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Abstract 

In this dissertation, a finite-difference time-domain algorithm based on the 

equivalent fluid model (EF-FDTD algorithm) is developed to study the sound fields 

containing porous material.  

In the porous material with rigid flame, the mechanism for the sound attenuated 

in the porous material is by the viscous losses and thermal losses in the porous 

material. In the frequency-domain equations based on the equivalent fluid model, the 

effective bulk modulus corresponds to the thermal effects in the porous material, and 

the effective density corresponds to the viscous effects in the porous material. In the 

porous material, the effective density and the effective bulk modulus are frequency 

dependent, which are designed in the form of the IIR filter.  By applying the 

Z-transform theory, the whole wave equations (containing add operation, 

multiplication operation and frequency dependent parameters) are transformed to Z 

domain, avoiding the complex convolution operation in time domain. In Z domain, 

the add operation and the multiplication operation are not changed. New parameters 

are defined, which greatly simplified the equations in Z domain. The simplified 

equations and the defined parameters can be easily transformed to time domain, and 

formulations of the EF-FDTD algorithm are obtained. In EF-FDTD algorithm, the 

thermal effects in the porous material are reflected by the parameters of the designed 

IIR filters of the effective bulk modulus. The viscous effects in the porous material are 

reflected by the parameters of the designed IIR filters the effective density. Once the 

IIR filters are designed, there is no need to design them again if the discrete time 

interval in the FDTD analysis is changed. 

The formulations for the 1-dimensional EF-FDTD algorithm, 2-dimensional 

EF-FDTD algorithm and 3-dimensional EF-FDTD algorithm are presented in this 

dissertation. The stability conditions for the EF-FDTD algorithm are discussed.  
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The 1-dimensional EF-FDTD algorithm is validated under the normal incidence 

of the sound by comparing the numerical analysis and the experiment. In the 

simulation, the boundary conditions (the boundary between air and the porous 

material, the boundary between different porous materials) are mainly discussed. The 

arithmetic averaged density at the boundary is used. The calculated sound absorption 

coefficients of the constructed multi- layered porous material agree well to the 

measured values.  

The 2-dimensional EF-FDTDT algorithm is validated under the oblique 

incidence of the sound by comparing the numerical analysis and the theoretical values. 

4 regular cases of the common relative position of the porous material and the air are 

simulated. The methods for calculating the surface impedance for each case are 

discussed. The calculated surface impedances of the multi- layered porous material are 

very close to the theoretical values in broad frequency range.  

The shaped porous material is simulated by using staircase approximation. In 

2-dimensional sound field, the errors caused by using the staircase approximation are 

discussed. The smaller the discrete space interval is, the smaller the error introduced 

by the staircase approximation is.  

The 2-dimensional EF-FDTDT algorithm is contrasted with the exiting Rayleigh 

method. The 2-dimensional EF-FDTD method is accurate in broad frequency range 

either at small incident angle or big incident angle. For the Rayleigh method, the 

errors between the calculated absorption coefficients and the theoretical values are 

very large. 

Porous materials are commonly used to construct absorbing wedges in anechoic 

chambers. The method for predicting the absorption coefficient of the wedges by 

using 2-dimensioal EF-FDTD algorithm is discussed. For the 4 kinds of designed 

wedges, the calculated absorption coefficient is very close to the measured values. 
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Chapter 1 INTRODUCTION 

 

1.1 Research background 

With the improvement of the living standard in people‟s life, and with the 

increasing awareness of environmental protection, people pay more and more 

attention to the noise problems in living and working environment. The methods to 

control the noise are mainly from three aspects: noise source itself, the way in which 

the noise is transmitted and the person who receive the noise. According to the 

different control objects, active noise control methods and passive noise control 

methods are used separately. Passive noise control is adopted in the channels and 

media of noise propagation. Then the noise emitted by the noise source is suppressed 

and reduced in the process of transmission. The measures taken mainly include two 

aspects: sound absorption methods and sound insulation methods. Porous materials 

are effective in the noise reduction techniques for the merits of cheap price, easy to be 

processed and most importantly, the excellent broadband absorption characteristics.  

When analyze the sound field containing porous materials, 3 major wave based 

numerical methods are exist: the finite element method (FEM), the boundary element 

method (BEM) and the finite difference time domain method (FDTD). Each method 

has its own advantages and disadvantages. FDTD method is a time domain method, 

simulating sound wave propagation in time domain. One advantage of FDTD method 

is effective in dealing with complicated time domain phenomena, such as sound 

diffraction, sound reflection and sound scattering. The FDTD method was firstly 

developed in the study fields of electromagnetics1-7. Then the FDTD method began to 

be used in various acoustical fields, such as ultrasonic8, underwater sound9, 

architectural acoustics10-20, etc. 
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As mentioned above, porous materials are frequently used in many places. When 

simulating the sound field containing porous material by using the FDTD method, one 

difficult point is explained as follows. FDTD method is a time domain method. 

However, the characters of the porous material (such as sound absorption coefficient, 

reflection coefficient) are frequency dependent. Therefore, it is difficult to introduce 

the frequency character of the porous material in FDTD method in the time domain. 

In order to solve this problem (accurately simulate the frequency character of the 

porous material in FDTD algorithm), some works have been published which are 

introduced as follows. 

In some cases, a porous material can be treated as locally-reactive. Based on the 

local-reactive assumption, only the sound pressure and the particle velocity in front of 

the boundary surface are used. The sound pressures and the particle velocities in the 

porous material are neglected. The normal components of the particle velocity 
nu  at 

the boundary and the related sound pressure p  in front of the boundary are 

connected by the surface impedance
sZ : 

s

n

p
Z

u
 Equation Chapter (Next) Section 1(1.1) 

The surface impedance sZ  is the complex value. If the surface impedance sZ  

can be treated appropriately, then the frequency character of the porous material can 

be simulated in the FDTD algorithm. 

In the work by Yokota16, sound propagating in 2-dimensional sound field (with 

the shape of concert halls) is visualized by using FDTD algorithm. In the simulation, 

the normal incident absorption coefficient   is used to calculate the surface 

impedance sZ 16,  

0 0

1 1

1 1
sZ c






 
 

 
                       (1.2) 

where 0  is the density of the air, and 0c  is the sound speed in the air. 



3 

By using Eq.(1.2), the result of 
sZ  is a real value. Multiple computationa l 

calculations are needed at the whole frequency range, requiring large amount of 

computing time.  

Chiba and Kashiwa10 developed a method in which the surface impedance 
sZ  is 

modeled by an equivalent RCL circuit, in which the required frequency characteristics 

can be designed. 

Botteldooren12 studied the low frequency and middle frequency room acoustical 

problems by using the FDTD algorithm. When treat the boundary conditions, a simple 

frequency function is proposed to simulate the surface impedance
sZ .  

1
0 1s

Z
Z Z j Z

j



                         (1.3) 

where 
1Z
, 

0Z  and 
1Z  are real constants to be decided.  

Sakamoto18 calculated the impulse response in a hall by using the FDTD 

algorithm. When treat the boundary conditions, the surface impedance 
sZ  is 

simulated by the equivalent mechanical system with different degrees of freedom. For 

the equivalent mechanical system with one degree of freedom, sZ  is expressed as: 

1
1 1s

k
Z c j m



 
    

 
                   (1.4) 

where 1c  is the resistance coefficient of the system, 1m  is the mass, and 1k  is the 

stiffness of the spring. 

In some works21-22, the admittance can be designed as the finite impulse response 

(FIR) filter. Applying the Z transform theory, the equation in Z domain is obtained: 

 
 

 

 
1 u

A
Z p




 
                      (1.5) 

  1 2

0 1 2

N

NA z a a z a z a z                    (1.6) 

In Eq.(1.6), 1z  in Z domain represents one time step delay in time domain. 

Then the relationship between the sound pressure and the particle velocity in FDTD 

algorithm can be obtained: 
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 1 21 1 2 1 2

0 1

n Nn n n

Nu a p a p a p
                      (1.7) 

When simulate the frequency character of the admittance using the FIR filter, the 

order of the filter (N) is usually very large. Then in the FDTD analysis, the occupied 

memory in the computer and the calculation time become larger. As another treatment, 

an infinite impulse response (IIR) filter can be used. By using the IIR filter22-23, the 

order of the filter (N) becomes smaller, reducing the occupied memory in the 

computer and the calculation time. 

The admittance designed as infinite impulse filter (IIR) in Z domain. Applying 

the Z transform theory, the equation in Z domain can be obtained: 

  0

1

1

N
n

n

n

M
m

m

m

a z

A z

b z









 






                       (1.8) 

In Eq.(1.8), 1z  in Z domain represents one time step delay in time domain. 

Then the relationship between the sound pressure and the particle velocity in FDTD 

algorithm can be obtained: 

 1 21 1 2 1 2

0 1

1

0 1

n Nn n n

N

n n n M

M

u a p a p a p

b u b u b u

   

 

   

    
               (1.9) 

By using the treatment in Eq.(1.9), there are some drawbacks such as high 

computational cost and uncertain instability. Then, Escolano24 proposed a method 

based on the “mixing modeling strategies”. This method treat the FDTD grids and the 

boundary condition (the impedance) separately and then joined together using an 

interface based on the WDF. The impedance is represented by a wave digita l filter. In 

this method, the stability can be ensured and the computational costs can be reduced. 

These above methods are based on the locally-reactive assumption of the porous 

materials. Sound propagation inside the porous material is neglected and not treated. 

Then errors would be occurred for the local reactive assumption. In addition, the 

effects caused by the thickness and the shape of the porous material cannot be treated 

by using locally-reactive assumption. 
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In order accurately treating porous materials, the wave equations describing 

sound propagation inside the porous material should be treated. 

One simple model describing sound propagation inside the porous material is the 

Rayleigh model25. Suzuki26-27 proposed FDTD formulas in porous materials based on 

the Rayleigh model: 

+ 0p

p u
p

t x
 

 
  

 
                       (1.10) 

0

1
0x

u p
u

t x




 
   

 
                      (1.11) 

where 
p  is the heat reduction coefficient, and 

x  
is the flow resistivity of the 

porous material. 
0  is the density of the air. 

This mentioned method is used in some studies28-30. However, Rayleigh model is 

too simple, which cannot accurately simulate a common porous material.  

Compared with the Rayleigh model, the Biot theory31-32 is a more complex 

model. Assuming the isotropic and homogeneous fluid saturated porous material, the 

equations are given as: 

p C u M w                           (1.12) 

 2 /fj w p u                           (1.13) 

 2

fu w                           (1.14) 

      2 TH G u I C w I G u u                (1.15) 

where p  is the pressure, u  is the displacement of the solid phase, and w  is the 

relative flow between the fluid phase and the solid phase. H , C  and M  are 

parameters defined by Biot. f  is the density of the pore fluid;   is the dynamic 

permeability;   is the viscosity of the pore fluid;   is the bulk stress tensor;   is 

the density of the material; I  is the identity tensor. 

Based on the Biot model, Hosokawa33 analyzed the ultrasonic pulse wave 

propagating in bovine cancellous bone by using 2-dimensional FDTD algorithm.  
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The Biot theory is an effective model describing the behavior of the common 

porous materials, but it is very complicated to be implemented in the FDTD algorithm. 

In most cases, the Biot theory can be appropriately simplified.  

When the frame of the material is rigid and motionless, the Biot theory could be 

simplified. Then the rigid-frame porous material is replaced by an equivalent fluid 

medium. Such a model is called the “equivalent fluid model”34. At 1-dimensional 

sound field, the equations are given as: 

  0
eq

u
j p K

x
 


   


                      (1.16) 

  0
eq

p
j u

x
  


   


                      (1.17) 

where  eqK   is the effective bulk modulus, and  eq   is the effective density.  

Base on the equivalent fluid model, some works treating wave propagation in 

rigid-frame porous materials in time domain have been published35-46. Fellah solves 

the direct and inverse scattering problems at the high and low frequency ranges for the 

wave propagation in time domain in rigid-frame porous materials35-41. Wilson treats 

the relaxational model for sound propagation in rigid- frame porous materials, in 

which a time-domain version of the relaxational model was developed42-44. Umnova45 

develops time-domain expressions of the complete equivalent fluid model without any 

restrictions on the frequency bands. Dragna46 developed the auxiliary differential 

equation (ADE) method. The convolutions between the relaxation functions and 

acoustic variables can be computed. 

For these mentioned treatments for the wave equations in rigid-frame porous 

materials, they are difficult to be directly implemented in the FDTD algorithm. 

Therefore, in this dissertation, based on the equivalent fluid model, a finite-difference 

time-domain algorithm (EF-FDTD algorithm) is proposed.  
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1.2 Objectives 

In this dissertation, based on the equivalent fluid model, a finite-difference 

time-domain algorithm (EF-FDTD algorithm) is proposed.  

The proposed EF-FDTD algorithm in this dissertation starts from the 

frequency-domain wave equations in an equivalent fluid medium. In the wave 

equations, the effective density and effective bulk modulus are frequency-dependent 

complex values reflecting the effect of visco-thermal dissipation in the rigid-frame 

porous material.  

In order to obtain time domain formulas for the FDTD analysis, a series of 

efforts need to be paid. In the frequency-domain equations, there exists add operation, 

multiplication operation, and frequency-dependent complex parameters (the effective 

density and effective bulk modulus). In order to avoid the complex convolution 

operations in time domain, the frequency-domain wave equations are firstly 

transformed to Z-domain. Therefore, for the whole wave equations (containing add 

operation, multiplication operation and frequency-dependent complex parameters), 

how to transform them to the Z-domain is the first difficulty point. Then how to treat 

the wave equations in the Z-domain is another difficulty point. Finally, how to obtain 

the time domain formulas from the wave equations in the Z domain is the last difficult 

point.  

As the solution, for the frequency-dependent complex parameters (the effective 

density and the effective bulk modulus), they are designed in the form of infinite 

impulse response (IIR) filters in frequency domain. The Z-transform theory is used to 

discretize the frequency-domain wave equations. Some measures are taken to treat the 

wave equations in Z-domain. By applying the relationship between the Z-domain and 

the time domain, the formulations in time domain for FDTD analysis can be obtained. 

By applying the proposed EF-FDTD algorithm, the wideband frequency 

characteristic of the porous material can be quickly and accurately simulated. The 

accuracy of the EF-FDTD algorithm is validated not only at the normal incidence of 
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sound, but also at the oblique incidence of sound. The proposed EF-FDTD algorithm 

can simulate the sound field containing the shaped porous material, and the accuracy 

is also validated. As an important application, porous material is often used to 

construct the acoustic wedges in anechoic chambers. The method for predicting the 

absorption coefficients of acoustical wedges by using the proposed EF-FDTD 

algorithm is proposed. The accuracy is validated by the experiment.  

Equation Chapter (Next) Section 1 

1.3 Chapter Organization 

The chapters in this dissertation are arranged as follows: 

For chapter1, the background, objectives are introduced. 

For chapter 2, the precedence research is introduced. The FDTD analysis method 

in the air is introduced in section 2.1. The FDTD analysis in the porous material using 

Rayleigh model is introduced in section 2.2. The necessary Z-transform theory used 

for chapter 3 is introduced in section 2.3. 

For chapter 3, the EF-FDTD algorithm in rigid-flame porous material is 

introduced. The equivalent fluid model describing sound propagating in rigid-frame 

porous material is introduced in section 3.2.1. How to change the effective bulk 

modulus and the effective density to the Z domain by using the IIR filter design 

method and Z transform theory is introduced in section 3.2.2. The 1-dimensional 

EF-FDTD algorithm is introduced in section 3.2.3. The 2-dimensional EF-FDTD 

algorithm and the 3-dimensional EF-FDTD algorithm are introduced in section 3.2.4. 

The stability condition analysis is introduced in section 3.3.  

For chapter 4, the validation of the EF-FDTD algorithm is introduced. The 

1-dimensional EF-FDTDT algorithm is validated under the normal incidence of the 

sound by comparing the numerical analysis and the experiment in section 4.2. The 

2-dimensional EF-FDTDT algorithm is validated under the oblique incidence of the 

sound by comparing the numerical analysis and the theoretical values in section 4.3. 
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The treatment for simulating the shaped porous material is discussed in section 4.4. 

The EF-FDTD algorithm is contrasted with the exiting Rayleigh method in section 

4.5. 

For chapter 5, the simulation of the shaped porous material is introduced. The 

designed 4 kinds of samples are introduced in section 5.2.1.The measurement system 

is introduced in section 5.2.2, and the properties of the used porous material are 

introduced in section 5.2.3. The measured and simulated results for sample A are 

given in section 5.3. In section 5.3.1, the equations for calculating the absorption 

coefficients from the measurement data are given. In section 5.3.2.2, the equations for 

calculating the absorption coefficient from the simulation data are given. In section 

5.3.2.3, the factors which affect the result of the absorption coefficient are discussed 

in detail. The measured and simulated results for sample B, sample C and sample D 

are given in section 5.4, section 5.5 and section 5.6, respectively. The conclusions are 

introduced in section 5.7. 

For chapter 6, the summaries of this dissertation are given, and the follow-up 

research work is introduced.  
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Chapter 2 PRECEDENCE RESEARCH 

 

2.1 FDTD analysis in the air 

The FDTD analysis in the air is firstly given in details47. The wave equations in 

the air are given as:Equation Section (Next) 

0
u p

t x

 

 
 

,                            (2.1) 

0
v p

t y

 

 
 

,                            (2.2) 

0
w p

t z

 

 
 

,                            (2.3) 

0
p u v w

t x y z

    

    
    

,                  (2.4) 

where p  is the sound pressure; u , v  and w  are the particle velocity in the x, y and 

z direction, respectively;   is the volume elastic ratio in the air, which is equal to 

2c . Here,   is the density of the air ;c  is the sound speed in the air.  

The FDTD formulations are given as: 

       1 1 2 1 21 2, , 1 2, , 1, , , ,n n n nt
u i j k u i j k p i j k p i j k

h

  
        ,  (2.5) 

       1 1 2 1 2, 1 2, , 1 2, , 1, , ,n n n nt
v i j k v i j k p i j k p i j k

h

  
        ,  (2.6) 

       1 1 2 1 2, , 1 2 , , 1 2 , , 1 , ,n n n nt
w i j k w i j k p i j k p i j k

h

  
        ,  (2.7) 

       

   

   

1 2 1 2, , , , 1 2, , 1 2, ,

, 1 2, , 1 2,

, , 1 2 , , 1 2

n n n n

n n

n n

t
p i j k p i j k u i j k u i j k

h

t
v i j k v i j k

h

t
w i j k w i j k

h







  
      


     


      

    (2.8) 
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2.2 FDTD analysis in the porous material based on the Rayleigh model 

As the existing method, Suzuki26-27 proposed the FDTD formulas in porous 

material based on Rayleigh model. In Rayleigh model, the porous material is 

simplified by a group of thin pipes with perfectly rigid bodies, as illustrated in Fig.2.1.  

 
Fig.2.1 The image of the Rayleigh model. 

In 1-dimensional sound field, the equations in Rayleigh model are given by: 

+ 0p

p u
p

t x
 

 
 

 
,                   (2.9) 

0

1
0x

u p
u

t x




 
  

 
,                   (2.10) 

where p  is the heat reduction coefficient, and x is the flow resistivity of the 

porous material. 0  is the density of the air.  

The FDTD formulations are expressed as: 

   

   

1 2 1 2, , 1 , ,

1 2, , 1 2, , ,

pn n

n n

t
p i j k p i j k

t
u i j k u i j k

x







 
 

  
 


     

     (2.11) 

   

   

1

1 2 1 2

1 2, , 1 1 2, ,

1, , , ,

n nx

n n

t
u i j k u i j k

t
p i j k p i j k

x









 

  
    

 


     

     (2.12) 
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2.3 Z-transform theory 

In this thesis, Z-transform is used to fit into the FDTD analysis, which has a little 

difference from what is used in the signal processing and system theory literature. For 

the most part, they are similar. The specific theorems can be found in the 

reference48-50. Here, only the theorems used in this thesis are listed. 

(1) One of the most important properties of the Z-transform theory used in this 

thesis is the convolution theorem, which is given as 

                 
0

y t h x t d Y H X Y z t H z X z     


              

    (2.13) 

In Eq.(2.19), t  is the discrete time interval for the FDTD analysis. It can be 

found that the theorem used here is different from that used in the signal processing 

and system theory literature, which is 

     Y z H z X z  
                      (2.14) 

The detailed analysis for this difference can be found in the reference5, which is 

not given here. This property is the main motivation for using the Z-transform theory 

into FDTD analysis.  

(2) The other important properties of the Z-transform are: 

            
11 z

j
t







,                         (2.15) 

1

1 1

1 tj z e     


 
,                     (2.16) 

 
 

 

1

1 2 22 2 2

sin

1 2 cos2

t

t t

e t z

e t z e zj



 



   

  

     

  


      
,    (2.17) 

 
 

 

1

1 2 22 2 2

1 cos

1 2 cos2

t

t t

e t zj

e t z e zj



 

 

   

  

     

   


      
,    (2.18) 

constant in frequency domain constant in Z domain          
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Chapter 3 EF-FDTD ALGORITHM IN 

POROUS MATERIAL 

 

3.1 Introduction 

In this section, the EF-FDTD algorithm in the rigid-flame porous material and 

the analysis for the stability conditions are introduced. In section 3.2.1, the equivalent 

fluid model describing the sound wave propagating in porous material with rigid 

frame is introduced. In section 3.2.2, how to change the effective bulk modulus and 

the effective density to Z domain by using the IIR filter design method and Z 

transform theory is introduced. In section 3.2.3, the 1-dimensional EF-FDTD 

algorithm is introduced. In section 3.2.4, the 2-dimensional EF-FDTD algorithm and 

the 3-dimensional EF-FDTD algorithm are introduced. In section 3.3, the stability 

condition analysis is introduced.  
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3.2 The EF-FDTD algorithm in the rigid-frame porous materials 

3.2.1 The equivalent fluid model  

When a sound wave propagates in the rigid-frame porous material, the sound 

wave is attenuated by the viscous effects and thermal effects in the porous material. 

These two mechanisms of attenuation are assumed to be decoupled and can be treated 

independently. When the frame is not moved, the rigid-frame porous material could 

be replaced by an equivalent fluid medium. The frequency-domain wave equations in 

3-dimensional sound field are expressed as51:Equation Section (Next) 

  0
eq

u v w
j p K

x y z
 

   
      

   
               (3.1) 

  0
eq

p
j u

x
  


   


                    (3.2) 

  0
eq

p
j v

y
  


   


                    (3.3) 

  0
eq

p
j w

z
  


   


                     (3.4) 

In the equations, p  is the sound pressure; u , v  and    are the particle 

velocities in x, y and z direction, respectively; j  can be seen as the differential 

operator with respect to the time, and   is the angular frequency;  eqK   is the 

effective bulk modulus, corresponding to the thermal effects in porous material; 

 eq   is the effective density, corresponding to the viscous effects in porous 

material.  

 eqK   and  eq   are mostly described by the JCAL model. Johnson52-53 

treated the visco- inertial effect in the porous materials from macroscopic parameters, 

Champoux and Allard54 treated the thermal effect, and Lafarage55 improved the 

thermal response. The detailed presentation can be found in the book by Allard34, 

which is given as follows. 
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The effective density described by Johnson is given as: 

   0eq                               (3.5) 

 

1 2
1 2

0

0

2
1

q j

j q

 
  

  




  
     

   

                 (3.6) 

The effective bulk modulus by the simplified Lafrarge model is given as: 

 

 

0 ,
1

1
eq

P
K 



 







                         (3.7) 

 

1 2
2

0

0

2
1 1

q j

j q

  
 

  

   
           

                (3.8) 

In these above equations, 2

0v B v    , 2B  is the Prandtl number; 
0q  is the 

viscous static permeability; 
0q  is the permeability;   is the porosity; 

 is the 

tortuosity;   and   are the viscous characteristic length and the thermal 

characteristic length, respectively. 

It can be found that the wave equations of Eqs.(3.1)-(3.4) are in frequency 

domain. The effective density  eq   represented by Eqs. (3.5)-(3.6) and the 

effective bulk modulus  eqK   represented by Eqs. (3.7)-(3.8) are frequency 

dependent. It is complicated if these equations are directly transformed to the time 

domain.  

In Eqs.(3.1)-(3.4), there exists the add operation, multiplication operation and 

frequency dependent parameters. The multiplication operation in frequency domain 

becomes a complicated convolution operation in time domain, but remains the 

multiplication operation in Z domain. From this point, the following idea is 

considered: why not transform the whole wave equations firstly to Z domain, and then 

transformed to time domain? 
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Fig. 3.1 The producre for deducing the EF-FDTD algorithm. 

 

In the process of deducing the EF-FDTD algorithm, the difficulty points are:  

(1) How to transform the whole wave equations (containing add operation, 

multiplication operation, and frequency dependent parameters) to the Z domain; 

(2) How to treat the wave equations in the Z domain; 

(3) How to obtain the time domain formulas from the wave equations in the Z 

domain; 

In the following sections, how to solve these difficulty points are introduced in 

detail. 

 

3.2.2 Change the effective bulk modulus and the effective density to Z domain 

3.2.2.1 IIR filter design 

When transform the whole wave equations to the Z domain, one difficult point is 

how to change the frequency dependent parameters (the effective bulk modulus 

 eqK   and the effective density  eq  ) to Z domain. For example, when the 

effective density is expressed by Eqs.(3.5)-(3.6), the Z transform of 

 
1

21 coefficient j   is difficult to be handled. In some cases, the parameters for the 

JCAL model are very difficult to be obtained. As an alternative method, the effective 

bulk modulus  eqK   and the effective density  eq  are measured in an 

Impedance tube. In this case, only some discrete data at specific frequency points are 

obtained. These discrete data do not have mathematic expressions. Therefore, when 
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transforming the effective bulk modulus  eqK   and the effective density  eq   

to Z domain, an easy to be processed expressions need to be constructed.  

Based on the Z-transform theories in section 2.3, the following transformations 

are known: 

1

1 1

1 tj z e     
 

 
                            (3.9) 

 
 

 

1

1 2 22 2 2

sin

1 2 cos2

t

t t

e t z

e t z e zj



 



   

  

     

  
 

      
        (3.10) 

 
 

 

1

1 2 22 2 2

1 cos

1 2 cos2

t

t t

e t zj

e t z e zj



 

 

   

  

     

   
 

      
        (3.11) 

constant in frequency domain constant in Z domain             

In Eq.(3.9)-Eq.(3.11),  1 j   is one pole filter in the frequency domain,

 2 2 22j        and  2 2 2+ 2j j         are two kinds of two 

poles filter. The constant in frequency domain is not changed in Z domain. 

Therefore, it is a wise choice to reconstruct the effective bulk modulus  eqK   

and the effective density  eq   by using the above 4 frequency domain 

expressions in Eq.(3.9)-Eq.(3.11). The transfer function of the IIR filter could be 

solved to contain the above 4 frequency domain expressions. 

The transfer function of the IIR filter is represented as56-57: 

 
 

 

   

   

1

1 2 1

1

1 2 1

=

n n

n

m m

m

B j b j b j b
H j

A j a j a j a

  


  









 
 

 
         (3.12) 

By using the pole-residue form, Eq.(3.12) can be rewritten as: 

  0

1

N
l

l l

r
H k

j q




 


 ,                       (3.13) 

where 
0k  is a real number, equal to 

1 1b a ; 
1 2, , and Nq q q  are the poles of the IIR 

filter; 
1 2, , and Nr r r  are the residues of the IIR filter. N  is the total number of the 

poles. In Eq.(3.13), The values of the poles and residues can be real or complex 

numbers, so they are also written as: 
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 
1

1

1

N

l

l l

r
H

j q




 


                          (3.14) 

 
2

2

1

N

k k

k k k

r r
H

j q j q


 

  
 


*

*                    (3.15) 

In Eq.(3.14), lq  and lr  are real numbers, and 
1N  is the number of the real 

poles. In Eq.(3.15), kq , *

kq , kr  and *

kr  are complex numbers, and 
2N  is the 

number of the pair of the complex poles. The relationship between N , 
1N  and 

2N  

is : 

1 22N N N                             (3.16) 

 In Eq.(3.15), kq , *

kq , kr  and *

kr  are given as: 

k k k
q j                               (3.17) 

k k k
q j    *

                          (3.18) 

k k k
r j                               (3.19) 

k k k
r j   *

                           (3.20) 

Input Eqs.(3.17)-(3.20) to Eq.(3.15), the following equation is obtained: 

 
 2

2 2 2 2
1

2 2

2

N
k k k k

k k k k

j
H

j

    


    

 
 

  
                  (3.21) 

3.2.2.2 Z transform of the IIR filter 

Firstly, Z transform theory is applied to the IIR filters. According to the 

properties of the Z transform theory in chapter 2.3, the Z transform of  1H   is: 

 
1 1

1 1
1 1

N

l
l

l l

a z
H z r

b z







  

 
                      (3.22) 

lq t

l la r e


                                 (3.23) 

lq t

lb e


                                  (3.24) 

The Z transform of  2H   is: 
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 
2 1 2

2 1 2
1

1 2
2

1 3 4

N

k k
k

k k k

X z X z
H z

X z X z


 

 


  
  

   
                  (3.25) 

   1 2 cos 2 sink kt t

k k k k kX e t e t
       

                  (3.26) 

2
2 2 k t

k kX e
  

                             (3.27) 

 3 2 cosk t

k kX e t
  

                        (3.28) 

2
4 k t

kX e
 

                               (3.29) 

In these above equations, t  is the discrete time interval in the FDTD analysis;  

The IIR filter for  eqK   and  eq   are given by: 

     0 1 2eq
K k H H                       (3.30) 

     0 1 2eq
k H H                          (3.31) 

The Z transforms of  1H   has the same expressions as  1H z . The Z 

transforms of  2H   has the same expressions as  2H z . 

3.2.3 1-dimensional EF-FDTD algorithm 

3.2.3.1 Z transform of the 1-dimensional wave equations 

In 1-dimensioanl sound field, the wave equations are: 

  0
eq

u
j p K

x
 


   


                      (3.32) 

  0
eq

p
j u

x
  


   


                      (3.33) 

Then, Z transform theory is applied to wave equations. Eq.(3.32) and Eq.(3.33) 

are transformed to the Z domain: 

     
1

0 1 2

1 1 1 1
0

2 2
z z z

z
P i k H z t H z t U i U i

t x

      
                      

,  

(3.34) 
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       
1

0 1 2

1 1 1
1 0

2
z z z

z
k H z t H z t U i P i P i

t x

                        
, 

(3.35) 

where 
zP  and 

zU  are the expressions in Z domain for the sound pressure p  and 

the particle velocity u , respectively; In FDTD analysis, x  is the discrete spatial 

interval, and t  is the discrete time interval. 

Inserting Eq.(3.22) and Eq.(3.25) into Eqs.(3.34)-(3.35) yields: 

 
1 21 1 21

0 1 1 2
1 1

1 21
2

1 1 3 4

1 1 1
0

2 2

N N

l k k
z l k

l kl k k

z z

a t z X t z X t zz
P i k r t t

t b z X z X z

U i U i
x


  

  
 

          
           

           

    
        

   


 

 

 (3.36) 

   

1 21 1 21

0
1 1 2

1 1

1 21
2

1 1 3 4

1 1
1 0

2

N N

l k k
l k

l k
l k k

z z z

a t z X t z X t zz
k r t t

t b z X z X z

U i P i P i
x



   

  
 

                          
                

 
           

 
 

(3.37) 

It can be found that Eqs.(3.36)-(3.37) are very complicated. In order to simplify 

these equations, the following parameters are defined: 

 

1 1

2 2
z zU i U i

D i
x

   
     

    


                     (3.38) 

 
 

11
, 1,2

1
l

l

D i
I i l N

b z
   

 
                 (3.39) 

 
 

21 2
, 1,2

1 3 4
k

k k

D i
Q i k N

X z X z 
   

   
              (3.40) 

1
1

1 1 1
, 1,2

2 21
l z

l

M i U i l N
b z

             
    

            (3.41) 
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2
1 2

1 1 1
, 1,2

2 21 3 4
k z

k k

R i U i k N
X z X z 

             
       

    (3.42) 

Substituting Eqs.(3.38)-(3.42) into Eqs. (3.36)-(3.37) yields: 

       

   

1

2

1 2 1

1

2 1 2

1

1 2

N

z z e l l

l

N

k k k k

k

P i z P i K t D i t a z I i

t X z Q i X z Q i

 



 



     

    





              (3.43) 

          

1

2

1

1 2

1

1 2

1

2 3

1 1
1

2 2

1 1

2 2

1 1
1

2 2

1 1
2

2 2

z z z z

e

N

l l l

le

N

k k k

ke

k k k

ke

t
U i z U i P i P i

x

t
a z M i z M i

t
X z R i z R i

t
X z R i z R i













 





 



 

   
              

            
    

            
    

            
    





2

1

N 





           (3.44) 

where 

1 2

0

1 1

2
N N

e l k

l k

K k r t t
 

                       (3.45) 

1 2

0

1 1

2
N N

e l k

l k

k r t t 

 

 

                        (3.46) 

3.2.3.2 1-dimensional EF-FDTD formulae in time domain 

Finally, the equations in Z domain are transformed to time domain. 1z  in Z 

domain represents one time delay in time domain. The distributions of the discrete 

points of sound pressure p , the particle velocity u  and the defined parameters

 
11 ,NI I I  

21 ,NQ Q Q  
1

1 N
M M M


 and  

2
1 N

R R R


 are shown in Fig.3.2. 
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Fig.3.2 The discretized points for the sound pressure, the particle velocities and 

defined parameters. 

Finally, the EF-FDTD formulas are: 

     
1

1 2 1 2n nD i u i u i
x
      

                  (3.47) 

     

 

   

1

2

1 1

2 2

1

2 2

1

1 3

2 2 2

1

1 2

n n

e

N
n

l l

l

N
n n

k k k k

k

p i p i K t D i

t a I i

t X Q i X Q i

 





 



   

 

    





         (3.48) 

     
1 1

2 2
1, 1,2

n n

l l lI i b I i D i l N
 

                   (3.49) 

       
1 1 3

2 2 2

2

3 4

1,2

n n n

k k k k kQ i X Q i X Q i D i

k N

  

     

 

              (3.50) 

   

1

2

1 1

1 2 2

1

1

1

1

1 2

1 1
1

2 2

1 1

2 2

1 1
1

2 2

1 1
2

2 2

n n
n n

e

N
n n

l l l

le

N
n n

k k k

ke

n n

k k k

e

t
u i u i p i p i

x

t
a M i M i

t
X R i R i

t
X R i R i









 














 

    
         

     

             
    

             
    

            
   





2

1

N

k






 

 


              (3.51) 
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1 1

1

1 1 1

2 2 2

1,2

n n n

l l lM i u i b M i

l N

                 
     

 

                  (3.52) 

1 1 1

2

1 1 1 1
3 4

2 2 2 2

1,2

n n n n

k k k k kR i u i X R i X R i

k N

                          
       

 

   
  (3.53) 

It should be noted that the forms of the EF-FDTD algorithm equations in this 

thesis is different from that published paper written by the author59. Essentially, both 

of them are correct. In this dissertation, the new parameter D is defined. The reason 

for using this new parameter is that the equations of the 2-dimensional EF-FDTD 

algorithm and 2-dimensional EF-FDTD algorithm can be easily obtained by only 

changing the parameter D. And the high accuracy algorithm can also be easily 

introduced (given in Appendix C), especially if the discrete space interval 

x y z     , no need to change the other parameters in the algorithm.  

The thermal effects and the viscous effects in the rigid-frame porous materials 

are reflected in EF-FDTD equations. The thermal effects are reflected in Eqs.(3.48)

-(3.50), because the coefficients of 
eK , 

la , 
lb , 1kX , 2kX , 3kX  and 4kX  are 

related to the IIR filter of the effective bulk modulus  eqK  . The viscous effects in 

the porous material are reflected in Eqs.(3.51)-(3.53), because the coefficients of
e , 

la  , lb  , 1kX  , 2kX  , 3kX   and 4kX   are related to the IIR filter of the effective 

density  eq  . 

Once the IIR filters for the effective bulk modulus  eqK   and the effective 

density  eq   is determined, there is no need to design them again if t  changed. 

In Eqs.(3.47)-(3.53), the IIR filters designed for the effective bulk modulus 

 eqK   and the effective density  eq   have both real poles and complex poles. 

1N  is the number of the real poles of the designed IIR filter for the effective bulk 

modulus, and correspondingly there exits 1I , 2I ,  
1NI ; 2N  is the number of the 

pair of complex poles of the designed IIR filter for the effective bulk modulus, and 

correspondingly there exits 1Q , 2Q ,  
2NQ ; 1N   is the number of the real poles o f 
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the designed IIR filter for the effective density, and correspondingly there exits 
1M , 

2M ,  
1NM  ; 2N   is the number of the pair of complex poles of the designed IIR 

filter for the effective density, and there exits 
1R , 

2R ,
2NR  .  

In some cases, the IIR filters can be designed to only have real poles. Then the 

algorithm can be significantly simplified. 

When the IIR filter for   eqK   is designed to only have real poles, the 

coefficients 1kX , 2kX , 3kX  and 4kX  are all 0, and Eq.(3.48) becomes: 

       
11 1 1

22 2 2

1

N
n n n

e l l

l

p i p i K t D i t a I i
  



                    (3.54) 

When the IIR filter for   eq   is designed to only have real poles, the 

coefficients 1kX  , 2kX  , 3kX   and 4kX   are all 0, and Eq.(3.51) becomes: 

   

1

1 1

1 2 2

1

1

1 1
1

2 2

1 1

2 2

n n
n n

e

N
n n

l l l

le

t
u i u i p i p i

x

t
a M i M i





 








    
         

     

              
    



           (3.55) 
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3.2.4 2-dimensional EF-FDTD algorithm and 3-dimensional EF-FDTD algorithm 

The derivation for the 2-dimensional EF-FDTD algorithm and 3-dimensional 

EF-FDTD algorithm is the same as that for the 1-dimensional EF-FDTD algorithm. 

For the 2-dimensional EF-FDTD algorithm, the only place need to be changed is D . 

 D i  is replaced by  ,D i j : 

     

   

1
, 1 2, 1 2,

1
, 1 2 , 1 2

n n

n n

D i j u i j u i j
x

v i j v i j
y

     

      

           (3.56) 

 For the 3-dimensional EF-FDTD algorithm,   D i  is replaced by  , ,D i j k : 

     

   

   

1
, , 1 2, , 1 2, ,

1
, 1 2, , 1 2,

1
, , 1 2 , , 1 2

n n

n n

n n

D i j k u i j k u i j k
x

v i j k v i j k
y

w i j k w i j k
z

     

     

      

           (3.57) 

It can be seen by using the parameter D , the algorithm becomes easy to be 

coded.  

The other parameters ( 1 2 3 4e l l k k k kK a b X X X X      ) are the same as that used 

in 1-dimensional EF-FDTD algorithm. 

The other formulas for updating    1 2 1 1 2 2, and ,N Np I I I I Q Q Q Q    are 

the same as Eqs.(3.48)-(3.50). 

 



26 

3.3 Stability condition analysis 

3.3.1 Stability condition for 1-dimensional EF-FDTD algorithm 

For the proposed EF-FDTD algorithm, the stability condition needs to be 

discussed. The procedure of deducing the stability condition for the EF-FDTD 

algorithm is similar as that for the FDTD algorithm in the air45.  

Firstly, the stability condition for the 1-dimensional EF-FDTD algorithm is 

discussed. The sound pressure p , the particle velocity u , and the defined parameters 

are expressed as: 

   
1 1

2 2
0=

n n jk i x
p i p Z e

   
                       (3.58) 

1

2

0

1
=

2

jk i x
n nu i u Z e

 
   

  
   

 
                    (3.59) 

   
1 1

2 2
_ 0=

n n jk i x

l lI i I Z e
   

 , l  is from 1 to 1N ,        (3.60) 

   
1 1

2 2
_0=

n n jk i x

k kQ i Q Z e
   

 , k  is from 1 to 2N ,       (3.61) 

1

1 1 2

_ 0

1

2

jk i x
n n

l lM i M Z e

 
   

    
   

 
, l  is from 1 to 1N  ,       (3.62) 

1

1 1 2

_ 0

1

2

jk i x
n n

k kR i R Z e

 
   

    
   

 
, k  is from 1 to 2N  ,       (3.63) 

where Z  represents the complex amplification ratio per time step, 0p , 0u , _ 0lI , 

_ 0kQ , _0lM  and _ 0kR  are initial values. 

Put the above equations into Eqs.(3.47)-(3.53) leads to: 

 
1

2

1 1 1

22 2 2
0 0 0

1

1 3

2 2 2
0

1

2sin
2

1 2 0

N

e
l l

l

N

k k k

k

K t k x
p Z Z u j t I Z a

x

t Q X Z X Z

 



 



      
             

 
     

 





          (3.64) 

0
_ 0 1 1

2 2

2sin
2

l

l

k x
j

u
I

x
Z b Z



 
  

  




, l  is from 1 to 1N ,        (3.65) 
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0
_0 1 1 3

2 2 2

2sin
2

3 4

k

k k

k x
j

u
Q

x
Z X Z X Z

 

 
  

  


   

, k  is from 1 to 2N ,        (3.66) 

 

   

1

2

1

-12
0 0 _ 0

1

-1 -1 -2

_ 0

1

2sin 1 1
2

1 1 2 0

N

l l

le e

N

k k k

ke

t k x t
p Z j u Z a M Z

x

t
R X Z X Z Z

 











                    

           
 





   (3.67) 

_ 0 0l

l

Z
M u

Z b



 , l  is from 1 to 1N  ,               (3.68) 

_ 0 0
13 4

k

k k

Z
R u

Z X X Z 


   
, k  is from 1 to 2N  .            (3.69) 

Put Eqs.(3.65)-(3.66) into Eq.(3.64) leads to: 

1 2

1 1

2 2
0 0

12 2

1
1 1

2sin
2

1 2
0

3 4

N N

e l k k

l kl k k

k x
p Z Z u j

K t a X X Zt t

x x Z b x Z X X Z






 

     
       

   

   
    

       
 

       

 (3.70) 

Put Eqs.(3.68)-(3.69) into Eq.(3.67) leads to: 

1 2

1 1

2 2
0 0

-1

1
1 1

2sin
2

1 2
1 0

3 4

e

N N

l k k

l ke el k k

t k x
p j u Z Z

x

a X X Zt t

Z b Z X X Z



 



 


 

     
           

     
    

       
 

            (3.71) 

 In a matrix form of Eqs.(3.70)-(3.71): 

MX 0                           (3.72) 

     

 

1 1

2 2

1 1

2 2

2sin
2

M

2sin 1
2

e

e

K tk x
Z Z j Ca Cb

x

k x t
j Z Z Cd Ce

x





    
             

    
       

    

 (3.73) 

 
T

0 0X p u                        (3.74) 

where  
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12

1

N

l

l l

at
Ca

x Z b


 
 
                     (3.75) 

2 12

1
1

1 2

3 4

N

k k

k k k

X X Zt
Cb

x Z X X Z







 
   
             (3.76) 

1

1

N

l

le l

at
Cd

Z b






 


                      (3.77) 

2 -1

1
1

1 2

3 4

N

k k

ke k k

X X Zt
Ce

Z X X Z






  
 

   
                (3.78) 

The matrix M is a 4 4  matrix. When the coefficients Ca , Cb , Cd , Ce  

are all zeros, the matrix M is the same as the matrix for the stability condition in the 

air. 

The matrix X  is not the zero vector, which leads to the value of the determinant 

for the matrix M are zeros. Therefore, the following equation which regards the 

complex amplification ratio Z are obtained: 

  

 

1 2

1 2

2
1 1 -1

2 2

1
1 1

2 2

12 2

1
1 1

1 2
1

3 4

4sin
2

1 2
=0

3 4

N N

l k k

l ke el k k

e

N N

e l k k

l kl k k

a X X Zt t
Z Z

Z b Z X X Z

k x t
j

x

K t a X X Zt t

x x Z b x Z X X Z

 



 



 




 

       
               

  
  

 

   
    

       

 

 

  (3.79) 

It can be found that the stability of the algorithm is related with the parameters of 

the designed IIR filters, especially related with the number of the poles. The poles can 

be real poles or complex poles, and the values of 1N , 2N , 1N   and 2N   can be 

different. It is difficult to discuss the stability of the algorithm for different kinds of 

poles and different values of 1N , 2N , 1N   and 2N  .  

As a preliminary discussion, how the parameters of the designed IIR filters affect 

the stability of the algorithm, the following cases are discussed: 

 (Case A) 1 1N  ,  2 1 2 0N N N    ; 
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(Case B)
 2 1N  ,  

1 1 2 0N N N    ; 

(Case C)
 1 1N  ,  

1 2 2 0N N N   ;  

(Case D) 
2 1N   ,  

1 2 1 0N N N   ; 

 (Case E) 1 1=2N N  ,  
2 2 =0N N  ; 

(Case F) 
1 2 1 2 =1N N N N    ; 

3.3.2 Stability discussion for Case A 

The designed IIR filters for the effective bulk modulus  eqK   and the 

effective density  eq   are given as: 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
K k

j q j q j q


   

    
  

 
*

*
          (3.80) 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
k

j q j q j q
 

  

 

 

  
    

    
 

*

*            (3.81) 

For case A, 
1 1N  , and 

2 1 2 0N N N    .  Then the effective bulk modulus 

 eqK   and the effective density  eq   are changed to: 

  1
0

1

eq

r
K k

j q



  


                        (3.82) 

  0eq
k                                (3.83) 

Then Eq.(3.79) becomes:   

3 2 2

1

3
2 2

1 1 12

2 4sin
2

2 1 4 sin +4sin =0
2 2

e

e

e

e e

K tk x t
Z b Z

x x

K tk x t k x t
b b a Z b

x x x



 

   
      

   

       
           

      

 (3.84) 

where 1

1 1

q t
a r e


  ,  1

1

q t
b e


 ,  0 1eK k r t   ,  0e k  . 

In Eq.(3.84), the roots are 1 2 3andZ Z Z   . Here, 11 1Z    , 21 1Z    and 

31 1Z   , which satisfy that the solutions is not increased and diverged at last. 

From the Vieta‟s formulas, the following equations can be obtained:  

   
3

1 2 3 11Z Z Z b                          (3.85) 
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2

1 2 3 1 2 4sin
2

e

e

K tk x t
Z Z Z b

x x

    
            

    
     (3.86) 

Then the following equations can be obtained: 

11 1
q t

e


                             (3.87)

1 23 2 4sin 3
2

q t e

e

K tk x t
e

x x

   
        

  
              (3.88) 

Eq.(3.87) yields the stability condition in designing the IIR filter for the effective 

bulk modulus  eqK  : the real part of the pole (
1q ) should be smaller than 0. 

Eq.(3.88) yields the stability condition in the FDTD analysis: the discrete time 

interval t  and the discrete spatial interval x  need to be satisfied as: 

0 1e

e

K t

x


   


                      (3.89) 

3.3.3 Stability discussion for Case B 

The designed IIR filters for the effective bulk modulus  eqK   and the 

effective density  eq   are given as: 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
K k

j q j q j q


   

    
  

 
*

*
          (3.90) 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
k

j q j q j q
 

  

 

 

  
    

    
 

*

*            (3.91) 

For case B, 2 1N  ,  1 1 2 0N N N    . Then the effective bulk modulus 

 eqK   and the effective density  eq   are changed to: 

  1 1
0

1 1

eq

r r
K k

j q j q


 
   

 

*

*                   (3.92) 

  0eq
k                                (3.93) 

where 1 1 1
q j    ,  

1 1 1
q j   * , 1 1 1

r j   , and 1 1 1
r j  * .     

Then Eqs.(3.79) becomes: 
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e

X Z
x

X

 
  

 

 

 (3.94) 

where    1 1

1 1 1 1 11 2 cos 2 sin
t tX e t e t       

        ,  12

1 12 2
t

X e
  

   , 

 1

1 13 2 cos
tX e t  

   ,  12

14
t

X e
 

 ,  
0 12eK K t   , and  

0e k  .  

In Eq.(3.94), the roots are 1Z , 2Z , 3Z  and 4Z . From the Vieta‟s formulas, the 

following equations can be obtained: 

 
4

1 2 3 4 11 4Z Z Z Z X                            (3.95) 

  2

1 2 3 4 11 3 2 4sin
2

e

e

K tk x t
Z Z Z Z X

x x

   
            

   
       (3.96) 

For each root, 11 1Z   ,  21 1Z   , 31 1Z    and 41 1Z   . Then 

the following equations can be obtained: 

12
1< 1

t
e

 
                          (3.97) 

 1 2

14 2 cos 2 4sin 4
2

t e

e

K tk x t
e t

x x

 


    
          

  
        (3.98) 

Eq.(3.97) yields the stability condition in designing the IIR filter for the effective 

bulk modulus  eq
K  : the real part of the complex poles ( 1 ) should be smaller 

than 0. 

Eq.(3.87) yields the stability condition in designing the IIR filter: the discrete 

time interval t  and the discrete spatial interval x  need to be satisfied as: 

0 1e

e

K t

x


   


                     (3.99) 
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3.3.4 Stability discussion for Case C 

The designed IIR filters for the effective bulk modulus  eqK   and the 

effective density  eq   are given as: 

 
1 2
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1 1

N N

l k k
eq

l kl k k

r r r
K k

j q j q j q


   

    
  

 
*

*
          (3.100) 
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l kl k k

r r r
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j q j q j q
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    
 

*

*            (3.101) 

For case C, 1 1N  ,  1 2 2 0N N N   . Then the effective bulk modulus 

 eqK   and the effective density  eq   are changed to: 

  0eq
K k                           (3.102) 

  1
0

1

eq

r
k

j q
 




  


                   (3.103) 

Then Eq.(3.79) becomes: 
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2
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

                
    

                  
    

      
 

       (3.104) 

where 1

1 1

q t
a r e

   ,  1

1

q t
b e

  ,  0eK k ,  0 1e k r t     .  

In Eq.(3.104), the roots are 1Z , 2Z  and 3Z . From the Vieta‟s formulas, the 

following equations can be obtained: 

 
3

1 2 3 1 11
e

t
Z Z Z a b



       
 

                     (3.105) 

  2

1 2 3 1 11 2 4sin
2
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e e

K tt k x t
Z Z Z a b

x x 

                     
    

    (3.106) 

Here, 11 1Z   , 21 1Z    and  31 1Z   . Then the following equations 

can be obtained: 
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1 1

0 1

1 1 1
q t r t

e
k r t


 

      
    

                  (3.107)

2

1 14 2 4sin 4
2

e

e e

K tt k x t
a b

x x 

                 
   

       (3.108) 

Eq.(3.107) yields the stability condition in designing the IIR filter for the 

effective density  eq  : the real part of the pole (
1q ) should be smaller than 0; 

Eq.(3.108) yields the stability condition in the FDTD analysis, the discrete time 

interval t  and the discrete spatial interval x  need to be satisfied as: 

0 1e

e

K t

x


   


                     (3.109) 

3.3.5 Stability discussion for Case D 

The designed IIR filters for the effective bulk modulus  eqK   and the 

effective density  eq   are given as: 

 
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l k k
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r r r
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
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          (3.110) 
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*            (3.111) 

For case D, 2 1N   ,  1 2 1 0N N N   . Then the effective bulk modulus 

 eqK   and the effective density  eq   are changed to: 

  0eq
K k                            (3.112) 

  1 1
0

1 1

eq

r r
k

j q j q
 

 

 
   

  

*

*                  (3.113) 

where 1 1 1
q j      , 

1 1 1
q j     * , 1 1 1

r j     ,  
1 1 1
r j    * .  

Then Eq.(3.79) becomes: 
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      (3.114) 

where    1 1 12

1 1 1 1 1 1 11 2 cos 2 sin 2 2
t t tX e t e t X e      

                           

 1 12

1 1 1 0 0 13 2 cos 4 2
t t

e eX e t X e K k k t   
                      

In Eq.(3.114): 

2=4sin
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K tk x t
A

x x

  
   
  

                 (3.115) 

In Eq.(3.114), the roots are 1Z , 2Z , 3Z  and 4Z . Here, 11 1Z   , 

21 1Z    , 31 1Z  
 
and 41 1Z   . From the Vieta‟s formulas, the following 

equations can be obtained: 

1 14 2 1 3 4
e

t
X X A



          
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             (3.116) 
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   

    (3.117) 

1 1 1 1 14 4 2 4 2 1 3 4
e e
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X A X X X X

 
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    (3.118) 

12 0
1 1

0 1

1 4 2 = 1
2

t

e

kt
X X e

k t



 

          
   

        (3.119) 

Eq.(3.119) yields the stability condition in designing the IIR filter for the 

effective density: the real part of the complex poles ( 1 ) should be smaller than 0; 

From (3.116)-(3.118), the following equation can be obtained: 

  1 120 4 2 3 3 32X X A                     (3.120) 

In Eq.(3.120), 1 18 4 2 3 3 8X X      ,  so 4A .  
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The stability condition in the FDTD analysis: the discrete time interval t  and 

the discrete spatial interval x  need to be satisfied as: 

0 1e

e

K t

x


   


                     (3.121) 

3.3.6 Stability discussion for Case E 

The designed IIR filters for the effective bulk modulus  eqK   and the 

effective density  eq   are given as: 
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For case E, 
1 1 2N N   , and 

2 2 0N N  .  Then the effective bulk modulus 

and the effective density are changed to: 
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Then Eq.(3.79) becomes: 
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 (3.126) 

where 1 1 2 2 1 1
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In Eq.(3.126), the roots are 
1 2 3 4 5 6Z Z Z Z Z Z      Here, 

11 1Z   , 

2 3 4 5 61 1 1 1 1 1 1 1 1 1Z Z Z Z Z                From the Vieta‟s 

formulas, the following equations can be obtained: 
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        (3.127) 
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            (3.128) 

From Eq.(3.128), the following equation can be obtained: 
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             (3.129) 

Eq.(3.129) yields the stability condition in designing the IIR filter for the 

effective bulk modulus and the effective density: the real part of the poles 

( 1 2 1 2q q q q    ) should be smaller than 0. 

From Eq.(3.127), the following equation can be obtained: 
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                 (3.130) 

Eq.(3.130) yields the stability condition in the FDTD analysis, the discrete time 

interval t  and the discrete spatial interval x  need to be satisfied as: 
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                     (3.131) 

3.3.7 Stability discussion for Case F 

The designed IIR filters for the effective bulk modulus  eqK   and the 

effective density  eq   are given as: 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
K k

j q j q j q


   

    
  

 
*

*
          (3.132) 
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For case F, 
1 2 1 2 1N N N N     .  Then the effective bulk modulus and the 

effective density are changed to: 
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where 
2 1 1
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r j     ,  

2 1 1
r j    * .  

Then Eq.(3.79) becomes: 
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

     

           
 
       
  

      

  
      

 
  

 
    

   (3.136) 

where 1

1 1

q t
a r e


  ,  1

1

q t
b e


 ; 1

1 1

q t
a r e

   ,  1

1

q t
b e

  ;

   1 1

1 1 1 1 11 2 cos 2 sin
t tX e t e t       

        ,  12

1 12 2
t

X e
  

   , 

 1

1 13 2 cos
tX e t  

   ,  12

14
t

X e
 

 ; 

   1 1

1 1 1 1 11 2 cos 2 sin
t tX e t e t    

                ,  12

1 12 2
t

X e

    ,  

 1

1 13 2 cos
tX e t 

     ,  12

14
t

X e
   ;  0 1 12eK k r t t     ,  

0 1 12e k r t t        .  

In Eq.(3.136), the roots are 1 2 3 4 5 6 7 8Z Z Z Z Z Z Z Z       . Here, 11 1Z   , 

2 3 4 5 6 7 81 1 1 1 1 1 1 1 1 1 1 1 1 1Z Z Z Z Z Z Z                     

From the Vieta‟s formulas, the following equations can be obtained:
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1 2 3 4 5 6 7 8

2
21

1 1 1 1 1 2
3 1 3 2 4sin

2

e

e e e

Z Z Z Z Z Z Z Z

K ta t t k x
b X X X b

x  

       

    
           

 

   (3.137) 

1
1 2 3 4 5 6 7 8 1 1 1 1 1 1 14 4 4 2

e e

a t t
Z Z Z Z Z Z Z Z X b X b X X b

 

           
 
 

     (3.138) 

From Eq.(3.138), the following equation can be obtained: 

1 1 1 12 2 0

0 1 1

1 1
2

q t q t t t k
e e e e

k r t t

 



        
       

      

          (3.139) 

Eq.(3.139) yields the stability condition in designing the IIR filter for the 

effective bulk modulus and the effective density: the real part of the poles 

(
1 1 1 1q q      ) should be smaller than 0. 

From Eq.(3.137), the following equations can be obtained: 

2
21

1 1 1 1 1 2
10 3 1 3 4sin 6

2

e

e e e

K ta t t k x
b X X X b

x  

    
             

 
  (3.140) 

 11 1

0 1 1

1 1 1
2

q t

e

a t r t
b e

k r t t 


   

       
      

            (3.141) 

 1

1 12 3 2 cos 2
tX e t  

                           (3.142) 

1

11 1
q t

b e


                              (3.143) 

   1 0 1 11
1 1 1 1

0 1 1 0 1 1

3 1 2 sin cos
2 2

t

e

k r t ttt
X X e t t

k r t t k r t t

 
 

  

         
         

             
 

(3.144) 

Set: 

    1 1sin cosA a t b t                        (3.145) 

10 1 11

2 2
0 1 1 0 1 1

, , sin
2 2

k r t tt b
a b t

k r t t k r t t a b



 


       

      
              

  (3.146) 

Then: 

 2 2

1sinA a b t t                           (3.147) 
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   

 

2 2

1 0 1 12 2

2

0 1 12

t k r t t
a b

k r t t

 



        
  

     
             (3.148) 

In Eq.(3.148), t  is the discrete time in the FDTD analysis, the order of which 

is near -610 .  
1  and 

1  are the real part and imaginary part of 
2r , and the order 

of these two values are close. The examples can be found in table 4-3 and table 4-10. 

Therefore, the following equation can be obtained: 

 1 2 2

1 1 12 3 1 2 sin 2
t

e

t
X X e a b t t

 


 
                 (3.149) 

Then Eq.(3.140) can be simplified: 

2
2

2
sin 1

2

e

e

K tk x

x

 
   

 
                     (3.150) 

 Eq.(3.150) yields the stability condition in the FDTD analysis, the discrete time 

interval t  and the discrete spatial interval x  need to be satisfied as: 

0 1e

e

K t

x


   


                     (3.151) 

3.3.8 Conclusion 

It can be concluded that for the EF-FDTD algorithm, the stability conditions are 

given as:  

(1) The stability condition in designing the IIR filter for the effective bulk 

modulus and the effective density: 

The real part of the poles (the real poles and the complex poles) should be 

smaller than 0; 

(2) The stability condition in the FDTD analysis:  

For 1-dimensinal EF-FDTD algorithm, the discrete time interval t  and the 

discrete spatial interval x  need to be satisfied as: 

0 1e

e

K t

x


   


                     (3.152) 
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For 2-dimensinal EF-FDTD algorithm, the discrete time interval t  and the 

discrete spatial interval x  need to be satisfied as: 

1
0

2

e

e

K t

x


   


                   (3.153) 

For 3-dimensinal EF-FDTD algorithm, the discrete time interval t  and the 

discrete spatial interval x  need to be satisfied as: 

1
0

3

e

e

K t

x


   


                   (3.154) 

 

  



41 

3.4 Conclusion 

In this chapter, the EF-FDTD algorithm in the porous material with rigid flame is 

proposed. The IIR filters for the effective bulk modulus and the effective density are 

designed. Based on the equivalent fluid model, the wave equations in frequency 

domain are firstly changed to Z domain by using the Z-transform theory, and then 

transformed to time domain. Then, the equations for the EF-FDTD algorithm are 

obtained. The equations for the 1-dimensional EF-FDTD algorithm, 2-dimensional 

EF-FDTD algorithm and 3-dimensional EF-FDTD algorithm are introduced. The 

stability condition of the proposed EF-FDTD algorithm is discussed.  
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Chapter 4 VALIDATION OF THE  

EF_FDTD ALGORITHM 

 

4.1 Introduction 

In this chapter, the proposed EF-FDTD algorithm is validated. In section 4.2, the 

1-dimensional EF-FDTDT algorithm is validated by comparing the numerical 

analysis and the experiment. Multiple- layered materials are measured and simulated 

by using 1-dimensional EF-FDTDT algorithm. In section 4.3, the 2-dimensional 

EF-FDTDT algorithm is validated under the oblique incidence of the sound. 4 layers 

of the porous material are simulated. How to treat the boundary condition and how to 

calculate the surface impedance are discussed.  In section 4.4, treatment for shaped 

porous material in FDTD analysis is discussed. The errors caused by the staircase 

approximation method are also discussed. In section 4.5, the EF-FDTD algorithm is 

contrasted with the exiting Rayleigh method. 
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4.2 Validation of the 1-dimensional EF-FDTD algorithm 

4.2.1 Configuration for the simulation cases 

Firstly, the proposed EF-FDTD algorithm is validated at the normal incidence of 

the sound. Numerical analysis and acoustical measurement of multi- layer porous 

materials are conducted to validate the 1-dimensional EF-FDTD algorithm. In order to 

construct the multi- layer material samples, 2 separate porous materials are used: one 

is glasswool 24k (GW 24k) with thickness of 0.05m, and the other one is glasswool 

32k (GW 32k) with thickness of 0.025m. 

As shown in Fig.4.1, two simulation cases are set. In the first configuration, the 

multi- layered porous material (constructed by one layer of GW 32k and one layer of 

GW 24k) is set backed by a rigid wall. In case (b), an air gap of 2cm is set between 

the multi- layered porous material and the backed rigid wall. The thickness of GW 32k 

is 0.025m and that for GW 24k is 0.05m.  

 
Fig.4.1 Two simulation cases: S represents the sound source, R represents the 

receiving point;  

The sound field is computed within the distance of 3m from the rigid termination.  

At the receiving point R, the incident wave directly from the sound source S and the 

reflected wave from the surface of the porous materials can be separated.  

The discrete spatial interval x  is 0.001m, and the discrete time interval t  is 

61.0339 10 s. x  and t  satisfy the following equations: 

0 1

2

c t

x





 and 

1

2

e

e

Kt

x 


 


Equation Section (Next)(4.1) 

For the initial condition, the spatial distribution of the sound source is 26: 
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 0.5 0.5 cos

0

r R if r R
p

if r R

  
 



                  (4.2) 

Here, the radius of the sound source is represented as R, which is set to be 

“100 x ”. r  represents the distance between the position of the grid and the center 

of the sound source. 

4.2.2 The boundary condition 

In the two simulation cases shown in Fig.4.1, there exist the following boundary 

conditions: 

(1) The boundary between porous material and the rigid wall;  

(2) The boundary between air and the rigid wall; 

(3) The boundary between the air and the porous material; 

(4) The boundary between the porous material and the porous material; 

For boundary condition (1) and (2), the particle velocity is set on the boundary, 

and is equal to 0. For boundary condition (3) and (4), the configuration is shown in 

Fig.4.2. 

 
Fig.4.2 Boundary condition setting for (3) and (4) 

In Fig.4.2, layer 1 and layer 2 can be different combinations of different porous 

materials, or combinations of the air and porous materials. ap  is the sound pressure 

in layer 1, adjacent to the boundary interface; bp  is the sound pressure in layer 2, 

adjacent to the boundary interface; 1u  is the is the particle velocity, at the boundary 

between layer 1 and layer 2, which can be calculated by: 

1 1

1 2 2
1 1

n n
n n

b a

t
u u p p

x

 


 
    

  

              (4.3) 

In Eq.(4.3),    is the arithmetic averaged density61. If layer 1 is the porous 

material A and layer 2 is the air, or layer 1 is the air and layer 2 is the porous material 

A,   is determined by: 
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 0

2

e A 



                              (4.4) 

If layer 1 is the porous material A and layer 2 is the porous material B, or  layer 1 

is porous material B and layer 2 is porous material A,   is determined by: 

   
2

e eA B 



                            (4.5) 

4.2.3 The IIR filter design  

The testing samples are circular with diameter of 29mm, prepared for the 

measurement in the B&K impedance tube (Type: 4206). The measurement system is 

illustrated in Fig.4.3. 

 
Fig.4.3 The measurement system  

The characteristic impedance  cZ   and the wave number  k   for GW 24k 

and GW 32k are measured in the B&K impedance tube by using the 2-cavity 

method62. Figure 4.4 shows the characteristic impedances of two porous materials, 

normalized by the characteristic impedance of the air.  

 

Fig.4.4 The normalized characteristic impedance. 
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In Fig.4.5, the wave numbers for GW 24k and GW 32k are plotted, normalized 

by the wave number of the air.  

 

Fig.4.5 The normalized wave number.  

In above figures, the measured values fluctuate at the low frequency. The reason 

is that the two samples are measured in small impedance tube, and the effective 

frequency range is from 500 Hz to 6400 Hz.  

Based on the measured characteristic impedance and the wave number, the 

effective bulk modulus  eqK   and the effective density  eq   are calculated by: 

     eq cK Z k                          (4.6) 

     eq cZ k                           (4.7) 

The effective bulk modulus  eqK   is designed as the form of the IIR filter, 

whose form is given in Eq.(4.7). An example of designing IIR filter by using 

MATLAB program can be found in appendix A. 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
K k

j q j q j q


   

 
     

   
 

*

*            (4.8) 

The designed IIR filters for GW 24K and GW 32K are given in Fig.4.6. The 

parameters in the designed IIR filter are presented in table 4-1 and table 4-2. For GW 

24K, The IIR filter is designed having two real poles. That is 1 2N  . For GW 32K, 

The IIR filter is designed having one real pole and two complex poles. That is 1 1N  , 

and 2 1N  . 

 

 



47 

 

Fig.4.6 The measured effective bulk modulus and the designed IIR filters. The left is 

for GW 24k, and the right is for GW 32k. 

 

Table 4-1 Designed IIR filter for the effective bulk modulus of GW 24k 

 

Table 4-2 Designed IIR filter for the effective bulk modulus of GW 32k 

 

The effective bulk modulus  eq   is designed as IIR filter, whose form is: 

 
1 2

0

1 1

N N

l k k
eq

l kl k k

r r r
k

j q j q j q
 

  

 

 

   
     

     
 

*

*            (4.9) 

The designed IIR filters for GW 24K and GW 32K are given in Fig.4.7. The 

parameters in the designed IIR filters are presented in table 4-3 and table 4-4. For GW 

24K, The IIR filter is designed having one real pole and two complex poles. That is 

1 1N  , and 2 1N   . For GW 32K, The IIR filter is designed having two real poles. 

That is 1 2N   . 

0k  q  r  

144930.2897 -31600.5677 -555723999.1887 

 -2265.6325 -51982576.3129

 

0k  q  r  

120138.0785 -2260.1676 -48588745.3601 

 -10117.7281+j 73553.2044 558688111.1862+j248129940.9187

 

 -10117.7281-j 73553.2044 558688111.1862-j248129940.9187
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Fig.4.7 The measured effective density and the designed IIR filters. The left is for GW 

24k, and the right is for GW 32k. 

 

Table 4-3 Designed IIR filter for the effective density of GW 24k 

0k   q  r  

1.3196 -187.0139 8618.4141 

 -4737.5433+j5196.6259 2051.1203+j1211.0797 

 -4737.5433-j5196.6259 2051.1203-j1211.0797 

 

Table 4-4 Designed IIR filter for the effective density of GW 32k 

0k   q  r  

1.3364 -13242.8538 10695.5419 

 -161.4689 11325.7349 

4.2.4 The results 

The sound pressure and the particle velocity are both calculated in air and in 

porous materials. In the air, the FDTD formulations can be found in section 2.1. In 

porous materials, the EF-FDTD formulations can be found in section 3.2.4.2. For the 

boundary conditions, the EF-FDTD formulations can be found in section 4.2.2. In 

Fig.4.8, for two simulation cases, the calculated sound pressures at the receiving point 

R are plotted.  
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Fig.4.8 The calculated sound pressures at the receive point R for simulation cases. 

As shown in Fig.4.8, the directly incident sound pressure (from 1ms to 3ms) and 

the reflected sound pressure (from 3ms to 7ms) are completely separated. Then, the 

absorption coefficient can be calculated by: 

 
 

 

2

1
ref

inc

P

P


 


                        (4.10) 

where  incP   and  refP   are the frequency responses of the incident sound 

pressure and the reflected sound pressure, respectively. 

In Fig.4.9, the calculated absorption coefficients for two samples are compared 

with the measurement. The calculated absorption coefficient generally agrees well 

with the measured result from 500 Hz to 6.4 kHz. 

 

Fig.4.9 The calculated absorption coefficient, compared with the measurement.  
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4.2.5 Discussion of the IIR filter design 

4.2.5.1 Designing different IIR filters 

The IIR filter can be designed having different kinds of real poles and different 

kinds of complex poles. When using different IIR filters in the EF-FDTD algorithm, 

the accuracy is different, and the calculation time is different. In this section, how the 

IIR filter affects the accuracy of the EF-FDTD algorithm, and how the IIR filter 

affects the calculation time are discussed. 

The porous material of glass wool 24k (GW 24k) is used in the discussion. As 

shown in Fig.4.10, 3 kinds of the IIR filters for the effective bulk modulus are 

designed. In Fig.4.10, the total number of the poles is N (
1 22N N N  ), 

1N  is the 

total number of real poles, and 
2N  is the total number of the pair of complex poles. 

The first one is designed having one real poles, that is  1 21 1, 0N N N   ; The 

second one is designed having two real poles, that is  1 22 2, 0N N N   ; The 

third one is designed having one real pole and two complex poles, that is 

 1 23 1, 1N N N   ;  

   
Fig.4.10 3 kinds of the IIR filters for the effective bulk modulus of GW 24k 

 

 

Table 4-5 For the effective bulk modulus, parameters of the designed IIR filter  

 

 

 

 

0k  q  r  

139964.4015 -12654.2418 -297555528.3745 
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Table 4-6 For the effective bulk modulus, parameters of the designed IIR filter with 

two real poles 

 

Table 4-7 For the effective bulk modulus, parameters of designed IIR filter with one 

real pole and two complex poles 

 

As shown in Fig.4.11, 3 kinds of the IIR filters for the effective density are 

designed. In the figure, the total number of the poles is N  ( 1 22N N N    ), 1N   is 

the total number of real poles, and 2N   is the number of the pair of complex poles. 

The first one is designed having one real pole, that is  1 21 1, 0N N N     ; The 

second one is designed having two real poles, that is  1 22 2, 0N N N     ; The 

third one is designed having one real pole and two complex poles, that is 

 1 23 1, 1N N N     ;  

 
Fig.4.11 3 kinds of the IIR filters for the effective density of GW 24k 

 

 

 

 

0k  q  r  

145885.0072 -35234.3977 -635833268.3042 

 -2409.5776 -55217477.0634 

0k  q  r  

135115.3640 -2873.6165 -68685389.4420 

 -24504.4073+j 39219.5372 195185042.5799+j276730808.7809

 

 -24504.4073-j 39219.5372 195185042.5799-j276730808.7809
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Table 4-8 For the effective density, the designed IIR filter with one real pole 

 

Table 4-9 For the effective density, the designed IIR filter with two real poles 

 

Table 4-10 For the effective density, the designed IIR filter with one real pole and two 

complex pole 

The errors are expressed as follows: 

 
 

5000Hz

500Hz

1 IIR

f meas

br

real K

real K
E

N





 


    

 
 

5000Hz

5000Hz

1 IIR

f meas

bi

imaginary

imagina

K

N

ry K
E





 


 (4.11) 

   
 
 

5000Hz

500Hz

1 IIR

f meas

dr

real

real
E

N







 

      

 
 

5 0 0 0 H z

5 0 0 H z

1 IIR

f meas

di

imaginary

imagin
E

N

ary







 


 (4.12) 

where N  is the number of the discrete frequency points from 100Hz to 5000Hz. IIRK  

and IIR  are the designed IIR filters for the effective bulk modulus and the effective 

density, respectively. measK  and meas  are the measured values for the effective bulk 

modulus and the effective density, respectively. 

0k   q  r  

1.4563 -225.5857 8910.1182 

0k   q  r  

1.2635 -15831.9455 7097.6779 

 -143.4454 8334.4139 

0k   q  r  

1.3271 -210.8527 8861.0697 

 -3974.1786+j 5150.2429 1798.7949+j 1242.1857

 

 -3974.1786-j 5150.2429 1798.7949-j 1242.1857
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The errors between the designed IIR filter for the effective bulk modulus and the 

measured value are given in table 4-11. It can be found that 
brE  is smallest when 

3N  , and 
biE  is smallest when 2N  .  

Table 4-11 The errors between the designed IIR filter for the effective bulk modulus 

and the measured value. 

 

1N 

 1 21, 0N N   

2N 

 1 22, 0N N   

3N 

 1 21, 1N N   

brE
 0.0146 0.0081 0.0074 

biE
 0.1393 0.0761 0.0830 

The errors between the designed IIR filter for the effective density and the 

measured value are given in table 4-12. It can be found that 
drE  is smallest when 

3N   , and 
diE  is smallest when 2N   .   

Table 4-12 The errors between the designed IIR filter for the effective density  

and the measured values. 

 

1N 

 1 21, 0N N    

2N  

 1 22, 0N N    

3N  

 1 21, 1N N    

drE
 0.0560 0.0302 0.0296 

diE
 0.2675 0.0378 0.0635 

 

  



54 

4.2.5.2 Discuss how the IIR filter affects the accuracy  

The following simulation is set. The sound field is computed within the distance 

of 3m from the rigid termination. The thickness of the GW 24k is 0.05m. The discrete 

spatial interval x  is set to be 0.001m, and the discrete time interval t  is set to be 

61.02 10 s. the sound source is added by using Eq.(4.2).  

 
Fig. 4.12 The sound field for the simulation: S represents the sound source, R 

represents the receiving point; 

The calculated sound absorption coefficient coefficients 
FDTD  are contrasted 

with the measured values 
meas .The errors are calculated by: 

   

5 0 0 0 H z

5 0 0 H z

1 F D T D

f m e a s

abE
N







 


                  (4.13) 

In Fig.4.13, the calculated sound absorption coefficients are compared with the 

measured values. The errors are given in table 4-13. It can be found that the error is 

largest when 1, 1N N   .The error is smallest when 3, 2N N   .  The errors are 

close when 2, 2N N   , 3, 2N N    and 3, 3N N   .   
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Fig.4.13 The calculated absorption coefficients and the measured values. 

 

Table 4-13 The errors between the calculated absorption coefficients and the 

measured values. 

 

1N 

 1 21, 0N N   

2N 

 1 22, 0N N   

3N 

 1 21, 1N N   

1N 

 1 21, 0N N    
0.0638 0.0275 0.0307 

2N  

 1 21, 0N N    
0.0432 0.0102 0.0101 

3N  

 1 21, 0N N    
0.0439 0.0113 0.0104 
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4.2.5.3 Discuss how the IIR filter affects the calculation time  

The following simulation is set. The discrete spatial interval x  is set to be 

0.01m, and the discrete time interval t  is set to be 69 10 s. the sound source is 

added by using Eq.(4.2).  

     

Fig.4.14 The sound field for the simulation: S represents the sound source, PM 

represents the porous material of GW 24k; 

The calculation time and the occupied memory of the computer are given in table 

4-14. It can be seen the calculation time is shortest when 1, 1N N   . The 

calculation time is largest when 3, 3N N   .   

Table 4-14 The calculation time and the occupied memory in the computer. 

 

1N 

 1 21, 0N N   

2N 

 1 22, 0N N   

3N 

 1 21, 1N N   

1N 

 1 21, 0N N    

76KB 

36s 

98KB 

43s 

111KB 

56s 

2N  

 1 21, 0N N    

84KB 

40s 

106KB 

48s 

118KB 

61s 

3N  

 1 21, 0N N    

107KB 

53s 

129KB 

66s 

141KB 

76s 

4.2.5.4 Conclusion  

From the results in table 4-13 and table 4-14, considering the calculation time, 

the occupied memory in the computer and the accuracy of the calculated absorption 

coefficient, the directions of designing the best IIR filters are given as follows: 

(1) For the effective bulk modulus, the best IIR filter is having two real poles; 

(2) For the effective density, the best IIR filter is having two real poles; 
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4.3 Validation of the 2-dimensional EF-FDTD algorithm  

4.3.1 Configuration for the simulation case    

In section 4.3, the 2-dimensional EF-FDTD algorithm is validated under the 

oblique incidence of the sound. As shown in Fig.4.15. There are 4 layers of the porous 

materials. The angle of oblique incidence is  . R is located at the surface of the first 

layer (layer 1).  

 

Fig.4.15  Configuration of the simulation case. 

The surface impedance is used to validate the algorithm. For the theory, the 

surface impedance  Z R  can be calculated as follows32.  

 
Fig.4.16 layers of the porous material backed by a rigid wall. 

The characteristic impedance (layer 1:  1cZ , layer 2:  2cZ , layer 3:  3cZ , 

layer 4:  4cZ ) and the wave number (layer 1:  1k , layer 2:  2k , layer 3:  3k , 

layer 4:  4k ) are calculated by using Miki model.  

The point 1M  is on the surface of the porous material layer 4. The theoretical 

value of the surface impedance  1Z M  is given by:  



58 

  
   

 1 3 4

3

4 4
cot

cZ k
Z M j k d

k
                  (4.14) 

   
2 2

3 04 sink k k                        (4.15) 

In Eq.(4.15), 
0k  is the wave number in the air (

0 0k c ). 

The point 
2M  is in the porous material layer 4, and adjacent to the boundary 

surface between layer 3 and layer 4. The value of  2Z M  is equal to the value of 

 1Z M . The point 
3M  is on the surface of layer 3, and adjacent to the boundary 

surface between layer 2 and layer 3. The surface impedance  3Z M  is calculated by 

 
           

        
2 3 3 3

3

3 2 3 3 3

3 3 cot 3 3

3 3 cot

c c

c

Z k jZ M k d Z k k
Z M

k Z M j Z k k k d

  
  

  
        (4.16) 

   
2 2

3 03 sink k k                          (4.17) 

The point 
4M  is in the porous material layer 2, and adjacent to the boundary 

surface between layer 2 and layer 3. The value of  4Z M  is equal to the value of

 3Z M . The point 5M  is on the surface of layer 2. The value of  5Z M  is 

calculated by using Eq.(4.16),  2Z M  being replaced by  4Z M , 3d  being 

replaced by 2d ,  3cZ  being replaced by  2cZ , and  3k  being replaced by 

 2k .  

In the same way, the values of  6Z M  and  7Z M  can be calculated.  

Finally，the surface impedance  Z R  can be obtained, which is equal to  7Z M . 

In this simulation, 4 layers of the porous material are constructed from the 

following porous materials. The parameters of the designed IIR filters are given in 

Appendix B.  

PM A: the porous material A (flow resistivity: 5000
-4Nm s );  

PM B: the porous material B (flow resistivity: 10000
-4Nm s ); 

PM C: the porous material C (flow resistivity: 15000
-4Nm s ); 

PM D: the porous material D (flow resistivity: 20000
-4Nm s ); 
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4.3.2 Case (1) for the simulation   

4.3.2.1 FDTD setting and the boundary condition 

For case (1), the sound field setting for the FDTD analysis is shown in Fig.4.17. 

The four boundaries of the computation domain are set to be rigid wall. 4 layers of the 

porous material are constructed by PM A, PM B, PM C and PM D. The flow 

resistivity of the different layer is:   -45000 Nm sA   ,   -410000 Nm sB   , 

  -415000 Nm sC   ,   -420000 Nm sD   . The thickness of the different porous 

material layer is both 3cm. 

     
Fig.4.17 The 2-dimensional computation domain for case (1). 

In the FDTD analysis, the discrete time interval t  is 
61.75 10 s, and the 

discrete space intervals x  and y  are both 0.002m. The stability conditions are 

satisfied: 

0 1

2

c t

x





 and 

1

2

e

e

Kt

x 


 


               (4.18) 

where 0c  is the sound speed in the air. 

The sound source S is given in Eq.(4.19), where   and 0  are the constants 

for determining the frequency characteristics of the sound source63. Here,   0  is set 

to be 180 t , and   is set to be  
2

04  . 

 
  2

0 0exp , 0 2

0, others

t t
S t

       
 
 

               (4.19) 

The sound pressure at the position of the sound source  ,sx sy  is updated by61: 

     1 2 -1 2, , -1 2n np sx sy p sx sy S n t                   (4.20) 
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At the boundary between the air and the porous material A, the particle velocities 

in y direction are continuous. In Fig.4.18, the particle velocity v  at the boundary 

surface is calculated by Eq.(4.21). 

 

Fig. 4.18 The boundary condition for Case (1); R is the receiving point at the 

boundary between air and porous material layer A. 

, 1 2 , 1 2

1 1 2 1 2

, , 1i j i j

n n n n

i j i j

t
v v p p

x 

  




     

                  (4.21) 

where   is the averaged density of the air and the porous material layer A, calculated 

by using (4.4).  

4.3.2.2 Impedance calculating method   

Based on the calculated results, the surface impedance  Z R  is calculated by: 

    
 

 

1 2

, 1/2

, 1 2

n

i j

n

i j

P
Z R

V











                         (4.22) 

where  , 1 2

n

i jV   is the frequency response of the particle velocity , 1 2

n

i jv  (shown in 

Fig.4.18);  1 2

, -1 2

n

i jP 
 is the frequency response of the averaged sound pressure, which 

is calculated by: 

 
   1 2 1 2

, , 11 2

, 1/2

+

2

n n

i j i jn

i j

P P
P

 


 



                  (4.23) 

where  1 2

,

n

i jP 
 and  1 2

, 1

n

i jP 

  are the frequency responses of the sound pressure 

1 2

,

n

i jp 
 and 

1 2

, 1

n

i jp 

  (shown in Fig.4.18), respectively; 
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4.3.2.3 The results  

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated averaged sound pressures and the calculated particle 

velocities are given in are plotted in Fig.4.19 and Fig.4.20, respectively.   

 

 
 Fig.4.19 Case (1): the averaged sound pressures at different incident angle  . 

 

   
Fig.4.20 Case (1): the particle velocities at different incident angle  . 

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated surface impedances (normalized by the characteristic 

impedance of the air) are compared with the theoretical values, as shown in Fig.4.21. 
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At all calculated incident angles, the calculated surface impedances agrees well with 

the theoretical values from 100Hz to 5000Hz. 

 

 
Fig.4.21 Case (1): the calculated and theoretical surface impedance at different 

incident angle. 

 

4.3.3 Case (2) for the simulation 

For case (2), the sound field setting for the FDTD analysis is shown in Fig.4.22. 

The four boundaries of the computation domain are set to be rigid wall. 4 layers of the 

porous material are constructed by PM D, PM C, PM B and PM A. The flow 

resistivity of the different porous material layer is:   -420000 Nm sD   , 

  -415000 Nm sC   ,   -410000 Nm sB   ,   -45000 Nm sA   . The thickness o f 

the different porous material layer is both 3cm. 

  

Fig.4.22 The computation domain for Case (2) in the FDTD analysis. 
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For the boundary between the air and the porous material D, the normal particle 

velocity components in the y direction are continuous. The particle velocity v  is set 

on the boundary surface, which is calculated by Eq.(4.21), where   is the arithmetic 

averaged density of the air and the porous material layer D.  

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated averaged sound pressures and the calculated particle 

velocities are given in Fig.4.23 and Fig.4.24, respectively. 

   

   
Fig.4.23 Case (2): the averaged sound pressure at different incident angle  . 

   

   
Fig.4.24 Case (2): the particle velocity at different incident angle  . 

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated surface impedances (normalized by the characteristic 
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impedance of the air) are compared with the theoretical values, as shown in Fig.4.25. 

At all calculated incident angles, the calculated surface impedances agrees well with 

the theoretical values from 100Hz to 5000Hz. 

   

   
Fig.4.25 Case (2): the calculated and theoretical surface impedance at different 

incident angle. 

 

4.3.4 Case (3) for the simulation 

For case (3), the sound field setting for the FDTD analysis is shown in Fig.4.26. 

The four boundaries of the computation domain are set to be rigid wall. 4 layers of the 

porous material are constructed by PM C, PM A, PM D and PM B. The flow 

resistivity for the different layer is:   -415000 Nm sC   ,   -45000 Nm sA   , 

  -420000 Nm sD   ,   -410000 Nm sB   . The thickness for the different porous 

material layer is both 3cm.  

 

Fig.4.26 The computation domain for Case (3) in the FDTD analysis. 
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For the boundary between the air and the porous material, the normal particle 

velocity components in the y direction are continuous. The particle velocity v  is set 

on the boundary, which is calculated by Eq.(4.21), where   is the arithmetic 

averaged density of the air and the porous material layer C. 

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated averaged sound pressures and the calculated particle 

velocities are given in Fig.4.27 and Fig.4.28, respectively. 

   

   
Fig.4.27 Case (3): the averaged sound pressure at different incident angle  . 

   

   
Fig.4.28 Case (3): the particle velocity at different incident angle  . 

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated surface impedances (normalized by the characteristic 
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impedance of the air) are compared with the theoretical values, as shown in Fig.4.29. 

At all calculated incident angles, the calculated surface impedances agrees well with 

the theoretical values from 100Hz to 5000Hz. 

 

 
Fig.4.29 Case (3): At the receiving point R, the calculated and theoretical surface 

impedance at different incident angle. 

4.3.5 Case (4) for the simulation 

For case (4), the sound field setting for the FDTD analysis is shown in Fig.4.30. 

The four boundaries of the computation domain are set to be rigid wall. 4 layers of the 

porous materials are constructed by PM B, PM D, PM A and PM C. The flow 

resistivity for each porous materials is:   -410000 Nm sB   ,   -420000 Nm sD   , 

  -45000 Nm sA   ,   -415000 Nm sC   . The thickness of the different porous 

material layer is both 3cm. 

 

Fig.4.30 The computation domain for Case (4) in the FDTD analysis. 
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For the boundary between porous material layer B and air, the particle velocity 

v  is set at the boundary surface, which is calculated by Eq.(4.21), where   is the 

averaged density for the porous material layer B and the air.  

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated averaged sound pressures are given in Fig.4.31.  

   

   
Fig.4.31 Case (4): the averaged sound pressure at different incident angle  . 

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated particle velocities are given in Fig.4.32.  

   

   
Fig. 4.32 Case (4): the particle velocity at different incident angle  . 

At the receiving point R,  for different incident angles (0°, 20°, 40°, 

50°,60°,70°), the calculated surface impedances (normalized by the characteristic 
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impedance of the air) are compared with the theoretical values, as shown in Fig.4.33. 

At all calculated incident angles, the calculated surface impedances agrees well with 

the theoretical values from 100Hz to 5000Hz. 

 
Fig.4.33 Case (4): the calculated surface impedances and theoretical values at 

different incident angle. 
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4.4 Simulation of the porous material with shape 

In some places, porous materials are designed with shapes. When simulating the 

shaped porous material, how to treat the boundary condition is a question. As a 

solution, staircase approximation can be adopted. In this section, the accuracy of the 

staircase approximation is discussed.  

As shown in Fig.4.34, the porous material (flow resistivity, 8000
-4Nm s ) is 

backed with the rigid wall. The thickness of the porous material is 0.05m. The 

parameters of the designed IIR filters are given in Appendix B. R is the receiving 

point at the surface of the porous material. The angle   is equal to 20  . 

   
Fig.4.34 Computation domain for the FDTD analysis; PM represents the porous 

material; RW represents the rigid wall. 

Fig.4.35 shows the treatment for the boundary condition between the air and the 

porous material. The particle velocities u  and v  are set on the boundary.  

 

Fig.4.35 Computation domain near the boundary between the porous material and 

air; PM represents the porous material. 

The particle velocity v  is set at the boundary surface towards the y  direction, 

calculated by: 

, 1 2 , 1 2

1 1 2 1 2

, 1 ,i j i j

n n n n

i j i j

t
v v p p

x 
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


     

                  (4.24) 
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The particle velocity u  is set at the boundary surface towards the x direction, 

calculated by: 

1 2, 1 2,

1 1 2 1 2

1, ,i j i j

n n n n

i j i j

t
u u p p

x 
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


     

                 (4.25) 

where   is the arithmetic averaged density of the porous material and the air. 

In order to discuss the error caused by the staircase approximation, the following 

cases are set: 

(case 1): 
61.02 10 st    , = 0.001mx y     

(case 2): 
61.75 10 st    , = 0.002mx y      

(case 3): 
63.07 10 st    , = 0.003mx y      

The calculated surface impedance at the receiving point R is contrasted with the 

theoretical value. The theoretical value  Z R  is given as: 

   3

3

cotc

k
Z R j Z k d

k

 
   

 
                    (4.26) 

 
22

3 0 sink k k                             (4.27) 

where d  is the thickness of the porous material, equal to 0.05m here; cZ  is the 

characteristic impedance of the porous material; 0k  and k  are the wave number in the 

air and in the porous material, respectively. cZ  and k  are calculated by using Miki 

model.  

For the FDTD analysis, the surface impedance  Z R  is calculated by: 

    
   

 
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                    (4.28) 

where  , 1 2

n

i jV   is the frequency response of the particle velocity , 1 2

n

i jv  (shown in 

Fig.4.35);  1 2

,

n

i jP 
 and  1 2

, 1

n

i jP 

  are the frequency responses of the sound pressure 

1 2

,

n

i jp 
 and 

1 2

, 1

n

i jp 

 (shown in Fig.4.35), respectively; 

The calculated surface impedance (normalized by the characteristic impedance 

of the air) for case 1, case 2 and case 3 are denoted as 1Z  , 2Z  and 3Z , respectively. 

In Fig.4.36, the theoretical value and the calculated surface impedances are plotted. 
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For the results of the real part and the imaginary part, 
1Z  is close to Z  compared to 

the others two results. This phenomenon is consistent with the expectation. 

 

Fig.4.36 The calculated surface impedances for different simulation cases and the 

theoretical value. 

For each case, the calculated sound absorption coefficient is given in Fig.4.37.  

   
Fig.4.37 The calculated absorption coefficients for different cases and the theoretical 

value. 
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4.5 Comparison of the EF-FDTD algorithm and the Rayleigh method 

In section 4.5, the 2-dimensional EF-FDTD algorithm and the exiting Rayleigh 

method are compared at the oblique incidence of sound. The formulas of the Rayleigh 

method are given in section 2.2. 

In Fig.4.38, the 2-dimensional sound field is set. The four boundaries of the 

sound field are both the rigid wall. The porous material is set backed by the rigid wall.  

The thickness of the porous material is 0.05m, and the flow resistivity of the porous 

material is 8000
-4Nm s . S is the sound source, and the distance from the sound source 

to the surface of the porous material is 2m. R is set at the surface of the porous 

material.  

 

Fig.4.38 The 2 dimensional sound field for FDTD analysis. 

In the numerical analysis, the discrete time interval 
61.75 10 st    , and the 

discrete space interval x  and y  are both 0.002m. The sound source is added by 

using Eq.(4.20). 

The oblique incident absorption coefficient is used to examine the two methods, 

which is given by: 

 

 

2

0

0

cos
1

cos

Z R Z

Z R Z







  



                   (4.29) 

For the calculation,  Z R  is calculated by using Eq.(4.22). For the theoretical 

value,  Z R  is calculated as follows: 

     3 3 1cotcZ R j Z k k k d                   (4.30) 

 
22

3 0 sink k k                        (4.31) 

where 1d  is the thickness of the analyzed porous material. 0k  and k  are wave 

number in air and in the porous material, respectively. 0Z  and cZ  are characteristic 
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impedance in the air and in the porous material. k  and 
cZ  are calculated by using 

Miki model. 

When using the Rayleigh model to simulate the porous material (flow resistivity: 

8000 -4Nm s ), the sound speed is given as 218.016m s , the density is given as 

32.126kg m , the flow resistivity is given as 
-47994.664Nm s , and the heat reduction 

coefficient is given as14.432kg/Pa . 

In the figures, for different incident angles, the calculated sound pressures by 

using the EF-FDTD algorithm are plotted by the black lines, and the calculated 

averaged sound pressure by using the Rayleigh method are plotted by the red dotted 

lines. 

   

   
Fig.4.39 At the receiving point R , the averaged sound pressures from 0°to 70°. 

For different incident angle, the calculated particle velocities by using the 

EF-FDTD algorithm are plotted by the black lines, as plotted in Fig.4.40. The particle 

velocities by using the Rayleigh method are plotted by the red dotted lines. 
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Fig.4.40 At the receiving point R , the calculated partical velocities from 0°to 70°. 

When the oblique incident angle is 0°, the sound pressures calculated by the 

two methods almost overlap before 6.2ms, but deviate greatly from 6.2ms to 6.8ms.  

When the oblique incident angle is 70°, the sound pressures calculated by the 

two methods deviate slightly from 17.4ms to 18ms. The particle velocity calculated 

by the EF-FDTD method is similar as that by the Rayleigh method. 

From the results plotted in Fig.4.41, the EF-FDTD method is accurate in broad 

frequency range either at small incident angle or big incident angle. For the Rayleigh 

method, the errors between the calculated absorption coefficients and the theoretical 

values are very large. 

   

   
Fig.4.41 For different incident angle, the calculated absorption coeffecients and 

theoretical values. 
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4.6 Conclusion 

In this chapter, the proposed EF-FDTD algorithm is validated. The 

1-dimensional EF-FDTDT algorithm is validated under the normal incidence of the 

sound, by comparing the numerical analysis of the multi- layer porous material with 

the measured values. For the boundary condition analysis, the particle velocity is set 

on the boundary and the arithmetic averaged density is used. The 2-dimensional 

EF-FDTDT algorithm is validated under the oblique incident of the sound, by 

comparing the numerical analysis of the multi- layer porous material with the theoretic 

values. 4 cases of the simulation are conducted. For each case, how to treat the 

relative positions of the porous material and the air, how to treat the boundary 

condition, and how to calculate the surface impedance are discussed. The calculated 

surface impedances are very close to the theoretic values. The treatment for the 

shaped porous materials in FDTD analysis is discussed. When simulating the shaped 

porous material by using the staircase approximations, the discrete space interval x  

and y  need be small.  
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Chapter 5 SIMULATION OF THE 

ACOUSTIC WEDGES 

 

5.1 Introduction 

In this chapter, 4 kinds of the porous material designed with shape (sample A, 

sample B, sample C and sample D) are measured and simulated. The 4 samples are 

introduced in section 5.2.1.The measurement system is introduced in section 5.2.2, 

and the properties of the used porous material are introduced in section 5.2.3. The 

measured and simulated results for sample A are given in section 5.3. In section 5.3.1, 

the equations for calculating the absorption coefficients from the measurement data 

are given. In section 5.3.2.2, the equations for calculating the absorption coefficients 

from the simulation data are given. In section 5.3.2.3, the factors which affect the 

result of the absorption coefficient are discussed in detail. The measured and 

simulated results for sample B, sample C and sample D are given in section 5.4, 

section 5.5 and section 5.6, respectively. The conclusions are given in section 5.7. 
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5.2 The preparation for the measurement 

5.2.1 Background 

Anechoic chamber is an important laboratory for acoustic measurements, in 

which the acoustical testing is conducted in nominally "free field" conditions. The 

"free-field" condition means that no signals are reflected from the wall. All the sound 

energy will be absorbed by the absorbing materials in the wall with almost none 

reflected energy. The "cut-off frequency" is one most important factor when design an 

anechoic chamber. The "cut-off frequency" is decided by the characteristic properties 

of the absorbing materials installed on the wall. The "cut-off frequency" is the lowest 

frequency at which the absorption coefficient of the absorbing materials is larger than 

0.99. 

In the past years, many studies64-78 have been published to search the optimal 

design of the sound absorbing structures, such as geometry, dimensions, and used 

materials. In these studies, two important papers are published by Beranek64-65 and 

Koidan69. In 1946, Beranek64-65 published their significant data, in which the 

performances of five different kinds of structures used in an anechoic chamber are 

studied. The best one of these structures is made of glass fibers, shaped like a wedge. 

In this published paper, the "cut-off frequency" is defined. In 1972, Koidan69 

published their paper, in which a “hybrid” wedge consisting of glass wool of two 

densities was investigated by the experiment. The data in these papers are obtained 

through numerous experiments.  

It takes a lot of effort to do the experiments to finally confirm the optimal 

parameters of the wedge. Nowadays, the properties of the acoustic wedges could be 

studied before it is manufactured, by using the numerical analysis methods. 

Easwaran73 and Munjal used a finite element method model (FEM) to predict the 

reflection coefficients of a wedge. The analysis is studied in an impedance tube. The 

model is based on the bulk reaction assumption, which accounts for the wave 
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propagation in the wedge material. The theoretical predicted values agree well with 

those values from the experimental results. In the study by Wang74, a boundary 

element method (BEM) is used in a two-dimensional analysis. The sound normally 

incident to a wedge settled in an impedance tube is studied. The influences on the 

sound pressure reflection coefficient caused by the properties of the wedge are studied, 

such as the total length of wedge, the thickness of base, and the thickness of air layer. 

In 2006, Kar75 analyzed the performances of the acoustic wedges by using a 

boundary-condition-transfer function method. The method is based on the assumption 

of the bulk reaction for a wave propagating in the wedge material. Lee76 used the 

gradient-based topology optimization setting, analyzing the two-dimensional optimal 

shape design method for the poroelastic acoustical foam. From the analysis, an 

unusual shape is obtained. Theoretically, the acoustic properties of the unusual shaped 

wedge are better than ordinary shaped wedge, but not verified by the experiment. In 

2013, Bonfiglio77 used simplified numerical methodologies in the FEM model, 

simulating the wedge in a virtual impedance tube. The low "cut-off frequency" of the 

anechoic chambers and the hemi-anechoic chambers is optimized. In 2016, jiang78 

used the commercial FEM software COMSOL Multiphysics, simulating the acoustical 

wedge structures in the normal incidence. The uniform-then-gradient, flat-wall 

(UGFW) structure is proposed as an alternative to the class wedge design for anechoic 

chambers. 

It can be seen that there is not numerical method based on the FDTD analysis to 

design an acoustical wedge. For those people who are familiar with FDTD algorithm 

but not familiar with these existing methods, it will cause trouble when designing the 

acoustic wedges. In the previous chapters, the EF-FDTD algorithm was proposed and 

validated. In section 4.4, the shaped porous material can be simulated by using the 

staircase approximation, and the accuracy is verified. Therefore, in this chapter, based 

on the 2-dimensional EF-FDTD algorithm, the method for analyzing the absorption 

coefficients of acoustic wedges is developed80.  

  



79 

5.2.2 4 samples for the measurement and simulation 

Four samples simulation are illustrated in Fig.5.1, and four samples for the 

measurement are shown in Fig.5.2. 

      

Fig.5.1 Four kinds of the designed porous material with shape. 

 

   
   Fig.5.2 Four kinds of the customized porous materials with shape. 
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5.2.3 The low frequency impedance tube  

The experiments are conducted in Qingdao Branch of Institute of Acoustics 

(Chinese Academy of Sciences), where a new low frequency impedance tube is built. 

As illustrated in Fig.5.3, the total length of the tube is 10.2m. The width and the 

height of the tube are both 0.8m. Therefore, the "cut-off frequency" cutf  of the 

impedance tube is 214Hz, calculated by: 

 

2

0 1

2 0.8
cut

c
f

 
  

 
  Equation Section (Next)(5.1) 

The impedance tube is made of concrete, in which the standing wave ratio is 

larger than 40 dB. A microphone can be moved alone the middle of the tube. The 

measurements are based on ISO 10534-1-199679.  

   

                   
Fig.5.3 The Low frequency impedance tube. 
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5.2.4 Properties of the porous material 

The high density sponge is used to manufacture the shaped porous materials for 

the measurement. The acoustical properties of the high density sponge are measured 

in the B&K impedance tube (Type: 4206). First, the testing samples are made 

circularly with the diameter of 100mm. The characteristic impedance  cZ   and the 

wave number  k   are measured by using the 2-cavity method. As shown in Fig.5.4, 

the measured characteristic impedance of the high density sponge (normalized by the 

characteristic impedance of the air) is plotted by the left figure; the measured wave 

number of the high density sponge (normalized by the wave number of the air) is 

plotted by the right figure. 

  

 Fig.5.4 The measured properties of the high density sponge. Left: the normalized 

characteristic impedance; Right: the normalized wave number.  

By using Eq.(4.6)-Eq.(4.7), the effective bulk modulus and the effective density 

are calculated by using the characteristic impedance  cZ   and the wave number

 k  . Based on the calculated values, the IIR filters are designed from 50Hz to 

500Hz. As shown in Fig.5.5, the effective bulk modulus of the high density sponge is 

plotted by the red lines in the left figure, and the designed IIR filter is plotted by the 

black dotted lines in the left figure. The effective density of the high density sponge is 

plotted by the red lines in the right figure, and the designed IIR filter is plotted by the 

black dotted lines in the right figure.  

The IIR filters are designed only containing real poles, and the parameters are 

given in table 5-1 and table 5-2.  
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Fig.5.5 The properties of the high density sponge. Left: the effective bulk modulus 

and the designed IIR filter; Right: the effective density and the designed IIR filter.  

 

Table 5-1 For the effective bulk modulus of the high density sponge, the parameters 

in the designed IIR filter. 

 

 

Table 5-2 For the effective density of the high density sponge, the parameters  

in the designed IIR filter. 

0k   q  r  

1.4914 -11505.6722 6977.6840 

 -0.6851 4533.6737 

  

0k  q  r  

147447.4566 -2362.9969 -80477144.5906 

 -1.1143 -6822151.1199

 



83 

5.3 The measurement and the FDTD analysis for sample A 

5.3.1 The measurement results for sample A 

For sample A, the width is 0.8m and the height is 0.4m.  The manufactured 

porous materials used for measurement are shown in Fig.5.6. The making of the 

samples are commissioned to a factory. Firstly 8 pieces of the samples are made. Due 

to the precision limitation of the fabrication process, in the measurement, there is air 

space (about 3cm) between the surface of the porous materials and the top rigid wall. 

Therefore, another sample with the thickness of 3cm is made, as shown in Fig.5.7.   

         

Fig.5.6 The customized porous materials for sample A.  

Fig.5.7 shows the measurement photo on the site. At one end of the tube, the 

costumed porous materials are stacked without using glues. There is no air space 

setting between the porous materials and the backed rigid wall.  

   

Fig.5.7 The measurement photo on the site for sample A. 

In the measurement, the loudspeaker emits continues single frequency sinusoidal 

wave. As shown in Fig.5.8, a movable microphone is moving from position A to 

position B, recording the values of the sound pressure level in the impedance tube. 
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Fig.5.8 The microphone is moving from postion A to position B. 

From 50Hz to 200Hz, the recorded values of the sound pressure level are plotted, 

as shown in Fig.5.9.  

   

   

 
   Fig.5.9 The measured sound pressure level for sample A. 

In Fig.5.9, blue * represent the searched maximum values of the sound pressure 

levels. Then these maximum values are averaged, which is the value of maxSPL , 

plotted by the upper dotted red line. Blue o represent the searched minimum sound 

pressure levels. Then these minimum values are averaged, which is the value of

minSPL , plotted by the lower dotted red line.  

For 200Hz, when search the maximum values and the minimum values, only the 

data between 20s and 100s is used.  
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The absorption coefficient can be calculated by: 

2
1

1
1

G

G



  


                           (5.2) 

where G  is the standing wave ratio, calculated by: 

max

min

20

20

10

10

SPL

SPL
G                              (5.3) 

For each frequency, the values of 
maxSPL , the values of 

minSPL  and the 

absorption coefficients 
meas  are given in table 5-3.  

In chapter 5, 3 decimal places are used to analyze the value of the absorption 

coefficients, in order to get the precision errors between the measured absorption 

coefficients and the calculated values.  

Table 5-3 The measured absorption coefficient for sample A 

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxSPL
  130.55 132.33 130.83 125.40 121.43 119.49 119.53 

minSPL
 107.26 110.20 111.76 110.90 109.29 110.49 112.64 

meas
  0.240 0.269 0.361 0.534 0.636 0.773 0.858 

In Fig.5.10, the measured absorption coefficients for sample A from 50Hz to 

200Hz are plotted.                        

 

Fig.5.10 For sample A, the measured absorption coefficients from 50Hz to 200Hz.  
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5.3.2 The FDTD analysis for sample A  

5.3.2.1 FDTD setting in 2-dimensioanl sound field 

For the FDTD analysis, two-dimensional sound field setting is illustrated in 

Fig.5.11. Four boundaries in the computation domain are both rigid walls. 

Corresponding to the measurement, there is no air space between the porous material 

and the backed rigid wall. The length of the computation domain in y direction is 10m, 

and the width of the computation domain is 0.8m. The discrete time interval is 

61.75 10 s. In order to obtain precision numerical results, the discrete space intervals 

x  and y  are both 0.002m. Therefore, in x direction, the number of the discrete 

grids Ax  is 400. In the y direction, the number of the discrete grids Ay  is 5000. 

For this number of the grid, the amount of calculation is acceptable. Two positions are 

marked in the figure. In the y direction, position a is at y=0.4m, and position b is at 

y=4.4m.  

 
Fig.5.11 Two-dimensional sound field for the FDTD analysis. 

In the calculation, the sound pressures at these receiving points  a2, yAx ,

 a2, y 1Ax  …   2, ybAx  are saved. ay  is corresponding to the position a 

(y=0.3m), and by  is corresponding to the position b (y=4.3m). 
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5.3.2.2 Discuss the input method of the plane wave sound source  

The sound source is input at the top position in the y direction, which is given as 

the plane wave incidence. As illustrated in Fig.5.12, the input method of the plane 

wave sound source can be given as follows: 

                   1 2

, sin 2n

i j cp f n t                          (5.4) 

                    , 1 2 s i n 2n

i j cv f n t                          (5.5) 

Here, n  is the time step, the value of i  is from 1 to Ax , the value of j  is 

equal to Ay . cf  is the frequency of the sound source, which is chosen from the 

following values: 50, 63, 80, 100, 125, 160, and 200. 

  

Fig.5.12 The sound field at the top position of the compution domain. 

As an example, the calculated sound pressures by using Eq.(5.4) and Eq.(5.5) at 

the receiving point (0.4m, 4.4m) are shown in Fig.5.13.  

  

Fig.5.13 The calculated sound pressure at the receiving point (0.4m, 4.4m).Left: by 

using equation (5.5); right: by using equation (5.6). 
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In the calculation, the continuous sine wave is emitted from the plane wave 

sound source. The plane wave travels along the y direction. When the first plane wave 

arrives at the top position of the porous material, the first reflection occurs. Then the 

standing wave sound field begins to be established. When the reflected sound wave 

arrives at the top position in the y direction, the standing wave field is superposed by 

the incident sound wave from the sound source. The standing wave sound field is 

destroyed no matter using Eq.(5.4) or Eq.(5.5).  

In Fig.5.13, the amplitudes of the calculated sound pressures are different. In this 

thesis, the input method of the plane wave sound source is adopted by using Eq.(5.4).  

5.3.2.3 The method for calculating the absorption coefficient 

In this section, how to calculate the sound absorption coefficient is discussed. As 

an example, when the frequency of the sound source cf  is 200Hz, the calculated 

sound pressures ( 0 0.8 ,0 1.5mx m y    ) are shown in Fig.5.14.  
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Fig.5.14 At different time step, the calculated sound pressures 

(0 0.8 ,0 1.5mx m y    ). 
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The calculated sound pressures at these positions are plotted in Fig.5.15.  

   

   

   

   
     Fig.5.15 The received sound pressure at different receiving points. 

When the plane wave firstly arrives at the top position of the porous material, the 

first reflected sound wave occurs. At different receiving points, the time point for 

arising the first reflected wave rT  is plotted by red o in Fig.5.15.  

As shown in Fig.5.16, for a receiving point located at the position  ,x y , rT  can 

be calculated by: 

0

r

L h
T

c


                              (5.6) 

where h  is the distance in the y direction, between the top position of the porous 

material and the receiving point position, which satisfy 0.4h y   here. L  is the 
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distance in the y direction, between the top position of the porous material and the 

sound source position, which satisfy 9.4L   here. 
0c  represents the sound speed in 

the air. 

 

Fig.5.16 A receiving point located at the direction (x,y). 

Once the time point 
rT  is searched, the time range for the standing wave exiting 

in the sound field can be searched. The standing wave field is not established 

immediately after the time point 
rT . It needs time to establish the stable standing 

wave field. In Eq.(5.7)-Eq.(5.8), sT  and eT  are set to find the established standing 

wave field, which is calculated by: 

s r

c

M
T T

f
                              (5.7) 

e s

c

N
T T

f
                               (5.8) 

In the Fig.5.15, sT  is plotted by the left dotted blue line, and eT  is plotted by 

the right dotted blue line. When calculate sT  and eT , M  and N  are adopted as 3 

and 2, respectively.  

In the figure, the sound field is no longer the standing wave after time point maxT . 

The reason is that the sine wave is continually emitted from the sound source. After 

time point maxT , the standing wave field is superposed by the incident sound wave 

from the sound source. In Fig.5.15, maxT  is plotted by the dotted red line, calculated 

by using Eq.(5.9):  
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max

0

2L l
T

c


                            (5.9) 

Then, the amplitudes of the standing wave at each receiving points can be 

searched. The amplitude of the standing wave is the maximum value of the sound 

pressure between time point 
sT  and time point 

eT , which is plotted by the red * in 

the Fig.5.15.  

By using the same method, the amplitude of the standing wave at each position 

can be obtained. In Fig.5.17, the searched amplitudes ( 0.4m,0.4m 4.4mx y   ) are 

plotted when 
cf  is 200Hz. 

 
Fig.5.17 For 200Hz, the searched amplitudes of the standing wave. 

When calculating the sound absorption coefficients, the maximum values of the 

amplitude of the standing wave and the minimum values of the amplitude of the 

standing wave need to be searched. The first minimum value occurs at y=0.42m, but 

is not used in the calculation. This position is near the top position of the porous 

material, that is y=0.4m. As shown in Fig.5.10, the sound field at that position is very 

complicated, which is caused by the shape of the porous materials. The air space exits 

between the porous material and the rigid side wall, and multiple reflections occur at 

those places near the top position of the porous materials. This minimum value is 

affected by the complicated sound field.  

In Fig.5.17, blue * represents the searched maximum values. Then these 

maximum values are averaged, which is the value of maxp , plotted by the upper 
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dotted red line. Blue o represents the searched minimum values. Then these minimum 

values are averaged, which is the value of 
minp , plotted by the lower dotted red line. 

The absorption coefficient can be calculated by: 

2
1

1
1

G

G



  


                           (5.10) 

where G  is the standing wave ratio, calculated by: 

max

min

p
G

p
                              (5.11) 

For 200Hz, the value of maxp  is 1.3690, and the value of minp  is 0.6237. Input 

maxp  and 
minp  in Eq.(5.11), the standing wave ration G  can be obtained, and the 

absorption coefficient can be calculated, which is 0.860. The measured absorption 

coefficient is 0.858, and the calculated value is 0.860. The absolute error is only 

0.002.  
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5.3.2.4 Discussion of the factors affecting the result of the absorption coefficient 

The factors affecting the calculation of the absorption coefficient are 
rT , 

sT  

and eT .    

rT  is the time point for receiving the first reflected sound wave coming from the 

surface of the porous material (y=0.4m), which is calculated by Eq.(5.12). For a fixed 

receiving point at position (x,y), L and h are not changed. Then 
rT  is not changed, 

which do not affect the calculation of the absorption coefficient. 

0

r

L h
T

c


                               (5.12) 

 
Fig.5.18 A receiving point located at the direction (x,y). 

As discussed in section 5.3.2.2, sT  and eT  are time points to search the 

standing wave field, which satisfy the following equations: 

s r

c

M
T T

f
                            (5.13) 

e s

c

N
T T

f
                             (5.14) 

0

2
e

L l
T

c


                            (5.15) 

Rearranging these equations, the following equation is obtained: 

0

2

c

M N l

f c


                           (5.16) 
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In the FDTD numerical simulation, the positions for these receiving points are 

from y=0.4m to y=4.4m. Then, the relationship between the value of M and the value 

of N is given: 

max

0

11.2 cfM N MN
c


                       (5.17) 

From 50Hz to 200Hz, the values of maxMN  are calculated, and given in table 

5-4. 

Table 5-4 From 50Hz to 200Hz, the values of maxMN  

 50Hz 63Hz 80Hz 100Hz 125Hz 160Hz 200Hz 

maxMN  1.63 2.06 2.61 3.27 4.09 5.23 6.54 

In order that the maximum of the intercepted sound pressure can be found, the 

data at least one cycle should be ensured.  Therefore, 1N  .  

As shown in Fig.5.14 and Fig.5.15, there needs some time to establish a stable 

standing wave field. Too early or too late intercepting the received sound pressure, the 

searched maximum values may not be the true amplitudes of the standing wave. 

Therefore, how to choose the start time point sT  is very important. 

Next, how the start time point sT  affects the result of the absorption coefficient 

is discussed. The following three cases are discussed.  

(Case 1): M=0,  N=1; 

(Case 2): M=0.5, N=1; 

(Case 3): M=1,  N=1; 

(1) 200cf  Hz   

As shown in Fig.5.19, the searched amplitudes of the standing wave at positions 

( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the frequency of the 

sound source cf  is 200 Hz. 
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Fig.5.19 For 200Hz, the searched amplitudes of the standing wave. 

For each case, the values of maxp  , the values of minp  , the calculated 

absorption coefficients FDTD , and the absolute errors 
rE  ( FDTD meas   ) are given 

in table 5-5. For 200Hz, the absorption coefficient meas  by the measurement is 

0.858.  

Table 5-5 The calculated values for 200Hz 

 0, 1M N    0.5, 1M N   1, 1M N   

maxp   1.4385 1.4385 1.3668 

minp  1.0008 0.6249 0.6249 

FDTD   0.968 0.845 0.861 

rE   0.110 0.013 0.003 

(2) 160cf  Hz 

As shown in Fig.5.20, the searched amplitudes of the standing wave at these 

positions ( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the 

frequency of the sound source cf  is 160 Hz. 

   

Fig.5.20 For 160Hz, the searched amplitudes of the standing wave. 

For each case, the calculated values of maxp , the calculated values of minp , the 

calculated absorption coefficients FDTD , and the absolute errors rE  ( FDTD meas   ) 

are given in table 5-6. For 160Hz, the measured absorption coefficient meas  is 

0.773.  
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Table 5-6 The calculated values for 160Hz 

 0, 1M N   0.5, 1M N   1, 1M N   

maxp   1.5365 1.5365 1.4832 

minp  0.9465 0.5021 0.5021 

FDTD   0.944 0.743 0.756 

rE   0.171 0.030 0.017 

(3) 125cf  Hz 

As shown in Fig.5.21, the searched amplitudes of the standing wave at these 

positions ( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the 

frequency of the sound source 
cf  is 125 Hz. 

   
Fig.5.21 For 125Hz, the searched amplitudes of the standing wave. 

For each case, the calculated values of maxp , the calculated values of minp , the 

calculated absorption coefficients FDTD , and the absolute errors rE  ( FDTD meas   ) 

are given in table 5-7. For 125Hz, the measured absorption coefficients meas  is 

0.636.  

Table 5-7 The calculated values for 125Hz 

 0, 1M N   0.5, 1M N   1, 1M N   

maxp   1.6456 1.6456 1.6076 

minp  0.8164 0.3766 0.3766 

FDTD   0.887 0.606 0.615 

rE   0.251 0.030 0.021 
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(4) 100cf   Hz 

As shown in Fig.5.22, the searched amplitudes of the standing wave at these 

positions ( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the 

frequency of the sound source 
cf  is 100 Hz. 

   

Fig.5.22 For 100Hz, the searched amplitudes of the standing wave. 

For each case, the calculated values of maxp , the calculated values of minp , the 

calculated absorption coefficients FDTD , and the absolute errors rE  ( FDTD meas   ) 

are given in table 5-8. For 100 Hz, the measured absorption coefficient meas  is 

0.534.  

Table 5-8 The calculated values for 100Hz 

 0, 1M N   0.5, 1M N   1, 1M N   

maxp   1.7120 1.7085 1.6900 

minp  0.6963 0.2873 0.2843 

FDTD   0.822 0.493 0.493 

rE   0.288 0.041 0.041 

(5) 80cf  Hz  

As shown in Fig.5.23, the searched amplitudes of the standing wave at these 

positions ( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the 

frequency of the sound source cf  is 80 Hz. 

   

  Fig.5.23 For 80Hz, the searched amplitude of the standing wave at different 

positions. 
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For each case, the calculated values of 
maxp , the calculated values of 

minp , the 

calculated absorption coefficients 
FDTD , and the absolute errors 

rE  ( FDTD meas   ) 

are given in table 5-9. For 80Hz, the measured absorption coefficient meas  is 0.361.  

Table 5-9 The calculated values for 80Hz 

 0, 1M N   0.5, 1M N   1, 1M N   

maxp   1.7707 1.7548 1.7548 

minp  0.5798 0.2165 0.1995 

FDTD   0.743 0.391 0.367 

rE   0.382 0.030 0.006 

(6) 63cf  Hz  

As shown in Fig.5.24, the searched amplitudes of the standing wave at these 

positions ( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the 

frequency of the sound source 
cf  is 63 Hz. 

   
Fig.5.24 For 63Hz, the searched amplitude of the standing wave. 

For each case, the calculated values of maxp , the calculated values of minp , the 

calculated absorption coefficients FDTD , and the absolute errors rE  ( FDTD meas   ) 

are given in table 5-10. For 63Hz, the measured absorption coefficient meas  is 

0.269.  

Table 5-10 The calculated values for 63Hz 

 0, 1M N   0.5, 1M N   1, 1M N   

maxp   1.8166 1.7921 1.7921 

minp  0.4662 0.1544 0.1259 

FDTD   0.650 0.292 0.245 

rE   0.381 0.023 0.024 

 (6) 50cf  Hz  
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As shown in Fig.5.25, the searched amplitudes of the standing wave at these 

positions ( 0.4m,0.4m 4.4mx y   ) for different cases are plotted, when the 

frequency of the sound source 
cf  is 50 Hz. 

  

Fig.5.25 For 50Hz, the searched amplitude of the standing wave. 

For each case, the calculated values of maxp , the calculated values of minp , the 

calculated absorption coefficients FDTD , and the absolute errors rE  ( FDTD meas   ) 

are given in table 5-11. For 50Hz, the measured absorption coefficient meas  is 

0.240.  

Table 5-11 The calculated values for 50Hz 

 0, 1M N   0.5, 1M N   1, 1M N   

maxp   1.8460 1.8076 1.8076 

minp  0.3695 0.1088 0.0521 

FDTD   0.556 0.214 0.109 

rE   0.316 0.026 0.131 

(7) Conclusion 

For different cases, the absolute errors between the measured absorption 

coefficients and the values by the numerical analysis from 50Hz to 200Hz are given in 

table 5-12.  
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Table 5-12 For different cases, the absoute errors between the measured absorption 

coefficients and the values by the numerical analysis.  

 0, 1M N   0.5, 1M N   1, 1M N   

50Hz 0.316 0.026 0.131 

63Hz 0.381 0.023 0.024 

80Hz 0.382 0.030 0.006 

100Hz 0.288 0.041 0.041 

125Hz 0.251 0.030 0.021 

160Hz 0.171 0.030 0.017 

200Hz 0.110 0.013 0.003 

For 50Hz and 63Hz, when 0.5M   and 1N  , the error is the smallest than 

the other two cases. When 0M  , it is earlier to choose the start time point sT . 

When 1M  , it is later to choose the start time point 
sT . The reason for this 

phenomenon is that the wavelengths for 50Hz and 63Hz are 6.8m and 5.4m, 

respectively. Compared with their wavelengths, the total computation domain in the y 

direction is not long enough. 

For 80Hz-200Hz, when 1M   and 1N  , the error is the smallest than the 

other two cases. For all frequencies, when 0.5M  , the errors are acceptable. It 

means that for a receiving point, once rT  is known, the best value for sT  is:  

0.5
s r

c

T T
f

                              (5.18) 

From the above analysis, the following 3 equations are concluded to decide the 

best values of M  and N : 

maxM N MN                           (5.19) 

0.5M                                (5.20) 

1N                                 (5.21) 

In the simulation for sample A, the value of maxMN  can be found in table 5-13. 

Table 5-13 From 50Hz to 200Hz, the values of maxMN  
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 50Hz 63Hz 80Hz 100Hz 125Hz 160Hz 200Hz 

maxMN  1.63 2.06 2.61 3.27 4.09 5.23 6.54 
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5.3.3 Contrast the measurement results and the FDTD analysis results 

In Fig.5.26, the amplitudes of the standing wave ( 0.4m,0.4m 4.4mx y   ) 

from 50Hz to 200Hz are plotted. The values of M  and N  in Eqs.(5.7)-(5.8) are 

given in table 5-14.  

Table 5-14 From 50Hz to 200Hz, the values of M  and N  

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

M  0.6 0.8 1.5 1.5 2 2 3 

N  1 1 1 1 1 2 2 

 

 

 

Fig.5.26 For each frequency, the searched amplitude of the standing wave. 

When calculate the absorption coefficient, the maximum value and the minimum 

value of the amplitudes of the standing wave are used. In Fig.5.25, blue * represents 

the searched maximum values. Then these maximum values are averaged, which is 

the value of maxp , plotted by the upper dotted red line. Blue o represents the searched 

minimum values. Then these minimum values are averaged, which is the value of 
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minp , plotted by the lower dotted red line. The values of 
maxp and the values of 

minp  

are presented in table 5-15. 

    Table 5-15 From 50Hz to 200Hz, the calculated values of
maxp and 

minp   

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxp
  1.8076 1.7921 1.7309 1.6898 1.5983 1.4857 1.3690 

minp
  0.1088 0.1544 0.1995 0.2789 0.3761 0.5012 0.6237 

The measured absorption coefficients 
meas , the calculated absorption 

coefficients 
FDTD , and the errors are presented in table 5-16.     

Table 5-16 From 50Hz to 200Hz , the measured absorption coefficients,  

the calculated absorption coefficients, and the errors. 

 50Hz 63 Hz 80 Hz 100Hz 125Hz 160Hz 200Hz 

meas  0.240 0.269 0.361 0.534 0.636 0.773 0.858 

FDTD  0.214 0.292 0.371 0.487 0.617 0.755 0.860 

FDTD meas   0.026 0.023 0.010 0.047 0.019 0.018 0.002 

FDTD meas meas    10.8% 8.5% 2.7% 8.8% 2.9% 2.3% 0.2% 

In Fig.5.27, the calculated absorption coefficients are plotted by the red dotted 

line, from 50Hz to 200Hz. The measured sound absorption coefficients are plotted by 

the black line.  

  
Fig.5.27 The measured absorption coefficients and the calculated absorption 

coefficients.  
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5.4 The measurement and the FDTD analysis for sample B 

5.4.1 The measurement results  

For sample B, the width of the porous materials is 0.8m and the total height is 

0.3m. The manufactured porous materials used in the measurement are shown in 

Fig.5.28.  

 

Fig.5.28 The customized porous materials for sample B. 

Fig.5.29 shows the measurement photo on the site. In the measurement, the 

costumed porous materials are settled at the end of the low frequency impedance tube. 

In the measurement, the porous materials are backed by the rigid wall without air 

space. 

 
Fig.5.29 The measurement photo on the site for sample B. 

As shown in Fig.5.30, a movable microphone is moving from position A to 

position B, recording the values of the sound pressure level in the impedance tube. 

From 50Hz to 200Hz, the recorded values of the sound pressure level are plotted, as 

shown in Fig.5.31. 
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Fig.5.30 The microphone is moving from postion A to position B. 

 

 

 

   

   
  Fig.5.31 From 50Hz to 200Hz, the measured sound pressure level for sample B. 

In the measurement, the measured sound pressure levers are shown in Fig.5.31. 

Blue * represent the searched maximum values of the sound pressure levels. Then 

these maximum values are averaged, which is the value of maxSPL , plotted by the 

upper dotted red line. Blue o represent the searched minimum sound pressure levels. 

Then these minimum values are averaged, which is the value of minSPL , plotted by 

the lower dotted red line.  

From 50Hz to 200Hz, the calculated values of maxSPL , the calculated values of 

minSPL  and the absorption coefficient meas  are presented in table 5-17. 

 



108 

 

Table 5-17 The measured absorption coefficients from 50Hz to 200Hz. 

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxSPL
 125.42 127.83 127.24 125.99 121.83 119.93 120.03 

minSPL
 101.44 104.72 107.51 109.96 108.11 109.66 112.79 

meas
 0.224 0.244 0.339 0.471 0.567 0.718 0.845 

5.4.2 The FDTD analysis for sample B 

5.4.2.1 FDTD setting  

In the FDTD analysis, two-dimensional sound field setting is illustrated in 

Fig.5.32. The four boundaries in the computation domain are both rigid walls. 

Corresponding to the measurement, there is no air gap between the porous material 

and the backed rigid wall. The length of the computation domain is 10m, and the 

width of the computation domain is 0.8m. The discrete time interval is 
61.75 10 s. 

In order to obtain precision numerical results,  the discrete space intervals x  and 

y  are both 0.002m. Therefore, in x direction, the number of the discrete grids Ax  

is 400. In y direction, the number of the discrete grids Ay  is 5000. Two positions are 

marked in the figure. In the y direction, position a is at y=0.3m, and position b is at 

y=4.3m.  

 
Fig.5.32 Two-dimensional sound field in the FDTD analysis for sample B. 

The sound source is input at the top position in the y direction ( 10my  ), given 

as the plane wave incidence. At the position of the sound source, the sound pressure is 
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updated by using Eq.(5.4). The frequency of the sound source is chosen from these 

values: 50, 63, 80, 100, 125, 160, 200. 

In the calculation, the sound pressures at these positions  a2, yAx ,

 a2, y 1Ax  …   2, ybAx  are saved. ay  is corresponding to the position a 

(y=0.3m), and by  is corresponding to the position b (y=4.3m). 

5.4.2.2 The result of the calculation 

As an example, when the frequency of the sound source cf  is 200Hz, the 

distribution of the sound pressure (0 0.8 ,0 1.5mx m y     ) are shown in Fig.5.33.  
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Fig.5.33 At different time step, the calculated sound pressures 

(0 0.8 ,0 1.5mx m y    ). 
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The calculated sound pressures at these positions are shown in Fig.5.34.  

   

   

   

   
Fig.5.34 For 200Hz, the calculated sound pressures at different positions. 

 

In fig.5.34, the time point for receiving the first reflection wave from the surface 

of the porous materials is rT , which is plotted by red o.  

The time range  s eT T  for searching the stable standing wave field are 

represented by the blue dotted lines, where s r cT T M f   and e s cT T N f  . In 

the FDTD numerical simulation, the positions for these receiving points are from 

y=0.4m to y=4.4m. Then the following equation is obtained: 

max

0

11.4 cfM N MN
c


                       (5.22) 
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Table 5-18 The values of 
maxMN  

 50Hz 63Hz 80Hz 100Hz 125Hz 160Hz 200Hz 

maxMN
 1.67 2.10 2.67 3.33 4.17 5.33 6.67 

In Fig.5.34, M  is equal to 3, and N  is equal to 2 for 200Hz. The amplitude of 

the standing wave is the maximum value of the sound pressures at the time range 

 s eT T , which is plotted by red *. 

By using the same method, at different positions, the amplitudes of the standing 

wave can be obtained. When the frequency of the sound source 
cf  is 200Hz, the 

amplitudes of the standing wave at different positions ( 0.4 ,0.5m 4.5mx m y   ) 

are plotted, as shown in Fig.5.35. 

  
Fig.5.35 For 200Hz, the amplitudes of the standing wave 

In Fig.5.35, the 5 minimum values are 0.6148 (y=0.424m), 0.6199 (y=1.28m), 

0.6218(y=2.132m), 0.6220(y=2.992m) and 0.6222(y=3.842m). Although the 

difference between the first minimum value and the other values is small, the first 

minimum value is not used here. Near the surface of the porous materials, the sound 

field is very complicate, and affecting the amplitudes of the standing wave. For 

200Hz, the first minimum value occurs at the position near the surface of the porous 

materials. This minimum value may be affected, and it is not used for the calculation. 

Fig.5.36 shows the searched amplitudes of the standing wave from 50Hz to 

160Hz. The values of M and N in the calculation are listed in table 5-19.  
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Table 5-19 The values of M  and N  in the calculation 

 50 Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

M  0.6 1 1.5 2 2.5 2 3 

N  1 1 1 1 1 2 2 

 

 

 
Fig.5.36 For 50Hz-160Hz, the searched amplitudes of the standing wave. 

 

In Fig.5.36, blue * represents the searched maximum values. Then these 

maximum values are averaged, which is the value of maxp , plotted by the upper 

dotted red line. Blue o represents the searched minimum values. Then these minimum 

values are averaged, which is the value of minp , plotted by the lower dotted red line. 

The values of maxp and the values of minp  are listed in table 5-15. 

 

Table 5-20 The calculated values and the absorption coefficient  

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxp
 1.8145 1.8042 1.7472 1.6977 1.6143 1.4955 1.3626 

minp
 0.1006 0.1141 0.1834 0.2464 0.3490 0.4856 0.6215 

FDTD
 0.199 0.224 0.344 0.443 0.585 0.740 0.861 
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5.4.3 Contrast the measurement results and the FDTD analysis results 

The two results and the errors are given in table 5-21. It can be found that the 

maximum value of the absolute errors is at 100Hz, which is 0.028. The maximum 

value of the relative errors is at 50Hz, which is 11.1%.  

 

  Table 5-21 The measured absorption coefficients, the calculated absorption 

coefficients, and the errors. 

 50Hz 63 Hz 80 Hz 100Hz 125Hz 160Hz 200Hz 

meas
 0.224 0.244 0.339 0.471 0.567 0.718 0.845 

FDTD
 0.199 0.224 0.344 0.443 0.585 0.740 0.861 

FDTD meas 
 0.025 0.020 0.005 0.028 0.018 0.022 0.016 

FDTD meas meas  
 11.1% 8.1% 1.4% 5.9% 3.1% 3.0% 1.8% 

 

In Fig.5.37, the calculated absorption coefficients are plotted by the red dotted 

line, from 50Hz to 200Hz. The measured sound absorption coefficients are plotted by 

the black line.  

 

Fig.5.37 The measured absorption coefficients and the calculated absorption 

coefficients. 
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5.5 The measurement and the FDTD analysis for sample C 

5.5.1 The measurement results 

The sample C and the manufactured porous materials in the measurement are 

illustrated in Fig.5.38. 4 pieces of the samples are made by a factory. The height of the 

customized porous materials is 0.8m, and the width of the porous materials is 0.8m. 

             

Fig.5.38 The sample C and the customized porous material. 

Fig.5.39 shows the measurement photo on the site. In the measurement, the 

costumed porous materials are settled at the end of the low frequency impedance tube. 

In the measurement, there is no air gap settled between the porous material and the 

backed rigid wall. 

     
Fig.5.39 The measurement photo on the site for sample C. 

In the measurement, the loudspeaker emits continues single frequency sinusoidal 

wave. As shown in Fig.5.40, a movable microphone is moving from position A to 

position B, recording the values of the sound pressure level in the impedance tube. 

From 50Hz to 200Hz, the recorded values of the sound pressure level are plotted, as 

given in Fig.5.41.  
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Fig.5.40 The microphone is moving from postion A to position B. 

 

 

  

   
Fig.5.41 The measured sound pressure level for sample C. 

In Fig.5.41, the measured values of the sound pressure lever are shown. Blue * 

represent the searched maximum values of the sound pressure levels. Then these 

maximum values are averaged, which is the value of maxSPL , plotted by the upper 

dotted red line. Blue o represent the searched minimum sound pressure levels. Then 

these minimum values are averaged, which is the value of minSPL , plotted by the 

lower dotted red line.  

For each frequency, the values of maxSPL , the values of minSPL  and the 

absorption coefficients meas  are given in table 5-22. 
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Table 5-22 From 50Hz to200Hz, the measured absorption coefficients. 

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxSPL
 120.16 122.20 121.76 120.37 116.14 114.08 114.60 

minSPL
 96.44 99.59 102.17 105.16 103.46 104.56 107.47 

meas
 0.230 0.257 0.344 0.504 0.612 0.751 0.849 

5.5.2 The FDTD analysis for sample C 

5.5.2.1 FDTD setting  

In the FDTD analysis, two-dimensional sound field setting is illustrated in 

Fig.5.42. The four boundaries in the computation domain are both rigid walls. 

Corresponding to the measurement, there is no air gap between the porous material 

and the backed rigid wall. The length of the computation domain is 10m, and the 

width of the computation domain is 0.8m. The discrete time interval is 
61.75 10 s. 

In order to obtain precision numerical results,  the discrete space intervals x  and 

y  are both 0.002m. Therefore, in x direction, the number of the discrete grids Ax  

is 400. In y direction, the number of the discrete grids Ay  is 5000. Two positions are 

marked in the figure. In the y direction, position a is at y=0.3m, and position b is at 

y=4.3m.  

 

Fig.5.42 Two-dimensional sound field for the FDTD analysis. 

The sound source is input at the top position in the y direction ( 10my  ), given 

as the plane wave incidence. At the position of the sound source ( 10my  ), the sound 
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pressure is updated by using Eq.(5.4). The frequency of the sound source is chosen 

from these values: 50, 63, 80, 100, 125, 160, and 200. 

In the FDTD analysis, the sound pressures at these positions  a2, yAx ,

 a2, y 1Ax  …   2, ybAx  are saved.
 ay  is corresponding to the position a 

(y=0.3m), and by  was corresponding to the position b (y=4.3m). 

5.5.2.2 The result of the calculation 

As an example, the calculated sound pressures ( 0 0.8 ,0 1.5mx m y    ) from 

28.54ms to 38.69ms are shown in Fig.5.43. The frequency of the sound source cf  is 

200Hz. 
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Fig.5.43 At different time step, the calculated sound pressures 

(0 0.8 ,0 1.5mx m y    ). 
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The calculated sound pressures at these positions are given in Fig.5.44.  

   

   

   

   
Fig.5.44 For 200Hz, the calculated sound pressures. 

In Fig.5.44, the time point for receiving the first reflection wave from the surface 

of the porous materials is rT , which is plotted by red o.  

The time range  s eT T  for searching the stable standing wave field are 

represented by the blue dotted lines, where s r cT T M f  , e s cT T N f   and 

maxeT T . maxT  is represent by the red dotted line, given by using Eq.(5.9). In the 

FDTD calculation, the positions for the receiving points are from y=0.3m to y=4.3m. 

Then the relationship between the value of M and the value of N is obtained: 

max

0

11.4 cfM N MN
c


                       (5.23) 
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Table 5-23 The values of 
maxMN  

 50Hz 63Hz 80Hz 100Hz 125Hz 160Hz 200Hz 

maxMN
 1.67 2.10 2.67 3.33 4.17 5.33 6.67 

In Fig.5.44, M  is equal to 3, and N  is equal to 2 for 200Hz. The searched 

amplitude of the standing wave is the maximum value of the sound pressures between 

the time range  s eT T , which is plotted by red *. 

By using the same method, the amplitude of the standing wave for each 

frequency can be obtained. The amplitudes of the standing wave 

( 0.4 ,0.3m 4.3mx m y   ) are shown in Fig.5.45.  

 

Fig.5.45 For 200 Hz, the amplitude of the standing wave  

In Fig.5.46, the searched amplitudes of the standing wave are plotted for 

50Hz-160Hz. The values of M and N in the calculation are presented in table 5-24.  

Table 5-24 The values of M and N in the calculation 

 50 Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

M  0.6 1 1.5 2 2.5 2 3 

N  1 1 1 1 1 2 2 
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Fig.5.46 For 50Hz-160Hz, the searched amplitude of the standing wave. 

In Fig.5.45 and Fig.5.46, blue * represents the searched maximum values. Then 

these maximum values are averaged, which is the value of 
maxp , plotted by the upper 

dotted red line. Blue o represents the searched minimum values. Then these minimum 

values are averaged, which is the value of 
minp , plotted by the lower dotted red line. 

The value of 
maxp and the value of 

minp  are given in table 5-15. For 160Hz and 

200Hz, the first maximum value is not used for the calculation.  

In table 5-25, the values of 
maxp , the values of 

minp  and the calculated 

absorption coefficients 
FDTD  are listed. 

Table 5-25 The calculated absorption coefficient 

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxp
 1.8195 1.8049 1.7473 1.6992 1.6197 1.5152 1.3970 

minp
 0.1020 0.1171 0.1861 0.2481 0.3477 0.4745 0.5978 

FDTD
 0.201 0.229 0.348 0.445 0.5820 0.727 0.840 
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5.5.3 Contrast the measurement results and the FDTD analysis results 

The two results and the errors are given in table 5-26. It can be found that the 

maximum value of the absolute errors is at 100Hz, which is 0.059. The maximum 

value of the relative errors is at 50Hz, which is 12.6%.  

                       

Table 5-26 The measured absorption coefficients, the calculated  

absorption coefficients, and the errors. 

 50Hz 63 Hz 80 Hz 100Hz 125Hz 160Hz 200Hz 

meas
 0.230 0.257 0.344 0.504 0.612 0.751 0.849 

FDTD
 0.201 0.229 0.348 0.445 0.582 0.727 0.840 

FDTD meas 
 0.029 0.028 0.004 0.059 0.030 0.024 0.009 

FDTD meas meas  
 12.6% 10.9% 1.1% 11.7% 4.9% 3.2% 1.0% 

 

In Fig.5.47, the calculated absorption coefficients are plotted by the red dotted 

line, from 50Hz to 200Hz. The measured sound absorption coefficients are plotted by 

the black line.  

 

Fig.5.47 The measured absorption coefficients and the calculated absorption 

coefficients.  
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5.6 The measurement and the FDTD analysis for sample D 

5.6.1 The measurement results for sample D 

For sample D, the width of the porous materials is 0.8m, and the height of the 

porous materials is 0.4m. The customized porous materials used for the measurement 

are illustrated in Fig.5.48.  

   

Fig.5.48 The sample D and the customized porous materials. 

Fig.5.49 shows the measurement photo on the site. In the measurement, the 

costumed porous materials are simply stacked at the end of the low frequency 

impedance tube. An air gap of 0.1m is set between the porous materials and the 

backed rigid wall. The glue is not used in the measurement. Therefore, there may be 

some air gap between the pieces of the samples. The height of the customized porous 

materials is 0.8m, and the total width of the porous materials is 0.8m.  

           

Fig.5.49 The measurement photo on the site for sample D. 

As shown in Fig.5.50, a movable microphone is moving from position A to 

position B, recording the values of the sound pressure level in the impedance tube. In 
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the measurement, the recorded values of the sound pressure level from 50Hz to 200Hz 

as shown in Fig.5.51.  

 

Fig.5.50 The microphone is moving from postion A to position B. 

  

 

 

 
  Fig.5.51 The measured sound pressure level by the moving microphone for sample 

D. 

Blue * represent the maximum values of the sound pressure level. Then these 

maximum values are averaged, which is the value of maxSPL , plotted by the upper 

dotted red line. Blue o represent the minimum values of the sound pressure level. 

Then these minimum values are averaged, which is the value of minSPL , plotted by 

the lower dotted red line. 
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From 50Hz to 200Hz, the calculated values of 
maxSPL , the calculated values of 

minSPL , and the calculated absorption coefficients 
meas are presented in table 5-27. 

Table 5-27 The measured absorption coefficients from 50Hz to 200Hz 

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxSPL
 124.81 125.31 124.19 122.72 119.84 118.25 116.16 

minSPL
 109.09 113.19 115.67 117.93 117.77 117.23 113.73 

meas
 0.484 0.637 0.793 0.928 0.986 0.997 0.981 

5.6.2 The FDTD analysis for sample D 

5.6.2.1 FDTD setting  

In the FDTD analysis, two-dimensional sound field setting is illustrated in 

Fig.5.52. The four boundaries in the computation domain are both rigid walls. 

Corresponding to the measurement, the air gap of 0.1m is set between the porous 

material and the backed rigid wall. The length of the computation domain is 10m, and 

the width of the computation domain is 0.8m. The discrete time interval is 
61.75 10

s. In order to obtain precision numerical results, the discrete space intervals x  and 

y  are both 0.002m. Therefore, in x direction, the number of the discrete grids Ax  

is 400. In y direction, the number of the discrete grids Ay  is 5000. Two positions are 

marked in the figure. In the y direction, position a is at y=0.5m, and position b is at 

y=4.5m.  

 

Fig.5.52 Two-dimensional sound field for the FDTD analysis. 
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The sound source is input at the top position in y direction ( 10my  ), given as 

the plane wave incidence. At the position of the sound source ( 10my  ), the sound 

pressure is updated by using Eq.(5.4). The frequency of the sound source is chosen 

from these values: 50, 63, 80, 100, 125, 160, and 200. 

In the calculation, the sound pressures at these positions  a2, yAx ,

 a2, y 1Ax  …   2, ybAx  are saved.
 ay  is corresponding to the position a 

(y=0.5m), and by  is corresponding to the position b (y=4.5m). 

5.6.2.2 The result of the calculation 

As an example, when the frequency of the sound source 
cf  is 200Hz, the 

calculated sound pressures ( 0 0.8 ,0 1.5mx m y    ) from 27.78ms to 37.93ms are 

shown in Fig.5.53.  
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Fig.5.53 From 27.78ms to 37.93ms, the distribution of the  

calculated sound pressures (0 0.8 ,0 1.5mx m y    ). 
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The calculated sound pressures at these positions are shown in Fig.5.54.  

   

   

   

   
Fig.5.54 For 200Hz, the calculated sound pressure. 

 

In Fig.5.54, the time point for receiving the first reflection wave from the surface 

of the porous materials is rT , which is plotted by red o.  

The time range  s eT T  for searching the stable standing wave field are 

represented by the blue dotted lines, where s r cT T M f  , e s cT T N f   and 

maxeT T . maxT  is calculated by using Eq.(5.9), represent by the red dotted line. In the 

FDTD calculation, the positions for the receiving points are from y=0.5m to y=4.5m. 

Then the relationship between the value of M and the value of N is obtained: 
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max

0

11 cfM N MN
c


                       (5.24) 

Table 5-28 The values for 
maxMN  

 50Hz 63Hz 80Hz 100Hz 125Hz 160Hz 200Hz 

maxMN
 1.60 2.02 2.57 3.21 4.02 5.14 6.43 

                     

In Fig.5.54, M is equal to 3, and N is equal to 2 for 200Hz. The searched 

amplitude of the standing wave is the maximum value of the sound pressures between 

the time range  s eT T , which is plotted by red *. 

By using the same method, the amplitudes of the standing wave at different 

positions can be obtained. When the frequency of the sound source 
cf  is 200Hz, the 

amplitudes of the standing wave ( 0.4m,0.5m 4.5mx y   ) are plotted, as shown in 

Fig.5.54.  

 

Fig.5.55 For 200Hz, the searched amplitude of the standing wave. 

 

From 50Hz to 160Hz, the searched amplitudes of the standing wave are plotted, 

as shown in Fig.5.55. The values of M and N in the calculation are given in table 

5-29.  

Table 5-29 The values of M and N in the calculation. 

 50 Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

M  0.6 1 1.5 2.2 2.8 2 3 

N  1 1 1 1 1 2 2 
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Fig.5.56 For different frequency, the amplitudes of the standing wave. 

 

In Fig.5.56, blue * represents the searched maximum values. Then these 

maximum values are averaged, which is the value of 
maxp , plotted by the upper 

dotted red line. Blue o represents the searched minimum values. Then these minimum 

values are averaged, which is the value of minp , plotted by the lower dotted red line. 

The value of maxp and the value of minp  are given in table 5-15. For 125Hz, 160Hz 

and 200Hz, the first minimum value of the amplitudes is not used. 

The calculated values of maxp , the calculated values of minp  and the calculated 

absorption coefficients FDTD  are presented in table 5-30. 

Table 5-30 The calculated absorption coefficients 

 50Hz 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz 200 Hz 

maxp
 1.6174 1.5465 1.4400 1.3088 1.1947 1.1354 1.1312 

minp
 0.2778 0.3522 0.5027 0.6246 0.7571 0.8490 0.8502 

FDTD
 0.500 0.604 0.767 0.875 0.9497 0.979 0.980 
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5.6.3 Contrast the measurement results and the FDTD analysis results 

The measured absorption coefficients 
meas , the calculated absorption 

coefficients 
FDTD , and the errors are presented in table 5-31. It can be found that the 

maximum value of the absolute errors is at 100Hz, which is 0.053. The maximum 

value of the relative errors is at 100Hz, which is 5.7%.  

             

Table 5-31 The measured absorption coefficients, the calculated absorption 

coefficients, and the errors. 

 50Hz 63 Hz 80 Hz 100Hz 125Hz 160Hz 200Hz 

meas
 0.484 0.637 0.793 0.928 0.986 0.997 0.981 

FDTD
 0.500 0.604 0.767 0.875 0.950 0.979 0.980 

FDTD meas 
 0.016 0.033 0.026 0.053 0.036 0.018 0.001 

FDTD meas meas  
 3.3% 5.1% 3.2% 5.7% 3.6% 1.8% 0.1% 

In Fig.5.57, the calculated absorption coefficients are plotted by the red dotted 

line, from 50Hz to 200Hz. The measured sound absorption coefficients are plotted by 

the black line.  

 

Fig.5.57 From 50Hz to 200Hz, the measured absorption coefficients and the 

calculated values. 
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5.7 Conclusion 

In this chapter, the measurements and simulations for the 4 kinds of the shaped 

porous material are conducted. The main conclusions are given as follows: 

(1) In the measurement, the samples are simply stacked together without using 

glue, which may cause some errors in the measured absorption coefficient. 

(2) For the 4 kinds of samples, the calculated absorption coefficients are 

compared to the measured values. The maximum value of the absolute errors is for 

sample D, which is 0.053. 

(3) The factor which significantly affects the result of the absorption coefficient 

is the start time point time point sT . The best value for sT  is 0.5s r cT T f  .  

(4) For the 4 kinds of samples, the amplitudes of the standing wave near the top 

position of the samples are affected by the shape of the samples. When search the 

minimum value of the amplitudes of the standing wave, it needs to be careful to 

decide whether the first minimum value is used for the calculation.  
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Chapter 6 CONCLUSION 

 

6.1 Summary of the dissertation 

The EF-FDTD algorithm in the porous material with rigid flame is developed. 

The algorithm treat the frequency-domain wave equations based on the equivalent 

fluid model, by combining the IIR filter design methods and the Z transform theories, 

and the formulations in time domain for FDTD analysis are obtained. For the 

frequency-domain equations, the effective bulk modulus and the effective density are 

frequency dependent, which are designed in the form of the IIR filters. By applying 

the Z-transform theories, the whole wave equations are transformed to Z domain, 

avoiding the complex convolution operation in time domain. In Z domain, new 

parameters are defined, which greatly simplified the equations in the Z domain. The 

simplified equations and the defined parameters are easily transformed to the time 

domain, and formulations for the EF-FDTD algorithm are obtained. The formulations 

for 1-dimensional EF-FDTD algorithm, 2-dimensional EF-FDTD algorithm and 

3-dimensional EF-FDTD algorithm are given.  

The thermal effects are reflected in the EF-FDTD formulations, by the 

parameters of the designed IIR filters of the effective bulk modulus. The viscous 

effects in the porous materials are reflected in the EF-FDTD formulations, by the 

parameters of the designed IIR filters the effective density. Once the IIR filter of the 

effective bulk modulus and the effective density is determined, there is no need to 

design them again if the discrete time interval in the FDTD analysis is changed. 

The EF-FDTD algorithm can also be simplified if the IIR filters designed for the 

effective bulk modulus and the effective density only have real poles.  
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The stability of the 1-dimensional EF-FDTD algorithm is discussed in detail. It is 

found that the stability of the algorithm is related with the parameters of the designed 

IIR filters, especially related with the number of the poles.  

In chapter 4, the 1-dimensional EF-FDTD algorithm is validated under the 

normal incidence of the sound by comparing the numerical analysis and the 

experiment. 2 layers of the porous materials are constructed by one layer of glasswool 

24k and one layer of glasswool 32k. The simulation and the measurement are 

conducted and compared by two cases (with air space and without air space). In the 

simulation, the boundary conditions are discussed. The calculated absorption 

coefficient generally agrees well with the measured result from 100 Hz to 6.4 kHz. 

The 2-dimensional EF-FDTDT algorithm is validated under the oblique 

incidence of the sound. 4 layers of the porous materials are simulated in the numerical 

analysis. The oblique incident absorption coefficients by the numerical analysis are 

compared with the theoretical values. The calculated surface impedance is very close 

to the theoretical value in broad frequency range. 

The simulations for the shaped porous material are discussed. When the shaped 

porous material is simulated, the staircase approximation can be adopted. The errors 

caused by the staircase approximation are discussed. It is found that when the discrete 

space interval becomes smaller, the error becomes smaller. 

In chapter 5, the methods for calculating the absorption coefficient of the 

acoustic wedges are analyzed. The measurements and simulations for the 4 kinds of 

the wedges are conducted. For the 4 kinds of wedges, the calculated absorption 

coefficient is very close to the measured values. In the calculation, the factors which 

may affect the result of the absorption coefficient are discussed. The time point sT  

for intercepting the calculated sound pressure is very important. The best value for sT  

is 0.5s r cT T f  . For the shaped samples, the sound field near the top position of 

the samples is very complicate, and the amplitude of the standing wave near the top 

position of the samples could be affected. When search the minimum value of the 
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amplitude of the standing wave, it needs to be careful to decide whether the first 

minimum value is used for the calculation.  

 

6.2 Future Directions 

Porous materials are frequently used in many places to reduce noise. Therefore, 

there exist some future directions for the prosed EF-FDTD algorithm.   

One is the designing of the sound absorbing wedges in the anechoic chambers. In 

some places, the wedges need to be coved by the cloth or the panel. How to predict 

the absorption coefficient of these wedges needs to be solved. Another direction is to 

obtain the optimal geometry, dimensions, and materials for sound absorbing structures 

from the proposed EF-FDTD algorithm. 

The other one is to study the behavior of the porous material under high sound 

pressure level. For this condition, the air flow velocity inside porous materials tends 

to be large that the flow resistance no longer follows Darcy low, which will affect the 

sound absorbing performance of porous material. The wave equations under high 

sound pressure level are given by Wilson and McIntosh. The methods used to deduce 

the EF-FDTD algorithm can be adopted in discrete these wave equations. The 

numerical analysis for the porous material under high sound pressure can be studied.  
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Appendix A. An example of designing 

IIR filter by MATLAB 

In this thesis,  eqK   and  eq   need to be designed in the form of IIR 

filters, which is expressed as: 

 
   

   

1

1 2 1

1

1 2 1
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              (A.1) 

where   is the angular frequency. The used form in the EF-FDTD algorithm is 

expressed as: 
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The function “invfreqs” in MATLAB can be used to design the IIR filter. The 

statement in the MATLAB is: 

                  [b,a]=invfreqs(H,w,n,m,[],iter) 

Here, b and a are the real numerator and denominator coefficient vectors of the 

transfer function; the vector H is the complex frequency response. Here H is the value 

of  eqK   or  eq  ; the vector w is the angular frequency. The value of w is 

between 0  and  , corresponding to   in Eq.(A.3); scalars n and m is the desired 

orders of the numerator and denominator polynomials;  the parameter iter is the 

number of the iterations in “invfreqs”  function.  The obtained IIR filter by using 

“invfreqs” function is expressed as: 

 
   

   

1

1 2 1

1

1 2 1

n n

n

m m

m

b j b j b
H j

a j a j a

 


 









  
 

  
                (A.3) 

where   is between o and  , which is different from   ( 2 f  ) in Eq.(A.1). 

The obtained form of the IIR filter by using “invfreqs” function is different from 

that used for the EF-FDTD algorithm. Therefore, one key point here is to obtain the 

IIR filter in Eq.(A.2) by using “invfreqs” function from the measurement data. 

The solutions are given as follows: 
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(1) The frequency is firstly scaled, and   is obtained. In the measurement, the 

highest frequency is denoted as fh.  The following statement in MATLAB is used: 

f_scale=fh*2; 

w1=2*pi*f/ f_scale; 

w1 is corresponding to   in Eq.(A.3), and the relationship between   and 

  is: 

_f scale


                           (A.4) 

(2) The “invfreqs” function is adopted:  

[b,a]=invfreqs(h,w1,n,m,[],iter); 

From this statement, Eq.(A.3) is obtained. 

(3) The following statement is used: 

[r,q,k]=residue(b,a);   

From this statement, the following expression is obtained: 
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By using Eq.(A.4), Eq.(A.5) becomes: 
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       (A.6) 

 (3) The following statement is used: 

q1=q* f_scale; 

r1= r* f_scale; 

From this statement, the following expressions can be obtained: 
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where q1 is corresponding to lq  in Eq.(A.7), and r1 is corresponding to lr  in 

Eq.(A.7). 
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One example for designing the IIR filter by using MATLAB is given as follows: 

clear ; 

close all; 

clc; 

c_air=342;   % sound speed 

rho=1.213;   % density  

z_air=c_air*rho;    

j=sqrt(-1); 

fl=100;   % the lowest frequency 

fh=6400;  % the highest frequency 

f=fl:fh;  % the frequency      

w0=2*pi*f; % the original angular frequency 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Rf=8000;    % flow resistivity  

a=1+0.07 *(f/Rf).^(-0.632); 

b= -0.107*(f/Rf).^(-0.632); 

zc_miki=z_air*(a+j*b); %  miki model 

c=1+0.109*(f/Rf).^(-0.618); 

d= -0.160*(f/Rf).^(-0.618); 

k_miki=(c+j*d).*w0/c_air; % wave number in  miki model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

bulk_material=w0.*zc_miki./k_miki;   

bulk_air=rho*c_air*c_air;    

bulk_normalized=bulk_material/bulk_air;  % the normalized bulk modulus 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f_scale=fh*2;     

w1=2*pi*f/f_scale;  % the sclaed  angular frequency 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n=2;    
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m=2; 

iter=30;     

[b,a]=invfreqs(bulk_normalized,w1,n,m,[],iter);   % design IIR filter for the normalized 

bulk modulus 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[r,q,k]=residue(b,a);   

r1=r*f_scale; 

q1=q*f_scale;   

k1=k; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

k2=k1*bulk_air;  

r2=r1*bulk_air; 

q2=q1; 

[b2,a2]=residue(r2,q2,k2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Num=polyval(b2,j*w0);  % numerator of the IIR filter 

Den=polyval(a2,j*w0);  % denominator of the IIR filter 

IIR_filter=Num./Den; 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure; 

semilogx(f,real(bulk_material),'r',f,real(IIR_filter),'k--'); 

hold on; 

semilogx(f,imag(bulk_material),'r',f,imag(IIR_filter),'k--'); 

legend('Miki model', 'IIR filter')  

xlabel('Frequency [Hz]');  ylabel('Effective bulk modulus');  
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Appendix B. Parameters for the design 

IIR filters 

In section 4.3, 4.4 and 4.5, Miki model is used to calculate the acoustical 

properties of the porous material81. In Miki model, the characteristic impedance 

 c
Z   and the wave number  k   of the porous material are given by 

     
0.632 0.632

0 0 1 0.07 0.107cZ c f j f   
     

          (B.1) 

     
0.618 0.618

0

1 0.109 0.160k f j f
c


  

     
           (B.2) 

In Eq.(B.1) and Eq.(B.2),   is the flow resistivity of the porous materials. Then 

effective bulk modulus  eqK   and the effective density  eq   are:  

     eq cK Z k                          (B.3) 

     eq cZ k                           (B.4) 

The parameters in the designed IIR filters for different porous materials are 

presented below. Here, the IIR filters are designed only having real poles between 100 

Hz and 5000 Hz. 

(1) 
-43000 Nm s     

Table B-1 For the effective bulk modulus, parameters in the designed IIR filter. 

Table B-2 For the effective density, parameters in the designed IIR filter. 

0k 
 q  r  

1.299242 -16283.561591 4259.657139 

 -2055.019833 1479.207258 

 -0.001588 2769.553538 

0k
 q  r  

140084.525293 -25415.892783 -135431078.779791 

 -4461.127146 -52067306.554010 

 -872.471579 -14197643.360053 
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(2) -45000 Nm s     

Table B-3 For the effective bulk modulus, parameters in the designed IIR filter. 

 

Table B-4 For the effective density, parameters in the designed IIR filter. 

0k 
 q  r  

1.319538 -20277.013884 5896.527672 

 -3067.221647 2111.060316 

 -0.001881 4609.648368 

 

(3) 
-48000 Nm s     

Table B-5 For the effective bulk modulus, parameters in the designed IIR filter. 

  

Table B-6 For the effective density, parameters in the designed IIR filter. 

0k 
 q  r  

1.337897 -26248.122851 8099.659365 

 -4541.795935 3080.183675 

 -0.020987 7310.634474   

 

 

 

0k
 q  r  

139596.513066 -28441.674057 -191419131.506220 

 -5299.054988 -68751311.567228 

 -1084.358710  -15276994.639450 

0k
 q  r  

139069.973321 -32164.869905 -264883001.994329 

 -6323.195398 -86741279.561776 

 -1336.767720 -15987099.092468   
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(4) -410000 Nm s     

Table B-7 For the effective bulk modulus, parameters in the designed IIR filter. 

    

Table B-8 For the effective density, parameters in the designed IIR filter. 

0k 
 q  r  

1.351565 -27749.383390 9316.372904 

 -4997.915007 3430.863025 

 -0.013373 9059.545631 

 

(5) 
-415000 Nm s     

Table B-9 For the effective bulk modulus, parameters in the designed IIR filter. 

   

Table B-10 For the effective density, parameters in the designed IIR filter. 

0k 
 q  r  

1.330098 -52752.999544 16388.064277 

 -8223.757498 5969.940785 

 -0.014820 13583.994837 

 

 

 

0k
 q  r  

138797.849563 -34365.130589 -309890370.339827 

 -6916.535420 -96038805.285083 

 -1482.707892 -16255672.734029 

0k
 q  r  

138286.098409 -39389.577011 -414906983.795335 

 -8222.812162 -114040896.095543 

 -1808.632084 -16728408.780645 
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(6) -420000 Nm s    

Table B-11 For the effective bulk modulus, parameters in the designed IIR filter. 

   

Table B-12 For the effective density, parameters in the designed IIR filter. 

0k 
 q  r  

1.322781 -78464.610409 24856.494540 

 -10761.779442 7958.490749 

 -0.047831 18141.520380 

 

  

0k
 q  r  

137934.210098 -44077.652532 -514398081.234544 

 -9374.153903 -127712342.986942 

 -2104.643816 -17132851.415772 
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Appendix C. EF-FDTD algorithm with 

High accuracy  

In order to raise the accuracy of the EF-FDTD algorithm, f x   can be 

expressed as45: 

3 1 1 3
27 27

2 2 2 2

24

f x x f x x f x x f x x
f

x x

       
                           

 

   (C.1) 

Then, for the wave equation: 

  0
eq
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x y z
 

   
     

   
               (C.2) 

The EF-FDTD algorithm can be written as: 
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For the equation: 

  0
eq

p
j u

x
  


   


                         (C.7) 

The EF-FDTD algorithm can be written as: 
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