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Abstract

A widely accepted principle in statistical learning is that a good estimator is obtained
through a good control of model complexity. Typically, low-complexity models are ob-
tained as low-dimensional sub-structures of a single large model. In this thesis, we focus
on the problem of selecting the best model among a large number of candidates for low-
dimensional structures. In particular, we study statistical properties of regularization
methods that can induce complex low-dimensional structures.
Our first contribution is about risk estimation in regularization methods for structured

sparsity. Over the last two decades, structured sparsity have been a major research
topic in high-dimensional statistics and machine learning. Since penalized model selection
criteria for structured sparsity can involve hard combinatorial optimization problems,
various regularization methods have been developed as their computationally tractable
convex relaxations. However, regularization methods can produce their own stochastic
errors, although the original intension of penalized model selection criteria is to cancel
the effect of stochastic fluctuations associated with each low-dimensional model. In this
thesis, we study submodular regularization, which is a wide class of regularization based
estimators related to submodular functions. We derive unified formulae for unbiased risk
estimates of submodular regularization. Our formulae can be applied for any submodular
regularization estimators and any design matrices. Our results also recover some existing
results for regularization and projection type estimators, such as the lasso, the fused lasso,
and the isotonic regression. Moreover, we show that, in submodular regularization, the
computational complexity of calculating unbiased risk estimates can be much faster than
other general class of polyhedral convex regularizers. We also provide some numerical
experiments that show reasonable effectiveness of our formulae as selection criteria of
regularization parameter.
As our second contribution, we study the problem of estimating piecewise monotone

vectors. This problem can be seen as a generalization of the classical isotonic regres-
sion that allows a small number of order-violating changepoints. We mainly focus on
the performance of the nearly-isotonic regression, which can be regarded as an example
of submodular regularization. We derive risk bounds for the nearly-isotonic regression
estimators that are adaptive to piecewise monotone signals. Under a weak assumption,
the estimator achieves a nearly minimax convergence rate over certain classes of piece-
wise monotone signals. We also present an algorithm that can be applied to the nearly-
isotonic type estimators on general weighted graphs. The simulation results suggest that
the nearly-isotonic regression performs as well as the ideal estimator that knows the true
positions of changepoints.
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Chapter 1

Introduction

1.1 Background: Statistical learning, model complexity, and

dimensionality
A fundamental goal in data-driven science is to understand what we can learn from ob-
served data. Until today, a variety of models for learning have been developed and studied
in statistics, machine learning, information theory, artificial intelligence and related fields.
Notably, many successful applications in modern artificial intelligence have widely adopted
the idea that learning can be formulated as statistical procedures.
Statistical learning theory is a research field devoted to providing statistical guar-

antees for various learning algorithms. In statistical learning theory, the algorithms are
typically analyzed in a decision-theoretic framework. An informal explanation of this
framework is as follows; The observed data is assumed to be drawn from an unknown
“true” probability distribution. The purpose of the statistician (or perhaps decision mak-
ers, data scientists, machine learning algorithms, and so on) is to estimate the unobserved
population quantity that depends on the true distribution. To this end, the statistician
makes an estimator as an observable counterpart of the desired population quantity. The
performance of such an estimator is measured by a certain loss function, which is to be
minimized. Therefore, a possible goal for the statistician is to find an optimal estimator
that minimizes the loss function.
A widely accepted principle in statistical learning is that a good estimator is obtained

through a good control of the model complexity. Here, the model means a set within
which the statisticians search estimators. While the precise definition of the model com-
plexity depends on the context, it can roughly be regarded as the size or the capacity of
the model.
We here provide some intuition behind how the model complexity affects the statistical

performance of the estimator. Suppose that X = (X1, X2, . . . , Xn) are n observations
from an unknown distribution P . Given a model Θ, a typical candidate of the estimator

is given by the minimizer of an empirical objective RX(θ) among Θ, that is, θ̂(X) is
defined as

θ̂(X) ∈ argmin
θ∈Θ

RX(θ).

Here, we expect that the quantity RX(θ) mimics the true population objective RP (θ) in
some sense. For example, RX(θ) is often taken as an unbiased or asymptotically unbiased
estimator of RP (θ). This formulation covers many important estimators in statistics
and machine learning literature, such as the maximum likelihood estimators, the M -
estimators, and the empirical risk minimization. Then, the statistical performance of the

estimator θ̂ is affected by the size of the model Θ as follows. In principle, the model
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should be taken large enough so that it contains a sufficiently accurate approximation of
the population quantity θP . If we enlarge the model Θ, the empirical objective RX(θ)
can be made small, which means that the data is well fitted by the estimator. On the
other hand, due to the randomness of the observation X, a larger model allows a larger
fluctuation of the empirical objective RX . Therefore, using too large models may cause a
large gap between the performance of the estimator and the optimal one. In this sense,
there is a trade-off between the approximation error (i.e., bias) and the stochastic error
(i.e., variance).
In many cases, the true objective RP (θ) can be decomposed as the sum of two terms

contributed by the bias and the variance respectively:

RP (θ) = Bias(θ)︸ ︷︷ ︸
≈RX(θ)

+ Variance(θ)︸ ︷︷ ︸
≈model complexity

.

Moreover, in the above decomposition, the bias term is often estimated by the empirical

objective RX(θ̂) itself, while the variance term is estimated by some complexity measure
of the model. Such decomposition phenomena have been found and studied ubiquitously
in many different frameworks, and the idea has been implemented as model selection
criteria penalized with model complexity measures. The following is a partial list of such
frameworks:

• AIC: The Akaike Information Criterion (AIC) (Akaike 1973) is a model selection
criterion for parametric statistical models. In the AIC, the model complexity is
measured by the dimension of the model. Under some regularity conditions for
the model, the AIC is shown to be an asymptotically unbiased estimator of the
Kullback–Leibler risk.
• Mallows’ Cp: Mallows’ Cp (Mallows 1973) is a criterion for variable selection in
the linear regression model. The penalty term in the Cp statistics is given as the
number of variables (or equivalently the dimension) of the linear model. In fact,
Mallows’ Cp coincides with the AIC when the noise distribution is assumed to be
isotropic Gaussian with a known variance, while the derivation can be justified in
a non-asymptotic sense.
• BIC: The Bayesian Information Criterion (BIC) (Schwarz 1978) is another crite-
rion based on Bayesian testing procedure. The BIC is obtained as an asymptotic
leading term of the marginal likelihood, and eventually the penalty term is propor-
tional to the dimension of the model.
• MDL: The Minimum Description Length (MDL) principle (Rissanen 1978) is an
information theoretic model selection criterion originated in compression theory.
The MDL chooses a model that has minimal code length of a certain two-part
coding model. In some regular models, the MDL criterion involves a dimension
penalty which is very similar as the BIC, although the underlying philosophy seems
quite different.

A sensible criterion for a model to have low-complexity is low-dimensionality. That is,
models with low-complexity are typically obtained just as low-dimensional sub-models of
a single large model. Indeed, the aforementioned five frameworks serve examples that the
model complexities are determined by model dimensions. For a more concrete example,
let us consider the classical variable selection problem in linear regression. Suppose that
the target variable can be represented as a linear combination of a given collection of
explanatory variables. If only a few number of explanatory variables are actually needed
to represent the target variable, the best model in prediction tasks should contain only
a small number of explanatory variables. It is because, by increasing the number of
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explanatory variables, the approximation errors are not much improved while the model
complexity terms get larger.
But how can we believe that our data can be represented by low-dimensional models?

Nowadays, data and models addressed in the statistical learning are getting more and
more complicated. Machine learning algorithms have come to address high-dimensional
and large-scale datasets such as natural images, raw audio signals, and explosively in-
creasing logs generated by web services. Meanwhile, the models are also getting more
complicated. For example, deep neural networks have become a gold standard model in
various modern machine learning applications (Goodfellow et al. 2016), while the theoret-
ical analysis of their statistical and computational aspects remains largely uninvestigated.
Still, we have a brief, or an inductive bias, that meaningful data should have meaningful
structure. Natural images should be far more structured than pure noise images with
uncorrelated pixels. Natural language should have much more structural constraints than
word sequences generated completely at random. These structures themselves can be quite
complicated, and we may not be able to write down them explicitly. However, such struc-
tures, albeit unknown, may enforce the data to have small degrees of freedom, and thus
the low-dimensionality assumption on models can be still valid under some appropriate
justifications.

1.2 Thesis goal: Structured low-dimensionality
The goal of this thesis is to investigate how we can exploit the structured low-
dimensionality in statistical learning. We have hitherto explained the importance
low-dimensional structures in learning theory. Hereafter, setting aside general problems
in learning theory, we focus on the problem of selecting the best model among a large
number of candidates for low-dimensional structures.
Let {Θm : m ∈ M} be a collection of models. To choose a data-dependent model Θm̂,

we consider a penalized model selection criterion as follows:

m̂ ∈ argmin
m∈M

(
min
θ∈Θm

RX(θ) + pen(Θm, X)

)
(1.1)

Here, for each model Θm, pen(Θm, X) is a penalty term that depends on the (effective)
dimensionality of the model. As we mentioned before, model selection criteria of this form
have been ubiquitously used in statistical learning theory. As an optimization problem,
the above model selection is often computationally difficult due to the combinatorial
aspect of the collection of modelsM. Here, we give two examples:

• Variable selection: Let us consider the problem of choosing a best subset among
a given set of explanatory variables X1, . . . , Xp. In this case, a modelm corresponds
to some subset of indices [p] := {1, . . . , p}, and thus the cardinality ofM can grow
exponentially with p.
• Change-point models: Let θ = (θ1, . . . , θn) be a discrete signal. Suppose
that there is a connected partition A1, · · ·Ak of [n] such that each piece θAj ,
j ∈ {1, . . . , k} belongs to a certain model of smooth signals (e.g., constant sig-
nals, linear signals, and Sobolev ellipsoids). In this case,M can contain the set of
all connected partitions with cardinality 2n−1.

In modern applications, the learning problem is often of large-scale in the sense that
the sample size n or the data dimensionality p (or both) are extremely large. Hence,
it can be quite hard to solve the above combinatorial model selection problem directly.
To overcome such a curse of dimensionality in model selection, researchers have proposed
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regularization methods based on convex relaxation of the discrete penalty pen(Θm, X).
Generally speaking, such regulization based estimators have the following form:

θ̂λ ∈ argmin
θ∈Rp

(
RX(θ) + λΩ(θ)

)
, (1.2)

where the regularizer Ω : Rp → R corresponds to the convex relaxation of pen(Θm, X).
This formulation includes the lasso (Tibshirani 1996), the group lasso (Yuan and Lin
2006), the fused lasso (Rudin et al. 1992, Tibshirani et al. 2005), and many other important
regularization methods that have been proposed to date.
However, the regularization method (1.2) can produce its own stochastic error (i.e.,

variance), although the original intension of the criterion (1.1) is to cancel the effect of
the stochastic error associated with each model. This motivates the following two research
questions, which are main goals in this thesis:

(Q1) Can we obtain a general formula for stochastic errors (or variances) of the regular-
ization based estimators (1.2)? How can we estimate them from data? Besides, if
we can construct estimators for stochastic errors, a possible application is to use
them for data-dependent criteria for selecting the tuning parameter λ. How effective
are such criteria in practice?

(Q2) When the true distribution satisfies some structured low-dimensionality property,
can the regularization based estimators (1.2) achieve optimal rate of statistical risks?
If not, how much they are suboptimal compared to the best possible estimation by
the (discrete) model selection procedures (1.1)?

The above questions will be addressed in Chapter 4 and Chapter 5, respectively. Below,
we introduce particular problems addressed in this thesis.

1.2.1 Risk estimate in structured sparsity

In Chapter 4, we study a wide class of regularization based estimators that induces struc-
tured sparsity in linear regression problems. Roughly speaking, structured sparsity
means that the sparsity pattern of the coefficient vector is determined by some combi-
natorial structure on the index set. For example, the coordinate sparsity (or the vanilla
sparsity) stands for the property that each coordinate can independently shrink to zero,
while the group sparsity requires that the support of the vector cannot be finer than some
predefined partition. See Chapter 4 as well as Section 3.3.2 for more detailed reviews of
structured sparsity.
We focus on submodular regularization, which is a class of regularization based

estimators defined by convex relaxations of submodular functions. It has been pointed
out that submodular regularization contains a wide class of existing penalties that induce
structured sparsity (Bach 2010, 2011, Obozinski and Bach 2016). Besides, submodular
regularization has computational advantage that there are efficient algorithms for calculat-
ing proximal operators (Bach 2013, Obozinski and Bach 2016). However, their statistical
risk behaviours have not been fully understood.
We derive unified formulae for the degrees of freedom, a covariance penalty related

to Stein’s Unbiased Risk Estimate (SURE) (Stein 1981, Efron 2004). Our formulae
can be applied for any submodular regularization estimators and any design matrices.
As particular applications, our results provide new formulae for risk unbiased estimators
for the SLOPE estimator (Bogdan et al. 2015) and the hypergraph total variation (Hein
et al. 2013). Moreover, we point out that, in submodular regularization, the computational
complexity of calculating SURE can be much faster than other general class of polyhedral
convex regularizers. We also provide some numerical experiments that show reasonable
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effectiveness of the degrees of freedom as a selection criterion of regularization parameter.

1.2.2 Piecewise shape restricted regression

Estimation of monotone signals has a long history in statistics. The most fundamental
estimator for this problem is the isotonic regression, which is the least squares estima-
tor onto the set of monotone signals (Ayer et al. 1955, Brunk 1955, van Eeden 1956). The
isotonic regression is known to be minimax optimal for the problem of estimating mono-
tone signals with bounded total variations (Zhang 2002). Roughly speaking, the optimal
rate of monotone signal estimation has the same order as that of nonparametric regression
with bounded first derivatives (see e.g., Chapter 9 of van de Geer (2009)) or bounded total
variations (Mammen and van de Geer 1997). Moreover, Chatterjee et al. (2015) and Bel-
lec (2018) recently showed that the isotonic regression also achieves an adaptive minimax
rate for the piecewise constant monotone signals. Thus, the isotonic regression naturally
combines aspects of smooth signal estimation and combinatorial model selection.
Broadly speaking, the isotonic regression is an example of shape restricted regression.

Shape restricted regression is a subfield of nonparametric regression where the true re-
gression functions are assumed to satisfy some shape constraints (e.g., monotonicity, uni-
modality and convexity). See Groeneboom and Jongbloed (2014) and Guntuboyina and
Sen (2017) for detailed reviews of this field.
In Chapter 5, we study the signal denoising problem when the true signal is piecewise

monotone, that is, the signal is obtained by concatenating a few number of monotone
signals. In our terms, this is a good example of structured low-dimensionality. In par-
ticular, estimating piecewise monotone signals can be regarded as a hierarchical selection
procedure that consists of (i) selecting a partition on which the restricted signals are
monotone and (ii) estimating monotone (and piecewise constant) signal on each segment
in the partition.
We focus on the performance of the nearly-isotonic regression proposed by Tibshi-

rani et al. (2011). In fact, the nearly-isotonic regression is an example of submodular
regularization that we study in Chapter 4. In Chapter 5, we first provide a minimax
lower bound for piecewise monotone signal estimation. Then, we derive risk bounds for
the nearly-isotonic regression estimators that are adaptive to piecewise monotone signals.
Under a weak assumption, the estimator achieve a nearly minimax convergence rate over
certain classes of piecewise monotone signals. We also provide some simulation results
suggesting that the nearly-isotonic regression performs as well as the ideal estimator that
knows the true positions of changepoints.

1.3 Structure of this thesis
The reminder of this thesis is organized as follows. In Chapter 2, we provide some mathe-
matical background preliminaries required in the later chapters. In Chapter 3, we review
the theory of statistical estimation under sparsity, which aims to provide a minimum back-
ground required for our main contributions in Chapter 4. Chapter 4 presents our first
contribution on unbiased risk estimator for submodular regularization. Chapter 5 presents
our second contribution on statistical analysis of piecewise monotone signal estimation.
In Chapter 6, we conclude this thesis.
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Chapter 2

Preliminaries

This chapter provides some mathematical background preliminaries required in the later
chapters. Readers can skip this chapter and only refer back when they are needed.

2.1 Convex analysis
In this section, we provide some machinery of convex analysis. For basic definitions and
terminologies, we refer readers to Rockafeller and Wets (1998) and Rockafellar (1970).

2.1.1 Subgradient calculus

Recall that a function h : Rp → R ∪ {+∞} is convex if it satisfies h(tx + (1 − t)y) ≤
th(x) + (1 − t)h(y) for all x,y ∈ Rp and t ∈ [0, 1]. Below, we always assume that h is
proper, i.e., there exists x ∈ Rp such that h(x) <∞.
For a function h : Rp → R, a vector v ∈ Rp is called a subgradient of h at a point

x ∈ Rp if it satisfies h(x)−h(x′) ≤ v⊤(x−x′) for any x′ ∈ Rp. The set of all subgradients
of h at x is called the subdifferential of h at x, and denoted by ∂h(x). Note that ∂h(x)
is nonempty for any x ∈ Rp if h is convex.
The notion of subdifferential is important because it is related the first-order optimality

condition of convex optimization problems. For our purpose, we use the following facts.

Lemma 2.1. Let h, g : Rp → R be convex functions.

(i) Suppose that h is differentiable at x ∈ Rp. Then, ∂h(x) = {∇h(x)}.
(ii) For any x ∈ Rp, ∂(h + g)(x) = ∂h(x) + ∂g(x) holds. Here, the summation in the

right-hand side is understood as the Minkowski sum.
(iii) x ∈ Rp minimizes h over Rp if and only if 0 ∈ ∂h(x).

The following corollary provides the first-order optimality condition for regularization
type problems, which is used in Chapter 4.

Corollary 2.2. Let ℓ : Rp → R be a differentiable convex function, and ψ : Rp → R be
a convex function. Consider a problem of minimizing a function ℓ+ λψ (λ > 0) over Rp.
Then, a necessary and sufficient condition for θ ∈ Rp to be globally optimal is that

−∇ℓ(θ) ∈ λ∂ψ(θ). (2.1)
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2.1.2 Special convex sets

For a closed convex set C ⊆ Rp and a point x on it, the tangent cone of C at x is defined
as

TC(x) := closure({t(x′ − x) : t ≥ 0,x′ ∈ C}).

We also define the normal cone of C at x as

NC(x) := {z ∈ Rp : ⟨z − x,x′ − x⟩ ≤ 0 for all x′ ∈ C}.

Let C ⊆ Rp be a polyhedron, that is, a set that can be written as an intersection of
finitely many (say k) half spaces. By definition, there exist a matrix A = (a1, . . . ,ak)

⊤ ∈
Rk×p and a vector b ∈ Rk such that C = {x ∈ Rp : Ax ≤ b}. Given a point x ∈ C, define
a set of indices of satisfied equality constraints as I(x) = {i ∈ [k] : a⊤

i x = bi}. Then, we
have a parametric representation of the normal cone of C at x:

NC(x) =

 ∑
i∈I(x)

ciai : ci ≥ 0 for i ∈ I(x)


(see Theorem 6.46 of Rockafeller and Wets (1998)).
A face F of a polyhedron C is a nonempty subset of C such that there exists x ∈ Rp

satisfying F = argmaxz∈C z⊤x. Any polyhedron has a finite number of faces.

2.1.3 Support functions

For any nonempty set C ⊆ Rp, we define the support function ΩC : Rp → R ∪ {+∞}
as

ΩC(x) := sup
z∈C

z⊤x.

For any C, the support function ΩC is convex and positive homogeneous, i.e.,

ΩC(λx) = λΩC(x) for all λ > 0,x ∈ Rp.

Moreover, if C is a bounded set, then ΩC(x) is bounded for all x ∈ Rp.
The following lemma provides two equivalent expressions of the subdifferentials of sup-

port functions.

Lemma 2.3 (Rockafeller and Wets (1998), Corollary 8.25). Let C be a closed, bounded
and convex set. For any x ∈ Rp, the subdifferential of ΩC is given as

∂ΩC(x) = argmax
z∈C

z⊤x = {z ∈ C : x ∈ NC(z)}.

For a bounded polyhedron C and x ∈ C, Lemma 2.3 implies that the subdifferential of
the support function ∂ΩC(x) coincides with one of the faces of C.

2.2 Submodular analysis
In this section, we review some definitions and properties related to submodular functions.
Submodular functions are an important class of set functions in combinatorial optimiza-
tion. We refer readers to Fujishige (2005) and Bach (2013) for general introduction to
this concept.
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Fig. 2.1: Examples of submodular polyhedra for p = 2. (Left) The base polyhedron
B(f) is a face of the submodular polyhedron P (f). The dimension of B(f) is at most
p− 1. (Right) The positive submodular polyhedron P+(f) is the intersection of P (f) and
non-negative orthant Rp

+. The symmetric submodular polyhedron |P |(f) can be obtained
as the union of 2p axisymmetric copies of P+(f).

Let V = [p] := {1, . . . , p} be a finite set. We say that a function f : 2V → R is
submodular if it satisfies the submodular inequality

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

for any A,B ⊆ V . Below, we always assume f(∅) = 0. We say that a function f : 2V → R
is non-decreasing if f(A) ≤ f(B) holds for any A ⊆ B.

2.2.1 Submodular polyhedra

Here, we introduce some polyhedra related to submodular functions.

Definition 2.4. Let f : 2V → R be a submodular function. We define the submodular
polyhedron P (f) and the base polyhedron B(f) as follows:

P (f) := {x ∈ Rp : 1⊤
Ax ≤ f(A) for all A ∈ 2V } (2.2)

B(f) := {x ∈ P (f) : 1⊤
V x = f(V )}. (2.3)

If f is non-decreasing, we also define the positive submodular polyhedron P+(f) := P (f)∪
Rp

+ and the symmetric submodular polyhedron

|P |(f) := {x ∈ Rp : |x| ∈ P (f)}. (2.4)

If f is non-decreasing, B(f) is included in the non-negative orthant Rp
+. Thus, P+(f)

shares all extremal points of P (f). The symmetric submodular polyhedron |P |(f) can be
obtained as the union of axisymmetric copies of P+(f), i.e., |P |(f) =

∪
γ∈{−1,1}p γ⊙P+(f).

See Figure 2.1 for illustrative examples for p = 2.
Let s be any point in P (f). A subset A ⊆ V is said tight at s if it satisfies the equality

constraint in (2.2) (i.e., 1⊤
As = f(A)). Let D(s) denote the collection of all tight sets at

s:
D(s) := {A ⊆ V : 1⊤

As = f(A)}.

It is known that D(s) becomes a distributive lattice*1.

*1 Here, a collection of sets D ⊆ 2V is called a distributive lattice if, for any A,B ∈ D, both A ∩ B
and A ∪B are contained in D.
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Lemma 2.5 ((Fujishige 2005), Lemma 2.2). For any s ∈ P (f), the collection of tight sets
D(s) is a distributive lattice with ∅ ∈ D(s). Moreover, if s ∈ B(f), then V ∈ D(s).

The above lemma plays an important role in Chapter 4 for the following reasons. From
a geometrical perspective, there is a one-to-one correspondence between the distributive
lattices obtained by Lemma 2.5 and the faces of the base polyhedron B(f). From a
combinatorial perspective, a distributive lattice naturally defines a partition, which is
important in the representation of the degrees of freedom discussed in Section 4.4.2. In
particular, the following Birkhoff’s representation theorem is important (see (Fujishige
2005,Section 3.2)).

Theorem 2.6 (Birkhoff’s representation theorem). Let D ⊆ 2V be a distributive lattice
with ∅, V ∈ D. Then, there exists a pair (Π(D),⪯D) that consists of a partition Π(D)
of V and a partial order ⪯D defined on Π(D) satisfying the following condition: for any
A ∈ D, there exists an ideal J ⊆ Π(D) with respect to ⪯D such that A =

∪
{S : S inJ}.

Conversely, for any ideal J of ⪯D, the preceding set is an element of D. Here an ideal J
of a partial order ⪯D is a subset of Π(D) such that S ∈ J, S′ ⪯D S ⇒ S′ ∈ J .

An increasing sequence in D is called a maximal chain if its length is maximal. Partition
Π(D) in the above theorem can be constructed from any maximal chain as follows.

Corollary 2.7 ((Fujishige 2005), Corollary 3.10). Let D ⊆ 2V be a distributive lattice
with ∅, V ∈ D. Let ∅ = A0 ⊂ A1 ⊂ · · · ⊂ Ak = V be an arbitrary maximal chain in D.
Then, the partition in Theorem 2.6 is given as Π(D) = {Ai −Ai−1 : i ∈ {1, . . . , k}}.

2.2.2 Lovász extension

The Lovász extension is a natural convex relaxation of a submodular function. For
general introduction to this concept, we refer readers to Chapter 3 of Bach (2013) and
Section 6.3 of Fujishige (2005). Formally, the Lovász extension of a submodular function

f : 2V → R is a function f̂ : Rp → R defined as follows: for any θ ∈ Rp, let τ : V → V
be any permutation such that θτ(1) ≥ · · · ≥ θτ(p). Define an increasing sequence of sets
A0 = ∅ and Ai = {τ(1), . . . , τ(i)}, i ∈ {1, . . . , p}. Then, the value of the Lovász extension

f̂(θ) is defined as

f̂(θ) :=

p∑
i=1

θτ(i)(f(Ai)− f(Ai−1)).

An important fact is that the Lovász extension is the support function of the base
polyhedron:

f̂(θ) = max
z∈B(f)

z⊤θ. (2.5)

From this expression, it is clear that f̂ is convex, piecewise-linear, and positively homo-
geneous.
For any vector θ ∈ Rp, we write |θ| = (|θ1|, . . . , |θp|)⊤. If f is non-decreasing, we have

the following:

f̂(|θ|) = max
z∈B(f)

z⊤|θ| = max
z∈P+(f)

z⊤|θ| = max
z∈|P |(f)

z⊤θ.

Hence, the mapping θ 7→ f̂(|θ|) is the support function of the symmetric submodular
polyhedron |P |(f). Bach (2010) showed that if f is non-decreasing and strictly positive
for all singletons, this mapping defines a norm in Rp.
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2.3 Basic probability facts
In this section, we provide some useful results in probability theory.

2.3.1 Stein’s lemma

We introduce Stein’s lemma (Stein 1981), which plays a central role in Chapter 4. A
function h : Rn → R is said to be weakly differentiable if there exist n locally integrable
functions g1, . . . , gn such that, for any i ∈ {1, . . . , n},∫

Rn

h(x)
∂φ

∂xi
dx = −

∫
Rn

gi(x)φ(x) dx

for any φ ∈ C∞(Rn). If h is continuously differentiable, this equality usually holds with
gi = ∂h

∂xi
. Hence, for notation convenience, we write gi = ∂h

∂xi
whenever h is weakly

differentiable. For a function f : Rn → Rn such that the coordinates fi : Rn → R
(i ∈ {1, . . . , n}) are weakly differentiable, we define the divergence of f as

(∇ · f)(x) =
n∑

i=1

∂fi
∂xi

(x).

Lemma 2.8 (Stein’s lemma). Let z be a random variable drawn from n-dimensional
isotropic normal distribution N(0, In). For any weakly differentiable function f : Rn →
Rn, the following equality holds:

E[z⊤f(z)] = E [(∇ · f)(z)] .

In Chapter 4, Stein’s lemma is used for deriving unbiased estimators of the mean squared
errors. We comment on some basic usage of Stein’s lemma for such purposes. For any
n× n matrix A, we have E[z⊤Az] = tr(A). Let C be a closed convex polyhedron in Rn,
and let ProjC be the orthogonal projection map onto C. Then, ProjC is not differentiable,
but continuous and locally affine, and thus weakly differentiable. In particular, there is a
partition S1, . . . , SM of Rn such that, for each j ∈ {1, . . . ,M},

(i) Sj is a closed convex polyhedron, and
(ii) the restriction of ProjC onto Sj is an affine map and written as ProjC(z) = Ajz+bj .

Then, by Stein’s lemma, we have

E[z⊤ProjC(z)] =
M∑
j=1

tr(Aj) Pr(z ∈ Sj).

In particular, z 7→
∑

j tr(Aj)1{z∈Sj} evidently provides an unbiased estimator of the

quantity E[z⊤ProjC(z)].

2.3.2 Some probability inequalities

Here, we present several auxiliary probability inequalities used in Chapter 5.

Lemma 2.9 (Borel–Tsirelson–Ibragimov–Sudakov inequality; see Proposition 3.19 in
Massart (2007)). Suppose that (Xt)t∈T is a Gaussian process on a totally bounded metric
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space (T, d) such that E[Xt] = 0 for any t ∈ T and the sample path t 7→ Xt is almost
surely continuous. Let v := supt∈T E[X2

t ]. Then, for any z > 0, we have

Pr

{
sup
t∈T

Xt − E
[
sup
t∈T

Xt

]
≥
√
2vz

}
≤ exp(−z).

Lemma 2.10 (Peeling lemma; see e.g. Lemma 4.23 in Massart (2007)). Let K be a set
in Rn and θ̄ ∈ K. Assume that there is a function ψ : [0,∞) → R such that ψ(t)/t is
non-increasing and

Eξ∼N(0,In)

[
sup

θ∈K:∥θ−θ̄∥2≤t

⟨ξ, θ − θ̄⟩

]
≤ ψ(t)

for any t ≥ t̄ ≥ 0. Then, for any x ≥ t̄, we have

Eξ∼N(0,In)

[
sup
θ∈K

⟨ξ, θ − θ̄⟩
∥θ − θ̄∥22 + x2

]
≤ 4ψ(x)

x2
.
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Chapter 3

Statistical Learning with Sparsity

In this chapter, we review the theory of statistical estimation under sparsity. The goal of
this chapter is to provide a minimum background required for our main contributions in
Chapter 4 and a part of Chapter 5.

3.1 Fixed design regression models
Throughout the main part of this thesis, Chapter 4 and Chapter 5, we stick to the sta-
tistical analysis of the prediction error in fixed design regression models. Here,
we provide a precise definition of the fixed design regression as well as several examples
covered by this setting.
Suppose that y1, y2, . . . , yn be n independent observations drawn according to the fol-

lowing model:
yi = f∗(xi) + ξi, i = 1, . . . , n, (3.1)

where x1,x2, . . . ,xn are known vectors in Rp and ξ1, ξ2, . . . , ξn are mutually independent
random variables with E[ξi] = 0 and Var[ξi] ≤ σ2. The task is to estimate the unknown
function f∗ : Rp → R under the prediction error (or the mean squared error) defined
as follows

R(f, f∗) :=
1

n

n∑
i=1

Ef∗ [(f(xi)− f∗(xi))
2],

where the expectation Ef∗ is taken with respect to the model (3.1).

Remark 3.1 (Random design regression: What this thesis is not for). The terminology
“prediction error” is commonly used in the study of high-dimensional statistics (see e.g.,
van de Geer (2015)). However, this definition of the prediction error is somewhat different
from the prediction performance that is usually intended in the statistic and machine
learning literature. In these literature, prediction generally means a statistical problem
to forecast the behavior of future observations. For this purpose, it is common to assume
that the training data (x1, y1), . . . , (xn, yn) and the future observation (xnew, ynew) are
generated from the same distribution P , and a typical objective is defined as

Rrandom(f, f
∗) := ∥f − f∗∥2L2(PX) =

∫
(f(x)− f∗(x))2 dPX(x).

In our setting, the future observations are allowed to occur at the same design points
x1,x2, . . . ,xn as in the given data (3.1). Hence, this setting is often referred to as fixed
design regression. On the other hand, the situation where the future observation occurs
at a new design point xnew ∈ Rp is referred to as the random design regression. The
theoretical results and applications in the fixed and the random design settings are closely
related to each other, but may have independent interest.
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3.2 Linear regression
Linear regression corresponds the case where f∗ is a linear function, i.e., there exists a
regression coefficient θ∗ ∈ Rp such that f∗(x) = ⟨θ∗,x⟩. In this case, we can rewrite (3.1)
as

y = Xθ∗ + ξ,

where we write y = (y1, . . . , yn)
⊤, X = (x1, . . . ,xn)

⊤ and ξ = (ξ1, . . . , ξn)
⊤. For any

estimator θ̂, the prediction error is written as

R(θ̂,θ∗) =
1

n
Eθ∗∥X(θ̂ − θ∗)∥22.

If the design matrix rankX = p (i.e., full column rank), the ordinary least squares
(OLS) estimator that minimizes

Rn(θ) =
1

n
∥y −Xθ∥22

is uniquely determined as θ̂OLS = (X⊤X)−1X⊤y. Here, the assumption that rankX = p
corresponds to the classical low-dimensional setting with n ≤ p. For high-dimensional
settings p > n, this is not the case because X⊤X is not invertible. In Section 3.3, we will
discuss more about the high-dimensional linear regression.
Below, we review some basic results for the OLS estimators and variable selection

problems in low-dimensional linear regression. First, we can easily see that the prediction
error of the OLS estimator is bounded by O( pn ).

Proposition 3.2. Suppose rankX = p. Suppose also that the noise variables ξi, i ∈
{1, . . . , n} are uncorrelated and Var[ξi] ≤ σ2. Then, for any θ∗ ∈ Rp, the prediction error

of the OLS estimator is bounded as R(θ̂OLS,θ
∗) ≤ σ2p

n .

Suppose that θ∗ is k-sparse, i.e., the number of non-zero coordinates in θ∗1 , . . . , θ
∗
p is not

larger than k. If we know the true sparsity pattern A∗ = {i ∈ [p] : θ∗i ̸= 0}, Proposition 3.2
suggests that the OLS estimator for restricted matrix XA∗ := [Xi]i∈A∗ has the prediction
error of order O( kn ). When k ≪ p, this can be much smaller than that of the full model,
and thus motivates data-dependent variable selection.
Mallows (1973) proposed the following criterion for selecting variables for the OLS

estimator:

Cp(A) :=
1

n
∥y −XAθ̂A∥22 +

2σ2p

n
.

Here, for any subset A ⊆ [p], θ̂A is defined as the OLS estimator with respect to selected
variables XA = [Xi]i∈A. The Cp criterion can be seen as minimizing an unbiased esti-
mator of the prediction risk. The following fact is well-known in the literature (see e.g.,
Stein (1981) and Efron (2004)).

Proposition 3.3. Suppose that ξi, i ∈ {1, . . . , n} are independently drawn from Gaussian
distribution N(0, σ2). Then,

R̂(θ̂OLS) =
1

n
∥y −Xθ̂OLS∥22 +

2σ2p

n
− σ2

gives an unbiased estimator for the prediction error of θ̂OLS.
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The next question is how close the minimizer of Mallows’ Cp criterion from the best
one. In some situations, the optimality of Mallows’ Cp criterion has been proved. Shibata
(1981) and Li (1987) showed that the following asymptotic optimality:

∥X(n)(θ̂Ân
− θ∗

n)∥22
infA∈An∥X

(n)(θ̂A − θ∗
n)∥22

n→∞−→ 1 in probability.

Here, for n ∈ {1, 2, . . .}, X(n) is a deterministic sequence of n × pn matrices, An is a
collection of subsets of [pn], and θ∗

n ∈ Rpn is the sequence of true coefficients. Under some
regularity assumptions*1, the above result says that the prediction loss of the selected
model Ân asymptotically optimal among model candidates An. Also, Baraud (2000)
showed a non-asymptotic oracle inequality.
Mallows’ Cp can be regarded as a special case of Stein’s Unbiased Risk Estimate (SURE)

(Efron 2004), which can be defined for a more general class of estimators. SURE-tuned
estimators have been shown to be optimal in some particular situations (see e.g. Donoho
and Johnstone (1995)), but providing a unified theoretical guarantee in general settings
remains as an open question (Tibshirani and Rosset 2019). In Chapter 4, we will derive
SUREs for a wide class of regularization based estimators.

3.3 Sparse linear regression
In the previous section, we reviewed the variable selection problem when the OLS es-
timators exist. In this section, we review methods for linear regression with possibly
high-dimensional design matrices. For general introduction to high-dimensional statistics,
see Bühlmann and van de Geer (2011), Giraud (2015), Hastie et al. (2015), and van de
Geer (2015).
In modern high-dimensional statistics, we have to take care of statistical performance as

well as computational efficiency. Below, we review some typical estimators for sparse
linear regression and discuss their statistical/computational efficiency.
Let X be n× p design matrix with p ≥ n. Suppose that θ∗ is k-sparse with k < n, but

we do not know the true position of non-zero coordinates of θ∗. Let us define the best

k-subset estimator θ̂BS as any solution of the following constrained problem:

min
θ∈Rp

∥y −Xθ∥22 s.t. ∥θ∥0 ≤ k.

We can check that, under suitable assumptions, the best subset selection estimator satisfies

1

n
Eθ∗∥X(θ̂BS − θ∗)∥22 ≤ C

σ2k log(ep/k)

n

for some universal constant C > 0. The rate O(k log(ep/k)
n ) often appears in the minimax

optimal rate for k-sparse regression (Raskutti et al. 2011). However, a statistical drawback
of the best subset selection is that it is by definition not adaptive to the sparsity level
k, which is often unknown in practice. Moreover, a practically more serious issue is that
computing the best subset estimator can involve intractable combinatorial optimization
due to the cardinality constraint ∥θ∥0 ≤ k. In fact, this problem is shown to be NP-hard
(Natarajan 1995), and even the state-of-the-art solvers can handle problems with sizes up
to n ≈ 100 and p ≈ 2000 (Bertsimas et al. 2016).

*1 The regularity assumption may contain conditions on the designs (X(n), θ∗
n,An) and the moment

of noise variables. See Li (1987) as well as Baraud (2000) for details.
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For the statistical issue, we can alternatively consider the ℓ0-regularization estimator
as follows:

θ̂λ ∈ argmin
θ∈Rp

(
1

2
∥y −Xθ∥22 + λ∥θ∥0

)
,

where λ > 0 is a regularization parameter. This formulation contains Mallows’ Cp type
regularization (λ = σ2) and BIC type regularization (λ = σ2 log n). The result in Birgé
and Massart (2001) suggests that, if the noises are Gaussian, the above ℓ0-regularization
estimator with λ = 2σ2(1 +

√
2 log p)2 satisfies

1

n
Eθ∗∥X(θ̂λ − θ∗)∥22 ≤ C

σ2(1 + k log(p))

n
,

where C > 0 is a universal constant (see also Theorem 2.2 of Giraud (2015) for a more
precise statement). Therefore, we can conclude that there exists an estimator that achieves
the nearly-minimax rate for any sparsity level k. However, computing ℓ0-regularization
estimators is still a hard optimization problem.

3.3.1 The lasso estimator

For a regularization parameter λ > 0, the well-known lasso estimator (Tibshirani 1996)
is defined as follows:

θ̂Lasso,λ ∈ argmin
θ∈Rp

(
1

2
∥y −Xθ∥22 + λ∥θ∥1

)
.

Here, the ℓ1-regularization term λ∥θ∥1 can be regarded as a convex relaxation of the
cardinality penalty λ∥θ∥0. Indeed, it is known that θ 7→ ∥θ∥1 is the tightest convex
lower bound of the ℓ0-norm θ 7→ ∥θ∥0 (Bach 2010). Thus, the optimization problem
for the lasso is convex function minimization, and there are several practical algorithms
to obtain (approximate) solutions. The coordinate descent (Friedman et al. 2007) is a
standard approach for solving the lasso optimization problems, and its implementations
are available as famous software libraries such as glmnet (Friedman et al. 2010) and
scikit-learn (Pedregosa et al. 2011). Least angle regression algorithm (LARS, Efron
et al. (2004)) calculates the entire solution path as a function of λ. Proximal methods,
especially FISTA (Beck and Teboulle 2009), reasonably perform well in large-scale settings
(Bach et al. 2012). For a more detailed review of optimization methods for lasso, see
Chapter 5 of Hastie et al. (2015).
Regarding the prediction errors, Bickel et al. (2009) showed that the lasso estimator can

achieve the rate of O(k log p
n ) under some spectral condition on the design matrix X. More

precisely, they proved risk bounds that hold under the following restricted eigenvalue
condition:

Definition 3.4. Let 1 ≤ k ≤ p be an integer and α > 0. We say that an n× p matrix X
satisfies the restricted eigenvalue condition RE(k, α) if it satisfies

κ(k, α) := min
A⊂[p]:|A|≤k

min
θ ̸=0:

∥θAc∥1≤α∥θA∥1

∥Xθ∥2√
n∥θA∥2

> 0.

It is known that the restricted eigenvalue condition holds with high probability for
Gaussian random matrices (Raskutti et al. 2010). The following risk bound is adapted
from Corollary 4.3 of Giraud (2015).
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Proposition 3.5. Let k = ∥θ∗∥0. Assume that X satisfies RE(k, 5) and all the columns
of X have norm 1. Assume also that the noise variables ξ1, . . . , ξn are independently
drawn from N(0, σ2). Then, for any δ ∈ (0, 1), we can choose the tuning parameter
λ = λδ such that

1

n
∥X(θ̂Lasso,λ − θ∗)∥22 ≤ inf

θ ̸=0

(
1

n
∥X(θ − θ∗)∥22 +

C

κ(k, 5)2
· σ

2k log(p/δ)

n

)
,

holds with probability at least 1− δ. Here, C > 0 is a universal constant.

We conclude this subsection with some comments on recent developments in the theory
of lasso. First, in the above risk bound, the choice of the tuning parameter λ = λδ happens
to depend on the deviation δ in the risk bound. For the Gaussian noise setting, Bellec
et al. (2018) refined this result so that λ can be taken independently from δ. Second, it
has been shown that the constant 1/κ(k, α)2 appeared in the upper bound is unavoidable
for any polynomial time methods (Zhang et al. 2014), while the risk bounds for some
non-polynomial time methods (e.g., ℓ0-regularization and aggregation) do not involve this
term.

3.3.2 Structured sparsity

Over the last two decades, structured sparsity has been a major research topic in high-
dimensional statistics and machine learning (Jenatton et al. 2011, Wainwright 2014, van
de Geer 2015, Obozinski and Bach 2016). Given a convex regularizer Ω : Rp → R, we
consider the following estimator:

θ̂λ ∈ argmin
θ∈Rp

(
1

2
∥y −Xθ∥22 + λΩ(θ)

)
. (3.2)

Lasso corresponds the case Ω(θ) = ∥θ∥1, which promotes the “coordinate sparsity” of so-
lutions. Here, coordinate sparsity stands for the property that each individual coordinate

θ̂λ,i can be non-zero independently from the other coordinates, and thus possible sparsity
patterns are all the subsets of the index set. On the other hand, different choices of the
regularizer Ω allow sparsity patterns to be more structured. To name a few, regulariza-
tion methods for structured sparsity include the group lasso (Yuan and Lin 2006) and its
generalizations (Jacob et al. 2009, Jenatton et al. 2011, Obozinski and Bach 2016), the
fused lasso (Rudin et al. 1992, Tibshirani et al. 2005), and methods based on directed
graphs (Tibshirani et al. 2011) and hypergraphs (Hein et al. 2013, Takeuchi et al. 2015).
For comprehensive lists of existing regularization methods for structured sparsity, see e.g.,
Wainwright (2014), Obozinski and Bach (2016) and Hastie et al. (2015).
While there are many statistical analyses for specific choices of regularizers, some re-

searchers study theoretical risk bounds for regularization methods in the general form
(3.2). Notably, Negahban et al. (2012) developed consistency results for general M -
estimators of the form (3.2) by introducing the notion of decomposability and restricted
strong convexity. van de Geer (2014) developed risk bounds based on more general-
ized conditions, i.e., weak decomposability and compatibility. Here, weak decompos-
ability is a regularity condition for Ω that generalizes the property of ℓ1-norm that
∥θ∥1 = ∥θA∥1 + ∥θAc∥1, which determines allowed sparsity patterns for the structured
sparsity regularizer Ω. On the other hand, compatibility is a condition on the interaction
between the regularizer Ω and the loss θ 7→ 1

2∥y−Xθ∥22, which generalizes the restricted
eigenvalue condition. Since providing a precise statement of the risk bound is slightly out
of scope of this thesis, we refer interested readers to Chapter 6 of van de Geer (2015) for
a good introduction to this topic.
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Chapter 4

Degrees of Freedom in Submodular

Regularization

Degrees of freedom is a covariance penalty related to penalized model selection procedures
such as Mallows’ Cp and AIC. We study the degrees of freedom of two polyhedral convex
regularization classes defined through submodular functions called the Lovász extension
regularization and submodular norm regularization. It has been pointed out that submod-
ular regularization contains many existing penalties that induce structured sparsity. In
this chapter, we show that the degrees of freedom of submodular regularization estimators
can be represented in terms of partitions induced by the estimators. Our formula does
not depend on the choice of the design matrix and the penalty function. Moreover, if the
design matrix has full column rank, calculating an unbiased estimator of the degrees of
freedom requires an additional computational cost of only O(p log p) after a solution for
the estimator is obtained, where p is the dimension of the parameter. Existing results for
some regularization and projection type estimators, such as the lasso, the fused lasso, and
the isotonic regression, are also recovered.
This chapter is based on Minami (2020).

4.1 Overview
Consider the following linear model

y = Xθ0 + ξ, (4.1)

where y ∈ Rn is the target variable, X ∈ Rn×p is an arbitrary design matrix, θ0 ∈ Rp

is the regression coefficient, and ξ ∼ N (0, σ2In) is a Gaussian noise vector. Throughout
this chapter, we consider the following regularization based estimator:

θ̂λ ∈ argmin
θ∈Rp

(
1

2
∥y −Xθ∥22 + λΩ(θ)

)
. (4.2)

Here, Ω : Rp → R is a convex regularizer that imposes some low-dimensional structure

on the estimated parameter θ̂λ. An important example of low-dimensional structure
is sparsity. Suppose that we have prior knowledge that the true parameter is sparse
(i.e., having only a few non-zero elements). Then, a typical choice of Ω is the ℓ1-norm
Ω(θ) = ∥θ∥1, with which the estimator (4.2) admits a sparse solution (Tibshirani 1996).
To introduce further combinatorial structures on the selected variables, structured sparsity
has received notable attention over the last decade (see Bach (2010, 2013), Obozinski and
Bach (2016), and Chapter 6 in van de Geer (2015), for example). It has been pointed
out that a broad class of regularizers inducing structured sparsity can be obtained as
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convex relaxations of combinatorial penalty functions (Bach 2010, 2013, Obozinski and
Bach 2016). We focus on the following two classes of structured regularization estimators
defined through submodular functions:

1. (Lovász extension regularization (LER)) Let f : 2V → R be a submodular function

and f̂ : Rp → R be its Lovász extension (defined in Section 4.3). The Lovász
extension regularization estimator (LERE) is defined as

θ̂λ = θ̂LERE,λ ∈ argmin
θ∈Rp

(
1

2
∥y −Xθ∥22 + λf̂(θ)

)
, (4.3)

where λ > 0 is a regularization parameter. An important and motivating example of
LERE is the generalized fused lasso (Tibshirani et al. 2005). Given an undirected

graph G = (V,E), the generalized fused lasso regularizer is defined as f̂(θ) =∑
(i,j)∈E |θi − θj |. Other examples of LERE will be introduced in Section 4.5.

2. (Submodular norm regularization (SNR)) Let f be a monotone submodular func-
tion. The submodular norm regularization estimator (SNRE) is defined as

θ̂λ = θ̂SNRE,λ ∈ argmin
θ∈Rp

(
1

2
∥y −Xθ∥22 + λf̂(|θ|)

)
, (4.4)

where, for θ = (θ1, . . . , θp)
⊤ ∈ Rp, we write |θ| = (|θ1|, . . . , |θp|)⊤. As suggested

by the name, the regularizer in SNR θ 7→ f̂(θ) forms a norm, and a wide class of
sparsity-inducing norms including the lasso, SLOPE (Bogdan et al. 2015), the group
lasso (Yuan and Lin 2006) and its overlapping and hierarchical extensions (Jacob
et al. 2009, Jenatton et al. 2011, Obozinski and Bach 2016) can be represented by
SNRE. We will discuss further examples of SNRE in Section 4.5.

A practically important issue is to determine the tuning parameter λ ≥ 0 using the
observed data y. To be precise, let us consider that a “good” tuning parameter λ min-

imizes the risk R(θ̂λ) := Eθ0∥X(θ0 − θ̂λ)∥22, where Eθ0 is the expectation with respect
to the model (4.1). Many existing methods to tackle this problem are based on mini-

mizing some estimator of R(θ̂λ). The most popular model selection methods certainly
fall into two categories: the cross-validation methods (see Yang (2007) and references
therein) and methods based on information criteria. Since the cross-validation methods
contain a data splitting procedure, it can be applied for the setting in which the matrix
X = (x1, . . . ,xn)⊤ is interpreted as n observations of p dimensional explanatory vari-
ables. On the other hand, information criteria, including AIC (Akaike 1973), Mallows’ Cp

(Mallows 1973), and BIC (Schwarz 1978), use theoretically derived estimators of the risk
R or some other statistical objectives. In the fields such as image processing and graph
signal processing, y is interpreted as a noisy observation of a single structured signal θ0

(i.e., X = In). For this case, information criteria are more suitable because the data can-
not be split into validation samples in natural ways. Therefore, deriving an information
criterion for submodular regularization estimators is important.
In this chapter, we focus on a certain unbiased estimate of the risk, which is known as

Stein’s Unbiased Risk Estimate (SURE). Suppose that y = µ+ξ is a Gaussian observation
with the unknown mean parameter µ ∈ Rn and ξ ∼ N (0, σ2In). For any estimator µ̂,
the risk is decomposed into the bias-variance form as

R(µ̂) = Eµ∥µ̂− µ∥22 = Eµ∥µ̂− y∥22 + 2
n∑

i=1

Cov(µ̂i, yi)− nσ2,
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where Cov(u, v) = Eµ[(u−Eµ[u])(v−Eµ[v])]. The first term on the right-hand side can be
regarded as the bias term, which is the expectation of the empirical goodness-of-fit to data
y. On the other hand, the second and the third terms corresponds to the variance term,
which is often interpreted as the model complexity or the effective number of parameters.
In the spirit of Efron (2004), the degrees of freedom of µ̂ is defined as

df(µ̂) :=
1

σ2

n∑
i=1

Cov(µ̂i, yi). (4.5)

Suppose that y 7→ µ̂(y) is continuous and weakly differentiable. By Stein’s lemma (Stein
1981), the degrees of freedom can be written as

df(µ̂) = Eµ[(∇ · µ̂)(y)] = E

[
n∑

i=1

∂µ̂i

∂yi
(y)

]
, (4.6)

where ∇ · µ̂ is the divergence of µ̂ that is defined almost everywhere. Hence, we can use

d̂f(µ̂) := ∇· µ̂ as an unbiased estimate of the degrees of freedom, and thus SURE defined
as

R̂SURE[µ̂](y) = ∥µ̂− y∥22 + 2σ2d̂f[µ̂](y)− nσ2

is an unbiased estimate of the risk R(µ̂). With a slight abuse of the terminology, we also

refer to the unbiased estimate d̂f as the degrees of freedom.
Our problem is to characterize the degrees of freedom of the submodular regularization

estimators described above. To clarify the desired form of the statements, we first review
the existing results on the degrees of freedom of typical regularization estimators. For the
lasso Ω(θ) = ∥θ∥1, the degrees of freedom is given by

d̂f(Xθ̂Lasso,λ) = (Number of non-zero elements in θ̂Lasso,λ). (4.7)

This result was first proved for a full-rank design matrix X by Zou et al. (2007) and
justified for general low-rank matrices by Tibshirani and Taylor (2012). Since the solution
of the lasso is known to become automatically sparse, the above result (4.7) seems natural
in the sense that the degrees of freedom provides the effective number of parameters.
Another example is the fused lasso (Tibshirani et al. 2005) on a given undirected graph

G = (V,E). It is known that the solution θ̂ = θ̂Fused,λ of the fused lasso becomes
“piecewise constant” on connected components in G. We refer to a connected component

A ⊆ V on which θ̂ is constant as a fused group. In Tibshirani and Taylor (2011, 2012),
the authors proved that the degrees of freedom of the fused lasso is given as

d̂f(Xθ̂Fused,λ) = (Number of fused groups in θ̂Fused,λ). (4.8)

As mentioned before, the above two example are instances of SNRs and LERs, respectively.
Therefore, the question is whether representations similar to (4.7) or (4.8) hold for general
submodular regression estimators.

4.1.1 Contribution

Here, we describe our main theorems for the degrees of freedom of submodular regulariza-
tion estimators. For the sake of notation simplicity, we provide the statements that hold
only for a full-rank design matrix X. The complete statements that hold for a general
matrix X will be provided in Section 4.4.
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Theorem 4.1 (Degrees of freedom of full-rank LERE). Let f : 2V → R be any submod-
ular function and λ ≥ 0. Let X ∈ Rn×p be any design matrix with rank(X) = p. Then,
the degrees of freedom of the LERE (4.3) is given as

d̂f(θ̂) = (Number of unique values in θ̂1, . . . , θ̂p). (4.9)

Theorem 4.2 (Degrees of freedom of full-rank SNRE). Let f : 2V → R be any monotone
submodular function, and λ ≥ 0. Let X ∈ Rn×p be any design matrix with rank(X) = p.
Then, the degrees of freedom of the SNRE (4.4) is given as

d̂f(θ̂) = (Number of non-zero unique values in |θ̂1|, . . . , |θ̂p|). (4.10)

The existing results on the lasso and the fused lasso can be recovered from the above
theorems. For the lasso, the expression (4.10) is equivalent to (4.7) almost surely because

the event that θ̂i = θ̂j for some i ̸= j occurs with probability 0. For the fused lasso,
the expression (4.9) actually coincides with (4.8) almost surely. We provide a detailed
discussion on this equivalence in Section 4.5.
We can interpret Theorem 4.1 and Theorem 4.2 from an algorithmic perspective. Once

we have a solution θ̂λ of LERE (4.3), the degrees of freedom is calculated by sorting the

elements of θ̂λ and counting “jumps” in the sorted values. Similary, the degrees of freedom

of SNRE (4.4) is calculated by sorting the elements of |θ̂λ| and counting “jumps” between
non-zero values. In both cases, the computational complexity of calculating the degrees
of freedom is O(p log p). We should note that it is substantially faster compared to the
case of the general polyhedral convex regularization method. The Lovász extension of a
submodular function on [p] is defined as the support function of a polytope that is defined
through M = O(2p) linear inequality constraints. As we discuss in Section 4.4, a näıve
implementation of calculating the degrees of freedom involves an enumeration of satisfied
linear equalities that requires O(M) runtime. Hence, we can say that the submodularity
helps to reduce the complexity of the degrees of freedom calculation.

4.1.2 Organization

The remainder of the present chapter is organized as follows. In Section 4.2, we review
related work on the degrees of freedom. In Section 4.3, we present notation and definitions
that are needed to describe our main results. Section 4.4 is the main part of this chapter.
In Section 4.4.1, we explain the relationship between submodular regularization estimators
and a certain class of (anti-)projection estimators. In Section 4.4.2, we state our main
theorem on the degrees of freedom of submodular regularization estimators. In particular,
Theorem 4.1 and Theorem 4.2 will be obtained as corollaries of Theorem 4.7 and 4.11,
respectively. In Section 4.5, we provide specific examples of submodular regularization
estimators and discuss the relationship between the existing results on the degrees of
freedom and our results. We conduct some numerical simulations in Section 4.6. Finally,
we provide some additional discussion in Section 4.7.

4.2 Related work
Explicit formulae for the degrees of freedom have been developed for various models. A
parallel approach to the convex regularization estimator (4.2) is the projection estimator
onto a convex set C:

θ̂C(y) = ProjC(y) := argmin
z∈C

∥y − z∥22.
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The degrees of freedom of a projection estimator is given as the dimension of the face
associated with the projected point ProjC(y). This characterization was proved essen-
tially in Meyer and Woodroofe (2000), who studies the 1-dimensional isotonic regression.
Kato (2009) extended the result to general convex sets with smooth boundaries. For
polyhedral convex sets, Chen et al. (2019) pointed out that it suffices to consider the rank
of the sub-matrix defining the face. The regularization type estimator (4.2) can often

be regarded as an anti-projection estimator Xθ̂ = y − ProjC(y). Hence, the degrees of
freedom is given by the codimension of a face of the corresponding convex set (Tibshi-
rani and Taylor 2012,Section 2.2). A specific example of the results can be found for
the lasso (Zou et al. 2007, Tibshirani and Taylor 2012), the generalized lasso (Tibshirani
and Taylor 2011, 2012), and a directed graph regularization estimator (Tibshirani et al.
2011). It is important to note that calculating the degrees of freedom directly from the
above face (co)dimension characterization often involves the enumeration of linear equality
constraints, which can be computationally expensive in general.
If the design matrix X is not an identity matrix, it would be beneficial to obtain a

formula for calculating the degrees of freedom in terms of the value of the estimator θ̂
itself. However, if the rank of X is less than p, the solution of (4.2) is not unique, and the

correspondence y 7→ θ̂ cannot be regarded as a differential map. For example, the number
of non-zero coordinates of the lasso estimator (4.7) does not necessarily coincide with the
face codimension unless rank(X) = p. The seminal paper of Tibshirani and Taylor (2012)
established a characterization of the degrees of freedom via the concept of the active set,
which allows to prove that the expression (4.7) holds almost everywhere for any design
matrix.
Besides the modeling flexibility, submodular regularization has another advantage that

the estimators can be calculated using computationally efficient convex optimization pro-

cedures. In particular, if Ω(θ) is either the Lovász extension f̂(θ) or the submodular norm

f̂(|θ|), calculating the proximal operator proxλΩ(θ) := argminz∈Rp

{
1
2∥z − θ∥

2
2 + λΩ(θ)

}
is reduced to solving the minimum norm point problem over an associated polytope, which
is equivalent to (parametrized) submodular function minimization (Bach 2013,Chapter 9).
Generally, submodular function minimization can be solved in strongly polynomial time
(Schrijver 2000, Iwata et al. 2001). Moreover, if the submodular function has a certain
graph-representable property (Jegelka et al. 2011), the minimum norm point problem can
be solved by practically fast network flow algorithms (Mairal et al. 2011b, Mairal and
Yu 2013, Takeuchi et al. 2015). If the proximal operators are obtained, the minimization
problems in (4.3) and (4.4) can be solved by the accelerated proximal gradient algorithms
(a.k.a. FISTA; Beck and Teboulle (2009)). It is reported in Bach et al. (2012) that the
proximal gradient algorithms have good empirical performance especially in large-scale
instances.

4.3 Preliminary
LetX be an arbitrary n×pmatrix. col(X), row(X), and null(X) denote column, row, and
null spaces of a matrix X, respectively. X+ denotes the Moore–Penrose pseudoinverse
of X. For any vectors u,v ∈ Rp, we use u ⊙ v to denote the element-wise product
u⊙ v = (u1v1, . . . , upvp)

⊤ ∈ Rp. For a number λ ∈ R, a vector γ ∈ Rp and a set C ⊆ Rp,
we define λC = {λx : x ∈ C} and γ ⊙ C = {γ ⊙ x : x ∈ C}.
Let V = [p] := {1, . . . , p} be a finite set. For any subset A ⊆ V , 1A ∈ Rp is the

characteristic vector of A. For a vector x ∈ Rp and a set A = {i1, . . . , ik} ⊆ V , we use
xA to denote a subvector xA = (xi1 , . . . , xik)

⊤ ∈ RA.
Let C ⊆ Rd be a closed convex set. We use ProjC : Rd → C to denote the orthogonal
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projection map ProjC(x) ∈ argminz∈C ∥x− z∥22. If C = L is a linear space, we also use
PL to denote the orthogonal projection matrix. A normal vector of C at x ∈ C is a
vector v such that v⊤(x′ − x) ≥ 0 holds for any x′ ∈ C. The normal cone NC(x) at x is
a set of all normal vectors. We use relint(C) to denote the relative interior in the sense
of convex analysis, i.e., the interior of C with respect to the relative topology induced by
the smallest affine subspace containing C.
Let V = [p] be a finite set. A set of subsets D ⊆ 2V is a distributive lattice if, for any

A,B ∈ D, A ∪ B and A ∩ B are contained in D. A partition Π of V is a collection of
nonempty subsets Π = {A1, . . . , Ak} that are disjoint and satisfy

∪
iAi = V . A partition

Π1 is a refinement of partition Π2 if, for any element A ∈ Π1, there is an element B ∈ Π1

such that A ⊆ B. In this case, Π2 is called a cover of Π1.

4.4 Degrees of freedom in submodular regularization
In this section, we present our main theorems on the degrees of freedom of the submodular
regularization.

4.4.1 Projection and anti-projection estimators

Our goal is to provide formulae for the degrees of freedom of submodular regularization
estimators. Before that, we review some properties of two generalized classes of estimators,
i.e., projection estimators and anti-projection estimators.
Let C ⊆ Rn be a closed convex polyhedron. We define the projection estimator

µ̂P
C(y) := ProjC(y) and the anti-projection estimator µ̂A

C(y) := (In − ProjC)(y) =
y − ProjC(y). These two classes of estimators are closely related to regularization es-
timators such as LERE (4.3) or SNRE (4.4) in the following sense:

(i) (Lagrange duality). Let Ω : Rp → R+ be a convex function. For any t ≥ 0, let

µ̂P
Ct

= Xθ̂
P

Ct
be the projection estimator onto the set Ct := {θ ∈ Rp : Ω(θ) ≤ t}.

In other words, θ̂
P

Ct
is a solution of the following convex optimization problem:

minimize ∥y −Xθ∥22 subject to Ω(θ) ≤ t.

It is well-known in convex analysis that, under very mild assumptions, there exists

the Lagrange multiplier λ ≥ 0 such that θ̂
P

Ct
is a solution of regularization type

problem (4.2). In particular, the solution paths in the primal and dual formulations
are equivalent.

(ii) (Limiting solution as λ → ∞). In some cases, projection estimators are obtained
as a limit of regularization estimators. Suppose that Ω : Rp → R+ is a lower
semi-continuous convex function with the minimum value of 0. Then, the set of
minimizers Cmin = argminθ∈Rp Ω(θ) = {θ ∈ Rp : Ω(θ) = 0} is a nonempty closed

convex set. Taking the limit as λ → ∞, the solution θ̂λ of (4.2) converges to the
solution of the constrained problem:

minimize ∥y −Xθ∥22 subject to θ ∈ Cmin.

As a specific example, we will discuss the isotonic regression estimator in Section
4.5.

(iii) (Support function). The regularization estimator (4.2) has a direct connection to
an anti-projection estimator. For any (nonempty) closed convex set C ⊆ Rp, the
support function of C is a function ΩC : Rp → R ∪ {+∞} defined as ΩC(θ) :=
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supz∈C z⊤θ for any θ ∈ Rp. If the regularization function Ω = ΩC is a support

function of a convex set C, we can see thatXθ̂λ = y−ProjC(y) holds for any choice

of the solution θ̂λ. As we have already seen in Section 2.2.2, Lovász extensions and
submodular norms are examples of support functions.

For the purpose of deriving the degrees of freedom, the third perspective is impor-
tant. The following lemma provides explicit representations of submodular regularization
estimators as anti-projection estimators.

Lemma 4.3 (Anti-projection representations of LERE and SNRE). Let f : 2V → R be
a submodular function, and λ > 0 be a regularization parameter. Let y be an arbitrary
point in Rn.

(i) Let θ̂ := θ̂LERE be an arbitrary solution of LERE (4.3). Then, the regression fit

Xθ̂ is written as Xθ̂ = (In − ProjC)(y), which does not depend on the choice of

θ̂. Here, C ⊂ Rn is a polyhedron defined as

C := {z ∈ Rn : λ−1X⊤z ∈ B(f)}. (4.11)

Moreover, θ̂ is contained in the normal cone of the base polyhedron B(f):

θ̂ ∈ NB(f)(λ
−1X⊤(y −Xθ̂)). (4.12)

(ii) Assume also that f is a non-decreasing function. Let θ̂ := θ̂SNRE be an arbitrary

solution of SNRE (4.4). Then, we have Xθ̂ = (In − ProjC)(y) with

C := {z ∈ Rn : λ−1X⊤z ∈ |P |(f)}. (4.13)

Moreover, θ̂ is contained in the normal cone of the symmetric submodular polyhe-
dron |P |(f):

θ̂ ∈ N|P |(f)(λ
−1X⊤(y −Xθ̂)). (4.14)

Remark 4.4. If the design matrix X has full column rank, the solution θ̂ in optimization
problem (4.3) (or (4.4)) is unique. On the other hand, the solution is not determined
uniquely for general low-rank matrices that appear in the high-dimensional scenario (i.e.,

p > n). However, Lemma 4.3 implies that the regression fit Xθ̂ is always unique.

To derive analytic expressions of the degrees of freedom, we are interested in the diver-

gence map of y 7→ Xθ̂(y) = y − ProjC(y). For any polyhedron C, it is known that the
divergence of the projection map ProjC(y) is given by the codimension of the face of C
(Meyer and Woodroofe 2000, Kato 2009, Chen et al. 2019).

Proposition 4.5 (e.g., Proposition 1 of (Meyer and Woodroofe 2000), Theorem
2.3 of (Chen et al. 2019)). Let C ⊆ Rn be a polyhedron. Then, the projec-
tion map y 7→ ProjC(y) is differentiable almost everywhere, and the divergence
is given as (∇ · ProjC)(y) = dim(F (y)), where F (y) is the face of C such that
ProjC(y) ∈ relint(F (y)). Moreover, if C is represented by a linear inequality system as

C = {θ ∈ Rn : a⊤
i θ ≤ bi, i ∈ {1, . . . ,m}} (4.15)

for some a1, . . . ,am ∈ Rn and b1, . . . , bm ∈ R, then we have dim(F (y)) = n− rankA0(y).
Here, A0(y) is a matrix whose columns consist of all vectors ai satisfying a⊤

i ProjC(y) =
bi.
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Fig. 4.1: Submodular polyhedra and submodular regularization estimators. a: An LERE

θ̂ is an anti-projection estimator with respect to B(f), which implies that θ̂ is a nor-

mal vector of B(f). Left: Suppose that ŝ(1) = ProjB(f)(y
(1)) is contained in the rela-

tive interior a two-dimensional face. Then, the LERE solution θ̂(1) = y(1) − ŝ(1) must
be parallel to 1V = (1, 1, 1)⊤. This is because there are only two tight sets ∅ and

V . Right: If ŝ(2) = ProjB(f)(y
(2)) is contained in one-dimensional face, the dimen-

sion of the normal cone at ŝ(2) is two. In the example shown in the figure, we have

D(ŝ(2)) = {∅, {1, 2}, {1, 2, 3}}. Hence, for any normal vector θ̂
(2)

at ŝ(2), the first and the
second coordinates must be equal. b: Similarly, an SNRE is an anti-projection estimator

with respect to |P |(f). Unlike the case of LEREs, |θ̂| becomes sparse. See Section 4.4.2
for a detailed explanation.

Proposition 4.5 implies that an unbiased estimate of the degrees of freedom of an anti-

projection estimator µ̂A
C(y) = y − ProjC(y) is given as d̂f(µ̂A

C)(y) = rankA0(y). To
calculate rankA0 for a general polyhedron C of the form (4.15), we have to enumerate the
equality constraints. Importantly, such an enumeration can be computationally inefficient
if the number of inequality constraints m is large. For the case of submodular regulariza-
tion estimators, Lemma 4.3 shows that m grows exponentially with the dimensionality p.
In the next subsection, we will derive other formulae for the degrees of freedom, which
can be calculated in O(p log p) for design matrices of full column rank.

4.4.2 Main results

We now explain our main results. In particular, Theorem 4.1 and Theorem 4.2 in the
Section 4.1 are obtained as corollaries of Theorem 4.7 and Theorem 4.11, respectively.

To illustrate the relationship between a particular solution θ̂ and the effective number
of parameters, we first provide an example of LERE with X = In and λ = 1. According

to Lemma 4.3, the LERE is given as θ̂ = y − ProjB(f)(y), which is a normal vector of

the base polyhedron B(f) at s = ProjB(f)(y). Let D(s) = {A ⊆ V : 1⊤
As = f(A)} be a

collection tight sets at s. From the general theory of polyhedra, any normal vector θ̂ can
be expressed by a linear combination of characteristic vectors {1A : A ∈ D(s)} (see 2.1.3).
Suppose that there are two distinct indices i, j ∈ V that cannot be separated by sets in

D(s). Then, the i-th and j-th components of θ̂ must be equal. In fact, if s is contained in
the relative interior of a face with more than one dimension, then there exists a partition

Π of V such that components of θ̂ are constant for each element of Π. Therefore, the
effective number of parameters is considered to be given by the size of the partition |Π|.
Fig. 4.1a shows an illustrative example with n = p = 3.



4.4 Degrees of freedom in submodular regularization 25

Degrees of freedom of LERE
Here, we derive the degrees of freedom of LERE (4.3). The key observation is that every
LERE solution is partition-wise constant. Our task is to characterize the degrees of
freedom in terms of constant partitions of LERE solutions.
We first introduce some terminologies related to partitions. Let Π = {A1, . . . , Ak} be

any partition of V = [p]. We say that θ ∈ Rp is (partition-wise) constant on Π if there
exist numbers t1, . . . , tk such that θi = tk for all i ∈ Ak. Denote by L(Π) the set of
all partition-wise constant vectors on Π, i.e., L(Π) is a linear subspace of Rp spanned
by characteristic vectors 1A1 , . . . ,1Ak

. Note that the orthogonal projection onto L(Π) is
given by the partition-wise average as

ProjL(Π)(θ) = PL(Π)θ =

k∑
j=1

θ̄Aj1Aj ,

where θ̄Aj = 1
|Aj |

∑
i∈Ai

θi for each j ∈ {1, . . . , k}. For any vector θ ∈ Rp, we define the

constant partition of θ as the unique minimal partition Π satisfying θ ∈ L(Π). We use
Πconst(θ) to denote the constant partition of θ.

Let θ̂ be an arbitrary LERE solution. We will construct a data-dependent partition Π

on which θ̂ becomes constant. By Lemma 4.3 (i), ŝ = λ−1X⊤(y−Xθ̂) is included in the
base polyhedron B(f). Recall that the collection of tight sets D(ŝ) forms a distributive
lattice containing ∅ and V (see Lemma 2.5), and that there is a partition Π(ŝ) such that
every element A in D(ŝ) is obtained as a union of some elements in Π(ŝ) (see Theorem
2.6). Since ŝ is uniquely determined by y, so is the distributive lattice D(ŝ). We define
the following terminology:

Definition 4.6. For any y ∈ Rn, we define the boundary lattice at y as

Dbound(y) := D(ŝ) = {A ⊆ V : ⟨1A,X
⊤(y −Xθ̂)⟩ = λf(A)}.

We also define the boundary partition Πbound(y) as the partition associated with
Dbound(y) in the sense of Theorem 2.6.

Now, in fact, we can see that θ̂ is constant on partition Π(ŝ). From Lemma 4.3 (i),

θ̂ is contained in the normal cone NB(f)(ŝ). Since any normal vector at ŝ is spanned

by the normal vectors corresponding to the equality constraints, we have θ̂ ∈ span{1A :
A ∈ D(ŝ)}. Here, this set actually coincides with L(Π(ŝ)). Indeed, by taking a maximal
chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = V in D(ŝ), we have L(Π(ŝ)) = span{1Si − 1Si−1 : i ∈
{1, . . . , k}} ⊆ span{1A : A ∈ D(ŝ)}. The opposite inclusion is clear from Theorem 2.6.

Combining these, we have θ̂ ∈ L(Π(ŝ)), which implies that θ̂ is partition-wise constant
on Π(ŝ).
For any matrix X = (x1, . . . ,xp) ∈ Rn×p and partition Π of V , we write

XL(Π) := {Xθ : θ ∈ L(Π)} = span

{∑
i∈A

xi : A ∈ Π

}
.

We are now ready to present the degrees of freedom result for LERE.

Theorem 4.7 (The degrees of freedom of the LER). Suppose that f : 2V → R is a
submodular function and λ > 0. Then, the following statements are true for the degrees

of freedom of the regression fit y 7→Xθ̂ of LERE (4.3).
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(i) (Representation by the boundary partition). The degrees of freedom of the LERE
is given as

df(Xθ̂) = Eθ0 [dimXL(Πbound(y))]. (4.16)

In particular, if rankX = p, then df(Xθ̂) = Eθ0 [|Πbound(y)|].
(ii) (Representation by the constant partition). For any y ∈ Rn, choose an LERE

solution θ̂ arbitrarily. Then, the value of dimXL(Πconst(θ̂)) is uniquely determined
for almost all y ∈ Rn. Moreover, the degrees of freedom is given as

df(Xθ̂) = Eθ0 [dimXL(Πconst(θ̂))] = Eθ0

[
dim span

{∑
i∈A

xi : A ∈ Πconst(θ̂)

}]
.

(4.17)
In particular, if rankX = p, an unbiased estimate of the degrees of freedom is given
by (4.9).

Remark 4.8. Since the rank of a matrix is nor larger than the number of columns, (4.9)
always gives an upper bound of the unbiased estimator based on (4.17). Similarly, for
SNREs, (4.10) is an upper bound of the unbiased estimator derived in Theorem 4.11 (ii)
below. Interestingly, in many practical cases, the simplified estimators output the same
values as the exact unbiased estimators even if X is degenerated. See Section 4.6 for
experimental results.

Proof sketch of Theorem 4.7.
The proof of Theorem 4.7 is based on the same framework as Tibshirani and Taylor

(2012). As we defer a formal proof to 4.9, we provide a brief sketch of the proof. Let

us write L1 := L(Πbound(y)), L2 := L(Πconst(θ̂)), and P ℓ := PLℓ
, ℓ ∈ {1, 2}. From the

first-order optimality condition of the convex optimization problem (4.3), we have

Xθ̂ = (XP ℓ)(XP ℓ)
+y + vℓ, ℓ ∈ {1, 2}.

Here, vℓ ∈ Rn, ℓ ∈ {1, 2}, possibly depends on y. We want to show that the boundary

partition Πbound(y), the constant partition Πconst(θ̂), and vectors vℓ can be taken as

locally invariant. If this is true, the regression fit Xθ̂ is locally affine. Thus, the derivative
is (almost surely) given as follows:

(∇ ·X θ̂)(y) = tr[(XP ℓ)(XP ℓ)
+] = dimXLℓ, ℓ ∈ {1, 2},

where the second equality holds because tr(AA+) equals to the number of non-zero sin-
gular values of A.
The local invariance property of the boundary lattice and the constant partitions holds

from the following two lemmas, which are proved in 4.9.

Lemma 4.9. The boundary lattice Dbound(y) is locally invariant for almost all y ∈ Rn.
To be more precise, there exists a measure zero setM1 ⊂ Rn with the following property:
for any y /∈ M1, there exists an open neighborhood U of y such that D̂(y′) = D̂(y) for
all y′ ∈ U .

Lemma 4.10. There exists a measure-zero set M2 ⊂ Rn with the following property:

for any y /∈ M2, choose an arbitrary LERE solution θ̂ in (4.3). Then, there exists a

neighborhood U of y such that for any y′ ∈ U we can choose a LERE solution θ̂
′
with

the same constant partition Πconst(θ̂
′
) = Πconst(θ̂).
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Degrees of freedom of SNRE
Next, we derive the degrees of freedom of SNRE (4.4). Deriving the degrees of freedom
of SNRE is slightly more complicated than LERE. The difference is that, in SNR, typical
solutions of (4.4) are sparse.
Here, we explain why solutions become sparse. For simplicity, let X = In and λ = 1.

By Lemma 4.3 (ii), an SNRE solution θ̂ is a normal vector of the symmetric submodular
polyhedron |P |(f) at a projected point ŝ = Proj|P |(f)(y). The dimension of the normal

cone N|P |(f)(ŝ) coincides with the codimension of the minimal face of |P |(f) containing
ŝ. Observe that |P |(f) is the convex hull of the union of the sign-inverted base polyhedra:

|P |(f) = conv

 ∪
γ∈{−1,1}p

γ ⊙B(f)

 .

Hence, every face F of |P |(f) can be obtained by one of the following two cases:

(i) A sign inversion of a face of the base polyhedron, i.e., F = γ ⊙ F ′ for some γ ∈
{−1, 1}p and a face F ′ of B(f).

(ii) A face generated by the convex hull operation. For example, in the case of n = p =
2, this is a line segment that connects a vertex and its reflection in the horizontal
or the vertical axis.

Fig. 4.1b shows an example with n = p = 2. Suppose that ŝ(3) = Proj|P |(f)(y
(3)) is

contained in an sign-inverted base polyhedron
(−1
−1

)
⊙ B(f). Then, the SNRE solution

θ̂
(3)

is parallel to the vector
(−1
−1

)
. On the other hand, suppose that ŝ(4) = P |P |(f)(y

(4))

is on the edge connecting B(f) and
(−1

1

)
⊙B(f). In this case, the first coordinate of θ̂

(4)

becomes zero. Generally speaking, the sparsity of SNRE solutions comes from the fact
that normal vectors of the faces of type (ii) are sparse.
To give a formal statement for our theorem, we provide notations related to sparse and

partition-wise absolute constant vectors.
First, we define the notion of sparse constant partitions. Given a triple (Z,Π,γ), where

Z ⊆ V is a subset, Π is a partition of V − Z and γ ∈ {−1, 1}p is a sign vector, we define
the following linear subspace:

L0(Z,Π,γ) := γ ⊙ span{1A : A ∈ Π}.

Here, we define that L0(V, ∅,γ) = {0} if Z = V . L0(Z,Π,γ) is a set of vectors v such that
θZ = 0 and |θ| = γ ⊙ v is constant on partition Π. Note that the sign vector γ indicates
only whether the signs of θi and θj (i, j ∈ V − Z) are equal, and it is clear by definition
that L0(Z,Π,γ) = L0(Z,Π,−γ). For a vector θ ∈ Rp, we write Z(θ) = {i ∈ V : θi = 0}
for the set of indices of zero components. We also write γ(θ) = sign(θ). We define
Πconst,0(θ) as the smallest partition Π of V − Z(θ) such that θ ∈ L0(Z(θ),Π, γ(θ)). An
important fact is that the number of distinct non-zero absolute values in |θ1|, . . . , |θp|
equals to |Πconst,0(θ)|. Based on these definitions, we define the sparse constant partition
of θ as triple (Z(θ),Πconst,0(θ),γ(θ)).
Next, we define the sparse boundary lattice, which plays a role that corresponds to

the boundary lattice discussed in Section 4.4.2. Let f : 2V → R be a monotone non-

decreasing submodular function, and θ̂ be a solution of (4.4). By Lemma 4.3 (ii), ŝ =

λ−1X⊤(y−Xθ̂) is included in |P |(f), which implies |ŝ| ∈ P (f). Let Dbound,0(ŝ) = D(|ŝ|)
be a distributive lattice of the equality constraints obtained according to Lemma 2.5. We
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also use γbound,0(y) = γ(ŝ) to denote the sign vector of ŝ. Then, we refer to the pair
(Dbound,0(y),γbound,0(y)) as the sparse boundary lattice at y.
Since Dbound,0(y) is union-closed, there exists a unique maximal element A0 =

A0(y) ∈ D̂0(y). By regarding Dbound,0(y) as a sublattice of 2A0 , we obtain a partition
Πbound,0(y) = Π(Dbound,0(y)) of A0 by Theorem 2.6. Suppose that A0 is a proper subset
of V , and that Z0(y) := V −A0(y). Then, for any vector θ in span{1A : A ∈ Πbound,0(y)},
the subvector of θ restricted on Z0(y) is zero. Thus, we have a canonical linear subspace
L0(Z0(y),Πbound,0(y),γbound,0(y)) associated with the sparse boundary lattice at y.
We can now state the degrees of freedom result for SNRE that corresponds to Theorem

4.7 for the LERE.

Theorem 4.11 (The degrees of freedom of the SNR). Suppose that f : 2V → R is a
non-decreasing submodular function and λ > 0. Then, the following statements are true

for the degrees of freedom of the regression fit y 7→Xθ̂ of SNRE (4.4).

1. (Representation by the sparse boundary lattice). Let

L1(y) := L0(Z0(y),Πbound,0(y),γbound,0(y))

be a linear subspace associated with the sparse boundary lattice. The degrees of
freedom of the SNRE is given as:

df(Xθ̂) = Eθ0
[dimXL1(y)]. (4.18)

In particular, if rankX = p, then df(Xθ̂) = Eθ0 [|Πbound,0(y)|].
2. (Representation by the sparse constant partition). For any y ∈ Rn, choose an

SNRE solution θ̂ arbitrarily. Let L2(θ̂) := L0(Z(θ̂),Πconst,0(θ̂),γ(θ̂)). Then, the

value of dimXL2(θ̂) is uniquely determined for almost all y ∈ Rn. Moreover, the
degrees of freedom is given as

df(Xθ̂) = Eθ0 [dimXL2(θ̂)]

= Eθ0

[
dim span

{∑
i∈A

sign(θ̂i)xi : A ∈ Πconst(|θ̂|), θ̂A ̸= 0

}]
.

(4.19)

In particular, if rankX = p, an unbiased estimate of the degrees of freedom is given
by (4.10).

Proof sketch of Theorem 4.11.
The proof follows basically the same process as that of Theorem 4.7. Let us write

P ℓ = PLℓ
, ℓ ∈ {1, 2}, with

L1 = L1(y) := L0(Z0(y),Πbound,0(y),γbound,0(y)), (4.20)

and
L2 = L2(θ̂) := L0(Z(θ̂),Πconst,0(θ̂),γ(θ̂)), (4.21)

respectively. By definition, P 2θ̂ = θ̂ holds. We can also show that P 1θ̂ = θ̂ according to
the following lemma.

Lemma 4.12. Any solution θ̂ of SNRE is contained in L1.

A similar argument for LERE yields a locally affine representation of the regression fit

Xθ̂ = (XP ℓ)(XP ℓ)
+y + vℓ, ℓ ∈ {1, 2}. Thus, if we prove the local invariance results of

P 1 and P 2, the assertion follows from Stein’s lemma.
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The precise statements for the local invariances of the sparse boundary lattice and the
sparse constant partition are as follows.

Lemma 4.13. The sparse boundary lattice is locally invariant for almost all y ∈ Rn. To
be more precise, there exists a measure zero setM3 ⊂ Rn with the following property; for
any y /∈ M3, there exists an open neighborhood U of y such that Dbound,0(y

′) = D̂0(y)
and γbound,0(y

′) = γ̂(y) for all y′ ∈ U .

Lemma 4.14. There exists a measure zero set M4 ⊂ Rn with the following property:

for any y /∈ M4, choose an arbitrary SNRE solution θ̂ in (4.4). Then, there exists a

neighborhood U of y such that for any y′ ∈ U we can choose a SNRE solution θ̂
′
with

the same sparse constant partition as θ̂.

4.5 Examples of submodular regularization
In this section, we provide examples of submodular regularization and their degrees of
freedom results. We will also discuss the connections to the previous study.

4.5.1 LER

Fused lasso
The fused lasso is a typical example of LERE. Let G = (V,E,w) be a connected undi-
rected graph with a non-negative edge weight w : E → R. The cut function fcut(A) :=∑

(i,j)∈E: i∈A,j /∈A wi,j is known to be submodular, and its Lovász extension is given as

f̂cut(θ) =
∑

(i,j)∈E

wi,j |θi − θj |.

f̂ coincides with the regularization term of the (generalized) fused lasso (Tibshirani et al.
2005). As mentioned above, this regularization term acts as a smoother based on the
adjacency on graph G.
The fused lasso can also be interpreted as a special case of the generalized lasso (Tib-

shirani and Taylor 2011). Given a matrix D ∈ Rm×p, the generalized lasso estimator is
defined as

θ̂genlasso ∈ argmin
θ∈Rp

1

2
∥y −Xθ∥22 + λ∥Dθ∥1.

In particular, if D is the incidence matrix of the weighted graph G, the regularization

term ∥Dθ∥1 equals to the fused regularization term f̂cut(θ). Tibshirani and Taylor (2011)
showed that, if X has full column rank, the degrees of freedom is given by the number
of fused groups. Here, a fused group means a connected component of G on which the

values of θ̂ are identical. For a general low rank matrix X, the degrees of freedom is given
by the same authors (Tibshirani and Taylor 2012).
An unbiased estimator derived in our theory is essentially equivalent to the above. From

Theorem 4.7, an unbiased estimator of the degree of freedom for the full-rank fused lasso

is given by the number of elements in the constant partitions Πconst(θ̂). Theorem 4.7

alone does not give the information that each element in Πconst(θ̂) is connected. However,
the following property holds:

Proposition 4.15. Suppose that X has full column rank. For almost all y ∈ Rn, every

element A ∈ Πconst(θ̂) is a connected component on the graph G.
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Nearly-isotonic type regularization
The isotonic regression has a long history in statistics (Robertson et al. 1988). Let (V,⪯)
be a partially ordered set. The isotonic regression is defined as a least squares estimator
onto the set of monotone vectors with respect to ⪯:

minimize ∥y − θ∥2 subject to ∀i ⪯ j, θi ≤ θj . (4.22)

There is an alternative formulation of the isotonic regression using directed acyclic graphs
(DAGs). Let G = (V,E) be a DAG. Then, G induces a partial order ⪯G on V by defining
i ⪯G j when there exists a directed path from i to j. Conversely, given a partially ordered
set (V,⪯), there is a DAG G = (V,E⪯) whose induced order ⪯G coincides with the original
order ⪯. The isotonic regression estimator on the graph G is defined as the solution of
the following least squares problem:

minimize ∥y − θ∥2 subject to ∀(i, j) ∈ E, θi ≤ θj . (4.23)

Indeed, the above two formulations (4.22) and (4.23) define the same class of projection

estimators onto polyhedral convex cones of the form K↑
G := {θ ∈ Rn : ∀(i, j) ∈ E, θi ≤

θj}.
The nearly-isotonic regression (Tibshirani et al. 2011) is a regularization type variant

of the one-dimensional isotonic regression estimator

θ̂λ ∈ argmin
θ∈Rn

(
1

2
∥y − θ∥22 + λ

n−1∑
i=1

max{θi − θi+1, 0}

)
. (4.24)

More generally, we can define a directed graph regularization estimator on a weighted
graph G = (V,E,w) as

θ̂λ ∈ argmin
θ∈Rp

1

2
∥y − θ∥22 + λ

∑
(i,j)∈E

wi,j max{θi − θj , 0}

 . (4.25)

This is an example of LERE. Indeed, the regularization term in (4.25) is the Lovász
extension of the cut function of G. For each directed edge (i, j) ∈ E, the regularization
term in (4.25) imposes penalty wi,j |θi − θj | if θi > θj . If G is a DAG, taking the limit as
λ→∞ yields the same solution as the graph isotonic regression estimator (4.23).

Proposition 4.16. Let G = (V,E) be a DAG, and {wi,j}(i,j)∈E be positive weights
on edges. Fix y ∈ Rn. Then, there exists λ+ ∈ (0,∞) such that the directed graph
regularization (4.25) with tuning parameter λ ≥ λ+ admits the same solution as the
projection estimator (4.23).

For the projection estimators (4.23), Meyer and Woodroofe (2000) showed that an
unbiased estimate of the degrees of freedom is given as the number of unique values in

the solution θ̂. For the nearly-isotonic regression (4.24), Tibshirani et al. (2011) showed
that the degrees of freedom has the same representation. In fact, we have a similar result
for generalized estimators (4.25), which is a corollary of Theorem 4.1.

Corollary 4.17. Let G = (V,E) be a directed graph, and {wi,j}(i,j)∈E be non-negative
weights on edges. Then, an unbiased estimate of the degrees of freedom of (4.25) is given
by (4.9).

We should note that, by a similar argument as Proposition 4.15, the constant partition
of (4.25) consists of (weakly) connected components in G.
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Higher order regularization
The graph cut function is of order two in the sense that the value f(A) is determined
by weights over all singletons and pairs in A. We can consider LERs for three or more
higher order functions. Hypergraph cut functions are examples of higher order adjacency
functions. Let H = (V,H,w) be a hypergraph, where hyperedge set H is a collection of
subsets of V , and w : H → R+ is a non-negative weight. Then, a hypergraph cut function
f : 2V → R is defined as

f(A) =
∑
h∈H

wh1{h∩A̸=∅, h∩(V−A)̸=∅}.

The Lovász extension is written as

f̂(θ) =
∑
h∈H

wh max
i,j∈h

|θi − θj |.

Hein et al. (2013) proposed the total variation regularization on hypergraphs, which is
a LERE for the hypergraph cut function. In addition, Takeuchi et al. (2015) proposed
another LER related to hypergraphs.

4.5.2 SNR

Lasso
As mentioned above, the lasso is given as SNRE for the cardinality function f(A) = |A|.
For full-rank design matrices, Zou et al. (2007) showed that the degrees of freedom of the
lasso is given by the number of non-zero components. Theorem 4.11 provides essentially
the same estimate as this result. In fact, for almost all y ∈ Rn, the non-zero components in

θ̂lasso are partitioned into singleton. This is because the base polyhedron of the cardinality
function degenerates to a single point, and hence the normal vectors are not partition-wise
constant. For the same reason, Theorem 4.11 recovers an existing result for general design
matrices (Tibshirani and Taylor 2012).

Group lasso and variants
The ℓ1/ℓ2-group lasso (Yuan and Lin 2006) is a norm based regularization method that
uses group structures to generate sparsity patterns. The degrees of freedom of ℓ1/ℓ2-group
lasso was considered in (Kato 2009, Vaiter et al. 2012).
Here, we consider another variant of the group lasso, i.e., ℓ1/ℓ∞-group lasso. Let
G = {A1, . . . , Ak} be a collection of subsets of V with

∪
iGi = V . The weighted ℓ1/ℓ∞-

group norm is defined as

ΩG,∞(θ) :=
k∑

i=1

wi∥θAi∥∞,

where ∥θAi∥∞ := maxi∈Ai |θi|, and wi > 0, i ∈ {1, . . . , k}, are positive weights. Bach
(2010) pointed out that this is a submodular norm associated with the overlapping count
function defined as

f(A) =
k∑

i=1

wi1{A∩Ai ̸=∅}.

This relationship holds true regardless of whether G is a partition of V , i.e., elements in
G can have overlaps. The degrees of freedom of ℓ1/ℓ∞-group lasso is given by Theorem
4.11.
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OSCAR and SLOPE
The ordered weighted ℓ1 norm (OWL) is defined as

ΩOWL,w(θ) :=

p∑
i=1

wi|θτ(i)|,

where w1 > · · · > wp > 0 is a decreasing sequence and τ : V → V is a permutation that
sorts |θi|s in descending order. We see that this is the submodular norm that corresponds
to

fOWL,w(A) :=


|A|∑
i=0

wi, A ̸= ∅

0, A = ∅

,

which is a composition of the cardinality function A 7→ |A| and a concave function.
The OSCAR penalty (Bondell and Reich 2008) and the SLOPE penalty (Bogdan et al.
2015) are examples of OWL penalties. The OSCAR penalty is defined as ΩOSCAR(θ) =
λ1∥θ∥1 + λ2

∑
i<j max{|θi|, |θ|j}, which is obtained as an OWL penalty with wi = λ1 +

λ2
[(

p
2

)
−
(
i−1
2

)]
(Obozinski and Bach 2016). The SLOPE penalty is another example

with wi = Φ−1(1 − qi/2p), where Φ is the distribution function of the standard normal
distribution, and q ∈ (0, 1). Recent studies showed that the SLOPE estimator has nice
adaptation properties to the unknown sparsity pattern (Su and Candés 2016, Bellec et al.
2018).

4.6 Numerical examples
This section contains numerical examples that illustrate the performance of the unbiased
degrees of freedom estimators derived in this chapter. We focus on the SLOPE estimators.
As mentioned in Section 4.5.2, the SLOPE is an example of SNREs, and an unbiased
estimator of the degrees of freedom is given by Theorem 4.11.
First, we compared the following three estimators for the degrees of freedom:

(i) The estimator d̂fExact defined as (4.19). This is the “exact” unbiased estimator
derived as a consequence of our main theorem.

(ii) An “inexact” estimator d̂fInexact defined as (4.10). This estimator ignores the rank

degeneration in (4.19). Hence, we always have d̂fExact ≤ d̂fInexact, and the equal-

ity holds whenever X has full column rank. Calculating d̂fInexact requires only

O(p log p) comparisons of coordinate values in θ̂λ.

(iii) The unbiased estimator for the lasso estimator d̂fLasso derived in (Tibshirani and

Taylor 2012,Theorem 2), where d̂fLasso is given as the dimension of the linear sub-

space span{xi : θ̂i ̸= 0}. Since this estimator ignores equalities among non-zero

coordinates of θ̂, we always have d̂fExact ≤ d̂fLasso.

The data used in the simulation was obtained as follows. We fixed n = 40. We
generated and fixed n × p design matrices X = (x1, . . . ,xn)⊤ with i.i.d. Gaussian rows
xi ∼ N (0,Σp,ρ). Here, Σp,ρ is a p × p matrix with diagonal elements equal to 1 and
off-diagonal elements equal to ρ ∈ {0, 0.8}. For each p ∈ {20, 40, 80}, the true regression
coefficient is set to θ = (1, 1, 1, 1, 1, 0, . . . , 0)⊤ ∈ Rp. Then, the target variables are
generated according to the model y = Xθ + ξ with ξ ∼ N (0, In).
To visualize the performance of the above three estimators, we also estimated the “true”

degrees of freedom using Monte-Carlo simulations over the definition (4.5). We drawn
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Fig. 4.2: Degrees of freedom (DF) and its estimators for SLOPE. The true DFs (dashed
black lines) are calculated by Monte-Carlo simulations over the definition (4.5). The
unbiased estimators (4.19) (green triangles) and upper bounds (4.10) (orange circles) are
averaged over 2000 realizations of noises. The regions between 25% and 75% quantiles
are also filled.

M = 2000 independent copies of the observation y(m) = Xθ+ξ(m), m ∈ {1, . . . ,M}, and
calculated the following quantity:

d̃fMC :=
1

M

M∑
m=1

1

σ2

n∑
i=1

ξ
(m)
i [Xθ̂λ(y

(m))]i.

Here, we calculated the SLOPE estimator θ̂λ by the FISTA algorithm explained in (Bog-
dan et al. 2015). For the stopping criterion, we stopped the algorithm if the duality gap
becomes less than 10−8 or the number of iterations exceeds 3000. Note that we cannot
calculate d̃fMC only from the data because it requires information about the true noise ξ.

We computed three estimators d̂fExact, d̂fInexact, and d̂fLasso over 2000 realizations of

the target variables. Since θ̂λ is a vector of floating point numbers and calculated by an

iterative algorithm, we used tolerance number ϵ = 10−8 to judge the equality |θ̂i| = |θ̂j |.
Fig. 4.2 shows the results. The unbiased estimators d̂fExact are reasonably close to

the Monte-Carlo estimates d̃fMC. The inexact estimator d̂fInexact is not guaranteed to
be unbiased. However, in our simulations, their values were almost same as the exact

estimators. On the other hand, the misspecified estimator d̂fLasso clearly overestimates
the degrees of freedom especially in high-correlation settings (i.e., ρ = 0.8).
Next, we consider the performance of the SURE-tuned SLOPE estimator. We chose the

tuning parameter of the SLOPE estimator by the Cp-type criterion λ̂ ∈ argminλ≥0 Cp(λ),
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Table 4.1: Prediction errors of the Cp-type criterion (Cp), the 5-fold cross-validation (CV),

and the oracle estimator (Oracle). For each (n, p), the prediction error ∥Xθ̂ −Xθ0∥22/n
is averaged over 100 realizations of the noise variables. The numbers in parenthesis are
the standard deviations.

Cp CV Oracle
n = 40 p = 20 0.308 (0.128) 0.335 (0.139) 0.263 (0.117)

p = 40 0.397 (0.140) 0.424 (0.168) 0.343 (0.120)
p = 80 0.514 (0.179) 0.637 (0.227) 0.456 (0.159)
p = 120 0.588 (0.189) 0.706 (0.245) 0.524 (0.175)

n = 200 p = 20 0.062 (0.027) 0.064 (0.026) 0.050 (0.022)
p = 40 0.090 (0.034) 0.094 (0.032) 0.076 (0.027)
p = 80 0.108 (0.045) 0.111 (0.042) 0.095 (0.038)
p = 120 0.137 (0.046) 0.137 (0.048) 0.119 (0.037)

n = 400 p = 20 0.032 (0.018) 0.033 (0.016) 0.027 (0.015)
p = 40 0.050 (0.018) 0.052 (0.019) 0.043 (0.016)
p = 80 0.060 (0.024) 0.060 (0.022) 0.052 (0.020)
p = 120 0.071 (0.026) 0.073 (0.027) 0.064 (0.021)

where

Cp(λ) :=
1

n
∥y −Xθ̂λ∥+

2σ2

n
d̂f(θ̂λ).

Table 4.1 compares the prediction errors ∥Xθ̂ − Xθ0∥22/n of the slope estimators
with different parameter selection rules, i.e., the Cp-type criterion (Cp) and the
5-folds cross-validation (CV). “Oracle” stands for the oracle choice of parameters

λoracle ∈ argminλ≥0∥Xθ̂λ − Xθ0∥22/n that cannot be observed. The design matrix
X is obtained similarly to the previous examples with ρ = 0. The prediction errors
are averaged over 100 realizations of the noise variables. We can see that the Cp-type
criterion performs better than the CV for every pair of (n, p). We should note that
calculating the Cp-type criterion requires the noise variance σ2, while the CV works
without knowing it.

4.7 Discussion on variance estimation
In Section 4.6, we investigated empirical performances of SURE-tuned estimators. For
general settings, providing a unified theoretical guarantee for SURE-based parameter se-
lection remains as an open question (see (Tibshirani and Rosset 2019) for a recent devel-
opment for this topic). However, during the review process of corresponding publication
of this chapter (Minami 2020), one of the anonymous reviewers suggested that an unbi-
ased estimator for variance of SURE can be computed from the data. It may provide a
data-dependent reliability of SURE-based parameter selection. The following proposition
is a consequence of Theorem 2.1 of (Bellec and Zhang 2018).

Proposition 4.18. Let θ̂ be an LERE (or SNRE), and d̂f be the unbiased estimator

of the degrees of freedom derived in Theorem 4.7 (or Theorem 4.11). Let R̂SURE :=

∥y −Xθ̂∥22 + 2σ2d̂f − nσ2. Then,

Eθ0 [(R̂SURE − ∥X(θ̂ − θ0)∥22)2] = Eθ0 [4∥y −Xθ̂∥22 + 4σ4d̂f − 2nσ4].
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In fact, we can check that a similar variance evaluation holds for any anti-projection
estimator.

4.8 Proofs: Structural results for submodular polyhedra
The remaining three sections of this chapter provide missing proofs in the previous sec-
tions. In this section, we give some auxiliary results regarding structures of submodular
polyhedra.

4.8.1 Facial structure of B(f)

We review some existing results for the characterization of faces of the base polyhedron
B(f).
Let F be any face of a polyhedron C determined by a linear inequality system Ax ≤ b.

The relative interior relint(F ) is a set of points that share the same patterns of the equality
constraints. In the case of the base polyhedron, such patterns correspond to sublattices
of 2V . In fact, for any x ∈ B(f), the tight sets D(x) = {A ⊆ V : 1⊤

Ax = f(A)} becomes
a sublattice of 2V with ∅, V ∈ D(x) (see Lemma 2.5). We use D = {D(x) : x ∈ B(f)} to
denote a collection of all possible tight sets. Then, there is a one-to-one correspondence
between the faces of B(f) and the elements in D.

Lemma 4.19 ((Fujishige 2005), Section 3.3 (d)).

(i) Let F be any face of the base polyhedron B(f). There exists a distributive lattice
D ∈ D such that

F = F (D) := {x ∈ Rp : ∀A ∈ D,1⊤
Ax = f(A) and ∀A /∈ D,1⊤

Ax ≤ f(A)}

and

relint(F ) = {x ∈ Rp : ∀A ∈ D,1⊤
Ax = f(A) and ∀A /∈ D,1⊤

Ax < f(A)}.

In particular, F = F (D(s)) holds for all x ∈ relint(F ).
(ii) Let D1,D2 be two sublattices in D. Then, D1 ⊆ D2 holds if and only if F (D2) ⊆

F (D1).
(iii) Suppose that F is written as F (D) for some D ∈ D. Then, we have dim(F ) =

p− |Π(D)|.

Recall that L(Π) is the linear subspace of partition-wise constant vectors on Π. Consider
the orthogonal projection of any vector z in F (D) onto the linear subspace L(Π(D)). The
following lemma shows that there are finitely many projected vectors defined in this way.

Lemma 4.20. Let F be any face of B(f), and D be the corresponding distributive lattice
in Lemma 4.19. Let Π = Π(D) be the partition defined by Birkhoff’s representation
theorem. Then, PL(Π)(z) does not depend on the choice of z ∈ F .

Proof. Let z ∈ F be any point in the face F = F (D). Let ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = V
be any maximal chain of D. Noting that Π = {Si − Si−1 : i ∈ {1, . . . k}}, the orthogonal
projection map onto L(Π) can be written as

PL(Π)z =
k∑

i=1

(1Si − 1Si−1)
⊤z

|Si| − |Si−1|
(1Si − 1Si−1). (4.26)
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From Lemma 4.19 (i), we have (1Si − 1Si−1)
⊤z = f(Si) − f(Si−1) for all i ∈ {1, . . . , k}.

Substituting this into (4.26), we have

PL(Π)z =
k∑

i=1

f(Si)− f(Si−1)

|Si| − |Si−1|
(1Si − 1Si−1), (4.27)

which is independent of the choice of z ∈ F .

4.8.2 Structure of |P |(f)
We study the structure of faces and normal cones of the symmetric submodular polyhedron
|P |(f). We begin with a discussion on the facial structure of the submodular polyhedron
P (f). Since we have already considered the base polyhedron, we are mainly interested in
the faces that are not contained in B(f).

Let s ∈ P (f) be a subbase, and let Â be the unique maximal element in D(s). If

s /∈ B(f), sublattice D(s) does not contain V . In this case, Â is a proper subset of V .

Below, we show the following fact: by splitting the coordinate into Â and V − Â, the face

containing s can be written as a product of two polyhedra in RÂ and RV−Â.

For a submodular function f : 2V → R, we define its reduction f Â : 2Â → R as

f Â(B) := f(B) for all B ⊆ Â. We also define the contraction fÂ : 2V−Â → R of f as

fÂ(B) = f(B ∪ Â) − f(Â) for all B ⊆ V − Â. Clearly, if s ∈ P (f), the subvector sÂ
is contained in B(f Â). We also have that sV−Â ∈ P (fÂ)

◦. In fact, for any nonempty

B ⊆ V − Â, we have (1B∪Â)
⊤s < f(B ∪ Â) by definition of Â, which implies

1⊤
Bs = (1B∪Â − 1Â)

⊤s < f(B ∪ Â)− f(Â) = fÂ(B).

Based on the above discussion, we have a representation of normal cones of P (f). The
following lemma will be used in the proof of Lemma 4.12.

Lemma 4.21. Let f : 2V → R be a submodular function. Let s ∈ P (f) be a subbase

and let Â be the unique maximal element in D(s). Then, we have sÂ ∈ B(f Â) and

sV−Â ∈ P (fÂ)◦. Furthermore, let Π̂ be the partition of Â that is obtained from Birkhoff’s

representation theorem. Then, the normal cone of P (f) at s is given by

NP (f)(s) = NB(f Â)(sÂ)×NP (fÂ)(sV−Â) = NB(f Â)(sÂ)× {0V−Â},

which is contained in a linear subspace span{1S : S ∈ Π̂}.

Proof. This lemma follows from the following facts: (a) a normal vector of a product
polyhedron is given by a direct product of normal vectors (see Rockafeller and Wets
1998,Proposition 6.41), and (b) NP (fV −Â)(sV−Â) = {0V−Â}. The last assertion for the

partition-wise constant property can be checked with a similar argument as in Section
4.4.2.

Here, we assume that f is monotone non-decreasing. The following lemma provides the
structure of the symmetric submodular polyhedron.

Lemma 4.22. Let f : 2V → R be a non-decreasing submodular function and F be an
arbitrary face of |P |(f).

(i) Let s be an arbitrary point in relint(F ). The unique maximal element Â of D(|s|)
does not depend on the choice of s ∈ relint(F ). Let F Â be the face of the base
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polyhedron of reduction B(f Â) that contains |s| in its relative interior, which is
also independent of the choice of s ∈ relint(F ). Then, the original face F can be
represented as

F = γ(s)⊙ [F Â × |P |(fÂ)],

where |P |(fÂ) ⊆ RV−Â is the symmetric submodular polyhedron for the contraction
fÂ.

(ii) Denote the orthogonal projection matrix onto L0(V − Â,Π(D(|s|)),γ(s)) as P .
Then, a vector Ps′ does not depend on the choice of s′ ∈ F .

4.9 Proofs for Section 4.4
In this section, we provide proofs for our main results. The most important parts of our
proofs are described in Section 4.9.2, in which we prove the local invariance results of the
constant partitions.

Proof of projection lemmas. Here, we prove Lemma 4.3 that gives the anti-projection rep-
resentation of submodular regularization estimators. Since the proof is the same for the
first and the second assertion, we will use common symbols P for submodular polyhedra

and θ̂ for estimators, namely, θ̂ := θ̂LERE if P = B(f) and θ̂ := θ̂SNRE if P = |P |(f).
Define a polyhedron C by C := {z ∈ Rn : λ−1X⊤z ∈ P}. From the first-order

optimality condition, we have

X⊤(y −Xθ̂) ∈ λ∂ΩP(θ̂) = λ argmax
z∈P

z⊤θ̂. (4.28)

By Lemma 2.3, this is equivalent to θ̂ ∈ NP(λ
−1X⊤(y −Xθ̂)), which proves the latter

assertion.
Next, we want to show that y −Xθ̂ = ProjC(y). Since (4.28) particularly says that

λ−1X⊤(y −Xθ̂) ∈ P, we have y −Xθ̂ ∈ C. Then, for any w ∈ C, we have

⟨Xθ̂,w⟩ − ⟨Xθ̂,y −Xθ̂⟩ = ⟨θ̂,X⊤w⟩ − max
z∈λP

⟨θ̂, z⟩ ≤ 0,

which implies that Xθ̂ is a normal vector of C at y −Xθ̂, hence the result.

Proof of Lemma 4.12. Recall that we want to show that

θ̂ ∈ L := L0(Z0(y),Πbound,0(y)γbound,0(y)),

where θ̂ is an arbitrary SNRE solution and L is a subspace determined by the sparse
boundary lattice (see Section 4.4.2 for a precise definition). For notation simplicity, we

will write Z := Z0(y), Π := Πbound,0(y), and γ := γbound,0(y). Since θ̂ is a normal vector

of |P |(f) at ŝ = λ−1X⊤(y −Xθ̂), it is sufficient to show that N|P (f)|(ŝ) is included in
L = γ ⊙ span{1A : A ∈ Π}.
Let Â = V − Z be the maximal element of D(|ŝ|). By Lemma 4.21, |ŝ| = γ⊤ŝ is

contained in B(f Â)×P (fÂ)◦. The normal cone of P (f) is given as NP (f)(|ŝ|) = NB(f Â)×
{0V−Â}, which is clearly included in L. However, in general, the normal cone of |P |(f) at
ŝ does not coincide with γ ⊙NP (f)(|ŝ|). These two sets can be different if there exists an

index i ∈ Â such that ŝi = 0. Below, we divide the case into (i) I0 := {i ∈ Â : ŝi = 0} = ∅
and (ii) I0 ̸= ∅.
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First, we assume I0 = ∅. In this case, there exists a unique sign vector γ′ ∈ {−1, 1}Â

such that ŝÂ ∈ γ′ ⊙ B(f Â). In fact, such vector is obtained as γ′ = γÂ. Then, we have

the equality N|P |(f)(ŝ) = γ ⊙NP (f)(|ŝ|), and hence θ̂ ∈ L.
Next, we consider the case where I0 ̸= ∅. In this case, there are 2|I0| sign vectors γ′

satisfying ŝÂ ∈ γ′ ⊙ B(f Â). Hence, we have a set inclusion N|P |(f)(ŝ) ⊇ γ ⊙NP (f)(|ŝ|),
while the opposite inclusion (⊆) does not hold in general. However, we can show that the
smallest linear subspace containing N|P |(f)(ŝ) is L = γ⊙span{1A : A ∈ Π}. Fix any index
i ∈ I0 and a set B ∈ D(|ŝ|) containing i. Then, there exist vectors a+,a− ∈ {−1, 0, 1}p
satisfying

(a+)i = 1, (a−)i = −1,

(a+)j = (a−)j =


sign(ŝj), j ∈ B − I0
− 1 or 1, j ∈ I0 − {i}
0, j /∈ B

,

and (a+)
⊤ŝ = (a−)

⊤ŝ = f(B). We can see that the sum of these vectors a+ + a− is a
normal vector of |P |(f) with support B−{i}. On the other hand, the set B−{i} is tight
at |ŝ| (i.e., B − {i} ∈ D(|ŝ|)) because

(1B−{i})
⊤ŝ ≤ f(B − {i}) ≤ f(B) = 1⊤

B ŝ = (1B−{i})
⊤ŝ. (4.29)

Note that the second inequality in (4.29) follows by monotonicity of f . Repeating the
above discussion, we can conclude that D(|ŝ|) contains all subsets of B obtained as B−I
for some I ⊆ I. Therefore, we have

N|P |(f)(ŝ) ⊆ γ ⊙ span{1B : B ∈ D(|ŝ|)} = γ ⊙ span{1A : A ∈ Π} = L,

which is the desired result.

Remark 4.23. If f is strictly increasing (i.e., A ⊂ B ⇒ f(A) < f(B)), then I0 = ∅
always holds in the above proof. In fact, assuming I0 ̸= ∅, we have (4.29) that contradicts
the strict monotonicity. For example, the submodular functions associated with the lasso
and the SLOPE are strictly increasing, while that of the ℓ1/ℓ∞-group lasso is not.

4.9.1 Local invariance of boundary lattices

We prove local invariance of the boundary lattice (Lemma 4.9) and the sparse boundary
lattice (Lemma 4.13). Both lemmas are derived mainly from the following property of
inverse images of polyhedra.

Lemma 4.24. Let C ⊆ Rp be a polyhedron and T : Rn → Rp be a linear map.

(i) The inverse image T−1(C) is a polyhedron in Rn.
(ii) Let F be a nonempty face of T−1(C). Then, there exists a face G of C such that

T (relint(F )) ⊆ relint(G).

Proof. The first assertion is a well-known result (Rockafellar 1970,Theorem 19.3).
We will prove the second assertion. Since T (relint(F )) = relint(T (F )) (Rockafellar

1970,Theorem 6.6), T (relint(F )) is relatively open in Rp. Note that a set is relatively
open (in the convex analysis sense) if it is open with respect to the relative topology
induced by its affine hull. Using the fact that any relatively open set in a polyhedron
C is contained in a single face G (Rockafellar 1970,Theorem 18.2), we have the desired
result.
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According to the above lemma, we can show that the face of the submodular polyhedron

that contains ŝ = λ−1X⊤(y −Xθ̂) is locally invariant, which implies local invariance of
the boundary lattices. The followings are detailed discussions.

Proof of Lemma 4.9. By Lemma 4.3, we have y = Xθ̂ = ProjC(y), where C =
(X⊤)−1(λB(f)). There is a measure zero setM1 ⊂ Rn such that y 7→ ProjC(y) is a lo-
cally affine on Rn−M1 (Tibshirani and Taylor 2012,Lemma 2). In particular, there exist
a neighborhood U of y and a face F of C such that ProjC(y

′) ∈ relint(F ) for all y′ ∈ U .

By Lemma 4.24, there is a unique face G of B(f) that contains ŝ = λ−1X⊤ProjC(y)
in its relative interior. Thus, the boundary lattice D(ŝ) is invariant on U by Lemma
4.19.

Proof of Lemma 4.13. Except for a measure zero set M3, ŝ = λ−1X⊤(y −Xθ̂) is con-
tained in the relative interior of a single face of |P |(f), or in the p-dimensional interior
of |P |(f) itself. Here, for the sake of simplicity, we assume that f is strictly increasing.
Then, there exists a neighborhood U where D(|ŝ|) and sign(ŝ)Â are invariant.

4.9.2 Local invariance of constant partitions

Here, we prove the local invariance results for the constant partition (Lemma 4.10) and
the sparse constant partition (Lemma 4.14).

Proof of Lemma 4.10. Step 1. First, we establish a locally affine representation of Xθ̂.
For any y ∈ Rn, let Πbound = Πbound(y) be the partition associated with the boundary

lattice. Also, let θ̂ be an arbitrary LERE solution, and denote Πconst = Πconst(θ̂). We
define two orthogonal projection matrices P 1 := PL(Π̂bound)

and P 2 := PL(Πconst).

Below, let ℓ denote either 1 or 2. Combining λŝ = X⊤(y−Xθ̂) and P ℓθ̂ = θ̂, we have

P ℓX
⊤XP ℓθ̂ = P ℓX

⊤y − λP ℓŝ.

By multiplying on the left by (P ℓX
⊤)+, we have

L.H.S. = (P ℓX
⊤)+P ℓX

⊤XP ℓθ̂ = (XP ℓ)(XP ℓ)
+XP ℓθ̂ = XP ℓθ̂ = Xθ̂,

and

R.H.S. = (P ℓX
⊤)+P ℓX

⊤y − λ(P ℓX
⊤)+P ℓŝ = (P ℓX

⊤)+P ℓX
⊤{y − λ(P ℓX

⊤)+P ℓŝ}

Combining these, we have

Xθ̂ = (XP ℓ)(XP ℓ)
+{y − λ(P ℓX

⊤)+P ℓŝ}.

Here, we choose an extremal point ẑ = ẑ(y) of B(f) such that P ℓẑ = P ℓŝ. This
can be done by the following construction. Let F be the minimal face that contains ŝ in
its relative interior. We define ẑ as an extremal point in F . If there are more than two
extremal points in F , we can choose one by any well-ordering defined on the set of extremal
points in B(f). Then, we immediately have P 1ŝ = P 1ẑ from Lemma 4.20. Next, we

will show that P 2ŝ = P 2ẑ. Let F (θ̂) be a face defined as argmaxz∈B(f) z
⊤θ̂. From the

first order optimality condition, we have ŝ ∈ F (θ̂), and hence F ⊆ F (θ̂). Let A1, . . . , Ak

be elements of Πconst that are sorted in the ascending order determined by values in θ̂.

Lemma 4.19-2 implies that the lattice that corresponds to F (θ̂) is a sublattice of that of F
(say D). Therefore, there is a chain ∅ = S0 ⊂ · · · ⊂ Sk = V in D such that Ai = Si−Si−1,
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i ∈ {1, . . . , k}. In particular, we can check that 1⊤
Ai
ŝ = 1⊤

Ai
ẑ = f(Si) − f(Si−1). By a

similar calculation as the proof of Lemma 4.20, we conclude

P 2ŝ = P 2ẑ =
k∑

i=1

f(A1 ∪ · · · ∪Ai)− f(A1 ∪ · · · ∪Ai−1)

|Ai|
1Ai .

Consequently, we have

Xθ̂ = (XP ℓ)(XP ℓ)
+{y − λ(P ℓX

⊤)+P ℓẑ}. (4.30)

Furthermore, we can represent any solution θ̂ in (4.3) as

θ̂ = (XP ℓ)
+{y − λ(P ℓX

⊤)+P ℓẑ}+ bℓ, (4.31)

where bℓ is a vector in null(XP ℓ).
Step 2. Next, we will prove the local invariance of the constant partition. More precisely,
we want to construct a sufficiently small neighborhood U so that every y′ ∈ U has a LERE

solution η̂ with the same constant partition as θ̂. Let η̂ : U → Rp be a map of the form
η̂(y′) = (XP 2)

+{y′ − λ(P 2X
⊤)+P 2ẑ}+ b′(y′). Here, b′(y′) is contained in null(XP 2)

for all y′ ∈ U . We will write η̂ = η̂(y′) and b′ = b′(y′) by omitting the dependence on
y′. We will prove a more detailed version of Lemma 4.10 as follows.

Lemma 4.25. There is a measure-zero set M2 ⊂ Rn with the following property. For

any y /∈ M2, fix an arbitrary LERE solution θ̂. Then, there are a neighborhood U of y
and a map b′ : U → null(XP 2) satisfying the following conditions:

(i) For any y′ ∈ U , the constant partition of η̂ equals to that of θ̂. Moreover, for any

A1, A2 in Πconst(θ̂), θ̂A1
> θ̂A2

implies η̂A1
> η̂A2

.
(ii) For any y′ ∈ U , η̂ is an optimal solution in (4.3).

First, we show that Πconst(η̂) is a cover of Πconst(θ̂). Note that we can rewrite this as
P 2η̂ = η̂, or equivalently

(Ip − P 2)[(XP 2)
+{y′ − λ(P 2X

⊤)+P 2ẑ}+ b′] = 0. (4.32)

Interpreting (4.32) as a linear equation of b′2 ∈ null(XP 2), we consider the solvability.
Define a setM2 ⊂ Rn as

M2 :=
∪

D,Π,z

{
w ∈ Rn : P {(Ip−PL(Π))null(XPL(Π))}⊥×

(Ip − PL(Π))(XPL(Π))
+{w − λ(PL(Π)X

⊤)+PL(Π)z} = 0

}
.

(4.33)

Here, the union in the right-hand side is taken over the triple (D,Π,z) specified as follows:

• D ∈ D is a distributive lattice that determines a face of the base polyhedron.
• Π is a cover of partition Π(D) such that the matrix P {(Ip−PL(Π))null(XPL(Π))}⊥(Ip−
PL(Π))(XPL(Π))

+ is not identical to the zero matrix Op×n.
• z is a vertex of the base polyhedron.

It is clear that there are finitely many possible patterns of such triples. Thus,M2 be-
comes a measure zero set because it is a finite union of linear subspaces whose codimension
is more than 1.
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Now, we assume that y ∈ Rn −M2. Combining P 2θ̂ = θ̂ with (4.31), we have

(Ip − P 2)(XP 2)
+{y − λ(P 2X

⊤)+P 2ẑ} = −(Ip − P 2)b2.

Noting that (Ip − P 2)b2 ∈ (Ip − P 2)null(XP 2), we have

P {(Ip−P 2)null(XP 2)}⊥(Ip − P 2)(XP 2)
+{y − λ(P 2X

⊤)+P 2ẑ} = 0.

However, since y /∈ M, this implies that the matrix P {(Ip−PL(Π))null(XPL(Π))}⊥(Ip −
PL(Π))(XPL(Π))

+ must be Op,n. Thus, we conclude that col{(Ip − P 2)(XP 2)
+} ⊆

(Ip − P 2)null(XP 2). This set inclusion guarantees that, for any y′ ∈ Rn, there exists
b′ ∈ null(XP 2) that solves (4.32).
Second, we want to find a sufficiently small neighborhood Ū so that the order preser-

vation condition holds:

θ̂A1 > θ̂A2 ⇒ η̂A1
> η̂A2

for all A1, A2 ∈ Πconst. (4.34)

Let a1 > · · · > ak be the distinct values in θ̂ in the descending order. Let ε denote the

smallest jump max1≤j≤k−1 aj − aj+1. If we prove that ∥θ̂− η̂∥∞ ≤ ∥θ̂− η̂∥2 < ε/2, then
the assertion (4.34) follows. By the triangle inequality, we have

∥θ̂ − η̂∥2 ≤ ∥(XP 2)
+(y − y′)∥2 + ∥b2 − b′∥2.

By the continuity of y 7→ (XP 2)
+y, we can bound the first term in the right-hand side by

ε/4 if we choose a neighborhood U1 small enough. Next, we provide a bound on the second
term. Note that Ip − P 2 is a symmetric matrix, and that z 7→ (Ip − P 2)z is bijective
if it is regarded as a map from row(Ip − P 2) to col(Ip − P 2). Denote by (Ip − P 2)

−1
row

the (restricted) inverse. By the bounded inverse theorem, there exists M > 0 such that
∥(Ip − P 2)

−1
row∥op ≤M . Hence, we have

∥b2 − b′∥2 ≤M∥(Ip − P 2)(XP 2)
+(y − y′)∥2.

By continuity, we can choose a small neighborhood U2 in which ∥b2 − b′∥2 < ε/4. There-
fore, the order preserving condition (4.34) is satisfied whenever y′ ∈ Ū := U1 ∩U2, which
proves (i) of Lemma 4.25.
Next, we prove (ii). We will verify the optimality condition

X⊤(y′ −Xη̂) ∈ λ argmax
z∈B(f)

z⊤η̂. (4.35)

From (i) and the basic property of the Lovász extension (Section 2.2.2), we can see that

η̂⊤P 2ẑ = f̂(η̂) = maxz∈B(f) z
⊤η̂. Then, we have

η̂⊤X⊤(y′ −Xη̂) = η̂⊤(XP 2)
⊤(y′ −XP 2η̂)

= η̂⊤{(XP 2)
⊤(XP 2)(XP 2)

+y′ − (XP 2)
⊤(XP 2)η̂}

= λη̂⊤(XP 2)
+(XP 2)P 2ẑ

(⋆)
= λη̂⊤P 2ẑ = λ max

z∈B(f)
z⊤η̂,

which proves the maximality in (4.35). Here, we used the fact that P 2ẑ = P 2ŝ ∈
col(P 2X

⊤) to prove equality (⋆). It remains to show that X⊤(y′ −Xη̂) ∈ λB(f). Let
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θ̂
′
be any optimal solution for y′, and let ŝ′ := X⊤(y − Xθ̂

′
) ∈ B(f). By the local

invariance of the boundary lattice (i.e., Lemma 4.9), there is a small neighborhood U3

such that ŝ and ŝ′ are both contained in the relative interior of a single face. Then, by a

similar derivation as (4.30), we can see that X⊤(y′−Xη̂) = X⊤(y−Xθ̂
′
) ∈ B(f). This

holds true whenever y′ ∈ U := U1 ∩ U2 ∩ U3. Consequently, we have proved Lemma 4.25
and thus Lemma 4.10.

Proof of Lemma 4.14. To avoid redundancy, we prove Lemma 4.14 by appropriately mod-

ifying the lemma for LERE. Let θ̂ be an arbitrary solution of SNRE. Let P 1 and P 2 be
projection matrices onto the linear spaces L1 and L2 defined in (4.20) and (4.21), respec-

tively. It is clear from the definition that P 2θ̂ = θ̂. From Lemma 4.12, we also have

P 1θ̂ = θ̂.
According to an argument similar to Step 1 in the proof of Lemma 4.10, we have the

following representation:

Xθ̂ = (XP ℓ)(XP ℓ)
+{y − λ(P ℓX

⊤)+P ℓẑ}, ℓ ∈ {1, 2}. (4.36)

Here, ẑ = ẑ(y) is a point of |P |(f) defined as follows. By Lemma 4.22 (i), the minimal

face containing ŝ = λ−1X⊤(y −Xθ̂) is given by F = γ̂(y)⊙ {F Â × |P |(fÂ)}, where F Â

is the minimal face of B(f Â) containing subvector ŝÂ. Then, we define ẑ ∈ |P |(f) by

letting ẑÂ be an extremal point in F Â and ẑV−Â = 0. We can see that P ℓŝ = P ℓẑ by

Lemma 4.22 (ii).
We also have

θ̂ = (XP 2)
+{y − λ(P 2X

⊤)+P 2ẑ}+ b2, (4.37)

where b2 ∈ null(XP2) depends on the choice of the SNRE solution. For solutions of
the form (4.37), we prove the optimality condition and the local invariance of the sparse
constant partition.
Define a setM4 ⊂ Rn as

M4 :=
∪

D,γ,Π,B,z

M(D,γ,Π, B, z), (4.38)

where we write

M(D,γ,Π, B, z)

:=
{
w ∈ Rn : P {(Ip−PL)null(XPL)}⊥(Ip − PL)(XPL){w − λ(PLX

⊤)+PLz} = 0
}
,

(4.39)

L = L(D,γ,Π, B) := L0(V − (A(D) ∩B),Π,γ). (4.40)

Here, the union on the right-hand side of (4.38) is taken over quintuple (D,γ,Π, B, z)
specified as follows:

• D is a sublattice of 2V that is not identical to singleton {∅}. Let A(D) be its
(nonempty) maximal element.
• γ ∈ {−1, 1}p is a sign vector.
• (Π, B) is a pair of a partition Π and a set B ⊆ A(D). Denote by Π(D) a partition
of A(D) determined by Birkhoff’s representation theorem. Π is a cover of Π(D)
such that the projection matrix onto the linear space

{(Ip − PL0(V−A(D)∩B,Π,γ))null(XPL0(V−A(D)∩B,Π,γ))}⊥

is not identical to the zero matrix.
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• z is an extremal point of |P |(f).

From the finiteness character of the quintuple, we can see that M4 is a measure zero
set.
We comment on the above definition. The exception set M4 is defined in order to

avoid unfavorable choices of θ̂. Given a sublattice D = D̂0(y), Π(D) is the finest partition
in which the non-zero components in |θ̂| are constant. However, a coarse partition Π =

Πconst,0(θ̂) can arise from particular choices of θ̂. In addition, the index set of non-zero

components V − Z(θ̂) can be smaller than the maximal choice A(D). By excludingM4,
we ensure that no inconvenience is caused by such solution choices.
Now, we assume that y ∈ Rn −M4. For y

′ ∈ Rn, define

η̂ = (XP 2)
+{y′ − λ(P 2X

⊤)+P 2ẑ}+ b′.

A similar argument to the case of the LER yields

P {(Ip−P 2)null(XP 2)}⊥(Ip − P 2)(XP 2)
+ = Op,n.

Hence, for any y′, we can choose b′ ∈ null(XP 2) so that P 2η̂ = η̂. By the continuity
argument similar to Step 2 in the proof of Lemma 4.10, we can also choose a neighborhood
U of y so that the sparse constant partition of η̂ = η̂(y′) is invariant on it. On the other
hand, we can prove that the optimality condition for SNRE

X⊤(y′ −Xη̂) ∈ λ argmax
z∈|P |(f)

η̂⊤z

holds for all y′ ∈ U . We have thus proved the desired result.

Proof of Theorem 4.7 and Theorem 4.11. Here, we prove our main results for the degrees
of freedom. To avoid redundancy, we provide a proof only for Theorem 4.7. Theorem 4.11
can be proved in the same way.
LetM =M1 ∪M2 be a measure zero set obtained by the union of the exception sets

in Lemma 4.9 and Lemma 4.12. Suppose that y ∈ Rn −M, and define P 1 and P 2 as in
the proof of Lemma 4.10. Then, there exists a neiborhood U of y such that

Xθ̂(y′) = (XP 1)(XP 1)
+{y′ − λ(P 1X

⊤)+P 1ẑ}

= (XP 2)(XP 2)
+{y′ − λ(P 2X

⊤)+P 2ẑ}

holds for any y′ ∈ U . Since the two affine functions are equal in the open set U , we have

(XP 1)(XP 1)
+ = (XP 2)(XP 2)

+. Thus, Xθ̂ is differentiable at y, and the divergence
is given as

(∇ ·Xθ̂)(y) = tr((XP ℓ)(XP ℓ)
+) = dim(Xcol(P ℓ)).

By Stein’s lemma, we have the desired result.

4.10 Proofs for Section 4.5
Proof of Proposition 4.15. Since the solution of full-rank LERE is unique, we only have
to consider the representation based on the boundary lattice Dbound(y).
Let s ∈ B(f) be a point in the base polyhedron. We can define a directed graph
G(s) with vertex set V as follows. Given s ∈ B(f) and i ∈ V , define the dependence
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function dep(s, i) ⊆ V as the unique minimum element of the distributed lattice D(s, i) =
{A ⊂ V : i ∈ A,1⊤

As = f(A)}. Intuitively, dep(s, i) expresses the exchangeability of the
directions that s can proceed on the base polyhedron. We define a set of directed edges
E(s) by E(s) = {(i, j) : j ∈ dep(s, i)}. The resulting graph G(s) = (V,E(s)) is called the
exchangeability graph.
Now, we are interested in a cut function of the undirected graph G. From the fun-

damental result on the duality between cut functions and flows (see (2.65) in (Fujishige
2005)), every point s ∈ B(fcut) is a boundary of a feasible flow on G. Hence, there exists
an edge (i, j) in the exchangeability graph G(s) only if it is a self-loop (i = j) or an undi-
rected edge (i, j) is contained in the original graph G. On the other hand, by Lemma 3.41
in (Fujishige 2005), the partition Π(D(s)) is given by the set of connected components
in G(s). Therefore, every element in the partition determined from the boundary lattice
becomes a connected component in the original graph G.

Proof of Proposition 4.16. Fix an observation vector y ∈ Rn. If λ > 0 is taken large
enough, the orthogonal projection of y onto λB(f) is equivalent to that onto the conical
hull of B(f), i.e., there exists λ+ ∈ (0,∞) such that

ProjλB(f)(y) = Projcone(B(f))(y) (4.41)

holds for all λ ≥ λ+.
Note that the polar cone of K := cone(B(f)) is given as

K◦ := {z ∈ Rn : z⊤θ ≤ 0, ∀θ ∈ cone(B(f))}

= {z ∈ Rn : z⊤θ ≤ 0, ∀θ ∈ B(f)}

= {z ∈ Rn : f̂(z) ≤ 0}.

For the cut function of DAG G = (V,E), K◦ coincides with the set of all vectors satisfying
θi ≤ θj for all (i, j) ∈ E. Using the basic fact that any vector y ∈ Rn can be decomposed
as y = ProjK(y)+ProjK◦(y), we have the decomposition y = ProjλB(f)(y)+ProjK◦(y).

Combining with (4.41), we conclude that the LERE solution can be written as

θ̂λ = y − ProjλB(f)(y) = ProjK◦(y).

Indeed, the right-hand side is the isotonic regression estimator on G.
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Chapter 5

Estimating Piecewise Monotone Signals

We study the problem of estimating piecewise monotone vectors. This problem can be
seen as a generalization of the isotonic regression that allows a small number of order-
violating changepoints. We mainly focus on the performance of the nearly-isotonic regres-
sion proposed by Tibshirani et al. (2011). We derive risk bounds for the nearly-isotonic
regression estimators that are adaptive to piecewise monotone signals. Under a weak as-
sumption, the estimator achieve a nearly minimax convergence rate over certain classes
of piecewise monotone signals. We also present an algorithm that can be applied to the
nearly-isotonic type estimators on general weighted graphs. The simulation results sug-
gest that the nearly-isotonic regression performs as well as the ideal estimator that knows
the true positions of changepoints.
This chapter is based on Minami (2019).

5.1 Overview
Isotonic regression is a popular statistical method based on partial order structures, which
has a long history in statistics (Ayer et al. 1955, Brunk 1955, van Eeden 1956). Suppose
that θ∗ ∈ Rn is a monotone vector satisfying θ∗1 ≤ θ∗2 ≤ · · · ≤ θ∗n, and y is a noisy
observation of θ∗. The goal of the isotonic regression is to find a least-square fit under
the monotone constraint:

minimize ∥y − θ∥2 subject to θ1 ≤ θ2 ≤ · · · ≤ θn. (5.1)

In other words, the isotonic regression is the least squares estimator θ̂ = θ̂K↑
n
over a closed

convex cone K↑
n := {θ ∈ Rn : θ1 ≤ θ2 ≤ · · · ≤ θn}. Broadly speaking, the isotonic

regression is an example of shape restricted regression. For comprehensive reviews on this
field, see Robertson et al. (1988), Groeneboom and Jongbloed (2014), Chatterjee et al.
(2015), Guntuboyina and Sen (2017) and references therein.
In this chapter, we study the problem of estimating piecewise monotone vectors, which

can be regarded as a generalization of isotonic regression that allows order-violating
changepoints. We formulate the problem precisely as follows. Let us consider the Gaussian
sequence model

yi = θ∗i + ξi, i = 1, 2, . . . , n, (5.2)

where y = (y1, y2, . . . , yn)
⊤ ∈ Rn is the observed vector, θ∗ = (θ∗1 , θ

∗
2 , . . . , θ

∗
n)

⊤ ∈ Rn is
the unknown parameter of interest, and ξ = (ξ1, ξ2, . . . , ξn)

⊤ is the unobserved noise dis-
tributed according to the Gaussian distribution N(0, σ2In). Given the noisy observation
y, the problem is to find a good piecewise monotone approximation of θ∗. Here we define
piecewise monotone vectors as follows.
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Fig. 5.1: Examples of piecewise monotone signals in real-world data. Top: The
difference of the east-west component of GPS measurements between Victoria (British
Columbia, Canada) and Seattle (United States). The trend factor seems to be approxi-
mated by a piecewise monotone signal. A possible reason for this behavior is the seismo-
logical phenomenon reported in Roggers and Dragert (2003). See Section 5.7.3 for a more
detailed explanation of this data. Bottom: The numbers of search queries for two words
“Christmas” and “gift” in Google Trends (https://www.google.com/trends).

Definition 5.1. Let Π = (A1, A2, . . . , Am) be a connected partition of [n] = {1, 2, . . . , n},
that is, there exists a sequence 1 = τ1 < τ2 < · · · < τm < τm+1 = n + 1 such that
Ai = {τi, τi + 1, . . . , τi+1 − 1} (i = 1, 2, . . . ,m). We say that a vector θ ∈ Rn is piecewise
monotone on Π if the restriction on each Ai is monotone:

θτi ≤ θτi+1 ≤ · · · ≤ θτi+1−1, for i = 1, 2, . . . ,m.

We also say that θ is m-piecewise monotone if θ is piecewise monotone on some partition
Π with |Π| = m.

We are particularly interested in the case where the number of pieces m is larger than
two but much smaller than n because it is reduced to simpler problems if otherwise. From
Definition 5.1, a monotone vector in K↑

n is m-piecewise monotone for any m ≥ 1. In
particular, the least squares estimators over 1-piecewise monotone vectors coincide with
the isotonic regression. Besides, since any vector in Rn is n-piecewise monotone, the
least squares estimator over n-piecewise monotone vectors is merely the identity function

θ̂id = y.
In real-world applications, there are many signals that can be approximated by piece-

wise monotone vectors. Here, we provide a few examples. First, in seismology, geological
observations such as tide gauge records (Nagao et al. 2013) and GPS records (Roggers
and Dragert 2003) often consist of a long-term monotonic trend and discontinuous jumps
caused by tectonic activities. In particular, Roggers and Dragert (2003) reported that
GPS measurements that are nearby a subduction zone in North America can be approx-
imated by a sawtooth function. The top panel of Figure 5.1 shows an example of GPS
measurements. Second, the numbers of search queries for some words related to seasons
(e.g., “Christmas” and “gift”) can be seen as periodic piecewise monotone signals (see
the bottom panel of Figure 5.1 for examples). Third, in the ranking systems in online
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Fig. 5.2: Examples of the nearly-isotonic regression estimators with different
choices of tuning parameters. The nearly-isotonic regression interpolates between the

identity estimator θ̂id = y and the isotonic regression θ̂K↑
n
.

shopping websites, sales ranks of rarely sold items behave like piecewise monotone signals
because they suddenly rise every time the items are sold (Hattori and Hattori 2010).
In this chapter, we focus on the performance of nearly-isotonic regression proposed by

Tibshirani et al. (2011). Given y ∈ Rn and a tuning parameter λ ≥ 0, the nearly-isotonic

regression estimator θ̂λ is defined as

θ̂λ = argmin
θ∈Rn

{
1

2
∥y − θ∥22 + λ

n−1∑
i=1

(θi − θi+1)+

}
, (5.3)

where (z)+ := max{z, 0}. Intuitively, the tuning parameter λ controls the degree of
monotonicity. The term (θi − θi+1)+ poses a positive penalty if and only if the directed
edge (i, i + 1) is order violating, i.e., θi > θi+1. Hence, a large value of λ > 0 makes the

estimator θ̂λ close to a monotone vector. In particular, there is a sufficiently large λ such

that the solution θ̂λ becomes exactly the same as the isotonic regression (5.1).
Our goal in this chapter is to show that the nearly-isotonic regression can adapt to

piecewise monotone vectors. As suggested in Tibshirani et al. (2011), the nearly-isotonic
regression can fit to a “nearly monotone” vector that is close to K↑

n in ℓ2-sense. That is,
the estimator performs well if θ∗ has a small ℓ2-misspecification error dist(θ∗,K↑

n) defined
as

dist(θ∗,K↑
n) := inf

θ∈K↑
n

∥θ∗ − θ∥2.

Moreover, we can observe that the nearly-isotonic regression can fit to piecewise monotone
vectors, even if θ∗ is far from monotone in ℓ2-sense. Figure 5.2 shows an example of
the nearly-isotonic regression with n = 100. The true parameter θ∗ (orange line) is
2-piecewise monotone. By varying the values of the tuning parameter λ ≥ 0, the nearly-
isotonic regression behaves as follows: If λ = 0, the nearly-isotonic regression is just the

identity estimator θ̂id = y, which clearly overfits to the noisy observation. If λ is set

to a sufficiently large value, θ̂λ coincides with the isotonic regression. In this example,
however, the ℓ2-misspecification error dist2(θ∗,K↑

n) is large compared with the normalized

noise variance σ2/n. We can see that the mean squared error (MSE) 1
nEθ∗∥θ̂ − θ∗∥22 of

the isotonic regression can be much worse than that of the identity estimator, which
coincides with σ2/n (see Section 5.3.2). Indeed, we can choose a 2-piecewise monotone

vector θ∗ ∈ K↑
n/2 ×K

↑
n/2 with arbitrarily large ℓ2-misspecification error. If we choose an

intermediate value of λ, the nearly-isotonic regression seems to fit to the true parameter.
This suggests the adaptation property to piecewise monotone vectors.
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5.1.1 Summary of theoretical results

In this chapter, we investigate the adaptation property of the nearly-isotonic regression
estimators defined in (5.3).
In the monotone regression setting (i.e., m = 1), it is known that the isotonic regression

estimator θ̂K↑
n
achieves the risk bound

1

n
Eθ∗∥θ̂K↑

n
− θ∗∥22 ≤ C

(
σ2V(θ∗)

n

)2/3

+
Cσ2 log en

n
,

where V(θ) = θn−θ1 is the total variation of the monotone vector θ. It is also known that
the rate O((σ2V/n)2/3) is minimax optimal under the assumption that θ∗ is monotone
and V(θ∗) ≤ V (Zhang 2002). Hence, a natural question is whether a similar rate can be
achieved in piecewise monotone regression.
In Section 5.3.1, we provide the minimax lower bound over the class of piecewise mono-

tone vectors. Let Θn(m,V) be the set of m-piecewise monotone vectors whose “upper”
total variations are bounded by V (a precise definition is provided in Section 5.3.1). Then,
the minimax risk over Θn(m,V) is bounded from below by a constant multiple of

max

{(
σ2V
n

)2/3

,
σ2m

n
log

en

m

}
.

In Section 5.5, we construct a concrete (but not computationally efficient) estimator that
adaptively achieves this rate, and hence this lower bound is tight in the sense of the order
in n,m, and V. Intuitively, this suggest that the cost of not knowing the true partition is

of order O(σ
2m
n log en

m ).
In Section 5.4, we provide the following risk bound for the nearly-isotonic regression

estimator (5.3). A precise statement is given in Corollary 5.16.

Claim 5.2. Let θ∗ be a piecewise monotone vector on a partition Π = (A1, A2, . . . , Am).
Suppose that the following assumptions hold:

(a) The partition is equi-spaced: |A1| = |A2| = · · · = |Am| (= n
m ).

(b) For each segment Aj , θ
∗
Aj

is monotone and the total variation is bounded as

V(θ∗Aj
) ≤ V/m.

(c) θ∗Aj
satisfies an appropriate “growth condition” for each j = 1, . . . ,m.

Then, the estimator (5.3) with optimally tuned parameter λ satisfies the following risk
bound:

1

n
Eθ∗∥θ̂λ − θ∗∥22 ≤ C

{(
σ2V log en

n

)2/3

+
σ2m

n
log

en

m

}
. (5.4)

The above claim is obtained as a corollary of a more general risk bound in Section 5.4.
In the above statement, we make somewhat restrictive assumptions. Here, (a) and (b) are
introduced just for the sake of notation simplicity, whereas (c) is an essential assumption.
If we assume only (a) and (b), the rate that appeared in (5.4) is minimax optimal up to
a logarithmic multiplication factor. However, we require an extra growth condition (c),
which seems to be unavoidable for the estimator (5.3). We will provide a precise definition
of the growth condition in Section 5.4.3.
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5.1.2 Organization

The rest of this chapter is organized as follows. In Section 5.2, we give a brief literature
review on the shape restricted regression and regularization based estimators and relate
our theoretical results to previous work. We provide lower bounds on the risks in the
piecewise monotone regression problem in Section 5.3. In Section 5.4, we describe our
main results on the risk upper bounds for the nearly-isotonic regression estimator and its
constrained form variant. In particular, a precise statement of Claim 5.2 in the above
is provided in Section 5.4.3. In Section 5.5, we discuss the attainability of the minimax
lower bound; herein, we provide a concrete example of a model selection-based estimator
that achieves the optimal rate. In Section 5.6, we review the algorithms for the nearly-
isotonic regression and related estimators and discuss their computational complexities.
Furthermore, we present some numerical examples in Section 5.7. After that, we have
also included all proofs of the theoretical results.

5.1.3 Notation

Throughout this chapter, we assume that y = θ∗+ξ is distributed according to an isotropic
normal distribution N(θ∗, σ2In), where θ

∗ ∈ Rn is the true mean parameter of interest
and ξ ∼ N(0, σ2In) is the noise vector. The symbol Eθ∗ denotes the expectation with
respect to y.
We sometimes denote by C an absolute positive constant whose value may vary.
For any θ ∈ Rn, we define the total variation V(θ) and the lower total variation V−(θ)

by

V(θ) :=
n−1∑
i=1

|θi − θi+1| and V−(θ) :=
n−1∑
i=1

(θi − θi+1)+,

where (z)+ := max{z, 0} for any z ∈ R. For example, if θ is monotone nondecreasing,
then V(θ) = θn − θ1 and V−(θ) = 0. In this chapter, the meaning of subscripts of θ

depends on the context (e.g., θi, θA, θ̂λ, and θ̂K↑
n
). If A = {τ, τ + 1, . . . , τ + J − 1} is a

connected subset of [n], we denote by θA a sub-vector (θτ , θτ+1, . . . , θτ+J−1)
⊤ ∈ RJ . We

also denote by VA(θA) the total variation of θA.

5.2 Related work
There are two classes of estimators that are closely related to the nearly-isotonic regression
(5.3): the isotonic regression and the fused lasso.
As we mentioned above, the isotonic regression is an instance of shape restricted regres-

sion. Many existing estimators in shape restricted regression can be formulated as least

squares estimators (denoted by θ̂K) onto closed convex sets (denoted by K). Examples in-
clude, but not limited to, the isotonic regression, the isotonic regression in two-dimensional
grid or more general partial orders (see e.g., Robertson and Wright (1975) and Kyng et al.
(2015)), and convex regression (Hildreth 1954).
Recently, researchers have developed two important techniques for analyzing risk be-

haviors of least squares estimators. First, Chatterjee (2014) proved that the Euclidean

norm ∥θ̂K−θ∗∥2 is tightly concentrated around a certain quantity defined by the localized
Gaussian width. As applications of Chatterjee’s method, non-asymptotic upper bounds
that have similar rates to the minimax risks have been proved for the isotonic regression
(Chatterjee 2014, Bellec 2018), the multi-isotonic regression on two or more high dimen-
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sion (Chatteejee et al. 2018, Han et al. 2017), the multi-dimensional convex regression
(Han and Wellner 2016), and the constrained form trend filtering estimator (Guntuboy-
ina et al. 2017). See also Section 2.2 in Bellec (2018) for a related result. Second, risk
bounds based on the statistical dimension of the tangent cone of K has been developed
by Oymak and Hassibi (2016) and Bellec (2018). This technique is useful because it takes
into account the facial structure of K, which leads to risk bounds that are adaptive to
low dimensional sub-structures. It has been shown that some least squares estimators are
adaptive to piecewise constant vectors: for example, the isotonic regression (Bellec 2018)
and the multi-isotonic regression (Chatteejee et al. 2018, Han et al. 2017). In particular,
for the one-dimensional isotonic regression, Chatterjee et al. (2015) and Bellec (2018)
proved the following oracle inequality

1

n
Eθ∗∥θ̂K↑

n
− θ∗∥22 ≤ inf

θ∈K↑
n

{
1

n
∥θ − θ∗∥22 +

σ2k(θ)

n
log

en

k(θ)

}
, (5.5)

where k(θ) is the number of constant pieces of θ. If θ∗ is monotone and k(θ∗) is small, the
right-hand side can be much smaller than the worst-case rate of O((σ2V/n)2/3). However,
the first term in the right-hand side can become arbitrarily large if θ∗ is not included in
K↑

n.
The fused lasso (Tibshirani et al. 2005), also known as the total variation regularization

(Rudin et al. 1992), is a penalized estimator defined as

θ̂fused,λ = argmin
θ∈Rn

{
1

2
∥y − θ∥22 + λ

n−1∑
i=1

|θi − θi+1|

}
, (5.6)

where λ ≥ 0 is the tuning parameter. The fused lasso poses the penalty whenever θi ̸=
θi+1, whereas the penalty of the nearly-isotonic regression (5.3) activates only if θi > θi+1.
Theoretical risk bounds for the fused lasso have been studied by Mammen and van de
Geer (1997), Dalalyan et al. (2017), Lin et al. (2017), and Guntuboyina et al. (2017). In
particular, Guntuboyina et al. (2017) showed an oracle inequality of the following form:

1

n
Eθ∗∥θ̂fused,λ∗ − θ∗∥22 ≤ inf

θ∈Rn

{
1

n
∥θ − θ∗∥22 + C

σ2k(θ)

n
log

en

k(θ)
+ C∆fused(θ)

}
, (5.7)

One can control the quantity ∆fused(θ) by assuming a mild regularity condition on θ∗ so
that the inequality (5.7) recovers the minimax rate for the piecewise constant vectors (see
e.g., Gao et al. (2017)). However, even if θ∗ is a monotone vector, (5.7) does not recover
the rate of the isotonic regression (5.5) because ∆fused(θ) becomes zero if and only if θ is
just a constant vector.
Our risk bound for the nearly-isotonic regression in Section 5.4.2 fills the gap between

the above risk bounds for the isotonic regression and the fused lasso. We will show an
oracle inequality of the following form:

1

n
Eθ∗∥θ̂λ∗ − θ∗∥22 ≤ inf

θ∈Rn

{
1

n
∥θ − θ∗∥22 + C

σ2k(θ)

n
log

en

k(θ)
+ C∆neariso(θ)

}
.

Like in the case of the fused lasso (5.7), this inequality provides a meaningful risk bound
even if we cannot approximate θ∗ by a monotone vector. Furthermore, ∆neariso(θ) becomes
zero for any monotone vector θ ∈ K↑

n. Hence, our result can exactly recover the rate
achieved by the isotonic regression (5.5).
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5.3 Lower bounds
In this section, we provide lower bounds for the risk in one-dimensional piecewise monotone
regression.

5.3.1 Minimax lower bound

We are interested in the lower bound for the minimax risk defined as

inf
θ̂

sup
θ∗∈Θ

1

n
Eθ∗∥θ̂ − θ∗∥22,

where Θ ⊂ Rn is a set of piecewise monotone vectors, and the infimum is taken over all

(measurable) estimators θ̂ : Rn → Rn. In particular, for 1 ≤ m ≤ n, we consider the class
of m-piecewise monotone vectors with a bounded total variation that is defined as follows.

Definition 5.3. Let n ≥ 2 and 1 ≤ m ≤ n. For any V > 0, let Θ̃n(m,V) denote the set of
(at most) m-piecewise monotone vectors such that the upper total variation is bounded by

V. In other words, a vector θ ∈ Rn is an element of Θ̃n(m,V) if and only if the following
conditions hold:

(i) θ is piecewise monotone on a connected partition Π = {A1, . . . , Am∗} of [n] whose
cardinality |Π| = m∗ is not larger than m.

(ii) There exist numbers V1,V2, . . . ,Vm∗ such that
∑m∗

i=1 Vi = V, Vi ≥ 0, and V(θAi) ≤
Vi for all i = 1, . . . ,m∗.

In addition, we also define Θn(m,V) as the set of m-piecewise monotone vectors such that
the total variations for all pieces are uniformly bounded by V/m. That is, Θn(m,V) is
obtained by replacing (ii) by the following condition:

(ii)’ V(θAi) ≤ V/m for all i = 1, . . . ,m∗.

First, we consider θ∗ is piecewise monotone on a known partition Π∗ = {A1, A2, . . . , Am∗}
and that the total variation of the sub-vector θ∗i := θ∗Ai

is bounded as V(θ∗i ) ≤ Vi for each
i = 1, 2, . . . ,m∗. Then, the problem is decomposed into m∗ independent subproblems of
estimating monotone vectors θ∗i . The minimax risk lower bound for monotone vectors
has been proved by Zhang (2002) and Chatterjee et al. (2015). For simplicity in the
notation, we assume here that ni = |Ai| ≥ 2 for all i = 1, 2, . . . ,m. The minimax risk can
be written as

inf
θ̂i

sup
θ∗
i ∈K↑

Ai
:

V(θ∗
i )≤Vi

1

ni
Eθ∗

i
∥θ̂i − θ∗i ∥22 ≥ C1

(
σ2Vi
ni

)2/3

for all i = 1, . . . ,m. (5.8)

Hence, the minimax risk over Θ̃n(m,V) is clearly bounded from below by

C1

m∗∑
i=1

ni
n

(
σ2Vi
ni

)2/3

. (5.9)

If the partition Π∗ is known, then this convergence rate can be obtained by concatenating
the least squares estimators on all pieces. By Jensen’s inequality, the quantity (5.9) is not
larger than (σ2

∑
i Vi/n)2/3.
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In the general setting, we have to deal with unknown partitions. The following propo-
sition gives the lower bound over the class of piecewise monotone vectors in Definition
5.3.

Proposition 5.4. Let n ≥ 3, 3 ≤ m ≤ n, and V > 0. Suppose that Θ is either Θ̃n(m,V)
or Θn(m,V) in Definition 5.3. Then, for any estimator θ̂ : Rn → Rn, we have the following
lower bound:

sup
θ∗∈Θ

1

n
Eθ∗∥θ̂ − θ∗∥22 ≥ Cmax

{(
σ2V
n

)2/3

,
σ2m

n
log

en

m

}
, (5.10)

where C > 0 is a universal constant.

It remains to verify that the lower bound (5.10) is tight. Thus, in Section 5.5, we will
construct an estimator that adaptively achieves a similar rate.

5.3.2 Lower bound for projection estimators

Suppose that θ∗ is an m-piecewise monotone vector. As we mentioned in the previous
subsection, if we know the true partition on which θ∗ is monotone, the least squares
estimator can achieve the rate shown in (5.9). Here, we consider what happens if we
underestimate the true number of the pieces.

We consider the risk behavior of the isotonic regression θ̂K↑
n
, which corresponds to the

least squares estimator for the underestimated number of pieces as m = 1. If the true
number of pieces is larger than or equal to two, θ∗ may not be contained inK↑

n. Recall that
dist(θ∗,K↑

n) is the ℓ2-misspecification error against the set of monotone vectors. Bellec
(2018) showed that the isotonic regression is robust against a small ℓ2-misspecification,
that is, if dist(θ∗,K↑

n) ≤ ϵ, then

1

n
Eθ∗∥θ̂K↑

n
− θ∗∥22 ≤ ϵ2 +

σ2k(θ̄)

n
log

en

k(θ̄)
,

where k(θ̄) is the orthogonal projection of θ∗ onto K↑
n. Conversely, if the ℓ2-

misspecification error is large, we see that the isotonic regression can have an arbitrarily
large risk.

Proposition 5.5. There is a positive number t = tn,σ2 that depends on n and σ2 such

that if the true parameter θ∗ satisfies dist(θ∗,K↑
n) > t, then the MSE of the isotonic

regression is bounded from below as

1

n
Eθ∗∥θ̂K↑

n
− θ∗∥22 > σ2.

In this case, the isotonic regression has a strictly larger MSE than that of the identity

estimator θ̂id = y.

We can easily check that there is a 2-piecewise monotone vector with an arbitrarily
large ℓ2-misspecification error. To see this, let θ∗ ∈ R2n be a piecewise constant vector
defined as θ∗i = M > 0 for i = 1, . . . , n and θ∗i = 0 for i = n+ 1, . . . , 2n. Then, it is easy

to see that dist(θ∗,K↑
2n) =

√
nM2/2 diverges as M → ∞. Figure 5.2 shows an example

of a 2-piecewise monotone vector θ∗ such that the isotonic regression has a larger squared
loss value than the identity estimator.
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5.4 Risk bounds for nearly-isotonic regression
In this section, we develop the risk bound for the nearly-isotonic regression estimator (5.3).
Proofs of all the theorems and propositions in this section are presented in Appendix 5.9.

5.4.1 Risk bounds for constrained estimators

Before considering the original version of the nearly-isotonic regression (5.3), we consider

the performance of the constrained form nearly-isotonic regression θ̂V defined by the
following constrained optimization problem:

minimize ∥y − θ∥22 subject to
n−1∑
i=1

(θi − θi+1)+ ≤ V, (5.11)

where V ≥ 0 is the tuning parameter. By the fundamental duality theorem in convex
optimization, there exists a Lagrange multiplier λV ≥ 0 such that the regularization

type formulation (5.3) admits the same solution θ̂λV = θ̂V . Hence, the solution path of

penalized estimators {θ̂λ : λ ≥ 0} and that of constrained estimators {θ̂V : V ≥ 0} are
equivalent. However, the properties of estimators with fixed values of λ ≥ 0 and V ≥ 0
can be different in the following sense:

• From a computational perspective, calculating the constrained estimator (5.11) for
a given V ≥ 0 is more difficult than the regularization estimator (5.3). For the
regularization estimator (5.3), we can use the Modified Pool Adjacent Violators
Algorithm (Modified PAVA) proposed by Tibshirani et al. (2011), which outputs
the solution path for every λ ≥ 0. In particular, given λ ≥ 0, we can always obtain

an exact solution θ̂λ. However, to the best of our knowledge, there are no practical
algorithms that obtain an exact solution for the constrained problem (5.11) that
run as fast as the algorithms for the penalized problem (5.3). We present detailed
explanations for the algorithms in Section 5.6.
• From a statistical perspective, the correspondence between tuning parameters λ
and V is not deterministic (i.e., it depends on the realization of the data y). For
this reason, a risk bound that is obtained for one of (5.3) or (5.11) cannot be directly
applied to the other.

We show the main results on the adaptation property to piecewise monotone vectors in
terms of sharp oracle inequalities.
Before proceeding, we introduce some notations. Suppose that θ ∈ Rn is piecewise

constant on a connected partition Πconst = {A1, . . . , Ak} of [n]. We denote by k(θ) :=
|Πconst| the number of pieces in which θ becomes constant. That is, there are integers
1 = τ1 < · · · < τk+1 = n + 1 such that (i) Ai = {τi, τi + 1, . . . , τi+1 − 1} for i = 1, . . . , k
and (ii) for any i ∈ [k], there exists ti ∈ R such that θj = ti for all j ∈ Ai. We define the
sign wi ∈ {0, 1} associated with each knot τi (i = 1, . . . , k + 1) as

w1 = wk+1 = 0 and

wi =

{
1 (ti−1 > ti)

0 (ti−1 < ti)
for i = 2, . . . , k. (5.12)
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i

θi

A1

w1 = 0

A2

w2 = 0

A3

w3 = 0

A4

w4 = 1
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w5 = 0

A6

w6 = 1

A7

w7 = 1

A8

w8 = 0 w9 = 0

Fig. 5.3: Illustration of the knot signs defined in (5.12). In this example, θ is
assumed to be k-piecewise constant with k = 8. The corresponding signs are given as
(w1, w2, . . . , w8, w9) = (0, 0, 0, 1, 0, 1, 1, 0, 0). Moreover, if we assume |A1| = |A2| = · · · =
|A8|, the quantityM(θ) defined in (5.13) is given asM(θ) = 1

|A4| +
1

|A5| +
1

|A6| +
1

|A8| =
4k
n .

In other words, wi = 1 if and only if the order violation θj−1 > θj occurs at j = τi. See
Figure 5.3 for the graphical illustration. Then, we define M(θ) as

M(θ) :=
k∑

j=2

max

{
1

|Aj |
,
k

n

}
1{wj−1 ̸=wj}. (5.13)

M(θ) determines the non-monotonicity of a piecewise constant vector θ. If θ ism-piecewise
monotone, then it is clear that M(θ) ≤ 2(m− 1). In particular, for any monotone vector
θ, we have M(θ) = 0. Based on these notations, we have the following sharp oracle
inequality.

Theorem 5.6. For any θ∗ ∈ Rn, the constrained nearly-isotonic regression (5.11) satisfies
the following oracle inequality:

1

n
Eθ∗∥θ̂V − θ∗∥22

≤ inf
θ∈Rn:

V−(θ)=V

{
1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}
. (5.14)

Moreover, for any η ∈ (0, 1), we have

1

n
∥θ̂V − θ∗∥22

≤ inf
θ∈Rn:

V−(θ)=V

{
1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}

+
4σ2 log η−1

n
(5.15)

with probability at least 1− η.

The following risk bound for the best choice of the tuning parameter V ≥ 0 is an
immediate consequence of Theorem 5.6.
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Corollary 5.7. Suppose θ∗ ∈ Rn. Choose V∗ ≥ 0 that minimizes the upper bound in
(5.14) (thus, V∗ depends on the true parameter θ∗). Then, we have

1

n
Eθ∗∥θ̂V∗ − θ∗∥22

≤ inf
θ∈Rn

{
1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}
. (5.16)

Also, choosing V := V∗ or V := V−(θ∗), we have

1

n
Eθ∗∥θ̂V − θ∗∥22 ≤ Cσ2

{
k(θ∗)

n
log

en

k(θ∗)
+
M(θ∗)

k(θ∗)
log

en

k(θ∗)

}
. (5.17)

Remark 5.8. We briefly comment on the proof of Theorem 5.6 and Corollary 5.7. A
key ingredient is to obtain a bound on the statistical dimension (Amelunxen et al. 2014)
of the tangent cone of the constraint set {θ ∈ Rn : V−(θ) ≤ V}. This methodology
was first developed for the isotonic regression and the convex regression by Bellec (2018).
In particular, our approach is inspired by the analysis of the constrained trend filtering
estimators by Guntuboyina et al. (2017). See Appendix 5.9 for detailed proofs.

By restricting the region over which the infimum in (5.16) is taken, we have the oracle
inequality for monotone vectors

1

n
Eθ∗∥θ̂V∗ − θ∗∥22 ≤ inf

θ∈K↑
n

{
1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)

}
,

which recovers the existing results on the isotonic regression (Chatterjee et al. 2015, Bellec
2018) up to a constant multiplicative factor.
To understand the general upper bound in (5.16), we have to control the quantityM(θ)

defined in (5.13). To this end, we consider the minimal length condition; we say that
θ ∈ Rn satisfies the minimal length condition for a constant c > 0 if it satisfies

min{|Ai| : 1 ≤ i ≤ k,wi ̸= wi+1} ≥
cn

k
, (5.18)

where the partition Πconst = {A1, A2, . . . , Ak} and the signs wi (i = 1, . . . , k + 1) are
defined as in (5.13). Intuitively, a signal θ ∈ Rn is well approximated by another signal
that satisfies the minimal length condition if θ has “moderate growth” around the order-
violating jumps. For further discussion on such growth conditions, see Section 5.4.3.
Based on the minimal length condition, we have the following result from Theorem 5.6

.

Corollary 5.9. Suppose that θ∗ ∈ Rn satisfies the minimal length condition (5.18) for a
constant c > 0. Assume that θ∗ is k(θ∗)-piecewise constant and m(θ∗)-piecewise mono-
tone. Then, the constrained nearly-isotonic regression (5.11) satisfies

1

n
Eθ∗∥θ̂V − θ∗∥22

≤ (V−(θ∗)− V)2 + Cσ2

(
k(θ∗)

n
+

2c−1(m(θ∗)− 1)

n

)
log

en

k(θ∗)
. (5.19)

In particular, if the tuning parameter V is chosen so that

(V−(θ∗)− V)2 ≤ C ′ k(θ
∗)

n
log

en

k(θ∗)
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for a positive constant C ′, we have

1

n
Eθ∗∥θ̂V − θ∗∥22 ≤ C ′′σ2

(
k(θ∗)

n
+

2c−1(m(θ∗)− 1)

n

)
log

en

k(θ∗)
,

where C ′′ is a positive constant.

Remark 5.10. If θ is k-piecewise constant and m-piecewise monotone, it is always true
that k ≥ 2(m− 1). Hence, the inequality (5.19) can be simplified as

1

n
Eθ∗∥θ̂V − θ∗∥22 ≤ (V−(θ∗)− V)2 + C(c)σ2 k(θ

∗)

n
log

en

k(θ∗)
,

where C(c) > 0 is a constant that depends on c alone.

Remark 5.11. We comment on the minimal length condition and the relation to estima-
tion of piecewise constant vectors. The minimal length condition for the total variation
regularization estimator is considered by Guntuboyina et al. (2017). In the problem of
estimating k-piecewise constant vectors, it is shown that the minimax rate is k

n log en
k (see,

e.g., Gao et al. 2017). For the fused lasso, Fan and Guan (2017) showed that the minimum
length condition cannot be removed in the sense that there is a lower bound depending
on the minimum length ∆ = mini |Ai| (see also the experimental result by Guntuboyina
et al. (2017), Remark 2.5). On the other hand, it is proved that there are other classes
of estimators that do not suffer from the minimal length condition (Gao et al. 2017, Fan
and Guan 2017).

5.4.2 Risk bounds for penalized estimators

In this section, we consider the risk bounds for the nearly-isotonic regression (5.3) in the
original penalized form by Tibshirani et al. (2011).

Theorem 5.12. For any λ ≥ 0, let θ̂λ denote the nearly-isotonic regression estimator
defined in (5.3). Let θ∗ and θ be any vectors in Rn. Then, there exists a tuning parameter
λ∗ = λ∗(θ) ≥ 0 that depends only on θ such that, for any λ ≥ λ∗, we have the following
risk bound:

1

n
Eθ∗∥θ̂λ − θ∗∥22 ≤

1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

+ 3(λ− λ∗)2M(θ), (5.20)

where M(θ) and k(θ) are defined similarly as in Theorem 5.6. Furthermore, for any
η ∈ (0, 1), the inequality

1

n
∥θ̂λ − θ∗∥22 ≤

1

n
∥θ − θ∗∥22 + 2Cσ2 k(θ)

n
log

en

k(θ)
+ 2Cσ2M(θ)

k(θ)
log

en

k(θ)

+ 6(λ− λ∗)2M(θ) +
16σ2 log η−1

n

holds with probability 1− η.

We comment on some direct consequences of Theorem 5.12. In this theorem, λ∗(θ) is
defined as a function of θ. To understand the risk bound (5.20), we consider the choice
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of the tuning parameter λ ≥ 0 that depends on the true parameter θ∗. Let θ̄ be a vector
that minimizes the quantity

1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

among all θ ∈ Rn. Then, taking λ∗∗ := λ∗(θ̄), we have the following oracle inequality
which has the same form as (5.16):

1

n
Eθ∗∥θ̂λ∗∗ − θ∗∥22

≤ inf
θ∈Rn

{
1

n
∥θ − θ∗∥22 + Cσ2 k(θ)

n
log

en

k(θ)
+ Cσ2M(θ)

k(θ)
log

en

k(θ)

}
.

Moreover, if λ := λ∗∗ or λ := λ∗(θ∗), we have

1

n
Eθ∗∥θ̂λ − θ∗∥22 ≤ Cσ2

{
k(θ∗)

n
log

en

k(θ∗)
+
M(θ∗)

k(θ∗)
log

en

k(θ∗)

}
.

Again, if we assume the minimal length condition (5.18) on θ∗, we obtain a simplified
bound of the form (5.17).
We move on to discuss a precise expression of λ∗(θ) in Theorem 5.12. The next propo-

sition provides an upper bound for λ∗(θ).

Proposition 5.13. Suppose θ ∈ Rn. Let Πconst(θ) := {A1, A2, . . . , Ak} be the constant
partition of θ, and w1, w2, . . . , wk+1 be the associated signs defined in (5.12). Then, there
is a universal constant C > 0 such that λ∗(θ) in Theorem 5.12 is bounded from above by

Cσmin

 ∥θ∥2V−(θ)
,

(
k∑

i=1

1{wi ̸=wi+1}

|Ai|

)−1/2

√(

k(θ) +
nM(θ)

k(θ)

)
log

en

k(θ)
.

The purpose of the choice of λ∗ in Proposition 5.13 is to derive the theoretical con-
vergence rate in terms of k(θ) and M(θ). However, different choices are possible if we
are interested in other theoretical aspects (e.g., estimation consistency for changepoints).
For the fused lasso estimator (5.6), several authors have studied theoretical choices of
tuning parameters that result in risk upper bounds (Dalalyan et al. 2017, Lin et al. 2017,
Guntuboyina et al. 2017). For a detailed comparison of these results, see Remark 2.7 by
Guntuboyina et al. (2017) and references therein.

Remark 5.14. In general, the choice of the tuning parameter that minimizes the risk can
be different from the theoretical suggestion. More importantly, we cannot obtain the value
of λ suggested in Proposition 5.13 because it depends on the unknown true parameter θ∗

and the noise standard deviation σ. In practice, there are two typical data-dependent
choices of λ:

• Stein’s unbiased risk estimate: If we know σ or its estimate value σ̂, we can rea-
sonably choose a parameter λ by minimizing Stein’s unbiased risk estimate (SURE)

SURE(λ) =
1

n
∥y − θ̂λ∥22 +

2σ̂2

n
d̂f(θ̂λ) + (constant). (5.21)

Here, d̂f(θ̂λ) := k(θ̂λ) is an unbiased estimate of the degrees of freedom. See Tib-
shirani et al. (2011) for the derivation.
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• Cross-validation: We can also apply the cross-validation when the model (5.2)
is interpreted as a discrete observation of a continuous signal. Specifically, sup-
pose that the data is generated according to the following nonparametric regression
model:

yi = f∗(xi) + ξi, i = 1, . . . , n, (5.22)

where x1 < x2 < . . . < xn are given design points in [0, 1] and f∗ : [0, 1] → R is
an unknown piecewise monotone function. We define the nearly-isotonic regression

estimator f̂λ over the interval [0, 1] as follows: First, we determine the values θ̂λ,i
(i = 1, 2, . . . , n) by solving

θ̂λ ∈ argmin
θ∈Rn

{
1

2
∥y − θ∥22 + λ

n−1∑
i=1

(θi − θi+1)+
xi+1 − xi

}
. (5.23)

Then, we define f̂λ : [0, 1] → R by interpolation. For instance, one can output

a piecewise constant function so that f̂λ(xi) = θ̂λ,i. In this sense, given a new

design point xnew, we can predict the value of f∗(xnew) by f̂λ(x
new). Hence, we can

naturally apply the cross-validation in this situation.

5.4.3 Application to piecewise monotone vectors

To gain a deeper understanding of the adaptation property of the nearly-isotonic regres-
sion, we study the risk bound under a more specific assumption. We define the following
moderate growth condition for piecewise monotone vectors.

Definition 5.15. Let n ≥ 2. We say that a monotone vector θ ∈ K↑
n satisfies the

moderate growth condition if

θi ≤ θ1 +
i− 1

n− 1
V(θ) for i = 1, 2, . . . , ⌈n/2⌉

and

θi ≥ θ1 +
i− 1

n− 1
V(θ) for i = ⌈n/2⌉, ⌈n/2⌉+ 1, . . . , n.

Figure 5.4 gives an illustration of the moderate growth condition. In words, the signal
θ ∈ Rn satisfying the moderate growth condition is not larger than the linear signal in the
left half of the domain, and not less than that in the right half of the domain. Intuitively,
the role of the moderate growth condition is to guarantee the minimal length condition
(5.18) for a piecewise constant approximation.
Suppose that the true signal θ∗ is piecewise monotone and every segment satisfies the

moderate growth condition. Then, the nearly-isotonic regression achieves a nearly mini-
max convergence rate as follows.

Corollary 5.16. Suppose that the following assumptions hold:

(a) The partition is equi-spaced: |A1| = |A2| = · · · = |Am| (= n
m ).

(b) θ∗Aj
is monotone and V(θ∗Aj

) ≤ V/m for each j = 1, . . . ,m.

(c) θ∗Aj
satisfies the moderate growth condition for each j = 1, 2, . . . ,m.

Then, the estimator (5.3) with optimally tuned parameter λ satisfies the following risk
bound:

1

n
Eθ∗∥θ̂λ − θ∗∥22 ≤ Cmax

{(
σ2V log en

m

n

)2/3

,
σ2m

n
log

en

m

}
. (5.24)
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Fig. 5.4: Illustration of the moderate growth condition. Left: The plotted three
signals are monotone vectors in K↑

n with n = 20 and V(θ) = 1. The dotted line represents
the linear signal θlineari = i/n (i = 1, 2, . . . , n). The blue circles depict an example of
a signal that satisfies the moderate growth condition. That is, it is not larger than the
linear signal θlineari for 1 ≤ i ≤ 10, and not less than θlineari for 10 ≤ i ≤ 20. On the
other hand, the orange triangles depict a counterexample for this condition. Right: If
θ satisfies the moderate growth condition, there is a k-piecewise monotone vector such
that the lengths of segments at both ends are not less than k/n. See Appendix 5.9.5 for
a detailed explanation.

The risk bound (5.24) achieves the minimax rate over Θn(m,V) in Proposition 5.4 up

to a multiplicative factor of log2/3 en
m . We should note that the restrictive assumption (a)

in Corollary 5.16 is employed merely for the sake of simplicity of the proof. We may relax
this assumption as

min
1≤i≤m

|Ai| ≥
c′n

m

for some c′ > 0.

5.5 Model selection based estimators
Here, we consider estimators obtained by model selection among all partitions Π. The
main purpose of this section is to discuss whether the minimax lower bound in Proposition
5.4 can be achieved without any additional assumption such as the moderate growth
condition.
Given a connected partition Π = (A1, A2, . . . , Am) of [n], we write K↑

Π for the set of
piecewise monotone vectors on Π, i.e.,

K↑
Π := K↑

|A1| ×K
↑
|A2| × · · · ×K

↑
|Am|.

Let θ̂Π denote the projection estimator onto K↑
Π. By definition, θ̂Π is obtained by con-

catenating isotonic regression estimators defined in every segment.
If we know the true partition Π∗ on which θ∗ is piecewise monotone, then the risk of

the projection estimator θ̂Π∗ is bounded from above by

C
m∑
i=1

|Ai|
n

(
σ2VAi(θ∗Ai

)

|Ai|

)2/3

.
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If the true partition is unknown, a natural idea is to select a data-dependent partition Π̂
by a penalized selection rule:

Π̂ ∈ argmin
Π

{
∥y − θ̂Π∥22 + pen(Π)

}
. (5.25)

Here, pen(Π) is a positive penalty for the partition Π.
The penalized selection rules have been well studied in statistics. In particular, Birgé

and Massart (2001) and Massart (2007) developed non-asymptotic risk bounds for generic
model selection settings in Gaussian sequence models. Hereafter, we construct a penalized
selection estimator in the spirit of Theorem 4.18 in Massart (2007).

Instead of selecting θ̂Π according to (5.25), we introduce the total variation sieves.
Namely, in addition to selecting partitions, we also select budgets of piecewise total vari-
ations as follows. Let Π = (A1, A2, . . . , Am) be a connected partition. For any vector
V = (V1,V2, . . . ,Vm) with Vi ≥ 0 (i = 1, 2, . . .m), we define the set of piecewise mono-
tone vectors with bounded total variations as

K↑
Π(V) = K↑

Π(V1,V2, . . . ,Vm) := {θ ∈ K↑
Π : VAi(θAi) ≤ Vi for i = 1, 2, . . . ,m}.

Then, we define θ̂Π,V as the projection estimator ontoK↑
Π(V). Next, we define a countable

set of vectors V as

V (m) := {(v(j1), v(j2), . . . , v(jm)) : (j1, j2, . . . , jm) ∈ Nm} ,

where v(j) := j3/2. Finally, we select a pair (Π̂, V̂) as the solution of the following
minimization problem:

min
Π

min
V∈V (|Π|)

{
∥y − θ̂Π,V∥22 + pen(Π,V)

}
. (5.26)

With a careful choice of the penalty term pen(Π,V), we have the following result:

Theorem 5.17. There exists an absolute constant Cpen > 0 such that the following
statement holds. For any pair (Π,V), define the penalty pen(Π,V) so that

pen(Π,V) = Cpen

(
m∑
i=1

σ4/3|Ai|1/3V2/3
i + σ2m log

en

m

)
.

Let (Π̂, V̂) be the minimizer in (5.26).

1

n
Eθ∗∥θ̂Π̂,V̂ − θ

∗∥22

≤ min
Π

min
V∈V (|Π|)

{
3

n
dist2(θ∗,K↑

Π(V)) +
2

n
pen(Π,V)

}
+

256σ2

n
.

In particular, if θ∗ is piecewise monotone on Π = (A1, A2, . . . , Am), we have

1

n
Eθ∗∥θ̂Π̂,V̂ − θ

∗∥22

≤ 2Cpen


m∑
i=1

|Ai|
n

(
σ2(VAi(θ∗Ai

) + 1)

|Ai|

)2/3

+
σ2m

n
log

en

m

+
256σ2

n
. (5.27)
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We emphasize that Theorem 5.17 does not require any additional assumptions on θ∗,
e.g., the minimum length condition or the moderate growth condition introduced in the
previous section. Therefore, it suggests the existence of a penalized model selection esti-
mator that achieves the minimax rate in Proposition 5.4. However, the penalized model
selection estimator used in Theorem 5.17 is not practical. One reason is that the constant
Cpen in the definition of the penalty term is too large for a practical purpose. Another rea-
son is the computational issue. The estimator (5.26) is obtained through the minimization
over exponentially many possible partitions Π.
The dependence on the total variation of each segment in (5.27) is (VAi(θ∗Ai

) + 1)2/3

instead of (VAi(θ∗Ai
))2/3. The additional constant 1 is due to the minimal resolution of

the sieve. To establish a non-asymptotic risk bound for the penalized model selection
estimator without sieves (i.e., (5.25)) and remove the dependence on the sieve resolution
remains an open problem.

5.6 Algorithms for nearly-isotonic estimators
In this section, we present algorithms for the nearly-isotonic regression and related esti-
mators and discuss their computational complexities. Note that the main purpose of this
section is to give a review of existing algorithms, and hence most results presented in this
section are not new (except for Proposition 5.18).

5.6.1 Penalized estimators

Here, we introduce two algorithms to solve the penalized form nearly-isotonic regression
(5.3). In Section 5.6.1, we introduce the solution path algorithm developed by Tibshirani
et al. (2011). The advantage of the solution path algorithm is that it outputs the solutions

θ̂λ for every λ ≥ 0 simultaneously. However, the solution path algorithm cannot be applied
to the estimators with general weights and graphs. In Section 10, we provide another
algorithm that outputs the exact solution for a single λ. The latter algorithm can be
applied to the nearly-isotonic type estimators defined on any weighted directed graphs.

One-dimensional problem
The modified pool adjacent violators algorithm (modified PAVA, Tibshirani et al. (2011))
is the algorithm used to calculate the solution path for the problem (5.3). Here, we present
a variant of the modified PAVA for the following weighted version of the estimator:

θ̂λ = argmin
θ∈Rn

{
1

2
∥y − θ∥22 + λ

n∑
i−1

ci(θi − θi+1)+

}
,

where ci > 0 (i = 1, 2, . . . , n−1) are positive weight parameters. Letting ci = (xi+1−xi)−1,
this formulation covers the nearly-isotonic regression for general increasing design points
(5.23).
The derivation of Algorithm 1 is straightforward from the original paper of Tibshirani

et al. (2011). We should note that the validity of this algorithm crucially depends on the
property that the solution path is piecewise linear and “agglomerative”. It is well known
that the piecewise linearity of the solution path holds for many classes of regularization

estimators (Rosset and Zhu 2007). We say that the solution path {θ̂λ}λ≥0 is agglomerative

if it satisfies the following condition: if θ̂λ,i = θ̂λ,j holds for some λ = λ0, then the same
equality holds for any λ ≥ λ0. For the constant weights (ci ≡ 1), such agglomerative
property was proved by Tibshirani et al. (2011). However, for general edge weights, this
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Algorithm 1: Modified Pool Adjacent Violators Algorithm (Tibshirani et al. 2011)

Input: y ∈ Rn

Output: Set of finitely many breakpoints Λ = {λ0, λ1, . . . , λN}, solution path

{θ̂λ}λ∈Λ

1 λ0 ← 0, θ̂λ0 ← y

2 Let Π0 be the constant partition of θ̂λ0 . Below, the solution θ̂λi is kept to be
constant on Πi.

for i = 1, 2, . . . do
3 Let k = |Πi−1|. Let Aj = {τj , τj + 1, . . . , τj+1 − 1} be the j-th element in the

partition Πi−1, and tj be the value of θ̂λi−1 on Aj (j = 1, 2, . . . , k).

4 Set s0 = sk = 0 and c0 = 0. Compute sj = 1{tj>tj+1} for j = 1, 2, . . . , k − 1.

5 Compute the slopes mj (j = 1, 2, . . . , k) by

mj =
cτj−1sj−1 − cτj+1−1sj

|Aj |
.

6 Compute δ by

δ = min
1≤j≤k−1

tj+1 − tj
mj −mj+1

.

7 If δ ≤ 0, then terminate.

8 λi ← λi−1 + δ.

9 Set θ̂λi
to be the piecewise constant vector whose values on Aj are tj +mjδ

(j = 1, 2, . . . , k).

10 Set Πi to be the constant partition of θ̂λi .

end

need not be true. Instead, we have a sufficient condition for the validity of Algorithm 1
as follows:

Proposition 5.18. Algorithm 1 outputs the exact solution path if the edge weights satisfy
the following condition.

cj+1

cj
≤ j + 1

j
for all j = 1, 2, . . . , n− 2.

For instance, we can apply Algorithm 1 to calculate the solution path of (5.23) if the
design points x1 < x2 < . . . < xn satisfies

xj+2 − xj+1 ≥
j

j + 1
(xj+1 − xj)

for all j = 1, 2, . . . , n− 2. For a detailed discussion for this condition, see Remark 5.45 in
Appendix 5.9.6.

General graphs
Let G = (V,E) be a directed graph with V := [n]. Suppose that each edge (i, j) ∈ E
is equipped with a positive weight c(i,j) > 0. We define the generalized nearly-isotonic
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regression as

θ̂G,λ = argmin
θ∈Rn

{
1

2
∥y − θ∥22 + λVG(θ)

}
(5.28)

where VG is a nearly-isotonic type penalty defined as

VG(θ) :=
∑

(i,j)∈E

c(i,j)(θi − θj)+. (5.29)

For any choices of G and c, VG becomes a convex function. Clearly, the lower total
variation V− is a special case where E = {(i, i+ 1) : i = 1, 2, . . . , n− 1} and c(i,i+1) ≡ 1.
Thus, (5.28) can be regarded as a generalization of the nearly-isotonic regression to general
directed graphs.
The problem of the form (5.28) has been well studied in the optimization literature. In

particular, we can see that solving (5.28) is equivalent to solving a certain parametrized
family of minimum-cut problems. For detailed explanations of such an equivalence, see
Obozinski and Bach (2016) and Chapter 8 in Bach (2013). Hence, (5.28) can be solved

by the parametric max-flow algorithm (Gallo et al. 1989) that runs in O(n|E| log n2

|E| ).

Conversely, it has been pointed out by Mairal et al. (2011a) that, for many practical in-
stances, some simplified variants of the parametric max-flow algorithm output the solution
faster than the original algorithm by Gallo et al. (1989). We remark that Hochbaum and
Queyranne (2003) also developed the relationship between the isotonic regression and the
parametric max-flow algorithm.
Algorithm 2 shows the Divide-and-Conquer algorithm (Chapter 9 of Bach (2013)) that

solves (5.28). In the inner loop, the algorithm recursively solves max-flow problems by
defining smaller networks (Algorithm 3). See Figure 5.5 for examples of networks used in
the first two recursions in the algorithm.

Algorithm 2: Divide-and-Conquer algorithm for the generalized nearly-isotonic re-
gression 5.28

Input: y ∈ RV , a directed graph G = (V,E) with positive edge weights {c(i,j)}, a
tuning parameter λ ≥ 0.

Output: The solution θ̂λ of (5.28)
1 Construct a flow network N by adding a source node s and a sink node t to the

graph G.

2 Compute θ̂λ = ProxλFN (y) according to Algorithm 3.

General convex loss functions
In practice, we are often interested in general convex loss functions other than the squared
loss. Here, we consider a generalized problem of the following form:

θ̂ ∈ argmin
θ∈Rp

{L(θ; y) + λVG(θ)} , (5.30)

where θ 7→ L(θ; y) is a convex loss function for any y ∈ Rn. As an example, this for-
mulation contains the M -estimator in the regression setting L(θ; y) = 1

2ℓ(yi − ⟨xi, θ⟩),
where (yi, xi) ∈ R× Rp (i = 1, 2, . . . , n) are the observed data and ℓ : R→ R is a convex
function.
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Algorithm 3: ProxλFN (y)

Input: A flow network N = (V ∪ {s} ∪ {t}, E, c), y ∈ RV and λ > 0.
Output: Proximal operator ProxλFN (y).

1 Let α← 1
|V | (

∑
i∈V yi − λFN (V )), where FN (V ) is the capacity of the edge (s, t).

2 if |V | = 1 then

return θ̂ = α
end

3 Find a subset A ⊆ V minimizing the function A 7→ λFN (A)−
∑

i∈A yi + α|A|.
Herein, FN is the s-t cut function of the network N . This step is equivalent to
solving the max-flow problem defined by the flow network in Figure 5.5-(a).

4 if λFN (A)−
∑

i∈A yi + α|A| = 0 then

return θ̂ = α1V .
end

5 Let θ̂A ← ProxλFN|A(yA), where N|A is the reduction of N on A. The corresponding

network is obtained by shrinking nodes V \A into the sink node t (Figure 5.5-(b)).

6 Let θ̂V \A ← ProxλFNA (yV \A), where NA is the contraction of N by A. The
corresponding network is obtained by shrinking nodes A into the source node s and
adding −FN (A) to the capacity of (s, t) (Figure 5.5-(c)).
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Fig. 5.5: Flow networks in Algorithm 3. In this example, we assume λ = 1. (a) A
network that corresponds to the minimization problem in line 3. (b) A network that cor-
responds to the function B 7→ λFN|A(B)−y(B) in line 5. (c) A network that corresponds
to the function B 7→ λFNA(B)− y(B) in line 6.

Since we already have the proximal operator (5.28) of the penalty term λVG, we can also
obtain algorithms that output approximate minimizers of the above problem. If L(θ; y) is
convex and smooth, the Fast Iterative Shrinkage Thresholding Algorithm (FISTA, Beck
and Teboulle (2009)) outputs an O(ϵ)-optimal solution after O(ϵ−2) calls of the minimiza-
tion algorithm for (5.28).
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5.6.2 Constrained estimators

Consider the following generalized version of the constrained form of nearly-isotonic re-
gression (5.11):

minimize ∥y − θ∥22 subject to
∑

(i,j)∈E

c(i,j)(θi − θj)+ ≤ V, (5.31)

Unlike the penalized estimators, it is difficult to find an exact solution of (5.31). Since
problem (5.31) is an instance of a quadratic programming problem, there are polynomial
time algorithms to obtain approximate solutions. Here, we explain the existence of such
algorithms. The following result is a direct application of Theorem 1 by Lee et al. (2018),
which provides a convergence guarantee of the cutting plane method.

Proposition 5.19. Suppose that G = ([n], E) is a directed graph equipped with positive
weights c(i,j) for every (i, j) ∈ E. Let y ∈ Rn be any vector and V > 0. Then, for any

ϵ > 0, there exists a randomized algorithm that outputs θ̃ satisfying

VG(θ̃) :=
∑

(i,j)∈E

c(i,j)(θ̃i − θ̃j)+ ≤ V + 2ϵ
∑

(i,j)∈E

c(i,j)

and
∥y − θ̃∥2 ≤ min

θ∈Rn: VG(θ)≤V
∥y − θ∥2 + 2ϵ∥y∥2

with a probability of 0.99. The overall complexity of the algorithm is O((n +

|E|)n2 logO(1) n
ϵ|E| ).

5.7 Simulations
We provide some numerical examples for piecewise monotone regression problems.

5.7.1 Dealing with inconsistency at boundaries

Before presenting the simulation results, we here explain a well-known practical issue in
the isotonic regression literature and a regularization method to cope with it.
In the study of statistical estimation under monotonicity constraints, it is known that

the least squares estimator θ̂K↑
n
is inconsistent at the boundary points (see e.g., Groene-

boom and Jongbloed (2014) and Woodroofe and Sun (1993)). A similar issue arises for
the nearly-isotonic regression estimators. Since the penalty term in (5.3) does not activate
if the orders are not violated at the boundary points (i.e., y1 < y2 or yn−1 < yn), the
nearly-isotonic regression is not robust against a negative noise at the left boundary or
a positive noise at the right boundary. To overcome this issue, we consider the following
boundary correction regularization for the nearly-isotonic regression:

θ̂boundary,λ,µ = argmin
θ∈Rn

{
1

2
∥y − θ∥22 + λ

n∑
i=1

(θi − θi+1)+ + µ(θn − θ1)

}
, (5.32)

where µ > 0 is an additional tuning parameter. It can easily be checked that the solution
is equivalent to that of the ordinary nearly-isotonic regression (5.3) applied to ỹ = (y1 +
µ, y2 . . . , yn−1, yn − µ). Similar regularization methods for isotonic regression have been
studied by Chen et al. (2019), Wu et al. (2015) and Luss and Rosset (2017).
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5.7.2 Simulation data

Here, we evaluate the performance of the nearly-isotonic regression and related estimators
on simulated data. According to the one-dimensional regression model (5.22), we gener-
ated data with equi-spaced design points xi = (i − 1)/n (i = 1, 2, . . . , n). For the true
function f∗, we consider m-piecewise monotone functions defined as

f (m)(x) :=
m∑
j=1

f(mx− (j − 1))1Ij (x)

where f : [0, 1) → R is a given monotone function and Ij := [(j − 1)/m, j/m) for j =
1, 2, . . . ,m. Following Meyer and Woodroofe (2000), we choose f from the following two
monotone functions:

fsigmoid(x) = e16x−8/(1 + e16x−8),

fcubic(x) = (2x− 1)3 + 1.

It is worth noting that the former sigmoidal function fsigmoid satisfies the moderate growth
condition (see Definition 5.15), whereas the latter cubic function fcube does not. Hence,

for the case of piecewise sigmoidal functions f
(m)
sigmoid, the minimax rate of O(n−2/3) is

achieved by both the nearly-isotonic regression and the fused lasso (see Corollary 5.16
above and Corollary 2.8 by Guntuboyina et al. (2017)).
In our experiments, the size n of the signal is chosen from {26, 27, . . . , 210}. The noise

standard deviation σ is assumed to be known and fixed to 0.25. We evaluated the MSE
for the following four estimators:

• Neariso: The nearly-isotonic regression (5.3).
• NearisoBC: The nearly-isotonic regression with boundary correction (5.32)
• Fused: The fused lasso (5.6).
• PO: The projection estimator with the partition oracle, i.e., the projection estimator

onto K↑
Π provided with the true partition Π.

For Neariso and Fused, the tuning parameter λ is selected by generalized Cp criteria (i.e.,
minimizing SURE (5.21)). For NearisoBC, the tuning parameters (λ, µ) are selected by
a similar criterion. To estimate the MSE, we generated 500 replications of the data and

calculated the average value of the squared loss 1
n∥θ̂ − θ

∗∥22.
Figure 5.6 presents the results for m = 2, 4 and f = fsigmoid, fcubic. The upper line

shows log-log plots of the MSE versus n. In each setting, the three regularization based
estimators (i.e., Neariso NearisoBC and Fused) performed as well as the ideal estimator
PO, whereas the former three estimators do not use the information about the true par-
tition. The risks of PO are well fitted by lines of slopes of −2/3, which means that the
speed of the convergence is about the minimax optimal rate of O(n−2/3).
Next, we provide more detailed comparisons of regularization based estimators. The

lower line in Figure 5.6 shows the difference of MSEs from that of PO. For piecewise
sigmoidal functions, NearisoBC and Fused performed better than Neariso. Notably, in
the case of m = 2, the risks of Fused were even better than PO for large values of n. A
possible reason for the better performance of the fused lasso is that the sigmoidal function
can be well approximated by a piecewise constant function near the boundaries. On the
other hand, for piecewise cubic functions, Neariso performed slightly better than the
other two estimators for small values of n.
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Fig. 5.6: The risks of nearly-isotonic type estimators on simulated data. The
upper line shows log-log plots of the MSEs versus n. The lower line shows the difference
of the MSEs between regularization type estimators (i.e., Neariso NearisoBC and Fused)
and the projection estimator with the oracle partition choice (PO).

5.7.3 Geological data

We conducted experiments on GPS data related to a seismological phenomenon reported
by Roggers and Dragert (2003). The aim here is to investigate the performance of the
nearly-isotonic type estimators on real-world data in which piecewise monotone approxi-
mations have already been justified in the previous work. For the signal y, we used the
difference of the east-west components of GPS measurements between two observatories,
which are located in Victoria (British Columbia, Canada) and Seattle (United States).
The GPS data is provided by Melbourne et al. (2018). The top panel in Figure 5.7 shows
the plot. The data period starts on January 1, 2010, and ends on December 2, 2017.
After removing missing records, the size of the signal is n = 2885. The increasing trend
of the signal is considered to be caused by the subduction process at the plate boundary.
We can also see periodic reversals in the signal, and the entire signal may be approxi-
mated by a piecewise monotone signal. Such reversals may be related to the seismological
phenomenon so-called the episodic tremor and slip. According to Roggers and Dragert
(2003), such slip events were observed in every 13 to 16 months in their data taken from
1997 to 2003.
GPS data contains several anomalous values. For the signal y considered above, most

of the values yi are between 20 and 50, except for a single outlier y2344 = 139.34. The
behaviors of the estimators are extremely affected by the existence of such outliers. In
our situation, we can manually remove the anomalous value (denoted by ỹ). However, it
is often difficult to distinguish outliers in practical situations. From this perspective, we
also considered the robust M -estimation version of the nearly-isotonic regression defined
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as (5.30) with L(θ; y) =
∑n

i=1 ℓδ(θi − yi). Here, ℓδ is the Huber loss:

ℓδ(u) :=


1

2
u2 (|u| ≤ δ)

δ|u| − 1

2
δ2 (|u| > δ)

,

which is commonly used in the robust regression literature.
We applied the nearly-isotonic regression (5.3) and its robust variant to the signals y and

ỹ in the above. The tuning parameters λ were determined by the 5-fold cross-validation,
and δ in the Huber loss was fixed as δ = 0.01.
First, we consider the case where the outlier is removed manually. The second panel in

Figure 5.7 shows the result for the cross-validated nearly-isotonic regression. The vertical
lines denote the locations of downward jumps in the estimators. We can see that the period
of jump clusters is about 12 to 14 months, which is close to that of the seismological slip
events suggested by Roggers and Dragert (2003).
Next, we consider the case where the signal contains an outlier. In this case, the value

of the squared loss largely depends on the error at the coordinate of the outlier. Then,
the cross-validation may choose a large tuning parameter, and the resulting estimator
becomes close to a monotone signal. The third panel in Figure 5.7 shows that the number
of downward jumps is considerably less than the number that is expected from the known
frequency of the slip events. Conversely, the fourth panel in Figure 5.7 shows that the
robust version of the nearly-isotonic regression outputs similar clusters of change points
as in the second panel.

5.7.4 Supplemental experiments on two-dimensional grids

To understand the behavior of the nearly-isotonic regression in more generic settings, we
present additional simulation results for the nearly-isotonic regression on general graphs
(5.28). Here, we consider the problem of estimating piecewise monotone signals on two-
dimensional grids.
We say that an n1 × n2 matrix θ is monotone if θij ≤ θkl whenever i ≤ k and j ≤ l. In

other words, θ is monotone if it has no order-violating edges in the two-dimensional grid
graph G2 = (V2, E2), where V2 = [n1]× [n2] is the set of all subscripts (i, j) and

E2 :={((i, j), (i, j + 1)) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 − 1}
∪ {((i, j), (i+ 1, j)) : 1 ≤ i ≤ n1 − 1, 1 ≤ j ≤ n2}.

We say that θ is piecewise monotone if there is a partition Π of V such that, for each
A ∈ Π, A is a weakly connected component of G2 and θA has no order-violating edges
in the induced subgraph. For simplicity of experimental settings, we here only consider
“block” type partitions, i.e., we say that Π is of block type if it can be represented as
a product of two partitions of the two coordinates. The left panel in Figure 5.8 is an
example of two-dimensional piecewise monotone signals on a block type partition.
We compare the following three estimators:

• LSE: The bivariate isotonic regression (see e.g., Robertson et al. (1988)).
• Neariso2: The two-dimensional nearly-isotonic regression with Cp-tuned parame-
ter.
• PO: The bivariate isotonic regression applied to the true partition.

For monotone matrices, Chatteejee et al. (2018) proved that LSE is minimax rate optimal
with respect to n = n1n2. Hence, the partition oracle estimator PO can be regarded as an
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Fig. 5.7: Nearly-isotonic type estimators applied to GPS data. See the text for
details.

ideal benchmark that is minimax optimal over piecewise monotone matrices. On the other
hand, if the true matrix θ∗ is piecewise monotone, the risk of LSE can be arbitrarily large
for the same reason as Proposition 5.5. Neariso2 is the special case of the generalized
nearly-isotonic regression (5.28) applied to the graph G2 defined above. Neariso2 was
originally discussed in Tibshirani et al. (2011), but no experimental results have been
presented. Figure 5.8 shows examples of the solutions of the three estimators.
We construct an n× n matrix θ∗ as follows: We define a k × k small monotone matrix

U , and then we define θ∗ as an mk ×mk block matrix by repeating U for m times both
in rows and columns (thus n = mk). We choose the small matrix U = (Uij) from

U cubic2d
ij = (xi + xj − 1)3

or
U cubic1d
ij = (2xi − 1)3,

where we write xi =
i−1
k−1 for i = 1, 2, . . . , k. With the former choice, θ∗ becomes an m2-

piecewise monotone matrix. With the latter choice, θ∗ becomes an m-piecewise monotone
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Fig. 5.8: Examples of estimators for piecewise monotone matrices. The true
parameter θ∗ is a 32×32 matrix that is monotone on each 16×16 segment. The bivariate
isotonic regression (LSE) does not capture the piecewise monotone structure. The solution
of the nearly-isotonic regression (Neariso2) seems to be close to the partition oracle (PO).
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Fig. 5.9: The risks in piecewise monotone matrix estimation. See the text for
details.

matrix such that θ∗ij does not depend on j.
We generated noisy observations y by adding independent Gaussian noises

ξij ∼ N(0, (0.25)2) to every entries of θ∗. To estimate the MSE, we used 500
replications of the data. Figure 5.9 shows the results. Clearly, the risks of LSE (blue
triangles) are much larger than those of the other two estimators. Neariso2 (green
circles) has slightly larger risks compared to PO (magenta squares), while their slopes
seem to be close.
To visualize convergence rates, we fit the risks of PO by monomials ∝ n−a (a > 0), and

plotted as dashed lines in Figure 5.9. The values of the exponent a are respectively as
follows: 0.58 (cubic2d, m = 2); 0.56 (cubic2d, m = 4); 0.50 (cubic1d, m = 2); 0.45
(cubic2d, m = 4). We should note that, in monotone matrix estimation, the theoretical
convergence rate of LSE is known to be Õ(n−1/2) (Chatteejee et al. 2018).

5.8 Proofs for Section 5.3
The remaining four sections in this chapter provide missing proofs in the previous sections.
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5.8.1 Proof of Proposition 5.4

Let Θ be either Θ̃n(m,V) or Θn(m,V), which are defined in Definition 5.3. The minimax
lower bound (5.10) is proved by combining the following two lower bounds:

(i) (Lower bound for monotone vectors (Zhang 2002, Chatterjee et al. 2015))
Let K(V) = {θ ∈ K↑

n : V(θ) ≤ V} be the set of monotone vectors with bounded
total variations. There is a universal constant C1 > 0 such that for any estimator

θ̂,

sup
θ∗∈K(V)

1

n
Eθ∗∥θ̂ − θ∗∥22 ≥ C1

(
σ2V
n

)2/3

.

(ii) (Lower bound for piecewise constant vectors) Let C(m) be the set of m-
piecewise constant vectors in Rn, i.e., θ ∈ C(m) if |{i : θi ̸= θi+1}| ≤ m − 1. The
minimax lower bound over C(m) can be related to sparse estimation as follows. Let
X be an n×n matrix whose (i, j) entries are given as 1{i≥j}. Then, C(m) contains
the set {θ = Xβ : ∥β∥∞ ≤ m}, and the lower bound for the minimax risk over
C(m) follows from the well-known results for ℓ∞ balls (e.g., Raskutti et al. (2011)).
In particular, for any m ≥ 3, the following lower bound is presented in Gao et al.
(2017):

sup
θ∗∈C(m)

1

n
Eθ∗∥θ̂ − θ∗∥22 ≥ C2

σ2m

n
log

en

m
,

where C2 > 0 is a universal constant.

It remains to show that Θ contains K(V) and C(m). C(m) ⊆ Θ is obvious because an m-
piecewise constant vector is also an m-piecewise monotone vector such that the piecewise
total variations are zero. From the definition, it is also clear that K(V) ⊆ Θ̃n(m,V). If
θ ∈ K(V), the jumps θi+1 − θi that strictly exceeds V/m cannot occur more than m − 1
times. Hence, we can choose a partition Π with |Π| ≤ m so that each A ∈ Π does not
contain such large jumps, which implies that θ ∈ Θn(m,V).

5.8.2 Proof of Proposition 5.5

The following theorem in the seminal paper of Chatterjee (2014) provides useful upper
and lower bounds for the risk of the least square estimator over any closed convex set K.

Theorem 5.20 (Chatterjee (2014), Corollary 1.2). Let K ⊆ Rn be any closed convex

set, and let θ̂K denote the least squares estimator over K. For any θ∗ ∈ Rn, define the
function gθ∗ : R+ → R ∪ {−∞} as

gθ∗(t) := EZ∼N(0,σ2In)

[
sup

θ∈K:∥θ−θ∗∥2≤t

⟨Z, θ − θ∗⟩

]
− t2

2
.

Here, if the set {θ ∈ K : ∥θ − θ∗∥2 ≤ t} is empty, we define gθ∗(t) = −∞. Then, gθ∗ is
strictly concave for t ≥ dist(θ∗,K) and has a unique maximizer tθ∗ . Moreover, there are
universal constants C1, C2 > 0 such that

1

n
max

{
t2θ∗ − C1t

3/2
θ∗ , 0

}
≤ 1

n
Eθ∗∥θ̂K − θ∗∥22 ≤

C2

n
max

{
t2θ∗ , σ2

}
. (5.33)



72 Chapter 5 Estimating Piecewise Monotone Signals

To prove Proposition 5.5, we use the lower bound in (5.33). Note that for a sufficiently
large t0 > 0, t 7→ t2−Ct3/2 is a strictly increasing in t ∈ [t0,∞). For any n and σ2, choose
t ≥ t0 so that t2 − Ct3/2 ≥ nσ2. Then, for any θ∗ such that dist(θ∗,K) ≥ t, we have

1

n
Eθ∗∥θ̂K − θ∗∥22 ≥

1

n
(t2θ∗ − C1t

3/2
θ∗ ) ≥ 1

n
(t2 − C1t

3/2) ≥ σ2.

Remark 5.21. We should note that the above proof is valid for any closed convex set
K. For the specific choice of K = K↑

n, the lower bound of tn,σ2 used in the proof can be
quite conservative. In practice, the risk of the isotonic regression estimator can be larger
than σ2 under a smaller value of ℓ2-misspecification error.

5.9 Proofs for Section 5.4

5.9.1 Preliminaries

To state the results for risk upper bounds, we first introduce some quantities related to
Gaussian processes.

Definition 5.22. Let C be a closed convex set in Rn. Let E denote the expectation with
respect to an isotropic Gaussian random variable Z ∼ N(0, In).

(i) The Gaussian width of C is defined as

w(C) := E
[
sup
θ∈C
⟨Z, θ⟩

]
.

(ii) The Gaussian mean squared distance is defined as

D(C) := E[dist2(Z,C)],

where dist(z, C) := infx∈C∥x− z∥2.
(iii) Suppose that C is a convex cone. The statistical dimension of C is defined as

δ(C) := E

( sup
θ∈C:∥θ∥2≤1

⟨Z, θ⟩

)2
 .

We present some historical remarks on these definitions. The three quantities in Defi-
nition 5.22 can be interpreted as complexity measures for the subset C in the Euclidean
space. The Gaussian width has been well studied in convex geometry, signal processing,
high-dimensional statistics, and empirical process theory; See e.g., Section 7.8 in Vershynin
(2018) for a literature review. The definition of the Gaussian mean squared distance is due
to Oymak and Hassibi (2016). As we will see in Lemma 5.25 below, the Gaussian mean
squared distance is useful to provide the risk bounds for proximal denoising estimators.
The statistical dimension was defined in Amelunxen et al. (2014). Recently, Bellec (2018)
pointed out that the statistical dimension characterizes the adaptive risk bounds for some
shape restricted estimators including the isotonic regression and the convex regression.
As suggested by the definitions, these three quantities are closely related to each other.

In particular, if C is a convex cone, these are comparable as follows.

Proposition 5.23. Let C be a closed convex cone.

(i) (Amelunxen et al. (2014), Proposition 10.2) Let Sn−1 = {x ∈ Rn : ∥x∥2 = 1} be
the unit sphere in Rn. Then, we have w2(C ∩ Sn−1) ≤ δ(C) ≤ w2(C ∩ Sn−1) + 1.
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(ii) (Amelunxen et al. (2014), Proposition 3.1) Let C◦ be the polar cone of C defined
as

C◦ := {x ∈ Rn : ⟨x, z⟩ ≤ 0 for all z ∈ C}.

Then, we have D(C) = δ(C◦).

Now, we introduce two general results for risk bounds for general projection estimators
and proximal denoising estimators.
Let K be a closed convex set in Rn, and define the projection estimator onto K as

θ̂K = argminθ∈K∥y−θ∥2. Bellec (2018) proved the following oracle inequality that relates
the risk of the projection estimator to the statistical dimension of the tangent cone of K.
Here, the tangent cone TK(θ) of K at θ ∈ K is defined as

TK(θ) := closure({t(z − θ) : t ≥ 0, z ∈ K}).

Lemma 5.24 (Bellec (2018), Corollary 2.2). Let θ∗ ∈ Rn be any vector, and suppose
that the observation y is drawn according to N(θ∗, σ2In). Then, we have the following
risk bound:

1

n
Eθ∗∥θ̂K − θ∗∥22 ≤ inf

θ∈K

{
1

n
∥θ − θ∗∥22 +

σ2

n
δ(TK(θ))

}
.

Moreover, for any η ∈ (0, 1), the inequality

1

n
∥θ̂K − θ∗∥22 ≤ inf

θ∈K

{
1

n
∥θ − θ∗∥22 +

2σ2

n
δ(TK(θ))

}
+

4σ2 log(η−1)

n

holds with probability at least 1− η.

Next, we provide a general result for proximal denoising estimators. Let f : Rn → R
be a convex function, and λ ≥ 0. We define the proximal denoising estimator θ̂λ as

θ̂λ := argmin
θ∈Rn

{
1

2
∥y − θ∥22 + σλf(θ)

}
. (5.34)

The class of proximal denoising estimators contains the soft-thresholding estimator
(Donoho et al. 1992), the total variation regularization (Rudin et al. 1992), the trend
filtering (Kim et al. 2009) and the nearly-isotonic regression (Tibshirani et al. 2011).
Oymak and Hassibi (2016) pointed out that the risk bound of proximal denoising
estimators can be characterized by the Gaussian mean squared distance of the set
λ∂f(θ∗). Remarkably, based on this technique, Guntuboyina et al. (2017) proved sharp
adaptation results for the trend filtering estimators. The following oracle inequality can
be regarded as a generalization of Theorem 2.2 in Oymak and Hassibi (2016). For the
sake of completeness, we also provide its proof below.

Lemma 5.25. Let θ∗ ∈ Rn be any vector, and suppose that the observation y is drawn

according to N(θ∗, σ2In). Let f : Rn → R be a convex function, and let θ̂λ denote the
proximal denoising estimator defined as (5.34). Then, we have

1

n
Eθ∗∥θ̂λ − θ∗∥22 ≤ inf

θ∈Rn

{
1

n
∥θ − θ∗∥22 +

σ2

n
D(λ∂f(θ))

}
. (5.35)

Moreover, for any η ∈ (0, 1), the inequality

1

n
∥θ̂λ − θ∗∥22 ≤ inf

θ∈Rn

{
1

n
∥θ − θ∗∥22 +

2σ2

n
D(λ∂f(θ∗))

}
+

16σ2 log(η−1)

n
(5.36)

holds with probability at least 1− η.
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Proof. Below, we write θ̂ := θ̂λ. To prove (5.35), it suffices to show that we have almost
surely

∥θ̂ − θ∗∥22 − ∥θ − θ∗∥22 ≤ σ2D(λ∂f(θ))

for any fixed vector θ ∈ Rn. We will assume θ ̸= θ̂ because otherwise the inequality is
trivial.
From the first order optimality condition of the convex minimization problem (5.34),

we have
⟨θ − θ̂, y − θ̂⟩ ≤ σλ(f(θ)− f(θ̂)) for any θ ∈ Rn.

See Lemma 6.1 in van de Geer (2015) for a formal proof. Using the elementary fact that
2⟨u, v⟩ = ∥u∥22 + ∥v∥22 − ∥u− v∥22 and substituting y = θ∗ + σz, we have

∥θ̂ − θ∗∥22 − ∥θ − θ∗∥22 ≤ 2σλ(f(θ)− f(θ̂))− 2σ⟨z, θ − θ̂⟩ − ∥θ − θ̂∥22. (5.37)

Now, take v ∈ ∂f(θ) arbitrarily. From the definition of the subgradient, we have

f(θ)− f(θ̂) ≤ ⟨v, θ − θ̂⟩.

Hence, the right-hand side of (5.37) is bounded from above by

2σ⟨λv − z, θ − θ̂⟩ − ∥θ − θ̂∥22

= 2σ

⟨
λv − z, θ − θ̂

∥θ − θ̂∥2

⟩
∥θ − θ̂∥2 − ∥θ − θ̂∥22

≤ σ2

⟨
λv − z, θ − θ̂

∥θ − θ̂∥2

⟩2

(∵ 2ab− b2 ≤ a2)

≤ σ2∥λv − z∥22 ( ∵ The Cauchy–Schwarz inequality).

Since the choice of v ∈ ∂f(θ) is arbitrary, we have

∥θ̂ − θ∗∥22 − ∥θ − θ∗∥22 ≤ σ2 inf
v∈∂f(θ)

∥λv − z∥22 = σ2dist2(z, λ∂f(θ)). (5.38)

By taking the expectation of both sides, (5.35) is proved.
To prove the high-probability bound (5.36), we use the well-known Gaussian concen-

tration inequality (see e.g., Theorem 5.6 in Boucheron et al. (2013)); for any L-Lipschitz
function h : Rn → R and η ∈ (0, 1), we have

PrZ∼N(0,In)

{
h(Z)− E[h] ≥

√
2L2 log η−1

}
≤ η.

In fact, the map z 7→ dist(z, λ∂f(θ)) is a 2-Lipschitz function because, for any z1, z2 ∈ Rn,
we have

|dist(z1, λ∂f(θ))− dist(z2, λ∂f(θ))| ≤ ∥(z1 − P (z1))− (z2 − P (z2))∥2 ≤ 2∥z1 − z2∥2,

where P is the orthogonal projection map onto the set λ∂f(θ). Now, we take θ̄ as

θ̄ ∈ argmin
θ∈Rn

{
∥θ − θ∗∥22 + σ2

(√
D(λ∂f(θ)) +

√
8 log η−1

)2}
.

Combining (5.38) and the Gaussian concentration applied for θ = θ̄, we have the desired
result.



5.9 Proofs for Section 5.4 75

5.9.2 Risk bounds for constrained estimators (Proof of Theorem 5.6)

In this subsection, we provide the proof of Theorem 5.6 as an application of Lemma 5.24.
To this end, we have to evaluate the statistical dimension of the tangent cone of a convex
set

K−(V) := {θ ∈ Rn : V−(θ) ≤ V} =

{
θ ∈ Rn :

n−1∑
i=1

(θi − θi+1)+ ≤ V

}
. (5.39)

It is not surprising that the analysis of the tangent cone of K−(V) goes very similar to
that of the set with bounded total variation K(V) = {θ ∈ Rn : V(θ) ≤ V} in Guntuboyina
et al. (2017). Our goal is to show the following upper bound for the statistical dimension:

Proposition 5.26. Suppose that θ is a vector with V−(θ) = V. Then, there exists a
universal constant C > 0 such that

δ(TK−(V)(θ)) ≤ Cn
{
k(θ)

n
log

en

k(θ)
+
M(θ)

k(θ)
log

en

k(θ)

}
,

where M(θ) is defined in (5.13).

We briefly outline the proof for this result. We divide the proof into four steps: First,
we provide some useful characterizations of the tangent cone. Second, we decompose
the tangent cone into finitely many pieces so that the Gaussian widths become easy to
evaluate. Third, we provide the concrete upper bounds the Gaussian widths of these
pieces. Lastly, we combine the upper bounds and apply Lemma 5.24 to complete the
proof.
Step 1: Characterizing the tangent cone If V−(θ) < V, θ is contained in the interior
of K−(V), and the tangent cone becomes the entire Euclidean space Rn. Hereafter, we
assume that θ lies on the boundary of K−(V), that is, V−(θ) = V. Let us recall the
definition of the sign of jumps wi in (5.12). Roughly speaking, the tangent cone of K−(V)
is characterized by the sign of jumps.

Lemma 5.27. Let θ be a vector in Rn such that V−(θ) = V. Let Π = {B1, B2, . . . , Bk′}
be any connected refinement *1 of the constant partition Πconst(θ) of θ. Let 1 = τ1 < τ2 <
· · · < τk′ < τk′+1 = n + 1 be a sequence such that Bi = {τi, τi + 1, . . . , τi+1 − 1} for any
i ∈ {1, 2, . . . , k′}. We define the signs w2, w3, . . . , wk′ ∈ {0, 1} as

wi =


1 if θτi−1 > θτi

0 if θτi−1 < θτi

arbitrary value in {0, 1} if θτi−1 = θτi

.

For any Π and w2, w3, . . . , wk′ taken as above, we define a convex cone T (Π, w) as

T (Π, w) =

v ∈ Rn :
k′∑
i=1

VBi
− (vBi) ≤

k′∑
i=2

wi(vτi − vτi−1)

 , (5.40)

where VBi
− (vBi) is the lower total variation for the restricted vector vBi . Then, for the

tangent cone TK−(V)(θ), we have the followings:

*1 Here, we say that Π is a connected refinement of another connected partition Π′ if, for any B ∈ Π,
there exists a unique element A ∈ Π′ such that B ⊆ A.
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(i) If Π = Πconst(θ), then TK−(V)(θ) = T (Π, w).
(ii) If Π is a connected refinement of Πconst(θ) and w is taken arbitrarily as above, then

TK−(V)(θ) ⊆ T (Π, w).

Proof. First, we show that TK−(V)(θ) ⊆ T (Π, w). By the definition of the tangent cone
T (θ), it suffices to show that v := z − θ ∈ T (Π, w) holds for any z ∈ K−(V). Note that
θ is constant on every Bi ∈ Π since Π is finer than the constant partition of θ. Since the
lower total variation is not changed by adding any constant value to each coordinates, we
have VBi

− (zBi − θBi) = V
Bi
− (zBi). Then, we have

k′∑
i=1

VBi
− (vBi)−

k′∑
i=2

wi(vτi − vτi−1)

=
k′∑
i=1

VBi
− (zBi) +

k′∑
i=2

wi(zτi−1 − zτi)−
k′∑
i=2

wi(θτi−1 − θτi)

≤
k′∑
i=1

VBi
− (zBi) +

k′∑
i=2

(zτi−1 − zτi)+︸ ︷︷ ︸
=V−(z)≤V

−
k′∑
i=2

wi(θτi−1 − θτi)︸ ︷︷ ︸
=V−(θ)=V

≤ 0,

which proves v ∈ T (Π, w) and hence (ii).
Next, we prove that T (Π, w) ⊆ TK−(V)(θ) under the assumption Π = Πconst(θ) =
{B1, B2, . . . , Bk}. In this case, the definition of w2, . . . , wk coincides that in (5.12). Fix
any z ∈ T (Π, w). We have to show that there exists a (sufficiently small) t > 0 such that
θ + tz ∈ K−(V). Here, we have

V−(θ + tz) =
k∑

i=1

VBi
− (θBi + tzBi) +

k∑
i=2

((θτi−1 + tzτi−1)− (θτi + tzτi))+

= t
k∑

i=1

VBi
− (zBi) +

k∑
i=2

((θτi−1 + tzτi−1)− (θτi + tzτi))+.

Recall that w2, . . . , wk are chosen so that (θτi−1− θτi)+ = wi(θτi−1− θτi). We can choose
sufficiently small t > 0 so that

((θτi−1 + tzτi−1)− (θτi + tzτi))+ = wi((θτi−1 + tzτi−1)− (θτi + tzτi))

for every i = 2, 3, . . . , k. Indeed, if we choose t > 0 so that

t|zτi−1 − zτi | < θτi−1 − θτi for every i = 2, 3, . . . , k,

the signs of θ do not change by adding tz. Consequently, we have

V−(θ + tz) = t
k∑

i=1

VBi
− (zBi) +

k∑
i=2

wi((θτi−1 + tzτi−1)− (θτi + tzτi))

= V−(θ) + t

{
k∑

i=1

VBi
− (zBi) +

k∑
i=2

wi(zτi−1 − zτi)

}
≤ V−(θ) = V.

This proves that T (Π, w) ⊆ TK−(V)(θ) and hence (i).
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From Proposition 5.23-(i), we can bound the statistical dimension by the Gaussian
width as follows:

δ(TK−(V)(θ)) ≤ w2(TK−(V)(θ) ∩ Sn−1) + 1 ≤ w2(TK−(V)(θ) ∩Bn) + 1.

Here, Bn := {v ∈ Rn : ∥v∥2 ≤ 1} is the unit ball in Rn. Hence, it suffices to consider the
set TK−(V)(θ) ∩ Bn. In analogy to Lemma B.2 in Guntuboyina et al. (2017), we obtain
the following characterization of this set.

Lemma 5.28. Let θ be a vector in Rn such that V−(θ) = V. Let Π = {B1, B2, . . . , Bk′}
be any connected refinement of Πconst(θ). Define the signs w2, w3, . . . , wk′ as in Lemma
5.27, and let w1 = wk′+1 = 0. Then, for every v ∈ TK−(V)(θ) with ∥v∥2 ≤ 1, there exists
indices ℓ1 ∈ B1, ℓ2 ∈ B2, . . . , ℓk′ ∈ Bk′ such that

k′∑
i=1

Γi(v, ℓi) ≤

 k′∑
i=1

1

|Bi|
1{wi ̸=wi+1}

 1
2

, (5.41)

where we define Γi(v, ℓi) as

Γi(v, ℓi) := VBi
− (vBi)− wi(vτi − vℓi)− wi+1(vℓi − vτi+1−1) for i = 1, 2, . . . , k′. (5.42)

Proof. Fix v ∈ TK−(V)(θ) ∩Bn. By Lemma 5.27, we have

k′∑
i=1

VBi
− (vBi) ≤

k′∑
i=2

wi(vτi − vτi−1) =
k′+1∑
i=1

wi(vτi − vτi−1). (5.43)

Let ℓ1 ∈ B1, ℓ2 ∈ B2, . . . , ℓk′ ∈ Bk′ be indices which will be specified later. Defining
Γi(v, ℓi) as in (5.42), we can rewrite (5.43) as

k′∑
i=1

Γi(v, ℓi) ≤
k′∑
i=1

wi(vℓi − vτi) +
k′∑
i=1

wi+1(vτi+1−1 − vℓi) +
k′+1∑
i=1

wi(vτi − vτi−1)

=

k′∑
i=1

(wi − wi+1)vℓi

≤
k′∑
i=1

1{wi ̸=wi+1}vℓi (5.44)

Now, let ti denote the ℓ2 norm of vBi for i = 1, 2, . . . , k′. By the assumption,
∑k′

i=1 t
2
i =

∥v∥2 ≤ 1. Then, for any i ∈ {1, 2, . . . , k′}, there exists ℓi ∈ Bi such that vℓi ≤ ti/
√
|Bi|.

For these choices of ℓi, the right-hand side of (5.44) is bounded from above by

k′∑
i=1

ti√
|Bi|

1{wi ̸=wi+1} ≤

 k′∑
i=1

1

|Bi|
1{wi ̸=wi+1}

1/2 k′∑
i=1

t2i

1/2

≤

 k′∑
i=1

1

|Bi|
1{wi ̸=wi+1}

1/2

,

which proves the desired result.
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Remark 5.29. Note that Γi(v, ℓi) is always non-negative. This is checked as follows:
First, the lower total variation is always larger than the difference of boundary points,
that is, for every v ∈ Rm, we have

m−1∑
j=1

(vj − vj+1)+ ≥ (v1 − vm)+ ≥ w(v1 − vm),

where w is taken arbitrarily from {0, 1}. The equality holds if and only if v is monotone
non-increasing. Then, for any ℓ ∈ [m] and w1, w2 ∈ {0, 1}, we have

V−(v) ≥
ℓ−1∑
j=1

(vj − vj+1)+ +

m−1∑
j=ℓ

(vj − vj+1)+ ≥ w1(v1 − vℓ) + w2(vℓ − vm).

In particular, we obtain Γi(v, ℓi) ≥ 0. If θ is monotone non-decreasing (i.e., w0 = w1 =
· · · = wk+1 = 0), then the right-hand side of (5.41) equals to 0, and so Γi(v, ℓi) = 0.

Step 2: Quantizing the tangent cone Now, let Π = {B1, B2, . . . , Bk′} be a connected
refinement of Πconst(θ). Lemma 5.28 implies that TK−(V)(θ) ∩ Bn is contained in the set

such that
∑k′

i=1∥vBi∥22 ≤ 1 and
∑k′

i=1 Γi(v, ℓi) ≤ γ for some ℓi ∈ Bi and γ > 0. From this
perspective, we consider finitely many allocation patterns of the budgets for ∥vBi∥22 and
Γi(v, ℓi). To be more precise, we construct a cover of the tangent cone in the following
way. Consider a triple (t,q, l) such that:

(a) t = (t1, t2, . . . , tk′) and q = (q1, q2, . . . , qk′) are vectors that consist of non-negative
numbers, and

(b) l = (ℓ1, ℓ2, . . . , ℓk′) is a set of indices such that ℓi ∈ Bi for i = 1, 2, . . . , k′.

For such triple, we define a set

T (t,q, l) =
{
v ∈ Rn : ∥vBi∥22 ≤ ti and Γi(v, ℓi) ≤ qiγ for i = 1, 2, . . . , k′

}
, (5.45)

where γ is taken as the right-hand side of (5.41):

γ := γ(θ,Π) =

 k′∑
i=1

1

|Bi|
1{wi ̸=wi+1}

 1
2

. (5.46)

Then, quantizing the allocation vectors t and q, we can cover the set TK−(V)(θ)∩Bn with
finitely many T (t,q, l)s as the following lemma.

Lemma 5.30. Suppose that Π = (B1, B2, . . . , Bk′) is a connected refinement of Πconst(θ).
Define the signs w1, w2, . . . , wk′ as in Lemma 5.28. Let Q be a set of allocation vectors
satisfying the following condition; there exists an integer vector m = (m1,m2, . . . ,mk′) ∈
N such that 1 ≤ mi ≤ k′ (i = 1, 2, . . . , k′) and

∑k′

i=1mi ≤ 2k′, and the allocation vector
q = (q1, q2, . . . , qk′) ∈ Q can be written as

qi =
mi

k′
for all i = 1, 2, . . . , k′.

Let L be a set of indices l = (ℓ1, ℓ2, . . . , ℓk′) such that ℓi ∈ Bi for all i = 1, 2, . . . , k′. Given
t,q ∈ Q and l ∈ L, we define a set T (t,q, l) as (5.45). Then, we have

TK−(V)(θ) ∩Bn ⊆
∪

t,q∈Q,
l∈L

T (t,q, l). (5.47)
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Proof. Fix any vector v in T (Π, w)∩Bn. Since ∥vBi∥22 ≤ ∥v∥22 ≤ 1, there exists an integer
1 ≤ mi ≤ k′ such that

mi − 1

k′
≤ ∥vBi∥22 ≤

mi

k′
.

Summing over i = 1, 2, . . . , k′, we have

k′∑
i=1

mi ≤ k′
k′∑
i=1

∥vBi∥22 + k′ ≤ 2k′,

which implies t = (m1/k
′, . . . ,mk′/k′) ∈ Q.

Next, by Lemma 5.28, there exist l = (ℓ1, . . . , ℓk′) ∈ L such that
∑k′

i=1 Γi(v, ℓi) ≤ γ.
Hence, for any i, there exists an integer 1 ≤ li ≤ k′ such that

(li − 1)γ

k′
≤ Γi(v, ℓi) ≤

liγ

k′

Suppose γ > 0. Summing over i = 1, 2, . . . , k′, we have
∑k′

i=1 li ≤ 2k′ and thus q =
(l1/k

′, . . . , lk′/k′) ∈ Q. For the case of γ = 0, it is clear that q = (1/k′, 1/k′, . . . , 1/k′) ∈
Q.

We should note that the cardinalities of Q and L are respectively bounded as follows:

Proposition 5.31. Let Q and L are the sets defined in Lemma 5.30. Then, we have:

(i) log |Q| ≤ 2k′ log 2e, and
(ii) log |L| ≤ k′ log n

k′ .

Proof. For the first part, we have

|Q| ≤
k′∑
j=0

(
k′ + j − 1

k′ − 1

)
=

k′∑
j=0

(
k′ + j − 1

j

)
≤

k′∑
j=0

(
2k′ − 1

j

)

≤
(a)

(
(2k′ − 1)e

k′

)k′

≤ (2e)k
′
.

The proof of the inequality (a) in the above can be found in Proposition 4.3 of Dudley
(2014).
The second part is obtained by Jensen’s inequality as

log |L| =
k′∑
i=1

log |Bi| ≤ k′ log

 k′∑
i=1

|Bi|
k′

 = k′ log
n

k′
.

Step 3: Controlling Gaussian widths As mentioned before, our goal is to obtain an
upper bound of the Gaussian width

W̃ (θ) := w(TK−(V)(θ) ∩Bn) = E

[
sup

v∈TK−(V)(θ)∩Bn

⟨v, Z⟩

]
, (5.48)

where we convene that E = EZ∼N(0,In). Let (Π, w) is a pair of a partition and a sign
vector of knots defined as in Lemma 5.28. Using the decomposition in Lemma 5.30, we
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have

W̃ (θ) ≤ E

[
max

t,q∈Q, l∈L
sup

v∈T (t,q,l)

⟨v, Z⟩

]
.

Besides, leveraging a general result for Gaussian suprema (5.49 below), we have

W̃ (θ) ≤ max
t,q∈Q, l∈L

E

[
sup

v∈T (t,q,l)

⟨v, Z⟩

]
+ 3

√
k′ log

en

k′
+

√
π

2
. (5.49)

Here, we used Proposition 5.31 to bound the cardinality of the set Q2×L. More precisely,
we used the following evaluation:

2 log |Q2 × L| ≤ 4k′ log 2e + 2k′ log
en

k′
≤ (4 log 2e + 2)k′ log

en

k′
< 8.8k′ log

en

k′
.

Given t,q ∈ Q and l ∈ L, we define

W̃ (t,q, l) = E

[
sup

v∈T (t,q,l)

⟨v, Z⟩

]
.

Dividing the supremum into k′ pieces vB1 , vB2 , . . . , vBk′ , this quantity is bounded from

above as W̃ (t,q, l) ≤
∑k′

i=1 W̃i(ti, qi, ℓi), where

W̃i(ti, qi, ℓi) := EZi∼N(0,I|Bi|)

[
sup

vBi
∈Ti(ti,qi,ℓi)

⟨vBi
, Zi⟩

]
. (5.50)

Here, we write Ti(ti, qi, ℓi) := {vBi ∈ RBi : ∥vBi∥22 ≤ ti, Γi(v, ℓi) ≤ qiγ}.
We now consider the quantity (5.50). In the set Ti(mi, qi, ℓi) over which the supremum

taken, the lower total variation of vBi is bounded from above as

VBi
− (vBi) ≤ wi(vτi − vℓ) + wi+1(vℓi − vτi+1−1) + qiγ. (5.51)

As mentioned in Remark 5.29, the reverse inequality

VBi
− (vBi) ≥ wi(vτi − vℓ) + wi+1(vℓi − vτi+1−1)

is always true, and the equality can hold only if two sub-vectors (vτi , vτi + 1, . . . , ℓi) and
(ℓi, ℓi + 1, . . . , vτi+1

− 1) are either monotone increasing or non-increasing. From this
point of view, we may consider that the meaning of the condition (5.51) is that vBi

is approximated by two nearly monotone pieces. This suggests that the complexity of
Ti(mi, qi, ℓi) can be evaluated by that of the class of monotone functions.
Below, we provide the upper bound of the Gaussian width of the form (5.50). First,

the following lemma treats a special case where ℓi is taken as the rightmost point in Bi.

Lemma 5.32. For every n ≥ 1, t > 0, w ∈ {0, 1} and γ ≥ 0, we have

E
[
sup

{
⟨v, Z⟩ : v ∈ Rn, ∥v∥2 ≤ t, and

n−1∑
i=1

(vi − vi+1)+ ≤ w(v1 − vn) + γ

}]
≤ (t+ 2γ

√
n− 1)

√
log(en).

(5.52)
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Proof. The proof is divided into two cases where w = 1 and w = 0.
Case 1 (w = 1): By scaling properly, we need only consider the case where t = 1. For

a vector v ∈ Rn, we define a monotone vector v+ as

v+1 = 0 and v+i =

i∑
j=2

(vj − vj−1)+ for i = 2, . . . , n.

We also define another monotone vector v− as

v−1 = −v1 and v−i = v−1 +
i∑

j=2

(vj−1 − vj)+ for i = 2, . . . , n.

It is easy to check that v = v+ − v−. Using these notations, we have

V−(v) =
n−1∑
i=1

(vi − vi+1)+ = v−n − v−1 .

Hence, the condition V−(v) ≤ v1 − vn + γ is equivalent to v+n ≤ γ, which leads to

∥v+∥22 ≤ (n− 1)(v+n )
2 ≤ (n− 1)γ2

and
∥v−∥2 ≤ ∥v∥2 + ∥v+∥2 ≤ 1 + γ

√
n− 1.

Denote by W̃ the left-hand side in (5.52) with t = 1. The argument in the previous
paragraph implies that

W̃ ≤ E

[
sup

v+∈K↑
n: ∥v+∥2≤γ

√
n−1

⟨v+, Z⟩

]
+ E

[
sup

v−∈K↑
n: ∥v−∥2≤1+γ

√
n−1

⟨v−, Z⟩

]

≤ (1 + 2γ
√
n− 1) · E

[
sup

v∈K↑
n: ∥v∥2≤1

⟨v, Z⟩

]
. (5.53)

The expectation in the last line is bounded as(
E

[
sup

v∈K↑
n: ∥v∥2≤1

⟨v, Z⟩

])2

≤ E

( sup
v∈K↑

n: ∥v∥2≤1

⟨v, Z⟩

)2
 ≤ log(en).

Here, the first inequality is the Jensen’s inequality, and the second inequality is a conse-
quence of equation (D.12) in Amelunxen et al. (2014). Combining with (5.53), we have
the desired result.
Case 2 (w = 0): We can assume w.l.o.g. t = 1. As in Case 1, and we write a vector

as a difference of monotone vectors. For v ∈ Rn, we define v+ and v− as

v+1 = v1 and v+i =

i∑
j=2

(vj − vj−1)+ for i = 2, . . . , n.

and

v−1 = 0 and v−i = v−1 +
i∑

j=2

(vj−1 − vj)+ for i = 2, . . . , n,
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respectively. Under this notation, the condition V−(v) ≤ γ is equivalent to v−n ≤ γ, and
therefore we have

∥v+∥2 ≤ 1 + γ
√
n− 1 and ∥v−∥2 ≤ γ

√
n− 1.

Then, a similar argument as Case 1 yields the result.

Next, the following lemma provides an upper bound of W̃i for general choices of ℓi ∈ Bi.

Lemma 5.33. Fix n ≥ 1, 1 ≤ ℓ ≤ n, t > 0 and γ ≥ 0. For every w1, w2 ∈ {0, 1}, the
quantity

W̃ := E
[
sup

{
⟨v, Z⟩ : v ∈ Rn, ∥v∥2 ≤ t, and

V−(v) ≤ w1(v1 − vℓ) + w2(vℓ − vn) + γ

}]
is bounded from above as

W̃ ≤

{
(t+ 2γ

√
ℓ− 1)

√
log(eℓ) + (t+ 2γ

√
n− ℓ)

√
log(e(n− ℓ+ 1)) if 1 < ℓ < n

(t+ 2γ
√
n− 1)

√
log(en) if ℓ = 1 or n.

(5.54)
In particular, we deduce a simpler bound

W̃ ≤ 2(t+ 2γ
√
n− 1)

√
log(en). (5.55)

Proof. Let (A1, A2) be a pair of sub-vectors of [n] defined as A1 = {1, 2, . . . , ℓ} and
A2 = {ℓ, ℓ + 1, . . . , n}. If either ℓ = 1 or ℓ = n (i.e., one of A1 and A2 becomes a
singleton), the result is a direct consequence of Lemma 5.32.
Henceforth, we assume that 1 < ℓ < n. Suppose that v ∈ Rn satisfies the assumption
V−(v) ≤ w1(v1 − vℓ) + w2(vℓ − vn) + γ. Since V−(v) ≥ VA1

− (vA1) + w2(vℓ − vn), we have

VA1
− (vA1) ≤ w1(v1 − vℓ) + γ.

Similarly, we have

VA2
− (vA2) ≤ V−(v)− w1(v1 − vℓ) ≤ w2(vℓ − vn) + γ.

Based on these observations, we reduce to

W̃ ≤ E

 sup
vA1

∈Rℓ:∥vA1
∥2≤t,

VA1
− (vA1 )≤w1(v1−vℓ)+γ

⟨vA1 , ZA1⟩

+ E

 sup
vA2

∈Rn−ℓ+1:∥vA2
∥2≤t,

VA2
− (vA2 )≤w2(vℓ−vn)+γ

⟨vA2 , ZA2⟩

 ,
in which both terms in the right-hand side can be bounded using Lemma 5.32.

Before going to the next step, we summarize the results in Step 3 as follows.

Proposition 5.34. Fix θ ∈ Rn. Let Π = (B1, B2, . . . , Bk′) be any connected refinement
of Πconst(θ), and w1, w2, . . . , wk′ be the signs associated with Π as in Lemma 5.28. Define

γ ≥ 0 as (5.46). Then, the quantity W̃ (θ) defined in (5.50) is bounded from above by

W̃ (θ) ≤ max
t,q∈Q


k′∑
i=1

2(
√
ti + 2qiγ

√
|Bi| − 1)

√
log(e|Bi|) + 3

√
k′ log

en

k′
+

√
π

2

 . (5.56)
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Proof. This is a direct consequence of (5.49) and (5.55).

Step 4: Applying Lemma 5.24 We now are ready to complete the proof of Theorem
5.6.
Recall that our goal is to obtain an upper bound for W̃ (θ) which is defined in (5.50). To

this end, we will construct a suitable refinement of Πconst(θ) with moderate piece lengths
so that we can control the first term in (5.56). In fact, from an argument parallel to that
in Guntuboyina et al. (2017), there exists a refinement Π = (B1, B2, . . . , Bk′) such that

|Bi| ≤
4n

k′
for i = 1, 2, . . . , k′

and k(θ) ≤ k′ ≤ 2k(θ). We also define the signs w1, w2, . . . , wk′ in a similar way as
Lemma 5.27, but if the knot τi is not contained in the original partition Πconst(θ), the
corresponding sign wi will be specified later.
We can bound the first term in (5.56) as the following two steps. First, from the

Cauchy–Schwarz inequality and the fact that t ∈ Q, we have

k′∑
i=1

√
ti
√
log(e|Bi|) ≤

 k′∑
i=1

ti

1/2 k′∑
i=1

log(e|Bi|)

1/2

≤
√
2

√
k′ log

en

k′
≤ 2

√
k(θ) log

en

k(θ)
.

Second, by the above construction of Π, we have

k′∑
i=1

qiγ
√
|Bi| − 1

√
log(e|Bi|) ≤ max

1≤i≤k′

[√
|Bi| log(e|Bi|)

] k′∑
i=1

qiγ

≤ 2γ · 2(1 + log 4)

√
n

k′
log

en

k′

≤ 10γ

√
n

k(θ)
log

en

k(θ)
.

Therefore, the right-hand side in (5.56) can be bounded from above by

10

√
k(θ) log

en

k(θ)
+ 20γ

√
n

k(θ)
log

en

k(θ)
. (5.57)

Here, to hide the constant term
√
π/2, we have also used the fact that

√
m log(en/m) ≥ 1

for every integer 1 ≤ m ≤ n.
Let w0

1, w
0
2, . . . , w

0
k(θ)+1 be the signs associated with the constant partition Πconst(θ) =

(A1, A2, . . . , Ak(θ)) (recall the definition (5.12)). Then, we can choose the values of wi so
that the following inequality holds:

γ2 =

k′∑
i=1

|Bi|−11{wi ̸=wi+1} ≤
k(θ)∑
j=1

[
min

{
|Aj |,

⌊
2n

k(θ)

⌋}]−1

1{w0
j ̸=w0

j+1}

≤
k(θ)∑
i=1

[
min

{
|Ai|,

n

k(θ)

}]−1

1{w0
i ̸=w0

i+1}

=M(θ). (5.58)
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In fact, this is possible if we choose wi as the sign w0
j for the nearest knot that is to the

right of τi. Combining (5.58), (5.57) and Proposition 5.23, the statistical dimension of
TK−(V)(θ) is bounded from above as

δ(TK−(V)(θ)) ≤ W̃ 2(θ) + 1 ≤ 800n

[
k(θ)

n
log

en

k(θ)
+
M(θ)

k(θ)
log

en

k(θ)

]
+ 1,

where we also used the elementary fact that (a+ b)2 ≤ 2(a2+ b2). Consequently, applying
Lemma 5.24, we have desired result.

5.9.3 Proof of Corollary 5.9

Let α > 0 be a number to be specified later. Define a vector θ′ ∈ Rn as θ′1 = θ∗1 and

θ′i = θ∗1 +

i−1∑
j=1

(θ∗j+1 − θ∗j )+ − α
i−1∑
j=1

(θ∗j − θ∗j+1)+ for i = 2, 3, . . . , n.

Then, we have V−(θ′) = αV−(θ∗). Moreover, the constant partition and the sign of θ′

(defined in (5.12)) are the same as those of θ∗, and therefore k(θ′) = k(θ∗) and M(θ′) =
M(θ∗).
Now, we set α = V/V−(θ∗) so that V−(θ′) = V. Applying the upper bound (5.14), we

have

1

n
Eθ∗∥θ̂V − θ∗∥22 ≤

1

n
∥θ′ − θ∗∥22 + Cσ2 k(θ

∗)

n
log

en

k(θ∗)
+ Cσ2M(θ∗)

k(θ∗)
log

en

k(θ∗)
.

The first term in the right-hand side is bounded from above as

1

n
∥θ′ − θ∗∥22 =

(1− α)2

n

n∑
i=2

i−1∑
j=1

(θ∗j − θ∗j+1)+

2

≤ (1− α)2(V−(θ∗))2 = (V − V−(θ∗))2.

From the minimal length condition (5.18) and the definition of M(θ), we also have

M(θ∗)

k(θ∗)
log

en

k(θ∗)
≤ 2c−1(m(θ∗)− 1)

n
log

en

k(θ∗)
.

Combining the above inequalities, we have the desired result.

5.9.4 Risk bounds for penalized estimators (Proof of Theorem 5.12)

We prove Theorem 5.12 as an application of Lemma 5.25. Let ∂V−(θ) denote the set
of subgradients (i.e., subdifferential) of the convex function V−(·) at θ ∈ Rn. The task
is to provide a suitable upper bound for the Gaussian mean squared distance of the set
λ∂V−(θ). To do this, we use the technique developed in Guntuboyina et al. (2017). The
idea is stated roughly as follows: Recall that the Gaussian mean squared distance of
a convex cone can be written as the statistical dimension of the polar cone (Proposition
5.23-(ii)). This motivates us to relate the Gaussian mean squared distance D(λ∂V−(θ)) to
that of an associated cone. In particular, we consider the conic hull of the subdifferential:

cone(∂V−(θ)) :=
∪
λ≥0

λ∂V−(θ).
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As we explain later, D(cone(∂V−(θ))) can be evaluated by the results in the previous
subsection. Then, we can complete the proof if we have an upper bound of the following
form:

D(λ∂V−(θ)) ≤ D(cone(∂V−(θ))) + ∆(θ, λ), (5.59)

where ∆(θ, λ) is a residual term that depends on θ and λ.
First, we show that D(cone(∂V−(θ))) has exactly the same value as the statistical

dimension of the tangent cone of TK−(V−(θ))(θ), which we have already provided a bound
in the previous part in this chapter.

Proposition 5.35. For any θ ∈ Rn, the following equality holds:

D(cone(∂V−(θ))) = δ(TK−(V(θ))(θ)).

In particular, we have the following upper bound:

D(cone(∂V−(θ))) ≤ Cn
{
k(θ)

n
log

en

k(θ)
+
M(θ)

k(θ)
log

en

k(θ)

}
,

where C is the same universal constant as in Proposition 5.26.

Proof. Let us write T := TK−(V(θ))(θ). In the light of Proposition 5.23-(ii), it suffices to
show that T is the polar cone of cone(∂V−(θ)). However, from fundamental results in
convex geometry, we always have

cone(∂f(θ)) =
(
TK(θ)(θ)

)◦
with K(θ) := {z ∈ Rn : f(z) ≤ f(θ)}

for any convex function f : Rn → R (see Lemma A.5 in Guntuboyina et al. (2017)). For
the case where f = V−, the set K(θ) above is

K−(V−(θ)) = {z ∈ Rn : V−(z) ≤ V−(θ)},

which implies the desired result.

Next, we provide an inequality of the form (5.59). Since cone(∂V−(θ)) ⊇ λ∂V−(θ)
holds for every λ ≥ 0, the definition of the Gaussian mean squared distance (Definition
5.22-(ii)) suggests that D(cone(∂V−(θ))) ≤ D(λ∂V−(θ)). However, we need a reverse
inequality (5.59). To this end, we use the following result proved by Guntuboyina et al.
(2017).

Lemma 5.36 (Guntuboyina et al. (2017), Proposition B.5). Let f : Rn → R be a convex
function, and θ ∈ Rn. Define a vector v0 as

v0 := argmin
v∈aff(∂f(θ))

∥v∥2, (5.60)

where aff(C) is the affine hull of the set C ⊆ Rn. Suppose that v0 ̸= 0. For any z ∈ Rn,
define λ(z) ≥ 0 as

λ(z) := argmin
λ≥0

dist(z, λ∂f(θ)).

Then, λ(z) is well-defined, and has a finite expectation EZ∼N(0,In)[λ(Z)] <∞.
Further, define λ∗ as

λ∗ := λ∗(θ) = EZ∼N(0,In)[λ(Z)] +
2

∥v0∥2
.
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Then, for every λ ≥ λ∗ and v∗ ∈ ∂f(θ), we have

D(λ∂f(θ)) ≤ 4 +

(√
D(cone(∂f(θ))) +

4∥v∗∥2
∥v0∥2

+ 2 + (λ− λ∗)∥v∗∥2
)2

. (5.61)

Before proceeding, we introduce an additional terminology: A convex function f : Rn →
R is said to be weakly decomposable if we have

argmin
v∈aff(∂f(θ))

∥v∥2 ∈ ∂f(θ) (5.62)

for every θ ∈ Rn. In other words, we can choose v0 ≡ v∗ in (5.61) if f is weakly decom-
posable. Under the assumption that f is weakly decomposable, the inequality (5.61) can
be simplified as follows:

Corollary 5.37. Suppose that f : Rn → R is convex and weakly decomposable. Under
the same notation as in Lemma 5.36, we have

D(λ∂f(θ)) ≤ 3D(cone(∂f(θ))) + 3(λ− λ∗)2∥v0∥22 + 112.

Now, we apply Lemma 5.36 to the case f = V−. The following proposition provides
the structural information of ∂V−(θ) that we need for evaluating the upper bound (5.61).
The proof is postponed to Appendix 5.9.6.

Proposition 5.38. (i) θ 7→ V−(θ) is weakly decomposable.
(ii) For any θ ∈ Rn, let us define v0 as (5.60). Then, we have

∥v0∥22 =
k∑

i=1

1

|Ai|
1wi ̸=wi+1 . (5.63)

From Proposition 5.38 and Corollary 5.37, D(λ∂V−(θ)) is bounded from above by

C ′n

{
k(θ)

n
log

en

k(θ)
+
M(θ)

k(θ)
log

en

k(θ)

}
+ C ′(λ− λ∗)2

k∑
i=1

1

|Ai|
1wi ̸=wi+1

provided that λ ≥ λ∗. Here, C ′ > 0 is a universal constant. Combining this bound with
Lemma 5.25, we proved the desired risk bound.
Lastly, we provide an upper bound for the optimal tuning parameter λ∗. This is ob-

tained from the following estimate of E[λ(Z)].

Proposition 5.39. Suppose that θ ∈ Rn and V−(θ) > 0. For any z ∈ Rn, define λ(z) as

λ(z) := argmin
λ≥0

dist(z, λ∂V−(θ)).

Then, we have

E[λ(Z)] ≤ min

 ∥θ∥2V−(θ)
,

(
k∑

i=1

1{wi ̸=wi+1}

|Ai|

)−1/2
 [δ(TK−(V−(θ))(θ))]

1/2,

where E is the expectation with respect to Z ∼ N(0, In).
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Proof. Let C := cone(∂V−(θ)) be the conic hull of ∂V−(θ), and let PC denote the orthog-
onal projection map onto C. By the definition of λ(z), there exists a vector v(z) ∈ ∂V−(θ)
such that λ(z)v(z) = PC(z).
First, we show a partial result

E[λ(Z)] ≤ ∥θ∥2
V−(θ)

√
δ(TK−(V−(θ))(θ)).

As we will see in Appendix 5.9.6, V− is the support function for a certain convex set. Then,
by the fundamental fact for the support function that ⟨θ, v⟩ = V−(θ) for all v ∈ ∂V−(θ)
(see Corollary 8.25 in Rockafeller and Wets (1998)), we have

λ(z)V−(θ) = ⟨θ, PC(z)⟩ = ⟨θ, z − PT (z)⟩,

where T := TK−(V−(θ)(θ) is the polar cone of C (see Proposition 5.35). Taking the
expectation of both sides with respect to z ∼ N(0, In), we have

V−(θ)E[λ(z)] ≤ ∥θ∥2E∥PT (z)∥2 ≤ ∥θ∥2(E∥PT (z)∥22)1/2 = ∥θ∥2(δ(T ))1/2,

which implies the desired result. Here, we used the fact that δ(T ) = EZ∼N(0,In)∥PT (Z)∥22
(see Proposition 3.1 in Amelunxen et al. (2014)).
To prove the other inequality, we use the characterization of aff(∂V−(θ)) given in (5.69)

in Appendix 5.9.6 below. In particular, if we take v∗ as in (5.72), we have

⟨λ(z)v(z), v∗⟩ = ⟨v∗, PC(z)⟩ ≤ ∥v∗∥2(δ(T ))1/2,

and

⟨v(z), v∗⟩ = ∥v∗∥22 =
k∑

i=1

1{wi ̸=wi+1}

|Ai|
,

and hence the result follows.

5.9.5 Proof of Corollary 5.16

First, we explain that a monotone vector satisfying the moderate growth condition is
approximated by a piecewise-constant vector such that the segments at both ends have
sufficient lengths. To this end, we need the following lemma, which can be regarded as a
special case of Lemma 2 in Bellec and Tsybakov (2015).

Lemma 5.40. Let θ ∈ K↑
n be a monotone vector satisfying the moderate growth condition

and θn − θ1 = V. Then, there exists another monotone vector θ′ ∈ K↑
n satisfying the

following three conditions.

(i) θ′ is k-piecewise constant with

k = max

{
3,

⌈(
V2n

σ2 log(en)

)1/3
⌉}

. (5.64)

Here, ⌈t⌉ is the smallest integer that is not less than t.
(ii) We have

1

n
∥θ − θ′∥22 ≤

1

4
max

{(
σ2V log(en)

n

)2/3

,
3σ2 log(en)

n

}
(5.65)
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and
σ2k

n
log

en

k
≤ 2max

{(
σ2V log(en)

n

)2/3

,
3σ2 log(en)

n

}
. (5.66)

(iii) Let Π′ = {A1, A2, . . . , Ak} be the partition on which θ′ is constant. Then, we have
|A1| ≥ n/k and |Ak| ≥ n/k.

Proof. Let k be an integer defined in (5.64). We construct a k-piecewise constant mono-
tone vector θ′ ∈ K↑

n as follows: First, define an equi-spaced partition I1, I2, . . . , Ik of the
interval [θ1, θn] as

Ij :=

[
θ1 +

j − 1

k
V, θ1 +

j

k
V
)

for j = 1, 2, . . . , k − 1,

and Ik := [θ1 +
k−1
k V, θn]. Next, define a partition Π = (A1, A2, . . . , Ak) of [n] as Aj :=

{i ∈ [n] : θi ∈ Ij} (j = 1, 2, . . . , k). Then, let θ′ be a piecewise-constant vector such that

θ′i := θ1 +
j−1/2

k V for i ∈ Aj . See the right panel of Figure 5.4 for an illustrative example
for θ and its piecewise-constant approximation θ′. By a similar argument as Lemma 2 in
Bellec and Tsybakov (2015), we can check (i) and (ii).
It remains to prove (iii) under the moderate growth condition. Below, we will only

check that the maximal element in A1 is not less than n/k because |Ak| ≥ n/k can be
checked in a similar way. Let i∗ := ⌈n/k⌉. Note that we have i∗ ≤ ⌈n/2⌉ since k ≥ 3. By
the moderate growth condition, we have

θi∗ ≤ θ1 +
n/k − 1

n− 1
V ≤ θ1 +

V
k
,

which means i∗ ∈ A1 and hence |A1| ≥ ⌈n/k⌉.

Now, we are ready to prove Corollary 5.16. Applying Lemma 5.40 for every segments
A1, A2, . . . , Am, we have a k-piecewise constant and m-piecewise monotone vector θ′ ∈ Rn

such that
1

n
∥θ − θ′∥22 ≤

1

4
max

{(
σ2V log en

m

n

)2/3

,
3mσ2

n
log

en

m

}
and

σ2k

n
log

en

k
≤ 2max

{(
σ2V log en

m

n

)2/3

,
3mσ2

n
log

en

3m

}
.

Moreover, θ′ satisfies the minimum length condition (5.18) with c = 1. Therefore, we have
M(θ′) ≤ 2(m− 1)k/n and

σ2M(θ′)

k
log

en

k
≤ 2(m− 1)σ2

n
log

en

m
,

where we used an obvious inequality m ≤ k. Then, Theorem 5.12 implies that there exists
λ such that

1

n
Eθ∗∥θ̂λ − θ∗∥22 ≤

1

n
∥θ − θ′∥22 + C

σ2k

n
log

en

k
+ C

σ2M(θ′)

k
log

en

k

≤ C ′ max

{(
σ2V log en

m

n

)2/3

,
mσ2

n
log

en

m

}
for some universal constant C ′ > 0. This is the desired conclusion. Note that an upper
bound for such λ is suggested by Proposition 5.13.
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5.9.6 Subdifferential and weak decomposability

In this subsection, we discuss the structure of the subdifferential of the nearly-isotonic
type penalties. The main purpose is to discuss the weak decomposability (defined in
Appendix 5.9.4) of V−.

Characterization of the subdifferential
First, we observe that V−(θ) =

∑n−1
i=1 (θi − θi+1)+ can be written as a support function

of a certain convex set. In fact, by Theorem 8.24 in Rockafeller and Wets (1998), we can
see that

V−(θ) = max
v∈B
⟨v, θ⟩, (5.67)

where B := {v ∈ Rn : ∀θ ∈ Rn, ⟨v, θ⟩ ≤ V−(θ)}. Many properties of the support function
can be understood through the structure of the set B; In particular, we can characterize
the subdifferential and weak decomposability. Below, we investigate the more detailed
structure of the set B in terms of submodular functions.
Let G = (V,E) be a directed graph equipped with positive edge weights {c(i,j)}. For

any θ ∈ Rn, we define a nearly-isotonic type penalty VG(θ) for the weighted graph G as
in (5.29). For any subset A ⊆ [n], we also define κG(A) by the total weights of outgoing
edges:

κG(A) :=
∑

(i,j)∈E: i∈A, j /∈A

c(i,j). (5.68)

The function A 7→ κG(A) is called the cut function of the weighted graph G.
It is well known that the cut function is a submodular function. Here, a function

F : 2[n] → R is called submodular if F (∅) = 0 and

F (A) + F (B) ≥ F (A ∩B) + F (A ∪B)

holds for any subsets A,B ⊆ [n]. We refer the reader to Bach (2013) for fundamental
properties of submodular functions. For any submodular function F : 2[n] → R, we define
the base polyhedron B(F ) ⊆ Rn as

B(F ) :=

{
v ∈ Rn :

∑
i∈V

vi = F (V ) and
∑
i∈A

vi ≤ F (A) for all A ⊆ V

}
.

The Lovász extension f : Rn → R of F is defined as the support function of B(F ), that
is, for any θ ∈ Rn, f(θ) := maxv∈B(F )⟨v, θ⟩.
We see that the nearly-isotonic type penalty (5.29) is actually the Lovász extension of

the cut function (5.68).

Proposition 5.41. For any directed graph G and edge weight c(i,j), the function VG is
the Lovász extension of the cut function κG.

Proof. This is the consequence of the well-known result so-called the greedy algorithm;
see e.g., Proposition 3.2 in Bach (2013).

Now, we have the following useful characterizations of the subdifferential.

Proposition 5.42. Define F : 2[n] → R be a submodular function and f : Rn → R be its
Lovász extension. Suppose θ ∈ Rn.
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(i) The subdifferential ∂f(θ) coincides with a face of B(F ) given as

∂f(θ) = argmax
v∈B(F )

⟨v, θ⟩ = {v ∈ B(F ) : ⟨v, θ⟩ = f(θ)}.

(ii) There is an (ordered) partition (A1, A2, . . . , Ak) ⊆ [n] such that

aff(∂f(θ)) =

v ∈ Rn :
∑
j∈Si

vj = F (Si) for all i = 1, 2, . . . , k

 , (5.69)

where Si :=
∪i

j=1Aj (i = 1, 2, . . . , k). In particular, we have ∂f(θ) = B(F ) ∩
aff(∂f(θ)).

(iii) Let v be any point in the relative interior of ∂f(θ). Then, the normal cone of ∂f(θ)
at v is contained in the set of partition-wise constant vectors:

N∂f(θ)(v) ⊆ span{1A1 , 1A2 , . . . , 1Ak
}.

Proof. The first statement is just a well-known property for the support function (Corol-
lary 8.25 in Rockafeller and Wets (1998)). The second statement follows from the char-
acterization of faces for the base polyhedron (see Proposition 4.7 in Bach (2013)). The
third statement follows from (ii) and the characterization of normal cones of polyhedra
(see Theorem 6.46 in Rockafeller and Wets (1998)).

Weak decomposability
Here, we discuss the weak decomposability of the Lovász extension.
Before describing the result, we introduce some terminology. Let F : 2[n] → R be a

submodular function. We say that a set A ⊆ [n] is separable for F if there is a non-empty
proper subset B of A such that F (A) = F (B)+F (A\B). We also say that A is inseparable
if it is not separable. For example, if F = κG is the cut function defined in (5.68), A is
inseparable if and only if it is a connected component in the graph G. Furthermore, we
define the following agglomerative clustering condition.

Definition 5.43. We say that a submodular function F : 2[n] → R satisfies the agglom-
erative clustering (AC) condition if it has the following property: Let A,B ⊆ [n] be a any
disjoint pair of subsets such that A ̸= ∅ and A is inseparable for the function FA

B : 2A → R
defined by FA

B (C) := F (B ∪ C)− F (B). Then, for any C ⊂ A, we have

|C|
|A|

(F (B ∪A)− F (B)) ≤ F (B ∪ C)− F (B). (5.70)

Recall the definition of weak decomposability (5.62). The following proposition provides
a sufficient condition for the weak decomposability of the Lovász extension.

Proposition 5.44. Let F : 2[n] → R be a submodular function satisfying the AC condi-
tion in Definition 5.43. Then, the Lovász extension of f of F is weakly decomposable.

Proof. Fix θ ∈ Rn. Since f is the support function of the base polyhedron B(F ), ∂f(θ)
coincides with a face of B(F ). Let A1, A2, . . . , Ak be a partition of [n] such that aff(∂f(θ))
is represented as (5.69). For i = 1, 2, . . . , k, we write S0 := ∅ and Si := A1 ∪A2 ∪ · · · ∪Ai.
We should note that the above partition can be chosen so that Ai is inseparable for the
function defined as

(Ai ⊇) C 7→ F (Si−1 ∪ C)− F (Si−1).
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In this case, ∂f(θ) is an n− k dimensional subset.
Define a vector v∗ as

v∗ :=
k∑

i=1

F (Si)− F (Si−1)

|Ai|
1Ai . (5.71)

Since ∑
j∈Si

v∗j =

i∑
j=1

(F (Sj)− F (Sj−1)) = F (Si)

holds for any i = 1, . . . , k, we have v∗ ∈ aff(∂f(θ)). Moreover, v∗ is also contained in the
normal cone of aff(∂f(θ)). Hence, if we prove v∗ ∈ ∂f(θ), we have

∀v ∈ ∂f(θ), ⟨v∗, v − v∗⟩ = 0,

which implies that v∗ ∈ argminv∈∂f(θ)∥v∥22.
Now, our goal is to prove v∗ ∈ ∂f(θ) under the AC condition. If k = n, then it is clear

from (5.69) that ∂f(θ) = {v∗}. Below, we assume that k < n. Since v∗ ∈ aff(∂f(θ)), it
suffices to show that

∑
i∈S v

∗
i ≤ F (S) holds for any S ⊆ [n] that determines a relative

boundary of ∂f(θ). The relative boundary of ∂f(θ) can be written as the union of all
n − k − 1 dimensional faces of B(F ) that have non-empty intersection with ∂f(θ). Such
faces can be characterized as follows: Let Π = (A1, A2, . . . , Ak) be the partition defined
in the above, and choose Ai with |Ai| ≥ 2. Let A′

i be any non-empty proper subset of Ai.
We define a new ordered partition of [n] by inserting (A′

i, Ai \A′
i) instead of Ai:

Π′ = (A1, A2, . . . , Ai−1, A
′
i, (Ai \A′

i), Ai+1, . . . , Ak).

Then, Π′ defines an n− k− 1 dimensional affine subspace by (5.69), which defines a part
of the relative boundary of ∂f(θ). Therefore, we have to show that

∑
i∈S v

∗
i ≤ F (S) for

any S that can be written as S = Si−1 ∪ A′
i with A

′
i ⊂ Ai. From the AC condition, we

have

∑
i∈S

v∗i =

k∑
j=1

F (Sj)− F (Sj−1)

|Aj |
|Aj ∩ S|

=
i−1∑
j=1

(F (Sj)− F (Sj−1)) +
F (Si−1 ∪A′

i)− F (Si−1)

|Ai|
|A′

i|

≤ F (Si−1) + (F (Si−1 ∪A′
i)− F (Si−1))

= F (S).

This proves that v∗ ∈ ∂f(θ), and hence f is weakly decomposable.

Remark 5.45. The AC condition was originally introduced in Bach (2011). In that
paper, the author consider the proximal denoising estimators (5.34) where f is the Lovász
extension of a submodular function F . The name “agglomerative clustering” captures the
following property: Let us consider the solution path of the minimization problem (5.34)

parametrized by λ, that is, the solution path is the collection {θ̂λ}λ≥0 calculated for all

λ ≥ 0. In general, the solution path starts with θ̂λ = y for λ = 0, and θ̂λ shrinks toward
some piecewise constant vector as λ increases. Bach (2011) showed that the solution path
is agglomerative if F satisfies the AC condition.
We provide some examples of functions satisfying the AC condition:
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• Let h : R→ R be a concave function with h(0) = 0. A submodular function defined
as F (A) := h(|A|) satisfies the AC condition. Examples of solutions paths for this
class can be found in Bach (2011).
• The one-dimensional fused lasso has an agglomerative solution path. The corre-
sponding submodular function is the cut function of the undirected one-dimensional
grid graph, which satisfies the AC condition. Hence, by Proposition 5.44, the
penalty of the one-dimensional fused lasso is weakly decomposable. This provides
an alternative proof for Lemma 2.7 in Guntuboyina et al. (2017). On the other
hand, the fused lasso on the two-dimensional grid does not satisfy this condition.
See Bach (2011) for details.
• The nearly-isotonic regression (5.3) has an agglomerative solution path. A direct
proof for this property is provided in Lemma 1 in Tibshirani et al. (2011). Below,
we prove that the cut function for directed one-dimensional grid graph satisfies the
AC condition, which provides an alternative proof for this fact.

The following proposition provides a proof for Proposition 5.38.

Proposition 5.46. The cut function F associated with the nearly-isotonic regression
satisfies the AC condition. In particular, the lower total variation V−(θ) is weakly decom-
posable. Moreover, for any θ ∈ Rn, the minimum value of the ℓ2-norm in ∂V−(θ) is given
by (5.63).

Proof. For any A ⊆ V := [n], F (A) is given by the number of connected components in
A that does not contains the rightmost point n. Let A ⊆ [n] be a connected subset, and
B ⊆ [n] \ A. The value of F (B ∪ A) − F (B) depends on whether one or both of two
endpoints of A are adjacent to B.
We will check the AC condition by considering all patterns of adjacency as Table 5.1.

Here, C represents any proper subset of A, and “None” means that A contains 1 or n.

Table 5.1: The values of FA
B for the cut function F of one-dimensional grid graph.

Node left to A Node right to A F (B ∪A)− F (B) F (B ∪ C)− F (B)
None None 0 ≥ 0
None B 0 ≥ 0
None V \B 1 ≥ 1{C ̸=∅}
B None -1 ≥ 0
B B -1 ≥ 0
B V \B 0 ≥ 0

V \B None 0 ≥ 0
V \B B 0 ≥ 0
V \B V \B 1 ≥ 1{C ̸=∅}

In each case, we can easily check that the inequality (5.70) is satisfied. Hence, F satisfies
the AC condition.
The second statement is a consequence of Proposition 5.44.
The last statement follows from fact that the minimizer of ∥v∥22 in ∂f(θ) coincides with

that in aff(∂f(θ)), which is given as (5.71). In this case, we can choose A1, A2, . . . , Ak as
the constant partition of θ that is sorted by the values of θ. Thus, we have

v∗ =
k∑

i=1

F (Si)− F (Si−1)

|Ai|
1Ai =

k∑
i=1

1wi ̸=wi+1

|Ai|
1Ai (5.72)

which proves the desired result.
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5.10 Proofs for Section 5.5
The goal of this section is to prove Theorem 5.17. The outline of the proof is essentially the
same as the framework of Theorem 4.18 in Massart (2007). We explain this framework in
Section 5.10.1. To complete the proof, we have to control the maximum value of a certain
normalized Gaussian process. For this, we provide an upper bound in Section 5.10.2.

5.10.1 Proof overview

Let (Π̂, V̂) be the selected pair in (5.26). Fix any connected partition Π and V ∈ V (|Π|).
By the definition of the estimator, we have

∥y − θ̂Π̂,V̂∥
2
2 + pen(Π̂, V̂) ≤ ∥y − θ̂Π′,V′∥22 + pen(Π′,V′)

≤ ∥y − θ′∥22 + pen(Π′,V′)

for any vector θ′ that belongs to K↑
Π′(V′). In particular, we can choose θ′ as

θ′ = θ∗Π′,V′ := argmin
θ′∈K↑

Π′ (V
′)

∥θ′ − θ∗∥2.

Substituting y = θ∗ + ξ, we can deduce that

∥θ∗ − θ̂Π̂,V̂∥
2
2 ≤ ∥θ∗ − θ∗Π′,V′∥22 − pen(Π̂, V̂) + pen(Π′,V′) + 2⟨θ̂Π̂,V̂ − θ

∗
Π′,V′ , ξ⟩. (5.73)

Here, recall that ξ is a random variable drawn from N(0, σ2In).
Let z > 0 be a positive number and c ∈ (0, 1). Suppose that an inequality

max
Π

sup
V∈V (|Π|)

sup
θ∈K↑

Π(V)

⟨θ − θ∗Π′,V′ , ξ⟩
(∥θ − θ∗∥2 + ∥θ′ − θ∗∥2)2 + η(Π,V, z)

≤ c

4
(5.74)

holds on some event Ωz that occurs with probability at least 1 − e−z. Combining this
inequality with (5.73), we have on the same event

(1−c)∥θ∗− θ̂Π̂,V̂∥
2
2 ≤ (1+c)∥θ∗−θ∗Π′,V′∥22−pen(Π̂, V̂)+pen(Π′,V′)+cη(Π̂, V̂, z), (5.75)

where we used the elementary inequality (a+ b)2 ≤ 2(a2 + b2).

5.10.2 Controlling the normalized process

Now, our goal is to provide an inequality of the form (5.74). Below, we fix θ′ := θ∗Π′,V′ .

First, we fix a partition Π and V ∈ V (|Π|). For any θ ∈ K↑
Π(V), we define

ω(θ) = ωΠ,V(θ) := (∥θ − θ∗∥2 + ∥θ′ − θ∗∥2)2 + η,

where η > 0 is a positive constant which will be specified later. Define a random variable
ZΠ,V as

ZΠ,V := sup
θ∈K↑

Π(V)

⟨θ − θ′, ξ⟩
ω(θ)

.
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Note that ZΠ,V is the supremum of a sample-continuous Gaussian process. By the con-
centration inequality for Gaussian processes (Lemma 2.9), we have

Pr
{
ZΠ,V − E[ZΠ,V] ≥

√
2v(x+ z)

}
≤ exp(−(x+ z)) (5.76)

for any x > 0. Here, the variance v is bounded as

v := sup
θ∈K↑

Π(V)

[Z2
Π,V] ≤ σ2

4η

because ω(θ) ≥ ∥θ − θ′∥22 + η ≥ 2η1/2∥θ − θ′∥2, and ⟨u, ξ⟩ is distributed according to
N(0, σ2∥u∥22) for any u ∈ Rn.
We will provide an upper bound for E[ZΠ,V]. Let θ∗Π,V be the orthogonal projection of

θ∗ onto K↑
Π(V). Note that

E[ZΠ,V] ≤ E

[
sup

θ∈K↑
Π(V)

⟨θ − θ∗Π,V, ξ⟩
ω(θ)

]
︸ ︷︷ ︸

(a)

+E

[
|⟨θ∗Π,V − θ′, ξ⟩|
infθ∈K↑

Π(V) ω(θ)

]
︸ ︷︷ ︸

(b)

. (5.77)

The second term (b) in the right-hand side of (5.77) is bounded from above by ση−1/2.
Indeed, since

inf
θ∈K↑

Π(V)
ω(θ) = (∥θ∗Π,V − θ∗∥2 + ∥θ′ − θ∗∥2)2 + η ≥ 2η1/2∥θ∗Π,V − θ′∥2,

we have

(b) ≤ 1

2
√
η
Eu∼N(0,σ2)[|u|] =

σ√
2πη

.

To bound the term (a) in (5.77), we use the following lemma:

Lemma 5.47. Let Π = (A1, A2, . . . , Am) be any partition and V = (V1,V2, . . . ,Vm). Fix

any θ̄ ∈ K↑
Π(V). For any t > 0, we have

E

[
sup

θ∈K↑
Π(V):∥θ−θ̄∥2≤t

⟨ξ, θ − θ̄⟩

]
≤ Cσt1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ Cσt

√
m log

en

m
, (5.78)

where C > 0 is a universal constant. Futhermore, for any η > 0, we have

E

[
sup

θ∈K↑
Π(V)

⟨θ − θ̄, ξ⟩
∥θ − θ̄∥2 + η

]
≤ 4Cσ

η−3/4

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ η−1/2

√
m log

en

m

 ,

(5.79)
where C is the same constant as in (5.78).

Proof. We will prove the first inequality (5.78). Let W := W (Π,V) denote the left-
hand side of (5.78). We consider a collection of finitely many sets S(q) as follows: Let
Q := Q(m) be a collection of vectors q = (q1, q2, . . . , qm) that can be written as q = t2a/m
for some integer vector a = (a1, a2, . . . , am) such that 1 ≤ ai ≤ m and

∑m
i=1 ai ≤ 2m.

Note that, by Proposition 5.31, the cardinality of Q is bounded by (2e)m. For any q ∈ Q,
define the set

S(q) :=
{
θ ∈ Rn : ∥θAi∥22 ≤ qi, VAi(θAi) ≤ 2Vi for all Ai ∈ Π

}
.
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Then, we can easily check that

K↑
Π(V) ∩ {θ ∈ Rn : ∥θ − θ̄∥2 ≤ t} ⊆

∪
q∈Q

S(q).

From Lemma 5.48 below, there exists a universal constant C > 0 such that

E

[
sup

θ∈S(q)

⟨θ, ξ⟩

]
≤ Cσ

m∑
i=1

{√
2q

1/4
i |Ai|1/4V1/2

i + q
1/2
i

√
log e|Ai|

}
. (5.80)

Here, by Hölder’s inequality, we have

m∑
i=1

q
1/4
i |Ai|1/4V1/2

i ≤

(
m∑
i=1

qi

)1/4( m∑
i=1

(|Ai|1/4V1/2
i )4/3

)3/4

≤ 21/4t1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

,

and by the Cauchy-–Schwarz inequality, we also have

m∑
i=1

2q
1/2
i

√
log e|Ai| ≤ 2

√
2t

(∑
i=1

log e|Ai|

)1/2

≤ 2
√
2t

√
m log

en

m
.

Then, by Lemma 5.49 below, we have

W ≤ max
q∈Q

E

[
sup

v∈S(q)

⟨ξ, v⟩

]
+ 2tσ

(√
2 log |Q|+

√
π

2

)

≤ Cσ

23/4t1/2

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ 2
√
2t

√
m log

en

m

+ 2tσ

(√
4m log 2e +

√
π

2

)

≤ C ′σ

t1/2
(

m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ t

√
m log

en

m


for some C ′ > 0. Thus, (5.78) has been proved.
The second inequality (5.79) is a consequence of the peeling lemma (Lemma 2.10 below).

Combining (5.76), (5.77) and (5.79), we conclude that

ZΠ,V ≤ 4Cση−3/4

(
m∑
i=1

|Ai|1/3V2/3
i

)3/4

+ ση−1/2

{
4C

√
m log

en

m
+ (2π)−1/2 + 2−1/2

√
x+ z

}
(5.81)

holds with probability at least 1− exp(−(x+ z)), where C is the constant in (5.79). Now,
we choose the two constant η := η(Π,V, z) and x := x(Π,V) as

η(Π,V, z) := 28(4C + 1)4/3
m∑
i=1

σ4/3|Ai|1/3V2/3
i + 28(4C + 2)2σ2m log

en

m
+ 28σ2z

and

x(Π,V) :=
m∑
i=1

σ−2/3|Ai|1/3V2/3
i + 2m log

en

m
,
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respectively. Then, it is elementary to check that the right-hand side of (5.81) is not larger
than 1/8.
Applying the union bound over all pairs (Π,V), we have

Pr

{
max
Π

sup
V∈V (|Π|)

ZΠ,V >
1

8

}
≤ exp(−z)

∑
Π

∑
V

exp(−x(Π,V)).

Here, we can show that ∑
Π

∑
V

exp(−x(Π,V)) ≤ 1, (5.82)

and hence we conclude that (5.74) holds with c = 1/2. Indeed, (5.82) follows from the
fact that, for any Π,

∑
V∈V (Π)

exp

(
−

m∑
i=1

σ−2/3|Ai|1/3V2/3
i

)
=

m∏
i=1

exp
(
−σ−2/3|Ai|1/3

) ∞∑
ji=1

e−ji


≤ exp

(
−

m∑
i=1

σ−2/3|Ai|1/3
)
≤ 1

and ∑
Π

exp

(
−2|Π| log en

|Π|

)
=

n∑
m=1

∑
Π:|Π|=m

exp
(
−2m log

en

m

)

≤
n∑

m=1

∑
Π:|Π|=m

exp

(
−m− log

(
n− 1

m− 1

))

=
n∑

m=1

e−m ≤ 1.

5.10.3 Proof of Theorem 5.17

Now, we are ready to complete the proof of Theorem 5.17. Define pen(Π,V) as

27(4C + 1)4/3
m∑
i=1

σ4/3|Ai|1/3V2/3
i + 27(4C + 2)2σ2m log

en

m
,

where C is the constant in (5.79). Let (Π′,V′) be the pair that minimizes

(Π,V) 7→ 3

2
∥θ∗ − θ∗Π,V∥22 + pen(Π,V)

among all possible pairs. Applying (5.75) and (5.74) for this choice of (Π′,V′), we conclude
that

∥θ̂Π̂,V̂ − θ
∗∥22 ≤ min

Π
min

V∈V (|Π|)

{
3dist2(θ∗,K↑

Π(V)) + 2pen(Π,V)
}
+ 28σ2z

holds with probability at least 1 − exp(−z). Moreover, by integrating both sides with
respect to z, we have

Eθ∗∥θ̂Π̂,V̂ − θ
∗∥22 ≤ min

Π
min

V∈V (|Π|)

{
3dist2(θ∗,K↑

Π(V)) + 2pen(Π,V)
}
+ 28σ2.
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5.11 Proofs: Auxiliary lemmas
Here, we present several auxiliary lemmas that are used in the proofs in the previous
sections.

Lemma 5.48 (Guntuboyina et al. (2017), Lemma B.1). For any t > 0 and V > 0, let

S(V, t) := {θ ∈ Rn : V(θ) ≤ V and ∥θ∥2 ≤ t}.

There exists a universal constant C > 0 such that

Eξ∼N(0,σ2In)

[
sup

θ∈S(V,t)

⟨θ, ξ⟩

]
≤ Cσt1/2n1/4V1/2 + Cσt

√
log en.

Lemma 5.49 (Guntuboyina et al. (2017), Lemma D.1). Suppose p, n ≥ 1 and let
Θ1, . . . ,Θp be subset of Rn each containing the origin and each contained in the closed
Euclidean ball of radius D centered at the origin. Then, for ξ ∼ N(0, σ2I), we have

E
[
max
1≤i≤p

sup
θ∈Θi

⟨ξ, θ⟩
]
≤ max

1≤i≤p
E
[
sup
θ∈Θi

⟨ξ, θ⟩
]
+Dσ

(√
2 log p+

√
π

2

)
. (5.83)
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Chapter 6

Conclusions

In this thesis, we studied statistical properties of regularization based estimators inducing
structured low-dimensionality.
In Chapter 4, we derived the degrees of freedom of two classes of regularization esti-

mators related to submodular functions: the LEREs and the SNREs. Regardless of the
choices of the design matrix and the underlying submodular function, we can derive sim-
ple and unified representations of the degrees of freedom. As mentioned in Section 4.5,
our result recovers existing results derived for some particular regularization estimators
or projection estimators. In fact, submodular regularization estimators can be regarded
as special cases of anti-projection estimators with respect to certain classes of polyhedra,
and general results for anti-projection estimators are still valid for our cases. We stress
that our result provides “solution-dependent” representations of the degrees of freedom
that can be calculated in low computational complexity.
In Chapter 5, we studied the problem of estimating piecewise monotone signals. The

classical isotonic regression estimator cannot be applied in this setting because of the
existence of arbitrarily large downward jumps. We derived the minimax risk lower bound
over piecewise monotone signals with bounded upper total variations. The minimax rate
is tight up to multiplicative constant because it can be achieved by a (computationally
inefficient) model selection based estimator. Our main results show that the nearly-
isotonic regression estimator achieves this rate under an additional growth condition.
An advantage of the nearly-isotonic regression is that the estimator can be calculated
efficiently on arbitrary directed graphs by parametric max-flow algorithms. The simulation
results demonstrate that the nearly-isotonic regression has an almost similar convergence
rate as the ideal estimator that knows the true partition.
An interesting direction for future work is to investigate the optimal rate of piecewise

monotone regression on higher dimensional grids or general graphs. Recently, several
researchers have analyzed the risk bounds for the isotonic regression estimators on two or
more higher dimensional grid graphs (Chatteejee et al. 2018, Han et al. 2017). It is natural
to ask whether one can construct a computationally efficient estimator that is adaptive
to piecewise monotone vectors on a given graph. We believe that the nearly-isotonic type
estimator (5.28) is a candidate. A major difficulty is to determine an appropriate graph
topology. Given a partial order ⪯ on a set V = [n], the corresponding isotonic regression
estimator is uniquely determined. However, there are many directed acyclic graphs that
correspond to partial order ⪯. Hence, the graph topology for the nearly-isotonic type
estimators is not unique. To control the connectivity, it may be useful to introduce edge
weightings proposed by Fan and Guan (2017).
Another direction is to develop a model selection method for least squares estimators

over unbounded cones. We introduced sieves on the total variation in Section 5.5 to
construct an estimator that is adaptive to piecewise monotone vectors. In practice, sieve-
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based methods can be computationally inefficient. Conversely, if the true vector θ∗ is
monotone, the isotonic regression automatically achieves the minimax rate with respect
to the total variation. We conjecture that it is also possible to select the least squares

estimator θ̂Π without using sieves. In particular, we leave it as an open question whether
the adaptive risk bound is achieved by the penalized selection rule of the form (5.25).
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