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Abstract

Common product design processes usually start with problem definition, then generate and

evaluate solutions for the defined problem, and finally detail and test the promising solutions until

deciding on a final design. The conceptual design is an early stage of the design process, where

possible solutions to the design problem are generated in abstract forms. The solutions are eval-

uated based on engineering and industrial design requirements, which a product must satisfy. To

reach aesthetically plausible shapes for target customers without compromising engineering re-

quirements or causing extra costs, many design samples usually need to be generated until finding

an optimal solution if there is not any guidance for designers to use in addition to their limited

imagination. In the first part of this thesis, design parameters are screened to find important ones

for an aesthetic objective. Therefore, the desired design solutions can efficiently be created as

there will be a smaller number of design parameters to work with. In the second part, a generative

sampling method is proposed to derive many samples from a single exemplary design using com-

puter power with minimum possible user effort. Using this method, the initial idea can be varied

quickly, which is useful for those who need to create and examine many design solutions to find

better alternative or get inspiration from them.

The first approach uses a design concept from an earlier study called adjective-based design

in which adjectives are used to describe product designs that are represented by geometric de-

sign parameters. In this earlier study, human preferences are collected by a survey method and

converted into mathematical models, where variables are the design parameters, using a machine

learning method to be used for quantitative judgments of aesthetics for a new generated design.

Nevertheless, some design parameters were absent in the mathematical models although they were

in the learning process due to nonexistent or weak correlations between them and participant re-

sponses. Getting rid of such irrelevant parameters, the reliability of the models can be enhanced

as well as increasing sampling efficiency thanks to the knowledge of the relevant parameters to the

objectives. In Chapter 2, the survey method is supported by visual evaluations using eye tracking

technology so that the design parameters can be screened based on their attractiveness to the par-

ticipants. The main advantage of eye tracking in a survey is that the collected human perception

data is more likely to be accurate and objective compared to the conventional surveys since the

evaluation is based on survey participants’ attention rather than applying solely questionnaires that
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cannot tell much about reasons of participants’ choices. Eye tracking tools such as area of interest

(AOI), gaze plot, and heat map are used to evaluate the attractiveness of the design parameters.

Finally, a regression analysis method is used to find relations between attractive design parameters

and the adjectives based on the gaze data.

Aesthetic design ideas are mostly developed by sketches on paper rather than using the gen-

erative power of computer environments due to time taking requirements. The second approach

is a generative sampling method that derives design samples from an example design by auto

constraining and using some conditions extracted from its profile curve to minimize the efforts

needed from users. As a first step, a composite profile curve of an example design is defined us-

ing a number of control points that should be enough to represent each shape feature by a cubic

Bézier curve segment. Primitive shapes such as triangles and circles are then constructed for each

segment and used as constraints to prevent generating infeasible shapes. Moreover, profile sim-

ilarities are computed using the triangles based on their anisotropy ratios to preserve key shape

features of the original profile and modified Hausdorff distances between the control points to

make sure the modification is made sufficiently while a new profile is generated for the sake of

diversity. A customized sampling algorithm that fulfills the segment constraints and the similarity

requirements is executed several times synchronously via parallel programming to create numer-

ous samples. Using the settings related to similarity, it is possible to derive samples sticking to an

initial idea to explore its better version or more creative results that they could not be imagined

even by designers. The proposed method is carried on with a software that offers simplicity au-

tomating required steps to generate samples. An additional tool is also provided in this software

with which weights can be adjusted for each control point to guide the sampling process and the

chosen samples with their choices can be recorded to be analyzed later. This system also includes

a sample management interface where additional geometric constraints can be defined to filter out

undesired samples respect to these constraints.

To sum up, two approaches are studied to increase the efficiency of generating aesthetic ideas.

The first approach aims to identify important design parameters for specific aesthetic objectives

based on customer feelings so that new designs can be generated with fewer parameters that have

direct influences on the target aesthetic objectives. The second approach is for generating many

design samples with as minimum as possible effort, time and experience requirements for various

profile curves. Finally, problem-specific geometric constraints can be utilized through the sample

management system to filter out undesired solutions from the generated samples.
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Chapter 1

Introduction
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1.1 Aesthetic Design in Conceptual Stage of Products

Product design is usually an outcome of a design process consists of several stages conducted

collaboratively by a group of people from different disciplines. Throughout the years, different

process models were suggested [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], these and more were also compared

and analyzed in literature [11, 12, 13, 14]. Despite the differences between these process models,

Howard et al. [14] offered six common stages illustrated in Fig.1.1 comparing various process

models. The initial stages establishing a need and analysis of task are complementary in which

a design problem is recognized, requirements are defined mostly based on feedback from market

and analyzed in detail to clarify the design task. The conceptual design stage is where possible

design solutions are produced in abstract form and evaluated to decide on optimal solutions that

meet the defined requirements. The selected conceptual solutions are structured and further tested

in embodiment stage. The detailed design stage gives final details that are needed in manufacturing

processes. Finally, post design processes such as installation, manufacturing, and commercializa-

tion are carried out in the implementation stage.

The aesthetic is an important dimension that needs to be considered in the conceptual stage

for a product that must be differentiated from the stable competitors in the market that already

meet the performance and quality requirements of target customers [15, 16, 17, 18]. In addition,

the aesthetic dimension including size property can solely increase product variations or improve

an existing design to elevate its value [19]. Engineering and industrial designers are often col-

laborated to generate and evaluate design solutions by different strategies [7, 20, 21]. One way

to collaborate is creating an outer form of the shape, which is expected from industrial designers,

and engineering designers should fit their requirements in this form. In another way, engineer-

ing design is first generated and industrial design must be shaped under some constraints without

compromising the inner form created by the engineering designers; in other words, “gift wrap” is

provided to the engineering design [7]. Either way, many design solutions need to be generated

and narrowed down to the final design that must satisfy both industrial and engineering design

requirements. The process models usually iteratively generate, evaluate and select the ideas until

a superior solution has been found; but, each additional cycle multiplies the cost and time. The

conceptual stage plays a crucial role in lowering the number of cycles by forwarding promising

solutions before investing too much on redundant ideas.
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Figure 1.1: A product design process [14].

1.2 Basic Motivation and Approaches

When it comes to the product aesthetics, it is hard to generate solutions and decide on a better

one that appeals majority of the target customers due to its subjectivity. At this point, potential

customers’ evaluations are preferably involved in the forming and selection process of the product

appearance. Furthermore, no matter if the design goal is improving an outdated product or creating

something totally new, industrial designers usually collect many design images and draws many

sketches to develop their own ideas on the way to the best of possible solutions. However, there

are several restrictions that make producing the ideas difficult such as cost, time and engineering

design constraints aside from the aesthetics. In this thesis two different approaches are proposed

to gain efficiency to the design process as follows:

• Identifying important design parameters: First proposed approach is a human-orientated

design method that establishes relationships between the parameters and aesthetic related

objectives based on the eye movements of human. With awareness of important param-

eters for customers’ specific feelings, appealing designs more likely to be generated in a

straightforward manner. In addition, under strict constraints of engineering design, working

with fewer parameters may be useful for industrial designers such that wasting time with

redundant shape modifications could be avoided.

• Generating and managing concept solutions: The ideal conceptual design stage should

generate and evaluate as many as possible solutions to explore the design space fully; thus,

to find the best possible solution [7]. A generative design method is also proposed and

implemented with a software that can generate many samples efficiently around an initial

idea to find out its better version or a new idea that is not imagined by the designers. The

software is also supported by a management system that allows designers to organize and

define geometrical constraints to narrow down the generated design solutions.

Following sections further introduce these topics and give insights about the proposed ap-
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proaches.

1.2.1 Human-oriented Design

1.2.1.1 Background

Aesthetic is a qualitative measure that is hard to evaluate until the product meets with the cus-

tomers for the first time. There are many studies [22, 23, 24, 25, 26] proposed to solve such

difficulty usually by converting human preferences into quantitative measures. One way to do

that is gathering subjective evaluations of potential customers using survey methods and apply-

ing statistical analysis to find relationships between design parameters and the collected opinions

regarding aesthetics. The relations are represented in mathematical forms, which are then used

for quantitative evaluation of newly generated design samples. Adjectives such as cute and strong

are often used in the survey methods as representative keywords to describe the designs so that

the evaluations are more meaningful and easier for the survey participants, who do not have any

background about the product design.

The proposal of Chapter 2 has been inspired by the study of Dogan and Gunpinar [27], which is

an adjective-based design method for yacht hulls. In their method, hull adjectives are first learned

from the survey participants and yacht hull designs are matched with these adjectives using a

series of surveys. The hulls are generated with a novel design framework [28], which uses a

simple parametric representation of the design (see Fig. 2.4). In the end, the relationships between

the design parameters and the adjectives of the hull designs are found using neural networks.

The relationships are formed as mathematical models of the adjectives, in which variables are

the design parameters, to be used in prediction of the adjectives of new samples or to retrieve a

hull design that satisfies a queried adjective from an existing database. However, some design

parameters were not involved in the mathematical models of the adjectives. This indicates the

existence of irrelevant parameters for the given adjectives from the viewpoint of the participants.

The parameters should be identified based on their relevance to the defined objectives to establish

more solid relationships between the parameters and aesthetic objectives.

Conventional surveys with multiple-choice questions are not reliable for the aesthetic researches

since the target customers are usually not design experts and do not see the design parameters as

the designers do. Besides, the aesthetic is more about feelings that are hard to express by words.

Therefore, it is trivial to ask the relevance of design parameters to the survey participants for their

subjective choices. Instead, an eye tracking device is used during the surveys to monitor the gaze

behavior of the participants while they match the adjectives with the displayed design samples. In
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this way, the participants’ attention on shape features until they select an adjective can be exam-

ined simply observing the areas they looked at. Furthermore, the decision-making progress of the

subjects during the survey can be visualized and converted into quantitative measures using some

eye tracking tools such as area of interest (AOI), gaze plot and heat map (see Fig. 2.1). Thus, the

results are more reliable and make possible more realistic interpretation of the participants’ inten-

tions for the researchers. The proposed study in Chapter 2 uses the eye tracking method to find

attractive design parameters to the participants and relates these parameters with the participant

responses through the gaze data.

1.2.1.2 Eye tracking aided survey for human-oriented product design

An eye tracking device is used to collect the gaze data processing eye images with light reflections

caused by a near-infrared light source and map this data on given stimuli. The data includes several

quantitative measures such as locations of the gaze points of the survey participants at a time and

time spent at these locations. Such measures are used to understand the most and least attractive

shape features based on attention of the participants. The gaze data is analyzed utilizing the eye

tracking tools (Fig. 2.1). Gaze plot is one of the tools that visualizes gaze fixations, which are

the accumulations of gaze points, by circles indicating where the participants are looking at; and

saccades between the gaze fixations by straight lines. The collection of the gaze fixations and the

saccades is called scan path, which is visual of the eye movements according to time sequence.

AOI is used to enclose specific areas to be examined individually with the gaze points inside

these areas. Besides, the scan path of the participants can be observed as gaze transitions between

the AOIs. The heat map displays the gaze point accumulations with a color scale such that red

indicates more attractive areas comparing to green areas; since the more users look, the more gaze

points are gathered at the corresponding areas.

In this dissertation, as it is made in the adjective-based design method [27], the adjectives are

again matched with the hull design images, but this time the survey and its analysis are supported

by the eye tracking technology. This survey is called as eye tracking aided survey (ETAS) and

its approach is illustrated in Fig. 1.2, where a participant selects appropriate adjectives from the

list for the displayed design and the gaze points are recorded via an eye tracking device at the

same time. The survey aims to find relationships between the design parameters and the adjec-

tives through the gaze data. If the gaze fixations of the participants accumulate in specific areas

that are associated with design parameters, AOIs are defined surrounding each of these areas and

the parameters are evaluated based on time duration inside these AOIs. On the other hand, if the
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participants transit their fixations between specific areas, the transition counts are used to evaluate

the relevant parameter. The gaze points are expected to accumulate locally if a parameter has a

local impact on the appearance of the hull in the image and analyzed accordingly. However, as

there is not any certain work that reveals the search behaviors of the participants for geometric

design parameters, if their impacts on the hull appearance are not local, how they are gazing over

these parameters is unknown. That is why an additional survey called template learning survey

(TLS), where the questions are specific to the parameters, is used to examine gaze points of the

parameters to decide on their evaluation methods. Besides, the information such as locations and

sizes of areas where the gaze points are found is used as a template for the relevant parameter. The

gaze data collected via ETAS is then evaluated using the eye tracking tools and the templates to

determine attractive parameters for the participants. A regression analysis method is finally con-

ducted to relate the attractive parameters with each adjective. Herewith, designers could modify

or generate their designs by focusing only the relevant parameters of the target adjective, which

is a more efficient and direct method to achieve target than working with all design parameters

including irrelevant ones.

Figure 1.2: Eye tracking aided survey (ETAS) approach overview.
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1.2.2 Generative Design

1.2.2.1 Background

Generative design methods [29] aim to minimize efforts needed to create numerous design sam-

ples that satisfy a predefined set of objectives. To do this, design parameters are first determined

for target design and then modified to generate new samples [30, 31, 32]. A generative design sup-

ported with computer power can create a design space with an infinite number of design samples,

which are either feasible or infeasible. The degree of freedom in the design space is depended

on the number of design parameters; thus, these parameters should provide optimal conditions to

avoid complexity while enough degree of freedom is still available to obtain desired samples. In

addition to the need of constraints to avoid infeasible regions, appropriate upper and lower bounds

for the parameters are also usually required to define a region in the space, where the candidate

design solutions are existing.

Developing many design ideas in the conceptual design stage is usual step before deciding on

an optimal one that satisfies several criteria such as engineering constraints, costs and aesthetics.

Computer driven generative systems can generate many samples that may not be imagined by de-

signers and can even make evaluation of some functional behaviors possible in the beginning of

the design process. However, the designers usually collect design images or draw 2D sketches on

papers to develop aesthetic ideas instead of using computers to produce digital designs. This is

because meeting initial requirements like defining design parameters, appropriate constraints, and

narrowing down the design space to the finite sub regions is usually impractical or exceeds their

abilities. Furthermore, available generative systems are usually designed for specific purposes that

are not suitable at all or need to be modified to make use of it for the purpose at that moment.

Although there are several proposed generative methods, they usually bring additional burdens to

the designers such as creating an initial set of designs [33], specific properties of initial design like

being mesh model [34] or parametric model [30]. This thesis also proposes a generative design

method in which an example product profile curve is modified for generating its alternatives. The

method is implemented by a developed software, which is designed to minimize the initial require-

ments but to maximize the effectiveness of user involvement for guiding the sampling progress by

weighting the modification amounts when needed. The target users of the proposed software are

designers, who want to quickly derive alternative versions of their initial aesthetic idea to find

better one; and customers, who want to explore their specific design based on an existing design

to be used for better communication with a designer to realize it. The constraining is made using

primitive shapes such as triangles and circles that are applicable to the various profiles and can
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be visualized through the interface that makes simpler to comprehend even for non-experts. In

addition, the sampling region is defined based on automatically recognized conditions in the de-

fined profile curve such as continuity between its segments and curve degrees of these segments;

and similarity thresholds defined by users. The generative system also includes a sample manage-

ment system to narrow down the number of generated samples based on similarities of generated

samples and user-defined geometric constraints.

1.2.2.2 Generative sampling system

An example based generative design method (see Fig. 1.3) is proposed to quickly generate many

samples from an example profile, which is defined and constrained within a system based on

control points that user provides. The profile curve is a composite Bézier curve, for which four

control points are supplied for each segment either by importing from external sources or mouse

clicks on a product image using the proposed software. To refrain generating irregular shapes,

the constraints are constructed using the control points as primitive shapes such as triangle, circle,

and ellipse that are able to be visualized and comprehensible for the inexperienced users. The

triangles are further used in computing shape similarities such that anisotropy ratio [35] between

corresponding triangles of the example and a generated profile is computed, and the sum of all

triangles’ anisotropy ratios is used as shape similarity. The shape similarity is constrained using

a threshold set by the user that prevents generating too dissimilar samples from the exemplary

design than the user is looking for. The diversity of the samples are also controlled with another

similarity measure called modified Hausdorff distance (MHD) [36], such that there is not any

sample couple exists within the set of generated samples that are close to each other more than

allowed by another user-defined similarity threshold. In order to apply both regularity and similar-

ity constraints together efficiently, a customized sample algorithm called chain sampling is used in

which samples are generated one by one to be the next generated is far enough from the previously

generated samples to satisfy diversity requirement and must satisfy the rest of the constraints. As

the number of samples increases, the newly generated sample must be compared with more and

more samples. Thus, to avoid performance problems, the chain algorithm is kept in small sizes

and executed synchronously using a parallel algorithm for creating larger sample sets.

Proposed software has an optional tool that allows adjusting modification weights such that

a shape feature can be preserved given less weights to the relevant control points or made more

prominent its modification assigning more weights. In that way, users can control the direction

of the sampling to be in the defined region; in other words, users can somehow decide on which
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shape features of exemplar profile will be maintained and which will be modified. Finally users

can choose the profile segments that need to be modified while the others’ appearance and related

functional features are preserved. Such feature is useful for the designers who need to consider

the limitation of design to fit an existing environment (DFEE) [37], which aims to avoid additional

costs caused by design changes.

The proposed generative system is capable of generating large number of samples such that

it is not possible to evaluate each of them to find more appropriate solution. Therefore, there is

need for narrowing down the generated sample set to the manageable number of solutions. This

can be done with a simple option of the system, which retrieves as uniform as possible sample

set minimizing the Audze-Eglais potential energy [38]. There is also an interface provided in

which additional geometric constraints can be defined by the users to narrow down the solutions.

These constraints can be formulated using some built in functions such as volume, surface area,

Euclidean distance, vertical and horizontal distances, angle and basic mathematical operators. An

example function usage is illustrated in Fig. 1.4, where the samples are filtered, oriented and

colored based on the computed values of a function.

Figure 1.3: Example based generative design method overview. First a profile curve is defined

using the input points, then conditions of the profile such as continuity between segments, curve

degree and concavity of each segment are extracted. The points are then modified to generate new

samples under constraints and maintaining the conditions in generated samples.
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Figure 1.4: The leftmost samples are narrowed down according to dx(s23, s13) where dx is a

function to compute horizontal distance between two points that are labeled as s23 and s13. If the

computed distance for a sample is out of a range set by the user, this sample is eliminated. The

samples on the right are ordered to be the distance is increasing in clockwise direction starting

from the sample with minimum distance that is represented by the darkest blue color to the sample

with maximum distance represented by the lightest blue color.
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1.3 Research Objectives

As introduced in the previous section, the main motivation is to help users for conceptual de-

sign stage to achieve target aesthetic objectives efficiently and effectively through the two major

approaches;

• the human-oriented design and

• the generative design.

The human-oriented design method is able to represent aesthetic preferences by mathematical

models represented by many design parameters, which can be used for generating infinity number

of design samples by changing these parameters. Such capability is considered useful for early

stage of the aesthetic design. However, a dataset including irrelevant parameters to the survey

participants lowers the reliability of the learned mathematical models. Thus, it is very important

to eliminate design parameters, which are not relevant and attractive, for making the sampling

system to be usable for designers. For this purpose, the human-oriented design method using

the ETAS is proposed that determines the attractive and relevant parameters to the adjectives by

examining the subjects’ eyes fixation. By discarding the irrelevant and unattractive parameters,

the sampling efficiency can be enhanced.

The generative design method is able to generate many design samples even beyond the imagi-

nation of designers using computer power. The designers then select solutions out of many that are

useful for them. However, the generated samples involve both feasible and infeasible solutions.

Thus, the samples must be constrained to be produced only from the feasible regions in the space.

However, such requirements are difficult for the stylists who prefer sketching on a paper avoiding

computer aided environments to quickly produce their ideas. For the reason that, a generative

design approach is also proposed to derive many design samples from a single example that are

diverse, regular and similar enough to the exemplar without needing any considerable effort and

even designer expertise. The generated samples can also be managed to find a desired solution

among them.
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1.4 Thesis Outline

This thesis has been organized as follows: Chapter 2 introduces the eye tracking aided survey

method to find out attractive and more relevant parameters for the adjectives based on participants’

attention and preferences. Chapter 3 proposes the generative sampling method explaining the

definition and modification of the original profile curve, the constraining methods and the sampling

algorithm used to generate samples satisfying the set of objectives. Chapter 4 introduces the

developed software that implements the proposed method in Chapter 3 and also covers the sample

management system. Note that, the displayed results in Chapter 3 were obtained using the software

proposed in Chapter 4. Chapter 5 summarizes the thesis, discusses the proposed approaches and

mentions some future works.
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Chapter 2

Eye Tracking for Screening Design

Parameters in Adjective-based Design of

Yacht Hull
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2.1 Introduction

Adjective-based design is a method that translates human perception into design parameters quan-

titatively in order to achieve better understanding between designers and clients. In this approach,

adjectives are used to describe product designs, which are generated via design parameters in terms

of geometry. As a requirement of the concept, relations between hull adjectives (e.g., comfortable

and aesthetic) and design parameters (e.g., length and width) are learned via a machine-learning

algorithm. Nevertheless, the relations cannot be represented by some of the design parameters,

although they are in the learning process. This finding shows that the parameters do not affect

the adjective choices of the survey participants but add noises to the learning process; therefore,

avoiding such parameters beforehand, the reliability of the human-oriented methods’ outcomes

can be enhanced and samplings can be made efficiently with less number of parameters. However,

traditional multiple choice questionnaires are neither reliable nor capable of creating questions to

reveal true feelings of people, who do not have background in design and have difficulty to artic-

ulate their aesthetic opinions only by words. Eye tracking is one of the methods to study human

behaviors based on attention for more objective and accurate data collection regarding subjective

feelings of the customers [39]. Therefore, in this study, visual evaluations are made using eye

tracking technology for screening the parameters based on their attractiveness and establishing

relations between the attractive ones and the adjectives to enhance quality of the relation repre-

sentations. Eye tracking is used in perceptual research, which proves the existence of correlations

between gaze data and human preferences. The main advantage of eye tracking is that reliable hu-

man perception data can more likely be collected compared to the user tests, since the evaluation

is based on participants’ attention rather than applying solely questionnaires that are limited by the

question content. In light of the benefits and finding, an eye tracking device is used to collect gaze

data, and then, eye tracking tools such as area of interest (AOI), scan path, and heat map are used

to evaluate attractiveness of the design parameters. Finally, regression analysis is used to represent

relations between gaze data of design parameters and the adjectives.

Adjective-based design

Product performance and qualities are not solely good enough criteria for clients as the market

competition has already made them compulsory. For products with high quality and good perfor-

mance, aesthetic design is highly important for clients to make the final decision [40, 41]. How-

ever, this criterion is not a clear target to be reached and is measured through client satisfaction,

which is highly related to human feelings; therefore, it is difficult to forecast this criterion before-
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hand. Dogan and Gunpinar [27] proposed the adjective-based design method, which quantizes

human feelings and represents them as relations between adjectives (e.g., charismatic and mod-

ern) and design parameters that are geometrically defined on products (e.g., lengths and widths).

Such approach aims to provide better communication between designers and clients [42]. In this

method, feelings about designs can be easily expressed using adjectives and their relations with

design parameters are used as a guide by designers. Thus, understanding clients and appealing

them can be successfully achieved in relatively short times. Dogan and Gunpinar [27] applied the

adjective-based method to yacht hulls. They first collected many hull adjectives using a survey

method in which survey participants were asked to describe yacht hulls using adjectives, then nar-

rowed down to 10 hull adjectives. Design parameters that can cover common hull shape features

were also defined. A second survey was then applied, where a hull design is modified changing

the defined design parameters and compared with its initial state, to observe whether the modi-

fications of these parameters affect participants’ decisions and eliminated accordingly. After the

eliminations, the remaining design parameters were used to generate hull designs via a novel para-

metric design framework, which is also similar to the method proposed by Khan et al. [28]. Then,

another survey was conducted, where the designed hulls were matched with the hull adjectives to

create a dataset where inputs are the design parameter values of hulls and the responses are the

adjectives selected for these hulls. Finally, a machine-learning algorithm that used neural network

was fed with the dataset to represent relations between the adjectives and the design parameters as

mathematical models. The mathematical models include the design parameters that have impact

on the participant responses; however, some design parameters were absent in some models. In

other words, relations of some design parameters with some adjectives could not be established;

thus, it was concluded that the design parameters did not affect the adjective choices of the subjects

(survey participants). Such noises are caused by unrelated parameters and need to be removed to

raise the quality of relation representations. In this chapter, it is assumed that if a shape feature

of a product does not attract subjects, the related design parameter with the feature is unattractive

and irrelevant to the adjectives as well. An eye tracking device is used to evaluate the degree of

attractiveness of design parameters, observing where the subjects’ attention is focused.

Eye tracking system

Eye tracking, where eye movements of subjects are recorded as gaze points on given stimuli, is

a commonly used method in neuroscience, psychology, computer science, industrial engineering,

and marketing [43]. In the eye tracking system, illuminators are used to generate near-infrared
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lights and images of their reflections from eyes are captured by cameras. In addition, an external

processor is used to process the images to analyze the reflection patterns and generate a 3D model

of the eye with its position in space. The 3D eye model is then used to calculate locations of the

gaze points on relevant stimuli. Eye movements are illustrated on stimuli via fixations, which are

a batch of gaze points accumulated within a predefined span in shape of circles, and saccades are

displayed via straight lines that show eye movements from one fixation to another (Fig. 2.1a). In

this study, the attractiveness of target areas is analyzed through fixation locations and durations

at the locations, as well as scan paths [44], which are combinations of fixations and saccades.

Fixations are widely analyzed using the area of interest (AOI) tool and heat maps [45]. Using the

AOI tool, targets are surrounded with diverse shapes (Fig. 2.1b) to perform quantitative analysis

with various metrics such as fixation duration and visit count. The heat map (Fig. 2.1c) represents

fixation-accumulated areas based on a color scale where red indicates more attractive areas than

the rest of the image. One method to examine the scan path is defining AOIs (see Fig. 2.1d for

yellow rectangular shapes) on the path that needs to be searched and the transitions between the

AOIs will indicate how often (frequency) the path is used. A transition matrix is also used to

summarize the transitions in matrix form, as illustrated in Fig. 2.1e.

Figure 2.1: (a) Fixations are represented via circles and saccades are straight lines that connect

consecutive fixations. (b) AOIs are defined via various shapes on target areas for further statistical

analysis. (c) Heat map illustrates gaze point accumulations based on a color scale where red

areas depict areas that receive maximum attention. (d) Scan path analysis via AOI transitions. (e)

Transition matrix for scan path analysis.
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Template Learning Survey (TLS)

Design parameters can be classified as local and global parameters (Fig. 2.2) according to their

impact on hull appearance. Local parameters are the ones that have full control on the target shape

such as radii of feature curves. On the other hand, global design parameters affect large areas (e.g.,

lengths and widths) and the recorded gaze data on these areas can be found in any shape related to

the search behavior of subjects. Thus, gaze points for global parameters first need to be identified

according to the search behavior of subjects in order to analyze them with an appropriate strategy.

To do this, a survey is used, called TLS, where all the learned identifier information for the relevant

parameter is named as template.

Figure 2.2: Two cases to decide whether AOI will be defined on the relevant parameter or TLS

will be applied to learn what the best strategy is.

Proposed approach

According to the flow of the proposed approach depicted in Fig. 2.3, the eye tracking aided survey

(ETAS) is first applied, where participants select appropriate adjectives from a given list for the hull

images and gaze points of participants are recorded. The local parameters are analyzed by defining

AOIs, while the global parameters are first applied TLS to learn their templates to determine a

suitable analysis method. If a template of a global parameter shows the gaze points in the shape

of accumulation in a particular area, the parameter is also treated as the local parameter since it

is searched locally. On the other hand, if the gaze data are spread out instead of being gathered

in local areas, scan path analysis is used. Relative time durations (RTDs) are then calculated

for local parameters with the outcome of AOI analysis, and transition probabilities (frequency of

path usage) are calculated for global parameters, which are analyzed via the scan path. In the

end, the two calculated metrics for the design parameters are used to compare their attractiveness.
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Finally, relations between gaze data of attractive parameters and the responses (adjective choices)

are searched using regression analysis.

Figure 2.3: Flow of proposed approach.
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2.2 Related Works

This study is related to the adjective-based design method, which is similar to other human-

oriented design studies such as Kansei engineering [46] and semantic attribute-based concepts

[23]. Since these design concepts put the human perception in the center of the design process,

this study is also related to the cognitive research conducted to learn human preferences. We are

specifically interested in the research where eye tracking systems are used.

Adjective-based design

Literature covers several studies on human preferences to explore, identify, and convert human

emotions into physical entities to estimate their possible preferences [46]. For example, Yanagi-

sawa et al. [47] created a model-based design method that used Kansei database to forecast cus-

tomer preferences and obtain former understanding about human perception of the designs for the

designers. Chen and Chang [48] proposed a method to extract appearance attributes and determine

mathematical models correlating the attributes with customer responses in order to estimate their

possible preferences about product designs. Chaudhuri et al. [23] proposed ATTRIBIT, which

assembles 3D models where assembly parts are related to semantic attributes. The relations are

explored and the parts are ranked according to their degree of relevant attributes through surveys.

In a similar direction, in our previous study, the adjective-based design method [27] is proposed

and used in this study to develop a method for screening design parameters.

Eye tracking studies

Gaze data basically show the areas that have and those that have not caught the interest of subjects.

There are several studies using eye tracking systems that have found relations between gaze data

and emotions and/or preferences. Alshehri and Alghowinem [49] stated that eye movements are

related to the emotional states of subjects as they have diverse reactions for pleasant and unpleasant

media. Yousefi et al. [50] suggested the use of eye tracking for construction processes, analyzing

the relations between gaze data and user satisfaction. Mohammadpour et al. [51] applied user

tests recording gaze data, where building designs were evaluated by subjects and long fixation

durations for attractive designs were measured. Kim et al. [52] examined correlations between

nightscape preference degrees and gaze points, and found that subjects spent more time on the

preferred images. Noland et al. [53] used eye tracking in their survey, which allowed qualitative

and quantitative investigations of images related to urban planning. The study results showed that

cars and parking were ranked negatively, while new urbanist parts of the images such as people
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and pedestrian features were mostly highly ranked. This study is motivated to use eye tracking

technology with these findings to evaluate the attractiveness of the design parameters.

Eye tracking studies for product design

There are a few studies that use the eye tracking framework to particularly understand outstanding

design features or how human aesthetic understanding is formed by product appearance. Kukko-

nen [54] studied product designs with an example of mobile phones where gaze data of subjects

were compared through a questionnaire and strong correlations were found between them. In that

study, five mobile phones were shown in pairs to the subjects, including designers, and gaze data

for product attitudes and preferences were analyzed. Köhler et al. [55] extended the well-known

Kansei engineering method using eye tracking, in order to evaluate product aesthetics from the

perspective of human perception, and validated the results using descriptive and statistical anal-

ysis procedures. Koivunen [56] claimed that the way people look at designs is important and

suggested strategies about first impression of the subjects, which they thought can help designers.

Du and MacDonald [57] also analyzed the relative importance of visual product attributes and the

impact of the attributes’ sizes on human preferences by using an eye tracking device. Their study

showed the existence of significant relations between the gaze data and attribute importance, and

used ordinal logistic regression to predict the importance of both attributes and their size changes.

Khalighy et al. [58] formulated aesthetic understanding of subjects through the gaze data depend-

ing on beauty and attractiveness drivers. They asserted that the aesthetic formula succeeds in

estimating human preferences via gaze data.

The above studies aimed to learn important geometric features to help designers in under-

standing customer needs and desires. Our goal is in a similar direction; however, we go further

and provide an adjective-based design concept which is a kind of translator that converts adjectives

(which is the design aesthetic language of clients) into design parameters (which is the language

of designers). Moreover, the importance of design parameters over appearance features is found,

which are combination of design parameters. A design framework is also proposed that works

with the design parameters, which means that the findings can be directly used by the design

framework unless subjective decisions are required by designers. Besides all these benefits, our

screening method is conducted more systematically as an orthogonal array is used to sample de-

signs having varied geometric features, where the design parameter values are equally changed

through the 54 hull designs. It is believed that to get favorable results from the design evaluations,

such systematic approach is needed to observe real perceptions of humans when they see varied
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features. To the best of our knowledge, the existing product evaluation studies with eye tracking

systems use limited number of existing design samples, which may be good enough to propose

their methods, but cannot offer proper evaluation due to lack of systematically prepared enough

design variations.
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2.3 Experiment Materials and Setup

The experiments were conducted with 54 hull design images and 10 adjectives, which were ob-

tained from Dogan and Gunpinar [27]. In that study, frequently used adjectives were determined

via a survey (Fig. 2.5), where participants were shown various yacht hull models and asked to

describe them via adjectives. Social listening method was then used to enlarge the adjective dictio-

nary and the retrospective think aloud method [59] was used to validate the determined adjectives

via subjects’ feedbacks. Finally, the following 10 adjectives were determined: strong (A1), speedy

(A2), comfortable (A3), aesthetic (A4), usual (common) (A5), aggressive (A6), compact (A7), mod-

ern (A8), charismatic (A9) and cute (A10). Before the surveys were conducted, each participant

was provided car images related to the adjectives for the illustration. The reason for selecting

cars rather than yachts was to not steer the subjects while they were matching adjectives with the

hulls, but only show them how an adjective can be related to a product design. The car images

were obtained from the Web and are not shared with this thesis due to copyright issues. In addi-

tion, dictionaries were used to standardize adjective definitions for the subjects. In the end, each

participant was trained with several hull models for warming-up purposes.

Hull models were sampled using the Taguchi experimental method [60], which suggests an

L54 orthogonal array for 25 design parameters with three levels and one with two levels. Each

level was assigned an appropriate value to determine dimensions for the 54 hulls. The hull models

were then generated via a novel parametric design framework proposed by Khan et al. [28],

where a hull is divided into three parts: entrance section, middle-body section, and run section

(Fig. 2.4). According to the framework, the entrance section surface is obtained via loft operation

between forward profile (FP) and entrance station profile (SPe); middle-body section is generated

by lofting between SPe and middle-body station profile (SPm); and run section is generated by

lofting between SPm and run station profile (SPr). Note that the lofting processes between profiles

were performed following top, bottom, and feature (middle) guide curves to control the surfaces.

Furthermore, only half of the model was first lofted and mirroring operation was then performed

to obtain the full model. The design parameters with their definitions are given in Table 2.1, and

the hull locations are illustrated in Fig. 2.4.
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Table 2.1: Design parameters with definitions.

Parameter Definition

Le Entrance section length

Lm Middle-body section length

Lr Run section length

Be Entrance section width

Bm Middle-body section width

Br Run section width

De
1 Entrance section depth

Dm
1 Middle-body section depth

Dr
1 Run section depth

De
2 Entrance section upper depth

Dm
2 Middle-body section upper depth

Dr
2 Run section upper depth

a1 Width of bottom flat panel

α Deck line angle

α2 Backward angle

β Entrance angle

θ Forward profile angle

H Height of forward profile

Re
1 Min. radius of entrance top guide curve

Rm
1 Min. radius of middle-body top guide curve

Rr
1 Min. radius of run top guide curve

Re
0 Min. radius of entrance bottom guide curve

Rm
0 Min. radius of middle-body bottom guide curve

Rr
0 Min. radius of run bottom guide curve

R4 Min. radius of upper profile curve

R5 Min. radius of lower profile curve

Eye tracking aided survey (ETAS)

ETAS questions were prepared using images of 54 hull models, with the front, top, and side views

providing the same pixel/meter ratio based on lengths, widths, and depths to simplify the under-

standing of dimension changes and fair AOI definitions (Section 2.4.1.2). Note that additional
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Figure 2.4: Design parameters are demonstrated on side, top, and station profiles, which are illus-

trated via A-A, B-B, and C-C cut views.

views were not used since they would add nothing to the three views in terms of showing design

parameters, but disperse the focus of the subjects to widen areas. Figure 2.6a shows the experi-

mental setup, where the screen was 520 mm wide and 325 mm high (24 inch diagonal) and the

image (one of the ETAS questions) had 1920 × 1080 resolution. A screen-based eye tracking

device (Tobii Pro X3-120) was used with a sampling rate of 120 Hz. Moreover, participants were

free to move their head within 500 mm width and 400 mm height according to the report of the

producer. Owing to this setup, the subjects were not disturbed by the device, and hence, could

behave more naturally. In addition, the tracker had a reported accuracy of 0.4◦ and precision of

0.24◦. Finally, the distance between the participants and the tracker was set as 650 mm.

The ETAS question interface for a hull design is given in Fig. 2.6b, which shows the design

with three views and the location of adjectives. Participants were asked to select at least two

appropriate adjectives from the list in order to increase the time spent on the hull, as time limitation

was not applied for ETAS. The responses were verbally expressed by the subjects and recorded by

an operator via Google Form so that the subjects could keep looking at the screen and not interrupt

the gaze recording. This part is important for computing the RTDs since each time a subject looks

away from the screen to select an adjective leads to empty gaze data, while the time period of the

questionnaire is increasing.
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(a)

(b)

Figure 2.5: A figure taken from Dogan and Gunpinar [27]. (a) A question from adjective learning

survey. (b) Hull adjectives that are learned from the survey.

Before each experiment, calibration was made using a calibration tool of the tracker software

using nine dots. ETAS was conducted in three sets, where each set consists of 18 hull design

images and three calibration images (Fig. 2.6c) between hull images with equal intervals. Note that

the calibration images were shown only for two seconds and were used to check if the calibration

was missed during the survey. Data of two subjects’ tasks were discarded from the analysis due to

the calibration problems, which were detected via the calibration images.

Total number of participants for this study were 24, including two females, aged 20 and 42

with mean 24.21 and standard deviation 5.83. The nationalities of the participants were Chinese,

Japanese, Korean, and Malaysian. Each participant was given only two tasks out of four (three

ETAS sets and one TLS), and on average, 13 subjects participated in each ETAS set and 10 in TLS

tasks. A relevant council of The University of Tokyo approved the surveys used in the study.

Figure 2.7 shows some gaze plots and heat maps of ETAS results obtained via Tobi Pro soft-

ware [39].
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Figure 2.6: (a) Experimental setup. (b) ETAS interface consists of front, side, and top views of a

hull design and adjectives placed at bottom of the screen. (c) Calibration image.

Figure 2.7: (a) Gaze plots of some hulls. (b) Heat maps of some hulls.
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2.4 AOI-based Screening Methods for Design Parameters

As mentioned in the first section, the local parameters are evaluated via the AOI tool and global

parameters using scan path analysis. The scan path analysis was also conducted by defining AOIs

on the path and the transitions between the AOIs refer the usage frequency of the defined paths.

To prevent confusion, the AOIs used for scan path are called as path AOIs. In this section, first,

design parameters will be classified as local and global based on their impact on the appearance

and search areas using TLS. Then, AOI definitions and metrics that will be used will be explained.

2.4.1 Design Parameter Classification

Design parameters that have full control on the target shapes are classified as local parameters

since their search area can be limited to particular areas without overlapping with other design

parameters. These parameters, which have local impacts on target shape, include minimum radii

of feature curves (Re
1,R

m
1 ,R

r
1,R

e
0,R

m
0 ,R

r
0,R4,R5), bottom width of flat panel (a1), entrance angle (β),

and upper depth parameters (De
2,D

m
2 ,D

r
2). Note that the upper depth parameters are used to control

the incline of the feature guide curve between the sections; therefore, the incline is analyzed via

AOI to evaluate these parameters. In addition to these, FP parameters, which are H and θ, are

also classified as local parameters to be evaluated via the AOI tool since the area covered by the

profile is relatively small to use the scan path analysis. H can be observed independently from

all other parameters over the front view; however, over the side view, overlapping between H and

θ is inevitable due to sharing of the same geometric feature. Therefore, an AOI is defined with

FP label that covers the whole FP on the side view; in other words, feature-based screening is

performed for FP, which is a combination of H and θ, rather than parameter-based.

On the other hand, global design parameters include lengths (Le, Lm, Lr), widths (Be, Bm, Br),

and depths (De
1, Dm

1 , Dr
1), since they impact large areas on the hull shape, and angular parameters

(α, α2), which can be found anywhere through the inclined lines. In brief, we do not know how

global parameters are searched by subjects. Therefore, these design parameters first need to be

identified based on their search area to determine the best strategy for them. TLS is suggested

for the identification and to define templates according to the identities for each global design

parameter. Here, the template means the generalized output of TLS for a design parameter that

includes information of search area of the parameter, whether local or global, with size and location

of the area. Note that all locally searched parameters are analyzed via the AOI tool even if they

are classified as global design parameters due to their effects on the hull appearance.
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2.4.1.1 Template learning survey (TLS)

TLS tasks are specialized to request participants search only one specific design parameter in order

to record gaze data that belong only to this specific parameter. TLS tasks can be categorized into

two types. The first task aims to compare a design parameter by sections of one hull model to ob-

serve the search behavior of subjects through the hull. Figure 2.8 demonstrates a question example

of such task where relevant design parameters are first introduced and the task is explained with-

out time limitation. Whenever participants feel ready, the calibration image is displayed for two

seconds and a hull model is then shown for five seconds. Finally, a question (e.g., “Which section

is shorter/longer than the others?”) is asked related to the task, and after the subject answers, the

other hull model is shown. After that, the same task is repeated three more times with other hulls.

This task is suitable for lengths, widths, and depths as they are defined for each section separately.

The second task is to compare a design parameter on three different hulls and suitable to be

used for all design parameters. Figure 2.9 shows that the task is similarly explained and a calibra-

tion image again appears for two seconds, but this time, all hull models are shown consequently

and one question (e.g., “Which model has wide/narrow/perpendicular angle?”) is asked to compare

three hull models for the relevant parameter. The calibration images have extra goal in TLS, which

forces participants to start at the same point to increase similarity of initial gaze points in order to

get meaningful results for comparison. In addition, the question and answer options that are easy

to remember and understand are chosen to enable participants easily focus on the main objective

of the task. For example, sections are introduced as left, middle, and right for easy comparison

rather than entrance, middle-body, and run, which are difficult to remember. Note that the answers

given for the question tasks are not analyzed since their only aim is to give purpose to the subjects

and do not add value for gaze data analysis.

Figure 2.8: TLS task flow of first type, where a question is asked after each hull is displayed to

compare the hull sections’ relevant design parameter.
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Figure 2.9: TLS task flow of second type, where a question is asked after three hulls are displayed

to compare design parameters.

All TLS results are first visualized by heat maps to check whether the parameters are searched

locally (fixations are accumulated in particular area) or in a spread-out way, and additional tools

are then used to decide if they are suitable for analysis via AOI or scan path. Example TLS outputs

for globally searched design parameters are visualized by gaze plot and transition arrows between

path AOIs, which are shown in Fig. 2.10a for the first task and in Fig. 2.10b for the second task.

On the other hand, example local parameter results are given in Fig. 2.11a for the first task and in

Fig. 2.11b for the second task. By evaluating the visual outputs, Le, Lm, and Lr are classified as

global parameters since they are searched horizontally in wide areas. Moreover, Be, Bm, Br, and α2

are classified as local parameters since they are searched on particular areas where AOI definitions

are possible without overlapping. Meanwhile, De
1,D

m
1 ,D

r
1, and α parameters cannot be classified

due to random gaze plots, which are not suitable for both AOI and scan path analyses. Therefore,

they are kept out of the scope of this study.

Figure 2.10: (a) An output of first type of TLS task for length parameters (Le, Lm, and Lr), which

requests to compare section lengths. (b) An output of second type of TLS task for length parame-

ters, which requests to compare middle-body lengths (Lm) of different hull models.
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Figure 2.11: (a) An output of first type of TLS task for width parameters (Be, Bm, and Br), which

requests to compare section widths. (b) An output of second type of TLS task for width parameters,

which requests to compare entrance widths (Be) of different hull models. The outputs are given

by the gaze plots, where the eye movements of each subject are represented by different colored

circles and straight lines; and the heat maps created based on total time spent by the subjects

indicating regions by red in which most of the gaze data are accumulated.

Preliminary search via heat map

The heat map is a well-known method to visualize aggregated gaze points of all subjects at a time

on a stimulus using a color scale, as illustrated in Fig. 2.1c. This visualization method gives

a general idea about the areas that are attractive to the subjects and those that are completely

neglected. As Bojko [61] suggested, instead of using the heat map for extensive analysis, it is

recommended to use as a visualization tool for planning the study, mainly to learn where to define

AOIs in order to gain time and increase efficiency. Another issue that needs to be considered is

the use of relative durations of the total time spent by the subjects in case the time periods of the

experiments differ from one subject to another. The final suggestion is to set the total kernel size,

which is the diameter of the colored area around the fixation center, with a larger value than the

default to spread the colored area to provide higher confidence interval in terms of increasing the

search area.

In our study, the heat maps are generated via Tobii Software by applying I-VT filtration [62]

with default settings of Tobii Pro software [39] according to relative durations. Furthermore, al-

though the default total kernel size of Tobii Pro software is 100 px, which is determined according

to the highest visual span of the human eye, this value is set to 210 px to increase the confidence

level of the investigated area. Finally, the parameters that need quantitative examinations by AOI

in the colored areas are determined for each image.

As mentioned in Section 3, mirroring operation is used to obtain the final hull models, which
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means the hull model is symmetrically generated. Due to this reason, a half of the front and side

views has the same design parameters as the other half. However, Fig. 2.12 shows three heat

map results, where the searching area of front and side views is indicated by arrow directions.

According to this figure and TLS results (Fig. 2.11), only half of the views are investigated by the

participants. Therefore, to simplify the study, unnecessary AOI definitions are avoided based on

heat map visualizations and define the AOIs for half of the views only.

Figure 2.12: Three out of 54 heat map results of ETAS. The investigated areas by the participants

are displayed using a color scale, where red depicts the most attractive areas.

2.4.1.2 AOIs for local design parameters

Nineteen design parameters Re
1, Rm

1 , Rr
1, Re

0, Rm
0 , Rr

0, R4, R5, De
2, Dm

2 , Dr
2, α2, β, θ (FP), H, a1, Be,

Bm, and Br are analyzed quantitatively via AOIs, since they are locally searched by the subjects.

OGAMA [63] is used to define elliptical AOIs for Be, Bm, and Br, since they are observed in an area

close to ellipsoidal shape (Fig. 2.11) and tetragonal AOIs for the remaining 16 design parameters.

The AOI definition for parametrically generated designs has a critical problem that the dimension

of the relevant design parameter differs over the 54 hull models, so the AOIs need to be arranged

for each hull model parametrically. Three main issues are considered for AOI definition:

• Fair comparison: AOI sizes need to be adjusted by the same proportion for each of the 54

hulls, since comparison is performed between the parameters.

• Batch AOI definitions: Nineteen local design parameters for each of the 54 hull models

require 1026 AOI definitions, which is impractical to do manually, so automation is needed

to define AOIs.

• Avoid from overlapping: When AOIs are adjusted for each hull, there may be some cir-

cumstances that cause overlapped AOIs. To avoid this problem, the AOIs are defined on the

center of the target geometric feature rather than the whole; in other words, the gaze points

are sampled from the center of the target feature. This may cause some gaze data loss (de-

creases sensitivity), but prevents the analysis of incorrect gaze data (increases selectivity).
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As the design parameters are compared with batch AOI definitions, it is believed that such

an approach is valid when AOI definition is made providing the fairness and necessity to

define AOIs automatically without overlapping.

The volume of a 3D product design changes with its length, width, and depth parameters (basic

parameters). Therefore, the AOI sizes are varied with equations, making them dependent on the

main construction parameters according to the view. In other words, size of an AOI defined for

a hull parameter on side view is based on length and depth parameters, while that of a top view

parameter depends on width and length parameters. First, template elliptical AOIs are defined

as covering the target areas, which are learned from TLS empirically. On the other hand, the

templates of the tetragonal AOIs are defined via the oriented bounding box method [64], enclosing

the target areas. After that, since the AOIs are managed via four handle points (P0, P1, P2, P3)

(see Fig. 2.13), the distances between the handle points of the template AOIs in x and y directions

are divided by the relevant basic parameters to compute ratios. Finally, the ratios are used to

determine appropriate positions of the handle points for the 54 hulls. In other words, defined

templates are reversed based on their hull models’ main dimensions and the handle points are

relocated according to the new hull dimensions by the amount of the ratios. Note that a fixed

reference point Px
r is selected for each design parameter to compute the ratios and to relocate the

handle points of the relevant AOIs.

There are several ways to define AOIs based on the basic parameters, but the one, that is used,

is illustrated in Fig. 2.14, where x and y coordinates of P0, P1, P2, P3 for the elliptical AOI of Be

is parametrically changed in proportion to the empirically found ratios via TLS over width (Be)

and lengths (L1 and L2) according to reference point Px
r . Note that the major axis of the elliptical

AOI is computed in two parts based on L1 and L2 in proportions of the ratios, and the minor axis

is computed based on Be. Similar and suitable approaches are determined and applied to the other

local parameters to parametrically modify and enable them to orient with the various dimensions

of the 54 hulls.

2.4.1.3 AOIs for global design parameters

As seen in Fig. 2.10, the sequences of gaze fixations for the global parameters (Le, Lm, and Lr)

are observed in the form of horizontal transitions along the hull on both side and top views. Our

aim is to associate transitions made along the sections with the relevant length parameter for each

section. This can be done by defining path AOIs to construct a path similar to that observed in

TLS and counting the transitions between the path AOIs. Therefore, eight path AOIs are defined:



33

Figure 2.13: AOI shapes are controlled by the handle points (P0, P1, P2, P3).

Figure 2.14: AOI location and reference point (Px
r ) demonstration for Be.

four on the side view, with labels As
1, A

s
2, A

s
3, and As

4, and four on top view, with labels At
1, A

t
2, A

t
3,

and At
4 (Fig. 2.15a). In addition to these eight path AOIs, two extra path AOIs are defined: one for

the front view of the hull and one for the whole adjective region in order to be used for transition

probability calculation (the reason for this will be explained later). Note that the heights of the

path AOIs are equal to the maximum height of the hull on the side view and the maximum width

of hull on the top view in order to capture horizontal transitions. Similar to the procedure for

local parameters, the handle points of the AOIs in the x direction are defined depending on length

parameters and relocated through the 54 hull models using computed ratios. Furthermore, the

OGAMA software provides average loci similarities in percentages, which depicts the proportion

of the covered scan paths of the subjects by the defined path AOIs. The ratios for path AOIs are

computed taking the loci similarities into consideration.
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2.4.2 Evaluation Metrics

Two metrics are used in this study: RTD for AOI analysis and transition probability for scan path

analysis.

RTD

Since there are 54 hulls with varied geometries, the AOI sizes are parametrically adjusted for

each hull. However, it is not fair to compare AOIs with different sizes [65]. Furthermore, the time

periods for ETAS are not fixed, so the periods are different for each subject and the results can be

dominated by the one who spends more time than the others. To address these problems, fixation

durations are standardized to be relative to the time periods of subjects and the sizes of AOIs for

each design parameter.

Equation 2.1 calculates the relative times (T̄ A), where T c is the period of a subject on the

relevant hull image and T A indicates the time spent on a defined AOI for a parameter.

T̄ A =
T A

TC (2.1)

Equation 2.2 then normalizes the AOI size of the design parameter, where the sum of relative

times of all subjects (
∑

sub jects T̄ A) is divided by AOI proportion of the design parameter to the

whole question area (k). These computations are made for each of the 19 local design parameters

to obtain the RTD (S A).

S A =
1
k

∑
sub jects

T̄ A (2.2)

Transition probability

As in RTDs, the transition counts need to be normalized for comparison of the global param-

eters of the 54 hulls. To do this, the transition counts are divided by total transitions made in the

relevant hull image and the results are interpreted as transition probability [66]. The general for-

mula of transition probability (p(Ai | A j)) for a pair of path AOIs (Ai and A j) is given in Equation

2.3, where the transition count (C(Ai ‖ A j)) is divided by the total count of transitions made on the

hull image (C(A)). Note that A here refers to a relevant AOI label.

p(Ai | A j) =
C(Ai ‖ A j)

C(A)
(2.3)

Since more than 26 target design parameters can be observed by subjects on given stimuli,

many pointless transitions will be made for local parameters, which should be avoided from total

transitions. Therefore, the path is constructed via 10 path AOIs covering the major transitions
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rather than the minors that are made on the image. C(A) is the number of major transitions,

which are the ones among front view, adjectives region, entrance section, middle-body section, and

run section (sections are defined for both top and side views). Minor transitions are assumed as

transitions made on black areas of the image and self-transitions (Ai ‖ Ai) are the ones made inside

of the defined path AOIs, which are usually short saccades and more likely belong to the local

parameters. Figure 2.15a shows the defined 10 path AOIs and Fig. 2.15b displays the transition

counts between the corresponding AOIs for both side and top views in the matrix form. Figure

2.15c illustrates the transition probability computation (Equation 2.3) over the transition matrix

of the top view, where the transition probability between At
1 and At

2 (p(At
1 | At

2)) refers to that

of the entrance section length (p(Le)) on the top view, (p(At
2 | At

3)) is equal to p(Lm) and p(At
3 |

At
4) is equal to p(Lr). The transition diagram in the Fig. 2.15c is also used to summarize the

probabilities between the relevant AOIs, where nowhere refers to AOIs other than (At
1, A

t
2, A

t
3, A

t
4).

Similarly, transition probabilities of four path AOIs (As
1, A

s
2, A

s
3, A

s
4) are used to compute transition

probabilities of the section lengths based on the side view. Front view and adjectives are other

regions that are involved by the path, as they are important stations for the subjects.

Figure 2.15: (a) Ten path AOIs that cover major transitions. (b) A transition matrix example,

which summarizes the transitions in matrix form. (c) Transition probability calculation example

over top view path AOIs {At
1, A

t
2, A

t
3, A

t
4}, where the transition matrix members (transition counts)

are divided by total transition count C(A). The probabilities between the path AOIs and remaining

AOIs (nowhere according to investigated path AOIs) are then represented through a transition

diagram.
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2.5 Results

2.5.1 Screening-based Evaluation of Design Parameters

2.5.1.1 Evaluation with RTD metric

First, the ETAS questions were roughly examined based on five significant areas: front view,

adjectives, entrance section, middle-body section and run section (the sections are available for

both side and top views (Fig. 2.16a)), via their total RTDs computed for the 54 hulls (Ŝ =
∑54

i=1 S A).

In Fig. 2.16b, Ŝ values for each area are represented via a pie chart in percentile, which are relative

to the sum of all. Note that percentages of sections were calculated according to sum of their

computed durations on the side and top views. According to the chart, the regions ordered from

the most attractive to the least attractive are as follows: 37% of the total RTD of all 54 hull images

for the middle-body section, 20% for the entrance section, 19% for adjectives, 18% for front view,

and 6% for the run section. This analysis suggests that the middle-body section is the first section

that needs to be modified to appeal clients or achieve any design goals in terms of aesthetics, since

people quickly detect the modifications made in this section. Also, the results show that dealing

with run section modifications should be considered as last option since the clients will not pay

attention to this section in the first place.

Figure 2.16c also shows the comparison of the view-based results with the adjectives. Accord-

ing to the comparison, the side view of the hull design attracts most attention, followed by the top

view and then the front view, which means that the side silhouette of the designs need to be studied

on priority to appeal clients.

Figure 2.16: (a) Five categorized regions: the front view, adjectives, entrance, middle-body, and

run sections. (b) Proportions of relative durations for each categorized region. (c) Comparison of

views and adjectives’ region based on total RTDs in percentage.

Fine examination is performed with the 19 local design parameters via computed average RTDs

(S̄ A) over the 54 hulls. The distribution of S̄ A values of the 19 parameters is represented via a
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box plot [67] in Fig. 2.17a. The box plot is composed of quartiles, which are used to evaluate

the attractiveness of the parameters in four levels. Accordingly, the design parameters whose

S̄ A values are above than the third quartile (Q3) are the most attractive ones (Level 1) among

the 19 local parameters. The parameters with S̄ A values between median and Q3 are second-

level attractive parameters. The other quartiles below the median value are determined as third

and fourth degrees in terms of attractiveness. The local parameters are illustrated in Fig. 2.17a

according to their attractiveness levels with different colors, where green demonstrates the most

attractive parameters (Level 1), which are listed as follows:

• Level 1: H, Be,Dm
2 ,R4, and Rm

1 .

• Level 2: De
2, a1, Bm,R5,Rm

0 , and FP.

• Level 3: β,Re
0,R

e
1, and Dr

2.

• Level 4: Rr
1, B

r,Rr
0, and α2.

Since the attractiveness of the parameters is measured based on the gaze data, the relations

between the gaze data and the hull adjectives must be analyzed. The idea is that if the gaze

data have relations with the adjective choices, the attractiveness results obtained will be related

to the adjective-based design concept, since it shows that the participants looked at the parameter

to select the adjectives. Otherwise, the results will be unrelated to the adjective-based design

concept. Therefore, Level 1 and Level 2 parameters are further analyzed via regression analysis

to validate the attractiveness results. The parameters lower than the median value are (Level 3 and

Level 4 parameters) kept out of the regression analysis. S̄ proportions of each parameter relative

to the sum of all (S̄ A/
∑19

i=1 S̄ A) are visualized in Fig. 2.17b, where the discarded parameters are

surrounded by a red rectangle, indicating the smallness of the area covered by them as compared

to the rest.

2.5.1.2 Evaluation with transition probability

Transition probabilities of Le, Lm, and Lr parameters (p(Le), p(Lm), and p(Lr)) are calculated for

each of the 54 hulls via scan path analysis and refer to the usage frequencies (or densities) of the

relevant paths. The average probabilities (p̄(Le), p̄(Lm), and p̄(Lr)) for the side and top views with

sum of both are given by the bar chart in Fig. 2.18a. The results show that 2.5% of transitions

are made for Lm on the side view and 3.8% on the top view, so the total transition percentage

for this parameter is 6.3% (p̄(Lm) = 0.063). The transition frequencies for Le on the side and
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Figure 2.17: (a) Box plot via its elements and S̄ A values of the parameters, which are colored

based on attractiveness levels. (b) S̄ proportions of each of the 19 design parameters relative to

the sum of all.

top views are 1.6% and 1.3%, so the total value is 2.9% (p̄(Le) = 0.029). Finally, Lr transition

frequency is calculated as 0.5% on the side view and 1.0% on the top view, and total frequency of

the transitions compared to whole transitions made on the question area is 1.5% ( p̄(Lr) = 0.015).

It can be inferred from these results that the attractiveness order of lengths, in other words, priority

of the length parameters for the adjective-based design concept is Lm > Le > Lr.

Figure 2.18b also depicts the distributions of the 54 hulls’ transition probabilities of Le, Lm,

and Lr (sum of both side and top views for each hull model). In the box plots, each whisker shows

the range where 25% of all probabilities are distributed, while the box covers the remaining 50%.

Comparing to the range of box plots and median values of Le, Lm, and Lr (in order 0.03, 0.06, and

0.01), a big portion of p(Lr) values is distributed under p(Le) and p(Lm) values. In addition, the

run section has already been found unattractive; bringing all the reasons together, Lr is also kept

out from the regression analysis.

2.5.2 Relation Analysis via Regression Analysis

In this section, the relations between gaze data and adjective choices are studied. If some relations

can be established, they can be used to find unattractive design parameters. For this purpose, re-

gression analysis is applied for estimating the relations between the gaze metrics as independent in-

put variables and adjective selections as dependent response variables. More specifically, the input
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Figure 2.18: (a) Average transition probability of Le, Lm, and Lr on the side view, top view, and

sum of both views. (b) Sum of side and top view transition probability distributions of the 54 hulls

for Le, Lm, and Lr.

variables are the RTD (S A) and transition probability (p). They are denoted as X = {xi, i = 1...13}.

The response variables are 10 adjective selections {strong (A1), speedy (A2), comfortable (A3), aes-

thetic (A4), usual (common) (A5), aggressive (A6), compact (A7), modern (A8), charismatic (A9)

and cute (A10)}. They are denoted as Y = {yi, i = 1...10}. As shown in Table 2.2, for each of the 54

hull designs, relevant values for each of xi and yi are obtained with the user experiments described

in Section 2.4. The regression analysis is conducted on these input and response variables with

values from the 54 observations for the hull design ID = 1...54. First, a dataset is prepared where

input variables are assigned as gaze metrics and the response variables are defined by converting

the adjective selections into levels. Next, generalized linear model (GLM) [68] is introduced as

the regression analysis method.

A set of input variables, called the regression model, is used for the regression analysis. The

set X, including all 13 input variables, cannot be the best choice for the regression model but some

subset of X is preferable. Thus, the best-subset selection method [69] is used to determine the

final regression model for each adjective. In this method, the residual sum of squares (RSS) of all

possible regression models is first calculated to determine the top models, which are then evaluated

according to the Akaike Information Criteria (AIC) [70]. The AIC values of the top models are

compared according to the Akaike weight ratios [71] and D2 [72] values. Finally, the performance

of the determined models for each adjective is measured via D2, Mean Absolute Percentage Error

(MAPE), and correlation analysis results.
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Dataset organization and response variable determination

The gaze data are input for regression analysis and represented by RTD for 11 attractive local

parameters and transition probability for two attractive global parameters. The adjective choices

are converted into three levels according to the number of selections made by subjects, and then

used as response variables for the analysis. Table 2.2 displays dataset organization including input

variables, response variables, and observations.

Note that the levels represent the projected values of number of selections and will be analyzed

as continuous variables rather than classes. The values of the gaze metrics, RTDs, and transition

probabilities increase due to the attention of the subjects. Accordingly, it is hypothesized that the

number of selections of an adjective for a hull model is related to the increase in the gaze metric

values. In other words, if a design parameter is related to an adjective choice, the value of the

relevant metric for the design parameter is increased by the number of participants who select

the adjective. However, the amount of increase in the metrics with the number of participants

is not expected to be detected clearly, because each additional selection does not guarantee the

increase in gaze metrics due to the unstable behavior of subjects during the survey. To clarify the

relation between the increase in the gaze metric values and the number of selections, higher jumps

between the number of selections are provided projecting them into levels. Therefore, the increase

in selections will be easily related to the increase in the metric values and the noises caused by

ineffective selections are filtered.

Table 2.2: Dataset for regression analysis.

As it is mentioned before, each participant was given only two tasks out of four and some

data were discarded due to calibration problems. Thus, the number of participants, namely the
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maximum possible number of selections, are different for each ETAS set, so the assignment of

levels for the adjective choices must be done accordingly. Therefore, instead of using the number

of selections directly, selection indexes are calculated dividing them by the number of subjects

participating in the relevant set. The 540 index values (54 hulls and 10 adjectives) are plotted

against the hull ID using the histogram type graph to examine their distributions (Fig. 2.19). The

histogram is first was divided into two parts by a median value of 0.46, and it is seen that the

upper portion is randomly distributed. The stable part is then divided into two equal intervals. As

a consequence, the levels are assigned using the following conditions:

• Level 1: index < 0.23

• Level 2: 0.23 ≤ index < 0.46

• Level 3: index ≥ 0.46

Figure 2.19: Histogram of selection index values versus hull ID and red threshold lines for levels.

Generalized linear model (GLM)

In this study, GLM [68] is used for the regression analysis. In addition, as the response variables

(adjective levels) are non-negative continuous variables and limited between 1 and 3, which makes

the distribution skewed since the bounds cannot be exceeded, the Gamma family [73] is found

suitable for the data distribution after comparing and testing with the other families (e.g., Gaussian,

Poisson, and Quasi). The general formula of GLM is as follows:

g(E(yi)) = β0 + β1x1 + ... + βkxk (2.4)
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where E(yi) is estimation of the response value (adjective choices) corresponding to A1, A2, ..., A10;

x1....xk are independent input variables (gaze metrics) corresponding to S Rm
1 , S Be

, S Bm
, S R4 , S R5 ,

S Rm
0 , S FP, S H, S a1 , S De

2 , S Dm
2 , p(Le), and p(Lm); β0 is intercept, and β1....βk are the coefficients for

the estimation. Inverse link function (g(µ) = µ−1) [73] is also used to relate the mean (µ) of the

Gamma distribution and the linear estimation model.

Best-subset selection

In general, a regression deviation consists of two parts:

regression deviation = explained variance + residuals (2.5)

where variances are explained by the input variables (gaze metrics) and the residuals are re-

maining random variances that cannot be explained by the existing variables of the regression

model. It is clear that our target is to increase the explained variances as much as possible, to

decrease the residuals. To do this, the input variables, which are unrelated to the relevant response

variable, need to be discarded from the regression model. This can be achieved via the subset

selection method [69]. One way to select the best subsets is calculating the RSS via Equation 2.6

for each of the possible regression models, namely each X̂ of the power set of X, 2X. After that,

the first m best subsets, which have the least RSS values, are found using an exhaustive search

algorithm proposed by Morgan and Tatar [74]. RSS is computed for each X̂ of 2X as follows:

RS S =

n∑
i=0

(yi − ŷi)2 (2.6)

where n is the number of observations (54, the number of hull designs), yi is the observed

response value, and ŷi represents the estimated value via the subset X̂. {X̂1, X̂2, ..., X̂m} can be

found having the smallest RSS values. Then, {X̂1, X̂2, ..., X̂m} are further analyzed according to one

of the quality measures, i.e., AIC [70] value:

AIC = −2 × ln(L) + 2k (2.7)

for each X̂ε{X̂1, X̂2, ..., X̂m}. L is the value of maximized likelihood function L(ψ; x), which is

calculated by setting its derivative (with respect to unknown parameter ψ) to zero and solving the

derived equation for ψ; k is the cardinality of X̂. Since the AIC value is a measure of information

loss, the model with the smallest AIC is the best. On the other hand, in case the AIC values are

close to each other, another model close to the best model (having AIC value close to smallest)
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can be selected if it explains more portion of variance of the data. D2 (Equation 2.8a) [72] is a

measure of the explained variance for a GLM model, which is also equivalent to the well-known

measure R2. The value of D2 increases with the number of variables involved in the regression

model and causes unfair comparison between the models having different numbers of variables.

Therefore, the regression models are compared via adjusted D2 (Equation 2.8b) [72] to eliminate

this problem.

D2 = 1 −
Residual Deviance

Null Deviance
(2.8a)

adjusted D2 = 1 −
(n − 1)
(n − k)

× [1 − D2] (2.8b)

where Residual Deviance refers to the residuals of the model including all model variables (β0+

β1x1 + ... + βkxk) and Null Deviance is the residual of the intercept-only model (β0). Additionally,

the AIC values of the models are compared via the following equation [71]:

wi j =
Li

L j
× (k j − ki) (2.9)

where wi j is the ratio of Akaike weights [75], which indicates how much ith model X̂i is better

in terms of minimization of the information loss over jth model X̂ j.

To sum up, the subset selection starts with finding several best-subsets, which have the least

RSS values. AIC is then used to find the best among them, which has the smallest AIC value.

The best subsets having AIC values close to the best model are then checked to see if their D2

values are higher than those of the best model without dramatically raising wi j, which is computed

between the best model (which has minimum AIC value) and the inquired model. In the end, if

the increase in D2 value is not sufficient to afford the increase in wi j, the search is concluded.

Performance results of determined regression models

To conduct the GLM analysis supporting the subset selection method based on RSS and AIC

values, the best-subset GLM (bestglm) package is used proposed by McLeod and Xu [76] through

R-Studio software [77]. Table 2.3 shows the summary of the results for the determined model

for each adjective in matrix form, where the first column represents the adjective labels. The

second column indicates MAPE, which is computed via Equation 2.10 to obtain the error between

the estimated (ŷi) and observed (yi) response values scaling from 0 to 1, where 0 refers to 100%

prediction accuracy.
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MAPE =
1
n

n∑
i=0

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (2.10)

Next, four columns represent correlation analysis results, which are measured with 95% con-

fidence level, between the relevant adjective response of the data and fitted values of the models,

where cor represents correlation value, CIL and CIU are lower and upper bounds of the confidence

interval, and p-value is significance level of the correlation. Furthermore, GLM assumes that all

input variables are independent. This assumption is checked via a multicollinearity test where

the generalized variance inflation factor (GVIF) [78] values are used for the judgment. The last

row shows that the computed GVIF values for each variable are less than 3, which indicates low

correlation between the input variables, namely their independency [79].

The results show that the ratio of explained variances (D2), which can be interpreted in per-

centile multiplying them by 100, ranges between 16% and 45%. Since the human perception is a

complicated issue, the collected data for social research are usually very noisy and the D2 values

even under 50% are acceptable in the context of the research [80]. Also note that, the regression

analysis in this study is conducted to show the existence of correlation between gaze data and pref-

erences, but not for the prediction purposes. Moreover, the computed MAPE values range between

0.16 and 0.39, which shows relatively good results to claim the existence of the relations consider-

ing the noisy data. Correlation values, where “ − 1” indicates perfect negative correlation and “0”

depicts no correlation while “1” represents perfect positive correlation between the models and

the responses, are found between 0.37 and 0.67, which refer to positive correlations between the

gaze data and the preferences. The correlations for the A4, A5, and A10 models are weak compared

to the others, but still show the existence of positive relations. The p−values also indicate that

all correlations are significant since all of them are lower than the 0.05 value (according to 95%

confidence level).

The overall performance results of the determined regression models validate the existence of

relations between human preferences (adjective choices) and subject attention (gaze data). The

parameters of the found regression models (determined X̂ subsets for each adjective) are also

represented in Table 2.3 with black color, which are highly related to the relevant adjectives in

terms of attention. For example, the regression model variables of A1 are Rm
1 ,R4, FP,H,De

2,D
m
2

and Lm. A designer can use these significant parameters in the first stage to get the hull model

according to the desired adjective by modifying an existing hull model as they are attractive and

have impact on the adjective choices.

Note that the unattractive parameters determined in Sections 2.5.1.1 and 2.5.1.2 were also
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Table 2.3: Regression analysis results and the related parameters with the relevant adjectives rep-

resented by black cells.

analyzed via plots against residuals of the regression models (Fig. 2.20) in order to check if

the parameter can explain some portion of the residual part of the model. However, the residual

plots show that the parameters have still totally random distributions, which means they are not

explanatory, or the randomness is broken locally but the performance measures are not raised to

be involved in the regression models. For example, the plot for Re
0 and β is relatively symmetric

according to the line y = 0, so it is not possible to estimate the residuals via them. On the other

hand, in the plot of Re
1, some residuals can be estimated by the increase in this parameter. However,

after adding the parameter to the relevant model, the adjusted D2 value decreases and MAPE

value increases. Based on this, it can be said that the previous determination of the unattractive

parameters is valid since they failed to explain the variances.

Figure 2.20: Residual plots of some of the unattractive parameters for regression model of strong

adjective (A1).
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Further analysis

Pearson’s product moment correlation [81] is also used between time spent on each adjective (each

adjective was surrounded by an AOI separately) and the adjective levels (Fig. 2.19). Such analysis

can provide following information:

• How comfortable the subjects are with the adjectives: If the subjects spend more time

on an adjective even it is not selected, negative correlation is expected, which means that

the adjective is difficult to match with the hulls or somehow confusing, which makes the

subjects think more about it. So, in that case, it can be concluded that it needs to be replaced

with a better adjective in the future surveys.

• Consistency of gaze data and selection: Reliability of the responses can be confirmed

in cases where positive correlations are observed. However, negative correlations do not

indicate bad reliability.

Table 2.4: Correlation results for adjectives based on durations

Correlation Value p < .05 t

strong 0.37 0.0059 2.8694

speedy 0.23 0.0905 1.7248

comfortable 0.42 0.0014 3.3837

aesthetic 0.32 0.0202 2.3966

usual 0.41 0.0023 3.2022

aggressive 0.44 0.0010 3.4863

compact 0.43 0.0013 3.4115

modern 0.25 0.0708 1.8447

charismatic 0.47 0.0003 3.8656

cute 0.08 0.5898 0.5425

Table 2.4 shows the correlation results for the adjectives. According to the results, the corre-

lations for speedy, modern, and cute are found insignificant as the p-values are higher than 0.05,

which means the gaze data for them are random relative to the selections. Therefore, nothing can

be claimed about them. On the other hand, remaining adjectives have weak positive correlations

(0.32-0.47). Considering the noisy data that make the correlations weak, it still validates that the

adjectives are perceived by the subjects and they find the adjectives suitable to match with the

hulls.
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Several correlation analyses are also conducted based on the time to first fixation (TTFF) met-

ric, which indicate the time spent before the subjects’ first attention for a target AOI. The analyses

are made for the adjective selections to inquire their relations with each adjective’s AOIs and with

local design parameters. However, significant correlations are not found, which means that sub-

jects do not have specific parameter targets related to the adjectives to search in the first place, but

they examine the designs until finding meaningful reasons for their choices. On the other hand, the

relation between TTFF and RTD metrics of local design parameters is also checked and find in-

terestingly significant correlations for R4 (cor = 0.40; p ≤ 0.05; t = 3.1890), Rm
0 (cor = 0.33; p ≤

0.05; t = 2.5578), FP (cor = 0.52; p ≤ 0.05; t = 4.3646) and a1 (cor = 0.28; p ≤ 0.05; t = 2.0723)

(see Table 2.5). The existence of the correlation between RTD and TTFF for the parameters is also

represented by graphs in Fig. 2.21 with relation equations and R2 values (represents how much

variance is covered by the equation). Although it cannot be claimed that they are more significant

than the other parameters based on these results, it is apparent that they require special attention

in the design process.

Table 2.5: Correlation values between TTFF and RTD metrics of local design parameters

Correlation Value p < .05 t

Rm
1 -0.19 0.1678 -1.3989

R4 0.40 0.0024 3.1890

R5 0.00 0.9864 0.0171

Rm
0 0.33 0.0135 2.5578

FP 0.52 0.0001 4.3646

H -0.19 0.1757 -1.3729

a1 0.28 0.0432 2.0723

De
2 -0.10 0.4850 -0.7034

Dm
2 0.17 0.2315 1.2106

Be -0.15 0.2756 -1.1020

Bm -0.01 0.9149 -0.1074
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Figure 2.21: TTFF versus RTD of R4,Rm
0 , FP and a1 .
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2.6 Conclusion and Discussion

In this study, the adjective-based design concept is used, where hulls are parameterized and the

adjectives are related to the designs at the parametric level. This provides relatively more detailed

examination compared to the studies conducted with appearance features of designs, which are

obtained by a combination of varied values of relevant design parameters. As the design elements

are correlated to the targets at the parametric level, such approach provides flexibility and more

control on sampling designs that meet the targets, specifically after the outcomes of this percep-

tion study are integrated into the design concept. However, working with the design parameters

requires more attention as different dimension values and various combinations of the design pa-

rameters can be interpreted differently by subjects. Therefore, the Taguchi experimental method

is also used to sample models, where each design parameter value is shown to be able to cover

various features equivalently in the same number of times.

TLS is first proposed, which is used to classify the global design parameters based on search

behavior of the subjects. One output of TLS is a template, which conveys the required information

about AOI definitions based on search areas of the relevant design parameters. An ETAS method

was then utilized to collect gaze data, which were evaluated via RTD and transition probability

metrics. The evaluations were conducted in three parts: rough examination (section based and

view based), fine examination (design parameters), and finally, regression analysis. Rough exam-

inations indicated the most attractive section as middle-body section and view as side view. Such

results can be used by designers to decrease labor times working only on the attractive areas. Fine

examinations were first used to determine attractive parameters in four levels for local parameters

and priorities for the global parameters interpreting a box plot. The determined attractive parame-

ters for fine examination results were then used in the regression analysis to validate that attractive

parameters are really useful for the adjective-based design concept.

GLM with the best-subset selection method was used to find regression models for each ad-

jective depending on some performance measures (D2 to measure explained variance ratio and

MAPE for accuracy check) and best-subset X̂ determination criteria (RSS and AIC). In addition,

correlation analyses were conducted to confirm and measure levels of relations. The results proved

the existence of correlation between gaze data and adjective choices, even though the performance

measures were relatively low compared to the predictive models. However, our aim was not to

get predictive models but to show the relations. Social science is complicated to study, since

the human understanding is difficult to estimate and this problem is getting even more complex

with the unclear and varied targets. 54 yacht hulls are studied, which are generated by 26 design
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parameters, and developed 26 targets from our viewpoint; however, there are even more targets

for the subjects as a hull design has many more design details that can be detected. Moreover,

they are asked to match 10 adjectives with 54 hulls having all the design details, which makes

the problem even harder, since the decision-making mechanism is also developed and changed by

seeing various hull models and unstable decisions (noises) are observed besides the useful data.

Moreover, they are not designers, who change their decision criteria for no tangible reasons. This

has also been proved by Kukkonen [54], where gaze data correlations with the goals were very

low for the subjects who were not designers, and very high for designers. After all of this, de-

spite the weakness of the performance measures compared to the predictive models, significant

results are found that validate the attractiveness of the design parameters determined by the gaze

metrics. Specifically, the related design parameters with an adjective, which are the variables of

a relevant subset, should have priorities to get desired adjective-based design among all attractive

design parameters. Designers can generate many solutions only using these parameters, preferably

combining with a generative design software, without making redundant modifications by the ir-

relevant parameters, which may cause problems for engineering design, cost and time. In other

words, this study lets designers to narrow down the space of solutions getting rid of infeasible sub

regions in terms of aesthetic. After that, the product-related requirements can be considered for

filtering out the undesired design options. In this study, a yacht hull was used, in which the hy-

drodynamic and hydrostatic performances are crucial. As such performance properties in addition

to aesthetic properties are important, the aesthetics are handled first to be then combined with a

performance-based system, which is considered as future work.
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Chapter 3

A Generative Sampling System for Profile

Designs with Shape Constraints and User

Evaluation
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3.1 Introduction

A sampling approach is proposed for deriving profiles of an existing product design using profile

similarities and primitive shapes, such as circles, triangles, and ellipses, as constraints. A com-

mon approach for a designer is to generate or collect sketches to create a design space. The design

space can be explored to retrieve the samples directly based on requirements or crossing over them

to obtain new design variations. In this stage, the proposed method can be used to derive a large

number of samples from a design image to work with. First, the user clicks on the image to define

each design feature as cubic Bézier curve segment. The primitive shapes are then constructed for

each segment and used as constraints, such that adjacent triangles are not allowed to be flipped

onto each other to prevent loop and cusp at the segments, sides of internal points respect to the

circle diameter is used to prevent inflections, and control points are not allowed to cross the ellipse

boundary to limit their excessive modifications. Moreover, the design similarities are computed

using the triangles based on their anisotropy ratios, which are measures of the deformation be-

tween corresponding triangles and which are used to ensure that they are highly related samples in

the example design. Modified Hausdorff distances are also computed between the control points

of the samples. There is diversity provided that these distances are large enough. A customized

sampling algorithm that fulfills our constraints is executed several times synchronously via paral-

lel programming to create a design space. Finally, the user-specified number of distinct samples is

retrieved from the design space by minimizing the Audze-Eglais potential energy. We provide an

additional tool with which the users can adjust the weights for each control point to guide the sam-

pling process and record the chosen samples. The main goal of this study is to generate samples,

which are diverse but still convey the key features of the supplied shape. Using the settings related

to similarity, a designer can derive samples sticking to their initial idea to explore its better version

or more creative results that they could not imagine on their own. The proposed system offers

simplicity automating every step that must be done by the user. Thus even inexperienced users

without needing any programming skill can vary shapes defined using a set of points in a matter of

seconds, and experienced users can even focus on specific shape features weighting them without

dealing any constraint or rule definition requirements. Besides, the proposed system allows partial

modifications, in which users can select a specific region to modify while the rest of the shape

maintains the original appearance and functionality of the exemplary design.
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3.1.1 Generative Design Methods

Although the definition of generative design can vary depending on the context, it can be general-

ized as generating new design samples using computer power. Various generative design methods

[82, 83, 84, 85, 86] are evolved to support design process with different design requirements such

as those from manufacturing, conceptual design, architecture, engineering and construction that

raised throughout the years.

This study focuses on the design aesthetics at the conceptual stage, which has become an

essential part of product design. To realize a target design, the designers must first generate or

collect various design samples mostly as 2D sketches and images, which are used to develop their

ideas. However, such ideas are not easily shaped and each of them may require serious amount of

time. In addition, the solutions generated by designers are often limited due to the inadequacy of

their imagination, preconceptions and personal preferences.

Generative systems are useful solutions to be able to generate many unbiased design sam-

ples efficiently. Various generative design methods for aesthetic design have been proposed so

far. Notwithstanding, we found these methods are not usually preferred by designers, who find

sketching on paper easier than meeting the requirements of generative methods. In order to help

designers, their requirements must be well understood. In the next subsection we discuss such

requirements which we take into consideration in our approach proposed in this chapter.

3.1.2 Requirements for Generative Aesthetic Design Methods

In this subsection, we discuss requirements considered in this study for generative design methods.

In generative design methods, an object to be designed is usually represented by a set of design

elements, and variant samples are generated by changing these design elements. A region that

covers the set of all such samples is called the design space of the object, and it also includes

creative samples beyond the designers’ imagination.

The space is first limited to the samples by defining the lower and upper bounds of each dimen-

sion [30]. Then, a sampling process is applied to obtain feasible samples from the bounded space.

This is achieved by searching the samples that satisfy the physical constraints and using a prede-

fined objective criterion integrated into the search algorithm. Ultimately, the designers choose one

sample as the solution and use it directly as the concept or as an idea to shape their concepts.

However, owing to the difficulty in creating such a constrained and bounded design space,

designers cannot make full use of generative design methods to achieve aesthetic results. Thus,

generative methods often use a very limited number of design parameters to search for new ex-
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ternal appearance. The searches use basic features such as length, height and width [87, 31],

which require additional work and designer expertise to define. It is required to minimize user

involvement automatizing the parameterization, constraining and bounding operations as much as

possible to allow for more parameter definitions.

Besides, currently available methods are mostly problem specific, so users need to define new

rules by themselves, or even need to manipulate source codes of sampling algorithms to make

them appropriate for their different problems [88]. This is not convenient for those who want to

use generative system to create quick ideas for conceptual design stage. Thus it is also required that

the generative system should be able to handle various type of designs with the built in problem

solutions.

In addition, designers often have to deal with the limitation of “design to fit an existing environ-

ment” (DFEE) [37] in which the product must fit to the existing facility to avoid extra equipment

and assembly costs, in case of upgrading a given design. If new designs are obtained over the

existing models to get new outer appearance, larger modifications are refrained due to the limita-

tion of existing production lines. Therefore, the system should also allow the modifications to be

within specific portions of the product keeping the rest as possible as original, but with remarkable

aesthetic impacts to achieve both generating new appearances and maintaining suitability to the

existing environment. However, most of the current studies are aimed to explore only novel shapes

ignoring this requirement.

3.1.3 Objectives

In this study, the main goal is to develop a tool to generate various distinct samples from a single

exemplar to extend the design options in an easy way while remaining faithful to the exemplar. In

our tool, the design of a target product is represented by its profile curve, which is defined using

composite Bézier curves with control points. Each of the control points is a design parameter

and can be used to generate new samples. Figure 3.1 shows car design samples generated by

manipulating the control points of a profile curve.

For a given original profile Dorg we can generate various sample profiles D by changing the

control points of Dorg. All of these samples form a design space centered at Dorg. Our aim is

to obtain a set of such samples Ω = {D j} in the design space. However, simply changing the

control points does not always produce good samples. For instance, a sample profile may look

very different from Dorg, or two samples may be very similar. Further, we also wish to avoid

curves with inflections, cusps or loops. Our objective is to generate a sample set Ω such that:
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• It consists of distinct samples covering a sufficient range of the design space (diversity).

• The samples are not far from Dorg (similarity).

• It does not include inappropriate samples (regularity).

Our method is designed to be general enough to deal with various product profiles by using

a composite Bézier curve to define them. Besides, the constraints which are needed to generate

desired samples are represented also by using the control points of the curve. Therefore, the

constraints are not dependent on any specific profiles. They are geometrical constraints on circles,

triangles and ellipses defined by the control points.

Figure 3.1: Generated samples from an exemplar. The modified part is indicated by red.

3.1.4 Overview of the Proposed Concept

Figure 3.2 draws a general method flow, which is explained step by step as follows:

• Model definition

Initially, a profile curve is defined with user-provided points as composite Bézier curve

(Section 3.3.1) (Fig. 3.2a).

• Condition Extraction and Constraint Construction

In the stage depicted by Fig. 3.2b, the profile curve is first analyzed to determine the con-

tinuity conditions between the curve segments of the composite curve. These are used as
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rules when generating new profiles. Moreover, the segments of the composite curve are cat-

egorized based on the degree of Bézier curve (Section 3.3.2) and the concavity properties,

which are also maintained in all samples generated for each segment.

The constraints are geometrically constructed as circles, triangles and ellipses using the con-

trol points of the profile curve (Section 3.4.1). Finally, user-provided similarity thresholds

are used to define a region in the design space, in which the target samples are possibly

existing.

• Sample Generation

Figure 3.2c indicates the final stage where samples are produced modifying the exemplar

profile (Section 3.3.3). The extracted conditions are used here to preserve basic shape fea-

tures maintaining the relevant curve degree and continuity conditions between segments in

the generated samples. Afterward, two types of constraints are checked by the sampling

algorithm to accept or reject a generated sample: regularity (Section 3.4.1.2) and similarity

(Section 3.4.1.3). These constraints are converted into energy functions and the sampling

algorithm (Section 3.4.2) iterates the modification process to reduce total energy (Section

3.4.1.4) and find the samples without failures within the defined region in the space. To

increase efficiency while a larger design space is created, the algorithm is synchronously

executed using parallel programming. After that, users are able to retrieve samples as many

as they need from the pool. This can be done manually by the user simply picking de-

sired ones or using a provided button to retrieve diverse samples from the pool based on the

Audze-Eglais potential energy [38].

To handle these steps, we also developed a tool in which everything is automatically handled,

but users only provide points and adjust the sampling settings such as similarity thresholds based

on their needs. Thus, our tool is flexible and can easily be used by inexperienced users. Starting

with a sketch of the product profile, it generates new designs. The system has the following

features:

• The constraints can be visualized.

• Specific parts of a design can be chosen for modification, and the rest of the design is kept

as close as possible to the original.

• Control points can be dragged to allow the user to implement the final touches.
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Figure 3.2: (a) The profile curve is defined as composite Bézier curve with user-provided points

over the input shape. (b) Constraints are constructed using the curve’s control points and condi-

tions that are continuities at the joints of the segments, curve degrees, and concavity properties are

extracted. (c) Samples are produced by modifying the profile curve and the sampling algorithm

finds the ones within the bounds specified by user-provided similarity thresholds satisfying the

conditions and constraints.

The system has an easy-to-use interface. A user can guide the sampling process by adjusting

the modification weights for each control point. Moreover, the user can select or reject samples

and modify samples before accepting them.

The control points of the selected samples are finally exported to a computer aided design

(CAD) tool for further embodiment of the design.

This chapter is organized as follows. Related works are described and compared with the

proposed method in Section 3.2. Section 3.3 shows how a product profile is represented and

introduces our method for generating new profile samples. The sampling algorithm and constraints

are explained in Section 3.4. The proposed tool is introduced in Section 4.1, and Section 3.5 shows

the results of this study.
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3.2 Related Works

In this section, generative design methods from different fields are first introduced, and their dis-

advantages for the conceptual design stage comparing to our approach are then explained.

3.2.1 Generative Design

3.2.1.1 Parametric modeling

As a basic definition, generative design means using computer power to generate many design

alternatives, which can be hard to imagine or create manually. In parametric modeling genera-

tive studies, a single parameterized CAD model is treated as input in general, and new samples

are generated changing the defined parameter within bounds and under constraints. Gunpinar

and Gunpinar [30] proposed a generative sampling approach that works with defined constraints.

Khan and Gunpinar [87] suggested a teaching-learning-based optimization method for product

sampling. First, unconstrained space is used to learn user preferences, and the constrained space is

then created using the preferences as constraints. Krish [31] proposed a generative CAD tool that

explores creative designs by randomly sampling from a bounded design space. His tool can com-

municate with external CAD systems to create 3D models. An approximate filter is used to create

distinctive designs and to narrow down the number of presented solutions. This tool also relies on

the external CAD tool systems to filter out infeasible designs. Khan and Awan [32] introduced a

space-filling generative design method to create novel samples from a given CAD model.

3.2.1.2 Generative design for manufacturing

Performance driven studies also use generative design concept for manufacturing. Autodesk [89]

proposed a generative design tool whose input parameters are the manufacturing methods, cost,

size, weight, and material to explore design variations that are presented to the user, who can select

a solution based on criteria such as low cost, light-weight, and high durability. Other tools with

similar inputs can also generate and optimize designs for additive manufacturing [90, 91]. Kazi et

al. [92] proposed a tool called DreamSketch in which users are able to sketch their models and the

system generates optimal 3D models modifying the design variables. Users can also check model

properties such as volume, weight, and stress while they are navigating the results. However, since

the generated 3D models are topologically optimized, generating a single solution takes a long

time specifically to reach high-quality results even with fewer design variables. Dhokia et al. [93]

proposed a method for additive manufacturing that was inspired by termite behavior to generate
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structurally optimized and production-ready designs. Shea et al. [94] also incorporated graph-

based geometrical modeling in a design system based on structural optimization called eifForm. It

produces designs using performance criteria so that the models generated are ready for designers

to use.

3.2.1.3 Shape grammar

A special design language called a shape grammar was introduced by Stiny [85]. It aids designers

when they are generating unique designs. Pugliese and Cagan [95] introduced a 2D shape grammar

for generating motorcycles and demonstrated it by encoding a brand-new model. Orsborn et al.

[96] used a shape grammar to generate new vehicle designs by crossing different models based on

defined rules and parametric ranges. Hsiao et al. [97] merged a semantic approach with a shape

grammar. Agarwall and Cagan [98] proposed a shape grammar for coffee makers. Agarwall et

al. [99] presented a way to involve designers in the early stages, by selecting rules based on the

production costs of coffee makers.

3.2.1.4 Evolutionary computation

Evolutionary computation has been proposed to solve complicated computational problems, such

as for subjective human decisions in product design. The method is usually an iterative process

that runs until terminated by the user or predetermined criteria are met. Xu et al. [100] developed

a crossover operator to generate new 3D models synthesizing parts of a set of designs and used

preference scores of users to evaluate fitness of the evolved models. Lee et al. [101] proposed

a shape-grammar-based methodology in which generative methods are used together with evolu-

tionary computation to produce creative design solutions. O’Neill et al. [102] suggested using a

grammar with evolutionary computation, and they demonstrated their method by designing a shel-

ter. Kielarova et al. [103] proposed an interactive generative system in which a shape grammar

is combined with an evolutionary algorithm. They demonstrated the methodology by designing

jewelry. Guoyan et al. [104] combined a constraint-based design methodology with an interactive

genetic algorithm to explore optimal solutions. Yannou et al. [105] proposed a sketching tool to

create car designs using genetic algorithms. In their study, users interactively evaluate an existing

set of car shapes. This genetic approach considers the user preferences for the models, and the

output designs are often surprising. They used similarity tests to show that the output designs are

innovative. Cluzel et al. [106] developed a similar approach. Kelly et al. [107] used an interactive

genetic methodology with an initial design population to aid designers in being creative.
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3.2.1.5 Data-driven methods

This section covers some generative methods whose common point is their need for data, which

can be collection of user preferences, set of designs, or both together. Unlike the evolutionary

computation, the researches under this title usually do not require collecting user preferences in-

teractively to evolve a fitness function, but the data is often collected with offline procedures.

Chen and Fuge [108] proposed a data-driven sampling method, in which given data set of ini-

tial designs with implicit constraints are used to exploit the decision boundary exploring feasible

regions in an unbounded space efficiently. Kalogerakis et al. [33] suggested a probabilistic shape

synthesis method in which the components of various shapes are combined to generate new mod-

els. In the study of Xie et al. [109], users are asked to provide 2D strokes of parts that will be

retrieved from existing data set and combined to suggest new models. Averkiou et al. [110] pro-

posed a method where collection of design models are parameterized to synthesize new designs.

Alhashim et al.[111] introduced a generative algorithm that uses a topology-varying 3D shape

blending method to produce new samples.

There are numerous semantic based methods where designs are represented with adjectives

to make them more understandable even by non-experts. Furthermore, since the adjectives are

usually learned using crowd sources, such approaches are considered being human-oriented and

makes easier the expression of target designs for users. Chaudhuri et al. [23] studied on an

assembly-based model where attribute strength of each assembly part for different categories (e.g.

head, tail and leg of a creature) is determined using crowd-sourcing. The parts are then assembled

in real time based on user preferences about the adjectives with their strength using an easy to

use interface. Yumer et al. [112] proposed also a semantic based design exploration, but in this

study a given shape is deformed to produce a new one rather than combining existing assembly

parts. They also used crowd-sourcing to learn and relate adjectives with design geometries. The

relations are used to create a continues color-coded 2D map, where the colors refer to attribute

strength. Users are provided an interface to obtain samples that meet available attributes with

desired strength. Dang et al. [113] also collected preference scores to learn probability density

functions for shape grammars and used them to generate new models that reflect the preferences

as much as possible.

Neural networks are utilized in various generative concepts such as indoor scene synthesizing

[114], generation of styling images varying human pose, texture and shape for fashion [115, 116],

and interactive procedural model sketching for urban modeling [117]. Li et al. [118] offered an

encoder for 3D shapes using neural networks, and generated new designs synthesizing the encoded
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shape structures. Zhu et al. [119] also made use of an auto-encoder network to creatively compose

shapes. Sinha et al. [120] used deep neural networks to reconstruct 3D shape surface from a single

image and generate samples utilizing interpolation between two surfaces. Nash and Williams

[121] suggested a variational auto-encoder method, in which 3D shape samples are synthesized

from part-segmented input models. Tan et al. [34] also took advantage of variational encoders

to generate new deformable models from 3D homogeneous mesh models. Huang et al. [122]

suggested a probabilistic generative model that is learned via deep neural network. Liu et al. [123]

utilized generative adversarial network (GAN) to produce 3D voxel based realistic models and

they supported their system with a simple interface, which allows interactive editing a voxel grid.

Smith and Meger [124] also used GAN with variational auto-encoders to reconstruct 3D shapes

from 2D images and interpolation to produce models between different objects.

3.2.2 Advantages of the Proposed Method over the Existing Methods

This section briefly summarizes disadvantages of the generative studies to be used for the con-

ceptual design comparing with our proposal. All generative methods explained so far have great

contributions and are milestones for the generative design field. However, each of them is devel-

oped to solve different problems than ours or have drawbacks that detract designers from using

them. This study aimed to remove barriers between designers and generative design concept so

that anyone without needing any experience about CAD systems or statistical knowledge can pro-

duce conceptual designs using computer power. Moreover, designer expertise related to constraint

definitions, and collecting or creating samples to be an initial data set are also not needed to use

our tool. On the other hand, our claim is not the ability of generating samples that the others can-

not create. We believe that all can generate various useful samples that inspire users under optimal

conditions according to their requirements. However, the question is how much effort and devo-

tion can be expected from the users, specifically those who are responsible to create conceptual

designs before the model prototyping and gaining functionality to the final 3D models.

Our system requires only an image of an example product and some mouse clicks. The product

profile is first defined with composite Bézier curves, whose segments are then constrained auto-

matically and the control points are the design parameters. A user does not need considerable

design skills to get started, even for complex shapes. The input exemplar can be prepared in the

design system, and the design space can be controlled with clear settings, such as similarity, which

can be understood by anyone. Moreover, modifications can be weighted to ensure that the designs

created include or exclude desired shape features. The tool can populate a drawn 2D sketch, but
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it is also easily able to convert a revolvable or closed 2D sketch into 3D owing to communication

with the Rhino/Grasshopper [125]. The provided tool is also able to visualize constraints and vari-

ations, user evaluation and repetitively execute the sampling algorithm to reach a large number of

samples in seconds.

The parametric modeling studies (Section 3.2.1.1) are the most relevant to our study among

others in terms of objectives and sampling methods. However, they need a parameterized model,

which is not always available and hard to create for non-experts. The parameters and their interac-

tions also need to be bounded and constrained, which require expertise and higher labor than our

approach. Such initialization is a heavy burden for the users and hard to expect from them in the

early stages of the modeling, during which conceptual ideas are developed. Also, these require-

ments impair their usability for complex shapes since the number of parameters that need to be

defined, bounded and constrained also increases. In our method, design parameters are selected

automatically from the provided points, constraint definitions are not expected from the users and

bounding as simple as defining only two similarity thresholds.

The generative design for manufacturing methods (Section 3.2.1.2) often use heavy optimiza-

tion processes that take a long time without given explicit control for aesthetics but with the basic

functionality such as durability and weight. Despite the possibility of finding an aesthetically

plausible design among many generated samples, it is getting harder if the input shape is complex

as an even longer time required to create a sample set that includes both functional and aesthetic

designs. The design aesthetic is still mostly obtained with pencil and paper to realize their ideas

as quickly as possible without deeply concerning about the functions. Thus, our method is more

applicable to the conceptual design stage, in which many design ideas are quickly generated to

inspire designers. Nevertheless, in the conceptual design stage, the functionality can be consid-

ered with the best possible estimations made by experienced designers observing existing shapes’

functionality. Therefore, we believe that it would be helpful for the experts if some functionality

can be queried from the strokes of a sketch to narrow down the design space. We keep it as a future

work where users will be able to define and use functional constraints to make their decisions.

The usage of shape grammars (Section 3.2.1.3) for product design requires a considerable

amount of expertise and time for creating a sample set and defining grammars with their rules, if

they are not already available. Although the aesthetics can be controlled during the design stage,

they are still somewhat limited in terms of variations since the grammars are usually extracted

from man-made shapes.

Evolutionary computational methods (Section 3.2.1.4) are useful to generate samples in the

direction of user preferences; however, these methods suffer from human fatigue problems despite
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several attempts to reduce it [126, 127, 128]. Furthermore, to produce targeted design suggestions,

the parent population should include sufficient design variations, which may not always be easily

provided. Such necessity about the creation of the population makes this method less practical

comparing with our method, which needs only a single input. However, since aesthetic is a sub-

jective phenomenon, considering user evaluations during the sampling is sometimes important to

meet the targets. Hence, we provide an additional interface in our tool in order to integrate user

preferences with the sampling procedures (see Figure 4.6). This interface creates a population with

the desired number of samples allowing users to adjust the modifications by weighting the control

points, evaluate the generated samples to accept or reject, and collect scores to further analyze with

an statistical software. However, the current version of the tool cannot evolve a fitness function

like the evolutionary methods; thus, the weights must be assigned manually or found statistically

based on the evaluations using an external tool.

Data-driven methods (Section 3.2.1.5) are widely preferred due to satisfactory results and usu-

ally come up with easy to use interfaces for non-experts to achieve their targets. However, their

main drawback is that a new problem needs a new data set, which is not always available or easy

to create due to specific input requirements such as being part-based [23, 118, 121] or deformable

mesh models [34]. In addition, due to dependency on the diversity of the input models, the out-

put variations are directly affected such that the generated samples may not meet the targets. The

attribute-based researches [23, 112] are also very limited because they depend on the small number

of subjective attributes that are learned via crowd-sourcing. If the available data, such as attributes

and input models, is not enough to solve a user’s problem, the preparation of new suitable data

requires some knowledge about data collection and interpretation. Such requirements to set up a

problem detract those who already refuse using CAD environments to speed up their work.

As an overview, the introduced methods usually require an initial design set with suitable

models and variations, grammar definition, or crowd-sourcing. Although all of them can define a

design space, such requirements could not be expected from the users in practice. On the other

hand, the parametric modeling requires only a single model like our method; nonetheless, the de-

sign space definition is difficult due to all the bounding and constraining definitions. We eliminate

these disadvantages proposing a method, in which a single 2D image is enough and the design

space definition is remarkably simpler as we handle the constraining and bounding operations us-

ing automatically defined fan polygons and similarity measures. Thanks to such easiness of the

method, the input can be replaced or modified quickly in case the outcomes do not satisfy the

users. Overall, our method is quick in generating product designs for the conceptual design stage

comparing to the all other works starting from the input preparation to the obtaining results.
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3.3 Profile Curve Definition

In this research, a product design is represented by a profile curve, as shown in Fig. 3.3a. The

profile curve is defined by a composite curve D composed of n cubic Bézier curve segments

si, i = 0, . . . , n − 1. We assume that each segment of the composite Bézier curve is without inflec-

tion points. Each segment i consists of four control points represented by Γi =
{
Pi

0,Q
i
0,Q

i
1, P

i
1

}
,

where Pi
0 and Pi

1 are the two end points and Qi
0 and Qi

1 are internal control points. The seg-

ments satisfy C0 continuity, that is, Pi
1 = Pi+1

0 for i = 0, . . . , n − 2. Therefore, n is determined as

“(N − 1)/3” if N is the number of input points and there should be at least four points for each

shape feature to define a segment on it. A design system is developed to make this step easier

(Section 4.1.1). Note that when the composite curve is closed, Pn−1
1 = P0

0 must also be satisfied.

We use the following notation throughout this chapter:

• AB is a segment with two ends A and B. In general, P0P1 . . . PN−1 is a polygon with N points

P0 to PN−1.

•
−−→
AB is a vector from A to B. ‖

−−→
AB‖ is the norm of

−−→
AB.

• AB is an infinite line passing through A and B.

3.3.1 Original Profile

The original profile curve Dorg is generated using our own curve editing system (Figure 4.2), or it

can be imported from a CAD system.

Dorg is used as a reference. Various profile curves are generated by modifying its control

points. There are nominally 4n control points
(
Pi

0,Q
i
0,Q

i
1, P

i
1

)
, i = 0, . . . , n − 1, but the end points

of adjacent segments si and si+1 are equivalent, that is, Pi
1 is equivalent to Pi+1

0 . A new profile curve

is obtained by manipulating the 3n control points
(
Qi

0,Q
i
1, P

i
1

)
of segments si, i = 0, . . . , n − 1 as

shown in Fig. 3.3b.

3.3.2 Reducing the Number of Control Points

We constrain some of the internal control points to be dependent on others. In other words, these

dependent internal control points can be computed from other control points. In this way, we can

reduce the number of control points, which reduces the degrees of freedom of the design space.
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(a)
(b)

Figure 3.3: (a) Profile curve of a glass example (b) si and its control points.

In the following sub sections, the Bézier curve segments are classified into three types based

on the tangency condition with the adjacent segment. For each of the types, the dependency of

some of the internal control points is defined. These are the conditions of the proposed approach,

where the generated samples are derived from an exemplar and should carry the shape features

of it to preserve initial ideas in some level that might be related to aesthetics and functionality.

Therefore, if a segment is defined as linear, or either a corner or continuity is existing between

adjacent segments, such conditions are extracted from the defined profile curve in the beginning

and maintained throughout the sampling process while a new sample is generated.

3.3.2.1 Linear segments

If the four control points, Pi
0,Q

i
0,Q

i
1 and Pi

1, are collinear (Fig. 3.4a), the segment si is a linear

segment. The internal control points Qi
0 and Qi

1 are computed using the following equations from

the two end control points Pi
0 and Pi

1.

Qi
0 = (2 × Pi

0 + Pi
1)/3 (3.1a)

Qi
1 = (Pi

0 + 2 × Pi
1)/3 (3.1b)

A linear segment has one independent control point Pi
1. The two internal control points Qi

0 and

Qi
1, are dependent on it. Note that Pi

0 is a control point of the previous segment si−1.

3.3.2.2 Cubic segment

We check the tangent continuity between adjacent segments si and si+1. If
#       »

Qi
1Pi

1 //
#               »

Pi+1
0 Qi+1

0 , they

are tangent continuous at their junction and the end point Pi
1 is said to be a tangent; otherwise, it
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is a corner.

If the end control point Pi
1 is a tangent, as shown in Fig. 3.4b, the segment si is cubic. This

tangency must be retained by each modified sample. For a cubic segment, the internal control

point Qi
1 satisfies the C1 condition:

Qi
1 = Pi

1 +
#           »

Qi+1
0 Pi

1 (3.2a)

Thus, a cubic segment has two independent control points, Qi
0 and Pi

1.

G1 and C1 continuities are often used for styling [28, 129] and considered enough in this thesis

for the aesthetic design represented by simple forms. The higher continuities require higher degree

curves to work with, thus the problem is getting more complicated. Furthermore, since G1 has an

extra freedom at one direction of the relevant point, C1 is selected over G1 to further simplify the

problem. Such simplifications are made for users, to let them guide the sampling processes by

weight modifications that will be explained later. Complicated requirements in profile definition

would make difficult to follow sampling procedures for them.

3.3.2.3 Quadratic segment

If the end control point Pi
1 is a corner as shown in Fig. 3.4c, si is quadratic. For such a segment,

since we do not have to consider the tangency with the adjacent segments, we do not need both

internal control points, and we can merge them to form a new internal control point Qi
2, which is

computed from Pi
0,Q

i
0,Q

i
1 and Pi

1.

Qi
2 is an independent control point of si. Thus, si has two independent control points, Qi

2 and

Pi
1. The internal control points Qi

0 and Qi
1 are computed using

Qi
0 =

(
2 × Qi

2 + Pi
0

)
/3 (3.3a)

Qi
1 =

(
2 × Qi

2 + Pi
1

)
/3 (3.3b)

3.3.3 Generating a New Profile

New profile samples are generated by modifying Dorg. When the original profile Dorg is modified

to be a sample profile Dnew, each segment ŝi of Dorg is modified to become si of Dnew. We write

the control points of ŝi as Γ̂i =
{
P̂i

0, Q̂
i
0, Q̂

i
1, P̂

i
1

}
.
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(a)

(b) (c)

Figure 3.4: (a) Linear segment where internal points are always on the line. (b) si is a cubic

segment if tangent at Pi
1. (c) si is a quadratic segment if Pi

1 is a corner.

The modification is achieved via a two-pass algorithm. In the first pass, Dorg is modified by

adding a displacement ∆(w) to all of the independent control points. The dependent control points

are then computed in the second pass to generate a new profile Dnew. ∆(w) is defined as follows:

∆(w) = diag(wx,wy)−→r (3.4)

where −→r is a random vector with length dmin ≤
∥∥∥−→r ∥∥∥ < dmax. Note that the randomness is provided

for each point separately. That is, the length and direction of −→r are different for each independent

point. Therefore, all independent control points in Γ̂i are modified as

Γi
j = Γ̂i

j + ∆(w) ×
l

lmax
(3.5)

where l is the length of si computed as Euclidean distance between Pi
0 and Pi

1, and lmax is the max-

imum length among all segments. See also Fig. 3.5 for illustration of the segment modification.

The weights w = (wx,wy) are assigned for each independent control point separately by the

user:

• to fix some control points by assigning wx = wy = 0, and

• to adjust the modification amount.

By default, the weights wx and wy are set to 1. The usage of weights are explained in Chapter 4

under Section 4.1.2.2 in detail, but for this chapter default value is used for all weights.

Note that, if the profile curve is closed, since Pn−1
1 = P0

0 needs to be satisfied, Pn−1
1 is a depen-

dent control point and is not modified.

Users are also allowed to partially modify the curve by selecting a range [s f irst, slast], where

s f irst is the first segment and slast is the last segment of a sequence that will be modified. Note

that, s f irst does not necessarily refer to segment s0 unless the user sets the first as 0 (first = 0); and

slast is not same with sn−1, unless user sets it as last = n − 1. The segments out of the range are

preserved to maintain the original appearance of the product profile at these unmodified parts.
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Figure 3.5: Modification of a segment using Equation 3.5 where Γ̂i =
{
P̂i

0, Q̂
i
0, Q̂

i
1, P̂

i
1

}
, Γi ={

Pi
0,Q

i
0,Q

i
1, P

i
1

}
and ∆(w) is random for both Q̂i

0 and P̂i
1.
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3.4 Sampling Methods

3.4.1 Constraints and Similarity

As mentioned in Section 3.1.3, to generate a sample set with diversity, similarity, and regularity,

heuristic constraints on various features of the sample profiles are used. The design space includes

both feasible and infeasible regions [108] where a feasible region covers the samples that satisfy

the objectives. Similarity and violations of each segment constraint are converted to constraint en-

ergy computed as a difference between two states of a sample that are the state at that moment and

the closest state that does not have the relevant failure. For example, if a sample is not dissimilar

enough that does not satisfy the diversity objective, similarity energy is computed by subtracting

the sample’s current similarity value from a threshold that is minimum required dissimilarity value

between the samples (see Equation 3.7). The sum of all energies is assumed as a distance of the

sample to the closest feasible region in the design space. Thus, the total energy is then used to

determine if a new sample Dnew can be accepted as a member of the set of samples Ω.

We tested various kinds of features, and proposed those introduced in this section.

To capture the characteristic of a Bézier curve segment, we introduce a fan polygon defined by

the four control points of Γi and one extra point. Γi is used to evaluate the distance between two

segments.

In the following, several functions are defined to compute constraint energies with the fan

polygon and the control points.

We use the ramp function R(x) ≡ max(x, 0) to define constraint energies.

3.4.1.1 Fan polygon and fan triangles

We first construct a circle for the segment si (Fig. 3.9a). The diameter Pi
0Pi

1 is between the two

end control points of si. The top point of si, Pi
T , is defined as the midpoint of the semi circle on

the opposite side to Qi
0 and Qi

1 (see Fig. 3.9b). If Qi
0 and Qi

1 are on the diameter, either side of the

diameter line for Pi
T has equal distance to these internal points. Therefore, any side can be selected

since it does not make any difference for the segment, and it is selected to be a point outside of the

profile for clear visualization. A fan polygon is an octagon Pi
T Pi

0Qi
0Qi

1Pi
1. It is also a composition

of three fan triangles FT i =
(
T i

1,T
i
2,T

i
3

)
where T i

1 = Pi
T Pi

0Qi
0, T i

2 = Pi
T Qi

0Qi
1 and T i

3 = Pi
T Qi

1Pi
1.

Figure 3.11 depicts some profiles overlaid with circles and fan triangles.
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3.4.1.2 Segment constraint energies

This section explains how to constrain segments to get rid of the cusp, loop, and inflection from

the generated profiles using fan polygons. In addition, an ellipse with user-specified size is used to

limit the movement area of the internal points so that user has control on the modifications before

the samples are generated. Finally, one more constraint is defined for symmetric shapes to prevent

overlapping of symmetric parts onto each other.

Note that, the constraints are defined to prevent possible failures considering various product

profiles. That is to say, some introduced constraints may not be required for some profiles. For

example, inflection must be prevented for a yacht hull profile (see Fig. 3.7); on the other hand, the

inflection may not need to be discarded for bottle or glass profiles. Similarly, the ellipse boundary

constraint is defined to let users control modifications of internal points for the case they need

to be further bounded. In this chapter we define and use all constraints together in the sampling

algorithm as default to show how they work; however, border constraint energy and inverting

energy defined below could be disabled through software proposed in Chapter 4.

Flipping Constraint Energy This energy is used to penalize the flipping of control points to

prevent a curve segment from being twisted (see Fig. 3.6). We compute the (signed) apex

angles αi
1, αi

2 and αi
3 at Pi

T for fan triangles T i
1, T i

2 and T i
3 for each si. They are measured in

the clockwise direction (Fig. 3.9c).

A negative angle indicates that a control point has flipped. Therefore, if an apex angle is

negative, we take its absolute value as its energy. By summing the absolute values of the

negative angles for all of the curve segments of D, the flipping constraint energy (Eflip) of D

is obtained as

Eflip =

n−1∑
i=0

(
Cflip(αi

1) + Cflip(αi
2) + Cflip(αi

3)
)

where Cflip(α) = R(−α).

Inverting Constraint Energy To constrain each segment ŝi of Dorg from inverting its convex di-

rection (Fig. 3.7), we use a penalty on the internal control points to ensure that they are on

the same side (right or left) of the diameter P̂i
0P̂i

1 (Fig. 3.9b). For instance, if Q̂i
0 is on the

right-hand side of the diameter δ̂ ≡ P̂i
0P̂i

1 in ŝi and moves to Qi
0 in si on the left-hand side

of the diameter δ ≡ Pi
0Pi

1, then it violates the constraint. We use the cross product χδ(P) of
−−−→
Pi

0Pi
1 and

−−→
Pi

0P to judge the side of P with respect to the line δ where χδ(P) < 0 refers one

side while χδ(P) > 0 refers to another side, and χδ(P) = 0 when P is on the line. Then, the
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Figure 3.6: Flipping of triangles causes cusp (on the left) and loop (on the right).

condition that Q̂i
0 and Qi

0 are on the same side can be written as sgn(χδ̂(Q̂i
0)) = sgn(χδ(Qi

0)),

where sgn is the signum function. Therefore, the inverting constraint energy (Einvert) is

Einvert =

n−1∑
i=0

(
Cinvert(Qi

0) + Cinvert(Qi
1)
)

where Cinvert(P) = R (−σ |χδ(P)|) for an arbitrary point P with σ = sgn
(
χδ̂(P̂)χδ(P)

)
.

Figure 3.7: Unwanted undulations occur if the inverting constraint is violated.

Border Constraint Energy To avoid large modifications to the control points, we define for each

segment si a half elliptic region from Pi
0 to Pi

1 opposite to Pi
T (Fig. 3.9d) in which the internal

control points Qi
0 and Qi

1 must exist. This region has the same center as the segment’s circle

defined above. Its minor axis is the circle’s radius R, and its major axis is ψR, where ψ can
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be set by the user. We set the default value of ψ to be the golden ratio (1.618), since it mostly

gives aesthetically pleasant proportions. The energy for violating this constraint Eborder is:

Eborder =

n−1∑
i=0

(
Cborder(Qi

0, f i) + Cborder(Qi
1, f i)

)
where Cborder is defined with the equation of the relevant ellipse f (P)−1 = 0 for an arbitrary

point P. That is Cborder(P, f ) = R ( f (P) − 1).

Symmetry-Axis Constraint Energy If the profile curve is mirror symmetric with respect to a

center line, only one half of the shape is drawn, modified, and then mirrored to get the

whole. The profile (the control polygon) should not intersect the center line (Fig. 3.8). The

energy for the control points crossing the center line γ is

Esym =

n−1∑
i=0

(
Csym(Pi

0) + Csym(Qi
0) + Csym(Qi

1) + Csym(Pi
1)
)

where Csym(P) = R
(
−σ

∣∣∣χγ(P)
∣∣∣) with σ = sgn

(
χγ̂(P̂)χγ(P)

)
for an arbitrary point P. If the

profile is not symmetric, the constraint is not checked, and Esym = 0.

Figure 3.8: Symmetric shape failure due to intersection of some control points with the symmetry

axis.

3.4.1.3 Shape similarity energy

Shape similarities are constrained using anisotropy and distances between the control points of the

profiles. Anisotropy is used to ensure that the generated samples are not too dissimilar than the
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(a) (b)
(c) (d)

Figure 3.9: (a) Construction of a fan polygon for si with a circle and three fan triangles. (b) The

top point (Pi
T ) side is the midpoint of the arc on the side opposite to Qi

0 and Qi
1. (c) Fan triangle

vectors and the angles between them. (d) Internal points Qi
0 and Qi

1 must remain in the blue region.

exemplar, while the control points’ distance is used to check if the generated profile is different

from all other samples in the set to ensure the diversity.

In the following subsections, the mathematical backgrounds of the similarity metrics are first

explained and implemented on some profiles, their effectiveness is then discussed.

Anisotropy Ratio Energy The shape similarity of segments ŝi of Dorg and si of Dnew is evaluated

by the distortion of fan triangles T i
1,T

i
2 and T i

3 using the Bookstein shape coordinate method

[35]. We first compute a landmark L for each of the fan triangles T i
1,T

i
2 and T i

3. Denote a

fan triangle as ABC, where C corresponds to the top point Pi
T and A and B correspond to

the control points. A is mapped to A′(0, 0) in the xy coordinate system, and B is mapped

to B′(1, 0), which gives a unit baseline on the x-axis. By applying an affine transformation

which maps A to A′ and B to B′, C is mapped to a landmark L whose coordinates are given

by

L =
1

‖
−−→
AB‖

=


−−→
AB ·

−−→
AC

−−→
AC ·

−−→
AB⊥

 ,
where · denotes the inner product and

−−→
AB⊥ is the vector obtained by rotating

−−→
AB by 90◦

counterclockwise.

The landmarks are used to evaluate the distortion of the fan triangles using log-anisotropy

[35, 130]. As shown in Fig. 3.12, landmark L̂ is computed for a fan triangle T̂ of ŝi and a

landmark L for a fan triangle T of si corresponding to T̂ . The affine transformation mapping

a triangle AL̂B to a triangle ALB is easily obtained. The log-anisotropy ρ of (AL̂B, ALB) is



74

Figure 3.10: Irregular samples generated without applying the segment constraints.

defined as the logarithm of the ratio of the semi-major (β1) and semi-minor (β2) axes of an

ellipse that is obtained as a result of the applied affine transformation to an imaginary unit

circle that is assumed in T̂ . ρ = log(β1/β2)) is called the log-anisotropy.

The similarity of segments ŝi and si is defined using the log-anisotropies ρi
1, ρi

2 and ρi
3,

which are defined for (T̂ i
1,T

i
1), (T̂ i

2,T
i
2) and (T̂ i

3,T
i
3) respectively. Therefore, the total shape

similarity based on anisotropy is

ρtotal =

n−1∑
i=0

(
ρi

1 + ρi
2 + ρi

3

)
We constrain the total ρtotal over the whole D to be smaller than a threshold θsim. Thus, the

energy for the shape similarity constraint Esim for Dnew is defined by

Esim = R
(
ρtotal − θsim

)
Similarity of shape using anisotropy ratio (ρtotal)

Figure 3.13 compares some simple shapes with the same number of segments to show the

detection ability of the shape similarity ρtotal. This measure simply compares corresponding

segments by removing all transition and rotation differences between the shapes. When such
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Figure 3.11: Various shapes are visualized via circles and triangles.

Figure 3.12: Strain deformation between triangles represented via single point.

transformations are applied to linear segments, they will look similar; therefore, line-line

correspondences decrease ρtotal. On the other hand, a curve-line correspondence increases

ρtotal, since they are still different after a translation and scaling. For example, compare the

rectangular shape with 5, which consists of four straight lines, with the other shapes in Fig.

3.13. ρtotal decreases from left to right as the corresponding segments become straight lines.

Modified Hausdorff Distance Modified Hausdorff distance [36] between two point sets is com-

puted as:

mhd(A, B) = max (d(A, B), d(B, A))
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Figure 3.13: Pairwise similarity test for object detection using the ρtotal.

where d(A, B) is:

d(A, B) =
1

NA

∑
a∈A

minb∈B‖a − b‖

where NA is the number of points in A and ‖a − b‖ is Euclidean distance between a and b.

We compute mhd
(
Γi,Γ′i

)
for the two segments si and s′i. The modified Hausdorff distance

between two profiles D and D′ represented by MHD(D,D′), which is the sum of the mhds

of all of the segments si ∈ D and s′i ∈ D′.

MHD(D,D′) =

n−1∑
i=0

mhd
(
Γi,Γ′i

)
(3.6)

Using MHD(D,D′), the energy EMHD for Dnew is

EMHD = CMHD(Dnew,Dorg) +

K∑
j=1

CMHD(Dnew,D j) (3.7)

where CMHD(D1,D2) = R (θMHD −MHD(D1,D2)) for any two profiles D1 and D2. This is

used to define a constraint such that the distance from Dorg and each of the K samples in

Ω = {D j} must be higher than a threshold θMHD, as described in the next section. This

ensures that Dnew is different enough for diversity.

Since our proposed algorithm starts sampling from an exemplar profile Dorg, the samples

generated tend to be close to the exemplar. The MHD is used to ensure that variations
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exceed the threshold θMHD. The impact of different θMHD values is illustrated on the glass,

car and ewer profiles shown in Fig. 3.14. The generated profiles overlap at a fixed point

indicated in red. In this figure, it can be seen from the scattered profiles that a higher θMHD

increases the diversity.

Effectiveness of similarity constraints

Both MHD and ρtotal relate to the similarity of the profiles. Six different samples of the glass

profile are compared in Fig. 3.15. The larger values indicate more dissimilar designs, which are

estimated by both similarity metrics accurately respect to each other. Note that the values are not

used to compare the similarity between the samples, since the metrics are computed only against

the exemplar.

As it is already discussed, the higher θMHD lead more modifications on the original profile

(Fig. 3.14). Fig. 3.16 shows the impact of θsim on two sample sets, which are generated under

same conditions. According to this figure, using same θMHD value, which pushes the algorithm

to modify the profiles more, lower anisotropy value successfully prevents dissimilar shapes than

desired. Therefore, Fig. 3.14 and Fig. 3.16 show that MHD and ρtotal together are able to define

a sampling region in the design space where the generated samples’ similarity is controlled by

user input thresholds. In other words, the similarity constraints let users explore similar or very

dissimilar design alternatives based on their needs.

Figure 3.14: Impact of the θMHD on sample variations is illustrated with car, glass and ewer profile.

3.4.1.4 Total energy

All the defined energy functions are independent of each other; therefore, they have equal impor-

tance and must be taken care of individually. However, their sum total energy is used in sampling

algorithm to monitor their convergence easily. In summary, the total constraining energy that needs

to be minimized before adding Dnew to Ω is
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Figure 3.15: Similarity comparison with ρtotal and MHD(D,Dorg), where larger values refer to

more dissimilar profiles than the Dorg.

Figure 3.16: Impact of θsim on two sample sets generated using same θMHD value.

Etotal = EMHD + Esim + Eflip + Einvert + Eborder + Esym (3.8)

3.4.2 Sampling Algorithm

Our sampling algorithm is based on iterated local search [131] and customized to work with the

proposed constraining methods, such that Dnew must satisfy Etotal = 0.

It is composed of two parts: (1) a perturbation is used to generate large modifications of the

original shape (Dorg) to get a Dnew, and (2) the local search shifts Dnew within its neighborhood

via relatively smaller modifications until it satisfies the stopping criterion Etotal = 0. Both the

perturbation and local search use the same modification procedure to generate and move Dnew

(Section 3.3.3). The only difference between the perturbation and the local search is the definition

of dmin and dmax for −→r , which are set to allow larger modifications by the perturbation than the

local search, that is, [dlocal
min , d

local
max ] ⊂ [dperturbation

min , dperturbation
max ]. The algorithm uses the following
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procedure:

1. Let Ω = ∅.

2. Repeat steps 3 − 7 until M samples have been added to Ω or the maximum allowed time is

consumed (time constraint).

3. Repeat step 4 until Etotal < θenergy, where θenergy is a threshold set to increase the probability

of meeting the stopping criteria Etotal = 0 in the local search.

4. Generate Dnew by modifying the independent control points of Dorg for the segments in

[s f irst, slast] using Equation 3.5 with [dperturbation
min , dperturbation

max ].

5. Repeat step 6 until Etotal = 0. If it is not finished after η iterations, finish the local search

and go to step 2.

6. Move each independent point within segments [s f irst, slast] of Dnew using Equation 3.5, with

[dlocal
min , d

local
max ].

7. If Etotal = 0, add Dnew to the sample list Ω.

Figure 3.17 illustrates the computation of EMHD during the sampling procedure as it is for-

mulated in Equation 3.7. According to this figure, if Dnew is the (K + 1)th generated design

((K + 1) ≤ M), its MHD is compared the Dorg and with each D1,D2, . . . ,DK that are added to

Ω after K iterations. In other words, the algorithm ensures that the current Dnew is far enough from

Dorg and all samples that have been generated until then. In this way, the computation time is

decreased significantly since Dnew can readily be added to the list and it does not need to be moved

again to maintain the distance between samples. This procedure is called chain sampling.

However, the performance of this sampling method in terms of time and quality is very much

reduced if poor solutions are generated. These result in a broken chain as they affect the following

samples in the chain. Therefore, instead of generating all samples in a single chain, φ small chains

are synchronously started via parallel programming, where each chain produces sub-sample-lists

Ωn (n = 1, . . . , φ) such that Ωn ∈ Ω. Moreover, to stop the chain when a poor sample slows

down the sampling, there is a user-defined time constraint. Thus, Ωn ∈ Ω may have different sizes.

Finally, N distinct samples are retrieved from Ω (Ω =
⋃φ

n=1 Ωn) by minimizing the Audze-Eglais

energy (Equation 3.9) [38]:

EAE(Lk) =

N−1∑
p=1

N∑
q=p+1

1∑n−1
i=0

∑4
j=1 ‖Γ̄

i
p, j − Γ̄i

q, j‖
2

(3.9)
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where Γ̄i =
{
P̄i

0, Q̄
i
0, Q̄

i
1, P̄

i
1

}
is the set of scaled control points of si, and p and q are the sample

indexes in the list of N randomly selected samples Lk (Lk ⊆ Ω). If EAE(Lk) > EAE(Lk+1), then Lk+1

is better than Lk, where Lk+1 is obtained by randomly changing one sample in Lk. This procedure

is repeated with various combinations until EAE does not get any better. This satisfies the space-

filling condition and ensures that the samples are distinct. For more detail and the application to

product sampling, refer to [30, 87, 38].

Figure 3.17: Illustration of the fourth and fifth iterations. The MHD (Equation 3.7) of the current

sample (Dnew) is compared with those of the original sample (Dorg), and the samples generated so

far (D1, ...,K). Ωk grows with the number of iterations.
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3.5 Results

3.5.1 Computation Time

The computation times needed to generate samples very much depend on the number of samples

in a single chain and the number of parallel threads. Each thread executes a single-chain sampling

procedure. An essential requirement for smooth sampling is finding a balance among the size

of the search area (determined by dperturbation
min and dperturbation

max ), the number of independent control

points within [s f irst, slast], θsim as an upper bound, and θMHD as a lower bound. For example, more

creativity requires higher θMHD values, which need more independent control points and higher θsim

values. Note that complex shapes with more degrees of freedom, a wider perturbation range, and

larger θMHD, such as a car profile, will take longer than a simple profile, such as a glass. However,

the computation time can be restricted using the time constraint, as explained in Section 3.4.2.

Once all of the settings are defined optimally after several trials, single chain can often pro-

duce up to 16 samples in milliseconds. Even when pushing limits of the sampling settings the

computation time is usually less than 15s.

3.5.2 Sampling

In the algorithm described in Section 3.4.2, φ sub-sample-lists Ωn (n = 1, . . . , φ) are synchronously

generated to create the sample list Ω. A random subset Lk ⊆ Ω with N samples is then searched

to minimize the potential energy EAE. Ω is not changed to allow that procedure to be used many

times until the user is satisfied with the presented samples. Moreover, parallel computation can

be used to start that procedure from different random subsets Lk and the subset with lowest EAE is

shown to the user. Although this is not the goal of this study, such approach can be used to catch

sufficient space filling property of the sample set when it matters for the user.

3.5.2.1 Variation of samples

The sampling algorithm is used to generate diverse and regular samples from an exemplar profile

while the similarity with Dorg is preserved to some degree. Figure 3.18 shows 8 samples D j

( j = 1, . . . , 8) for each ewer, glass and car profiles that are generated by this algorithm. This figure

also depicts MHD values of D j, where the MHD(D,Dorg) indicates the amount of modification of

Dorg, and MHD(D,Dclosest) indicates the distance of each sample from the closest other sample in

the set. MHD(D,Dclosest) values are determined by a pairwise MHD computation. All samples D j

exceed the defined threshold θMHD, which means that the desired amount of variation is achieved
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and all designs are sufficiently far from each other and Dorg. A greater variation between the

generated samples can be obtained with a higher θMHD, as illustrated in Fig. 3.14.

Furthermore, it can be observed from the Fig. 3.18 that all produced samples are regular be-

cause they satisfy the constraints, and owing to this regularity, 3D models can be successfully

generated. Also note that, generally, the sets obtained in the first execution are not the final collec-

tion of samples. When the sampling settings are tuned to be optimal for a relevant sample, failed

designs are rarely observed. A known constraining problem is also discussed in Section 3.5.3.

Figure 3.20 shows a ceramic vase profile defined using the tool. It was exported to the

Grasshopper environment (Fig. 4.11) to get the 3D models. The texture from the original vase

was simply extracted and applied to the 3D models to give a similar appearance. Once the 3D

model is complete, the user can analyze the cost, appropriate manufacturing method, weight and

so on. A first-year undergraduate student with no CAD experience obtained a set of vase samples

in less than 5 minutes, running all of these processes by following simple instructions.

Figures 4.23 to 4.25 in Chapter 4 display more examples of using the proposed system.

3.5.2.2 Analysis of sample diversity

To represent a profile D in the design space, a feature vector composed of 3m landmarks L (Section

3.4.1.3) is used, where m is the number of modified segments and 3 is the number of fan triangles

for each segment. This feature is a visual aid, and the details are out of the scope of this thesis,

but one can find the details of the usage of landmarks to represent shapes in other studies [35,

130, 132]. The feature vectors can be plotted using a dimensional reduction method such as the

non-linear technique t-SNE [133], which can visualize the samples in a 2D plot. The samples are

placed according to probabilistic based similarities while preserving the spatial information in the

underlying data.

Figure 3.19 shows three sets of car profile samples represented by feature vectors with their

t-SNE plots. These plots are created using Accord.NET Framework [134]. Each set consists of

20 final samples D1, ...,20 retrieved from three different design spaces (three sample lists, Ω). The

sample list of the set at top Ωtop is created with θMHD = 10, and for Ωmiddle, θMHD = 40, and the rest

of the settings are the same. Ωtop and Ωmiddle originally had 400 samples, that are the collection of

Ωn (n = 1, . . . , φ) where each of Ωn includes 8 samples φ is set as 50. The Ωbottom is created with

the LHS samples used in the tuning interface (Section 4.1.2.1). Since θMHD is not applied when

creating LHS samples, instead, to obtain Ωbottom, we set d (Section 4.1.2.1) to the dperturbation
max value

used to create Ωtop and Ωmiddle, which is 15. The Ωbottom was created with 5000 samples, which was
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reduced to 357 after the constraints (Section 3.4.1.2) were applied. The generation times of Ωtop,

Ωmiddle and Ωbottom were 9.7s, 15s and 47ms in order. The 20 final samples D1, ...,20 were retrieved

by minimizing the potential energy EAE, which was 0.406, 0.212, and 0.515 in the same order.

A lower EAE indicates that the space-filling ratio is higher and the set has more diversity, which

can be also observed in the plots. Of the three sets, the middle has the lowest EAE value, thus the

sample diversity is better than the other sets. Furthermore, these are typical results from a first

execution. This shows that, using our algorithm with a high θMHD, more uniform sets are obtained

than with a lower θMHD or constrained LHS samples.

Moreover, we defined ranges for MHD(D,Dclosest). The samples in a plot are then colored

based on these levels, to make it easier for the user to interpret the minimum distances of the

samples D j.
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Figure 3.18: Ewer, glass and car profiles are sampled and converted into 3D. MHD(D,Dorg) and

MHD(D,Dclosest) are separated by semi-colons.
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Figure 3.19: Three sets of car profile samples are displayed with Audze-Eglais potential energy

EAE, MHD threshold θMHD and, t, the time spent in creating sample lists Ωtop, Ωmiddle and Ωbottom.

The t-SNE plots are also displayed next to each set.

Figure 3.20: 3D samples derived from a ceramic vase with applied texture.
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3.5.3 Limitations

In this section some limitations of the proposed approach will be discussed.

3.5.3.1 Similarity evaluation with anisotropy ratio and MHD

ρtotal is a coarse similarity measure since it is computed after an affine transformation has been

applied to the shapes, which removes all scaling and transition differences between the samples.

Therefore, it is not useful to measure the variation between samples D j from the same product

family since the ρtotal values are often very close, which makes it hard to control the variation

using them. However, it is good in object detection for distinguishing between unrelated designs

efficiently. Therefore, we use it to prevent excessive dissimilarities. For a successful application

of this measure in object detection, see Felzenszwalb [135].

On the other hand, the MHD is sensitive to all modifications made to the independent control

points without requiring any transformations. Thus, we use it to ensure that the control points have

been modified enough to give distinct design samples. However, its sensitivity can produce large

values, that can make comparing the similarity between samples intractable. Therefore, setting the

upper bound with MHD to prevent the excessive dissimilarity is more difficult than ρtotal.

To sum up, to overcome the deficiencies of each other, ρtotal is used as insurance to prevent

generating abnormal samples while the creativity is pushed by MHD.

3.5.3.2 Constraint problems

We observed that, if a segment is too small, the impact of modifications on this segment can be

extreme. One example is given in Fig. 3.21. The red point on the left unmodified car is moved up

after the modification, which produces overlapping segments. This type of problem can actually

easily be handled by checking all possible intersections in the shape; however, this drastically

increases the computational time. Instead, the user can handle this problem in a few different

ways. The first solution is just to reject the failed sample or to correct the point by dragging it

manually. As a second option, the weight w (Section 3.3.3) of the relevant control point (the red

point in Fig. 3.21) can be reduced or set to zero to prevent this failure. The final option is to put

the problematic segment outside the modification range
[
s f irst, slast

]
.
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Figure 3.21: Example of a constraint failure.
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3.6 Conclusion

Our approach minimizes the effort needed to generate designs, since it requires nothing but control

points of cubic Bézier curves. The fan polygons constructed are used in constraints with two main

benefits. First, they can be constructed for any cubic Bézier curve; thus, they are applicable to

any shape profile created by these cubics. Second, they can be visualized through the interface

for the samples generated; therefore, the user can clearly see the defined constraints, which makes

the sampling system more manageable. Furthermore, similarity measures ρtotal and MHD are

also defined to bound the design space, rather than the conventional method of bounding each

parameter for a shape. The search area can easily be extended by changing parameters such as

dperturbation
max . The samples generated from a 2D profile defined as a composite Bézier curve can be

then converted to 3D in an external CAD environment.

The earlier mentioned limitations of the proposed method have been scheduled to be fixed in

future studies. Moreover, the applicability of the constraining approach can be extended to handle

various unexpected circumstances, such as the problem illustrated in Fig. 3.21.

The proposed method can create a large set of samples using the proposed Generative Design

Software (Chapter 4), and a subset with desired number of samples are retrieved from the set by

minimizing the potential energy or selected by the user one by one. In addition to that, Sample

Management Interface (Section 4.1.3) can be used to narrow down the generated samples based

on user-defined geometric constraints.
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Chapter 4

Generative Design Software
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4.1 Generative Design Software

The software has been developed using the C# programming language. It has several features to

make sampling easy, even for inexperienced users. A typical user flow of the proposed system is

given in Fig. 4.1. According to this flow:

• Profile points are provided by mouse clicks on a selected image or importing from an exter-

nal source using Design System Interface.

• Settings are tuned by observing their impacts on the test samples through Tuning Interface.

• Samples are generated

– interactively evaluating them one by one and weighting modifications to guide sam-

pling via User Evaluation Interface,

– or all at a time using Sampling Interface.

• The generated samples are exported for 3D visualization,

– but the samples can also be narrowed down through Sample Management Interface

defining a geometric constraint before exporting for 3D visualization.

Note that, the system records the initial points and its relevant settings for each design. There-

fore, once the points are defined in the system, th samples can be generated directly opening the

“Sampling Interface” without needing any other step. The following sections explain these main

interfaces in detail.

Figure 4.1: A typical user flow of the proposed generative system.
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4.1.1 Design System Interface

Figure 4.2 displays the interface that is used to get the control points of a composite Bézier curve

of a profile Dorg. The user can also import control points from a CAD system. The user can import

an image of a product and define a curve by clicking control points with a mouse, as shown in this

figure. The interface allows dragging and delete operations on points. The fan polygon, which

consists of fan triangles FT i, and the circles are constructed for each segment simultaneously as

the points are supplied. This system also checks for constraint violations and displays them by

turning the relevant part red, with a warning text block indicating how many constraining rules

have been violated.

Furthermore, each of characteristic lines, which are shape details other than the outer profile of

the design, can also be provided as composite Bézier curve (Fig. 4.2). These lines are not modified

to generate new samples but transformed to be fitted for new generated outer profiles to enhance

sketches visually. The transformations are made for each characteristic line maintaining relative

positions of them to the closest control points of the outer profile curve.

In addition, Fig. 4.3 shows an additional interface that supports multiple profile definition

at the same time for up to 3 different views. This interface is designed for surfaces generated

via sweep and network surface methods of Rhino software. The sweep method that we used

to generate surface requires two profile curves and at least one cross-section, while the network

surface requires at least three profile curves and at least one cross-section. Thus, the top left canvas

is reserved for a view with two rails and bottom left one is reserved for another view with two rails

so that user can define up to 4 profile curves using them. On the other hand, the top right canvas is

reserved for cross-sections. The cross-sections are automatically placed between the profile curve

segments’ corresponding start and end points in order, so the maximum number of cross-section

slots depend on the profile curve with minimum number of segments. Note that, the cross-section

is used to control interior shape of the design; thus, a new cross-section is only needed at a point

that shape starts to change. If the interior shape is constant, a single cross-section definition will

be enough. Finally, the interface have mirroring operations such that it is enough to draw one of

the profile curves (e.g. bottom left in Fig. 4.3) if they are symmetrical or half of a profile curve

(e.g. top right in Fig. 4.3) if it is symmetrical.

4.1.2 User-Guided Sampling Interfaces

The main sampling process is done automatically by the algorithm described in Section 3.4.2.

However, to generate samples that fully reflect the user’s intention, we provide a user-guided
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Figure 4.2: The interface for adding points to the outer profile and characteristic lines.

sampling interface. The sampling module consists of three interfaces:

1. Tuning interface

2. User evaluation sampling interface

3. Generative design interface.

4.1.2.1 Tuning interface

In our sampling algorithm, there are some thresholds and parameters. An interactive tuning inter-

face is provided to make setting them easy (Fig. 4.4). First many samples are tentatively generated

using a simple method, the space-filling algorithm of Latin hypercube sampling (LHS) [136]. This

algorithm manipulates the independent control points of Dorg by Equation 3.5 to get Dnew, where
−→r = d × lhs (Equation 3.4). lhs is also manipulated by the LHS . d is a constant value that can be

changed with a slider on the tuning interface to give immediate results. On the basis of these ten-

tative samples, the user can set the sampling parameters, such as the thresholds θMHD, θsim, dlocal
min ,

dlocal
max , dperturbation

min , and dperturbation
max . For example, ρtotal and MHD(D,Dorg) can be observed for vari-

ous d values, which helps in choosing the parameters. To generate samples with good variations

quickly, optimal parameters values must be selected based on the test samples. For example, if a

design is extremely dissimilar, θsim should be chosen to exclude it. In the same way, if a sample

profile D is too similar to Dorg, then θMHD must be set higher than MHD(D,Dorg). In addition, d

affects how many modifications lie within the extreme values of the dlocal
min , dlocal

max , dperturbation
min , and

dperturbation
max and how many designs are eliminated because of constraint violations. Note that, the

sampling is hard if few designs survive after they are filtered out because of constraints.
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Figure 4.3: The interface for adding points to the multiple profiles of different views.

Moreover, the primitive shapes and biarcs are also visualized to give an insight into the designs

generated with different parameter settings.

Note that, the LHS is default for generating the test samples; however, there is also a button

to import a design table (see Fig. 4.26) that consists of coefficients to manipulate the independent

points to be used instead of the LHS . Thanks to this option, users can also create a sample set to

be suitable for controlled studies like human-oriented designs explained in Chapter 1.

Tuning interface has four areas, namely A, B, C, and D in Fig. 4.4:

• A: The test samples are visualized with circles, circle diameters, fan triangles, and ellipses.

The points of Γi and Pi
T are also marked. Each of these items can be disabled or enabled to

give a suitable visual combination. This area is mainly used to observe the constraints and

the simplified structure of the relevant design.

• B: The outer profile curve D and characteristic lines (if they are defined), of a design are

drawn in this area. Biarcs BA(si) are also displayed. Corners can be filleted.

• C: This area shows ρtotal and MHD(D,Dorg). The MHD values of each segment are also

displayed to show how much each segment has been modified. The constant d value can

be changed with a slider. User-defined weights can be applied by enabling the check box;

otherwise, all weights are set to 1 by default. There is also an option in the sampling settings

to disable the randomness in the direction of −→r to control the direction of modification. This
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is done by adding a sign to the weights. Constraints can be applied. The design can be

mirrored if symmetry is enabled and an open shape can be closed. Moreover, the colors,

opacity and the shadow effect can be set.

• D: A biarc is a curve segment comprising two arcs joined smoothly, as shown in Fig. 4.5.

We generate an approximating biarc BA(si) for the curve segment si, as proposed by Šír et

al. [137]. BA(si) is defined by two arcs: Pi
0Ji with radius and center angle (Ri

1, θ
i
1) and JiPi

1

with (Ri
2, θ

i
2). Ji is a point on the curve of si that ensures the G1 continuity between the arcs.

The radii of biarcs Ri
1,R

i
2, . . . ,R

n−1
2 are scaled to 0− 1 and plotted to display the distribution

of the curvature of D.

Figure 4.4: Tuning interface to set optimal sample settings observing their impacts on test samples.

Figure 4.5: Approximation using biarcs, which are indicated by red.
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4.1.2.2 User evaluation interface

In aesthetic design sampling, it is very important to consider the user’s subjective evaluation when

exploring creative designs. This interface allows users to evaluate generated samples interactively

and to store some while the sampling continues.

Figure 4.6 shows this interface. A single-chain sampling algorithm is used. First, M samples

are generated, and the user can evaluate on each of them. Two types of evaluation are used. The

first is a binary evaluation, in which they can accept or reject a sample, and the second is a five-

point Likert-type [138] evaluation (1 − 5 scale) which is used for simple scoring. If a design is

accepted or given the highest score, the sample is added to a list. The samples in this selected list,

including the control points, can be exported to external statistical software for further analysis.

The “update” button generates a new sample set.

The weights (w = (wx,wy)) (see Section 3.3.3), can be manually changed to guide the sampling

process observing how the generated shapes are affected by these values. The design space is

2n-dimensional in which the dimensions are n-control points and each of the design samples is

represented by a landmark in this space. Here the guiding means locating the landmark in a desired

location of the space to give desired shape features to the sample. A non-expert can intuitively

adjust the weights for relevant control points to preserve (w = 0), make modifications prominent

(w > 1) or slightly modify (0 < w < 1) relevant features. To sum up, to reach the desired location

in the design space, the landmarks must move along a correct direction, which can be adjusted

observing the reaction of the shape to the assigned weights. There is also an additional interface

displayed in Fig. 4.7 that simplifies the weight assigning for relevant points. In this interface, the

user simply clicks on a point and assigns its weights using text boxes to update relevant weights

from a database.

Furthermore, a user can edit a displayed sample slightly by dragging points (see top left design

in Fig. 4.6).

Finally, the samples in the selected list are displayed together. They can be exported to external

software and used to create CAD models.
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Figure 4.6: User evaluation interface to evaluate the generated samples interactively and assign

weights for the control points to guide the sampling process.

Figure 4.7: Weight assigning interface.
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4.1.2.3 Sampling interface

This interface shows the test samples generated in the tuning interface as well as the designs

generated by the sampling algorithm (Fig. 4.8). The settings of the sampling algorithm (Section

3.4.2), such as φ, M, and N, and the time constraint can be defined here. The sampling run time

and the energy EAE(Lk) are shown at the bottom of the interface. This interface also supports

recording generated profile samples from different views and displaying all of them together (see

Fig. 4.9). The generated profiles from different views are matched to represent each as a single

design to be then converted into the 3D models.

There is also additional option for sampling, which uses the chain algorithm in different way.

According to this, a small sample set is generated from the exemplar and a random sample is then

selected from this set to be used as an exemplar while generating another sample set (see Fig.

4.27a). The process is repeated up to the number of times the user enters. Two example sets are

displayed in appendix (Fig. 4.27b).

The profiles can be overlaid to demonstrate the variations (Fig. 3.14). Various visualizations

can be realized using combinations of primitives such as the circles, triangles and control points.

In this interface, characteristic lines are not shown due to performance issues; instead, sketch-

ing interface displayed in Fig. 4.10 is developed to add the lines if exist. In addition, the profile

curve can be projected with different angles to have a perspective view of the shape (see Fig. 4.22

for examples).
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Figure 4.8: Sampling interface to run the sampling algorithm, show the generated samples and

visualize the variations overlapping the samples onto each other using position sliders.

Figure 4.9: Multi-view module of the sampling interface.
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Figure 4.10: Sketching interface adds characteristic lines if exist to the samples displayed in sam-

pling interface.

4.1.2.4 3D visualization with external CAD connection

A generated profile D can be reconstructed in an external CAD tool using its composite Bézier

curve. Figure 4.11 shows a system that we prepared with Rhino / Grasshopper [125] to convert

profile D into 3D models. This system is quite easy to use. It requires data files of points of the ex-

emplar profile and characteristic lines, and the weights for the points if needed (Fig. 4.11a). After

that, a new sample set Ω can be generated using a sampling component that we developed using

C# to be used in Grasshopper (Fig. 4.11b), or sharing a real-time updated text file that includes

the points of D exported by our software (Fig. 4.11c). Note that, the sampling component is able

to conduct all proposed methods including the parallel sampling and sample retrieval by minimiz-

ing the potential energy without needing our software. The sampling settings can also be easily

changed within the Grasshopper system; however, to learn optimal settings easily and quickly, the

tuning interface (Fig. 4.6) might still be needed. Finally, the profile curves are constructed from

the points and converted into 3D models as NURBS surfaces by revolution, extrusion, sweep or

network surface method using another component displayed in Fig. 4.11d. In addition, the gener-

ated models can also be applied textures and assigned materials to enhance the visual experience,

as shown in Fig. 4.12.

The sweep method fits a surface through cross-sections guided by two profile curves and the
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network surface fits a surface through a curve network created by the intersections of three or four

profile curves with cross-sections. In the design system, the cross-sections are defined only to the

location where the shape is changed. The component that is used to create a 3D model also can

derive user-specified number of cross-sections to be placed with equal intervals. To do this, each

of the profile curve into equal pieces and a cross-section is copied and affine transformed to be

fitted between the corresponding end points of the pieces (see Fig. 4.13). Figures 4.28 to 4.31

show the example samples created by sweep and network surface methods.

Figure 4.11: Rhino / Grasshopper system. (a) Inputs are imported from the user directories. (b)

Samples are generated with the proposed component based on user settings (c) or imported from

a text file generated by our tool. (d) The samples are converted into 3D and displayed to the users.

Figure 4.12: The 2D profile of an ewer is varied and converted into 3D. Textures are applied to the

3D models.
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Figure 4.13: Rhino interface, in which a hull cross-section is derived user-specified number of

times and fitted along the profile curves.

4.1.3 Sample Management Interface

Sample management interface is designed to manage large number of samples generated in the

Section 4.1.2.3 by analyzing and filtering them based on a formula, which is explained in the

following section.

First, K-means clustering [139] is used to divide the generated samples into user-specified

number of clusters to make managing them easier. The very first displayed samples are the clus-

ters’ centroids and the exemplar profile Dorg that user provided. In Fig. 4.14, the centroids are

placed around the Dorg (in red). When a centroid is clicked, it goes to the center and become Dorg

and its cluster members are placed around it. The surrounding samples are colored between light

and dark blue indicating the highest and lowest value computed by a selected formula. Figure

4.16 shows some options to organize samples. The samples can be located at a constant distance

to create a circular shape around the center or to be the one with lower computed value closer to

the center sample. In addition, the samples can be ordered in a way that their formula values are

getting increased in clockwise or counterclockwise direction.

Sample management interface modules are explained below with corresponding regions named

by capital letters in Fig. 4.14:

• A: Main canvas is where the samples are displayed. The organization and color of the
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samples are determined based on similarity or a user-defined formula.

• B: A copy of a sample dropped in “B” is stored in a separate list.

• C: The samples in “B” are pairwise compared based on a formula.

• D: The formulas are defined through Formula Interface (Fig. 4.17) and selected here to filter

out the samples using sliders. The sliders define upper and lower values such that if formula

value of a sample is out of the range, the sample is removed from the canvas temporarily.

Moreover, a graph can be created over “A” using two formulas to be one versus another (see

Fig. 4.15).

• E: Any sample can be dropped here to manipulate its points. The modified sample can be

dragged from “E” to any other region, so it can be used to derive new samples in “G”, can

be exported to Rhino in “F”, or can be compared with others in “B”. In addition, there is a

search button that displays the samples in “A” and organizes based on their similarity to this

modified sample.

• F: A sample dropped here is exported to a file shared with Rhino so that its 3D model is

simultaneously created.

• G: Any sample dropped into this region is used as an exemplar profile and single chain algo-

rithm is executed to create new samples from this sample. Through “Accept” and “Delete”

buttons, the generated samples can be added to the original list or it can be deleted com-

pletely.

• H: When the mouse cursor enters inside the boundary of a sample in any region, its large

scaled version is displayed here.



103

Figure 4.14: Sample management interface that filters and analyzes the samples based on formulas

that can be created based on similarities or geometric constraints.

Figure 4.15: A graph of radius / height (r/h) ratio versus surface area is defined through the region

D and displayed in the region A of the sample management interface.
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Figure 4.16: Sample organization options.

Formula Definition

In this thesis, the formula is an equation defined using proposed functions given in Table 4.1.

Such formula is used to compute a value for a queried property of a sample such as similarity

with other samples, width and volume to be evaluated by the users. The variables of the functions

are segment numbers, and labels, which are automatically assigned for the control points or the

points found on the profile curve with user-specified equal horizontal or vertical intervals. Besides,

the cross-sections are located by the intervals along the curve and also labeled to be called by a

function. Figure 4.17 shows the interface used for the formula definition, where the points and the

cross-sections are also labeled. For an instance, an example formula can be defined using a single

function as dx(s23, s13) where dx (Delta X) computes horizontal distance between two points

labeled as s23 and s13 (see Fig. 4.18). The samples out of a range of distances set by the user are

then filtered out and the remaining samples are organized to be the distances are getting increased

in the clockwise direction as illustrated in Fig. 4.18. Similarly, the function dy (Delta Y) computes

vertical distance and l (Length) computes Euclidean distance between two points. w (Width) finds
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maximum dx and h (Height) finds maximum dy of the shape. Users can call any points’ x and

y coordinates using the functions px and py. The tangent angle of a line created by three points

can be calculated using an (Angle). Furthermore, the similarity measures ρtotal and MHD can be

computed for the samples against the sample at the center using mhd and sim functions. There

is also a function ud (User Defined) that can call earlier defined formulas by their name, which

lets users create modular formulas as a combination of sub formulas. All of these functions can

be combined using the basic mathematical operators that are addition, subtraction, multiplication,

and division to create more complicated formulas.

Figure 4.19a displays the implementation of function ar, which computes areas of the samples.

To do that, each sample is approximated to a polygon created by the points on its profile curve (see

Fig. 4.19b), and the area of the polygon is then calculated by following Shoelace formula:

A =
1
2

∣∣∣∣∣∣∣
n−1∑
i=1

(xiyi+1 + xny1) −
n−1∑
i=1

(xi+1yi − x1yn)

∣∣∣∣∣∣∣
To compute a volume of a sample, pyramidal frustums are defined between consecutive inter-

vals where top and bottom areas indicate the areas of relevant cross-sections (see Fig. 4.20). The

shape volume is then computed as the sum of all volumes of these pyramidal frustums. Therefore,

more sensitive volume computation can be achieved by increasing the number of intervals. Note

that, the area for non-circle cross-sections is also computed by the Shoelace formula. The volume

of a shape composed of m pyramidal frustums is calculated as follows:

V =

m−1∑
j=0

1
3

(
A j + A j+1 +

√
A jA j+1

)
h j

Note that, some functions such as vol, w and h can be computed only for part of the shape

defined by segment numbers (see Fig. 4.21).
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Table 4.1: Available functions for formula definition.

Name Functions Name Functions

Math Operators +,-,*,/ Length l

MHD mhd Angle an

Anisotropy sim Delta X dx

User Defined ud Delta Y dy

Volume vol Point X px

Block Volume bvol Point Y py

Area ar Surface Area sar

Width w Height h

Figure 4.17: Formula definition interface. Example labeling for a sample with single view dis-

played on the left and multi-view on the right. In this interface, the user first defines the number

of intervals and points are found on the curve accordingly. These points and the control points

are automatically labeled and displayed to the user to be used as variables for the functions to be

used in formula. Besides, the cross-sections are fitted between the the corresponding points and

labeled to be called by its label in the functions. For example, a user can compute the area of fifth

cross-section with label C4 using the formula ar(C4).
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Figure 4.18: Samples are organized based on an example formula dx(s23, s13) where dx is a

function to compute horizontal distance between two points on the profile curves that are labeled

as s23 and s13.

(a)

(b)

Figure 4.19: (a) Example implementation of ar function that computes side view area of ewer

samples. (b) A polygon created by the points on a curve to compute the approximated area.
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(a)

(b)

Figure 4.20: (a) 6 pyramidal frustums are defined to compute the volume of displayed glass profile

using the function vol. (b) Ewer and tea glass samples organized by computed volume values.
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(a)

(b)

Figure 4.21: The samples are organized with (a) volume computed only for first segment by

vol(0, 0), (b) and width and height computed for the region between 2nd and 4th segments by

w(2, 4) and h(2, 4).
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Appendix

Figure 4.22: 3D perspectives created by projecting the car profile curves.

Figure 4.23: 2D sketches and 3D models of car examples with characteristic lines.
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Figure 4.24: A wine glass example.

Figure 4.25: An antique teapot example.

Figure 4.26: Samples generated by uploaded table on the right, which is L8 orthogonal array for 7

variables with two factors.
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(a)

(b)

Figure 4.27: (a) Each row contains a sample set generated using the leftmost model as the exemplar

profile. Each sample set was created after another from top to bottom, and using a random sample

of previous set as the exemplar profile. (b) Same algorithm applied to the glass profile with more

iterations.
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Figure 4.28: Hull samples generated by network surface method using 4 profile curves and a single

open cross-section.

Figure 4.29: Hairdryer samples generated by sweeping a single closed cross-section.
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Figure 4.30: Vase samples (on the right) created from the images (on the left) with sweep method

using 2 profile curves and a single closed cross-section.

Figure 4.31: Bottle samples created with sweep method using 2 profile curves and multiple closed

cross-sections.
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Chapter 5

Conclusion
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5.1 Thesis Summary

Conceptual design is one of the stages of common design process models in which many solutions

are developed in basic forms for a design problem. The solutions are then evaluated and proceeded

to the next stages where the selected solutions are detailed and further tested. The aesthetic is

an important criterion to satisfy for differentiation of a product. However, there are often many

other criteria such as engineering design constraints, cost and time that elevate the difficulty of

developing the aesthetic ideas. In this thesis, there are two approaches considered to be helpful

for this problem. The first approach is a human-oriented design method that represents customer

feelings about the design aesthetic by a set of design parameters. To do this, a survey method

was proposed that monitors the eye movements of the participants to figure out the attractive and

more relevant parameters to the given set of goals. The second approach is a generative design

method, which provides many design alternatives to explore solution candidates among them.

The generative method is implemented by software to lower the required efforts for generating

the design samples. Also, the users can define their geometric constraints through the proposed

software to narrow down the solutions.

In Chapter 2, an eye tracking aided survey (ETAS) method was suggested for collecting

data objectively and more accurately than the traditional methods for human-oriented design

approaches. The proposed method was applied to an adjective-based design concept, in which

adjectives are used to describe parametric hull designs and related to the design parameters in

mathematical forms. The research materials were 10 hull adjectives learned via a survey method

and 54 parametric hull designs that were generated modifying 26 design parameters according to

the Taguchi experimental method. The eye tracking device was used to collect gaze data of the

survey participants while they are examining the screen to select appropriate adjectives for the

displayed hull design. After that, the gaze data was analyzed using eye tracking tools such as the

area of interest (AOI) that encloses an area to be examined, heat map that represents attractive

regions of stimuli by a color scale, and gaze plot that displays scan paths of the participants by

gaze transitions from one spot to another.

Two gaze metrics were mainly used for quantitative analysis of the gaze data. If locally ac-

cumulated gaze fixations can be associated with a design parameter, an AOI is defined for the

parameter to compute relative time duration (RTD) metric, which is obtained dividing the time

spent in the AOI with total time spent by a participant for the question. On the other hand, if the

gaze transitions are observed in large areas and not local accumulation, the relevant parameter is

analyzed with transition probability metric that indicates the frequency of gaze transitions between
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two AOIs. If a parameter has a local impact on the hull design to be suitable for AOI definition

without overlapped by another parameter’s impact area in the ETAS question interface, RTD was

computed for this parameter. However, some parameters affect large portions of the shape, but

how the participants analyze them is unknown. Hence, the search behaviors of the subjects for

such parameters were first learned from the template learning survey (TLS), in which subjects

are given special tasks for each of these parameters to observe related gaze data individually and

decide on appropriate gaze metric. However, if the gaze fixations for a parameter were randomly

distributed, the parameter was not analyzed and kept out of the examination. Moreover, the spread

areas of the gaze points observed in TLS were also used to set the positions and sizes of the AOIs.

The gaze data collected via ETAS was first roughly analyzed based on RTD values of five

important regions enclosed with AOIs in the ETAS interface (Fig. 2.16). The regions are the front

view of the hull, the adjectives in, and the hull sections that are the entrance, middle-body and run

section. According to the results, the middle-body section took most of the attention having 37%

of total RTD, it is followed by the entrance section with 20%, then the adjective region with 19%,

the front view with 18% and finally the run section with 6%.

Second, the parameters were analyzed one by one with the RTD and transition probability

metrics to determine attractive parameters for the participants. Only the attractive parameters

were then used in the regression analysis to learn important parameters for each adjective. The

regression models were found using the generalized linear model (GLM) and the best-subset selec-

tion methods. The best-subset method simply calculates the residual sum of squares (RSS) for all

possible regression models found by GLM and only some models with minimum RSS were deter-

mined. These models were then evaluated according to the Akaike information criteria (AIC) and

D2 (explained variance ratio) to select the best subset X̂ for each adjective. The design parameters

took place in the regression models of adjectives were given in a table (Table 2.3) together with

the mean absolute percentage error (MAPE), D2 and correlation values as performance measures

of the models. The D2 values of the selected regression models are ranged between 0.16 and 0.45

out of 1 and MAPE values are ranged between 0.16 and 0.39. The correlations ranged between

0.37 and 0.67 show the relationships between the gaze data and the participant preferences. The

performance measures of the regression outputs are poor to be used in prediction of the adjectives

for the hulls, but good enough to verify the existence of relationships between the design param-

eters and the adjective choices through the gaze data. This is because the gaze data tend to be

noisy since the participants’ attention is vulnerable and may easily be distracted and shifted to dif-

ferent areas. Furthermore, the participants were not designers, so their decisions mostly unstable

as their preferences do not rely on tangible items but subjective opinions, which may be changed
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from one question to another. To sum up, important correlations have been found, which verify

that the participants’ preferences are related to their attention on the displayed designs; thus, the

determined important parameters based on the gaze data are valid. The knowledge of the attractive

regions and design parameters, and more relevant parameters for the aesthetic objectives is helpful

for designers to generate the target designs efficiently avoiding unnecessary modifications of the

irrelevant parameters.

In Chapter 3, a generative sampling system was introduced to help designers for gathering

many samples with minimum effort. The system starts with the profile curve definition as com-

posite Bézier curve using control points provided by the users. To prevent generating irregular

shapes such as those with undulation, loop and cusp during the sampling process; a circle, three

triangles, and an ellipse are constructed for each segment of the profile curve to be used as con-

straints such that the triangles are not allowed to be flipped onto each other, the internal points

cannot be inverted respect to the circle diameter and cross border of the ellipse. A sampling re-

gion in the design space can be defined by a few settings such as the maximum perturbation value

dperturbation
max , and the similarity thresholds θsim and θMHD of anisotropy ρtotal and modified Hausdorff

distance MHD. θsim and θMHD let the users decide how far and how close the generated samples to

the example profile can be. A customized iterative local search algorithm called chain sampling

was utilized to fulfill the requirements of both segment constraints and similarity goals effectively.

The chain sampling algorithm generates the samples one by one, where a newly generated sample

that is not more dissimilar from the exemplar than θsim allows must satisfy all segment constraints

and be at least θMHD far away from previously generated samples. As it is displayed in Fig. 3.18,

the generated ewer, glass, and car profile samples are regular and far enough from each other. A

parallel sampling algorithm was also used that several times executes the chain sampling to create

a design pool. Besides, there is an option provided to retrieve a sub-sample set from the pool min-

imizing the Audze-Eglais potential energy EAE to make sure the samples in the set are different

from each other.

The proposed generative method in Chapter 3 was implemented by a software introduced in

Chapter 4, which presents optional features, alternative sampling methods and a sample manage-

ment system through several interfaces. There is a design system interface in which the profile

curves are defined using control points imported from text files or provided by mouse clicks over a

design image. Besides, it supports profile definitions up to three views of an object, which is then

going to be converted into 3D by either sweep or network surface method.

The software includes a tuning interface in which test samples created using Latin hypercube

sampling (LHS ) method are used to find optimum values for sampling settings such as dperturbation
max ,
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θMHD and θsim. The fan polygons and the ellipses are also visualized in this interface so that users

can observe the constraining failures of the test samples while the settings are tuned. Furthermore,

it is possible to import a design table to create samples to be used as test samples or for a controlled

experiment like needed in the human-oriented design methods explained in Chapter 2.

A sampling interface was utilized to generate and visualize samples using different methods.

First, users can derive samples from a single exemplary design using the chain sampling algo-

rithm. The chain algorithm has the potential to be used with different strategies. One of them has

already been explained as a parallel sampling method that synchronously executes the algorithm

user-specified number of times, which all uses the same exemplary profile to create a large sample

set. In another sampling method, the chain algorithm is executed several times to be one after

another, but each one uses a random or user-selected sample from the previous chain’s output as

an exemplar to generate a new sample set. Such an algorithm can extend the sampling region to

explore more creative samples. The test samples created by the default LHS method or a design

table can also be displayed in this interface. The designs here are shown by rows and columns

with intervals controlled via sliders. Setting the intervals as “0” the samples can be overlapped at

a fixed point to observe the variation of the samplings. Finally, all the samples can be exported

appropriately to be converted in 3D models using any external CAD software, which is preferred

as Rhino/Grasshopper for this thesis. A system is created in Grasshopper using components de-

veloped by C# programming language. The system automatically reads the exported text files

from the proposed software and creates the 3D models as NURBS surfaces with a method the user

selects.

A user evaluation interface was also proposed, which creates samples using a chain sampling

algorithm and immediately displays to the users. There are radio buttons under each of the design

to collect and record user responses as Likert-type scores or like/dislike options depending on

the user choice. The samples are generated as long as the user hits the update button and the

responses are kept recorded. The high scored samples are stored and visualized in the sampling

interface, and all samples with the responses can be exported to analyze using external statistical

software. Moreover, the users can assign weights for modification of each control point to guide

the sampling process.

Finally, a sample management interface was offered in which a formula can be created by

either similarity measures (MHD or anisotropy) or geometric constraints defined by users using

functions such as horizontal, vertical and Euclidean distances between points; and width, height,

volume and area of the shape. The sample management starts with clustering the samples using the

K-means method and each cluster is then organized individually according to the defined formula.



120

The users can set a range with desired maximum and minimum values to filter out the samples

whose formula results are out of the range. The samples can also be analyzed with a graph of

one formula versus another. Besides, the interface consists of several areas with various purposes

such as generating new samples from a selected sample, editing sample and searching similar

samples to this edited sample, exporting the selected samples to be converted into 3D in Rhino

simultaneously, and pairwise comparison of the selected samples based on a formula.
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5.2 Discussion

Overall, the proposed methods are suggested to create aesthetic designs efficiently and effectively

in the conceptual design stage.

The outcome of Chapter 2 is the knowledge of a set of attractive and important parameters for

an aesthetic objective. For this purpose, eye tracking is used during the surveys and a group of

parameters is said to be important for an adjective if the participants looked at them while they

select that specific adjective. Such a claim is proved by finding correlations between gaze data

of the parameters and the adjective selections; thus, the parameters are related to the adjectives

based on the participants’ attention. The knowledge of important parameters in an aesthetic objec-

tive lets designers narrow down the design space to the relatively smaller regions that cover more

promising solutions for customer satisfaction as the regions are defined based on their impres-

sions. Moreover, when industrial designers have to work on a form constrained by engineering

design requirements that increase the difficulty for finding the desired solution, such knowledge

lets designers effectively create the ideas modifying only relevant shape features that most likely

took attention of the customers.

The proposed eye tracking method was applied to a yacht hull because it is easy to parametrize

thanks to existing common hull design frameworks. The parameters must be good enough to

obtain desired design samples and suitable to be used by designers in their design framework.

Also, the adjectives must clearly identify the relevant design without leading confusions for the

subjects that might cause a noisy data. For example, car and mobile phone designs are suitable

for the proposed method since there are already common design parameters defined and accepted

by many designers, and appropriate adjectives can easily be learned from people already familiar

with these designs.

Chapter 3 suggests an example based design method where the design alternatives are derived

from a central idea. The integration of this approach with Chapter 4 provides easiness automatiz-

ing the constraint definition, defining the sampling region based on the similarity that can be set by

users intuitively, and determining the size of the design space as simple as setting the dperturbation
max .

The constraint definitions are usually problem specific and require designer expertise. In the pro-

posed method, primitive shapes like circle and triangle that can be defined for any cubic curve are

used to generalize the constraint definition for various product profiles composed of such curves.

Also, these shapes can be visualized that makes easier to comprehend the constraining method

for inexperienced users. Different values of similarity thresholds allow users to generate designs

either sticking to the example design or more creative versions of it. Moreover, the system also
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automatically recognizes some conditions on profile curves such as continuity between the seg-

ments, concavity and curve degree of each segment. These conditions are then conveyed in the

generated samples to build them from an initial user idea that may contain key properties to be

maintained. In this way, users could improve or replace their initial ideas analyzing similar al-

ternatives. Note that although each segment is initially defined as a cubic curve, the segments’

degree may be reduced to quadratic or linear based on the conditions. The conditions can also

be disabled slightly dragging the control points of the profile curve. For example, if the control

points of a segment are collinear, the segment is conditioned to be linear; however, breaking the

collinearity in the exemplar profile such condition is disabled easily. To extend the sample set with

different ideas, the similarity thresholds can be set accordingly and the defined profile curve can be

modified through the interface easily before generating new samples. Furthermore, the generated

samples can be used as an example design to generate new designs from it; therefore, beyond the

very first sampling region can be explored.

The main advantage of the system is that a user without any experience can generate sample

sets quickly only providing control points by mouse clicks on an image. This is useful for designers

who do not want to spend time with the CAD during the conceptual stage. The system is also

suitable for partial modifications such that the segments of the profile are declared by the users so

that only those segments are modified while the shape is maintained for the rest. It is believed that

the partial modifications are useful to upgrade an existing design focusing only specific portions,

which is a more usual case in the industry to use existing production lines as much as possible.

There are usually a set of geometrical requirements defined right in the beginning that product

must satisfy aside the aesthetics. The generated samples can be narrowed down by user-defined

geometric constraints satisfying some of these requirements. For example, a wide bottleneck can

be desirable for bottle designs in large volume; therefore, the width of relevant segments can be

constrained through the sample management interface. Volume, area and surface area functions

can also be used to coarsely estimate the capacity or the required material amount for a product

from its design sample. As another example, the ratio length to width and length to height can

be used in design when proportions are important. On the other hand, the proposed system is not

suitable for constraints that cannot be defined through the profile curves such as surface fairness,

the durability of the shape or manufacturability constraints (i.e., the suitability of a design for

injection molding).

The proposed generative method can be used for various shapes as long as they can be repre-

sented by composite Bézier curves with up to 3 views. Extrusion, revolution, sweeping and net-

work surface methods are available to produce 3D models of the profile samples such as hairdryer,
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yacht hull, ewer, bottle, and glass. For more complicated shapes like car design, the proposed sys-

tem can be used for a profile from a single view at a time. On the other hand, since each segment

of the profile curve is defined as cubic Bézier curve, high quality aesthetic shapes such as those

with curvature continuous curves cannot be created by the proposed design scheme. Furthermore,

the proposed example based generative design concept can be applied for different shape repre-

sentation schemes if the shape is represented by parameters, constraining methods are provided

to prevent generating irregular shapes, similarity measures are defined, and functions are avail-

able to extract some essential conditions from the example design to be conveyed in the generated

samples.

The proposed software was also evaluated by two product designers and found useful for in-

dustrial design. They suggested constraining the samples based on geometry and sampling ideas

such as the proposed innovative sampling. We are specifically encouraged by them to work on the

sample management interface that is considered one of the most essential parts of the system to be

useful for the designers.
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5.3 Future Works

There are several possible improvements and extensions of the proposed methods:

• In Chapter 2, a yacht hull was used, in which the hydrodynamic and hydrostatic perfor-

mances are crucial. As such performance properties in addition to aesthetic properties are

important, the aesthetics are handled first to be then combined with a performance based

system. The current version of the sample management system is now under development

to handle such hull performance requirements.

• We find it valuable to propose a technique that parametrizes designs and evaluates the pa-

rameters with automatically defined AOIs based on the parametrization. Doing that, we

would like to encourage industrial design area to use our method to get prominent designs

with even less labor, time, and costs.

• In Chapter 3, we have started with 2D profile curves to be converted into 3D models later on

so that users without CAD skills are able to use the provided tool. However, the proposed

method is also possible to be used directly for 3D models with some updates. A 3D model

can be represented with multiple views, and what we do in this study is to pick a view and

modify it to find new appearances from that viewpoint. Such modification of single view

can be directly reflected without any difference to 3D models of various shapes; specifically,

for the revolvable ones, in which only a single profile curve is revolved, and some free-form

shapes that can be created sweeping shape constant cross sections along a profile curve.

• In case there are more than one profile curves from different viewpoints need to be modi-

fied, each view can be handled one by one to generate its new samples as usual. Hereafter,

these new samples of multiple views can be synthesized to reconstruct a 3D model using the

network surface or the sweeping method. However, to generate feasible 3D models modi-

fying all profile curves at the same time and combined them successfully, extra constraints

are needed at the joints of these combined curves. One of the main objectives of this study

is to generalize the method so that it can work on various profiles without requiring addi-

tional effort from users. Therefore, it is required to define the extra constraints that can be

applied to the various problems. Moreover, the new constraint must be able to consider

three-dimensional interactions to ensure continuity of 3D curves throughout the synthesized

model if the proposed generative method is going to be implemented directly on 3D models.

As for now, our method is able to generate network surfaces from 2D profile curves from
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different viewpoints; however, it cannot be applied to directly in 3D shapes, which will be

handled in the future.

• To fully automatize the proposed system in Chapter 4, an image processing method (such

as [140]) will also be embedded in the future to extract the required points from a given

image instead of mouse clicks. This feature can also be extended to be a search engine,

similar to the sketch based shape retrieval methods [141, 142, 143]. In these methods, a

given input sketch is analyzed to learn its local and global shape features to be matched with

3D models in a data set with the highest feature similarity. Similarly, once the proposed

system is augmented with the point extraction ability, it can be applied to the collection of

2D images or appropriate views of 3D models to find similar designs to the given exemplar

evaluating the corresponding shape features.

• The proposed method in Chapter 3 is an example based design that aims to preserve initial

idea to find its alternatives to improve the idea. Therefore, although interesting designs can

be found by setting larger similarity thresholds or using the innovative sampling algorithm

that extends the sampling region, they are still connected to the example profile since the

conditions of this profile are used throughout the sampling procedures. One of the future

works is letting users import several exemplars to be used together in generating new sam-

ples by interpolation [144] or mutation [83] among them.

• Finally, in the current version of the user evaluation interface (Section 3.2.1.4), the users

have to enter the weights manually or according to parameters’ importance that is figured

out statistically analyzing the samples respect to collected user responses. This interface

can be improved in the future to compute the weights automatically using an evolutionary

algorithm to make it fully interactive.
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