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2. Abbreviations 
 
Ago3  Argonaute 3 
Armi  Armitage 
Aub  Aubergine 
β-gal  Beta-galactosidase 
BoYb  Brother of Yb 
BSA  Bovine serum albumin 
BSD  Blasticidin S deaminase 
CLIP  Crosslinking and Immunoprecipitation 
DNA  Deoxyribonucleic acid 
DNase  Deoxyribonuclease 
DTT  Dithiothreitol 
EDC  1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 
EDTA  Ethylenediaminetetraacetic acid 
eTud  Extended Tudor 
FBS  Fetal bovine serum 
flam  Flamenco 
GFP  Green fluorescent protein 
GST  Glutathione S-transferase 
Hel-C  Helicase C-terminal 
HEPES  4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid 
IDR  Intrinsically disordered region 
kb  Kilobase pairs 
kd  Knockdown 
kDa  Kilodaltone 
LLPS  Liquid-liquid phase separation 
Mino  Minotaur 
miRNA  Micro RNA 
mRNA  Messenger RNA 
NA  Numerical aperture 
n.i.  Non-immune immunoglobulin 
NP40  Nonyl phenoxypolyethoxylethanol 
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nt  Nucleotide 
OSC  Ovarian somatic cell 
PBS  Phosphor buffered saline 
PCR  Polymerase chain reaction 
piRISC  piRNA-induced silencing complex 
piRNA  PIWI-interacting RNA 
qRT-PCR Quantitative real-time PCR 
RISC  RNA-induced silencing complex 
RNA  Ribonucleic acid 
RNAi  RNA interference 
RNase  Ribonuclease 
RNP  Ribonucleoprotein 
SDS  Sodium dodecyl sulfate 
Shu  Shutdown 
siRNA  Small interfering RNA 
SoYb  Sister of Yb 
tj  Traffic jam 
T-PBS  0.1% Tween 20 in PBS 
Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride buffer 
UTR  Untranslated region 
Vret  Vreteno 
WT  Wildtype 
Yb  Female sterile (1) Yb 
Zuc  Zucchini 
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3. Introduction 

 

3.1. RNA silencing and transposons 

 

RNA silencing, or RNA interference (RNAi), is a gene-

repression mechanism conserved among eukaryote (Aravin and 

Tuschl, 2005; Ghildiyal and Zamore, 2009; Hutvagner and Simard, 

2008; Plasterk, 2002). The key components of RNA silencing are 

small RNA, which is 20-35 nucleotides (nt) in length, and RNA-

binding protein belongs to Argonaute family (Figure 3.1A). They 

form complexes called RNA-induced silencing complex (RISC) in a 

stoichiometric manner. RISCs recognize and bind their targets 

using RNA � RNA base pairings between small RNAs and 

transcripts of target genes. Expression of target genes is repressed 

by small RNA-directed endonuclease (slicer) activity of Argonaute 

proteins and/or activities of accessory proteins bound to Argonaute. 

In animals, small RNA-mediated gene silencing pathways 

are classified into three categories (Figure 3.1B) (Chu and Rana, 

2007; Ghildiyal and Zamore, 2009; Hutvagner and Simard, 2008; 

Ipsaro and Joshua-Tor, 2015). micro RNAs (miRNAs) are derived 

from RNAs with imperfect hairpin structures and loaded onto 

AGO subfamily proteins. Small interfering RNAs (siRNAs) are 
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also loaded onto AGO proteins but processed from long double-

stranded RNAs. PIWI-interacting RNAs (piRNAs) are processed 

from long single-stranded RNAs and loaded onto PIWI subfamily 

proteins. Each pathway has characteristic properties in its 

function and expression pattern. miRNAs are expressed 

ubiquitously and regulate mainly expressions of endogenous genes. 

siRNAs are also ubiquitous, but their major targets are viruses. 

piRNAs are expressed specifically in gonads and repress the 

expression of transposons. 

Transposons, or transposable elements, are mobile 

deoxyribonucleic acid (DNA) elements that can transpose in the 

genome. Transposition of transposon is thought to be a driving 

force of evolution based on a long-term point of view. However, it 

can harm the essential genes and the host organisms have 

obtained various ways to repress the expression of transposons 

(Goodier, 2016; Slotkin and Martienssen, 2007). In Drosophila 

non-gonadal tissues, transposons are also targeted by siRNAs 

(Chung et al., 2008; Ghildiyal et al., 2008; Kawamura et al., 2008). 

In Drosophila gonads, siRNAs and piRNAs cooperatively repress 

transposons and keep the genome integrity of germ cells, which 

are the only cells to be passed to the next generations (Czech et al., 

2008; Lau et al., 2009). The contribution of each pathway for 
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silencing varies among transposons, however, the piRNA pathway 

is thought to be the dominant transposon-silencing mechanism in 

Drosophila gonads, because loss of piRNA functions reactivated 

expressions of most transposons (Vagin et al., 2006). 

 

3.2. piRNAs in Drosophila 

 

Among three categories of animal small RNA pathways, the 

piRNA pathway is the most recently discovered pathway. In 2006, 

piRNAs were found for the first time in flies and mammals (Aravin 

et al., 2006; Girard et al., 2006; Grivna et al., 2006; Lau et al., 

2006; Saito et al., 2006; Vagin et al., 2006; Watanabe et al., 2006). 

Since then, the studies of the piRNA pathway have been performed 

mainly using mouse testis and fly ovaries (Aravin et al., 2007; 

Ghildiyal and Zamore, 2009; Hirakata and Siomi, 2016; Iwasaki 

et al., 2015; Juliano et al., 2011; Malone and Hannon, 2009; 

Yamashiro and Siomi, 2018), even though piRNAs and piRNA-like 

small RNAs are found in many animal species including sponge, 

sea urchin, and planarian (Friedlander et al., 2009; Grimson et al., 

2008; Wei et al., 2012). 

Flies possess three PIWI genes: Argonaute 3 (Ago3), 

Aubergine (Aub), and Piwi. A lack of any member of the PIWI 
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family in Drosophila causes severe defects in oogenesis and 

spermatogenesis, leading to infertility (Cox et al., 1998; Li et al., 

2009; Lin and Spradling, 1997; Schmidt et al., 1999; Schüpbach 

and Wieschaus, 1991). Thus, the functions of PIWI proteins are 

not redundant and all are necessary for development of both 

ovaries and testes. 

piRISCs implement transposon silencing at both the 

transcriptional and post-transcriptional levels, depending on the 

subcellular localization of the complexes (Aravin et al., 2007; 

Ghildiyal and Zamore, 2009; Iwasaki et al., 2015; Juliano et al., 

2011; Malone and Hannon, 2009; Yamashiro and Siomi, 2018). 

Cytoplasmic PIWI proteins, such as Aub and Ago3 in Drosophila, 

repress transposons post-transcriptionally by cleaving RNA 

transcripts using slicer activity (Figure 3.2). By contrast, nuclear 

PIWI proteins, such as fly Piwi, repress transposons 

transcriptionally by inducing heterochromatinization at target loci. 

Target RNAs cleaved by cytoplasmic piRISCs can be used as 

substrates for producing secondary piRNAs. Thus, cytoplasmic 

PIWI proteins can also be considered piRNA biogenesis factors. 

Because of this, post-transcriptional silencing and secondary 

piRNA production are recognized as a coupled event. 

 Expression of PIWI proteins is regulated spatio-
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temporarily in gonads (Bak et al., 2011; Brennecke et al., 2007; 

Cox et al., 2000; Gunawardane et al., 2007; Harris and Macdonald, 

2001; Malone et al., 2009). In Drosophila ovaries, basically all 

PIWI proteins (Piwi, Aub and Ago3) are expressed in the germ 

cells, which are derived from germline stem cells (Figure 3.2). In 

contrast, follicle cells, which are somatic cells surrounding the 

germ cells, only express nuclear PIWI protein, Piwi. Therefore, 

secondary piRNAs are not produced in follicle cells. piRNAs in 

follicle cells are mainly targeting the gypsy family transposons, 

which may transpose from follicle cells to germ cells by making 

virus-like particles (Malone et al., 2009). 

 

3.3. piRNA biogenesis in Drosophila ovarian somatic cells 

 

 piRNAs loaded on Piwi in Drosophila follicle cells are 

primary piRNAs, which are produced in a manner independent of 

slicer activity of PIWI. A cultured cell line composed of ovarian 

somatic cells (OSCs), established in 2009 (Saito et al., 2009), has 

been used as a powerful tool for researches to understand the 

mechanism underlying biogenesis of primary piRNAs. In OSCs, 

transposon-targeting piRNAs arise nearly exclusively from the 

flamenco (flam) locus, an intergenic region with a plenty of 
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transposon remnants whose orientations are mainly opposed 

against original active transposons (Figure 3.3A) (Brennecke et al., 

2007; Lau et al., 2009; Li et al., 2009; Malone et al., 2009). Upon 

transcription, the flam RNA transcripts undergo splicing partially 

and are exported to the cytoplasm, where they accumulate into 

perinuclear structures Flam bodies/Dot COM for further 

processing (Dennis et al., 2016; Goriaux et al., 2014; Murota et al., 

2014). The flam piRNA precursors may also be stored at nuclear 

Dot COM prior to nuclear export (Dennis et al., 2013). In addition 

to flam, some protein-coding genes serve as the sources of piRNAs 

in OSCs (Robine et al., 2009; Saito et al., 2009). The piRNAs 

derived from coding genes are called “genic piRNAs.” Most of genic 

piRNAs do not possess the sequences complementary to 

transposons, and their targets and functions remain elusive. 

piRNA processing in OSCs occurs in a manner depending 

on a number of piRNA factors including female sterile (1) Yb (Yb), 

Armitage (Armi), Sister of Yb (SoYb), Vreteno (Vret), Shutdown 

(Shu), Zucchini (Zuc), Gasz, and Minotaur (Mino) (Handler et al., 

2013; Handler et al., 2011; Olivieri et al., 2012; Olivieri et al., 2010; 

Preall et al., 2012; Saito et al., 2010; Vagin et al., 2013; Zamparini 

et al., 2011). Not all, but some of the factors were analyzed 

previously, and models of, at least parts of, their roles in the piRNA 
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pathway were proposed. The precursors of piRNAs are selectively 

bound by Yb and funneled to the piRNA-processing pathway 

(Figure 3.3A) (Ishizu et al., 2015; Pandey et al., 2017). Single 

molecule of long precursor RNA is processed into multiple piRNAs 

in a sequential manner with 5' to 3' direction (phasing) (Figure 

3.3B) (Han et al., 2015; Mohn et al., 2015). Cleavages of RNA 

during phasing are catalyzed by Zuc, an endo-ribonuclease (Ipsaro 

et al., 2012; Nishimasu et al., 2012). 

Upon processing, mature piRNAs form piRNA-induced 

silencing complexes (piRISCs) with Piwi. Piwi-piRISCs are then 

imported to the nucleus by Importin α (Yashiro et al., 2018), where 

they repress transposons cotranscriptionally with multiple 

cofactors (Brower-Toland et al., 2007; Dönertas et al., 2013; 

Iwasaki et al., 2016; Ohtani et al., 2013; Sato and Siomi, 2018; 

Sienski et al., 2015; Sienski et al., 2012; Yu et al., 2015). 

Yb bodies are gonadal soma-specific membraneless 

organelles (Saito et al., 2010; Szakmary et al., 2009) to which Yb, 

Armi, SoY, Vret, and Shu are localized (Handler et al., 2011; 

Olivieri et al., 2012; Olivieri et al., 2010; Saito et al., 2010; 

Szakmary et al., 2009). Other processing factors, Zuc, Gasz, and 

Mino, are not localized to Yb bodies but are anchored on the 

surface of mitochondria through their own transmembrane signals 
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(Handler et al., 2013; Saito et al., 2010; Vagin et al., 2013). Yb 

bodies tend to be surrounded by mitochondria and adjacent to 

Flam bodies (Figure 3.3A) (Murota et al., 2014; Szakmary et al., 

2009). This spatial arrangement of the organelles locally 

concentrates piRNA-processing factors and precursor RNAs; thus, 

Yb bodies were considered to be the site of piRNA production. The 

hierarchy of Yb body assembly has previously been examined 

(Handler et al., 2011; Olivieri et al., 2012; Saito et al., 2010). 

However, a comprehensive and systematic analysis including 

SoYb has not been performed, and the mechanism of Yb body 

formation remains elusive. 

 

3.4. Yb protein 

 

 Yb was originally reported as a novel gene required for 

fertility in Drosophila female (Young and Judd, 1978). Drosophila 

Yb is expressed specifically in somatic cells of ovaries and testis 

(King and Lin, 1999; Szakmary et al., 2009). Expression of Yb in 

ovarian cap cells is necessary for stable expression of piwi and 

hedgehog, which are critical for maintenance of germline stem 

cells and division of somatic stem cells (Figure 3.4) (King et al., 

2001). Although the mechanism(s) regulating hedgehog remain(s) 
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elusive, it is proposed that Yb may stabilize Piwi protein by 

piRISC formation (Qi et al., 2011). Also in follicle cells and cultured 

OSCs, Yb is required for primary piRNA biogenesis and repression 

of transposons (Olivieri et al., 2010; Saito et al., 2010). Lack of Yb 

barely affects the transcription of flam and possibly genic piRNA 

sources (Qi et al., 2011).  

 Yb is a member of TDRD12 family of proteins conserved 

from insects to mammals. Most animals possess one TDRD12 gene, 

but only Drosophila possesses three TDRD12 genes Yb, SoYb, and 

Brother of Yb (BoYb). In addition, Drosophila TDRD12 genes are 

also unique in a view of their functions as summarized in Figure 

3.5 (Handler et al., 2013; Handler et al., 2011; Pandey et al., 2013). 

Yb contains three functional domains, Helicase-C terminal 

(Hel-C), RNA helicase, and extended Tud (eTud) domains (Figure 

3.5) (Handler et al., 2011; Szakmary et al., 2009). The RNA 

helicase domain consists of P-loop NTPase and Hel-C domains. It 

was previously shown that alteration of Gln399 or Asp537 in the 

RNA helicase domain to alanine severely reduced the RNA-

binding activity of Yb (Figure 3.6A) (Murota et al., 2014). Both 

mutants Q399A and D537A failed to form Yb bodies and barely 

restored the piRNA biogenesis and transposon silencing abrogated 

by loss of endogenous Yb in OSCs, suggesting that the association 
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of Yb with piRNA precursors via the RNA helicase domain is 

essential for Yb body formation and piRNA biogenesis. 

The cis-elements that drive piRNA biogenesis were 

identified in flam transcripts and genic piRNA sources such as 

traffic jam (tj) messenger RNAs (mRNAs) (Homolka et al., 2015; 

Ishizu et al., 2015). Enforced tagging of the cis-element to the 5′ 

end, but not the 3′ end, of arbitrary RNAs induced artificial piRNA 

production from the downstream regions, which repressed genes 

highly complementary to the piRNAs (Homolka et al., 2015; Ishizu 

et al., 2015). Yb acts as the trans-acting factor, binding to the cis-

element and triggering piRNA biogenesis (Ishizu et al., 2015; 

Pandey et al., 2017). RNA binding of Yb also determines the 

regions from which piRNAs are produced (Figure 3.6B) (Ishizu et 

al., 2015).  

Both the Hel-C and eTud domains of Yb are necessary for 

piwi and hedgehog expression in ovarian cap cells, and for 

germarium development (Szakmary et al., 2009). However, their 

molecular functions in piRNA biogenesis remain elusive. 

 

3.5. Membraneless organelles and liquid-liquid phase separation 

 

 Some of the membraneless organelles, including 
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ribonucleoprotein (RNP) granules such as P bodies and P granules, 

are reported to show liquid-like propensities like fusion and fission 

events in cells (Banani et al., 2017; Boeynaems et al., 2018; Gomes 

and Shorter, 2018) (Figure 3.7A). P bodies sequester 

translationally repressed mRNAs to increase their stability (Luo 

et al., 2018). P granules are germline-specific structures necessary 

for germline development in C. elegans (Strome, 2005). These 

granules were reported to be formed by liquid-liquid phase 

separation (LLPS), where excess components in one liquid phase 

spontaneously accumulate to new liquid phase (Figure 3.7B). 

Components of organelles formed by LLPS tend to interact each 

other weakly but in a multivalent manner. Treatment of cells 

permeabilized by digitonin with 1,6-hexanediol, a chemical that 

inhibits weak hydrophobic interactions, often disrupt the granules. 

Thus, 1,6-hexanediol is widely used as chemical probe to detect 

LLPS.  

 In ovarian germ cells, piRNA factors are localized in nuage, 

germ cell-specific RNP granules. A mouse homolog of Vasa, the 

germ cell-specific RNA helicase localized in nuage, undergoes 

LLPS in vivo and in vitro (Nott et al., 2015). However, the 

involvement of LLPS to the formation of Yb bodies, somatic 

counter part of nuage, was not tested. 



 25 

 

3.6. Summary of this study 

 

8F�	�
�	V/�"�QKE�$I�,
��	S!O� 
  



 27 

 
Figure 3.1. RNA silencing and its classification 
(A) Outline of RNA silencing. Silencing of target genes may involve 
other factors. (B) Classification of RNA silencing pathways in 
animals. 
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Figure 3.2. piRNA pathway in Drosophila ovary. 
Germ cells in Drosophila ovaries possess three PIWI proteins and 
complicated piRNA pathway. In contrast, somatic cells produce 
only primary piRNAs loaded onto Piwi proteins. Therefore, 
somatic cells are suitable for analysis of the primary pathway. 
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Figure 3.3 (legend on next page). 
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Figure 3.3. piRNA biogenesis in Drosophila ovarian somatic cells. 
(A) Current model of piRNA biogenesis pathway in Drosophila 
ovarian somatic cells. Most of transposon-repressible piRNAs are 
derived from intergenic loci, flam. mRNAs of some protein coding 
genes including traffic jam (tj) are also used as piRNA precursors 
and processed into “genic piRNAs” (not shown). (B) Phased piRNA 
biogenesis by Zuc. 
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Figure 3.4. Cartoon of Drosophila germarium. 
This figure is modified from Huang et al., 2014. Terminal filament 
cells (TFCs; purple), cap cells (CCs; red), escort cells (ECs; blue), 
somatic stem cells (SSCs; light green), prefillicle cells (PFCs; 
green), and follicle cells (green) are somatic cells. Germline stem 
cells (GSCs; brown) and germline cysts (beige) are germ cells. 
  



 32 

 
Figure 3.5. Comparison of TDRD12 family genes. 
TDRD12 family genes of mouse (Mm), fruit fly (Dm), and silkworm 
(Bm) are compared. Extended Tudor (eTud) domains are shown as 
“Tudor.” This figure is modified from Pandey et al., 2013. 
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Figure 3.6. Molecular function of Yb in piRNA biogenesis. 
(A) Asp537 in the RNA helicase domain of Yb is necessary for RNA 
binding (upper) and Yb body formation (lower) of Yb. D537A 
mutant failed to produce piRNAs (Murota et al., 2014). This figure 
is modified from Murota et al., 2014. Scale bar; 2 µm. (B) RNA 
binding of Yb triggers piRNA biogenesis from downstream region 
of the RNA by spreading towards 3' end and inducing the 
processing.  
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Figure 3.7. Liquid-liquid phase separation triggers granule 
formation. 
(A) P granules in C. elegans fuse in a liquid-like manner. GFP-
fused MEG-3, one of the P granule components, was expressed in 
embryo. This figure is modified from Wang et al., 2014. (B) Cartoon 
of liquid-liquid phase separation. Some examples of interactions 
typical for liquid-liquid phase separation are indicated. 
Intrinsically disordered regions (IDRs) are regions of polypeptide 
chains that do not form unique stable three-dimensional 
structures.  
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4. The aim of this study 

 

The main goal of this study was to elucidate the 

molecular mechanism of Yb body formation and function of 

both Hel-C and eTud domains of Yb in piRNA biogenesis 

pathway. To this end, I conducted biochemical analyses to 

determine the hierarchy of protein components in Yb body 

assembly. In addition, to understand the functions of the Hel-

C and eTud domains of Yb, I produced two deletion mutants, 

ΔHel-C and ΔeTud, and examined their biological properties. 

Furthermore, I postulated that Yb bodies might be formed by 

phase separation. To test this, I assessed the properties of Yb 

bodies in vivo. 

Elucidation of both the molecular mechanism of Yb 

body formation and the function of Yb is essential for 

comprehensive understanding of piRNA pathway, especially 

of Yb-driven precursor selection, which is a critical step for 

silencing of correct targets and hence for fertility. 
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7. Discussion 
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8. Conclusion 

 

In this study, I revealed that Hel-C is necessary for self-

association of Yb while eTud is essential for Yb to interact with 

piRNA precursors and Armi. All three domains of Yb are necessary 

for Yb body assembly and transposon silencing. In addition, my 

results suggest that Yb bodies are multivalent RNA � protein 

condensates whose assembly depends both on homotypic 

interaction of Yb, and on Yb binding flam RNAs. Surprisingly, Yb 

body formation is not absolutely required for piRNA biogenesis. 

My current study provides a new insight about function of Yb 

bodies; that is Yb bodies are the elaborative system specialized for 

facilitation of production of piRNAs functional in transposon 

silencing. 

Determinants of Hel-C dependencies of individual 

precursors remain ambiguous. However, this is the first report to 

show the effect of loss of Yb bodies under the condition where all 

of their components are expressed, and the biological relevance of 

Yb body assembly has now emerged. I believe that this study 

contributes to profound understanding about how animals 

specifically repress the transposon to maintain fertility.  
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