
 
 

 

博士論文 

 

Improvement of Malaria Transmission Model  

by Calibration of Surface Water Formation Parameter  

and Future Projection over Africa 

 

(地表水面形成パラメータの較正によるマラリア伝染モデルの

改良及びアフリカにおける将来予測) 

 

 

 

 

インナ シャファリナ 

 

 

 

37-167205 

INNA SYAFARINA 

 

 

 



ii 
 

Abstract 

Malaria has been a major public health and endemic disease in some countries over the world. There 

were estimated 429,000 malaria deaths globally and mostly in African region. Due to its burden, World 

Health Organization (WHO) designates malaria as one of Sustainable Development Goals’ No.3 target 

3.3 which states that “By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical 

disease. Several attempts have been conducted to reduce malaria cases, such as using some treatments 

and protections. However, these efforts still could not eradicate malaria disease. Some researchers have 

conducted observation field studies by mosquito catchment, examination of sporozoite rate and human 

bite rate to derive Entomological Inoculation Rate (EIR) which represent probability of a person got 

infected from malaria disease. Unfortunately, these EIR numbers are limited in some observation sites 

and sparse. Therefore, malaria transmission model is utilized to describe malaria transmission risk.  

Parasite, mosquito, and human are three main factors driver on malaria. Climatic factors affect 

development of mosquito and parasite. Availability of water is diagnosed become one of factor 

influencing the spread of malaria. The representation of surface water formation parameter in current 

malaria model assume constant and not realistic due to the availability of observation dataset. This study 

aims to determine highly influential climatic factor on malaria disease, determine an optimize pond 

growth rate optimized parameter and analyze the impact of climate change in the future projection. 

Vector borne infectious disease model (VECTRI) developed by International Center for Theoretical 

Physics (ICTP) is used in this study. We implement VECTRI on Africa region with latitude -380 S – 

380 N and longitude -200 W – 550 E due to high risk of malaria disease in this tropical region from year 

to year. This model is used as the basis for validation in historical period, parameterization of surface 

water formation parameter and projection simulation in future period. We select this model due to its 

dynamic, incorporation with climatic (precipitation and temperature) and non-climatic (population 

density) factor. Chapter 2 describe definition of malaria disease, malaria model development, climatic 

and non-climatic factors drivers on malaria and the detail of VECTRI model mechanism.  

In Chapter 3, we explained the methodology, forcing datasets, and simulation scenario used in this 

study. We conducted three experiments on historical period and one experiment on projection period 

under three RCPs emission scenarios. Three experiments on historical period is used for validation of 

model result on historical period and calibration of water fraction against pond growth rate to optimize 

surface water formation parameter. Existing available observation data (EIR) is explained in this chapter. 

This study uses EIR annual number which is located in 12 countries in Africa, i.e. Senegal, Republic of 

Congo, Burundi, Gambia, Democratic Republic of Congo, Gabon, Cameroon, Eritrea, Uganda, Zambia, 

Tanzania and Kenya.  
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Validation of simulation results and parameterization of surface water on historical period are 

discussed in Chapter 4. Parameterization of pond growth rate (𝐾𝑤) is conducted within two steps. First, 

by adjusting 𝐾𝑤 parameter against EIR observation (𝐾𝑤𝑒) on historical period (1983 - 2006) until EIR 

simulation is closest to EIR observation site studies. The results show that EIR overestimate or  

underestimate in existing EIR observation sites. Therefore, we do tuning this parameter by increasing 

(decreasing) 𝐾𝑤 , to decrease (increase) EIR model result until the results improve and close to EIR 

observation result. The results reveal that 𝐾𝑤𝑒 parameter is not constant in existing observation sites. 

Second, by tuning 𝐾𝑤 parameter against water fraction. We utilize satellite observation water fraction, 

GSMaWS (Global Satellite Mapping of Wet Surface) for calibration of water fraction for period 2014 

– 2018. Spatial distribution of pond growth rate against water fraction  (𝐾𝑤𝑔)  is derived by 

minimization of Root Mean Square Deviation (RMSD) between water fraction observation and water 

fraction from model calculation. From 𝐾𝑤𝑒 and 𝐾𝑤𝑔, a topographical parameter and a scaling factor is 

needed to refine the parameter. Then, by multiplication of scaling factor, pond growth rate optimized 

(by adjusting 𝐾𝑤  from 𝐾𝑤𝑒  and 𝐾𝑤𝑔) and topography, we interpolate a scaling factor using simple 

inverse distance weighting. After multiplication of scaling factor, topography and optimized of 𝐾𝑤 from 

HIST-1 and HIST-2&3, we derive a spatial distribution of optimized 𝐾𝑤  to be used in projection 

simulation. 𝐾𝑤 gives impact to the formation of water fraction changes. Water fraction give impact to 

the availability of surface water for malaria breeding places which will influence to the number of 

survival larva. The survival larva will affect to the number of larva which will hatch into adult mosquito. 

Then, the number of mosquito will determine percentage of parasite inside mosquito’s body 

(Circumsporozoite Protein Rate or CSPR). If CSPR is multiplied with human bite rate (hbr), we derive 

EIR number. Therefore, 𝐾𝑤 can control EIR number. 

Climate change can alter the distribution of vector borne disease, increasing flood and drought, risk 

of disasters and malnutrition effects (Haines et al., 2006). It takes more effort and challenge to predict 

distribution of malaria in future period compare to historical period due to uncertainties, limited data, 

climate data variability and the complex physical, social and economic interactions (Semakula et al., 

2017). Malaria is sensitive to climate change in vector spreading and parasite development that cause 

malaria disease (Ngarakana-Gwasira et al., 2016), the impact of climate change on future projection is 

still being examined. Impact of climate change on projection simulation period is discussed in chapter 

5. We utilized CMIP6 (Coupled Model Intercomparison Project Phase 6) under three Representative 

Concentration Pathways (RCPs) scenarios (RCP 2.6, RCP 7.0 and RCP 8.5) for precipitation and 

temperature from MIROC model as climate forcing. We use SEDAC (Socioeconomic Data and 

Applications Center) for population density forcing datasets under three Shared Socioeconomic 

Pathways (SSPs) scenarios. Comparing to observed historical datasets, output from climate models are 

mostly bias (Muerth et al., 2013). A bias correction is implemented to correct precipitation and 

temperature datasets for projection period. A scaling factor is determined to calculate difference 
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between historical observation and projection observation dataset. Then, this scaling factor is multiplied 

with daily projection datasets to correct predicted datasets on future period (Lafon et al., 2013). A spatial 

distribution of optimized pond growth rate from Chapter 4 is applied to improve surface water formation 

parameter. Precipitation will increase or decrease regarding the emission scenario and location in 

projection simulation. Meanwhile, temperature is increasing in projection period. For projection 

simulation, west, central and southeast part of Africa are more favorable conditions for malaria 

transmission under three RCPs scenario. Inter annual variability of EIR annual projection is determined 

by calculating coefficient variation of EIR annual number. Coefficient variation is determined from 

standard deviation of EIR annual mean divided by average of EIR annual. Coefficient variation average 

for EIR annual projection under RCP 2.6 is 0.079, under RCP 7.0 is 0.087, and under RCP 8.5 is 0.087. 

From this number it shows that EIR annual projection under RCP 8.5 has higher variability compare to 

other two RCPs scenario. 

Precipitation and temperature give impact to EIR number. In projection simulation, we divided the 

analysis of each scenario into two regions i.e. west part of Africa (latitude: 00 – 250 N, longitude: -200W 

– 120 E) and central-south part of Africa (latitude: 250 – 380 S, longitude: 120E – 550 E). In west part of 

Africa, the risk of malaria in projection period compare to historical period are -23.14% under RCP 2.6, 

-39.51% under RCP 7.0, and -19.22% under RCP 8.5. Therefore, the worst scenario is RCP 8.5 and the 

better scenario is RCP 7.0 for west part of Africa. In central-south part of Africa, the risk of malaria in 

projection period compare to historical period are 40.48% under RCP 2.6, 45.23% under RCP 7.0, and 

100.78% under RCP 8.5. For central-south part of Africa, the worst scenario is RCP 8.5 and the better 

scenario is RCP 2.6.  

Population density gives proportional impact to control EIR. Precipitation characteristic (monthly 

average precipitation, standard deviation of monthly average precipitation, and Consecutive Wet Days 

(CWD)) affect EIR changes from projection period compare to historical period. Monthly average of 

precipitation and standard deviation of monthly average precipitation have relative contribution to EIR 

in west part of Africa, meanwhile CWD give more impact to EIR in central and southeast part of Africa. 

Correlation coefficient of precipitation and standard deviation is higher in western, central and eastern 

part of Africa, CWD’s correlation coefficient is higher near equator line from west to eastern part of 

Africa and temperature’s correlation coefficient from central part to southern part of Africa.  

Due to uncertainties on projection period, we add ensemble members of each RCPs scenario. We 

conducted simulations for three ensemble member of each RCPs scenario. By considering each value 

of correlation coefficient of each variable divided by value of total correlation coefficient of all variables, 

contribution of each variable related EIR changes from projection period compared to historical period 

for spatial mean of African region in west part of Africa is 21.68% for precipitation, 35.32% for standard 

deviation of precipitation, -6.71% for CWD and 49.72% for temperature. Meanwhile, in central – south 



v 
 

part of Africa, the contribution of each variable is 0.85% for precipitation, 41.01% for standard 

deviation of precipitation, -18.95% for CWD and 77.09% for temperature. 

Chapter 6 conclude and discussed recommendation for further study improvement. This study 

utilizes Entomological Inoculation Rate (EIR) annual number for validation of model simulation in 

historical period. The result shows that by tuning pond growth rate parameter against EIR, the model 

result can be improved to EIR observation. Further, utilizing other validation datasets such as number 

of malaria cases in each observation site in Africa could improve the model result. Besides that, this 

study utilizes highly resolution of water fraction observation dataset around 0.1 degree resolution (~11 

km). Higher resolution surface water with pond scale (< 10 m) daily datasets are needed to improve the 

model performance and make the model more realistic. An economic growth for projection simulation 

and other social factors need to be implemented to make the simulation more realistic. 
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1 Introduction 

CHAPTER 1  

Introduction 

 

Abstract: 

Malaria is a major public health problem which caused by transmission of parasite from mosquito into 

human. The highest malaria cases and death are mostly in African region, with 92% and 88%, 

respectively. Some attempts which had been conducted to control and eliminate malaria disease still 

could not eradicate the spreading of malaria. The lack of expert, health tools and infrastructures, 

political instability, health system and government policies also contributed to the unsuccessful of the 

program. Sparse of observation data, coast and time consuming encourage researchers to utilize 

mathematical models. The impact of environmental factors and socio-economic factors make 

improvement of the model from compartment (statistical) model into dynamical model create to be 

more realistic. Precipitation and temperature give a significant impact of malaria transmission. 

Availability of surface water is highly effected on development phase of vector and disease. Uncertainty 

of long-term precipitation and high temperature can reduce malaria in the future due to mosquito’s 

habitat are not optimal to live in. This uncertainty and the impact of climate change make researcher to 

investigate more detail on malaria transmission projection. In future, malaria transmission is more likely 

to transmit in highland area compared to lowland. 

1.1 Background 

Malaria is a burden major public health problem which caused by transmission of parasite from 

mosquito into human. The disease has become endemic in some countries over the world. In 2015, there 

were an estimated 429,000 malaria deaths globally and mostly in African region, where an estimated 

about 92% of all deaths occurred (WHO, 2015)  

Malaria has been designated as one of Sustainable Development Goals’ No.3 target 3.3 which stated 

that “By 2030, end the epidemic of AIDS, tuberculosis, malaria and neglected tropical disease”.  Several 

approach have been conducted to control and eliminate malaria, such as using chloroquine and 

dichlorodiphenyltrichloroethane (DDT), Global Malaria Eradication Programme (GMEP) in Africa, 

personal protection (using insecticide-treated bed nets (ITNs), propagating of fast-acting artemisinin-

based combination therapy (ACT)), African Initiative for Malaria Control (AIM), Roll Back Malaria 

(RBM) and Global Malaria Action Plan (GMAP) (Robert et al., 2012, Tambo et al., 2012). However, 

all these efforts have not been able to eradicate malaria. The lack of some experts incorporated in the 

programs, poverty, health infrastructure and equipment, political instability, health system and 

government policies also contributed to the unsuccessful of the program (Tambo et al., 2012) 
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About 88% of malaria cases are spread in Africa (Tambo et al., 2012). The highest fraction of 

malaria cases globally is Nigeria with 27%, followed by Democratic Republic of Congo with 10%, 

India with 6% and Mozambique with 4%. Sub Saharan Africa is the most endemic region in Africa. 

The impact of malaria is classified into three categories, such as health, social and economic (Orem et 

al., 2012). Malaria is one of inhibitors of a country’s economic growth (The Economic Burden of 

Malaria by Gallup JL, Sachs JD). Malaria inhibit economic growth in Africa up to 1.3% each year. 

The possibility of infected mosquito being influenced by various factors, such as host, parasite and 

mosquito which can be described by the experiments of feeding mosquito (Churcher et al., 2014). 

Measurement of malaria epidemic field studies has been conducted in several countries in Africa. Jones, 

(1964a, 1964b) examined the degree of control to reduce mosquito population’s vectorial capacity. 

Elliot et al., (1972) investigated the influence of vector behavior on malaria transmission. Smith et al., 

(1995) conducted parasitological surveys in two villages of Kilombero district in Tanzania and revealed 

that a high risk of malaria of Plasmodium falciparum along the year and unstable risk of Plasmosium 

malariae. Four years entomological surveys (1993-1996) to analyze seasonal malaria in the village of 

Ndiop, Senegal and the mechanism of protective immunity is conducted by (Fontenille et al., 1997). 

Lemasson et al., (1997) studied ecology, population dynamics and malaria vector efficiency of 

Anopheles gambiae and Anopheles arabiensis for two years in a Sahelian village of Senegal. Aniedu et 

al., (1997) evaluated malaria-metric and conducted entomological survey near two permanent breeding 

sites in Baringo district, Kenya to investigate the prevalence and seasonality of malaria and the effect 

of two local mosquitoes as a vector. Shililu et al., (2003) investigated spatial distribution of anopheline 

mosquito spesies from October – December during 1999 – 2001 in highlands and western lowlands and 

from February – April for the coastal region in Eritrea. Antonio et al., (2012) conducted 12 months 

entomological survey in a highly populated district of Doala, Cameroon using human landing catch 

(HLC) and Centers for Disease Control and Prevention (CDC) light traps method. Facing all these 

observation datasets have not been able to represent malaria transmission throughout Africa due to the 

sparsity of observation site studies, high risk of mosquito catchment, cost and time consuming and some 

cases of malaria were not reported in the cause of lack of awareness of the local community. 

Some researchers utilize mathematical model to overcome this issues. (Ross, 1915) developed a 

simple model to elucidate the relationship between number of mosquitoes and incidence of malaria in 

humans. Due to its simplicity, some models extension of Ross’s model has been developed by 

researchers by considering additional factors, such as age structure (Anderson and May., 1991), host 

immunity response and parasite’s ability to evades its host immune response (Koela and Boete., 2003), 

parasite replication and its regulation by innate and adaptive immunity (Gurarie et al., 2012).  

To improve understanding the relationship between host, vector and parasite, it is necessity to 

model mosquito populations and take into account for environmental parameters and socio-economic 
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factors (Mandal et al., 2011). Parham and Michael., (2009) investigated the effect of rainfall and 

temperature on mosquito population dynamics and implemented to estimate changes in basic 

reproduction number of malaria in Tanzania. Yang and Ferreira., (2000) assessed the impact of global 

temperature changes and socio-economic factor on malaria transmission based on compartmental model. 

These statistical models are influenced by the availability of data records.  

Stochastic approaches describe the dynamics of malaria transmission and represent a more realistic 

malaria model.  Gemperli et al., (2005) used Garki model to map spatial distribution of malaria in Mali. 

Ermert et al., (2011) developed a Liverpool Malaria Model (LMM) to understand the mechanism of 

malaria transmission, examine the map distribution of climate change impact assessment (Tompkin and 

Ermet., 2013) The shortcoming of this model is they do not consider explicitly interplay between host 

and vector. Yamana and Eltahir, (2010) constructed Hydrology, Entomology and Malaria Transmission 

Simulator (HYDREMATS) to forecast mosquito populations and vectorial capacity in Banizoumbou 

village in western Niger in the year of 2005-2007. HYDREMATS is limited to village scale, does not 

appropriate for regional scale. In 2012, Tompkins and Ermert, (2013) developed a dynamical malaria 

transmission model that account for the impact of temperature, rainfall variability on development of 

malaria vector in its larval, adult stage and parasite. This model accounts for interaction between host 

and vector and more appropriate for regional simulation. 

Malaria transmission is affected by climatic factor and non-climatic factors. Climatic factors such 

as precipitation and temperature give a high impact to mosquito phase development. Precipitation 

provide a mosquito breeding places. Availability of surface water is a critical factor for mosquito 

breeding places. Larvae habitat needs a warmer daytime temperature of water (Minakawa et al., 2004) 

and stagnant water body (Sattler et al., 2005) to develop. Fuzzy distribution model is used to represent 

mosquito breeding places (Ermert, et al., 2011). VECTRI model use simple water balance equation to 

represent surface water in the beginning of model development (Tompkins and Ermert, 2013). Further 

development of surface water calculation is conducted by (Asare et al., 2016). They revise pond scheme 

by including parameterization of surface runoff and evaluate water fraction from VECTRI model with 

HYDREMATS model output as calibration surface water data. In 2008, They assume that 

HYDREMATS surface water output are reliable and assumed as validation datasets.  Bomblies et al., 

(2008) simulate pool formation by distributing flow routing in HYDREMATS model. They use 

Manning’s equation with distributed roughness parameter to describe flow velocity. Kibret et al., (2019) 

investigated effect of large dams of malaria in Africa. They utilize Europian Comission’s Joint Research 

Center (JRC) global surface water datasets to extract reservoir periometers. They find that topography 

near dam site (slope) is the most important factor affecting malaria incidence because the shallow 

puddles for mosquito breeding are more likely to build in the steeper slope. Nmor et al., (2013) predict 

mosquito breeding sites from topographical information (Digital Elevation Models (DEMs)). They use 

Shuttle Radar Topography Mission 3 (SRTM3, with 90 m resolution) and the Advanced Spaceborne 
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Thermal Emission (ASTER, with 30 m resolution) from DEMs using GIS technique to apply in western 

Kenya. They find that SRTM and ASTER models had similar predictive potentials. From all these 

efforts, formation of surface water with high resolution and daily dataset are lacking. Since, stagnant 

and small surface water body (ponds, puddle, or hoof prints) which is needed by mosquito for placing 

their eggs are formed approximately ten days (Shaman and Day, 2007). 

The major factors which determine seasonality and variability of annual malaria transmission are 

climate and weather. Long term drought periods and precipitation can decrease malaria due to 

unsuitable conditions for vector and disease development. Variability of temperature alteration takes 

into account in vector mechanism, reproduction and survival rate (Patz, et al., 2005). Cold district and 

increasing precipitation delayed increase in malaria cases (Tkelehimanot et al., 2004, Guo et al., 2015). 

The uncertainty of the climate in the future encourage researchers to investigate malaria transmission 

in projection period. 

Climate change is a significantly changing of climate pattern over a period of time as an effect of 

human activities: fossil fuel burning and greenhouse gasses accumulation (Haines et al., 2006).   

Climate change affects health by several approaches, such as alteration on distribution of vector borne 

disease, increasing flood and drought, risk of disasters and malnutrition effects (Haines et al., 2006). It 

takes more effort and challenge to predict distribution of malaria in future period compare to historical 

period, due to uncertainties, limited data, climate data variability and the complex physical, social and 

economic interactions (Semakula et al., 2017). A better prediction scheme of malaria transmission in 

the future can decrease the incidence, determine a good way and control malaria risk (Hundessa et al., 

2018, Tanser et al., 2003, Yamana and Eltahir, 2013). Several attempts to predict malaria transmission 

projection in future period have been conducted, such as (Caminade et al., 2014; Béguin et al., 2011, 

Van Lieshout et al., 2004; Rogers and Randolph., 2000) for global malaria transmission, (Semakula et 

al., 2017; Hundessa et al., 2018; Ngarakana-Gwasira et al., 2016, Ryan et al., 2015, Ermert et al., 2011, 

Dalrymple et al., 2015) for regional malaria transmission.  

For global malaria prediction, five statistical and dynamical malaria impact models for three 

projection period (2030s, 2050s, and 2080s) using five global malaria models have been conducted 

(Caminade et al., 2014). Their results show that there is a significant increase in number of people at 

risk annually under RCP 2.6 into RCP 8.5 scenario from 2050s to 2080s. They also mention that there 

are significantly differences on malaria distribution outcome from the model choice. Béguin et al., 

(2011) contributed to incorporate effect of climate change and socio-economic development to past, 

present and future malaria distribution. They utilize logistic regression model and combine precipitation, 

temperature and gross domestic product per capita (GDPpc) to describe global malaria distribution. 

They find that GDPpc and population consistent with IPCC A1B scenario using projection climate and 

in 2050, projected population account for 5.2 billion, 1.74, 1.95 billion and 1.74 billion considering 
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climate, GDP, and both effect, respectively. Van Lieshout et al., (2004) explain a new method to 

represent vulnerability to the potential impacts of climate change using MIASMA v2.2 model under 

four SRES emission scenario (A1F1, A2, B1, and B2). They find that the greatest impact of population 

growth in risk area in Eurasia and Africa under B2 scenario and climate change does not give influence 

to malaria transmission in the poorest countries due to this region is already more vulnerable for malaria 

transmission. Rogers and Randolph, (2000) analyze the effect of temperature on global malaria 

distribution in present and future period using statistical approach. They predict the future distribution 

of habitat are similar to present Plasmodium falciparum distribution. They also predicted that malaria 

will survive in southern United States and into Turkey, Turkmenistan, and Uzbekistan, southward in 

Brazil, and westward in China, and malaria will be diminished in other area. 

For regional domain, Ermert et al., (2011) studies that in future projection, malaria is predicted 

increase in southern part of Sahel and intensity of malaria transmission increase in most of East Africa. 

They conclude that malaria risk will increase in highland region and will decrease in lower-altitude of 

East Africa high-lands. Semakula et al., (2017) utilize GIS-BBN (Geographical Information System 

and Bayesian belief networks to forecast malaria hotspots in 2030, 2050, and 2100 using Representative 

Concentration Pathways (RCPs) 4.5 and 8.5 in Sub Saharan Africa (SSA). They reveal that majority 

area of SSA will have medium malaria prevalence in 2030 under RCP 4.5. Meanwhile, only in highlands 

area will have malaria under RCP 8.5, remaining part have no malaria. Ngarakana-Gwasira et al., (2016) 

examine climate change impact of malaria in Africa using mathematical model combined with GIS. 

They find that malaria is more likely to increase in tropics, highland, East Africa and along northern 

limit of falciparum malaria. They reveal that P.falciparum is likely not survived in the southern part of 

Africa by 2040. The model does not take into account for human migration and socioeconomic factors 

in malaria transmission dynamics. Hundessa et al., (2018) investigated the distribution of two species 

of malaria disease (Pasmodium vivax and Plasmodium falciparum) in China using Generalized Additive 

Model (GAM) under RCP 4.5 and 8.5 scenario. They found that Plasmodium falciparum are predicted 

to enhance more than Plasmodium vivax. The number of increasing is higher under RCP 8.5 scenario 

than RCP 4.5 scenario.  Ryan et al., (2015) conclude that high temperature region all year round in 

Africa are higher risk of malaria and spread from coastal West Africa to Albertine Rift between 

Democratic Congo and Uganda. Meanwhile, region with seasonal suitable transmission are located in 

sub-Saharan coastal area. A better forecasting scheme of malaria transmission in the future can predict 

in proper place, decrease the incidence, determine a good way and control malaria risk (Hundessa et al., 

2018, Tanser et al., 2003, Yamana and Eltahir, 2013). Therefore, it is important to understand the impact 

of climate change on malaria transmission in the future. 

1.2 Objectives and limitations of this study 

The purposes of this studies are: 
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1. To determine the highly influential climatic factor on malaria transmission 

2. To determine pond growth rate optimized parameter to be utilizing in projection period 

3. To analyze the impact of climate change on malaria transmission projection under 

Representative Concentration Pathway (RCP) scenario 

There are some limitations of conducted in this study: 

1. Lack of observational datasets to measure malaria risk 

2. Surface water observation datasets for calibration 𝐾𝑤 parameter with higher resolution on 

daily time are limited 

These limitations can be overcome by utilizing existing EIR observation datasets from existing annual 

dataset and assumed that all existing observation datasets are valid and applied to 11 x 11 km spatial 

grid. For surface water observation datasets, we utilize Global Satellite Mapping of Wet Surface 

(GSMAWS) with 0.1 x 0.1 degree spatial resolution from 2014 – 2018 daily datasets. 

1.3 Dissertation outline 

Chapter 1 describes background of the study, objectives and limitations of this study, and dissertation 

outline. 

Chapter 2 explains a brief definition of malaria disease, climatic (e.g. precipitation, temperature, relative 

humidity, wind speed, and topography) and non-climatic factor (e.g. population density, access to health 

facilities, migration, and poverty) driver on malaria transmission. In addition, the development of 

malaria transmission model and malaria indicator number also provided. 

Chapter 3 describes methodology used in this study, experimental design, forcing datasets used, some 

simulation scenario, and observation sites for historical period for validation simulation result. This 

study utilized precipitation, temperature, population density and topography as forcing datasets.  

Chapter 4 investigate malaria transmission on historical period. This chapter analyze parameterization 

of pond growth rate compare with EIR observation in the past. Optimization of pond growth rate 

parameter in some observation sites in Burkina Faso, Cote D’ Ivoire and other countries are derived.  

Chapter 5 investigate the impact of climate change on malaria projection. This chapter begins with 

linear bias correction method used for precipitation and temperature.  

Chapter 6 summaries the findings of this study regarding optimized surface water parameter and impact 

of climate change in future period. 
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CHAPTER 2  

Malaria Disease, Transmission Model and Indicator Number 

 

Abstract:  

Malaria is an infectious disease which spread all over the world. The number of patient is increasing 

annually. It is important to understand the climatic and non-climatic factor which affect to malaria 

transmission. Climatic factor will give effect to vector and parasite development. Some climatic factors 

impact to malaria, such as precipitation, temperature, humidity, wind speed, topography, land use 

change/cover and irrigation density are explained. Sparse of the observation data, time and cost 

limitation encourage researchers to use malaria transmission model. Meanwhile, some non-climatic 

factors which driver on malaria (population density, health facilities, migration, and poverty) are also 

described. Some malaria transmission models are developed around the world. Malaria model 

development start with compartment model which consider three compartment: susceptible (𝑆)  – 

infected (𝐼) – recover (𝑅). From this simple malaria model, some researchers develop into dynamical 

model due to malaria accounts stochastic process in its development. Malaria dynamical model is 

developed by incorporating climatic or non – climatic factor driver on malaria. Malaria indicator 

number is used to measure the risk of malaria transmission in one area. Some malaria indicator number 

such as: human bite rate (HBR) and CircumSporozoite Protein Rate (CSPR) are used in calculation of 

entomological inoculation rate (EIR) observation datasets.  

 

2.1 Definition of malaria disease  

Malaria is a mosquito-borne infectious disease caused by parasitic protozoans of the genus 

Plasmodium (vivax, malariae, ovale, knowlesi and falciparum) and is transmitted by female mosquito 

vectors of the Anopheles species (Caminade et al., 2014). Mosquito which is influenced in this disease 

only accounted for female mosquito due to male mosquito only consume nectar (flower essence), only 

female mosquito which need blood for their eggs development. Mosquito development starts from egg, 

larvae, pupa, and adult. In larva, it has 4 development stages. Mosquito life cycle describes in Fig. 2. 1. 
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Fig. 2.1 Mosquito life cycle (Bomblies et al., 2008) 

Malaria disease is spread by an infected female mosquito (which carry parasite) bite human and 

leave the parasite on blood stream. Infant, children under five years old, pregnant women and 

HIV/AIDS patients are more vulnerable to malaria disease (WHO). Pregnant woman which carry 

malaria parasite can directly inherit malaria into the baby from placenta and bloodstream (Eijk et al., 

2015). The symptoms of malaria disease, such as headache, fever, chills and vomiting, if these 

symptoms do not have any treatment within 24 hours, Plasmodium falciparum parasite can develop into 

a more severe disease, even to death (WHO, 2014).  

Inside human body, there are some process of parasite development (Fig. 2.2). The parasite life 

cycle begins when a mosquito takes a blood meal, an infected mosquito will leave a sporozoite in human 

body. Sporozoite will move to liver and infected liver cell and change to be schizont. Ruptured schozont 

will be transferred into human blood stages and change to be immature tropozoite. Tropozoite will 

transform into mature tropozoite and form schizont. Ruptured schizont will released merozoites. After 

that, some parasite will be distinguished into sexual erythrocytic stage (microgametocytes: male and 

macrogamtocytes: female gametocytes).  These gametocytes will be swallowed by a mosquito during 

blood meal. Then, parasite’s do multiplication inside mosquito (called as sporogonic cycle). 
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Fig 2.2 Parasite life cycle in human body 

Anopheles gambiae complex (include Anopheles gambiae, Anopheles arabiensis, Anopheles merus 

and Anopheles melas) is more dominant species found in Africa region as a vector of malaria disease 

(Sinka et al., 2010).  Anopheles funestus, Anopheles moucheti and Anopheles nili become highly 

anthropophilic after Anopheles gambiae complex (Sinka et al., 2010). Anopheles gambiae and 

Anopheles arabiensis spread in some localities in arid savannah zones and forest (Onyabe and conn., 

2001). Anopheles gambiae sensu lato is found in a temporal and sunlit breeding habitat, such as a hoof 

prints, rice puddles, and ground water depression created during rainy season (Gillies and Meillon., 

1968, Minakawa et al., 2004). Anopheles sp prefer to stay in permanent and temporal habitat about 60% 

and 34%, respectively (Mattah et al., 2017). Meanwhile, Anopheles funestus choose semi-permanent 

and permanent breeding habitats, for example swamps and large ponds (Gillies and Meillon., 1968). 

There are some climatic factors drivers on malaria, such as precipitation (provides breeding sites 

for larvae), temperature (larvae growth, vector survival, egg development in vector, parasite 

development in vector), relative humidity (desiccation of vector), and wind (advection of vector, strong 

winds reduce CO2 tracking) (Tompkins and Ermert, 2012). Other factors which can alter disease range, 

such as land use changes (drainage or wetland cultivation), interventions (bed net, spraying, treatment), 

socio-economics factors (access to health facilities, population density, migration, and poverty), and 
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vector predators, competition and dispersion limits. Each climatic impacts will be explained in the 

following subsection. 

2.1.1 Climatic factor on malaria 

Climatic factors give impact to mosquito parasite development and disease spreading. Some 

climatic factors, such as precipitation, temperature, humidity and topography driver on malaria 

transmission. The detail explanation of each factors are described as followed. 

2.1.1.1 Precipitation 

Water becomes a crucial factor for egg and larvae stage of mosquito. Adult mosquito needs water 

to place their eggs and larvae needs water to develop all four stages. Aquatic stages determine 

abundances, dynamics and fitness of mosquito adults and can effect malaria transmission (Paaijmans., 

2008). Precipitation is the source that determine mosquito breeding places. High precipitation can flush 

aquatic habitat of larval mosquito and kill them (Paaijmans et al., 2007).  Therefore, there is an optimum 

surface water for mosquito to breed and develop. Some effects of changes in precipitation on vector 

(WHO, 2015): 

- Increased rain may increase larval habitat and vector population size by creating new habitat 

- Excess rain or snowpack can eliminate habitat by flooding, decreasing vector population 

- Low rainfall can create habitat by causing rivers to dry into pools (dry season malaria) 

- Decreased rain can cause synchronize vector host-seeking and virus transmission 

- Increased humidity increases vector survival, decreased humidity decreases vector survival 

2.1.1.2 Temperature 

Temperature give effect to the development of egg (gonotrophic cycle) and parasite (sporogonic 

cycle) inside mosquito’s body. Development and survival rates of both Anopheles mosquito and 

Plasmodium parasites also are determined by temperature (Beck-Johnson et al., 2013). Several effect 

of changes in temperature on vectors (WHO, 2015): 

- Survival rate can decrease or increase depends on species 

- Some vectors have higher survival at higher latitude and altitude with higher temperature 

- Changes in the susceptibility of vectors to some pathogen (microorganism) e.g. higher 

temperature reduce size of some vectors but reduce activity of others 

- Changes in rate of vector population growth 

- Changes in the rate of vector population growth 

- Changes in feeding rate and host contact (may alter survival rate) 

- Changes in seasonality of populations 

2.1.1.3 Humidity 
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Increasing of 1% of relative humidity could increase 3.99% of number of malaria cases in 

Guangzhou, China (Li et al., 2013). Decreasing of relative humidity effect to the uncomfortable levels 

of mosquitoes in the end of rainy season (Yamana and Eltahir., 2013). Optimized of relative humidity 

for malaria transmission is above 60% (Kumar et al., 2014). Increasing relative humidity could increase 

mosquito longevity (Gillies, 1988).  

2.1.1.4 Wind speed 

Increasing of wind speed about 1 m/s could increase about 164% and 171% in the monthly of 

malaria cases in savanna and humid forest (Omonijo et al., 2011). The relationship of behavior 

mosquitoes and wind effect (attraction of adult mosquito dispersion of CO2, advection of adult 

mosquitoes, and aquatic-stage mortality due to wind-induce surface waves) have been investigated 

(Endo and Eltahir., 2018). They revealed that wind has a significant effect near reservoir due to the 

waves give a huge impact to aquatic-stage of mosquito development at large water bodies. The depth 

and fetch of reservoir is increased by the height of wave, therefore wave prefers to influence Anopheles 

mosquitoes’ breeding at reservoir than a small water bodies (Endo and Eltahir., 2018). 

2.1.1.5 Topography  

Atieli et al., (2011) examined influence of some topographical parameters (elevation, slope, aspect 

and ruggedness) in the highland areas in western Kenya. They revealed that aquatic-stage presence and 

productivity of mosquito is affected by these parameters. They also found that in lower gradient 

topography has a stable and higher malaria risk compare to steep gradient topography. They conclude 

that topographic parameters have significant effect to identify higher risk of malaria. 

Githeko et al., (2006) investigated topography effect to spatial vector and parasite distribution.  

They found that malaria transmission is stable at valley bottom, unstable at the hilltop and intermediate 

state in the mid-hill village in western Kenya highland. 

Balls et al., (2003) analyzed the effect of malaria risk infection and topography in the Usambara 

Mountains, Tanzania. Altitude influenced in malaria transmission because of its effect on temperature 

Balls et al., (2003).  High altitude with low temperature decrease the survival and development of 

aquatic stage of Anopheline mosquito and the development of vector which can reduce probability of 

malaria transmission (Lindsay and Birley, 1996). 

2.1.1.6 Land use change/cover  

Muturi et al., (2006) conducted entomological survey to describe mosquito diversity and distribution in 

land use area in Mwea rice field, Kenya. They find that Anopheles arabiensis, Cx quinquefasciatus and 

Anopheles pharoensis were more abundant in rice agroecosystems than in non-irrigated agroecosystem. 

Meanwhile, Anopheles funestus was more abundant in non-irrigated agroecosystem. 

2.1.1.7 Irrigation density 
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An area with proper irrigated and sunlit pools are highly favourable place for mosquito breeding 

sites (Carnevale et al., 1999). 

From all climatic parameter, this study account for precipitation and temperature as forcing dataset 

due to the main climatic effect are precipitation will give impact to aquatic (larvae) life cycle and 

temperature will give effect to mosquito and parasite development in the model setting. 

2.1.2 Non-climatic factors on malaria 

Besides climatic factors, there are some non-climatic factors affect malaria transmission. 

2.1.2.1 Population density 

Population density was an important predictor of malaria risk (Kabaria et al., 2017).  Migration of 

people are contributed to the spread of disease (Prothero., 1977). Increasing of malaria incidence in sub-

ruban area than in rural area are found during low transmission season in highland region in East Africa 

(Siraj et al., 2015). 

Previous studies found that high population density in urban areas have low Entomological Inoculation 

Rate (EIR) due to a chance of probability of one people got infected decrease among many people 

(Oyewole and Awoloa., 2006, Smith et al., 2007). 

2.1.2.2 Health facilities  

Malaria data which drive from hospital or clinic can be misleading to overestimate or underestimate of 

malaria cases. This inaccuracy due to misdiagnosis in patients or lack of equipped and trained nurse 

and clinician (Afrane et al., 2013). Access to health facilities also another issues of malaria cases. From 

the existence of health care, availability of medicine or vaccine, service quality and affordability also 

give impact to the health interventions (O’meara et al., 2009). 

2.1.2.3 Migration  

Migration affect malaria transmission on infection spreading, transmit to non-immune people from the 

risk of infection and make the malaria spreading more difficult to be controlled (Prothero ., 2001). In 

developing countries, irregular and rapid urbanization caused enhancement in malaria transmission due 

improverished house and sanitation, drainage surface water deficiency, and utilize of exposed water 

reservoir which enhance interaction between host-vector and mosquito breeding places (Martens and 

Hall., 2000).  

2.1.2.4 Poverty 

Poverty is identical with the cause of malaria cases. The relationship between malaria and poverty is 

also complex. Poverty made malaria flourish, inhibit economic growth and keep people still in poverty 

(Sachs and Malaney., 2002). Houses with low income could not provide some treatment to malaria (buy 
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insecticide-treated bednet (ITNs)), awareness to check the health facilities, food insecurity, 

undernourished children, less knowledge about malaria prevention, symptoms and early warning of 

malaria infection (Teklehaimanot and Mejia., 2008) 

2.2 Malaria transmission model 

Due to sparsity of the observation dataset, time and cost limitation, malaria transmission model 

are developed to assist researchers to predict and examine malaria transmission trend in historical 

period.  

2.2.1 Compartment model 

Malaria transmission model is firstly developed by Sir Ronald Ross. (Ross., 1911) developed a first 

deterministic compartment model and classify human population into two compartments, i.e. 

susceptible (S) and infected (I) and assumed the infected people will return to susceptible again or 

known as SIS structure (Mandal et al., 2011). Due to it’s simplicity, this model ignored latency period 

of the parasite inside mosquitoes and their survival rate. Then, Ross model is developed by other 

researchers, such as (Macdonald., 1957) add a new compartment exposed (E) on mosquito after 

susceptible state, (Anderson and May., 1991) add exposed (E) state on human state after susceptible 

state. Other factors, such as human age (Aaron and May., 1982), human age and immunity function 

(Filipe et al., 2007), human migration or visitation (Torres-Sorando and Rodriguez., 1997), vary 

population size (Ngwa and Shu., 2000, Chitnis et al., 2006), environment on mosquito (Parham and 

Michael., 2010), socio-economic factors on human and environment on mosquito (Yang., 2000). 

Table 2.2.1 Compartment Model Development 

Author Model name Climate/nonclimate/mechanism or improvement 

(Ross., 1911) SIR (Ross model) Compartment model : SIR Susceptible – Infectious – 

Recovered) 

(Macdonald., 1957) Susceptible – 

Infectious – 

Susceptible – 

Exposed (on 

mosquito) 

Adding latency period and introduced in exposed class 

in the mosquito part (𝐸𝑚) 

(Anderson and 

May., 1991) 

Susceptible – 

Infectious – 

Susceptible – 

Exposed (on human 

state) 

Latency of infection in humans is added by making 

additional exposed class in humans (𝐸ℎ) 
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(Aaron and May., 

1982) 

Susceptible –  

Infectious – 

Recovered –   

Susceptible (on 

human state) 

Adding recovered class after infected before return to 

susceptible on human state  

(Filipe et al., 2007) Susceptible – 

Exposed – 

Infectious – 

Susceptible (on 

human) 

Human age and immunity function on human stage 

(Torres-Sorando 

and Rodriguez., 

1997) 

Susceptible – 

Infectious – 

Susceptible (on 

human) 

Human migration or visitation on human stage 

(Ngwa and Shu., 

2000; Chitnis et al., 

2006) 

Susceptible – 

Exposed – Infected 

– Recovered – 

Susceptible (on 

human stage) 

Add recovered class on human stage (Ngwa and Shu) 

and consider constant immigration on beginning of 

susceptible class on human stage Vary population size 

o 

(Parham and 

Michael., 2010) 

Susceptible – 

Infected –

Recovered – 

Susceptible (on 

human stage) 

Add environment factor on mosquito stage 

(Yang., 2000) Susceptible – 

Exposed – Infected 

– Recovered – 

Susceptible (on 

human stage) 

Add socio-economic factors on human and 

environment on mosquito 

Laneri et al., (2010) VSEIRS Rainfall together with malaria data 

White et al., (2018) Treated (T) – 

Prophylaxis (P) – 

Susceptible (S) – 

Infected (I) by three 

types (high-density 

parasites with fever, 

Heterogeneity and seasonality exposure to mosquito 

bites, detailed mosquito bionomics and modelling of 

larval population densities, demographic age structure, 

exposure and age-dependent acquisition of immunity 

against blood-stage infection and clinical episodes, 
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LM detectable 

parasites and PCR 

detectable parasites) 

maternally-acquired immunity, and treatment of 

clinical cases and drug prophylaxis 

Addawe et al., 

(2016) 

Susceptible humans 

(𝑆𝐻)  – Infectious 

humans (𝐼𝐻)  – 

Recovered humans  

(𝑅𝐻) 

Subdivided into two human classes : pre-school 

shildren (≤ 5 years old)  and the rest of the humans (>5 

years old) 

Orwa et al., (2018) Sporozoite (S) – 

Susceptible 

hepatocytes (𝐻)  – 

infected hepatocytes 

(𝐻𝑋)  – susceptible 

red blood cells 

(RBCs) – infected 

red blood cells 

(IBRCs) 𝑅𝑋  – 

morozoites (𝑀) and 

macrophages (𝑍) 

Dynamics of Plasmodium falciparum parasite during 

hepatocytic and erythrocytic stages and their 

interactions with the host’s red blood celss, liver 

hepatocytes and the macrophages in host malaria 

model 

 

These models do not consider the dynamic of malaria disease which lead to stochastic event. Therefore, 

some researchers develop a dynamic malaria model to describe the distribution more realistic. 

2.2.2 Dynamical model 

There are three factors which is caused malaria disease: parasite, human, and vector (mosquito). 

Due to difficulties to calculate the abundance of mosquito, one approach is by utilizing malaria 

transmission model. Besides that, the availability of the dataset is also sparse, takes time, costly and 

more risks to do the sampling observation site. There are some dynamic malaria transmission models 

over the world (Fig. 2.1). 
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Fig. 2.2 Malaria transmission model timeline 

In 1999, MARA (Malaria Risk in Africa) is developed. This model incorporates malaria 

transmission season for locations in Africa based on monthly long-term averages of rainfall and 

temperature (Craig et al., 1999). In 2004, Liverpool Malaria Model (LMM) and MIASMA are 

developed. LMM is a mathematical-biological model of the parasite dynamics, comprising both the 

weather-dependent within-vector stages and the weather-independent within-host stages (Hoshen and 

Morse, 2004). In 2008, UMEA model is developed. This model uses climate and socioeconomic factors 

to determine the spatial distribution of endemic malaria (P. falciparum) transmission (Belguin et al., 

2008). In 2010, Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS) is 

developed to simulate the mechanism between environmental variables (spatially distributed, satellite-

derived vegetation and soil parameters) and malaria transmission with high temporal and spatial 

resolution (Bomblies et al., 2010). HYDREMATS is limited to local scale with 10 m resolution. In 2012, 

Vector-borne infectious disease is developed by International Center for Theoretical Physics, Trieste, 

Italy (VECTRI). VECTRI is a mathematical model for malaria transmission that account for the impact 

of temperature and precipitation variability on development cycle of malaria vector in its larval, adult 

stage and parasite development (Tompkins and Ermert, 2013). This study utilized VECTRI because 

this model could simulate at regional scale and incorporate climate, population density, and surface 

hydrology. VECTRI incorporate precipitation, temperature and population density as forcing datasets. 

Table 2.2.2 Dynamical Model Development 

Author Model Climate/nonclimate/mechanism 

Craig et al., (1999) MARA (Malaria 

Risk in Africa) 

Monthly long-term average of precipitation 

temperature 
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Hoshen and Morse., 

(2004) 

LMM (Liverpool 

Malaria Model)  

weather-dependent within-vector stages and the 

weather-independent within-host stages 

Van Lieshout et al., 

(2004) 

MIASMA 

(Modelling 

framework for the 

heal Impact 

ASsesment of Man-

induced 

Atmospheric 

changes) 

Temperature effect on the survival probability and 

biting frequency of mosquito 

Belguin et al., 

(2008) 

UMEA Climate and socio-economic factors to determine the 

spatial distribution of endemic malaria (P. falciparum) 

transmission 

(Bomblies et al., 

2010). 

HYDREMATS 

(Hydrology 

Entomology and 

Malaria 

Transmission 

Simulator) 

limited to local scale with 10 m resolution 

 

2.3 VECTRI model scheme 

VECTRI is a first spatially explicit malaria model that can simulate at high resolutions by 

incorporating climate, population density and surface hydrology on malaria transmission. VECTRI 

mimics from mosquito life cycle and the mechanism of VECTRI model is described in Fig 2.3. 

 



 
 

19 
 

2 Malaria Disease, Transmission Model and Indicator Number 

Fig. 2.3 VECTRI model scheme (Tompkins and Ermert, 2013) 

Mosquito life cycle start from egg, then its growth into larva. In larva there are four stages of 

development. In this model, larva stage development is described in some yellow boxes. Each x symbol 

in yellow boxes is described larva density with specific fractional growth stage. Mature larva will hatch 

into adult mosquito. In adult stage there are two phase of development, i.e. egg development and 

parasite development. When a parasite inside mosquito’s body in mature stage, it will transmit to host. 

The development of parasite inside host’s body is represented in lower boxes. Like in mosquito’s body, 

when a parasite has enough age, it will transmit to host if a new fertile mosquito bites an infected host 

and spread to a non-infected host. Red arrows represent parasite distribution between host and mosquito. 

direction of development stage of larvae, vectors and host conditions are arranged by curved arrows. 

2.3.1 Larvae stage development  

2.3.1.1 Larvae cycle  

Degree day is a way of measuring insect growth development in response to daily temperature 

introduced by (Detinova, T.S. et al., 1962).. This concept is implemented on larvae growth rate: 

𝑅𝐿 =
𝑇𝑤𝑎𝑡 − 𝑇𝐿,𝑚𝑖𝑛

𝐾𝐿
 (1) 

 

Where 𝑅𝐿is larvae growth rate, 𝑇𝑤𝑎𝑡 is temperature of pools fix offset to the air temperature, 𝑇𝐿,𝑚𝑖𝑛 is 

minimum pool temperature for larvae development and 𝐾𝐿 is larvae growth degree days. In this study,  

𝑇𝑤𝑎𝑡is 20 K (Paaijmans et al., 2008), 𝑇𝐿𝑚𝑖𝑛 is 160 K  (Bayoh and Lindsay, 2003), and 𝐾𝐿 was following 

(Jepson et al., 1947) estimated to be 90.9 degree days. Meanwhile, (Bayoh and Lindsay, 2003)  

approximated 𝐾𝑤 was 200 degree days.  

 

2.3.1.2 Larvae mortality 

Survival rate of larva is calculated as : 

𝑃𝐿,𝑠𝑢𝑟𝑣 = (
1 − 𝑀𝐿

𝑤 𝑀𝐿,𝑚𝑎𝑥
) 𝐾𝑓𝑙𝑢𝑠ℎ 𝑃𝐿,𝑠𝑢𝑟𝑣0 (2) 

Where 𝑀𝐿represents total larvae biomass per unit surface area, 𝑤 is fraction of water coverage of a 

grid for potential mosquito breeding sites, 𝑀𝐿,𝑚𝑎𝑥 is a maximum carrying capacity, 𝑃𝐿,𝑠𝑢𝑟𝑣0 represents 

daily larva survival base, which is set to be 0.825 (Ermert et al., 2011), and 𝐾𝑓𝑙𝑢𝑠ℎ is larvae flushing 

rate, which will be determined from equation (3). Total larvae biomass follows (Bomblies et al., 2008) 

which is assumed to increase linearly for a stage 4 larva, with average mass 0.45 mg. Maximum carrying 

capacity used in this model is 300 mg/m2 (Depinay et al, 2004). If there is no water fraction of water 

coverage (w=0), larva could not survive (𝑃𝐿,𝑠𝑢𝑟𝑣 = 0). 
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𝐾𝑓𝑙𝑢𝑠ℎ = 𝐿𝑓 + (1 − 𝐿𝑓) ((1 − 𝐾𝑓𝑙𝑢𝑠ℎ,∞)𝑒
−𝑅𝑑

𝜏𝑓𝑙𝑢𝑠ℎ + (𝐾𝑓𝑙𝑢𝑠ℎ,∞)) (3) 

 

Where 𝐿𝑓 represents larvae fractional growth state, 𝐾𝑓𝑙𝑢𝑠ℎ,∞ larvae flushing factor for infinite rain 

rate, 𝑅𝑑 is precipitation rate in (mm/day), 𝜏𝑓𝑙𝑢𝑠ℎ is the rate of flushing effect as a function of 

precipitation. In this study, 𝐾𝑓𝑙𝑢𝑠ℎ,∞ = 0.4 and 𝜏𝑓𝑙𝑢𝑠ℎ = 50 mm/day. 

2.3.2 Vector (Adult) stage development  

On adult stage, there are two stages of mosquito development. First, related to egg development known 

as gonotrophic cycle and second, related to parasite development inside mosquito’s body known as 

sporogonic cycle. 

2.3.3 Gonotrophic cycle 

Gonotrophic cycle is time needed from first day of blood searching until adult female put their first 

egg. Gonotrophic cycle describes development of mosquito’s egg. VECTRI model assumed that 

mosquito found a blood meal in the first night of searching. Therefore, after blood meal taken, egg 

development, which follows degree day concept, is calculated as: 

𝑅𝑔𝑜𝑛𝑜 =
𝑇2𝑚 − 𝑇𝑔𝑜𝑛𝑜,𝑚𝑖𝑛

𝐾𝑔𝑜𝑛𝑜
 (4) 

 

where 𝑇2𝑚 is 2 meter air temperature, 𝑇𝑔𝑜𝑛𝑜,𝑚𝑖𝑛 is minimum 𝑇2𝑚 for egg development, and 𝐾𝑔𝑜𝑛𝑜 is 

gonotrophic cycle degree days. In this study, 𝑇𝑔𝑜𝑛𝑜,𝑚𝑖𝑛 = 7.70C and 𝐾𝑔𝑜𝑛𝑜 = 37.1 K day.  

2.3.4 Sporogonic cycle 

Sporogonic cycle describes parasite development inside mosquito’s body. During blood searching 

meal, there is a probability to transmit parasite between vector and human or vice versa. The 

transmission probability from an infected host to the vector  is assumed to be constant  𝑃ℎ𝑣 = 0.2 based 

on (Ermert et al., 2011) Then, transmission probability is calculated by: 

𝑃ℎ→𝑣 =
𝐻𝑖𝑛𝑓

𝐻
𝑃ℎ𝑣 (5) 

 

Where 𝐻𝑖𝑛𝑓 is infected  host population density and 𝐻 is total host population density. The ratio of 

vector got infected and parasite development inside vector’s (sporogonic cycle) following degree day 

concept: 
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𝑅𝑠𝑝𝑜𝑟𝑜 =
𝑇2𝑚 − 𝑇𝑠𝑝𝑜𝑟𝑜,𝑚𝑖𝑛

𝐾𝑠𝑝𝑜𝑟𝑜
 (6) 

 

Where 𝑇𝑠𝑝𝑜𝑟𝑜,𝑚𝑖𝑛 is minimum 𝑇2𝑚  for sporogonic cycle (𝑇𝑠𝑝𝑜𝑟𝑜 = 160𝐶) and 𝐾𝑠𝑝𝑜𝑟𝑜  is sporogonic 

cycle degree days (𝐾𝑠𝑝𝑜𝑟𝑜 = 111 K day).  

2.3.5 Vector survival 

Non-linear relation between vector mortality and air temperature is described as a quadratic 

equation in Marten I and II scheme. The higher air temperature increases the higher vector mortality. 

Vector survival probability following scheme: 

Marten I scheme :  

𝑃𝑉,𝑠𝑢𝑟𝑣1 = 0.45 + 0.054 𝑇2𝑚 − 0.0016 𝑇2𝑚
2  (7) 

Marten II scheme :  

𝑃𝑉,𝑠𝑢𝑟𝑣2 = exp (−
1.0

−4.4 + 1.31 𝑇2𝑚 − 0.03 𝑇2𝑚
2 ) (8) 

 

This study used the Marten II scheme (revised version of Marten I) since in Marten I scheme vector 

survival probability starts earlier air temperature, in 200 C (Asare, 2015) 

2.3.6 Host and vector transmission  

Since in VECTRI incorporate population density, the average number of bites per human is 

estimated as follow: 

ℎ𝑏𝑟 = (1 − 𝑒
−𝐻

𝜏𝑧𝑜𝑜
 
)

∑ 𝑉 (1, 𝑗)
𝑁𝑠𝑝𝑜𝑟𝑜

𝑗=1

𝐻
 (9) 

 

where (1 − 𝑒
−𝐻

𝜏𝑧𝑜𝑜
 
) is the level of vector zoophily and  

∑ 𝑉 (1,𝑗)
𝑁𝑠𝑝𝑜𝑟𝑜
𝑗=1

𝐻
 is the proportion of biting vectors 

to hosts. Population density zoophilic factor (𝜏𝑧𝑜𝑜) used in this study is 50/𝑘𝑚2. 

The daily transmission probability from a person can be calculated as: 

𝑃𝑣→ℎ = ∑ 𝐺𝐸𝐼𝑅𝑑̅̅ ̅̅ ̅̅ ̅(𝑛) (1 − (1 − 𝑃𝑣ℎ)𝑛)

∞

𝑛=1

 (10) 
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Where 𝐺𝐸𝐼𝑅𝑑̅̅ ̅̅ ̅̅ ̅(𝑛) is the Poisson distribution for mean 𝐸𝐼𝑅𝑑
̅̅ ̅̅ ̅̅ ̅  and (1 − (1 − 𝑃𝑣ℎ)𝑛) is the transmission 

probability of n infective bites per person. 𝐸𝐼𝑅𝑑
̅̅ ̅̅ ̅̅ ̅  is daily average of infectious bites per person per 

day. This number is calculated from hbr multiply by circumsporozoite protein rate (CSPR: percentage 

of parasite on vector’s body).    

𝑃𝑣ℎ is transmission probability from vector to host per bites per infective vector and assumed constant 

(𝑃𝑣ℎ = 0.3)  (Ermert et al., 2011). 

2.3.7 Surface hydrology/small surface water 

Fractional surface water coverage of each grid for mosquito breeding places is defined as 𝑤. This 

fraction is determined by permanent water bodies (𝑤𝑝𝑒𝑟𝑚) add with temporary ponds (𝑤𝑝𝑜𝑛𝑑) as in 

equation (11): 

𝑤 = 𝑤𝑝𝑜𝑛𝑑 + 𝑤𝑝𝑒𝑟𝑚 (11) 

In this model, permanent water body is constant and set to be zero. This is because larvae need a stagnant 

surface water body to develop (Sattler et al., 2005). 

Coverage is simply linearly to pond coverage and calculated from equation (12): 

𝑑𝑤𝑝𝑜𝑛𝑑

𝑑𝑡
= 𝐾𝑤(𝑃 (𝑤𝑚𝑎𝑥 − 𝑤𝑝𝑜𝑛𝑑) − 𝑤𝑝𝑜𝑛𝑑(𝐸 + 𝐼) )  (12) 

Where 𝐾𝑤  is pond growth rate parameter, 𝑃  is precipitation, 𝑤𝑚𝑎𝑥  is maximum waterfraction, 𝐸 is 

evaporation rate, and 𝐼 is infiltration rate. VECTRI default 𝐾𝑤, 𝐸, and 𝐼 to bet constant, with 𝐾𝑤 =

0.001, 𝐸 = 5 mm/day, and 𝐼 = 245 mm/day. 

2.4 Malaria Indicator Number 

To describe malaria risk number, researchers set some malaria indicator numbers from observation 

site study, such as Human Bite Rate (HBR), Circumsporozoite Protein Rate (CSPR), Entomological 

Inoculation Rate (EIR), malaria incidence rate, Plasmodium falciparum Parasite Rate (PFPR), and 

Basic Reproduction Number (𝑅0). 

2.4.1 Human Bite Rate (HBR) 

HBR was calculated by dividing the number of An. funestus and An. gambiae s.s. vectors from 

CDC LTs by the number of people sleeping in the household the night of the collection. The challenges 

to collect mosquito using CDC LTs is mosquito traps to catch mosquito outdoors which is expensive 

and need to charge the battery to utilized (Kilama et al., 2014). One of method to determine this number 

is called Human Landing Catch (HLC). Mosquito collector catch and collect mosquito which come into 

their exposed hand. Human Bite Rate (HBR) is average number of bites per person per night. This 

number calculated by examining the number of mosquito bite human per human in a period then divided 
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by the number of days. The equipment to catch mosquito is called aspirator or pooter pipe as described 

in Fig 2.4.1 (a).  

 

Fig. 2.4.1 (a) Aspirator or pooter 

Aspirator or pooter consist of a glass or plastic pipe and a rubber. This rubber is installed at one end of 

the pipe and a filter is installed to obstruct mosquito enter into the tube. The collectors catch mosquito 

which come into them as describe in Fig 2.4.1 (b). This figure represents mosquito catchment 

methodology called Human Landing Catch (HLC). 

 

Fig 2.4.1 (b) Human Landing Catch (HLC) process 

Mosquito collector was sitting inside or outside house overnight without cover their arms and legs. 
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2.4.2 Circumsporozoite Protein Rate (CSPR) 

Circumsporozoite Protein Rate (CSPR) is the percentage of parasite of malaria disease inside mosquito 

body. CSPR is calculated by CSP-ELISA method to separate thorax, abdomen, and salivary gland test. 

CSPR method is described in Fig. 2.4.2. 

 

Fig 2.4.2 Dissection of salivary glands on Anopheles (Saotoing P. et al., 2013) 

Figure 2.4.2 illustrate various stages of dissection of the salivary glands of adult female Anopheles. Step 

1 -4 describe stages of dissection and (a) – (g) describe each part of the process. Start with (a) thorax of 

Anopheles, (b) salivary gland of Anopheles, (c) head of Anopheles (d) needle attached, (e) saline and 

salivary glands, (f) salivary gland covered with leaf, and (g) sporozoites. 

2.4.3 Entomological Inoculation Rate (EIR) 

Entomological Inoculation Rate (EIR) is the average number of infections caused by the bite of an 

infected mosquito in the population of the area (infected bites/person/per unit time). EIR is calculated 

by multiplication of HBR and CSPR. There are some uncertainties of EIR from observation site, such 

as: different time period to collect mosquito, different number of sampling area or household and 

different species in observation site. 

2.4.4 Malaria Incidence Rate 

Malaria incidence rate was estimated as the number of malaria cases per 1000 population at risk (de 

Oliveira Padilha et al., 2019).  

2.4.5 Plasmodium falciparum Parasite Rate 

Plasmodium falciparum parasite rate (PfPR) is an index to represent malaria transmission intensity. 

PfPR is related to EIR number at the steady state (Smith et al., 2007). PfPR increase during early 
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childhood due to related to age and transmission intensity (Gupta et al., 1999) and decrease in teenage 

and adult due to increasing immunity of malaria (Baird et al., 1991) 

2.4.6 Basic Reproduction Number (𝑹𝟎)  

Basic reproduction number (𝑅0) define as an index of transmission intensity and threshold criteria of 

the transmission.  (Smith et al., 2007). If  𝑅0 uis higher than one, the number of people get infected by 

the parasite increase. If 𝑅0 is less than one, the number  of people get infected decrease. 
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CHAPTER  3  

Material and Methods  

Abstract: 

This chapter explain the methodology used in this study. Starting from running malaria model on 

historical period, collecting existing observation datasets in historical period, validating simulation on 

historical period, calibrating and optimizing pond growth rate, running malaria model on projection 

period and analyze simulation results on historical and projection period to examine malaria trend and 

impact of climate change. Three experiments on historical period (one experiment for validation of EIR 

from 1983-2006, and two experiments for calibration water fraction from 2014-2018) and one 

experiment for future period under three SSP scenario from 2020-2100 are conducted in this study. 

Availability of observation datasets also explain and available in some countries, i.e. Senegal, Republic 

of Congo, Burundi, Gambia, Democratic Republic of Congo, Gabon, Cameroon, Eritrea, Uganda, 

Zambia, Tanzania, and Kenya.  

3.1 Methodology 

The methodology used in this study described in Fig. 3.1. 
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Fig. 3.1 Methodology 

Methodology used in this study starts with run malaria transmission model, collect observation 

dataset, validate simulation on historical result to all observation site studies, optimize pond growth rate 

parameter, run simulation of projection period, and analyze simulation on historical and projection 

period. Firstly, running VECTRI model on three historical periods is conducted. Optimization of pond 

growth rate parameter is divided into two steps. First step, calibration of pond growth rate parameter 

against Entomological Inoculation Rate on first historical period. Second step, calibration of pond 

growth rate parameter against observation surface water on second and third historical period. To 

optimize pond growth rate from both step, a scaling factor is needed by implementing topography factor. 

After scaling factor is derived, an interpolation is needed to predict unknown value of an optimized 

pond growth rate parameter in spatial domain of Africa. An optimized pond growth rate parameter will 

be used to simulate malaria transmission on projection period. Finally, analyzing historical simulation 

and projection simulation to investigate the change or trend of malaria transmission. 

This study starts from running VECTRI model for historical period with forcing datasets. The 

next step is collecting observation dataset to be used for validation the model result. After collection 

Entomological Inoculation Rate (EIR) for validation, the comparison between EIR model result and 

EIR observation is conducted. After that, simulate malaria transmission for projection period. Finally, 

analyze historical and future period to examine the changing of malaria transmission in the past and 

future period.  

3.2 Experimental design 

To run the model, some forcing datasets is needed as input data. 

3.2.1 Forcing datasets used in VECTRI model 

To do the simulation, several forcing datasets used in this study: 

1. Precipitation:  

a. CPC/Africa Rainfall Climatology 2 with 0.1x0.1 degree resolution 

b. Tropical Rainfall Measuring Mission (TRMM) with 0.1 x 0.1 degree resolution) 

2. Temperature: ERA-interim with 0.1x0.1 degree resolution 

3. Topography: USGS EROS Archive – Digital Elevation – Global 30 Arc-Second Elevation 

(GTOPO30) 

4. Population density: Socioeconomic Data and Application Center (SEDAC) with 30 arc degree 

resolution 

5. Water fraction: Global Satellite Mapping of Wet Surface (GSMaWS) with 0.1 x 0.1 degree 

resolution  

6. Projection:  
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a. Precipitation: CMIP6 with 0.1x0.1 degree resolution for RCP scenario 2.6, 7.0 and 

8.5 

b. Temperature: CMIP6 with 0.1x0.1 degree resolution using SSP scenario 2.6, 7.0 and 

8.5 

c. Population density: SEDAC with 0.1x0.1 degree resolution using SSP scenario 1, 3 

and 5 

3.2.2 Simulation Domain  

This study analyses malaria transmission in African region.  

 

Fig. 3.2 Topography map of Africa (meter) 

With latitude 380N and -380S, longitude -200W and 550E.  

3.2.3 Simulation scenario used in this study: 

This study conducted 3 scenario of simulation. Two scenario for historical period and one scenario for 

future period. All scenario listed Table 3.2  

Table 3.2 Simulation scenario for historical and future period 

Experiment 

Name 

Simulation 

Period 

Precipitation Temperature Population 

density 

Water fraction 
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HIST-1  Historical period  

       (1983-2006) 

 CPC/Africa 

Rainfall 

Climatology 2 

ERAIN SEDAC Calculated in the 

model 

HIST-2 Historical period 

     (2013-2018) 

TRMM ERAIN SEDAC  Calculated in the 

model 

HIST-3 Historical period 

     (2013-2018) 

TRMM ERAIN SEDAC  GSMaWS 

PROJECT-1 Projection period 

     (2020 – 2100) 

CMIP6 CMIP6 SEDAC Calculated in the 

model 

 

Due to availability of EIR observation is limited (from 1983 – 2006), we used CPC/Africa Rainfall 

Climatology 2 for precipitation in HIST – 1 experiment. From HIST – 1 experiments, pond growth rate 

(𝐾𝑤) parameter is tuned against EIR to derived EIR simulation value is close to EIR observation. 

For recent simulation period, we used TRMM for precipitation in HIST – 2 and HIST – 3 experiment. 

HIST – 2 and HIST – 3 experiment is used to derived optimized of pond growth rate parameter by 

minimizing the root mean square deviation of water fraction simulation and observation.  

Optimized pond growth rate parameter against EIR from HIST – 1 and against water fraction from 

HIST – 2 and HIST – 3 are obtained. By optimizing this two optimized pond growth rate parameter, an 

optimized pond growth rate parameter is derived. Then, this optimized pond growth rate parameter will 

be used to conduct simulation in future period. 

 

3.3 EIR observation sites for historical period 

 EIR observation from literature studies 1983 – 2006 :  
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Fig. 3.3.a. EIR observation site in Africa 

Fig. 3.3.a represents EIR observation in some sites in Africa from 1983 – 2006. Blue dots represent 

location of EIR annual datasets. The detail of EIR observation sites are explained in Appendix 1. 

 

Fig 3.3.b Distribution of annual EIR in some observation sites in Africa 

(Le Masson et al.,1997) 

(Trape et al.,1987) 

(Van Bortel et al.,1996) 

(Lindsay et al.,1991,1993) (Thomson et al.,1994) 

(Coene.,1993) (Karch et al.,1992, 1993) 

(Elissa et al., 2003) 

(Fondjo et al., 1992) 

(Njan Nloga et al., 1993) 
(Antonio-Nkondjio et al., 2012) 

(Cohuet.) 

(Shililu et al., 2003) 

(Okello et al., 2006) 

(Kent., 2007) 
(Shiff et al., 1995) 
(Smith et al.,1993) (Bodker et al., 2003) 

(Muturi et al., 2008) (Mbogo et al., 1993) 
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Fig 3.3.b describe distribution of EIR annual and monthly EIR in some observation sites in Africa. Blue 

circle represent location of annual EIR observation in Africa. EIR annual observation were located in 

12 country, as : Senegal, Republic of Congo (Rep.Congo), Burundi, Gambia, Democratic Republic of 

Congo (DRCongo), Gabon, Cameroon, Eritrea, Uganda, Zambia, Tanzania, and Kenya.  
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CHAPTER 4  

Malaria Transmission on Historical Period 

 

Abstract:  

Availability of surface water is a critical for mosquito breeding places (Emidi et al., 2017). 

Mosquitoes needs a stagnant water for laying their eggs. Representation of small surface water 

is not realistic enough in malaria transmission model. Surface water formation parameter is 

assumed constant in VECTRI model setting. By doing sensitivity analysis of this parameter 

could increase validation of EIR. Surface water satellite dataset is used to calibrate EIR on 

historical period. By calibrating surface water parameter against EIR and surface water 

calculated from model setting, an optimized number of surface water formation parameter 

could be estimated. Surface water optimized from tuning against EIR and surface water 

optimized from calibrating against water fraction will be used to determine an optimized pond 

growth rate parameter (𝐾𝑤). This 𝐾𝑤 will be used to predict malaria transmission in the future. 

4.1 Seasonal climate over Africa  

In Africa, based on peak precipitation is divided into three categories: unimodal, bimodal, 

and trimodal. Unimodal is a region where only have one precipitation peak. Bimodal is a region 

which has two precipitation peak. Trimodal is a region which has three precipitation peak. 

 

Fig. 4.1 Spatial distribution daily mean precipitation (mm/day) 1983-2006 
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In West Africa and Horn of Africa, it has only one precipitation peak or unimodal. Monthly 

mean precipitation of Senegal and Gambia in West Africa and Eritrea in Horn of Africa is 

described in Fig.4.1.1 

 

Fig. 4.1.1 Monthly mean precipitation, maximum and minimum temperature in Barkendji 

(Senegal), Dasilami(Gambia) and Adibosqual (Eritrea) from 1983-2006 (bar: monthly 

precipitation, red line: maximum temperature, blue line: minimum temperature) 

In Barkendji (Senegal) and Dasilami (Gambia), precipitation peak is from July – September 

with the highest amount is mm and mm, respectively. Meanwhile in Adibosqual (Eritrea), 

precipitation peak is from July – August., with mm. Maximum and minimum temperature in 

Barkendji (Senegal) is in range 15 – 40 0C, with the peak of maximum temperature is on 

October with x0C and peak of minimum temperature is on January with 0C.  

In Central Africa, South-Central Africa, and West-Central Africa, have two precipitation 

peaks or bimodal. Monthly mean precipitation of Democratic Republic of Congo, Cameroon 

in Central Africa, Tanzania in South-Central Africa and Gabon West Central Africa is 

described in Fig.4.1.2  
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Fig. 4.1.2 Monthly mean precipitation, maximum and minimum temperature in Kinkole 

(Democratic Republic of Congo), Bikok (Cameroon), Bagamoyo (Tanzania), and Benguia 

(Gabon) from 1983-2006 (bar: monthly precipitation, red line: maximum temperature, blue 

line: minimum temperature) 

In Kinkole (Democratic Republic of Congo), Bagamoyo (Tanzania), Benguia (Gabon), first 

precipitation peak is from March – April and second peak is from October – November. 

Meanwhile, in Bikok (Cameroon), first precipitation peak is from April – May and second peak 

is from September – October. Precipitation in Bagamoyo (Tanzania) is the lowest compared to 

other three sites and has no precipitation on June – September (dry season). In Bikok 

(Cameroon), the lowest precipitation peak is January. Meanwhile in Benguia (Gabon) and 

Kinkole (Democratic Republic of Congo), the lowest precipitation peak is July. Maximum and 

minimum temperature in Kinkole (Democratic Republic of Congo) and Benguia (Gabon) is in 

range 20 – 30 0C. Temperature in Bagamoyo (Tanzania) is decreasing from July into December.  

 

4.2 Parameterization of pond growth rate on historical period  

Small surface water is a critical place for mosquito breeding places (Emidi et al., 2017). But, 

surface water is not currently realistic represented in malaria transmission model (Tompkins, 
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and Ermert, 2013). Therefore, a satellite observation of water fraction is used to represented a 

more realistic model. Calculation of water fraction is highly determined by pond growth rate 

(𝐾𝑤) parameter (as in equation (12)). To achieve optimized EIR simulation fit well to EIR 

observation, experiment from HIST-1 and HIST-2 are conducted. 

From experiment HIST-1, precipitation, temperature, topography and population density are 

used as a forcing data to tune 𝐾𝑤 parameter against EIR. Meanwhile, from experiment HIST-

2, precipitation, temperature, topography, population density, and water fraction observation 

are utilized to tune 𝐾𝑤  parameter against water fraction. From this two experiments, the 

optimized 𝐾𝑤 parameter could be derived.  

4.2.a EIR annual by tuning pond growth rate (𝐾𝑤) in Benguia, Gabon, West-Central Africa from 

experiment HIST-1 

 

Fig. 4.2(a) EIR annual in Benguia, Gabon, West-Central Africa, 2003 with tuning pond growth rate 

(𝐾𝑤) parameter 

Fig 4.2(a) describes relation between 𝐾𝑤 and EIR observation and simulation in Benguia, Gabon. EIR 

annual observation in Gabon is 239.1054. By using default setting of 𝐾𝑤 = 0.001  EIR annual 

simulation with default setting (CTRL) is 356.7138. If 𝐾𝑤 parameter is increased into 2x from default 

setting (𝐾𝑤 = 0.002), EIR annual simulation decrease into 288.672. Then, if 𝐾𝑤 is increased into 3x, 

4x, and 5x from default setting, EIR annual model will be 240.744, 203.818, and 174.49 respectively. 

EIR annual optimized will be achieved when 𝐾𝑤 is 3.04x default setting (𝐾𝑤 = 0.00304). The higher 

𝐾𝑤 , the lower EIR number. Physically, if the small surface number fill in by the pond growth rate, the 
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surface water will be filled by water quickly and mosquito could not stay longer on that surface water 

because mosquito needs a stagnant place to growth (the surface water would be filled by precipitation).  

 

Fig 4.2(b) EIR annual with tuning 𝐾𝑤 in three observation sites in Democratic Republic of Congo,  

Central Africa 

Fig 4.2(b) describes EIR simulation in three observation sites in Democratic Republic of Congo,  

Central Africa. EIR observations in Kimbangu and Kwamutu are 24.322 and 3.989, respectively for 

1988. EIR observations in Mbansale is 175.2 for 1990. By using  default setting 𝐾𝑤 = 0.001, EIR 

simulation overestimates in Kimbangu and Kwamutu in the year of 1988 and in Mbansale in the year 

of 1990. EIR annual default setting (CTRL) in Kimbangu, Kwamutu and Mbansale are 123.261, 

138.268, and 207.452 respectively. If we do sensitivity of parameter 𝐾𝑤 by increasing into 5x, 10x, 15x 

and 20x from the default setting, EIR simulation will be decreased until EIR with 𝐾𝑤 optimized number 

is achieved. In Kimbangu and Kwamutu, EIR simulation with 𝐾𝑤  optimized is derived with 𝐾𝑤 =
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0.00752  and 𝐾𝑤 = 0.01959, respectively in 1988. Meanwhile, in Mbansale, EIR simulation with 

optimized 𝐾𝑤 is derived with 𝐾𝑤 = 0.00164 in 1990. From Fig. 4.1(b), EIR simulation with optimized 

𝐾𝑤 parameter are achieved with various number (𝐾𝑤 is not constant) in each site observations. 

 

Fig 4.2(c) EIR annual with tuning 𝐾𝑤 in Chidakwa, Zambia, Southern Africa 

Fig 4.2(c) describes EIR observation in Chidakwa, Zambia, Southern Africa in 2005. From Fig. 4.1(c), 

EIR observations are 1.608 in Chidakwa, Zambia. EIR simulation with default setting (CTRL) in an 

observation site in Zambia overestimate, i.e. 4.01E-07. If sensitivity analysis is conducted for 𝐾𝑤 by 

decreasing into 0.1x, 0.5x, 0.01x and 0.05x, EIR simulation will be increased. EIR simulation in 

Chidakwa is optimized when 𝐾𝑤 is 0.52x from EIR default setting (𝐾𝑤 = 0.00052). Fig. 4.2(a) - Fig. 

4.2(c) explain that optimized pond growth rate parameter is not constant in all sites.  

Plot spatial trend relation in all Africa grid between EIR observations vs Kw pond growth rate optimized 
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Fig 4.2(d) EIR simulation vs EIR with optimized 𝐾𝑤 parameter in all observation sites with colorbar 

represents topography  

Fig. 4.2(d) describes optimized 𝐾𝑤 parameter (by tuning 𝐾𝑤 against EIR from experiments HIST – 1) 

compare with EIR simulation in all observation sites in Africa. From this scatter plot, there is not clear 

relationship between 𝐾𝑤 parameter and EIR observation. If we see from the distribution of 𝐾𝑤 and EIR 

observation, if 𝐾𝑤 parameter,  

This figure represents the higher pond growth rate (𝐾𝑤), the lower EIR simulation from the model. 
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Fig 4.2(e) EIR observation distribution over Africa 

 

Fig 4.2(e) 𝐾𝑤 optimized distribution over Africa 

From Fig 4.2(d) and Fig 4.2(e), EIR observation and Kw optimized is various in each sites, not related 

each other. 

4.3 Water fraction observation and model calculation  

An optimized parameter of pond growth rate (𝐾𝑤) from HIST – 2 and HIST – 3 is derived by 

minimizing root mean square deviation of water fraction from model calculation and water fraction 

from observation.  
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Correlation between water fraction observation and model calculation is described in Fig. 4.3 

 

Fig 4.3 Spatial correlation between water fraction observation and model calculation 

Correlation water fraction observation and water fraction calculated from the model near desert areas 

are neglected because in desert area malaria transmission could not transmit. An optimum temperature 

for malaria transmission is 290 C, with minimum and maximum temperature of 120 C and 380 C (Saphiro 

et al., 2007). Correlation between water fraction observation and water fraction simulation is 0.377. By 

examining this correlation distribution map, an optimized 𝐾𝑤 parameter is estimated. 

4.4 Scaling factor and interpolation of pond growth rate 

After an optimized pond growth rate parameter (𝐾𝑤) is derived from HIST – 1 to HIST – 3, by tuning 

𝐾𝑤  against EIR and water fraction, a scaling factor and an interpolation are needed to smooth the 

calculation of 𝐾𝑤 which will be used for future period. 

4.4.1 Scaling factor of pond growth rate 

 

      

 

Fig 4.2.1 Methodology to optimized pond growth rate parameter 

Fig.4.2.2 tuning pond growth rate parameter against EIR is conducted to derived a good model result 

using experiment HIST – 1, meanwhile tuning pond growth rate parameter against water fraction is 

conducted to minimized minimum root mean square deviation between water fraction observation and 

water fraction simulation. 

HIST – 2 & HIST -3 

HIST – 1 Tuning pond growth rate parameter against EIR  

Tuning pond growth rate parameter against water fraction  

scaling 

factor 
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𝐾𝑤𝑒′ = 𝛼 × 𝐾𝑤𝑔 × 𝑧 (13) 

From equation (13):  

𝛼 =
𝐾𝑤𝑒′

𝐾𝑤𝑔 × 𝑧
 

 

Where 𝐾𝑤𝑒′ , is pond growth rate optimized against EIR observation, 𝐾𝑤𝑔  is pond growth rate 

optimized against water fraction, 𝑧  is topography, and 𝛼  is a scaling factor. To derive malaria 

transmission projection more realistic, a scaling factor is calculated from pond growth rate optimized 

against EIR from HIST – 1 divided by multiplication of pond growth rate optimized against water 

fraction from HIST – 2 and HIST – 3 and topography. Topography give impact to the number of pond 

growth rate optimized. In some part of high elevation, 𝐾𝑤 optimized is also high. In lower latitude, Kw 

optimized is also lower. 

 

Fig. 4.4.1 Scaling factor in all EIR observation sites with colorbar represents range of scaling factor 

From equation (13), a scaling factor is calculated. This scale is needed to refine 𝐾𝑤 parameter. Due to 

EIR observations are limited to some observation sites, an interpolation is conducted to derive a spatial 

scaling factor to be multiplied with 𝐾𝑤 optimized from calibration with water fraction. 

4.4.2 Inverse distance weighting interpolation 

Due to limited number of observation site, an interpolation method is used to interpolate unknown value 

of pond growth rate parameter to be more realistic. Inverse distance weighting method will be used to 

interpolate pond growth rate parameter. This interpolation has been applied in various spatial GIS 

problem, such as interpolate rainfall (Dirks et al., 1998), mesh deformation (Witteveen and Bijl., 2009), 

mapping soil properties (Robinson and Metternicht., 2006), and soil heavy metal pollution (Xie et al., 

2011). This method assumes the characteristic of some points with nearby locations are similar, but 
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their similarity is vice versa with the distance between them (Lu and Wong., 2008). Calculation of 

unknown value could be formulated as in equation (14):  

𝑧𝑝 =

∑ (
𝑧𝑖

𝑑𝑖
𝑝)𝑛

𝑖=1

∑ (
1

𝑑𝑖
𝑝)𝑛

𝑖=1

 (14) 

Where 𝑧𝑝 is point that will be interpolated (unknown point), 𝑧𝑖 is known point from point that will be 

interpolated, 𝑑𝑖
𝑝

 is distance from point that will be interpolated and 𝑛 is number of known point. 

 

Fig. 4.4.2 Scaling factor after applying simple inverse distance weighting interpolation  

From this interpolation, we derive spatial map for scaling factor to be multiply with 𝐾𝑤𝑒′. Then, 𝐾𝑤 

optimized is derived to be used in future period. Due to known points (EIR observations) are very 

limited, interpolation result is in close range. 

4.5 Optimized pond growth rate parameter 

Pond growth rate optimized parameter is derived from multiplication of scaling factor (𝛼) with pond 

growth rate optimized from HIST – 1, HIST – 2 and HIST – 3 and topography, which is denoted in 

equation . 
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Fig. 4.5 Optimized pond growth rate parameter to be used in future simulation 

4.6 Water fraction observation and precipitation observation 

 

Fig 4.3 Precipitation and Observation site correlation 

b 

c 

d a 
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(a) Lon 200 E, Lat 200 N, corrcoef=-0.696 (b)  Lon 00 E, Lat 100 N, corrcoef=0.885 

  

(c) Lon 200 E, Lat -100 S, corrcoef=-0.309 (d) Lon 200 E, Lat 100 N, corrcoef=0.737 

Fig 4.3 (a)-(d) waterfraction observation and precipitation observation. In dry area, site (b) and (d), 

correlation between precipitation and observation is higher than in non-dry area (site (a) and (c). In 

site (c), there is no precipitation for May – July. Red line represents precipitation from observation 

and blue line represents water fraction observation. 

4.7 Relationship between 𝑲𝒘 parameter and EIR 

 

 

 

 

 

 

 

 

Fig 4.7 Scheme of Entomological Inoculation Rate (EIR) and pond growth rate 

(𝐾𝑤) parameter relationship 
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Scheme of relationsip between Entomological Inoculation Rate (EIR) and pond growth rate 

parameter (𝐾𝑤) is described in Fig. 4.7. From this study, we can increase or decrease value of 

EIR by tuning 𝐾𝑤  parameter. EIR is multiplication of human bite rate (hbr) and 

Circumsporozoite Protein Rate (CSPR). As defined in chapter 2.3, hbr defines as average 

number of bites per person per night. It calculated from the level of zoophily vector multiply 

by proportion of biting vectors to host divided by population density of host. Meanwhile, CSPR 

is determined by the number of vector which contain parasite on sporogonic cycle. The number 

of vector is highly determined by the number of larva which can survive until mosquito stage. 

Larva survival rate is determined by the availability of temporal water pond. Larva survival 

rate is calculated from equation (2) :  

𝑃𝐿,𝑠𝑢𝑟𝑣 = (
1 − 𝑀𝐿

𝑤 𝑀𝐿,𝑚𝑎𝑥
) 𝐾𝑓𝑙𝑢𝑠ℎ𝑃𝐿,𝑠𝑢𝑟𝑣0 

Larva survival rate is determined by total larvae biomass per unit surface area (𝑀𝐿), water 

fraction (𝑤), maximum carrying capacity (𝑀𝐿,𝑚𝑎𝑥), daily larva survival base (𝑃𝐿,𝑠𝑢𝑟𝑣0) and 

larvae flushing rate (𝐾𝑓𝑙𝑢𝑠ℎ). If there is no water fraction (𝑤 = 0), larva could not survive 

(𝑃𝐿,𝑠𝑢𝑟𝑣 = 0).  Water fraction changes is determined by pond growth rate parameter  (𝐾𝑤), 

precipitation  (𝑃), maximum water fraction (𝑤𝑚𝑎𝑥), infiltration (𝐼) and evaporation  (𝐸) as 

mentioned in equation (12).  From this scheme, we can see clearly the relationship between 

EIR and 𝐾𝑤 parameter. 

4.8 Conclusion 

There are two precipitation categories which have similar location to EIR observation in Africa, i.e. 

unimodal (one precipitation peak) and bimodal (two precipitation peaks). Location which has unimodal 

include Senegal and Gambia (West Africa) and Eritrea (Horn of Africa), the precipitation ranges are 0 

– 160 mm per month. Location which has bimodal include Democratic Republic of Congo, Cameroon, 

Tanzania and Gabon. Tanzania is drier compared to other region. In Democratic Republic of Congo, 

Cameroon and Gabon, precipitation is in range 0 – 250 mm per month, meanwhile in Tanzania 

precipitation is between 0 – 100 mm per month.  

Parameterization of pond growth rate (𝐾𝑤) against EIR number is various in each observation sites. 

But, there is not clear relationship between 𝐾𝑤 parameter and EIR observation if we analyzed from all 

EIR observation sites in this study. Water fraction observation and model calculation has correlation 

0.377.  EIR optimized against water fraction is calculated by minimizing root mean square deviation 

between water fraction observation and model calculation. 
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By tuning pond growth rate parameter against EIR and water fraction from HIST – 1 to HIST – 3, a 

scaling factor is calculated to get a better pond growth rate parameter. After calculation of scaling factor, 

inverse distance weighting interpolation is applied to interpolate unknown pond growth rate optimized. 

Then, by multiplying pond growth rate tuned against water fraction and topography, pond growth rate 

optimized is obtained. 
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CHAPTER 5  

Malaria Transmission on Projection Period 

 

Abstract:  

Complex relationship between climatic factor and malaria transmission encourage 

researchers to analyze impact of climate change in future period. This study utilized CMIP6 

dataset for precipitation and temperature projection under RCP 2.6, RCP 7.0, and RCP 8,5 scenario and 

SEDAC for population density with SSP1, SSP3 and SSP5. To correct precipitation a bias correction 

method is applied by determining a scaling factor of precipitation from model output comparing to 

observation dataset. On projection period, temperature will increase in some locations. Meanwhile, 

precipitation will increase or decrease regarding the emission scenario and location. Change of 

temperature does not give significant impact to EIR calculation. Meanwhile, precipitation give 

significant impact EIR in future simulation, Population density give proportionally impact in increasing 

or decreasing malaria transmission in the future period. Precipitation characteristic, such as monthly 

average, standard deviation and consecutive wet days (CWD) drivers on EIR. On projection period, 

malaria transmission increasing in western part and central part of Africa in line with increasing 

emission scenario. Increasing malaria transmission under RCP 8.5 is higher compare to RCP 2.6 and 

RCP 7.0. Increasing EIR in western part is determined by monthly average precipitation, meanwhile 

increasing EIR in central and south east Africa is affected by CWD. 

 

5.1 Data used and bias correction method 

Data used in this study precipitation and temperature from CMIP6 using MIROC output for 

precipitation and temperature. This study used linear bias correction (Lafon et al., 2013) scheme for 

malaria transmission. First, determine a scaling factor for this number. 

𝑎 =
�̅�

�̅�
  (15) 

Where 𝑎 is scaling factor, �̅� is observed CMIP6 monthly precipitation, and �̅� is predicted monthly 

precipitation. Monthly scaling factor is applied to each uncorrected daily observation of the month, 

generating the corrected daily time series. Linear correction method is similar with delta change method 

(Hay et al., 2000). From this scaling factor, a daily simulation precipitation for projection period will 

be corrected by: 
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𝑃∗ = 𝑎 𝑃  (16) 

Where 𝑃∗ is corrected daily precipitation and 𝑃 is simulation daily precipitation. 

5.2 Precipitation, temperature and population density in projection period   

Representative Consentration Pathways (RCP) describe pathways of radiative forcing. RCP represents 

the range of greenhouse gas radiative forcing values from 2.6 to 8.5 W/m2 (Nazarenko et al., 2015). 

This study selects three RCP scenarios, which represent low, medium and high emission scenario, 

respectively. Before analyzing malaria projection in future period, precipitation, temperature and 

population density in future period is important to be examined to analyze the trend in projection. The 

climate trend under three scenarios are explained in the following subsection. 

Shared Socioeconomic Pathways (SSPs) is a scenario to investigate future climate impact, 

vulnerabilities, adaptation and mitigation (Riahi et al., 2017). SSPs based on five scenarios which 

represent alternative socio-economic developments, which take into account sustainable development, 

regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. This study 

utilize three SSPs scenario. 

5.2.1 Precipitation, temperature and population density projection period in Barkendji, Senegal 

 c  

Fig 5.2.1(a) Annual precipitation trend in Barkendji, Senegal in 2020 – 2100 (red: RCP2.6, green: 

RCP 7.0, blue: RCP 8.5) 

Figure 5.2.1(a) represents precipitation trend in Barkendji, Senegal from 2020 – 2100. The trend of 

precipitation decrease in all RCP scenarios from 2020 – 2100. Annual precipitation under RCP 2.6 is 

higher than RCP 7.0, and RCP 8.5. 
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Fig 5.2.1(b) Annual mean temperature in Barkendji, Senegal in 2020 – 2100 (red: RCP 2.6, blue: RCP 

7.0, green: RCP 8.5) 

Figure 5.2.1(b) represents annual mean temperature in Barkendji, Senegal from 2020 – 2100 under three 

RCP scenario. Annual mean temperature tends to increase in future period under RCP 2.6, RCP 7.0 and 

RCP 8.5. 

 

 

Fig 5.2.1(c) Monthly average precipitation and temperature in Barkendji, Senegal in 2020 – 2100 (bar 

chart for precipitation, solid line: maximum temperature, dash line: minimum temperature, with red: 

RCP 2.6, blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.1(c) represents monthly average precipitation and temperature in Barkendji, Senegal from 

2020 – 2100. Monthly average precipitation with RCP2.6 and RCP 7.0 climate data more than RCP 8.5. 
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The peak of monthly average precipitation is more than 1000 mm per month, from August – September. 

Maximum and minimum temperature is higher in March – April and October – November.  

 

Fig 5.2.1(d) Population density in Barkendji, Senegal in 2020 – 2090 (red:SSP1, blue:SSP3, 

green:SSP5) 

Population density in Barkendji, Senegal increase in every 10 years smoothly, with less than 5 

people/km2, except in 2040 (SSP1) with increment 15 people/km2 from 2020. Population density from 

2020 – 2090 with SSP3 scenario is much higher than SSP1 and SSP5 scenario.  Population density 

under SSP3 is gradually increasing every 10 years in Barkendji, Senegal.   

5.2.2 Precipitation, temperature and population density changes in Mbansale, Democratic 

Republic of Congo 
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Fig 5.2.2(a) Annual precipitation trend in Mbansale, Democratic Republic of Congo in 2020 – 2100 

(red: RCP 2.6, blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.2(a) represents precipitation trend in Mbansale, Democratic Republic of Congo from 2020 – 

2100. Precipitation trend under RCP 2.6 is higher than precipitation under RCP 7.0 and RCP 8.5 

scenario for all projection year (2020 – 2100). Precipitation under RCP 7.0 has similar amount with 

precipitation under RCP 8.5.  

 

Fig 5.2.2(b) Annual mean temperature in Mbansale, Democratic Republic of Congo in 2020 – 2100 

(red: RCP 2.6, blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.2(b) represents annual mean temperature in Mbansale, Democratic Republic of Congo form 

2020 – 2100 under three RCP scenario. Annual mean temperature tends to increase in future period 

under RCP 2.6, RCP 7.0 and RCP 8.5. As in precipitation, RCP 7.0 and RCP 8.5 have similar trend in 

Mbansale, Democratic Republic of Congo. 
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Fig 5.2.2(c) Monthly average precipitation and temperature in Mbansale, Democratic Republic of 

Congo in 2020 – 2100 (bar chart for precipitation, solid line: maximum temperature, dash line: 

minimum temperature, with red: RCP 2.6, blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.2(c) represents monthly average and temperature in Mbansale, Democratic Republic of 

Congo. In this site, it has two precipitation peak, first peak is on April (under RCP2.6, RCP 7.0 and 

RCP 8.5). Second peak, is from October –December (under RCP 2.6, RCP 7.0 and RCP 8.5). The 

highest amount of precipitation is on April (RCP 2.6 and RCP 7.0) and December (RCP 8.5).  Monthly 

average precipitation in Mbansale (Democratic Republic of Congo) is higher than monthly average 

precipitation in Barkendji (Senegal), precipitation. This means, Barkendji (Senegal) is drier than 

Mbansale (Democratic Republic of Congo). 

Temperature in Mbansale, Democratic Republic of Congo has two peak, i.e. March and August – 

September. The highest peak is on September. Temperature in Mbansale, Democratic Republic of 

Congo tends to increase monthly. 
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Fig 5.2.2(d) Population density in Mbansale, Democratic Republic of Congo in 2020 – 2090 

(red:SSP1, blue:SSP3, green:SSP5) 

Projection population density in Mbansale, Democratic Republic of Congo is increasing from 2020 – 

2090 under SSP1, SSP3 and SSP5. As in Barkendji, Senegal, population density in Mbansale, 

Democratic Republic of Congo is gradually increasing under SSP3 scenario. 

5.2.3 Precipitation, temperature and population density changes in Nsimalen Ekoko, Cameroon 

 

Fig 5.2.3(a) Annual mean precipitation in Nsimalen Ekoko, Cameroon in 2020 – 2100 (red: RCP 2.6, 

blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.3(a) represents annual mean precipitation in Nsimalen Ekoko, Cameroon from 2020 – 2100. 

Precipitation trend under RCP 2.6 and RCP 7.0 increase in future period. Meanwhile, precipitation trend 

under RCP 8.5 decrease from 2020 – 2100.  
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Fig 5.2.3(b) Annual mean temperature in Nsimalen Ekoko, Cameroon in 2020 – 2100 (red: RCP 2.6, 

blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.3(b) represents annual mean temperature in Nsimalen Ekoko, Cameroon form 2020 – 2100 

under three RCP scenario. Annual mean temperature tends to increase in future period under RCP 2.6, 

RCP 7.0 and RCP 8.5.  

 

Fig 5.2.3(c) Monthly average precipitation and temperature in Nsimalen Ekoko, Cameroon in 2020 – 

2100 (bar chart for precipitation, solid line: maximum temperature, dash line: minimum temperature, 

with red: RCP 2.6, blue: RCP 7.0, green: RCP 8.5) 

Figure 5.2.3(c) represents monthly average and temperature in Nsimalen Ekoko, Cameroon. This site 

has two precipitation peak, first peak is from April – June (under RCP 2.6, RCP 7.0 and RCP 8.5). 
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Second peak, is from September – October (under RCP 2.6, RCP 7.0 and RCP 8.5). The highest amount 

of precipitation is on October (under RCP 2.6, RCP 7.0 and RCP 8.5).  

There are two peak of high temperature, first peak is on March and second is on August. Temperature 

trend in Nsimalen Ekoko, Cameroon tends to decrease monthly from May – June is the transition 

temperature from low into high temperature, unlike in Barkendji (Senegal) and Mbansale (Democratic 

Republic of Congo).  

 

Fig 5.2.3(d) Population density in Nsimalen Ekoko, Cameroon in 2020 – 2090 (red:SSP1, blue:SSP3, 

green:SSP5) 

Projection population density in Nsimalen Ekoko, Cameroon is increasing from 2020 – 2090. The 

number of people is same in each 10 different year using different SSP scenarios, except population 

density on 2040 (SSP1) is the highest increment, with more than 100 people/km2. Nsimalen Ekoko 

(Cameroon) is more populated region compared to Barkendji (Senegal) and Mbansale (Democratic 

Republic of Congo).  

5.3 Inter annual variation of EIR under scenario RCP 2.6, RCP 7.0 and RCP 8.5 

5.3.1 Temporal variability of EIR projection simulation under RCP 2.6, RCP 7.0 and RCP 8.5 
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Fig 5.3.1(a) Entomological Inoculation Rate (EIR) annual in Barkendji, Senegal from 2020 – 2100 (red: 

RCP 2.6, green: RCP 7.0, blue: RCP 8.5, black: EIR observation in historical period) 

EIR annual mean in Barkendji, Senegal is various from 2020 – 2100 projection simulation period with 

RCP 2.6, RCP 7.0 and RCP 8.5. EIR annual mean on projection period under three RCPs scenario 

overestimate EIR observation (black line, with EIR observation = 111.1 infective bites/person/year).                                                                                                                                                                                                                                                                                                                                                                                                                                  

 

Fig 5.3.1(b) Entomological Inoculation Rate (EIR) annual in Mbansale, Democratic Republic of Congo 

from 2020 – 2100 (red: RCP 2.6, green: RCP 7.0, blue: RCP 8.5, black: EIR observation in historical 

period) 

EIR annual mean in Mbansale, Democratic Republic of Congo in projection simulation from 2020 – 

2100 under three RCPs scenario underestimate EIR observation (black line, with EIR observation = 

175.2 infective bites/person/year).  
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Fig 5.3.1(c) Annual Entomological Inoculation Rate (EIR) in Nsimalen Ekoko, Cameroon from 2020 – 

2100 (red: RCP 2.6, green: RCP 7.0, blue: RCP 8.5, black: EIR observation in historical period) 

EIR annual mean in Nsimalen Ekoko, Cameroon under RCP 2.6 and RCP 8.5 scenario underestimate 

EIR observation (black line, with EIR observation = 97.285) and overestimate under RCP 7.0 from year 

2060s.  

Fig 5.3.1 (a) – (c) describes EIR annual projection in Barkendji (Senegal), Mbansale  (Democratic 

Republic  of  Congo)  and  Nsimalen  Ekoko  (Cameroon)  under  RCP  2.6,  RCP  7.0  and  RCP  8.5.  

We analyze which variable from climate forcing datasets (precipitation and temperature) give more 

impact to EIR in projection simulation in Barkendji (Senegal), Mbansale (Democratic Republic of 

Congo) and Nsimalen Ekoko (Cameroon).  

 

Fig. 5.3.1(d) Annual Entomological Inoculation Rate in Barkendji, Senegal under RCP 8.5 (P : 
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precipitation, T : temperature, D : population density) 

Fig 5.3.1(d) describes EIR annual in Barkendji, Senegal under RCP 8.5 scenario from 2080 –  2089. 

Red line represent EIR annual using precipitation from historical period (using precipitation from 

corresponding historical period 20C (1990  –  1999)), blue  line  represent EIR annual using temperature 

from historical period (using temperature from corresponding historical period 20C (1990 –  1999)), 

green  line  represent EIR annual using population  density from historical period  (population  density  

from  corresponding  historical  period  20C  (1990  –  1999)), magenta  line  represent EIR  annual on 

historical period (1990  –  1999) and black  line  represent EIR annual on projection period (2080 – 

2089). From this figure, trend of EIR annual on projection period (black line) is close with EIR annual 

using temperature from historical period (blue line) compare with EIR annual using precipitation from 

historical period (red line).  It represents precipitation variability give more impact to EIR calculation 

in Barkendji, Senegal.  

 

Fig. 5.3.1(e) Annual Entomological Inoculation Rate in Mbansale, Democratic Republic of Congo  

under RCP 8.5 (P : precipitation, T : temperature, D : population density) 
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Fig. 5.3.1(f) Annual Entomological Inoculation Rate in Nsimalen Ekoko, Cameroon under RCP 8.5  

(P : precipitation, T : temperature, D : population density) 

From Fig 5.3.1 (e)  and (f) represent  EIR annual on projection period  under RCP 8.5  (black line) has 

more similar  trend  simulation with EIR annual using precipitation from historical period (red line) 

compare to EIR annual using temperature from historical period (blue line) in Mbansale (Democratic 

Republic  of Congo) and Nsimalen Ekoko (Cameroon). This represents temperature give more impact 

to EIR annual in Mbansale (Democratic Republic of Congo) and Nsimalen Ekoko (Cameroon). 

5.3.2 Inter annual variability of EIR annual spatial average on projection simulation under RCP 

2.6, RCP 7.0 and RCP 8.5 

Inter annual variability of EIR annual average on projection period under three RCPs scenario is 

determined by calculating coefficient variation of EIR annual number. Coefficient variation is 

determined from standard deviation of EIR annual average divided by average of EIR annual. 

Coefficient variation average from EIR annual projection under RCP 2.6 is 0.079, under RCP 7.0 is 

0.087 and under RCP 8.5 is 0.087. It represents that average of EIR annual on projection period under 

RCP 8.5 has higher variability compare to other two RCPs scenario. 

   

(a) (b) (c) 
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Fig 5.3.2 Coefficient variation distribution of EIR annual average on projection period under RCP 2.6 

(a), RCP 7.0 (b) and RCP 8.5 (c). 

5.4 Water fraction projection period with scenario RCP 2.6, RCP 7.0 and RCP 8.5 

 

Fig 5.4(a) Water fraction annual mean in Barkendji, Senegal from 2020 – 2100 (red: RCP2.6, blue: 

RCP 7.0, green: RCP 8.5) 

Annual mean of water fraction in Barkendji, Senegal tends to decrease in projection period under three 

RCP scenario. Water fraction annual mean under RCP 2.6 is higher than RCP 7.0 and RCP 8.5. This 

pattern of water fraction is following annual precipitation pattern. 

 

Fig 5.4(b) Water fraction annual mean in Mbansale, Democratic Republic of Congo from 2020 – 2100 

(red: RCP2.6, blue: RCP 7.0, green: RCP 8.5) 



 

61 
 

5 Malaria Transmission on Projection Period  

Water fraction in Mbansale, Democratic Republic of Congo tends to increase under three RCP scenario. 

Water fraction annual mean under RCP 2.6 is higher than RCP 7.0 and RCP 8.5. Water fraction under 

RCP 7.0 is similar to RCP 8.5 which correspond to annual mean of precipitation pattern.  

 

Fig 5.4(c) Water fraction annual mean in Nsimalen Ekoko, Cameroon from 2020 – 2100 (red: RCP2.6, 

blue: RCP 7.0, green: RCP 8.5) 

Water fraction annual mean in Nsimalen Ekoko, Cameroon under RCP 2.6 and RCP 7.0 tends to 

increase in projection period. Meanwhile, annual mean of water fraction tends to decrease under RCP 

8.5. This pattern following annual precipitation pattern in Nsimalen Ekoko, Cameroon. 

5.5 Spatial distribution of malaria transmission with scenario RCP 2.6, RCP 7.0 and RCP 8.5 

5.5.1 Monthly distribution of EIR projection period 

Spatial distribution of malaria transmission monthly EIR under scenario RCP 2.6 is described in Fig. 

5.5.1(a) – (l) as follow: 

 
(a) Jan (b) Feb (c)Mar 
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Fig. 5.5 (a) – (l) Spatial distribution of monthly EIR under RCP 2.6 scenario 

Figure 5.5 (a) – (l) describes spatial distribution of monthly EIR under RCP 2.6 from 2020 – 2100. 

From this figure, it shows that in western part of Africa, EIR is high peak season from August –  October. 

Meanwhile, for central part of Africa, EIR is peak season from October – November. 

5.5.2 Spatial distribution of malaria risk in projection period  

(d) Apr (e) May (f) Jun 

(g)Jul (h)Aug (i) Sep 

(k) Oct (l)Nov (m)Dec 
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Fig 5.5.2 Malaria risk in west part of Africa on projection period compare to historical period (%) with 

(a) RCP 2.6, (b) RCP 7.0 and (c) RCP 8.5  

Fig. 5.5.2 (a)-(c) represent percentage of malaria risk (the difference of EIR projection from EIR 

historical period) in west part of Africa. Spatial average of EIR difference under RCP 2.6 is -23.14%, 

under RCP 7.0 is -39.51% and under RCP 8.5 is -19.22%. In west part of Africa, the worst scenario in 

projection period is RCP 8.5. Meanwhile, the better scenario is RCP 7.0. 

 

 

 

 

 

Fig 5.5.2 Malaria risk in central – south part of Africa on projection period compare to historical period 

(%) with (d) RCP 2.6, (e) RCP 7.0 and (f) RCP 8.5  

Fig 5.2.2 (d)-(f) represent percentage of malaria risk (the difference of EIR projection from EIR 

historical period) in central – south part of Africa. Spatial average of EIR difference under RCP 2.6 is 

40.48%, under RCP 7.0 is 45.23%, and under RCP 8.5 is 100.78%. In central – south part of Africa, the 

worst scenario in projection period is RCP 8.5, similar with west part of Africa. Meanwhile, the better 

scenario is RCP 2.6. 

5.6 Impact of Precipitation and Temperature on Malaria Transmission Projection Period under 

RCP 2.6, RCP 7.0 and RCP 8.5 

Climate impact on malaria transmission in the future simulation is highly uncertainties. Precipitation 

characteristic (monthly average of precipitation, monthly average of standard deviation of precipitation, 

and maximum monthly Consecutive Wet Days (CWD)) and temperature have impact on EIR. The 

relation of precipitation characteristic and temperature with EIR can be written as a function in equation 

(18): 

(a) (b) (c) 

(d) (e) (f) 
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𝐸𝐼𝑅̅̅ ̅̅ ̅ = 𝑓(�̅�, 𝜎𝑝 , 𝐶𝑊𝐷, 𝑇) (17) 

Where: 

𝐸𝐼𝑅̅̅ ̅̅ ̅ ∶ monthly average of Entomological Inoculation Rate  

�̅� ∶ monthly average of precipitation 

𝜎𝑃 ∶ monthly average of standard deviation of precipitation 

𝐶𝑊𝐷 ∶ monthly maximum of Consecutive Wet Days 

𝑇 ∶ average of Temperature 

From equation (17), we derive equation (18) as follow :  

𝑬𝑰�̂� = 𝒂�̂̅� + 𝒃𝝈�̂� + 𝒄𝑪𝑾�̂� + 𝒅�̂� 

 

(18) 

After standardized all variables, we utilize multivariate regression to predict coefficient for each 

variable. To prevent multi collinearity between each coefficient, we consider from correlation 

coefficient between those variable and set a threshold 0.9. If correlation coefficient between two 

variables are higher than threshold value, we neglect one of them. We take into account variable which 

has higher correlation with EIR in the calculation. Then, we derive coefficient of each variable. 

We divided analysis of impact of climate change on malaria transmission into two regions: west part of 

Africa (latitude: 00 – 250 N, longitude: -200W – 120 E) and central-south part of Africa (latitude: 250 – 

380 S, longitude: 120E – 550 E) region under three RCPs scenario.  
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Fig 5.6 (a) Contribution map of monthly mean precipitation (P), standard deviation of precipitation 

(𝜎𝑃), consecutive wet days (CWD), and temperature (T) under RCP 2.6, in west part of Africa 

 

Fig 5.6 (b) Contribution map of monthly mean precipitation (P), standard deviation of precipitation 

(𝜎𝑃), consecutive wet days (CWD), and temperature (T) under RCP 7.0, in west part of Africa 
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Fig 5.6 (c) Contribution map of monthly mean precipitation (P), standard deviation of precipitation 

(𝜎𝑃), consecutive wet days (CWD), and temperature (T) under RCP 8.5, in west part of Africa 

Average of % contribution of each variable in west part of Africa are described in Table 5.6.1 as follow:  

Table 5.6.1 Spatial average of contribution each variable (P, 𝜎𝑃, CWD, and T) to EIR calculation in 

west part of Africa 

Scenario P (𝜎𝑃) CWD T 

RCP 2.6 61% 109% -68% -2% 

RCP 7.0 55% 9% 44% -9% 

RCP 8.5 24% 70% 129% -123% 

From Table 5.6.1, in west part of Africa, under RCP 2.6, precipitation and standard standard deviation 

of precipitation has a positive contribution to EIR calculation with 61% and 109, respectively. 

Meanwhile, CWD and average of temperature has negative contribution which means inversely impact 

to EIR calculation. Under RCP 7.0, monthly average of precipitation, standard deviation of precipitation 

and CWD contribute to increasing EIR, with contribution 55%, 9% and 44%, respectively. Meanwhile, 

temperature decrease EIR value with -9%. Under RCP 8.5, monthly average of precipitation, standard 

deviation of precipitation, and CWD also increase EIR number, with 24%, 70% and 129%, respectively. 

Meanwhile, temperature decrease EIR number, with -123%. For these three scenario, monthly average 

of precipitation and standard deviation of precipitation gives a positive impact in increasing EIR number 

and temperature decrease EIR number. Meanwhile, CWD increase EIR value under RCP 7.0 and RCP 

8.5, but decrease EIR number under RCP 2.6. 
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Fig 5.6 (d) Contribution map of monthly mean precipitation (P), standard deviation of precipitation 

(σP), consecutive wet days (CWD), and temperature (T) under RCP 2.6, in central-south part of Africa 

 

Fig 5.6 (e) Contribution map of monthly mean precipitation (P), standard deviation of precipitation 

(𝜎𝑃), consecutive wet days (CWD), and temperature (T) under RCP 7.0, in central-south part of Africa 

 

 

Fig 5.6 (f) Contribution map of monthly mean precipitation (P), standard deviation of precipitation (𝜎𝑃), 

consecutive wet days (CWD), and temperature (T) under RCP 8.5, in central-south part of Africa 

Average of % contribution of each variable in west part of Africa are described in Table 5.6.2 as follow:  
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Table 5.6.2 Spatial average of contribution each variable (P, 𝜎𝑃, CWD, and T) to EIR calculation in 

central – south part of Africa 

Scenario P (𝜎𝑃) CWD T 

RCP 2.6 162% -160% 48% 50% 

RCP 7.0 -4% 36% 6% 62% 

RCP 8.5 41% 18% -6% 48% 

From Table 5.6.2, in central – south part of Africa, under RCP 2.6, monthly average of precipitation 

has the highest contribution in increasing EIR number with 162 %. Meanwhile standard deviation of 

precipitation decrease EIR number, with -160%. CWD and temperature also increase EIR, with 48% 

and 50%. Under RCP 7.0, precipitation decrease EIR number with -4%. Meanwhile, standard deviation 

of precipitation, CWD and temperature increase EIR number with 36%, 6% and 62%, respectively. 

Under RCP 8.5, monthly average of precipitation, precipitation, standard deviation of precipitation and 

temperature increase EIR number, with 41%, 18% and 48%, respectively. Meanwhile, CWD decrease 

EIR number with -6%. In central – south part of Africa, each scenario has different variable which 

increase or decrease EIR number. 

5.7 Impact population density to EIR  

 

Fig. 5.7 Impact of population density on EIR in Barkendji, Senegal 

Fig. 5.7 represents impact of population density on EIR calculation in Barkendji, Senegal under RCP 

8.5. EIR using population density on projection data represents in black line, meanwhile EIR using 

historical population density data represents in green line. This figure shows, EIR  using projection 

population density is higher than EIR  using historical population density data. This means that changing 

of population density give proportional impact to increasing or decreasing EIR number.  

5.8 Impact of water fraction on malaria transmission 
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Fig. 5.8 Annual mean of EIR against precipitation (left) and EIR against water fraction (right)  in 

Barkendji, Senegal 2080 – 2100 under RCP 8.5  

Correlation coefficient between precipitation and EIR annual mean is 0.836. Meanwhile, correlation 

coefficient between water fraction and EIR annual mean is 0.843. precipitation affect to create water 

fraction as from equation (12). When there is no precipitation (𝑃 = 0) or (𝑤𝑝𝑜𝑛𝑑 =  𝑤𝑚𝑎𝑥), amount 

of water fraction is determined by exponential function with rate −𝐾𝑤(𝐸 + 𝐼). Meanwhile, when there 

is no infiltration and evaporation (𝐸 + 𝐼 = 0), amount of water fraction is determined by exponential 

function rate −𝐾𝑤𝑃. From this two explicit solution for water fraction, it gives a significant different to 

water fraction rate. Because of this, correlation coefficient between precipitation against EIR and water 

fraction against EIR is very close.  

5.9 Correlation coefficient of EIR and variables ( 𝑷, 𝝈𝒑, 𝑪𝑾𝑫, and 𝑻 ) with three ensemble 

members of each RCPs scenario 

Due to high uncertainties on projection period, we need to add ensemble members for each RCPs 

scenario to make our simulation result more robust. We add three ensemble member of each RCPs 

scenario. Then, to analyze malaria transmission in long-term period, of we calculate correlation 

coefficient between EIR changes (difference from EIR projection minus EIR historical period) and 

changes of each variable between projection and historical period which can be written as equation 

(19) as follow:  

𝛿𝐸𝐼𝑅̅̅ ̅̅ ̅ = 𝑓(𝛿�̅�, 𝛿𝜎𝑝 , 𝛿𝐶𝑊𝐷, 𝛿𝑇) (19) 
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Fig. 5.9.1 Correlation coefficient map of delta of monthly average of precipitation and delta EIR in west 

part of Africa 

In west part of Africa, spatial average of changes of monthly mean precipitation, standard deviation of 

precipitation and average of temperature give positive impact with 21.68%, 35.30%, and 49.72%, 

respectively. Meanwhile, changes of CWD inversely impact to changes of EIR with -6.71%.  

  

  

Fig. 5.9.2 Correlation coefficient map of delta of monthly average of precipitation and delta EIR in 

central – south part of Africa 
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In central – south part of Africa, spatial average of changes of monthly average of precipitation is lower 

than standard deviation of precipitation, with 0.85%.  Meanwhile, temperature has the highest impact 

with 77.09% and CWD inversely impact to EIR calculation. 

Table. 5.9 Correlation coefficient map of delta of monthly average of precipitation and delta EIR 

Region  P 𝜎𝑃 CWD T 

West part of 

Africa 

21.68% 35.30% -6.71% 49.72% 

Central – south 

part of Africa 

0.85% 41.01% -18.95% 77.09% 

 

5.10 Finding of this study compare to previous studies about malaria transmission on projection 

period 

This study corrects hydrological parameter of surface water formation which is a critical parameter for 

mosquito breeding places. This study also analyses the impact of precipitation characteristic on malaria 

transmission. Besides that, this study utilizes CMIP6 forcing data for precipitation and temperature 

which is recent product of climate projection simulation.  

5.11 Conclusion 

In Barkendji (Senegal) with precipitation range 0 – 1200 mm per month is drier compared to Mbansale 

(Democratic Republic of Congo) with precipitation range 0 – 4500 mm per month and Nsimalen Ekoko 

(Cameroon) with precipitation range 0 -3500 mm. Population density in Barkendji (Senegal), Mbansale 

(Democratic Republic of Congo), and Nsimalen Ekoko (Cameroon) is in range 0 – 35 people/km2, 0 – 

90 people/km2, and 0 – 120 people/km2. For malaria transmission number, under RCP2.6 projection, 

EIR annual range number in Barkendji (Senegal) is higher than in Mbansale (Democratic Republic of 

Congo) and Nsimalen Ekoko (Cameroon) with 100 – 350 infective bites/person/year, 50 – 100 infective 

bites/person/year, and 0 – 120 infective bites/person/year, respectively.  

On projection period, precipitation will increase or decrease depends on the area in projection 

simulation. Meanwhile, temperature is increasing on projection period. West, central and southeast part 

of Africa are more favorable conditions for malaria transmission under three RCPs scenario. Inter 

annual variability of EIR annual mean is determined by coefficient variation. This number is derived 

by calculating standard deviation of EIR annual mean divided by EIR annual mean. Coefficient 

variation of spatial mean under RCP 2.6 is 0.079, under RCP 7.0 is 0.087 and under RCP 8.5 is 0.087. 

It represents EIR annual mean under RCP 8.5 has higher variability compare to other RCPs scenario. 
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Precipitation and temperature give impact to EIR number. In west part of Africa (latitude : 00 – 250 N, 

longitude: -200W – 120 E), the risk of malaria in projection period compare to historical period are -

23.14% under RCP 2.6, -39.51% under RCP 7.0 and -19.22% under RCP 8.5. Therefore, the worst 

scenario is RCP 8.5 and the better scenario is RCP 7.0. In central – south part of Africa (latitude : 00 – 

250 N, longitude: -200W – 120 E), the risk of malaria in projection period compare to historical period 

are 40.48% under RCP 2.6, 45.23% under RCP 7.0, and 100.78% under RCP 8.5. For central – south 

part of Africa, the worst scenario is RCP 8.5 and the better scenario is RCP 2.6. 

Meanwhile, population density gives a proportional impact to increase or decreasing EIR number. 

Precipitation characteristics (monthly average of precipitation, standard deviation of precipitation, 

Consecutive Wet Days (CWD)) and temperature contribute to EIR calculation. Monthly average of 

precipitation and standard deviation of precipitation have relative contribution to EIR in west part of 

Africa, meanwhile CWD give more impact to EIR in central and southeast part of Africa. Correlation 

coefficient of precipitation and standard deviation is higher in western, central and eastern part of Africa, 

CWD’s correlation coefficient is higher near equator line from west to eastern part of Africa and 

temperature’s correlation coefficient from central part to southern part of Africa.  

Highly uncertainties on projection simulation encourage us to add ensemble members for each 

RCPs scenario to make our simulation result more robust. By considering each value of correlation 

coefficient of each variable divided by value of total correlation coefficient of all variables, contribution 

of each variable related EIR changes from projection period compared to historical period for spatial 

mean of African region in west part of Africa is 21.68% for precipitation, 35.32% for standard deviation 

of precipitation, -6.71% for CWD and 49.72% for temperature. Meanwhile, in central – south part of 

Africa, the contribution of each variable is 0.85% for precipitation, 41.01% for standard deviation of 

precipitation, -18.95% for CWD and 77.09% for temperature. 
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CHAPTER 6  

Conclusion and Recommendation  

 

Abstract: 

This chapter conclude and discuss recommendation to improve the studies in future. From this 

study, pond growth rate parameter is tuned against EIR and water fraction. A scaling factor, 

interpolation and topographical multiplication is need to derive a better pond growth rate 

parameter. The optimized pond growth rate is related to topographical parameter. The result 

shows that pond growth rate calibration is needed to improve malaria transmission model and 

make a better prediction of malaria transmission in the future. Malaria projection in the future 

is various in each different sites (the relationship between malaria transmission and 

precipitation, temperature and population density are non-linear). To improve and expand this 

study, more number of EIR observation and water fraction with high resolution datasets is 

needed. 

 

6.1 Conclusion 

From this study, we could conclude that: 

 EIR observations data are collected in Senegal, Republic of Congo, Burundi, Gambia, 

Democratic Republic of Congo, Gabon, Cameroon, Eritrea, Uganda, Zambia, Tanzania, and 

Kenya. 

 An adjusted pond growth rate parameter (𝐾𝑤) could capture a better entomological 

inoculation rate simulation close to EIR observation in some sites in Senegal, Republic of 

Congo, Burundi, Gambia, Democratic Republic of Congo, Gabon, Cameroon, Eritrea, 

Uganda, Zambia, Tanzania, and Kenya 

 There is not a clear relationship between pond growth rate and EIR observation number in all 

validation sites because pond growth rate is various in each EIR observation sites. 

 A scaling factor, inverse distance interpolation method and topographical multiplication are 

needed to derive a better pond growth rate parameter  

 Water fraction observation have a significant relation with precipitation in some sites from 

observation in some site. Meanwhile, in other sites, the correlation is not significant.  
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 Coefficient variation spatial average for EIR annual projection under RCP 2.6 is 0.079, under 

RCP 7.0 us 0.087 and under RCP 8.5 is 0.087. EIR annual projection under RCP 8.5 has higher 

variability compare to other two RCPs scenario. 

 In west part of Africa (latitude : 00 – 250 N, longitude: -200W – 120 E), the risk of malaria in 

projection period compare to historical period are -23.14% under RCP 2.6, -39.51% under RCP 

7.0 and -19.22% under RCP 8.5. The worst scenario is RCP 8.5 and the better scenario is RCP 

7.0.  

 In central – south part of Africa (latitude : 00 – 250 N, longitude: -200W – 120 E), the risk of 

malaria in projection period compare to historical period are 40.48% under RCP 2.6, 45.23% 

under RCP 7.0, and 100.78% under RCP 8.5. The worst scenario is RCP 8.5 and the better 

scenario is RCP 2.6. 

 Precipitation characteristic (monthly average of precipitation, standard deviation of 

precipitation and consecutive Wet Days (CWD)) and temperature give impact to EIR 

calculation. Meanwhile, population density gives proportional impact to increase or decrease 

EIR number 

 Due to highly uncertainties in projection period, after adding ensemble member of each RCPs 

scenario, contribution of each climate variable (monthly average of precipitation, standard 

deviation of precipitation, CWD and temperature) related to EIR changes from projection 

period compare to historical period, spatial mean of west part of Africa is 21.68% for monthly 

average of precipitation, 35.32% for standard deviation of precipitation, -6.71% for CWD, and 

49.72% for temperature.  

 In central – south part of Africa, the contribution of each climatic variable and EIR changes are 

0.85% for precipitation, 41.01% for standard deviation of precipitation, -18.95 for CWD and 

77.09% for temperature. 

 

6.2 Recommendation 

In this study, validation of the model result is limited to EIR observation. Meanwhile, the number of 

EIR observation is limited due to it takes risk, difficulties, time consuming and cost. The validation of 

the model would be better if this study can use other validation datasets, such as number of malaria 

cases number in each site in Africa.  

Besides that, more highly resolution of water fraction can be used to improve the model. This study 

utilizes 0.1 degree (~11 km) water fraction datasets for calibration po growth rate. Higher resolution of 
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surface water with pond scale (<10 m) with daily datasets are need to take into account to improve the 

model performance and make the model result more reliable. 

An economic growth for projection simulation period and other social factors (such as using some 

treatments, taking medicine, and other malaria control program need to be implemented in the future to 

make the simulation result improved and more realistic. 
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APPENDIX A  

EIR observation site location 

No Reference Country Site Lon Lat 
start 
month 

start 
year 

end 
month 

end 
year EIR obs 

1 Le Masson et al. 1997 Senegal Barkendji -14.87 15.28 7 1994 3 1996 111.1 

2 Trape et al. 1987 Republic of Congo Linzolo -4.41 15.11 10 1983 9 1984 234.6 

3 Van Bortel et al. 1996 Burundi Gasange 29.6  -4.32 11 1992 10 1993 267 

4 Van Bortel et al. 1996 Burundi Kazirabageni 29.63 -4.23 11 1992 5 1994 35.4 

5 Van Bortel et al. 1996 Burundi Gisenga 29.67 -4.44 11 1992 5 1994 251.7 

6 Thomson et al. 1994 Gambia Dasilami -14.27 13.41 1 1991 12 1991 1.2 

7 Lindsay et al. 1993 Gambia Dongoro Ba -15.28 13.38 1 1988 12 1988 80 

8 Thomson et al. 1995 Gambia Jahally -14.97 13.55 1 1991 12 1991 4.2 

9 Lindsay et al. 1993 Gambia Jalangbereh -15.4 13.38 1 1988 12 1988 70 

10 Lindsay et al. 1993 Gambia Jessadi -15.3 13.63 1 1988 12 1988 64 

11 Thomson et al. 1995 Gambia Kulari -14.08 13.4 1 1991 12 1991 7.8 

12 Lindsay et al. 1993 Gambia Madina -15.25 13.52 1 1988 12 1988 177 

13 Lindsay et al. 1993 Gambia Katamina -15.28 13.55 1 1988 12 1988 4 

14 Thomson et al. 1995 Gambia Sare Alpha -13.98 13.37 1 1991 12 1991 11.2 

15 Lindsay et al. 1991 Gambia Saruja -14.9 13.55 3 1987 6 1988 3 

16 Karch et al. 1993 
Democratic 
Republic of Congo Kinkolé 

15.51 -4.36 2 1990 12 1991 
40.2 

17 Coene 1993 
Democratic 
Republic of Congo 

Kinshasa, Kimbangu 3 
district 

15.31 -4.35 9 1988 12 1989 
29.2 

18 Karch et al. 1992 
Democratic 
Republic of Congo 

Kinshasa, semi-rural 
area 

15.35 -4.36 4 1989 10 1990 
198.7 

19 Karch et al. 1992 
Democratic 
Republic of Congo 

Kinshasa, urban area 
 15.31 -4.31 4 1989 10 1990 

2.8 
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20 Karch et al. 1993 
Democratic 
Republic of Congo Mbansalé 

15.64 -4.26 2 1990 11 1990 
175.2 

21 Elissa et al. (2003) Gabon Benguia 13.515 -1.625 5 2003 4 2004 239.07 

22 Elissa et al. (2003) Gabon Dienga 12.68 -1.87 5 2003 4 2004 97.83 

23 Fondjo et al. (1992) Cameroon Bikok 11.482 3.867 3 1989 2 1990 14.212 

24 Fondjo et al. (1992) Cameroon Bisson 11.44 3.865 4 1989 3 1990 30.28145 

25 Njan Nloga et al. (1993) Cameroon Ebogo 11.469 3.397 4 1991 3 1992 7.763514 

26 Cohuet Cameroon Nkoteng 12.05 4.5 2 1999 1 2000 44.9 

27 Antonio-Nkondjio et al. (2012) Cameroon Nsimalen_Ekoko 12.12 3.82 4 1991 3 1992 97.285 

28 Antonio-Nkondjio et al. (2012) Cameroon Nsimalen_Nkol_Mefou 11.58 3.626 4 1991 3 1992 59.116 

29 Antonio-Nkondjio et al. (2012) Cameroon Simbock-Block6 11.3 3.5 1 1999 12 1999 94.343 

30 Coene (1993) 
Democratic 
Republic of Congo Kimbangu 15.31 -4.36 9 1988 8 

1989 
24.32204 

31 Coene (1993) 
Democratic 
Republic of Congo Kwamutu 15.28 -4.47 9 1988 8 

1989 
3.98957 

32 Karch et al. (1993) 
Democratic 
Republic of Congo Mbansale 16.8 -4.19 5 1990 4 

1991 
175.2 

33 Shililu et al. (2003) Eritrea Adibosqual 38.38956 15.41725 1 1999 12 1999 5.041667 

34 Shililu et al. (2003) Eritrea Anseba_Hagaz 38.16784 15.41902 10 1999 9 2000 0.357798 

36 Shililu et al. (2003) Eritrea Debub_Mai-Aini 39.05765 14.4851 10 1999 9 2000 5.4405 

37 Shililu et al. (2003) Eritrea Gash_Barka_Hiletsidi 36.39091 15.0705 10 1999 9 2000 33.56322 

38 Shililu et al. (2003) Eritrea Hiletsidi 36.39091 15.0705 1 1999 12 1999 77.12644 

39 Okello et al. (2006) Uganda Kyenjojo_Kasiina 30.62 0.62 6 2001 5 2002 78.8925 

40 Kent 2007 Zambia Chidakwa 26.79061 -16.3929 11 2005 10 2006 1.608 

41 Bodker et al. (2003) Tanzania Bagamoyo 38.264 -5.04 10 1995 9 1996 1.831369 

42 Bodker et al. (2003) Tanzania Balangai 38.277 -4.556 10 1995 9 1996 0.000432 

43 Shiff et al. (1995) Tanzania Chasimba 38.82 -6.58 1 1992 12 1992 28.6 

44 Shiff et al. (1995) Tanzania Kongo 38.83 -6.53 1 1992 12 1992 110.7 

45 Bodker et al. (2003) Tanzania Kwameta 38.291 -5.066 10 1995 9 1996 7.337828 
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46 Bodker et al. (2003) Tanzania Kwamhanya 38.276 -5.035 10 1995 9 1996 0.292441 

47 Bodker et al. (2003) Tanzania Magundi 38.283 -5.053 10 1995 9 1996 0.606179 

48 Shiff et al. (1995) Tanzania Matimbwa 38.87 -6.5 1 1992 12 1992 73.3 

49 Bodker et al. (2003) Tanzania Milungui 38.233 -4.453 10 1995 9 1996 0.022361 

50 Smith et al. (1993) Tanzania Yombo 38.844 -6.585 1 1992 12 1992 45.3 

51 Muturi et al. (2008) Kenya Mbuinjeru 37.622 -0.818 4 2004 3 2005 0.00197 

52 Muturi et al. (2008) Kenya Murinduko 37.45 -0.57 4 2004 3 2005 0.031139 

53 Mbogo et al. (1993) Kenya Sokoke 39.877 -3.332 12 1990 11 1991 7.711005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


