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Abstract  

Mammalian species have different sexual behaviors between males and females at adult. In rodents, 

females in estrous display female-specific sexual behavior called lordosis behavior responding to 

mounting behavior of males. The development of sexual behaviors is bipotential during the early life 

and male rats gain the ability to show male specific sexual behaviors and lose the ability to show female 

specific sexual behaviors soon after birth, which is defined as masculinization and defeminization, 

respectively. Sexual differentiation of sexual behavior is caused by a dramatic elevation in plasma 

testosterone (testosterone surge) during perinatal period in male rats by the following processes: 

testosterone secreted from testes rapidly arrives brain and is locally converted to estradiol by aromatase 

in brain, especially in the hypothalamus, then the estradiol organizes and establishes numerous neuron 

circuits which defeminize and masculinize the male brain and consequently causes the development of 

mounting behavior and the disability to display lordosis behaviors at adult. Yet the mechanism 

underlying the generation of perinatal testosterone is unclear. 

Kisspeptin, a neuropeptide encoded by Kiss1 gene, has been recognized as a crucial regulator that 

is at the top of the hierarchy of the hypothalamus-pituitary-gonadal axis (HPG axis) controlling puberty 

onset and reproductive functions in mammals. It is well established that kisspeptin induces testosterone 

production by directly stimulating the release of gonadotropin-releasing hormone (GnRH) and the 

following secretion of gonadotropins (follicle-stimulating hormone and luteinizing hormone) in 

adulthood, but we know less about the functions of kisspeptin before puberty including perinatal period. 

Our previous paper using Kiss1 knockout (Kiss1-/-) rats revealed that Kiss1-/- males showed a high level 

of lordosis behaviors as found in females and impaired mounting behaviors, indicating Kiss1-/- male rats 

does not undergo complete defeminization and masculinization during development. However, our 

previous paper also suggested that both plasma testosterone level and the expression level of aromatase 

mRNA in hypothalamus in Kiss1-/- neonatal male rats were comparable to that of Kiss1+/+ males. 



 

iii 

Administration of either kisspeptin or estradiol within 2 hours after delivery could rescue the 

defeminization and masculinization of sexual behaviors in Kiss1-/- male rats in our previous paper. This 

means that kisspeptin should play a role in brain sexual differentiation in the upstream of estrogen. In 

other words, kisspeptin affects either the generation of neonatal testosterone surge or the conversion of 

testosterone to estradiol in the hypothalamus. One previous report using Gpr54 (kisspeptin receptor) 

knockout (Gpr54-/-) mice demonstrated a significant difference in plasma testosterone concentrations 

between wildtype and Gpr54-/- male mice within 2 hours after birth, which is contradictory to our 

previous result with Kiss1-/- rats. Thus, the possibility that kisspeptin has a role to induce neonatal 

testosterone surge in male rats still remains. Therefore, the present study aimed to reinvestigate the role 

of kisspeptin in differentiation of sexual behavior in male rats. 

As the contents of the chapter 2 to chapter 4 and part of chapter 5 are anticipated to be published 

in a paper in a scholarly journal, they cannot be published online. The paper is scheduled to be published 

within 5 years. 
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Sexual differentiation 

In sexually reproducing species, two sexes, male and female, are required to produce offspring. 

There are huge differences in various organs or tissues between two sexes including gonads, genitalia 

and some parts of brain. These sex differences result from sexual differentiation, a common process that 

promotes two sexes to develop different structures and functions of any part of body, which consists of 

masculinization, defeminization and feminization. Masculinization and defeminization lead an 

individual to be more like male and less like female, respectively, while feminization makes female 

different from male.  

Sexual differentiation is not a simple and uniform process, instead it is induced and maintained by 

numerous factors, such as sex specific genes, sex hormones, epigenetic modifications and 

environmental factors that especially plays a key role in human. Among these factors, sex specific genes 

and sex hormones have been well investigated. Masculinization and defeminization are primarily driven 

by sex hormones and male-specific genes; feminization is emerging as a factor-induced process which 

had been considered as a default process for a long time: female typical structures and functions were 

developed spontaneously without any sex-specific factors. 

Sexual differentiation on reproductive system 

Gonads In all mammals, genetic sex is determined by sex chromosomes: X and Y chromosome. 

Sry, a dominant sex-determining gene locating on Y chromosome, initiates primordia gonads 

differentiate to testes1. The number of X chromosome has no effect on the determination of gonadal sex. 

If Sry is absent, ovaries develop whatever in XX female or XY male2,3. 

Genitalia Once the differentiation of gonads is settled, hormones become the main factors to affect 

the following sexual differentiation. Sertoli cells and Leydig cells in testes generate anti-Mullerian 

hormone (AMH) and androgens, respectively, which act together to defeminize and masculinize both 

internal and external genitalia during fetal life4. AMH targets Mullerian ducts, the precursors of female 
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internal genitalia (e.g., oviducts and uterus), inducing the regression of Mullerian ducts. Androgen not 

only stabilizes the differentiation of Wolffian ducts to male internal genitalia (i.e., vas deferens, 

epididymis and seminal vesicles), but also causes the differentiation of primordia external genitalia to 

male external genitalia (i.e., penis and scrotum).  

On the other hand, granulosa cells and thecal cells instead of Sertoli cells and Leydig cells are 

formed in female ovaries that do not secrete AMH and androgen. Hence, in the female, Mullerian ducts 

develop to female internal genitalia with the spontaneous regression of Wolffian ducts, and the female 

external genitalia are formed from the primordia of the external genitalia spontaneously, too. 

Estrogen appears to be unnecessary during the sex differentiation of genitalia in fetuses. Fetuses 

castrated before sexual differentiation of genitalia developed female genitalia regardless of genetic sex5. 

Mice lacking Ftz-F1 (Steroidogenic factor1, SF-1 gene), a key regulator of steroidogenic enzymes, had 

no gonads but normal oviducts, uterus and vagina in both neonatal males and females6. Moreover, in 

estrogen receptor (ER) α or ERβ null mice, males and females show normal genital development during 

perinatal periods7,8. Together, these studies support the idea that androgen make the male different from 

the female, but estrogen is not required to make the female different from the male in terms of the sex 

differentiation of genitalia. 

Sexual differentiation on sexual behaviors  

Males and females show different sexual behaviors. For instance, male rodents mount a female in 

estrus who will display lordosis behaviors exposing vagina to male during copulation. Like gonads, the 

development of sexual behaviors is bipotential and sex hormones-dependent during perinatal period 

and then is sexually differentiated in adult. There are two actions of gonadal hormones that firstly  

introduced by Phoenix et al. in 19599: organizational effects and activational effects. The former one 

makes the sexual behaviors modified permanently and irreversibly; the latter one is reversible and 

dependents on the concentration of circulating gonadal hormones.  
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The organizational effects are induced by the perinatal testosterone surge in male rodents, which 

cause masculinization and defeminization of sexual behavior. Phoenix et al. injected testosterone to 

pregnant guinea pigs and found that those prenatally androgenized genetic females showed less lordosis 

behaviors and more mount behaviors compared to the females that were not androgenized before birth 

9. Another experiment performed by Corbier et al. suggested that male rats castrated at 0 hour after birth 

displayed high frequency of lordosis behavior at the same level as females, which frequency was 

returned to low level by the immediate administration of testosterone after castration10. However, when 

castration was conducted at 6 hours or afterward, it became more difficult to inhibit defeminization10,11. 

These results suggest that the masculinization and defeminization are induced by testosterone secreted 

from testes within a very narrow period in male rodents. 

It is now well established that estrogen converted from testicular testosterone surge by aromatase 

in local brain is the primary factor that induces differentiation of sexual behaviors. The first study about 

this phenomenon was done by Feder. Feder injected testosterone or estrogen to neonatal female rats and 

found that these two sex hormones had same effects on the development of sexual behavior, this is, 

lordosis behavior in adulthood was inhibited both in testosterone- and estrogen-treated females12. 

Thereafter, researchers showed that prenatal administration of dihydrotestosterone (DHT), a non-

aromatizable androgen, failed to affect lordosis behaviors in adult female guinea pigs13. Moreover, 

injection of aromatase inhibitor during the perinatal period strongly increased lordosis frequency in 

male rats14. Taken together, these evidences suggest that conversion of testosterone to estradiol is 

indispensable in sexual differentiation of sexual behaviors. 

The mechanisms underlying the sexually dimorphic behaviors 

Many brain regions undergo sexual differentiation, among which the most pronounced 

differentiation occurs in the neural nuclei where are tightly relevant to sexual behaviors, including the 

sexually dimorphic nucleus of the preoptic area (SDN-POA) and the ventromedial nucleus of the 
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hypothalamus (VMH).  

The POA is known to be the center of male sexual behaviors. In rodents, lesions of the POA inhibits 

the display of male sexual behaviors and electrical activation of the POA stimulates males to mate with 

females15,16. Male type of the POA, containing more cell numbers and dendritic synapses, is formed by 

perinatal testosterone. Estrogen converted from testosterone in local brain protects the neurons in the 

POA from apoptosis and stimulates the generation of dendritic synapse’s connection17,18. The density of 

dendritic synapses rather than the number of neurons closely correlates with mounting behaviors19.  

Estrogen masculinizes the neural circuits in the POA via prostaglandin E2 (PGE2). In the POA, 

estrogen upregulates the activity of cyclooxygenases-2 (COX-2) to enhance the generation and release 

of PGE2 in neurons19. PGE2 then stimulates neighboring astrocytes and microglia: PGE2 acts on 

astrocytes to induce the release of glutamate that in turn activates adjacent neurons, ultimately causing 

the formation of dendritic spine synapses20,21 (Figure 1-1). Additionally, PGE2 acts on surrounding 

microglia to stimulate the generation of PGE2 in a feedforward way22, which can sustainably induce 

the formation of dendritic spine synapses. Administration of PGE2 to neonatal females masculinizes 

the number of dendritic spine synapses and leads them to behave male sexual behaviors in adult19. 

Conversely, inhibition of COX-2 or microglia activity in neonatal males decreases the concentration of 

PGE2 and permanently downregulates the number of dendritic spines, which profoundly impairs male 

sexual behaviors19,22. 

VMH is to the center of female sexual behavior what POA is to the center of male sexual behavior. 

Electrical stimulation or estrogen implant to the VMH facilitate the display of lordosis behavior23,24, 

while the impairment of the VMH reduces lordosis behavior25. Likewise, the number of dendritic spines 

in the VMH is larger in males than in females. However, the defeminization of the VMH is not caused 

by estrogen-induced up-regulation of PGE2 and astrocytes are not needed for this signal pathways. In 

case of the VMH, estrogens directly induce the glutamate release from presynaptic terminals via PI3K 
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activation, a non-genomic signal transduction. Glutamate then acts on its receptors, N-methyl-D-

aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), located on 

the postsynaptic terminals to activate MAPK and consequently promote the spine formation26 (Figure 

1-1). Blocking of NMDA in neonatal males decreases dendritic spines in the VMH and increases female 

sexual behaviors in adults, whereas giving NMDA to neonatal females increases dendritic spines in the 

VMH and inhibits female sexual behaviors in adulthood27,28. 

Different from the sexual differentiation of gonads and genitalia, estrogen plays an essential role 

in sexual differentiation of the brain and sexual behaviors. The mechanisms underlying estrogen-

induced masculinization and defeminization are multiple but specific to each brain regions. PGE2 

upregulated by estrogen increases the dendritic spines in the POA but not in the hippocampus and the 

VMH19,29; inhibition of NMDA leads dendritic spines in the VMH to be feminized but has no effects on 

the POA21. Hence, masculinization and defeminization of sexual behaviors seem to be regulated 

separately. Treatment of female neonates with PGE2 dramatically increases the male sexual behaviors 

and has no effects on female sexual behaviors, suggesting that PGE2 can induces masculinization 

without inducing defeminization29. Similarly, inhibition of NMDA receptors in neonatally androgenized 

females rescues lordosis behaviors but does not impair mount behaviors, indicating that activation of 

NMDA receptors is necessary for defeminization but not for masculinization27. These results indicate 

that induction of masculinization of sexual behaviors may occur independent of defeminization. On the 

other hand, activation of NMDA defeminizes the sexual behaviors while masculinizes the copulatory 

behaviors, suggesting that the initiation of defeminization is linked to masculinization, which is likely 

to make sure an adult to develop at least one kind of sexual behavior26,27 (Table 1-1). Since glutamate 

is involved in both masculinization and defeminization, these actions are not surprising and seem to be 

relevant (Figure 1-1). 
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Kisspeptin is essential for mammalian reproduction 

HPG axis is the basic system regulating reproduction in mammals 

Gonadal steroid hormones are required for developing and maintaining sex characters and 

reproductive functions during puberty and adulthood. It is well known that hypothalamus modulates 

gonadal activities and functions through controlling the anterior pituitary gland in mammals, and this 

classic network is called hypothalamic-pituitary-gonadal (HPG) axis. The main components of HPG 

axis are: 1) gonadotrophin-releasing hormone (GnRH), a decapeptide, secreted from GnRH neurons in 

the hypothalamus; 2) gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), 

synthesized and released by gonadotrophs in anterior pituitary gland; 3) androgen and estrogen which 

are generated by Leydig cells in testis and granulosa cells in ovary, respectively. These components 

interact with each other via a positive feedback or a negative feedback control. In addition to 

steroidogenesis, the development and maturation of gametes (i.e., spermatogenesis, folliculogenesis and 

ovulation) are the primary activity of gonads, which are also regulated by HPG axis. 

Responding to different activities in gonads, especially in ovaries, there are two modes of GnRH 

secretions: one is pulsatile GnRH secretion and the other is surge-mode of GnRH secretion30. Pulsatile 

GnRH secretion modulates the tonic secretion of gonadotropins, which is responsible for 

spermatogenesis in testes, folliculogenesis in ovaries and steroidogenesis in both gonads. This mode of 

secretion is under the control of negative feedback action of sex steroids. On the other hand, the surge-

mode of GnRH secretion only exists in females, which is induced by the positive feedback of 

dramatically elevated estrogen during preovulatory stage and evokes ovulation by inducing LH surge.  

Kisspeptin is the upstream of GnRH neurons 

    Kisspeptin, encoded by Kiss1 gene, was originally identified as a metastasis suppressor31,32. In 

2003, two studies independently found that mutations of kisspeptin receptor gene (Gpr54) can be a 
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cause of isolated hypogonadotropic hypogonadism (IHH) in human33,34. Patients with Gpr54 mutation 

show the absence of puberty due to the deficiency of circulating gonadotropins and sex steroids, 

indicating that kisspeptin-GPR54 system is essential for the onset of puberty and the regulation of HPG 

axis. Seminara et al. reported that Gpr54-defecient mice also show IHH33. After this breakthrough, 

researchers have discovered that kisspeptin and GPR54 are expressed in a variety of mammals, such as 

rats, pigs, sheep and monkies35–38.  

It is well established that kisspeptin induces the release of GnRH and LH/FSH by direct stimulation 

of GnRH neurons as GnRH neurons express GPR5439. Intracerebroventricular infusion of kisspeptin in 

sheep induces a dramatic release of GnRH into the cerebrospinal fluid with a parallel rise in plasma LH 

and FSH. Conversely, the stimulatory effect of kisspeptin is blocked by pretreatment of GnRH 

antagonist. Moreover, kisspeptin has no effects on Gpr54-knockout (Gpr54-/-) mice. Accumulated 

researches have shown that the functions of kisspeptin and GPR54 are highly conserved in mammals40. 

In rodents, there are two hypothalamic populations of kisspeptin neurons: one is the arcuate 

nucleus (ARC) and the other is the anteroventral periventricular nucleus (AVPV)41. These two 

populations are considered to have different roles in reproduction. 

    Kisspeptin neurons in the ARC are thought to regulate the pulsatile GnRH/gonadotropin secretion 

by receiving negative feedback signal of sex steroids. As ARC kisspeptin neurons coexpress ER and/or 

androgen receptor (AR)42, a lot of studies have been performed to reveal the effects of gonadal hormones 

on kisspeptin neurons. Castration of male mice results in a significant increase of Kiss1 mRNA in the 

ARC, which can be completely reversed by testosterone or estrogen replacement42. Similarly, 

ovariectomized (OVX) female mice show higher expression level of Kiss1 mRNA in the ARC, and 

estrogen implantation decreases the Kiss1 mRNA level43. Thus, it is suggested that estrogen and/or 

androgen exert negative effect directly on kisspeptin neurons in the ARC, which raises the possibility 

that ARC kisspeptin neurons are responsible for the generation of GnRH pulses. 
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    Recently, three elegant studies using optogenetic strategies performed by Herbison’s group further 

supported the hypothesis that ARC kisspeptin neurons are the GnRH pulse generator44–46. In one of the 

studies, they introduced channelrhodopsin (ChR2), a protein that functions as a light-gated ion channel, 

into kisspeptin neurons in the ARC, and showed that the kisspeptin neurons expressing ChR2 can be 

activated by 473-nm blue light44. High amplitude, pulse-like increments in LH secretion were observed 

in both anesthetized male and diestrous female mice at 20 Hz of optogenetic activation. In OVX female 

mice, 5 Hz was enough to trigger the LH pulses. In another study, using GCaMP6 fiber photometry 

technology, monitered the population activity of the ARC kisspeptin neurons in conscious-behaving 

mice46. They showed that ARC kisspeptin neurons in intact male mice exhibited episodes of 

synchronized activity with a very wide range of intervals. Gonadectomy resulted in dramatic changes 

in the dynamics of the ARC kisspeptin neurons with much higher frequency of synchronized activity. 

Furthemore, continuous blood sampling revealed a perfect correlation between the activity of the ARC 

kisspeptin neurons and LH pulses in intact and short-term gonadectomized (GDX) mice. The results 

provide insights into the ARC kisspeptin neurons as a GnRH/LH pulse generator and the target of 

negative feedback control of HPG axis. 

    On the other hand, kisspeptin neurons in the AVPV are thought to generate the preovulational 

GnRH/LH surge in females. AVPV kisspeptin neurons are sexually differentiated, and there are much 

more kisspeptin neurons in the AVPV in adult females than adult males, which is organized by perinatal 

testosterone as with the SDN-POA47. Most of kisspeptin neurons in the AVPV express ERs (mainly 

ERα)43,48. Opposite to kisspeptin neurons in the ARC, Kiss1 mRNA in the AVPV is positively regulated 

by estrogen: the expression level of Kiss1 mRNA is reduced after OVX and increased with estrogen 

treatment; the level of Kiss1 mRNA during estrous cycle peaks in the evening of proestrus43,48. Most 

kisspeptin neurons in the AVPV coexpress cFos, an immediate early gene that indicates the activity of 

neurons, coincidently with the LH surge but little coexpress cFos on diestrus48,49. Infusion of kisspeptin 
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antibody to the POA blocks the estrogen-induced LH surge in rats49. These evidences suggest that 

kisspeptin neurons in the AVPV may induce the GnRH/LH surge responding to positive feedback of 

estrogen. Further direct experiments are required to uncover this problem.  

The funciton of kisspepitn in testes 

The expression of kisspeptin as well as GPR54 has been detected in testes in various species 

including humans, rodents and goats50–53. Several investigations have evidenced that kisspeptin might 

have direct effects on testes. In the adult male rhesus monkey, kisspeptin administration significantly 

elevated human chorionic gonadotropin (hCG)-stimulated testosterone levels in acyline, a GnRH 

antagonist, pre-treated monkeys when compared with controls54. Samir et al. observed that the 

production of testosterone in Leydig cells isolated from testes of adult goats were suppressed by 

kisspeptin antagonist compared with controls55. These results are indicative of a direct effect of 

testicular kisspeptin on steroidogenesis in testes. On the other hand, studies on mice showed that 

kisspeptin can directly increase neither basal testosterone release nor hCG- or LH-stimulated 

testosterone release in adult mouse testes52,56. These different results are likely to be caused by the 

difference of animals used.     

Kisspeptin plays a role in sexual differentiation 

    Kisspeptin and GPR54 have been found to be involved in the sexual differentiation of brain and 

sexual behavior. Male mice with Gpr54 gene mutations show female-like tyrosine hydroxylase neurons 

and consequently their partner preference is altered: they do not prefer estrous females57,58. Kisspeptin 

neurons in the AVPV and the volume of SNB are also feminized both in Gpr54-/- male mice and Kiss1-

knockout (Kiss1-/-) male rats57,59. Moreover, the size of the SDN-POA is larger in wild type male rats 

than in Kiss1-/- male rats which is as small as females59 . 

    Gpr54-/- male and female mice do not display sexual behaviors, however, sex hormone-replaced 
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GDX Gpr54-/- males and females exhibit appropriate gender-specific sexual behaviors57. Kiss1-/- male 

rats exhibit no male-type sexual behaviors, and the ability to show male sexual behaviors is recovered 

by long-term testosterone replacement from the peripuberty to adulthood. Notably, Kiss1-/- male rats 

can display the lordosis behaviors as shown in females, which is rescued by kisspeptin administration 

in male rats within 2 hours after birth59. Taken together, these evidence indicate that the organizational 

action on brain nuclei and neural circuits for sexual behaviors during perinatal period, especially 

defeminization, is influenced by kisspeptin. 

Objective  

    The present dissertation aims to investigate the mechanism that kisspeptin induces sexual 

differentiation in male rats. In chapter 2, to determine the effect of kisspeptin in plasma testosterone 

profiles during perinatal periods in wild type and Kiss1-/- male rats, blood samples at several time points 

during perinatal period were collected and plasma testosterone concentrations were measured. It is well 

established that kisspeptin stimulates steroidogenesis by regulating HPG axis in adult rats; however, 

little is known about the relation between kisspeptin and HPG axis in neonatal rats. In chapter 3, to 

reveal the involvement of HPG axis in generation of testosterone surge in neonatal male rats, plasma 

LH concentration and GnRH neuron activity in perinatal male rats with or without kisspeptin treatment 

were examined. The reports on the direct effect of kisspeptin on testes are limited, therefore in chapter 

4, to investigate if testicular kisspeptin affects the neonatal testosterone surge directly, the expression 

profiles of the mRNA of Kiss1 and Gpr54 during embryogenesis were examined by RT-PCR firstly, 

then the fetal plasma testosterone concentrations and the number of Leydig cells in neonatal male rats 

within 2 hours after birth were evaluated by EIA and IHC, respectively. Lastly, the effect of kisspeptin 

on the generation of testosterone in neonatal testes were examined in vitro. 
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Figure and table 

 

 

 

Figure 1-1. Main signaling pathways in masculinization and defeminization of the brain in 

neonatal males. Testosterone secreted by testes is converted to estradiol by aromatase in the brain. 

Estradiol in the POA increases the synthesis of COX-2 in neurons, which in turn enhances the 

generation of PGE2 by neurons. PGE2 synthesized by neurons stimulates surrounding microglia to 

generated PGE2 and activates astrocytes to release glutamate, inducing the synthesis of new dendritic 

spines and further masculinization of sexual behavior. Meanwhile, estradiol in the VMH enhances the 

release of glutamate from presynaptic terminals, which in turn activates NMDA, one of the glutamate 

receptors, on postsynaptic neurons. Activation of NMDA increases the synthesis of new dendritic 

spines and further defeminization of sexual behavior. COX-2, cyclooxygenase-2; NMDA, N-methyl-

D-aspartate receptor; PGE2, prostaglandin-E2. 
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Table 1-1. Summary of the studies for the differentiation of sexual behavior in mice with a variety 

of treatments on PND0. Despite whether the masculinization occurs or not, the defeminization can be 

suppressed (① ,③ and④ ). If defeminization occurs, masculinization will occur (② and⑤ )  

Differentiation indicates masculinization or defeminization of sexual behaviors. Ma, masculinization; 

De, defeminization. 
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As the contents of this chapter is anticipated to be published in a paper in a scholarly journal, they 

cannot be published online. The paper is scheduled to be published within 5 years.   
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CHAPTER 3: The effects of kisspeptin on HPG axis 
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As the contents of this chapter is anticipated to be published in a paper in a scholarly journal, they 

cannot be published online. The paper is scheduled to be published within 5 years. 
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CHAPTER 4: The effects of kisspeptin on perinatal testes 
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As the contents of this chapter is anticipated to be published in a paper in a scholarly journal, 

they cannot be published online. The paper is scheduled to be published within 5 years. 
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Chapter 5: General discussion 
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Perinatal testosterone surge is a universal phenomenon in mammals 

    In addition to rodents, perinatal testosterone surge has been found in a variety of other species, 

such as humans, non-human primates and ruminants. As I introduced in chapter 1, in rats and mice, the 

testosterone surge required for sexual differentiation of brain and sexual behavior occurs within hours 

after birth. Estradiol, aromatized from testosterone in local brain, plays the dominant role in 

masculinization and defeminization of brain and sexual behavior. The time of occurrence and their 

functions, however, are species dependent.  

 For domestic animals, a large amount investigation about the effects of perinatal testosterone surge 

have been performed by sheep. In sheep, the sexual differentiation of brain and sexual behavior are 

occurred during embryogenesis. There is a testosterone elevation in fetuses from day 30 to 70 with a 

peak in day 70 of gestation (term 145 days)116, and differentiation of brain occurs at around day 50 to 

80 of gestation117. Fetal ewes exposed to exogenous testosterone or estrogen between day 50 and 80 of 

gestation display increased mounting behavior and most of them fail to show receptivity at adult118,119. 

Dissociated to sexual behavior, LH surge can be induced in androgenized ewes, whose peak value is 

much lower than that of control ewes118,120. Unlike rats that perinatal testosterone administration 

completely differentiates the sexual behavior and LH secretion pattern at the same time121,122, it seems 

that broader period and additional factors are required for sheep. For cattle and goats, it is assumed that 

the testosterone surge occurring in mid-gestation is involved in the sexual differentiation of brain and 

sexual behavior, but the effects of mid-gestation testosterone or estrogen exposure are ambiguous119,123, 

so more studies are needed to confirm it. 

 There are two surges of testosterone, mid-gestation and the first few months after birth, in humans 

and rhesus monkeys62,124,125. A lot of investigations have shown that mid-gestation testosterone surge 

rather than postnatal testosterone surge is more important for sexual differentiation of brain and behavior. 

Androgen but not estrogen is suggested to be involved in the sexual differentiation in primates, since 
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DHT, a non-aromatizable testosterone, shows equal effects as testosterone in rhesus monkeys124 and 

genetic XY human males with androgen insensitivity syndrome that is caused by mutations in the 

androgen receptor show female type preference126.  

 

As the rest of the contents of this chapter is anticipated to be published in a paper in a scholarly 

journal, they cannot be published online. The paper is scheduled to be published within 5 years. 
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