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Chapter 1 Introduction 

1.1 Transcriptomics analysis 

The central dogma of molecular biology outlines the flow of information that is stored in 

genes as DNA, transcribed into RNA, and finally translated into proteins [1]. 

Understanding the transcriptome is essential for interpreting the functional elements of 

the genome and revealing the molecular constituents of cells and tissues, and also for 

understanding development and disease [2]. Quantifying the expression levels of each 

transcript during development and under different conditions is a basic task in 

transcriptomics. 

 

In the field of transcriptomics analysis, there are two key contemporary techniques: 

microarrays, which quantify a set of predetermined sequences, and RNA-seq, which 

capture all sequences using high-throughput sequencing. The emergence of two methods 

enable researchers to simultaneously interrogate tens of thousands of transcripts in a cell 

at the same time. This ability has led to important advances in a wide range of biological 

research fields, including the identification of differentially expressed genes (DEGs) 

between diseased and healthy tissues, new insights into developmental processes, 

pharmacogenomic responses, and the evolution of gene regulation in different species 

[3]–[6]. 

 

1.2 Microarray 

Since the first use of DNA microarrays for gene expression analysis which explained how 

the expression of many genes could be monitored in parallel in 1995 by Schena et al. [7], 

it has been the choice for large-scale studies of gene expression. A microarray consists of 
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a solid surface on which strands of polynucleotide have been attached or synthesized in 

fixed positions called spots. A microarray may contain thousands of spots and each spot 

may contain a few million copies of identical DNA molecules that uniquely correspond 

to a gene. Two types of expression microarrays are the most popular between users; 

cDNA microarrays and oligonucleotide chips.  

 

The experiment steps involved in a microarray experiment including: First, RNA is 

extracted from the cells. Next, RNA molecules in the extract are reverse transcribed into 

cDNA by using an enzyme reverse transcriptase and nucleotides labelled with different 

fluorescent dyes. Once the samples have been differentially labelled, cDNA sequence in 

the same sample will hybridize to specific spots on the glass slide containing its 

complementary sequence. The amount of cDNA bound to a spot is proportional to the 

level of expression of the gene represented by that probe in sample. To determine the 

amount of sample hybridized the microarray is illuminated by a laser and scanned at 

suitable wavelengths to detect the red and green dyes. This fluorescence intensity 

represented relative expression level for each gene (population of RNA in the two samples) 

finally be stored as an image. 

 

Normalization plays an important role in microarray data analysis. It is common practice 

to transform to a logarithmic (usually base 2) scale. The principal motivation for this 

transformation is to make variation roughly comparable among measures that span 

several orders of magnitude. The MAS 5.0 software [8]-[9] developed by 

Affymetrix uses one-step Tukey biweight to combine the probe intensities in log scale to 

extract the signal from background noise in a single chip. Robust multiarray analysis 
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(RMA) [10] now is the most widely used preprocessing algorithm for Affymetrix gene 

expression microarrays. The normalization of RMA requires multiple arrays to be 

analyzed simultaneously. The ability to borrow information across samples provides 

RMA various advantages.  

 

Differential expression analysis is the first field that involved high dimensional statistics 

methods since the introduction of microarray technologies. Numerous methods have been 

developed based on the various assumptions of data distribution or model selection. A 

comparative review of all methods has already been done elsewhere [11]-[12]. Among 

the methods, there are two most representative and popular models, the SAM method [13], 

a popular non-parametric approach, and the limma [14] method, a parametric approach 

using linear models and empirical Bayes.  
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1.3 RNA-seq 

In the last few years, RNA-seq has clear advantages over microarrays, and became the 

best choice for genome-wide differential gene expression (DGE) experiments. Compared 

with microarrays, RNA-seq works well for investigating both known transcripts and 

exploring new ones and provides larger dynamic range in quantifying gene expression. It 

has been a routine tool in molecular biology, medicine, agriculture, and ecology research. 

In the aspects of wet lab experiments, A typical RNA-seq workflow includes [15]: 

1. capture of cell or tissue samples of interest 

2. isolation of RNA from a biological sample 

3. reverse transcription into cDNA 

4. sequencing of millions of short cDNA fragments (∼200bp) 

The whole flow chart is summarized in Figure 1. 
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Figure 1 A typical RNA-seq experiment workflow 
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An overview of the typical RNA-seq pipeline for DGE analysis is outlined in Figure 2. 

RNA-seq data is stored in FASTQ format files (sequence and base quality). Quality 

control (QC) of raw data should be performed as the initial step of routine RNA-seq 

workflow. Tools such as FastQC [16] and Trimmomatic [17] can be applied in this step 

to assess the quality of raw data. The next computational step of the RNA-seq data 

analysis pipeline is read mapping: reads are aligned to a reference genome or 

transcriptome by identifying gene regions that match read sequences. So far, many 

alignment tools such as tophat [18], STAR [19], bowtie2 [20] and HISAT [21] have been 

proposed. After mapping, the reads aligned to each coding unit, such as exon, transcript 

or gene, are used to compute counts, so to give an estimate of its expression level. The 

most used approach for computing counts considers the total number of reads overlapping 

the exons of a gene. Two common used tools are featureCount [22] and HTSeq [23]. 

 

The ‘sequencing depth’ of a sample, defined as the total number of sequenced or mapped 

reads plays a vital role in the design of next generation sequencing experiments. It was 

revealed that higher sequencing depth generates more informational reads, which 

increases the statistical power to detect DEGs [24]. Most widely used normalization 

method called ‘TMM’ was proposed by Robinson and Oshlack [25] to account for 

differences in library composition between samples. The method of geometric mean 

implemented in the R package DESeq [26] is also an effective approaches for library size 

normalization. ‘Reads Per Kilobase of exon model per Million mapped reads’ (RPKM), 

and ‘Fragments Per Kilobase of exon per Million fragments mapped’ (FPKM) are 

proposed to reduce both differences in library size and length bias. In recent years, a lot 

of DGE analysis tools have been developed. Lamarre et al. [27] listed a table about 
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information on 29 R packages, methods, or pipelines, for DGE analysis of RNA-seq data. 

For small numbers of replicates as often encountered in RNA-seq count data, the negative 

binomial (NB) distribution [28] taking account for overdispersion and generalized linear 

model (GLM) framework [29] are considered to be better choice. Using the Benjamini 

and Hochberg procedure [30] to adjust the p-value is a routine work in multiple testing. 
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Figure 2 Typical workflow of DGE analysis 
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1.4 The relationship between HSC and DGE analyses 

A common approach for expression analyses is sample clustering (SC) based on similarity 

in expression patterns [31]-[32]. Utilizing its unsupervised characteristic, SC has been 

used to (i) detect previously unrecognized subtypes of cancer [33]-[34], (ii) detect outliers 

(i.e., outlying samples) [35], (iii) represent overall similarities in expression among 

various organs [36]-[37], and (iv) perform sanity checks to verify expected clustering 

patterns [38]. When using this approach, researchers can investigate SC results with 

several possible criteria for grouping (e.g., sex, age, and disease types). However, the 

evaluation of arbitrary defined groups still counts in subjective visual inspection. 

Numerical scores indicating the degree of separation between predefined groups would 

help in the objective assessment of the SC results. 

 

Some researchers empirically know that an SC result of data designed for DGE analysis 

(say, “DGE data”) roughly corresponds to the DGE result when the groups for the DGE 

analysis are evaluated with respect to the SC result [39]. If individual groups form distinct 

sub-clusters, where each sub-cluster consists only of members (or samples) in the 

particular group, DGE analysis using such distinct groups would result in many DEGs. 

Conversely, if members (or samples) in each sub-cluster originate from multiple groups, 

no or few DEGs would be expected. However, objective evaluation of the relationship 

between SC results on DGE data and the percentages of DEGs (PDEG) remains lacking 

[39]. 
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1.5 Silhouette score 

Silhouette score is a graphical aid for the interpretation and validation of cluster analysis 

[40]. In SC, silhouette score provides a measure of how well a sample is classified when 

it is assigned to a cluster according to both the tightness of the clusters and the separation 

between them. Therefore, the silhouette scores are calculated for individual samples. By 

taking the mean over all samples, the average silhouette (AS) value can be obtained. It 

ranges from 1.0 to −1.0: a higher (or lower) AS value indicates higher (or lower) degree 

of separation between clusters. Silhouette score has been successfully used after 

clustering as a cluster validity measure [31], [41]–[43]. 

 

1.6 The purpose of this study 

In this study, I propose to use silhouette score for the objective evaluation of gene 

expression data based on arbitrary grouping criteria. Although they are independent of 

SC, silhouette scores measuring the degrees of separation between groups of interest 

would enable a more objective discussion about the SC result in terms of the groups. I 

here focus on single-factor gene expression data where only one grouping criterion is 

primarily of interest in relation to the DGE results. I evaluated the relationship among SC 

results, DGE results, and AS values, using both simulated and real expression data (RNA-

seq and microarrays). I found silhouette score (i.e., AS values) to provide a relevant 

measure for the degrees of separation between groups of interest in SC results. I also 

found a positive correlation between AS values and DGE results. In the multiple 

comparison part, it was found to be a universal method that could be adapted to two-

group and multiple-group comparison. In both conditions, it can offer promising results 
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through assessing the degrees of separation between groups of interest to estimate the 

DGE results. 
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Chapter 2 Materials and Methods 

2.1 Methods 

Most of the analyses were performed using R (ver. 3.3.2) [44] and Bioconductor [45]. 

The versions of major R packages used in the study were TCC ver. 1.14.0 [46], edgeR 

ver. 3.16.5 [47], ROC ver. 1.50.0, cluster ver. 2.0.5, affy ver. 1.44.0, and RobLoxBioC 

ver. 0.9. 

2.1.1 Hierarchical sample clustering (HSC)  

The HSC was performed using the clusterSample function with default options (“1 – 

Spearman’s r” as the distance and unique expression patterns as an objective low-count 

filtering method) in TCC.  

2.1.2 DGE analysis pipelines in TCC 

The DGE analysis was performed using three functions (calcNormFactors, estimateDE, 

and getResult) with default options which use functions in TCC. The genes were ranked 

in ascending order according to p-values. The ranks were used to calculate AUC values 

when analyzing simulated data. The AUC values were calculated using the AUC function 

in the package ROC. The p-values were adjusted for multiple-testing with the Benjamini–

Hochberg procedure. The adjusted p-values (i.e., q-values) were used to obtain the 

numbers of DEGs satisfying an arbitrarily defined FDR threshold (mainly 10%). 

2.1.3 Calculation of Average Silhouette (AS) values 

Silhouette�score [40] has been successfully employed to estimate the appropriate number 

of clusters for gene expression data [31], [41]–[43]. Although Silhouette is generally used 

for the validation of clustering results, I here employ it independently from clustering. 
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Technically, the term cluster is replaced with group in the silhouette calculation procedure. 

For each sample i, let  be the average distance between i and all other samples within 

the same group (e.g., group A). Let    be the average distance between i and the other 

group (e.g., group B), of which i is not a sample member. The silhouette index   for 

sample i is calculated as 

   (1) 

The index  ranges from − 1 to 1; it is positive if  , zero if  , and negative 

if  . A larger  value indicates increased group separation and vice versa. By 

taking the mean  over all samples, the average silhouette (AS) value for each 

comparison can be obtained. The potential applicability of the silhouette unrelated to 

clustering has been described in the original study [40]. However, to the best of my 

knowledge, the current study is the first practical application of the concept to estimate 

the degree of separation between groups (not clusters) using gene expression data. The 

AS values were calculated using the silhouette function in the package cluster.  
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2.2 Simulated data 

The two-group simulated data were produced using the simulateReadCounts function in 

TCC. The variance (V) of the NB distribution can generally be modeled as V = μ + φμ2. 

The empirical distribution of read counts to obtain the mean (μ) and dispersion (φ) 

parameters of the NB model was obtained from Arabidopsis data (three biological 

replicates (BRs) for both treated and non-treated samples) in [48]. The output of 

the simulateReadCounts function is stored in the TCC class object with information about 

the simulated conditions and is therefore ready-to-analyze for both the DGE analysis and 

HSC. The three-group simulated data (n=3) were generated in a similar way as previously 

described the two-group simulated data. 
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Figure 3 shows an example of generating the two-group count data. 

The simulation condition is as follows: the total number of genes is 10,000 (Ngene = 10000), the 

number of replicates is 3 (Nrep = 3), 60% of the genes are DEGs (PDEG = 60%), the level of DE 

is four-fold in individual groups, and the proportions of DEGs up-regulated in individual groups 

(PG1, PG2) are (0.5, 0.5) which means that there are 3,000 and 3,000 up-regulated genes in G1 and 

G2, respectively. 

G1 G2

DEGs

non-DEGs

Up-regualted in G1

Up-regualted in G2

ge
ne
s

samples
1 1 1 2 2 2group

10000

6000

3000

1

1
2

3
4



22 

2.3 Real datasets 

2.3.1 Blekhman’s mammalian data (RNA-seq) 

Blekhman’s mammalian data were obtained from the supplementary website 

(http://genome.cshlp.org/content/suppl/2009/12/16/gr.099226.109.DC1/suppTable1.xls) 

[49]. The raw count matrix consisting of 20,689 genes × 36 samples (= 3 species × 2 sexes 

× 3 BRs × 2 technical replicates) was collapsed by summing the data for technical 

replicates, giving a reduced number of columns in the matrix (i.e., 18 samples; 3 species 

× 2 sexes × 3 BRs). 

2.3.2 Schurch’s yeast data (RNA-seq) 

Schurch’s yeast data were obtained from the GitHub website 

(https://github.com/bartongroup/profDGE48/tree/master/Preprocessed_data) [50]. After 

merging the count vectors for a total of 96 samples, data from 10 outlying samples 

(WT_rep21, WT_rep22, WT_rep25, WT_rep28, WT_rep34, WT_rep36, Snf2_rep06, 

Snf2_rep13, Snf2_rep25, and Snf2_rep35) were eliminated. Subsequent data eliminations 

(named no_feature, ambiguous, too_low_aQual, not_aligned, and alignment_not_unique) 

yielded a count matrix consisting of 7126 genes × 86 samples. 

 

2.3.3 Bottomly’s mouse data (RNA-seq) 

Bottomly’s mouse data [51] were obtained from the ReCount website (http://bowtie-

bio.sourceforge.net/recount/countTables/bottomly_count_table.txt) [52] and consisted 

of 36,536 genes × 21 samples.  
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2.3.4 Cheung’s human data (RNA-seq) 

Cheung’s human data [53] were obtained from the ReCount website (http://bowtie-

bio.sourceforge.net/recount/countTables/cheung_count_table.txt) [52] and consisted of 

52,580 genes × 41 samples.  

2.3.5 Nakai’s probe-level data (microarray) 

Nakai’s probe-level data (.CEL files) [64] were obtained from the ArrayExpress website 

[54] through an R package ArrayExpress [55] by applying “GSE7623.” The MAS-

quantified data were obtained using the mas5 function in the R/Bioconductor package 

affy [56]. Expression signals less than 1 were set to 1 and were subsequently log2-

transformed. The RMA-quantified data were obtained using the rma function in the same 

package, i.e., affy. The output of the function was already log2-transformed. The 

RobLoxBioC-quantified data were obtained using the robloxbioc function in the R 

package RobLoxBioC [57]. The expression signals less than 1 were set to 1 and were 

subsequently log2-transformed.  

2.3.6 Kamei’s probe-level data (microarray) 

Kamei’s probe-level data (.CEL files) [68] were obtained from the ArrayExpress website 

using the R package ArrayExpress by applying “GSE30533.” The subsequent procedures 

were the same as those described for the Nakai’s data. Note that the quantification 

procedure was performed using R ver. 3.1.3 (affy ver. 1.44.0) because we encountered an 

error when executing the functions mas5 and robloxbioc in R ver. 3.3.2 (affy ver. 1.52.0). 
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Chapter 3 Results 

3.1 RNA-seq (two groups) 

In DGE analyses, a gene expression matrix is typically generated, where each row 

indicates the gene (or derivatives), each column indicates the sample, and each cell 

indicates counts for RNA-seq data. Previous observation of the positive correlation 

between SC and DGE results [39] was obtained from an RNA-seq dataset (referred to as 

Blekhman, for short) consisting of 20,689 genes × 18 samples (= 3 species × 2 sexes × 3 

BRs) [49]. The HSC and DGE analyses were performed using TCC. TCC implements a 

robust normalization strategy (called DEGES [34]) that uses functions provided in four 

widely used packages (baySeq [58], edgeR  [47], DESeq [26], and DESeq2 [59]). For 

simplicity and/or the algorithmic advantage [60]-[61], I only used TCC for the DGE 

analysis of RNA-seq data. Specifically, I used the default DGE pipeline (iDEGES/edgeR-

edgeR in [46] and EEE-E in [39]). When performing HSC for all input data, I used the 

clustering function clusterSample with default options ("1 – Spearman’s correlation 

coefficient (r)" as a distance estimate and average-linkage agglomeration) in TCC. 

 

Throughout this study, I filtered out genes with zero counts (or signals) in all samples 

(RNA-seq). For HSC analyses, an additional filtering was performed where genes having 

identical expression patterns were collapsed. Expression data having those unique 

expression patterns were used for calculating distance defined as “1 – Spearman’s r.” This 

filtering procedure was intended to reduce the negative impact of genes with low 

expression levels when calculating the distance between samples. For example, the 

Blekhman’s data yielded 17,886 genes after the zero-count filtering and DGE analyses 

were performed. After unique filtering, 16,560 genes were obtained, and HSC was 
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performed using these genes. For simplicity, I focus on two-group comparisons with three 

replicates for each group, i.e., (A1, A2, A3) vs. (B1, B2, B3), in most cases. In this study, 

I use the terms samples and replicates interchangeably. My primary interest was to 

investigate the applicability of silhouette score for the objective evaluation of gene 

expression data based on arbitrary grouping criteria. By using silhouette score (i.e., AS 

values) as a relevant measure for the group differentiation in the HSC results, I re-

evaluated the previous observations (i.e., the positive correlation between HSC and DGE 

results) [39]. 

 

3.1.1 Representative relationship between HSC and DGE results with AS 

I first demonstrate the relationship between HSC and DGE results using a representative 

dataset, the Blekhman data obtained for three species (i.e., the three-group data): humans 

(HS), chimpanzees (PT), and rhesus macaques (RM) [49]. Briefly, Blekhman et al. 

studied expression levels in liver samples from three males (M1, M2, and M3) and three 

females (F1, F2, and F3) from each species/group. Figure 4a shows the HSC dendrogram 

based on a correlation distance (1-r) metric and average-linkage agglomeration. There 

were three major clusters, each of which represented a particular species (HS, PT, and 

RM clusters) and the RM cluster was relatively distant from the other clusters. Different 

from the clear interspecific discrimination (i.e., high dissimilarity between species), I 

observed a very low degree of separation between sexes (F vs. M) within each of the three 

major clusters. That is, samples labelled female (F) and male (M) were intermingled 

within each species, except for the PTF sub-cluster comprising three female samples 

(PTF1, PTF2, and PTF3).  
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Figure 4  Relationship between the shape of HSC and DGE results. 

(a) HSC dendrogram for Blekhman data consisting of 16,560 genes × 18 samples. The clustering 

was performed using the clusterSample function with default options in TCC. The unique filtering 

(from 17,886 genes to 16,560 genes with unique expression patterns across 18 samples) was 

internally performed in the function to reduce the negative effect on associations in low count 

regions when calculating Spearman’s r as a distance measure. (b) DGE results from a total of 15 

two-group comparisons with three replicates. The DGE pipeline provided in TCC was applied to 

the Blekhman’s count matrix consisting of 17,886 genes after zero-count filtering. The PDEG 

values and AS values for individual comparisons are provided on the right. 
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Figure 4b shows 15 DGE results for two-group comparisons. The percentages of DEGs 

(PDEG) satisfying the 10% false discovery rate (FDR) threshold were obtained using TCC 

with default settings. The four PDEG values for the HS vs. PT comparison (7.56–9.58%) 

were much smaller than those for either the HS vs. RM (16.82–22.92%) or the PT vs. RM 

comparison (14.69–20.85%). These results are consistent with those of the original study 

[49] and can primarily be explained by the interspecific distances shown in Figure 4a. 

Different from the interspecific comparisons, sex comparisons (F vs. M) showed 

extremely low PDEG values (0.07–0.17%). This is consistent with the lack of separation 

between female and male samples within each species in the HSC analysis (Figure 4a). 

 

It is noteworthy that, in the eight RM-related inter-group comparisons, both PDEG and AS 

values obtained from four RMF-related comparisons were consistently larger than those 

from the four RMM-related comparisons. For example, for the HSF vs. RMF comparison, 

PDEG = 21.74% and AS = 0.611, while for the HSF vs. RMM comparison, PDEG = 16.85% 

and AS = 0.548. This difference is primarily explained by the smaller average distance of 

samples in RMF (0.0475) than in RMM (0.0722). Small PDEG values (0.07–0.17%) 

obtained for the sex (i.e., intra-group) comparisons can be explained by the similarity 

between inter-group distances and intra-group distances. In other words, two-group 

comparisons showing AS ≈ 0 would result in few, if any, DEGs. The numbers of DEGs 

(or PDEG values) can, of course, vary with FDR thresholds and generally increase when 

the threshold is less restrictive. 

 

Nevertheless, I confirmed that the general trends for the 15 two-group comparisons were 

the same at 1%, 5%, 10%, 20%, 30%, and 40% FDR thresholds. Based on the definition 
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of FDR, an increase in the PDEG value by loosening the FDR threshold does not 

necessarily indicate an increase in the true number of DEGs. For example, PDEG = 0.78% 

at a 40% FDR for the PTF vs. PTM comparison indicates that 0.78 × 0.4 = 0.31% are non-

DEGs, and the remaining 0.78 × (1.0–0.4) = 0.47% are, at least statistically, true DEGs. 

In my experience, the percentage of true DEGs (say PtrueDEG) generally approaches a 

constant value at a non-stringent FDR threshold, such as 30% or 40%. In this case, the 

maximum PtrueDEG value for any sex comparison was ~ 0.5%. These results indicate that 

differences in PDEG values with respect to the FDR threshold are not important. 

 

Based on my visual evaluation, the AS values effectively represented the overall 

relationship between groups of interest in the HSC analysis (shown in Figure 4a). I think 

the expressive power in cases of few or no DEGs in the dataset (i.e., AS ≈ 0) is practically 

promising, but increasing the correlation between PDEG (or PtrueDEG) and AS is not 

practical. This is simply because the PDEG value tends to increase as the number of 

replicates (Nrep) increases [62], suggesting that the correlation is influenced by Nrep. 

 

3.1.2 Effects of the number of replicates (Nrep) on parameter estimates 

I next investigated the effects of Nrep on PDEG and AS values, using both simulated and 

real RNA-seq data. The simulated data were constructed as follows: two-group 

comparison (A vs. B) with 40 replicates per group (Nrep = 40), 10,000 total genes, of 

which 20% were DEGs (2,000 DEGs and 8,000 non-DEGs; PsimDEG = 20%), the 

expression levels of DEGs were four-fold in individual groups, and the proportions of 

DEGs up-regulated in individual groups were the same (i.e., 1,000 DEGs are up-regulated 
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in group A). For a total of 80 samples (A1, A2,…, A40, B1, B2, …, B40), I obtained 

PDEG = 21.0% at a 10% FDR threshold, AS = 0.2409, and area under the ROC curve 

(AUC) = 0.9986. The AUC is a widely used measure of both the sensitivity and specificity 

of the DGE pipelines [34], [39], [46], [63]. The value (ranging from 0 to 1) can also be 

regarded as an overall indicator of the ability to distinguish true DEGs from non-DEGs. 

A larger AUC value indicates better DGE separation and vice versa. The AUC value of 

0.9986 indicates nearly perfect separation and the estimated PDEG value (21.0% at 

FDR = 0.1) is in good agreement with the true value (i.e., 20% DEGs or PsimDEG = 20%). 

 

The DGE pipeline was used to examine subsets from the baseline matrix with 40 

replicates per group (Nrep = 40). Bootstrap resampling was performed 100 times at 

Nrep = 3, 6,…, and 30 (without replacement). Consistent the previous observations [62], 

the average PDEG values increased as a function of Nrep (Figure 5a). However, such an 

increasing trend was not observed for AS (Figure 5b). This result indicates that the 

silhouette score (i.e., AS) is independent of Nrep. Note that the PDEG value approached to 

the true value (PsimDEG = 20%) as Nrep increased (Figure 5a). In general, the DGE pipeline 

does not necessarily produce a well-ranked gene list in which true DEGs are top-ranked 

and non-DEGs are bottom ranked. Given the increase in AUC values in conjunction with 

increases in PDEG (Figure 5), this interpretation can be trusted in this case. 
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Figure 5  Effects of Nrep on parameter estimates (simulated data). 

Bootstrapping results (100 iterations) from simulated RNA-seq data consisting of 10,000 genes 

× 80 samples with PsimDEG = 20% are shown. Vertical axes for the boxplots indicate: (a) PDEG, (b) 

AS values, and (c) AUC values. Horizontal axes indicate the Nrep values (3, 6, …, 30). It can be 

seen that PDEG and AUC values increase as a function of Nrep, but AS values do not. 

  

(c) 
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Next, the effects of Nrep under different PsimDEG conditions (PsimDEG = 10%, 5%, 2%, 1%, 

0.5%, 0.1%, and 0.02%) were investigated. I confirmed that PDEG, but not on AS, is 

dependent on Nrep (Additional file 2). Different from the condition shown in Figure 5 

(PsimDEG = 20%), however, I observed a transition in the distribution of PDEG values at 

around PsimDEG = 1%. Although the PDEG value monotonously increased as Nrep increases 

when PsimDEG was 20% or more, the PDEG value switched to a monotonously decreasing 

trend when PsimDEG was 0.1% or less. Overall, the PDEG values approached the true values 

(i.e., the PsimDEG values) as Nrep increased. These results indicate that more accurate DGE 

results can be obtained as Nrep increases, irrespective of the true percentages of DEGs in 

the data. 

 

A similar analysis was performed using another real RNA-seq dataset consisting of 7,126 

genes × 96 samples [50], [62]. Ten outlier samples were rejected, following the original 

study [62], and subsequent zero-count filtering of the original data yielded 6,885 genes 

× 86 samples (unique filtering did not have any effect for this dataset). For the data (called 

Schurch for short) comparing two groups (42 wild-type samples vs. 44 Δsnf2 mutant 

samples), I obtained PDEG = 78.1% and AS = 0.7289. Note that the AUC value could not 

be calculated for the data because, different from simulated data, I do not know which 

genes are true DEGs. I investigated the effects of Nrep on parameter estimates. The results 

were quite similar to those obtained using simulated data (shown in Figure 5), i.e., PDEG 

was dependent on Nrep, but AS was not (Additional file 3). Note that the distribution of 

PDEG values obtained using TCC (Additional file 3a) was also similar to that obtained 

using edgeR [47] (Figure.1a in [62]). This is quite reasonable because the DGE pipeline 

implemented in TCC can be viewed as an iterative edgeR pipeline [39]. 
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3.1.3 Relationships between PDEG and AS values 

Next, I investigated the relationships between PDEG and AS values under a fixed Nrep of 

3. Figure 6 shows the results for (a) Schurch, (b) simulated, and (c) the mixture. For 

simulated data, I examined 19 PsimDEG conditions from 5% (black in Figure 6b) to 0.95 

(red in Figure 6b). Overall, there was a strong positive correlation between PDEG and AS 

values in this condition (Figure 6c). However, the accurate estimation of PDEG using AS 

is not realistic and accordingly is not a goal of the current study. This is mainly because 

PDEG increases as a function of Nrep, while AS does not (Figure 5). In other words, the 

regression coefficients depend on Nrep. Most importantly, if one wants to calculate PDEG, 

there is no need to estimate the AS value; rather, it is only necessary to directly execute 

the DE pipeline. Nevertheless, as PDEG approaches 0, AS also approaches 0. This suggests 

that PDEG values near 0 can be interpreted as a mathematical explanation for AS near 0, 

i.e., the samples in the two groups (A vs. B) were completely mixed. In statistical terms, 

this situation is essentially the same as the null hypothesis (H0: A = B). The acceptance 

of H0 (AS = 0) indicates there are no or few DEGs in the two-group data (PDEG = 0). In 

this sense, AS could be used as helpful information for the interpretation of DGE results, 

especially when only a few statistically significant DEGs are obtained. 
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Figure 6  Relationship between PDEG and AS values. 

Scatter plots of PDEG vs. AS at Nrep = 3 are shown. (a) Schurch data. The scatter plot shows a 

detailed relationship between PDEG and AS values for Schurch data at Nrep = 3 (Additional file 

3a and 3b). (b) Simulated data under PsimDEG = 5%, …, 95%. The scatter plot for PsimDEG = 20% 

corresponds to the PDEG (ranging from 0.1273 and 0.1397) and AS values (ranging from 0.2281 

and 0.2617) for Nrep = 3 shown in Figure 5b. (c) The results for the mixture as well as the 

Blekhman data including 15 two-group comparisons shown in Figure 4b (magenta). 

  

(c) 
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It should be noted that the distribution shown in Figure 6c differs substantially from the 

distribution for real data (Blekhman [49] and Schurch [62]) and simulated data, but the 

shapes of the distributions were similar. For example, the PDEG value at AS = 0.6 was 

approximately 0.6 for the simulated data, while PDEG for real data was approximately 0.2. 

Since the AS value for the simulated data at PDEG = 0.2 was approximately 0.3, the 

difference for AS at PDEG = 0.2 was 0.3. Similarly, the difference for PDEG at AS = 0.6 

was 0.4. It should also be noted that the distribution of values for Blekhman (magenta) 

and Schurch (black with AS > 0.5) was different (Figure 6c). While low AS values (-

 0.019~0.619) and low PDEG values (0.07–22.92%) were obtained for the Blekhman data, 

high AS values (0.5585–0.8998) and high PDEG values (13.03–56.34%) were obtained for 

the Schurch data. The difference can be explained by the intra-group distances. For the 

Schurch data, including 42 wild-type samples (group A) and 44 Δsnf2 mutant samples 

(group B), the distances for groups A and B were 0.0144 and 0.0084, respectively. The 

values obtained for the Schurch data were clearly smaller than those obtained for the 

Blekhman data (> 0.04; Figure 4a). According to a previous study [62], the Schurch data 

represents a best-case scenario for DE pipelines, since the within-group biological 

variation (BV) is low. As the BVs roughly correspond to the intra-group distances, many 

other real RNA-seq data may display low PDEG and AS values compared to those obtained 

for the Schurch data. 

 

  



35 

 

3.2 Microarray (two groups) 

I also investigated two microarray datasets obtained using the Affymetrix Rat Genome 

230 2.0 Array (GPL1355). The first dataset (called Nakai [64]) consisted of 31,099 

probesets (which can be viewed as genes) × 24 samples (= 3 tissues × 2 conditions × 4 

BRs). Briefly, Nakai et al. studied the expression levels of genes in brown adipose tissues 

(BAT), white adipose tissues (WAT), and liver tissues (LIV). They compared two 

conditions (fed vs. fasted for 24 h) for each tissue type. I here denoted the fed BAT 

samples BAT_fed, the 24 h–fasted LIV samples LIV_fas, and so on. To quantify 

expression from the probe-level data (i.e., Affymetrix CEL files), I applied three 

algorithms (MAS [65], RMA [10], and RobLoxBioC [57]). Different from RNA-seq data 

represented as integer counts, microarray data are expressed as continuous signals and in 

most cases are log-transformed. I therefore applied a specialized DE pipeline for 

microarray data provided in the package limma [66], instead of the DE pipeline used for 

RNA-seq data in TCC. 

 

As expected based on the nature of microarray expression signals, zero signal values were 

not obtained for any genes in all samples and all genes displayed unique expression 

patterns. Accordingly, the subsequent analysis of microarray data was performed based 

on total set of genes (= 31,099). The HSC dendrogram for the Nakai data displayed three 

major clusters corresponding to the three tissue types (LIV, WAT, and BAT clusters) for 

all quantification algorithms (MAS, RMA, and RobLoxBioC; Figure 7a). Since the 

experimental design and the HSC dendrogram were very similar to those of the Blekhman 

data (Figure. 4), these microarray data can be regarded as the counterpart. 
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I performed 15 two-group comparisons with four BRs for each group, i.e., (A1, A2, A3, 

A4) vs. (B1, B2, B3, B4). Overall, I observed highly similar trends for the Nakai data and 

the Blekhman data (Figure 7b). For MAS-quantified data, for example, four PDEG values 

in the BAT vs. WAT comparison (24.49–34.98%) were smaller than those in the BAT vs. 

LIV comparison (41.79–44.63%) or WAT vs. LIV comparison (39.74–44.05%). 

Different from the clear inter-tissue differentiation (i.e., high dissimilarity between 

tissues), I detected a relatively low degree of separation between conditions (fed vs. fasted) 

within each of the three major clusters. The PDEG values for the fed vs. fasted comparison 

were 4.5–8.79%. Of these three comparisons, the intra-BAT comparison (i.e., BAT_fed 

vs. BAT_fas) showed the highest PDEG (8.79%) and AS (0.207) values. 
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Figure 7 - Results for Nakai’s microarray data. 

(a) HSC dendrogram for Nakai data consisting of 31,099 genes × 24 samples and (b) PDEG and AS 

values from a total of 15 two-group comparisons with Nrep = 4 are shown: MAS-quantified data 
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Figure 7 Results for Nakai’s microarray data. 

 (a) HSC dendrogram for Nakai data consisting of 31,099 genes × 24 samples and (b) 

PDEG and AS values from a total of 15 two-group comparisons with Nrep = 4 are shown: 

RMA-quantified data (Page 2).  
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Figure 7 Results for Nakai’s microarray data. 

(a) HSC dendrogram for Nakai data consisting of 31,099 genes × 24 samples and (b) PDEG and 

AS values from a total of 15 two-group comparisons with Nrep = 4 are shown: RobLoxBioC-

quantified data (Page 3).   
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I observed similar results for RobLoxBioC-quantified data and relatively dissimilar 

results for RMA-quantified data. In particular, for the RMA-quantified data, I detected 

higher PDEG and AS values compared to those of the other data. There are several 

potential explanations. RMA treats a batch of arrays simultaneously, while MAS and 

RobLoxBioC treat each array independently. RMA tends to overestimate sample 

similarity [67]. Combinations of DE pipelines with different quantification algorithms 

might also explain the higher PDEG values observed in RMA-quantified data: limma is 

more compatible with MAS than RMA [8], [10]. Nevertheless, I observed a clear positive 

relationship between PDEG and AS values, suggesting that AS is also applicable to 

microarray data. 

 

The second dataset (called Kamei [68]) consisted of 31,099 genes × 10 samples (five BRs 

per group). Briefly, Kamei et al. compared gene expression in livers for rats fed a low-

iron diet (approximately 3 ppm iron) for 3 days and a normal diet (48 ppm iron) as a 

control. The PDEG and AS values obtained (Iron_def vs. Control) were close to zero and 

the HSC dendrogram showed an intermingled structure (Figure 8). These results indicate 

that the Kamei data can be regarded as a counterpart of the Cheung data (Additional file 5). 

AS can be utilized as supporting information to interpret DGE results for both RNA-seq 

and microarray data, especially when no or few DEGs were obtained. 

 

One should note that one sample (Iron_def1) was a clear outlier in the HSC dendrogram 

for the RMA-quantified data, but not in the other dendrograms (Figure. 8). Iron_def3 was 

the most distant from the other samples in MAS- and RobLoxBioC-quantified data. This 

difference can also be explained by tendency of RMA to overestimate sample similarity 
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[67]. Indeed, the average distance (0.007) among samples in RMA-quantified data was 

considerably lower than those for the other datasets (0.043 for MAS and 0.037 for 

RobLoxBioC). The expression levels for the two microarray datasets (Nakai and Kamei) 

were obtained using the same device (i.e., the Affymetrix Rat Genome 230 2.0 Array), 

indicating that the datasets can be directly compared. The average distances among ten 

liver samples in the Kamei data were clearly lower than those among eight liver samples 

(LIV) in the Nakai data (0.078 for MAS, 0.022 for RMA, and 0.070 for RobLoxBioC). 

These results suggest that the differences in the most distant samples in the Kamei data 

(Iron_def1 in RMA data and Iron_def3 in the other data) are within the error range.  
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Figure 8 Results for Kamei’s microarray data. 

HSC dendrograms for (a) MAS-, (b) RMA-, and (c) RobLoxBioC-quantified data are shown. 

These data consist of 31,099 genes × 10 samples and compares two conditions (five Iron_def 

samples vs. five Control samples). The PDEG and AS values are also shown on the right side of 

the dendrogram.  

(a) MAS-quantified data

(b) RMA-quantified data

(c) RobLoxBioC-quantified data

PDEG = 0.02%
AS = 0.005

PDEG = 0.00%
AS = 0.029

PDEG = 0.00%
AS = 0.010
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HSC dendrograms of the merged data provided several insights (Figure 9). First, the ten 

liver samples in Kamei data formed a tight cluster, even after adding the Nakai data, and 

formed a larger cluster when the eight liver samples from the Nakai data were included, 

confirming the overall similarities among various tissues (i.e., a sanity check) [36]–[38]. 

Second, compared to 24-h fasting, the short-term, iron-deficient diet might not result in 

significant differences in gene expression. This conclusion is supported by adding other 

publicly available dataset(s) for identical (or highly similar) tissues. It may be more 

important to add independent, publicly available datasets than to perform more detailed 

analyses using a single dataset. Third, an appropriate distance measure is important. The 

distance was defined here as (1 - Spearman’s r); this definition is widely used [32], [38]. 

Since the distance ranges from 0 to 2, the interpretation is relatively easy compared to the 

interpretation of Euclidean distances, which range from 0 to ∞. I indeed understood the 

extremely high similarity among the ten liver samples in the Kamei data in the context of 

the very small distance values. In general, distance information is not interpreted so 

broadly in HSC analyses, but examinations of both the distance (1 - r) and AS may be 

useful.  
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Figure 9 HSC dendrograms for merged microarray data (Nakai + Kamei). 

HSC dendrograms for (a) MAS-, (b) RMA-, and (c) RobLoxBioC-quantified data are shown. 

These data consist of 31,099 genes × 34 samples (24 from Nakai and 10 from Kamei data).   

(a) MAS-quantified data

(b) RMA-quantified data

(c) RobLoxBioC-quantified data
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3.3 Extension to multi-group comparison 

In the previous section, a comprehensive study has been conducted on the relationships 

between HSC and DEGs in two-group comparison. In the study, silhouette score has 

shown its potential to objectively evaluate the degree of separation between groups of 

interest in the HSC dendrogram and estimate PDEG values in DGE analysis. Actually, 

silhouette score was typically used to determine the best choice of number of clusters in 

unsupervised clustering like K-means [40]. The optimal number of clusters k is the one 

that maximizes the average silhouette scores over a range of possible values for k (k=1, 

2, 3 and so on). In most case, the k is a value greater than two. Thus, it is natural to apply 

the criteria to multi-group condition. One thing should be noted that silhouette score is a 

measure of how close each point in its own cluster versus those in the neighbor cluster 

(the cluster that has the shortest distance from the centers of the chosen cluster). In the 

context, for a given PDEG, neighbor cluster or neighbor group is usually unstable due to 

the biased proportions of PDEG assignment among each group. Hence, I proposed a more 

stable means termed AAS to quantify HSC dendrogram in the multi-group gene 

expression data. The AAS was obtained through calculating the average silhouette scores 

in a group pair-wise way. Equation was listed as follows: 

   (2) 

in which, AS is average silhouette scores in pair wise comparisons could be obtained from 

the multiple groups, n is the number of whole groups under comparison, r is a fixed value 

2.  

In three-group condition, the AAS is equal to: 

AAS = AS / n!
r! n− r( )!i≠ j

N

∑



46 

 

   (3) 

where:  represents the average silhouette scores obtained from the group1 and 

group2,  represents the average silhouette scores obtained from the group1 and 

group3 and  represents the average silhouette scores obtained from the group2 and 

group3. 

 

For DGE analysis, TCC [46] package implements a generalized pipeline with the multi-

step normalization can be described as X-(Y-X)n -Y . From an extensive evaluation among 

12 pipelines [39],  EEE-E pipeline was recommended on multi-group RNA-seq data (n=3) 

with few replicates as the best practices, in which X = TMM and Y = the DEG 

identification method, both were implemented in edgeR. The whole workflow of the 

EEE- E pipeline was summarized in the Figure 10. In this study, to reduce calculation 

cost, the parameter of iterations was set as a default value (n=3). Nevertheless, the DEG 

elimination strategy (called DEGES) can be repeated until the calculated normalization 

factors converge with a pretty large value(n≫3). In the DEG identification step, the gene 

ranking (DGEList) was obtained through the likelihood ratio test under the GLM 

framework and a routine Benjamini-Hochberg procedure to adjust the p-value. 

3.3.1 Simulation data with replicates 

The generation of simulation data is intensively time consuming and laborious, since 

many parameters are involved in the process and have effects on eventual DGE analysis 

results. To perform the multi-group comparison as simply as possible, I focus here on the 

three-group data with the equal numbers of replicates (Nrep=3) per group. The simulation 

AAS =
(AS1,2 + AS1,3 + AS2,3)

3

AS1,2

AS1,3

AS2,3
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conditions are summarized as follows: the total number of genes is 10,000 

(Ngene=10,000), 5%, 10%, 15%, 20%, 25%, 30% in a sequential manner proportion of 

the genes are DEGs, the ratio of the four fold up-regulated DEGs divided in each group 

(G1, G2, G3) are (1/3, 1/3, 1/3), (0.5, 0.3, 0.2), (0.5, 0.4, 0.1), (0.6, 0.2, 0.2), (0.6, 0.3, 

0.1), (0.7, 0.2, 0.1), and (0.8, 0.1, 0.1). All combinations of parameters produced 42 group 

data. In each group, the generation of simulation data, DGE analysis and the calculation 

of AS and AAS values were repeated in 100 trials. 

 

I first assessed the performance of DEGs calling using the EEE-E pipeline in the 

simulation data. The AS and AAS values were also calculated simultaneously in every 

trial. Table 1 lists the average PDEG, average AS values and average AAS values of 100 

trials with Nrep =3. As shown in Figure 11-(A), the accuracy of the DEGs calling is 

decreasing when the true PDEG setting versus the total number of genes across multi-

condition increases. In the graph, the vertical axis is obtained PDEG versus the 

corresponding true PDEG setting in simulation data and horizontal axis is obtained AS and 

AAS value respectively. The low reproducibility maybe due to the strict FDR control 

(0.05). Since the AUC values of 100 trials between the ranked gene list and the truth for 

various simulation conditions with Nrep=3 are usually above 90%, loosening the FDR 

control to 0.1 may remedy the low DEGs calling efficiency. In the Figure 11-(B), the 

EEE-E pipeline shown its predominant that the PDEG values keep consistency with low 

variance across the seven different proportions of DEGs up-regulated in individual groups 

(G1, G2, G3).  
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I also analyzed the performance of the AS and AAS values under various difference 

proportions of DEGs up-regulated. Comparing the two Figure 12-(A) and 12-(B), we can 

draw the conclusion that AAS is a more accurate and stable criteria than AS in multi-

group condition. When the true PDEG was set to 5%, the range between maximum and 

minimum value of AS is 0.0167, whilst the range between maximum and minimum value 

of AAS is 0.0025. When the true PDEG was set to 30%, the range between maximum and 

minimum values of AS is 0.0948, whilst the range between maximum and minimum 

values of AAS is 0.0377. Across the seven conditions, the deviation from the mean of 

both AS and AAS values is increasing along with the global true PDEG covering the whole 

three groups.   
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Figure 10 Schematic diagram of EEE-E pipeline in TCC package 

There are two main steps in the RNA-seq data analysis: normalization and identification. In the 

context, I refer to the two steps as X for data normalization and Y for DEG identification. In the 

EEE-E pipeline, TMM is for X and the likelihood-ratio test (lrtest) in GLM model for Y in multi-

group comparison. The pipeline with a multi-step normalization can be described as X-(Y-X)n-

Y in which the X-(Y-X)n with n ³ 2 (default setting n=3) corresponds to the iterative DEGES-

based normalization. Finally, through the whole workflow, the expression levels of an individual 

gene between different groups can be compared and would be set into DEGs and non-DEGs 

groups. 
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Table 1- Silhouette score and DGE analysis results for simulation data 

PG1 33% 50% 50% 60% 60% 70% 80% 
PG2 33% 30% 40% 20% 30% 20% 10% 
PG3 33% 20% 10% 20% 10% 10% 10% 
PDEG = 5%               
EEE-E (PDEG) 3.83% 3.84% 3.85% 3.83% 3.84% 3.83% 3.83% 
AS 0.0499 0.0461 0.0433 0.0427 0.0413 0.0375 0.0332 
AAS 0.0550 0.0545 0.0542 0.0544 0.0543 0.0534 0.0525 

PDEG = 10%               
EEE-E (PDEG) 7.22% 7.23% 7.28% 7.25% 7.29% 7.25% 7.21% 
AS 0.0999 0.0902 0.0848 0.0828 0.0802 0.0736 0.0660 
AAS 0.1047 0.1037 0.1034 0.1020 0.1025 0.1004 0.0981 

PDEG = 15%               

EEE-E (PDEG) 10.67% 10.65% 10.64% 10.64% 10.64% 10.58% 10.56% 
AS 0.1458 0.1292 0.1208 0.1204 0.1142 0.1050 0.0935 
AAS 0.1504 0.1473 0.1458 0.1454 0.1443 0.1402 0.1359 
PDEG = 20%               
EEE-E (PDEG) 14.09% 14.03% 14.02% 13.98% 14.01% 13.97% 13.96% 
AS 0.1863 0.1652 0.1539 0.1526 0.1456 0.1338 0.1189 
AAS 0.1908 0.1867 0.1838 0.1821 0.1819 0.1766 0.1695 

PDEG = 25%               

EEE-E (PDEG) 17.48% 17.43% 17.42% 17.41% 17.42% 17.38% 17.36% 
AS 0.2235 0.1972 0.1839 0.1830 0.1731 0.1593 0.1409 
AAS 0.2275 0.2217 0.2180 0.2168 0.2148 0.2078 0.1976 

PDEG = 30%               
EEE-E (PDEG) 20.85% 20.86% 20.81% 20.81% 20.77% 20.77% 20.71% 
AS 0.2556 0.2275 0.2116 0.2111 0.1979 0.1815 0.1608 
AAS 0.2596 0.2549 0.2497 0.2471 0.2437 0.2347 0.2219 

PDEG, AS and AAS of 100 trials for each simulation condition (PDEG = 5%, PDEG = 10%, PDEG = 

15%, PDEG = 20%, PDEG = 25%, PDEG = 30%) are shown. Simulation data contains a total of 10,000 

genes: PDEG % of genes is for DEGs, PG1 % of PDEG in G1 is higher than in the other groups, and 

each group has three BRs (Nrep = 3). Seven conditions are shown in total. EEE-E pipeline in 

TCC package was employed to call DEGs. 
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Figure 11 DGE analysis results in simulation data (Nrep=3) 

The scatter plot for DGE analysis results of 100 trials for each simulation condition (PDEG = 5%, 

PDEG = 10%, PDEG = 15%, PDEG = 20%, PDEG = 25%, PDEG = 30%) are shown. (A) The horizontal 

axis represents ground truth PDEG (parameter setting) of simulated data, and the vertical axis 

represents the recall of detected DEGs versus ground truth using EEE-E pipeline. The points 

representing different groups differ in their color. Violin plots were used to visualize variations 

in the data of each group. (B) The horizontal axis represents ground truth PDEG (parameter setting) 

of simulated data, and the vertical axis represents the PDEG of detected DEGs using EEE-E 

pipeline. The points representing different groups differ in their color and shape. The 

degs.assign1~7 correspond to the parameter setting among PG1, PG2 and PG3 in Table 1. 
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Figure 12 Silhouette score analysis results in simulation data (Nrep=3)  

The scatter plot for AS and AAS calculation results of 100 trials for each simulation condition 

(PDEG = 5%, PDEG = 10%, PDEG = 15%, PDEG = 20%, PDEG = 25%, PDEG = 30%) are shown. (A) 

The horizontal axis represents ground truth PDEG (parameter setting) of simulated data, and the 

vertical axis represents the AS value. (B) The horizontal axis represents ground truth PDEG 

(parameter setting) of simulated data, and the vertical axis represents the AAS value. The points 

representing different groups differ in their color and shape. The degs.assign1~7 correspond to 

the parameter setting among PG1, PG2 and PG3 in Table 1 
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3.3.2 Real data with replicates 

In addition to the simulation study, the Blekhman’s data was also employed to evaluate 

the performance of two indices. To correctly estimate the biological variation and its 

effects on DGE analysis and silhouette score calculation, a reduced count matrix (i.e., 18 

samples; 3 species × 2 sexes × 3 BRs) was used as input. Then, I regarded this dataset as 

a single-factor experimental design of three species where each has six biological 

replicates (i.e., HS_rep1-6 vs. PT_rep1-6 vs. RM_rep1-6). A total of 100 bootstrap trials 

were carried out in light of the AS and AAS as a function of the number of DEGs 

satisfying a FDR threshold (0.05 or 0.1). In each bootstrap iteration, three biological 

replicates were picked out from six biological replicates under the same group (the same 

species). The DEGs were obtained using the DGE analysis pipeline called EEE-E 

implemented in TCC. The AS and AAS were obtained as definition of equations 1 and 2.  

 

The expression pattern of the DEGs obtained whether affect the calculation of AS score 

was also invested. I firstly classified the expression pattern of the DEGs obtained from 

the EEE-E pipeline in 100 trails. Sequentially, the DEGs results were assigned to one of 

ten possible pattern defined in baySeq [58]. The label information of these patterns to 

each gene was determined using the whole Belkhman’s dataset (3 groups ´ 6 BRs). 

Finally, the change trends of each DEGs results assigned in definition groups was shown 

utilizing the parallel coordinate plots. The expression pattern of DEGs obtained by EBSeq 

was analyzed using the same procedure. 

 

The results were summarized in Figure 13, additional file 6 and Table 2. When the FDR 

control was set to 0.05, the PDEG falls within the range 0.2034 to 0.3779. When the FDR 
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control was set to 0.1, the PDEG falls within the range 0.2585 to 0.4441. The results of 

PDEG are in good agreement with the researchers' experience that the loose FDR control 

usually yields more DEGs. Corresponding to the number of DEGs calling changes, the 

AS value falls within the range 0.3807 to 0.5503 and the AAS value falls within the range 

0.4633 to 0.6095. From the Figure 13 and additional file 6, I can draw a conclusion that 

there is a very little difference between the FDR = 0.05 and FDR = 0.1 which is reflected 

in the scatter plot and the trends (using a linear regression model fitting). In both graphs, 

there are a good linear relationship between the two variables (AS versus PDEG or AAS 

versus PDEG). In other words, the FDR control is not a major factor in the relationships 

between two the silhouette score and DGE analysis. Although in the simulation data, 

when the difference between the proportion of PDEG assigned in each group became large, 

the AS cannot keep consistency under the same given PDEG parameter setting. In the real 

data, although the bootstrap sampling was employed to increase the diversity of 

experimental sample for multiple-group comparison, not such a distinct difference of 

variance between AS and AAS were observed as expected in simulation data. A 

reasonable explanation is that the bootstrap sampling�in most case, just causes changes 

in the true PDEG across the multiple conditions. In the sampling progress, proportion of 

PDEG assigned in each group is floating up and down around a fixed value. In the previous 

study, I observed that the fraction of PDEG among the multi-groups in blekhman’s dataset 

is approximately equal to 1:1:1 [39]. The expression patterns of DEGs reported by EEE-

E pipeline which is G1 up-regulated (G1>G2=G3,G1>G2>G3 and G1>G3>G2) : G2 up-

regulated (G2>G1=G3,G2>G1>G3 and G2>G3>G1):G3 up-regulated 

(G3>G2=G1,G3>G2>G1 and G3>G1>G2) equal to 28.16% : 30.07% : 40.7%. According 

to my simulation data results (Figure 12), AS and AAS values both have the most least 
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variants, when the assignment of PDEG is around the 1:1:1 (33% : 33% : 33%). In this 

study, I also invested expression patterns for DEGs in 100 bootstrap trials and assessed 

the effect of PDEG assignment on silhouette score (AS and AAS). As shown in Figure 14, 

I traced the three potential outliers marked in Figure 13 and marked them using difference 

color against normal data. Both of them have an extreme value in group G3>G2>G1 and 

two of them were flagged out as outlier by boxplot statistics. It is considered to be the 

main reason for bad fitting results using linear regression. In Figure 15, it is more 

obviously that both of them were detected as outliers in pattern 1, pattern2 and pattern5 

groups. 

 

All in all, the AS is powerful assessment criteria to evaluate the clustering or degree of 

separation between groups predefined. It has potential to apply in DGE analysis filed. 

Especially in multi-group comparison condition, the calculation just requires distance 

matrix and commonly used group labels. Although in the simulation data, the AS is not 

so good as AAS that keep consistency even the proportion of PDEG assigned in each group 

dramatically changes. In practice, it is easy to handle and offer reliable results making 

litter difference between AAS results. 
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Table 2- The statistics information about AS, AAS and PDEG in difference FDR control 

  Min. 1st Qu. Median Mean 3rd Qu. Max.  

FDR= 0.05 
      

PDEG 0.2034 0.2318 0.2632 0.2632 0.2866 0.2866 

FDR= 0.1 
      

PDEG 0.2585 0.2907 0.3248 0.325 0.3514 0.4441 

AS 0.3807 0.4252 0.4695 0.4625 0.4933 0.5503 

AAS 0.4633 0.5020 0.5361 0.5331 0.5592 0.6095 
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Figure 13 Silhouette score (AS and AAS) in bootstrap experiments (FDR=0.05). 

The scatter plot for AS and AAS calculation results of 100 trials using bootstrap sampling without 

replacement in belkhman's dataset. A straight line of best fit through points was found via simple 

linear regression and three potential outliers were marked using red color annotations.(A) The 

horizontal axis represents AS value, and the vertical axis represents the PDEG obtained via EEE-E 

pipeline.(B) The horizontal axis represents AAS value, and the vertical axis represents the PDEG 

obtained via EEE-E pipeline. 
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Figure 14 Parallel coordinate plot for DEGs pattern classified by baySeq. 

The input data were DEGs results obtained through EEE-E pipeline under FDR control equals to 

0.05. Among ten definition groups, six group with relative larger proportion of PDEG were used 

to generate the graph. In the graph, gray color lines represent the clean normal data, while maroon 

color represent the potential outlier points (trial number 11, 25, 69) 
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Figure 15 Parallel coordinate plot for DEGs pattern classified by EBSeq. 

The input data were DEGs results obtained through EEE-E pipeline under FDR control equals to 

0.05. The all five definition groups classified by EBSeq package were used to generate the graph. 

In the graph, gray color lines represent the clean normal data, while yellow color represent the 

potential outlier points (trial number 11, 25,69). 
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Chapter 4 Conclusions 

In this study, I proposed to use silhouette score (i.e., AS values) as an objective measure 

for the degrees of separation between groups of interest based on expression data. To my 

knowledge, the use of AS independent from HSC is the first practical application in the 

field of gene expression analysis. My main findings are (i) AS is an effective indicator of 

the overall relationship in the HSC dendrogram based on arbitrary grouping criteria; (ii) 

AS values are independent of Nrep, while PDEG values obtained from DGE analysis are 

fundamentally dependent on Nrep; and (iii) there is a positive correlation between AS and 

PDEG values under a fixed Nrep. It is not necessary to estimate PDEG from AS values 

because DGE results (including PDEG) can be directly obtained via the DGE pipeline. The 

AS provides helpful information for interpreting DGE results as well as HSC results; (iv) 

The AS can be easy to adapt to multi-group comparison without additional calculation. 

In most cases, it offers promising results when the variation between proportions of DEGs 

in individual groups is not very large. The obtained AS value still keep an easy 

interpretable linear relationship with the DGE analysis results under the GLM framework. 

 

Based on the current results, I conclude that my calculation procedure for AS is 

appropriate. The procedure consists of 1) filtering genes with low expression, 2) 

calculating distances among samples, and 3) calculating the AS values based on distance 

estimates. The high similarity among samples in the Kamei data could be detected by 

investigating the distances defined as (1 - Spearman’s r). Considering this finding in 

addition to other data, some samples could be misidentified as outliers (e.g., Iron_def1 in 

Figure 8 and 9). In addition to the AS value obtained for the groups of interest, (i) the 
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investigations of distances among samples and/or groups in the dataset and (ii) 

comparison with other datasets obtained from the same or similar samples are practically 

important. 

 

Of course, there are true outliers, e.g., ten outlying samples in the original Schurch data 

[62], [50]. I manually eliminated the ten outliers as determined in the original study [50] 

and analyzed 86 clean samples in this dataset. The values obtained without outliers 

(PDEG = 78.1% and AS = 0.7289) were clearly higher than those with outliers (PDEG = 74.7% 

and AS = 0.6530), indicating the importance of developing methods for the automatic 

detection of outliers [69]. My preliminary analysis for the original data using an existing 

method [70] successfully detected nine of the ten true outliers as well as three false 

positives. I obtained a promising result (PDEG = 77.6% and AS = 0.7301) using the 

remaining 84 samples. Rational removal of outlying samples would yield better DGE 

results. I expect that AS would help objective evaluation of the changes in the DGE results 

accompanying outlier removal. 

 

In practice, Silhouette score can be utilized as supporting information to interpret DGE 

results, especially when no or few DEGs are obtained. As demonstrated by several 

examples (e.g., Figure 8), I actually encounter such expression data. Silhouette score 

enables us to discuss the DGE results as well as SC dendrograms more objectively. 

 

As shown in my study, Silhouette score is useful for exploring data with predefined group 

labels. It would help provide both an objective evaluation of SC dendrograms and insights 
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into the DGE results with regard to the compared groups. The use of this measure would 

enable a more objective discussion about the SC result in terms of the groups. 
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Additional files 

Additional file 1-1 PDEG results for Blekhman’s RNA-seq count data 

A vs. B 1% 5% 10% 20% 30% 40% 

Interspecific comparison     

HSF vs. PTF 3.16% 5.56% 7.56% 11.06% 14.31% 17.95% 

HSF vs. PTM 3.31% 6.16% 8.72% 12.79% 17.11% 21.08% 

HSM vs. PTF 3.93% 6.58% 8.50% 12.00% 15.68% 18.98% 

HSM vs. PTM 3.73% 6.71% 9.58% 13.69% 17.80% 22.27% 

HSF vs. RMF 11.30% 17.59% 21.74% 28.10% 33.26% 38.02% 

HSF vs. RMM 7.98% 12.98% 16.85% 22.80% 27.47% 32.44% 

HSM vs. RMF 12.03% 18.75% 22.92% 29.35% 34.71% 39.58% 

HSM vs. RMM 7.88% 12.78% 16.82% 22.44% 27.46% 32.68% 

PTF vs. RMF 9.69% 15.25% 19.75% 25.74% 30.40% 35.33% 

PTF vs. RMM 6.99% 11.38% 14.69% 19.94% 24.86% 29.37% 

PTM vs. RMF 9.80% 15.95% 20.85% 27.43% 32.70% 37.45% 

PTM vs. RMM 6.84% 12.15% 16.44% 22.24% 27.42% 32.47% 

Intraspecific comparison     

HSF vs. HSM 0.02% 0.04% 0.07% 0.11% 0.22% 0.27% 

PTF vs. PTM 0.02% 0.14% 0.17% 0.40% 0.49% 0.78% 

RMF vs. RMM 0.03% 0.04% 0.08% 0.19% 0.34% 0.57% 

(a) PDEG values at various FDR thresholds (1%, 5%, 10%, 20%, 30%, and 40% FDR). The values 

at 10% FDR were the same as those shown in Figure 4  
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Additional file 1-2 PtrueDEG results for Blekhman’s RNA-seq count data 

A vs. B 1% 5% 10% 20% 30% 40% 

Interspecific comparison     

HSF vs. PTF 3.13% 5.28% 6.80% 8.85% 10.02% 10.77% 

HSF vs. PTM 3.28% 5.85% 7.84% 10.23% 11.98% 12.65% 

HSM vs. PTF 3.89% 6.25% 7.65% 9.60% 10.97% 11.39% 

HSM vs. PTM 3.70% 6.38% 8.62% 10.95% 12.46% 13.36% 

HSF vs. RMF 11.19% 16.71% 19.56% 22.48% 23.28% 22.81% 

HSF vs. RMM 7.90% 12.33% 15.17% 18.24% 19.23% 19.47% 

HSM vs. RMF 11.91% 17.81% 20.63% 23.48% 24.30% 23.75% 

HSM vs. RMM 7.80% 12.14% 15.14% 17.95% 19.22% 19.61% 

PTF vs. RMF 9.60% 14.48% 17.78% 20.59% 21.28% 21.20% 

PTF vs. RMM 6.92% 10.81% 13.22% 15.95% 17.40% 17.62% 

PTM vs. RMF 9.70% 15.15% 18.76% 21.94% 22.89% 22.47% 

PTM vs. RMM 6.77% 11.55% 14.80% 17.79% 19.20% 19.48% 

Intraspecific comparison     

HSF vs. HSM 0.02% 0.04% 0.06% 0.09% 0.15% 0.16% 

PTF vs. PTM 0.02% 0.13% 0.16% 0.32% 0.34% 0.47% 

RMF vs. RMM 0.03% 0.04% 0.07% 0.15% 0.24% 0.34% 

(b) Percentages of true DEGs (PtrueDEG), defined as PDEG × (1 − FDR threshold), at 

corresponding FDR thresholds shown in (a). 
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Additional file 1-3 Silhouette indices for Blekhman’s RNA-seq count data. 
A vs. B i = A1 i = A2 i = A3 i = B1 i = B2 i = B3 average si (AS) 

Interspecific comparison      

HSF vs. PTF 0.405  0.439  0.370  0.406  0.373  0.342  0.389  

HSF vs. PTM 0.484  0.543  0.454  0.304  0.223  0.354  0.394  

HSM vs. PTF 0.423  0.444  0.472  0.408  0.411  0.344  0.417  

HSM vs. PTM 0.521  0.509  0.532  0.334  0.241  0.324  0.410  

HSF vs. RMF 0.603  0.642  0.615  0.618  0.604  0.583  0.611  

HSF vs. RMM 0.645  0.672  0.637  0.444  0.416  0.473  0.548  

HSM vs. RMF 0.617  0.627  0.669  0.622  0.605  0.574  0.619  

HSM vs. RMM 0.639  0.664  0.690  0.435  0.409  0.471  0.551  

PTF vs. RMF 0.632  0.576  0.561  0.604  0.602  0.566  0.590  

PTF vs. RMM 0.651  0.615  0.603  0.424  0.417  0.441  0.525  

PTM vs. RMF 0.550  0.449  0.534  0.654  0.642  0.599  0.571  

PTM vs. RMM 0.574  0.509  0.559  0.486  0.461  0.497  0.514  

Intraspecific comparison      

HSF vs. HSM -0.096  -0.111  0.062  0.024  -0.031  0.036  -0.019  

PTF vs. PTM 0.172  0.117  0.193  -0.080  -0.123  -0.092  0.031  

RMF vs. RMM 0.174  0.247  0.144  -0.436  0.050  -0.262  -0.014  

(c) Silhouette indices (si) for each sample i and the average (AS). The sample names (A1, A2, A3, B1, B2, or B3) for i correspond to those shown in 

Figure 4. 
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Additional file 2 Effects of Nrep on parameter estimates (simulated count data). 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: PsimDEG = 10% 

(Page 1). 
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Additional file 2 Effects of Nrep on parameter estimates (simulated count data). 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: PsimDEG = 5% 

(Page 2). 
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Additional file 2 Effects of Nrep on parameter estimates (simulated count data) 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: PsimDEG = 2% 

(Page 3). 
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Additional file 2 Effects of Nrep on parameter estimates (simulated count data) 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: PsimDEG = 1% 

(Page 4). 
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Additional file 2 Effects of Nrep on parameter estimates (simulated count data). 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: 

PsimDEG = 0.5% (Page 5). 

  

(a)

(b)

av
er

ag
e 

si
lh

ou
et

te
 (

A
S

)
pe

rc
en

ta
ge

 o
f 

D
E

G
s 

w
it

h 
10

%
 F

D
R

 (
P D

E
G
)

number of replicates (Nrep)

number of replicates (Nrep)
(c)

ar
ea

 u
nd

er
 th

e 
R

O
C

 c
ur

ve
 (

A
U

C
)

number of replicates (Nrep)

Page 5: PsimDEG = 0.5%



�

72 

 

Additional file 2 Effects of Nrep on parameter estimates (simulated count data). 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: PsimDEG = 0.1% 

(Page 6). 
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Additional file 2 Effects of Nrep on parameter estimates (simulated count data). 

 

Bootstrapping results for simulated data under different PsimDEG values are shown: PsimDEG = 0.02% 

(Page 7). 
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Additional file 3 Results for Schurch’s RNA-seq count data 

 

 

For (a–b), Bootstrapping results for Schurch data comparing 42 wild-type samples and 44 Δsnf2 

mutant samples are shown. Legends are the same as those in Fig 5. (c) HSC dendrogram. Two 

distinct clusters, a wild-type cluster (right side) and Δsnf2 mutant cluster (left side), can be seen. 

The intra-group distances within 42 wild-type samples and 44 Δsnf2 mutant samples were 0.0144 

and 0.0084, respectively. (d) Scatter plots of PDEG vs. AS at Nrep = 3 (black), 6 (blue), and 9 (sky 

blue). 
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Additional file 4 Results for Bottomly’s RNA-seq count data. 

 

For (a–b), Bootstrapping results for Bottomly data comparing 10 C57BL/6J strains (A1, A2 …, 

A10) vs. 11 DBA/2 J strains (B1, B2, …, B11) are shown. (c) HSC dendrogram. For explanation, 

four clusters are defined in (d) the HSC dendrogram: the B1 cluster (consisting of B1, B2, B3, 

and B8), A8 cluster (A8, A9, and A10), A2 cluster (A2, A4, and A6), and B4 cluster (B4, B5, B6, 

B7, B9, B10, and B11). (d) Scatter plots of PDEG vs. AS at Nrep = 3 (black), 6 (blue), and 9 (sky 

blue). 
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Additional file 5 Results for Cheung’s RNA-seq count data 

 

For (a–b), Bootstrapping results for Cheung data comparing 17 females (A1, A2, …, A17) vs. 24 

males (B1, B2, …, B24) are shown. (c) HSC dendrogram. (d) Scatter plots of PDEG vs. AS at 

Nrep = 3 (black), 6 (blue), and 9 (sky blue). 
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Additional file 6 Scatter plot of results in simulation data (FDR=0.1) 
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Abbreviations 

AS Average silhouette 

AUC the area under the ROC curve 

BAT Brown adipose tissue 

BR Biological replicate 

BV Biological variation 

DE Differential expression 

DEG Differentially expressed gene 

DGE Differential gene expression 

F Female 

FDR False discovery rate 

H0 null hypothesis 

HS Homo sapiens 

HSC Hierarchical sample clustering 

LIV Liver tissue 

M Male 

NB Negative binomial (distribution or model) 

Nrep Number of (biological) replicates 

PDEG Percentage of estimated DEGs (satisfying basically 10% FDR) by TCC 

PsimDEG Percentage of DEGs when generating simulated data 

PtrueDEG Percentage of true DEGs defined as PDEG × (1.0 – FDR threshold) 

PT Pan troglodytes 

RM Rhesus macaques 

ROC Receiver operating characteristic 
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SC Sample clustering 

TCC Tag Count Comparison 

V Variance 

WAT White adipose tissue 

AAS Average of Average Silhouette scores in group pair-wise way 
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