37巻7号(1985.7)

試作黒鉛材料の放射化分析による不純物の定性分析

Qualitative Analysis of Impurities in Lab-made Graphite by Radioactivation Analysis

張 東 植*,大 蔵 明 光*

Tong Shik CHANG and Akimitsu OKURA

1. はじめに

原子炉用黒鉛材料は,核燃料物質を囲む炉心部では減 速材として,またこの炉心部を取り巻く周辺部では反射 材として使用され,これらの役割は減速された中性子と 燃料原子核との衝突確立を大きくし,核分裂反応を持続 させるという重要な機能を持っている.

したがって、減速材や反射材に使用する黒鉛材料は, ホウ素(¹⁰B)や希土類元素などのような中性子吸収断面 積の大きい元素を,不純物として含有していないことが 重要であるばかりでなく,高速中性子が炭素原子核と衝 突を繰り返す間に黒鉛結晶の乱れ,すなわち放射化損傷 を招くために,黒鉛材料の性状としては耐照射損傷特性 (特に,機械的性質の変化,寸法安定性など)が優れてい ることも重要である.また黒鉛材料は製造技術上の問題 として,経済性,大形材料の多量生産,同一材質の安定 供給などが重要視されている.

著者らは、微粉砕ピッチコークス(石炭系¹⁾,石油系²⁾) にバインダーとしてバルクメソフェーズ(BM)を利用 し、これらをホットプレス下で直接緻密化した後、高温 処理することによってより簡便でしかも短時間に高密度 高強度黒鉛材料を得る方法を試み,強度,黒鉛化度共に 従来品に匹敵するような黒鉛材料を得た.

このように試作黒鉛材料は、強度が従来品に匹敵し, また経済性においても有利であると考えられる.さらに この材料の純度を知ることは、この材料の原子炉用黒鉛 材料としての位置づけと、本法による製造技術上の問題 点を明らかにする上で重要であると考え、放射化分析に よる試作黒鉛材料中に含まれる不純物(特に希土類元素) の定性分析を試みたので報告する.

2. 放射化分析による定性分析法
2・1 分析試料

放射化分析に用いた試作黒鉛材料の原料コークス種, 一次焼成品のホットプレス条件,さらに熱処理温度 (HTT)などの製造条件と若干の諸性状を表-1に示し た.なお比較の意味で4種の市販原子炉用黒鉛材料につ いても,同様の調査を試みることにした.これらの素性 は表-2に示した.

試作品は4種類用いたが,試料 No.1,2はピッチコー クスを,試料 No.3,4は石油コークスを用い,それぞれ のコークスについて HTT が 2500,2800℃と異なる他は

試料 No	製 造 条 件							dth t X	X 線パラメータ	
	原料		バインダー	一次焼成		нтт	2 兄街 密度	強度	G (000)	L (000)
	コークス種	バインダー	混合比 (%)	温度 (℃)	圧力 (kg/cm²)	(ບິ)	(g/cm³)	(kg/cm²)	Co (002)	LC (002)
1	ピッチコークス	バルクメソフェーズ	20	600	500	2500	1.905	600	6.729	628
2	"	"	"	"	"	2800		—	—	
3	石油コークス	"	. "	"	"	2500	1.917	516	6.731	.581
4	"	"	"	"	"	2800		. —	_	·

表-1 試作黒鉛材料の製造条件と性状

表-2 市販原子炉用黒鉛材料の原料と性状

試料	銘 柄	製造会社	原 料		L廿 开门头上	見掛	曲げ	X 線パラメータ	
Νo			コークス種	バインダー	成室伝	(g/cm ³)	(kg/cm^2)	Co(002)	Lc(002)
5	IM 2 - 24	AGLC (英)	ギルソナイト	_	型込	1.76	230	6.740	382
6	7477 PT	LCL(仏)	石油コークス	—	"	1.74	—	6.720	410
7	V-483 T	SIGLI(独)	ピッチコークス	—	Isostatic成型	1.77		6.717	538
8	IG-11	東洋炭素	石油コークス	<u> </u>	"	1.75		6.729	429

* 東京大学生産技術研究所 第4部

31

すべて同一条件で製造したものである. なお表-1,2に 示す X 線パラメータは学振法³⁰⁴⁾ により,また曲げ強度 は試作品については3点曲げ試験法(試験片の寸法=厚 み5 mm×巾8 mm,スパン=20 mm)で,市販品につ いては4点曲げ試験法⁵⁾ (測定条件不明)で求められたも のである.

表-1,2から試作品と市販黒鉛材料の性状を対比する と、HTTが2500°Cの試作品(試料 No 1,3)はすべて の市販品に比べ,見掛密度とLcが共に大きいことから, 試作黒鉛材料は市販品に比べ,強度が高く,また黒鉛化 度も発達している材料であると思われる.

なお試作黒鉛材料の原料コークスはいずれも高純度化 処理をほどこさないまま実験に供した.

2・2 照射条件および放射化分析の測定条件

照射試料の形状は極力寸法をそろえるように努めた. こうして得られたすべての照射試料の寸法,重量,見掛密 度を表-3に示す.全試料をアセトンとエチルアルコール にて洗浄をほどこした後,試料1個づつをポリエチレン 袋中にシーム封入した後,さらに全試料(8点)を1つの ポリエチレン袋中にシーム封入し,これを指定されたポ

	試料		寸法(mr	重量	見掛密度		
	No	ψ	長さ	厚み	(g)	(g/cm ³)	
뮰	1	4.950	7.5	4.000	0.2763	1.8609	
此	2	5.000	7.4	3,900	0.2698	1.8697	
	3	4.950	7.5	4.000	0.2812	1.8936	
пп	4	4.975	7.5	4.975	0.2799	1.8872	
击	5	4.90	7.475	4.000	0.2558	1.7460	
86	6	4.80	7.475	4.850	0.2430	1.7591	
я <u>у</u>	7	4.95	7.475	3.625	0.2342	1.7461	
80	8	4.90	7.100	3.950	0.2418	1.7596	

表-3 照射試料の寸法,重量および見掛密度

リエチレンキャプセル(ネジフタ)中に収めて照射した.

試料中に含まれる不純物のうち,特に希土類元素の半 減期の長い核種にのみ焦点をしぼって分析することとした.このためJRR-4,Tパイプで40分間(8×10¹³×40 min×60 sec= 1.92×10^{17} n/cm)照射,5日間冷却した後 にガンマ線スペクトル分析を行った.測定装置はGe(Li) 半導体検出器(容量50 cc,ORTIC製)にマルチチャネ ル波高分析器を組み合わせた装置を用い,すべて同一条 件(試料は検出器に密着,測定時間は3000秒)にて測定 した.なお同一試料の測定回数は1回のみとした。

結果および考察

表-4 に試作品と市販品それぞれ 4 種の黒鉛材料の不 純分の定性分析結果を示す. なお表中の★印で示した元 素は,同一エネルギーのガンマ線が 2 元素の放射性核種 から放出されているため,区別が不可能な元素である. したがって,これらの元素は不純物としてすべて存在す る可能性もあるが,半減期を追うなどさらに精度の高い 放射化分析を実施することによって,これらのいくつか の元素は削除される可能性もある.

この表から分析試料の純度を対比すると,試作品はいずれも試料 No.5,6,8の市販品に比べ,希土類元素やその他の不純物元素が多いことがわかる.しかし,試料 No.7の市販品と比べると,希土類元素は試作品のほうが少ないものもある.

試作品の原料コークス種とHTT変化に伴う不純物 元素を対比すると、原料コークスとしてピッチコークス と石油コークスのいずれを用いた場合にも、HTTが高 い(2800°C)ほうが低い(2500°C)場合に比べ、希土類 元素とその他の不純物元素が少ない傾向がみられ、コー クス種の違いによる不純物元素は、いずれのHTTにつ いてもピッチコークス使用時のほうが不純物元素はやや 少ない傾向がみられる。

表-4	黒鉛材料中の不純物の定性分析
-----	----------------

	試料 No	コークス種	HTT (C)	不 純 物 元 素				
				希土類元素	その他			
試作品	1	ピッチコークス	2500	La, Ce, Nd, Sm, Gd, Lu	Sc, Te, Xe, Ba, Hf, W, Au			
	2	"	2800	La, Ce, Nd, Sm, Gd, Pa	Kr, Ba, Te, W, Au			
	3	石油コークス	2500	ta, Ce, Nd, Sm, Gd, Ho, Lu, Pa, Np	Na, Sc, Kr, Ba, Te, Xe, W, lr, Au			
	4	"	2800	La, Ce, Nd, Sm, Gd, Pa	Sc, Kr, Ba, Te, W, Au			
市販品	5	ギルソナイト		La	Na, Co, As, Br, W, Re, Au			
	6	石油コークス			Na, Br, Mo, Tc, Au			
	7	ピッチコークス		La, Ce, Nd, Sm, Gd, Ho, Lu, Pa, Np	Sc, Mo, Tc, Xe, Ba, Te			
	8	石油コークス		La	Na, W, Au			

図-1, 図-2 はそれぞれ試作品と市販用黒鉛材料のガン マ線スペクトルを示したものである.図-1 は試作品の試 料 No.2 の測定結果であるが、その他の試作品(試料 No. 1,3,4)についても図-1 とほぼ同じ傾向のガンマ線スペ クトルを示し、4 種の試作品の間にはカウント数に明り ょうな差は認められなかった。図-2 は市販品の試料 No. 6 の測定結果である.この場合にも試料 No.5,8 について はカウント数が図-2 とほぼ同一レベルにあったが、試料 No.7 のみは著しく高い値を示し、図-1 の試作品並みで あった。図-1 (試作品) と図-2 (市販品)のガンマ線ス ペクトルを対比すると、試作品は市販品に比べ著しく高 いカウント数を示しており、不純物含有量の大きいこと がわかる.

ガンマ線スペクトルの測定結果から,試作品と市販黒 鉛材料中の不純物元素とそれらの元素の量的関係を推測 してみる.試作品はいずれも,少なくとも市販品の試料 No.5,6,8と比べたとき,不純物元素の数ばかりでなく, それらの含有量も多く,市販品より劣ることを示してい る.しかし試料 No.7の市販品と比べたとき,試料 No.7 のガンマ線スペクトルのカウント数が試作品並みの値で あったことから,試作品は市販品の試料 No.7 並みの黒 鉛材料に相当すると推定される.

4. まとめ

著者らは、微粉砕ピッチコークスにバインダーとして バルクメソフェーズを利用し、これをホットプレスした 後、高温処理(HTT 2500, 2800°C)することによって、 より簡便でしかも短時間に高密度で高強度な黒鉛材料を 得、これらの試作黒鉛材料中に含まれる不純物元素の放 射化分析による定性分析を実施し、得られた結果を同一 条件で測定した4種の市販黒鉛材料のそれらと対比し、 以下のような結果を得た。

(1) 本法で得た試作黒鉛材料は,いずれも市販品の V -483 T (試料 No. 7) 並みの純度を示すと思われるが,そ の他の市販品 (IM-24,7477 PT, IG-11) に比べれば, その純度は劣る.

(2) 本法で得た試作黒鉛材料は、コークス原料として 石炭系のピッチコークスを用いた場合に、また HTT は 高いほうがより純度が高いように思われる.

以上の調査結果は、放射化分析の照射条件として、特 に希土類元素の半減期の長い核種に焦点をしぼって解析 したものであるため、不純物の測定結果としては不完全 なものであり、したがって上記の測定結果からだけでは 試作黒鉛材料の厳密な意味での原子炉用黒鉛材料として の位置づけは不可能である。

今後は、原料コークスの高純度化処理をほどこし、さ らに精度の高い放射化分析(長、中、短半減期核種)を 実施することによって、本法で得られる黒鉛材料のきめ 細かな原子炉用黒鉛材料としての位置づけが明確にされ ると思われ、これらは今後の研究課題である。

最後に, 試料を提供していただいた日本原子力研究所, 今井久氏に,また試料の照射および放射化分析において 全面的にご協力をいただいた東京大学共同利用開放研究 室,高野武美氏に深く感謝します。

なお,本研究は原研施設共同利用研究の一般研究費の 補助を受けて行ったものである.

(1985年5月7日受理)

参考文献

- 1) 張 東植, 大蔵明光: 炭素, 投稿中
- 2) 張 東植, 大蔵明光:未発表
- 3) 炭素材料研究会編:「炭素材料入門」(1972), 184
- 4) 炭素材料学会編:「炭素材料実験技術1」科学技術社 (1978),55
- 5) 今井 久(日本原子力研究所): 私信

33