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H igh-harmonic generation (HHG) from transition elements which often exhibits resonance
phenomena is addressed in this dissertation from theoretical point of view. Using two

methodswhich are especiallydevised to tackle time-dependentmany-electronquantumprocesses,
namely time-dependent complete active space (TD-CASSCF) and time-dependent occupation
restricted multiple active space (TD-ORMAS), we perform theoretical studies on the strong-field
response of manganese, indium, and chromium isolated atoms and some of their cations to
simulate HHG from the plasma of each of these elements. The experimentally well-known
enhancement of the harmonic peak around ∼ 50 eV in Mn plasma, ∼ 20 eV in In plasma, and ∼ 44
eV in Cr plasma are faithfully reproduced in our simulationswhere the intensity enhancement can
reach up to two orders of magnitude compared to the neighboring harmonics in neutral Mn. A
portion of the subsequent analyses, based on orbital-resolved dynamics such as orbital transition
and population, is devoted to find a conclusive answer as to what drives this enhancement
phenomena.

The enhancement disappears when electrons are prevented from leaving 3p
orbitals
The ground state electronic configurations are 1s22s22p63s2 3p64sk3d5 where k = 2, 1, 0 for Mn,
Mn+, and Mn2+, respectively. Making use of TD-CASSCF’s capability to freeze some orbitals, our
first orbital-based study finds that when the first five orbitals (i.e. from 1s2 to 3p6) are frozen, the
50 eV enhancement disappears. On the other hand, when the frozen orbitals are below and do
not include 3p orbitals, the enhancement is present and the overall HH spectra have a reasonably
good agreement. This is a strong hint that 3p orbitals must be involved in the 50 eV enhancement
mechanism. The same analysis is also performed for indium plasma whose configurations are
1s22s22p63s2 3p63d104s24p64d105s25pk where k = 1, 0 for In and In+,respectively. It was found that
in this case when 4d are frozen, the enhancement disappears. The time-frequency spectrograms
calculated through Gabor-transform indicate that the onset of this enhancement occurs when
the continuum electron wavepacket has return energy close to the resonant one, and then they
populate some upper orbitals instead of going back to their initial one along with the emission of
a photon. The relaxation from this highly populated, unknown upper orbital is accompanied by
the emission of the enhanced radiation.

A successful indentification of the resonantly coupled transitionswith the laser
field
The next analysis is based on dipole interactions coupling the different ground state orbitals, that
is, the orbital-orbital transitions. The mathematical ground of this analysis is derived from the
equation for time-dependent acceleration, a quantity whose power spectrum is understood to be
the HH spectrum. In this equation, the total acceleration may be written as a superposition of
a particular quantity that depends on a pair of orbitals and time. This quantity also vanishes
if the pair of orbitals it depends on do not obey the usual dipole selection rules. Therefore,
the orbital-orbital transition contribution to the total HH spectrum may be quantified with this
quantity. Running the simulations, we identify the 3p ↔ 3d transitions to be the dominant
driving mechanism of the enhancement in Mn and Mn+ at ∼ 50 eV and in Cr and Cr+ at ∼ 45 eV.
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Whereas for In and In+, these transitions are the 4d − 5p transitions which are responsible for the
∼ 23 eV enhancement. Coherently superposing the components of these transitions reveals the
constructive nature of the ensuing interference which prompts further increase of the harmonic
intensity at the resonant energy. Keeping in mind the preceding result from the time-frequency
spectrogram, it may be concluded that the upper state which receives considerable population
responsible for the enhanced emission is a state where an electron is excited from 3p to 3d orbitals
in Mn and Cr plasma. For In plasma, this upper state is where an electron has been excited from
4d to 5p orbitals.

Population exchange between the resonant orbital pair
In our last study, we investigate the signature of resonant enhancement in HHG imprinted in the
orbital population from which we find that in Mn plasma, the time-dependent populations of 3p
and 3d orbitals are modulated at the resonant energy 50 eV and that these modulations are out of
phase, meaning, in time domain as there is a peak in either orbital populations, at the same time
there will be a valley in the population of the other orbital. To put it differently, while the atom is
emitting the enhanced radiation as a result of an interaction with the strong laser, an alternating
exchange of population between the two orbitals responsible for the enhanced emission is at work
in the background. The absence of 50 eV modulation in the total population of virtual orbitals (as
can be seen from the Fourier transform of the population) is indicative that the final mechanism
leading to the enhanced 50 eV emission involves only bound-bound electron dynamics. We believe
this finding is remarkable because, as opposed to ordinaryHHGwhere there is efectively only one
essential discrete state (the ground state), resonant HHG shows that the internal core structure of
an atom can bear a dramatic change in the feature of the HH spectrum.
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Chapter 1
Introduction

Light-matter interaction is undeniably an important subject of physics that underlies many scien-
tific as well as technological breakthroughs. Since the discovery of photons by Albert Einstein,
science has seen major discoveries in this subject - the invention of laser, optical tweezer, syn-
chrotron radiation, and quantum information, to name a few. A new direction of research was
opened up when a technique called chirped pulse amplification (CPA) was invented by which one
can realize generation of ultrashort laser pulses with unprecedented level of intensity [1–3]. With
this technique, laser pulses having intensity above 1016 W/cm2 can be routinely produced (check,
for example, the European Extreme Light Infrastructure (ELI) [4–8]) . This intensity regime is
often referred to as relativistic intensities because above 1016 W/cm2, electrons begin to move at
relativistic velocity. Below this range, when the intensity lies in the range 1013 − 1015 W/cm2,
the interaction is said to be in the strong-field regime within which all electromagnetic processes
behave extremely nonlinearly - hundredsmultiple of the input laser frequency have been observed
at the output - while the relativistic effects are still negligible. High-harmonic generation (HHG),
the key topic of the present work, is one example of laser-matter interaction taking place within
strong-field intensity regime.

1.1 High-Harmonic Generation
When an intense laser field interacts with matter, one of the possible outcomes is the emission of a
secondary radiation whose frequencies are multiples of the the primary radiation frequency. This
electromagnetic process, which is referred to as high-harmonic generation (HHG), is in fact the
most important outcomes of a strong-field interaction. Compared to the other common strong-
field processes such as multiphoton ionization (MPI), tunneling-ionization, and non-sequential
double ionization (NSDI), HHG is the closest to practical applications, whether for fundamental
researches or commercial products. This fact is not without reason, until today HHG is the only
table-top alternative to coherent XUV light sources such as synchrotron facilities [9–11] offering
quantum-scale temporal resolution. For this reason, increasing HH pulse energy is still an active
research topic that has seen numerous developments in the generation technique, see e.g. Ref.
[12–15].

HHG made its first appearance in a laboratory in 1987 when McPherson et al. [16] used
an intense 248 nm radiation from an excimer laser to irradiate Ne, Ar, Kr, and Xe gases, and
they observed that secondary radiations with wavelength as short as 14.6 nm (17-th harmonic of
the excimer used) were generated. One of the well-known features of any high-harmonic (HH)
spectra is the decrease in harmonic intensity for the first few orders, which is followed by the
so-called plateau region spanning over an energy range in which the harmonic intensities stay
relatively constant (see Fig. 1.1(a)). The extent of plateau region depends on the laser intensity
and wavelength. At the cutoff energy (Fig. 1.1), which marks the end of plateau region, the
harmonic intensity decreases again down to the noise level.

HHG is classified as an extreme nonlinear process because it involves generation of harmonics
up to tens (Fig. 1.1(b)) [17], and sometimes hundreds (Fig. 1.1(c)) [18], multiple of the fundamental
frequency depending on the laser intensity, wavelength, and atomic species [19–25]. The fact that
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CHAPTER 1. INTRODUCTION

Figure 1.1: (a) HHG spectrum typically consists of a rapidly decreasing low order peaks, followed by plateau
region that ends around the cutoff energy. (b) Experimental HHG spectra from Xe gas measured at different
laser intensities. Figure adapted from [Shiner, Trallero-Herrero, Kajumba, Schmidt, Bertrand, Kim, Bandulet,
Comtois, Kieffer, Rayner, Corkum, Légaré, and Villeneuve, J. Mod. Optic. 60, 1458 (2013)]. (c) Experimental
HHG spectra from Ar gas demonstrating significantly high cutoff energy when long wavelength laser is
used. Reprinted figure with permission from [B. Shan and Z. Chang, “Dramatic extension of the high-order
harmonic cutoff by using a long-wavelength driving field”, Phys. Rev. A 65, 011804 (2001)]. Copyright 2001
by the American Physical Society. The lower energy part of the spectra have been filtered which is often
done in experiment.

even a few hundreds of harmonic can be reached asserts that conventional nonlinear optics de-
scription will not suffice in explaining the phenomenon. To give numerical figures, the ionization
energy of Ar gases fromwhichHHG is usually generated is about 15.8 eV, hence for a driving laser
at 800 nm there could only be about 10 photons absorbed to make the first ionization happen,
implying that the harmonic train in the spectrum should terminate at around the tenth order,
instead of more than a hundred as reported in Ref. [18]. These observations strongly suggest that
we need to set aside the perturbative nonlinear optics theory and devise a new model.

A semi-classical model was proposed in the early 90’s in an attempt to phenomenologically
explain HHG [26–28]. This model is referred to as the three-step model, or sometimes simple man
model, because the key idea describes the HH emission as an outcome of three chronological
events. Fig. 1.2 provides a visualization of the model. In the first step (Fig. 1.2(a)), an electron is
tunnel-ionized by the electric field of the intense laser through a barrier formedby the atomic core’s
potential and laser’s potential. In the second step (Fig. 1.2(b)), the ionized electron emerges in the
continuum and is then driven by the laser electric field. During its excursion in the continuum,
the driven electron will acquire some kinetic energy from the field. Depending on the time
when the first step took place, this electron may or may not come back to the atomic core. The
former possibility then leads to the last step (Fig. 1.2(c)) in which this electron recombines to the
initial state while emitting a photon whose energy is equal to the sum between the kinetic energy
acquired in the second step and the atom’s ionization potential.

Within the three-step description, an attempt to estimate the HH cutoff energy has been
formulated using Newtonian mechanic [29]. In this classical approach, one starts from Newton’s
second law of motion for an electron in a sinusoidal electric field E(t) = E0 cosωt (which can be

Figure 1.2: (a) The first step consists of tunnel-ionization through a potential barrier. (b) In the second step,
the ionized electron undergoes excursion in continuum driven by the laser field. (c) In the last step, this
electron recombines to the ground state emitting a HH photon.

2



1.1. HIGH-HARMONIC GENERATION
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Figure 1.3: (a) Graphical method to calculate return time tR for a given ionization time t0. (b) Return kinetic
energy curve where for each kinetic energy value, one has two contributing trajectories, long and short ones.

assumed to be z-polarized) that starts the motion at time t = t0 with zero initial velocity from the
origin. Integrating this equation twice, one obtains the equation for displacement. The last step,
i.e. the moment of return, happens when the displacement equals zero again. Substituting this
value into the equation for displacement, one arrives at

cosωtR = cosωt0 − (tR − t0)ω sinωt0, (1.1)

where ω is the laser angular frequency, t0 is the ionization time (i.e. the instance when the first
step takes place), and tR is the return time (the time of the last step). Eq. (1.1) tells us that the
return time tR can be calculated at the intersection between the oscillating electric field and a line
that is tangent to the field at time t = t0, graphically depicted in Fig. 1.3(a). Knowing the value
of tR for each t0, it is then possible to calculate the kinetic energy at the time of return, the sum
of which with ionization potential will give the emitted photon energy. A typical plot of Ek(tR) is
shown in Fig. 1.3(b) with the vertical axis in unit of ponderomotive energy Up ,

Up =
E2

0
4ω2 (1.2)

and the horizontal axis is the return phase. In Eq. (1.2), we have adopted atomic units where
m = ~ = e = 4πε0 = 1. Unless otherwise noted, atomic units prevail throughout this dissertation.
Shifting this kinetic energy curve up by the atoms’s ionization potential gives us the emitted
photon energy within plateau region, that is, the vertical range of this curve predicts the extend
of plateau region. The maximum kinetic energy 3.17Up , occurring at about ωtR = 4.4 rad, then
corresponds to the harmonic cutoff, hence we have the semi-classical estimate of HH cutoff energy
to be

Ec = Ip + 3.17Up . (1.3)

Although Eq. (1.3) was derived based on classical mechanical analysis, it actually gives a rea-
sonably accurate estimate of experimental cutoff energies. Throughout this dissertation, Eq. (1.3)
will actively be invoked in various analyses such as in deducing which ionic species are present in
the simulation as a result of strong-field interaction. From Fig. 1.3(b), one also sees that for each
return kinetic energy, the emitted photon energy contains contributions from electrons having
short and long trajectories during the continuum excursion. The radiations emitted by these short
and long trajectory electrons having the same kinetic energy interfere to give harmonic peaks in
the plateau region (see Fig. 1.1.)

Atoms, molecules, as well as solids have been experimentally shown to be able to act as
the source medium for such highly nonlinear process. The nature of the generation process of
HH radiation that is closely intertwined with electron dynamics inside the generating medium
is often exploited by physicists to study those dynamics. In fact a number of quantum scale
phenomenahavebeen succesfully identifiedbydevising specializedmeasurement techniques such
as electronic structure detection [30], observation of Rabi flopping [31], multi-channel interference
[32], spectroscopy of Cooper minimum [33, 34] and many others.
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CHAPTER 1. INTRODUCTION

Figure 1.4: (a) HH spectra from In (red) and Ag (black) plasmas. Figure adapted with permission from Ref.
[35], [Optical Society of America] (b) HH spectrum from Sn plasma. Figure adapted from Ref. [36], [Optical
Society of America].

1.2 High-Harmonic Generation from Plasma Plumes
The most frequently used atomic elements to generate high harmonic radiations are rare gas
atoms. Rare gas atoms are favorable for at least two reasons. First, they are readily available
in gas phase and second, their inert nature makes them easy to store which otherwise requires
special care to prevent them from reactingwith the surrounding substances. Other stable elements
occuring naturally in gas phase like nitrogen is also used asHH source thanks to its high ionization
potential, ∼ 14.5 eV.

In 2006, however, a group of researchers had a different idea in what they should use as the
HH source [35] - instead of rare gas, they created plasma plumes through laser ablation on a
metallic surface. The primary observation is that, using a 796 nm laser whose intensity is on the
order of 1014 W/cm2 to generate HH from indium (Z = 49) plasma, they discovered that the HH
spectrum exhibited a strong enhancement of the 13-th harmonic (20.3 eV) of the fundamental laser
(see the red line in Fig. 1.4(a)). This peak is enhanced more than hundred times stronger than the
neighboring ones. Following this discovery, a pursuit of metallic elements to act as the plasma
source that is able to produce similar enhancement phenomena began.

In Ref. [36], tin (Z = 50) plasma was used as the source and a 20× enhancement of the 17-th
harmonic (26.5 eV) of a 795 nm and 1 × 1014 W/cm2 laser was observed (Fig. 1.4(b)). In 2007,
Ganeev et al. [37] observed an enhancement in the HH spectrum from Cr plasma following
an irradiation of a Cr containing metal by an intense laser at 800 nm center wavelength. The
enhancement occurs for the 29-th order of the fundamental, which is about 45.1 eV [37]. Fig.
1.5(a) shows the harmonic spectrum from this experiment. Then in 2012, using 800 nm center
wavelength Ti:sapphire laser with intensity of about 6 × 1014 W/cm2, Ganeev et al. [38] were able
to generate an enhanced harmonic at ∼ 50 eV (the 31-st harmonic order of the fundamental), the
spectrum is shown in Fig. 1.5(b). The other metallic elements such as Cr, Mn, and Sb have also
been used as the HH source resulting in the observations of enhancement at 45.4, 50, and 32.6
eV respectively [37–41]. It is worth noting that these elements all have loosely bound unpaired
electrons. The properties of the enhanced harmonics from several plasma metals are compiled in
Table 1.1 extracted from published sources. It is worth noting that while enhancement of a range
of harmonics is known to be a signature of HH spectrum from Xe [42], never was in rare gas HH
spectra an enhancement of a single harmonic similar to those in transitionmetal plasma observed.
This might be related to the fact that in rare gas elements all orbitals are fully occupied.

The typical experimental setup for generating HH radiation from a metallic plasma relies on

Table 1.1: The enhanced energy and the largest reported enhancement for In, Sn, Sb, Cr, and Mn plasma
HHG.

In [35] Sn [36] Sb [37] Cr [37] Mn [38]
Enhanced energy (eV) 20.3 26.5 32.6 45.4 50.0
Largest enhancement (× neighbors) 200 20 20 23 > 10
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1.3. THE OBJECTIVE OF THE STUDY

Figure 1.5: HHspectra from (a)Cr plasma (Reprintedfigurewith permission from [R.A.Ganeev, L. B. E. Bom,
J.-C. Kieffer, and T. Ozaki, “Systematic investigation of resonance-induced single-harmonic enhancement
in the extreme-ultraviolet range”, Phys. Rev. A 75, 063806 (2007)]. Copyright 2007 by the American
Physical Society) and (b) Mn plasma (adapted with permission from Ref. [38], [Optical Society of America])
wavelength lasers. The 29-th harmonic in the former and the 31st harmonic in the latter are clearly enhanced.

a technique called dual laser plasma technique [43] employing two pulsed lasers. The first laser,
typically having intensity on the order of 109 − 1010 W/cm2, impinges on the metallic surface to
induce ablation and produce plasma plumes. The second laser, of intensity in the strong-field
regime (1013 − 1015 W/cm2), then comes at a delay and, upon focusing, irradiates the nascent
plasma to generate the HH photons.

1.3 The Objective of The Study
The origin of harmonic enhancement in HH spectra from non-conventional elements mentioned
in the previous section has been linked to a resonant process where a giant transition line in the
excitation spectrumof the plasma element is in resonant (having close energies)with the enhanced
harmonic peak [35, 44]. While the association of a distinctly large peak in the frequency response
of a system with a natural frequency in that system is ubiquitous in physics, such as resonance
in RLC circuit, in forced pendulum, and in laser’s optical cavity, given the complicated nature of
multielectron systems, it is difficult to assert whether resonance is really the driving mechanism
behind this harmonic enhancement before a proper theoretical account is given. Even if so, there
are still openquestions as towhich transition line is actually responsible for the resonance (different
transitions lyingvery close to eachother exist inMn+), which ionic species is thedominant source of
enhancement, and ultimately, how this transition line manifests its presence in the high-harmonic
spectrum, which is a highly nonlinear process. Aimed at answering these questions, in this work
we attempt to approach the problems by means of theoretical methods that take into account all
electrons present in the atom and solve the time-dependent wavefunction right from the exact
Schrödinger equation. The goals of this research are, therefore, (1) to reproduce the experimentally
observed resonant enhancement in HHG and (2) to unveil the underlying physical mechanism of
this enhancement phenomena.

1.4 Theoretical Approach to High-Harmonic Generation
It comes to be known that the three-step model discussed in Section 1.1 predicts the extent of
plateau region with a good qualitative accuracy. This model, however, has nothing to do with
the intensity of each harmonic peak and thus a quantum mechanical calculation is necessary to
get the correct trend of HH spectrum. One of the early, full quantum mechanical calculations
on HHG was performed by Lewenstein et al. [23, 45]. In this method, the wavefunction is
assumed to be a superposition of the ground state and many continuum states, with the latter
being approximated with Volkov states. Volkov state is an eigenfunction of a free-electron in a
laser field. Since atomic core is neglected in calculating Volkov states, this model describes the
system as if the laser field is too strong for the core’s potential to be considered and hence is often
called strong-field approximation (SFA) method. A multielectron extension of SFA method was
proposed by Smirnova et al. [29, 46] where the multielectron effects on the harmonic emission are
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CHAPTER 1. INTRODUCTION

described as an interference of individual three-step processes frommultiple ionization channels.
A given ionization channel is characterized by a particular final state of the remaining ion after
ionization, for example the removal of an electronmay leave the ion in its ground state or in one of
its excited states, each of which is associated to a different channel [46]. This multichannel method
approximates the continuum state with Volkov state too.

Prior to the present work, there have been a number of theoretical efforts on the subject of
resonant HHG over the past decade. Milošević in Ref. [47] and [48] studied the effect of coherent
superposition in the initial state and found that a three-step process starting from an excited state
but returning to the ground one exhibits an enhanced harmonic. In Ref. [49], the line shape of
resonant harmonic is discussed in terms of Fano lineshape. A modelling of the autoionizing state
which is known to be responsible in most cases for the enhancement is performed in Ref. [50]
and [51] using a parametrized potential with barrier. Other reports of varying elaboration have
also been published, see e. g. Ref. [52–54]. Most of the above-mentioned attempts use effective-
potential-kind-of approach in performing the analysis, that is, these methods are effectively of
single active electron type. Consequently, multielectron dynamics, which could possibly hold the
important information about the actual drivingmechanism, are automatically out of the picture. A
fewworks that take into accountmultielectron effects are reported in Ref. [55] andRef. [56]. In Ref.
[55], Redkin and Ganeev simulated a fullerene-likemodel system usingMCTDHFmethod [57, 58]
by having only two active electrons, hence making the deeper aspects of the mechanism remain
unexplored. While in Ref. [56], Pabst and Santra apply time-dependent configuration interaction
singles (TDCIS) [59] to study an enhancement around 100 eV in the HH spectrum of Xe. The target
system considered in these works, however, is a closed-shell atom where the dynamics of the
valence electrons are substantially different from the unpaired electrons in transition metal atoms.

The problem at hand, however, demands a method which can properly treat more than one
electron at once during an interactionwith laser field because transition elements generally possess
multiple loosely bound electrons (typical ionization potential for transition metals is ∼ 6 eV). It
is also for this reason, other seemingly suitable method, time-dependent density functional theory
(TDDFT), may actually not be quite so because of the lack of accuracy of this method in calculating
ground state wavefunction of transition metals. As will also be discussed later in Chapter 4, in
one of the analyses we will look at the different transition contributions to HH spectrum where
the off-diagonal matrix elements of density matrix are invoked, something which are not available
in TDDFT as it optimizes only the diagonal elements.

In order to enable a direct comparison with experiments and with the deeper understanding
of the mechanism underlying resonant HHG, an ab initio simulation of realistic three-dimensional
(3D) atoms is therefore indispensable. A promising class of methods to investigate intense
laser-driven multielectron dynamics in such systems is the time-dependent multiconfiguration self-
consistent-field (TD-MCSCF) method [60–62], which describes the systemwavefunction by a super-
position of Slater determinants consisting of time-dependent spin-orbital functions. TD-MCSCF
is a general denomination for first-principles methods where the time-dependent orbitals and
CI coefficients are obtained variationally. Extensions of TD-MCSCF to allow more freedom in
the specification orbital occupations include time-dependent complete active space self-consistent field
(TD-CASSCF) [63, 64], time-dependent occupation restricted multiple active space (TD-ORMAS) [65],
and time-dependent restricted active space self-consistent field (TD-RASSCF) [66]. The first two meth-
ods, TD-CASSCF and TD-ORMAS, are the methods employed in this dissertation. Previously,
TD-CASSCF and TD-ORMAS methods have only been applied to either closed-shell systems or
systems having a single unpaired electron [64, 65, 67, 68]. In the present work, these methods are
extended to enable calculations of general open-shell atoms such as transition metals, having a
number of of unpaired valence electrons which can equally participate in the dynamics under a
strong laser field. Some of the systems that will be considered in this work, Mn and Cr, as well as
their low-charged cations, have 5 or 6 unpaired electrons.

In performing the analysis, we take full advantage of TD-CASSCF and TD-ORMAS as a
multiorbital method by studying the dynamics emerging in and between these orbitals [69]. The
use of orbital functions for describing the wavefunction of multielectron systems has long been
very popular within atomic and molecular physics community. Based on this fact, the analyses
employed in this dissertation are set up by emphasizing the response of these orbitals to a laser
field with the aim to reveal the physics underpinning resonant HHG in a conventional and
straightforward way. As it turns out, our analysis is also able to probe more general strong-field
properties such as ionic cutoff position and ionization dynamics.
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1.5. ORGANIZATION OF THIS DISSERTATION

1.5 Organization of This Dissertation
The rest of this dissertation is organized as follows. In Chapter 2, a review of some of the existing
theoretical methods on the subject of resonant HHG is presented. In Chapter 3, the mathematical
background of the methods employed in this dissertation, TD-CASSCF and TD-ORMAS, will
be discussed. The first result of our study is presented in Chapter 4 where in-depth analyses
of resonant HHG from Mn and its cations are performed within the framework of TD-MCSCF
method and the answers of important questions about the enhancementmechanism are discussed.
Chapter 5 provides results from different types of plasma elements, indium and chromium, and
serves as a universality check of the main finding in Chapter 4. The conclusion of the works
presented here, given in Chapter 6, brings together all of the key findings in order to construct a
general picture of themechanism behind resonantHHG.Here the future prospects and the impact
of the study are also discussed.
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CHAPTER 1. INTRODUCTION
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Chapter 2
Review of The Existing Studies

Resonant enhancement in HHG is an intriguing phenomena. The quantum mechanical view of
HHGwaswell understood to be a single active electron process for themost part. For instance, SFA
stipulates that the predominantly contributing states in HHG are the ground state and continuum
states, which are needed to form the continuumwavepacket [29]. The neglect of the other discrete
states comes as no surprise since SFA is build upon the phenomenological three-step model.
Resonant HHG, however, suggests that there exist another state which is as important as the
ground state and this state is most likely not a continuum state as it needs to have a notable
overlap with the ground state, otherwise the enhancement will not occur. Various theoretical
models which attempt to explain the origin of resonant enhancement in HHG have been proposed
throughout the years. In the present chapter, the review of some of these models are presented
by emphasizing the key features and the underlying assumptions.

2.1 HHG from superposition of states
In the usual three-step model, the first step comprises a tunnelling event of an electron starting
from the ground state. Taking a step further, the model to be discussed proposes that the resonant
enhancement is a result of three-step process starting from a superposition of states, instead of just
one [47]. According to this model, if the initial state consists of a coherent superposition between
ground state and an excited state lying at ∆E above the ground state where ∆E takes the value of
the enhanced energy, then the HH spectrum will exhibit strong peaks around the ∆E . In order
for this enhancement to occur, the laser frequency ω must be such that one of its odd harmonics
be coincident with ∆E , i.e. ∆E = (2nR + 1)ω for some integer nR.

Graphically, the idea of HHG from superposition of states is depicted in Fig. 2.1. According to
this model at first, the HHG process is of the single state type. Then as the atom interacts with an
increasingly strong laser field, provided the laser frequency satisfy ∆E = (2nR + 1)ω, the second
state lying at ∆E above the ground (first) state can be populated by the matching harmonic order
2nR + 1. From this point on, the subsequent three-step processes will start from a superposition
of the ground and excited states. When the ionized electron returns to the core it will go back to
the ground state. In Ref. [47], this process is mathematically described using Lewenstein model
[23], which is built upon single active electron (SAE) approximation. Therefore, the wavefunction
Ψ(t) is a solution of one-electron time-dependent Schrödinger equation

i
∂

∂t
Ψ(t) =

(
−

1
2
∇2 + zE(t) + V(r)

)
Ψ(t)

where E(t) is the laser field and V(r) is the effective core potential. Provided we know the state of
the system in the beginning which for HHG, is often taken to be the ground state |g〉, the above

9



CHAPTER 2. REVIEW OF THE EXISTING STUDIES

Figure 2.1: In superposition of state model of resonant HHG, the first step consists of an ionization from an
excited state. In the second step, the ionized electron is driven in continuum by the field. In the last step, this
electron recombines to the ground state by emitting a photon of energy Ω = ∆ω ± (2k + 1)ω. Figure adapted
from [Milošević, J. Phys. B 40, 3367 (2007)].

Schrödinger equation can be cast into integral form [29],

|Ψ(t)〉 = −i
∫ t

0
dt ′ Û(t, t ′)V̂L(t ′)U0(t ′, 0) |g〉 + Û0(t, 0) |g〉

≈ −i
∫ t

0
dt ′ ÛV (t, t ′)V̂L(t ′)U0(t ′, 0) |g〉 + Û0(t, 0) |g〉 (2.1)

where VL = zE(t) the dipole interaction term and Û and Û0 are propagators associated with
Hamiltonians with and without external field, respectively. The approximate sign is attributed
to the replacement Û → ÛV and corresponds to the so-called strong-field approximation (refer to
Section 1.4). ÛV is the evolution operator associated with Volkov Hamiltonian, which describes
an electron in an external field but without Coulomb potential. With this form of wavefunction,
following the steps prescribed by Lewenstein et al. [23, 29, Chap. 7], the expectation value of
dipole operator (or in short, time-dependent dipole moment) reads

Dipole moment in Lewenstein model of HHG

d(t) = 〈Ψ(t)|r|Ψ(t)〉

= −i
∫ t

0
dt ′

∫
d3k d∗g(k + ẑA(t)) dg(k + ẑA(t ′))E(t ′) exp(iS(k, t, t ′)) + c.c. (2.2)

where E(t) = − dA(t)/dt ,

S(k, t, t ′) =
∫ t′

t

dτ
(

1
2
(k + ẑA(τ))2 + Ip

)
,

dj(k) = 〈k|r| j〉 ,

and |k〉 momentum eigenvector. S(k, t, t ′) reflects the phase accumulated by the electron under-
going excursion in continuum. It contains the kinetic energy of that electron plus ionization
potential which will be converted to the energy of high-harmonic photon. The HH spectrum is
then calculated to be

PHH(ω) = ω
4 |d̃(ω)|2

with d̃(ω) being the Fourier transform of d(t),

d̃(ω) =
∫

dt d(t)eiωt (2.3)

and d(t) = 〈Ψ|z |Ψ〉 is the dipole moment of the system.
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2.1. HHG FROM SUPERPOSITION OF STATES

Figure 2.2: The HH intensities corresponding to |deg(ω)|2 (green), |dee(ω)|2 (red), and |d(ω)|2 (black). Figure
adapted from [Milošević, J. Phys. B 40, 3367 (2007)].

Eq. (2.2) applies for HH process starting from ground state only. If we instead require that
the initial state be a superposition between the ground |g〉 and some excited state |e〉, it can then
be shown, after making the substitution |g〉 → cg |g〉 + ce |e〉 in Eq. (2.1) and following the same
procedure that leads to Eq. (2.2) and using Eq. (2.3), that the dipole spectrum takes the form

d̃(ω) = c2
g d̃gg(ω) + c2

e d̃ee(ω) + cgce
(
d̃eg(ω) + d̃ge(ω)

)
+ d̃B(ω)

with

d̃i j(ω) =
∫

dt (di j(t) + dji(t))eiωt,

di j(t) = −i
∫ t

0
dt ′

∫
d3k d∗i (k + ẑA(t)) dj(k + ẑA(t ′))E(t ′) exp

(
iSi j(k, t, t ′)

)
,

Si j(k, t, t ′) =
∫

dτ 1
2
(k + ẑA(τ))2 + Eit − Ej t ′,

dB(ω) =

∫
dt dB(t)eiωt

= 2
∫

dt Re
{
a∗gae 〈g |z |e〉 e−i(Ee−Eg )t

}
eiωt .

The term d̃B(ω) is nonzero only if |g〉 and |e〉 have the same parity. Numerical simulations show
that the HH spectrum resulting from superposition of states is dominated by the cross term d̃eg(ω)
[48].

Applying the preceding analysis on Sn+, whose HHG spectrum is experimentally found to
have an enhanced peak at 26.27 eV [44, 70], the spectra shown in Fig. 2.2 results. This simulation
is obtained using laser intensity of 4 × 1014 W/cm2, wavelength of 802 nm and ce = cg = 1/

√
2.

The total spectrum (black) clearly exhibits several enhanced peaks around the 18-th harmonic.
The figure also shows the parts contributed by d̃ee(ω) (red) and by d̃eg(ω) (green) where it is
seen that the latter is responsible for the enhancement as well as for the cutoff position. This
observation is interpreted in the following way. During the early portion of the laser where the
field amplitude is low, single state HHG is the dominant process. As the field becomes stronger,
the kinetic energy of the continuum electron also rises up and at some point the recombination
energy (kinetic energy plus ionization potential) reaches the resonant energy ∆E and excite the
state |e〉. Then due to the strong transition amplitude between |g〉 and |e〉, state |e〉 is substantially
populated and the HHG process shifts to that starting from superposition between |g〉 and |e〉. As
the electron recombines to the ground state with return energy equals to ∆E , it emits harmonics
with frequencies ∆E ±2kω. A portion of the resonant photons excite electrons from |g〉 to |e〉 hence
further increasing the intensity of the resonant radiation.
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Figure 2.3: TheHH spectra from (a) Sn+ and (b) Sb+ as a function of fundamental laser intensity. The profiles
of some selected harmonics from Sn+ are shown in (c) while those from Sb+ in (d). Reprinted figure with
permission from [D. B. Milošević, “Resonant high-order harmonic generation from plasma ablation: Laser
intensity dependence of the harmonic intensity and phase”, Phys. Rev. A 81, 023802 (2010)]. Copyright 2010
by the American Physical Society.

This superposition model to describe resonant HHG has also been employed to investigate the
behavior of resonant harmonic intensity and phase with respect to laser intensity [71]. Fig. 2.3(a)
and (b) show the HH yields for Sn+ and Sb+ in a 2D color plot as functions of harmonic order
and intensity. From 2.3(a) and (b) we can clearly see the enhanced 17-th and 21-st harmonics,
respectively. Fig. 2.3(c) and (d) plots the intensity of several selected harmonics from Fig. 2.3(a)
and (b), respectively, as functions of laser intensity. The intensity of harmonic orders outside the
resonant region (e.g. the 11-th, 31-st, and 49-th harmonics in Sn+) exhibits oscillatory behavior
after certain laser intensity. Such oscillatory behavior has been shown to be from interference of
many quantum orbits [72–74]. On the other hand, the intensities of resonant harmonics (17-th
in Sn+ and 21-st in Sb+) increases monotonically without exhibiting any oscillation. The phase
of several harmonics are also plotted in Fig. 2.4(a) for Sn+ and 2.4(b) for Sb+. From Fig. 2.4 we
can see in general the phase of ordinary harmonics vary linearly with respect to laser intensity,
this is consistent with earlier findings [12] that shows that the phase varies as Upτ where τ is the
travel time of the corresponding quantum orbit. The phase of the resonant harmonics however is
remarkably stable.

To summarize, this theoretical model which tries to approach the problem about the mech-
anism of resonant HHG assumes the initial state to be a superposition of stationary states. The
results show that this model is indeed able to reproduce the enhancement and further allows
investigation of the behavior of resonant harmonic intensity and phase. Despite these successes,
this model does not explain in detail how the state |e〉 gets its population starting from zero. In
fact, the corresponding amplitude ce is taken to be constant while the temporal evolution of this
coefficient can be intuitively estimated to be crucial in arriving at an accurate description of the
mechanism in question.
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Figure 2.4: The phase of some selected harmonics from (a) Sn+ and from (b) Sb+. Reprinted figure with
permission from [D. B. Milošević, “Resonant high-order harmonic generation from plasma ablation: Laser
intensity dependence of the harmonic intensity and phase”, Phys. Rev. A 81, 023802 (2010)]. Copyright 2010
by the American Physical Society.

2.2 The Four-Step Model
In Section 2.1, we presented amathematical approach for describing the physics of resonant HHG.
The underlying mathematical tool of the approach is the use Lewenstein model to calculate time-
dependent dipole moment. A different viewpoint on the subject of resonant HHG was proposed
by Strelkov who suggested a modification of three-step model to insert an additional step relevant
in explaining the excitation of the upper resonant state [52]. The suggested process, which is
dubbed “four-step model”, replaces the third step with a recombination to the upper resonant
state instead of the ground state. In the fourth step, this electron then relaxates back to the ground
state emitting the resonantly enhancedHHphoton. The four-stepmodel is schematically depicted
in Fig. 2.5. It is worthwhile to appreciate the difference between this model and the superposition
of states model in the previous section. There, the entire process is essentially the usual three-step
process only that the starting state is the upper resonant state (see Fig. 2.1). Whereas in four-step
model, the resonant state comes into play at the third step, not in the first step.

Four-step model was further quantitavely studied by Tudorovskaya and Lein [50] where the
HH spectrum is calculated in a more formal way - solving the time-dependent Schrödinger
equation. The key point of their method is the use of an artificial potential having a pair of
barrier surrounding the origin. In most experimentally observed resonant HHG, the energy
corresponding to the enhanced harmonic is close to the energy difference between the ground

Figure 2.5: A schematic picture illustrating 4-step model. In the first step, an electron tunnels through a
potential barrier. In the second step, it is driven by the strong electric field in continuum. In the next step,
it recombines to an excited, metastable state. In the last step, it relaxates to its initial state emitting the
resonantly enhanced photon. Reprinted figure with permission from [V. Strelkov, “Role of Autoionizing
State in Resonant High-Order Harmonic Generation and Attosecond Pulse Production”, Phys. Rev. Lett. 104,
123901 (2010)]. Copyright 2010 by the American Physical Society.

13
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Figure 2.6: The shapes of Potential 1 and Potential 2, with the latter having higher barriers. Reprinted figure
with permission from [M. Tudorovskaya and M. Lein, “High-order harmonic generation in the presence of
a resonance”, Phys. Rev. A 84, 013430 (2011)]. Copyright 2011 by the American Physical Society.

state and some autoionizing state such that these two states are coupled by a giant transition
amplitude. An autoionizing state, being a state with a localized probability but is embedded in
continuum, makes its formal realization only possible if the system has at least two electrons. For
single electron methods such as the one considered here, the autoionizing state must be added
’by hand’ and the barriers in this method are introduced exactly for this purpose.

The 1D Schrödinger equation to be solved reads

i
∂

∂t
Ψ(x, t) =

(
−

1
2
∂2

∂x2 + V(x) + E(t)x
)
Ψ(x, t) (2.4)

where V(x) takes the form

V(x) = α
©«

1

1 + exp
(
x+β
γ

) + 1

1 + exp
(
−x+β
γ

) − 1
ª®®¬ +

δ

ε + x2

©«
1

1 + exp
(
x+β
γ

) + 1

1 + exp
(
−x+β
γ

) ª®®¬ ,
and E(t) = E0 f (t) sin(ωLt)where E0 andωL are related to the laser intensity, which is set to 4×1014

W/cm2, and to the laser wavelength, which is set to 800 nm. The pulse envelope f (t) has a
trapezoidal shape supporting 9 optical cycles. The initial state Ψ(x, t = 0) is taken to be the ground
state Ψ0(x) of the right hand side Hamiltonian of Eq. (2.4) with the external field set to zero.
Split-operator technique [75, 76] is employed to integrate Eq. (2.4). The effect of barrier shape on
the HH emission is investigated by employing two different potentials V(x)whose parameters are
α1 = 1.32, β1 = 1.27, γ1 = 0.23, δ1 = 9.5, ε1 = 1.4 for potential 1 and α2 = 1.5, β2 = 1.27, γ2 = 0.23,
δ2 = 14, ε2 = 1.4 for potential 2.

The twopotentials areplotted inFig. 2.6. The lifetimeof themetastable states for bothpotentials
is calculated from the width of the corresponding peak in the Fourier transform of a correlation
function. This correlation function is calculated as c(t) = 〈Φ0 |Φ(t)〉 where Φ0(x) = ΦG(x) −
〈Ψ0 |ΦG〉 Ψ0(x), ΦG(x) = exp

(
−(x − 0.9)2

)
, and Φ(x, t) is a time-dependent function resulting from

propagating Φ0(x) using the same Hamiltonian. It is found that the lifetime of the autoionizing
state in potential 1 is 34 a.u. and in potential 2 141 a.u.. Fig. 2.7(a) and (b) show time-frequency
spectrograms for potential 1 and 2. The time-frequency spectrogram is obtained by taking the
magnitude squared of G(ω, t) given by

G(ω, t) =
∫

dτ a(τ) exp
(
−
(t − τ)2

2σ2

)
where a(t) is the acceleration calculated as

a(t) = 〈Ψ(t)|
dV(x)

dx
+ E(t)|Ψ(t)〉

(note that by definition, a(t) = dd(t)/dt where d(t) is given by the right hand expression of the
first line of Eq. (2.2)) and the HH spectrum is then obtained by taking the magnitude squared of
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2.2. THE FOUR-STEP MODEL

Figure 2.7: (a) and (b) show the time-frequency spectrograms using Potential 1 and Potential 2, respectively.
The effect of intensity averaging (black) on single-atom spectra (pinkdashed) is shown in (c) for Potential 1 and
in (d) for Potential 2. (e) and (f) display the effect of intensity averaging on the time-frequency spectrograms
for Potential 1 and Potential 2, respectively. Reprinted figure with permission from [M. Tudorovskaya and
M. Lein, “High-order harmonic generation in the presence of a resonance”, Phys. Rev. A 84, 013430 (2011)].
Copyright 2011 by the American Physical Society.

the Fourier transform of a(t). In contrast to the established understanding, the HH signals in Fig.
2.7(a) within the plateau region are mainly contributed by long trajectories. This is, however, an
artifact of 1D simulation and in 3D simulation, the short trajectories prevail [77]. The existence of
enhanced harmonics at 1.5 a.u. and 1.75 a.u. is evident from the spectrograms in Fig. 2.7(a) and
(b), respectively. That these peaks indeed correspond to a transition between the ground state and
the autoionizing state in each potential, one may compare their harmonic energies with energy
difference between the two states in question which can be deduced from Fig. 2.6.

Macroscopic effects such as phase matching poses an interesting question because for a given
harmonic order, a constructive interference across the beam path inside the medium is necessary
to have non-vanishing signal at the detector. To model macroscopic effect, an intensity averaging
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Figure 2.8: The focal-averaged wave packetW(Ek ) for Cr+ for different intensities I = Ĩ × 1014 W/cm2 and
λ = 800 nm. Solid line, Ĩ = 2; dashed line, Ĩ = 3; dash-dotted line, Ĩ = 4; dash-dot-dotted line, Ĩ = 5; dotted
line, Ĩ = 6. Thin solid line,WEk for Ĩ = 2 without focal averaging. Reprinted figure with permission from
[M. V. Frolov, N. L. Manakov, and A. F. Starace, “Potential barrier effects in high-order harmonic generation
by transition-metal ions”, Phys. Rev. A 82, 023424 (2010)]. Copyright 2010 by the American Physical Society.

procedure is performed by calculating aeff(t),

aeff(t) =
1
N

N∑
i

aIi (t)

with N = 31 intensities between 3.85 × 1014 and 4.15 × 1014 W/cm2. The averaged HH spectra are
plotted in solid line in Fig. 2.7(c) and (d) for potential 1 and potential 2, respectively, along with
single atom spectra (red dased). In general, intensity averaging lower the harmonic intensities
but the global trend is maintained, the enhanced peaks using both potentials remain prominent.
The lowered intensity for harmonics lower than the enhanced harmonic is caused by the barriers
repelling the slow moving returning electrons. The intensity averaged spectrograms usign both
potentials are depicted in Fig. 2.7(e) and (f). These spectrograms highlight the the difference in
phase variation between short and long trajectories from which we can see that the phase of long
trajectories generally vary faster than short trajectory leading to the diminishing signals from the
former. Looking at the enhanced harmonic signal, we see that potential 2 spectrogram has lower
intensity. This behavior may be rooted in the longer lifetime, 141 a.u., of the autoionizing state
in potential 2, which is longer than the optical cycle for an 800-nm laser field. Therefore, when
an electron is captured in the autoionizing state, a portion of the previous electron in that state is
still there and the interference between the two corresponding wavepackets can be constructive
or destructive.

2.3 Factorization Formula for HHG Rate
Based on the factorization formula for HHG rate [78], this approach tries to estimate the intensity
of resonantly enhanced harmonic relative to those of the neighboring harmonics. According to
this factorization formula, the emission rate of HH photons may be approximately expressed as a
product of three factors, each of which can be associated with the three steps in the semi-classical
three-step model of HHG [26, 28]. With T being the tunneling-ionization factor, W(Ek) the
wavepacket propagation factor, and σR(Ek) the photorecombination cross-section, the rate of HH
emission R(E) around the high-energy end of the plateau reads

R(E) = TW(Ek)σR(Ek) (2.5)

where Ek is the returning electron kinetic energy. The propagation part of Eq. (2.5) includes
interference effect between short and long trajectories throughout the course of the electron in
continuum. While σR(E) describes the recombination event by emitting a photon of energy
E = Ek + Ip . Frolov et al. attempted to apply this approach to explain resonant enhancement in
HHG [51].

In order to better imitate experimental condition where the HH signal emanates from an
ensemble of atomic sources, focal averaging is carried out. Since only T and W(Ek) depend
on intensity, the averaging is carried out on the quantity W(Ek) = TW(Ek). The effect of focal
averaging for several laser intensities on W(Ek) launched from Cr+ is displayed in Fig. 2.8. It is
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Figure 2.9: (a) and (c) are experimental photoionization cross sections for Cr+ and Mn+, respectively [79]. In
(b), (d), (e), and (f), the experimental HH yield taken from [37] for Cr+ and [80] for Mn+ are represented by
the red square markers. The blue dot and green triangle markers are the results from Eq. (2.5). Reprinted
figure with permission from [M. V. Frolov, N. L. Manakov, and A. F. Starace, “Potential barrier effects in
high-order harmonic generation by transition-metal ions”, Phys. Rev. A 82, 023424 (2010)]. Copyright 2010
by the American Physical Society.

seen that the effect of focal averaging is to smooth out the interference fringes coming from short
and long trajectories interference. This means if there should be any particular feature showing
up in R(E), it must come from σR(Ek).

HH yields calculated through the factorization formula (2.5) for Cr+ and Mn+ using various
laser parameters are shown in Fig. 2.9(b), (d), (e), and (f). The experimental photoionization cross
sections for Cr+ and for Mn+ depicted in Fig. 2.9(a) and (c), respectively, are employed along with
the use of principle of detailed balance to calculate the photorecombination cross sections σR for
each element [51, 81, 82]. Comparing with experimental HHG spectra, the HH yields obtained
using factorization formula show a good qualitative agreement for a range of laser parameters as
indicated in Fig. 2.9. This approach, however, is limited by the applicability interval of Eq. (2.5)
this equation holds only near the cutoff energy in the HH spectrum [78]. Moreover, the energy
range of available experimental photoionization cross sections are generally limited.

2.4 Summary
Several single-active electron approaches have been proposed since the first experimental obser-
vation of resonant HHG from plasma. Superposition of intiial states model stipulates that the
enhancement is a result of a generalized three-step model, where in the first step, an electron
can be first excited to an excited state before being tunnel-ionized. The enhanced emission takes
place when this electron recombines into the ground state. In shape resonance approach, the
core potential is modelled to have barriers surrounding the origin. These barriers ensures the
existence of a meta-stable (autoionizing) eigenstate which is then coupled in resonance with the
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ground state upon interactionwith a laser. Factorization formulawhichwas originally formulated
for ordinary HHG had also been applied for resonant HHG. Using experimental photoionization
cross section incorporated into the calculation, this model also predicts an enhanced harmonic
around the same energy as the large peak found in the photoionization cross section.

While these methods succeeded in reproducing the enhancement, these results along with the
features in the HH spectra are subject to the starting assumptions because the methods employed
werenot first-principles. Most of thesemethods alsouse single-active-electron approximation, and
hence the multi-electron effects, such as electron correlation and multiple ionization, which can
be the actual underlying mechanism, cannot be investigated. In the next chapter, a mathematical
account of one of the most successful ab initio all-electron methods will be presented.
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Chapter 3
Description of The Theoretical
Methods

Quantum mechanics is a very successful standard model theory. It has gone through a multitude
of experimental tests and it never fails to accurately predict the experimental outcomes provided
the energies involved are well below the rest mass of the involved particles. Every non-relativistic
system involving atomic or subatomic particles is theoretically described by a scalar wavefunction
Ψ satisfying the so-called Schrödinger equation, a multi-variable partial differential equation, which
for an N-electron atom reads

i~∂tΨ(t, x1, . . . , xN ) = H(t, x1, . . . , xN )Ψ(t, x1, . . . , xN ) (3.1)

with

H(t, x1, . . . , xN ) =

N∑
i=1

(
−
~2

2m
∇2
i −

Ze2

4πε0

1
ri
+ Vext(t, xi)

)
+

e2

4πε0

N∑
i=1

N∑
j>i

1
|ri − rj |

(3.2)

where xi is the composite coordinate of the i-th electron, xi ≡ (ri, si), ri the Cartesian coordinate,
si the spin coordinate, Z the nuclear charge, and Vext(t, x1, . . . , xN ) accounts for any external in-
teraction. The correct spin coordinate of each electrons is required to obtain a ground state with
the correct spin symmetry. Eq. (3.2) is unfortunately only analytically solvable for hydrogen-like
systems where N = 1 (for reference, see Ref. [83, Sec. 4.2]). Increase the number of electrons more
than this and one will be left with no choice but to resort to numerical solution.

In this chapter, the theoretical foundationof themethodsof choice inperformingall simulations
in this thesis, dubbed as time-dependent multiconfiguration self-consistent field (TD-MCSCF), will be
outlined and discussed. In TD-MCSCF method, the wavefunction is represented as a linear
combination of many time-dependent Slater determinants,

Ψ(t, x1, . . . , xN ) =
∑
I

CI (t)I(t, x1, . . . , xN ) (3.3)

where I(t, x1, . . . , xN ) = (1/
√

N!)det(φI1(t, x1), . . . , φ
I
N (t, xN )) is a time-dependent Slater determinant,

CI (t) is time-dependent configuration interaction (CI) coefficient, and φi(t, x) is time-dependent or-
bitals. TD-MCSCF is based on variational principle where the wavefunction that (approximately)
solves Schrödinger equation (3.1) is obtained by searching for theminimumof a certain functional.
Performing this calculation, one obtains the optimum CI coefficients and orbitals at every time
step. A particular case of TD-MCSCF in which all possible electron configurations are included in
the expansion Eq. (3.3) is called multiconfiguration time-dependent Hartree-Fock (MCTDHF) [60–62].
Other variants include time-dependent complete active space self-consistent field (TD-CASSCF) [63, 64],
time-dependent occupation restricted multiple active space (TD-ORMAS) [65], and time-dependent re-
stricted active space self-consistent field (TD-RASSCF) [66]. Each of these method attempts to reduce
the computational cost of MCTDHF by enabling a custom setting of various orbital occupation
numbers. For a review of several existing time-dependent ab initiomethods, see Ref. [84]. Thema-
jority of results presented in this dissertation were obtained using TD-CASSCF and TD-ORMAS
for which reason these two methods will also be discussed in this chapter.

19



CHAPTER 3. DESCRIPTION OF THE THEORETICAL METHODS

In Section 3.1, the mathematical foundation of TD-MCSCFwill be presented in the language of
variational principle. An important improvement in computational speed toMCTDHF is achieved
by TD-CASSCF method, this will be covered in Section 3.2 where important concepts such as
redundant orbital rotations will also be explained. In Section 3.3, further speed improvement
technique bymanipulating the occupations of certain orbitals is discussed in terms of TD-ORMAS
method. This chapter is concluded by a discussion about the three important observables in
theoretical strong-field physics: dipole moment, dipole velocity, and dipole acceleration, which
are necessary to calculate the high-harmonic spectrum.

3.1 TD-MCSCF Method
In quantum chemistry, the well-known multiconfiguration self-consistent field (MCSCF) method
is very successfull in calculating the stationary properties of atoms andmolecules. Inspired by this
success, the time-dependent extension, TD-MCSCF, was developed to tackle quantummechanical
problems involving time-dependent external field. The unknowns, i.e. the quantities to be varied
to give the desired solution wavefunction, in TD-MCSCF method are the time-dependent CI
coefficients and time-dependent spatial orbitals (see Eq. (3.3)). As in most variational principle
calculations, given an integral to be minimized we try to find a set of partial differential equations
which are satisfied by the quantities (i.e. the above-mentioned unknowns) which minimize the
starting integral. This section is devoted to deriving such differential equations governing the
time-dependent CI coefficients and spatial orbitals. For the purpose of analysis of TD-MCSCF
methods, we will adopt second quantization representation of operators (for reference, see Ref.
[85, Ch. 1]). In this representation, the Schrödinger equation (3.1) becomes

i∂t |Ψ〉 = Ĥ |Ψ〉

with

Ĥ =
∑
M,N

hMN â†M âN +
1
2

∑
M,N,Λ,Γ

UMN,ΛΓ â
†

M â†N âΓ âΛ (3.4)

hMN =

∫
dx φ∗M (x)

(
−

1
2
∇2 −

Z
r
+ Vext(t, x)

)
φN (x) (3.5)

UMN,ΛΓ =

∫
dx1

∫
dx2

φM (x1)
∗φN (x2)

∗φΛ(x1)φΓ(x2)

|r1 − r2 |
. (3.6)

where each index M is to be understood as a composite index (µ, s) between spatial µ and spin
s orbitals. The operators â† and â are creation and annihilation operators for electron (fermion).
Some relevant properties of creation and annihilation operators for fermions are summarized in
Appendix A. In our TD-MCSCF implementation, the spin-orbital are restricted, i.e. a single spatial
orbital is shared by the up and down spin functions. Given the fact that none of the operators
appearing in the Hamiltonian (3.2) are spin-dependent, Eq. (3.4) can then be reduced to

Ĥ =
∑
µ,ν

hµν Êµ
ν +

1
2

∑
µ,ν,λ,γ

Uµν,λγ Êµν
λγ

with

Êµ
ν =

∑
s

â†µs âνs (3.7)

Êµν
λγ =

∑
s,s′

â†µs â†νs′ âγs′ âλs = Êµ
λ Êνγ − Êµ

γ δ
ν
λ (3.8)

where a property of creation and annihilation operators in Appendix A has been used.
Asmentioned in the opening of this chapter, TD-MCSCF obtains thewavefunction byminimiz-

ing a certain functional, this functional is referred to as time-dependent variational principle (TDVP)
[86–89] functional,

TDVP functional
S[Ψ] =

∫ t

t0

dt ′〈Ψ(t ′)|H − i∂t′ |Ψ(t ′)〉 (3.9)
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3.1. TD-MCSCF METHOD

where the temporal, spatial, and spin dependence in the Hamiltonian and wavefunction have
been suppressed. For each t, our goal is to find a particular wavefunction

��Ψ(0)(t)〉 such that
S[Ψ = Ψ(0)(t)] is a stationary point, i.e. δS[Ψ(0)(t)] = 0, that is to say our solution wavefunction is
an extremum of S[Ψ]. The emerging optimization problem will definitely be that of a nonlinear
type since the orbitals and CI coefficients are connected by multiplication in Eq. (3.3). To facilitate
the derivation, we will make use of one-parameter family approach [90, p. 20] in which the
variational quantity (i.e. |Ψ〉) is expressed in terms of a family of functions the members of which
are distinguished by a single parameter ε ,

|Ψε (t ′)〉 =
���Ψ(0)(t ′)〉 + G(ε, t ′) (3.10)

where the dependence on all-electron coordinates are implied. The offset function G(ε, t) is a
function which is required to obey the following conditions

G(0, t ′) = 0 (3.11a)
G(ε, t ′ = t0) = G(ε, t ′ = t) = 0 (3.11b)

for the following reasons. The first condition reduces the complexity of the derivation because
by setting ε = 0 anywhere in the derivation automatically brings the wavefunction |Ψε (t ′)〉 (as
we shall see later, the CI coefficients and orbitals as well) that is involved in that particular step
to the optimized one

��Ψ(0)(t ′)〉. The second condition ensures that for any time t, the algorithm
searches for the solutionwithin a family of functions having the same initial and final values as the
optimizedwavefunction. As a side note, both of these conditions are, from rudimentary theoretical
point of view, optional since Eq. (3.11a) serves to simplify the effort while Eq. (3.11b) narrows the
search space of the algorithm - it rejects all outrightly wrong functions having incorrect initial and
final values.

One way to adapt the form Eq. (3.3) for the wavefunction to Eq. (3.10) is to expand CI
coefficients in powers of ε and introduced a unitary-transformed determinant,

|Ψε (t)〉 =
∑
I

(
C(0)I (t) + εC

(1)
I (t) +O(ε2, t)

)
e−ε Â(t) |I(0)(t)〉 (3.12)

where the unitary operator exp
(
−ε Â(t)

)
is to be understood as an infinte sum

e−ε Â(t) =
∞∑
n=0

(
−εÂ(t)

)n
n!

.

Thus setting ε = 0,

|Ψ(0)(t)〉 =
∑
I

C(0)I (t)|I
(0)(t)〉 (3.13)

with I(0)(t) = (1/
√

N!)det((φI1)
(0)(t), . . . , (φIN )

(0)(t)). Substracting Eq. (3.13) from Eq. (3.12) gives
G(ε, t) and with this designation, we automatically have G(0, t) = 0. The remaining conditions
required to satisfy (3.11b) are therefore

C(r)I (t0) = C(r)I (t) = 0, r ≥ 1, ∀ I (3.14a)
Â(t0) = Â(t) = 0. (3.14b)

Hence, our task is now clear. We are going to find the stationary point of the functional S[Ψ]with
respect to a family of one-parameter functions defined in Eq. (3.12) and (3.14). However before
moving on, in order to remove unnecessary notational complication we shall change the notations
for the optimized quantities: Ψ(0) → Ψ̃, C(0)I → C̃I , I(0) → Ĩ, and φ(0)µ → φ̃µ.

We are only interested in the stationary point of S[Ψε ], therefore the next step would be to
differentiate Eq. (3.9), using Eq. (3.12), with respect to ε , and then set the right hand side to zero.
When performing the last step, one must also replace ε with zero because we have defined the
wave function in Eq. (3.13) to be the one that makes S[Ψε ] stationary. One obtains the following
equation ∫ t

t0

dt ′
(
〈Ψ(1) |H − i∂t′ |Ψ̃〉 + 〈Ψ̃|H − i∂t′ |Ψ(1)〉

)
= 0 (3.15)
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with
|Ψ(1)〉 = ∂ε |Ψε 〉

��
ε=0 =

∑
I

C(1)I | Ĩ〉 − Â|Ψ̃〉. (3.16)

In Eq. (3.15), the operator H− i∂t′ can bemoved into the bras because of the following reason. First
of all, this obviously applies to H because it is Hermitian. As for i∂t′ , we observe that the wave
function

��Ψ̃〉
as well as all of its derivatives are analytic (i.e. non-singular) and square-integrable at

all times. One can see that this is the case from the fact that the wave function is spanned by finite,
square-integrable determinants and its derivatives (e.g. the first one, given by Eq. (3.16)) live in
the same Fock space. Due to this finiteness and square-integrability of the wave function and its
derivatives, the order of time and spin-space integrals (as designated by the braket notations) can
be interchanged. Applying this on the second term of Eq. (3.15) and performing the innermost,
time integral by integration by part, one has∫ t

t0

dt ′Ψ̃∗
(
−i∂t′Ψ(1)

)
= −iΨ̃∗(t ′)Ψ(1)(t ′)

��t′=t
t′=t0
+ i

∫ t

t0

dt ′
(
∂t′Ψ̃

∗
)
Ψ
(1)

= i
∫ t

t0

dt ′
(
∂t′Ψ̃

∗
)
Ψ
(1)

where the second equality follows from Eq. (3.16) together with Eq. (3.14). Therefore, we may
now rewrite Eq. (3.15) as∫ t

t0

dt ′
(
〈Ψ(1) |(H − i∂t′)Ψ̃〉 + 〈(H − i∂t′)Ψ̃|Ψ(1)〉

)
= 0 (3.17)

which tells us that the integral of the real part of the quantity 〈Ψ(1) |(H − i∂t′)Ψ̃〉 must vanish for
every time t for the functional S[Ψ] to be stationary. These steps shall also illustrate the necessity
to define TDVP by including the time integration in Eq. (3.9) as it allows us to carry out integration
by part on t ′ which leads us to Eq. (3.17).

Before proceeding to derive the equations of motion (EOM), let’s set a check point here and
make a recollection about what we have done so far. First of all, in TD-MCSCF the optimized
quantities are theCI coefficientsCI and the orbitals (whose variations are embodied in the operator
Â). In arriving at Eq. (3.17), we differentiate S[Ψε ] with respect to ε and then require ∂ε S[Ψε ] = 0
when ε = 0. Looking back at Eq. (3.12), when ε = 0 we will have the optimized wavefunction
(3.13) regardless of the choice of C(1)I (as well as all other C(r)I for r > 1) and Â. This implies that
Eq. (3.17) must be satisfied by arbitrary choice of C(1)I and Â. The independence between CI
coefficients and orbitals also necessitates a separate variation between them. These requirements
provide a guidance in deriving the equations of motion.

3.1.1 CI Coefficient Equation of Motion
Now that we have cast the essential equation into a more transparent form of Eq. (3.17) where the
integrand turns out to be the sum of a complex quantity and its complex conjugate, we can work
on either term to proceed and incorporate the complex conjugate counterpart once we get close to
the final expression. Let’s pick out the second term and use Eq. (3.16) to substitute for |Ψ(1)〉,∫ t

t0

dt ′〈(H − i∂t )Ψ̃|

(∑
I

C(1)I | Ĩ〉 − Â|Ψ̃〉

)
. (3.18)

Since for the moment we are interested in CI coefficient EOM and the CI coefficients must be
variationally optimized independently from orbitals, upon expansion of Eq. (3.18) on the terms
inside parentheses, we only need to focus on the C(1)I part. The resulting expression contains an
integral 〈(H− i∂t )Ψ̃| Ĩ〉 and thus in what follows wewill delineate how the action of time derivative
on the wave function can be more conveniently expressed in operator form. First of all, it should
be obvious that

|i∂t Ψ̃〉 =
∑
I

i Û̃CI | Ĩ〉 +
∑
I

C̃I |i∂t Ĩ〉. (3.19)

Moreover, due to the product rule of derivative, the first time derivative acting on a determinant
acts like the sum of single electron operators and consequently, in second quantization the vector
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|i∂t I〉 in Eq. (3.19) may be represented as

|i∂t I〉 = R̂ |I〉 =
N∑
i=1

R̂(i)|I〉 =
∑
µ,ν

Rµν Êµ
ν |I〉

where

R̂ =
∑
i

R̂(i) =
∑
µ,ν

Rµν Êµ
ν

Rµν =
∫

dx φ∗µ(t, x) (i∂tφν(t, x)) .

This operator R̂ symbolizes a direct action of first time derivative on a determinant. As a short
remark about the property of R̂ , despite being connected in some way with time differentiation,
operator R̂ acts directly on determinants, it can "go through" CI coefficients although they are
also time-dependent. The hermiticity of R can be guaranteed if furthermore we require the
inner products of the time-dependent orbitals to be time-independent, which is the case in most
implementation of TD-MCSCF. This is because taking the i-multiplied time derivative of 〈φµ |φν〉 ,
f (t) gives

i〈∂tφµ |φν〉 + i〈φµ |∂tφν〉 = 0
〈φµ |i∂tφν〉 = 〈i∂tφµ |φν〉

hence establishing the hermitian property of "operator" i∂t . As a consequence of this property, the
matrix elements of R̂ between Slater determinants also obey

〈J |R̂ I〉 = 〈R̂J |I〉. (3.20)

Substituting Eq. (3.19) and (3.20) into the CI part of Eq. (3.18) and with the addition of its
complex conjugate, one obtains the CI part of Eq. (3.17), namely∫ t

t0

dt ′
∑
I

C(1)I

(
〈Ψ̃|H − R̂|I〉 + i ÛC∗I

)
+ c.c. = 0. (3.21)

As often adopted in literatures [91], we stipulate that CI and its complex conjugate to be variation-
ally independent, which according to (3.21), allows to write for the CI coefficient EOM

i Û̃CI = 〈Ĩ |H − R̂|Ψ̃〉

=
∑
J

C̃J

〈
Ĩ
��Ĥ − R̂��J̃〉 (3.22)

Note that, however, due to the freedom in choosing the global phase of the wavefunction, Eq.
(3.22) is not unique - another form of CI coefficient EOM differing in the presence of an additional
time-dependent term than Eq. (3.22) also exists. If we were to introduce a global phase factor to
the solution of TD-MCSCF, it is most convenient to extract it from CI coefficients,

C ′I = exp (iχ(t))CI . (3.23)

Substituting Eq. (3.23) into Eq. (3.22) yields a new but physically equivalent CI equation of motion

i Û̃C ′I =
∑
J

C̃ ′J
〈
Ĩ
��Ĥ − R̂ − Ûχ(t)Î��J̃〉 . (3.24)

Eq. (3.24) constitutes the most general CI coefficient equation of motion governing the temporal
evolution of CI coefficient valid for any choice of real phase χ(t). At this point however, we will
defer further algebraic manipulation of Eq. (3.24) to Section 3.2.2 below and instead let’s make a
first move to derive the EOM governing the evolution of orbitals.
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3.1.2 Orbital Equation of Motion
The second half of the system of EOM, namely the orbital EOM will be derived in this section.
If we branched out from the C(1)I part of Eq. (3.18) to obtain CI EOM, then, as one may guess,
we shall now start from the Â part of the same equation to arrive at the desired orbital EOM. In
the last paragraph before Section 3.1.1, it was mentioned that the minimum of TDVP functional
must occur at arbitrary choice of Â. Therefore, as the first step, we want to find a condition to
be imposed on the Â part of Eq. (3.18) so that this equation is satisfied for arbitrary exp

(
−εÂ

)
.

First, let’s find a good description of what it means for this unitary operator to be arbitrary. Let’s
remember how Â was defined in Eq. (3.12) - it serves as the generator of a unitary transformation
matrix exp

{
(−εÂ)

}
acting on determinants, i.e. exp

{
(−εÂ)

}
acts on the N-electron Fock space, and

it is anti-hermitian. Since inside each determinant, these N orbitals are connected by ordinary
multiplication, we can stipulate the arbitrary unitary transform to be performed on each of these
orbitals

exp
{
(−εÂ)

}
=

N∏
i=1

exp
(
−ε Â(i)

)
= exp

(
−ε

N∑
i=1

Â(i)

)
where Â(i) is an anti-hermitian operator acting on the Hilbert space of the i-th electron and[

Â(i), Â( j)
]
= 0 for all i and j. The product in the middle expression is to be understood as tensor

product between one-particle unitary operators. The last equality follows from the commutativity
of Â(i)’s. The argument in the exponent turns out to be the usual sum of one-electron operators
and we know how to transform it to the second quantized version. Thus, we have, for the unitary
operator acting on determinants

Â =
∑
µ,ν

Aµν Êµ
ν (3.25)

Substituting Eq. (3.25) into the Â part of (3.18), one has∫ t

t0

dt ′
∑
µ,ν

Aµν 〈(H − i∂t )Ψ̃|Ê
µ
ν |Ψ̃〉

=

∫ t

t0

dt ′
∑
µ,ν

Aµν

{
〈Ψ̃|HÊµ

ν |Ψ̃〉 −
∑
I

C̃∗I 〈Ĩ |R̂Êµ
ν |̃Ψ〉 +

∑
I

i Û̃C∗I 〈Ĩ |Ê
µ
ν |Ψ̃〉

}
=

∫ t

t0

dt ′
∑
µ,ν

Aµν

{
〈Ψ̃|(H − R̂)Êµ

ν |Ψ̃〉 +
∑
I

i Û̃C∗I 〈Ĩ |Ê
µ
ν |Ψ̃〉

}
,

where the second line follows from using Eq. (3.19) and the third line is obtained by using Eq.
(3.13). The second term of the last line inside the curly bracket can further be simplified by
substituting Eq. (3.24) for i Û̃C∗I , which after some algebra gives∫ t

t0

dt ′
∑
µ,ν

Aµν
(
〈Ψ̃|(H − R̂)(I − Π̂)Êµ

ν |Ψ̃〉 +
〈
Ψ̃
��Êµ
ν

��Ψ̃〉
Ûχ(t)

)
= 0 (3.26)

with I denoting identity operator and Π̂ =
∑

I | Ĩ〉〈Ĩ | the projection operator to the Fock space
spanned by determinants included in the linear expansion of the wave function.

Let’s not forget that the last equation obtained above was derived by working on the second
term only in Eq. (3.17). As has been noted before, the expression that would have resulted if we
picked the first term is just the complex conjugate of the left side of Eq. (3.26), adding this to (3.26)
and after some rearrangements yields the orbital part of Eq. (3.17),∫ t

t0

dt ′
∑
µ,ν

Aµν
{
〈Ψ̃|(H − R̂)Q̂Êµ

ν |Ψ̃〉 − 〈Ψ̃|Ê
µ
ν Q̂(H − R̂)|Ψ̃〉

}
= 0

where we have made use of the anti-hermiticity property of Â and defined Q̂ = Î − Π̂. Note
that the term containing Ûχ(t) is canceled out upon adding the complex conjugate of (3.26) - the
optimized orbitals are independent of the choice of global phase. The arbitrariness of Aµν requires
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that the terms inside curly bracket be vanishing in order to satisfy the equation, hence giving us
the sought orbital EOM,

〈Ψ̃|HQ̂Êµ
ν − Êµ

ν Q̂H |Ψ̃〉 = 〈Ψ̃|R̂Q̂Êµ
ν − Êµ

ν Q̂R̂ |Ψ̃〉.

To sum up, in this section we have derived equations of motion which are to be satisfied by
optimizing variational quantities in TD-MCSCFmethod, the CI coefficient and spatial orbital. For
convenience, these equations are written down again below

TD-MCSCF Equations of Motion

i Û̃CI = 〈Ĩ |H − R̂ − Ûχ(t)Î)|Ψ̃〉 (3.27a)
〈Ψ̃|HQ̂Êµ

ν − Êµ
ν Q̂H |Ψ̃〉 = 〈Ψ̃|R̂Q̂Êµ

ν − Êµ
ν Q̂R̂ |Ψ̃〉. (3.27b)

Eq. (3.27) above is general in the sense that they apply for general multi-determinantal method
with any possible arbitrarily set requirements on the orbital occupations. They, for instance, serve
as the starting equations in deriving orbital and CI coefficient differential equations both in TD-
CASSCF andTD-ORMAS. The readermayhave noticed that, even thoughmultiple references such
as “CI coefficient EOM” or “orbital EOM” have been made up to this point, none of them actually
contain solely the quantity which they are referred to as. The CI EOM of Eq. (3.27a) also contains
the unknown orbitals embodied inside

��Ψ̃〉
and

��Ĩ〉. Likewise, orbital EOM of Eq. (3.27b) also
couples CI coefficients which are again contained in

��Ψ̃〉
. Eq. (3.27) therefore constitutes a system

of coupled integro-differential equations satisfied by CI coefficients and orbitals which make the
TDVP functional Eq. (3.9) stationary. The dependence of Eq. (3.27) on CI coefficient is explicit,
the orbital dependency is however manifested through the presence of a compound creation and
annihilation operators Êµ

ν where ν and µ are the references to spatial orbitals. This being the case
however, in practice one does not actually directly solve these spatial orbitals, instead with the
help of basis functions, one takes the time-dependent expansion coefficients associated with the
chosen bases as the working variables. A discussion about the choice of bases is presented in
Section 3.4.1.

3.2 TD-CASSCF Method
In the special case of TD-MCSCFwhere all possible configurations are included in the determinant
bases, often referred to as multiconfiguration time-dependent Hartree-Fock (MCTDHF) method, the
computation time scales factorially with respect to the number of electrons and orbitals. This
obviously poses an upper limit in the size of the system to be simulated. An analog of complete
active space self-consistent field (CASSCF) method [92–95], dubbed as time-dependent-CASSCF
(TD-CASSCF), is developed for the purpose of alleviating the computational burden in MCTDHF
without severely compromising the accuracy [63]. The idea behind TD-CASSCF lies in the varying
degree of influence of the laser field with a given intensity on the orbitals of the atom. The deeper
an orbital is bound (for instance, as quantified by the position of the radial global maximum),
the lesser it will be distorted by an external field. Based on this behavior one may reasonably
assume that the first few orbitals be doubly occupied as well as frozen in time. Such orbitals in
TD-CASSCF are called frozen core. The capability of practically doing nothing to frozen orbitals
is what constitute the main virtue of TD-CASSCF - it can save a significant computation time by
propagating in time only a select orbitals, something that is absent in full MCTDHF. One degree
less restrictive than frozen core, is the dynamic core where the orbital is doubly occupied but is
allowed to vary in time. Dynamic core is the closer analogywith core orbitals in stationaryCASSCF
since the latter is iteratively optimized while maintaining double occupation. In obtaining the
ground state wavefunction for the simulations in this research thesis by imaginary time relaxation
(discussed later in Section 3.4.2), we set some of the deepest bound orbitals to be dynamic to let
them be self-consistently optimized.

The highest orbitals, some of which contain valence electrons, can have arbitrary occupation n
where 0 ≤ n ≤ 2 and also be time-dependent, they are called active orbital. The dominant portion of
electron correlation is expressed by the multiple rearrangements of electrons among these active
orbitals. Strong-field dynamics such as tunnel-ionization and recombination are role-playedmostly
by active electrons provided numerical parameters such as radial size, radial grid density, and
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Figure 3.1: In TD-CASSCF, the orbitals are classified into frozen core, dynamic core, and active orbitals.

angular momenta are sufficiently specified in accordance with laser intensity andwavelength. For
a given number of active orbitals and active electrons, all possible rearrangements of electrons
are included as the basis to span the total wavefunction, hence giving its name ’complete active
space’. To summarize, in TD-CASSCF we classify the spatial orbitals into three categories:

• Frozen core, where the orbital has a constant occupation of two and is also fixed in time.

• Dynamic core, where the orbital is also constantly doubly occupied but is time-dependent.

• Active orbital, where the occupation can be any number n with 0 ≤ n ≤ 2 and is time-
dependent.

As a matter of notational convention, from this point on we will adopt the following notations
to distinguish orbitals from various orbital groups. We will use {i, j, k} for core (frozen plus
dynamic), {t, u, v} for active orbitals, {a, b} for virtual orbitals, {p, q} for general occupied, and
{µ, ν, λ, γ} for general orbitals.

The orbital structure in TD-CASSCF method may schematically be depicted in Fig. 3.1. In this
example, we assume an atom having 7 spin-up and 5 spin-down electrons occupying 8 orbitals.
The first two orbitals have been set to frozen core and the next two to dynamic core. The remaining
4 electrons (3 spin-up and 1 spin-down) are allowed to occupy any of the four active orbitals. Each
configuration is multiplied by a complex time-dependent configuration interaction coefficient.
Our implementation of TD-CASSCF is restricted to spin-conserving interactions, such as dipole
interaction with strong-field laser. This allows us to make the number of spin-up and spin-down
electrons to be constant. The number of determinants resulting from rearrangements of active
electrons among active orbitals is therefore given by the number of every possible pairing between
spin-up configuration and spin down configuration, mathematically

Ndet =

(
na

Nα − Nc/2

)
×

(
na

Nβ − Nc/2

)
where na, Nα, Nβ , and Nc are the number of active orbitals, the number of spin-up, spin-down,
and core (frozen plus dynamic) electrons, respectively. Configuration scheme in Fig. 3.1 gives
Ndet = 4!/(1!3!) × 4!/(3!1!) = 16.

3.2.1 Redundant and Non-Redundant Orbital Rotations

It turns out that not all matrix elements of R̂ appearing as unknowns in Eq. (3.27) are essential for
the evolution of the wavefunction. This can be understood upon using Eq. (3.22) to substitute Û̃Ci

in (3.19) to obtain

|i∂tΨ〉 = Π̂Ĥ |Ψ〉 + Q̂R̂ |Ψ〉 (3.28)
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and expanding R̂ in the following way

R̂ =
∑

(µ,ν) ∈ red
Rµν Êµ

ν +
∑

(µ,ν) ∈ non-red
Rµν Êµ

ν (3.29)

where ∑
(µ,ν) ∈ red

Rµν Êµ
ν =

∑
i, j

Ri j Ê i
j +

∑
t,u

Rtu Ê t
u +

∑
a,b

Rab Êa
b (3.30a)∑

(µ,ν) ∈ non-red
Rµν Êµ

ν =
∑
i,t

(Rit Ê i
t + Rti Ê t

i ) +
∑
i,a

(Ria Ê i
a + Rai Êa

i ) +
∑
t,a

(Rta Ê t
a + Rat Êa

t ). (3.30b)

The sums over the red (for ’redundant’) pairs involves only rotations within the same orbital
subspace whereas those over non-red contain rotations between different orbital subspaces. The
action of Q̂ on Êµ

ν with (µ, ν) ∈ red yields zero because Êµ
ν |Ψ〉 always gives a state living in Π̂

subspace, the orthogonal complement of Q̂. On the other hand, if (µ, ν) ∈ non-red, i.e. when µ
and ν belong to different orbital subspaces, then Q̂Êµ

ν |Ψ〉 = Êµ
ν |Ψ〉 since Êµ

ν brings every single
determinant in |Ψ〉 into Q̂. The projection operator Q̂ effectively filters out the contribution from
redundant matrix elements in R̂. This arbitrariness gives us freedom in defining matrix elements
of R̂ between the same orbital subspace - these elements can be chosen to be the elements of
arbitrary Hermitian matrix θ̂(t),

Rµν = θµν (µ, ν) ∈ red.

While the non-redundant elements of R̂ must of course be solved through Eq. (3.27a) and (3.27b).
Despite arbitrary, the choice of redundant elements of R̂ may affect the stability of the time

propagation algorithm. In our TD-MCSCF program, we employ two choices of Hermitian matrix
representing the redundant elements of R̂,

θ̂(t) = 0

and

θ̂(t) = ĥ.

It is known that the choice of redundant elements of R̂ can affect the stability of the propagation
[62]. All simulation results presented in this dissertation used the first type of redundant hermitian
matrix. Alongwith the choice of global phase (see Section 3.2.2), the choice of redundant elements
of R̂ modify the form of CI equation of motion, the discussion of which will be covered in the next
section.

3.2.2 TD-CASSCF Equation of Motion for CI Coefficients - The Choice of
Global Phase and Redundant Matrix Elements

The most general form of CI equation of motion applicable for any TD-MCSCF method and the
choice of global phase as well as redundant matrix elements is given by Eq. (3.27a). But we have
not taken advantage of the freedom in choosing the global phase and redundant matrix elements
of R̂. In this section, we shall employ this freedom in order to cast Eq. (3.27a) into a more explicit
form.

As is well-known, the wavefunction of a quantum system is arbitrary up to a global phase
factor. Indeed, multiplying the wavefunction with a global phase that is independent of space but
can be time-dependent leaves expectation values invariant. Despite theoretically unimportant,
the choice of global phase can be exploited in the framework of TD-MCSCF method, e.g. to
obtain a slowly oscillating wavefunction which otherwise potentially requires very fine time step,
especially when the active space is large [63]. Note that, making a change such as

|Ψ′〉 = exp (iχ(t)) |Ψ〉 (3.32)

where χ(t) is a scalar real function, does not change the structure of functional (3.9). It is easily
shown that

S[Ψ′] = S[Ψ] + χ(t) − χ(t0),
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that is, ifΨminimizes TD-MCSCF functional (3.9), then so does any other wavefunction connected
by Eq. (3.32) with Ψ. The multiplication of wavefunction with a phase factor corresponds to the
appearance of an additional term proportional to Ûχ(t)) in the CI equation of motion

i ÛCI =
∑
J

CJ 〈I |H − R̂ − Ûχ(t)Î)|J〉. (3.33)

By invoking the results from Appendix B, we can explicitly express the matrix element of
Hamiltonian in terms of the elements of density matrices,

〈I |Ĥ |J〉 =
∑
µ,ν

hµν (DIJ )
ν
µ +

1
2

∑
µ,ν,λ,γ

Uµν,λγ (PIJ )
λγ
µν

= δIJ

(
2
∑
i

hii +
∑
i, j

(
2Ui j,i j −Ui j, ji

))
+

∑
t,u

htu (DIJ )
u
t + . . .∑

t,u

∑
i

(
2Uit,iu −Uit,ui

)
(DIJ )

u
t +

1
2

∑
t,u,v,w

(PIJ )
tu
vw Uvw,tu

= δIJ
∑
i

(hii + fii) +
∑
t,u

ftu (DIJ )
u
t +

1
2

∑
t,u,v,w

(PIJ )
tu
vw Uvw,tu

= HC
IJ + HA

IJ (3.34)

where we have defined (DIJ )
ν
µ = 〈I |Ê

µ
ν |J〉 and (PIJ )

λγ
µν = 〈I |Ê

µν
λγ |J〉 and

HC
IJ = δIJ

∑
i

(hii + fii) (3.35a)

HA
IJ =

∑
t,u

ftu (DIJ )
u
t +

1
2

∑
t,u,v,w

(PIJ )
tu
vw Uvw,tu (3.35b)

f̂ = ĥ +
f.c.+d.c.∑

i

(
2Ĵi

i − K̂
i
i

)
(3.35c)

J
µ
ν (r) =

∫
d3r′

φ∗µ(r′)φν(r′)
|r − r′ |

(3.35d)

K
µ
ν (r)φγ(r) =

∫
d3r′

φ∗µ(r′)φγ(r′)
|r − r′ |

φν(r). (3.35e)

In order to evaluate 〈I |R̂ |J〉, wemakeuse of the separation of R̂ into redundant andnon-redundant
parts (see Eq. (3.30)) and the fact that projection by 〈I | filters out the non-redundant part,

RIJ =
∑

(µ,ν) ∈ red
θµν (DIJ )

ν
µ .

Having obtained the explicit expression of operators appearing in Eq. (3.27a), we may now
proceed by considering various forms of CI equation of motion based on the choices for χ(t) and
θ̂(t).

Case 1: χ(t) = χ and θ̂(t) = 0

In this most obvious and simplest case, we have

i ÛCI =
∑
J

CJ

(
HC
IJ + HA

IJ

)
.

Case 2: χ(t) = 0 and θ̂(t) = ĥ

Since the one-particle part of 〈I |Ĥ |J〉 also contains rotations between the same orbital subspace as
RIJ does, these two quantities will cancel each other leaving only the electron-electron potential,

i ÛCI =
∑
J

CJ 〈I |Û |J〉

28



3.2. TD-CASSCF METHOD

where

〈I |Û |J〉 = δIJ
∑
i, j

{
2
(
J

j
j

)
ii
−

(
K

j
j

)
ii

}
+

∑
t,u

∑
j

{
2
(
J

j
j

)
tu
−

(
K

j
j

)
tu

}
(DIJ )

u
t + . . .

1
2

∑
t,u,v,w

(PIJ )
tu
vw Uvw,tu .

Case 3: χ(t) =
∫ t dt ′ E(t ′) and θ̂(t) = 0

By choosing Ûχ(t) = E(t) = 〈Ψ|Ĥ |Ψ〉, we find that the propagation can run with a coarser time step.
In order to evaluate E(t), we proceed in a similar way as when arriving at Eq. (3.34).

E(t) =
〈
Ψ̃
��Ĥ��Ψ̃〉

= EC + EA (3.36)

where we have defined one-electron reduced density matrix (1RDM) Dν
µ =

〈
Ψ̃
��Êµ
ν

��Ψ̃〉
and two-

electron reduced density matrix (2RDM) Pλγµν =
〈
Ψ̃
��Êµν
λγ

��Ψ̃〉
and

EC =
∑
i

(hii + fii) ,

EA =
∑
t,u

ftuDu
t +

1
2

∑
t,u,v,w

Ptu
vwUvw,tu

Then using Eq. (3.34) and (3.36) in Eq. (3.33), we arrive at

i ÛCI =
∑
J

(
HA
IJ − δIJEA

)
CJ .

The three forms of CI coefficient equation of motions (among many others) presented above
may look quite different one from another. Nevertheless, we would like to stress again, all
of them actually correspond to the same observables evaluated with respect to the optimized
wavefunction. The different choices of global phase and redundant elements of R̂ have their effect
in the numerical aspect of the method. For instance, we have found that sometimes taking E(t) as
Ûχ(t) (Case 3) enables propagation with a longer time step whereas the choice of θ̂ = ĥ makes the
numerical implementation of split operator propagation method easier.

3.2.3 TD-CASSCF Equations of Motion for Orbitals
Our goal in this section is to derive the differential equations satisfied by the time-dependent
orbitals and CI coefficients in TD-CASSCF method. For a general time-dependent orbitals (i.e.
frozen core excluded), supposing that the first time derivative of the orbital to be also a vector in
the same one-particle Hilbert space as the orbitals, we take the differential equation governing the
time-dependent orbitals to be the following relation

|i∂tφµ〉 =
∑
ν

|φν〉〈φν |R̂|φµ〉.

Hence, the aforementioned task is equivalent to finding the non-redundant matrix elements Rµν .
The redundant ones can be taken to be the elements an arbitrary Hermitian matrix.

As was pointed out at the end of of Section 3.1.2, in order to derive equations of motion for
TD-CASSCF method we start from Eq. (3.27). In order to proceed with the derivation, let’s work
on Eq. (3.27b) so that we get an equation where the various matrix elements of ĥ, Û, and R̂ are
explicitly shown. First, note that Eq. (3.27b) can be cast into

〈Ψ̃|ÛQ̂Êµ
ν − Êµ

ν Q̂Û |Ψ̃〉 = −〈Ψ̃| h̄Q̂Êµ
ν − Êµ

ν Q̂h̄|Ψ̃〉.

with

h̄ =
∑
γ,λ

(
hγλ − Rγλ

)
Êγλ

Û =
1
2

∑
µ,ν,λ,γ

Uµν,λγ Êµν
λγ .
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The presence of a series of operator such as Q̂h̄ suggests that we should expand h̄ in the same
way as R̂ is in Eq. (3.29) and (3.30). Within the same reason as outlined following Eq. (3.30), the
sums over (γ, λ) pairs within the same orbital subspace vanishes while those between different
subspaces remain. This yields

〈Ψ̃|ÛQ̂Êµ
ν − Êµ

ν Q̂Û |Ψ̃〉 =
∑

(γ,λ) ∈ non-red
h̄γλ〈Ψ̃|[Ê

µ
ν , Ê

γ
λ ]|Ψ̃〉

〈Ψ̃|ÛQ̂Êµ
ν − Êµ

ν Q̂Û |Ψ̃〉 =
∑

(γ,λ) ∈ non-red
h̄γλ〈Ψ̃| − δµλÊγν + δγν Êµ

λ |Ψ̃〉. (3.38)

where we have used a commutator identity in Appendix A. Keep in mind that for any given term
constituting the sum in the right side, φγ and φλ belong to different orbital spaces. Because of this,
when both φµ and φν belong to the same orbital subspace, the non-vanishing δµλ occurs when φλ
is in the same space as φµ and φν . But since φγ is in a different space from φλ, which is itself in the
same space as φν , Êγν will bring the wavefunction outside Π̂ and thus 〈Ψ̃|Êγν |Ψ̃〉 = 0. By the same
token, the term containing δγν also vanishes if φµ and φν belong to the same orbital space.

As for the left side of Eq. (3.38), the presence of a sequence of operators such as Q̂Êµ
ν makes it

obvious that it will also equal zero if φµ and φν belong to the same orbital space. Long story short,
Eq. (3.38) reduces to an identity 0 = 0 when φµ and φν belong to the same orbital space and thus
we need only consider the cases where they are in different orbital spaces due to which operator
Q̂ can be dropped from the left side of Eq. (3.38),

1
2

∑
µ′,ν′,λ′,γ′

Uµ′ν′,λ′γ′ 〈Ψ̃|[Ê
µ′ν′

λ′γ′ , Ê
µ
ν ]|Ψ̃〉 = −

∑
γ

h̄γµDν
γ +

∑
λ

h̄νλDλ
µ (3.39)

where Dµ
ν = 〈Ψ̃|Êνµ |Ψ̃〉 and with the conditions such that the first sum on the right runs over orbitals in

different subspace as φµ and the second sum runs over orbitals in different subspace as φν . In arriving at
Eq. (3.39), we made use of commutator properties in Appendix A. Working on the commutator in
the left side of Eq. (3.39) using these commutator identities and performing the necessary algebra,
one obtain the following equation which we will use as the starting equation to get the expression
of various non-redundant elements of R̂,

−
∑

ν′,λ′,γ′

Uνν′,λ′γ′P
λ′γ′

µν′ +
∑
µ′,ν′,λ′

Uµ′ν′,λ′µPλ
′ν
µ′ν′ = −

∑
γ

h̄γµDν
γ +

∑
λ

h̄νλDλ
µ (3.40)

where Pµνλγ = 〈Ψ̃|Ê
λγ
µν |Ψ̃〉. For various non-redundant pairs (µ, ν)), Eq. (3.40) constitutes a system

of linear equations to be solved for Rµν where φµ resides in a different orbital subspace as φν .
As a short remark, notice that the one-particle part ĥ of theHamiltonian appears symmetrically

as R̂ which implies that only those elements of ĥ between orbitals from different subspaces appear
in Eq. (3.40). It may be tempting to conclude from this that the elements of ĥ within the same
subspace to be also redundant, i.e. can be chosen arbitrarily. This is, however, not true because
these elements appear in the expression of the first time derivative of the total wavefunction (see
Eq. (3.28)). These elements are needed in calculating the time-dependent CI coefficients. We
therefore would like to emphasize that the redundancies of whatever elements of a matrix should
better be judged from the evolution of the total wavefunction, i.e. (3.28). Below we will derive Rµν
for various non-redundant pairs (µ, ν). Given the hermiticity of R̂, we will be dealing with only
four kinds of non-redundant matrix element.

Case 1: when µ = a and ν = i (d.c.)

When φµ is a virtual orbital, the first sum in the right side of (3.40) must run over core and active
orbitals. With ν = i, this range is narrowed down to core only because Di

t = 0. The core block of D̂
matrix is diagonal, i.e. Di

j = 2δi j , thus

−
∑
γ

h̄γaDi
γ = −2h̄ia = 2 (Ria − hia) . (3.41)
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The second term in the right side of (3.40) vanishes because Dγ
a = 0. For the left side of (3.40),

using the result from Appendix B we have∑
k,l, j

P ji
kl

Ukl, ja +
∑
u, j,t

Pti
u jUuj,ta+

∑
j,u,t

Pti
juUju,ta = 2

f.c.+d.c.∑
j

(
2(Jj

j )ia − (K
j
j )ia

)
+ . . .∑

u,t

Dt
u

(
2(Ju

t )ia − (K
u
t )ia

)
(3.42)

Combining Eq. (3.41) and (3.42) and defining an operator Ĝas

Ĝ=
∑
u,t

Dt
u

(
2Ĵu

t − K̂
u
t

)
, (3.43)

gives us the matrix element of R̂ between core and virtual orbitals,

Ria = fia +
1
2
Gia i ∈ d.c.

where f̂ is given by Eq. (3.35c). Owing to the hermiticity of f̂ and Ĝ, one has

Rai = R∗ia = fai +
1
2
Gai i ∈ d.c..

Case 2: when µ = a and ν = t

Like Case 1, here we still have the second sum on the right side of Eq. (3.40) zero because of
annihilation on a virtual orbital, leaving the first sum only

−
∑
u

Dt
u h̄ua . (3.45)

The left side gives∑
j,u,i

Pit
juUju,ia +

∑
u, j,i

Pit
u jUuj,ia+

∑
v,w,u

Put
vwUvw,ua = . . .

∑
u

Dt
u

f.c.+d.c.∑
j

(
2(Jj

j )ua − (K
j
j )ua

)
+Lta (3.46)

where we have defined an operator L̂ such that

Lλγ =
∑
v,w,u

Pλuwv

(
Jv
u

)
wγ(

L†
)
λγ
=

∑
v,w,u

(
Ju
v

)
γw Pvw

uλ

Combining Eq. (3.45) and (3.46) yields the matrix element of R̂ between active and virtual orbitals

Rta = fta +
∑
x

(D−1)txLxa

whose complex conjugate is

Rat = fat +
∑
x

(
L†

)
ax

(
D−1

)x
t

Note that this time, the determination of matrix element of R̂ involves an inverse operation.
This, in fact, can become the source of failure during ORMAS imaginary time relaxation for
calculating ground state. In the numerical implementation of this inversion, the eigenvalues of
1RDM are first calculated followed by inversion of the diagonal elements by adding some small
regularization parameter in the denominator to avoid singularity. In the event when even after
setting a reasonably big value for the regularization parameter, the propagation still fails, that is
usually an indication of unsuitable choice of orbital subspace division applied to the problem at
hand.
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Case 3: when µ = i (d.c.) and ν = t

This time both sums on the right side of (3.40) are nonvanishing because neither µ nor ν is virtual,∑
u

h̄ui
(
2δtu − Dt

u

)
The left side also contains more terms,

−
∑
j,k,l

Pkl
i j Ut j,kl −

∑
u,w, j

Pwj
iu Utu,wj −

∑
u, j,w

P jw
iu Utu, jw + . . .∑

k,u, j

P jt
ku

Uku, ji +
∑
u,k, j

P jt
uk

Uuk, ji +
∑
v,w,u

Put
vwUvw,ui =

−
∑
u

(
2δtu − Dt

u

) f.c.+d.c.∑
j

(
2(Jj

j )ti − (K
j
j )ti

)
−

∑
u,w

Dw
u

(
2(Ju

w )ti − (K
u
w)ti

)
+Lti

Finally, Rti and its complex conjugate are given by

Rti = fti +
∑
x

(
D̄−1

) t
x
(Gxi −Lxi) (3.48a)

Rit = R∗ti = fit +
∑
x

(
Gix −

(
L†

)
ix

) (
D̄−1

)x
t

(3.48b)

where D̄t
u = 2δtu − Dt

u . Like Case 2, an inversion is required here and regularization method is
also employed to calculate the inverse.

Case 4: either µ or ν is frozen core

In all previous cases, the core orbital being considered is a dynamic core. For matrix element
of R involving frozen core, a different treatment is required. The frozen orbitals are not among
the variational quantities since their values are predetermined throughout the simulation. Math-
ematically, this means the matrix elements of R involving frozen orbitals are not solution of Eq.
(3.40). In the implementation of TD-CASSCF used in this dissertation, we define frozen orbitals
the following way

Time evolution of TD-CASSCF frozen orbitals

φi(r, t) =

{
φi(r), length gauge
e−izA(t)φi(r), velocity gauge.

(3.49)

Therefore

Rµi =

{
0, length gauge
E(t)

〈
φµ

��z��φi〉 , velocity gauge

where φi is a frozen orbital while φµ is either active or virtual and Riµ = R∗µi .

Having derived the expression for various non-redundant matrix elements of R̂, we now have
all the necessary parts to construct the equations of motion that couple orbitals in a nonlinear
manner. For dynamic cores this equation looks like

Time evolution of TD-CASSCF dynamic orbitals

|i∂tφi〉 =
∑
ν

|φν〉〈φν |R̂|φi〉

=
∑
j

θ ji
��φ j

〉
+

∑
t

Rti |φt〉 + q̂
(

f̂ +
1
2
Ĝ

)
|φi〉 (3.50)
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with Rti , f̂ , and Ĝ are given by Eq. (3.48a), (3.35c), and (3.43), respectively. q̂ = Î −
∑

p

��φp〉〈φp �� is a
projector to virtual space. Similarly for the derivative of active orbital

Time evolution of TD-CASSCF active orbitals

|i∂tφt〉 =
∑
j

Rjt

��φ j

〉
+

∑
u

θut |φu〉 + q̂
(

f̂ + Ŷ
)
|φt〉 (3.51)

with Rjt and f̂ are given by Eq. (3.48b) and (3.35c) and an operator Ŷ is defined such that

Yλγ =
∑
t

(
L†

)
λt

(
D−1

) t
γ
.

For a given choice of redundant matrix elements θ̂ and global phase χ(t), Eq. (3.33), (3.50),
and (3.51) represent a system of nonlinearly coupled differential equations to be solved for CI
coefficients and time-dependent orbitals which, when brought together according Eq. (3.3) to
form the wavefunction, will minimize the functional (3.9). A wavefunction obtained in this way
is used to calculate various observables in this dissertation such as dipole moment, velocity, and
acceleration (see Section 3.5 below) as well as to perform related anaylises. In the next section, the
underlying concept of TD-ORMAS, a cheaper alternative to TD-CASSCF, will be outlined.

3.3 TD-ORMASMethod
TD-CASSCFmethod presented in Section 3.2 is a powerful method for dealingwithmany electron
systems. This method is efficient yet can be as accurate as the full MCTDHF provided appropriate
division of orbital space s carried out (as will be shown in Section 4.2.2). Even so, the number of
determinants grows in the same way with respect to na and Na as that in MCTDHF does with
n and N . Freezing nc orbitals virtually reduces the number of orbitals by that amount but the
way the electrons are redistributed is just the same as MCTDHF. This can result in a prohibitively
long computational time as well as large memory requirement if one has large number of ways to
rearrange active electrons.

In the present section, we will discuss another variant of TD-MCSCF which further takes
advantage of the choice in prescribing orbital occupations beyond restricting double occupation
one can do in TD-CASSCF. Given that the rate of excitation should be proportional to the laser
intensity, it sounds reasonable to assume that the higher an orbital is, the less chance it will
populated during laser interaction. Hence, it may be a good approximation to set a maximum
occupation for a particular shell nl lower than the number it can accommodate, which is 4(l + 1).
This is the basic idea underlying time-dependent occupation-restricted multiple-active-space or
TD-ORMAS method [65], which had also been developed for stationary state calculation [96, 97].

In TD-ORMAS one further subdivides the active space into several groups and specify both
maximum and minimum numbers of electrons that can occupay each active subgroup. Mathe-
matically, assuming one has G active subgroups TD-ORMAS active space structure is illustrated
the following way

A =

G⊕
g=1
Ag

where to each subgroupAg is associated the number of orbitals ng, satisfying
∑G

g=1 ng = na. Each
subgroup g can only accomodate no more than Nmax

g and no less than Nmin
g electrons,

Nmin
1 ≤N1 ≤ Nmax

1

Nmin
2 ≤N2 ≤ Nmax

2
...

Nmin
G ≤NG ≤ Nmax

G

with
G∑
g=1

Ng = NA.
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Figure 3.2: As in TD-CASSCF, in TD-ORMAS the orbitals are divided into frozen core, dynamic core, and
active orbital. The difference is that in TD-ORMAS, active orbitals set can be further divided into several
active subgroups, each of which can accommodate a range of electron occupations set by the user.

Without frozen cores, the determinants |I〉 to be included to represent the wavefunction (see Eq.
(3.3)) are therefore those whose occupation number satifies∑

µ∈g

〈I |Êµ
µ |I〉 = Ng, 1 ≤ g ≤ G. (3.52)

With frozen cores, the conditions

〈I |Êµ
µ |I〉 = 2 φµ ∈ frozen orbitals

must be added to TD-ORMAS condition (3.52). Such restriction in active space structure can yield
a drastically smaller number of determinants than there are in TD-CASSCF. In fact, TD-CASSCF
is just one special case of TD-ORMAS for which G = 1 and Nmin

1 = Nmax
1 = NA.

As an example, consider an atom having 13 electrons distributed among 8 orbitals as shown
in Fig. 3.2, where the active orbitals are divided into to groups Active1 and Active2. If we require
the following conditions on the occupations of Active1 and Active2:

Nmin
1 = 3; Nmax

1 = 4
Nmin

2 = 1; Nmax
2 = 2

then, for instance, the third configuration must be rejected because it has 2 electrons in Active1
and 3 electrons in Active2. In practice, to be as physically reasonable as possible the number
of electrons should become smaller and smaller as one goes to higher active subgroups. In
the following section, we will derive the equations of motion for orbitals and CI coefficients in
TD-ORMAS.

3.3.1 TD-ORMAS Equations of Motions
As in the caseofTD-CASSCF, inorder to solve for the timeevolutionof orbitals andCI coefficients in
the frameworkof TD-ORMAS, onemust obtain the equations ofmotiongoverning these quantities.
Conceptually, there is no big differences in the mathematical structure between TD-ORMAS and
TD-CASSCF. The underlying equations for CI coeffient and orbital are still Eq. (3.27a) and (3.27b),
respectively. One important consequence arising from subdivision of active space is that some of
the previously redundant active-active rotations now become non-redundant because for instance
a rotation Ê t

u , where φt and φu are from different active subgroups (say g and g′ respectively),
may bring some determinants in the wavefunction to Q̂ if for these determinants Ng = Nmax

g

or if Ng′ = Nmin
g′ before rotation. In general, rotations between different active subgroups bring

some determinants in the wavefunction to Q̂ and keep the rest in Π̂. On the other hand, rotations
between orbitals in the same active subgroup, as onewould guess, are redundant. For the purpose
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of this section, we shall adopt the following notation where we use primed index to denote orbital
from a different active subgroup.

First, let’s recall that during the discussion of TD-CASSCF in Section 3.2, we have never
expressed the elements of 1RDM between active orbitals explicitly, i.e. we simply write them like
Dt
u . Second, looking at Table B.1 of Appendix B, the entries corresponding to vanishing elements

of 2RDM (first to 10th line) equal zero due to operations not involving active-active rotations,
e.g.

��Ê i
tΨ

〉
, even if they do they are still projected by

��Ê t
iΨ

〉
. In short, all vanishing elements of

1RDM and 2RDM in the case of TD-CASSCF are again zero in TD-ORMAS. And for the non-zero
elements of 2RDM involving more than one active-active rotations, again we do not calculate
their explicit expressions, e.g. the 11th-14th and 16th lines. This leads to the conclusion that in
TD-ORMAS, Table B.1 is still applicable and the expression of matrix elements Ria, Rit , and Rat

(for any φt irrespective of the subgroup) in TD-ORMAS are identical to those derived in Section
3.2.3 prompting us to proceed to the calculation of Rtu′ where φt and φu′ are from different active
subgroups. A different way of thinking is required, however, to obtain the expression of Rtu′ . The
reason is, for instance, we cannot proceed past Eq. (3.27b) by eliminating Q̂ as we did in arriving
at Eq. (3.38) because rotations such as Ê t

u′ can yield a vector lying across Π̂ and Q̂. Instead, we
start by noting that the rotations involving different active orbitals do not appear in any equations
in the four cases discussed in Section 3.2.3, suggesting that all equations containing elements of R̂
between different active subgroups are obtained only if we set µ = t and ν = u′ in Eq. (3.27b), that
is if

〈Ψ̃|HQ̂Ê t
u′ − Ê t

u′Q̂H |Ψ̃〉 = 〈Ψ̃|R̂Q̂Ê t
u′ − Ê t

u′Q̂R̂ |Ψ̃〉. (3.53)

In the following we will first prove that any equations arising from Eq. (3.53) will not contain Rit ,
Ria, Rat as well as their complex conjugates.

First, we can expand R the same way as Eq. (3.29) and (3.30) only with the addition of different
active subgroups rotations to the non-redundant part

〈Ψ̃|HQ̂Ê t
u′ − Ê t

u′Q̂H |Ψ̃〉 =
∑

(λ,γ) ∈ non-red
Rλγ 〈Ψ̃|Êλ

γ Q̂Ê t
u′ − Ê t

u′Q̂Êλ
γ |Ψ̃〉.

The redundant part vanishes as before due to projector Q̂. Let’s now consider the terms containing
core-active rotations Riv Ê i

v , i.e. λ = i and γ = v. In this instance, we can drop Q̂ from the right side
because Ê i

v |Ψ〉 will always be in Q̂ space, giving us an expectation value 〈Ψ|
[
Ê i
v, Ê

t
′u

]
|Ψ〉 on the

right. Evaluating this commutator with the help of Appendix A yields

〈Ψ|−δiu′ Ê t
v + δtv Ê i

u′ |Ψ〉 = 0

The equality comes about because δiu′ = 0 and Ê i
u′ |Ψ〉 is in Q̂ space. Following similar steps, one

can show that

Rvi 〈Ψ̃|Êv
i Q̂Ê t

u′ − Ê t
u′Q̂Êv

i |Ψ̃〉 = 0
Rav 〈Ψ̃|Êa

v Q̂Ê t
u′ − Ê t

u′Q̂Êa
v |Ψ̃〉 = 0

Rva〈Ψ̃|Êv
aQ̂Ê t

u′ − Ê t
u′Q̂Êv

a |Ψ̃〉 = 0
Ria〈Ψ̃|Ê i

aQ̂Ê t
u′ − Ê t

u′Q̂Ê i
a |Ψ̃〉 = 0

Rai 〈Ψ̃|Êa
i Q̂Ê t

u′ − Ê t
u′Q̂Êa

i |Ψ̃〉 = 0

Hence we have shown that any equation arising from Eq. (3.53) exclusively has Rtu′ as the
unknowns, other elements of R̂ are absent. Herewith, one can separate this system of equations
from the other ones containing the other elements of R̂ and work on it to solve for all Rtu′ ’s.

There is no unique way in solving the ensuing matrix equation from (3.53) for Rtu′ ’s, but we
will follow Ref. [65] by employing a separation between real and imaginary parts of (3.53) as well
as of the unknowns,

Re〈Ψ̃|HQ̂Ê t
u′ − Ê t

u′Q̂H |Ψ̃〉 = Re〈Ψ̃|R̂Q̂Ê t
u′ − Ê t

u′Q̂R̂ |Ψ̃〉 (3.55a)
Im〈Ψ̃|HQ̂Ê t

u′ − Ê t
u′Q̂H |Ψ̃〉 = Im〈Ψ̃|R̂Q̂Ê t

u′ − Ê t
u′Q̂R̂ |Ψ̃〉 (3.55b)

Rtu = RR
tu + iRI

tu (3.55c)
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With (3.55c), one can rewrite the intersubgroup part of R̂, R(v,w′), as

R(v,w′) =
∑

(v,w′)∈B

(
RR
vw′ Ê

+
vw′ + iRI

vw′ Ê
−
vw′

)
(3.56)

where Ê±vw = Êv
w ± Êw

v and B = {(v,w) | (v ∈ g) ∧ (w ∈ g′) ∧ (g, g′ ∈ {g1, . . . ,G}) ∧ (g > g′)}. Using
(3.56) to replace R̂ in the right side of Eq. (3.55a) and (3.55b) and after rearranging, one gets∑

(v,w)∈B

(
M+−vw,tuRR

vw +M−−vw,tuRI
vw

)
=N−tu (3.57a)∑

(v,w)∈B

(
M++vw,tuRR

vw +M−+vw,tuRI
vw

)
=N+tu (3.57b)

valid for (t, u) ∈ B, where

M∓∓vw,tu = ∓ Im 〈Ψ|Ê∓vwQ̂Ê∓tu |Ψ〉

M∓±vw,tu = Re 〈Ψ|Ê∓vwQ̂Ê±tu |Ψ〉

N−tu = Re 〈Ψ|ĤQ̂Ê−tu |Ψ〉

N+tu = Im 〈Ψ|ĤQ̂Ê+tu |Ψ〉

Eq. (3.57) constitutes a matrix equation

Mr =N (3.59)

with M being a 2Nrot × 2Nrot square matrix, r and Nbeing 2Nrot column vectors. Nrot is given by
the total number of unique intersubgroup rotations

Nrot =
G∑

g′>g

ngng′ .

The equation of motion for dynamic core is identical to Eq. (3.50). For active orbital, a little
modification is needed to account for the change in the active space structure. For an active orbital
φt in an active subgroup g this equation reads

Time evolution of TD-ORMAS active orbitals

|i∂tφt〉 =
∑
j

Rjt

��φ j

〉
+

∑
u

θut |φu〉 +
∑
u′

Ru′t |φu′〉 + q̂
(

f̂ + Ŷ
)
|φt〉 (3.60)

where the second sum runs over orbitals in the same subgroup as φt while the third sum runs
over orbitals in different active subgroups and Rtu′ are the solutions of Eq. (3.59).

This completes our endeavour in outlining the mathematical foundations of TD-CASSCF and
TD-ORMAS methods, the two methods employed in this research. To summarize, both methods
are extension of the more general TD-MCSCF method which tries to solve multi-electron time-
dependent Schrödinger equation by variational principle, see Eq. (3.9). In both methods, one has
the ability to require a constant double occupation for some of the lowest orbitals and whether
they are also time-dependent, such doubly occupied orbitals are referred to as frozen (time-
independent) and dynamic (time-dependent) cores. The rest of the occupied orbitals can have any
occupation between 1 and 2 and are called active orbital. In TD-CASSCF, all possible determinants
arising from rearranging active electrons among active orbitals are included in the determinant
bases to represent the total wavefunction. TD-ORMAS relaxes this restriction by allowing the
user to subdivide active orbitals to multiple subgroups and to control the range of occupations for
each active subgroups. The equations governing CI coefficient and dynamic core orbital in both
TD-CASSCF and TD-ORMAS are given by Eq. (3.33) and (3.50), respectively. For active orbital, in
TD-CASSCF this equation is given by Eq. (3.51) and in TD-ORMAS by Eq. (3.60). The particular
forms of these equations depend on the choice of global phase and redundant matrix element of
R̂. Although the choices of these free parameters may affect numerical stability, any expectation
value evaluated with respect to the optimized wavefunction shall give identical value.
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3.4 Radial Discretization and Initial Condition
The time-dependent Schrödinger equation is a partial differential equation, therefore its general
solution is not uniquely defined until one imposes the boundary values of the solution.

3.4.1 Radial Discretization - The Choice of Bases
The boundary values of the solution wavefunction in spatial coordinate are determined by the
square-integrability condition which otherwise would make the wavefunction unsuitable to de-
scribe a physical situation. This square-integrability requirement in our TD-MCSCF implementa-
tion is fulfilled by choosing basis functions that vanish at the origin and drop to zero faster than r2

towards infinity. In particular, we choose spherical finite-element discrete variable representation
(FEDVR) [98–101] as the basis set to span the one-particle orbital functions. This basis function
looks like

υnlm(r) =
pn(r)

r
Ylm(θ, ϕ), (3.61)

where pn(r) are the radial DVR function defined in Ref. [98] and Ylm(θ, ϕ) is a spherical harmonic.
In FEDVR scheme, the radial distance is segmented into nFE finite elements and each finite element
further consists of nGP grid points.

The grid points in each finite element are taken to be Gauss-Lobatto quadrature points [102,
Sec. 3.1.4]. Then, one defines the so-called Lobatto shape funtion fik(r) that reads

fik(r) =


∏nGP
k′,k

r−r i
k′

r i
k
−r i

k′
, r i1 ≤ r ≤ r inGP

0, otherwise
(3.62)

whith

1 ≤ i ≤ nFE
1 ≤ k ≤ nGP

associated with the i-th finite element and the k-th grid point inside that finite element [98]. r i
k
is

the k-th quadrature grid point in the i-th finite element. Looking at Eq. (3.62), we see that at grid
points inside the i-th finite element, fik(r) evaluates to zero unless r = r i

k
. One can then associate

the index n of pn(r) with an FEDVR index pair (i, k) by requiring that the boundary grids shared
by adjacent finite elements be counted once. By this construction, pn(r) is calculated as

pn⇒(i,k)(r) =
fik(r)√
wi
k

(3.63)

when k = 2, . . . , nGP − 1, i.e. at non-boundary grid points, and

pn⇒(i,k)(r) =



fi,nGP+ fi+1,1√
wi

nGP+w
i+1
1

, k = nGP

fi−1,nGP+ fi,1√
wi−1

nGP+w
i
1

, k = 1
(3.64)

when n corresponds to a boundary point. This bridge function ensures the continuity of orbitals
at finite element boundaries. The quantity wi

k
is the quadrature weight associated to r i

k
and its

appearance in (3.63) and (3.64) is to normalize pn(r) [98],∫
dr pn(r)pn′(r) = δnn′ .

In order to ensure that the orbitals vanish at the origin and at the last radial point, the radial
DVR functions p1 and pnmax are omitted, or equivalently the corresponding expansion coefficients
cµ1,l(t) and cµ

nmax,l
(t) (see Eq. (3.65) below) be set to zero. As a side remark, the vanishing of pnmax

is actually not an exact boundary condition since if an electron is ionized, it may travell towards
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infinity. But for HHG simulation, the important continuum wavepackets are those that return to
the atom (consider the three-step model introduced in Chapter 1). The wavepackets that leave
the atom will not contribute to the harmonic emission. Furthermore, it is also advantageous to
have orbitals that slowly decrease to zero at large distances in order to minimize the effect of
electron reflection. Due to the finite simulation space, a fraction of electrons leaving the atom can
be reflected at the simulation boundary and hence create spurious radiation upon recombination.

One last point regarding orbitals’ magnetic quantum number m, since the laser field in our
implementation is always polarized in z direction, the time-dependent Hamiltonian including
the laser still commutes with L̂z , the z component of total angular momentum operator, and M ,
the total magnetic quantum number of the initial wavefunction, is conserved. This constancy of
M is achieved by conserving m of each initial orbital. For this reason, the expansion of electron
orbitals φµ(r, t) in the basis set of Eq. (3.61) does not involve summation over m’s different than
mµ, the initial magnetic quantum number of φµ(r, t). Hence the time-dependent orbital function
is expanded as

φµ(r, t) =
nmax∑
n=1

lmax∑
l=0

cµ
nl
(t)υnlmµ (r). (3.65)

The expansion coefficients cµ
nl
(t) become the working variables in solving EOMs of orbitals, i.e.

Eq. (3.49), (3.50), (3.51), and (3.60) at every time step.

3.4.2 Initial Condition - Obtaining The Ground State
The initial condition is chosen to be the ground state, which is the most common experimental
condition (this condition applies if there is no pump laser which prepares the system in an excited
state). There are many numerical ways to calculate the ground state of an atom. In the implemen-
tation of our TD-MCSCF program, we chose in particular the imaginary time relaxation method
to do this task. Basically, this method works in a very analagous way as the ordinary (real time)
propagation, one only changes the time parameter to a purely imaginary number t → −it. Any
numerical propagation method, including TD-MCSCF just described in the preceding sections,
qualifies to be used to perform the imaginary time propagation provided that the aforesaid change
of time variable is performed and no external field is present. Therefore, in this section only a
proof of concept of imaginary time propagation is presented.

The proof is straightforward, one starts by expanding the guess wavefunction |Ψ′〉 in terms of
field-free Hamiltonian eigenfunctions |Ψm〉,

|Ψ′〉 =
∑
m=0

cm |Ψm〉

The imaginary time relaxation proceeds by applying imaginary time evolution operator Û(∆t) =
e−Ĥ0∆t on the wavefunction at the current step, where ∆t is the step size, and Ĥ0 the field-free
Hamiltonian. After k steps, one has

|Ψ(k)〉 =
∑
m=0

cme−kEm∆t |Ψm〉

Since Û(∆t) is not unitary, the state |Ψ(k)〉 needs to be renormalized,��Ψ̄(k)〉 = |Ψ(k)〉√
〈Ψ(k)|Ψ(k)〉

=

∑
m=0(cm/c0)e−k∆Em∆t |Ψm〉√∑

m=0 |(cm/c0)|2e−2k∆Em∆t
(3.66)

with ∆Em = Em − E0. Eq. (3.66) is easily seen to approach eiArg(c0) |Ψ0〉 when k is very large.
Hence, the key reason of the working of imaginary time relaxation is renormalization. In

practice, it is better to renormalize the wavefunction after every time step in order to prevent
the norm from going smaller than the smallest representable number of the chosen computer
precision. The advantage of using imaginary time relaxation to calculate the ground state is that it
provides a check for the correctness of the algorithm implementation for at least the field-free part
of the time propagation program. One, for instance, can check the resulting ground state energy
against the available benchmark references. On the other hand, comparison of the result of real
time propagation, e.g. time-dependent acceleration (see Section 3.5), is impractical as benchmark
references are hardly available. Towards the end of this chapter, we will discuss the important
observables in HHG simulation, dipole moment, dipole velocity, and dipole acceleration.
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3.5 Dipole Moment, Velocity, and Acceleration
When irradiated by an external lightfield, atoms or molecules will response by emitting a sec-
ondary radiation. In experiment, when the external lightfield is provided by a strong-field
(1013 − 1014 W/cm2) laser, this secondary radiation is what we observe as high-harmonic photons.
Now it remains to formulate how we can express this secondary radiation in mathematical terms.
This is traditionally done by taking a direct analogy with the well-known classical electrodynamic
result which states that the secondary emission from an oscillating dipole antenna driven by an
external electromagnetic field is proportional to the dipole acceleration. With HHG being exactly
the secondary emission of a quantum systems (provided the driving radiation lies in the strong-
field regime), one then take it to be proportional to the second time derivative of the induced
dipole moment (i.e. acceleration) of electrons in the atoms or molecules [29, p. 274],

Es(t) ∝
d2

dt2 〈Ψ|d̂ |Ψ〉

with d =
∑N

i zi is the total dipole moment and we have assumed the laser to be polarized in
z direction. The all-important HH spectrum is finally calculated as the power spectrum of the
Fourier transform of Es(t).

The dipole moment is a sum of single-electron operators, its expectation value is therefore
given by

d(t) = 〈Ψ|d̂ |Ψ〉 =
∑
µ,ν

zµν Êµ
ν .

The velocity and acceleration, however, must take a slightly different form as those that would
have resulted if one solves TDSE (3.1) with exact method. When the wavefunction is the exact
solution of TDSE, a quantity defined to be the first time derivative of an expectation value of
another observable Ô reads

d
dt
〈Ψ|Ô |Ψ〉 = −i 〈Ψ|

[
Ô, Ĥ

]
|Ψ〉 + 〈Ψ|

∂Ô
∂t
|Ψ〉 .

The non-exact nature of TD-CASSCF (or any general TD-MCSCF method with truncated orbitals)
manifest in the appearance of an additional term which reflects the non-completeness of the
determinant bases. To understand this, we start by expanding the time derivative of 〈Ô〉 using
product rule of derivative

d
dt
〈Ψ|Ô |Ψ〉 =

〈
∂Ψ

∂t

����Ô����Ψ〉
+

〈
Ψ

����Ô����∂Ψ∂t

〉
+ 〈Ψ|

∂Ô
∂t
|Ψ〉 .

Then using Eq. (3.28) to replace the first time derivatives of Ψ gives, after some algebra,

i
d
dt
〈Ψ|Ô |Ψ〉 = 〈Ψ|

[
Ô, Ĥ

]
|Ψ〉 + i 〈Ψ|

∂Ô
∂t
|Ψ〉 + ∆( ÛO)

where

∆( ÛO) = 〈Ψ|ÔQ̂R̂ − R̂Q̂Ô |Ψ〉 − 〈Ψ|ÔQ̂Ĥ − ĤQ̂Ô |Ψ〉

=
∑
µ,ν

Oµ
ν

{
〈Ψ|Êµ

ν Q̂R̂ − R̂Q̂Êµ
ν |Ψ〉 − 〈Ψ|Ê

µ
ν Q̂Ĥ − ĤQ̂Êµ

ν |Ψ〉
}
. (3.67)

We note that the terms inside curly brackets in (3.67) is identical to (3.27b) after bringing the right
side terms to the left. From Eq. (3.67) we may see the reason of the appearance of this additional
term to be the existence of unoccupied determinant space Q̂, which disappear if all of the infinitely
many determinants are inlcuded.

The correction term ∆( ÛO) bears an important consequence for the correct determination of the
time derivative of an expectation value in TD-CASSCF because this term is non-vanishing only
when one has frozen orbitals. We recall that the various matrix elements of R (excluding those
that involve frozen orbitals) derived in Section 3.2.3 serve as the solution of Eq. (3.27b) for a
particular orbital pair (µ, ν). This means, if all Rµν’s appearing in Eq. (3.67) were such solutions,
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then ∆( ÛO) = 0. If, however, there are frozen orbitals among the summed indices µ or ν, the ensuing
terms will not vanish.

We note that the terms for which µ and ν belong to the same orbital subspace do not contribute
to ∆( ÛO) as is evident from the appearance of operator sequence Q̂Êµ

ν and its Hermitian conjugate.
Therefore, the pairs (µ, ν) which contribute to ∆( ÛO) only come from those in which one of them is
frozen orbital and the other is either active or virtual. Using Case 1 and Case 3 from Section 3.2.3,

∆( ÛO) =
f.c.∑
i

∑
t

Oi
t

(
−

∑
u

h̄ui D̄t
u +

1
2
〈Ψ|

[
Û, Ê i

t

]
|Ψ〉

)
+

f.c.∑
i

∑
a

Oi
a

(
−2h̄ai +

1
2
〈Ψ|

[
Û, Ê i

a

]
|Ψ〉

)
− c.c.

= 2i
f.c.∑
i

∑
t

Im

{
Oi

t

(∑
u

D̄t
u (Rui − fui) − Gti +

∑
v,w,u

Put
vw

(
Jvu

)
wa

)}
+ . . .

2i
f.c.∑
i

∑
a

Im
{
Oi

a (2 (Rai − fai) − Gai)
}
.

The velocity and acceleration are therefore calculated as

Time-dependent dipole velocity and acceleration

v(t) =
d
dt

d(t) = −i 〈Ψ|
[
d̂, Ĥ

]
|Ψ〉 − i∆( Ûd) (3.68)

a(t) =
d
dt

vexact(t) = −i 〈Ψ|
[
P̂z, Ĥ

]
|Ψ〉 − i∆( ÛPz). (3.69)

where

P̂z =
∑
µ,ν

(pz)µν Êµ
ν ,

vexact(t) = −i 〈Ψ|
[
d̂, Ĥ

]
|Ψ〉 .

The HH spectrum is then calculated to be the magnitude squared of Fourier transform of a(t),

HH spectrum

PHH(ω) =

����∫ ∞

−∞

dt a(t)eiωt

����2 (3.70)

With the HH spectrum often becoming the cardinal quantity in any test of a computational
method applied for strong-field simulations, Eq. (3.69) and Eq. (3.70) constitute two of the most
important equations in the present chapter. All HH spectra presented in the subsequent chapters
are calculated exactly through these formula.

As a side remark pertaining the situation where ionization is significant, in this instance the
instantaneous electron cloud may be driven substantially off the origin even around the time
when the laser pulse has passed. This happens when the strong field interaction leaves the atom
in a superposition state such that the electron cloud is highly asymetric. The substantially large
dipole moment around the pulse end can prevent a faithful calculation of Fourier transform to
get the dipole spectrum (if for some reason required). On the other hand, after the laser field
diminishes the acceleration will be oscillating more or less symmetrically around zero (think of
a forced classical pendulum after the driving force is removed). For this reason, it is desirable to
make use of the derivative property of Fourier transform which allows us to calculate the dipole
as well as velocity spectra from the acceleration spectrum, i.e. HHG spectrum, by multiplication
with 1/ω2 and 1/ω respectively.

3.6 Summary
In TD-MCSCF, the total time-dependent wavefunction is represented as a linear combinations of
time-dependentdeterminantswith time-dependentCI coefficients, seeEq. (3.3). Thedeterminants
are up from time-dependent orbitals, which alongwith theCI coefficients constitute the variational
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quantities to be optimized in TD-MCSCF. The full TD-MCSCF, i.e., when the occupation of orbitals
are not restricted, is referred to as MCTDHF. Being computationally prohibitive if the number of
CI coefficients is large, an improvement in computation time is offered by TD-CASSCF thanks to
its ability in restricting double occupation for some orbitals, effectively reducing the number of
configurations, while still possessing gauge invariant property. Further reduction in computation
time can be achieved by dividing active orbitals into several subgroups and imposing restriction
on the range of occupations in each subgroup. This method corresponds to TD-ORMAS, which
is also gauge invariant. The equation of motion (EOM) for CI coefficients in TD-CASSCF and
TD-ORMAS are the same, and is given in Eq. (3.27a) up to the choice of phase factor χ(t). The
EOMs for frozen, dynamic, and active orbitals in TD-CASSCF are given in Eq. (3.49), (3.50), and
(3.51), respectively. While EOMs for frozen and dynamic orbitals in TD-ORMAS are identical as
in TD-CASSCF, the EOM for active orbital is given in Eq. (3.60). These orbital EOMs are, however,
up to the choice of redundant matrix elements θ̂. The particular choices of these freedoms, i.e., the
choice of global phase factor and redundant matrix elements do not change expectation values of
observables calculated with respect to TD-MCSCF wavefunction, but they may affect the stability
of the numerical propagation.
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Chapter 4
Resonant High-Harmonic Generation
from Mn Plasma

The systems considered in the current chapter are Mn (Z = 25), Mn+ and Mn2+. With moderate
number of electrons, atomic Mn and its first few cations are an ideal testbed to verify the capa-
bility of resource-intensive methods such as TD-CASSCF and TD-ORMAS to reproduce resonant
enhancement in HHG. From the perspective of application, HHG fromMn plasma also possesses
an attractive feature, the photon energy where the resonant enhancement occurs, ∼ 50 eV, is the
highest among other metallic plasma that have been reported so far as HH source [37, 38]. The
primary goal of this chapter is therefore to investigate resonant enhancement that is experimen-
tally observed in Mn plasma HHG and to arrive at an understanding about the mechanism that
gives rise to this enhancement.

4.1 Simulation Conditions
All simulation results presented in this chapter were obtained using TD-MCSCF methods dis-
cussed in Chapter 3. For easier reference for the rest of the chapter, the input parameters of these
simulations, such as orbital subspace decompositions, laser parameters, grid points and so on, are
compiled in the present section.

4.1.1 Ground State Simulation Conditions
As outlined in Section 3.4.2, the ground state is obtained by running a numerical propagationwith
purely imaginary time. For all ground states used in the present chapter, Slater type functions are
used as the guess orbital to feed the imaginary time relaxation. The orbital subspace decomposi-
tions used in obtaining the ground states are displayed in Fig. 4.1. The DVR grid points used to
span the orbitals during ground state calculations are identical for Mn, Mn+, and Mn2+, and are
presented in Table 4.2.

The electronic configurations of Mn, Mn+, and Mn2+ are given in Table 4.3. In this section,
except for Mn2+ we generally employ two different methods to get the ground state. The first
method is CASSCF which uses orbital schemes as depicted in 4.1(a), (b), and (c) for Mn, Mn+, and
Mn2+, respectively. The second method is ORMAS, which uses Fig. 4.1(d) and (e) for Mn and
Mn+. No ORMAS result for Mn2+ is presented because many computationally tractable ORMAS
orbital occupation settings have been tried, yet all of them fail to produce a ground state with
vanishing dipole moment, as it should for a stationary state of an atommust have a definite parity.

For Mn and Mn+, CASSCF requires at least 15 orbitals to accomodate all electrons so that
Pauli exclusion principle is still satisfied, whereas for the dication a minimum of 14 orbitals are
needed. For the purpose of a later study in finding out which orbitals are responsible for the
resonant enhancement, it becomes necessary to vary the boundary between dynamic and active
orbitals. These different orbital schemes are indicated by “dn. 2p”, “dn. 3s”, and “dn. 3p” in
Fig. 4.1 and “MCHF” (not shown) where all 15 orbitals are active. In order to have more accurate
analysis, we also prepare ground states for Mn and Mn+ obtained using ORMAS single double
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4.1. SIMULATION CONDITIONS

Figure 4.1: Orbital subspace decompositions used to calculate the ground states for simulations in the present
chapter.

Table 4.2

Interval no. of FEs nGP per FE
0.0 − 1.0 1 25
1.0 − 3.0 1 25
3.0 − 6.0 1 25

6.0 − 10.0 1 25
10.0 − 42.0 8 25

(SD) method with 24 orbitals (Fig. 4.1(d) and (e)). In this method, we chose to divide the active
orbitals into two subgroups: Active1 andActive2 as indicated in Fig. 4.1(d) and (e), and restrict up
to two electron excitations (hence the specification single double) from Active1 to Active2. These
ORMAS simulations were carried out in a phased manner. For example, to get ORMAS final
wavefunction for Mn, we start the imaginary time relaxation by using CI coefficients and orbitals
produced by orbital scheme “dn. 2p” in Fig. 4.1(a) as the guess wavefunction instead of using the
Slater type functions. This proves to be more stable in that it allows longer time step to be used
during the ORMAS (last) phase. Whereas for Mn+, the ORMAS phase started from CI coefficients
and orbitals produced by CASSCF with the same orbitals as Fig. 4.1(b) except that all of them are
active (i.e. MCHF).

The resulting ground state energy, number of determinants, and orbital energies of Mn and
Mn+ using MCHF, dn. 2p, dn. 3s, dn. 3p, and ORMAS and of Mn2+ using MCHF, dn. 2p, dn.
3s, and dn. 3p are summarized in Table 4.1. We do not perform simulation on higher ionic states
than the dication because the laser intensities used throughout this chapter do not exceed 3× 1014

W/cm2, which is to be compared with the barrier suppression intensity of the dication in Table
4.3.

4.1.2 HHG Simulation Conditions
The calculated ground states discussed in Section 4.1.1 serve as the initial boundary value of
wavefunction for the real-time propagation (the HH simulation). These HH simulations must

45



CHAPTER 4. RESONANT HIGH-HARMONIC GENERATION FROMMN PLASMA

Table 4.3: Experimental ionization potential Ip , barrier-suppression inten-
sity IBS , and the ground-state configuration of Mn, Mn+, and Mn2+.

Mn Mn+ Mn2+

Ipa 7.43 15.64 33.67
IBSb 1.2 × 1013 2.4 × 1014 5.2 × 1015

GSc [Ar]4s23d5(6S5/2) [Ar]4s3d5(7S3) [Ar]3d5(6S5/2)

aExperimental ionization potential in eV [103].
bBarrier-suppression intensity in W/cm2.
cGround state configuration [103].

Figure 4.2: Orbital subspace decompositions used to perform HH simulations in the present chapter.

use the same orbitals and employ the same orbital occupation scheme as those used in obtaining
the starting ground state, i.e. frozen or dynamic orbitals in the ground state can be made frozen
or dynamic as well for the HH simulation since the occupations are still double, but not active.
Meanwhile an active orbital in the ground state can only become active orbital in the HH simu-
lation. In case TD-ORMAS is requested, the number of subgroups, which orbitals belong to each
subgroup, and the occupation restrictions (e.g. single, double, triple etc) in each subgroup must
also be identical between ground state and HH simulations. Bearing these requisites in mind, we
set the orbital schemes for HH simulations as depicted in Fig. 4.2, i.e. all dynamic orbitals in Fig.
4.1 have been changed to frozen.

ForHH simulations, theDVR radial grid points should be larger than and contain those used in
the corresponding ground state calculation, these grids are given in Table 4.4, Table 4.5, Table 4.6,
Table 4.7, and Table 4.8. The other inputs, which are single-valued parameters, are summarized
and defined as follows,

Lmax = Maximum angular momentum in a.u. for spherical harmonics.
p. shape = Pulse shape.
λ0 = Laser center wavelength in nanometers.
I0 = Laser peak intensity in W/cm2.
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4.1. SIMULATION CONDITIONS

Input 4.1
Lmax 47
p. shape sin2

λ0 770
I0 3 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 10000
Grid Table 4.4
Absorb irECS
rabs 46.0
θ 15°

Input 4.2
Lmax 47
p. shape sin2

λ0 770
I0 3 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 17000
Grid Table 4.5
Absorb Mask
rmask 205.7

Input 4.3
Lmax 47
p. shape sin2

λ0 770
I0 3 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 10000
Grid Table 4.6
Absorb Mask
rmask 160

Input 4.4
Lmax 45
p. shape sin2

λ0 1820
I0 5 × 1013

ϕCEP 0°
p. length 4-cycle
nsp 15000
Grid Table 4.7
Absorb irECS
rabs 142.0
θ 15°

Input 4.5
Lmax 40
p. shape sin2

λ0 1333.7
I0 1 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 17000
Grid Table 4.5
Absorb Mask
rmask 205.7

Input 4.6
Lmax 40
p. shape sin2

λ0 1333.7
I0 1 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 17000
Grid Table 4.8
Absorb Mask
rmask 154.7

ϕCEP = Laser carrier-envelope phase in degree. A value of 0° means that
an oscillation peak coincides with the envelope peak.

p. length = Pulse length in cycle.
nsp = The number of temporal points in single cycle
Grid = Radial DVR grid points.
Absorb = The type of absorbing boundary.
rmask = Needed if Absorb = mask, and is the radial position of the start

of cos1/4 damping part. Unit in Bohr.
rabs = Needed if Absorb = irECS, and is the radial position where the

complex region begins. Unit in Bohr.
θ = Needed if Absorb = irECS, and is the damping parameter that

controls the rate of decay of the orbital within the complex region.
Unit in degree.

The sets of input parameters which are employed in various HH simulations in this chapter
are listed in Input 4.1, Input 4.2, Input 4.3, Input 4.4, Input 4.5, and Input 4.6. Some of these input
sets use infinite range exterior complex scaling (irECS) [104, 105] to efficiently reduce the radial
size. The use of irECS is characterized by two parameters, the radial boundary between real and
complex regions and the damping parameter (mathematically, the angle in the complex region).
The choice of complex region boundary is based on the quiver amplitude of laser-driven electrons.
As far as our experience is concerned, about twice the quiver amplitude is sufficient to place the
complex region boundary. For example, irECS is used in Input 4.1 and Input 4.4 where the laser
intensity is 3 × 1014 W/cm2 and the wavelength is 770 nm, hence the classical quiver amplitude is
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Table 4.4

Interval no. of FEs nGP per FE
GS grid Table 4.2

42.0 − 46.0 1 25
46.0 − 54.0 2 25
54.0 − 58.0 1 25

Table 4.5

Interval no. of FEs nGP per FE
GS grid Table 4.2

42.0 − 242.0 50 25

Table 4.6

Interval no. of FEs nGP per FE
GS grid Table 4.2

42.0 − 202.0 40 25

Table 4.7

Interval no. of FEs nGP per FE
GS grid Table 4.2

42.0 − 142.0 25 25
142.0 − 150.0 2 25
150.0 − 154.0 1 25

Table 4.8

Interval no. of FEs nGP per FE
GS grid Table 4.2

42.0 − 182.0 35 25

about E0/ω
2
0 ≈ 26.4 Bohr. Therefore, the complex region boundary is chosen to be at r = 46 Bohr

and set the damping parameter θ = 15°.

4.2 TheResonantEnhancement inHHSpectrumfromMnPlasma

The all-important HH spectra from Mn, Mn+, and Mn2+ will be presented here. The TD-CASSCF
(light color) and TD-ORMAS (dark color) time-dependent dipole moment, dipole velocity, and
dipole acceleration as well as their respective power spectra for Mn, Mn+, and Mn2+ are shown in
Fig. 4.3, Fig. 4.4, and Fig. 4.5, respectively. The orbital subspace decomposition for TD-CASSCF
results for Mn, Mn+, and Mn2+ are obtained using Fig. 4.2(a) fz. 2p, 4.2(b) fz. 2p, and 4.2(c)
fz. 2p, respectively. The laser parameters and other input parameters for these simulations are
summarized in Input 4.1. Whereas for TD-ORMAS results, Mn and Mn+ simulations use orbital
subspace decompositions in Fig. 4.2(d) and Fig. 4.2(e) and laser and other input parameters in
Input 4.2 and Input 4.3, respectively.

From velocity spectrum in panel (e) and acceleration or HHG spectrum in panel (f) of Fig. 4.3,
4.4, and X, it is evident that the harmonic peak around 51.5 eV is enhanced several times stronger
than the neighboring ones. Recall that the experimentally observed enhancement fromMnplasma
occurs at around 50 eV (see Table 1.1) [37, 38]. Upon comparing TD-CASSCF and TD-ORMAS
results in Mn and Mn+, it is seen that in general the two methods produce qualitatively similar
dipole moment, velocity, and acceleration as well as their spectra. The features of the spectra
such as resonance position and cutoff energy agree reasonable well between the two methods.
Hereby, we have demonstrated the success of TD-CASSCF and TD-ORMAS in reproducing the
experimentally observed resonant enhancement in HH spectra from Mn plasma. With spin
multiplicities of 6 and 7 (Table 4.3), to the best of our knowledge our results demonstrate a
pioneering successful time-dependent ab initio simulations applied to open-shell systems having
high spin quantum numbers.

4.2.1 Calculated Excitation Spectra
Being a transition element in the periodic table, Mn has partially filled 3d orbitals - five electrons
are in there in Mn, Mn+, and Mn2+. Therefore, provided the exciting light has a sufficient photon
energy, one photon absorption can easily induce core excitation to 3d orbitals from a lower orbital.
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Figure 4.3: The time-dependent dipole moment (a), velocity (b), and acceleration (c) from neutral Mn using
TD-ORMAS (dark color) and TD-CASSCF fz. 2p (light color). The corresponding power spectra are plotted
in (e)-(f). To enhance visibility, TD-CASSCF results are shifted in (a)-(c) and scaled in (e)-(f), with the amount
of shift and scaling indicated after the plot label. The HH spectra are the acceleration spectra in panel (f).

Fig. 4.6 shows 3p photoabsorption cross sections ofMn,Mn+, and Cr (Cr also has five 3d electrons)
within an energy range from 42 eV to 70 eV [106]. Around 51 eV in Mn andMn+ and 43.6 eV in Cr,
one can see one or several prominent peaks. Each of these peaks is associated to a highly probable
one-electron transition from 3p to 3d. By means of TD-MCSCF method, excitation spectra of this
sort can be calculated.

In order to calculate excitation spectra, δ-kick simulations were performed where the external
field takes the form of a delta impulse having non-zero values only at three consecutive points
and low intensity (1 × 108 W/cm2). In such interaction, the system starting from ground state
receives a jolt, populating many excited states. Taking the time-dependent dipole moment with
respect to such wavefunction and calculate the power spectrum yields an excitation spectrum.
The calculated excitation spectra of Mn, Mn+, andMn2+ obtained through TD-CASSCF fz. 2p and
TD-ORMAS SD (see Fig. 4.2) are shown in Fig. 4.7. One can confirm that there does exist a large
transition line at 50.3 eV in all ionic species calculated with TD-CASSCF fz. 2p (Fig. 4.7(a)) and at
51.5 eV in Mn and Mn+ calculated with TD-ORMAS SD (Fig. 4.7). We note that these peaks are
about as strong as the lowest transition line.

Although eventually the calculated excitation spectra confirm the experimental ones (at least
within an energy range around 50 eV), e.g. the Mn and Mn+ panels in Fig. 4.6, the calculated
spectra are still necessary in order to ascertain that the enhancement at a particular energy is indeed
accompanied by the presence of a large transition amplitude at the same energy obtained through
the same method. Calculated excitation spectra are also essential when the giant transition lines
from different ionization stages of the atom do not coincide.

4.2.2 The Role of 3p Orbitals in The Resonant Enhancement
The question that naturally arises following the observation of anunusually intense harmonic peak
in the plateau region is undoubtedly regarding the physics behind it. Some early works link the
origin of such enhancement with the existence of a giant transition amplitude at the same energy
where the enhancement occurs [35, 36]. Indeed, looking back at Fig. 4.6, there exist a large 3p
photoabsorption peak around 51 eV.Whether this is the actual mechanism, none of the previously
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proposed methods were able to unambiguously provide an answer. These methods rely on SAE
approximation and the resonant structure is encoded in the choice of potential (the procedure of
which is likely to be of a trial-and-error type) or by manually introducing a second state to be
superposed with the ground state (see Chapter 2). In SAE methods, clearly the knowledge of

50



4.2. THE RESONANT ENHANCEMENT IN HH SPECTRUM FROMMN PLASMA

Figure 4.6: Experimental relative absorption cross sections for Mn, Mn+, and Cr. Reprinted figure with
permission from [J. W. Cooper, C. W. Clark, C. R. Cromer, T. B. Lucatorto, B. F. Sonntag, E. T. Kennedy, and
J. T. Costello, “Marked differences in the 3p photoabsorption between the Cr and Mn+ isoelectronic pair:
Reasons for the unique structure observed in Cr”, Phys. Rev. A 39, 6074 (1989)]. Copyright 1989 by the
American Physical Society.
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Figure 4.7: Calculated excitation spectrum of Mn, Mn+, and Mn2+ obtained using (a) TD-CASSCF and (b)
TD-ORMAS.

which orbitals are responsible for the resonance is not accessible.
TD-MCSCF relies on the representation ofwavefunction in determinantswhich is furthermade
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up of time-dependent one-particle orbitals. We exploit this property of our TD-MCSCF method
to gain a deeper insight into the physics underlying resonant HHG. In this section, we start the
analysis by varying the boundary between frozen and active orbitals during HH simulations in
Mn, Mn+, and Mn2+ (Fig. 4.2(a), (b), and (c)) [69]. The results are summarized in Fig. 4.8. All
spectra presented in Fig. 4.8 are obtained using Input 4.1.

First, we run MCTDHF simulations (all orbitals active in Fig. 4.2) and the thick dark green
spectra (MCTDHF) resulted. As it should be, this method, which is the most accurate simulation
within 15 orbitals restriction, is able to seamlessly produce the resonant enhancement at 51.5 eV.
Then, orbitals from 1s to 2p are frozen (using fz. 2p in Fig. 4.2(a), (b), and (c)) and we obtain the
thin cyan spectra which are practically still identical to the MCTDHF spectra in all ionic species.
This result demonstrates that TD-CASSCF can be as accurate as MCTDHF provided the choice of
orbital subspace decomposition is appropriate with respect to laser parameters. Adding onemore
orbital 3s to be frozen (using fz. 3s in Fig. 4.2(a), (b), and (c)), we get the dashed yellow spectra
(fz. 3s) exhibiting no discernible differences with previous two spectra. Finally, when 3p orbitals
are frozen (using fz. 3p in Fig. 4.2(a), (b), and (c)), a notable modification in the spectrum around
the resonant energy is observed - the enhancement is lost. This observation hints at a crucial
involvement of transitions from 3p orbitals in the enhancement process in Mn plasma because
by freezing 3p orbitals, we are actually removing any determinants in the determinant basis set
where 3p orbitals are not doubly occupied, i.e., no 3p transitions can happen if these orbitals are
frozen. Fig. 4.8 further tells us that the contribution from these unknown transitions involving
3p is effectively limited to the enhancement only. If one compares fz. 3p spectra and any of the
other three spectra in each ionic species, one sees that the differences in the shape of the peaks are
remarkably small outside the enhancement region.

Fig. 4.8(d) shows a close up view of the enhanced harmonic from fz. 2p HH spectra in Fig.
4.8(a) and (b). While it is possible to quantify the full width at half maximum (FWHM) of Mn+

peak, due to the substructures appearing inMnpeak doing sowill not give a valuewhich allows an
accurate comparisonwithMn+ peak. It is known that the width of the harmonics in HH spectra in
general scales reciprocally with driving laser pulse duration. Although a proper analysis has not
been performed in this dissertation, the width of the enhanced peak does not necessarily behave
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and λ0 = 1333 nm.

the same way as the ordinary harmonics when the driving pulse duration is changed. The reason
is that the upper state (to be determined later in Section 4.3.1) which is in resonantwith the ground
state usually corresponds to an autoionizing state. Therefore, ionization becomes an important
factor affecting the lifetime of this upper state and widening the overall enhanced harmonic peak.
The effect of which should become more and more prevalent as the laser pulse becomes longer
because then the perturbation needed for ionization to take place lasts longer. As the laser pulse
duration gets longer, we predict that the competition between spectral narrowing and widening
due to ionization lifetime is what determines the actual width of the enhanced harmonic.

4.2.3 Cutoff Energy Analysis
The TD-ORMAS SD HH spectra of Mn and Mn+ (dark green) are replotted in Fig. 4.9 along with
TD-CASSCF fz. 2p HH spectrum of Mn2+ (cyan). In particular, this figure also shows the position
of cutoff energies of Mn, Mn+, and Mn2+ as red arrows. It is evident that the cutoff energies in
Mn and Mn+ HH spectra are both extended well beyond their own cutoff position approaching
that of Mn2+. This is a sign of a non-trivial production of the dications as a result of tunneling
ionization. In fact, when one compares the intensity used in both simulations (3 × 1014 W/cm2)
with the barrier suppression intensities of 1.2×1013 W/cm2 for Mn and 2.4×1014 W/cm2 for Mn+

(see Table 4.3), it is reasonable to expect almost complete removal of two electrons from the former
and one electron from the latter during the course of interaction with the laser.

Looking at Mn2+ HH spectrum (cyan), however, one can see the harmonic intensity is actually
too low to conclude that this extension in the HH responses from Mn and Mn+ to be that of an
ordinary three-step process. A similar effect has been observed and described in Ref. [67] where
the extension of harmonic responses of a neutral 1D Be atom and its cation up to that of the
dication is shown to be the result of electron correlation effect. In this mechanism a returning
electron excites another electron in the dication core via Coulomb interaction to a higher orbital.
The three-step process starting from this higher orbital is more easily initiated due to a lower
potential barrier, thus increasing the HH contribution of the dication [67, 68, 107]. It is very likely
that the same mechanism also applies in our results [69].

TD-ORMAS SD results for different laser parameters are presented in Fig. 4.9(c) and (d).
Orbital subspace decomposition for Fig. 4.9(c) (Fig. 4.9(d)) is given in Fig. 4.2(d) (Fig. 4.2(e)) with
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Figure 4.10: The time frequency spectrograms obtained using Gabor transform for (a) Mn and (b) Mn+. The
lower and upper groups of return energy curves are for Mn+ and Mn2+, respectively.

input parameters given in Input 4.5 (4.6). With three times lower intensity of 1 × 1014 W/cm2 and
somewhat longer wavelength 1333.7 nm (which are chosen so that the ponderomotive energy is
constant), one sees that the enhanced harmonic around 51.5 eV is still produced. This demonstrate
that resonant enhancement is an atomic process.

4.2.4 Time-Frequency Analysis
Mapping of the emission time of each harmonic frequency requires a two-dimensional function,
the time-frequency spectrogram. Here we present a time-frequency analysis for Mn andMn+ HH
responses in Fig. 4.10 with the classical return kinetic energy curves superimposed (compare the
shape of these curves with Fig. 1.3(b)). The time-frequency sepctrograms are calculated using
Gabor transform,

S(τ, ω) =
����∫ ∞

−∞

dt W(t, τ)a(t) exp(−iωt)
����2

= |FT [W(t, τ)a(t)]|2 (4.1)

with W(t, τ) being a windowing function which is chosen to be of Gaussian form having unit
amplitude and standard deviation σ = 7.5 a.u. of time,

W(t, τ) = exp
(
−(t − τ)2

σ2

)
. (4.2)

The peak at 50.6 eV starts to appear during the second returning trajectory when the electron’s
return energy is close to this energy value. This suggests the following mechanism. When
an electron has return energy matching the resonant energy, this electron is captured by an
autoionizing state lying at 50.6 eV above the ground state. This electron then goes back to the
ground state emitting the resonantly enhanced radiation [69].

In Fig. 4.10(a) and (b), the superimposed classical return energy curves are classified into two
groups. The lower one corresponds to the return to Mn+ while the upper one to the return to
Mn2+. The lower group is seen to last only up to the third returning bunch, whereas the upper
group starts to become significant also from the third returning bunch and beyond. This behavior
is in line with the ionic yields in Fig. 4.11(a) when the propagation starts from Mn and (b) when
it starts from Mn+ in which after about 6 fs, the yield of Mn+ has practically diminishes. These
simulations use Input 4.2 and Fig. 4.2(d) for Fig. 4.11(a) and 4.3 and Fig. 4.2(e) for Fig. 4.11(b).
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The peak intensity is I0 = 3 × 1014 W/cm2 and the wavelength is λ0 = 770 nm.

4.3 Transition Analysis of High-Harmonic Spectra
Oneof the early theoreticalmodels of high-harmonic generation is due toLewenstein [23, 45]where
the time-dependentwavefunction is assumed to be a superposition of ground state and continuum
states. This model shows a good agreement with experimental observations, in particular the
important features such as plateau and cutoff energy. In this model, the harmonic emission is
related to the infinitely many transitions between a continuum state and the ground state.

In this section, we shall adopt a similar but mathematically distinct notion of transitions as
those in the Lewenstein model for the analysis of high-harmonic spectra. We start from the
time-dependent accelaration given in Eq. (3.69) [69]

a(t) =
∑
pq

〈
φp

��â��φq〉 Dq
p − NE(t) − i∆( ÛPz) (4.3)

where

a(r) = −Z
cos θ

r2 . (4.4)

Looking at the first term in Eq. (4.3), each individual term is proportional to the matrix element of
awhose coordinate representation is proportional to cos θ. Now, the orbitals appearing in (4.3) are
the TDVP-optimized, time-dependent orbitals which are a linear combination of many spherical
harmonics (Eq. (3.65)). If, on the other hand, these orbitals are fixed in time and furthermore
have a definite angular momentum and its z-projection, it is possible to associate the quantity〈
φµ

��â��φν〉 Dν
µ to φµ ↔ φν transition because the angular integral of

〈
φµ

��â��φν〉 is governed by the
usual dipole selection rules and the 1RDM Dν

µ is, in some way, proportional to the populations
of φµ and φν . Such time-independent orbitals having fixed l and m values are easily satisfied by
the initial orbitals, i.e. the ground state orbitals calculated by imaginary time relaxation. For the
purpose of the present analysis, we will therefore expand

��φµ〉 in Eq. (4.3) in terms of all initial
orbitals, i.e. both occupied and virtual ones to ensure completeness [69]. In the following we will
simplify the ket notation for orbitals so that

��φµ〉 → |µ〉 and use overbar to denote an initial orbital,
i.e.

��φµ̄〉 = ��φµ(t = 0)
〉
→ | µ̄〉. The transformed expression of (4.3), neglecting the second and last

terms which do not bear any special feature near the resonant energy, reads

a(t) =
∑̄
µν̄

〈µ̄|a|ν̄〉 +
∑
pq

〈ν̄ |q〉 Dq
p 〈p| µ̄〉 (4.5)

where we recall that indices p, q are used for general occupied orbitals.
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Starting from Eq. (4.5), we will split the summations over µ̄ and ν̄ into initial orbitals occupied
in Hartree-Fock configuration (denoted byHF set) and those which are not (denoted byV set),∑̄

µ

→
∑
µ̄∈HF

+
∑̄
µ∈V

.

This division is based on the occupation of ground state orbitals where we noticed that the
probability (i.e. |CI |

2) corresponding to Hartree-Fock configuration in our MCSCF-optimized
ground state to be r where r never drops below 0.95. Therefore, the occupation number of orbitals
making up theHartree-Fock configuration is always bigger than r whereas the occupation of those
not included in this configuration must be smaller than 2(1− r). Applying this division on the Eq.
(4.5),

a(t) = a1(t) + a2(t) + a3(t) (4.6)

where

a1(t) =
∑

µ̄,ν̄∈HF

〈µ̄|a|ν̄〉 Dν̄
µ̄ =

1
2

∑
µ̄∈HF

α(µ̄, µ̄, t) +
∑

(µ̄>ν̄)∈HF

α(µ̄, ν̄, t) (4.7a)

a2(t) = 2 Re


∑
µ̄∈HF

∑
ν̄∈V

〈µ̄|a|ν̄〉 Dν̄
µ̄

 =
∑
µ̄∈HF

β(µ̄, t) (4.7b)

a3(t) =
∑
µ̄,ν̄∈V

〈µ̄|a|ν̄〉 Dν̄
µ̄ (4.7c)

α(µ̄, ν̄, t) = 2 Re
{
〈µ̄|â|ν̄〉 Dν̄

µ̄

}
(4.7d)

β(µ̄, t) = 2 Re

{∑
p,q

〈µ̄|â|q〉 Dq
p 〈p| µ̄〉

}
−

∑
ν̄∈HF

α(µ̄, ν̄, t) (4.7e)

Dµ̄
ν̄ =

∑
pq

〈ν̄ |q〉 Dq
p 〈p| µ̄〉 . (4.7f)

Notice that if the initial orbitals have a definite angular momentum and hence a definite parity,
then α(µ̄, µ̄, t) = 0 due to parity restriction.

In the subsequent analysis, we will rely on the quantities α(µ̄, ν̄, t), β(µ̄, t), and their power
spectra to disentangle the contributions of various orbital transitions. Thanks to the dipole
selection rules, for a given set of initial orbitals, the number of important orbital pairs (µ̄, ν̄)
and hence α(µ̄, ν̄, t)’s can be substantially reduced. Considering which matrix elements of a are
involved in a1(t) (or α(µ̄, ν̄, t)), a2(t) (or β(µ̄, t)), and a3(t), one may therefore interpret them to be
the contributions from bound-bound, bound-virtual, and virtual-virtual transitions, respectively,
to the total HH spectrum. Specifically, we will analyze and compare the features exhibited by the
power spectrum of these transition contributions to arrive at the answer about which transition is
responsible for the 50 eV enhancement in Mn plasma.

4.3.1 Contribution of Individual Transitions to The Resonant Energy
In Section 4.2.2, it was found that freezing 3s and 3p leads to the disappearance of the enhancement
at 50.6 eV. While this behavior reveals the multi-electron nature of the enhancement origin (since
the orbitals being frozen, 3p, are core orbitals), we have yet to establish the upper orbitals with
which 3p are coupled in the transitions that prompt enhancement mechanism. Moreover, in Mn+

there are some other levels that actually lie in the vicinity of the resonant peak, involve 3p orbitals,
and also have the same spin multiplicity as the ground state. These are the multiplet levels of
3d54s2(7P), that is, one electron is excited from 3p to 4s, whose energies fall in the narrow range
49.5 - 50.4 eV (see Table I in Ref. [106]).

Employing orbital subspace decompositions given in Fig. 4.2(d) and Input 4.2 for Mn and
in Fig. 4.2(e) and Input 4.3 for Mn+, we performed an analysis of the transitions responsible for
the enhancement. With orbitals set given in Fig. 4.2(d) (or (e)), one should identify 18 selection
rules-obeying pairs for both ionic species (the pairs involving frozen orbitals 1s, 2s, 2p0,±1 are not
taken into account as the corresponding density matrix elements Dµ̄

ν̄ vanish), and since HF sets
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Figure 4.12: HF transitions in time domain (a)-(c) and the corresponding power spectra (e)-(g) in neutral
Mn. The sum of 3p − 3d transitions and of allHF transitions are plotted in (d) and their spectra in (h).

of Mn andMn+ comprise {1s, 2s, 2p0,±1, 3s, 3p0,±1, 4s, 3d0,±1,±2}, five pairs among them are members
ofHF transition set,

3s↔ 3p0

3p0,±1 ↔ 3d0,±1

3p0 ↔ 4s. (4.8)

While the rest couple eitherHF withV orV withV ,

4s↔ 4p0 3p0 ↔ 5s

4p0,±1 ↔ 4d0,±1 3d0,±1 ↔ 4p0,±1

3s↔ 4p0 4p0 ↔ 5s.

3p0,±1 ↔ 4d0,±1 (4.9)

The subscript denotes the magnetic quantum number.
In the present section, wewill first concentrate the analysis on a1(t) and its power spectrum. We

have confirmed that the initial orbitals used in this analysis have a definite angular momentum.
Thus according to Eq. (4.7d), the first term of (4.7a) vanishes, leaving only the second one which
is the sum of the five transitions in list (4.8) above.

The temporal domain oscillation, i.e. α(µ̄, ν̄, t), as well as the corresponding power spectrum
for the fiveHF transitions inMn andMn+ are presented in Fig. 4.12 and Fig. 4.13, respectively. As
seen from panel (f) of these figures, the three three 3p↔ 3d transition spectra individually exhibit
a prominent peak at 52.2 eV. The sum spectrum of these three 3p ↔ 3d transitions components
and the sum of all five HF transitions are also plotted in Fig. 4.12(h) and 4.13(h). The enhanced
peak at 52.2 eV in the 3p↔ 3d transitions sum perfectly coincides that in the all-HF -transitions
sum in Fig. 4.12(h) and 4.13(h). More importantly, one may also compare the shape of the peaks
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Figure 4.13: HF transitions in time domain (a)-(c) and the corresponding power spectra (e)-(g) in Mn+. The
sum of 3p − 3d transitions and of allHF transitions are plotted in (d) and their spectra in (h).

at and around the resonant energy between all-HF -transition sum and the HH spectrum for
each ionic species (the dark green spectrum in Fig. 4.9(a) and (b)), they are seen to be in a very
good agreement as well. This signifies that the emission around the resonant energy is exclusively
driven by the electronic dynamics occurring between 3p and 3d orbitals.

Upon a closer look at the individual 3p↔ 3d transition spectra, each of them actually exhibits
another peak at 48.1 eV, of similar magnitude as the resonant 52.2 eV peak in the 3p0 ↔ 3d0 spec-
trum. However, upon summing the three transitions 3p ↔ 3d, the 48.8 eV peak gets suppressed
whereas the 52.2 eV one is enhanced, indicating that these 3p↔ 3d transition components are only
in phase at the resonant energy. In this sense, the enhancement may then be viewed as being the
result of a constructive superposition among transition components between the pair of orbitals
coupled in resonance. To demonstrate that the agreement between 3p ↔ 3d transitions and the
total HH emission also prevails in time domain, a separate simulation was run using TD-CASSCF
fz. 2p (Fig. 4.2(b)) and laser pulse shape as shown in Fig. 4.14(a) on the target system Mn+. The
spectrogram of the total 3p↔ 3d transitions obtained by replacing a(t)with

∑
m=0,±1 α(3pm, 3dm, t)

in Eq. (4.1) (Fig. 4.14(b)) shows a very good one-to-one correspondence in the emission times
with the total HHG spectrogram (Fig. 4.14(c)).

Another noticeable feature from the spectra in Fig. 4.12 and Fig. 4.13 is the peak at 61.6 eV in
3p0 ↔ 4s0 spectra (3s0 ↔ 3p0 spectra also exhibit this peak but at much lower intensity). This 61.6
eV peak in 3p0 ↔ 4s0 spectrum is clearly responsible for the peak at the same energy inMn spectra
in Fig. 4.8(a). However, looking at the excitation spectra in Fig. 4.7(a), one sees that the strongest
line at 61.6 eV is possessed by Mn2+. Mn also has a smaller line at a slightly higher energy, but
the corresponding oscillation in time is seen to be most dominant after the dication takes over the
neutral (compare Fig. 4.12(a) with Fig. 4.11(a)). Therefore, one may attribute this 61.6 eV peak to
the 3p0 ↔ 4s0 transition line from the dication.

58
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Figure 4.14: Resonant emission times in Mn+: (a) The laser electric field with intensity in the leading sine-
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770 nm wavelength. Panel (c) shows the spectra of β(3d0, t) and β(4s, t) in Mn+ when the intenisty is much
lower 5 × 1013 W/cm2, with 1820 nm wavelength.

4.3.2 Bound-Virtual Orbital Dynamics
In this section, we will momentarily digress from the main topic of this dissertation in order to
discuss another spectral feature resolvable by means of the decomposition of total acceleration
into transitions. For this purpose, we shall examine the bound-virtual part, a2(t), of the total
acceleration a(t). It will be shown that using the spectrum of β(µ̄, t) (Eq. (4.7e)), it is possible
to discern the signature of ionic states that contribute to the total harmonic emission for a given
starting ionic species. Using Input 4.2 plus orbital subspace decompositions of Fig. 4.2(d) , the
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power spectra of β(3d0, t) and β(4s, t) when the simulation starts from Mn are presented in Fig.
4.15(a). The same spectra obtained when the simulation starts fromMn+ are shown in Fig. 4.15(b)
where Input 4.3 plus Fig. 4.2(e) have been used. Whether in Fig. 4.15(a) or (b), it is seen that
β(3d0, t) and β(4s, t) spectra have clearly different cutoff energies even although they are calculated
for the same starting ionic species. In particular, the cutoff of β(4s, t) is close to the starting ionic
species’s cutoff (59.99 eV forMnand 68.32 eV forMn+)while that of β(3d0, t) is close to the dication’s
cutoff (86.44 eV).

This observation leads to the idea that the spectra of β(4s, t) and β(3d0, t) are dominated by the
starting species and the dication, respectively. This behavior may be explained using the fact that
for a given atomic species, it is the valence eletrons which are subjected to the highest probability
of undergoing three-step process. Within Hartree-Fock picture, 4s orbital is the valence shell for
both Mn and Mn+ and 3d is the valence shell for the Mn2+. Referring to how β(µ̄, t) is defined
in Eq. (4.7e), one may picture the underlying process such that recombinations from continuum
states (contained inV ) to φµ̄ orbital are all encoded in β(µ̄, t). Hence, during the early portion of
the laser where ionization is still negligible, most recombinations occur in the valence orbital of
the starting species and the cutoff is associated with this species as well. As the laser amplitude
is rising, the two electrons from Mn and one electron from Mn+ are tunnel-ionized from 4s (see
Fig. 4.16(e) and Fig. 4.17(e) below) making 3d the valence shell for the newly formed Mn2+.
Then the recombination process is repeated except that from this point on the three-step electron
recombines into 3d0 orbital (the laser is polarized in z-direction and 3d0 orbitals have nonzero
probability in this direction), hence the cutoff is close to that of Mn2+.

To demonstrate that the difference in cutoff positions of β(3d0, t) and β(4s, t) spectra exhibited
in Fig. 4.15(a) and (b) is really due to ionization, we run a simulation on Mn+ with a laser having
substantially lower intensity of 5 × 1013 W/cm2 and 1820 nm center wavelength (Input 4.4 and
Fig. 4.2(b) fz. 2p), and present the result in Fig. 4.15(c). As can be expected, the intensity used
this time is too weak to induce significant ionization in Mn+ from 4s orbital and consequently the
cutoff of β(3d0, t) does not extend up to the cutoff for Mn2+.

4.4 The Dynamics of Orbital Population in the Presence of Res-
onant Enhancement

In the preceding section, we have learned that the transition spectra between pairs of orbitals can
provide us a deeper insight into the origin of the enhancement in terms of inter-orbital transitions
and as a side-result, the signature of the contribution from higher ionic states can also be extracted
from some of these spectra. Given these observations thus far, it should become clear by now that
the resonant enhancement in HH spectra is strongly concomitant with orbital dynamics. With
this in mind, in this section an analysis of dynamics taking place in the initial orbitals based on
the orbitals’ population will be presented.

Orbital population n(µ, t) is defined tobe thediagonalmatrix elements of 1RDM, i.e. n(µ, t) = Dµ
µ

(see the definition immediately following Eq. (3.36)). One property of n(µ, t) is that it is always
a positive semi-definite number less than two, 0 ≤ n(µ, t) ≤ 2, regardless of the choice of bases
φµ. In the present analysis, we shall analyze the temporal evolution of the population of initial
orbitals, n(µ̄, t). Using Input 4.1 and orbital subspace decompositions of Fig. 4.2(a) fz. 2p for Mn,
we calculate the time-dependent orbital population of HF initial orbitals and show them in Fig.
4.16(b)-(e). The population of frozen orbitals are not included here since their value always equals
two.

As Fig. 4.16(b)-(e) reveals, the population of all orbitals except 4s returns approximately to their
respective initial values. The population of 4s orbital, however, is depleted almost completely,
something to be expected given that 4s is the least bound (see Table 4.1) and it has nonzero
probability in the z direction. The binding strength of the orbitals can also be deduced from Fig.
C.1 where it is seen that 4s has the farthest radial span amongHF orbitals.

The virtual panel in Fig. 4.16(f) shows the total population of virtual orbitals in V , it is
calculated as

nV(t) = N −
∑
µ̄∈HF

n(µ̄, t). (4.10)

Where N is the number of electrons. The total population of virtual orbitals exhibit a rise within
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Figure 4.16: Orbital population dynamnics in neutralMn. The temporal evolution ofHF orbital populations
are shown in (b)-(e) while (f) shows the total population of V orbitals and its first derivative. Panels (h)-(l)
show the spectra of the first time derivative in the corresponding left-hand panel. The green shaded regions
mark the times when ionized electrons will not go back to the core.

2.0−5.5 fs interval, the same time interval needed for 4s population to “settle”. Upon a closer look,
one sees that nV(t) rises in a stepwise fashion, the slope is positive during three time windows:
2.1−2.8 fs, 3.2−4.1 fs, and 4.5−5.2 fs (indicated by the shaded areas). Based on a classical trajectory
analysis, these time windows are around laser phases at which ionized electrons will not return
to the parent core (compare the green shaded regions in Fig. 4.16(a) and (f)), in other words, the
ionization dynamics are encoded within this time window. The first derivative of nV(t) is plotted
in the same panel as nV(t) where one sees three groups of peak, each of these peak corresponds
to a removal of electrons from the starting ionic species, i.e. neutral Mn. The first rising interval
represented by the first peak in the derivative is small inmagnitude because the laser amplitude at
this time is still low. As the laser amplitude increases, more electrons are tunnel-ionized resulting
in the highest second peak in the derivative. The laser is still increasing but much of the electrons
in 4s have been removed, resulting in the third low peak. The total number of electron loss from
4s amounts to 1.99 indicating that at the end of the interaction we are left with Mn2+.

We also perform a frequency domain analysis in Fig. 4.16(h)-(l) by calculating the Fourier
transforms of the first derivative of orbital populations in Fig. 4.16(b)-(f). The spectra of 3d popu-
lations (Fig. 4.16(j)) exhibit a plateau-like structure reminiscent of that found in HH spectra with
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Figure 4.17: Orbital population dynamnics in Mn+. The temporal evolution of HF orbital populations are
shown in (b)-(e) while (f) shows the total population ofV orbitals and its first derivative. Panels (h)-(l) show
the spectra of the first time derivative in the corresponding left-hand panel. The green shaded regions mark
the times when ionized electrons will not go back to the core.

3d0 having the clearest plateau structure. The reason is, 3d0 orbital posses non-zero probability
in the z-direction, the direction of laser field, and are therefore coupled strongly to the laser. The
most interesting feature, however, is exhibited by 3p and 3d0,±1 orbital populations, their spectra
are seen to have some distinguishable peaks in the vicinity of the resonant energy 51.5 eV. This
implies that in time domain, the populations n(3p0,±1, t) and n(3d0,±1, t) are modulated at these
frequencies. Comparing the spectra of ∂tn(3p0, t) and of ∂tn(3p±1, t), one can see the presence of
61.6 eV peak in the former, but not in the latter. Referring back to Fig. 4.12(e), this 61.6 eV peak can
be attributed to the peak at the same energy in α(3p0, 4s, t) spectrum. To stress, 3p±1 orbitals are
not coupled by transitions having a strong line at this energy while the spectra of ∂tn(3p±1, t) do
not have this peak either. These observations allow us to draw a connection between the presence
of strong features in the transition spectra (α(µ̄, ν̄, t)) and the modulation at the same energies in
the time-dependent population n(µ̄, t) or n(ν̄, t). The peak around 93 eV found in the spectrum
of ∂tn(3s, t) (Fig. 4.16(h)) and of α(3s, 3p0, t) (Fig. 4.12(g)) may serve as another evidence of this
correlation between population of an orbital and transition involving that orbital.

A parallel analysis on the orbital dynamics in Mn+ was also performed and is presented in
Fig. 4.17. Some of the features in the population dynamics (Fig. 4.17(b)-(f)) are shared with Mn
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case before, such as ionization dynamics imprinted in the slope of the rising section of nV(t) (Fig.
4.17(f)) and the depletion of 4s orbital (Fig. 4.17(e)). Some enhanced peaks are also clearly present
around the resonant energy 51.5 eV in the spectra of ∂tn(3p0,±1, t) (Fig. 4.17(i)) and ∂tn(3d0,±1, t) (Fig.
4.17(j)), to be compared with the 51.5 eV enhanced peak in the spectra of α(3p0,±1, 3d0,±1, t) (Fig.
4.13(f)). Fig. 4.18(a) and (b) demonstrates what happens when a time-dependent population from
Fig. 4.17 (expressed in terms of its derivative) ∂tn(3pm, t) is summedwith ∂tn(3dm, t). In Fig. 4.18(a)
for m = −1 and in Fig. 4.18(b) for m = 0. The clearest feature seen in the summed spectra (blue) is
the suppression of the three peaks which were associated with the 51.5 eV resonant enhancement.
This tells us that the modulations at this energy in n(3pm, t) and n(3dm, t) are nearly out of phase
one from another - whenever there is a peak in n(3pm, t) there will be a valley in n(3dm, t), a clear
indication of an alternating population exchange between the two orbitals.

Onemore feature that is clearly exhibited by 3d orbitals and 3p orbitals is the half-period spaced
dips in Fig. 4.17(d) and (e). These dips account for an oscillating polarization of the atom (that
is, the displacement of the center of gravity of the electron cloud) that follows laser oscillation.
Under no influence of external field, the atomic probability density should be spherical. When a
distortion is imparted to the atom, the orbital population will respond in a way that results in a
modification of the probability function such that it follows the distorting force1.

4.5 Summary
In this chapter, we have demonstrated the success of TD-CASSCF and TD-ORMAS methods in
reproducing resonant enhancement from Mn, Mn+, and Mn2+ at 51.5 eV, which is close to the
experimental value. A large transition line at the same energy in the excitation spectra of the
three ionic species are also reproduced, strongly suggesting that this 51.5 eV enhancement in HH
spectrum can be connected to a highly favorable transition at the same energy. By varying frozen
orbital space, it is found thatwhen 3p orbitals are frozen, the 51.5 eV enhancement disappears. The
subsequent analyses are based on the dynamics ensuing in the initial orbitals in terms of orbital
transitions and populations. Orbital transition study reveals that the spectra of 3p0,±1 ↔ 3d0,±1
also exhibit a distinguished peak at 51.5 eV and the coherent sum of these three transitions
resulted in an enhancement of the 51.5 eV harmonic with harmonic peak shapes that are in good
agreement with that in the HH spectra. This observation allows us to conclude that the 51.5
eV enhancement in Mn plasma to be the result of a constructive interference between 3p − 3d
transitions. Realizing the crucial involvement of orbitals in the enhancement process, an analysis
based on orbital population are performed from which one understands that strong features in
the transition spectra between a certain pair of orbitals imply a temporal modulation at the same
energy in the population of the orbitals involved. This modulation in populations of the two
orbitals being coupled are in synchrony such that a peak in one population implies a valley in
the other population, i.e. a periodic population exchange. The employed orbital-based studies
can also be used to study ionization dynamics during laser interaction. In particular, information

1Wehave run a simulation on the same systembutwithmuch lower laser intensity of 5×1013 W/cm2 such that ionization
is negligible. We observed that basically the population of all orbitals exhibit an oscillating structure at half-laser period
and the dipole moment follows the laser almost perfectly.
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about what the highest charge state is that contributes to the total HHG and the dynamics of
electron removal from the starting ionic species can be extracted.
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Chapter 5
Resonant High-Harmonic Generation
from Cr and In Plasmas

Asdiscovered experimentally, high-harmonic generation exhibiting resonantly enhanced structure
covers a wide range of atomic numbers. Atoms having electrons twice as large as the system
considered in Chapter 4, manganese (Z = 25), such as indium (Z = 49), stannum (Z = 50), and
stibium (Z = 51) have also been reported to generate enhanced harmonics. In this chapter, HH
simulation results using indium and chromium (Z = 24) are presented and analyzed. This chapter
may also serve as a demonstration of the capability of TD-CASSCF to handle large atomic systems,
with resonant enhancement as the main subject of analysis.

5.1 Resonant High-Harmonic Generation from Indium and Its
Cations

In the first half of this chapter, resonant enhancement in HHG from indium and its cations
simulated using TD-CASSCF is presented and discussed.

5.1.1 Simulation Conditions
The ground state electronic configurations of In, In+, and In2+ are provided in Table 5.1. With
∼ 50 number of electrons, In, In+, and In2+ pose a real challenge for MCTDHF (that is, when all
orbitals are treated active) to obtain the ab initioHH spectrawhen a sufficient number of additional
orbitals (more than those present in the electronic configurations in Table 5.1) is desired. This is
where the flexibility offered by TD-CASSCF in setting some orbitals to be frozen comes in handy.
Therefore, orbital subspace decompositions displayed in Fig. 5.2 where at least 14 orbitals are
frozen are employed for the HH calculations from these three ionic species. This necessitates the
corresponding ground state to be obtained using orbital subspace decompositions as shown in
Fig. 5.1. Unlike in Mn and Cr (in Section 5.2 below), we do not perform TD-ORMAS calculations

Table 5.1: Experimental ionization potential Ip , barrier-suppression intensity IBS , and
the ground-state configuration of In, In+, and In2+.

In In+ In2+

Ipa 5.79 18.87 28.03
IBSb 4.5 × 1012 5.1 × 1014 2.5 × 1015

GSc [Kr]4d105s25p1(2P1/2) [Kr]4d105s2(1S0) [Kr]4d105s(2S1/2)

aExperimental ionization potential in eV [108, p. 10.179].
bBarrier-suppression intensity in W/cm2.
cGround state configuration, In and In+ in Ref. [109, p. 1766] and In2+ in Ref. [110].
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Figure 5.1: Orbital subspace decompositions used to calculate the ground states of In, In+, and In2+ in the
present chapter.

Figure 5.2: Orbital subspace decompositions used to perform HH simulations on In, In+, and In2+ in the
present chapter.

on In and its cations because with the number of vacant 5p spin-orbitals (see Fig. 5.1) these species
have, TD-CASSCF is alreadcy sufficient to generate a moderate number of determinants (see Table
5.2).

The ground state energies, orbital energies, andnumber of determinants resulting fromvarious
orbital diagrams in Fig. 5.1 are presented in Table 5.2. From Table 5.2, one sees that the energy
differences between 4s and 3d in In, In+, and In2+ are 300 eV, way higher than the cutoff energies
resulting from laser parameters chosen in the simulations in this section. This should justify our
choice in never setting any orbitals below 4s in these ionic species to be active. We would like to
note that the angular momentum of orbitals in neutral In ground state calculations is not definite.
This behavior often appears when the electron occupation in the atom is something other than
full or half-full, which is equivalent to the total angular momentum being unequal to zero (S
state). Therefore, in orbital denomination for In in Table 5.2, the angular momentum part is to
be understood as a quasi angular momentum. The radial grids employed for all ground state
simulations except for dn. 4d on In, In+, and In2+ are given in Table 5.4. For dn. 4d simulations,
radial grids in Table 5.5 are used. The HH calculations performed on these ionic species are
performed using simulation parameters in Input 5.1 - 5.5 and are summarized in Table 5.3. The
difference of these inputs lies only on the time step nsp because for a given ionic species, the more
determinants are employed (e.g. as imposed by the various choice of frozen space) the denser
timestep is required to yield a stable propagation.
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continued
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5.1. RESONANT HIGH-HARMONIC GENERATION FROM INDIUM AND ITS CATIONS

Input 5.1
Lmax 43
p. shape sin2

λ0 795
I0 2 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 30000
Grid Table 5.4 + 5.6
Absorb irECS
rabs 47.0
θ 15°

Input 5.2
Lmax 43
p. shape sin2

λ0 795
I0 2 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 45000
Grid Table 5.4 + 5.6
Absorb irECS
rabs 47.0
θ 15°

Input 5.3
Lmax 43
p. shape sin2

λ0 795
I0 2 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 50000
Grid Table 5.4 + 5.6
Absorb irECS
rabs 47.0
θ 15°

Input 5.4
Lmax 43
p. shape sin2

λ0 795
I0 2 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 60000
Grid Table 5.4 + 5.6
Absorb irECS
rabs 47.0
θ 15°

Input 5.5
Lmax 43
p. shape sin2

λ0 795
I0 2 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 30000
Grid Table 5.5 + 5.6
Absorb irECS
rabs 47.0
θ 15°

Table 5.3: .

Orb. subspace is used with

Fig. 5.2(a)

fz. 4d Input 5.5
fz. 4p Input 5.1
fz. 4s Input 5.3
fz. 3d Input 5.4

Fig. 5.2(b)

fz. 4d Input 5.5
fz. 4p Input 5.2
fz. 4s Input 5.3
fz. 3d Input 5.4

Fig. 5.2(c) fz. 4s Input 5.3
fz. 3d Input 5.4

5.1.2 HH Spectra from Indium Plasma
Experimental observations of HHG using indium plasma source show that the enhancement
occurs at around 20 eV (see Fig. 1.4(a) and Ref. [35]). With the help of TDCASSCF, we try to
reproduce this observation from our simulations. Employing orbital subspace decompositions
shown in Fig. 5.2 of the type fz. 3d and other simulation parameters in Input 5.4 for In, In+, and
In2+, we obtain HH spectra as shown in Fig. 5.3 where a prominent peak is clearly apparent at
23.3 eV in the spectra from neutral and cation of indium. No peak at this energy observed from
the HH spectrum of the dication.

As expected from the relative strength between the laser intensity for these simulations (2×1014

W/cm2) and barrier suppression intensities for each ions (see Table 5.1), the charge state which
dictates cutoff position in Fig. 5.3 is the cation. Nevertheless, HH signal extension even beyond
the dication cutoff is still noticeable, this behavior will be explained later in Section 5.1.4.

The excitation spectra of In, In+, and In2+ are depicted in Fig. 5.4. The neutral (purple) is seen
not to have a transition peak with an appreciable strength around the enhanced peak 23.3 eV in its
HHG spectrum. Whereas the dication has a prominent peak at 25.7 eV but none at 23.3 eV. This
tells us that the enhanced peak at 23.3 eV in In and In+ HH spectra (Fig. 5.3(a) and (b)) for a laser
intensity of 2 × 1014 W/cm2 is solely contributed by In+.

In order to determine the lower orbitals responsible for the resonant emission at 23.3 eV, the
same analysis as in Chapter 4 employing different frozen spaces is carried out and the results
are summarized in Fig. 5.5. While in Fig. 5.5(c), there is no meaningful observation due to
the absence of enhancement, in Fig. 5.5(a) and (b) one can clearly observe that the 23.3 eV peak
dynamically changes as the frozen space is varied. Starting from the case of frozen 3d (solid dark
green), both HH spectra from In and In+ show a single peak at 23.3 eV. As 4s becomes frozen
(dashed cyan), a second peak appears at 25.8 eV in In HH spectrum (Fig. 5.5(a) fz. 4s) whereas
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CHAPTER 5. RESONANT HIGH-HARMONIC GENERATION FROM CR AND IN PLASMAS

Table 5.4

Interval no. of FEs nGP per FE
0.0 − 1.0 1 25
1.0 − 2.0 1 25
2.0 − 4.0 1 25
4.0 − 7.0 1 25

7.0 − 11.0 1 25
11.0 − 43.0 8 25

Table 5.5

Interval no. of FEs nGP per FE
0.0 − 0.5 1 25
0.5 − 1.0 1 25
1.0 − 2.0 1 25
2.0 − 4.0 1 25
4.0 − 7.0 1 25

7.0 − 11.0 1 25
11.0 − 43.0 8 25

Table 5.6

Interval no. of FEs nGP per FE
GS grid Table 5.4 or Table 5.5

43.0 − 47.0 1 25
47.0 − 55.0 2 25
55.0 − 59.0 1 25
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Figure 5.3: The HH spectra from (a) In, (b) In+, and (c) In2+ using fz. 3d orbital subspace decomposition (see
Fig. 5.2). The arrows mark cutoff position of the indicated ion.

the spectrum from In+ does not exhibit an appreciable change. The second peak at 25.8 eV is still
present in In HH spectrum when 4p are frozen (solid yellow). Finally, when 4d are frozen (solid
red) the 23.3 eV peak disappears from In and In+ spectra, the 25.8 eV peak is also absent from the
former. This leads to the conclusion that the lower orbitals responsible for the enhancement of
23.3 eV harmonic peak are 4d orbitals. There is no fz. 4p spectrum for In2+ because the calculation
resulted in an early emergence of big oscillations in the acceleration. Fz. 4d spectrum for this ion
is not calculated either because no apparent enhancement is seen.

As before, we will also look at the time-frequency spectrograms of the HH spectra, this is
presented in Fig. 5.6 where the upper row is for In while lower row for In+, and the left column
for fz. 3d while the right one for fz. 4d case. Some signal at around 23.3 eV is seen to appear in
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Figure 5.4: Excitation spectra of In, In+, and In2+ obtained using fz. 3d orbital subspace decomposition (see
Fig. 5.2).
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Figure 5.5: The spectra resulting from varying the frozen space (as indicated by the dashed lines in orbital
diagrams in Fig. 5.2) in (a) In, (b) In+, and (c) In2+.

In spectrogram already within 3.5 − 5.0 fs, this is earlier than in In+ which has the 23.3 eV peak
appearing at about 4.8 fs. The bigger fraction of the 23.3 enhanced peak is also seen to be emitted
when the laser starts to diminish. At the earlier moments, this emission is seen to be unsteady, for
instance in Fig. 5.6(a), the 23.3 enhanced signal between 3.5 − 5.0 fs (one can tell that this signal
contributes to the enhancement by comparingwith Fig. 5.6(c) within the same interval) is reduced
in intensity when the next bunch of returning electrons arrive, i.e. around 5.3 fs. The intensity of
this peak rises again at around 7.6 fs when the long trajectory part of a returning bunch arrives. A
similar behavior is also observed from Fig. 5.6(b) where an 23.3 eV enhancement signal is seen to
build up around 6.3 − 6.8 but then diminishes and rises again at around 7.6 fs. Beyond this point
where three-step process is less probable, the enhancement signal is more or less steady. This
implies that the 23.3 eV resonant emission in In+ triggered by a given returning electron bunch is
out of phase with that from the next returning bunch.
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Figure 5.6: The time-frequency spectrograms obtained for In in upper row and for In+ in lower row. The left
column is obtained using fz. 3d and the right one using fz. 4d orbital decompositions.

5.1.3 Transition Analysis of High Harmonic Spectra
Decomposition of high-harmonic spectrum into orbital-orbital transitions makes up the heart of
analyses presented in this disertation as it allows us to identify the dominating transitions to the
HH emission. Therefore, as in Chapter 4, we also perform transition analysis on indium plasma
HHG. The spectra of all possible orbital-orbital transitions out of orbital subspace decomposition
fz. 3d in Fig. 5.2 are summarized in the left and right panels of Fig. 5.7 for In (using Input 5.4)
and In+(using Input 5.4), respectively.

It is evident that the spectra of 4d − 5p transition components in Fig. 5.7 exhibit a pronounced
peak at 23.3 eV. This is an obvious sign that 4d − 5p transitions are the responsible ones which
are in resonant with the 23.3 eV harmonic of the laser. Another transition in neutral In, namely
4s − 5p, also exhibits a pronounced peak at the enhanced energy but this is a manifestation of the
nondefinite orbitals angular momentum resulted from ground state calculation of neutral In (as
mentioned in Section 5.1.1) making a portion of 4d − 5p transitions mixed in this transition. To
confirm that 4d − 5p is really the responsible transition for the enhanced 23.3 eV harmonic, the
components of this transition, 4dm ↔ 5pm with m = 0,±1 are superposed and the result is shown
in Fig. 5.8. The intensity at 23.3 eV of the total 4d − 5p transition (thick dark green) is seen to be
stronger than that of the individual components, indicating that these components do interfere
constructively at this energy, identical to the enhanced 50 eV peak in Mn plasma.

As in the case of Mn plasma, none of the existing theoretical studies on resonant HHG from
indum plasma succeeded to verify the prevailing view that the resonance be associated to 4d − 5p
transitions at the ab initio level. The current work therefore provides a complementary insight on
the resonant HHG in indium plasma.

5.1.4 Non-Ionic Cutoff Extension - Multichannel Effect
One might have noticed the unusually long cutoff extension in the HH spectra of In (Fig. 5.3(a))
and In+ (Fig. 5.3(b)). It is tempting to conclude that this extended signals come from In2+, but
we would to convince the reader that this is very unlikely for two reasons. First, looking at In2+

HH spectrum in Fig. 5.3(c), its cutoff region does not extend as far as the cutoff regions in Fig.
5.3(a) and (b) do. Second, this cutoff extension disappears when all orbitals below and including
4d are frozen (see Fig. 5.5) whereas freezing these orbitals should not prevent In2+ to be produced
because its valence electron is in 5s orbital.

In order to determine the reason of this extension, the spectra of various β(µ̄, t) where µ̄
comprises active orbitals in fz. 3d are plotted in Fig. 5.9(a)-(d). The vertical dashed lines mark the
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Figure 5.7: The spectra of all transitions possible with fz. 3d orbital subspace decomposition in In (left
panels) and in In+ (right panels).
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Figure 5.8: Spectra of 4d − 5p transitions and their coherent sum in (a) In and (b) In+.

cutoff positions of several relevant ions of indium. In addition, cutoffs due to three-step process
starting from 4d and 4p (which will be referred to as orbital cutoff) and due to non-sequential double
recombination (NSDR) [111] are also shown. Orbital cutoffs are calculated as

Ec = εµ + 3.17Up

with εµ is the binding energy of orbital µ given under dn. 3d columns of the corresponding ion in
Table 5.2, while NSDR cutoff is calculated as

Ec = Ip(In+) + Ip(In2+) + 5.55Up
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Figure 5.9: (a)-(d) The spectra of β(µ, t)where µ is the indicated orbital. (e) HH spectrum.

[111] with Up = 11.8 eV for laser parameters used in this simulation (Input 5.4). By comparing the
intensities of harmonic around 74 eV in these β(µ, t) spectra, one can see that the cutoff structure at
this energy in HH spectrum (Fig. 5.9(e)) is mainly due to three-step process proceeding through
4d channel, i.e. an electron is tunnel-ionized from and returned to 4d orbitals. Whereas the final
cutoff structure in HH spectrum at around 132 eV is seen to be coming from 4p0 channel. Other
competing cutoff extension mechanisms such as those due to In3+ and In4+ are seen to be rather
unimportant if not unimportant at all. For In3+ cutoff, since the valence orbitals of this species is 4d,
should its contribution be significant then it should be reflected in the cutoff of 4d channel (panel
(b)) being close to In3+ cutoff (refer to Section 4.3.2 for the discussion of this sort of analysis). For
In4+, its cutoff is just out of the region of interest. Unfortunately, it is difficult to say anything about
the extent to which NSDR is important from solely cutoff analysis. Nevertheless, from the fact
that NSDR is a second order process in the number of returning electrons (the emitted energy is
the sum of those of the individually returning electrons) while multichannel effects are essentially
still a first order process, NSDR harmonic extension is possibly not as noticeable as the extension
from other channel-HHG. In the theoretical work of Ref. [111] where NSDRwas first reported, the
analysis employed 2-electron atom, if the two electrons occupy the same spatial orbital then there
is only one channel in the system and any possible cutoff extension must be from higher-order
emission, in this case NSDR.
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5.2 Resonant High-Harmonic Generation from Chromium and
Its Cations

Chromium is similar tomanganese presented in Chapter 4with regards to the number of electrons
(N = 24). Experimental HH spectra generated from chromium plasma exhibit enhancement at
∼ 45 eV (see Table 1.1) [37, 39].

5.2.1 Simulation Conditions

Figure 5.10: Orbital subspace decompositions used to calculate the ground states of Cr and Cr+ in the present
chapter.

Figure 5.11: Orbital subspace decompositions used to perform HH simulations on Cr and Cr+ in the present
chapter.

The ground state electronic configuration, ionization potential, and barrier suppression in-
tensity of Cr and Cr+ are provided in Table 5.7. The ground state For ground state calculations
presented in the current section, orbital subspace decompositions in Fig. 5.10(a) (TD-CASSCF)
and (b) (TD-ORMAS) are employed for Cr and Fig. 5.10(c) (TD-CASSCF) for Cr+. The correspond-
ing HH simulations are performed using Fig. 5.11 subspace decompositions. As for the case of
Mn in Section 4, any TD-ORMAS attempts for Cr+, which is isoelectronic to Mn2+, always fail in
producing physically acceptable wavefunction. In this section, radial grids given Table 5.8 and 5.9
are used for ground state and for HH calculations, respectively. The laser parameters as well as
the other simulation parameters for various HH simulations are given in Input 5.6 - 5.7.

5.2.2 HHG Spectra
The HH spectra from neutral Cr and Cr+ are presented in Fig. 5.12, exhibiting yet another
evidence of the capability of TD-CASSCF and TD-ORMAS to reproduce resonant enhancement
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Table 5.7: Experimental ionization potential Ip , barrier-suppression intensity IBS , and
the ground-state configuration of Cr and Cr+.

Cr Cr+

Ipa 6.77 16.49
IBSb 8.40 × 1012 2.96 × 1014

GSc [Ar]4s3d5(7S3) [Ar]3d5(6S5/2)

aExperimental ionization potential in eV [109, p. 1664].
bBarrier-suppression intensity in W/cm2.
cGround state configuration [109, p. 1664].

Input 5.6
Lmax 44
p. shape sin2

λ0 1330
I0 1 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 20000
Grid Table 5.9
Absorb irECS
rabs 122.0
θ 15°

Input 5.7
Lmax 44
p. shape sin2

λ0 1330
I0 1 × 1014

ϕCEP 0°
p. length 4-cycle
nsp 17000
Grid Table 5.9
Absorb irECS
rabs 122.0
θ 15°
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Figure 5.12: HH spectra from (a) Cr using Input 5.6 and (b) from Cr+ using Input 5.7. In (a), Fig. 5.11(a)
orbital decomposition is used for TD-CASSCF spectrum and Fig. 5.11(b) for TD-ORMAS spectrum. In (b),
Fig. 5.11(c) is employed.

from transition metals. The enhancement occurs for the harmonic at 44.8 eV in Cr TD-ORMAS
spectrum (solid green) and at 45.5 eV in Cr and Cr+ TD-CASSCF (dashed red) spectra, which
may be compared with experimental data in Fig. 1.5(a). The excitation spectra shown in Fig, 5.13
also confirms the presence of a giant transition amplitude at the resonant energy. In TD-CASSCF
spectra (red dashed), there is an apparent energy interval 48−60 eVwhere themaximumharmonic
intensity is almost as high as the resonant harmonic. This feature however is probably a numerical
artifact linked to the insufficient number of orbitals (14 and 15 for these TD-CASSCF simulations)
as it is significantly suppressed in Cr TD-ORMAS spectrum (solid dark green).

5.2.3 Transition Analysis of High-Harmonic Spectra
The spectra of 3p−3d transitions from Cr and Cr+ are depicted in Fig. 5.14(a) and (b), respectively.
As in the case ofMn inChapter 4, it is 3p−3d transitionswhich are responsible for the enhancement
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Table 5.8

Interval no. of FEs nGP per FE
0.0 − 1.0 1 25
1.0 − 3.0 1 25
3.0 − 6.0 1 25

6.0 − 10.0 1 25
10.0 − 42.0 8 25

Table 5.9

Interval no. of FEs nGP per FE
GS grid Table 5.8

42.0 − 122.0 20 25
122.0 − 130.0 2 25
130.0 − 134.0 1 25
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Figure 5.13: Excitation spectra of Cr and Cr+. Cr spectrum uses Fig. 5.11(b) while Cr+ spectrum uses Fig.
5.11(c)

at 44.8 eV inCr andCr+ spectra. The coherent sumof these transitions shown as the black spectrum
is also seen to have a stronger peak around the enhanced harmonic, confirming the constructive
interference origin of resonant enhancement in HHG from plasma.

5.3 Summary
Complementing the results and analyses presented in Chapter 4 for one type of plasma, namely
manganese plasma, this Chapter provides evidence of the applicability of TD-CASSCF to repro-
duce resonant enhancement for considerably larger systems, in particular indium ions whose
number of electrons is twice as large as that in Mn. In these ions, the enhancement is found at 23.3
eV and, for the intensity of 2 × 1014 W/cm2, is contributed mainly by In+. The transitions coupled
in resonance with the harmonics of the laser are the 4d − 5p transitions. New behaviors have also
been identified from the analyses of indium HH spectra, this includes (1) the destructive interfer-
ence between the resonantly enhanced emissions at 23.3 eV between those emitted during a given
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Figure 5.14: 3p − 3d transition spectra in (a) Cr (using Fig. 5.11(b) orbital decomposition and Input 5.6) and
in (b) Cr+ (using Fig. 5.11(c) orbital decomposition and Input 5.7).
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half-cycle with those from the next half-cycle and (2) the cutoff extension due to three-step process
starting from and ending in non-valence orbitals. In the last part of this chapter, several results
from chromium ions are also presented. The enhancement occurs around 45 eV and the transitions
responsible for the enhancement are the 3p − 3d transitions. Overall, this chapter demonstrates
the applicability of TD-CASSCF and TD-ORMAS to reproduce resonant enhancement in various
types of metal plasmas and to perform insightful analyses able to guide us to the attainment of
the research objectives.
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Chapter 6
Concluding Remarks

The underlying physics behind resonant enhancement in HHG is addressed from the theoretical
point of view in this dissertation. The mathematical tools employed for solving the appropriate
Schrödinger equation and performing the subsequent analyses are the TD-MCSCF methods. TD-
MCSCF is an ab initiomethod based on variational principle that is used to handle time-dependent
quantum phenomena. Using the generalization of TD-MCSCF, namely TD-CASSCF [63, 64] and
TD-ORMAS [65], we have successfully reproduced resonant enhancement in manganese plasma
(Mn, Mn+, and Mn2+), indium plasma (In, In+, and In2+), and chromium plasma (Cr and Cr+)
at an energy close to their experimental value (∼ 50 eV, ∼ 20 eV, and ∼ 45 eV respectively) and
subsequently, identified the responsible mechanism of the enhancement. This result, to the best of
our knowledge, represents a pioneering conclusive workwithin the subject of resonant HHG from
transition metals. Before the present work, there have been already a number theoretical efforts
addressing the same problem. The key difference between our take on the problem at hand and
those existing works lies in the nature of the central assumptions imposed in their mathematical
tools. As opposed to our mathematical framework where all electrons are allowed to take part
in the dynamics explicitly, those previous studies mostly rely on single active electron approach
where the effect of the rest of the electrons are expressed in terms of an effective core potential.
Intended to complement the shortcomings of these pioneering studies, we perform a theoretical
study by employing methods that allow all electrons to interact with the laser.

6.1 TheClose Relation BetweenOrbital Dynamics andResonant
Enhancement

As our investigation reveals, resonant HHG can be thought of as an exception to ordinary HHG
in terms of the sensitivity of HHG with the inner structure of an atom. In ordinary HHG, the
essential states are the ground and continuum states of the unperturbed atom. The underlying
reason is that due to the strong pull from laser field, the ionized electron immediately leaves its
parent core and spends sometimes in continuum. Upon return, it goes back to the ground state
by emitting HH photon. This process is, at most, weakly sensitive with respect to the structure of
discrete levels in the atom. This is in fact, the reason why SFA [23, 45] is successful in describing
HH process from rare gas atoms.

As demonstrated in Section 4.2.2 and Section 4.3.1, resonant HHG is an exception to this
longstanding qualitative understanding of HHG. In particular, in Section 4.2.2 it is found that
freezing 3p orbitals in Mn, Mn+, and Mn2+ results in the disappearance of 51.5 eV enhancement.
Furthermore, the biggest differences in the spectra are isolated around the resonant energy, outside
this region there are only negligible difference. This is a clear evidence of the importance of inner
core dynamics in resonant HHG. Further investigation in terms of orbital transitions allows us
to decompose the contribution of each individual dipole-allowed transitions to the total HH
spectrum, this is done in Section 4.3.1. From this study it is found that in Mn and Mn+, the
resonant radiation at 51.5 eV is contributedmainly by transitions which couple 3p with 3d orbitals.
In particular, comparing Fig. 4.12(f) with 4.12(h) and Fig. 4.13(f) with 4.13(h), one can see that the
51.5 eV peak in the total 3p − 3d spectrum is about ten times stronger than the peak at the same
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energy in the individual 3pm − 3dm spectrum with m = 0,±1. This suggests that the enhancement
is the result of a constructive intereference between 3pm − 3dm transitions that are allowed by
dipole selection rules. Identical analysis performed on In and Cr plasmas reveals that the 23.3 eV
enhancement in the former is due to 4d − 5p constructive interference while in the latter, the 45 eV
enhancement comes from 3p − 3d dynamics, the same as Mn case but at a different energy.

6.2 How Does The Resonant State Get Populated?
Aspointed out in the preceding section, resonantHHG is special because it requires a participation
of another discrete state (that is, the resonant state), beside the ground one during laser interaction
and this second state must be allowed to interact through dipole interaction with the ground state.
Since in the beginning the atom starts from its ground state, a natural question that arises would
be how the resonant excited state gets its population in the first place. Moreover, considering that
single active electron approaches work just fine for the most part when there is no enhancement
(i.e. ordinary HHG), it is easy to suspect that this resonant state plays a central role in resonant
HHG. To answer this question, we refer to the time-frequency spectrogram ofMn andMn+ shown
in Fig. 4.10. This two-dimensional function provides a map of the emission time of each photon
energy in the spectrum. One observes that there is a horizontal streak of signal at about ∼ 50
eV in Fig. 4.10(a) and (b), this is obviously the resonantly enhanced peak. These signals appear
only after the second bunch of returning electrons where they are seen to have kinetic energies
such that it is sufficient to emit ∼ 50 eV radiations upon returning to the ground state. For
some of these electrons however, when the moment to emit photons through the ordinary way,
namely by recombining to its initial state, comes, they got “suspended” in an excited state that
lies ∼ 50 eV above the ground state. Electrons captured by this state then subsequently relaxate
to a lower orbital. To make a connection with the remark in Section 6.1, the upper orbitals at
which the returning electron makes a temporary visit are 3d orbitals, while the lower orbitals to
which it relaxates by emitting the resonant radiation are 3p orbitals. This ∼ 50 eV signal in the
time-frequency spectrograms is also seen to not completely respect return kinetic energy curves.
This supports the idea that the final mechanism leading to the emission of resonantly enhanced
radiation is mainly an outcome of bound-bound dynamics rather than continuum-bound ones.

6.3 Signature ofResonant Enhancement inTheTime-Dependent
Orbital Populations

The evolution of orbital populations inMnandMn+ during laser interaction is presented in Section
4.4. Taking the Fourier transform of the first derivative of these time-dependent populations, one
obtains a function of frequency for each orbital and from these frequency domain functions, it is
revealed that the corresponding time-domain population is modulated at the same frequencies
as any transitions involving that orbital. For example, there are two transitions in neutral Mn
involving 3p0 that have prominent peaks in their spectra - 3p0 ↔ 4s0 at 61.6 eV (Fig. 4.12(e)) and
3p0 ↔ 3d0 at 51.5 eV (Fig. 4.12(f)). While at the same time, the spectrum of ∂tn(3p0, t) has peaks
at 51.5 eV and 61.6 eV (Fig. 4.16(i)), the spectrum of ∂tn(4s0, t) at 61.6 eV (Fig. 4.16(k)), and the
spectrum of ∂tn(3d0, t) at 51.5 eV (Fig. 4.16(j)), indicating that the population of these orbitals is
modulated at the indicated frequency. The important remark of this orbital population study is
that, as implied from Fig. 4.18, the populations of the two orbitals being coupled by a strong
transition line exhibit an alternating population exchange - a peak in n(3pm, t) at a given moment
implies a valley in n(3dm, t) at the same time - with a periodicity corresponding to the resonant
energy. Moreover, judging from the absence of the peaks around 51.5 eV in the total spectra
of virtual orbitals ∂tnV(t) (Fig. 4.16(l) and Fig. 4.17(l)), this alternating population exchange is
apparently confined between 3p and 3d orbitals only. Hence, it may support the idea pointed
out in Section 6.1 about the final mechanism of the resonant emission process which excludes
continuum states.
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6.4 Prospects of The Research
Resonant HHG offers a new platform of both basic and applied researches within the scope of
strong-field phenomena. In the instance of an atom and its first few cations having giant transition
lines which do not coincide with each other, resonant HHG can serve as a means of study to
understand ionization dynamic during HHG. From application point of view, it is not too far-
fetched to envisage resonant HHG to be one of prospective methods of choice to generate an
intense quasi-monochromatic coherent XUV radiation. These fields of researches will definitely
benefit from a mature theoretical understanding of the physics that underlies resonant HHG.
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Appendix A
Commutator Identities Involving
Creation and Annihilation Operators

In second quantization, the (anti)symmetry and orthogonality properties of many-particle wave-
function are delegated to the the anti-commutator properties of creation and annihilation op-
erators. Here we list some commutator and anti-commutator identities involving creation and
annihilation operators for fermions which are used in various derivations in this dissertation.{

â†m, â
†
n

}
= 0 (A.1)

{âm, ân} = 0 (A.2){
â†m, ân

}
= δmn (A.3)[

â†m, â
†
nâp

]
= −δmp â†n (A.4)[

âm, â†nâp

]
= δmnâp (A.5)[

â†mân, â†p âq
]
= δnp â†mâq − δmq â†p ân (A.6)[

â†mân, â†p âq â†r âs
]
= δnp â†mâq â†r âs − δmq â†p ânâ†r âs + δnr â†p âq â†mâs − . . .

δms â†p âq â†r ân (A.7)

Eq. (A.1)-(A.3) serve as the base equations for deriving the rest of the identities since in these three
identities are encoded the anti-symmetry of many-fermion wavefunction and the orthogonality
of one-fermion functions constituting the wavefunction with the former being a natural principle
whereas the latter being analysis dependent.
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Appendix B
Elements of Density Matrices

B.1 One-Electron Reduced Density Matrix (1RDM)

It is fairly straightforward to determine the vanishingmatrix elements of Dµ
ν . Since Dµ

ν = 〈Ψ|Êνµ |Ψ〉,
Dµ
ν will be zero if Êνµ |Ψ〉 is orthogonal to |Ψ〉, that is , if the former lies outside Π̂. This occurs when

the orbital rotation involves orbitals from different orbital subspaces. Owing to the Hermitian
property of density matrix, one has the obvious consequence Dµ

ν =
(
Dν
µ

)∗
.

B.2 Two-Electron Reduced Density Matrix (2RDM)
Any given element of 2RDM effectively depends on four indices. With three orbital subspaces
(core, active, and virtual), one has 81 possible groups of 2RDM elements classified based on the
involvement of the three subspaces. Fortunately, this number can be significantly reduced to 16
by removing groups where at least one of the indices belong to virtual subspace. The reason is
when we consider

Pνγµλ =
∑
s

∑
s′

〈âλs′ âµsΨ|âγs′ âνsΨ〉, (B.1)

we can immediately see if at least one of the four indices belongs to virtual subspace, when it is
the turn for that annihilation operator to act on whatever vector to the right, Pνγµλ will equal zero.

The zero and non-zero elements of 2RDM when the four indices are among core and active
subspaces are summarized in Table B.1. The following expression of 2RDM element is used in
reference to the 6-th column,

Pνγµλ = 〈Ê
ν
µΨ|Ê

λ
γΨ〉 − δλν 〈Ψ|Ê

µ
γ Ψ〉

= 〈ÊνµΨ|Ê
λ
γΨ〉 − δλν 〈Ê

γ
µΨ|Ψ〉 (B.2)

where we have used the definition of Êµλ
νγ in Eq. (3.8). 2RDM possesses the following symmetries

among its elements

Pνγµλ =
(
Pλµγν

)∗
(B.3)

Pνγµλ = Pγνλµ (B.4)

which derive from the Hermitian property of density matrix and the antisymmetry of the wave-
function, respectively.

Taking a closer look at Table B.1, we may see that the vector
��Êµ
ν Ψ

〉
is always zero if φµ is a

core orbital while φν is not. This is obvious from the fact that core orbitals are already at their full
occupation. The inner product

〈
ÊνµΨ

��Êλ
γΨ

〉
vanishes if either of the following three conditions are

satisfied,

1. φν (φλ) is a core orbital while φµ (φλ) is active,
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Table B.1: A list of 2RDM elements Pνγ
µλ

in cases where the four indices are among core and active orbitals.
The first ten elements are the vanishing ones with the last column listing the vanishing quantities involved
in Eq. (B.2), hence explaining why the corresponding element vanishes. The last six elements are those that
generally do not vanish with the last column containing the final expression of the corresponding element.

No. µ λ ν γ
Vanishing quantities (1-10) or final
expression (11-16)†‡

1) t i j k 〈ÊνµΨ| = 0, 〈ÊγµΨ| = 0
2) k i j t = 1)∗

3) i t j k 〈ÊνµΨ|Ê
λ
γΨ〉 = 0, δλν = 0

4) i j t k = 3)∗

5) i t u v 〈ÊνµΨ|Ê
λ
γΨ〉 = 0, |Êµ

γ Ψ〉 = 0
6) v t u i = 5)∗

7) t i u v |Êλ
γΨ〉 = 0, δλν = 0

8) t u i v = 7)∗

9) i j t u |Êλ
γΨ〉 = 0, |Êµ

γ Ψ〉 = 0, δλν = 0
10) t u i v = 9)∗

11) i u t j = 12)
12) u i j t −δi jDt

u

13) i t j u 2δi jDu
t

14) u j t i = 13)∗

15) i j k l 4δikδjl − 2δilδjk
16) t u v w Ptu

vw

† = n)∗ means identical to the complex conjugate of the element in the n-th line.
‡ = n) means identical to the element in the n-th line.

2. either bra or ket is in Π̂ and the other in Q̂, e.g. the third entry,

3. (λ, γ) ∈ active × active and (ν, µ) ∈ active × core or vice versa, e.g. the fifth entry.

The reasons for the first and second points are clear. As for the third one, in the case of TD-CASSCF
this is just a special case of the second point. In TD-ORMAS, however, the wavefunction being
rotated between active orbitals in general lies across Π̂ and Q̂, instead of just Π̂. In this instance,〈
ÊνµΨ

��Êλ
γΨ

〉
still vanishes because the wavefunction being excited from core to active contains

determinants that are necessarily different from those of the active-active rotated wavefunction.
With this observation inmind,we can see that TableB.1 also applies ifwe replace thewavefunctions
in bra andketwith twodifferent determinants |I〉 and |J〉 living in Π̂ spacewith a littlemodification
in the notation. The nonzero elements are

(PIJ )
jt
ui = −δi j (DIJ )

t
u (B.5a)

(PIJ )
t j
iu = −δi j (DIJ )

t
u (B.5b)

(PIJ )
ju
it = 2δi j (DIJ )

u
t (B.5c)

(PIJ )
ti
u j = 2δi j (DIJ )

t
u (B.5d)

(PIJ )
kl
i j = δIJ

(
4δikδjl − 2δilδjk

)
(B.5e)

(PIJ )
tu
vw (B.5f)

where (DIJ )
µ
ν = 〈I |Êνµ |J〉. The same argument also applies for 1RDM, namely if we replace the

wavefunctions in 〈Ψ|Êµ
ν |Ψ〉 with two different determinants |I〉 and |J〉 living in Π̂ space, then the

nonzero elements are

(DIJ )
i
j = 2δi jδIJ (B.6a)

(DIJ )
t
u . (B.6b)
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Appendix C
Radial Functions of The Ground State
Orbitals

Referring to Eq. (3.61) and (3.65), we may rewrite the former for an initial orbital in the form

φµ(r, t = 0) =
lmax∑
l=0

Ylm(θ, ϕ)
Uµ
l
(r)

r
(C.1)

where the radial function Uµ
l
(r) associated with the l-th spherical harmonic of orbital φµ(r, 0) is

defined to be

Uµ
l
(r) =

nmax∑
n=1

cµ
nl
(0)pn(r). (C.2)

In this chapter, the plots of Uµ
l
(r) for l = 0, 1, 2 for each of the 24 orbitals in Mn and Mn+ obtained

from ground state calculations using orbital subspace decompositions in Fig. 4.1(d) and (e),
respectively, are presented. These plots are, for instance, useful in explaining the population
depletion experienced by various initial orbitals which are presented in Fig. 4.16 and 4.17.
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APPENDIX C. RADIAL FUNCTIONS OF THE GROUND STATE ORBITALS
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Figure C.1: Radial functions Uµ
l
(r) of each neutral Mn ground state orbitals obtained using orbital subspace

decomposition in Fig. 4.1(d) for µ = (a) 1s, (b) 2s, (c) 2p−1, (d) 2p0, (e) 2p+1, (f) 3s, (g) 3p−1, (h) 3p0, (i) 3p+1,
(j) 3d−2, (k) 3d−1, (l) 3d0, (m) 3d+1, (n) 3d+2, (o) 4s, (p) 4p−1, (q) 4p0, (r) 4p+1, (s) 5s, (t) 4d−2, (u) 4d−1, (v) 4d0,
(w) 4d+1, and (x) 4d−2.
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Figure C.2: Radial functions Uµ
l
(r) of each Mn+ ground state orbitals obtained using orbital subspace

decomposition in Fig. 4.1(e) for µ = (a) 1s, (b) 2s, (c) 2p−1, (d) 2p0, (e) 2p+1, (f) 3s, (g) 3p−1, (h) 3p0, (i) 3p+1, (j)
3d−2, (k) 3d−1, (l) 3d0, (m) 3d+1, (n) 3d+2, (o) 4s, (p) 4p−1, (q) 4p0, (r) 4p+1, (s) 5s, (t) 4d−2, (u) 4d−1, (v) 4d0, (w)
4d+1, and (x) 4d−2.
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