, which is too small to explain the occurrence of cavitation as observed in the 

model test. To overcome this underprediction of the pressure drop, LES of the internal flows 

in a simplified computational model are performed by using computational grid with a 

sufficiently fine resolution. The dynamics of the vortex core, including its pressure drop, has 

been clarified by the case studies where the tangential velocity and/or vertical velocity given 

at the inlet boundary of the computational model are varied. The pressure drop of the 

submerged vortex, computed by prescribing the maximum tangential velocity of 2.94 m/s at 

the radius of 30 mm (0.2𝐷b) at the inlet boundary, which corresponds to the initial condition 

found in the pump-sump model LES, exceeds 100 kPa. Grid resolution equal to, or finer than, 

0.015 mm (1.0 × 10−4𝐷b) is needed for computing dynamics of the vortex with the core size 

of about 0.5 mm (0.0033𝐷b). Flow structures of a submerged vortex can be classified by the 
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swirl number near the bottom wall, defined by the ratio of the angular momentum to the 

product of the axial momentum and the radius of the vortex core. The vortex keeps a steady 

state for the swirl number smaller than 0.98, resulting in a large core size and a small pressure 

drop. The vortex starts precession motion with the swirl number larger than 1.25. This 

precession motion leads to alternative vertical stretching and shrinking, which results in a 

sudden increase of the pressure drop normalized by the dynamic pressure corresponding to 

the maximum tangential velocity given at the inlet boundary. The negative peak of the cross-

correlation of tangential and radial velocities that appears near the vortex core reveals that 

fluctuating velocities near the vortex core transport angular momentum inward. For the swirl 

number between 1.59 ~ 2.08, the radius of the vortex core as well as the pressure drop 

normalized by the maximum tangential velocity given at the inlet boundary keep unchanged 

since the effects of the vortex stretch and the centrifugal force by the vortex rotation are 

balanced with each other. For the swirl number larger than 2.45, the vortex core becomes 

larger and the normalized pressure drop suddenly decreases again. 
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