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Understanding individual and crowds dynamics in urban environments is

critical for numerous applications, such as urban planning, traffic forecasting

and location-based services. For example, monitoring dynamic population

distribution and foreseeing crowds density are the fundamental for urban

planners to design and improve public space for congestion reduction and

evacuation guidance. Decision makers may need to forecast what will hap-

pen if new policies are introduced and how individual and group behaviors

will change.

In the past few decades, travel demand modeling and simulation approach

have been the most widely applied for capturing urban dynamics in the city-

wide level. They support complex urban and transportation planning, as

well as management tasks on different levels of granularity in space and

time. For a long period of time, discrete choice models of human activities
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and decision making in travel-related choices were used as agent behavioral

models. However, developing such models in the common scenario require

details of demographic attributes and active trip purpose reports from travel-

ers, and data source to provide such information is the National Household

Survey, which is updated synchronously at infrequent intervals, and costs

money and time. Thus, the applications of this method are limited in scenar-

ios and the areas where surveys are conducted.

On the other hand, with the explosion of information and communications

technology (ICT) and Internet-of-Things technologies, emerging data collec-

tion methods have enabled researchers to unravel individual mobility pat-

tern and to generate models that could reproduce the time-varying charac-

teristics in human trajectories. For example, high quality geolocated data

such as call detailed records (CDRs), GPS, and social media data have quickly

overtaken traditional high-cost data (i.e., census and travel surveys) as major

data resources and have promoted a series of data-driven approaches to sup-

port transportation management, congestion management and disaster re-

sponse. However, because of the strict privacy policy, researchers had to face

a trade-off between developing fine-grained individual level modeling but

hard to be generalized to large scale population, or leveraging large amount

anonymous data to derive citywide population mobility on aggregated level.

Although the crowd-sourced locational data are already used for agent-based

mobility simulation to improve accuracy, no existing work provides bottom-

up approach for modeling and simulating human mobility using emerging

locational big data.

In this thesis, we develop a novel reinforcement learning based agent model
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which is capable of reproducing individual’s daily travel behavior from anony-

mous locational data. To do so, we first model people’s daily travel behav-

ior as sequential decision makings under Markov Decision Process (MDP),

which is the fundamental framework of reinforcement learning. We extend

the application of reinforcement learning to real world by multiple steps.

First, we designed the urban environment model which provides sufficient

and accurate state-action space that efficiently decrease the calculation cost.

Then we discuss the algorithms for finding optimal policy. To have a robust

and fast training process, we explored several value-based and policy based

algorithms including tabular solution methods and approximation methods

with the power of neural network. Another challenge is how to derive hu-

man behavior preferences from passively collected location data. We intro-

duce inverse reinforcement learning techniques that are capable of recover-

ing reward functions from demonstration trajectories. To achieve this goal,

we propose a data pre-processing pipeline to extract individual’s daily trip

with transport mode from raw GPS data. This method overcomes the data

sparsity issue and can be applied to a variety of mobility datasets. By infer-

ring and implementing the behavior preference parameters to agent model,

the agents are capable of of learning mobility sequences from raw locational

data while incorporating behavioral parameters that are sensitive to environ-

mental context is introduced.

We applied the models to the data collected from GPS data collected by a

smartphone application and People Flow Data (a data processed from Person

Trip Survey which consists of spatio-temporal information) in urban area in

Japan. The agent models are validated and compared with existing behav-

ior models. The results show that proposed model framework outperforms

the straightforward reinforcement learning, with the power of learning from
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demonstration data. On the other hand, because the high flexibility of agent

models, it is difficult to evaluate the generate trajectories. To better evalu-

ate the proposed modeling framework, we simulate daily people movement

based on the developed model and compared the simulation results with

ground truth. Experiments are both launched on normal day and disaster

scenarios.

Another important application of the proposed modeling and simulation

framework is to forecast people movement in unprecedented scenario. Lack

of historical data is the major challenge for direct forecasting because the col-

lection and storage of emerging data sets are just started from recent years.

We focus on the case that the same event (i.e. disasters ) have happened at

other places, where the data of people movement is sensed and stored. We

use the mobility data collected from other places and develop the agent mod-

els, then simulate people movement in target area.
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1 Introduction

1.1 Background

In the last few decades, the rapid urbanization and increase of population

have challenge urban planers in various of issues such as traffic congestion,

longer commuting, accidents, loss of public space and disaster management.

Although the major challenge is still the gap between increasing demand

and current supply for most regions and countries, it can be no longer solved

easily by the solutions such as expanding roadway, adding stations or con-

structing new railway lines because the the investment and space is limited

in current age. How to accurately capture the demand and leverage existing

infrastructures effectively is essential for urban planning and management.

On the other hand, the sake of travelers’ expectations of seamless travel and

for that of mobility service providers’ pursuit of efficient solutions, the atten-

tion of studying travel demand have shifted from the citywide population

level to individual level. The business successes of emerging mobility ser-

vices such as Uber, Lyft, and Didi are highly dependent on the understanding

of individual travel demand.

Furthermore, comparing to answer the questions about current situations, a
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more challenging task transportation planners are usually facing to is fore-

casting the future demand. In recent years, population overcrowding hap-

pens in lots of countries especially in urban area. which cause a series of

problems and increase the burden for current public transport system, road

networks and infrastructures. Considering the limited public space in urban

area, it is not practical to construct more transport facilities. On the contrary,

depopulation occurred in rural area makes local government have to roads

and bridges because of the drop of users. In summary, how to effectively uti-

lize current resources and correctly capture the changing population travel

demand is the key factor to solve next generation urban problems.

To achieve these goals, the requirements for understanding people move-

ment on citywide level are manifolds.

• The knowledge of people movement must be up-to-date that is capable

of replicating current situations on time.

• The granularity of the replication of must be proper to reveal both deci-

sion makings on individual level and phenomenon on population level.

• The forecasting for future or unprecedented scenarios must be correct

to support decision making and planning.

TABLE 1.1: Comparison between most existing methods for
people flow monitoring and estimation

Macro Micro No Delay Forecasting

Traffic Census 3 7 7 7

Travel Behavior Survey s 3 7 7

Travel Demand Estimation 3 3 7 3

Urban Monitoring 7 7 3 3

Human Mobility Modeling 7 3 3 3

Objective Approach 3 3 3 3

3 = provides property; s = partially provides property;
7 = does not provide property;
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However, most of existing approach could not satisfy all the requirements

discussed above. As shown in Table 1, we list existing approaches about

the topic of "understanding people movement on citywide level" from differ-

ent domains including transportation, socioeconomic, geography and com-

puter science. The most straightforward method is traffic census that using

tally counters. Though the result from census is reliable to capturing the

overall travel demand on target area, the high cost of hiring large amount

of crews and processing time make it to be impractical to conduct the cen-

sus frequently. Besides, the results can only provide the amount of traffic

volume, lack of detailed trip information and traveler background limits its

application for future forecasting and decision making support.

1.1.1 Survey-based approach

On the other hand, travel-related surveys are conducted to study individual

travel behavior. Generally, subject’s trips (origins and destinations, start time

and end time, transport mode and purpose) on a given day are recorded with

individual attributes such as socio-economic and demographic information

are collected. Based on these data, critical important knowledge such as cur-

rent traffic volume estimation in the form of origin-destination matrix [62,

15], future travel demand forecasting and individual travel preferences are

produced to support decision makers for future plan. However, such man-

ually collected questionnaires are extremely expensive and cost long time

for data processing. Thus, the survey cannot be conducted frequently and

the results are usually suffering significant delays. Obviously, thus methods

cannot meet the current challenges.
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1.1.2 Travel demand modeling approach

During last few decades, researchers have made significant progresses in

modeling and estimating travel demand. Generally, travel demand models

are developed to forecast the response of transportation demand to changes

in the attributes of people using the transportation system. Specifically, travel

demand models are used to predict travel characteristics and usage of trans-

port services under alternative socio-economic scenarios, and for alternative

transport service and land-use configurations[11]. Previously, travel demand

approach uses trips as the basic unit of modeling. Four separate steps of pro-

cedure are developed for estimating the total inflow and outflow of each zone

in the target area (as ‘trip generation’), assigning trips to each zone pair

(as‘trip distribution’), determining transport mode of each trip (‘as mode

choice’) and finally assigning trips to road network (‘trip assignment’).

However, trip based travel demand approaches are failed to modeling indi-

vidual daily schedule with trip chain structure because all the trips generated

from the models are separated and there is no behavior rule to combine them

in rational order. To fill this gap, activity-based travel demand approach is

developed. Thus approach is on the basis of that the travel demand is the

result of participating activities at different places and time. Since activity

is more easily to be modeled and forecast at individual level, it immediately

replaced traditional trip-based approaches. Travel behaviors are regarded

as the derivatives of activities at different places such as home, work, shop-

ping and others. Especially, the discrete choice models are widely used for

modeling activity choice, departure time choice, transport model and other

behavioral factors. However, developing activity-based models needs de-

tailed travel behavior survey, the data collection is usually expensive and

with significant delay. Because of this limitation, only typical day’s travel
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demand can be modeled and estimated which obviously match the current

requirements from demand-side. Furthermore, few studies have examined

the spatial-temporal aspects of travel choice simultaneously, spatial choices

are often on zone level and temporal aspects are ignored. Resolution on mi-

croscopic level are not enough.

1.1.3 Emerging data collection and urban monitoring approach

With the development of Internet of Things (IoT) and Information and Com-

munication Technology (ICT), individual travel footprints can be sensed and

recorded by more and more services and devices. The most well used data

source of the population, Call Detailed Record (CDR) is collected by mobile

phone carriers. The record is generated when telephone call, text message or

Internet data exchange that passes through that devices. The device carrier’s

location is recorded by the nearest base tower number. The spatial resolu-

tion of such records varies from several hundreds meters in the central of

urban area to few kilometers in rural area. According to its high population

coverage, thus data are well studied and leveraged for human mobility pat-

tern analysis[21, 54, 25], link traffic volume estimation [60] and crowd den-

sity monitoring[14, 36]. On the other hand, due to the popularization of the

smart phones, GPS data is also widely used and collected from location based

services such as navigation, check-ins, recommendation, disaster alerts and

advertising. Comparing to CDR data, spatial resolution of GPS is less than

10 meter in most devices which enables researchers to mining more detailed

information such as carrier’s travel speed, transportation mode, points of in-

terests. However, current applications of location big data are still limited in

data mining and aggregated level, even though the results can be correctly

estimated, it is still hardly to figure out how individuals move over time and
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unable to capture where the people flow come from and where they will go

to.

Human mobility modeling

On the other hand, researchers from different domains start to using CDR

and GPS data to reveal the nature and pattern of human mobility. The be-

ginning of this topic is started by [21, 54], which reveal statistical character-

istics and predictability of individual mobility by mining CDRs data, [49]

uses same data and summarize human daily mobility pattern into 17 unique

types. The objectives of these studies reveal multiple dimension of human

mobility such as destination, departure time choice, travel distance, transport

mode classification, trajectory matching, activity choice and activity pattern.

However, most studies just focus on a single aspect of human mobility, few

studies integrate these separate factors to modeling daily schedule.

1.1.4 Machine learning approach

In recent years, benefiting from the explosive development of deep neural

networks(DNNs), machine learning has been shown to be the most excit-

ing approach and has achieved a lot of success in natural language process,

objective detection and computer vision. The complex and non-linear hu-

man mobility can be represented by DNNs even without advanced domain

knowledge. For example, state-of-the-art recurrent neural network[73] has

been successfully applied in modeling and predicting sequential behaviors,

in transportation domain, [35] extended the model for next place prediction

by adding spatial and temporal contexts. [70] leveraged Long Short-term
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Memory(LSTM) to model individual’s daily activity schedule, thus gener-

ative model is also able to reproduce synthetic activities. On aggregated

level, [71, 72] proposed citywide crowd flow prediction method using deep

residual network. Comparing to traditional approaches, machine learning

models are accomplished in handling large amount features and complex

pattern representation. However, for most studies, the modeling and fore-

casting are on the basis of daily trajectory analysis, thus the results are hard

to applied into whole population and unprecedented scenarios (where train-

ing data is hard to get). Besides, training robust machine learning (especially

deep learning) model needs large amount training data which only few pri-

vacy companies collect, store, and manage them. Due to the strict privacy

policy constraints, although data collected from who has agreed to provide

their location information is allowed to be used for research purposes, the

data is managed anonymously and it is difficult to associate demographic

and socio-economics attributes with travel behaviors. Because of this limi-

tation, few of machine learning approaches studied the decision-making of

travel behavior.

Reinforcement learning is another branch of machine learning that integrates

with agents ought to take actions in an environment so as to maximize some

notion of cumulative reward. Unlike machine learning that needs to learn

from a training data set and then apply the trained model to new data set, re-

inforcement learning is dynamically learning by adjusting actions based on

the feedback from interaction with environment. Reinforcement learning is

an autonomous, self-teaching system that essentially learns by trial and er-

ror. The agents generate different episodes(sequential of actions) and learn

from the feedback whether that lead to a good result, then reinforce the ac-

tions that worked, otherwise lower down the probability of choosing these
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actions. Comparing to traditional trip-based and activity-based travel de-

mand modeling approach, reinforcement learning could handle more com-

plex environment with plentiful algorithms. It also enables researchers to

combine multiple aspects of human mobility such as decision choice, time

choice and transport mode.

Reinforcement learning has already been applied to modeling travel demand

related decision making[24, 68]. However, all of these formulations use a pre-

determined reward function, a significant limitation to the use of“forward”

RL methods alone to learn decision rules for activity scheduling[17]. Al-

though inverse reinforcement learning[42] has been proposed to solve com-

plex multidimensional reward function formulation issue, there is no exist-

ing work combines IRL approach with travel demand modeling.

1.2 Objectives and Originality

In this thesis, we aim to develop a novel reinforcement learning based agent

modeling and simulation framework that is capable of revealing both indi-

vidual level daily travel behavior decision-making and citywide level peo-

ple flow dynamics for various scenarios. To achieve this goal, we extend

the current reinforcement learning framework to real world travel demand

modeling problem by multiple steps. First, we designed the urban environ-

ment model which provides sufficient and accurate state-action space that

efficiently decrease the calculation cost. Then we discuss the algorithms for

finding optimal policy. To have a robust and fast training process, we ex-

plored several value-based and policy based algorithms including tabular

solution methods and approximation methods with the power of neural net-

work. Another challenge is how to derive human behavior preferences from
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passively collected location data. We introduce inverse reinforcement learn-

ing techniques that are capable of recovering reward functions from demon-

stration trajectories. To achieve this goal, we first proposed a method to pro-

cess raw locational data into individual’s daily trip with transport mode from

raw GPS data. The preprocessing pipeline overcome the data sparsity issue

and can be applied to other mobility datasets. By inferring and implementing

the behavior preference parameters to agent model, the agents are capable of

of learning mobility sequences from raw locational data while incorporating

behavioral parameters that are sensitive to environmental context is intro-

duced.

We applied the models to the data collected from GPS data collected by a

smartphone application and People Flow Data (a data processed from Person

Trip Survey which consists of spatio-temporal information) in urban area in

Japan. The agent models are validated and compared with existing behav-

ior models. The results show that proposed model framework outperforms

the straightforward reinforcement learning, with the power of learning from

demonstration data. On the other hand, because the high flexibility of agent

models, it is difficult to evaluate the generate trajectories. To better evalu-

ate the proposed modeling framework, we simulate daily people movement

based on the developed model and compared the simulation results with

ground truth. Experiments are both launched on normal day and disaster

scenarios.

Another important application of the agent-based modeling and simulation

framework is to forecast people movement in unprecedented scenario. Lack

of historical data is the major challenge for direct forecasting because the

collection and storage of emerging data sets are just started from recent years.

We focus on the case that the same event (i.e. disasters ) have happened
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at other places, where the data of people movement is sensed and stored.

We use the mobility data collected from other places and develop the agent

models, then simulate people movement in target area.

The originality of this thesis is summarized as follows;

• First, we proposed an reinforcement learning based agent model that

is capable of self-teaching and learning from trial and error. Given dif-

ferent environment settings, agents can autonomously find out optimal

policy.

• Second, with the proposed reinforcement learning framework, we in-

tegrate multiple aspects of human mobility such as destination choice,

transport mode, departure time choice and behavior pattern in daily

scheduling issue to generate realistic individual travel behavior. Un-

like traditional activity-based modeling approach, our approach is a

straightforward tour-based travel demand model, which could simul-

taneously reveal spatial and temporal choice with higher result resolu-

tion.

• Third, we first introduce inverse reinforcement learning into travel de-

mand modeling approach to improve agents performance. IRL can be

seen as a method to imitate how real people behave from their trajec-

tories. By sampling and learning from the large amount mobility data

set, the reinforcement learning agents can approximate the behavior of

the real people who contributed their data to the dataset.

• Finally, based on the proposed agent model, we develop an agent-based

simulation framework that provides a bottom-up travel demand esti-

mation replication which could support decision makers from multiple

perspectives.
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1.3 Overview

The overview of this thesis is structured as follows:

• In chapter 2, we review most previous studies related to this thesis, in-

cluding travel demand modeling and simulation approach from differ-

ent approaches, human mobility modeling and machine learning ap-

proaches by leveraging large scale anonymous location data on both

individual and aggregated levels.

• Chapter 3 introduces our reinforcement learning based agent models

from anonymous location data. We present the modeling framework,

agent and environment formulation, and explain the algorithm in both

small and large state space settings.

• Chapter 4 describes the inference method of recovering human travel

preferences from anonymous location data using inverse reinforcement

learning techniques. To do so, we explore the processing pipeline from

raw sparse GPS data to learn-able demonstration trajectories, and ap-

plied Maximum Entropy Inverse Reinforcement Learning algorithm to

the RL framework proposed in Chapter 3. We also discuss the rela-

tionship between the trajectory data and estimation results of inverse

reinforcement learning with different volumes and on different areas.

• In chapter 5, we develop the application of people flow on citywide

level in different places and scenario using the agent models in Chapter

3 and 4. We propose a modeling and simulation framework for travel

demand forecasting problem that combine emerging anounymous data

with promising agent-based techniques. The agent models are evalu-

ated in different levels and scenarios. The results show that proposed
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agent model can well reproduce people daily travel planing problem

on different areas and situations. Furthermore, an application of trans-

ferring pre-trained agent model to new environments are also be vali-

dated.

• Finally, we summarize the research motivation, objective, evaluation of

experiments results, and simulation applications in Chapter 6. Future

research directions for more comprehensive applications are also dis-

cussed here. At last, we summarize the current limitations and future

directions.

1.4 Contribution

In this dissertation, we aim to develop an reinforcement learning based agent

model for reconstructing people flow on citywide level. We first review

the current challenges of understanding mass people movement on citywide

level and existing monitoring and modeling approaches. Then we combined

current agent-based simulation framework with reinforcement learning tech-

niques in space movement issue for real-world applications and evaluated

the results. The contribution of this study are summarized as follows.

• We proposed and end-to-end data processing and modeling pipeline to

integrate reinforcement learning and location data. Location data such

as GPS data, person trip survey data were used as input, and the frame-

work can be used to create detailed temporal travel behavior profiles.

By this processing pipeline, data sparsity issue is overcame.

• Combining this with an RL approach especially for the objective of gen-

erating synthetic human mobility traces from anonymous location data
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makes it possible to expand the scope of the state-of-the-art ABM tech-

niques for travel demand analysis.

• We simulated people flow in different area and scenarios to evaluate

model performance with real world dataset.
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2 Related works

In this chapter, we summarize the most existing methods about capturing

people movement with different approaches such as questionnaire survey,

travel demand modeling, emerging data collection and analysis and machine

learning approach.

2.1 Survey-based Approaches

Traditionally, travel behavior surveys are widely used by transpiration plan-

ners for decision making, system design and policy evaluation. The surveys

are commonly in a diary format, which first appeared in the late 1970s in

German, and sooner be introduced to the United States [51]. Participants are

required to report their typical travel behaviors in a common day with the

details of each trip including origin, destination, transport mode and travel

purpose. Participants’ personal information such as age, gender, occupation

and ownership of private cars are also collected. Information is collected

manually by the means of paper questionnaire, telephone and face-to-face

interview. More details of travel survey history and development can be

found in [57, 45]. Take Japan as example, the Person Trip (PT) survey has

been conducted in around 62 cities with sample sizes that were as big as 1-3

percent[1]. Besides, another approaches named tracking method is also used

to collect travel movement of sampled individuals [6]. Although tracking
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surveys can provide more details about space-time movement of target indi-

vidual, the high cost for for tracking people movement in urban scope limits

its application in large samples.Based on the survey results, transportation

researchers can easily summarize characteristics such as average trips, the

transport modal share, travel time and distribution of trip generation. The

present origin-destination matrices can also be estimated on Traffic Analysis

Zones level as an important production of survey.

Travel survey provide the foundation to reveal current travel situation. On

the contrary, travel demand models are developed to forecast future demand.

There are two types of travel demand models, Four Step Model (FSM) and

Activity based Model (ABM). The FSM is consist of trip generation, trip dis-

tribution, modal split and traffic assignment. In the first step, the total num-

ber of trips from a particular traffic zone is estimated based on the demo-

graphic and socio-economic characteristics on the basis of census and travel

survey results. Then, trips are distributed from generated zones to attracted

zones. In the third step, mode split estimates the share of trips between each

generated zone and attracted zone that uses a particular transport mode. Fi-

nally, all of the distributed trips are assigned to the existing transportation

system. Although this approach has achieve success in aggregated level es-

timation and forecast, it has failed to perform in most relevant policy test,

whether on the demand or supply side [38].

The FSM can also be seen as a type of trip-based model which each trip is

generated separately. To improve the consistency of travel representation,

researchers [22, 13] group trips into tours on the fact of all travels can be re-

garded as round-trip based at home. The shift from trip to tour based enable

model system to incorporate with temporal-spatial factors.
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2.2 Travel demand modeling approach

During last few decades, researchers have made significant progresses in

modeling and estimating travel demand. Generally, travel demand models

are developed to forecast the response of transportation demand to changes

in the attributes of people using the transportation system. Specifically, travel

demand models are used to predict travel characteristics and usage of trans-

port services under alternative socio-economic scenarios, and for alternative

transport service and land-use configurations[11]. Previously, travel demand

approach uses trips as the basic unit of modeling. Four separate steps of pro-

cedure are developed for estimating the total inflow and outflow of each zone

in the target area (as ‘trip generation’), assigning trips to each zone pair

(as‘trip distribution’), determining transport mode of each trip (‘as mode

choice’) and finally assigning trips to road network (‘trip assignment’).

However, trip based travel demand approaches are failed to modeling indi-

vidual daily schedule with trip chain structure because all the trips generated

from the models are separated and there is no behavior rule to combine them

in rational order.

Activity-based models are the most promising modeling approach that could

reveal individual’s daily behaviors[9]. The theory of activity based model is

on the idea that the demand for travel is derived from the demand for ac-

tivities[13, 27]. The model incorporates demographic factors (age, gender,
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FIGURE 2.1: An example of activity-based modeling and simu-
lation framework

occupation and household members) with the choice of activities[43], de-

pendence of destination choice in trip chains[28], and activity duration mod-

els[10]. [13] combines all these highlights and proposed a multi-level nested-

logit choice model that successfully represent daily activity decision mak-

ings. Thus model is widely used for travel demand modeling, traffic simu-

lation and future demand forecast. We give a example framework in Fig.2.1.

Comparing to previous modeling approaches, activity based model is ca-

pable of expanding to full population considering demographic attributes,

sensitive to environment and policy changing and flexible to combine with

temporal-spatial constraints, thus it is widely used for evaluating how poli-

cies, urban changes and rare events will affect people travel behaviors.
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TABLE 2.1: Summary of existing travel demand estimation ap-
proaches

Method Author Source Objective Detail

Trip based Four step Sasaki et al. Land Use Trip-chain Markov chain
approach model (1972) [48]

Golob et al. Land Use Trip-chain
(1986) [20]

Activity based Discrete Choice Ben-Akiva et al. Time use Daily plan Static
approach Model (1994)[12] Survey

Ben-Akiva et al. Time use Activity choice Dynamic
(2007)[13] Survey
Wen et al. Time use Car ownership
(2000)[65] Survey

Hazard Duration Hamed et al. Time use Activity Duration
Model (1993)[23] Survey

Vause et al. Time use
(1997) Survey

Gnarling et al. Time use Departure time
(1989) Survey

Rule based Pendyala et al. Time use Activity chain
Model (1995)[44] Survey

Arentze et al. Time use Activity chain
(2008)[5]

On the contrary, agent-based Modeling (ABM) is a powerful tool for study-

ing self-organizing system with heterogeneous agents situated in a shared

environment. In the last few decades, ABM has been applied to lots of do-

mains include social sciences, signal control and transportation simulation.

In these researches, agents may correspond to cities, blocks, platoons, house-

holds, individual travellers (drivers), vehicles, sensors, traffic signals, etc [7].

However, it is often difficult to develop a reliable agent-based model since

one needs to develop agents’ behavioral rules through a qualitative under-

standing of the domain and careful calibration of agent and environmental

parameters [30]. Moreover, traditional ABM practice relies heavily on expert

opinion or qualitative comparisons of behavior to develop robust model. To

overcome these issues, recent years researchers attempt to incorporate ma-

chine learning techniques and realistic datasets into ABM methods. How-

ever, most of these methods are black box machine learning models; the open
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challenge is how to interpret the results, which hinder the applications of

these methods in ABM.

2.2.1 Emerging data collection and human mobility model-

ing approach

With the development of Internet of Things (IoT) and Information and Com-

munication Technology (ICT), individual travel footprints can be sensed and

recorded by more and more services and devices. The most well used data

source of the population, Call Detailed Record (CDR) is collected by mobile

phone carriers. The record is generated when telephone call, text message or

Internet data exchange that passes through that devices. The device carrier’s

location is recorded by the nearest base tower number. The spatial resolu-

tion of such records varies from several hundreds meters in the central of

urban area to few kilometers in rural area. According to its high population

coverage, thus data are well studied and leveraged for human mobility pat-

tern analysis[21, 54, 25], link traffic volume estimation [60] and crowd den-

sity monitoring[14, 36]. On the other hand, due to the popularization of the

smart phones, GPS data is also widely used and collected from location based

services such as navigation, check-ins, recommendation, disaster alerts and

advertising. Comparing to CDR data, spatial resolution of GPS is less than

10 meter in most devices which enables researchers to mining more detailed

information such as carrier’s travel speed, transportation mode, points of in-

terests. However, current applications of location big data are still limited in

data mining and aggregated level, even though the results can be correctly

estimated, it is still hardly to figure out how individuals move over time and
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unable to capture where the people flow come from and where they will go

to.

2.3 Machine Learning based Approach

With the rapid development of ubiquitous technologies, people’s movements

are sensed by various approaches such as Call Record Details (CDRs), credit

card bills, GPS-equipped devices, social network check-ins and public tran-

sit smart cards. Among them, CDRs, GPS and social networks data are the

most popular data source for studying people’s travel behaviors. CDR data

usually has the highest coverage including millions of users, although the

temporal and spatial resolution are rough, recent studies have developed ef-

ficient pipeline to detect user’s activities and behavior pattern[26]. On the

contrary, GPS data has highest spatial accuracy, and can be easily collected

by numerous kinds of location based services, which automatically report

devices holder’s location in short time interval[67] (or when applications are

using). However, both these two kinds of data are under strict privacy policy,

the personal information is hard to incorporate with behavior analysis and

only the services provider can use the data for research purposes. Besides, so-

cial network data such as check-ins, location-based tweets is also important

data source for researchers. Although the consistency of data is lower than

CDR and GPS, the openness to the public and richness of traveler’s back-

ground, comments on travels open the door to mining further knowledge

about travel behaviors.

Studies on emerging data sets can be divided into two types as individ-

ual based approaches and population based approaches. Individual based

approaches are focusing on the prediction of future behaviors. Since GPS
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and CDRs is capable of observing individuals’ travel behaviors in long time

period, the regulation of daily travel behavior makes it possible to predict

individual’s location transition. Classical methods such as simple Markov

model[19], Hidden Markov model[37] have been developed for next places

prediction. [16, 69] achieve context-aware by combining with environment

information. However, the prediction accuracy is dependent on the amount

and quality of observation data. Besides, the learned models cannot be ap-

plied in new environments or scenarios. Previous activity based methods

have also been applied on CDR data[26] for individual based travel behavior

study. The basic idea is to infer activities from mobility data and use the in-

ference results for activity based modeling. Although such approaches make

up for the out-of-data issues of traditional data sets, without additional in-

formation only few activity types can be recognized (i.e. home, work, school

and others), and lack of individual background information also limits the

applications. Recently, machine learning models have also been introduced

to this domain. Graph-based behavior inferences[56], transportation mode

detection[75], trajectory prediction using LSTM[4] are applied to location big

data with the power of neural networks.

On the other hand, applying location data on aggregated level does not suffer

the constraints of privacy policy issues, so the applications on such domain

are more well developed. The beginning of this topic is started by [21, 54],

which reveal statistical characteristics and predictability of individual mobil-

ity by mining CDRs data. Following studies[49] uses same data and sum-

marize human daily mobility pattern into 17 unique types. The collection

of large amount mobility data brings convenience for sensing and modeling

mass people movement in city-scale. The first work in this domain is [14] that

used network usage to detect crowd dynamics in a particular area. Inspired
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by this research, a series of studies attempted to detect population movement

status by using CDRs [8]. Once home locations are detected[], the population

of observed mobile phone users can be expanded to whole population level

by incorporating with National Census. Another promising direction of ap-

plications are "urban monitoring" that treat mobile device holder as sensor to

detect crowds congestion and population distribution.

2.4 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning that focus on

the interaction between agents and environment, to derive optimal policy by

trial and error based on sequential decision-making process which can be ap-

plied in a variety of fields such as robot control, video games and system opti-

mization [39, 47]. The theory of RL provides interpretable, psychological and

neuron-scientific perspectives on human behavior, of how they plan their ac-

tions in a given environment[58]. The framework of reinforcement learning

provides a mathematical formalization of intelligent decision making that is

powerful and broadly applicable for agent control [31, 34]. However, for a

long period, their applications are limited to domains in which agent behave

in low-dimensional state spaces with well-defined reward function.

Over the past few years, RL has become increasingly popular due to its suc-

cess in addressing challenging sequential decision-making problems. Several

of these achievements are due to the combination of RL with deep learning

techniques[40, 39, 61]. This combination, called deep RL, is most useful in

problems with high dimensional state-space. Previous RL approaches had a

difficult design issue in the choice of features. However, deep RL has been

successful in complicated tasks by using less prior knowledge thanks to its
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ability to learn different levels of abstractions from data [I]. For instance, a

deep RL agent can successfully learn from visual perceptual inputs made up

of thousands of pixels. This opens up the possibility to mimic some human

problem solving capabilities, even in high-dimensional space which, only a

few years ago, was difficult to conceive.

However, although reinforcement learning approach has proved its potential

in lots of domains, few real world challenging tasks are solved by reinforce-

ment learning. There maybe few reasons for this issue. First, traditional

reinforcement learning algorithms such as dynamics programming, value it-

eration are capable of solving precise policies for small scale state space RL

problems, but real world applications usually have a enormous state space

that have to be calculated by approximate approaches with the power of deep

learning, that is hardly to achieve real time solution. Second, the representa-

tion of real world environment is too complex and there is still no common

solutions. Third, the reward of RL problems are usually clear and sparse

(like win a game, got a item or achieve some beforehand goals). However,

the reward of real world applications, especially for human being tasks, the

reward function are hard to define. As consequences, reinforcement learning

agents are hard to behave like real human-beings.

Several notable works using deep RL in games have stood out for attaining

super-human level in playing Atari games from the pixels[39], mastering Go

[53] or beating the world’s top professionals at the game of Poker. Deep

RL also has potential for real-world applications such as robotics [33], self-

driving cars[pan]and smart grids. Nonetheless, several challenges arise in

applying deep RL algorithms. Among others, exploring the environment

efficiently or being able to generalize a good behavior in a slightly different

context are not straightforward. Thus, a large array of algorithms have been
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proposed for the deep RL framework, depending on a variety of settings of

the sequential decision-making tasks.

Another promising method is inverse reinforcement learning. Inverse Rein-

forcement Learning (IRL) enables robots to learn complex behavior from hu-

man demonstrations, in cognition and preference learning, where it serves

as a tool to discover human behavior preferences. The objective of IRL is to

estimate the reward function from experts’ trajectories that motivates agents’

behavior underlying the environment. By recovering the reward function

correctly, agents are capable of imitating the experts’ behavior. Lots of the

previous works in this domain relies on parametrization of the reward func-

tion on the basis of hand crafted features[32, 63]. Furthermore, this approach

makes the transfer of well-trained reward functions between different sce-

narios under the same feature representation and achieve better generaliza-

tion performance than direct state-to-state mapping to be possible [77, 42, 2].

Especially, previous studies represent the reward function as a linear func-

tion with hand crafted features. In this study, we expand the use of such a

framework on recovering the preference of daily movement decision making

based on reward function and an attempt is made to replicate citywide level

population’s flow by incorporating with agent-based multi-modal traffic

simulation technologies.
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3 Modeling Travel Behavior as

Reinforcement Learning

3.1 Introduction

As mentioned in Chapter 2, most of reinforcement learning (RL) studies are

only for toy domains but seldom to solve challenging real world problems.

In this chapter, we extend the framework of modeling and simulating indi-

vidual daily travel behavior as reinforcement learning problem. The rein-

forcement learning models reveal subject’s behaviors in the form of sequen-

tial decision makings by Markov Decision Processes (MDPs). We focus on

the behavior of travel behavior considering of destination and transportation

mode choices. The model can be considered as a type of trip-based model,

and we do not consider specific activities or trip purposes.

3.2 Modeling Framework

In this study, we aim at modeling and simulate human daily travel behav-

ior based on RL framework. Although RL enables agents to learn in an

interactive environment by trial and error using feedback from their own
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FIGURE 3.1: Framework of this study

experience, there is not enough knowledge to design a perfect reward func-

tion whose optimization would generate human-like behavior, so straight-

forward RL may not lead to a realistic simulation result. One solution is to

mimic the behavior of human-beings and characterize the set of reward func-

tions. Thus, human behavior observations are needed as training data. As

shown in Fig. 1, the end-to-end framework consists of three parts: developed

data processing, agent modeling with parameter training, and agent-based

travel micro-simulation.

3.3 Formulation of Agent Model

Markov decision processes (MDPs) provide a mathematical framework for

modeling the sequential decision-making process in a variety of situations

where the outcomes are under the control of a decision maker[58]. The agent
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FIGURE 3.2: The interaction between agent and environment in
the MDP framework.

choose actions and the environment returns feedback to agent and transit

agent to the next state. Fig depicts this mechanism. Thus, we represent indi-

vidual daily travel behavior decision making as a deterministic MDP. The in-

dividual traveler is modeled as the agent. Everything out of the agent where

it interacts with is modeled as environment. The agent selecting actions and

the The agent observes its state at every time step from the environment and

takes action accordingly. Then the agent transits to the next state and receive

reward from environment.

Generally, a MDP is a tuple of five elements (S, A, T, R, γ), where

• State: S is the state space that an agent can visit. A state st is defined

as the location of the person’s stay at a specific time step t. Further,

this space is expanded into higher dimensions by functions mapped

from st into R which denoted as: s = [lon, lat, t, x1, x2, · · · , xn]. The

triplet [lon, lat, t] represents the individual’s location and timestamp,

and [x1, x2, · · · , xn] is a set of context features consisting of numerical



Chapter 3. Modeling Travel Behavior as Reinforcement Learning 28

data related to a set of context information.

• Action: A is a finite set a1, a2, · · · , aM of actions. An action a ∈ A is

denoted as a = [destination, mode] which controls agent’s transition be-

tween states. The agent interacts with environment at each time steps

as t = 0, 1, 2, 3, · · · , . At each time step t, the agent observes its current

state St ∈ S from environment, and chooses an action at ∈ A(s) based

on current state. To reduce action space and computational cost, the en-

vironment is simplified by splitting space into a 1-km grid as the tran-

sition unit. Furthermore, the structure of the road and railway network

constrained the accessibility for some areas (i.e., some rural areas are

not reachable by railway), making it necessary to filter out these kind

of actions. The subset action of state s, As ∈ A to improve performance.

• Transition function: The transition function is the system dynamics. Ba-

sically, this function it is a probability distribution over next possible

successor states, given current state and action as T = Pr(st+1 = s′ |

st = s, at = a) that action a in state s at time t will lead agent to state

s′ at next time step. In this study, because the definition of action has

figured out specific destination which represents the next state, we set

transition probability as 1.

• Reward function: The reward function is indispensable for computing

an agent’s policy π(a|s). An appropriate representation of reward

leads agent to generate desirable behavior. However, a“desirable be-

havior” is extremely hard to define and varies from person to person.

Therefore, in this study, an multi-attribute reward function R(s, a; θ) is

proposed that defines the immediate reward of action a and state s. The

feature vector f is mapped from state-action pair (s, a), which incorpo-

rate the information from the current state, destination, and travel cost
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from action a considering the transport mode. In this study, R is as-

sumed to be the linear combination between the features f (s, a) and

a weight θ. From this perspective, the parameter θi corresponding to

feature xi represents the preference of taking such an action.

• Discount factor: γ ∈ [0, 1] represents the weight for a step of from

a state steps into the future. This factor is usually to use for control

episode length.

In a RL problem, the agent tries to maximize the cumulative reward it could

receive in future. To be noticed, the maximization is not focus on one-step

(or next step) but cumulative reward in the future considering the discount

factor as follows:

Rt = E[rt + γrt+1 + γ2rt+2 + · · · ] = E[∑
k=0

γk
t+k] (3.1)

3.4 Reinforcement Learning Algorithm

The obvious way of finding an optimal behavior in some MDP is to list all

behaviors and then identify the ones that give the highest possible value for

each initial state. Since, in general, there are too many behaviors, this plan is

not viable [59]. Formally, a policy is the action selection denoted as probabil-

ities of selecting each possible action under a given state. If the agent follows

policy π at time t, then π(a|s) is the probability that At = a if St = s. The ob-

jective of RL is to find an optimal policy that leads agent to collect maximize

the discounted reward over time.

In this section, we discuss reinforcement learning algorithms to let agent to

learn proper policy to behave. In figure 3.2, we list most of current algorithms
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FIGURE 3.3: Current Reinforcement Learning Algorithms
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that are developed to solve reinforcement learning problems in different sce-

narios. Generally, the algorithms can be divided into two categories: the

tabular solution methods and approximation approaches. The former tabu-

lar solution methods focus on the cases in which the state and action spaces

are small enough so that the state value and action value (will be explained

later) can be stored as array or table for programming. The fundamental

classes of methods for solving finite Markov decision problems include dy-

namic programming, value iteration, TD learning and so on. In the section

3.3.1, we leverage tabular solution methods to solve RL agent policy in small

state spaces and in section 3.3.2, we introduce deep reinforcement learning

algorithms to apply agent model into high-dimension large state-space for

real world applications.

3.4.1 Algorithms for Reinforcement Learning in Small State

Space

As aforementioned, tabular solution methods are able to find exactly the op-

timal policy. For infinite MDPs, the optimal policy is always better than (or

at least equal to) other policies for all states. We fist discuss the algorithms

that is capable of solving optimal policy and apply the algorithm to travel

behavior agents.

The key idea of finding optimal policy in reinforcement learning is to esti-

mate the value functions of state-action pairs that evaluate the performance

of choosing an action in a given state. The performance can be calculated in

terms of expected feedback from environment. Accordingly, value functions

are defined on the basis of policy. The value of a state s under policy π is rep-

resented as vπ(s) that represent expected feedback from environment when
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starting from state s under policy π. For MDPs, v(π) can be formulated as

follow:

v(s) .
= Eπ[Gt|St = s] = Eπ[

∞

∑
k=0

γtRt+k+1|St = s], f oralls ∈ S (3.2)

where Eπ[·] denotes the expected value of a random variable given that the

agent follows policy π, and t is any time step. Similarly, the value of choosing

an action a in state s under a policy π, written as qπ(s, a), as the action value

can be defined as follow:

qπ
.
= Eπ[Gt|St = s, At = a] = Eπ[

∞

∑
k=0

γkRt+k+1|St = s, At = a] (3.3)

The optimal policy π∗ may be not unique, all the optimal shares the same

optimal state-value function v∗ defined as follow:

v∗(s)
.
= max

π
vπ(s), (3.4)

for all s ∈ S. Similarly, the action-value function Q∗ can also be denoted as:

Q∗(s, a) = .
= max

π
qπ(s, a), (3.5)

for all s ∈ S and a ∈ A(s). The relationship between state-value and action-

value can be defined as:

Q∗(s, a) = E[Rt+1 + γv∗(St+1)|St = s, At = a] (3.6)

The relationship between the value of a state on the basis of an optimal policy

and the expected feedback for the optimal action choice from that state can

be expressed by the Bellman optimallity equation as:
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v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

E[Rt+1 + γv∗(St+1)|St = s, At = a]

= max
a ∑

s′,r
p(s′, r|s, a)[r + γv∗(s′)]

(3.7)

The Bellman optimality equation for q∗ is

q∗(s, a) = E[Rt+1 + γ max
a′

q∗(St+1, a′)|St = s, At = a]

= ∑
s′,r

p(s′, r|s, a)[r + γ max
a′

q∗(s′, a′)]
(3.8)

There are three fundamental classes of methods for finding the optimal pol-

icy π∗: dynamic programming, Monte Carlo methods, and temporal-difference

learning. We implemented dynamic programming method as the basic solu-

tion of reinforcement learning of this research because it provides the most



Chapter 3. Modeling Travel Behavior as Reinforcement Learning 34

complete mathematical theory to achieve the optimal policy. In dynamic pro-

gramming, value functions are updated by value iteration algorithms.

Algorithm 1: Value Iteration algorithm for estimation π∗
Result: Output a deterministic policy, π∗ such that

π(s) = maxa ∑s′,r p(s′, r|s, a)[r + γV(s′)]

Set a small threshold θ > 0 determining accuracy of estimation;

initialization;

while ∆ < θ do

∆← 0;

for s ∈ S do

v← V(s);

V(s)← maxa ∑s′,r p(s′, r|s, a)[r + γV(s′)];

∆← max(∆, |v−V(s)|) ;

end

end

The major limitation of the value iteration method is that it involves opera-

tions over the entire state set of the MDP. If the state set is very large, the cal-

culation will be extremely expensive. Compared to normal MDP problems,

urban area is a more complex system that could generate an extremely large

state space that is not capable of being computed. To avoid this problem, the

key idea is to reduce the size of state space and preparing a necessary and

sufficient action set to make the problem tractable. As explained in Section

3.2, by discretizing space into mesh grid can efficiently decrease the size of

state space, however, the granularity of discrete space is a trade-off between

calculation cost and prediction accuracy. We found that population density is

very high in urban area, there are still lots of areas which are unreachable for

human mobility. The accessibility of each places determined by its land use,
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FIGURE 3.4: Graph based state-action representation of urban
environment

transportation infrastructure and status. For example, a place (or a grid in the

discrete space) without railway station will not be potential destination of a

"railway" trip. Although it is impractical to determine all these relationship

between difference places, we can connect geographical areas and create the

transition relationship by mining the human daily movement trajectories.

Definition 1 Given two mesh m(x, y) and m′(x′, y′) in target area, if a trip starts

from m and arrives at m′ (and vice-versa), the m and m′ are connected. Furthermore,

if the trip with specific transport mode (i.e. vehicle, railway or walk), we call the two

meshes are connected by the mode.

Figure 3.3 shows the image of location connected relationship. To further

suppress the state, we introduce a graph-based representation to depict ur-

ban areas to further reduce the size of state and action set.

Definition 2 A graph G is consist of a finite set of nodes V and edges E, we denote

v ∈ V as a specific connected location following the definition 1, and e ∈ E as a trip

connect two locations with a particular transport mode. To apply this graph-based

representation to MDP, we define states s ∈ V and actions a ∈ E. Thus, |s| = |V|

and |A = |E|. The edges connected to state s denoted as E(s) is the subset of action

space A(s) which direct the potential destination from state s.
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3.4.2 Algorithms for Reinforcement Learning in Large State

Space

In many of the tasks in transportation domain, the state space is complex and

enormous, such as higher level mesh system (i.e. discretize space at 500m or

100m) and road networks which have more than 100,000 nodes and links in

citywide level. In such cases, we cannot expect to find an optimal policy or

the optimal value function even in the limit of infinite time and data; our goal

instead is to find a good approximate solution using limited computation re-

sources. The calculation time and memory needed are not impractical. Be-

sides, the graph-based representation of state-action space described in 3.3.1

is highly dependent on existing mobility data, without the help of data, it is

hard to design a robust state-action space and delicate model for reinforce-

ment learning. To overcome this issue, one promising one is to use neural

networks to represent state value function V(s) and the action-value func-

tion Q(s, a) [41] for approximation. Recently, advances in deep reinforcement

learning have achieved successes in a variety domains such as video games,

robot control and game theory. There has been an explosion of new algo-

rithms focusing on efficiently computing stable policies. As shown in Figure

3.3, Deep Q-Network (DQN)[39] is the first breakthrough of RL which bene-

fits from the advantages of deep learning for abstract representation in learn-

ing optimal policy by selecting actions that maximize the expected value of

the cumulative sum of rewards [41]. This approach overcome the unstable

issues with two strategies:

• Target Q-network.

• Replay Memory.
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FIGURE 3.5: Actor-Critic Structure for reinforcement learning

In addition to the target Q-network and the replay memory, a serious of tech-

niques are also introduced such as reward clipping, covolutional neural net-

work, and RMSprop[18].

Based on the success of DQN, Double DQN, Dueling Network and Distribu-

tional DQN are proposed and the performances have surpassed human level

on the benchmark of most Atari games. However, the DQN approaches are

still limited by the sampling efficiency issues that makes it impractical to be

applied in lager/continuous action spaces. In addition, the output of DQN

is deterministic.

On the other hand, another family of reinforcement learning algorithms are

developed from policy based, which parameterize policy that can select ac-

tions without using a value function[58].

The most promising approach is proximal policy optimization (PPO) [50],

which performs comparably better than state-of-the-art approaches while be-

ing much simpler to implement and tune following the Actor-Critic style, as
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in Fig.3.3. PPO solve RL because it computes an update at each step that

minimizes the cost function while ensuring the deviation from the previous

policy is relatively small. This characteristic is crucial for training a human-

like agents aiming to model daily travel behavior. Unlike other applications

of RL, such as video games, 3D locomotion, and other forms of robots control,

the time horizons of the proposed agents are relatively short, and the order

of actions is also of extreme importance for output accuracy. The fundamen-

tal difference between PPO and previous Actor-Critic methods is that PPO

updates its actor neural network based on the Advantage value (TD error)

estimated by Critic neural network as follows:

At = −V(st) + r1 + γr1 + · · ·+ γT−tV(sT) (3.9)

where t specifies the time index in [0, T]. The actor parameters are updated

by clipped surrogate objective as

LCLIP(θ) = Et[min(rtθ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At] (3.10)

where rθ =
πθ(at|st)

πold(at|st)
, and r(θold) = 1. The Lclip decides the update rate based

on the ratio of old parameter and new parameter in an interval [1− ϵ, 1 + ϵ].

Such an objective assures to avoid updating too much from some noise and

too slowly. A PPO algorithm that uses fixed-length trajectory segments is

shown below. In each iteration, each of the N (parallel) actors collects T

timesteps of data. Then we construct the surrogate loss on these N timesteps

of data, and optimize it with minibatch stochastic gradient descent for K

epochs [50]. Further, DeepMind also proposed a distribution computing

version of PPO to improve sampling efficiency for robust policy calculation.
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More details can be found elsewhere.

3.5 Trajectory Generation based on Recovered Re-

ward Function

In the previous section, we have shown how to construct the reinforcement

learning architecture and learn reward function approximation on the basis

of the IRL algorithm. In this section, we present the method for generating

more realistic behaviors on the basis of the constructed model and learned

reward function.

First, the RL framework is based on a first-order Markov model that is not

able to capture the long-term dependencies and meanwhile suffers from a

memoryless problem. Meanwhile, if we treat an agent regardless of the

Markovian property, the simulation result will not match the population den-

sity distribution at the citywide scale at each time step, because a memoryless

agent is not able to reproduce a recurrent trip pattern such as a "home-work-

home" pattern as real human beings do, and likewise fails to with other sim-

ilar predictive behavior factors.

To cope with this difficulty, we draw on the idea from [39], this is, we pro-

pose a simplified history-dependent method to generate simulated trajecto-

ries that incorporate cues from the current state and time, previously visited

places and behavior history produced by the function described above. The

algorithm modifies standard Q-learning in the following ways to make it

suitable for training a travel behavior agent.

First, we store the agent’s experiences at each time-step, et = (st, at, rt, st+1),

in a data set Dt = e1, · · · , et, pooled over many episodes (where the end of an
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episode occurs when a terminal state is reached) into a replay memory [40].

In the iteration of the algorithm, we simulate multiple episodes to sample

experience, (s, a, r, s
′
) ∼ U(D). In practice, our algorithm only stores the last

N experience tuples in the replay memory, and samples uniformly at random

from D when performing updates.

Second, in formal Q-learning, an agent learns about the greedy policy a =

argmaxa′Q(s, a
′
) while following a behavior distribution that ensures ade-

quate exploration of the state space. On the contrary, on the basis of previous

research[49], human travel behavior shows an apparent recurrent pattern, in-

dicates when people make an action decision at each time step, and shows

a preference for choosing an action that has appeared in previous experi-

ences. In other words, after several steps of actions, agents tend to exploit

their previous experiences rather than exploring the new environment. To

reproduce this factor, we define the behavior distribution as being selected

by an ϵ − greedy policy that follows the greedy policy to explore the state

space with probability 1− ϵ and exploit previous experience Dt to select an

action with probability ϵ .

3.6 Summary

In this section, we formulate the reinforcement learning agent model and en-

vironment structure on citywide level, and introduce the existing algorithms

for solving the problem. We notice that the MDP model for people travel

behavior at citywide level would generate enormous state and action spaces

that makes the problem not calculable. To solve this issue, we develop a

graph-based representation of MDP that significantly decrease the state and

action space. Furthermore, we discuss the application of deep reinforcement
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algorithm. We found that although current deep reinforcement learning al-

gorithms have improved the data efficiency from sampling and parameter

updating (i.e. Proximal Policy Optimization), the calculation time is still ex-

tremely long and the agents are usually generate meaningless episodes with

unknown reason. Especially the inverse reinforcement learning (we will in-

troduce in the next section) needs iteratively for parameter approximation.
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4 Learning Human Travel

Preferences from Anonymous

Location Data

4.1 Introduction

The fundamental of building a successful agent based simulation is on the ba-

sis of agents are capable of reproducing realistic decision-making at human

beings level. Existing agents techniques can be classified into five classes

by [47] as simple reflex agents, model-based reflex agents, goal-based agents,

utility-based agents and learning agents[64]. The reinforcement learning agent

is a combination of utility-based agent and learning agents. As we discussed

in Section 3, reinforcement learning techniques has the advantage that it al-

lows the agents to initially operate in unknown environments and to become

more sophisticated than its initial knowledge alone might allow [76]. The

learning mechanism is based on the feedback of reward on how the agent

is doing and determines how the behavior policy should be modified to

do better in the future. However, existing reinforcement learning applica-

tion are mainly focused on video game, robot control and Go, which reward

and goal are fixed and known. However, in real-world application, the re-

ward of human behavior should be regarded as unknown to be ascertained
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through empirical investigation [42]. The reward functions are usually con-

sist of multiple attributes and it is hard to see how one could determine the

relative weights of these terms. In transportation domain, the reward is usu-

ally be seen as utility of behaviors, the representation of the utility and the

parameters can be derived from travel behavior questionnaires by attendees’

active report, or maximum likelihood parameter estimation based on dis-

crete choice model from travel behavior surveys that connected behaviors

and socio-economic attributes. However, location data which is collected

passively can not reveal human preferences on decision makings. Another

idea of this issue is to recover the expert’s reward function from their behav-

ior trajectories and use this to generate desirable behavior. Thus approach

is inverse reinforcement learning. In this section, we apply the inverse rein-

forcement learning problem in travel behavior decision making, and explain

how to recover human travel preferences from anonymous location data.

4.2 Problem Setting

The inverse reinforcement learning (IRL) problem can be characterized infor-

mally from [46] as:

• Given 1) measurements of an agent’s behavior over time, in a variety

of circumstances, 2) if needed, measurements of the sensory inputs to

that agent; 3) if available, a method of the environment.

• Determine the reward function being optimized.

In the inverse reinforcement learning setting, an agent is trying to sample and

learn experts’ behavior in target space. The agent tries to maximize mapping

functions of the features for each state-action pair, fsj ∈ Rk, to a state-action
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reward value representing the feedback from environment in terms of visited

state and chosen action. This function is parameterized by the weights θ. The

reward value of a trajectory is simply the sum of state rewards, or, equiva-

lently, the reward weight applied to the path feature counts fζ = ∑sj
∈ ζfsj ,

which are the sum of the state-action features along the trajectories [77].

reward(fζ) = θTfζ = ∑
sj∈ζ

θTfsj (4.1)

The agent demonstrates single trajectories, and has an expected empirical

feature count, f̃ = 1
m ∑i fζi

, based on many demonstrated trajectories.

4.3 Processing pipeline

RL agents interact with their environment in discrete time steps and output a

series of state-action pairs as trajectories. Thus, it is necessary to extract and

process data that enable observations of travel behavior decision making in

the same format. In this study, the training data should satisfy the following

conditions.

The training data should be represented as a sequence of time-stamped points,

each of which specifies a traveler’s location. The training data should have

enough temporal and spatial granularity to provide travelers with moving-

related decision making at each time step.

In the first step it is necessary to infer travelers’ location at each time step.

Unlike most popular data sets, in this study, the GPS data collected from

Yahoo Japan Corporation were used. All data were provided by users who

agreed to upload their location for research purposes through a disaster alert
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application. The temporal granularity of this dataset is sparser than that of

many other GPS datasets(such as GeoLife) which are logged in dense rep-

resentation, e.g., every 1 5 seconds, but it is similar to that of various CDRs

datasets used in recent mobility studies. Considering the data sparsity, most

existing stay point detection methods cannot be used. The method proposed

by [74] was used to detect stay points and extract travel sequences. Then, the

trips’ transport modes were classified as“walk”,“vehicle” and“train”

based on decision tree method following previous work [66]. After that, since

we discretize the time into 30 minutes as one time step, sometimes there are

multiple trips occurred in the same time step, so we choose a major transport

mode for each time step using the following rules:

• if there is a trip with transport mode ’train’, the majority transport

mode is ’train’

• when the trips contain ’vehicle’ and ’walk’ modes, take ’vehicle’ as ma-

jority mode

• otherwise the mode is ’walk’

Besides, to simplify the model, we set out all the single trip should be fin-

ished in 30 minutes (one time step). Therefore, the stay points and trips are

regarded as states and actions (details of state and action are explained in the

following section), and the demonstration trajectory of an individual i can be

represented as:

Di = (si
0, ai

0), (s
i
1, ai

1), · · · , (si
T, ai

T) (4.2)

The method overcomes the data sparsity issue; thus it has the potential to be

applied with many kinds of datasets that are open for research purposes.
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4.4 Maximum Entropy Inverse Reinforcement Learn-

ing Method

To imitate human behavior, agents should receive a higher reward when they

choose an appropriate action that human would choose in the same situation.

Recovering the hidden reward from a set of demonstrations could help to

understand human action preference and enable agents to reproduce higher

levels of human-like actions in the simulation. Various approaches using

structured maximum margin prediction, feature matching, and maximum

entropy IRL have been widely used for recovering the cost function. How-

ever, recovering the agent’s exact reward weights is an ill-posed problem

[29]. Many reward weights, including degeneracies, for example all zeros

can make demonstrated trajectories optimal.

The maximum entropy IRL approach is used as a foundation, and the model

to model daily travel behavior decision-making is extended. The principle

benefits of the Maximum Entropy paradigm include the ability to handle

expert sub-optimality as well as stochasticity by operating on the distribu-

tion over possible trajectories. In this formulation, the probability of experts’

preference parameter for any trajectories can be calculated with a probability

proportional to the exponential of the reward:

P(ζi|θ) =
1

Z(θ)
eθTfζ i =

1
Z(θ)

e∑sj∈ζ θTfsj (4.3)

Given parameter weights, the partition function Z(θ), always converges for

finite horizon problems and infinite horizons problems with discounted re-

ward weights. For infinite horizon problems with zero-reward absorbing
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states, the partition function can fail to converge even when the rewards of

all states are negative [77].

Second, to imitate human behavior, agents should receive a higher reward

when they choose an appropriate action that another human would choose

in the same situation. However, the reward rt received from a model in terms

of the transition from st to st+1 by action at is hard to be estimated directly

due to the dimensionality and size of the state space in real world. Instead,

recovering the hidden r from a set of demonstrations could help to under-

stand human action preference and enable agents to perform higher levels

of reproducing human-like actions in the future. Various approaches using

structured maximum margin prediction, feature matching, and maximum

entropy IRL have been proposed for recovering the cost function [29]. We

choose the maximum entropy IRL algorithm proposed by [77] and extend

the model to model daily travel behavior decision-making. The principle

benefits of the maximum entropy theory include the ability to handle expert

sub-optimality as well as stochasticity by operating on the distribution over

possible trajectories.

The distribution takes this form because the given exponential distribution

maximizes the entropy subject to a fixed mean value. In this study, we use

the following linear parameterized representation: R(s, a) = f (s, a)Tθ Then

we can apply f to every state-action pair in the demonstrations. Every ζi in

demonstration D is a sequence of T-step state- action pairs, the feature space

ϕ : RN can then be applied to the trajectory as R(ζ|θ) = ∑(s,a)∈ζ ϕ( f (s, a)) =

ϕT fζ

In this study, the basic hypothesis is that agents visited the states with similar

features should receive the similar rewards from environments. In order to

reach this objective, we use the data provided by National Land Numerical
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Information to approximate the reward function. The National Land Numer-

ical Information is a series of open data that in terms of information related

to national lands to support the promotion and formulation of land planning

such as the Comprehensive National Development Plan, National Land Use

Planning, and National Spatial Strategy[3]. We consider multi-dimensions of

characteristics: residential population at night, number of offices and schools,

road density, employee population to characterize the destination location.

Travel distance and travel time are used to represent the cost features for

actions with respect to different transport modes.

The problem of deriving an optimal reward weight vector ϕ from demon-

strated trajectories based on IRL can be formulated by maximizing the joint

posterior distribution of observing expert demonstrations D under a given

reward structure and of the model parameters θ.

L(θ) = LD + L⊆ = log P(D, θ|r) + log P(θ) (4.4)

This joint log likelihood is differentiable in terms of the parameters θ of the

linear reward function, and the can be optimized by gradient descent meth-

ods. As be presented in [77], the gradient of the expert demonstration term

LD in terms of the reward function parameters is equal to the difference in

feature counts along the trajectories which can be represented as:

LD = f̃ −∑
ζ

P(ζi | θ) fζi = f̃ − ∑
(s,a)∈ζi

G(s,a) f (s, a)Tθ (4.5)

where f̃ is the expected empirical feature counts and G(s,a) is the expected

state-action pair visitation counts for learned possible trajectory distribution.
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The detail of algorithm is summarized in Algorithm 2, with the loss and gra-

dient given by the linear Maximum Entropy formulation. The expert’s state

action frequencies µa
D, are summed over the actions to compute the expert

state frequencies µD = ∑A
a=0 µa

D.

We found that few state-of-the-art IRL studies have taken time factors or time

series into consideration because standard benchmarks and previous tasks

such as urban navigation and activity forecasting are not sensitive to time

change. However, we found that travel behavior is highly correlated with

time. For instance, business areas are more attractive in the daytime for com-

muters than in the nighttime. Likewise, working schedules for most people

result in peak transportation in the mornings and evenings during week-

days. Despite such typical correlations between time and travel behavior,

certain issues will cause unrealistic travel behavior. Unfortunately, the linear

function makes it difficult to model the influence of time change because all

features are highly correlated to time change. To tackle this problem, we pro-

posed a time-dependent IRL algorithm, that can separately train the reward

function weights for a discretized time MDP model at each time step. Fur-

thermore, unlike common IRL problems that utilize infinite horizon MDP on

the basis of a standard value iteration algorithm, we introduce finite-horizon

MDP to better represent human daily travel behavior and describe the solu-

tion in Algorithm 1. Finally, the expected action visitation frequencies can be

computed by enumerating all paths and counting the number of paths and

times in each path in which the particular state-action is chosen [56].
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Algorithm 2: Expected state action visitation counts calculation
Input : The feature parameter vector f , state space S, action space A,

initial state s0 and terminal state sg
Output: Expected state action visitation frequencies Gs,a

Backward Pass;
Set Zsi = 1 for valid goal states, otherwise 0;
Recursively compute for T iterations;
Zai = e− f (s,a)Zs:ai ;
Zsi = ∑aj∈si

Zaj + 1;
Forward Pass;
Set Z

′
si
= 1 for valid goal states, otherwise 0;

Recursively compute for T iterations;
Z
′
ai
= e− f (s,a)Z

′
s:ai

;
Z
′
si
= ∑aj∈si

Z
′
aj
+ 1;

Summing frequencies;

Gs,a =
Z
′
si

e− f (s,a)Zsi
Zs0

Algorithm 3: Feature expectation calculation
Input : initial state s0, state space S, stochastic policy π(a|s)
Output: Expected feature counts, E[f] under the stochastic policy π(a|s)
Compute D(sx,ay) from initial state under Algorithm 2

E[f]← 0;
for sx in S do

for ay from sx do
E[f]← E[f] + Dsx,ayπ(ay|sx)fsx,ay
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Algorithm 4: Maximum Entropy Inverse Reinforcement Learning
Input : The demonstration state action frequencies µa

D , feature parameter
vector f , state space S, action space A, and discount factor γ

Output: Optimal reward function parameter θ∗

Initialize θ0 with random number;

Iterative model refinement;
for n = 1 : T do

rt = f (s, a)T × θt;

Solve MDP with current reward;
πt = approximatevalueiteration(rt, S, A, γ) ;
Gs,a = UseAlgorithm2(πt, S, A, T);

Determine Maximum Entropy loss and gradients;
▽LD t = (µa

D − Gs,a)× f (s, a);

Update parameter with gradient;
θt+1 = update weights with θt,▽LD t

4.5 Feature Engineering of Reward Function

Incorporating feature construction into IRL has been recognized as an im-

portant problem for some cases. It is often easier to enumerate all potentially

relevant component features than to manually specify a set of features that

is both complete and fully relevant. For example, when emulating a human

driver, it is easier to list all known aspects of the environment than to con-

struct a complete and fully relevant reward basis.

In this study, the reward structure is restricted by stipulating that states with

similar features should have similar rewards. From this perspective, the data

provided by National Land Numerical Information were used as features to

approximate the reward function as mentioned before. Multiple-dimensions

of characteristics were considered: night population, number of shops, road

density, number of employees, and land use to characterize the state. Travel

distance and travel time were used to represent the cost features for actions

with respect to different transport modes.
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FIGURE 4.1: Work flow of reward function estimation via in-
verse reinforcement

4.6 Estimation Results

In this section, we show the estimation results of reward function based on

inverse reinforcement learning. The experiments are implemented in Tokyo

metropolitan area, and the People Flow data which conducted from Person

Trip Survey in Tokyo are used as training data. This dataset contains about

700,000 peoples’ daily trips in a typical work day in 2008, and all the trips are

assigned to transportation network and interpolated in 1 minute. The pro-

cess flow is shown in Fig. , we randomly choose multiple people’s trajectories

as experts data for each experiments.

The first problem we need to figure out is how many trajectories are needed

for inverse reinforcement learning algorithm to derive stable reward function

parameters. We set 10 experiments with different training data amount from

100 to 1,000. As shown in Fig. 4.2, we visualized the reward function pa-

rameters over time with different training data amount. It is obviously that
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FIGURE 4.2: Estimation results with different samples

when training data is less than 500, the parameter curves show erratic fluctu-

ation that is not accordance with real people’s behavior preferences. Take the

experiment result (n = 100) as example, the night population density feature

curve fluctuates dramatically in a short time period, which means the pref-

erence of choosing a place with a lot of houses, changes at each time step. As

the training data amount increase, the parameter curves become smooth and

reasonable. As shown in Fig. 4.2(n=1000), the weight of office count feature

increase in the morning peak period and become to decrease from afternoon,

on the contrary, the weight of night population shows totally opposite trend.

This result reflects a normal commuter’s daily travel pattern (which is also

easily well observed from the dataset). Thus, in the following part of this

thesis, we choose samples=1000 to infer reward function.

Furthermore, we test the differences of reward function parameter between
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FIGURE 4.3: Estimation results with samples derived from dif-
ferent area

different area. Using the same dataset, we classify trajectories based on their

initial state (location at 0:00, regard as surveyee’s home) by 23 zones of Tokyo,

and for zone we randomly choose 1000 trajectories to train the reward model.

As shown in Fig. 4.3, we can easily see that the reward function curve shows

totally different pattern between different zones. ’Setagaya’ locates at west of

Tokyo and has the highest residential population density, the curve of office

count(residential population density) feature’s weight increases(decreases)

in the morning and decreases(increases) after morning peak. The results re-

flect a typical commuter daily movement pattern, that people from this area

could receive higher reward by choosing commercial areas (where have more
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office facilities and less residential population) in the morning, and show op-

posite pattern in the evening. Another pattern can be seen in Fig. 4.3 ’Shin-

juku’, where is the major commercial and administrative centre, housing the

northern half of the busiest railway station in Tokyo. The reward function

curves show opposite pattern comparing to the result of ’Setagaya’. In other

area such as ’Bunkyo’ and ’Chiyoda’, the weight of ’school’ feature becomes

more influential than other areas. From this perspective,

Previous studies have shown that human mobility could change in rare events

such as disaster and big events[16]. To clarify the differences of reward func-

tion between different scenarios, for each area (Tokyo and Hiroshima) we

choose a rare scenario to compare with normal scenario to see the differences.

For the Tokyo area, we choose the day on January,22,2018 when a heavy snow

started to fall at around 15:00 and caused severe traffic congestion. We can

easily observe the changes of reward function curves happened after 16:00,

the weight of travel time cost decreased dramatically which shows people

done their utmost to avoid long time trips, and the weight of evacuation

places turn to be higher value than usual.

Another example is the heavy rain happened in Hiroshima, July, 7th, 2018.

As the heavy rain have continued for a couple of days, the reward function

curves show a totally different pattern from morning. The residential popu-

lation density becomes the major influential factor, means that more people

would choose to stay at home.
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FIGURE 4.4: Comparison of estimation results from a normal
day (left) and a day with heavy snow (right) in Tokyo

4.7 Summary

In this section, we explain the workflow of inferring reward function from

anonymous location data. We define the form of training data that inverse

reinforcement learning algorithm could use and present the pipeline of data

processing to solve the data sparsity issue. Then, we discuss the relationship

between the training data amount and estimation results. We also recover the

reward function from different area in Tokyo Metropolitan area and different

scenarios such as normal day and rare events(heavy snow and rain). The

different patterns of recovered reward functions

There are still few tasks remaining in inferring reward function. First, in this

study, we use simple linear model to represent reward function, although it

successfully revealed the relationship of multiple features and final reward,
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FIGURE 4.5: Comparison of estimation results from a normal
day (left) and a day with heavy rain (right) in Hiroshima
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some features such as week of the day, season, weather are hard to be added

to the current model, such limitation constrains us to infer long-term (1 week

or 1 month) reward function, or generalize the current reward function to dif-

ferent scenario. Second, feature engineering is another direction to improve

the estimation results. During the training, we found several features such

as land use, public facilities (hospital, post office, welfare) have little influ-

ence on reward function, some features such as evacuation shelters, schools

only have effect on specific scenarios, further studies on selecting effective

features are needed. Third, our current inverse reinforcement learning meth-

ods randomly samples demonstration trajectories from data set to represent a

typical agent model which reveals common activity pattern. Although train-

ing multiple sets of parameters could reveal measurable population hetero-

geneity, how to represent real population structure with agent models is still

a open problem.
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5 Application of Reinforcement

Learning for People Flow

Simulation

5.1 Introduction

In this section, we apply the reinforcement learning agent model developed

from Section 3 and reward function that recovered from Section 4 using the

data collected from GPS data and People Flow Data for real world people

flow simulation in Japan. We first introduce the simulation framework. Then,

to better evaluate the proposed modeling framework, we simulate daily peo-

ple movement based on the developed model and compared the simulation

results with ground truth. Furthermore, to test the agent performance on

different situations, we trained the agent models using demonstration data

that collected from a normal day and a disaster day separately, and exam-

ine the simulation results. Another important application of the agent-based

modeling and simulation framework is to forecast people movement in un-

precedented scenario. Lack of historical data is the major challenge for direct

forecasting because the collection and storage of emerging data sets are just

started from recent years. We focus on the case that the same event (i.e. disas-

ters ) have happened at other places, where the data of people movement is
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sensed and stored. We use the mobility data collected from other places and

develop the agent models, then simulate people movement in target area.

5.2 Experiment and Evaluation

5.2.1 Simulation Settings

In this study, the agent models do not refer to any specific people, it is dif-

ficult to evaluate the generate trajectories or single action choice because we

cannot find and pair a ground truth trajectory from any dataset for compar-

ison. Instead, we evaluate the mass people movement simulation based on

population distribution and passenger amount comparing to the aggregated

ground truth. Fig. 5.1 shows the overall simulation and evaluation work-

flow of this study. We first split the available data set into two part as ground

truth and training data. The training data is used for estimating real people’s

reward function following the algorithm explained in Section 3. The volume

of training data volume is up to 20 percent of the dataset. On the other hand,

we derive the population distribution at the beginning of the day as simula-

tion initial distribution. Each agent is assigned with a reward function that

motivated its actions. Simulation starts at 6:00 in the morning and ends at

23:30 when last action choice is decide. Time step is set as 30 minutes. At

last, the simulation results are compared with the ground truth data which

share the same initial state and amount.

5.2.2 Baselines and matrices

The method was compared with the following baseline models.
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FIGURE 5.1: Simulation framework for evaluation

• First-order Markov chain[55]: this model defines the current state as the

current location, and the next step choice probability is only dependent

on current location with space-complexity where is the number of the

total locations

• Time-dependent Markov chain Model[52]: it assumes the transition

probability is time-dependent by splitting time into multiple time pe-

riods (e.g., morning, afternoon, evening). This setting was further ex-

tended, and a specific timestamp was added as a time feature to im-

prove performance.

• Discrete Choice Model[13]. DCMs are a de facto standard in practical

evaluation of the travelers’population response to system parameters

and policy interventions. In practice, planners operate with parametric

DCMs to learn traveler’s choice preferences and determine how travel-

ers trade of various attributes of a given set of travel choice alternatives.
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• Neural network actor:

• Recurrent neural network actor（[73]）: We also implemented the state-

of-the-art recurrent neural network as actor for temporal prediction,

which has been successfully applied in word embedding and ad click

prediction.

To evaluate the performance of proposed model, negative log-loss (NLL) was

used as the probabilistic comparison metric. The NLL:

NLL(ζ) = Eπ(a|s)[−log ∏
t

π(at|st)] (5.1)

is the expectation of the log-likelihood of a trajectory ζ under a policy π.

In the example, this metric measures the probability of drawing the demon-

strated trajectory from the learned distribution over all possible trajectories.

The distance between two trajectories was also calculated as a physical mea-

sure the distance error. Given two trajectories A and B with the same number

of points, Distance(trajA, trajB) = avg(dist(pt
i , pt

j)) is the Euclidean distance

between point a and point b, and n represents the uniform discrete time slot.

Finally, the Jaccard similarity coefficient was used as accuracy

5.2.3 Datasets

Yahoo Japan Corporation collects the GPS data of each individual who has

agreed to provide their location data for research purposes through the dis-

aster alert application. Each GPS log consists of the ID number, timestamp,

longitude, and latitude. The dataset is started from 2014 with around 1 mil-

lion users (an approximate sample rate of 1% from all over Japan) . Both An-

droid and iPhone users’ data are collected by the standard modules that are
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commonly used for location data collection. For Android phones, they auto-

matically update location in every 30 minutes information when the service

function is active, and each point is continuously observed until the location

converges to raise its accuracy of the location. The mechanism of data collec-

tion of iPhone is different, user’s location is detected when the phone stops

to stay at current location and starts moving. Unfortunately, this dataset does

not have a“golden standard (e.g. taxi cab trajectory data observed every 10

seconds with less than 10 meters error)” where the data tells us the exact

trajectories of how the users are moving. However, studies have shown that

collectively analyzing such dataset could provide valuable insights on urban

dynamics, and also on individual behavior. The temporal granularity is more

closed to that of various call detail records (CDR) datasets , but is sparser than

many taxi trajectory datasets [67]. Our method could be applied with vari-

ous GPS or CDR data from various parts of the world because it only needs to

observe the beginning and end of the users’ commuting movement, which

could be achieved using various datasets other than our GPS dataset.

5.2.4 Experiment on Normal Scenario

Because the mobility of each individual is unique in the geographical space,

to examine model performance in different urban layout, the model instan-

tiated in two different areas in Japan as shown in Table 1. Tokyo comprises

Japan’s largest domestic and international hub for rail, ground, and air trans-

portation. The transport network in the Tokyo area includes public and pri-

vate rail and highway networks; airports for international, domestic, and

general aviation; buses; motorcycle delivery services; pedestrians; bicycling;

and commercial shipping. Commuter rail ridership is very dense, at 6 million

people per line mile annually with the highest utilization among automotive
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urban areas. To verify that this approach is applicable to different types of

urban situation, another case study was set up in the Hiroshima eastern area.

The total population and urban density are less than Tokyo area. Transport

in eastern Hiroshima is also different from that in Tokyo, because only one

train line connects this area with central Hiroshima.

From the Yahoo GPS dataset, users who provide sufficient data points were

first extracted. The rate of time slots (30 min as unit) a user was observed

(as GPS logs have reported) out of the total slots number in a day was set. It

was found there is significant signal loss during the period between 0:00 to

5:00 because of the phone being turned off or/and people staying inside high

buildings for a long time. Thus, the simulation time period was set between

6:00 to 23:30 for better model representation and performance.

The observed population was approximately 100,000 in Tokyo and 5,200 in

the Hiroshima eastern area from a normal observed weekday. In addition,

1,000 trajectories were randomly chosen for training, and use remaining tra-

jectories (more than 80 percent) as the test set. To evaluate the accuracy, the

synthetic data followed the same population distribution (initial location dis-

tribution) and population size as the test set and were compared with some

metrics explained in the next subsection.

Table 5.1 shows how the proposed method outperformed at a level that was

comparable to that of other baseline models. Markov models have shown

very high performance in this task compared with other methods. Scores

in Hiroshima were better than in the Tokyo area. This does not mean that

training in Hiroshima was more successful but the area in Hiroshima is much

smaller than in Tokyo, agents are faced fewer choices when choosing actions,

and synthetic trajectories were much closer to real trajectories.
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FIGURE 5.2: Visualization of simulation results in Tokyo area
on normal day (upper: simulation, bottom: ground truth). Each
dot presents an agent, and the color of dot represents agent’s
transport mode. Blue: stay, Yellow:walk, Green: vehicle, Red:

train
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TABLE 5.1: Performance evaluation on individual trajectory
generation

NLL Distance Error(km) Accuracy

Tokyo Hiroshima Tokyo Hiroshima Tokyo Hiroshima
First Order MC

Model 12.43 3.20 4.54 3.28 0.35 0.37
Time-dependent MC

Model 10.45 2.91 3.67 2.50 0.39 0.40
Neural network

actor - - - - 0.025 0.023
Recurrent network

actor - - - - 0.12 0.14　
Proposed Method 8.72 3.56 3.08 2.08 0.43 0.52

We first show the visualization results of trips generated by proposed frame-

work and ground truth if Figure 5.2. Agents are presented by dots with dif-

ferent colors to distinguish transport mode. Comparing with the ground

truth, it is obvious that the simulation results are highly similar to a real

traffic situation. Besides, the agents population distribution is coincide with

the ground truth during daytime. We also observed that an inner circle was

generated by the railway trajectory in the center of the city and that a clear

connection was formed between east and west Tokyo.

The main goal of this research was to enable RL agent to generate synthetic

trajectories without compromising the observation data (i.e. raw GPS data or

products from them). However, it is an extremely hard task to infer whether

a synthetic trajectory is“accurate” or“realistic” because it is not known

which specific trajectory in the test data should be compared. Based on syn-

thetic trajectories, one can easily calculate the population distribution over

time to examine whether agents are locating in correct locations compared

with real data. The population distribution is also an important source for

travel demand estimation and human mobility management. In Fig.5.3, the

population distribution tested for two study area from 6:00 a.m. to 11:00 p.m.

between the test dataset (x-axis) and synthetic dataset (y-axis) is shown. The

correlation coefficients were higher than 0.8 over all time periods in Tokyo.
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FIGURE 5.3: Scatter plots of Population Distribution in Tokyo

Also in the Hiroshima area as shown in Fig. 5.4, the distribution of the mesh

population even had a better performance during commuting hours.

The population distribution with Root Mean Square Error (RMSE) and Root

Mean Square Percentage Error (RMSPE) is shown in Fig.5.5 and 5.6. It was

found that the errors increased significantly in commuting hours in the Tokyo

area where the commuting behaviors are much more complex and frequent

than in the Hiroshima area at the same time.

Another output of the simulation result that is a concern is the transport

system usage situation. An accurate prediction of public transit and road

network usage can play a vital role in transportation management. Differ-

ent transport modes users were calculated based on a mesh unit to examine

whether agents are choosing correct actions over a period of time. Fig. 5.6

and 5.7 show the vehicle users and train users in the Tokyo area compared
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FIGURE 5.4: Scatter plots of Population Distribution in Hi-
roshima on Normal Day

FIGURE 5.5: Comparison of mesh population accuracy by
RMSE
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FIGURE 5.6: Scatter plots of vehicle users in Tokyo on Normal
Day

with a test dataset. The results show strong positive correlation with the test

dataset in commute hours. Because of the total number of users’, one can

clearly see that the railway plays a primary role in urban transport in the

Tokyo area. It was also noticed that the correlation decreased dramatically at

the end of the day (from 9:00 p.m.). The movements were overestimated in

this period because some agents struggle with finding the way home. This

result also corresponds to the dispersed pattern of population distribution at

the same time.

However, the transport usage in the Hiroshima areas shows a totally different

pattern. There is only one railway line in the study area and railway users

are hardly observed in the training/test dataset. The vehicle users and total

passengers (by train, vehicle and walking) results are shown in Fig. 5.8 and

Fig. 5.9.
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FIGURE 5.7: Scatter plots of railway users in Tokyo on Normal
Day

FIGURE 5.8: Comparison of accuracy of vehicle users by RMSE
and correlation coefficient using vehicle (left) and train (right)



Chapter 5. Application of Reinforcement Learning for People Flow

Simulation
71

FIGURE 5.9: Comparison of accuracy of all passengers by
RMSE and correlation coefficient using vehicle (left) and train

(right)

In this research, IRL was used to connect ABM and anonymous locational

data, and the agents’ behavioral rules depend highly on the demonstration

trajectories used for recovering reward function. Because personal attributes

are unknown, trajectories are randomly chosen from the dataset, and the

performance of using different numbers of demonstrations for agent model

training was tested.

5.2.5 Experiment on Rare Scenario

To further check the agent model performance and the potential of apply-

ing models to some rare scenarios, in this section, we set the experiment of

reconstructing people flow on scenarios. Specifically, we choose the succes-

sive heavy downpours happened in southwestern Japan in late June through
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FIGURE 5.10: Comparison of accuracy of vehicle users by
RMSE and correlation coefficient using vehicle (left) and train

(right)
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mid-July 2018, which resulted in widespread, devastating floods and mud-

flows. As of 20 July, 225 people were confirmed dead across 15 prefectures

with a further 13 people reported missing. More than 8 million people were

advised or urged to evacuate across 23 prefectures. It is the deadliest fresh-

water flood-related disaster in the country since the 1982 Nagasaki flood

when 299 people died.

Obviously, people movement are badly effected by this event. As shown in

Fig. 5.11(left), the probability distribution of trips on Normal day and Disas-

ter day are totally different. Thus, we choose the data collected from July 6,

2018 to train the agent model, and launch people flow simulation to examine

whether agent models are capable of reconstructing the phenomenon. Unlike

environments of normal day scenario, the weather conditions are dramati-

cally changing during the disaster. Here, we introduce weather data includ-

ing temperature, rainfall volume, moisture and sunshine as extra dynamic

features to represent urban environment.

Based on the analysis results above, to achieve higher simulation perfor-

mance on rare scenarios such as heavy rain days, the agents used for people

flow simulation should learn from similar scenarios, not from normal days

like experiments one. So in this experiment, we try to train agent model from

historical data (trajectories collected from a previous day that similar events

happened). We found On 20 August 2014, Hiroshima was also struck by a se-

ries of landslides following heavy rain, which is similar with what happened

in 2018. So we choose 1,000 people’s daily movement from 20 August 2014,

and recovered reward function on that day to learn people travel behavior

on a heavy rain day. Then, we randomly choose 5000 people’s trajectories

from 6 July 2018 as target and run the simulation.

In Fig.5.12, the population distribution of the disaster day on study area from
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FIGURE 5.11: Mobility Differences between a Normal Day on
2018.06.28 and a Disaster Day on 2018.07.07
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6:00 a.m. to 11:00 p.m. between the test dataset (x-axis) and synthetic dataset

(y-axis) is shown. We found that the correlation of population distribution

decreased heavily from 8:00 p.m. and end with 0.734 which is lower than

the first experiment. There may be three reasons for this problem. First,

the rainfall distribution is different between the training data and ground

truth data. 20 August 2014, the rain started at around 19:00 and continued

to the next day, so people who have already returned to home may not be

influenced by the rain, and the evacuation was reported from the next day

morning. On the contrary, the rainfall on 6 July 2018 starts from morning

and went to peak at 7:00 p.m.. Our reward function cannot take rainfall as

features into consideration right now, and that affect the results accuracy.

Second, in population one, we set a clear goal that agents should return to

their home at the end of the day, however, in this experiment, considering

the potential evacuation and abnormal behaviors, we did not set this strong

control rules for the agents. Third, there is a four years time gap between

training data and ground truth data, during this period,

We further checked the places where population estimation is not corrected

from ground truth. As shown in Fig 5.13, the over estimated places are

mainly located in central area in Hiroshima, where the more infrastructures

and high road density make the places more attractive for agents even in late

night. We found the errors are mainly caused by the stay out of home is-

sues, that the agents come from Eastern Hiroshima do not go back to home

at night. Comparing to normal situation, the ratio of such kinds of agents are

higher. One possible reason maybe the weather features (i.e. rainfall, tem-

perature and so on) introduced in this experiments affect the agent’s choice.

We also calculated the RMSE and RMSPE of esimation results of vehicle pas-

sengers and all transport mode passengers amount in Fig. 5.14. The x-axis
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FIGURE 5.12: Scatter plots of Population Distribution in Hi-
roshima during Heavy Rain
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FIGURE 5.13: Over-estimated places from simulation result in
Hiroshima area during Heavy rain
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FIGURE 5.14: RMSE and RMSPE of vehicle passenger estima-
tion result(left) and all transport mode passenger estimation re-

sult(right)

represents time stamp, left y-axis represents the RMSE population and right

y-axis represents the percentage of RMSPE. It shows that the most fatal error

appears during the time period between 14:00 and 19:00, when target sce-

nario suffered heavy rain but training scenario doesn’t.

In summary, rare events people flow can be simulated based on proposed

method using the data collected from the past and achieved considerable ac-

curacy. However, in this experiment, the training and target area are set as in

the same place, to validate whether agent model could behavior successfully

in different environment.
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5.2.6 Transfer pre-trained knowledge to new area

In experiment 2, we state that training data and simulation should be in the

same area. However, similar rare events could barely happened in the same

area, so generally when we want to know what will happen if an event or

disaster occurred in our city, we usually find where the similar event hap-

pened and learn the lessons from that city. Especially the large amount data

collection technologies are just emerging in the past few years, which makes

that even more difficult to collect enough data for developing and estimating

agent model. From this point of view, we also want to know whether pro-

posed reinforcement agent model can be generalized and applied into new

areas.

In reinforcement learning domain, seldom studies have examined the gener-

alization or reusable of knowledge for learned policies. Although some prac-

titioners have started to leverage some machine learning techniques such

as dropout and regularization to improve the generalization capabilities on

benchmarks, there is still no real world applications on this topic. Further-

more, as discussed in section 3, the deep reinforcement learning is still im-

mature for real world application, the current methods for transfer learned

policies from reinforcement learning is impracticable.

In this section, instead of transfer learned polices, which is the result of re-

inforcement learning, we innovatively propose to transfer reward function

from training area to target area. We suppose that the representation of re-

ward does not change between different locations, and reuse the trained pa-

rameters in target area to learn new polices.

To test the ability of transferring learned knowledge to new area to repro-

duce robust prediction of people flow, we present the evaluation pipeline as
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FIGURE 5.15: Evaluation pipeline for testing agent model trans-
ferable ability

shown in Fig 5.15. The experiment is under the assumption that we cannot

derive GPS data from Hiroshima area for the event like heavy rain (This is

very common since the history of large scale GPS data is still very short, and

lot of applications are facing the same time), so the agent for ’disaster sce-

nario’ cannot be trained. On the contrary, there has happened a similar event

(severe typhoon) in Fukuoka one years ago, and people movement are ob-

served by GPS data. So in this experiment, we try to leverage the agent model

learned from Hiroshima to simulate Fukuoka’s people flow when both of the

two places suffered severe rainfalls.

We first show the scatter plots and correlation coefficient between simula-

tion result and ground truth in Fig. 5.16. Comparing to the simulation result

that conduct from ’previous Hiroshima data’ model, we found the daily es-

timation results decreased a little but the night estimation accuracy was im-

proved. This result can be explained in twofolds. First, as we show in Section

4 Fig. 4.3, people from different places in a city may show different behavior

preferences that we presented in the form of reward function. The differences

between Hiroshima and Fukuoka may even bigger that the zonal difference
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FIGURE 5.16: Scatterplots of simulation results and ground
truth data in Hiroshima motivated by the reward function

learning from Fukuoka

that presented in Tokyo. Driving by ’Fukuoka’ reward function, agents in Hi-

roshima may choose different destinations comparing with ground truth of

Hiroshima. Second, comparing to the training data that used in experiment

2, the training data from Fukuoka is from a similar rainfall distribution that

coincide with the target scenario in Hiroshima 06 July 2018.

In Fig 5.17, the RMSE and RMSPE of vehicle passenger and all transport

mode passenger population correspond with the population error tends. The

rmse and rmspe curve looks flat and steady than experiment 2, but the abso-

lute error is higher than experiment 2.
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FIGURE 5.17: RMSE and RMSPE of vehicle passenger estima-
tion result(left) and all transport mode passenger estimation re-

sult(right) in Hiroshima
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5.3 Summary

In this section, we develop the framework of people mass movement sim-

ulation based on the reinforcement learning agent model developed from

section 3 and section 4, and set three experiments to evaluate the simulation

performance using real world GPS data collected from Yahoo! Japan. Since

the agent model do not refer to any real person that contained in the dataset,

it is difficult to compare the result at individual level. Instead, for both three

experiments, we aggregate the synthetic trajectories and ground truth data,

and use the correlation coefficient, RMSE and RMSPE of hourly population

distribution and passenger distribution to evaluate the results.

In experiment 1, we set training data and ground truth data in the same day

to validate the proposed agent model could reproduce realistic people mass

flow at citywide level. In experiment 2, we focus on reproducing people

flow on the day that rare events happened. Unlike experiment 1, we col-

lected training data from the day that similar events have happened in the

same place. In experiment 3, we further extend the application of proposed

method, applying trained agent model to other area for simulation to see

what people flow would like if the same event happens. Both three experi-

ments have achieved around over 0.8 correlation comparing to ground truth.

We also noticed there are some drawbacks existing for the current model

structure.

• First, the reward function in this study is represented with linear func-

tion, so some environment features such as temperature, sunshine, rain-

fall cannot be added to reward function even though they affected peo-

ple behaviors. The results also reflect that if the environment is differ-

ent between training and simulation target, the result could hardly be
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coincide with the ground truth.

• Second, comparing to some traditional travel demand estimation and

simulation studies in transportation domain, our simulation perfor-

mance is not high enough (like some traffic simulator could achieve

higher than 0.9 correlation or can reproduce link based traffic volume).

One reason is that such studies are based on detailed census data or

manually designed agent behavior profile, the overall traffic volume or

activity places are known before simulation, or statistical information

such as departure time, go home time are used for simulation. Our

drawback is that since we use anonymous location data for agent mod-

eling, no personal attributes can be used for generate agent profile such

as housing, income, job and age.

• Besides, proposed agent model does not use any statistical information

to help behavior choices except reward function. Last, our simulation is

based on the hypothesis that human mobility can be classified with spe-

cific scenario types such as weekday, holiday, heavy rain or snow, and

for each scenario human mobility will not change overtime. However,

this hypothesis is weak so that when we try to transfer learned agent

model in a specific scenario but in different days, the simulation perfor-

mance decreased badly, because there may be a lot of other factors that

affect human mobility that we did not discuss.
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6 Conclusion

6.1 Results and Contributions

In this thesis, we focused on individual daily movement and proposed a re-

inforcement learning based agent modeling and a simulation framework to

reconstruct people flow on citywide level. We take individual travelers as

agents and modeled their daily travel schedule as a sequential decision mak-

ing by using Markov Decision Process. Unlike any previous agent-based sim-

ulation approaches, agent’s behavior rules are automatically learned from

the interaction with environment by reinforcement learning.

In reinforcement learning framework, agent are motivated by the feedback

reward from environment, and in most successful cases such as video game,

chess and robot control, the rewards are well understood and defined. How-

ever, in real world applications, especially in the case that taking human-

being as agent, the reward becomes complicated and hard to define. To

achieve human-like level agent control performance, we introduce inverse

reinforcement learning to estimate reward function from real human-beings

trajectories derived from location data. We discuss the relationship between

the training data amount and estimation results. We also recover the reward

function from different area in Tokyo Metropolitan area and different scenar-

ios such as normal day and rare events(heavy snow and rain).
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Furthermore, we develop the framework of people mass movement simula-

tion framework based on developed agent model, and set three experiments

to evaluate the simulation performance using real world GPS data collected

from Yahoo! Japan. In experiment 1, we set training data and ground truth

data in the same day to validate the proposed agent model could reproduce

realistic people mass flow at citywide level. In experiment 2, we focus on

reproducing people flow on the day that rare events happened. Unlike ex-

periment 1, we collected training data from the day that similar events have

happened in the same place. In experiment 3, we further extend the appli-

cation of proposed method, applying trained agent model to other area for

simulation to see what people flow would like if the same event happens.

Both three experiments have achieved around over 0.8 correlation compar-

ing to ground truth.

6.2 Future Directions

There are still some existing problems and future directions need to be fur-

ther studied.

6.2.1 Network based environment modeling

In this study, we discretized and modeled urban environment at mesh-level,

so the agents movement in space are not continuous that they simply jump

from origin place to destination place. Such setting could effectively decrease

the calculation cost and easily control the step (we define all the action can

be done in one time step) of agents following MDP structure. However, such
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settings make it impossible to output the link-based traffic volume that trans-

portation researchers and urban planners are most interested in. The difficul-

ties of constructing a network based simulation environment using real work

road and public transit network are as follows.

• The agent behaves on road network could not only make behavior de-

cisions about destination choice and transportation mode, it need si-

multaneous consider the route choice which will also affect the reward

from environment. However, these two decision choice making are on

the two different level and current reinforcement learning do not pro-

vide any approaches to solve this issue.

• The size of network environment is much larger than mesh-based model.

Take Tokyo special wards as example, there are only 1400 mesh in the

area that consist of the state space. However, the road network in the

same area contains more than 100,000 nodes and links, the enormous

state space will make calculation not tractable and lower down the be-

havior accuracy.

6.2.2 Power of deep learning

There are two parts of this study that can introduce deep learning to the cur-

rent structure. The one is to use deep reinforcement learning to calculate pol-

icy, the other is to use neural network to represent reward function. For the

former problem, although deep reinforcement learning have achieved a lot of

success in video games, chess and robot control, the application in real world

is still not practical. Even the most effective algorithm, training for a robust

policy needs millions or even more of episode that collected from dataset or

generated from simulator are needed to update the neural network.



Chapter 6. Conclusion 88

On the contrary, using neural network to represent reward function is a promis-

ing way to extend the application of inverse reinforcement learning. We will

keep working on this topic in the future.

6.2.3 Feature engineering for inverse reinforcement learning

In this study, we introduce inverse reinforcement learning approach for solv-

ing the high dimensional complex reward function formulation issue. Cur-

rently, we leverage linear function to represent reward which has been proven

practical and useful. However, we found there several limitation of using

linear function for modeling travel related behavior. For example, features

such as day of time, temperature and individual attributes are hard to be in-

cluded into current reward function. To solve this problem, we will introduce

more effective and complex formulation to represent reward function such as

gaussian model and deep neural network. Furthermore, selecting feature set

is another future direction.
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