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Abstract

Analysis of the many-body system using field theory is one of the most fundamental
aspects of contemporary physics and mathematical physics. Bosonization is an exem-
plar, as it enables one to analyze fermionic theory, typically one spatial dimension, as
bosonic field theory whose low energy behavior can be easier to obtain.

In this thesis, we demonstrate the nontriviality of Dirac fermion coupled with U(1)
gauge field and its bosonization. We propose a new bosonization scheme which resolves
all the difficulties of earlier works, such as global anomaly and mass condensation para-
dox. Moreover a spin chain with a twisted boundary condition, such as the XXZ spin
chain with a twisted boundary condition, is successfully analyzed by our bosonization
scheme.

As a related problem, we have numerically calculated the expectation value of the
polarization operator, or polarization amplitude, of 1d spin chains which are described
by Tomonaga-Luttinger liquid. This polarization amplitude is the expectation value of
the twist operator which generates the large gauge transformation of the system. We
found nontrivial power-law scalings of the polarization amplitude. Our bosonization
scheme naturally leads to the correct bosonized expression of the twist operator, which
gives scaling behaviors consistent with our numerical results. These findings reveal
new connections between gauge field theory and lattice models.



Contents

0.1 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Bosonization and twisted boundary condition of spin chain 8
1.1 Bosonization without gauge field . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Field theory for XXZ spin chain with twisted boundary condition . . . 10

2 Bosonization of fermion coupled with gauge field 13
2.1 Problems in the bosonized representation of gauged fermion . . . . . . 13

2.1.1 Bosonization with background gauge field . . . . . . . . . . . . 14
2.1.2 Gauge non-invariance and mismatching of anomaly and parti-

tion function of the preceding action S ′[A] . . . . . . . . . . . . 14
2.1.3 Mismatch of U(1) electromagnetic current of the preceding ac-

tion S ′′[A] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 New bosonization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Cancellation of boundary current . . . . . . . . . . . . . . . . . 16
2.2.2 Gauge invariance, matchings of anomaly and equation of motion 17
2.2.3 Resolution of Dirac mass condensation paradox . . . . . . . . . 18

2.3 Verification of new bosonization . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Spectrum with a flat background gauge field . . . . . . . . . . . 19
2.3.2 Bosonization: Duality of partition function . . . . . . . . . . . . 21
2.3.3 Large gauge transformation for fermion . . . . . . . . . . . . . . 21

2.4 Twisted XXZ chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Correspondences between quantum XXZ chain and Potts model 22
2.4.2 Parafermion operators . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 An analysis of twisted higher spin XXZ model . . . . . . . . . . . . . . 24
2.6 Summary of chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Nontriviality of the bosonized representation of large gauge transfor-
mation 27
3.1 Resta polarization amplitude . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Free fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Controversial representations of the polarization operator . . . 31

3.2 XXZ model with a weak interaction . . . . . . . . . . . . . . . . . . . . 33

1



3.3 Mismatch between naive bosonization analysis and numerical results . . 34
3.3.1 XXZ chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 J1-J2 XXZ chain tuned at the Gaussian point . . . . . . . . . . 35
3.3.3 Gutzwiller-Jastrow wave function . . . . . . . . . . . . . . . . . 37

3.4 Analytical derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Summary of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Conclusion and future problem 45

A J1-J2 model 47

2



0.1 Acknowledgement

First, I thank Masaki Oshikawa as a supervisor. I am afraid that I might be a little
bit noisy, critical and different from other good students for him, so I especially thank
his tolerance toward my attitude and his honesty as a science researcher. I thank his
careful reading of the manuscript and useful comments. I also thank other non-official
supervisors, Kazumitsu Sakai, Raoul Santachiara, and Marco Picco.

There exist a lot of researchers whom I worked with in the period of the Ph.D.
course. As a group member of Oshikawa group, I would like to thank all group members,
especially for Ryohei Kobayashi, Yuya Nakagawa, and Yuan Yao. It is a great pleasure
for me to thank Ying-Jer Kao, Pochung Chen, and Chung-Yu Lo in Taiwan group. I
would like to thank Haruki Watanabe and Chihiro Matsui, for the fruitful discussion.
Finally, I also would like to thank our group secretary, Atsuko Tsuji.

3



0.2 Introduction

Bosonization of the fermionic system coupled with gauge field is one of the most im-
portant problems in condensed matter physics and high energy physics during these
decades. There exist a lot of established works related to this problem. Gauged Wess-
Zumino-Witten (WZW) model is one of the most famous models which is proposed in
those works [1]. We mainly discuss conformal field theory which corresponds to critical
or gapless many-body systems, but there exist a lot of related established works on
gapped topological systems.

Historically, the correspondence between bosonic field theory and fermionic the-
ory was established in the research of massive-Thiring model and sine-Gordon models
[2, 3]. In this correspondence, we can identify all of the field theoretic quantities, like
energy spectrum and operator contents, of both of the theories. There exist lattice
models which realize this correspondence, for example S = 1

2
XXZ spin chain [4]. In

general, bosonization is practically useful to analyze fermionic systems, because the
bosonization enables one to calculate correlation function or critical exponent of the
interacting system which are hard to study in fermionic representation. In mathemat-
ical terms, the bosonization called Wakimoto free field representation is the significant
object of quantum representation theory which is closely related to the representation
of quantum spin chains and statistical mechanical models [5, 6].

As a generalization of this correspondence, the nonabelian bosonization was estab-
lished by Witten [7]. Moreover gauged WZW model was proposed and analyzed as a
bosonic field coupled to gauge fields. Goodard-Kent-Olive (GKO) coset WZW model
is obtained by integrating out the gauge fields of this gauged WZW models [8]. GKO
coset WZW model gives a construction of a wide class of conformal field theories and
it gives an efficient clue and understanding of the lattice models at criticality.

Conversely, it is also important to analyze the lattice models themselves. The
analysis of the lattice models can have nontrivial implications on the effective field
theories. From this perspective, the relation between quantum field theory and Lieb-
Shultz-Mattis (LSM) theorem is studied recently [9, 10, 11]. The central obeject of
LSM type argument is the expectation value of the following twist operator for closed
system,

U = exp

(
2πi

L

∑
j

jnj

)
(0.2.1)

where nj is fermion (or boson) number operator at site j and L is the system size. For
the later use, we note here the same operator for spin systems,

U = exp

(
2πi

L

∑
j

jSz
j

)
(0.2.2)

where Sz
j is the z component of the SU(2) generator at site j.

For condensed matter physicists, how to characterize quantum phases is one of
the most important problems. The LSM theorem and its generalizations have been
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explored, because they can impose strong constraints on gapped quantum phases [12].
Related to quantum field theory, it was proposed that the one-site translation symmetry
of the lattice model corresponds to global internal symmetry of the field theory in the
thermodynamic limit [10, 11, 13]. In this correspondence, we can understand the phase
factor of twist operator of LSM type argument as quantum anomaly of this global
internal symmetry. We explain here the details of these connections between the LSM
argument and the field theory.

The key assumption of the LSM type argument is the insensitivity of the gapped
system under flux insertion or twisted boundary condition. More precisely, we assume
there exists no gap closing under flux insertion. This condition may be usual for
the gapped system, but it is not trivial to prove. Recently, Watanabe has probed
such insensitivity of energy spectrum under the existence of the gap without flux [14].
He demonstrated the effect of twisted boundary to the energy gap is exponentially
small. Moreover, he has also proved the insensitivity of correlation function under flux
insertion.

With respect to the renormalization group, it might be natural to guess such in-
sensitivity under flux insertion at a fixed point. However, the analysis of the critical
spin chain, such as XXZ model, shows the insensitivity is far from trivial. There exist
papers which show the behavior of spin chain under flux insertion or twisted boundary
condition by numerical calculation and Bethe ansatz [15, 16, 17]. They have shown the
sensitivity of the theory under flux insertion in the degree of the conformal anomaly and
the spectrum. The degree of these change is linear to twist angle Φ. Historically, the
study of twisted fermion and twisted spin chain were done independently. The former
was done in high energy community [18], and the later was done in condensed matter
and integrable model community. A phenomenological field theoretic understanding of
these results was proposed by Kitazawa [19]. However, there has ever existed no re-
search which establishes his work with respect to gauge theory and bosonization. With
respect to the perturbation theory, the twisted boundary condition induces a marginal
perturbation with conformal dimension 2 which keeps the system at criticality.

Here we explain the property of the twist operator which is the central object in
the LSM type argument. This operator, denoted as U , induces a momentum shift.
If we interpret it with respect to gauge theory, it can be identified as large gauge
transformation[12]. The characteristic of this operator ensures the equivalence of two
pictures, flux insertion and twisted boundary condition. By assuming one-site transla-
tion symmetry for the system, one can show this operator obtains the phase factor un-
der one site translation. Recently, as we have noted, some condensed matter physicists
have shown that this phase factor can be related to the global anomaly of (fermionic)
quantum field theory [11, 13]. The correspondence is based on the representation of
twist operator as monopole insertion of fermionic field theory. However, the bosonized
expression of this operator is still unclear in spite of its importance [20]. Therefore the
unified understanding with respect to bosonized gauge theory is desirable, but it was
still lacking. Moreover, there exist some confusions about the bosonized representation
of fermion coupled with gauge field.

5



Turning back to the gauge theory and CFT, it might be natural to expect the
equivalence of the model between fermion coupled with gauge field and gauged WZW
model. However, the equivalence of such a “conventionally gauged” WZW model with
an action SWZW[A] and the adjoint-represented fermion in the corresponding gauge
field with SDirac[A] was questioned by Smilga (and Nekrasov) [21, 22]. It stems from an
apparent contradiction in the behaviors of the fermionic bilinear condensation between
these two models. More specifically speaking, the Dirac mass term does not gain ex-
pectation value in the presence of more than two instantons, while the bosonized term
corresponding to the Dirac mass is always condensed. Thus the conventional gauged
WZW models cannot be bosonization of complex fermions in the presence of general
gauge field configurations, e.g. gauge field with nonzero instantons [21, 22]. Moreover,
it was shown that the U(1) boson obtains mass term by integrating out background
gauge field. This result itself is quite different from G/G coset WZW model descrip-
tion which results in topological field theory by integrating out the background gauge
field [23, 24]. Therefore, it is necessary to modify the bosonic gauged WZW models so
that they can reproduce a consistent path integral with their fermionic counterparts.
Furthermore, as we will see in this paper, the quantum anomaly, e.g. global chiral
anomaly of Dirac fermions coupled to background gauge field cannot be reproduced in
the gauged WZWmodel. Unfortunately, related to LSM theorem, almost no condensed
matter physicist has ever paid attention to such an inconsistency of bosonization. How-
ever, the functional bosonization, which results in the same form of the bosonization
by Smilga in some cases, is considered and applied to some variety of fermionic systems
coupled with gauge fields in higher dimensions [25].

The field theoretic model we consider is Dirac fermion coupled with U(1) back-
ground gauge field described by the following form of the action,

SDirac[A] =

∫
dtdx iψ†γ0γµ(∂µ − ieAµ)ψ. (0.2.3)

This form of the action is in almost all of the textbook of quantum field theory, but
few works consider the effect of the gauge field.

In this thesis, we concentrate on the two aspects of these problems about bosoniza-
tion of fermion coupled with gauge field. One is the consistency of the field theory
itself. The second is the realization of field theory on the lattice model, especially
the description of large gauge transformation, and twisted boundary condition of XXZ
chain.

The rest of this thesis is organized as follows.
First, in chapter 1, we review and introduce the most basic bosonization of Dirac

fermion and its application to 1d spin chain with twisted boundary condition.
In chapter 2, we show the problem of existing bosonization, related to the global

anomaly, the definition of current and the operator contents of the theory. To resolve
these problems, we propose the following form of action as the bosonization of Dirac
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fermion coupled with U(1) gauge field.

Sboson[A] =

∫
T 2

[
1

8π
(∂φ)2 − i

e

2π
φdA

]
−iϵ

µν

2π

(∫
cycleµ

dφ

)(∫
cycleν

eA

)
. (0.2.4)

The same form of the bosonized action was derived earier in [26] by using complex
algeraic geometry. This thesis verifies their results by modern understanding of the
correspondence between field theory and lattice models. For example, we show our for-
malism is consistent with the Bethe ansatz results of spin chain with twisted boundary
condition. This chapter is the main part of this thesis. It suggests the new and general
framework of bosonization which is consistent with lattice model and the anomaly of
fermionic theory.

Next, in chapter 3, we discuss other realization of fermion coupled with gauge
field. More precisely, we show the nontriviality of the expectation value of LSM twist
operator. This expectation value is known as polarization amplitude (or polarization)
in the modern theory of polarization [27, 28]. The consistency of field theory and the
numerical results of the lattice models is checked with respect to polarization.

We devote the first section of chapter 2 and 3, section 2.1 and 3.1, to summarize
the problems of existing works.

Finally, we mention some future problems and the conclusion in chapter 4.
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Chapter 1

Bosonization and twisted boundary
condition of spin chain

1.1 Bosonization without gauge field

In this section, we introduce the most basic example of bosonization of Dirac fermion
without gauge field. The equality of two representations is shown in the level of the
torus partition function.

To make the paper self-contained, we give the Minkowskian action of free boson
and Dirac fermion:

S
(b)
0 = −

∫
dtdx

1

8π
[∂µφ(t, x)∂

µφ(t, x)]

S
(f)
0 =

∫
dtdx iψ†γ0γµ∂µψ, (1.1.1)

so that Z =
∫

D(ψ, ψ̄) exp(iS), and the Minkowskian signature takes the form as η =
diag(−1,+1) with {γµ, γν} = −2ηµν and γ’s being real, e.g. γ0 = σ1 and γ

1 = iσ2 where
σ⃗ denotes the Pauli matrices. Then the chirality can be defined as γ3 ≡ γ0γ1 = −σ3.

Next, we will normalize several constants and fix the conventions.
When Aµ = 0, i.e. the external charge U(1) electromagnetic field is vanishing, the

bosonization takes the form as:

ψ(z) =
1√
L

: exp[−iϕ(z)]:, (1.1.2)

ψ̄(z̄) =
1√
L

: exp[iϕ̄(z̄)]:, (1.1.3)

φ ≡ ϕ(z) + ϕ̄(z̄), (1.1.4)

φ ∼ φ+ 2π, (1.1.5)

in which “::” denotes the normal ordering and z ≡ x1 + ix0 in Euclidean signature,
namely (x0, x1) ≡ (it, x), and the system scale L is included so that the ψ(z) and ψ̄(z̄)
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have a scaling independent correlation function, where bars denote complex conjugation
and

S
(b)
0 =

∫
1

8π
(∂φ)2; (1.1.6)

S
(f)
0 =

∫
iψ†γ0

(
γ0i∂0 + γ1∂1

)
ψ, (1.1.7)

where we write γµ in its Minkowskian form while space-time coordinates in the Eu-
clidean signature, which is the reason that the form of S

(f)
0 is asymmetric, and Z =∫

exp(−S). We can also write down the correspondence of U(1) electromagnetic cur-
rent operators:

eJν =
e

2π
ϵµν∂µφ. (1.1.8)

Bosonization of Dirac fermion is completed by showing the two theories are equiv-
alent in the algebraic sense on the torus T 2 parametrized by τ , namely possessing the
same spectrum. To do so, we must sum up all the winding numbers on the bosonic
side:

Z
(b)
0 =

∑
n,n′∈Z

∫
Dφ exp(−S(b)

0 [φ]|n,n′),

φ(z, z̄) = φ(z + 1, z̄ + 1)− 2πn;

φ(z, z̄) = φ(z + τ, z̄ + τ̄)− 2πn′. (1.1.9)

It has been proven that the spectrum is equivalent with the fermionic one as long as
we sum up the spin structures of Dirac fermion:

Z
(f)
0 =

∑
s1,s2∈{−1,+1}

∫
D(ψ, ψ̄) exp(−S(f)

0 [ψ, ψ̄]|s1,s2);

ψ(z + 1) = −s1ψ(z); ψ̄(z̄ + 1) = −s1ψ̄(z̄);
ψ(z + τ) = −s2ψ(z); ψ̄(z̄ + τ̄) = −s2ψ̄(z̄). (1.1.10)

Then

Z
(b)
0 (τ) = Z

(f)
0 (τ) =

4∑
i=1

1

2

(∣∣∣∣θi(τ)η(τ)

∣∣∣∣2
)
, (1.1.11)

where the Dedekind function is defined as η(τ) ≡ q1/24
∏∞

n=1 (1− qn) and θi(τ)’s are
the Theta functions [29] with q ≡ exp(i2πτ) and q̄ = exp(−i2πτ̄). It should be noted in
advance that, when there is a nonzero background gauge field, the summation weight
in Eq. (1.1.11) is not equal for every spin structure to be shown later.
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1.2 Field theory for XXZ spin chain with twisted

boundary condition

The effect of the twisted boundary condition of spin 1
2
XXZ chain has been considered

in the context of integrability. Numerical calculation of this model was achieved by the
seminal work by [15]. The excitation spectrum is considered in [30]. The field theoretic
analysis and their relation to quantum group were considered by [31, 32].

The more combinatorial approach on this effect was considered in the context
of polynomial and integrable field theory. Combinatorial equivalence of this boson-
fermion correspondence is called Rogers-Ramanujan identity [33, 34]. This identity
relates the character of minimal model to q deformed fermionic sum.

However, except for the work by Kitazawa [17, 19], such a boson-fermion correspon-
dence has not been considered in the presence of a background gauge field. The reason
for the lack of studies may be related to the interpretations of background gauge fields
in the communities. The interpretation of such gauge transformation for condensed
matter physicists is different from that of high energy physicists in the sense that the
former does not integrate out the background gauge field. Kitazawa has numerically
and phenomenologically shown that the effect of twisted boundary condition, which is
induced by background gauge field, can be described by the effect of the background
charge of free boson. At this stage, it is difficult to understand the equivalence of
fermion with flux and boson with background charge. Hence the more systematic
derivation of his results is desirable.

We review here the discussion by Kitazawa, and point out some subtlety in his
argument. First of all, the Hamiltonian of XXZ Heisenberg model with length L is,

HXXZ = J

L∑
j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 + (cos γ)Sz

jS
z
j+1

)
. (1.2.1)

γ is the anisotropy paramter of the system. The low energy effective action of this
model is given by free boson with Lagrangian,

S =
1

8πK

∫
dxdt

(
(∂tφ)

2 + (∂xφ)
2) . (1.2.2)

K =
π

2 (π − γ)
. (1.2.3)

This Lagrangian gives a class of c = 1 conformal field theory which is parametrized by
the Luttinger parameter K. In condensed matter physics, the system described by this
Lagrangian is called Tomonaga-Luttinger liquid (TLL). We mention here several special
points in the TLL class, corresponding to specific values of the Luttinger parameter.
K = 1 corresponds to free fermionic point. At this point, the system can be described
by free fermion by applying the Jordan-Wigner transformation. For discussions later,
it should be noted that the Lagrangian does not contain any perturbation even at
the level of quantum field theory. Apart from this point, the system contains the

10



perturbation effect of Umklapp term cos 2nϕ, n = integer. K = 1
2
point is SU(2)

point. The model is expected to be described by SU(2)1 WZW model but it suffers
from logarithmic correction. Haldane-Shastry model is a lattice model described by
SU(2)1 WZWwithout logarithmic correction. We treat the generalization of this model
for general Luttinger parameter in chapter 3.

Here, we introduce the deformed Hamiltonian with flux insertion as,

HXXZ,Φ
L
= J

L∑
j=1

(
e−iΦ

LS+
j S

−
j+1 + ei

Φ
LS+

j S
−
j+1 + cos γSz

jS
z
j+1

)
. (1.2.4)

The field theoretic description of this model is the central concern of this thesis.
Then the transformation of magnetic and electric charge n,m under flux insertion

Φ
L
were assumed:

n→ n, (1.2.5)

m→ m+
Φ

2π
(1.2.6)

The corresponding magnetic and electric operator is Vn,m = einθ+imφ. θ is the dual
field of free boson with compactification θ = θ + 2π. For the later use, we show here
the Hamiltonian of this model,

H =
K

2π

∫
dx (∂xθ)

2 +
1

8πK

∫
dx (∂xϕ)

2 . (1.2.7)

with the commutation relation,

[ϕ(x), ∂xθ(y)] = 2πiδ(x− y). (1.2.8)

We have chosen the units so that the spin-wave velocity, which depends on the details
of the model, becomes unity.

Let us notify here the expectation value of the most basic operators,

⟨φ(x)φ(y)⟩ = Klog|x− y|. (1.2.9)

⟨θ(x)θ(y)⟩ = 1

4K
log|x− y|. (1.2.10)

Hence the vertex operator Vn,m has the conformal dimension hn,m = Km2 + 1
4K
n2

In spin chain, the flux insertion assigns the boundary condition of the XXZ spin
chain to the following form by the unitary transformation of the Hamiltonian, U− Φ

2πHXXZ,Φ
L
U

Φ
2π ,

S±
L+1 = e±iΦS±

1 , (1.2.11)

with 0 < Φ < π for simplicity in this section and U as (0.2.2).
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Next we assume the folowing form of Lagrangian which is consistent with the pre-
vious transformation law of the vertex operator under infinite cylinder geometry,

S =
1

8πK

∫
dxdt

{
(∂tφ)

2 + (∂xφ)
2}+ i

Φ

2π
(φ (t = ∞)− φ (−t = ∞)) (1.2.12)

Actually, this form of Lagrangian is quite similar to that of Dotsenko-Fateev models
[5] with the action,

S =
1

8π

∫
dxdt

{
(∂tφ)

2 + (∂xφ)
2}+ 2iα0φ(∞). (1.2.13)

Hence the central charge of this bosonic model with flux insertion can be obtained as
the following form,

c = 1− 12

(
Φ

2π

)2

K. (1.2.14)

At this stage, we will introduce the state corresponding to the vertex operator. The
action gives the transformation law of state from usual free boson |n,m⟩0 to twisted
one as,

|n,m⟩Φ → |n,m+
Φ

2π
⟩0. (1.2.15)

Energy excitation from vaccum without twist is,

En,m(Φ)− E0,0(0) = Km2 +
n2

4K
(1.2.16)

The similarity between (1.2.12) and (1.2.13) suggests some correspondence between
twisted XXZ chain and Q state Potts model, because the latter can describe some part
of Q state Potts models. Moreover, the partition function of Q state Potts model on
torus was calculated by twisted free boson [35]. More recently, it was proposed the
analytical continuation to Q > 4 is also valid [36].

For the later discussion, we discuss the transformation of θ → θ + 2Φxπ
L

. This
transformation changes the action to free bosonic theory without charge insertion.
However, the winding condition and momentum are changed by this transformation.
This transformation is called large gauge transformation. In the fermionic theory, this
large gauge transformation for the lattice model is known to be described by (0.2.1),

U = exp

(
2πi

L

∑
j

jnj

)
. (1.2.17)

with nj as fermion number operator at site j.
Finally, in that paper [19] and related papers [15, 16], the correspondence between

numerical results and the analytical calculation for central charge and critical exponents
are checked with consistency. However, the derivation of the bosonic theory without
numerical result is still lacking.
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Chapter 2

Bosonization of fermion coupled
with gauge field

2.1 Problems in the bosonized representation of gauged

fermion

As we have discussed in the previous introduction part or chapter 0, there exist several
problems for the bosonization of Dirac fermion coupled with gauge field. In this thesis,
we propose the new bosonization which is consistent with the following characteristics
of fermionic theory.

1. Gauge invariance
2. Anomaly
3. Definition of current
4. Mass condensation of fermion
Here we summarize the discussion of this section for the comprehensive understand-

ing of the readers.
For the candidate of bosonized action, the following two forms of action was con-

sidered by preceding works [21, 22].

S ′[A] = S
(b)
0 + i

∫
e

2π
Aνϵ

µν∂µφ. (2.1.1)

S ′′[A] = S ′[A]−i
∫

e

2π
ϵµν∂µ[φAν ] = S

(b)
0 − i

∫
e

2π
φF01. (2.1.2)

We note here the difficulties of these two actions. The action S ′[A] suffers from
gauge noninvariance, mismatch of the anomaly to gauged fermion, and mass conden-
sation paradox. The action S ′′[A] was proposed by Smilga to resolve these problems,
but it does not give the correct definition of U(1) current.

To resolve all of these problems, we introduce a new bosonized action. Finally, in
the next section, the equivalence between our bosonized theory and gauged fermion is
shown by the equivalence of these partition function.
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2.1.1 Bosonization with background gauge field

For bosonization on torus without background gauge field, it is sufficient to consider
bosonization on a Riemann sphere and the calculations can be related to the case on
torus by a standard treatment [29]. However, it turns out there exists no straightfor-
ward approach to bosonization with background gauge field.

In this part, we will discuss the bosonization of a single complex Dirac fermion with
external background electromagnetic field in the Minkowskian signature:

SDirac[A] =

∫
dtdx iψ†γ0γµ(∂µ − ieAµ)ψ, (2.1.3)

which, in the Euclidean space-time, becomes

SDirac[A] = S
(f)
0 + ie

∫ [
(ψ†γ0γ0ψ)A0 + (−iψ†γ0γ1ψ)A1

]
,

where we have fixed the notation that only γ matrices are Minkowskian while all vector
fields Aµ and space-time are Wick-rotated as Euclidean. Since the additional term is
i
∫
eJµAµ and observing Eq. (1.1.8), one reasonable candidate of the bosonized action

is

S ′[A] = S
(b)
0 + i

∫
e

2π
Aνϵ

µν∂µφ. (2.1.4)

Actually this form of action can be thought of as bosonic coupling to background gauge
field. More detailed calculation can be seen in [37]. However, S ′[A] has the following
two problems that 1) S ′[A] is gauge-dependent [22] and 2) it has no chiral anomaly
factor. In other words, we cannot think of this action as “bosonization”.

2.1.2 Gauge non-invariance and mismatching of anomaly and
partition function of the preceding action S ′[A]

To see the gauge dependence of S ′[A] , let us introduce a uniform electromagnetic
tensor field:

F01 ≡ ϵµν∂µAν =
2π

|Imτ |
, (2.1.5)

where |Imτ | is the area of the spactime torus. To get a local expression of Aµ, we
introduce a Dirac-string singularity, e.g. at x∗ by some gauge choice. Then

i

∫
e

2π
Aνϵ

µν∂µφ

= i

∫
e

2π
ϵµν [∂µ(φAν)− (∂µAν)φ]

= ie[φ(x∗)− φave], (2.1.6)

14



where φave ≡
∫
φ/|Imτ | is the average value of φ upon the torus. We could see that

the naive imposing the duality mapping of current in Eq. (1.1.8) does not give a gauge
invariant theory on the bosonic side.

Furthermore, the action S ′[A] suffers from the chiral anomaly mismatch of the
fermionic action. The chiral transformation for the bosonic field is φ → φ + const..
Obviously, the bosonic theory and the partition function defined by S ′[A] is invari-
ant under such a transformation. Therefore, its chiral anomaly does not match that
of a single complex fermion. One direct result from such an anomaly mismatching
is the discrepancy between the partition function obtained from integrating out Dφ
with S ′[A] and the fermionic partition function in the appearance of nonzero flux:∫
eF01/(2π) ̸= 0. By Atiyah-Singer index theorem, there must exist at least one zero

mode of the Dirac operator. Then, formally,

ZDirac[A] ∝
∏
k∈K

λk = 0, (2.1.7)

where {λk}k∈K is the spectrum of Dirac operator.
However,

∫
Dφ exp(−S ′[A]) ̸= 0 generically. As a typical example, let us choose

the following gauge-field configuration {Ãµ}:{
eÃI

0 = 0, eÃI
1 =

2π
ϵ
(x0 − x̃0), if x⃗ ∈ UI;

eÃII
0 = eÃII

1 = 0, if x⃗ ∈ UII.
(2.1.8)

Here UI ≡ [x̃0, x̃0 + ϵ] × [0, L1) and UII = ŪI is its complement. It can be calculated
that

∫
F̃01/(2π) = 1 thereby Z(f)[Ã] = 0.

When we take ϵ→ 0+, it is straightforward to check that Z ′[Ã] ≡
∫

Dφ exp(−S ′[Ã]) =∫
Dφ exp(−S(b)

0 ) = Z
(b)
0 , where Z

(b)
0 is the partition function of free boson without

background gauge field in Eq. (1.1.11) which is nonzero. Therefore, Z ′[Ã] ̸= Z(f)[Ã].
Thus we come to the second candidate of bosonization by a total derivative addition

as a counterterm:

S ′′[A] = S ′[A]−i
∫

e

2π
ϵµν∂µ[φAν ] = S

(b)
0 − i

∫
e

2π
φF01,

which is explicitly gauge-invariant since the curvature tensor F01 is gauge-independent.
This form of action was first introduced in [38] and extensively considered in [21]. It
is valid if we think about the trivial topological sector or zero winding number of φ.
Moreover, it is consistent with functional bosonization. We can obtain a similar form
of action for the representation of polarization [39]. Actually it is consistent with the
anomaly argument of LSM theorem [11, 13].
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2.1.3 Mismatch of U(1) electromagnetic current of the pre-
ceding action S ′′[A]

However, since φ is not single-valued, the current Jµ might not be properly coupled
with Aµ in S ′′[A]. Indeed, let us take the functional derivative:

δieAρS
′′[A] =

1

2π
ϵµρ∂µφ− δAρ

∫
1

2π
ϵµν∂µ[φAν ]

= Jρ + n′δ(x0 + 0+)ϵ0ρ + nδ(x1 + 0+)ϵ1ρ,

where, without loss of generality, just for simplicity, we have assumed the (Euclidean)
rectangular spacetime (before quotiented to the torus) [0, L0] × [0, L1]. The form
of δ-functions depends how we distribute the unity between two equivalent bound-
ary point and, by no means, will affect the following results. To see why the term
“−δAρ

∫
ϵµν∂µ[φAν ]/2π” only gives the additional boundary current “n′δ(x0−L−

0 )ϵ
0ρ+

nδ(x1 − L−
1 )ϵ

1ρ”, we perform the integration in the following form:∫
M

1

2π
ϵµν∂µ[φAν ] =

∫
M

1

2π
d(φA) (2.1.9)

=

∫
∂M

1

2π
φA+

∑
i

∫
∂Ui

1

2π
φA(i).

where we takeM as a rectangular from which the torus is made by conventional pasting
procedure. We can see that the rest bulk part “

∑
i

∫
∂Ui

1
2π
φA(i)” is gauge dependent,

in which Ui’s, where A(i) is locally well-defined depending on gauge choices, cover M .
Then, ∑

i

∫
∂Ui

1

2π
φA(i) =

∑
i,j

′
∫
∂Ui∩∂Uj

1

2π
φ t−1

ij dtij, (2.1.10)

where
∑′

i,j denote no double-counting with proper orientations of ∂Ui∩∂Uj’s, and tij is

the transition function defined by Ai = Aj+ t
−1
ij dtij. On the other hand, δAρ(t

−1
ij dtij) =

δAρ(Ai −Aj) = 0, which implies such a gauge-dependent bulk contribution induced by

Eq. (2.1.10) vanishes: δAρ

[∑
i

∫
∂Ui

φA(i)/(2π)
]
= 0. The first term

∫
∂M

φA/2 in the

last line of Eq. (2.1.9) gives the “boundary” current:

−δAρ

∫
∂M

1

2π
φA = δAρ

[∫ z=1

z=0

n′A−
∫ z=τ

z=0

nA

]
= n′δ(x0 + 0+)ϵ0ρ + nδ(x1 + 0+)ϵ1ρ.

2.2 New bosonization scheme

2.2.1 Cancellation of boundary current

To cancel the additional “boundary” coupling which induces the boundary current
(−n′δ(x0 + 0+)ϵ0ρ − nδ(x1 + 0+)ϵ1ρ), we tentatively take into consideration the follow-
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ing modified action Sboson so that (1/i)δAρSboson = Jρ:

Sboson|n,n′ = S ′′[A] + i

∫
eAρ

[
δAρ

∫
∂M

1

2π
φA

]
=

∫ [
1

8π
(∂φ)2−i e

2π
φϵµν∂µAν

]
+i2π(−n′α+nβ), (2.2.1)

where

α ≡ e

2π

∫
cycle1

dx1A1(x
0 = 0, x1);

β ≡ e

2π

∫
cycle0

dx0A0(x
0, x1 = 0), (2.2.2)

where “cycle0,1” are two generating cycles of the underlying torus along real axis and
τ direction, respectively. Alternatively in a compact way,

Sboson[A] = S
(b)
0 − i

e

2π

∫
T 2

φdA

−iϵ
µν

2π

(∫
cycleµ

dφ

)(∫
cycleν

eA

)
. (2.2.3)

This is the new action of the bosonized theory we propose and verify in this thesis [26].
Actually, this form of action is consistent with the previous discussion by Kitazawa.

If we take uniform flux under β = 0, and τ → ∞, then this action is,

Sboson[A] = Sb
0 − i

α

2π

(∫
cycle0

dφ

)
(2.2.4)

2.2.2 Gauge invariance, matchings of anomaly and equation
of motion

As one of the several necessary checks, Sboson[A] obviously still has the correct chiral
anomaly factor exp

(
iν
∫
eF01

)
as S ′′[A] by the chiral transformation φ → φ + 2πν.

In addition, it is also gauge-invariant since the coefficient of 2πα and 2πβ is integer
despite of the fact that α and β are only gauge invariant modulo Z or only (α mod Z)
and (β mod Z) are gauge invariant. Furthermore, Sboson[A] gives a correct equation
of motion: δφSboson[A] = −∂2φ/(4π) − ieF01/(2π) = 0 beause n′ and n are integer-
valued which implies they are insensitive and invariant for any infinitesimal variation:
δφn

′ = δφn = 0. Thus, the equation of motion ∂2φ/(4π) = −ieF01/(2π) is exactly the
equation of motion of axial current on the fermionic side and the appearance of “i” on
the right-hand side is due to the Wick rotation of Aµ.
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2.2.3 Resolution of Dirac mass condensation paradox

It is an appropriate point to resolve the Dirac mass condensation paradox mentioned
in chapter 0. We first restate or generalize that paradox below.

Assume we have N of U(1) instantons in the spacetime T 2 and, for simplicity, they
are localized at spacetime points {xk}k=1,··· ,N or

eF01(x) =
N∑
k=1

2πδ2(x− xk). (2.2.5)

Let us evaluate the path-integral (P-T) expectation value of a series of Dirac mass
bilinear term: ⟨

M∏
j=1

Ψ̄(yj)Ψ(yj)

⟩
P-T

≡

⟨
M∏
j=1

Ψ̄(yj)Ψ(yj)

⟩
P-T: SDirac

(2.2.6)

in which Ψ̄ denotes the Dirac adjoint of Ψ and it should be distinguished from the
complex conjugation notation used before for ψ̄(z̄). To evaluate the above expectation
value, we expand Ψ and Ψ̄ into their eigen-function of Dirac operator D ≡ γµ(∂µ −
ieAµ): DΨn = λnΨn with

Ψ =
∑
n

anΨn, Ψ̄ =
∑
n

ānΨ̄n,

∫
Ψ̄mΨn = δm,n, (2.2.7)

where {ān} and {an} are independent Grassmanian numbers. Then⟨
M∏
j=1

Ψ̄(yj)Ψ(yj)

⟩
P-T

{
̸= 0, if M ≥ N&M = N mod 2;
= 0, otherwise,

(2.2.8)

where we have made use of the Atiyah-Singer index theorem which implies that the
number of zero mode of Dirac operator is the instanton number N , and the “mod 2”
results from the fact that, for any λn with Ψn in the spectrum of Dirac operator D, we
have

Dγ3Ψn = −λnγ3Ψn, (2.2.9)

in which {D, γ3} = 0 is made of use and γ3 is canonically well-defined on any spin
manifold.

Then the paradox follows: if we assume the bosonization of the fermion model is
S ′[A] defined in Eq. (2.1.1), applying the operator correspondence Ψ̄Ψ ∝ cosφ, we

obtain
⟨∏M

j=1 Ψ̄(yj)Ψ(yj)
⟩
P-T

∝
⟨∏M

j=1 cosφ(yj)
⟩
P-T: S′

̸= 0 generically for any M

value independing on N , which fails to match the fermionic statement in Eq. (2.2.8).
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Thus the conventional gauged bosonic model S ′[A] or its generalization gauged WZW
model is problematic and inconsistent with its presumed fermionic partner.

We will solve the inconsistency or paradox above by our proposed bosonization
Sboson[A] defined in Eq. (2.2.3). Due to the localized gauge-field configuration in

Eq. (2.2.5), we have Sboson[A] = S
(b)
0 − i

∑N
k=1 φ(xk), and thus⟨

M∏
j=1

Ψ̄(yj)Ψ(yj)

⟩
P-T

∝

⟨
M∏
j=1

cosφ(yj)

⟩
P-T: Sboson

=

⟨∏
j,k

exp[iφ(yj)] + exp[−iφ(yj)]
2

exp[iφ(xk)]

⟩
P-T: S

(b)
0{

̸= 0, if M ≥ N&M = N mod 2;
= 0, otherwise,

(2.2.10)

which is exactly the fermionic result in Eq. (2.2.8), and we have applied the neutral-

ity condition for φ’s path integral upon action S
(b)
0 . We can see that the constraint

given by Atiyah index theorem on the fermionic side precisely corresponds to that
by neutrality condition. Therefore, with our new bosonization Sboson[A], the paradox
brought by wrong S ′[A] has been resolved successfully. The similar argument may be
also straightforward to be applied for higher symmetries with nontrivial fundamental
homotopy group, e.g. SU(N)/ZN .

2.3 Verification of new bosonization

2.3.1 Spectrum with a flat background gauge field

We will take a simple case so that the duality could be seen readily. The background
gauge field will be taken flat so that F01 = 0. For later convenience, let us take a
more general Luttinger parameter as 1/8π → 1/8πK or S

(b)
0 → S0

T-L ≡ S
(b)
0 /K, though

the current interest is K = 1. Such a generalized model corresponds to a type of
interacting fermions and we will later show that the rest terms of Sboson[A] indeed do
not gain renormalization by K due to topological reasons.

We can calculate the partition function associated with Sboson[K;α, β] as

Zboson[K,Aflat] (2.3.1)

=
∑
m,n

exp(−i2πnβ)q
K
2 (m+ n

2K
+α)

2

q̄
K
2 (m− n

2K
+α)

2

/|η(τ)|2.

We can identify the charge of Z2 symmetry generated by (−1)QZ2 : Ψ → −Ψ the
fermion number parity transformation or φ→ φ+ π bosonically, of a certain operator
labelled by (n,m) as

QZ2 = n, (2.3.2)
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due to β = 1/2 giving exp(−i2πnβ) = (−1)n which is its fermion number parity.
Then we arrive at the following result at the free fermion point K = 1:

Zboson[Aflat]=
∑

f0,1∈{0,1/2}

(−1)δf0+f1,1

2|η(τ)|2

{∣∣∣∣ϑ[ α + f1
−(β + f2)

]
(τ)

∣∣∣∣2
}

=
1

2

{
Z+,+

Dirac + Z+,−
Dirac + Z−,+

Dirac − Z−,−
Dirac

}
[α, β], (2.3.3)

where Zs1,s2
Dirac labels the the Dirac partition function [18] with the spin structure (s1, s2)

defined in Eq. (1.1.10) and ϑ

[
α
−β

]
(τ) ≡

∑
n∈Z exp [iπ(n+ α)2τ − i2πβ] is the gen-

eralized Theta function. To obtain the fermionization or the inverse of the bosoniza-
tion which completes the bosonization procedure, we can make use of the Z2 trans-
formation defined above, whose charge is obtained in Eq. (2.3.2). We can apply
this Z2 transformation onto the Hilbert space as an operator, equivalent to insert-

ing (−1)QZ2 = exp
(
−i
∫
cycle1

dφ/2
)
into the bosonic path integral. Similarly, we can

also apply this Z2 transformation to twist the bosonic wave function spatially by a

defect line operator, equivalently inserting IZ2 ≡ exp
(
i
∫
cycle0

dφ/2
)
into the bosonic

path integral.
Then we can label the corresponding Z2 sectors by Zw1,w2

boson where w1&w2 ∈ {±} with
“+” no Z2 twisting whereas “−” a Z2 twisting, denotes whether the Z2 generator is
operated spatially and temporally, respectively. Specially, Zboson[Aflat] in Eq. (2.3.3) is
Z+,+

boson. Therefore,
Z+,+

boson

Z+,−
boson

Z−,+
boson

Z−,−
boson

 =
1

2


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1




Z+,+
Dirac

Z+,−
Dirac

Z−,+
Dirac

Z−,−
Dirac

 (2.3.4)

for the flat background gauge field and we can define a matrix W(w1,w2),(s1,s2) so that

Zw1,w2

boson [α, β] =
∑
(s′1,s

′
2)

W(w1,w2),(s′1,s
′
2)
Z

s′1,s
′
2

Dirac[α, β], (2.3.5)

and similarly, the fermionization takes the form as

Zs1,s2
Dirac[α, β] =

∑
(w′

1,w
′
2)

W−1
(s1,s2),(w′

1,w
′
2)
Z

w′
1,w

′
2

boson [α, β], (2.3.6)

where numerically W = W−1. The bosonization and fermionization above exactly
reproduce the same results with α = β = 0 except for the last column of W matrix
which does not matter with a vanishing background gauge field [40, 41, 42, 43].
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2.3.2 Bosonization: Duality of partition function

An observation of the flat-connection case in Eq. (2.3.3) implies the bosonic partition
function cannot be dualized to some fermionic one unless all the possible spin structures
are summed up by a weight determined by matrixW(w1,w2),(s1,s2) and its inverse. Hence,
assuming these weights only depend on spin structures, we could propose that, for
general fluctuating {Aµ} gauge field configurations,

Zs1,s2
Dirac[A] =

∫
D(ψ, ψ̄) exp(−SDirac[ψ, ψ̄, A]|s1,s2);

ψ(z + 1) = −s1ψ(z); ψ̄(z̄ + 1) = −s1ψ̄(z̄);
ψ(z + τ) = −s2ψ(z); ψ̄(z̄ + τ̄) = −s2ψ̄(z̄) (2.3.7)

and its dual

Zw1,w2

boson [A] =
∑

n,n′∈Z

∫
w1,w2

Dφ exp(−Sboson[φ,A]|n,n′),

φ(z, z̄) = φ(z + 1, z̄ + 1)− 2πn;

φ(z, z̄) = φ(z + τ, z̄ + τ̄)− 2πn′, (2.3.8)

are related by matrix W defined by Eq. (2.3.4):

Zw1,w2

boson [A] =
∑
(s′1,s

′
2)

W(w1,w2),(s′1,s
′
2)
Z

s′1,s
′
2

Dirac[A];

Zs1,s2
Dirac[A] =

∑
(w′

1,w
′
2)

W−1
(s1,s2),(w′

1,w
′
2)
Z

w′
1,w

′
2

boson [A], (2.3.9)

which can be generalized to the interacting fermion with a general K not necessarily
1.

Let us furthermore gauge the bosonic Z2 symmetry or equivalently impose the
identification θ ∼ θ + π. Then

ZZ2-gauge
boson [A] =

1

2

∑
w1,2

Zw1,w2

boson [A] =
1

2

∑
s1,2

Zs1,s2
Dirac[A], (2.3.10)

which is exactly the Dirac fermion gauged by Z2 fermion number parity.

2.3.3 Large gauge transformation for fermion

For the later discussion, we comment on the large gauge transformation for fermionic
field theory. First, let us assume the uniform flux with the following form,

A1 =
2πα

eL
,A0 = 0 (2.3.11)
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with β = 0.
Hence it contains an additional term which represents the coupling of gauge field

and fermion. Here we apply the following large gauge transformation,

ψ → exp

(
2πiαx

L

)
ψ (2.3.12)

Under this transformation, the action changes into the original action without gauge
field, with extended boundary condition ψ(L) = exp (2πiα)ψ(0).

There exist two points which are significant for the later discussion. The first is the
large gauge transformation for fermionic system relates fermion coupled with gauge
field and fermion with twisted boundary condition. The second is this transformation
shift the momentum by 2πα

L
.

2.4 Twisted XXZ chain

2.4.1 Correspondences between quantum XXZ chain and Potts
model

In this part, we will see how the partition function of the low-energy twisted XXZ
chain can give properties of the thermal operator in Q-state Potts model for Q ≤ 4.
First we see that partition function of twisted XXZ chain is exactly Eq. (2.3.1) with
α = Φ/2π and β = 0:

ZTLL(K,Φ) =
1

|η(τ)|2
∑

m,n∈Z

q
K
2 (m+ n

2K
+ Φ

2π )
2

q̄
K
2 (m− n

2K
+ Φ

2π )
2

.

(2.4.1)

Correspondence between twisted free boson and Potts model has been considered by
[35]. In other words, our formalism is spin chain version of this work. If we think about
these facts, we should be careful about Zn projection which is considered in boundary
states of symmetry protected trivial (SPT) phases, because this projection can change
the conformal anomaly or the central charge of the underlying CFT [44].

The quantum Q state Potts model takes the form as

HP
Q-Potts = −

L∑
i=1

Q−1∑
k

Ωk
i −

L∑
i=1

Q−1∑
k=1

Rk
iR

Q−k
i+1 , (2.4.2)

with PBC: RL+1 = R1 denoted by “P” in the superscript in “HP
Potts” and the Z(q)

algebra (ω ≡ exp(i2π/Q)) is satisfied by R’s and Q’s:

ΩiRi = ω−1RiΩi; ΩiR
†
i = ωR†

iΩi; ΩQ
i = RQ

i = 1. (2.4.3)

HP
Q-Potts can be diagonalized into blocks labelled by HP,q

Q-Potts with
∏L

i=1Ωi = ωq:

HP
Q-Potts = diag

[
HP,0

Potts, H
P,1
Q-Potts, · · · , H

P,Q−1
Q-Potts

]
. (2.4.4)
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Thermal operator: ε

It has been proven that, on the operator level, the following correspondence between
the ground-state sector of Potts model and twisted XXZ chain up to an irrelevant
constant shift:

HP,0
Q-Potts = HXXZ(γ,Φ = 2γ) (2.4.5)

by an appropriate normalization of coupling constant JXXZ and setting γ = arccos(
√
Q/2) [15].

By finite-size scaling of correlation length, the thermal operator “ε” of Q-state Potts
model lies exactly at the first excited state of the sub-Hamiltonian HP,0

Q-Potts. By the
correspondence in Eq. (2.4.5) above, we see that the conformal properties of ε can be
extracted out by the partition in Eq. (2.4.1):

ZTL

(
π

2(π − γ)
, 2γ

)
=

1

|η(τ)|2
∑

m,n∈Z

q
π

4(π−γ) [m+
n(π−γ)

π
+ γ

π ]
2

q̄
π

4(π−γ) [m−n(π−γ)
π

+ γ
π ]

2

,

(2.4.6)

from which we can read off the conformal anomaly defined as the lowest conformal
weight of the critical Q-state Potts model after setting γ = arccos(

√
Q/2):

c = 1− 6 arccos(
√
Q/2)2

π(π − arccos(
√
Q/2))

, (2.4.7)

and the conformal weight of ε by setting its first excited energy eigenstate labelled by
(k, n) = (1, 0):

∆ε = ∆̄ε =
π + 2arccos(

√
Q/2)

4(π − arccos(
√
Q/2))

, (2.4.8)

where ∆ε and ∆̄ε are, respectively, holomorphic and anti-holomorphic conformal di-
mensions of ϵ. These properties exactly match those of conformal field theories of
low-energy Q-state Potts model.

Order operator σ

For the other operators such as order parameter and para-fermion operator, their loca-
tion are only empirically identified in the spectrum of twisted XXZ spin chains with
other twisted boundary conditions. More specifically, the order parameter σ of Potts
model can be found in the spectrum of XXZ chain with twisted angle as Φ = π with
the partition function as

ZTL

(
π

2(π − γ)
, π

)
=

1

|η(τ)|2
∑

m,n∈Z

q
π

4(π−γ) [m+
n(π−γ)

π
+ 1

2 ]
2

q̄
π

4(π−γ) [m−n(π−γ)
π

+ 1
2 ]

2

.
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The conformal dimensions of σ is empirically determined by the lowest energy eigen-
state of n = 0 sector of XXZ Hamiltonian, namely (k, n) = (0, 0):

∆σ +
γ2

4π(π − γ)
=

π

16(π − γ)
(2.4.9)

∆̄σ +
γ2

4π(π − γ)
=

π

16(π − γ)
, (2.4.10)

which are solved as ∆σ = ∆̄σ = (π2 − 4γ2)/[16π(π − γ)].

2.4.2 Parafermion operators

Numerically, the parafermion operator with its spin as Q̃/Q with Q̃ = 1, 2, · · · , Q− 1
can find its location in the lowest energy eigenstate of n = 1 sector of the spectrum of
XXZ chain with twisted angle as Φ = 2πQ̃/Q. To obtain its conformal properties, we
write down the corresponding partition function of XXZ chain:

ZTL

(
π

2(π − γ)
,
2πQ̃

Q

)

=
1

|η(τ)|2
∑

m,n∈Z

q
π

4(π−γ)

[
m+

n(π−γ)
π

+ Q̃
Q

]2
q̄

π
4(π−γ)

[
m−n(π−γ)

π
+ Q̃

Q

]2
,

which implies, after (m,n) = (0, 1) is extracted out,

∆pf +
γ2

4π(π − γ)
=

π − γ

4π
+

Q̃

2Q
+

πQ̃2

4Q2(π − γ)
; (2.4.11)

∆̄pf +
γ2

4π(π − γ)
=

π − γ

4π
− Q̃

2Q
+

πQ̃2

4Q2(π − γ)
, (2.4.12)

which are solved as

∆pf =
π − γ

4π
+
π2Q̃2 − γ2Q2

4πQ2(π − γ)
+

Q̃

2Q
, (2.4.13)

∆̄pf =
π − γ

4π
+
π2Q̃2 − γ2Q2

4πQ2(π − γ)
− Q̃

2Q
, (2.4.14)

which exactly imply the spin as ∆pf − ∆̄pf = Q̃/Q, namely the spin of the parafermion
operator.

2.5 An analysis of twisted higher spin XXZ model

Our formulation of bosonization strongly indicates a profound structure of the fermionic
system with flux insertion. For example, our formulation explains the result for higher

24



spin XXZ model by Sogo [45]. It indicates the change of central charge of the spin
chain by twist is universal for general systems. Here we only show spin 1 Hamiltonian
of this model but the spin S > 1 Hamiltonian can also be constructed with respect to
integrability. The spin 1 Hamiltonian is,

H1
XXZ(γ) =

L∑
i

(
σi − (σi)

2 − 2 (cosγ − 1)
(
σ±
i σ

z
i + σz

i σ
±
i

)
− 2sin2γ

(
σz
i − (σz

i )
2 + 2 (Sz

i )
2 − 2

))
,

(2.5.1)
with

σi = S+
i S

−
i+1 + S−

i S
+
i+1 + Sz

i S
z
i+1, σ

±
i = S+

i S
−
i+1 + S−

i S
+
i+1, σ

z
i = Sz

i S
z
i+1. (2.5.2)

First, we assume the following decomposition of SU(2)k WZWmodel as parafermion
and U(1) WZW model, with energy mometum tensor,

TSU(2)k = TZk
+ TU(1). (2.5.3)

Here we assume this U(1) part is described by fermionic field theory. As we have
discussed in the previous section, it is possible to deform the theory by flux insertion
for this sector. Therefore it may be natural to guess spin chain described by SU(2)k
WZW model should change the conformal anomaly by flux insertion. Actually, higher
spin XXZ model is an example of this phenomena[16].

Hence it might be reasonable to consider the deformed model described by,

T = TZk
+ TDF (2.5.4)

TDF is energy momentum tensor for free boson with background charge or Dotsenko-
Fateev model. Actually, this form of action coincides with that of SU(2)k×SU(2)l

SU(2)k+l
coset

WZW models [46].

Hence it may be natural to guess some correspondence between SU(2)k×SU(2)l
SU(2)k+l

coset

WZW model and higher spin XXZ model because we have shown a relation between
them for spin 1

2
-XXZ model as the simplest case of this correspondence. A correspon-

dence between these two models with respect to the conformal anomaly and part of
the excitation spectrum is shown by numerical calculation [30].

It was proposed and shown the conformal anomaly of the higher spin S-XXZ spin
chain with twisted angle Φ coincides with

c =
3S

S + 1

(
1− (S + 1)Φ2

π(π − 2Sγ)

)
= cZ2S

+1− 3SΦ2

Sπ(π − 2Sγ)
= cZ2S

+1−12

(
Φ

2π

)2
πS

(π − 2Sγ)
(2.5.5)

Hence we can interprete this theory as the composition of Z2S parafermion model
and twisted free boson with Luttinger parameter K = πS

(π−2Sγ)
. For S = 1 case, this

interpretation perfectly explains the numerical and Bethe ansatz results [47]. The
excitation indexed by n and m from trivial boundary condition is obtained by the
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composition of the spectrum of Ising model and coulomb gas model. More generally,
the specturm is,

Em,n = ∆Z2S
+∆Z2S

+K

(
m

2S
+

Φ

2π

)2

+
n2

4K
, (2.5.6)

. (2.5.7)

where ∆Z2S
, ∆Z2S

are conformal dimensions of Z2S parafermion.
A similar description is also valid for usual spin-S XXZ Heisenberg model with

S:half integer [48]. In this model, the central charge is one and the conformal dimen-
sions are,

Em,n = K

(
m+

Φ

2π

)2

+
n2

4K
, (2.5.8)

. (2.5.9)

with Luttinger parameter K = πS
π−γ

.

2.6 Summary of chapter 2

In this chapter, we have shown the new bosonization which is consistent with the
characteristics of the original fermionic theory. It was also shown that the existing field
theoretic description of XXZ chain can be derived by our formalism. As a preparation
for the next chapter, we mention the relationship between twisted boundary condition
and large gauge transformation here again. The expectation value of large gauge
transformation U is described by,

⟨U⟩ = ZDirac[A]. (2.6.1)

A1 =
−2πx

L
δ(t), A0 = 0, (2.6.2)

if we assume the large gauge transformation is consistent with both of fermionic field
theory and latice models (1.2.17).

This theory has a global anomaly,

e−2πiν , (2.6.3)

with ν = 1
2
in this chapter. We have introduced the parameter ν which corresponds

to the transformation φ → φ + 2πν. This transformation is identified as the bosonic
representation of one site translation of the lattice model. As we will show, this phase
factor exactly coincides with the phase of twist operator under one site translation of
the lattice model.

Moreover, this U should induce momentum shift of the theory. It enables us to
analyze flux inserted system as a system of twisted boundary condition. That is the
case for both fermionic and bosonized theory. In the next chapter, we will show the
bosonized expression of this operator which is derived from bosonization of ZDirac[A].
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Chapter 3

Nontriviality of the bosonized
representation of large gauge
transformation

3.1 Resta polarization amplitude

In this section, we introduce the modern theory of polarization and its original back-
ground motivation in condensed matter.

One of the most important problems in condensed matter physics is to identify
the electrical conduction properties of each material. As pointed out by Kohn [49],
localization of electrons and the presence of a dielectric polarization density are two
related essential features common to all insulating ground states of materials. As a
consequence, the electric polarization could be utilized for the classification of conduc-
tor and insulator. Based on several earlier studies [50, 51, 52, 53], Resta [27] proposed
a compact definition of electric polarization, which can be naturally applied to inter-
acting systems [28] as well as to non-interacting electrons in one dimension. In Resta’s
framework, the polarization for a ground state of a one-dimensional periodic lattice
system with length L is defined as Imz, where

z := ⟨ψ0|U |ψ0⟩, (3.1.1)

which we call polarization amplitude. Here |ψ0⟩ is a ground state, and

U := exp

(
2πi

L

L∑
j=1

jnj

)
, (3.1.2)

where nj is the fermion particle number operator at site j. The argument of the
exponential in Eq. (3.1.2) is proportional to the center of mass of the particles, which
is related to the polarization. The exponential form makes U invariant under j → j+L
and naturally compatible with the periodic boundary condition. U is nothing but the
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Lieb-Schultz-Mattis twist operator, or the large gauge transformation operator [9, 12,
54]. Although it is interesting to consider extensions to higher dimensions, in this thesis
we focus on one-dimensional systems.

It was argued [27, 28] that the amplitude z serves as a good indicator of electron
localization in both non-interacting and interacting systems. Intuitively, the polar-
ization would be well-defined in an insulating phase when each electron is localized
around nucleus, because one can define a local dipolar vector at each site, and many-
body polarization is just defined by summing it over the whole system. On the other
hand, in a conducting phase electrons are moving itinerantly and polarization would
be ill-defined. Then it is natural to expect that the polarization amplitude z can be an
“order parameter” that distinguishes an insulating phase from conducting one. Resta
conjectured that if the system is a conductor z = 0 and an insulator z ̸= 0 in the
thermodynamic limit L→ ∞.

It is easy to see this in free fermion systems. Since U induces momentum shift by
2π/L for each particle, if one operates U on a ground state of a gapless system, one
particle is shifted from a Fermi point to another Fermi point, creating a particle-hole
excitation. This excited state is clearly orthogonal to the initial Fermi sea ground state,
thus z = 0. On the other hand, if the system is a band insulator, U |ψ0⟩ remains the
ground state up to phase, and thus |z| → 1 in the thermodynamic limit [27, 55].

However, in the presence of a lattice translation symmetry, one can immediately see
that the simple criterion based on z fails when the ground state is fractionally-filled.
The lattice translation operator T satisfies [12],

TUT−1 = e−2πiνU, (3.1.3)

where ν is a filling factor, i.e., the number of fermions per a unit cell. We have used
the relations,

TnjT
−1 = nj+1, (3.1.4)

exp (2πinj) = 1. (3.1.5)

This transformation law (3.1.3) can be interpreted as quantum anomaly of fermionic
quantum field theory coupled with U(1) gauge field [11] as we have introduced in section
2.6. It follows that

⟨ψ0|U |ψ0⟩ = ⟨ψ0|T−1TUT−1T |ψ0⟩
= e−2πiν⟨ψ0|U |ψ0⟩,

(3.1.6)

and thus z = 0 when ν is not integer. In fact, this observation is fundamental in
the proof of the celebrated Lieb-Schultz-Mattis (LSM) theorem [9] and some of its
generalizations [12].

In a naive interpretation of z, z = 0 would imply that the system is always conductor
when it is fractionally-filled, but it is of course not true. Indeed, the system can become
a Mott insulator for any rational filling, if accompanied by a spontaneous breaking of
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the translation symmetry as required by the LSM theorem. Based on this observation,
Aligia and Ortiz [56, 57] proposed using U q instead of U when ν = p/q (p and q
are coprime integers), i.e., they argued that the definition of polarization should be
replaced by

z(q) := ⟨ψ0|U q|ψ0⟩, (3.1.7)

so that the simple criterion z(q) ̸= 0 could be used to characterize insulators at any
rational filling. They have indeed confirmed that its consistency with Kohn’s criterion
for insulators based on the Drude weight [49].

The behavior of z(q) and its generalization has been studied [54, 58, 59, 60] in various
insulating states, including the VBS state, the Néel ordered state, the gapped phase
of bond-alternating Heisenberg chain, and the Mott insulating phase of the extended
Hubbard model. Analytical and numerical results confirmed that z(q) ̸= 0 in the
thermodynamic limit. However, a comprehensive study of z(q) in gapless conducting
phases of interacting particles has been lacking. The expected vanishing of z(q) in a
conducting phase is already nontrivial for interacting systems. In a generic interacting
system, z(q) does not vanish exactly in a finite-size system. Nevertheless, we expect
that z(q) vanishes in the thermodynamic limit. If this is the case, we can ask how
precisely z(q) vanishes as the system size increases, namely its scaling property. We
may hope that the scaling of z(q) characterizes various gapless conducting phases.

Toward this goal, in this chapter, we study the polarization amplitude z(q) and its
scaling in the S = 1/2 XXZ chain

H = J
L∑

j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

jS
z
j+1

)
, (3.1.8)

for J > 0, with the periodic boundary condition Sα
L+1 ≡ Sα

1 (α = x, y, z). We will also
study a few generalizations of the XXZ chain.

3.1.1 Free fermion

For free fermionic point, the vanishing of polarization amplitude can be shown exactly.
The technique we use is only the Fourier transformation and anti-commutation relation.

The S = 1/2 XY chain, which corresponds to the special case of ∆ = 0 of the XXZ
chain (3.1.8), can be mapped to the free fermion model

H = −J
2

L∑
j=1

(c†jcj+1 + h.c.), (3.1.9)
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by the Jordan-Wigner transformation followed by a gauge transformation

S+
j = (−1)j exp

(
iπ

j−1∑
k=1

c†kck

)
c†j,

S−
j = cj exp

(
−iπ

j−1∑
k=1

c†kck

)
(−1)j,

Sz
j = c†jcj −

1

2
.

(3.1.10)

We introduce here the Hamiltonian with flux inserion as,

Hϕ = −J
2

L∑
j=1

(e−iϕc†jcj+1 + h.c.), (3.1.11)

For convenience in later discussions, we take L = 4N (N : integer). The ground
state of the Hamiltonian (3.1.9) is clearly the Fermi sea state

|ψ0⟩ =
∏

−kF<q<kF

c†q|0⟩, (3.1.12)

where kF is a Fermi momentum: kF = π/2, and the momentum q takes values

q =
(2n+ 1)π

L
, (3.1.13)

with n = −N,−N + 1, . . . , N − 1. To see that z(q) ≡ 0, we remark that U induces the
momentum shift of each fermion by 2π/L:

Uc†qU
−1 = c†q+2π/L, (3.1.14)

where

c†q =
1√
L

L∑
j=1

eiqjc†j. (3.1.15)

Then, we can see that

U q|ψ0⟩ ∝
q∏

n=1

c†
kF+

(2n−1)π
L

c−kF+
(2n−1)π

L

|ψ0⟩, (3.1.16)

which is clearly orthogonal to the initial state |ψ0⟩. Therefore

z(q) = ⟨ψ0|U q|ψ0⟩ = 0 (3.1.17)

for q different than a multiple of L.
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The key feature of the polarization operator for the later discussion is that it can be
interpreted as the momentum shift operator as we have discussed field theoretic analog
in the previous chapter.

Related to flux insertion problem in the previous chapter, the polarization operator
induces the following form of transformation law of Hamiltonian,

UHU−1 = H 2π
L
. (3.1.18)

The right-hand side is the Hamiltonian with uniform flux insertion. This equation re-
lates the fermion with flux insertion can be transformed to original fermionic model. As
a generalization of this relation, the equivalence between twisted fermion and fermion
with flux under polarization operator is expressed as,

U qH(Φ = 2πq)U−q = H 2qπ
L
. (3.1.19)

3.1.2 Controversial representations of the polarization opera-
tor

There exist several controversial representations of polarization amplitude. In this sec-
tion, we review these representations for the theoretical understanding of polarization
amplitude. First, we introduce the standard representation of bosonization for spin
chain.

The z-component of spin operator, which corresponds to the particle number oper-
ator, is represented as

Sz
j =

1

2π
∂xφ+ (−1)j cos (φ) , (3.1.20)

in the TLL theory.
It is widely known that this bosonization can explain the behavior of (multi-point)

correlation functions [4]. Hence it might be natural to represent the polarization am-
plitude by this bosonization. This naive investigation leads to the following form of
polarization amplitude,

z(q) =

⟨
exp

(
2πqi

L

L∑
j=1

j · Sz
j

)⟩

?
=

⟨
exp

(
2πqi

L

L∑
j=1

j ·
(

1

2π
∂xφ(j) + (−1)j cosφ(j)

))⟩
.

(3.1.21)

This may be computed in a finite-size system by techniques in conformal field theory
(CFT). By partial integration, it is approximated as,

z(q) ∼ exp

(
iqφ(0)− iq

L

∫
dxφ(x)

)
(3.1.22)
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Then we use the conformal transformation law and calculation of multipoint correlation
function. Finally, we find

z(q)
?∝
(
1

L

)q2K

. (3.1.23)

However, it is not true as we will show in the next sections. In the following part
of this section, we review several proposals for the polarization operator.

Earlier, Nakamura and Voit proposed the following expression [54],

z(q) = ⟨cos (qφ(L))⟩. (3.1.24)

However, it does not explain the characteristic of the polarization operator as a mo-
mentum shift operator.

Next, Aligia and Batista proposed an alternative description of bosonization of po-
larization operator based on the fact that the polarization operator induces momentum
shift ∂xθ → ∂xθ +

2π
L

[39]. To introduce the proposal, we see again the commutation
relation of bosonic field and its dual field which we have introduced in the previous
chapter 1,

[φ(x), ∂xθ(y)] = 2πiδ(x− y). (3.1.25)

∂xθ is the local momentum of the system. In this language, it can be observed that
the field φ behaves as local momentum shift operator. Hence by integration, we can
obtain the momentum shift operator,[

−i
∫ L

0

dxφ(x), ∂xθ(y)

]
= 2π. (3.1.26)

It suggests the form of polarization as the momentum shift operator,

z(q) =

⟨
exp

(
−qi 1

L

∫ L

0

dxφ(x)

)⟩
. (3.1.27)

In this representation, we can conclude it should go to zero in the thermodynamic limit
only by Ward identity or charge neutrality condition of correlation function, especially
for free fermion point. It is consistent with the discussion of the previous section and
the mass condensation in chapter 2.2.3. Moreover, this form is consistent with lattice
translation symmetry. It is widely believed that lattice translation goes to internal
transformation φ→ φ+π in the thermodynamic limit. It is easy to see the behavior of
z(q) under this transformation and it coincides with the lattice version of this operator.

We will see the more detailed meaning and verification of this expression in section
3.4.
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3.2 XXZ model with a weak interaction

This section, we show peturbative calculation of polarization amplitude of XXZ model
near free fermion point. Similar calculation for J1-J2 model is shown in the Appendix.

The XXZ chain (3.1.8) is generally mapped to the model of interacting fermions

H = −J
2

L∑
j=1

(c†jcj+1 + h.c.) + J∆
L∑

j=1

(
c†jcj −

1

2

)(
c†j+1cj+1 −

1

2

)
, (3.2.1)

by the transformation (3.1.10). When ∆ is small, we can take the interaction as a
perturbation, and the ground state ⟩ψ of (3.1.8) is expressed as

|ψ⟩ = |ψ0⟩+
∑
n

|ψn⟩
1

E0 − En

⟨ψn|V |ψ0⟩ (3.2.2)

up to the 1st order perturbation, where |ψ0⟩ (resp. {|ψn⟩}) is a ground state (resp.
excited states) for ∆ = 0, and V is the interaction in z-direction:

V = J∆
L∑

j=1

c†jcjc
†
j+1cj+1. (3.2.3)

Then, the polarization becomes

z(2) =
∑
n

⟨ψ0|V |ψn⟩
1

E0 − En

⟨ψn|U2|ψ0⟩+ c.c. (3.2.4)

in the leading order of ∆, where we used ⟨ψ0|U2|ψ0⟩ = 0. ⟨ψn|U2|ψ0⟩ takes nonzero
value iff

|ψn⟩ = U2|ψ0⟩ = c†kF+ π
L
c†
kF+ 3π

L

c−kF+ 3π
L
c−kF+ π

L
|ψ0⟩, (3.2.5)

For this |ψn⟩ the energy becomes E0 − En = −2J(sinπ/L+ sin 3π/L), and hence

z(2) = − 1

2J(sin π
L
+ sin 3π

L
)
⟨ψ0|V c†kF+ π

L
c†
kF+ 3π

L

c−kF+ 3π
L
c−kF+ π

L
|ψ0⟩+ c.c. (3.2.6)

= − ∆

sin π
L
+ sin 3π

L

1

L

(
−2 + 2 cos

2π

L

)
≈ π∆

L2
, (3.2.7)

thus we obtain the scaling law z(2) ∝ 1/L2 near K = 1. This indeed demonstrates that
z(q) can be non-vanishing in a finite-size system and shows a nontrivial power-law of
the system size L, once the interaction among fermions is introduced.

Similarly, we can obtain z(2s) in the leading, s-th order of ∆ as

z(2s) ∼ ⟨ψ0|(V R)sU2s|ψ0⟩+ c.c., (3.2.8)
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where we introduced an operator R as

R =
∑
n

|ψn⟩
1

E0 − En

⟨ψn|. (3.2.9)

Evaluating Eq. (3.2.8) similarly to Eq. (3.2.4), we find

z(2s) ≈ 2

(
∆

4

)s ∑
σ,τ∈S2s

ϵσϵτ

s∏
j=1

(kσ(2j−1) − kσ(2j))(kτ(2j−1) − kτ(2j))

L
(∑2j

l=1(kσ(l) + kτ(l))
) , (3.2.10)

where kj = (2j − 1)π/L, and S2s is the symmetric group of degree 2s. Each summand
in (3.2.10) is proportional to 1/L2s. Hence we obtain, for K ∼ 1 and an even integer
q, the exponent as,

β(q) = q, (3.2.11)

z(q) ∼
(
1

L

)β(q)

. (3.2.12)

However, it should be noted that, in the present analysis, we cannot rule out the
possibility that the RHS of (3.2.10) happens to vanish. We will later confirm that
the results of the perturbation theory obtained here are consistent with the numerical
results on the XXZ chain.

3.3 Mismatch between naive bosonization analysis

and numerical results

As we have discussed in the previous sections, the field theoretic representation of
polarization contains some difficulties. Hence it is natural to investigate polarization
by numerical calculation of some systems for the consistency of descriptions. For that
purpose, we have investigated a class of critical systems, 1d spin chain described by
Tomonaga-Luttinger liquid, XXZ spin chain, J1-J2 model and Gutzwiller-Jastrow wave
function 1. Each theory can be described by the Tomonaga-Luttinger liquid by choosing
the appropriate parameter, but the perturbations from conformal point are different
for each case. We have used the exact diagonalization. q dependence of the exponents
shows the most significant difference from the analytical calculation.

We have shown z(q) exactly vanishes for the free fermions. In the field theory, the
effects of the interaction may appear as (irrelevant) perturbation to the free boson
field theory. The XXZ chain has the U(1) symmetry generated by total magnetization

1The main contribution of numerical calculation in this section was done by the coauthor Yuya
Nakagawa.
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∑
j S

z
j . This symmetry, which we always keep in the present paper, forbids the pertur-

bations of the form cos (mθ) where θ is the dual field of ϕ. Moreover, the lattice trans-
lation symmetry is represented in TLL by ϕ → ϕ + π, which forbids cos ((2n− 1)ϕ).
Thus the effective action including the allowed perturbations reads

S[ϕ] = S0 +
∞∑
n=1

g2n

∫
dxdτ cos (2nϕ) + . . . . (3.3.1)

The vertex operators cos (2nϕ) represent the Umklapp processes of various orders, with
the scaling dimensions 4n2K. In the XXZ chain with −1 < ∆ ≤ 1, K ≥ 1/2 and thus
the Umklapp operator is irrelevant. As long as permitted by symmetries, we generically
expect any perturbation to be non-vanishing: g2n ̸= 0 for any n = 1, 2, . . . . For J1−J2
model, the first Umklapp term vanishes i.e. g2 = 0.

3.3.1 XXZ chain

First, let us present the results of numerical exact diagonalization of the standard XXZ
chain (3.1.8) up to the system size L = 26. In the top left and middle left panels of
Fig. 3.1, we present z(2) in the ground state of (3.1.8). The power-law decay of z(2) with
L is clearly visible for −0.5 ≤ ∆ ≤ 1. However, for ∆ < −0.5, the power-law scaling
is less clear. Especially, the data of ∆ = −0.55 do not show any power-law decay
within the system size we can reach (L = 26). This seemingly strange change of the
behavior across ∆ = −0.5 can also be seen in the left bottom panel of Fig. 3.1, where
the power-law exponents β estimated from the fitting of the data of z(2) are plotted.
Around K = 1.5, or ∆ = −0.5, the exponent β exhibits non-systematic behavior (we
note that the data corresponding to ∆ = −0.55 is not plotted in the figure.). We see
that the overall behavior of β is explained by β = 4K − 2, especially for K < 1. In
the panels of the right column of Fig. 3.1, we present the data of z(4). The behaviors
are qualitatively the same as those of z(2) and the exponent of the power-law β might
be described by β = 8K − 4, which is twice of the value of the q = 2. Thus we can
conjecture

β(q) = q(2K − 1), (3.3.2)

for an even integer q, in the XXZ chain with K ≲ 1.5.

3.3.2 J1-J2 XXZ chain tuned at the Gaussian point

In order to study the effect of the leading Umklapp term, next we study the J1-J2
model.

H = J1

L∑
j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

jS
z
j+1

)
+ J2

L∑
j=1

(
Sx
j S

x
j+2 + Sy

j S
y
j+2 +∆Sz

jS
z
j+2

)
(3.3.3)
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Figure 3.1: (top) Numerical results of z(2) (left) and z(4) (right) for the ground state of
the XXZ chain (3.1.8) with the system size L up to L = 26. The dots are the numerical
data and the lines are numerical fits by a simple power-law f(L) = a/Lβ where a and
β are fitting parameters. (middle) The closeups of the top panels. (bottom) The
power-law exponent β obtained from the fitting.
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First we need to identify the Gaussian point J2,G(∆) where the leading Umklapp
term vanishes (g2 = 0). In Section A it was done analytically in the lowest order
of the perturbation theory in the interaction ∆. For generic values of ∆, no explicit
formula for J2,G(∆) is available. Therefore, we have to determine J2,G(∆) numerically.
This was done with the level spectroscopy method [61, 62]. Setting J2 to J2,G(∆) thus
obtained, we numerically obtain the amplitude z(q), as we did for the standard XXZ
chain. Furthermore, we also determine the Luttinger parameter K by evaluating the
energy-level spacing of the system. The top left and middle left panels of Fig. 3.2 shows
the results of z(2) obtained by exact diagonalization. z(2) exhibits a clear power-law
decay for all values ∆ even for ∆ < −0.5 in contrast to the XXZ chain (3.1.8) in
the previous subsection. In the inset of the top left panel, the value of J2,G(∆) is also
shown. As for the power-law exponent β, we numerically find that β = 4K explains the
data well for K ≲ 1.5 (the bottom left panel of Fig. 3.2). We also show the numerical
results for z(4) in the panels in the right column of Fig. 3.2, which imply β = 8K for
K ≲ 1.5. Thus we conjecture

β(q) = 2qK, (3.3.4)

for an even integer q, in the J1-J2 chain at the Gaussian point with K ≲ 1.5. Again
this is consistent with the weak-coupling result (A.0.11) near the XY point, for K ∼ 1.
Remarkably, a steep change or possible discontinuity of β is observed at K ∼ 1.5, as
in the case of the XXZ chain. Again we do not have a theoretical understanding for
this phenomenon at K ∼ 1.5.

3.3.3 Gutzwiller-Jastrow wave function

Finally, we study the polarization amplitude z(q) in the Gutzwiller-Jastrow wave func-
tion (3.3.6).

The lattice realization of the “fixed point” theory without the Umklapp terms is
known as the Haldane-Shastry (HS) model with 1/r2-interaction [63, 64, 65, 66]. The
Hamiltonian for a finite chain of length L reads

H =
Jπ2

L2

∑
n<m

Sn · Sm

sin2(π(n−m)/L)
. (3.3.5)

By identifying the down-spin state as an empty site (vacuum) and the up-spin
state as a particle (magnon), the ground state of this model is exactly given by the
Gutzwiller-Jastrow wavefunction as a function of the locations xi = 1, 2, . . . , L of the
magnons (i = 1, 2, . . . ,M is a label of magnons), as

Ψ̃G(x1, . . . , xM) =
∏
i

z
−L(L−1)

4K
i

∏
i<j

(zi − zj)
1
K , (3.3.6)

where

zj = e2πixj/L = eiθj , (3.3.7)
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Figure 3.2: (top) Numerical results of z(2) (left) and z(4) (right) for the ground state
of the J1-J2 XXZ model at the Gaussian fixed point with the system size L. The
dots are the numerical data and the lines are numerical fits by a simple power-law
f(L) = a/Lβ where a and β are fitting parameters. (middle) The closeups of the top
panels. (bottom) The power-law exponent β obtained from the fitting.
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and

θj =
2πxj
L

. (3.3.8)

The Gutzwiller-Jastrow wavefunction (3.3.6) for a general value of K realizes the TLL
with the Luttinger parameter K. It has been found that the wavefunction (3.3.6) have
a large (∼ 99.5%) overlap for L = 20, with the ground state of XXZ chain [67] and cor-
responds to the same Luttinger parameter K. This type of wave function also appears
in various important systems, such as the Laughlin state of the fractional quantum Hall
effect (FQHE) [68], and the Calogero-Sutherland state of hard-core bosons. At the spe-
cial value K = 1/2, the TLL acquires the enhanced SU(2) symmetry, and Eq. (3.3.6)
is the exact ground state of the SU(2) symmetric Haldane-Shastry model (3.3.5).

Here we study the same wave function but at different values of K. For generic
values of K, we have not found exact results on z(q) and thus we need to evaluate z(q)

numerically.
The results of z(2) are shown in the top left and middle left panels of Fig. 3.3,

where one can see a clear power-law behavior of z(2) with L. We also present the K-
dependence of the exponent of the power-law β in the bottom left panel of Fig. 3.3. For
K ≲ 1.5, it seems that β = 4K − 1 explains the data well. However, for K ≳ 1.5, the
slope of the β-K curve becomes small and β ∝ 3.5K seems to fit the data. Generally,
the finite size effect is strong for large positive K (ferromagnetic-like critical regime)
as one can see in the XXZ chain and J1-J2 XXZ model described in the previous
subsections, but in this case the difference between K < 1.5 and K > 1.5 is not due to
the finite size effect because the power-law behavior is evident even for K > 1.5 within
the accessible system size L = 26 in Fig. 3.3. The results of z(4) are qualitatively the
same as those of z(2), so the exponent seems β = 8K − 2 for K ≲ 1.5 and β ∝ 7K for
K ≳ 1.5 (see the right column of Fig. 3.3). Thus, for K ≲ 1.5 we conjecture that

β(q) = q

(
2K − 1

2

)
, (3.3.9)

for an even integer q in the Gutzwiller-Jastrow wave function.

3.4 Analytical derivation

In the recent paper by Furuya and Nakamura [69], they have calculated polarization
amplitude by using the argument by Kitazawa [19] and perturbation. Their results
perfectly coincide with our numerical ones. However their derivation and discussion
contain some ambiguities with respect to momentum shift and global anomaly because
they assumed the form of the polarization operator as (3.1.22). In other words, this
expression is suffering from the lattice version of mass condensation paradox. Hence, in
this section, we demonstrate a more complete derivation of their results from bosoniza-
tion of Dirac fermion coupled with gauge field.
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Figure 3.3: (top) Numerical results of z(2) (left) and z(4) (right) for the Gutzwiller-
Jastrow wave function state (3.3.6) with the system size L. The dots are the numerical
data and the lines are numerical fits by a simple power-law f(L) = a/Lβ where a
and β are fitting parameters. (middle) The closeups of the top panels. (bottom) The
power-law exponent β obtained from the fitting.
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First, let us start from the fermionic expression of polarization operator.

⟨U q⟩ = ZDirac[A]. (3.4.1)

A1 =
−2πqx

L
δ(t), A0 = 0. (3.4.2)

This choice of gauge field is almost the same as that we have introduced in the section
2.6. This expression satisfies all the necessary condition as the expectation value of
twist operator by definition, such as global anomaly matching and exact vanishing at
free fermion point.

Then we bosonize the expression. By applying the argument in chapter 2, (2.2.3),
we obtain,

z(q) = ⟨U q⟩ = ⟨e−iq 1
L

∫ L
0 dxϕ⟩. (3.4.3)

This bosonized expression is also consistent with chiral transformation ϕ→ ϕ+2πν
which realizes lattice one site translation in quantum field theory. This expression was
first introduced by Aligia and Batista as we have explained in the previous section [39].

It is also consistent with the following relation of lattice model,

UcjU
−1 = cj exp

(
−2πij

L

)
, (3.4.4)

or,

US±
j U

−1 = S−
j exp

(
±2πij

L

)
. (3.4.5)

This condition is the property of momentum shift of polarization operator as θ → θ+2πx
L

with the bosonized expression S±
j = exp (±iθ (j)). Moreover, this correspondence is

true for arbitrary (even rational) power of U and results in the equivalence of flux
insertion and twisted boundary condition with an arbitrary twist angle. Hence, it
is consistent with our discussion for twisted boundary condition in chapter 1. This
relation is significant because it gives a fundamental characteristic for polarization
operator when it acts on the local operators.

Next, by using operator-state correspondence and taking the thermodynamic limit,
the following expression is obtained,

z(q) = ⟨e−iq 1
L

∫ L
0 dxφ(t,x)⟩ ∼

t→−∞
⟨0|−q⟩. (3.4.6)

We have taken the charge insertion by polarization operator to −∞ and we have used
radial quantisation of CFT,

| − q⟩ = e−iqφ|0⟩, (3.4.7)

with |0⟩ as CFT vacuum. For convenience, we have omitted the index resulted from
the vertex operator einθ. Hence we can show the vanishing of the polarization ampli-
tude only by the charge neutrality condition when the system does not contain any
perturbation like cosnφ.
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The alternative derivation of this form can be obtained by considering transforma-
tion law of operator induced by U [19, 69]. In our formalism the Hamiltonian of the
system is changed as,

UHU−1 =

∫
dx
K

2π

(
∂xθ +

2πq

L

)2

+
1

8πK
(∂xϕ)

2 . (3.4.8)

Hence we can obtain the partition function, by mapping the geometry to infinite cylin-
der, as,

Z =

∫
dφ exp (−Sboson − iq (φ(t = ∞)− φ(t = −∞))) (3.4.9)

It gives the transformation law of states induced by this operator as we have discussed
in the previous sections, especially section 1.2. The point is that we have expressed
the transformed Hamiltonian by the original coordinate (θ, ϕ).

Above is the correct and more complete derivation of polarization amplitude using
bosonization. In the following, we calculate this expectation value by the perturbation
theory. The similar calculation (almost the same for XXZ spin chain case) can be seen
in the paper by Furuya and Nakamura [69].

Finally, we calculate this expectation value by evaluating the change of the states
|0⟩, | − q⟩ under perturbation from conformal fixed point or Umklapp term (3.3.1).
Assuming the following decomposition of the Hamiltonian, H = HCFT + H ′. Then
the state |0⟩, | − q⟩ change by H ′ as a perturbation or Umklapp term. By evaluating
this perturbation, the scaling behavior of the polarization amplitude can be obtained
successfully.

Let us show more detail of their discussion of the perturbation theory. The states
|0⟩, | − q⟩ are changed by this perturbation,

|0⟩ = |0⟩ −
∑
n

⟨n|H ′|0⟩
En − E0

|n⟩+ ..., (3.4.10)

| − q⟩ = | − q⟩ −
∑
n

⟨n|H ′| − q⟩
En − E−q

|n⟩+ ... (3.4.11)

Hence applying the form of perturbation, the polarization amplitude should be
obtained by the matrix element ⟨n|H ′|m⟩. For the simplest example, we treat here

the situation with H ′ =
∫ L

0
dx cos 2φ which corresponds to XXZ model. The matrix

element can be calculated as [70],

⟨n|H ′|0⟩ = L

4π

(
2π

L

)4K

(δn,1 + δn,−1) (3.4.12)

Higher order correction can be obtained similarly. Consequently, it is possible to ob-
tain the polarization amplitude with exponent q(2K − 1), or ⟨U q⟩ ∼ 1

Lq(2K−1) with q:
even. It coincides with the numerical result of the previous section. By taking H ′ =∫
dx (∂φ)2 cos2φ for J1-J2 model and H ′ =

∫
dx∂φcos2φ,

∫ ∫
dxdycosφ(x)cosφ(y) for
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Gutzwiller-Jastrow wavefunction, the analytical results are also consistent with those
of the previous section.

As we have explained, the most essential point of the argument is the bosonic
expression for the polarization. We can conclude the polarization as a realization of
the fermionic field theory coupled with gauge field.

There exist other phenomena which support the validity of our bosonized expression
of the polarization operator.

First, the exact vanishing of the operator ⟨U⟩ from perturbation theory can be
observed with the symmetry φ→ φ+π. This is due to the charge neutrality condition
and closely related to mass condensation paradox in chapter 2. Hence if we believe this
expression, the vanishing of ⟨U⟩ should be observed even if the system is described by
massive field theory. This is consistent with the original motivation of the polarization
operator.

Similarly, we can also show the exact vanishing of {⟨Uk⟩}q−1
k=1 under the symmetry

φ→ φ+2πν for Hamiltonian with ν = S−m = p′

q′
[10, 11]. This symmetry corresponds

to one-site translation symmetry of the general lattice models. If we remember this
translation symmetry should restrict the perturbation terms to H ′ ∼ cosnq′φ form, the
change of the phase diagram with respect to q′ can be easily obtained. For example,
K > 2 is the massless phase for q′ = 1 and K > 1

2
for q′ = 2. In these parameter

regions, we can show the vanishing of the polarization amplitude U q′ in the thermo-
dynamic limit by the scaling relation ⟨Unq′⟩ ∼ Ln(2−Kq′2). Hence we can observe the
expected TLL description of the general spin XXZ Heisenberg model is changed by
S =integer or not [48] under the identification S = p′

q′
and this change coincides the

scaling behavior of the polarization amplitude. Especially, the connectivity to SU(2)1
point is changed by this symmetry [71]. In other words, the gaplessness of the spin
chain was protected by the symmetry. Therefore, we can understand the Haldane
conjecture as a consequence of symmetry protection. This is also consistent with non-
vanishing of ⟨U q′⟩ from perturbation theory and the charge neutrality condition. In the
massive phase, the relevant operator should give the mass and lock φ = const. Hence
the nonvanishing of the expectation value ⟨U q′⟩ is implied by perturbation theory even
in the thermodynamic limit.

In short, we have explained LSM theorem and Haldane conjecture [72] by symmetry
and anomaly from the viewpoint of conformal field theory and its perturbation. Witout
any interaction, the charge neutrality or Atiyah index theorem suggest the vanishing of
the expectation value of elementary particle excitation ⟨U q⟩ = ⟨e−iqφ⟩. Then we induce
the interaction which preserves the symmetry φ→ φ+ 2π p′

q′
. Even then, perturbation

theory and the charge neutrality ensure the vanishing of the expectation value ⟨Uk⟩
except for k = q′n. This is the consequence of anomaly matching. If we consider the
lowest order perturbation for cosq′φ, it gives ⟨Unq′⟩ ∼ Ln(2−Kq′2). Hence the vanishing
of this operator in the thermodynamic limit occurs iff cosq′φ is irrelevant. This explains
the LSM theorem when we consider the system is described by conformal fixed point
and its perturbation (please see Figure 3.4 and check SU(2)1 point or K = 1

2
) .
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Figure 3.4: Phase diagram of TLL changed by symmetry

3.5 Summary of chapter 3

In this chapter, we have shown the numerical results of the polarization amplitude
and its bosonized expression. Consequently, we have to conclude that the polariza-
tion amplitude for critical systems shows the nonuniversal behavior of the system. We
mean ”nonuniversal behavior” as the sensitivity of the scaling determined by the ir-
relevant perturbations. Moreover, we have explained the effect by using the bosoniza-
tion of fermion coupled with gauge field we have proposed in the previous chapter.
Our bosonized expression of polarization operator which is first proposed by Aligia
and Batista is superior to the previous proposals because it reproduces correct global
anomaly and momentum shift. Finally, we have analytically calculated polarization
amplitude. The results is consistent with numerical results and give the reason why
the naive bosonization fails to explain the behavior. Moreover, it is possible to obtain a
clearer insight of LSM theorem and symmetry protection by our bosonized expression
of polarization operator.
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Chapter 4

Conclusion and future problem

In this thesis, we have established nontrivial bosonization of Dirac fermion coupled
with U(1) gauge field. Moreover, we have shown it is closely related to LSM theorem
and spin chain with twisted boundary conditions. Actually, we can understand the
flux insertion for fermion as charge insertion of boson. This identification clarifies
the reason why twisted boundary condition induces the change of conformal anomaly
[15, 19]. As an example, we have shown the mismatch of numerical result and naive
bosonization. This result combined with our bosonization indicates the nontriviality
of the description of fermion coupled with gauge field. Applications of our method to
lattice models with background gauge field (including experimenal realization of such
models by cold atom) may be interesting [73].

Our results suggest fruitful structures of fermionic systems coupled with gauge
fields, under the identification of fermionic flux insertion as bosonic background charge
insertion. It is because bosonic field theory with background charge is expected to
describe a wide class of CFTs. Historically, the first example of such a bosonic repre-
sentation of CFT was considered by Dotsenko and Fateev [5, 6], and its generalization
is known as Wakimoto free field representation [6]. Hence we propose some correspon-
dence between affine Toda field theory and SU(N) spin chain with twisted boundary
condition as a generalization of our bosonization [74]. It may also be interesting to
consider our bosonization procedure to coupled wire construction of topological phase.
Actually, there exist some controversial explanations for fermion coupled with gauge
field and its bosonized representation under coupled wire construction [75, 76]. Our
formulation suggests this problem may be the result of the nontriviality of bosonization.
It may also be interesting to consider the relation with our formulation and fermionic
SPT [77].

As a future problem, it may be interesting to establish the relation between (mas-
sive) RG flow and our bosonization [78]. Our bosonization shows the sensitivity of fixed
point under the flux insertion. However, it should result in some form of the insensitiv-
ity of the RG flow if we assume the insensitivity of gapped systems [14]. Although no
one has established the influence of the flux insertion on the RG flow, as far as we know,
the field theoretic argument of LSM theorem is believed to be true [11]. Moreover, we
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have shown the important aspects for field theoretic understanding of the polarization
amplitude are operator state correspondence and symmetry of the Hamiltonian. These
two aspects, combined with polarization amplitude, may shed new light on the analy-
sis of more general lattice models, such as SU(N) spin chain and higher dimensional
systems [79] which are expected to described by CFT and its perturbation. Hence the
understanding of change of RG flow under a twist and perturbations is important for
further understanding of quantum field theory and LSM theorem.
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Appendix A

J1-J2 model

In this appendix we show the detailed calculation of the polarization amplitude for
J1-J2 model near free fermion point. The spin-1/2 J1-J2 model

H = J1

L∑
j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 +∆Sz

jS
z
j+1

)
+ J2

L∑
j=1

(
Sx
j S

x
j+2 + Sy

j S
y
j+2 +∆Sz

jS
z
j+2

)
(A.0.1)

under the periodic boundary condition, can be transformed to a fermion system

H = −J1
2

L∑
j=1

(c†jcj+1 + h.c.) + J1∆
L∑

j=1

(
c†jcj −

1

2

)(
c†j+1cj+1 −

1

2

)
+

J2
2

L∑
j=1

(c†j(1− 2c†j+1cj+1)cj+2 + h.c.) + J2∆
L∑

j=1

(
c†jcj −

1

2

)(
c†j+2cj+2 −

1

2

)
,

(A.0.2)

by the transformation (3.1.10). This model has several phases [61, 80] such as dimer
phase or critical phase depending on ∆ and J2.

When we fix ∆, the coefficient g2 of the leading Umklapp term is non-zero for
general values of J2 in the critical phase. However, there is a special value J2, which
we denote J2,G(∆), where g2 = 0 holds. We call this point as the Gaussian point.
Vanishing of the leading Umklapp term g2 = 0 in the field theory can be manifested,
for example, in the absence of the logarithmic correction at the critical-dimer phase
transition of the Heisenberg (∆ = 1) J1-J2 chain [81]. As explained in main text,
z(q) ≡ 0 for the free fermion system even when the system is finite (L <∞). From this
viewpoint, the non-zero value of z(q) for finite system size L may be attributed to the
(irrelevant) Umklapp terms. In order to investigate the effect of irrelevant terms, we
also perform perturbation analysis for J1-J2 model fine-tuned at the Gaussian point.

In the case of J1 ≫ J2 ∼ ∆, we can take the last three terms in (A.0.2) as pertur-
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bations, and in the lowest order of ∆, z(2) becomes

z(2) =
∑
n

⟨ψ0|V ′|ψn⟩
1

E0 − En

⟨ψn|U2|ψ0⟩+ c.c., (A.0.3)

where

V ′ = J1∆
L∑

j=1

c†jcjc
†
j+1cj+1 − J2

L∑
j=1

(c†jc
†
j+1cj+1cj+2 + h.c.), (A.0.4)

which is a three-site two-body interaction term of O(∆) that appears in (A.0.2). The
first term in (A.0.4) corresponds to the J1 z-direction interaction in the spin model, and
we have already considered this type of contribution to z(2) in the previous subsection.
The contribution of the second term in (A.0.4) is

J2
2J1(sin

π
L
+ sin 3π

L
)
⟨ψ0|

(
L∑

j=1

(c†jc
†
j+1cj+1cj+2 + h.c.)

)
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L
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L
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L
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L
⟩ψ0 + c.c.
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=
2J2

J1(sin
π
L
+ sin 3π

L
)

1

L

(
cos
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L
− 2 cos

4π

L
+ cos

2π

L

)
≈ −2πJ2

J1L2
. (A.0.6)

Therefore

z(2) =
π

L2

(
∆− 2J2

J1

)
+O(1/L4) (A.0.7)

near K = 1, and one can see that the scaling law becomes z(2) ∝ 1/L4 when J2/J1 =
∆/2, which corresponds to the Gaussian point of J1-J2 model in the limit of small |∆|.

For z(2s), s-th order perturbation contributes to the leading term. Performing the
similar calculation to the previous subsection, one can see that

z(2s) =
∑

σ,τ∈S2s

ϵσϵτ

q∏
j=1

(
∆(e−ikσ(2j−1) − e−ikσ(2j))(eikτ(2j−1) − eikτ(2j))

4L
(∑2j

l=1(sin kσ(l) + sin kτ(l))
)

+
J2
J1

(
(eikσ(2j−1) − eikσ(2j))(eikτ(2j−1) − eikτ(2j)) + c.c.

)
4L
(∑2j

l=1(sin kσ(l) + sin kτ(l))
) )

+ c.c.,

(A.0.8)

in the lowest order of ∆. When ∆ ̸= 2J2/J1, the scaling is identical to the case of XXZ
model: z(2s) ∝ 1/L2s and

z(2s) = 2

(
∆− 2J2

J1

4

)s ∑
σ,τ∈S2s

ϵσϵτ

s∏
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L
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l=1(kσ(l) + kτ(l))
) (A.0.9)
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in the order of 1/L2s. On the other hand, at the Gaussian point ∆ = 2J2/J1, the
scaling behavior drastically changes to z(2s) ∝ 1/L4s, and

z(2s) = 2

(
∆

8

)s ∑
σ,τ∈S2s

ϵσϵτ

s∏
j=1

(k2σ(2j−1) − k2σ(2j))(k
2
τ(2j−1) − k2τ(2j))

L
(∑2j

l=1(kσ(l) + kτ(l))
) (A.0.10)

in the order of 1/L4s. Thus we find

β(q) = 2q, (A.0.11)

for an even integer q, in the J1-J2 chain at the Gaussian point near the XY limit
(K ∼ 1). Thus we find that the exponent β changes drastically from Eq. (3.2.12) to
Eq. (A.0.11) by the fine-tuning of J2 at the Gaussian point. This is consistent with our
expectation that the Umklapp process has an important effect on the amplitude z(q).
In fact, fine-tuning away the leading Umklapp term g2 suppresses z(q) (by making the
exponent β larger), as it is naturally expected.
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