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1
I N T R O D U C T I O N

1.1 modern macroeconomics and microfoundation

Since the Lucas critique, it is widely believed by most of economists
that macroeconomic theory must be based on microfoundations. Mod-
ern macroeconomics from Friedman, Phelps, Lucas to real business
cycle theory (Kydland and Prescott [31]) is considered to be based on
the principles of microeconomic theory. The optimization of rational
economic agents such as households and firms play key role in the
macroeconomic theory, and this concept strongly affects recent ana-
lytic framework as the real business cycle theory (RBC), endogenous
growth theory, and dynamic stochastic general equilibrium theory
(DSGE). The basic framework to analyze macroeconomic optimiza-
tion is, in general, to analyze the optimization of rational economic
agents who maximize the utility (in case of households) or profit (in
case of firms) over an infinite horizon under rational expectation and
calculation of dynamic optimization of, e.g., consumers, investors or
managers.

However, the recent microfoundation does not set careful treatment
on the aggregation. One good example would be the Dixit and Stiglitz
[11]. In Dixit and Stiglitz, the representative agent is assumed with
its functional type of the utility functions in a CES-type. The ma-
jor reason that the functional type of the utility set as a CES type is
the analytic convenience. Here one question arises; is there any rea-
sonability for these assumptions? Also, is it really reasonable to as-
sume the elasticity of substitution as constant across all goods? If the
macroeconomics literally pursue the “microfoundation”, not only the
introduction of the microeconomic concept into the macroeconomics,
but also dealing the aggregation of microeconomic variables carefully
are both important.

1.2 review of related literatures

1.2.1 Demand Aggregation

In this subsection, we briefly review models of our concern. To begin
with, a literature which describes the demand aggregation should be
considered with high concern. In the demand theory, the uniqueness
and stability of Walrasian equilibrium under standard dynamic ad-
justment processes is examined and discussed for a long time. As a
corollary of the analysis, the Walrasian equilibrium is found to be

5



6 introduction

unique if there is a unique solution for the equation: excess demand
function equals to zero.

Sonnenschein [47] posed a question on the restrictions on the ex-
cess demand function under utility-maximizing rational agents, and
the theorem, named as Debreu-Sonnenschein-Mantel Theorem (Son-
nenschein [47], Debreu [7] and Mantel [34]), provided the negative an-
swer. The theorem implies that an economy has an arbitrary number
of equilibrium in general with arbitrary stability properties. MWG
(Mas-Colell, Whinston, and Green [35]) described this property as
“anything goes” in general equilibrium theory. Therefore, special as-
sumptions on the preference, such as Cobb-Douglas or CES, is re-
quired to obtain comparative statics results and empirical contents.

Also, Debreu-Sonnenschein-Mantel Theorem establishes that the
Law of Demand —when the goods price falls, the demand for the
goods increase — does not apply even at the level of a single market.
And yet Neoclassical macroeconomists consider it is valid to start
with a model in which the entire economy is a single “representative
agent”. Because of the theorem, it soon turned out that it was not
possible to extend the law for single individuals to the Law of De-
mand to apply on the market level without unrealistic assumptions;
to assume all individuals have the same preferences.

Among the sequence of the progress following the result of Son-
nenshein, a research on the law of demand aggregation of sufficiently
diverse individual demands may be one of the significant turning
points, which was pioneered by Hildenbrand [16]. After his work, ev-
idence and further application of the “Law of Demand” has been con-
sidered both in the theoretical and empirical aspects (see, for example,
Hildenbrand and Jerison [18], Hardle, Hildenbrand, and Jerison [15],
and Hildenbrand and Kneip [19]).

One of the standard model for aggregating consumer demand in
the literature of the second line of research is known as µ model (see,
for example Hildenbrand [17]). First define household i ’s demand
function as f i(p, ωi) where p is a price vector for l goods, and ωi is
a disposable income of the household i. To define a micro economic
model of a large and heterogeneous population of household, one
has first to specify the space F of admissible demand function. The
space of household characteristics is defined by the Cartesian product

R+ ×F

Every household is described by a point (ωi, f i) in the space R+ ×
F with the distribution µ. In terms of distribution µ the market de-
mand is defined by,

F(p)≡
∫

R+×F

f (p, x) dµ
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In the µ model, the heterogeneous households are divided accord-
ing to its income and preference structure ( f i(p, ωi) ). Then, the ad-
missible demand functions in F are assumed to be parametrized by
a parameter α in some set A . Thus, instead of f ∈ F , the demand
function is assumed to be written as f α with α ∈ A . As a standard as-
sumptions for the µ model, the following 4 assumptions are assumed:
(i) µ us a probability measure on the σ- field of Borelian subsets of
R+ ×A , (ii) there exists mean income and the mean income is finite,
(iii) f α are continuous in (α, p, x) and continuously differentiable in p
and x, (iv) average Sultsky substitution matrix is negative semi def-
inite. The household attribute to divide heterogeneous households
turns more detail in the following papers (see, for example, Hilden-
brand [17]) and household attributes, such as age and employment
status or household size, are employed for the empirical calculation.

Also, a literature starting from Becker [3] could be another good
reference for our work. Becker proved that basic features such as the
demand function, which decreases with respect to the price and sup-
ply functions which increases with respect to the price can be derived
as a consequences of a budget-constrained agent’s randomly chosen
behavior. The detailed relation with our work is described in the in-
troduction of the chapter 2, however, our work could be considered
as a combination of literature of Hildenbrand and Becker.

1.2.2 Utility Function Representation and the Separability

In the part 2 of this dissertation, we address the microfoundation of
the functional type of the utility function. As already described in the
previous subsection, macroeconomists set special assumptions to the
preferences, or the utility function, like Cobb-Douglas. However, such
assumptions are generally chosen with considering only the analytic
convenience and not considering any microfoundations, just as intro-
duced in the 1.1 of this dissertation. We address this problem with
considering separability and discrete choice.

To begin with, we set our first focus on the allocation of the total
expenditure; the separable problem. In principle, each consumer has
to deal with the problem to allocate his/her income between saving
and consumption, or purchasing durable and non-durable goods si-
multaneously. All of the parts of this allocation problem may interact,
and therefore the change in future wage may cause the change in cur-
rent saving plan or the purchase of the durable goods. However, if we
allow all interaction at the same time, the allocation problem cannot
be solved because of its complexity and therefore the simplification
is required, either by aggregation or separation. The separation of
the decision-making leads that the ultimate determinants like assets,
wage rates, prices, interest rates are related to the total expenditure,
but not to each group expenditures directly. An importance for detect-
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ing the separability for certain goods group to examine the structure
of the utility function was recognized for a long time. It has its origin
in Stotz [48], Gorman [14], Goldman and Uzawa [13] and other re-
lated works in the same literature, and related developments are also
available (see, for example, Deaton and Muellbauer [6]).

Another focus shall be set in the probabilistic consumer choice and
the discrete choice, especially a brand of commodity purchases. The
major reason to set the focus is simple; after allocating the expen-
diture, consumer have only to consider the brand to be purchased,
and most of goods in the real world is literally discrete and proba-
bilistic. The probabilistic consumer theory, or the probabilistic choice
system, describes the observable distribution of demands by a popula-
tion of consumers, and assume the hypothesis of random preference
maximization which postulates that the distribution of demands in a
population is the results of individual preference maximization (see
McFadden [37] for details). The discrete choice models with differ-
entiated products and the characteristics approach (see for example
Lancaster [32]) are described by Anderson, Palma, and Thisse [2] and
it was revealed that these literatures have some common parts both
in technical and conceptual aspects.

Recent developments treat these two different literatures simultane-
ously, like considering the separability under the discrete choice (see,
for example, Smith, Abdoolakhan, and Taplin [46]).

1.2.3 Firm Value and Retained Earnings

In the part 3 of this dissertation, we address the problem of the cor-
porate finance, with setting our focus on the retained earnings. The
paper which closely relates to our research is Bolton, Chen, and Wang
[4]. The major reason we spare the last part of this dissertation will
be mentioned in 1.3 and the conclusion of this dissertation.

To begin with, a reference on the Modigliani and Miller [41] should
be set at first. As is well known, i) in the perfect market without tax,
the corporate value is irrelevant to the capital structure and ii) with
tax, levered firm increases its corporate value due to tax deduction
of the debt cost. Since the Modigliani and Miller [41], a sizable liter-
atures has investigated to understand firms’ financing policies. Early
standard model of investment under uncertainty assume the friction-
less capital credit markets. This assumption allows firms for smooth
financing (e.g., funding or borrowing) from the market and cash re-
serves does not affect the firm’s value. These models faced questions
by many empirical studies and this leads to a literature treating un-
certainties or frictions. A literature to treat uncertainty reveals that if
a firm faces liquidity risk, the firm accumulates large cash balances
to avoid bankruptcy. Another, but related literature treating frictions
devotes main efforts to understand the effects of frictions, such as cor-
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porate taxes, credit (for example, Hugonnier, Malamud, and Morellec
[22]) and equity market frictions, etc.

Another related and important literature to our work is the divi-
dend policy, sometimes mentioned as the “dividend puzzle”. Accord-
ing to Matos [36],

... although there is no consensus in the marketplace on the need and im-
portance of payout policies, most managers and some academics believe the
policies affect the value of firms. Based on the empirical studies, the answer
to the dividend puzzle namely, to understand why firms insist on paying
dividends if they are supposed to be irrelevant to the value of the firm
seems to be that the payment of dividends has a natural market among the
inframarginal investors who can make some tax-based arbitrage profit.

In the part 3 of this dissertation, we address both the financial
structure problem and the dividend puzzle by introducing retained
earnings, which relates closely with dividend, explicitly into current
dynamic capital structure model.

The major reason to focus the retained earnings is current corporate
financing structure in macro level. Despite many related literatures,
not many researches set its focus on the retained earnings which at-
tract interests in the global, especially in advanced economies. For
instance, OECD [43] pointed out the importance to consider the re-
tained earnings as follows;

In advanced economies between 1995 and 2010, it is estimated that on av-
erage 66% of corporate investments were financed by shareholder capital in
the form of retained earnings.

Although the retained earnings occupy majority of the actual corpo-
rate finance, the current corporate financial theory does not provide
any theoretical framework to explain the phenomenon. In the part 3

of this dissertation we address this issue by modifying the dynamic
capital structure model. The retained earnings are usually defined by
a cumulative corporate profit that are not paid out to the sharehold-
ers as a dividends or share. The inclusion of the retained earnings to
the currently established model enables us to describe the dynamics
and long-term firm’s growth policy by introducing dividend rate and
other related variables.

1.3 contents

Based on this consciousness, this dissertation is composed of part 1, 2

(demand aggregation) and part 3 (stochastic process in the corporate
finance). In the part 1 of this dissertation, we address the robustness
of the assumption of the “representative agent”. In most of the recent
macroeconomics model, the assumption of the “representative agent”
is frequently used. Despite the frequency of usages of the assumption,
the robustness or the validity of the assumption is not examined with
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the microfoundation. The part 1 addresses this issue by formulating
consumer’s utility in probability density function. This expression
enables us to describe the consumer’s attribute (mainly the budget
allocation to each goods group like food, leisure, telecommunications,
etc.).

In the part 2 of this dissertation, we examine the microfoundation
of the utility function (especially CES utility function) within certain
goods group, especially goods group whose choice can be described
in the discrete choose model. Formulating the results of the part 1

and 2 to describe the way to describe macroeconomic demand with
the exact microfoundation.

On the contrary to the part 1 and 2, part 3 addresses the issue on
the corporate finance. Before moving onto the detailed explanation,
let me describe the background for focusing the corporate finance. As
is described in the first part of this chapter, the maximization prob-
lem in standard macroeconomic model is regarding households and
firms. As the the part 1 and 2 mainly treated the maximization prob-
lem for households, part 3 addresses maximization for firms. Also, at
the last half of the part 2, we also addressed the firm’s profit maxi-
mization problem under the monopolistic competition and stochastic
process. So basically, the description of the maximization process both
for households and firms are provided in part 1 and 2. However, in
the standard macroeconomic model, we need another important part,
financing. There are several financing paths in the macroeconomics.
One major path is to set households also as an investor, and also
there are several literatures to include banks into the model. No mat-
ter which financial paths the model takes, the financing process must
be included to the model so that the model is to be closed. In the fi-
nancing process, the aggregation is also calculated with the “analytic
convenience” and therefore we address the financing process in the
part 3 of this dissertation.

As described in above, this dissertation covers essential part in ba-
sic macroeconomic models; utility description and maximization of
households (part 1 and first half of part 2), profit maximization in
monopolistic competition (last half of part 2) and financing process
(part 3) in stochastic process. Although such model does not intro-
duce monetary or expectation so far, it is possible to introduce such
function technically.
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2
R E P R E S E N TAT I V E A G E N T I N A F O R M O F
P R O B A B I L I T Y D I S T R I B U T I O N

2.1 summary

This chapter provides methodology for the demand aggregation with
rigorous micro foundation by using probability distribution function.
In the model setting, a set of agents defined by similar type of at-
tributes is approximated as one representative agent with probabil-
ity error. By introducing several assumptions on the probability pro-
cess, a restriction condition to assume single representative agent as a
whole economy is provided for the following 3 cases as: i) normal dif-
fusion with Markov process, ii) normal diffusion with non-Markov
process, and iii) anomalous diffusion. In case of the normal diffu-
sion, no restriction condition for the shape of the probability density
function of the consumption bundle is required because the Gaus-
sian distribution is a stable distribution (i.e., a linear combination of
two independent random variables with Gaussian distribution has
the same distribution). On the other hand, in case of the anomalous
diffusion, some restricting condition on the parameter of the proba-
bility process is required to maintain such stability.

2.2 introduction

A struggle on describing heterogeneity and its demand aggregation
based on rigorous micro foundation has a long history. The standard
theory on demand aggregation has developed until the early 80s (as
a reference, see for example, Deaton and Muellbauer [6], Houthakker
and Taylor [21], etc.). The standard aggregation theory sets its focus
on the market transaction under privately consumption (e.g., no pub-
lic goods, no externalities), and provide several approaches to discuss
aggregation.

The first line of research could be characterized for considering the
condition to describe the aggregated behavior of a group as a single
decision maker. These progresses exerted influence on the theoretical
development of RBC theory.

A second line of research could be characterized as a struggle on
finding structural features of the aggregated demand. The famous
original problem has been initially raised by Sonnenschein [47], Man-
tel [34] and Debreu [7], and now known as the Debreu-Sonnenschein-
Mantel Theorem. They raised a problem on whether the structure
of the individual demand described by the utility maximization is

13
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preserved by demand aggregation. The relation between the Debreu-
Sonnenschein-Mantel Theorem and descending the “Law of Demand”
by Hildenbrand [16] is as mentioned in 1.2 Review of Related Litera-
tures.

Third line of research is starting from Becker [3]. Becker pointed
out that “households may be irrational and yet markets quite ratio-
nal”. This means that we should not attribute any observed irrational-
ity of market participants to market, nor attribute any rationality of
markets to the participants, the individuals. Becker derived such re-
sult with considering households who distributes along its budget
constraint. As long as opportunities were initially restricted to the
budget line, the average consumption of many households would be
close to the mid-point of the budget constraint, with different house-
holds uniformly distributed around the mid-point.

In this chapter, we extend traditional and recent works on demand
aggregation under various household attributes by formulating con-
sumer’s utility in probability density function. Our methodology es-
pecially highlighted the consumer heterogeneity in the aspect of the
“deep parameter” for the purpose of smooth aggregation. Here it
should be noted that, in the literature of Hildenbrand, a demand func-
tion of each household is a starting point, and sophisticated technical
conditions on preferences or utility functions is abandoned. However,
in this chapter, we both employ the preference, or utility functions,
and the core concept of µ model, to divide household’s purchasing
based on their attributes. In the µ model, the households are assumed
to distribute in their characteristic space. We introduce the concept of
the household distribution into each household characteristic set, i.e.,
we firstly divide all household into several groups by its character-
istics and analyze the distribution along its budget constraint. The
major reason to divide households is that if we set all household into
one group, the distribution of household along the budget constraint
may yield multi-peak distribution. However, by dividing many house-
holds into several groups with respect to its characteristics, it might
be possible to consider the single-peak distribution which can be de-
scribed in a simple equation.

The purpose of this chapter is to provide redefinition of the re-
striction condition for the representative agent frequently assumed
in RBC model. In RBC model, the competitive equilibrium of the
market economy is achieved under a resource constraint with max-
imizing representative household’s expected utility. Although this
assumption was path-breaking for the development of macro eco-
nomics, this also generated many critics which mainly focusing on i)
abstracting heterogeneity of firms and households and ii) constraints
for all agents to act optimally in all markets and at all times (see,
for example, Kirman [28]). Following these critics, some research pa-
pers with counterarguments are also published (see, for example, Kiy-
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otaki [29]). These discussions are, as a matter of cause, based on the
market completeness. However, if we introduce some distortion or
constraint as an assumption, such completeness may break up and
the foundation of the representative agent collapses. To address this
matter, here we provide a restricting condition for the approximation
of representative agent without assuming the market completeness.
The contribution of this paper in this field is to provide the restriction
condition for the representative agent with a stochastic process model.
As we set our major purpose to the description of the representative
agent, position of the research literature is rather different from that
of Hildenbrand [16] or Becker [3] because such literature sets its fo-
cus on the analysis of the “Low of Demand” or macro-rationality and
micro-irrationality. Lastly, it should also be noted that what we pro-
vide is not a complete model to calculate general equilibrium under
dynamic optimization, but one tool which may be used to calculate
the utility function, or the “deep parameter”, of consumers. There-
fore, we do not set any focus on the profit maximization of firms,
market clearing conditions, etc. in this chapter, but confine our inter-
est only into the demand aggregation to provide better approximated
description.

The reminder of the chapter is organized as follows: Section 2

firstly examines issues in construction problem setup for grasping
micro-foundation based aggregated demands. Thereafter propose a
key concept for introducing methodology of probability distribution
into the consumer choice problem. Section 3 introduces several pat-
terns for describing dynamics and provides conditions to maintain
assumption of the representative agent. Section 4 provides technical
support for conducting an empirical test. Section 5 concludes.

2.3 micro foundation and problem setup

2.3.1 Definition of the Micro Foundation

The concept of Pareto optimality is rigorously defined in microeco-
nomics (see, for example, Mas-Colell, Whinston, and Green [35]). Con-
sider an economy consisting of consumers (i = 1, ..., I) and goods
(l = 1, ..., L). Consumer i’s preferences over consumption bundles
xi = (x1i, ..., xLi) in his consumption set Xi ⊂ RL are represented
by the preference relation. Also, define the price vector of each good
as p = (p1, ..., pL) and initial endowment as ω.

Hereafter we set our focus on the amount of utility along the bud-
get constraint line (dashed line in Figure 2.1). The utility becomes
maximum at the point of Walras equilibrium (x∗), and decays as the
point goes farther from equilibrium point, as long as the utility func-
tion is strictly concave (Figure 2.1 above). In this setup, the amount
of utility along the budget constraint line could be drawn intuitively
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as written in Figure 2.1 below. Here it should be emphasized that the
coordinate of the Figure 2.1 below is xb which represents the budget
constraint line in 2 goods economy with satisfying p · xb = ω.
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Figure 2.1: Utility along the Budget Constraint Plane

The similar discussion could be extended to the multi-goods (e.g.,
assume L goods in the economy) situation. In the L goods situation,
the budget constraint p · xb = ω provides a hyper plane xb within L-1
dimensional phase space, and the utility along the budget constraint
could be described as a function in a form that u : RL−1

+ → R.
According to the standard µ model, the observable household char-

acteristics is parametrized by µ. Define the set of the households who
have a characteristics µ as I(µ) and also define the number of house-
holds who have characteristics µ as N(µ), and consider consumption
bundle of these households. If we employ the amount of income as
one of the characteristics of the households, the distribution of the
consumption bundle who has µ characteristics is allocated along the
budget line (dashed line in Figure 2.2). Also, in the standard µ model,
the utility function (or parametrizing factor of the utility function α)
can change independently from other household attribute. This leads
that the shape of utility function can differ each other even if the
amount of income is the same. In general, observable cloud (i.e., dis-
tribution of households along the budget constraint) of the consump-
tion bundle with µ character has some kind of distribution written
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in Figure 2.2, and each consumption bundle of household i, i ∈ I(µ)
maximizes each utility function ui(x).
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Figure 2.2: Observable Cloud of Consumption Bundles under the Same
Household Characteristics

2.3.2 Describing Probability Density Function of the Observable Cloud of
Consumption Bundles

One standard way to analyze the distribution of the observable clouds
on budget constraint plane is to introduce the concept of probabil-
ity distribution into the system. Such approach is frequently used in
the field of a discrete choice as the Random Utility Model. In the
standard analysis of the Random Utility, the observer usually con-
strains its focus to some concrete discrete event like the choice of
the transport options such as car and train. Here we introduce its
basic concept to the observable cloud of consumption bundles with
dividing all households with respect to its characteristics. If all of
the distributions of the cloud could be well approximated as some
function among some set of the households with similar characteris-
tics µ, the whole demand within nation could also be well approxi-
mated by integrating these attributes. In other word, let us consider
a system that a household with characteristics µ draw a lottery to
determine the budget allocation on budget constraint plane, which
obeys a distribution Pµi(xb). The major purpose of our work is to
describe the dynamics of Pµi(xb) for every consumer characteristic,
or heterogeneity. Here it should be noted that the characteristics µ

have to include the initial endowment ω so that all households with
the same characteristics are allocated on the same budget constraint
plane. Then we consider the probability process of the consumption
bundle xb = {xb(t)}t>0 within the probability space {Ω, F , P} under
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price taking situation. Let xb be an Ito process driven by the standard
Wiener process Rt and described by the stochastic differential equa-
tion in RL−1

+ as dxb(t) = a(xb(t)) · dt + b(σ) · dRt.

Definition.
(1) All households are divided into N types as {µi}i≤N according

to its attributes.
(2) The budget constraint for the household type µi is defined as

p · xb = ωi.
(3) The probability density function of the observable clouds for

the household type µi is described as Pµi(xb).

Assumption 1. ∃N s.t. f or∀i, Pµi(xb) is a continuous function and has
a single peak in L− 1 dimensional hyper plane

Assumption 2. ∃N s.t. f or∀i, all consumption bundles within the house-
hold type µi has an ergodic property, i.e.,

1
T

T

∑
t=1

xb(t)
p→ E [xb] , T → ∞

where E [xb] is a convergence value of the spatial average as sample number
n→ ∞.

The economic meaning of these 2 assumptions are to assume repre-
sentativeness for a group of similar household attributes as an approx-
imation. If we divide adequate number of consumers by its attributes,
the assumptions allows us to describe one representative, or typical,
consumer for each segment of consumers with good approximation.
For example, we may be able to assume a typical consumption bun-
dle (with error) for the household whose head is 20 years old man,
single, living in urban area, or the household whose head is 50 years
old man, with wife and 2 children, living in suburb, etc.

In addition, the Assumption 2 could be understood as the most es-
sential assumption for this paper. To assume ergodic property is equal
to abandon treating fixed effects for each household, and use a prob-
ability density function alternatively. This assumption, or approxima-
tion, may arise a critique for losing strictness for the aggregation.
However, let us show our several counterarguments in advance. First
of all, our fundamental motivation is to provide new methodology
to approximate a wide variety of households, and at the same time,
to provide theoretical methodology to evaluate the validity of the ap-
proximation empirically. Therefore, if the adequate amount of data is
available, we can examine the validity of this approximation empir-
ically. Secondly, even under the assumption of the ergodic property,
we allow not only normal diffusion process but so-called anomalous
diffusion in the following sections. This expansion may take the theo-
retical framework closer to the real economy.
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Meanwhile, let us also discuss the advantage for setting the Assumption 2
at the same time. The core advantage to employ this assumption is
that we could expect asymptotic property for estimating probability
density function. In case of rigorous micro-foundation, the functional
shape of the utility function are assumed with mainly focusing on
the mathematical convenience to solve equations. However, this as-
sumption does not necessarily approximate real economy well. On
the other hand, our methodology enables us to approximate actual
utility function itself for each household attribute so long as the pre-
vious assumptions could be well achieved as an approximation. More-
over, we can expect our fitted probability function, or inversely calcu-
lated representative utility function, asymptotically equals to the ac-
tual utility function if we could obtain plenty amount of micro data
from consumer survey, or any other micro panel data.

The intuitive understanding for this approximation is described in
the Figure 2.3. Most theories with rigorous micro foundation assume
that all of the household’s utility function can be different and also
can move with errors. However, every consumption bundle is settled
in the maximizing point of each utility function and no noise is al-
lowed for achieving utility maximizing condition. On the other hand,
the employment of the Assumption 1 and Assumption 2 enables us to
set a representative utility function for the selected households with
similar attributes. Instead of describing household’s heterogeneity by
the difference of its utility function, we allow the existence of error
from stationary point which corresponds to the utility maximizing
point for the households.

Now let us compare these two models. The first model (Figure 2.3.
above) corresponds to a model without any approximation and holds
as long as we stand on the micro-foundations. On the other hand, the
second model (Figure 2.3. middle) with single, or representative util-
ity function could be regarded as a model with certain approxima-
tion of the first model. Here let us recall the model of Becker [3]. He
derived that, as long as opportunities were initially restricted to the
budget line, the average consumption of many households would be
close to the mid-point of the budget constraint, with different house-
holds uniformly distributed around the mid-point. In our model, we
assume one representative utility function (uR) for each household
group, and assume all households within certain group distribute
around the Walras equilibrium point of the representative utility func-
tion.

2.3.2.1 Describing Dynamics of Observable Clouds

To describe the dynamics of the observable clouds, let us consider 3

types of the stochastic process; (1) Markov process, (2) Non-Markov
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Figure 2.3: Aggregation of Heterogeneous Utility Functions and Probability
Density Function of the Consumption Bundles

process and (3) Anomalous diffusion. It would require less explana-
tion for the consideration of the first one, Markov process as we al-
ready set such stochastic process for the dynamics of xb(t). Then, the
next question is that whether the assumption of the Markov process
is enough for describing economic dynamics of the observable clouds.
In general, a economy without any friction can be well described in
the standard Markov process. On the other hand, an effect of friction
plays important role in economics because in some case, the friction,
or slack, plays key role for the description of the economics which
pace down a speed of relaxation after drastic change of external en-
vironment (e.g., labor market slack which make wage growth slow,
etc.). Although such example is commonly used in the literature of
the labor market or search process, it might be worth to consider sim-
ilar characteristics to our problem setup. Therefore, we introduce the
(2) Non-Markov process for the reference.

Lastly, the introduction of the (3) Anomalous diffusion is worth
for consideration. Firstly, let us explain the definition of the Anoma-
lous diffusion. As is described in the Appendix, the anomalous diffu-
sion shows the non-linear growth of the mean square displacement
with time. In the anomalous diffusion case, it is known that the re-
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lation between the mean square displacement and time changes as
< (∆x)2 >∝ 2D∆tα. Here in the standard diffusion process, the mean
square displacement is expected to show the linear growth with re-
spect to time, i.e., α = 1, and process with α 6= 1 is defined as anoma-
lous diffusion. Now let us bring our focus back onto the economics.
In sub-diffusive case (0 < α < 1), the consumption bundle diffuse
slowly, and therefore households with similar consumption bundles
tend to stay still close after several periods. On the other hand, in
enhanced diffusion case (α > 1), the diffusion of the consumption
bundles are very quick, and households with similar consumption
bundles may stay far away even after some short periods. We do not
evaluate actual economic activity in this paper because of the lack of
adequate data set of consumption bundles, however, it is meaningful
to leave a methodology which can evaluate the actual dynamics of
consumption bundles.

The standard Markov process can be described in the following
Fokker-Planck equation, which describes the dynamics of Pµi(xb).
However, in case of the non-Markov process, it is difficult to describe
in the general form. Therefore, we introduce the Kramers’ equation
which enables us to describe the dynamics of Pµi(xb, vb) with consid-
ering the “memory” effect. The detailed explanation and derivation
of these equations are left in Appendix A. Lastly, the anomalous dif-
fusion is defined by fractional Fokker-Planck equation and for details,
see Metzler [39].

Fokker-Planck equation:

∂

∂t
Pµi =

(
−

L

∑
j=1

∂

∂xj
α1j(xb) +

1
2

L

∑
j=1

L

∑
k=1

∂2

∂xj∂xk
α2jk(xb)

)
Pµi(x1, x2, ..., xL, t)

(2.1)
Kramers equation:

∂
∂t Pµi(xb, vb, t) =[
−∑L−1

j=1
∂

∂xbj
vbj + ∑L−1

j=1
∂

∂vbj

(
− ∂

∂xbj
uR(x) + γvbj

)
+ D ∑L−1

j=1
∂2

∂v2
bj

]
Pµi(xb, vb, t)

(2.2)

Now let us move our focus back to our assumptions. First and
foremost, in the derivation of the Fokker-Planck equation, we need
to assume the process to be Markov (see appendix for the details)
and therefore the effect of friction or any other term which violate a
Markov process assumption is ignored.

The Kramers equation is mainly composed of two parts of effects:
i) an effect from external force and friction, and ii) an effect from dif-
fusion. In our economic model, the first part represents a effect of
representative utility function (uR) for each household group. Next,
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the second part represents the effect to diffuse from initial consump-
tion bundle. This effect could be seen when there is a blind purchase,
unexpected consumption, etc. In the field of behavioral economics,
topics like emotional effects in economic decisions or non-rational de-
cision making are established, and the ideal optimization process is
abandoned in this theory. There are several motivations to abandon
the ideal optimization. For example, facts like i) no exact optimizing
strategy is known in many real-world situations or, ii) even if an op-
timizing strategy exists, unrealistic amounts of knowledge on every
alternatives or consequences might be required, could be good mo-
tives.

The approximation this model employs could also be well explained
as to assume i) the fluctuation of the utility function among each
agent, and ii) deviation from ideal optimization (e.g., effect of blind
purchase or unexpected consumption) as i.i.d., and treat sum of these
two effects as single error.

2.4 demand aggregation

2.4.1 Dynamics of Each Consumption Bundle under Representative Util-
ity Function

For describing dynamics of the consumption bundles under given
potential, or utility function, using a methodology for calculating dy-
namics of particle under physical potential instead of analyzing dy-
namics of distribution as a whole plays key role. In this subsection,
we firstly revisit standard theory for describing particle dynamics in
the field of physics, and secondly provide concept to connect method-
ology in physics with economic phenomenon. The derivation of the
following generalized Langevin equation is written in the Appendix.

generalized Langevin equation:

d
dt

vb(t) = −
∫ t

−∞
γ(t− t′)vb(t′)dt′ +∇uR(xb) + R(t) (2.3)

This concept is firstly developed in the field of statistical physics
(see, for example, Mori [42] and Kubo [30]), and here let us spare
several lines to consider economic meaning of this equation. The left
hand side of the generalized Langevin equation equals to a rate of
acceleration for the movement of the consumption bundles. The first
term of the right hand side could be interpreted as an effect of a re-
laxation against drastic transformation of the exterior environment
(e.g., tax revisions, monetary policy change, etc.). In general, most
of economic models has a feature to relax gradually to the station-
ary distribution, and this term governs the speed of relaxation from
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the aspect of consumption adjustment. Next, the second term repre-
sents an effect to confine their consumption bundles around typical
household’s one. This effect is related to our Assumption 1, and it is
intuitively rational to assume a typical consumption bundle within
limited type of households. The third term represents the noise which
yields deviation from typical household’s consumption bundle.

2.4.2 Restriction toward Aggregation

For the demand aggregation, whether the distribution has a stability
or not plays crucial role. If the distribution before aggregation does
not have a stability, the error term of the aggregated variable (e.g., ag-
gregated consumption) does not have simple distribution (like Gaus-
sian). However, in the standard macroeconomics, many empirical
studies assume the error term to distribute in Gaussian or any other
frequently used distribution which generally has stable property. On
the other hand, if all of the distribution before aggregation has a sim-
ilar type of stability, the error term of an aggregated variable has
also similar type of distribution, and this leads that the aggregated
demand could be described with similar methodology as used so far.

As mentioned above, the condition that all of the distribution be-
fore aggregation has a similar type of stability is just a sufficient con-
dition but not a necessary condition for the existence of the represen-
tative agent. However, it might be reasonable to assume that every
household follows the same nature and therefore the basic distribu-
tion is common for every household. Then the shape and structure
of the distribution is the matter and we would like to examine the
condition for such case in the followings.

2.4.2.1 Case of Normal Diffusion under Markov Process

In the case of normal diffusion under Markov process, there are no
restriction for the demand aggregation, because the Gaussian process
generally has a stability. Therefore, in this model setting, the typical
assumption for the representative agent is satisfied.

2.4.2.2 Case of Non-Markov Process

If we set focus on the steady state distribution, the difference in its
process does not affect its result. However, if we set focus on the
relaxation process, its dynamics differs dramatically. The Langevin
equation in Markov process (A.47) has a shape of homogeneous dif-
ferential equation. This corresponds that the relaxation process fol-
lows exponential function just as calculated in many economic mod-
els. On the other hand, if we introduce generalized memory term in
the Langevin equation, its solution no longer follows usual exponen-
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tial relaxation but shows slow relaxation process because of having
previous memories.

2.4.2.3 Case of Anomalous Diffusion

In case of the anomalous diffusion, whether the probability density
function calculated from the previous Langevin equation (in general,
fractional Fokker-Planck equation, see Metzler [39]) shows stability
or not is of high concern. Now consider to calculate the distributions
of consumption bundles for all of the household attribute µ. If any of
the probability density function does not present additive property,
the description of the aggregated demand may become complicated.

To consider these issues, an approach to consider the stability in
non-trivial Lévy process plays key role because Lévy process includes
several probability process which shows anomalous diffusive prop-
erty (e.g., Lévy flight). A useful diagram for judging stability of a
non-trivial Lévy process is known as “Takayasu Diamond” (Takayasu
[49], detailed explanation is written in the Appendix), whose basic
concept was originally derived by Levy [33] and Khintchine [27]. The
definition of the stable distribution is given by Feller [12] as:

Definition 7. Let X, X1 , . . . , Xn be independent random variables
with a common distribution R. The distribution R is stable if and only if for
Yn ≡ X1 + X2 + . . . + Xn there exist constant cn and εn such that

Yn
d
= cnX + εn (2.4)

where d
= indicates that the random variable of both sides have the same

distribution.

In general, if we add two or more probability variable which fol-
lows similar type of probability distribution, the added variable does
not necessarily follow the same probability distribution. The stable
distribution is a set of distributions which achieves this property, i.e.,
the sum of two or more stable probability variable with similar prob-
ability distribution follows the same distribution.

2.5 toward an empirical test

2.5.1 Calibration of the Representative Utility Function

Calculating the representative utility function from the distribution
of consumption bundles is difficult in general, however, it becomes
possible with adequate amount of the data set. The first and fore-
most condition to guarantee the validity of this approximation is that
the probability density function of consumption bundles during the
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data acquisition fluctuates only around the error term, and no dy-
namical change of the probability density function is observed. If this
approximation could be regarded as rational, we can use steady state
Fokker-Planck equation or Kramers equation and able to calculate
representative potential inversely.

2.5.2 Evaluating an Assumption of Non-Markov Property

A methodology for an empirical test to verify the validity of the as-
sumption of the representative agent could be provided via these
theoretical frameworks. Firstly, the assumption of the “Non-Markov
property” of each household could be confirmed by calculating mean
square displacement < X2(t) >. According to Vinales and Desposito
[50], mean square displacement for times t � τ under generalized
Langevin equation with Mittag-Leffler function is calculated as:

< X2(t) >≈ 2γDt2E1
2−µ,3[−(ωµt)2−µ]+ 2γD

τµ

γµ

{
1− E1

2−µ,1[−(ωµt)2−µ]
}

.

(2.5)
where γµ and ωµ are constant.

Therefore, if we could obtain panel data of household’s consump-
tion breakdown, we can evaluate the existence of memory term in ac-
tual consumption bundles by calculating time variation of the mean
square displacement.

2.5.3 Evaluating an Assumption of Anomalous Diffusion

Secondly, the assumption of normal diffusion could be evaluated by
observing the shape of a probability density function of any attribute
of consumers. For instance, an analysis of consumption bundles of
30-40 years old, urban living, married households may be able to re-
veal the existence of anomalous diffusion. In general, the probability
density function under anomalous diffusion presents fat tail (not de-
cay in exponential). The solution of steady state probability density
function under harmonic potential (in our model, to assume uR(xb)

as uR(xb) ∼ − 1
2 λx2) is calculated in Jerison [24] and the result shows

asymptotic power law behavior:

Peq
µi (xb) ≈

Dγ

µλ|xb|1+µ
(2.6)

where γ denotes friction coefficient and µ is a exponent of a char-

acteristic function (p(k)) of the noise variable (p(k) = exp(−D|k|µ)
). Therefore, if we could obtain the probability density function of
consumption bundles for any type of consumer attribute, we can con-
firm the existence of anomalous diffusion by evaluating a tail of the
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probability density function whether to obey exponential decay or
power-law.

2.6 discussion

In this chapter we established new methodology for approximating
huge number of consumers. As is described in the introduction of
this chapter, our purpose is to provide a theoretical framework to
consider the validity of the assumption of the representative agent.
According to our result, if all assumptions hold as a good approxima-
tion and the consumption bundles of each household attributes acts
like standard Brownian motion, the assumption of the representative
agent holds and aggregation process becomes quite simple. In addi-
tion, even if the consumption bundles of each household attribute
follow non-Markov process, or anomalous diffusion, the assumption
of the representative agent still holds within limited parameter space.
Then the problem is that whether the actual households act as ex-
pected, at least in good approximation, or not. We need empirical
analysis to answer this question. It should be emphasized that for the
empirical analysis of this work, we need huge sample size to obtain
appropriate evaluation. Here we describe two major reasons we need
huge sample.

First and foremost, the basic concept to divide households based on
their attributes increases the request on the sample size. For example,
we decide to divide all households with their attribute like i) the
age of a head of the household (e.g., divide age group in 5 criteria),
ii) living place (e.g., divide living place in 2 criteria like urban and
suburb), iii) income level (divide in 5 criteria), then the households
are divided into 50 groups. As we have to check each distribution of
the consumption bundles, the sample size of each group should be at
least more than several hundreds.

Second reason is the evaluation of the distribution function. As is
written in the equation (2.6), we have to analyze the tail distribution
of the consumption bundles of each household group when we con-
sider the case of anomalous diffusion. Whether the tail decreases in
exponent or power law is one of the major differences, we also re-
quire huge sample size for each household group to evaluate the tail
dynamics.

As is discussed so far, the empirical analysis on this issue is not
simple and straight forward. However, we believe that such empiri-
cal analysis can bring fair evaluation of the assumption of the repre-
sentative agent, and hope that this theoretical framework encourages
future applications both in theoretical and empirical works.



Part III

U T I L I T Y F U N C T I O N A N D S T O C H A S T I C
P R O C E S S





3
L O YA LT Y A N D C O N S U M P T I O N : A C E S
R E P R E S E N TAT I O N

3.1 summary

This chapter offers a new interpretation of the elasticity of substitu-
tion in the CES utility function under the discrete choice and separa-
bility. We model an economy with one discrete choice goods group
and one composite good under diverse consumers. The results from
our theoretical analysis illustrate the relation between the distribution
of loyalty of each good and goods demands. Moreover, the origin of
the elasticity of substitution of the CES utility function is described
based on our assumptions. According to our results, the elasticity of
substitution σ does not change even if the distribution of loyalty dif-
fers by each good. On the other hand, coefficients of the demand of
good i (Xσ

i ) varies according to each good’s attractiveness. We also
consider the production under this economy and obtain the result as
the increase in productivity leads the decrease in price. This effect is
the same as the standard Melitz model (Melitz [38]).

3.2 introduction

The analysis on consumer behavior has a long history both in em-
pirical and theoretical aspects, and the utility function plays one of
the most key roles to describe micro- and macroeconomic consumer
behavior. One of the most standard methodology to describe the rep-
resentative consumer is to assume its utility functions as a CES-type
utility function (see for example Dixit and Stiglitz [11]). But here one
question arises: is there any justification for these assumptions? Also,
is it really reasonable to assume the elasticity of substitution as con-
stant across all goods? In this paper, we explore the answers to these
questions by considering the micro-foundation of the CES utility func-
tion under the separability and discrete choice. The related literatures
are written in the 1.2.2.

In this chapter, we consider the aggregated demand under the sep-
arability and the discrete choice with micro-foundation. The reasons
for considering discreteness under the separability could be summa-
rized as the following two points. First point is that the introduction
of this model enables us to consider the distribution of attractiveness
of each good, especially the relation between the diversity of demand
of each consumer and the total demand of its good. In the real econ-
omy, the loyalty, or attraction consumers feel, for certain goods differs

29
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by consumers, and its difference can be described by a distribution.
According to our result, the shape of the distribution of consumer’s
loyalty for each good is essential for describing the demand of goods,
and maintaining or increasing its loyalty plays key role for the better
profits of firms. As a second point, this model also reveals another
interpretation of the elasticity constant σ of the CES utility function
with micro foundation, which is generally set as a deep parameter.
Under our assumption, the elasticity constant σ has a micro founda-
tion and has a meaning which closely relates to the distribution of
loyalties.

In our model, each consumer purchases a product which is most at-
tractive for him/her. In such case, the firm must increase consumers
who like their product the best and this may lead to the market strat-
egy, i.e., customer segmentation, promotion strategy, etc. Under such
literature, a strategy to provide a product which offers high loyalty
only for certain consumer segment, but not for other usual segment
may be able to provide better profit for certain market circumstances.
In addition, this theoretical framework also enables us to analyze
firm’s strategies to increase R&D expenditure to achieve product in-
novation, or disruptive innovation which lead to rapid increase in
loyalty and better profit.

The reminder of the paper is organized as follows: Section 2 firstly
outline our model by defining micro foundations and introducing sev-
eral approximations, followed by the application of the Houthakker
[20] into our model. Section 3 shows brief numerical calculation re-
sults for reference and section 4 concludes.

3.3 the model

3.3.1 Definition of the Variables

Let us construct our economic model. In this paper, we first start from
focusing a certain goods group with considering the separability. Let
xiA be m dimensional sub-vector of the consumption vector xi of con-
sumer i so that xi = (xiA, xiĀ). xiA is then said to be strongly separable
if the utility function takes in the form

ui = fi (uiA(xiA) + uiĀ(xiĀ)) (3.1)

where uiA(xiA) is the sub-utility function associated with xiA, and
f is some monotone increasing function. The consumer i chooses a
good under the consumption vector xi with the discrete choice, i.e.,
each consumer purchases one unit of the commodity which offers the
greatest utility. In this case, uiA(xiA) can be written in the form;

uiA(xiA) = max {uiA1, uiA2, ..., uiAm} (3.2)
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where uiA = (uiA1, uiA2, ..., uiAm) ∈ Rm is a stochastic variable and
represents the utility vector of consumer i when the consumer pur-
chases each good under the commodity subgroup.

3.3.2 Economy with 2 Discrete Goods and a Composite Good

For the simplicity, let us consider the economy with 2 discrete goods
(A1 and A2) and one composite good N. The effect of pricing can
be taken into account by substitution between discrete goods and
continuous good in case of the strong separability. pA1, pA2 and pN

are prices of good A1, A2 and a composite good, and ωi is a budget
for the consumer i. The decision for purchasing good A1 or A2 by
consumer i can be described as follows;

Lemma 1. Under the strong separability, the consumer i purchases good A1
if and only if;
(1-1) The utility for purchasing the good A1 is greater than the utility for
purchasing a composite good additionally, and
(1-2) The utility for purchasing good A1 is greater than the sum of (a) the
utility purchasing good A2 and (b) the utility for purchasing a composite
good with reserved money.

Proof. Firstly, the strong separability is generally defined as follows in
this economy.

u(xiA1, xiA2, xiN) = u(xiA1, xiA2) + u(xiN).

Also, as the goods subgroup xiAis discrete choice goods group, each
consumer basically chooses one good from goods subgroup (A1, A2).
However, in this economy, we also allow not to purchase anything
from goods subgroup (A1, A2) and use all budget for purchasing the
composite good for more generalization.

Also, the utility for purchasing qiN amount of the composite good
is described by uiN(qiN) for each consumer i. Then, the utility for pur-
chasing (i) good A1, (ii) good A2 and (iii) purchasing nothing from
goods subgroup (A1, A2) can be described in the form of indirect
utility function as follows;

uiA1 + uiN((ωi−pA1)/pN) (i)

uiA2 + uiN((ωi−pA2)/pN) (ii)

uiN(ωi/pN) (iii)

(3.3)

According to the discrete choice model, the good A1 will be pur-
chased only in the case that the indirect utility in case of (i) is larger
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than that of (ii) and (iii), and this leads to the descriptions in the
Lemma 1.

(1− 1) uiA1 +uiN((ωi−pA1)/pN) > uiN(ωi/pN)

(1− 2) uiA1 +uiN((ωi−pA1)/pN) > uiA2 + uiN(ωi−pA2/pN)
(3.4)

�

Also, we need a strong assumption regarding the income effect to
proceed calculations.

Assumption 1. The utility function for the composite good uiN(qN) is same
for all consumers in the whole economy, i.e., uiN(qiN) = uN(qiN) for ∀i.

The Lemma and Assumption lead us to describe the actual demand of
good A1. Firstly, we assume the indirect utility of the discrete goods
(uiA = (uA1, uA2) ∈ R2) acts as stochastic and i.i.d. for each consumer.
If we define the distribution of consumers in the 2 dimensional phase
space as ϕ(uA1, uA2), the consumers allocated in the region u1 > u2

will choose the good 1 in discrete goods group and vise versa. Also,
as is described in the Lemma 1, the (indirect) utility for purchasing
good 1 has to be larger than purchasing composite good with same
price. Then the demand of good 1 can be described as the integration
of ϕ(uA1, uA2) for gray colored region in Figure 3.1. This leads to the
expression as;

X1 =∫ ∞
0 ρ(ω)dω

∫ ∞
δ1

duA1
∫ uA1−δ12

0 ϕ(uA1, uA2)duA2
(3.5)

where ρ(ω) is the income distribution in this economy, and the de-
mand for the good 2 can be described symmetrically. Here we define
indirect utility δm(ω, pAm, pN) and δmn(ω, pAm, pAn, pN) as follows to
describe equations simply. Here it should be noted that δmn could be
interpreted as the one of the major sources of the loyalty. As is de-
scribed in the Figure 3.1, the demand on good 1 will increase when
δ12 decreases. The value of δ12, or more generally δmn, affects the de-
mand directly.

δm(ω, pAm, pN) ≡ uN(ω/pN)− uN((ω−pAm)/pN)

δmn(ω, pAm, pAn, pN) ≡ −uN(ω−pAm/pN) + uN(ω−pAn/pN) (= −δm + δn)
(3.6)

The schematic image of the effect of introducing the pricing into
this model is described in the Figure 3.1. Next, we consider the whole
utility in this economy. By using the distribution function ϕ(u1, u2),
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Figure 3.1: Distribution of Utility Values and Product Choice

the utility of whole economy could be described as;

U =
∫ ∞

0 ρ(ω)dω
∫ ∞

δ1
uA1duA1

∫ uA1−δ12
0 ϕ(uA1, uA2)duA2

+
∫ ∞

0 ρ(ω)dω
∫ ∞

δ2
uA2duA2

∫ uA2−δ21
0 ϕ(uA1, uA2)duA1

(3.7)

As we can describe demand of good i (Xi) and utility of whole econ-
omy U in terms of ϕ, we can specify utility function U(X1, X2) by
assuming some functional shape of ϕ.

3.3.3 CES

One of the most standard, frequently used functional type of the
utility function in the macroeconomics would be the CES function.
Therefore, in this section, we introduce the distribution function ϕ to
retrieve aggregated utility function in the CES form as to be power
function, just as assumed in Houthakker [20].
Firstly, let us assume the functional type of the distribution function
ϕ(u1, u2).

Assumption 2. The distribution function ϕ(u1, u2) follows the functional
form:

ϕ(uA1, uA2) =



A (uA1 + d)−α (uA2 − δ2)
β1

(uA1 > δ1, δ2 < uA2 < uA1 − δ12, α > 0, β1 > 0)

A (uA2 + d + δ12)
−α (uA1 − δ1)

β2

(uA2 > δ2, δ1 < uA1 > uA2 − δ21, α > 0, β2 > 0)

.

(3.8)
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Assumption 3. Income of all consumers are the same across the economy,
i.e., ρ(ω) = D(ω−ω0) where D(ω−ω0) is Dirac’s delta-function.
Under these assumptions, the demand of good i (i = 1, 2) could be

straightly shown as;

Xi = A
∫ ∞

δi
duAi

∫ uAi−δij
δj

duAj (uAi + d)−α (uAj − δj
)βi

= A
1+βi

∫ ∞
δi

duAi (uAi + d)−α (uAi − δi)
βi

= A
1+βi

(d + δi)
−α+βi+2 ∫ 1

0 tα−βi−3
Ai (1− tAi)

βi+1 dtAi

= A
1+βi

(d + δi)
−α+βi+2 B(α− βi − 2, βi + 2)

(3.9)

The normalization term A can be calculated by X1|δ1=0 + X2|δ2=0 = 1
and this leads to;

1
A

= d−α+2
{

dβ1 B(α− β1 − 2, β1 + 2)
1 + β1

+
dβ2 B(α− β2 − 2, β2 + 2)

1 + β2

}
(3.10)

Also, the utility of the whole economy for purchasing discrete goods
(defined as Ud0) could be also shown as;

Ud0 = A ∑
i=1,2, i 6=j

∫ ∞
0 ρ(ω)dω

∫ ∞
δi

duAi
∫ uAi−δij

0 duAjuAi (uAi + d)−α (uAj − δj
)βi

= X1|α→α−1 + X2|α→α−1 − d(X1 + X2)
(3.11)

The relation between the aggregated demand and utility in the whole
economy can be obtained by eliminating the function δ (δ1, δ2 and
δ12) from the equation (3.10) and (3.11). Here let us employ two more
assumptions to make equations simpler.

Assumption 4. d, δ12 � δ1, δ2 holds with good approximation.

Under this assumption, the integration in (3.10) and (3.11) can be
described simply as;

Xi ∼ A
1+βi

B (α− βi − 2, βi + 2) δ
−α+βi+2
i , (i = 1, 2)

Ud0 ∼ A
1+β1

B (α− β1 − 3, β1 + 2) δ
−α+β1+3
1 + A

1+β1
B (α− β2 − 3, β2 + 2) δ

−α+β2+3
2

(3.12)
So as the utility function exists in the real value, α− β2− 3 > 1 f or i =
1, 2 is required additionally. Deleting δi from Xi and Ud0 to obtain the
relation between aggregated demands and the utility for the discrete
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choice goods in the whole economy as:

Ud0 = A
1

α−β1−3 B (α− β1 − 3, β1 + 2)
(

1+β1
B(α−β1−3,β1+2)

) −1
α−β1−3 Xσ1

1

+A
1

α−β2−3 B (α− β2 − 3, β2 + 2)
(

1+β2
B(α−β2−3,β2+2)

) −1
α−β2−3 Xσ2

2

(3.13)

where σi = α−βi−3/α−βi−2. Furthermore, let us assume further condi-
tion for the exponent in (3.8).

Assumption 5. The exponent of the utility function defined in the equation
(3.8) is the same across the good 1 and 2, i.e., β1 = β2 = β .

Proposition 1. The utility of the whole economy becomes CES under the
Assumption 1-5.

Proof. Plugging Assumption 5. into (3.13) and re-defining the utility
of the whole economy Ud as Ud = U1/σ

d0 leads to the following:

Ud0 = C {Xσ
1 + Xσ

2 }
1/σ (3.14)

where Cσ = A
1

α−β−3 B (α− β− 3, β + 2)
(

1+β
B(α−β−3,β+2)

) −1
α−β−3

.

3.3.4 Meaning of Assumptions for the CES

The necessary assumptions for the CES utility function to be a better
approximation are that i) the distribution of consumer’s utility can
be well approximated in (3.8), ii) the price of each good itself is much
higher than the price differences (δ12 � δ1, δ2), and iii) the shape
of the distribution of utilities are almost similar among goods in the
choice set (β1 = β2 = β). The first assumption has to be confirmed
with some marketing technology like a conjoint analysis. If the utili-
ties for a certain good distributes in power low among potential con-
sumers, this assumption can be regarded as rational for discussing
approximations. This assumption reflects features of consumers un-
der the discrete choice model, while the assumption ii) and iii) reflect
features of goods of our interest. The assumption ii) and iii) becomes
reasonable if the loyalties of goods are almost the same across the
goods sub-vector. In other words, this assumption may not hold if
there are appreciable product differentiation, especially in the field of
the monopolistic competition with various goods loyalties.
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3.4 profit maximization and pricing under this econ-
omy

3.4.1 Production under This Economy

In this section let us consider the profit maximization under the econ-
omy with demand and utility function written in (3.12) and (3.13).
Suppose there are two monopolistic firms which produces non-storable
discrete good 1 and 2 in the economy. Each firm can change its own
price but can not affect to the price of the competitor. There is only
one factor (capital) for the production of each good. If one denote the
production by firm m as qm, the cost function to produce qm amount
of good m as cqγ

m and profit as πm, it is easy to calculate the equilib-
rium as follows.

Profit Maximization
The firm m follows the profit maximization problem;

max
pm

πm = max
pm

{
pmqm − cqγ

m
}

s.t. Xi = A
1+βi

(d + δi)
−α+βi+2 B(α− βi − 2, βi + 2)

(3.15)

Market Clearing Condition
As the good 1 and 2 are non-storable, the market clearing condition
for each goods is simply described as Xm = qm.

Functional Type of the δ1

Based on Assumption 1-3 and market clearing condition, the profit
maximization condition of the firm 1 can be written as

∂
∂p1

π1 = q1 + p1
∂q1
∂p1
− cγqγ−1

1
∂q1
∂p1

(3.16)

where
q1 =

A
1 + β1

B (α− β1 − 2, β1 + 2) δ
−α+β1+2
1 . (3.17)

To calculate ∂q1
∂p1

, we need to assume the concrete functional type
of the δ1(p1). As defined in the section 3.2., δ1(p1) = uN(ω/pN) −
uN(ω−pA1/pN). The right hand side of this equation means the differ-
ence of the level of utility when the amount of the composite good
is ω/pN and ω−pA1/pN. To consider its perceptual difference, it might
be worth to employ the famous literature constructed by Weber and
Fechner (see, for example, Weber and Schneider [51]). The most im-
portant law in behavioral psychology is Weber-Fechner’s law. Here
this law describes the relation between the magnitude of physical
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stimulus and psychological sense. If we employ this famous analogy,
the indirect utility δ1(p1) could be described in the logarithm form as
follows:

Assumption 6. δ1(p1) is described in the form B × log ω
ω−pA1

with some
constant B.

Here it should be noted that we have not examined the existence of
the direct utility function which retrieve the functional form of δ1(p1)

in the Assumption 6.
Under the Assumption 1-3. and the Assumption 6., ∂q1

∂p1
can be cal-

culated as

∂q1

∂p1
=

−A
(1 + β1) (ω− pA1)

(
B× log

ω

ω− pA1

)−α+1

. (3.18)

By plugging 3.14 and 3.15 into 3.13, this maximization condition is
solved and equilibrium price p∗1 can be calculated.

3.4.2 Numerical Calculation

Although it is possible to calculate the equilibrium with these assump-
tions, theoretical analysis may turn out to be complicated and hard
to understand its functional features. To help its understandings on
actual relations in this economy, it would be useful to calculate con-
cretely with certain parameter value. The table 1 is the summary of
the Key Parameters for the numerical calculations. Also it should be
noted that we set pN as a numeraire, so we do not set any measures
for the pN .

Parameters Value

γ 0.8

ω 10,000

c 2.0

d 1~10

B 1

α 15~20

β1, β2 1~α -5

Table 3.1: Summary of Key Parameters
This table shows key variables and these values used in the numer-
ical calculations. The parameter which determines the shape of the
distribution of utilities (β1, β2) varies by cases.
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The following numerical calculations are conducted based on the
relation before the Assumption 3. to measure the rationality of fol-
lowing assumptions. As is already shown in the (3.10) or (3.12), the
change in any parameter in (α, β1, β2) leads to the change in equilib-
rium price and also leads to the change in elasticity.

Before we move onto the concrete analysis of the numerically cal-
culated result, let us discuss the relation between the goods loyalty
and parameter value α and βi. In the world of high α, the number
consumers who feels quite high utility for holding that goods group
decreases rapidly. This yields that the loyalty for holding the goods
group is moderate in the high α, and vise versa. Also, in case of high
βi economy, the number of consumers who feels high utility rather
holding good i decreases very rapidly. This also yields that, contrary
to the case of α, the loyalty for holding good i becomes moderate in
the low βi economy.

The numerical calculation results under this parameter setting are
shown in the Figure 3.2 to 3.9. The Figure 3.2 and 3.3 illustrates the
equilibrium price of good 1 (p1) and good 2 (p2) as a function of the
parameter for the substitution (β1, β2) in rather high goods loyalty
α(= 15) with small d. As clearly described in the Figure 3.2, the equi-
librium price p∗1 becomes lower when the loyalty of good 1 is higher
(β1 → 0). This means that if the productivity of the firm 1 is higher,
the equilibrium price p∗1 becomes lower. One point to be noted is that
the difference in the productivity does not makes any difference in
this case, i.e., the difference of the β2 does not affect to the equilib-
rium price of good 1. Another point to be noted is that the level of
equilibrium price is not so low compared to the budget line. In any
goods, the equilibrium price range is about 1000 to 4000 but the total
budget is 10000 in this calculation.

The Figure 3.4-3.5 illustrates the equilibrium price of good 1 (p1)
and good 2 (p2) as a function of the parameter for the substitution
(β1, β2) in rather high goods loyalty α(= 15) with large d. The major
difference from the Figure 3.2-3.3 is the level of the p1 and p2. As d
takes a role to inflate the amount of utility of the purchased good, the
purchased price is also inflated and becomes much closer to the total
budget. Also, because of the shift of the utility value by d, the gra-
dient of the equilibrium price with respect to the loyalty (i.e., ∂pi/∂βi)
becomes gradual compared to that of d = 1.

The Figure 3.6-3.7 illustrates the equilibrium price of good 1 (p1)
and good 2 (p2) as a function of the parameter for the substitution
(β1, β2) in rather low goods loyalty α(= 20) with small d. The major
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Figure 3.2: Numerical Calculation Result of p1 in medium α and small d

Figure 3.3: Numerical Calculation Result of p2 in medium α and small d
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Figure 3.4: Numerical Calculation Result of p1 in medium α and large d

Figure 3.5: Numerical Calculation Result of p2 in medium α and large d
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Figure 3.6: Numerical Calculation Result of p1 in large α and small d

difference from the Figure 3.2 is only the range of the β1 and β2, due
to the increase in α.

The Figure 3.8-3.9 illustrates the equilibrium price of good 1 (p1)
and good 2 (p2) as a function of the parameter for the substitution
(β1, β2) in rather low goods loyalty α(= 20) with large d. It is worth-
while to compare this result with Figure 3.4. In the Figure 3.5, there
is obvious distortion around (β1, β2) = (15, 1). This distortion is be-
cause of the existence of the normalization term A. The increase in β2

leads to the increase in A, and this effect was reflected to the calcula-
tion results especially in low β1 region.

These results are the same as that of the general monopolistic com-
petition model like Melitz [38]. In the standard Melitz model, the de-

mand of good m in industry l is described Xlm = Al p
− 1

1−ρl
lm and firm’s

profit maximization condition yields Dlm = plmXlm = ρ
ρl

1−ρl
l A

1
1−ρl
l ω

− ρl
1−ρl

l θ
ρl

1−ρl
lm

where Al = βlYP
− ρl

1−ρl
l , ωl is a wage and θlm is a productivity. Us-

ing these 2 relations to obtain p
− ρl

1−ρl
lm = ρ

ρl
1−ρl
l A

ρl
1−ρl
l ω

− ρl
1−ρl

l θ
ρl

1−ρl
lm , and as

ρ
ρl

1−ρl
l A

ρl
1−ρl
l ω

− ρl
1−ρl

l is the same in given industry l, we can simply de-
scribe the relation of price and productivity as p−1

lm = cθlm. Under this
condition, the increase in productivity leads the decrease in price.
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Figure 3.7: Numerical Calculation Result of p2 in large α and small d

Figure 3.8: Numerical Calculation Result of p1 in large α and large d
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Figure 3.9: Numerical Calculation Result of p2 in large α and large d

3.5 discussions

One of the major features of our model deriving such results lies
in the budget constraint in this economy. In this paper we estab-
lished new methodology for deriving CES utility function with micro-
foundation. As is already pointed out, there are 5 major assump-
tions required to retrieve CES utility function, and these assumptions
would not be valid at least in case of the market with various level
of goods loyalties. Taking this result into account, the validity to ex-
pand the CES utility function into the whole economy may change by
industry, i.e., an industry with poor differentiate goods may obtain
good approximation by CES utility function, however, an industry
with strong differentiation may not. In our model the product differ-
entiation affects mainly to the coefficient of Xσ

1 just described in the
equation (3.12). In case of the Dixit-Stiglitz lite (Dixit and Stiglitz [11]),
utility of the representative consumer is described in CES based form
for the whole goods in the economy. However, if this CES assumption
may not hold for several goods subgroups or industries, this may lead
the model to differ from the reality as a macro economy.

Also, in our model, each consumer purchases a product which is
most attractive for him/her. In such case, the firm must increase num-
ber of consumers who like their product the best and this may lead to
the market strategy of the firm, i.e., customer segmentation, promo-
tion strategy, etc. Under such literature, we may be able to analyze
that a strategy to provide a product which offers high loyalty for
certain consumer segment, but not for other segment (like a good for
only the professional, or say, the geek) might be able to provide better
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profit under certain market circumstances. In addition, this theoreti-
cal framework also enables us to analyze firm’s strategies to increase
R&D expenditure to achieve product innovation, or disruptive inno-
vation which lead to rapid decrease in β.

Regarding the model development, we mostly follow Houthakker
[20] for the calculation. Our model set its focus on the utility func-
tion, and Houthakker [20] on the production function. Although each
focus is different, these two analyze analogous functions, CES and
Cobb–Douglas. In that sense, the theoretical development of our model
is limited to the derivation of not Cobb-Douglas but CES utility func-
tion. However, our key contribution would be found in i) develop-
ment and interpretation of the assumptions to trace the analysis of
Houthakker [20] in the aspect of utility function, and ii) derivation of
the firm’s profit maximization condition under such literature. Also,
if we review a literature to analyze the shape of production functions,
Jones [26] would be another important paper. Jones [26] assumed the
distribution of idea to be Pareto and derived two results; the Cobb-
Douglas global production function and labor-augmenting technical
change. The major reason we chose not Jones [26] but Houthakker
[20] as our theoretical foundation is that the model of Houthakker
[20] is higher affinity on the theoretical extension to the CES, as
Houthakker [20] treats the distribution more explicitly.

Lastly, we would like to point out that our approach allows us
to provide new methodology to clarify assumptions to retrieve the
CES utility function, and also hope that this theoretical framework
encourages future applications in empirical works.
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4
F I R M VA L U E A N D R E TA I N E D E A R N I N G

4.1 summary

We propose a model of dynamic investment, financing and risk man-
agement with retained earnings. The key contribution of this chapter
is to provide dynamic model which explicitly include the retained
earnings. To consider the retained earnings explicitly, we described
the dynamics of both asset and liability section of the balance sheet,
i.e., cash holdings and (physical) property in the asset section, and
stock and retained earnings in the equity section. Our key results are:
(1) the decrease in the friction on the re-investment (γmin) enables a
firm to adjust more rapidly to increase its cash-capital ratio when its
cash-capital ratio is low, and (2) the firm’s decision is also affected by
the economic situation like a recession or upturn.

4.2 introduction

The basic literature of our concern is as mentioned in the 1.2.3 of this
dissertation. Papers most closely related to ours is Bolton, Chen, and
Wang [4], Bolton, Chen, and Wang [5] and Decamps et al. [8]. Our
research and Bolton, Chen, and Wang employ simple AK model and
assume the firm’s cumulative productivity evolution with a standard
Brownian motion under the risk-neutral measure. Bolton, Chen, and
Wang assume financial frictions directly instead of explicitly model-
ing an agent problem. The frictions assumed in Bolton, Chen, and
Wang are related to the features of the optimal contract that motivate
effort. Specifically, they assume that the firm maintains a cash bal-
ance and that it is costly to issue new equity when the firm runs out
of cash. In addition, they assume that it is costly to keep cash inside
the firm instead of paying it out to shareholders. On the other hand,
Decamps et al. [8] analyzed model of a firm facing internal agency
costs of free cash flow and equity issuance cost such as professional
fee, commissions, etc.

The feature of our model is that we consider a firm facing explicit
external financing cost and allowed to reserve retained earnings with
the payout policy taking into account. Here we introduced 3 frictions
in our model, 1) a friction on the equity issuance cost, 2) a friction on
the re-investment and 3) a friction on the under-investment. The first
friction is the same as Decamps et al. [8] and we introduced this fric-
tion to distinguish the financing cost for the external financing and
the retained earnings. The second friction is about the ratio of the

47
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usage of the profit, and this leads to the dividend policy. In general,
a profit is used whether to pay as a dividend or to re-invest to the
firm’s activity. According to Matos [36],

... the managers may use dividend changes to reflect a possible change in
their own expectations about the future earnings of firms, due to inside in-
formation. Dividend changes could then be seen as a simple mechanism to
adapt the market value to the new prospective of corporations’ insiders. Ac-
cordingly, the market value of corporations would react to the announcement
of dividend changes reflecting their informational content. This leads that

the dividend policy also works as a signal to the market for the man-
agers, and then there is an incentive for the managers as an agent to
send a good signal for the corporate management and growth. This
friction is a distortion on choosing the ratio of re-investment, and the
detail is written in 4.5.2. Lastly, the third friction is about the under-
investment and the second hand market. The outline and motivation
for introducing this friction is written in 4.5.4. Also, the analysis on
the heterogeneity in the drift of productivity shock would be another
feature of our analysis. In the numerical calculation, Bolton, Chen,
and Wang [4] sets the drift of productivity shock as homogeneous
across firms. Bolton, Chen, and Wang [5] changed this setting by con-
sidering it as a state variable, but the drift term has only 2 options
to take. As our concern is macroeconomic dynamics under heteroge-
neous agent, it is natural to eliminate the restriction on the level of
the drift of productivity shock. To consider the aggregation, it would
be reasonable to consider that there is a distribution on the drift of
productivity shock, or growth, and calculate macroeconomic variable
by integrating across the distribution. So here it should be again em-
phasized that we consistently focus the heterogeneity of agent and
calculate macro variable by integrating across the heterogeneity.

The reminder of this chapter proceeds as follows. Section 3 sets up
our baseline model. Section 4 presents the model solution in the first
best benchmark. Section 5 conducts quantitative analysis and Section
6 concludes.

4.3 the model

4.3.1 Definition of the Variables

Firstly, let us introduce the core definitions and variables on our
model of dynamic capital structure choice with uncertain produc-
tivity shock. The basic framework closely follows Bolton, Chen, and
Wang [4]. In our model, we add a subsection of the “Firm’s Asset and
Capital” and consider the capital structure explicitly.
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4.3.1.1 Production and Investment

We consider a financially constrained firm with stochastic productiv-
ity evolution, as considered in Bolton, Chen, and Wang [4]. Firstly, we
describe the firm’s physical production and investment process.

dKt = (It − δKt) dt (4.1)

Secondly, we assume the firm’s revenue at time t to evolve propor-
tionally to its capital stock, just assumed in the simple AK model.
The dynamics of A is governed by two terms; a constant growth term
described in µ and a stochastic term.

dAt = µdt + σdZt (4.2)

where Z is a standard Brownian motion.

4.3.1.2 Firm’s Asset and Capital

Consider a firm whose asset is composed of cash inventory (Wt) and
property (Kt), e.g., productive facilities, and its financial resource is
composed of stock, or namely shareholder’s equity (St) and retained
earnings (Et). Although other parts are almost same as Bolton, Chen,
and Wang [4], the introduction of the retained earnings (Et) explicitly
is original for our work. The introduction of the retained earnings
This definition of variables leads an identical equation for the asset
section and shareholder’s equity section of the balance sheet as;

Wt + Kt = St + Et (dWt + dKt = dSt + dEt) . (4.3)

The schematic image of the asset and equity section is in the Figure
4.1. The firm uses its property (Kt) for the production and reserves the
cash inventory (Wt) for the risk management. The financial resource
of these asset is composed of the shareholder’s equity (St) and re-
tained earnings (Et).

.
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Figure 4.1: Simplified Balance Sheet without Liability

4.3.1.3 Profit and Firm Value Maximization

The increase in firm’s cash flow (dWt) and net income (Ytdt) during a
time period dt can be described as

dWt = KtdAt + rWtdt− Itdt− G (It, Kt) dt + 1
p dSt − dLt

Ytdt = KtdAt + rWtdt− δKtdt− G (It, Kt) dt−
(

1− 1
p

)
dSt

(4.4)

where r is an interest rate, δKt (δ = 0) represents a depreciation of the
physical stock Kt, G (It, Kt) is the additional adjustment cost, which
is an increasing function of the investment, dLt is the dividend pro-
cess and p (> 1) is equity issuance cost as a friction for each dollar
of new shares issued as is assumed in Decamps et al. [8]. The de-
scription of the firm’s cash flow and net income is basically the same
as other literature like Bolton, Chen, and Wang [4]. As supposed in
other literature such as Demarzo, Fishman, and Wang [9], we assume
that the adjustment cost satisfies G (0, Kt) = 0, is smooth and convex
in investment It, and is homogeneous of degree one in It and Kt. We
assume that there is no tax non-operational revenue nor expenditure
for the firm at first.

Then, as our model setting our focus on the retained earnings, the
net income is distributed to the shareholder as a dividend (dLt) and
reserved in the firm as the retained earnings (dEt).

Ytdt = dLt + dEt (4.5)
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where Lt is the cumulative dividend process. Here it should be noted
that, in the standard model, the firm is not allowed to spare the re-
tained earnings and therefore Ytdt = dLt in general.

The firm value is calculated as 1) the sum of expected present val-
ues of future dividends minus 2) the sum of the expected present
value of future gross issuance process, following Decamps et al. [8].

V = max
[

E0

∫ τ

0
e−rt(dLt − dSt)

]
+ e−rτ (lKτ + Wτ) (4.6)

where τ is the liquidation time, E0 is the expectation operator induced
by the firm’s maximization process starting at t = 0 and l is capital
liquidation value. If τ = ∞, then the firm will not choose to liquidate.
In general, a firm will choose to liquidate when the cost of financing
is too high, or it faces the failure of heirs, etc.

4.3.2 Optimal Choice; Capital Expansion and Payout Policy

The firm can choose the ratio of the shareholder’s equity St and re-
tained earnings Et. We assume that the firm chooses the ratio of share-
holder’s equity (dSt) and retained earnings (dEt) during a time period
dt so that the summation of each value equals to the summation of
dWt and dKt. Defining the ratio of dSt and dEt at time t as αtto de-
scribe the dependence as follows;

dEt = αt (dWt + dKt) , dSt = (1− αt) (dWt + dKt) . (4.7)

If the ratio of St and Et converges to the certain value, the ratio of dSt

and dEt also converges to the same value and therefore E∞ = α∞
1−α∞

S∞.
Secondly, a firm also reserves a right to choose its payout policy

directly by setting the ratio of the dLt and dEt, whose summation
equals to the firm’s net income, according to (4.5). If we define the ra-
tio of the dLt and dEt as βt (0 ≤ βt ≤ 1) for every time t, the retained
earnings and dividend process during a time period dt is described
as a function of the firm’s net profit and βt as;
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dEt = βtYtdt, dLt = (1− βt)Ytdt. (4.8)

4.3.3 Cash Inventory Dynamics and the Firm Value

Henceforward, we first calculate the increase of the cash inventory
dWt. By using (4.7) and (4.8), dSt = (1− αt)

βt
αt

Ytdt. Defining βt
αt

as γt,
the firm’s net profit can be described in;

Ytdt =
1

1+γt

(
1− 1

p

)
(1−αt)

{Kt (µdt + σdZt) + rWtdt− δKtdt− G (It, Kt) dt}

(4.9)

Also, the firm’s cash inventory can be calculated by using (4.4) and
(4.8) as;

dWt = Ytdt− dKt + dSt − dLt

= γtYtdt− (It − δKt) dt
(4.10)

Next, we can calculate 1) the expected present values of future div-
idends minus 2) the expected present value of future gross issuance
process, dLt − dSt ≡ f (Wt, Kt) dt by using (4.4), (4.7) and (4.8) as

f (Wt, Kt) dt = (1− γt)Ytdt. (4.11)

(4.1), (4.4) and (4.11) yields the following Hamilton-Jacobi-Bellman
Equation;
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rV (Wt, Kt) = max
αt,γt,It

[
1−γt

1+γt

(
1− 1

p

)
(1−αt)

{µKt + rWt − δKt − G (It, Kt)}

+

[
γt

1+γt

(
1− 1

p

)
(1−αt)

{µKt + rWt − δKt − G (it)} − (It − δKt)

]
VW

+ (It − δKt)VK + 1
2

{
γtσKt

1+γt

(
1− 1

p

)
(1−αt)

}2

VWW


(4.12)

Here VK, VWand VWW represents ∂V
∂K , ∂V

∂W and ∂2V
∂W2 respectively. If we

set γt as 1 and p as 1, the HJB equation (4.12) becomes equal to that
of Bolton, Chen, and Wang [4]. Also, if we set γt as 0, (4.12) becomes
a classical description of the firm value.

4.3.4 Simplification and Hamilton-Jacobi-Bellman Equation

Calculations so far revealed that our assumptions lead the firm’s max-
imization problem to be described by 2 stochastic variables (Wt and
Kt) and 3 parameters to be defined by maximization condition (αt, βt

and It). However, the firm’s maximization problem can be reduced to
a 1 stochastic variable problem by exploiting homogeneity, i.e., writ-
ing the firm value V (K, W) = K · v (w) where w = W/K. By defining
Wt/Kt as wt and similarly for other variables, the key equations for the
time development of the stochastic variable (4.9) can be re-described
as:

dwt = d
(

Wt
Kt

)
= dWt

Kt
− wt (it − δ) dt

= γtYtdt
Kt
− (it − δ) dt− wt (it − δ) dt

=

[
γt

1+γt

(
1− 1

p

)
(1−αt)

{µ + rwt − δ− g (it)} − (1 + wt) (it − δ)

]
dt

+ γtσ

1+γt

(
1− 1

p

)
(1−αt)

dZt

(4.13)

here we also assumed that Gt(It, Kt) to be Gt(It,Kt)/Kt = g (It/Kt) =

g (it) = θi2
t/2 . Similarly, the firm’s dividend minus issuance process
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can be reduced into a form by dividing Kt as

1
Kt

f (wt) dt = 1
Kt
(1− γt)Ytdt

= 1−γt

1+γt

(
1− 1

p

)
(1−αt)

{µ + rwt − δ− g (it)} dt

+ (1−γt)σ

1+γt

(
1− 1

p

)
(1−αt)

dZt

(4.14)

Also, taking note that the marginal q is VK(K, W) = v(w)−w ∂v
∂w ,and

the marginal value of cash VW = ∂v
∂w and VWW = ∂2v

∂w2/Kt. According
to (4.12) and (4.13), the firm value v (wt) satisfies the following the
Hamilton-Jacobi-Bellman equation:

rv (wt) = max
αt,γt,it

[
(it − δ) v (wt) +

1−γt

1+γt

(
1− 1

p

)
(1−αt)

{µ + rwt − δ− g (it)}

+

[
γt

1+γt

(
1− 1

p

)
(1−αt)

{µ + rwt − δ− g (it)} − (1 + wt) (it − δ)

]
v(1) (wt)

+ 1
2

{
γtσ

1+γt

(
1− 1

p

)
(1−αt)

}2

v(2) (wt)


(4.15)

where v(i) represents ∂iv
∂wi . This equation equals to the neoclassical

benchmarks when there is no friction, i.e., γt = 0 (⇐⇒ βt = 0: no
retained earnings) and p = 1.

4.3.5 Tax Distortion

The effect of tax distortions has been considered since Modigliani and
Miller [41]. The major reason to consider the tax distortion is that if
the model includes debt for its financial source, the tax benefit of
debt appears because the interest is paid before the taxation. In our
model we did not include the debt and therefore no tax distortion
is expected. If we are to consider the taxation in this economy, the
equation (4.9) becomes;
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Ytdt =
1−κ

1+γt

(
1− 1

p

)
(1−αt)

{Kt (µdt + σdZt) + rWtdt− δKtdt− G (It, Kt) dt}

(4.16)

where κ is the corporate tax rate (0 ≤ κ ≤ 1). The derivation of the
Hamilton-Jacobi-Bellman equation is straight forward based on this
equation. For the simplicity, we set κ to be zero as the taxation does
not provide any distortion in our model.

4.3.6 Restriction on the Investment Rate

In the previous literature like Bolton, Chen, and Wang [4] and De-
camps et al. [8], the increase in the firm’s operating revenue is calcu-
lated as KtdAt. In the standard AK model, the operating revenue of
the firm is described as AtKt and the increase at time t corresponds
to d (AtKt) = KtdAt + AtdKt. The second term corresponds to the
growth in capital (dKt) but the introduction of the second term makes
the comparative statics difficult as the productivity diverges as long
as µ > 0. Therefore, in this dissertation, we assume only the term
KtdAt for the simplicity.

4.3.7 Liquidation and Refinancing

In the previous literature like Bolton, Chen, and Wang [4], the firm
chooses whether liquidation or refinancing when it runs out of cash.
If the firm chooses to increase its shareholder’s equity, it must pay
the financing costs which is defined as p in our model. The firm
may choose to liquidate when, for example, the financing cost is too
high or the return on capital is too low. In the following analysis, we
mainly focus not on the refinancing case but the liquidation case for
the following reasons. First, liquidation is one of the major issues in
many articles, Hugonnier and Morellec [23] and DeMarzo and San-
nikov [10]. Although the choice of the liquidation/refinancing differs
by parameter values, it might be reasonable to consider that the finan-
cially constrained firms does not have an opportunity for refinancing
when it runs out of cash. In most cases, the risk premium for finan-
cially constrained firms are high, and not so many investors are will-
ing to provide additional investment when firms fail to manage their
cash holdings.
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4.3.8 Restrictions in Internal Financing Region

In the liquidation case, the firm’s policy functions and the firm value
shows different dynamics in two regions: (i) an internal financing
region, and (ii) payout region. The payout region is achieved when the
firm holds cash stock W greater than or equal to the upper barrier W
which is determined endogenously. And the internal financing region
is achieved when the firm holds cash stock W lower than the upper
barrier W and higher than the lower barrier W. In the liquidation case,
lower barrier becomes W = 0. Here the liquidation value is assumed
to be proportional to the firm’s capital; V(W) = lK. We therefore have

v(0) = l. (4.17)

The firm value in higher barrier W is defined through value match-
ing, smooth pasting and super contact conditions. Here the value
matching condition means the firm value in internal financing re-
gion vi(w) and payout region vp(w) matches at the higher barrier w;
that is vi(w) = vp(w). Also, the smooth pasting condition means the
derivative of the firm value also matches at the higher barrier; that is
v′i(w) = v′p(w). Lastly, the super contact condition means the second
derivatives of the firm value match at the boundary; v′′i (w) = v′′p(w).
In the payout region, the firm value linearly increases as w increases.
Moreover, the firm value must be continuous before and after the cash
distribution. So the firm value in the payout region can be described
as

vp(w) = vp(w) + w− w. (4.18)

These conditions leads to;

v′i(w) = 1 (4.19)

and
v′′i (w) = 0. (4.20)

4.4 model solution

4.4.1 First Best Benchmark

Before considering the firm’s dividend policy with issuance cost, we
analyze the benchmark case which does not assume such friction. In
the case without the financial friction, the equity issuance cost p = 1
and there is no noise to the productivity, i.e., σ = 0. Also, because
there are no issuance costs in the benchmark economy, cash reserves
do not increase the firm value. It is therefore optimal for the firm not
to hold any cash for all the time wt = 0 f or ∀t = 0. Under such bench-
mark case, we can easily retrieve the Modigliani and Miller logic. If
we go back to the equation (4.1) and assume i to be constant across
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time, the firm’s physical property evolves as Kt = K0e(i−δ)t. Next,
1) the expected present values of future dividends minus 2) the ex-
pected present value of future gross issuance process evolves as the
following;

dLt − dSt =
αt − βt

αt
(µ + rw− δ− g (i))Ktdt (4.21)

where 0 ≤ αt, βt ≤ 1. As αt−βt
αt

is increasing with respect to αt and
decreasing with respect to βt, the firm chooses αt to be 1 and βt to be
0 to maximize its firm value. This leads to the firm’s value to be

VFB = max
it

∫ ∞
0 e−rt (dLt − dSt)

= max
it

∫ ∞
0 (µ− δ− g (i))K0e(i−δ−r)tdt

= max
it

[
K0

r+δ−i (µ− δ− g (i))
] (4.22)

Here we assumed that r + δ − i to be positive. In this framework,
the Tobin’s average q calculated is described as;

qFB = max
i

[
µ− δ− g (i)

r + δ− i

]
. (4.23)

This expression slightly different from other literature such as Bolton,
Chen, and Wang [4] and Demarzo, Fishman, and Wang [9]. In the
standard previous literature, the numerator of the average Tobin’s q
is µ − i − g (i), despite our model is µ − δ − g (i). The fundamental
difference in the expression of numerator is the determining process
of the dividend. In the previous literature, the dividend is calculated
based on the cash flow of each period. On the other hand, in our
model, dividend is calculated based on the profit of the period. This
difference arises because our model sets its focus on the retained earn-
ings. In the account process, retained earnings is defined as the profit
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after dividend payment. To describe this feature, we set firms deci-
sion process to determine its dividend not from the current cash flow
but from firm’s net profit, or profit after taxation.

4.4.2 Comparative Statics

The Hamilton-Jacobi-Bellman equation (4.15) describes the optimiza-
tion control of the firm value under uncertainty and frictions at every
time t. In this section we consider the comparative statics under the
financial frictions of the Hamilton-Jacobi-Bellman equation. As the
second order differential equation is highly complicated, it is diffi-
cult to provide theoretical solution of the equation. However, it is still
possible to provide several parameter restrictions with simple calcu-
lations.

The first issue to be considered in this section is the range of γt. As
γt is defined as βt

αt
and 0 ≤ αt, βt ≤ 1, it is natural to set the range

of γt to be 0 ≤ γt < ∞. However, according to (4.14) the source of
the firm value turns to be negative when γt > 1. It is still possible
if dLt − dSt tentatively turns to be negative due to large productivity
shocks or any other accidents, but such action is not sustainable and
allowed only in short term. Therefore, in the comparative statics, it is
reasonable to set γt to be 0 ≤ γt ≤ 1 and therefore αt > βt.

The second issue is the dynamics of the cash holdings, i.e., (4.13).
In the comparative statics, it is also reasonable to assume E0 [dwt]t→∞
to be zero. This restriction actually provides the condition for the in-
vestment rate it to satisfy;

γ∞

1 + γ∞

(
1− 1

p

)
(1− α∞)

{µ + rw∞ − δ− g (i∞)} = (1 + w∞) (i∞ − δ) .

(4.24)

(4.24) provides the relation between i∞ and w∞. The appropriate
cash holding rate w∞ can be calculated numerically from (4.15) and
using (4.23) to provide the appropriate rate of investment in t →
∞. However, here the problem occurs as there are two independent
methodologies to determine investment rate, one is from maximiza-
tion condition of (4.15) and another is the restriction on the dynamics
of cash holdings (4.24).

The third issue is the first order condition of (4.15). It is straight-
forward to calculate the first order condition of (4.15) for 3 variables,
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it, αt and γt. The first order condition for the three variables are as
follows;

[it] : it = − 1
θ

v−(1+wt)v(1)

1−γt+γtv(1)

{
1 + γt

(
1− 1

p

)
(1− αt)

}
[αt] : (1− γt + γtv) (µ + rwt − δ− g (it))

+
γ2

t σ2

1+γt

(
1− 1

p

)
(1−αt)

v(2) = 0

[γt] : (µ + rwt − δ− g (it))
{

v(1) − 1−
(

1− 1
p

)
(1− αt)

}
+ γtσ

2v(2)

1+γt

(
1− 1

p

)
(1−αt)

= 0

(4.25)

In previous papers such as Bolton, Chen, and Wang [4], there is
only one first order condition and it is feasible to plug into the HJB
equation. On the other hand, in our model, the first order conditions
are very complicated, and it might not be feasible to calculate analyt-
ically. Therefore, in the next session, we try to solve these equations
numerically with newly proposed methodology.

4.5 quantitative analysis ; numerical solution for the

hjb equation

The analytical solution of the HJB equation shall be calculated by
solving second order differential equation with first order conditions
(4.25). However, it is difficult to analyze the second order differential
equation (4.15) under (4.25) analytically. Therefore here we conduct
numerical analysis to to solve HJB equation and policy functions for
αt, βt and it.

Here the difference between the analysis of Bolton, Chen, and Wang
[4] should be emphasized. In standard economic model, a solution
after substituting first order conditions into (4.15) are calculated nu-
merically. As a difference from the model of Bolton, Chen, and Wang
[4], our model includes 3 parameters (i.e. αt, βt and it) as control vari-
ables and therefore the introduction of the first order condition to
the HJB equation becomes much complicated. Taking such situation
into consideration, we developed a methodology to calculate both the
solution of HJB equation and policy functions.
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Parameters Symbol Value

Risk-free rate r 6%

Rate of depreciation δ 10.07%

Risk-neutral mean productivity shock µ 18%

Volatility of productivity shock σ 9%

Adjustment cost parameter θ 1.5

Capital liquidation value l 0.9

Equity issuance cost p 1.05

Table 4.1: Summary of Key Parameters
This table shows key variables and these values used in the numerical
calculations.

Table 1 summarizes the parameter values for the numerical anal-
ysis. Most variables are based on Bolton, Chen, and Wang [4] and
Decamps et al. [8]. Also, Table 2 summarizes conditions for the range
of control variables, which is mainly described in 4.4.

Parameters Symbol Value

Capital Expansion Policy αt 10% ≤ αt ≤ 100%

Payout Policy βt αt × γmin < βt < αt

Investment it −100% ≤ it ≤ (r + δ)

Table 4.2: Restrictions on Control Variables
This table summarizes the restrictions on control variables used in the
model. Regarding the range of the investment, the first best bench-
mark calculation exerts relation as it < r + δ.

4.5.1 Brief Protocol of the Numerical Calculation

The numerical calculation aims to solve the second order differential
equation (4.15) under first order conditions (4.25) and boundary con-
ditions (4.17), (4.19) and (4.20) to determine the level of αt, βt and it.
However, there are 2 major difficulties for solving this problem. The
first problem is that when we plug first order conditions into the HJB
equation, the equation becomes too complicated and cannot be solved
analytically. The second problem is about the boundary conditions. If
the initial values v (0), v(1) (0) is set exogenously, it is straight forward
to solve the differential equation by using a method like the Runge-
Kutta. However, we only have explicit initial value as v (0) = l, and
v(1) (0) is not defined. Instead, we have to find a value v(1) (0) which
satisfies (4.19) and (4.20) for certain w.
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To solve the first problem, we simply maximize the right hand side
of the (4.15) under the restrictions of control variables (Table 2) in
every wt. In detail, 1) we first set the initial values v (0) = l, v(1) (0)
and then search a set of control variables (it, αt, γt) which maximize
the right hand side of the (4.15) at wt = 0 through the MATLAB
function; fmincon. 2) Then we solve the differential equation (4.15) by
the Runge-Kutta 4th order to obtain v (h), v(1) (h) and v(2) (h) where
h is the step size and here defined as 1/10,000. We iterate these 2 steps
to solve until 1) v(1) (wt) becomes less than 1 (4.19) or 2) v(2) (wt)
becomes 0 (4.20). Here it should be noted that v(2) (wt) is negative
throughout 0 < wt < w, as the marginal value of cash is expected
to decrease as wt increases. This is mainly because of the benefit to
hold the cash. In general, the benefit for the firm to hold the cash
is to avoid bankruptcy due to the productivity shock. However, this
merit decreases as the cash to capital ratio increases, and therefore
the v(1) (wt) is expected to decrease with respect to wt.

4.5.1.1 Adjustment Process for v(1) (0)

After we reach condition whether 1) v(1) (wt) becomes less than 1 or
2) v(2) (wt) becomes less than 0, we iterate the calculation by adjust-
ing the value v(1) (0). We employ the adjustment process of v(1) (0)
as follows. First, we set the lower and higher barrier of v(1) (0) as
vl(1) and vh(1). Then we start first iteration (n = 1) with setting
v(1) (0) |n=1 as (vh(1)+vl(1))/2. If v(1) (wt) becomes less than 1 before
v(2) (wt) becomes larger than 0, we start next iteration with setting
vl(2) as (vh(1)+vl(1))/2 and vh(2) as vh(1). Otherwise, which means if
v(2) (wt) becomes larger than 0 before v(1) (wt) becomes less than 1,
we start next iteration with setting vh(2) as (vh(1)+vl(1))/2 and vl(2) as
vl(1). In both cases, v(1) (0) |n=2 is set as (vh(2)+vl(2))/2 in the second it-
eration. When we iterate these processes for N times, the range of the
high barrier and lower barrier of v(1) (0) |N decreases with a speed of
(vh(1)−vl(1))/2N.

To understand the meaning of this adjustment process, let us de-
scribe the convergence process in different v(1) (0). If v(1) (0) is exactly
equal to the appropriate value, the v(2) (wt) becomes 0 and v(1) (wt)
becomes 1 at wt = w. In case v(1) (0) is higher than the appropriate
value, it would be natural to consider that v(1) (wt) remains high even
v(2) (wt) becomes 0, as the starting value is higher than the appropri-
ate value. On the other hand, in case v(1) (0) is lower than the appro-
priate value, v(1) (wt) reaches to the target value 1 faster than v(2) (wt)
becomes 0 for the similar reason. These intuitive descriptions can be
achieved when i) v(1) (wt) is monotonously decreasing and starting
from a certain positive value, ii) v(2) (wt) is monotonously increasing
and starting from a certain negative value, and iii) these basic func-
tional form does not change as different v(1) (0).
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4.5.1.2 Calculations for wt = 0

To illustrate steps to calculate v (wt) in concrete, let us describe these
steps in equations. Here we assume that the firm values and its deriva-
tives (v (wt), v(1) (wt) and v(2) (wt)) are already calculated, but i) a set
of control variables (it, αt, γt) and ii) firm values and its derivatives
in next step (v (wt + h), v(1) (wt + h), and v(2) (wt + h)) is to be calcu-
lated.

To begin with, we have to consider the first step, i.e., wt = 0. The
initial value v (0) = l is exogenously determined. On the other hand,
we have to estimate v(1) (0) through the iteration process written
above. First we set vl(1) and vh(1) exogenously, such as vl(1) = 1 and
vh(1) = 103. Then set v(1) (0) |n=1 as (vh(1)+vl(1))/2 and proceed calcu-
lation. Here the problem is how to set v(2) (0), αt(0), γt(0), and it(0)
as a solution. In principle, variables v(2) (0), αt(0), γt(0), and it(0)
are determined to minimize the following function and HJB equation
(F (αt(0), γt(0), it(0)) = rv(0)):

F (αt(0), γt(0), it(0)) |wt=0 = (it(0)− δ) v (0)

+ 1−γt(0)

1+γt(0)
(

1− 1
p

)
(1−αt(0))

{µ− δ− g (it(0))}

+

[
γt(0)

1+γt(0)
(

1− 1
p

)
(1−αt(0))

{µ− δ− g (it(0))} − (it(0)− δ)

]
v(1) (0)

+ 1
2

{
γt(0)σ

1+γt(0)
(

1− 1
p

)
(1−αt(0))

}2

v(2) (0) .

(4.26)

As all variables except for v(2) (0), αt(0), γt(0), and it(0) are al-
ready determined, we can easily find a solution α∗t (0), γ∗t (0), and
i∗t (0) through MATLAB fmincon function. However, the problem is
that v(2) (0) can only calculated with using (4.15) and a solution α∗t (0),
γ∗t (0), and i∗t (0), but the value of v(2) (0) also affects the solution
α∗t (0), γ∗t (0), and i∗t (0). Therefore we iterate this process for 10 times
and wait until v(2) (0), α∗t (0), γ∗t (0), and i∗t (0) converges for certain
values.

Then we can proceed the calculation to calculate v (h), v(1) (h) and
v(2) (h) through using the following method.

4.5.1.3 Calculations of wt + h under Given wt

Here we consider to calculate the set of control variables which maxi-
mize the following function F (αt, γt, it) under the given v (wt), v(1) (wt)
and v(2) (wt) and restrictions on control variables.
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F (αt, γt, it) = (it − δ) v (wt)

+ 1−γt

1+γt

(
1− 1

p

)
(1−αt)

{µ + rwt − δ− g (it)}

+

[
γt

1+γt

(
1− 1

p

)
(1−αt)

{µ + rwt − δ− g (it)} − (1 + wt) (it − δ)

]
v(1) (wt)

+ 1
2

{
γtσ

1+γt

(
1− 1

p

)
(1−αt)

}2

v(2) (wt)

(4.27)

If we define the solution of (4.22) as (i∗t , α∗t , γ∗t ), the firm values and
its derivatives in next step (v (wt + h), v(1) (wt + h) and v(2) (wt + h))
can be calculated through the Runge-Kutta 4th order. Before we move
on to the concrete calculation, let us define a new function H

(
= v(2) (wt)

)
as follows:

H
(

v (wt) , v(1) (wt)
)
=

{
2
(

1+γ∗t

(
1− 1

p

)
(1−α∗t )

)
γ∗t σ

}2

×[
(i∗t − δ− r) v (wt) +

1−γ∗t
1+γ∗t

(
1− 1

p

)
(1−α∗t )

{µ + rwt − δ− g (i∗t )}

+

[
γ∗t

1+γ∗t

(
1− 1

p

)
(1−α∗t )

{µ + rwt − δ− g (i∗t )} − (1 + wt) (i∗t − δ)

]
v(1) (wt)

]
(4.28)

If we follow the standard approximation in derivations, v(0) (wt + h)−
v(0) (wt) can be approximated as h× v(1) (wt) and v(1) (wt + h)− v(1) (wt)
can be approximated as h × v(2) (wt). Here, in this dissertation, we
use Runge-Kutta 4th order for the better approximation. With defin-
ing u (wt) ≡ v(1) (wt) to obtain the solution as:
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u (wt + h) = u (wt) +
h
6 (j1t + 2j2t + 2j3t + j4t)

v (wt + h) = v (wt) +
h
6 (k1t + 2k2t + 2k3t + k4t)

j1t = hH (wt, v (wt) , u (wt))

k1t = h · u (wt)

j2t = hH
(

wt +
h
2 , v (wt) +

k1t
2 , u (wt) +

j1t
2

)
k2t = h ·

(
u (wt) +

j1t
2

)
j3t = hH

(
wt +

h
2 , v (wt) +

k2t
2 , u (wt) +

j2t
2

)
k3t = h ·

(
u (wt) +

j2t
2

)
j4t = hH (wt + h, v (wt) + k3t, u (wt) + j3t)

k4t = h ·
(

u (wt) +
j3t
2

)
.

(4.29)

Iterating this procedure from wt = 0 to wt = w to calculate the
solution of v (wt). Here it should be emphasized that what we cal-
culate here is not wt+1 but wt + h for any given wt. This means that
what we analyze here is not the dynamics of the firm value but just
a solution of HJB equation. If we are to analyze the exact dynamics
of the firm value and cash-capital ratio, we had better analyze dwt

simultaneously.
Also, it should be noted that the control variable γt lies in the

denominator. In this regard, the variable γt cannot be zero as long
as we calculate the solution from the equations above. It is in some
sense natural as, in the classical firm valuation, the firm value linearly
increases when wt increases, and there is no necessity to consider
v(2) (wt). However, this point makes it difficult to calculate the firm
value dynamics in general. To avoid this difficulty, we set γmin > 0
as a minimum value of the γt and assume that the γt stays within
γmin ≤ γt ≤ 1. Then another problem arises: how much is the value
of the γmin?

4.5.2 A Friction on the Re-investment

Before we consider the condition for γmin, let us consider the feature
of the γt in more detail. The equation (4.10) yields

Ytdt = (dWt + dKt) + (dLt − dSt) = γtYtdt + (1− γt)Ytdt . (4.30)
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This relation describes the feature of the γt well. In general, the firm’s
profit can be distributed to whether 1) to re-invest and increase the
capital, or 2) to pay as a dividend. The case γt = 0 means that there
are no re-investment and all profits are paid as a dividend. If we set
the γmin as positive, we do not allow the firm to pay all profits as a
dividend, but force to re-invest at least in certain ratio.

Figure 4.2 represents the historical change of γt by the different
firm size in Japan. According to the Financial Statements Statistics
of Corporations by Industry, Ministry of Finance, Japan, the γt in
big firms (capital stock is more than 1 billion yen) is around 53% in
2017, and the γt in small firms (capital stock is less than 10 million
yen) is around 98%. Especially in case of small firms, it might be
reasonable to set γmin > 0. In general, if a firm pays all of its profit
out as dividends or does not reinvest back into the business (γt = 0),
investors tend to consider earnings growth of the firm might suffer.
If such understandings is common among the market, it might be
natural for managers to set some lower limit on the γt to maintain
the stock price.

Figure 4.2: Historical Change of γt by the Firm Size

4.5.3 Major Calculation Results for Internal Financing Region

4.5.3.1 Replication of Bolton, Chen, and Wang [4]

Figure 4.3 plots simulated results of A) Firm Value-Capital Ratio, B)
Marginal Value of Cash, C) Investment-Capital Ratio, D) dwt, E) Pol-
icy Function of α and F) Policy Function of γ under the restrictions
of α = γ = 1 for any wt. It can be easily confirmed that these condi-
tions replicate conditions of Bolton, Chen, and Wang [4]. According
to Bolton, Chen, and Wang [4], the marginal value of cash reaches a
value of 30 as w approaches zero, and endogenous payout boundary
w = 0.22. These values are replicated in our analysis.
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Figure 4.3: Firm Value and Related Variables under Bolton (2011) conditions

4.5.3.2 Case of γmin = 1.0

Figure 4.4 plots simulated results of similar variables under γmin =

1.0. As γmin is assumed to be 1, the policy function of γ becomes
constant at γ = 1, and the firm maximizes its value by adjusting
αt (= α (wt)) and it (= i (wt)). The major difference with respect to
Bolton, Chen, and Wang [4] is the change in α (wt). α (wt) becomes
αmin in low wt and αmax in high wt. This means that when the firm’s
cash-capital ratio is low, the firm increases the ratio of shareholder’s
equity to finance adequate amount of cash from the stock market.
However, as there is an equity issuance cost for increasing the share-
holder’s equity, the firm changes its financial source only to the re-
tained earnings (α (wt) = αmax = 1) when the cash-capital ratio be-
comes adequately high. Due to the difference in the policy function of
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α (wt), the marginal value of cash around w ∼ 0 and endogenous pay-
out boundary slightly changes from that of Bolton, Chen, and Wang
[4]. Although there are several small differences in the policy function
of i (wt), dwt and other related variables, most changes are minor ones
and we do not emphasize these differences here.

Figure 4.4: Firm Value and Related Variables under γmin = 1.0

4.5.3.3 Case of γmin = 0.90

Figure 4.4 plots simulated results of similar variables under γmin =

0.90. First and foremost, let us discuss on the shape of the policy
function of γ (wt). The shape of the policy function of γ (wt) follows
1) γ (wt) stays constant for almost all region at γ (wt) = γmin, but 2)
suddenly shows an increase when wt ∼ w. Here let us consider the
intuitive understandings of these two features. To understand these
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features, it might be better to revisit (4.15) again. If we approximate
1

1+γ(wt)
(

1− 1
p

)
(1−α(wt))

∼ 1 for simplicity, the first order derivative for

the right hand side of (4.15) becomes:

(µ + rwt − δ− g (it))

{
v(1) − 1−

(
1− 1

p

)
(1− αt)

}
+ γ (wt) σ2v(2).

(4.31)

Especially in the low wt region, v(2) is around −104 and therefore
the solution for the first order condition (4.31) is much smaller than
γmin. However, v(2) decreases as the increase in wt and finally reaches
0 when wt → w. Under such situation, the solution for the FOC (4.31)
increases and when it exceeds γmin, the policy function of γ (wt) be-
comes non-constant solution. The numerical analysis states that when
wt → w, γ (wt) = γmin can no longer becomes the best solution.

Here it should also be noted that when γmin decreases, 1) the marginal
value of cash at wt → 0 increases, and 2) endogenous payout bound-
ary w decreases, compared to the case of γmin = 1.
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Figure 4.5: Firm Value and Related Variables under γmin = 0.9

4.5.3.4 Case of γmin = 0.70

Next, Figure 4.6 plots similar functions under γmin = 0.70. In general,
most features are same as the case γmin = 0.90. The major differences
are 1) decrease in w, 2) increase in v(1) (0), 3) decrease in i (0) and 4)
increase in dwt|wt=0. These facts leads that if γmin decreases, the firm
tries to increase its cash-capital ratio more rapidly by increasing the
rate of under-investment (i (wt) < 0).
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Figure 4.6: Firm Value and Related Variables under γmin = 0.7

4.5.3.5 Case of γmin = 0.50

Lastly, Figure 4.7 plots similar functions under γmin = 0.50. When
γmin decreases as 0.5, the investment-capital ratio at wt = 0 decreases
until imin and other features are the same as other cases.
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Figure 4.7: Firm Value and Related Variables under γmin = 0.5

4.6 discussion

In this chapter we proposed a dynamic operational model which in-
cludes the retained earnings and cash holdings explicitly by consid-
ering the balance sheet of each firm. The first contribution of this
chapter is to establish a methodology which can solve the HJB equa-
tion (4.15) under complicated first order equations (4.25) which can-
not solve analytically. Also, the major findings of this analysis is that
whether the firm accumulates the retained earnings or not is deter-
mined by the level of the cash-capital ratio wt and a friction on re-
investments, γmin.

First and foremost, the relation between γmin and retained earn-
ings should be discussed. As is shown in Figure 4.4 - 4.7, the policy
function γ (wt) stays constant for most regions. Also, the decrease
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in γmin leads to 1) decrease in w, 2) increase in v(1) (0), 3) decrease
in i (0) and 4) increase in dwt|wt=0. These changes indicates that the
decrease in γmin enables a firm to adjust more rapidly to increase
its cash-capital ratio when its cash-capital ratio is low. As described
above, the origin of γmin is a friction on the re-investment. The in-
crease in γmin allows the firm to increase its re-investment and the
firm does not have to pay all profits as a dividend. Here it should
be emphasized that the adjustment process becomes rapid as γmin
decreases. Also, it might be reasonable to expect that the firm value
becomes linear when γmin → 0. Actually, the HJB equation becomes
equal to the neoclassical benchmark when γ (wt) = 0. This fact leads
that when the firm allows itself to pay much dividend without consid-
ering any reactions of investors, the firm value becomes close to the
neoclassical benchmark. In other words, the existence of the friction
of re-investments alienates firms from the benchmark.

Also, it can be considered that the firm’s decision is also affected
by the economic situation. According to the data in Japanese industry
(Figure 4.2), 2 major findings were available: 1) γmin tends to decrease
in the recession (e.g., the financial crisis) and increase in the upturn,
and 2) the small firms tend to retain more earnings. The first find-
ing yields that the firm tries to convince investors for their growth
potential especially when the economic situation is in upturn. When
the economy is good, it is reasonable for the firm to claim that it has
better growth opportunity than competitors, otherwise the firm loses
the market share. On the other hand, in the bad economic situation,
such claim may sound incredible for investors as many firms have
already lost their opportunities.

The second finding is considered mainly due to the effect of the list-
ing. In general, large firms tend to take itself public and finance from
the market. On the other hand, small firms cannot take itself public.
If the firm is not a listed company, a pressure from investors becomes
moderate. When the pressure from investors is low, the firm may face
two options: 1) to decrease dividend and retain more earnings, and 2)
to decrease γmin and operate the firm close to the neoclassical bench-
mark. The first option does not seem to maximize the firm value in
most cases, but this situation may change if the firm is an owner man-
aged firm. If the manager is also the owner of the firm, the manager
can use its retained earnings at will. Instead, the manager may rather
prefer to increase the retained earnings for tax reasons. If the owner
managed firm pays dividend to the owner itself, the dividend be-
comes object of a taxation. On the other hand, if the owner managed
firm retains its earnings, no (or less) taxation will occur. So, we can
guess that one of the reason the ratio of retained earnings of small
firms is large is the taxation.

Lastly, we see a few directions for related future research. One pos-
sible direction would be the assumption on the production function
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which is currently assumed as homogeneous of degree 1 and does
not satisfy diminishing returns. If we allow the firm value to be the
function of Wt and Kt and calculate the 2 variable Hamilton-Jacobi-
Bellman equation, we can assume production function with dimin-
ishing returns and such expansion should be considered in the next
work. Also, to introduce the debt into this model could be another
direction for future research.
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C O N C L U S I O N

In this dissertation, we addressed the aggregation in macroeconomics
especially with setting our focus on the statistical process.

With the results in part 1 and 2, we succeeded to clarify the mi-
crofoundation and assumptions to retrieve the representative agent
and CES utility function which are frequently used in many macroe-
conomic literatures. In both researches, we provided sequences of
assumptions which can be verified with empirical analysis. Here it
should be emphasized that if succeeding research reveals all assump-
tions to be reasonable based on the actual market data, our work is
meaningful in a aspect of providing rigorous microfoundation to the
macroeconomic frameworks. However, if succeeding research reveals
some assumptions are not reasonable and does not satisfied in usual
economy, a severe problem arises. Such results may raise a warning
for several macroeconomic literatures that the sticking to the analytic
convenience might cause the following calculations in vain. At any
rate, it is necessary for many macroeconomic literatures that whether
such assumptions are all correct or not with using empirical data, and
the significance of our research lies on it.

In the part 3 of this dissertation, we addressed the statistical process
of the corporate finance, especially setting our focus on the retained
earnings. The major reason for setting our focus to the retained earn-
ings is the relation between the firm’s profit and growth. If the market
is completely perfect, the current profitability does not affect firm’s
financial needs as long as the bankers/equity providers can appropri-
ately judge the financing program. However, the market is not always
perfect and in such case, the firm’s growth is restricted mainly to the
internal financing, i.e., to use the retained earnings. Also, if we are to
consider the long range growth, how much the firm should take its
leverage is also a key variable. With keeping the profit rate constant,
firstly the firm has to determine the leverage within capital stock, i.e.,
the ratio of increase in shareholder’s equity and retained earnings.
Next, the firm also has to determine the leverage between the debt
and equity. Although we only considered the leverage within capital
stock in the part 3 research, the basic concept can be applied to the
debt and then we can evaluate the relation between firm’s profitabil-
ity and growth rate.

Lastly, it is also notable that if we combine all there 3 results, we
can build a small economy which is consist of consumers (and in-
vestors) and firms with considering stochastic property of each agent.
Such description helps us to analyze the actual distribution dynam-

77



78 conclusion

ics of consumer attribute, firm’s productivity, etc. as it is, and such
approach must be suitable to so called “big data” analysis. I hope
our research will be of any help to evolve the macroeconomics more
interesting and rigorous.
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A P P E N D I X

a.1 derivation of the fokker-planck equation

For the simplicity, we first assume the consumption bundles evolves
with Markov process, and relax this assumption in later section.

Assumption 1. Any consumption bundles within the household type µi
evolves with Markov process, i.e.,

P(Λ ∩ Γ|xb(t)) = P(Λ|xb(t))P(Γ|xb(t)),
∀Λ ∈ σ {xb(s), s ≤ t} , ∀Γ ∈ σ {xb(s), s ≥ t}

where P is a probability distribution function of the probability process
xb(t), and σ {·} is a minimum σ- additive class which makes the probability
process written in the bracket measurable.

Hereinafter we write xb(t) as xb for simplicity. Under Markov pro-
cess assumption, the dynamics of a probability density function is
generally described by its autonomous differential equation as:

Proposition 1.
The probability density function Pµi(xb, t) evolves with following time

dependent differential equation

∂

∂t
Pµi(xb, t) = −Pµi(xb, t)ξ(xb) +

∫
Pµi(x

′
b, t)T(x′b, xb)dx′b (A.1)

where ξ(xb) is a probability to transit from xb, and T(x′b, xb) is a proba-
bility to transit from xb

′ to xb during unit time scale.

Proof.
First define t′ as t0 < t′ < t. If we assume the probability process

of the xb to be a Markov process, the following relation known as a
Chapman-Kolmogorov equation is satisfied;

Pµi(xb, t | xb0, t0) =
∫

Pµi(xb, t | x′b, t′) Pµi(x
′
b, t′ | xb0, t0) dx′b (A.2)

Now we consider transition during an infinitely small amount of

time ∆t. As definition, a transition probability from x′b to xb during ∆t
is calculated as T(x′b, xb)∆t. On the other hand, a probability to stay
at xb during ∆t is calculated as

{
1−

∫
T(xb, x′′b) dx′′b

}
∆t. Therefore, a

time evolution of the probability density function during ∆t becomes:

81
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Pµi(xb, t + ∆t | xb0, t0) =∫ [{
1−

∫
T(xb, x′′b) dx′′b

}
∆t δ(xb − x′b) + T(x′b, xb)∆t

]
Pµi(x

′
b, t | xb0, t0) dx′b

(A.3)
Taking limit of ∆t→ 0 to obtain

∂

∂t
Pµi(xb, t | xb0, t0) = −Pµi(xb, t | xb0, t0)ξ(xb)+

∫
Pµi(x

′
b, t | xb0, t0)T(x′b, xb)dx′b

(A.4)
where ξ(xb) ≡

∫
T(xb, x′′b) dx′′b. This is a similar expression as writ-

ten in the Proposition 1. (For simplicity, hereinafter Pµi(xb, t | xb0, t0) is
written as Pµi(xb, t).) �

The intuitive understanding of this equation is very simple. The
left hand side of the equation equals to the time differential of the
probability to stay at xb. Meanwhile, the right hand side of the equa-
tion equals to the sum of 2 components; (1) transition from xb, and
(2) transition from other points (x′b) to xb.

Define r as r = x′b − xb and ω(x′b, r) = T(x′b, x). Substitute this
expression into equation (A.4) to obtain

∂

∂t
Pµi(xb, t) = −

∫
ω(xb, r) dr Pµi(xb, t)+

∫
ω(xb − r, r) dr Pµi(xb − r, t)

(A.5)
Here we introduce following formula for the further calculation.

exp
[
−r

∂

∂xb

]
f (xb) =

∞

∑
n=0

(−r)n

n!

(
∂

∂xb

)n

f (xb) = f (xb − r) (A.6)

Substitute this formula into the previous equation, and also assume

appropriate convergence condition, calculation be proceeded as fol-
lows;

∂

∂t
Pµi(xb, t) = −

∫
ω(xb, r) dr Pµi(xb, t)

+
∫

dr
∞

∑
n=0

(−r)n

n!

(
∂

∂xb

)n

ω(xb, r) Pµi(xb, t)(A.7)

=
∞

∑
n=0

(−1)n

n!

(
∂

∂xb

)n ∫
dr rnω(xb, r) Pµi(xb, t)

=
∞

∑
n=0

(−1)n

n!

(
∂

∂xb

)n

αn(xb) Pµi(xb, t) (A.8)

where αn(xb) =
∫

dr rnω(xb, r).
If we confine our attention to the dynamics around the equilibrium

point, it may be reasonable to ignore higher-order terms of the Taylor
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expansion. More rigorously, we set the following Assumption 2 for
the better approximation:

Assumption 2. The coefficients αn(xb) are finite for every n and
αn(xb) = 0 for some even n

Proposition 2.
The time dependent partial differential equation on Pµi(xb, t) could simply

be approximated under Assumption 4 as:

∂

∂t
Pµi =

(
−

L

∑
j=1

∂

∂xj
α1j(xb) +

1
2

L

∑
j=1

L

∑
k=1

∂2

∂xj∂xk
α2jk(xb)

)
Pµi(x1, x2, ..., xL, t)

(A.9)

Proof.

According to the Pawula theorem (Pawula [44]), if the coefficients
αn(xb) are finite for every n and if αn(xb) = 0 for some even n,
αn(xb) = 0 for all n ≥ 3. If we employ this assumption, equation
(A.8) could be approximated simply as written in the Proposition 2.
�

This equation is known as Fokker-Planck equation which describes
the dynamics of probability density function under certain potential.
In the literature of the physics, the first term of the RHS equals to a
first order derivative of the external potential, and the second term
equals to the effect of diffusion.

a.2 derivation of the kramers equation

Proposition 3.
The dynamics of probability density function under an external potential

and a friction could be described in the form (Kramers equation):

∂
∂t Pµi(xb, vb, t) =[
−∑L−1

j=1
∂

∂xbj
vbj + ∑L−1

j=1
∂

∂vbj

(
− ∂

∂xbj
uR(x) + γvbj

)
+ D ∑L−1

j=1
∂2

∂v2
bj

]
Pµi(xb, vb, t)

(A.10)

Proof.
The derivation of Fokker-Planck equation (A.9) is conducted in gen-

eral coordinate, and this relation satisfies even if we expand the co-
ordinate to the phase space made of xb and vb (a time derivative of
xb). Here first define A as At ≡ (xb, vb) and rewrite Fokker-Planck
equation within this phase space as:
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∂
∂t Pµi(xb, vb, t) =(
−∑2(L−1)

j=1
∂

∂Aj
α1j(A) + 1

2 ∑2(L−1)
j=1 ∑2(L−1)

k=1
∂2

∂Aj∂Ak
α2jk(A)

)
Pµi(xb, vb, t)

(A.11)
Here α1j(A) = lim

∆t→0

<∆xbj>

∆t = vbj for j ≤ L− 1, α1j(A) = lim
∆t→0

<∆vbj>

∆t =

∂
∂xbj

uR(x)−γvbj for L ≤ j ≤ 2(L− 1), α2jk(A) = lim
∆t→0

<∆vj∆vk>
∆t = 2Dδjk

, and all other terms vanishes at order of ∆t. Thus, the generalized
diffusion process satisfies

∂
∂t Pµi(xb, vb, t) =[
−∑L−1

j=1
∂

∂xbj
vbj + ∑L−1

j=1
∂

∂vbj

(
− ∂

∂xbj
uR(x) + γvbj

)
+ D ∑L−1

j=1
∂2

∂v2
bj

]
Pµi(xb, vb, t)

(A.12)
�

Proposition 4. The solution of the Kramers equation in equilibrium be-
comes

Peq
µi =

1
Z

exp
[
−H(xb, vb)

γD

]
, H(xb, vb) ≡

L−1

∑
i=1

vbi

2
− uR(xb)

where Z is a normalization factor.

This solution can be easily confirmed by setting LHS of (A.12) as
zero and plugging this solution and into the RHS of (A.12).

a.3 derivation of the liouville equation

First define phase space constructed by L − 1 generalized coordi-
nate (x1b, x2b, · · ·, xL−1b) and its conjugate momentum (v1b, v2b, · ·
·, vL−1b) (here the mass of the particle is normalized as one), and
consider the dynamics in this phase space. Every state realized in
this system within the phase space is generally called as represen-
tative point. Here define ρ = ρ(xb, vb, t) as a density of the repre-
sentative point in L − 1 × L − 1 dimensional phase space at time t.
Then, there are ρ(xb, vb, t)∆x1b∆x2b · · · ∆xL−1b · ∆v1b∆v2b · · · ∆vL−1b
representative points in the infinitely small volume as ∆x1b∆x2b · · ·
∆xL−1b ·∆v1b∆v2b · · ·∆vL−1b. Now let us consider the dynamics of the
representative points in this phase space. The number of representa-
tive points which pass through a surface of x = x1b equals to

ρ(xb, vb, t) ˙xb1∆V−x1b (A.13)

where ∆V−x1b = ∆x2b · · · ∆xL−1b · ∆v1b∆v2b · · · ∆vL−1b. Similarly, the
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number of representative points which pass through a surface of x =

x1b + ∆x1b equals to

{ρ(xb, vb, t) ˙xb1} |x1b+∆x1b ∆V−x1b =

(
ρ(xb, vb, t) ˙xb1 +

∂ρ(xb, vb, t) ˙xb1

∂xb1
∆x1b

)
∆V−x1b

(A.14)
Therefore, the number of representative points in ∆x1b∆x2b · · ·∆xL−1b ·

∆v1b∆v2b · · · ∆vL−1b decreases in every unit time as:

∂ρ(xb, vb, t) ˙xb1

∂xb1
∆x1b∆x2b · · · ∆xL−1b · ∆v1b∆v2b · · · ∆vL−1b (A.15)

The similar discussion could also be applied to other surfaces and as

a result, the time differential equation of the density of representative
points could be described as:

∂

∂t
ρ = iL ρ ≡ {ρ, H} =

L−1

∑
j=1

(
∂ρ

∂xbj

∂H
∂vbj
− ∂ρ

∂vbj

∂H
∂xbj

)
(A.16)

a.4 derivation of the generalized langevin equation

Proposition 5. The equation of motion of each consumption bundle could
be described in the form of the generalized Langevin equation as follows:

d
dt

vb(t) = −
∫ t

−∞
γ(t− t′)vb(t′)dt′ +∇uR(xb) + R(t) (A.17)

where γ(t) represents a retarded effect of the frictional force at time t, and

R(t) is a random force.

Proof.
By expanding the dimension of the phase space to the Hilbert

space, the Liouville equation can be written as

d
dt

Aµ(t) = iL Aµ(t) (A.18)

and formally be solved in the form Aµ(t) = exp(iL t)Aµ(0). Next,

we define a inner product of dynamical values F ,G with requiring
the following restrictions:

(F, G) = (G, F)∗, (A.19)

(G, G) ≥ 0, (A.20)
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(∑
i

ciF, G) = ∑
i

ci(F, G) (A.21)

For the simplicity, we assume the orthogonality and normalization

for
{

Aµ(0)
}

as

(
Aµ(0), Aν(0)

)
= δµν (A.22)

where δµν is Dirac’s delta function. Here define the projection op-

erator P which project dynamical value G to the space mapped by{
Aµ(0)

}
as

PG(t) = ∑
ν

(G(t), Aν(0))Aν(0) (A.23)

The following relation about the projection operator can be easily

proved.

(PF, G) = (F, PG) (A.24)

(
P ′F, G

)
=
(

F, P ′G
)

(A.25)

P2 = P , P ′2 = P ′, PP ′ = P ′P = 0 (A.26)

where P ′ = 1−P . Now we define Ξµν(t) as

Ξµν(t) =
(

Aµ(t), Aν(0)
)

(A.27)

Then the projection of Aµ(t) to A is given by

PAµ(t) = ∑
ν

Ξµν(t)Aν(0) (A.28)

On the other hand, we define A′µ(t) as

A′µ(t) = P ′Aµ(t) (A.29)

Using (A.15), (A.16) and the definition of P ′, Aµ(t) can be rewritten

in the form

Aµ(t) = ∑
ν

Ξµν(t)Aν(0) + A′µ(t) (A.30)

Operating P ′ to the Liouville equation from the left and using (A.16)

and (A.17) to obtain
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d
dt

A′µ(t) = P ′iL A′µ(t) + ∑
ν

Ξµν(t)P ′iL Aν(0) (A.31)

The solution of (A.18) becomes

A′µ(t) = ∑
ν

∫ t

0
Ξµν(s)Γν(t− s)ds (A.32)

Γν(t) = exp
[
tP ′iL

]
P ′iLAν(0) (A.33)

By substituting (A.17) into the LHS of (A.5), we obtain

d
dt

Aµ(t) = ∑
ν

Ξµν(t)iLAν(0) + iLA′µ(t) (A.34)

Here we define iΩµν and Mµν(t) as

iΩµν ≡ (iLAµ(0), Aν(0)) (A.35)

Mµν(t) ≡ −(iLΓµ(0), Aν(0)) (A.36)

Taking an inner product with Aν(0) on (A.21) from the right and

using (A.19) and (A.20) to obtain a differential equation about Ξµν(t)
as

d
dt

Ξµν(t) = ∑
τ

Ξµτ(t)iΩτν −∑
τ

∫ t

0
Ξµτ(s)Mτν(t− s)ds (A.37)

Representing in a form of a matrix,

d
dt

Ξ(t) = Ξ(t) · iΩ−
∫ t

0
Ξ(s) ·M(t− s)ds (A.38)

The Laplace transformation of (A.25) becomes

− 1̂ + zΞ(z) = Ξ(z) · iΩ− Ξ(z) ·M(z) (A.39)

Therefore

Ξ(z) =
1̂

z− iΩ + M(z)
(A.40)

On the other hand, if we substitute (A.19) into (A.17) and conduct

Laplace transformation to obtain

A(z) = Ξ(z) · {A(0) + Γ(z)} (A.41)

Using (A.27) and (A.28),
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{z− iΩ + M(z)} · A(z) = A(0) + Γ(z) (A.42)

By applying the inverse Laplace transformation on (A.29) and rewrite

the equation in the form of generalized coordinate, we obtain the
generalized Langevin equation as:

d
dt

Aµ(t) = ∑
ν

iΩµν Aν(t)−∑
ν

∫ t

0
Mµν Aν(t− s)ds + Γµ(t) (A.43)

�

Here the terms except for Γµ(t) are linear with respect to Aµ(t)
and all non-linear effects are re-normalized into a fluctuating term as
Γµ(t). The second term at the right hand of the equation represents a
”memory” of the past movement and the function Mµν(t) are called
as memory function. Moreover, the fluctuation dissipation theorem
of the second kind holds between memory function and fluctuating
force.

a.5 differences in several processes

In most cases, the random force R(t) is assumed to be independent
and identically distributed. However, our fundamental assumption
(Assumption 2. in chapter 2 ) abandoned to distinguish individual
households to describe representative households, and setting i.i.d.
assumption in addition to this assumption may become too strong to
describe real economy. Therefore, we first set assumptions to achieve
i.i.d. property for R(t), and thereafter relax each assumptions in the
following sections.

a.5.0.1 Assumptions for the Normal Diffusion

For the sake of simplicity and idealization, let us first assume the
simple constraints for the property of the error term R(t) to acquire
i.i.d. property as follows:

Assumption ND− 1. There are no auto correlation function in
R(t), i.e.,

< R(t1)R(t2) >= 2πGRδ(t1 − t2) (A.44)

where GR is the constant and δ(t1 − t2) is Dirac’s delta function

Assumption ND− 2. The process R(t) is a Gaussian process

Both assumptions are concerning the randomness of the error term.
The first assumption is especially concerning the friction term of the
generalized Langevin equation. The friction term of the generalized
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Langevin equation is
∫ t
−∞ γ(t− t′)u(t′)dt′ and the assumption is to set

γ(t− t′) as a Dirac’s delta function. The meaning of this assumption
is to ignore the “memory effect” of the particle. When we ignore the
memory effect of the particle, its dynamics follows Markov processes
and no need to preserve “memory” of the previous process as long as
we analyze dynamics in (xb, vb) space. In general, the memory less
property of the Markov process is described as:

P(T > t + s|T > s) = P(T > t)

The second assumption especially sets its focus on the characteris-
tics of dynamics. Let us visit the fundamental motivation to use this
relation into physics. In the model of physics, this Gaussian assump-
tion becomes a better approximation for a particle which has a much
larger mass than colliding molecules. This is because the Brownian
motion is achieved as a consequence of a great number of collisions
which satisfies a condition for the central limit theorem, with many
small particles. The Gaussian assumption also sets a restriction on the
form of the mean square displacement as:

< (∆x)2 >∝ D∆t, t→ ∞ (A.45)

where < (∆x)2 > is the mean square displacement, D is a diffusion

constant and ∆t is time for the displacement.
As a result of these two assumptions, the generalized Langevin

equation could be rewritten simply as:

d
dt

vb(t) = −γvb(t) +∇uR(xb) + Rw(t) (A.46)

with using standard white noise which satisfy Assumption ND− 1.

and Assumption ND− 2. written as Rw(t).

a.5.0.2 Assumption for Non-Markov Process

As previously indicated, there are two ways to relax approximations
employed to derive normal diffusion model.

Here we first relax Assumption ND− 1., an assumption of Markov
Process, and obtain a description of generalized Langevin equation
with white noise term. As the generalized Langevin equation still
holds in the Non-Markov process, the generalized Langevin equation
with white noise term could be led in the form,

d
dt

vb(t) = −
∫ t

−∞
γ(t− t′)vb(t′)dt′ +∇uR(xb) + R(t) (A.47)
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This kind of equation of motion will be realized when we consider
some kind of auto regressive (AR) processes as a probability process.
If we just assume that the value vb(t) follows standard Orshtein-
Uhlenbeck process with unit auto regressive term like

dvb(t) = µvb(t) · dt +∇uR(xb(t)) · dt + R(t) (A.48)

the standard Langevin equation introduced in (A.47) will be derived.

Therefore, if we would like to derive the generalized Langevin equa-
tion written in (A.48), we need to assume the auto regressive term to
satisfy

∫ t
−∞ γ(t− t′)vb(t′)dt′ except for the standard AR(1) process as

µvb(t) · dt .
When we calculate and discuss this equation, the shape of the re-

tarded effect of the frictional force becomes a problem to be solved.
The simplest form for the retarded friction force function is to as-
sume exponential decay for the past memories. In general, the Mittag-
Leffler function is used as a generalization of exponential function.
The so-called three-parameter Mittag-Leffler function introduced by
Prabhakar [45] is described as:

Eρ
µ,ν(t− t′) =

∞

∑
k=0

(ρ)k

Γ(µk + ν)

(t− t′)k

k!
, (A.49)

with Re(µ) > 0, Re(ν) > 0 and Re(ρ) > 0 and z ∈ C. When the

parameter ρ = 1, the equation becomes the two parameter Mittag-
Leffler function as described in Agarwal [1]. Further, if we assume
ρ = ν = 1, the original Mittag-Leffler function as described in Mittag-
Leffler (Mittag-Leffler [40]) is obtained. Also, if we assume ρ = ν =

µ = 1, the standard exponential function is obtained.
The economic meaning of this relation is, as already mentioned, the

description of an effect of a relaxation against drastic transformation
of the exterior environment. If Assumption ND− 1. does not hold
in micro data, the retarded effect of the frictional force no longer be
the Dirac’s delta function, and the relaxation process could no longer
be well approximated by an exponential function.

a.5.0.3 Assumption for Anomalous Diffusion

Lastly let us now consider relaxation of the assumption on Gaussian
process (Assumption ND− 2.). The anomalous diffusion is found
in many physical systems. The anomalous diffusion shows the non-
linear growth of the mean square displacement in the course of time.
In the anomalous diffusion case, it is known that the mean square
displacement can be described as a function of time as:
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Assumption AD− 1. The auto correlation function of R(t) has the
form

< R(t1)R(t2) >= 2πGRδ(t1 − t2) (A.50)

< (∆x)2 >∝ 2D∆tα, t→ ∞ (A.51)

where α 6= 1. Firstly, let us consider the meaning of this assumption
in terms of the probability process. This assumption will be reason-
able if we consider changing the distribution of the step-length. For
example, if we assume that the distribution of the step-length follows
Pareto distribution, this probability process becomes Lévy flight, and
the index α > 1 in general.

According to Jesperson et. al. [25],

... sub-diffusive transport (0 < α < 1) is encountered in a diversity of sys-
tems, including the charge carrier transport in amorphous semiconductors,
NMR diffusometry on percolation structure, and the motion of a bead in a
polymer network.
(snip)
Examples of enhanced diffusion (α > 1) include tracer particles in vortex
arrays in a rotating flow, layered velocity field, and Richardson diffusion.

a.6 parameter space in lévy index

Using the characteristic function of a distribution,

φ(z) ≡< eiXz >=
∫ +∞

−∞
eiXzdR(X) (A.52)

the relation (A.51) is transferred into

φn(z) = φ(cnz) · eiεnz (A.53)

Proposition 6. (A.52) can be solved analytically and the solution be-
comes:

ψ(x, t) ≡ log φ(z) = iµz− ν|z|α
{

1 + iβ
z
|z|ω(z, α)

}
(A.54)

where α, β, µ, ν, are constants (µ is any real number, 0 < α ≤ 2, −1 <

β < 1, and ν > 0 ), and

ω(z, α) =

[
tan πα

2 i f α 6= 1
2
π log|z| i f α = 1

(A.55)
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The proof of this proposition could easily be done by just plugging
(A.53) and (A.54) into (A.52).

α is called as a Lévy index. If we assume the Lévy index as α = 2,
the distribution becomes the Gaussian normal distribution. Also if we
assume β = 0, the distribution becomes symmetric. µ is the parameter
which translates the distribution, and ν is a parameter regarding the
scaling of X.

Proposition 7. The equations (A.55) and (A.56) can be calculated as:

ψ(x, t) = −|z|αexp
{

i
πβ

2
sign(z)

}
(A.56)

with the constant parameter β. The range of β is as followings:

|β| ≤
[

α i f 0 < α ≤ 1

2− α i f 1 < α ≤ 2
(A.57)

where sign(z) ≡ z
|z| represents sign of z.

The parameter space for (α, β) is known as the Takayasu Diamond,
which is described in Figure A.1. In general, this diamond diagram
is based on the (A.57), and therefore as long as the set of parameters
(α, β) is on or within the diamond, the distribution becomes stable.
In addition, the diamond diagram includes 2 more information. The
first is the bold line denoted as “OS” on the diamond. When the set of
parameters is on this line, the distribution follows one-sided stabile
law. The second is the letters written on the α-axis. When the set of
parameters is on 1) “N”, the distribution follows the normal or Gaus-
sian law, 2) “H”, the distribution follows the Holtsmark distribution
3) “C”, the distribution follows the Cauchy or Lorentz distribution
and 4) “L”, the distribution follows the approximate log-normal dis-
tribution.
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Figure A.1: Parameter Space for Stable Laws





A.7 functional type of the distribution function 95

a.7 functional type of the distribution function

In the chapter 3, the functional type of the distribution function ϕ(u1, u2)

was assumed to be:

ϕ(uA1, uA2) =



A (uA1 + d)−α (uA2 − δ2)
β1

(uA1 > δ1, δ2 < uA2 < uA1 − δ12, α > 0, β1 > 0)

A (uA2 + d + δ12)
−α (uA1 − δ1)

β2

(uA2 > δ2, δ1 < uA1 > uA2 − δ21, α > 0, β2 > 0)
(A.58)

However, this functional type might be assumed as arbitrary and
set only to retrieve the CES function. Therefore, in this appendix sec-
tion, we assume other functional type and assume the robustness of
the derivation of the CES.

a.7.1 Perfectly Symmetric Function

In the previous distribution function, the term d was included only
for the term with αth power (i.e., (uA1 + d)−α and (uA2 + d)−α). The
modification of the distribution function into the following form re-
sponds the requirement on the asymmetricity:

ϕ2(uA1, uA2) =



A (uA1 − δ1 + d)−α (uA2 − δ2 + d)β1

(uA1 > δ1, δ2 < uA2 < uA1 − δ12, α > 0, β1 > 0)

A (uA2 − δ2 + d)−α (uA1 − δ1 + d)β1

(uA2 > δ2, δ1 < uA1 > uA2 − δ21, α > 0, β2 > 0)

.

(A.59)

In this distribution function, the demand of good i turns out to be:

Xi = A
∫ ∞

δi
duAi

∫ uAi−δij
δj

duAj (uAi − δi + d)−α (uAj − δj + d
)βi

= A
1+βi

∫ ∞
δi

duAi (uAi − δi + d)−α+βi+1

= A
(1+βi)(−α+βi+2)d−α+βi+2

.

(A.60)

The problem of this functional form is that the demand of good
i becomes independent from its price, i.e., δi. In the standard mo-
nopolistic competition literature, the good demand is a decreasing
function with respect to its price. Under this relation, it is natural to
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consider that this assumption on the functional type of the distribu-
tion function is not general to retrieve the CES or any other utility
functions.

a.8 matlab code for the chapter 4

The following is a MATLAB code file (example in the case of γmin =

0.50) for calculating solutions of the Hamilton-Jacobi-Bellman equa-
tion.

a.8.1 Main File

clear all

global gm p al si r mu de th inv v w wi v3 i imax imin almax

almin gmmax gmmin ra exei itrmax=20;

v1_0=NaN(itrmax,2);

v1_0(1,1)=1000;

v1_0(1,2)=1;

exei=10;

de=0.1007;

r=0.06;

si=0.09;

ra=0.01;

th=1.5;

p=1.05;

mu=0.18;

imax=de+r;

imin=-1;

almax=1;

almin=0.1;

gmmax=1;

gmmin=exei*0.1;

h=1/10000; %step size

N=1/h; %number of steps

w=zeros(N,1);

w(1)=0; %initial value of w

v=zeros(N,2); %v and v’

v3=zeros(N,1); %v’’

dw=NaN(N,itrmax);

vmax=NaN(N,3,itrmax);

invex=NaN(N,itrmax); %Policy Function for investment

alex=NaN(N,itrmax); %Policy Function for alpha

gmex=NaN(N,itrmax); %Policy Function for gamma

for m=1:itrmax
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v(1,1)=0.9; %Bolton P.1560 A. Case I.

Liquidation Para 1, line 2

v(1,2)=(v1_0(m,1)+v1_0(m,2))/2;

vmax(1,1,m)=v(1,1);

vmax(1,2,m)=v(1,2);

vmax(1,3,m)=0;

for i=1:N-1

wi=w(i);

v1=vmax(i,1,m);

v2=vmax(i,2,m);

minimization

if i==1

for im=1:10

vmax(1,3,m)=-2*((1+gm*(1-1/p)*(1-al))/(gm*si))

^2*(-(r-inv+de)*vmax(1,1,m)

+(1-gm)/(1+gm

*(1-1/p)

*(1-al))*(

mu+(r-ra)*
wi-de -th*
inv^2/2)

+(gm/(1+gm

*(1-1/p)

*(1-al))*(

mu+(r-ra)*
wi-de-th*
inv^2/2)

-(1+wi)*(

inv-de))*
vmax(1,2,m

));

minimization

v3(1)=vmax(1,3,m);

im=im+1;

end

end

Runge_Kutta_4th_order

invex(i,m)=inv;

alex(i,m)=al;

gmex(i,m)=gm;

vmax(i+1,1,m)=v(i+1,1);

vmax(i+1,2,m)=v(i+1,2);

vmax(i+1,3,m)=-2*((1+gm*(1-1/p)*(1-al))/(gm*si))^2*(-(r-

inv+de)*v(i+1,1)

+(1-gm)/(1+gm*(1-1/p)*(1-al))*(mu+(r-ra)*wi

-de -th*inv^2/2)
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+(gm/(1+gm*(1-1/p)*(1-al))*(mu+(r-ra)*wi-de

-th*inv^2/2)-(1+wi)*(inv-de))*v(i+1,2))

;

v3(i+1)=vmax(i+1,3,m);

dw(i,m)=gm/(1+gm*(1-1/p)*(1-al))*(mu+(r-ra)*wi-de-th*inv

^2/2)-(1+wi)*(inv-de);

w(i+1)=i*h;

if abs(k1(1))>1

break

end

if v(i+1,2)<1

v1_0(m+1,2)=(v1_0(m,1)+v1_0(m,2))/2;

v1_0(m+1,1)=v1_0(m,1);

break

end

if vmax(i+1,3,m)>0

v1_0(m+1,1)=(v1_0(m,1)+v1_0(m,2))/2;

v1_0(m+1,2)=v1_0(m,2);

v1_0

break

end

if v(i+1,1)<0

break

end

end

invex(N,m)=invex(N-1,m);

alex(N,m)=alex(N-1,m);

gmex(N,m)=gmex(N-1,m);

m=m+1;

end �
a.8.2 minimization.m

global gm p al si r mu de th inv wi v3 i imax imin almax almin

gmmax gmmin ra

clear value;

lb(1,1)=imin;

lb(1,2)=almin;

lb(1,3)=gmmin;

hb(1,1)=imax;

hb(1,2)=almax;

hb(1,3)=gmmax;
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is1max=2;

is2max=2;

is3max=2;

value_max=-10000;

vl=zeros(N,1);

value_=NaN(is1max,is2max,is3max);

for is1=1:is1max

for is2=1:is2max

for is3=1:is3max

intl(1) = imin+(imax-imin)*(is1-1)/(is1max-1);

intl(2) = almin+(almax-almin)*(is2-1)/(is2max-1);

intl(3) = gmmin+(gmmax-gmmin)*(is3-1)/(is3max-1);

%x(1)=inv, x(2)=al, x(3)=gm

fun = @(x) -((x(1)-de)*v1+(1-x(3))/(1+x(3)*(1-1/p)

*(1-x(2)))*(mu+(r-ra)*wi-de-th*(x(1)-de)^2/2)

+(x(3)/(1+x(3)*(1-1/p)*(1-x(2)))*(mu+(r-ra)*wi-

de-th*(x(1)-de)^2/2)-(1+wi)*(x(1)-de))*v2

+(1/2)*((x(3)*si)/(1+x(3)*(1-1/p)*(1-x(2))))^2*
v3(i));

options = optimoptions(’fmincon’,’Display’,’off’);

solls = fmincon(fun,intl,[],[],[],[],lb,hb);

inv_ = solls(1);

al_ = solls(2);

gm_ = solls(3);

value_(is1,is2,is3)=((inv_-de)*v(i,1)+(1-gm_)/(1+gm
_*(1-1/p)*(1-al_))

*(mu+(r-ra)*wi-de-th*(inv_-de)

^2/2)

+(gm_/(1+gm_*(1-1/p)*(1-al_))

*(mu+(r-ra)*wi-de-th*(inv_-de)

^2/2)-(1+wi)*(inv_-de))*v(i

,2)

+(1/2)*((gm_*si)/(1+gm_*(1-1/p)

*(1-al_)))^2*v3(i))/r;

if value_(is1,is2,is3) == 0

inv_=inv_;

elseif value_(is1,is2,is3) > value_max

value_max=value_(is1,is2,is3);

inv=inv_;

al=al_;

gm=gm_;

end

end

end

end �
a.8.3 Runge_Kutta_4th_order.m
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global v w

k1=h*f(w(i),v(i,1),v(i,2));

k2=h*f(w(i)+h/2, v(i,1)+0.5*k1(1), v(i,2)+0.5*k1(2));

k3=h*f(w(i)+h/2, v(i,1)+0.5*k2(1), v(i,2)+0.5*k2(2));

k4=h*f(w(i)+h, v(i,1)+k3(1), v(i,2)+k3(2));

v(i+1,1)=v(i,1) + (k1(1) + 2*k2(1) + 2*k3(1) + k4(1))/6;

v(i+1,2)=v(i,2) + (k1(2) + 2*k2(2) + 2*k3(2) + k4(2))/6; �
a.8.4 f.m

function dv=f(wi,v1,v2)

global gm p al si r mu de th inv ra

dv(1)=v2;

dv(2)=-2*((1+gm*(1-1/p)*(1-al))/(gm*si))^2*(-(r-inv+de)*v1

+(1-gm)/(1+gm*(1-1/p)*(1-al))*(mu+(r-ra)*wi-de -th*(inv

-de)^2/2)

+(gm/(1+gm*(1-1/p)*(1-al))*(mu+(r-ra)*wi-de-th*(inv-de)

^2/2)-(1+wi)*(inv-de))*v2);

end �
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