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Abstract

The Likert scale is the most frequently used scale format in personality measurement. However,

the Likert scale is subject to particular response biases. One promising solution to response bi-

ases is to use a forced-choice format. Additionally, there is a growing interest in using response

time (RT) information. However, many models that use the RT do not consider underlying cog-

nitive processes. The main objective of this series of studies was to investigate the combination

of item response theory and cognitive process models, particularly for forced-choice paradigms.

In Study 1, a combination of the Thurstonian IRT model and the D-diffusion IRT model

was proposed. The Thurstonian IRT model has been successfully used to analyze forced-choice

personality measurements by means of Thurstone’s Law of Comparative Judgment. In con-

trast, the D-diffusion IRT model is a novel cognitive-process model that can naturally use RT

information, and thereby estimate concurrently item and respondent parameters. Consequently,

two-alternative forced-choice personality measurement data with RT information can be ana-

lyzed using a combination of the models, namely the Thurstonian D-diffusion IRT model. In

addition, the success of this model would support the applicability of the diffusion model to

personality measurement, even though the original diffusion model did not focus on this type of

assessment.

Study 2 investigated a combination of the IRT model and linear ballistic accumulator (LBA)

model. The LBA model is considered to be simpler than the diffusion model, yet the param-

eters in the LBA model can be interpreted as the corresponding parameters in the diffusion

model. Therefore, parameter decomposition of the LBA model was proposed similarly to the D-

diffusion IRT model. The proposed model was named the (unidimensional binary) D-LBA IRT

model. Several simulation results revealed that the proposed D-LBA IRT model can estimate

parameters more quickly and efficiently than the D-diffusion IRT model. Moreover, simulation

and experimental results showed that the D-LBA model is expected to be more robust than the

D-diffusion IRT model when the true model is unknown.

Study 3 examined an extension of the D-LBA IRT model, namely, the multiple-alternative

multidimensional D-LBA IRT model. To date, there exist no models that can be used to

1



multiple-alternative forced-choice personality measurement with RT information. A real data

example showed that the proposed model can generate slightly different trait scores compared to

other models that do not use RT information. Besides, the proposed model appears more robust

than the Thurstonian D-diffusion IRT model, even for two-alternative forced-choice data.

The three proposed models are designed for different situations; yet, the success of these

models suggests the possibility of using cognitive process models in the field of psychometrics.
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Chapter 1

Introduction

1.1 Likert Scale and Forced-Choice

The Likert scale (Likert, 1932), in which respondents express the level of agreement towards an

item by choosing one of the ordinal choice categories, is perhaps one of the most widely used

instruments to measure respondents’ personality, attitude, and other individual psychological

differences. It is not very evident why it became very popular in psychological and educational

assessments, but one of the reasons may be attributed to a simple fact that, as Likert (1932,

p. 42) mentioned, it is less laborious to construct the scales and to analyze the obtained data.

Conceptually, the Likert scale is able to assess the respondents’ attitude or other psychological

properties.

However, it is also known that the data obtained from a Likert scale tend to be affected by

response biases, which is “a systematic tendency to respond to a range of questionnaire items on

some basis other than the specific item content” (Paulhus, 1991, p.17). In fact, many previous

studies have shown that measurement with the Likert scale can be distorted when the respon-

dents have some particular response biases (e.g., Chen, Lee, & Stevenson, 1995; Ferrando

& Lorenzo-Seva, 2010; Kam & Meyer, 2015; Masuda & Sakagami, 2017; Phelps, Schmitz,

& Boatright, 1986; Rammstedt & Farmer, 2013; Viswesvaran & Ones, 1999). Examples in-

clude the uniform response biases, which consist of several categorical tendencies to distort a
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response in particular directions regardless of the content (He, Bartram, Inceoglu, & van de

Vijver, 2014), and the socially desirable response bias, which is a tendency to give answers that

make the respondent look good (Paulhus, 1991). These response biases are considered as one of

the main sources of measurement error and may therefore harm the validity of the measurement

(Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).

One promising solution for dealing with response biases is to move away from the Likert

measurement and instead present items in a comparative manner. In the multiple-alternative

forced-choice (MAFC) format, several statements are simultaneously presented as a question-

naire item. Respondents are asked to choose one statement that best describes themselves, or to

rank the statements. An example of two-alternative forced choice items is the pair of statements

“Get stressed out easily” and “Don’t talk a lot.” Each statement in an MAFC questionnaire

item corresponds to different dimensions of psychological traits to be measured, such as emo-

tional stability and extraversion in the preceding example. The MAFC format should reduce

the impact of uniform response biases because it makes it impossible to process uniformly ele-

vated or decreased judgment across all items (A. Brown & Maydeu-Olivares, 2018; Cheung &

Rensvold, 2002). In addition, there is evidence that the use of the MAFC format can also re-

duce the influence of socially desirable responding and improve predictive validity (e.g., Cao &

Drasgow, 2019; Christiansen, Burns, & Montgomery, 2005; Jackson, Wroblewski, & Ashton,

2000; Salgado & Táuriz, 2014).

One of the common methods of analyzing the forced-choice format data in the classical test

theory is the binary scoring (e.g., Baron, 1996; Ghiselli, 1954; Hirsh & Peterson, 2008; Meade,

2004). In typical binary scoring, each choice option is scored as 1 when the option is chosen,

and 0 when not. Of course, each respondent can obtain only one point from each item when

they are asked to pick out the most suitable statement. This means when the forced-choice re-

sponses are coded as binary scores, the resultant variables become ipsative, that is, the sum of

all dimension scores on a questionnaire is always a constant (typically the same as the number

of items) across all respondents (Hicks, 1970). This leads to a number of psychometric chal-

lenges (e.g. Cattell, 1944; Cornwell & Dunlap, 1994; Meade, 2004). For instance, the summed
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binary scores are relative in nature and cannot be used for absolute comparison between respon-

dents (Hicks, 1970; Johnson, Wood, & Blinkhorn, 1988). Furthermore, the construct validity of

the summed binary scores should be distorted. This is because the average intercorrelation be-

tween D latent trait dimensions with equal variances analytically equals −1/(D−1), regardless

of the true relationship among them (A. Brown, 2010; Hicks, 1970). Similarly, conventional

reliability coefficients such as the coefficient alpha (Cronbach, 1951) should also be distorted.

This happens because the key assumptions in their derivation, such as consistent coding, which

refers to the assumption that the observed score is always higher when the true score is higher,

are not met by the summed binary scores (A. Brown & Maydeu-Olivares, 2011).

A promising solution to the problem of ipsative data is to apply the framework of item re-

sponse theory (IRT; Lord, 1980; Rasch, 1960) instead of summing the binary-coded scores. For

this purpose, A. Brown and Maydeu-Olivares (2011) proposed a novel and general IRT model

of forced-choice format observations called the Thurstonian IRT (TIRT) model by extending

Thurstone’s Law of Comparative Judgment (Thurstone, 1927) to an IRT formulation. By incor-

porating a Thurstone’s concept that is also applicable for forced-choice data (Thurstone, 1931),

the TIRT model succeeded in simultaneously estimating both item and respondent parameters

and is free from the abovementioned problems of binary-coded ipsative data. In the wake of

this development, personality scales of forced-choice format have been actively developed in

recent years (e.g. Anguiano-Carrasco, MacCann, Geiger, Seybert, & Roberts, 2015; Joubert,

Inceoglu, Bartram, Dowdeswell, & Lin, 2015; Guenole, Brown, & Cooper, 2018; P. Lee, Lee,

& Stark, 2018).

To date, several models (e.g., Hontangas et al., 2015; H. Lee & Smith, 2019; Revuelta,

2014; Stark, Chernyshenko, & Drasgow, 2005; W.-C. Wang, Qiu, Chen, Ro, & Jin, 2017)

have been proposed that are considered to be readily applicable to data collected with existing

multidimensional MAFC format questionnaires. Still, TIRT is the most well-known and most-

used model in the field of psychometrics.
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1.2 Response Time

In recent years, personality assessments have been widely administered via computers and

tablets. Through such computerized tests, researchers can obtain not only the item responses but

also the response times (RTs) of respondents. Considering the fact that every testing situation

typically involves at least some time pressure, the time required to respond to items can reveal

useful information about respondents’ traits (Tuerlinckx, Molenaar, & van der Maas, 2016).

Various studies have discussed the utility of incorporating RT information in, e.g., classi-

fying response behaviors, removing aberrant responses, and improving the estimation accuracy

(e.g., Bertling & Weeks, 2018; Kong, Wise, & Bhola, 2007; C. Wang, Xu, & Shang, 2018; Wise

& Kong, 2005). The general validity of online measurement has been demonstrated for both

personality characteristics and RTs (e.g., Condon, 2018; Raz, Bar-Haim, Sadeh, & Dan, 2014).

In personality measurement, the relationship between the RT and the respondent’s latent

trait is characterized by the inverted-U relationship (Akrami, Hedlund, & Ekehammar, 2007;

Ferrando & Lorenzo-Seva, 2007a; Kuiper, 1981; Ranger & Ortner, 2011). This indicates that

a respondent processes self-relevant information faster if they are more extreme (high or low)

from the viewpoint of that respondent’s trait level. For the personality measurement in binary

and Likert scale formats, several studies have developed the joint models of item response and

RT by incorporating the inverted-U relationship (e.g., Ferrando & Lorenzo-Seva, 2007b; Meng,

Tao, & Shi, 2014; Ranger, 2013; Ranger & Ortner, 2011).

Tuerlinckx et al. (2016) conceptually classified previously proposed models for dealing with

both the item responses and RTs into three types. First, there exist models that regard the RT as

collateral information. These models are primarily concerned with the item response model and

use the RT to improve the efficiency of parameter estimation or to provide additional informa-

tion such as the detection of cheating and guessing. For example, Roskam (1987, 1997) added

the logarithm of the RT as an independent variable to the logistic item response model. This

class of models essentially represents the probability of a correct item response and uses the

RT merely as a source of additional information. The second type of model includes normative

models, which typically employ some scoring rules. For example, van der Maas and Wagen-
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makers (2005) introduced the correct item summed residual time (CISRT) scoring rule, which

assigns the sum of all residual times for correct responses as the score of the respondent for the

measurement of chess expertise. Although scoring rules are popular in games and sports, they

are not commonly adopted in psychometrics because it is difficult to establish reasonable and

widely acceptable scoring rules.

The third type of model includes process models, which make specific assumptions about

the underlying psychological process that result in the item responses and RTs. Such models en-

able us to apply accumulated scientific knowledge in psychology for the direct modeling of the

relationships between the observed test performance and the inner psychological process that

drives the item-answering behavior. By contrast, the first and second types of models mentioned

above have no obvious connection to the psychological models for representing the underlying

mechanisms of such information processing; hence, it is difficult for them to consider the un-

derlying cognitive process of the item response and RT. Nevertheless, most previously proposed

RT-incorporated item response models are of the first or second type (van der Linden, 2016).

As Schulte-Mecklenbeck et al. (2017) noted, “Decision research has experienced a shift from

simple algebraic theories of choice to an appreciation of mental processes underlying choice.”

This means there would be a growing interest in considering the third type of item response

models.

1.3 Cognitive Process Model

In the field of cognitive and mathematical psychology, which has a rich tradition of RT mod-

eling (Luce, 1986; Voss, Nagler, & Lerche, 2013), psychological models have been developed

to explain the course of information processing that leads to the observed human response and

the associated RT. Two of the best-known models are the diffusion model and the linear bal-

listic accumulation (LBA) model. By introducing several cognitive parameters, as elaborated

in the next chapter, the diffusion and LBA models address the tradeoff between the response

accuracy and the speed, thereby facilitating the quantification of individual performance. The
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diffusion model, originally formalized by Ratcliff (1978) on the basis of preceding studies such

as M. Stone (1960) and Laming (1968), is a representative model that considers the underlying

response generation process. By contrast, the LBA model was proposed by S. D. Brown and

Heathcote (2008), who aimed to propose a simple yet effective alternative to the well-known

models in the field of cognitive psychology. They demonstrated that the LBA model accounts

for many important empirical phenomena from choice tasks, such as the speed difference be-

tween correct and incorrect responses and the shape of the speed–accuracy tradeoff function.

By explicitly taking into account the cognitive process underlying the observed responses,

researchers can obtain psychologically meaningful parameter estimates such as the speed of

information uptake and the amount of information used to make a decision. This helps us to

quantify and empirically test psychological theories in an applied context. In fact, process mod-

els have been successfully applied to understand and explain the processes underlying a variety

of topics in human sciences, such as memory, familiarity effects, perceptual judgments, and

decision making (see van Ravenzwaaij & Oberauer, 2009). For example, Ratcliff, Thapar, and

Mckoon (2007) applied a process model in order to examine why elder people take more time

than the younger ones in lexical decision tasks. Their finding based on the obtained parameter

estimates is that this is not due to the decreased rate of information processing, but because elder

respondents set their response boundaries more conservatively. Palada et al. (2016) also applied

process models to response data with complex stimuli. In their study, respondents tended to

perform the task faster when the stimulus is more complex. Based on the parameter estimates

of process models, they found out that this is caused not because the respondents’ capacity in-

creases with the complexity of stimuli (which is a phenomenon called “super-capacity”), but

because respondents set lower threshold for response when the task is complex. As Donkin,

Brown, Heathcote, and Wagenmakers (2011, p. 61) state, “this kind of conclusion would have

been very difficult to draw without a cognitive model of choice RT.”

The main objective of this thesis is to develop new cognitive process IRT models that can

be applied to forced-choice personality measurement data with RT information. In addition,

simulation and empirical studies are conducted to characterize the performance of the proposed
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models and to compare the models with selected extant models. The model development pro-

cess consider the possibility of combining IRT and two cognitive process models: the diffusion

and LBA models.

The remainder of this thesis is organized as follows. In Chapter 2, we briefly review se-

lected extant models relevant to the studies in this thesis. The series of studies is fundamentally

structured as the combination of extant frameworks.

Chapter 3 extends the D-diffusion IRT model, which is a cognitive-based IRT model pre-

viously proposed by Tuerlinckx and De Boeck (2005), for two-alternative forced-choice ques-

tionnaire items. Similar to the TIRT model, the proposed model considers the drift rate as the

difference of latent utilities of both choice alternatives. The proposed extension is thus named

the Thurstonian D-diffusion IRT (TDIRT) model.

Chapter 4 considers a combination model of the IRT and LBA models, namely the (unidi-

mensional binary) D-LBA IRT model. The LBA model is one of the most complete cognitive

models that can be applied to tasks involving more than two choice alternatives. To provide a

new cognitive-based IRT model for MAFC questionnaire data with RT information in Chapter

5, this chapter first investigates the combination of IRT and LBA models and proposes the D-

LBA IRT model as a preparatory study. The performance of the D-LBA IRT model is compared

with that of the D-diffusion IRT model.

In Chapter 5, a new cognitive-based model is proposed that is applicable to multidimen-

sional MAFC personality measurement data with RT information, namely the multidimensional

MAFC D-LBA IRT model. Performance of the proposed model is compared with that of the

TIRT, multidimensional nominal response model (Revuelta, 2014), and TDIRT models. To the

best of my knowledge, there exist no models that address MAFC questionnaire data with the

RT information, even considering psychometric or algebraic models. The proposed multidi-

mensional MAFC D-LBA IRT model is therefore a novel model in the field of psychometrics

and personality measurement.

Finally, a summary of the series of studies and future directions is discussed in Chapter 6.
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Chapter 2

Existing Models

2.1 Diffusion Model

The diffusion model provides us with detailed information about the cognitive process underly-

ing the respondent’s answers to items based on the observed data. Figure 2.1 shows a schematic

of the diffusion model. When an item is presented to the respondent, the cognitive information

required to answer the item (or conviction towards the item response) accumulates over time

from the starting point (z). Once it reaches the upper (α) or lower (0) boundary, the respon-

dent answers the item. The upper boundary corresponds to the correct response, and the lower

boundary corresponds to the incorrect response. The increase in the amount of information

in unit time follows a normal distribution with a mean v and within-trial variance s2. Here,

the mean parameter v, which indicates the average rate of information accumulation, is usually

called drift rate.

The diffusion model has four main parameters. α represents the distance between the upper

and lower boundaries. A larger value of α means that a longer time is required to answer the

item, which suggests that the respondent’s choice is more deliberate. z denotes the starting point.

If the subject has a positive response bias to the item from the beginning, z becomes larger;

thus, the starting point approaches the upper bound (α), which leads to a higher probability of

giving the correct answer. When there is no response bias, i.e., when the respondent does not

10



Figure 2.1: Schematic of the diffusion model. The accumulator starts from the starting point
(z) and moves upwards and downwards. The direction is randomly drawn from N(v, s2) at each
unit of time. The accumulation continues until it reaches upper or lower bound (α or 0), which
each corresponds to different response options.

favor or avoid one of the choice alternatives at the beginning (Leite & Ratcliff, 2011), z equals

α/2. v represents the average slope of the information accumulation process. The process

approaches the upper (resp. lower) bound when v is positive (resp. negative). τ represents

the nonresponse time, i.e., the duration of nondecisional processes, which may comprise basic

encoding processes.

Let x be a binary observed variable that takes the value 1 when the correct answer is observed

(or the accumulation reaches the upper bound) and 0 when the wrong answer is observed (or

the accumulation reaches the lower bound). To derive the formulation of the diffusion model,

consider a discrete random walk process at first. In the process, the accumulator goes up one

unit with a probability p and goes down one unit with a probability q = 1− p. Let us consider

the probability that the accumulator reaches the lower boundary when it starts from z, which

we denote by P(x = 0 | z). From the above assumption, P(x = 0 | z) must satisfy the recursive

equation P(x = 0 | z) = pP(x = 0 | z+1)+qP(x = 0 | z−1). By solving this equation, P(x = 0 | z)

becomes

P(x = 0 | z) =



( q
p

)α−( q
p

)z( q
p

)a−1
when q , p

1−
z

α
when q = p.

(2.1)

11



In a similar manner, let us consider P(x = 0,n | z), which is the probability that the accumulator

reaches the lower boundary at the n-th step when it starts from z. P(x = 0,n | z) must satisfy

the recursive equation P(x = 0,n+ 1 | z) = pP(x = 0,n | z+ 1)+ qP(x = 0,n | z− 1). As a result,

P(x = 0,n | z) becomes

P(x = 0,n | z) =
2n+1

α
p

n−z
2 q

n−z
2

∑
k<α/2

cosn−1
πk

α
sin

πk

α
sin

πzk

α
. (2.2)

The diffusion process is expressed as the continuous version of this random walk process. The

limiting form of the joint distribution of the item response (x) and RT (t) in the diffusion model

is represented as

f (x, t) =
πs2

α2 exp
(
(αx− z)v

s2 − v2

2s2 (t−τ)
)

×
∞∑

m=1

msin
(
πm(αx−2zx+ z)

α

)
exp

(
−1

2
π2s2m2

α2 (t−τ)
)
.

(2.3)

For more details, refer to Ratcliff (1978) and Feller (1968, chap. 14).

2.2 Diffusion IRT Model

Tuerlinckx and De Boeck (2005) extended the diffusion model to the IRT framework. Equation

2.1 indicates the probability that the accumulator reaches the lower bound in the random walk

process. Again, by considering the continuous version of the random walk process, Equation

2.1 becomes

P(x = 0 | z) =
exp(−2αv)− exp(−2zv)

exp(−2αv)−1
. (2.4)

In typical IRT applications (e.g., educational testing and personality questionnaires), it

would be reasonable to assume that there is no response bias at the starting point. Under the

assumption that z is set to α/2 (no response bias), the probability that respondent i answers the

12



j-th item correctly is given as

P(xi j = 1 | zi j = αi j/2) = 1−P(xi j = 0 | zi j = αi j/2) =
exp(−2zi jvi j)−1
exp(−2αi jvi j)−1

=
exp(αi jvi j)

1+ exp(αi jvi j)
. (2.5)

This equation corresponds to the standard two-parameter logistic IRT model when αi j corre-

sponds to the discriminability and vi j corresponds to the difference between the respondent’s

trait and the item difficulty parameters.

Note that in this thesis, following Tuerlinckx and De Boeck (2005) and van der Maas, Mole-

naar, Maris, Kievit, and Borsboom (2011), we use the subscripts i and j for the parameters of

the IRT-based models but suppress them for the original diffusion and LBA model parameters.

This is because, whereas the separation between item and respondent parameters is the key char-

acteristic of IRT models, the original diffusion and LBA models essentially do not distinguish

them. In the diffusion IRT model, this separation can be represented as

αi j = w(γi, ξ j), vi j = u(θi, b j), (2.6)

where γi and ξ j represent the respondent factor (e.g., deliberateness and potential speed to

answer) and the item factor (e.g., item complexity and item length) involved in the boundary

parameter, respectively. θi and b j can be interpreted in almost the same manner as those in the

original IRT model. That is, θi represents the respondent’s latent trait to be measured, and b j

represents the item threshold (difficulty or severity level).

IRT models are typically used for two different types of psychological measurement: per-

sonality measurement such as the Big Five scale and ability measurement such as college en-

trance examinations. Corresponding to these two scenarios, two types of diffusion IRT models

with different functional forms have been developed.

In the first type—namely, the D-diffusion IRT model, v is expressed as the difference be-

tween the item threshold and the respondent’s latent trait. In this model, the specific form of

13



Equation 2.6 is given as 
αi j =

γi

ξ j
with γi, ξ j ∈ R>0

vi j = θi−b j with θi,b j ∈ R,

(2.7)

where α is the ratio of the respondent properties (e.g., attentiveness and deliberateness) and the

item properties (e.g., complexity and length). As a result, Equation 2.5 is rewritten as

P(xi j = 1 | θi,γi) =

exp


γi

ξ j
(θi−b j)


1+ exp


γi

ξ j
(θi−b j)


, (2.8)

which is the form of the two-parameter logistic IRT model except that the discrimination pa-

rameter γi/ξ j depends on both the respondent and item. τ j retains the same meaning as in the

original diffusion model, and is basically considered as an item parameter in this thesis. In this

way, the D-diffusion IRT model generates important predictions for personality measurement.

In the original diffusion model, the expected RT is the largest when v = 0. This means that the

expected RT is large when the respondent’s latent trait is close to the item threshold. This is

consistent with Ferrando and Lorenzo-Seva’s (2007a) model, which extends Thissen’s (1983)

model on the basis of the distance–difficulty hypothesis (Ferrando & Lorenzo-Seva, 2007a) of

personality measurement. Because the D-diffusion IRT model generates many important pre-

dictions for personality measurement as described above, it is typically used for personality

tests.

The second type of diffusion IRT model is the Q-diffusion IRT model, which expresses v as

the quotient of the item threshold and respondent’s ability. In this model, the specific form of
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Equation 2.6 is given as


αi j =

γi

ξ j
with γi, ξ j ∈ R>0

vi j =
θi

b j
with b j ∈ R>0, θi ∈ R≥0.

(2.9)

This model corresponds to typical applications in ability measurement for which it has a number

of attractive properties. For example, the expected RT is the largest when θi = 0 because θi and

b j are restricted to be nonnegative and positive, respectively. This corresponds to the assumption

that a more competent respondent tends to answer faster than a less competent one. In addition,

when a respondent has the lowest competence and answers a two-alternative forced choice item

at random, the probability of obtaining correct response should equal 50%. In Equation 2.9,

the lower bound of vi j is 0 (when θi = 0), and in this case, the probability of reaching upper

bound (choose correct response) is exactly 50%. In this manner, the Q-diffusion model takes

into account the effect of guessing. Refer to van der Maas et al. (2011) and Tuerlinckx et al.

(2016) for further details regarding the difference in D- and Q- diffusion models.

2.3 Linear Ballistic Accumulation Model

S. D. Brown and Heathcote (2008) proposed a simple cognitive model called the LBA model,

which is schematically illustrated in Figure 2.2. In the LBA model, information regarding a

certain choice alternative of an item is linearly accumulated with time, whereas the amount of

accumulation is normally distributed in the diffusion model. Once the item is presented to the

respondent, the evidence toward each choice alternative of the item accumulates independently

(the accumulation of one choice alternative is irrelevant to that of any other choice) and linearly

(the amount of accumulation does not change with time). This means that the model assumes

no within-trial variance (s2 = 0). Instead, the LBA model introduces the between-trial variance

η2, which indicates that the amount of information accumulation over time varies between each

trial, even if a respondent answers the same item repeatedly. When the information for any

15



𝐵

𝑁 𝑣 1 , 𝜂2

𝐴

0

𝑁 𝑣 2 , 𝜂2

𝑡0

𝜏

Figure 2.2: Schematic of the LBA model. Contrary to diffusion model, each response option
has corresponding different accumulator. The starting points are i.i.d random variables with
U(0,A). The slopes are randomly drawn from N(v(k),η2) and do not fluctuate within a trial. t is
the time when any accumulator reaches the upper bound (B). The resulting RT is the summation
of t and τ.

one choice reaches the boundary (B), a corresponding response is provided by the respondent.

The starting point of evidence accumulation for each choice alternative is a random realization

between 0 to A, and the amount of evidence accumulated in unit time is a realization from a

normal distribution with a mean v and between-trial variance η2. All choices have A and B in

common, whereas v differs among the choices.

In terms of the relationship with the diffusion model, v, τ, and B− A
2 in the LBA model can

be interpreted in a similar manner as v, τ, and α in the diffusion model, respectively. However,

the LBA model differs from the diffusion model in two major aspects. First, each choice has its

own v. On the contrary, in the diffusion model, the information for each choice accumulates de-

pendently; for example, approaching one choice (e.g., the upper bound) indicates drifting away

from the other choice (i.e., the lower bound), which is shown in Figure 2.1. Hence, the diffusion

model has only one drift rate parameter (v). In addition, because of the problem of scaling, the

standard deviation of the amount of information accumulation is typically fixed. Second, the

parameter A indicates the upper bound of the starting point, whereas z in the diffusion model

corresponds to the starting point of information processing.

To derive the LBA model, let c be the random value derived from the uniform distribution
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U(B−A,B). This c represents the distance from the start point, which is randomly derived from

U(0,A), to the threshold B. Moreover, let ∆(k) be the random value derived from N(v(k),η2).

Then, the cumulative distribution function for the k-th choice alternative (k = 1, · · · ,K) and RT

is given as

F(k, t) = prob
( c
∆(k) < t

)
= prob(c < ∆(k)t)

=

∫ ∞

−∞
U(m | B−A,B)ϕ

(
m− tv(k)

tη

)
dm

=

∫ B

B−A

m−B+A
A

ϕ

(
m− tv(k)

tη

)
dm+1−Φ

(
B− tv(k)

tη

)
, (2.10)

where ϕ(.) and Φ(.) represent the density and cumulative distribution functions of the standard

normal distribution, respectively. By transforming Equation 2.10, the joint cumulative distribu-

tion function of the item response for the k-th response category and RT (T ) is given as (for the

detailed derivation, see Appendix A in S. D. Brown & Heathcote, 2008)

LBACDF(k, t | B,A,v(k),η) =1+
B−A− tv(k)

A
Φ


B−A− tv(k)

tη

−
B− tv(k)

A
Φ


B− tv(k)

tη


+

tη

A
ϕ


B−A− tv(k)

tη

−
tη

A
ϕ


B− tv(k)

tη

 .
(2.11)

The corresponding joint probability density function is derived by the differentiation of

Equation 2.11 with respect to t:

LBAPDF(k, t | B,A,v(k),η)=
1

A

−v(k)Φ


B−A− tv(k)

tη

+ηϕ


B−A− tv(k)

tη

+ v(k)Φ


B− tv(k)

tη

−ηϕ


B− tv(k)

tη


 .

(2.12)

These are the functions concerning the time when a certain accumulator of the choice al-

ternative k reaches the boundary, regardless of any other alternative. However, in typical appli-
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cations of the LBA model, researchers can only observe the time for a single (chosen) choice

alternative to reach the threshold; the times for the other choice alternatives are not known.

Therefore, the defective (meaning not summing to 1) distribution, which is the distribution of

a certain accumulator reaching the threshold before any other ones at time t, is needed. From

Equations 2.12 and 2.11, the defective density function of choice alternative k with RT t can be

obtained as

PDF(k, t) = LBAPDF(k, t−τ | B,A,v(k),η)
∏
l,k

[
1−LBACDF(k, t−τ | B,A,v(l),η)

]
. (2.13)

The corresponding cumulative distribution function can be obtained by the numerical integra-

tion of Equation 2.13. The probability of the respondent’s choice k can be derived by the

integration of Equation 2.13 over all t (0 ≤ t ≤ ∞) or by evaluating the cumulative distribution

function defined from the density of Equation 2.13 at t→∞.

S. D. Brown and Heathcote (2008) have pointed out several differences between the LBA

model and other decision-making models. First, the EZ-diffusion model (Wagenmakers, van der

Maas, & Grasman, 2007) is simpler than the LBA model, but Wagenmakers et al. note that

the EZ-diffusion model was developed for expressing data in a simple form rather than fully

modeling the cognitive process. Therefore, it may not reflect all of the important features of the

RT. For example, the EZ-diffusion model assumes that the RT distributions of the correct and

incorrect responses are identical, which can be an unrealistically strong assumption in practice.

On the other hand, the LBA model is considered as the simplest yet complete decision-making

model of the RT because the model successfully accounts for important empirical phenomena of

the choice RT, such as the speed–accuracy tradeoff and the relative speed of correct vs. incorrect

responses (S. D. Brown & Heathcote, 2008). Similarly, other choice RT models such as the

latency model (Grice, 1968) and the LATER model (Reddi & Carpenter, 2000) can be seen as

simplifications of the diffusion model that assume no trial-to-trial variability among evidence

accumulation processes. In these models, however, the model-predicted RT distribution of the

incorrect choice is negatively skewed, and this would never occur in the observed data. This
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inadequate negative skew is caused by projecting the tail of a normal distribution that generates

negative slopes (S. D. Brown & Heathcote, 2008). On the other hand, the LBA model represents

accumulation processes for every choice; hence, the RT distributions of all choices can be fitted

well. Finally, the LBA model has simple analytic solutions for choices among any number of

different alternatives.

2.4 Thurstonian IRT Model

As previously stated, the Thurstonian IRT model (A. Brown & Maydeu-Olivares, 2011) extends

Thurstone’s Law of Comparative Judgment (Thurstone, 1927) to the IRT framework. Let jk be

the k-th (k = 1, · · · ,K) statement presented in the j-th item, and Let x(l m)
i j (1 ≤ l,m ≤ K ∧ l <

m) be the binary coded response of respondent i to item j, that takes 1 when the statement

l is chosen over the statement m and 0 otherwise. For the TIRT model, the observed item

responses to MAFC questionnaire items were first re-coded into binary forced-choice format.

For instance, when respondent i chose the second statement for a four-alternative forced-choice

(K = 4) item j, this observed item response produces three binary re-coded item responses:

x(1 2)
i j = 0, x(2 3)

i j = 1, and x(2 4)
i j = 1. In this thesis, the rest of possible binary-coded responses,

which are y(1 3)
i j , y(1 4)

i j , and y(3 4)
i j in this example, are treated as missing data. This is because

this thesis only focuses on the situation that respondents were asked to choose only the best

statement.

In addition, let u(l)
i j and u(m)

i j be the latent utilities of respondent i for jl and jm, respectively. In

the Thurstonian IRT model, the observed response is modeled to be determined by the difference

between u(l)
i j and u(m)

i j of that respondent; that is,

x(l m)
i j =


1 if u(l)

i j ≥ u(m)
i j

0 if u(l)
i j < u(m)

i j .

(2.14)

This means that the observed item response depends on the sign of the difference between the

latent utilities: u(l)
i j −u(m)

i j . In the MAFC measurement of personality, each statement is designed
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to measure different trait dimensions; for instance, the first statement measures emotional sta-

bility, and the second statement measures extraversion. Let d(l)
j and d(m)

j denote the latent trait

dimensions that are measured by jl and jm, respectively, where D is the total number of latent

traits to be measured in the questionnaire, 1 ≤ d(k)
j ≤ D (k = 1, · · · ,K), and d(l)

j , d(m)
j .

Here, u(l)
i j and u(m)

i j can be written as the Thurstonian factor model:

u(l)
i j = µ̃(l)

j + β̃
(l)
j θid(l)

j
+ ϵ(l)

i j ,

u(m)
i j = µ̃(m)

j + β̃
(m)
j θid(m)

j
+ ϵ(m)

i j , (2.15)

where µ̃(k)
j represents the mean of the latent utility u(k)

i j , β̃(k)
j represents a factor loading, θid(k)

j

represents the latent trait of respondent i, and ϵ(k)
i j represents the residual or unique factor. Both

θi and ϵ(k)
i j are assumed to be (multivariate) normally distributed.

In order to facilitate understanding of the notation, let us consider the example in Table 3.4

on page 36, in which D = 5 latent traits are measured using J = 25 items (i.e., pairs of state-

ments). In item 2, the first and second statements measure agreeableness and intellect/imagina-

tion, respectively. They correspond to the third and fifth traits (as indicated in the footnote of

the table). Therefore, in this case, d(1)
2 = 3, and d(2)

2 = 5. As a result, Equation 2.15 for item 2 in

Table 3.4 is given as

u(1)
i2 = µ̃(1)

2 + β̃
(1)
2 θi3+ ϵ

(1)
i2 ,

u(2)
i2 = µ̃(2)

2 + β̃
(2)
2 θi5+ ϵ

(2)
i2 . (2.16)

A. Brown and Maydeu-Olivares (2011) proposed their Thurstonian IRT model by repa-

rameterizing the above second-order Thurstonian factor model. Specifically, its item response

function is given by

P(x(l m)
i j = 1 | θi) = Φ


(
µ̃(l)

j + β̃
(l)
j θid(l)

j

)
−

(
µ̃(m)

j + β̃
(m)
j θid(m)

j

)
√
Ψ2

j
(l)
+Ψ2

j
(m)

 , (2.17)
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where Ψ2
j
(k) represents the variance of the unique factor ϵ(k)

i j . By using the reparameterization

µ(l)
j =

µ̃(l)
j√

Ψ
(l)
j

2
+Ψ

(m)
j

2
, µ(m)

j =
µ̃(m)

j√
Ψ

(l)
j

2
+Ψ

(m)
j

2
,

β(l)
j =

β̃(l)
j√

Ψ
(l)
j

2
+Ψ

(m)
j

2
, β(m)

j =
β̃(m)

j√
Ψ

(l)
j

2
+Ψ

(m)
j

2
,

(2.18)

Equation (2.17) can be rewritten as

P(x(l m)
i j = 1 | θi) = Φ

[(
µ(l)

j +β
(l)
j θid(l)

j

)
−

(
µ(m)

j +β
(m)
j θid(m)

j

)]
, (2.19)

which corresponds to the form of the two-dimensional normal ogive IRT model. When an item

consists of three or more statements (K > 2), i.e., when a respondent needs to include compar-

isons between more than two statements simultaneously, µ(k)
j and β(k)

j become mathematically

dependent parameters. However, when an item consists of only two statements (K = 2), which

is the case considered in Chapter 3, all Ψ(k)
j have to be fixed (A. Brown & Maydeu-Olivares,

2011). By setting all values to
√

0.5, all denominators in Equation 2.18 become one, hence µ̃(1)
j ,

µ̃(2)
j , β̃(1)

j , and β̃(2)
j are equivalent to µ(1)

j , µ(2)
j , β(1)

j , and β(2)
j , respectively.
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Chapter 3

Study 1: Thurstonian D-diffusion IRT

Model

3.1 Objective of the Study

The D-diffusion IRT model, which was introduced in Section 2.2, is a promising cognitive

psychometric model (Batchelder, 1998; Ranger, Kuhn, & Szardenings, 2017; Vandekerckhove,

2014) for the joint modeling of item responses and RTs for personality questionnaire items. It

combines two key modeling ideas: IRT models that have the virtue of disentangling respondent

and item characteristics and cognitive process models that are grounded in cognitive theory to

implement validated mechanisms for performing response tasks.

The D-diffusion IRT model implements the inverted-U relationship of personality measure-

ment in a natural and quantitative manner. The model has a good parameter recovery property

(Ranger, Kuhn, & Szardenings, 2016) and has begun to be applied to empirical psychological

data such as the measurement of extraversion (Molenaar, Tuerlinckx, & van der Maas, 2015).

However, so far, Thurstonian IRT and D-diffusion IRT models have taken two different path-

ways of model development. In fact, we are not aware of any cognitive psychometric models

that can jointly model the item response and RT information of personality measurements col-

lected in the two-alternative forced-choice (2AFC) format. Consequently, the primary objective
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of this study is to propose and examine such a model by integrating the Thurstonian IRT and

D-diffusion IRT models. The present study focuses on the 2AFC personality measurement as

the proposed model is based on the diffusion model. A Bayesian modeling approach (M. D. Lee

& Wagenmakers, 2013) is adopted in the proposed method.

The remainder of this chapter consists of four sections. In Section 3.2, the proposed model

is introduced, which is named the Thurstonian D-diffusion IRT (TDIRT) model. Section 3.3 de-

scribes a simulation study that was conducted to check parameter recovery. Section 3.4 provides

the application of the proposed TDIRT model to real psychological data to demonstrate that it

successfully combines the item response and RT information. Finally, a general discussion and

possible directions for further research are provided in Section 3.5.

3.2 Thurstonian D-diffusion IRT Model

3.2.1 Parameter Settings

Obviously, Equations 2.8 and 2.19 have similar functional forms, as a logistic function can be

considered as an approximation to the normal ogive function. In addition, both respondent pa-

rameters, θi in the diffusion IRT model and θi in the Thurstonian IRT model, have a similar

empirical meaning and the same distributional form. Therefore, when combining these two

models, (θi−b j) in Equation 2.8 can simply be replaced with
(
µ(1)

j +β
(1)
j θid(1)

j

)
−
(
µ(2)

j +β
(2)
j θid(2)

j

)
in Equation 2.19. However, these two models have different forms for the discrimination param-

eter. In the diffusion IRT model, the discrimination parameter is the quotient of the respondent

parameter γi divided by the item parameter ξ j. Therefore, in the diffusion IRT model, the

discriminability depends on both item factors such as the statement length and time limit and

respondent factors such as the response caution and temper (van der Maas et al., 2011). On the

other hand, the slope parameter in the original Thurstonian IRT model is a statement parame-

ter. Therefore, the discriminability in the Thurstonian IRT model is not affected by respondent

factors.

Besides, in this study, the difference between the means of the latent utility µ(1)
j − µ

(2)
j is
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replaced with µ(1−2)
j . This is because when K = 2, both µ(1)

j and µ(2)
j cannot be estimated at the

same time. The TIRT and proposed models therefore estimates a single parameter µ(1−2)
j instead

of µ(1)
j and µ(2)

j .

On the basis of the above fact, in introducing the proposed model, we start from the Thursto-

nian IRT model and extend it so that the slope and intercept parameters in Equation 2.19 depend

on both the item and respondent factors. The Thurstonian IRT model maintains its identifiability

even if β(1)
j θid(1)

j
−β(2)

j θid(2)
j
−µ(1−2)

j in Equation 2.19 is simply multiplied by (γi/ξ j) because β(k)
j

is a statement parameter; that is, each statement independently has its own β(k)
j . This parameter

may be interpreted as the discriminability of the specified statement. On the other hand, ξ j is an

item parameter that is specific to the pair of statements. This means that ξ j represents an effect

that is inherent to the paired statements that are simultaneously presented to respondents.

The above arguments lead us to introduce the proposed Thurstonian D-diffusion IRT model,

which was developed as an extension of the D-diffusion IRT model. Specifically, in the pro-

posed model, the joint distribution of the item response and RT is given as Equation 2.3. How-

ever, in its marginalized IRT-type form of Equation 2.5, the two parameters ai j and vi j were

reparametrized in the same manner as in the case of Thurstonian IRT as

ai j =
γi

ξ j
with γi, ξ j ∈ R>0

vi j = β
(1)
j θid(1)

j
−β(2)

j θid(2)
j
−µ(1−2)

j with θid(k)
j
, β(k)

j , µ
(1−2)
j ∈ R,

(3.1)

instead of Equation 2.8.

Then, the joint likelihood of the item response and RT in the proposed model is given as

f (xi j, ti j) =
πs2ξ2

j

γ2
i

exp


γi

(
β(1)

j θid(1)
j
−β(2)

j θid(2)
j
−µ(1−2)

j

)
(2xi j−1)

2s2ξ j
−

(
β(1)

j θid(1)
j
−β(2)

j θid(2)
j
−µ(1−2)

j

)2
(ti j−τ j)

2s2


×
∞∑

m=1

msin
(
πm
2

)
exp

−1
2

π2s2m2ξ2
j

γ2
i

(ti j−τ j)

 .
(3.2)
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In practice, Equation 3.2 cannot be directly calculated because it involves the sum of an in-

finite series. Therefore, Navarro and Fuss’s (2009) approximation is commonly used for its

evaluation. This approach is also employed in stan, which is the software used in this study.

From Equation 3.2, the probability of choosing the first statement, which is a counterpart of

both Equations 2.8 and 2.19, is then given as

P(xi j = 1 | θi) =

exp


γi

ξ j

(
β(1)

j θid(1)
j
−β(2)

j θid(2)
j
−µ(1−2)

j

)
1+ exp


γi

ξ j

(
β(1)

j θid(1)
j
−β(2)

j θid(2)
j
−µ(1−2)

j

)
. (3.3)

In this study, it is assumed that the researcher already knows the keyed direction of each

statement, because this is natural in personality measurement using existing scales. Therefore,

the sign of β(k)
j is known. Parameter β(k)

j was first estimated under the restriction of positiv-

ity. Then, the sign of the obtained negatively keyed item parameter estimates were manually

inverted in order to facilitate their interpretations.

A. Brown and Maydeu-Olivares (2011) recommends designing a forced-choice question-

naire by preparing both types of items that are keyed in the same direction (e.g., both statements

are positively keyed) and those in the opposite direction (one statement is positively keyed and

the other negatively keyed) in order to ensure accurate measurement of traits. We recommend

the same in the proposed approach.

When the number of latent traits measured in a 2AFC questionnaire is two (D = 2), the

proposed model, as well as the Thurstonian IRT model, suffers from the identification prob-

lem. This can be readily understood because in this case, all statements have nonzero factor

loadings to all traits, which is essentially the case of an exploratory factor analysis. A. Brown

and Maydeu-Olivares (2011, 2012) dealt with this problem by fixing the factor loadings of the

first two statements to their true values in the simulation study. Obviously, this approach is

not realistic in practice because a researcher never knows the true factor loading parameter val-
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ues. Therefore, this chapter only consider the case when D > 2 and recommend applying the

proposed model for measuring more than two traits.

3.2.2 Prior Distribution

The Bayesian model is completed by placing prior distributions over the parameters. The fol-

lowing priors were used throughout this chapter:

ξ j ∼ t[0,∞)(4,0,2.5), γi ∼ LN(0,1),

β(k)
j ∼ t[0,∞)(4,0,2.5), θi ∼ MVN(0,Σ),

µ(1−2)
j ∼ N(0,2.52), τ j ∼ U(0,min(RT) j),

Σ ∼ LKJCorr(1),

(3.4)

where min(RT) j represents the minimum observed RT for item j. LN(·), MVN(·), U(·) denote

lognormal, multivariate normal, and uniform distributions, respectively. The basic principle in

specifying the priors here is to place standardized distributions for the respondent parameters

and weakly informative priors that give very low probabilities to very implausible parameter

values for item parameters. The priors for the respondent parameters are standardized for iden-

tification reasons. Hence, the variance of each latent trait is fixed to 1. This means that the

covariance matrix Σ reduces to a correlation matrix. Hence, Σ is called as the correlation ma-

trix hereafter and we denote its elements by ρdd′ . Moreover, γi follows the standard lognormal

distribution, and the variance of the amount of information accumulation (s2) is set to be 1.

The LKJ correlation distribution (Lewandowski, Kurowicka, & Joe, 2009) for the correlation

matrix here corresponds to a uniform prior over the space of possible D×D correlation matrices

(Stan Development Team, 2018). For the priors of the item parameters, the half−t distribution

was adopted for ξ j and β(k)
j as weakly informative priors, which are recommended by Gelman

(2006) and Stan Development Team (2018).

The parameters of the proposed Thurstonian D-diffusion IRT model can be estimated using

the Markov Chain Monte Carlo (MCMC) algorithm. For all of the estimation results presented

in this chapter, we used R 3.5.0 and stan 2.17.3 on a Windows 10 PC. Three MCMC chains
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were run for each data set. The number of MCMC iterations per chain was 10,000, half of

which were discarded as warm-up. The data and computer codes (stan and R) that was used

in this chapter are available from the Open Science Framework website (https://osf.io/

jswqg/). The stan code for the TIRT and TDIRT models can also be found in Appendix A and

B, respectively. The posterior means of the parameters were chosen as their point estimates.

3.3 Simulation Study

We conducted a simulation study to check the parameter recovery properties of the proposed

model. Simulation data were generated from the TDIRT model with some narrower distri-

butions described below and estimated the parameter values from the generated data with the

conventional priors described in the previous section.

We considered the following five scenarios in this simulation:

• The first scenario manipulated the two crossed factors—the number of trait dimensions

D = (3,4) and the number of items that consist of the same pairs of dimensions Jpair =

(3,5,7)—to examine their effects on parameter recovery. Note that the total number of

items J is related to these factors by

J = Jpair ×
D(D−1)

2
. (3.5)

The trait dimensions were independent of one another in this scenario and the second

scenario.

• The second scenario examined the influence of the number of dimensions D when the

questionnaire length was fixed. For this purpose, the number of dimensions D = (3,4)

were manipulated under conditions where the total number of items J = (12,24,36).

• The third and fourth scenarios examined if the proposed model can properly recover the

parameter values even when the dimensions are correlated. The factor examined in the
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third scenario was the correlations between the dimensions, which correspond to the off-

diagonal elements of Σ. All of the off-diagonal elements were set to have the same values,

which was denoted by ρpair. Its three manipulated conditions were ρpair = (−0.3,0.3,0.5).

In this scenario, we set D = 3 and Jpair = 5.

• The fourth scenario considered more realistic conditions and attempted to emulate the

Big-Five factor structure. Specifically, the correlation matrix Σ was specified on the basis

of A. Brown and Maydeu-Olivares (2011) as

Σ =



1

−.21 1

0 .40 1

−.25 0 0 1

−.53 .27 0 .24 1


.

this matrix was denoted as ρpair = BF for simplicity. In this scenario, D = 5, and Jpair

was manipulated for three conditions, which were Jpair = (3,5,7).

• The fifth scenario examined the influence of the complexity (cognitive workload) of

the items. In this scenario, the true distribution of ξ j was manipulated to be either

U(0.2,0.3), U(0.4,0.5), or U(0.6,0.7). Here, we fixed D = 3, Jpair = 5 and assumed

no correlations among traits.

This results in a total of 21 conditions. The number of respondents was kept constant at

I = 300 for all conditions. In each condition, the cycle of random data generation and parameter

estimation was replicated 30 times.

Data generation

The distributions used to generate random data from the proposed model were as follows:

γi ∼ LN(0,1), β(k)
j ∼ U(0.5,1.5), θi ∼ MVN(0,Σ), µ(1−2)

j ∼ U(−1.5,1.5), and τ j ∼ U(0.2,1).

With regard to ξ j, samples were drawn from U(0.3,0.7) in the first to fourth scenarios. These
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distributions are chosen on the basis of the preliminary analysis and A. Brown and Maydeu-

Olivares (2011). Note that the off-diagonal elements of the correlation matrix Σ were treated as

separate parameters and estimated as such even when the true correlations had the same values.

Moreover, for a practical reason, observations with a RT greater than 120 seconds were deleted

by listwise method. We considered this manipulation to be acceptable because an observation

with such a large RT may be considered as an irregular response.

Results

Tables 3.1 and 3.2 summarize the averages of the root mean square errors (RMSEs) and the

averages of the biases for each condition, respectively. The RMSE for the parameter β, for

example, is calculated by

RMSEβ =

√√√√
1
J

1
2

J∑
j=1

2∑
k=1

(
β̂(k)

j −β
(k)
j

)2
, (3.6)

where β(k)
j is the realized value that is generated from U(0.5,1.5) in each iteration and β̂(k)

j is its

expected a posteriori estimate. Similarly, the bias for the parameter θ, for example, is calculated

by

biasθ =
1
I

1
D

I∑
i=1

D∑
d=1

(
θ̂id − θid

)
. (3.7)

Since γi is lognormally distributed, the RMSEs and biases of the log-transformed estimates

for γ are presented. The RMSEs for both β and ρ are acceptably small when D= 3 and Jpair = 3,

even when J is as small as 9. These results suggest the proposed model is capable of appropri-

ately estimating the trait loadings β(k)
j and the correlations between traits ρdd′ .

In the second scenario, the RMSEs for θ become larger when the number of traits increases.

Therefore, this suggests that a smaller number of traits would provide greater accuracy in the

estimation of θid. Further, since the RMSE decreases as J increases, it would be desirable to

have many items in the questionnaire if possible.
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Table 3.1: Mean RMSEs of the parameter estimates in the simulation study

Mean RMSE

D Jpair J ρpair ξ j ∼ ξ β µ τ log(γ) θ ρ

3 3 9 0 U(0.3, 0.7) 0.034 0.126 0.106 0.001 0.166 0.564 0.059
3 5 15 0 U(0.3, 0.7) 0.035 0.105 0.108 0.001 0.136 0.487 0.052
3 7 21 0 U(0.3, 0.7) 0.043 0.107 0.095 0.002 0.129 0.433 0.037
4 3 18 0 U(0.3, 0.7) 0.042 0.102 0.106 0.001 0.136 0.494 0.046
4 5 30 0 U(0.3, 0.7) 0.056 0.112 0.102 0.001 0.137 0.422 0.040
4 7 42 0 U(0.3, 0.7) 0.065 0.102 0.107 0.002 0.139 0.390 0.038

3 4 12 0 U(0.3, 0.7) 0.026 0.112 0.106 0.001 0.142 0.513 0.052
4 2 12 0 U(0.3, 0.7) 0.044 0.126 0.113 0.001 0.160 0.558 0.054
3 8 24 0 U(0.3, 0.7) 0.053 0.107 0.100 0.001 0.137 0.417 0.034
4 4 24 0 U(0.3, 0.7) 0.054 0.110 0.143 0.010 0.178 0.478 0.043
3 12 36 0 U(0.3, 0.7) 0.072 0.108 0.107 0.001 0.153 0.366 0.036
4 6 36 0 U(0.3, 0.7) 0.075 0.107 0.142 0.011 0.193 0.429 0.036

3 5 15 -0.3 U(0.3, 0.7) 0.041 0.115 0.108 0.001 0.144 0.475 0.054
3 5 15 0.3 U(0.3, 0.7) 0.040 0.113 0.106 0.001 0.143 0.478 0.056
3 5 15 0.5 U(0.3, 0.7) 0.033 0.113 0.098 0.001 0.132 0.474 0.047

5 3 30 BF U(0.3, 0.7) 0.050 0.111 0.113 0.001 0.128 0.437 0.038
5 5 50 BF U(0.3, 0.7) 0.099 0.116 0.108 0.001 0.189 0.378 0.035
5 7 70 BF U(0.3, 0.7) 0.138 0.129 0.105 0.001 0.246 0.343 0.035

3 5 15 0 U(0.2, 0.3) 0.019 0.084 0.096 0.004 0.138 0.355 0.035
3 5 15 0 U(0.4, 0.5) 0.035 0.106 0.106 0.002 0.142 0.473 0.051
3 5 15 0 U(0.6, 0.7) 0.045 0.113 0.127 0.001 0.137 0.546 0.053
Note: BF = correlation between traits based on A. Brown and Maydeu-Olivares (2011).
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Table 3.2: Mean biases of the parameter estimates in the simulation study

Mean bias

D Jpair J ρpair ξ j ∼ ξ β µ τ log(γ) θ ρ

3 3 9 0 U(0.3, 0.7) 0.010 0.017 0.012 0.000 0.035 0.001 0.000
3 5 15 0 U(0.3, 0.7) 0.023 0.011 0.001 0.000 0.051 -0.002 0.003
3 7 21 0 U(0.3, 0.7) 0.035 0.012 0.002 0.000 0.073 0.003 -0.002
4 3 18 0 U(0.3, 0.7) 0.032 0.011 0.005 0.000 0.067 0.000 0.002
4 5 30 0 U(0.3, 0.7) 0.049 0.013 0.004 0.000 0.101 0.001 -0.003
4 7 42 0 U(0.3, 0.7) 0.055 0.011 0.009 0.000 0.106 -0.006 0.000

3 4 12 0 U(0.3, 0.7) 0.014 0.013 -0.005 0.000 0.038 -0.006 -0.006
4 2 12 0 U(0.3, 0.7) 0.029 0.016 0.014 0.000 0.072 0.009 0.001
3 8 24 0 U(0.3, 0.7) 0.044 0.012 0.011 0.000 0.089 0.002 -0.002
4 4 24 0 U(0.3, 0.7) 0.044 0.015 0.007 0.002 0.087 0.004 -0.007
3 12 36 0 U(0.3, 0.7) 0.066 0.012 0.000 0.000 0.126 0.009 0.006
4 6 36 0 U(0.3, 0.7) 0.066 0.015 -0.014 0.003 0.129 0.000 0.001

3 5 15 -0.3 U(0.3, 0.7) 0.027 0.014 -0.020 0.000 0.060 -0.002 -0.008
3 5 15 0.3 U(0.3, 0.7) 0.025 0.013 0.005 0.000 0.056 0.000 0.007
3 5 15 0.5 U(0.3, 0.7) 0.019 0.014 0.005 0.000 0.047 -0.003 -0.008

5 3 30 BF U(0.3, 0.7) 0.044 0.012 0.008 0.000 0.090 0.008 -0.031
5 5 50 BF U(0.3, 0.7) 0.094 0.014 -0.003 0.000 0.177 -0.005 -0.028
5 7 70 BF U(0.3, 0.7) 0.133 0.017 0.010 0.000 0.239 0.002 -0.034

3 5 15 0 U(0.2, 0.3) 0.011 0.007 0.005 0.000 0.047 -0.002 -0.002
3 5 15 0 U(0.4, 0.5) 0.023 0.012 0.005 0.000 0.059 0.000 -0.001
3 5 15 0 U(0.6, 0.7) 0.024 0.013 -0.001 0.000 0.045 0.009 0.002
Note: BF = correlation between traits based on A. Brown and Maydeu-Olivares (2011).
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The RMSEs for θ might look rather large for all conditions. However, these values are

actually comparable in scale with the values reported by C. A. Stone (1992) when the number

of items for each factor is larger than 10 (for example, the number of items for each factor is 10

when D = 3 and Jpair = 5).

A similar estimation accuracy is obtained when nonzero correlations exist between traits,

which corresponds to the third and fourth scenarios. In addition, the trait correlations are suc-

cessfully recovered for all conditions.

From the results of the fifth scenario, it can be seen that the estimation accuracy of θid

increases as the true distribution of ξ j shrinks. In other words, given the same number of

items, the estimation accuracy tends to be better as the items require more cognitive workload.

This relationship is consistent with the specifications of the diffusion IRT model, in which the

item discrimination is equal to the boundary parameter, because a smaller ξ j leads to higher

discrimination.

The means of the biases for ξ and log(γ) are positive for almost all conditions. They become

larger according to the increase in the total number of items J. In the same manner, the mean

RMSEs for these parameters also become larger in accordance with the increase in J. The

reason for these results can be explained from the form of the parameter constraints, as described

below. ξ j and γi originally have a mutual sign indeterminacy because they are given in the form

of a quotient. To avoid this indeterminacy, a parameter constraint needs to be introduced. In

this study, the standard lognormal distribution was chosen for the prior distribution of γi. The

effect of the priors tends to be reduced, corresponding to the increase in the data size, and this

may explain the result that larger estimates for both ξ j and γi tend to be obtained for larger

J. However, we note that these biases and RMSEs are still practically sufficiently small to be

acceptable. Moreover, they do not affect the relative order of the respondents or items effects,

which should be more practically important. Furthermore, the biases for the other parameters

are nearly zero and neither systematically positive nor negative.
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Sensitivity analysis

In order to check that our prior specification does not actually have a strong influence on pa-

rameter estimation, a sensitivity analysis was conducted. In this sensitivity analysis, the second

scenario was considered and changed the priors for the item parameters to be more diffuse ones.

Specifically, the priors for the parameters ξ j, β
(k)
j , and µ(1−2)

j were set as a diffuse N(0,1002)

prior, and parameter recovery was comparatively checked. The other conditions of the simula-

tion were the same as before. The results suggest that the change in the priors has only a minor

influence on the parameter estimates (see Table 3.3). Considering the estimation efficiency, we

think that it is practically adequate to employ the prior specification of Equation 3.4, provided

that the sample size is not very small.

To summarize the simulation results, the proposed TDIRT model is found to have sufficient

parameter recovery properties.

3.4 Real Data Application: Big-Five Data

In this section, we demonstrate the application of the proposed model to real 2AFC personality

measurement data, which was collected along with the RT information.

Data

We collected data from a sample of 500 Japanese respondents through CrowdWorks, a major

online crowdsourcing service in Japan. All data collection procedures in this study and sub-

sequent studies were reviewed and approved by the Ethical Committee of the University of

Tokyo. The sample consists of 232 males and 262 females (the remaining six did not answer

the question), and their ages range from their 20s to their 70s. The survey was conducted in

an online survey environment that was developed with the jsPsych library (de Leeuw, 2015).

Online informed consent was obtained from all participants. After data collection, the observa-

tions from one respondent were eliminated owing to system trouble. As a result, the proposed

model and Thurstonian IRT model were applied to the data with a sample size of 499. In ad-
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Table 3.3: Comparison of the mean RMSE and mean bias between two prior settings.

Mean RMSE

D Jpair J Prior ξ β µ τ log(γ) θ ρ

3 4 12 weakly informative 0.026 0.112 0.106 0.001 0.142 0.513 0.052
diffuse 0.043 0.112 0.119 0.001 0.158 0.512 0.060

4 2 12 weakly informative 0.044 0.126 0.113 0.001 0.160 0.558 0.054
diffuse 0.030 0.118 0.116 0.001 0.148 0.550 0.054

3 8 24 weakly informative 0.053 0.107 0.100 0.001 0.137 0.417 0.034
diffuse 0.042 0.104 0.105 0.001 0.123 0.411 0.041

4 4 24 weakly informative 0.054 0.110 0.143 0.010 0.178 0.478 0.043
diffuse 0.049 0.109 0.100 0.001 0.133 0.453 0.045

3 12 36 weakly informative 0.072 0.108 0.107 0.001 0.153 0.366 0.036
diffuse 0.077 0.117 0.106 0.001 0.163 0.367 0.032

4 6 36 weakly informative 0.075 0.107 0.142 0.011 0.193 0.429 0.036
diffuse 0.070 0.111 0.098 0.001 0.150 0.395 0.036

Mean bias

D Jpair J Prior ξ β µ τ log(γ) θ ρ

3 4 12 weakly informative 0.014 0.013 -0.005 0.000 0.038 -0.006 -0.006
diffuse 0.025 0.018 0.018 0.000 0.060 0.004 0.003

4 2 12 weakly informative 0.029 0.016 0.014 0.000 0.072 0.009 0.001
diffuse 0.015 0.018 0.009 -0.001 0.046 0.006 0.004

3 8 24 weakly informative 0.044 0.012 0.011 0.000 0.089 0.002 -0.002
diffuse 0.035 0.027 0.000 0.000 0.074 -0.003 0.011

4 4 24 weakly informative 0.044 0.015 0.007 0.002 0.087 0.004 -0.007
diffuse 0.040 0.026 -0.001 0.000 0.084 0.001 0.004

3 12 36 weakly informative 0.066 0.012 0.000 0.000 0.126 0.009 0.006
diffuse 0.072 0.031 0.004 0.000 0.140 0.004 -0.005

4 6 36 weakly informative 0.066 0.015 -0.014 0.003 0.129 0.000 0.001
diffuse 0.065 0.036 0.007 0.000 0.127 -0.001 0.003

Note: Under the Prior=weakly informative condition, the priors are specified as in Equa-
tion 3.4. Note that the results under this condition are already listed in Tables 3.1 and
3.2, but are repeated here for ease of comparison. Under the Prior=diffuse condition, the
priors for ξ j, β

(k)
j , and µ(1−2)

j are changed to a diffuse distribution of N(0,1002).
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dition, approximately 0.1% of responses for which the RTs were shorter than 300 milliseconds

were deleted by listwise method. Woodworth and Schlosberg (1954, Chapter 2) indicate that

the minimum RT (they use the term latency) for simple visual tasks is approximately 180 ms.

However, because the cognitive comparison task of the current study requires a higher cognitive

load, more time would be required to answer the task used in this study. Therefore, the lower

cutoff was set to 300 ms.

The items we used originate from the Japanese version of the Big-Five factor marker ques-

tionnaire (Apple & Neff, 2012). This scale is intended to measure the Big-Five traits, which

are emotional stability, extraversion, agreeableness, conscientiousness, and intellect/imagina-

tion. Each trait is measured by 10 statements, which add up to a total of 50 statements. In

order to rearrange them into the 2MFC format, 25 pairs of items were constructed from the 50

statements without duplication. The pairs were carefully designed in order to maintain balance

among pairs of traits and to include pairs of statements that are keyed both in the same and

opposite directions. Table 3.4 summarizes the resultant (English-translated) items used in this

study. Respondents were required to select the statement of the pair that better represents them-

selves for all 25 items. The order of the items and the order of statements in each item were

randomized across respondents.

Parameter estimation

We comparatively estimated the parameters for two models: the TIRT model, which only uses

the item responses as observed variables, and the proposed TDIRT model, which uses both the

item responses and their RTs as observed variables. For both models, the number of MCMC

iterations per chain was 10,000, half of which were discarded as warm-up samples. The priors

used in the TIRT model were a subset of the priors for the proposed model as follows:

β(k)
j ∼ t[0,∞)(4,0,2.5), θi ∼ MVN(0,Σ),

µ(1−2)
j ∼ N(0,2.52), Σ ∼ LKJCorr(1).

(3.8)
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Table 3.4: List of items (pairs of statements) used in this study

Trait 1 Statement 1 Trait 2 Statement 2
1 Emo Get stressed out easily.* Ext Don’t talk a lot.*
2 Agr Feel little concern for others.* Int Have a rich vocabulary.
3 Emo Am relaxed most of the time. Int Have a vivid imagination.
4 Emo Worry about things.* Con Leave my belongings around.*
5 Con Am always prepared. Int Have excellent ideas.
6 Emo Am easily disturbed.* Ext Am the life of the party.
7 Agr Insult people.* Int Have difficulty understanding abstract ideas.*
8 Emo Get upset easily.* Int Am not interested in abstract ideas.*
9 Ext Keep in the background.* Con Pay attention to details.

10 Ext Have little to say.* Int Am quick to understand things.
11 Emo Change my mood a lot.* Con Get chores done right away.
12 Agr Am interested in people. Con Like order.
13 Emo Have frequent mood swings.* Agr Take time out for others.
14 Ext Feel comfortable around people. Agr Sympathize with others’ feelings.
15 Con Make a mess of things.* Int Use difficult words.
16 Emo Seldom feel blue. Ext Start conversations.
17 Agr Am not interested in other people’s problems.* Con Follow a schedule.
18 Ext Don’t like to draw attention to myself.* Con Often forget to put things back in their proper place.*
19 Ext Talk to a lot of different people at parties. Agr Have a soft heart.
20 Con Shirk my duties.* Int Do not have a good imagination.*
21 Emo Get irritated easily.* Agr Am not really interested in others.*
22 Agr Feel others’ emotions. Con Am exacting in my work.
23 Emo Often feel blue.* Int Spend time reflecting on things.
24 Ext Am quiet around strangers.* Agr Make people feel at ease.
25 Ext Don’t mind being the center of attention. Int Am full of ideas.
Notes: Statements with an asterisk (*) are negative statements; Emo = Emotional Stability (trait number: 1); Ext = Extraver-
sion (2); Agr = Agreeableness (3); Con = Conscientiousness (4); Int = Intellect/Imagination (5); Japanese versions of the
statements are available at https://ipip.ori.org/JapaneseBig-FiveFactorMarkers.htm.

36



●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−1 0 1 2

θ1
Thurstonian

θ 1pr
op

os
ed

Figure 3.1: Scatter plot between the θi estimates from the Thurstonian IRT and proposed models
with regard to trait 1 (extraversion). Black line indicates the line of y = x.

Results

Table 3.5 summarizes the posterior means of the item parameters estimated by both models.

Apparently, the point estimates from the TIRT model are several times larger than those of the

proposed model. A major reason for this is that there exist three types of parameters relates

to the discriminability (β(k)
j , ξ j, and γi) in the proposed model. In fact, the item parameters

obtained by the proposed model become similar to those obtained by the TIRT model when

they are divided by ξ j. This is because all values of γi follow LN(0,1) a priori, and the expected

value of a random variable that follows LN(0,1) is 1.

The correlations between the estimates from the two models are .995 for µ(1−2)
j and .902 for

β(k)
j . Therefore, it would be appropriate to consider that the item parameters of the proposed

model have similar interpretations as those of the Thurstonian IRT model.

Figure 3.1 shows a scatter plot between the TIRT and TDIRT models in terms of the first

trait estimates θi1, which correspond to the extraversion trait. The first trait was chosen for

illustration purposes, and similar tendencies were observed for all five traits.

Table 3.6 summarizes the correlations between the respondent parameter estimates, both
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Table 3.5: Posterior means of the item parameter values in the Thurstonian IRT and proposed
models

Thurstonian IRT model Proposed model
item µ(1−2)

j |β(1)
j | |β(2)

j | µ(1−2)
j |β(1)

j | |β(2)
j | ξ j

1 -0.728 2.334 1.681 -0.227 0.761 0.511 0.308
2 1.512 1.173 1.199 0.368 0.295 0.335 0.259
3 1.286 1.043 1.270 0.416 0.274 0.399 0.296
4 -1.899 1.142 1.847 -0.555 0.279 0.462 0.307
5 -1.099 1.481 1.900 -0.265 0.387 0.433 0.288
6 -1.978 0.314 1.964 -0.679 0.267 0.577 0.313
7 0.844 0.611 0.271 0.229 0.173 0.094 0.243
8 -1.505 0.994 0.248 -0.462 0.347 0.084 0.249
9 0.403 1.946 0.302 0.100 0.724 0.121 0.308

10 0.494 1.783 0.287 0.133 0.508 0.176 0.277
11 -0.186 1.024 1.689 -0.059 0.332 0.426 0.278
12 0.550 2.983 3.827 0.143 0.490 0.762 0.267
13 -0.316 1.274 0.893 -0.108 0.384 0.251 0.258
14 1.993 1.199 1.140 0.570 0.229 0.272 0.261
15 0.132 0.222 0.106 0.028 0.097 0.043 0.304
16 0.864 1.907 1.996 0.218 0.422 0.488 0.231
17 1.060 0.973 0.561 0.324 0.342 0.141 0.247
18 -0.572 0.980 1.813 -0.168 0.240 0.443 0.254
19 2.161 1.304 0.858 0.694 0.348 0.271 0.244
20 0.102 1.325 1.669 0.026 0.327 0.371 0.247
21 -1.210 1.246 1.353 -0.429 0.464 0.388 0.291
22 -0.263 0.219 0.320 -0.084 0.092 0.121 0.287
23 -0.035 1.100 0.581 -0.054 0.257 0.189 0.244
24 -1.352 1.872 0.241 -0.407 0.591 0.074 0.288
25 0.522 0.812 1.526 0.169 0.193 0.385 0.270

Note: With regard to β, absolute values are displayed. In
parameter estimation, β is restricted to be positive. The es-
timated values for keyed items were manually sign-inverted
afterwards.
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within and between the models. All of the between-model correlations for the same trait are

larger than .95, which can be interpreted that very similar respondent parameter estimates are

obtained between the two models. Moreover, as for the correlations between traits within a

model, similar correlation patterns are obtained for both models, except that they are slightly

smaller for the proposed model.

Figure 3.2 shows the posterior distribution of ξ j for each item. A clear between-item dif-

ference can be seen in this figure. In order to check their validity, we calculated the correlation

between the posterior means of ξ j and the item mean of the readability scores of each statement.

The readability score, which quantifies the difficulty in reading the sentence, was computed by

jReadability (Hasebe & Lee, 2015; https://jreadability.net/sys/). The resulting corre-

lation was .539 (95% CI [.162, .751]). This positive correlation can be evidence that ξ j reflects

empirical item characteristics such as the reading difficulty.

Figure 3.3 shows two scatter plots between the boundary-related parameter estimates (γi

and ξ j) and the mean RT. It can be seen that there exist strong associations between the two

quantities; the obtained correlation coefficients were .929 and −.716, respectively. These strong

relationships between the observed RT and the parameter estimates are consistent with the re-

sults of Ratcliff, Thompson, and Mckoon (2015) and Tuerlinckx et al. (2016). As shown in

Equation 3.1, the boundary of the diffusion process becomes larger according to the increase in

γi. This means that a respondent with a higher value of γi needs more information accumulation

to respond to an item. As a result, such a respondent tends to have a longer RT. This relation-

ship is properly reflected in the left panel of Figure 3.3. The opposite is true for ξ j, which is the

denominator of the boundary.

Next, we examined how the estimates from the proposed model reflect the inverted-U rela-

tionship. For this purpose, Figure 3.4 shows scatter plots between the respondent’s proximity

to the comparison threshold (x axis), which is given by β(1)
j θid(1)

j
−β(2)

j θid(2)
j
−µ(1−2)

j , and the ob-

served RT (y axis). In the original diffusion IRT model, the expected RT is given by (Tuerlinckx

et al., 2016)

E(ti j) ≈ τ j+
1

2|θi−b j|
γi

ξ j
. (3.9)
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Figure 3.2: Posterior distribution of ξ j for each item. The gray area indicates the 95% CI. The
indices of the items correspond to those in Tables 3.4 and 3.5.
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Table 3.6: Estimated correlation matrix in the real data application

Thurstonian IRT Proposed model
θi1 θi2 θi3 θi4 θi5 θi1 θi2 θi3 θi4 θi5 Mean SD

θi1 - -0.002 0.815
θi2 0.632 - -0.001 0.850
θi3 0.333 0.624 - 0.002 0.761
θi4 0.380 0.231 0.396 - 0.002 0.817
θi5 0.420 0.605 0.269 0.262 - 0.000 0.776

θi1 0.963 - -0.002 0.849
θi2 0.970 0.601 - -0.001 0.873
θi3 0.954 0.247 0.532 - 0.001 0.781
θi4 0.967 0.283 0.143 0.393 - 0.000 0.831
θi5 0.969 0.366 0.608 0.260 0.198 - -0.001 0.796
Note: θi1 = emotional stability; θi2 = extraversion; θi3 = agreeableness; θi4 = conscientiousness;
θi5 = intellect/imagination
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Figure 3.3: Left panel = scatter plot between the estimate γi and the mean RT for each respon-
dent. Right panel = scatter plot between the estimate of ξ j and the mean RT for each item.
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Figure 3.4: Scatter plots between the latent respondent position relative to the item parameters
(x axis) and the observed RT (y axis). Left panel = results for the Thurstonian IRT model. Right
panel = results for the proposed model (y-axis values are divided by γi/ξ j in order to adjust the
scale to the left panel).

From this formula, the expected RT for the proposed model can easily be obtained, i.e.,

E(ti j) ≈ τ j+
1

2
∣∣∣∣∣β(1)

j θid(1)
j
−β(2)

j θid(2)
j
−µ(1−2)

j

∣∣∣∣∣
γi

ξ j
. (3.10)

It is seen in the left panel of Figure 3.4, which shows the estimates from the Thurstonian IRT

model, that the RT tends to be large when the latent positions of the respondent and item param-

eters are close to each other. This is no surprise given that the inverted-U relation is well-known

in personality measurement. However, this tendency is more clearly evident when the param-

eters are estimated by the proposed model (right panel). This is because the proposed model

explicitly accounts for the inverted-U relationship by separating the respondent and item factors

that affect the RT, such as the psychological traits to be measured and the item complexity.

Lastly, we examined how the RT information is utilized for estimating θi in the proposed

model. In the proposed model, the parameter θi is estimated on the basis of both the item

response and RT, whereas in the existing Thurstonian IRT model, the RT information is not

used. In order to examine the unique effect of the RT in the proposed model, we first calculated
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the mean signed standardized RT (MSSRT) for each respondent and each trait by the following

procedure:

1. Prepare all 10 item responses and RTs for each statement of a trait.

2. Standardize the RT using the whole-sample mean and standard deviation of the item. This

yields the standardized RT.

3. When a statement is positively keyed and not chosen or when it is negatively keyed and

chosen, make the sign of its standardized RT negative. This yields the signed standardized

RT.

4. Finally, compute the mean of the signed standardized RT for all 10 items. This is the

MSSRT.

If the statement that represents a trait is positively keyed and chosen, the signed standardized

RT becomes smaller when it is quickly chosen. If it is positively keyed but not chosen, the

signed standardized RT becomes smaller when it takes long time to decide not to choose it. The

opposite is true when the statement is negatively keyed. That is, the signed standardized RT

becomes smaller if a negatively keyed statement is slowly chosen or quickly avoided.

Here, a possible relationship to be found would be the following. For a smaller MSSRT, the

estimate obtained by the proposed model tends to be larger compared to that of the Thurstonian

IRT model. In other words, a negative correlation would be expected between the MSSRT and

the difference of θi estimates between the proposed model and the Thurstonian IRT model.

Figure 3.5 shows the scatter plot of the MSSRT and the difference between the two model

estimates of θi. A negative correlation is evident between the two quantities, and little difference

among traits was found. The overall correlation was −.483 (95% CI [−.513, −.452]). This result

suggests that the proposed model successfully incorporates the RT information to supplement

the estimation of latent traits.

43



−1.0

−0.5

0.0

0.5

1.0

−1 0 1 2 3
MSSRT

θ p
ro

po
se

d
−

θ T
hu

rs
to

ni
an

Traits

Emotional Stability
Extraversion
Agreeableness
Conscientiousness
Intellect / Imagination

Figure 3.5: Scatter plot of the mean signed standardized RT (x axis) and the difference of trait
estimates θi between the proposed model and the Thurstonian IRT model (y axis).

3.5 Discussion

The main objective of this study is to propose and examine the Thurstonian D-diffusion IRT

model, which is an extension of the Thurstonian IRT model for 2MFC measurement to incor-

porate the RT information. To achieve this goal, we base our model on the diffusion IRT model,

which is a representative cognitive psychometric model, and reparameterized its parameters to

match the idea of the Thurstonian IRT model. A simulation study has shown that the parameters

of the proposed model can be sufficiently recovered in typical application settings. In the appli-

cation to Big-Five measurement data, several interesting findings have emerged. The obtained

item parameter estimates from the proposed model were similar to those of the Thurstonian

IRT model, except for the theoretically expected scale differences. As for the respondent pa-

rameters (θ), the estimates of the proposed model were also similar to those of the Thurstonian

IRT, but there is a difference, which was explained by the inverted-U relationship. Because

this relationship is believed to be generally applicable in personality measurement, we believe

that personality estimation based on the proposed Thurstonian D-diffusion IRT model should

be meaningful.

When one trait to be measured is clearly dominant over others for a respondent, this respon-
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dent is expected to rapidly choose the statements of this trait. In this way, the proposed model

should be able to reflect the degree of dominance of one trait over others. Such usage of RT

information is not possible for existing Thurstonian IRT models that only use the item response

as observations.

According to Bertling and Weeks (2018, p. 328), the motivation to utilize the RT informa-

tion in conjunction with the item response can be classified into two types. The first is “to

obtain more accurate proficiency level estimates,” and the second is “to estimate examinee per-

formance on a separate latent trait.” Although our situation may be different in that the current

study considers personality measurement while Bertling and Weeks (2018) considered ability

measurement, we believe that the proposed model is closer to the latter case. That is, the pro-

posed TDIRT model estimates the item and respondent parameters on the basis of psychological

theory models of comparative judgment, the diffusion process, and the inverted-U relationship.

As a result, the obtained latent traits would be well-isolated from the effects of factors such

as the respondents’ deliberateness and item length. Moreover, according to Kahneman (2011),

comparative judgment, which involves a slower and more deliberative process, better reflects

the cognitive component than single evaluations, which often reflect the intensity of an un-

stable emotional response. Meanwhile, in the diffusion model, the discrimination parameter

correspond to the degree of response caution (boundary); a response that has a longer RT bet-

ter reflects one’s latent trait. Such a correspondence between these two theories suggests the

relevance of this study’s contribution to extend the diffusion model for Thurstonian judgment.

By introducing the approach of cognitive psychometrics, the parameters of the proposed

model can quantify different cognitive subskills separately, such as the speed of information

uptake and the degree of response caution. This is in contrast to the classical latent variable

in psychometrics, which may be an unknown composite of cognitive processes (Riefer, Knapp,

Batchelder, Bamber, & Manifold, 2002). Although we have not fully investigated the empirical

relations between these parameter estimates and other exogenous variables, we consider such

a study (e.g. Ratcliff & Rouder, 1998; Voss, Rothermund, & Voss, 2004) would be of great

interest.
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Another advantage of the application of cognitive psychometric models is that they can

incorporate the properties of a rather complex measurement environment such as the time pres-

sure. For example, Milosavljevic, Malmaud, Huth, Koch, and Rangel (2010) revealed that when

a respondent is under a high time pressure condition, the mean RT becomes shorter than under

the low time pressure condition; correspondingly, the boundary parameter estimates in the dif-

fusion model become smaller. For this type of high time pressure, the responses become faster

and, at the same time, more inaccurate. The diffusion-based models can appropriately account

for such effects of the time pressure (e.g. Voss et al., 2004). Such an explanatory power would

be one of the advantages of the application of cognitive psychometric models.

Finally, we note a few limitations of the current study. First, a forced-choice item typically

provides lower information than a Likert-scale item. As noted by A. Brown and Maydeu-

Olivares (2013), although a five-point Likert-scale item provides four pieces of information,

a 2AFC item provides only one piece of information. Therefore, in practice, care would be

needed when designing the forced-choice test, in terms of the number of items and the number

of traits, for example, in order to ensure its reliability. Meanwhile, as noted in Chapter 1, one

of the major motivations to use the forced-choice format is to reduce the effect of possible

biases that originate from the Likert measurement. Recent studies that compared forced-choice

Thurstonian IRT measurement and Likert measurement have found evidence that forced-choice

measurement has higher validity, even though its obtained information is smaller (e.g. Guenole

et al., 2018; P. Lee, Joo, & Lee, 2019). That being said, we have not examined the external

validity of the latent traits estimated by the proposed model. Although the obtained parameter

estimates are based on psychologically meaningful models, an empirical comparison of the

external validity of the trait parameter estimates with existing methods remains an important

subject for future study.

In Study 1, we selected the diffusion model as the base model of the current study. A limi-

tation of the diffusion model is that it is only applicable to items that consist of two statements.

When considering more than two statements for an item, other models have to be used as the

base model. The LBA model would be a strong candidate in such a case because “For multiple
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choices between N > 2 alternatives, only the LBA has simple-to-use analytic solutions, making

it the preferred choice” (S. D. Brown & Heathcote, 2008, p. 173). In fact, the LBA model

can be thought to be as popular as the diffusion model in cognitive psychology studies. There-

fore, in the following chapters, we examine the combination of the LBA and IRT models in

order to develop a new cognitive model for multidimensional MAFC forced-choice personality

measurement with the RT.
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Chapter 4

Study 2: Unidimensional Binary D-LBA

IRT Model

4.1 Objective of the Study

The original diffusion and LBA models do not distinguish respondent and item parameters,

which are fundamental characteristics of IRT models. However, considering the fact that RT-

incorporating IRT models are meant to be applied to item response data obtained as a result of

internal human information processing, it would be reasonable to believe that the combination

of traditional IRT models for the item response and psychological models for the RTs would

lead to the emergence of a novel, important, and practical class of models. On the basis of this

idea, the D-diffusion IRT model (Tuerlinckx & De Boeck, 2005; van der Maas et al., 2011) has

been proposed as a novel category of RT-incorporating IRT models and is currently the most

representative process model for item-answering behavior for personality assessments. It is an

elegant combination of the diffusion and IRT models with both respondent and item param-

eters. Its respondent parameters provide psychological insights into the underlying cognitive

properties of human information processing.

Nevertheless, the diffusion model is a complex nonlinear model. It is expressed as a sum

of infinite series, and the parameters vary across trials. Wagenmakers et al. (2007) suggested
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that mathematical psychologists use such a complicated model because of the substantial pay-

off involved; the estimated parameter values of the diffusion model can provide psychological

insights that cannot be provided by standard superficial methods of analysis. However, when

combined with IRT in the form of the diffusion IRT model, the diffusion model becomes even

more complex. The increased complexity of the model might prevent its application to real

datasets. This is a critical issue in practice, especially when the data have a large sample size or

when the hierarchical structure of the data is to be taken into account.

In addition, in the diffusion IRT model, the discriminability and expected RT have a linear

relationship, as elaborated and illustrated in Section 4.3.2. The discriminability is equivalent to

the slope of the logistic curve, i.e., how well an item can distinguish high-scoring people from

low-scoring ones. However, this linear relationship may be a strong and unrealistic assumption.

In the case of a reaction time task in cognitive psychology, which is the original context modeled

with the diffusion model, the expected RT is typically shorter than a few seconds; then, the

linearity assumption might work out as a primary assumption. However, when the expected RT

is longer than a few seconds, which is actually the case in typical personality assessments, the

estimates of the discriminability could be considerably inflated owing to this linear relationship.

One possible way to deal with this problem is to add another new parameter to moderate the

relationship. However, as noted above, the diffusion IRT model is already a complex model.

It would be better to not increase the number of parameters further in consideration with the

estimation efficiency. Therefore, this study instead focuses on the LBA model, which is a

simpler alternative of the diffusion IRT model.

Donkin et al. (2011) investigated whether and to what extent conclusions regarding psycho-

logical processes depend on the choice between the diffusion and LBA models. They found a

largely straightforward correspondence between the parameters of the two models. In fact, for

the diffusion and LBA models, they concluded that “inferences about psychological processes

made from real data are unlikely to depend on the model that is used” (p. 61).

On the basis of the abovementioned observations, the central idea of this study is that the

combination of the LBA and IRT models would be beneficial as a novel model for modern
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test data. In particular, it would provide us with insights into the underlying psychological

process, distinguish the item and respondent characteristics, and facilitate faster and more stable

estimation than the diffusion IRT models, even when new parameters are included. Thus, the

objectives of this study are to propose a new LBA IRT model and to comparatively evaluate it

against existing diffusion IRT models using simulated and real data.

The remainder of this chapter is organized as follows. Section 4.2 reviews the relationship

between the diffusion and LBA models. Section 4.3 introduces the proposed LBA IRT model.

Section 4.4 describes a simulation study conducted to compare the performance of the proposed

LBA IRT model with that of existing diffusion IRT models. Section 4.5 provides an empirical il-

lustration of the proposed and existing methods using a real personality dataset. Finally, Section

4.6 concludes the study with a brief discussion of the directions for future research.

4.2 Relation Between the Diffusion and LBA Models

Donkin et al. (2011) conducted a parameter recovery simulation study to examine the relation

between the diffusion and LBA models. They considered the relationship between the two

models with the following settings. (a) In the LBA model, the sum of v should be one. When

the LBA model is compared with the diffusion model, v(2) becomes 1− v(1). Here, v(1) is the

mean of the slope for the first response category (k = 1; e.g., “I agree”) and v(2) is that of the

second response category (k = 2; e.g., “I disagree”). (b) In the diffusion model, the distance

from the starting point to the boundary is α
2 when z = α

2 . In the LBA model, the starting point

is uniformly distributed from 0 to A. Therefore, the expected distance from the starting point to

the boundary becomes B− A
2 . Accordingly, they compared α

2 with B− A
2 rather than comparing

α with B directly. In their simulation study, simulated data were generated and estimated with

both models. Their results indicated the existence of a nearly one-to-one relationship with

regard to the drift rate or nondecision time parameters, while the boundary parameters did not

exhibit simple mapping (even though they have a fairly high correlation).

On the other hand, there are also studies that discuss the differences between the diffusion
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and LBA models. For example, Heathcote and Hayes (2012) pointed out that the parameters

of the two models would result in equivalent inferences under some conditions and different

inferences under other conditions. This is not surprising because the precise functional forms

of the diffusion and LBA models are different. Thus, caution may be needed when qualitatively

translating a parameter estimate of one model to the other. In general, however, most core pa-

rameters of the diffusion and LBA models are comparable and have similar empirical meanings

(Heathcote, Brown, & Wagenmakers, 2015).

4.3 Unidimensional Binary D-LBA IRT Model

We apply the LBA framework of modeling the response time data, which has been proved to be

useful in the field of cognitive and mathematical psychology, to IRT models which are popular

in psychometrics. For this purpose, in this section, we reparameterize the LBA model to yield

the proposed LBA IRT model. This reparameterization allows us to combine the strengths of

the LBA and IRT models, which are both popular in different fields.

The D-diffusion IRT model was derived from a relationship between the functional forms

of the Diffusion and IRT equations, as explained in Section 2.2. However, as shown in Section

2.3, it is impossible to obtain a simple relationship between the functional forms of the LBA

and IRT equations from Equation 2.13 just well as the D-diffusion IRT model. Instead, we will

propose a D-LBA IRT model as an analogy of the D-diffusion IRT model.

Note that in this chapter, we only focus on 2AFC (k = 1,2) tasks, although the original LBA

model applies to MAFC tasks.

4.3.1 Parameter Settings

As stated in Section 2.2, there exist two classes of diffusion IRT models. In this study, we chose

to extend the D-diffusion model for the following reasons. First, θ and b of the D-diffusion

model can be regarded as nearly the same as those of traditional IRT, whereas those of Q-

diffusion are restricted in that they cannot take negative values. Second, v in D-diffusion is
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simply the difference between θ and b; therefore, it is easier to estimate than in the case of

Q-diffusion, where v is a quotient. Third, the responses of personality measurement tend to be

faster than those of ability measurement. The LBA and diffusion models were typically applied

to cognitive tasks, the RT of which is typically less than a few seconds (although there are

recent exceptions; see e.g., Palada et al., 2016). In general, ability measurements require a much

longer RT than personality measurements, and the model properties under such conditions are

less well-known. Therefore, we adopt D-diffusion. Accordingly, the proposed model is called

the (unidimensional binary) D-LBA IRT model (we may simply call it as D-LBA model in this

chapter).

Boundary Donkin et al. (2011) showed that α in the diffusion model can be interpreted as

nearly the same as B− A
2 of the LBA model. In order to retain the same number of parame-

ters in the D-LBA model as that in the D-diffusion model, a parameter constraint needs to be

introduced. For this purpose, A is considered to be fixed in this study; specifically, we set

Ai j =
Bi j

2
, (4.1)

where

Bi j =
γi

ξ j
with γi, ξ j ∈ R>0. (4.2)

Other forms of constraint may also be possible, but we think this constraint is natural because

the upper bound of the starting point in this setting is simply half of the distance between 0 and

B.

Drift rate the drift rate can be treated in the same manner as in the case of the D-diffusion

model, except that it needs to satisfy an identification constraint, which is required for latent

variable models. In the original LBA model, a common way of incorporating this constraint is

to set the sum of the drift rates among the alternative choices to be one. We follow this approach
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by letting v to be the difference between θ and b scaled by a logistic function:


v(1)

i j =
[
1+ exp(−θi+b j)

]−1

v(2)
i j =

[
1+ exp(θi−b j)

]−1
,

(4.3)

Note that in order to study the comparable performance of the proposed D-LBA model with

the D-diffusion model, this chapter considers the case of 2AFC data (i.e., K = 2), although the

D-LBA model can be extended to polytomous choices, as shown in Chapter 5.

Nondecision time The nondecision time is nearly the same as that in the case of D-diffusion.

The nondecision time was set as the item parameter τ j.

Between-trial variability of the slope As with the LBA model, the diffusion model involves

the identification issue. To deal with this in the diffusion model, the within-trial variance of the

slope, s, has to be fixed at a certain value such as 0.1 or 1. This is due to the indeterminacy of

the scale among s, α, and v in the diffusion model. On the other hand, the LBA model has no

with-trial variance s; instead, it incorporates the between-trial variance η. By decomposing this

variance into the item and respondent parameters, the proposed model can solve the problem

of the linear relationship between them, which was, as noted before, one of the major problems

of the diffusion IRT model. Specifically, the proposed model decomposes the between-trial

variance η into person and item factors:

ηi j =
σi

ψ j
. (4.4)

As a result, the total number of parameters in the D-LBA model becomes 4J+3I, while the

D-diffusion model used in this study has 3J +2I parameters. The joint cumulative distribution
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function of the item response and RT is given as

F(1, t) = LBACDF

1, t−τ
∣∣∣∣∣∣∣∣∣∣
γi

ξ j
,
γi

2ξ j
,

1

1+ exp(−θi+b j)
,
σi

ψ j


F(2, t) = LBACDF

2, t−τ
∣∣∣∣∣∣∣∣∣∣
γi

ξ j
,
γi

2ξ j
,

1

1+ exp(θi−b j)
,
σi

ψ j

 ,
(4.5)

and the corresponding joint probability density function is given as

f (1, t) = LBAPDF

1, t−τ
∣∣∣∣∣∣∣∣∣∣
γi

ξ j
,
γi

2ξ j
,

1

1+ exp(−θi+b j)
,
σi

ψ j


f (2, t) = LBAPDF

2, t−τ
∣∣∣∣∣∣∣∣∣∣
γi

ξ j
,
γi

2ξ j
,

1

1+ exp(θi−b j)
,
σi

ψ j

 .
(4.6)

4.3.2 Meanings of the Parameters in the D-diffusion and D-LBA Models

To facilitate the understanding of parameters, in this section, we briefly show the relationships

between the parameter values and the observed quantities, which are the RTs and item re-

sponses.

Expected RT Figure 4.1 shows the relationships between the expected RTs and (θi−b j). This

(θi − b j) is equal to the drift rate in the D-diffusion model (Equation 2.7) and is a one-to-one

with the drift rate in the D-LBA model (Equation 4.3); thus, we comprehensively call it the

drift rate component here. Each of the three lines correspond to different boundary parameter

values. We can observe two major characteristics common to both models. First, the expected

RT is longer when the absolute difference
∣∣∣θi−b j

∣∣∣ is close to zero. Second, the expected RT is

longer when the boundary (γi/ξ j) is larger. In the D-diffusion model, the expected RT is given
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Figure 4.1: Relationship between the drift rate component (θi−b j) and expected RT. Left panel:
D-diffusion model; Right panel: D-LBA model; Solid line: γi/ξ j = 1; Dashed line: γi/ξ j = 3;
Dotted line: γi/ξ j = 5.

by (Tuerlinckx et al., 2016)

E(ti j) ≃



1

2
∣∣∣θi−b j

∣∣∣

γi

ξ j

 if |θi−b j| , 0

1

4


γi

ξ j


2

if
∣∣∣θi−b j

∣∣∣ = 0.

(4.7)

From Equations 4.7, 2.5, and 2.7, we can see that both the expected RT and the discriminability

are functions of the boundary parameters. More specifically, the expected RT is approximately

quadratic function of the boundary parameter when
∣∣∣θi−b j

∣∣∣ is zero, and otherwise approxi-

mately linear function of it. For example, if the expected RT is five seconds when
∣∣∣θi−b j

∣∣∣
is equal to zero, the discriminability becomes

√
20 ≃ 4.47. Figure 4.2 plots the relationship

between the expected RT and the boundary parameter in the D-diffusion model.

Item response Figure 4.3 shows the relationship between the probability of choosing the first

response category and the drift rate component (θi − b j). Each of the three lines corresponds
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Figure 4.2: Relationship between the boundary (γi/ξ j) and the expected RT. Left panel: D-
diffusion model; Right panel: D-LBA model; Solid line: |θi−b j| = 0; Dashed line: |θi−b j| = 1;
Dotted line: |θi−b j| = 2.

to different boundary parameter values. In the D-diffusion model, the discriminability differs

in conjunction with the boundary parameters. In the D-LBA model, on the other hand, the

discriminability does not differ even when the boundary parameters differ. This suggests that,

in the D-LBA model, the boundary parameters only affect the expected RT. Here, Figure 4.4

indicates how the between-trial variability in the slope, ηi j, affects the discriminability and

expected RT. The results suggest that ηi j affects both the discriminability and expected RT.

The relationship shown in Figure 4.4 shows the advantage of the proposed D-LBA model.

The D-LBA model is free from the strong and unrealistic assumption of linearity between the

discriminability and the expected RT by incorporating two different parameters Bi j and ηi j. In

contrast, the D-diffusion model has this linearity. This may limit the applicability of the D-

diffusion model to empirical data that has a longer RT than the typical context of the diffusion

model.

4.3.3 Prior Distribution

The proposed D-LBA model can be numerically estimated using the MCMC estimation method.

For this, the prior distributions for each parameter need to be set. In this section, the following
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Figure 4.4: Relationships between the parameters and the observed quantities in the D-LBA
model with different intertrial variabilities ηi j in the D-LBA model. Solid line: ηi j = 0.1; Dashed
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priors were used:

ξ j ∼Cauchy[0,∞)(0,5), γi ∼ LN(0,1),

b j ∼ N(0,2.52), θi ∼ N(0,12),

ψ j ∼Cauchy[0,∞)(0,5), σi ∼ LN(0,1),

τ j ∼Cauchy[0,∞)(0,5),

(4.8)

where Cauchy[0,∞)(·) denotes truncated Cauchy distribution. Here, θi follows the standard nor-

mal distribution for identification purposes; this is a popular assumption in IRT models. Other

respondent parameters, γi and σi, follow the standard lognormal distribution for the same rea-

son. On the other hand, we set weakly informative priors (Gelman, Jakulin, Pittau, & Su, 2008)

to all item parameters. For determining the hyperparameters, a sensitivity analysis was con-

ducted, and the results showed that even when Cauchy[0,∞)(0,5) was set for ξ j, ψ j, and τ j, each

posterior mean negligibly differs from a very weakly informative prior (Cauchy[0,∞)(0,100)).

Thus, the abovementioned priors were adopted for computationally efficient estimation.

In the original LBA model, some parameters (viz., B, A, and η) are permitted to differ

between different response categories. As pointed out by Heathcote and Love (2012), allowing

this flexibility can make the model fit better. However, in this study, these parameters are

assumed to be equal between response categories for the following reasons. First, the proposed

D-LBA model is meant to be a simpler alternative to the D-diffusion model; thus, we would not

want to increase the number of parameters unless they are of substantial importance. Second,

this constraint facilitates faster and stable estimation.

4.4 Simulation Study

In this simulation study, several issues were investigated. First, parameter recovery was as-

sessed. If the proposed model cannot properly recover parameters with the simulation data, it is

pointless to examine other issues. Second, the similarity between the D-diffusion and D-LBA

models was investigated. Because the parameters of these two models do not analytically map
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to each other, the empirical correspondence between the parameters needs to be investigated.

Although the D-LBA and D-diffusion models may have similar parameter interpretations, they

have different parameter scales. Hence, the similarity was evaluated by correlations rather than

absolute differences. Third, both models were compared in terms of the number of iterations

to convergence. Previous studies have shown that the LBA model is simpler than the diffusion

model. If so, it may be natural to expect the D-LBA model to converge faster than D-diffusion,

even if new parameters are added to the D-LBA model. Finally, the model performance was

examined according to the information criteria.

Conditions In this simulation, artificial data were generated from both the D-diffusion and

D-LBA models, and the parameters were estimated using both models. In addition, 3× 3 = 9

conditions were set by combining the following factors: (1) the number of respondents I =

(100,300,500) and (2) the number of items J = (10,20,30). Overall, 3×3×2×2= 36 conditions

were simulated with 20 replications for each condition.

Data generation To generate simulation data from the D-LBA IRT model, the following dis-

tributions were used:

ξ j ∼ U(0.5,3), γi ∼ LN(0,1),

b j ∼ U(−3,3), θi ∼ N(0,12),

ψ j ∼ U(1,4), σi ∼ LN(0,1),

τ j ∼ U(0.1,0.5).

(4.9)

When generating data from D-diffusion, the same distributions were used except ξ j ∼U(0.3,0.7)

owing to the difference in the parameter scale. We set the range of parameters in Equation 4.9

following Donkin et al. (2011). Furthermore, s was fixed to 1 in the diffusion model.

Using the true parameter values generated from Equation 4.9, simulation data were gen-

erated with the rdiffusion function in the rtdists R package. In this process, we found

that a very small proportion of the generated RTs were greater than 120 s. However, such data

make estimation (calculation of the log-probability) difficult and unstable for technical reasons,
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Table 4.1: Descriptive statistics of the RTs generated by the simulation.

>120 s mean 2.5% 50% 97.5%

D-diffusion 0.054% 2.111s 0.254s 1.066s 10.587s
D-LBA 0.007% 1.539s 0.282s 0.907s 6.635s

especially in the case of diffusion IRT1. Moreover, in practice, the observation of such large RT

data is unlikely; if they exist, they are usually excluded from the analysis as “lazy” responses.

For these reasons, we used only data for which the RT was less than 120 s.

Table 4.1 summarizes the descriptive statistics of the RTs used in this simulation. As seen in

the first column, the proportion of excluded data is very slight. The following columns indicate

the mean, 2.5% quantile, median, and 97.5% quantile of the data that were used after exclusion.

The range of the RT can be considered adequate and relevant.

Prior distributions For estimation by the proposed D-LBA model, our priors are those in

Equation 4.8. The same prior was used for the D-diffusion model, except ψ j and σi.

For all of the estimation results presented in this chapter, we used R (3.4.0) and rstan

2.15.0 on a Windows 10 PC. Three MCMC chains were run for each dataset. The number of

MCMC iterations per chain was 10,000, 9,000 of which were discarded as warmup. The Stan

code for LBA was obtained from the work of Annis, Miller, and Palmeri (2017) and extended

to the D-LBA model. The Stan codes used in this study is provided in Appendices C and D,

or the Open Science Framework website (https://osf.io/ck7fr/). The posterior means of

the parameters were chosen as their point estimates.

Results

Parameter recovery (RMSE and bias) Table 4.2 lists the mean RMSE values for each con-

dition when both the generation and estimation models are the same. Since γi and σi are log-

normally distributed, the RMSE between the log-transformed estimates and the log-transformed

true values for γi and σi are shown for these parameters. A comparison of the absolute values

1When estimated with Stan, the built-in wiener lpdf function sometimes produces log(0) and returns an error.
This error occurs more often when the response time is longer.
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between the two models may not be meaningful because the scales of the parameters are dif-

ferent. Nevertheless, it is evident that as the number of respondents I increases, the RMSEs for

all item parameters decrease in both the D-diffusion and D-LBA models. On the other hand,

the RMSEs for the respondent parameters did not decrease as a function of I. This can be at-

tributed to the well-known “Neyman–Scott paradox” (Neyman & Scott, 1948). Specifically, in

some IRT models, the estimates of the respondent parameters do not converge to the true value

even in the large-sample limit because the number of parameters also increases as the number

of respondents increases.
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Table 4.3: Mean bias for each model.

I J ξ j log(γi) b j θi τ j ψ j log(σi)
D-diffusion 100 10 -0.044 -0.084 0.020 0.021 0.000 - -

20 -0.109 -0.194 -0.030 -0.032 0.001 - -
30 -0.205 -0.338 0.022 0.008 0.000 - -

300 10 -0.023 -0.056 -0.012 -0.020 0.000 - -
20 -0.030 -0.061 0.001 -0.001 0.001 - -
30 -0.049 -0.095 0.009 0.007 0.000 - -

500 10 -0.013 -0.035 -0.019 -0.010 0.000 - -
20 -0.028 -0.059 -0.013 -0.014 0.000 - -
30 -0.033 -0.070 -0.008 -0.002 0.001 - -

D-LBA 100 10 -0.129 -0.090 0.008 -0.028 0.000 -0.244 -0.145
20 -0.269 -0.163 0.066 0.006 0.001 -0.428 -0.189
30 -0.405 -0.215 0.007 0.001 0.000 -0.490 -0.172

300 10 -0.054 -0.067 0.023 -0.005 0.001 -0.134 -0.137
20 -0.142 -0.100 0.005 -0.003 0.000 -0.134 -0.098
30 -0.163 -0.101 0.006 0.010 0.000 -0.186 -0.099

500 10 -0.050 -0.064 0.001 0.005 0.001 -0.050 -0.110
20 -0.057 -0.052 0.006 0.000 0.000 -0.064 -0.074
30 -0.076 -0.063 -0.011 -0.006 0.000 -0.106 -0.077

Table 4.3 summarizes the mean biases for each condition. From the table, the biases for all

parameters were close to zero. This suggests that the proposed D-LBA model and D-diffusion

model produce good parameter estimates on average.

From the viewpoint of the RMSEs and biases, it can be concluded that the proposed model

parameters are properly estimated and that parameter recovery is as good as that of the D-

diffusion model.

Correspondence (correlations) Tables 4.4–4.8 summarize the correlation of each parameter

for each condition. With regard to the correlations for the conditions in which data were gen-

erated with the D-diffusion model and estimated with the D-LBA model, all of the parameters

except ξ j took sufficient values (greater than 0.9). Even though ξ j had lower correlations than

the others, this is consistent with the results of Donkin et al. (2011). In addition, the proposed

model expresses the relationship between the discriminability and the RT with two parameters,

Bi j and ηi j, while the D-diffusion model uses only αi j to express this relationship. This would

explain the result that the correlation of ξ j is lower, particularly when the data were generated
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Table 4.4: Correlation between the true parameter value of ξ j in the data generating model and
its estimate in the estimation model.

Data generating model D-diffusion D-LBA

Estimation model D-diffusion D-LBA D-diffusion D-LBA

I J
100 10 0.973 0.407 0.920 0.990

20 0.982 0.598 0.905 0.991
30 0.981 0.665 0.890 0.989

300 10 0.994 0.519 0.942 0.996
20 0.993 0.547 0.939 0.996
30 0.993 0.553 0.936 0.996

500 10 0.996 0.530 0.937 0.998
20 0.996 0.582 0.932 0.998
30 0.996 0.603 0.948 0.998

from the D-diffusion model and estimated with the D-LBA model. These results, especially

those in Table 4.7, show an interesting point. When the data generation and estimation models

were the same, the D-diffusion model exhibited a higher correlation than the D-LBA model. On

the other hand, when data generation and estimation models were different, the D-LBA model

exhibited a higher correlation than the D-diffusion model. This suggests that when the data

generation model is known to be the D-diffusion model, the true D-diffusion model seems to

indicate higher performance than the D-LBA model. However, when the data generation model

is unknown, which is natural in a practical situation, the D-LBA model indicates more stable

performance regardless of the true data generation model.

Estimation efficiency (R̂ and effective sample size) We computed the Gelman–Rubin diag-

nostic statistic (R̂; Gelman et al., 2014) as a convergence diagnostic measure. When the number

of respondents is small, both models converge quite fast (fewer than 1,000 iterations when

I = 100). Therefore, we will show the results when the number of respondents is the largest

under the conditions that were considered.

Figure 4.5 shows the results for the condition I = 500 and J = 30 with the D-LBA model

as the data generation model. The x axis represents the warmup iterations (1,000 iterations

after this 9,000 warmup iterations were used for posterior estimation). The y axis represents
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Table 4.5: Correlation between the true parameter value of log(γi) in the data generating model
and its estimate in the estimation model.

Data generating model D-diffusion D-LBA

Estimation model D-diffusion D-LBA D-diffusion D-LBA

I J
100 10 0.992 0.947 0.917 0.960

20 0.996 0.968 0.939 0.976
30 0.997 0.977 0.942 0.982

300 10 0.992 0.936 0.921 0.964
20 0.996 0.964 0.932 0.973
30 0.997 0.974 0.940 0.980

500 10 0.991 0.938 0.918 0.962
20 0.996 0.966 0.931 0.974
30 0.997 0.974 0.941 0.980

Table 4.6: Correlation between the true parameter value of b j in the data generating model and
its estimate in the estimation model.

Data generating model D-diffusion D-LBA

Estimation model D-diffusion D-LBA D-diffusion D-LBA

I J
100 10 0.998 0.958 0.944 0.981

20 0.998 0.971 0.947 0.984
30 0.998 0.976 0.934 0.982

300 10 0.999 0.964 0.946 0.990
20 0.999 0.978 0.963 0.993
30 0.999 0.980 0.952 0.993

500 10 >0.999 0.964 0.970 0.996
20 >0.999 0.980 0.961 0.996
30 >0.999 0.980 0.955 0.996
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Table 4.7: Correlation between the true parameter value of θi in the data generating model and
its estimate in the estimation model.

Data generation model D-diffusion D-LBA

Estimation model D-diffusion D-LBA D-diffusion D-LBA

I J
100 10 0.882 0.739 0.612 0.736

20 0.921 0.853 0.695 0.836
30 0.935 0.894 0.738 0.856

300 10 0.879 0.721 0.596 0.727
20 0.924 0.830 0.708 0.826
30 0.941 0.892 0.741 0.861

500 10 0.880 0.716 0.652 0.754
20 0.922 0.838 0.719 0.831
30 0.941 0.887 0.745 0.870

Table 4.8: Correlation between the true parameter value of τ j in the data generating model and
its estimate in the estimation model.

Data generation model D-diffusion D-LBA

Estimation model D-diffusion D-LBA D-diffusion D-LBA

I J
100 10 >0.999 0.999 0.986 0.995

20 >0.999 0.999 0.988 0.996
30 >0.999 0.999 0.985 0.997

300 10 >0.999 >0.999 0.997 0.999
20 >0.999 >0.999 0.995 0.999
30 >0.999 >0.999 0.995 0.999

500 10 >0.999 >0.999 0.997 0.999
20 >0.999 >0.999 0.998 >0.999
30 >0.999 >0.999 0.997 >0.999
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Figure 4.5: Proportion of parameters for which R̂ is lower than 1.1 when the data generation
model is the D-LBA model. The solid line represents the results estimated by the D-LBA model.
The dashed line represents the results estimated by D-diffusion.

the proportion for which R̂ is below the threshold. Gelman et al. (2014) suggested a threshold

of 1.1 for R̂; therefore, the same threshold was adopted. These proportions were computed

based on the MCMC samples from zero to the x-axis value iterations in increments of 500. The

solid and dashed lines represent the results estimated by the D-LBA and D-diffusion models,

respectively.

The results indicate that the D-LBA model converges much faster than D-diffusion, despite

the fact that the number of parameters in the D-LBA model is larger. The D-LBA model took

less than 1,000 warmups to converge for more than 99% of the parameters, whereas D-diffusion

seems to be more unstable. Figure 4.6, which shows the results when the data generation model

was the D-diffusion model, also indicates that the D-LBA model converges several times faster

than the D-diffusion model.

In addition, the average effective sample sizes were checked as a measure of the estimation

efficiency. Table 4.9 summarizes the effective sample sizes under the condition I = 500 and

J = 30. It is evident that the D-LBA model obtained larger effective sample sizes than the

D-diffusion model for all parameters regardless of the true data generation model. This result

was consistent under all conditions. The results suggest that the proposed model can estimate
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Figure 4.6: Proportion of parameters for which R̂ is lower than 1.1 when the data generation
model is the D-diffusion model. The solid and dashed lines have the same meanings as those in
Figure 4.5.

Table 4.9: Average effective sample sizes for each parameter under the conditions I = 500 and
J = 30.

Generation model D-diffusion D-LBA
Estimation model D-diffusion D-LBA D-diffusion D-LBA
ξ j 48.25 146.09 49.03 63.41
γi 333.72 938.00 320.33 781.89
b j 188.29 2101.40 202.00 1164.00
θi 969.67 3615.56 2411.72 4153.28
τ j 1253.42 2291.05 2739.38 3153.62
ψ j - 508.43 - 430.78
σi - 1516.56 - 2171.01

parameters more efficiently than the D-diffusion model. Note that with regard to the empirical

computational time per iteration, given the same computational environment, there exist no

systematic differences between the two models. This means that the proposed D-LBA model

provides a higher efficiency for estimation per iteration and per actual time.

Information criteria In addition to the results presented above, the fit of the models was

assessed in terms of information criteria (WAIC: widely applicable information criterion and

WBIC: widely applicable Bayesian information criterion; Vehtari, Gelman, & Gabry, 2017;

Watanabe, 2010, 2013). Figure 4.7 shows the results under the largest data conditions (I =
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Figure 4.7: Results under the condition I = 500 and J = 30. Solid lines: estimated with D-LBA;
Dot–dash lines: estimated with D-diffusion; Upper half: WAIC, Lower half: WBIC; Left side:
data generated by D-diffusion, Right side: data generated by D-LBA.

500, J = 30). In all of these graphs, the solid lines represent the results estimated by the D-LBA

model, and the dot–dash lines represent the results estimated by the D-diffusion model. The

upper half represents the WAIC, and the lower half represents the WBIC. The graphs on the

left are for data generated by D-diffusion, whereas those on the right are for data generated

by the D-LBA model. For all datasets generated by the D-LBA model, both indices become

lower when estimated by the D-LBA model. On the other hand, for all datasets generated by

the D-diffusion model, the D-LBA model shows worse values than D-diffusion. These results

are expected, and the same results were confirmed under all conditions.
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4.5 Real Data Application: Extraversion Data

In this section, we consider a more realistic situation by using real data in order to examine the

applicability of the proposed D-LBA model.

Data We used the extraversion data in the diffIRT R package. These data, obtained by

Molenaar et al. (2015), comprise 146 respondents for 10 items. Each item is a particular word

or phrase related to extraversion behavior (e.g., “active” or “noisy”). Respondents were asked

whether each item is appropriate to their personalities. For all respondents and all items, the

actual response (yes/no) and RT were recorded, some of which are missing.

Results

Table 4.10 summarizes the estimates of the item parameters obtained by both models. The

correlations of the ξ j, b j, and τ j parameters between the D-diffusion and D-LBA estimates

were 0.707, 0.806, and 0.851, respectively. Although they are slightly lower than the results of

the simulation study, given the relatively small number of respondents (I = 143), it can be said

that the D-diffusion and D-LBA models are substantially similar models.

In addition, Figure 4.8 shows the posterior density for each item parameter. In the figure,

the left-hand side shows the plot for ξ j, and the right-hand side shows the plot for b j. From this

figure, we can see that each parameter estimate was properly obtained because each density has

only one peak. Moreover, the parameter estimates for each model were highly correlated with

the summary statistics. For items having a high proportion of “yes” responses (e.g., “viable” and

“eupeptic”), b j become lower. As for ξ j, it corresponds with the mean response time (MRT).

This can be considered evidence for the validity of the estimates.

Table 4.11 summarizes the mean effective sample sizes for both models. All but τ j indicated

higher values in the D-LBA model than in the D-diffusion model. This result suggests that the

D-LBA model can estimate parameters more efficiently than the D-diffusion model, even for

real data.

Furthermore, a posterior predictive check was conducted to validate the model. Specifically,
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Table 4.10: Item parameters obtained by D-LBA and D-diffusion. Prop: proportion that answers
“yes”; MRT: mean response time.

ξ j b j τ j ψ j
Item Prop. MRT D-LBA D-diff D-LBA D-diff D-LBA D-diff D-LBA

1 active 0.741 1.486 0.966 0.520 -2.019 -0.704 0.451 0.575 1.503
2 noisy 0.538 1.357 1.091 0.540 -0.087 -0.117 0.327 0.475 2.513
3 energetic 0.846 1.120 1.573 0.597 -2.032 -1.322 0.394 0.502 2.813
4 enthusiastic 0.916 1.000 2.090 0.579 -2.440 -1.854 0.398 0.458 2.957
5 impulsive 0.539 1.298 1.240 0.551 -0.240 -0.213 0.339 0.464 2.751
6 jovial 0.902 1.262 1.187 0.507 -4.338 -1.380 0.412 0.501 1.937
7 viable 0.937 1.142 1.306 0.490 -2.694 -1.788 0.372 0.511 3.393
8 eupeptic 0.958 1.090 1.419 0.454 -3.448 -2.065 0.352 0.434 2.955
9 communicative 0.824 1.728 0.786 0.408 -2.056 -0.904 0.472 0.609 2.088

10 spontaneous 0.860 0.986 1.848 0.632 -2.488 -1.527 0.370 0.462 2.750
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Figure 4.8: Posterior densities of the item parameters obtained by the D-LBA model. The
posteriors of ξ j are shown on the left-hand side, and the posteriors of b j are shown on the
right-hand side. The item indices correspond to those of Table 4.10.
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Table 4.11: Mean effective sample size for each parameter in the D-diffusion and D-LBA mod-
els.

Estimation model D-diffusion D-LBA
ξ j 101.84 260.60
γi 370.02 843.82
b j 684.45 1255.58
θi 2465.66 3201.51
τ j 2035.36 1706.55
ψ j - 720.89
σi - 1414.07

15,000 random samples of responses and RTs were generated from the posterior predictive

distribution. Then, the proportion of responses that were the same as the observed data for

each respondent was calculated. Figures 4.9 and 4.10 show the histograms of this proportion

for all 143 respondents for the D-LBA and D-diffusion models, respectively. Similarly, Figure

4.11 shows the posterior predictive distributions of the RT for the first respondent. Each line

corresponds to the posterior predictive distribution for each item, and the black vertical line

represents the probability density at the point of the observed RT. In Figure 4.11, longer black

lines mean that the model performs better in terms of posterior prediction of the RT. These

results indicate that the proposed D-LBA model adequately explains the observed data and that

its predictive performance is at least as good as that of the D-diffusion model.

One of the major advantages of using the model-based parameters instead of much simpler

descriptive statistics such as the MRT or the proportion of choosing the first category is that,

while the theory of psychological measurement suggests that the observed data contain random

fluctuations or errors, the substantially informed model parameters directly reflect the under-

lying psychological process that elicited the observed responses (Molenaar et al., 2015). The

model also decomposes the observed information into several different meaningful sources of

variability. For instance, the MRT is used as a property of an item, although it may be influenced

by some respondents’ traits, which were represented by the parameter γi. If more “deliberate”

respondents were unintentionally collected, the observed MRT may be longer even if they an-

swered the same items. However, the respondents’ traits cannot be distinguished from the item

traits as long as the simple MRT is used. By estimating both γi and ξ j at the same time, ξ j can
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Figure 4.9: Histograms of the posterior predictive samples that correspond to the observed
response in the D-LBA model (sample size: 143).
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Figure 4.10: Histograms of the posterior predictive samples that correspond to the observed
response in the D-diffusion model (sample size: 143).
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Figure 4.11: Posterior predictive distributions of the RT in the D-LBA (left side) and D-diffusion
(right side) models along with the observed RT (black vertical line) for the first respondent. The
upper half shows the distributions when the response is “yes,” and the lower half shows the
distributions when the response is “no.” This respondent only answered “no” for items one and
six.
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be seen as that not influenced by respondents’ traits. This also makes it reasonable to examine

the item parameter estimates from a qualitative perspective without considering respondents’

traits. For example, it may be difficult to provide an answer quickly and intuitively for an item

having a higher ξ j (e.g., “communicative”). In other words, such items seem to indicate more

complicated meanings than those having a lower ξ j. In addition, more respondents seem to

answer “yes” for items having a lower b j. From a qualitative viewpoint, items with a higher

b j tend to have negative meanings. For example, in the Oxford Advanced Learner’s Dictionary

(Bradbery, Deuter, & Turnbull, 2015), the word “noisy” is defined as “making a lot of noise,”

and the word “impulsive” is defined as “acting suddenly without thinking carefully about what

might happen because of what you are doing.” Obviously, these two words have more negative

connotations than positive ones. Therefore, respondents may be reluctant to answer “yes” to

these items.

One of the main interests in this application is comparative model fitting. Our primary ob-

jective here is to comparatively evaluate the proposed D-LBA model with existing D-diffusion

model. However, in order to check whether or not more parsimonious model formulations show

better performance than the full models, several more parsimonious model formulations were

also examined. The conditions examined are shown in Table 4.12. With regard to boundary, four

conditions were considered: when the boundary parameter depends both on the respondents and

items, when it depends on the items but is common across respondents, when it depends on re-

spondents but is common across items, and when it is common across both respondents and

items. The specific parameterizations are shown in Table 4.12. Similarly, these four conditions

were considered for the between-trial variance ηi j in the D-LBA model. As a result, 4×4 = 16

coniditions were conducted for the D-LBA model and 4 conditions for the D-diffusion model.

Table 4.12 summarizes the obtained WAIC and WBIC for these 20 models. Among all models,

the full D-LBA models has shown the best value in terms of both WAIC and WBIC. Partic-

ularly, the obtained WAIC values of the full D-diffusion and full D-LBA models were 0.829

and 0.757, whereas the WBIC values were 1024.98 and 898.71, respectively. Therefore, the

results indicate that the proposed D-LBA model is better fitted than the D-diffusion model in
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Table 4.12: Information criteria values of the full model as well as more parsimonious sub-
models for the D-LBA and D-diffusion models.

Model Boundary Between-trial variance Number of parameters WAIC WBIC
D-LBA Bi j = γi/ξ j ηi j = σi/ψ j 4J+3I 0.757 898.71

ηi j = σi 3J+3I 0.777 968.52
ηi j = ψ j 4J+2I 0.828 1023.02
ηi j = η 3J+2I+1 0.784 982.39

Bi j = ξ j ηi j = σi/ψ j 4J+2I 0.868 1123.83
ηi j = σi 3J+2I 0.909 1234.57
ηi j = ψ j 4J+ I 0.939 1234.60
ηi j = η 3J+ I+1 0.915 1241.96

Bi j = γi ηi j = σi/ψ j 3J+3I 0.816 989.34
ηi j = σi 2J+3I 0.818 1030.26
ηi j = ψ j 3J+2I 0.818 1030.26
ηi j = η 2J+2I+1 0.820 1040.59

Bi j = B ηi j = σi/ψ j 3J+2I+1 0.880 1144.93
ηi j = σi 2J+2I+1 0.931 1269.21
ηi j = ψ j 3J+ I+1 0.962 1273.85
ηi j = η 2J+ I+2 0.944 1286.09

D-diffusion αi j = γi/ξ j - 3J+2I 0.829 1024.98
αi j = ξ j - 3J+ I 0.902 1184.12
αi j = γi - 2J+2I 0.849 1052.88
αi j = α - 2J+ I+1 0.914 1204.62

Note: When αi j = α, Bi j = B or ηi j = η, these parameters do not depend on respondent nor item.
Also, when αi j,= γi, Bi j = γi or ηi j = σi, the prior distributions were set to Cauchy[0,∞)(0,5)
instead of LN(0,1) because identification constraints were not essential in these conditions.

terms of these information criteria with this dataset. In other words, the assumption that the

item discriminability and expected RTs are completely correlated is unlikely in real data. In

addition, the results would indicate that both αi j and ηi j should be decomposed into item factors

and person factors to show better fit to real data.

4.6 Discussion

In this study, a new cognitively-based IRT model was proposed that can explain the flexible

relationship between the item discriminability and the expected RTs for personality assessment

using RT information. The likelihood function of the proposed D-LBA IRT model can be

essentially seen as a reparameterization of the LBA model. Our argument is that this reparam-

eterization is the point: the LBA framework for modeling the response time data, which has

been proved to be useful in the field of cognitive and mathematical psychology, has not been
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applied to IRT models in psychometrics. Our contributions of this study is to clearly reveal

the relationship between these two models, which are both popular in different fields, and to

combine the strengths of both models to propose the D-LBA IRT model.

From the simulation results, four advantageous properties of the proposed D-LBA model

were identified. First, the proposed model can recover parameters as sufficiently as the D-

diffusion model. Second, each parameter in the proposed and D-diffusion models can be inter-

preted in nearly the same way. Third, the correlations between the true values and the estimates

obtained from the proposed model are higher than those from the D-diffusion model when the

true data generation model is different. Fourth, the proposed model converges much faster and

estimates more effectively than the D-diffusion model. These findings suggest that the pro-

posed D-LBA model is a more realistic, efficient, and practical yet simpler alternative to the

D-diffusion model of the item response and RT.

In addition, the D-LBA and D-diffusion models were applied to a real personality measure-

ment dataset. Consequently, from the viewpoint of the information criterion, the D-LBA model

was found to fit this dataset better than the D-diffusion model.

By introducing a new parameter and extending the simple LBA model, the proposed model

can mitigate the problems that originate from the diffusion IRT model. Nevertheless, in em-

pirical applications of the proposed D-LBA model, three potentially significant issues might

persist.

First, the time required for the MCMC estimation algorithm of the proposed D-LBA model

might be substantial. In our simulation study, the proposed model took around 7,000 iterations

to achieve full convergence, which was judged on the basis of R̂ when all parameters were less

than 1.1. This corresponds to a few hours (with I = 500 and J = 30) in our computational envi-

ronment (CPU: Intel Core i7-7700K; Memory: 64 GB; Operating system: Windows 10). Note

that a greater computational time was needed for the existing D-diffusion model; at times, even

40,000 iterations were not sufficient for convergence. Nevertheless, for researchers who want

to analyze real data, the estimation time of the proposed model might not be sufficiently fast. In

this case, one may be able to use variational Bayes (VB) inference instead of MCMC estimation
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for the proposed D-LBA model. Using rstan, it is easy to apply automatic differentiation vari-

ational inference (ADVI) without the need to specify the approximating variational distribution.

With this approach, researchers need to satisfy only one condition: each parameter should be

approximately transformed to a normal distribution.

Second, our proposed-approach is model based, and therefore, strictly speaking, the advan-

tages of the model only apply when the underlying model is correct (Tuerlinckx et al., 2016).

However, as is often said, “all models are wrong, but some are useful.” We believe, in line with

Box (1979), that the relevant question is not whether the model assumptions are met exactly,

but rather whether the model is illuminating and useful enough as an approximation of reality.

Based on the model comparison and posterior predictive check that were present in this study,

we are particularly positive about empirical applicability of the model. That being said, more

thorough investigation regarding the fit and prediction of the model, such as the evaluation of

person fit (e.g., Ferrando, 2007), would be desirable in future studies.

Finally, one of the major advantages of the IRT framework is that thanks to the decompo-

sition of observed data variability into item and respondent parameters, items can be scaled

independently of respondents, and likewise respondents can be scaled independently of items.

This characteristic would be particularly advantageous in situations when the observed data are

accumulated from different sets of samples and items over time, as in the typical application of

IRT for educational measurement. On the other hand, in typical personality assessment, items

do not change across respondents. However, recent technological development allows us to

administer large-scale personality assessment in which different items are presented to differ-

ent respondents, and to perform modeling of such data (e.g., Condon & Revelle, 2015; Okada,

Vandekerckhove, & Lee, 2018). Therefore, the proposed D-LBA IRT model may be applicable

in such modern personality measurement studies in which response time is also corrected. This

can be a fruitful direction of future research.

One of the major advantages of the D-LBA model over the D-diffusion model is that the

model is conceptually applicable to the MAFC tasks. However, in this chapter, we applied the

D-LBA model to a unidimensional binary personality scale in order to compare the results with
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those of the existing D-diffusion model. In the next chapter, we will show an extension of the

D-LBA model to the multidimensional MAFC tasks and also give some real data examples.
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Chapter 5

Study 3: Multidimensional MAFC D-LBA

IRT Model

5.1 Objective of the Study

For the MAFC personality measurement data, the author is not aware of any models that con-

sider the RT. This can be due to the following two difficulties in combining the TIRT model and

the inverted-U relationship. First, the TIRT model internally codes an MAFC item response

by a set of implied pairwise comparisons (A. Brown & Maydeu-Olivares, 2013). For instance,

when a respondent chooses the best option in a four-alternative forced-choice (4AFC) item, the

TIRT model codes this single polytomous item response as an implied set of three implied pair-

wise comparisons among the chosen and unchosen alternatives, which are mutually dependent

by design. However, we can only observe a single RT value that corresponds to these three

implied pairwise comparisons. Due to this mismatch in the number of data points between the

binary-coded item response and RT, developing a joint model involving both of them is not a

straightforward but requires a substantial modeling effort. Second, in the MAFC format, re-

spondents need to judge multiple statements in a presented item as opposed to just one in Likert

and binary formats. In fact, Sass, Frick, Reips, and Wetzel (n.d.) found empirical evidence that

respondents have several distinct underlying decision processes in responding to the MAFC
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item, and that many respondents switch between the processes even within a single question-

naire. Due to the above reasons, the single inverted-U relationship would not be appropriate for

the MAFC response and its RT. Instead, we need a different approach for this type of data.

In Chapter 4, the unidimensional binary D-LBA IRT model has been proposed. Actually,

one of the key characteristics of the LBA model as opposed to the diffusion model is that it can

represent the process underlying forced-choice tasks with more than two alternatives. This is

because whereas the diffusion model assumes a single accumulator, the LBA model assumes

multiple accumulators, each of which corresponds to a choice alternative.

Nevertheless, an extension of the D-LBA IRT model for MAFC personality measurement

has not been developed. As outlined above, such an extension is not straightforward, but re-

quires a careful combination of the two different foundations. More specifically, in the uni-

dimensional binary D-LBA IRT model, both accumulators can be represented based on the

relative position of the respondent to the item on a single psychological dimension. However,

in the MAFC format, each alternative corresponds to different psychological dimensions. In

addition, all choice alternatives are simultaneously compared with each other. These proper-

ties make it difficult to define the accumulators of the LBA process in maintaining theoretical

soundness and enabling estimation.

The main objective of this study is to propose a model that solves this problem. To tackle

the problem, we apply the Thurstone’s (1927) random utility theory to the LBA framework, and

reformulate an LBA parameter as the function of the latent utility of each choice alternative.

After formulating the proposed D-LBA IRT model for MAFC personality questionnaire, we

study its performance through a simulation study and empirical examples.

The remainder of this chapter consists of four sections. The proposed model is derived and

formulated in the next section. In Section 5.3, we report a simulation study to check parameter

recovery. Section 5.4 presents two empirical examples of Big-Five questionnaire data. Finally,

concluding remarks and possible directions for further research are discussed in Section 5.5.
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Figure 5.1: Schematic of the LBA model for four-alternative forced-choice task.

5.2 Multidimensional MAFC D-LBA IRT model

The proposed model is based on the LBA model, which was mathematically introduced in

Section 2.3. Figure 5.1 shows the schematic of the LBA model for 4AFC format. The likelihood

function and the prior distributions of the proposed model are described in Sections 5.2.1 and

5.2.2, respectively.

5.2.1 Proposed model likelihood

The key development in the proposed model is in the formulation of the drift rate parameter v(k)
i j .

In unidimensional binary D-LBA IRT, this can be simply modeled as a function of the relative

position of the respondent to the item’s position. However, as noted in Section 5.1, things be-

come complicated when we consider the MAFC responses because each alternative corresponds

to different psychological dimension to be measured. The drift rate of each accumulator, which

corresponds to one of the alternatives, should reflect its own underlying dimensional property.

To tackle this issue and derive the appropriate form of v(k)
i j for the MAFC format, let us

consider the relationship between accumulators in the LBA framework and the latent utilities.

The TIRT model succeeded in modeling the forced-choice response through the latent utility

of each alternative based on Thurstone’s (1927) random utility theory. The proposed model
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applies the same concept to derive the reparametrization of v(k)
i j in the LBA framework.

In the random utility theory, each compared alternative elicits its latent utility, and respon-

dents are to choose the one with the largest utility. Thus, the observed response depends on

the latent utility of each (k-th) alternative, δ(k)
j , which is given as the sum of the option-specific

component and random effect (Böckenholt, 2006):

δ(k)
j ∼ N

(
p(k)

j ,Ψ
2
j
(k)

)
, (5.1)

where p(k)
j is the component unique to the k-th alternative and Ψ2

j
(k) represents the variance of

the random component. Later, Bock (1958) proposed the extended three-component model. In

this model, respondent i’s latent utility to k-th choice alternative in item j is represented by:

δ(k)
i j ∼ N

(
µ(k)

j + p(k)
i j ,Ψ

2
i j

(k)
)
, (5.2)

where µ(k)
j is the component specific to that object and common to all respondents, and both

p(k)
i j and Ψ2

i j
(k) now differ among respondents. Several further extensions of these basic models

have been proposed (A. Brown, 2016). Among them, we applied the linear factor analysis

model (Brady, 1989; Harman, 1960) for its compatibility with personality measurement. In this

approach, the latent utility is represented as the linear combination of factor loadings β(k)
jd and

factor score θid as

δ(k)
i j ∼ N

µ(k)
j +

D∑
d=1

β(k)
jd θid,Ψ

2
i j

(k)
 , (5.3)

where d(= 1, . . . ,D) denote the d-th psychological dimension measured in the questionnaire.

Here, the slope of the accumulator in the LBA process (∆(k)
i j ) and the utility (δ(k)

i j ) in Equation

5.3 have the common property that (a) both follow normal distributions and (b) the probability

of choosing each alternative increases with the mean of the normal distribution. Therefore, it

is reasonable to substitute δ(k)
i j for ∆(k)

i j in the LBA framework. Then, the mean parameter of

Equation 5.3 corresponds to the drift rate parameter v(k)
i j . To uniquely determine its formulation,

we further assumed the following in this study:
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• The MAFC questionnaire has the simple structure in its factor analytic part
∑D

d=1 β
(k)
jd θid.

In other words, each statement measures one of the D psychological dimensions, and thus

it has only one non-zero factor loading β(k)
jd to that dimension,

• Variances of the random component Ψ2
i j

(k)(k = 1, · · · ,K) are the same within each item

and respondent. They are represented by η2
i j.

• In order to suffice the model identification, the sum of v(k)
i j (k = 1, · · · ,K) is fixed as one for

all i and j.

In order to restrict the sum of v(k)
i j to one, we apply the softmax function, which can be seen as

the generalization of the logistic response function for K > 2 (A. Brown, 2016). The resulting

formulation of the parameter v(k)
i j (k = 1, · · · ,K) becomes

v(k)
i j =

exp
(
µ(k)

j +β jd(k)
j
θid(k)

j

)
K∑

c=1

exp
(
µ(c)

j +β jd(c)
j
θid(c)

j

), (5.4)

where d(k)
j is the factor that is measured with k-th alternative in item j. As a result, the drift rate

v(k)
i j is proportional to response strength, which is any mapping of the mean latent utility to a

numerical ratio scale (Luce, 1977). This condition is analogous to Luce’s (1959, 1977) model

based on the choice axiom.

Equation 5.4 can be seen as the generalization of the unidimensional binary D-LBA IRT

model formulation in which the drift rate is given as a logistic function of single trait parame-

ter. Additionally, Equation 5.4 is equivalent to the response probability of the multidimensional

nominal response model (MNRM; Revuelta, 2014; Revuelta & Ximénez, 2017). The same pa-

rameter constraints are thus needed in the proposed model. In the MNRM, at least one µ(k)
j and

D element of β jd(k)
j

need to be fixed to obtain model identification (Revuelta & Ximénez, 2017).

Under the assumption of the simple structure, (D−1)K elements of β jd(k)
j

are automatically fixed
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to zero, which suffices its required constraint. Regarding µ(k)
j , the sum-to-zero constraint,

K∑
k=1

µ(k)
j = 0, (5.5)

is adapted. This type of constraint is preferable when there are no reference alternatives, which

is the case in typical MAFC measurements.

For other parameters, the parameters B and η in the LBA model are decomposed into both

respondent and item parameters in the same way as that in the unidimensional binary D-LBA

IRT model, as follows:

Bi j =
γi

ξ j
with γi, ξ j ∈ R>0, ηi j =

σi

ψ j
with σi,ψ j ∈ R>0. (5.6)

Following the unidimensional binary D-LBA IRT model, the upper bound of the start point

(Ai j) is fixed to the half of Bi j.

The boundary parameter Bi j is represented as the quotient of γi and ξ j. This indicates that

the expected RT becomes longer when γi is large or ξ j is small. Therefore, γi can be interpreted

as the cautiousness or deliberateness of the respondent. ξ j represents the item property that

affects the response latency such as the length of the sentence and difficulty in reading. The

between-trial standard deviation of the slope, ηi j, functions as a discrimination parameter of the

IRT model. Furthermore, ηi j is also decomposed into σi and ψ j in this model. ψ j is interpreted

in the same manner as item discrimination in the IRT model, and σi can be interpreted as the

response consistency of the respondent. Section 4.3.2 depicts the relationship between these

D-LBA IRT parameter values and observed quantities.

Note that the proposed model has two types of item discrimination-related parameters: β jd(k)
j

and ψ j. While β jd(k)
j

is a statement parameter that is unique to each statement in an item, ψ j is

an item parameter that reflects the overall property of the statements in each item.

The resulting joint cumulative distribution function and probability density function for
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choosing the k-th alternative at RT t is given as

F(k, t) = LBACDF


k, t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
γi

ξ j
,
γi

2ξ j
,

exp
(
µ(k)

j +β jd(k)
j
θid(k)

j

)
K∑

c=1

exp
(
µ(c)

j +β jd(c)
j
θid(c)

j

), σi

ψ j


(5.7)

and

f (k, t) = LBAPDF


k, t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
γi

ξ j
,
γi

2ξ j
,

exp
(
µ(k)

j +β jd(k)
j
θid(k)

j

)
K∑

c=1

exp
(
µ(c)

j +β jd(c)
j
θid(c)

j

), σi

ψ j


, (5.8)

respectively.

In the proposed multidimensional MAFC D-LBA IRT model, the non-decision time pa-

rameter (τ) of the LBA model is fixed to zero. The expected RT for responding to an MAFC

questionnaire item is typically much longer than that for a cognitive psychological task. Con-

sequently, the portion of the non-decision time in observed RT should be much smaller in the

kind of item response in which we are interested in this study. This makes its estimation more

difficult. In fact, Cassey, Gaut, Steyvers, and Brown (2016) reported that the LBA model tends

to estimate the non-decision time as being smaller than its actual duration. We have also tried

to estimate this parameter using real data in Section 5.4.1 and found that its estimates were sim-

ilarly quite small (results not shown in this thesis).Additionally, considering the fact that this

parameter is generally not of interest in personality measurement, we decided not to incorporate

the non-decision time parameter.
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5.2.2 Prior distribution

We set the following prior distributions for the parameters:

ξ j ∼Cauchy[0,∞)(0,λξ), γi ∼ LN(0,1),

µ(k)
j ∼ N(0,λ2

µ), β jd(k)
j
∼Cauchy[0,∞)(0,λβ),

θi ∼ MVN(0,Σ), Σ ∼ LKJCorr(1),

ψ j ∼Cauchy[0,∞)(0,λψ), σi ∼ LN(0,1),

λξ,λµ,λβ,λψ, ∼Cauchy[0,∞)(0,5),

(5.9)

where Cauchy[0,∞)(.) represents the half Cauchy distribution. As shown above, we set standard

(log-)normal distributions to respondent parameters for identification purposes, which is a com-

mon setting in IRT literature. For the correlation matrix of the latent traits, we used the LKJ

correlation distribution (Lewandowski et al., 2009) with shape parameter one. This distribution

corresponds to a uniform prior over the space of D×D correlation matrices.

Our preliminary simulation study revealed that, when we set a specific value, such as five or

ten, to the scale parameter of the prior distribution of item parameters, the resultant estimates

were not close to the true values. To obtain more accurate parameter estimates, for item pa-

rameters, we adopted hierarchical Bayesian approach to achieve adequate flexibility as well as

shrinkage. The prior distribution for hyperparameter λ is set to be the half-Cauchy distribution

as a weakly informative prior, which is recommended by Gelman (2006).

Following A. Brown and Maydeu-Olivares (2012) and Bürkner, Schulte, and Holling (2019),

the present study assumed that the keyed direction of each statement in the questionnaire is al-

ready known. This means that the researchers know whether each statement is in the regular

or reversed direction in terms of the psychological dimension to be measured. This would be

a natural assumption in most applications. Under this assumption, the factor loading β jd(k)
j

is

estimated within non-negative constraint at first, then the signs of estimates on negatively keyed

statements are manually reversed.

The proposed model is numerically estimated using the Markov chain Monte Carlo (MCMC)
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method. All estimation procedures in this chapter were conducted with R 3.5.3 and stan 2.17.3

on Windows 10 PCs. On the proposed D-LBA IRT model extension, three MCMC chains with

the length of 2,000 iterations (half of them were discarded as warmup period) were run for each

dataset. The stan code of the proposed model can be found at Appendix E.

5.3 Simulation study

Simulation design In this section, we conducted a simulation study to check parameter re-

covery of the proposed model. We considered the following two scenarios:

• The first scenario considers the situation when all items contain statements that reflect all

latent traits, that is, the number of statements in an item (K) is the same as the number

of latent traits (D). Here, total number of items J and the number of latent traits D are

manipulated as J = (8,16,24) and D = K = (2,3,4) to check the effect of these factors.

In this scenario, the total number of statements is J ×D. For example, when J = 8 and

D= 4, each item consists of four statements and the total number of statements is therefore

4×8 = 32. The number of statements that belong to each trait is also the same as J. The

number of respondents is fixed to I = 500.

• The second scenario examines the effect of the number of statements K in an item. In

this scenario, the total numbers of latent traits D and statements are fixed to five and

60, respectively. Thus, each latent trait consists of 12 statements. The following two

valuables are manipulated: (a) the number of statements in an item K = (2,3,4); (b) the

number of respondents I = (100,300,500). The number of items J varies according to K

(J = 60/K).

We repeated data generation and parameter estimation 30 times for each of the above-mentioned

18 conditions.

Data generation First, true values are randomly drawn from the following distributions:

ξ j ∼ U(0.15,0.4), γi ∼ LN(0,1), µ(k)
j ∼ U(−1.5,1.5),

∣∣∣∣∣β jd(k)
j

∣∣∣∣∣ ∼ U(0.1,2), θi ∼ MVN(0,Σ), ψ j ∼
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U(2.5,6), σi ∼ LN(0,1). These distributions are chosen on the basis of the results of our real

data example, which is summarized in the next section, such that the distributions cover all ob-

tained estimates except outliers. For each j, µ(k)
j s are centered so that the sum-to-zero constraint

(Equation 5.5) is satisfied. Regarding the elements of Σ, which are represented by ρdd′ , the

true values are respectively drawn from U(−.5,5) with the restriction that the resulting factor

correlation matrix Σ is a positive definite. For the second scenario, items are constructed so that

the numbers of implied paired-comparison (this will be elaborated in the next paragraph) on all

pairs of traits are the same as far as possible. In addition, for both scenarios, negatively keyed

statements are arranged so that each pair of latent traits has both, same- and opposite-direction

implied paired-comparison.

To facilitate the understanding on how items are constructed in the present simulation, let us

consider a 4AFC item that consists of statements that measure traits A, B, D, and E, respectively.

The former two statements are positively keyed, and the latter two are negatively keyed. This

item corresponds to item 6 in Table 5.1. From this item, six implied paired-comparisons shown

in the right column in Table 5.2 are derived. This binarization step is the same as the TIRT

model. When total number of items is J = 15, the total number of implied paired-comparisons

becomes 6×15= 90. In contrast, the number of the patterns of trait pairs is 5C2 = 10 when D= 5.

Thus, each pattern should appear in nine out of 15 items. In addition, each trait pair consists

of four (or five) same-direction comparisons and five (or four) opposite-direction comparisons.

Table 5.1 shows an example set of 15 items, which corresponds to the second scenario. The

item set is also generated at randomly in each repetition.

After true values are determined, the artificial item response and RT data are randomly

generated based on the proposed model. Before parameter estimation, three observations that

have an RT longer than 120 sec are omitted as irregular responses.

Results Tables 5.3 and 5.4 show the means of RMSE and bias values for each parameter

obtained from each of the 18 conditions, respectively. As γi and σi are lognormally distributed,

the RMSEs and biases of the log-transformed estimates for γi and σi are presented. Regarding
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Table 5.1: Example set of 15 items for 4AFC measurement

Statement (1) Statement (2) Statement (3) Statement (4)

Item Trait Direction Trait Direction Trait Direction Trait Direction

1 A Positive B Negative C Positive D Positive
2 A Positive B Positive C Positive E Positive
3 A Negative B Positive D Positive E Negative
4 A Negative C Negative D Positive E Positive
5 B Positive C Positive D Positive E Positive
6 A Positive B Positive D Negative E Negative
7 A Positive B Positive C Negative E Positive
8 A Positive B Positive C Negative D Positive
9 A Positive C Negative D Negative E Positive

10 B Positive C Negative D Positive E Negative
11 A Positive B Positive C Positive D Positive
12 A Negative B Positive C Positive E Positive
13 A Positive B Negative D Positive E Negative
14 A Positive C Negative D Positive E Positive
15 B Negative C Negative D Positive E Positive

Table 5.2: Six possible implied paired-comparisons from the item 6 in Table 5.1 that is con-
structed by the following four statements: (1) trait A, positive; (2) trait B, positive; (3) trait D,
negative; (4) trait E, negative.

Statement (a) Statement (b) Paired-Comparison

Trait Direction Trait Direction Traits Direction

A Positive B Positive A–B Same
A Positive D Negative A–D Opposite
A Positive E Negative A–E Opposite
B Positive D Negative B–D Opposite
B Positive E Negative B–E Opposite
D Negative E Negative D–E Same
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β, for negatively keyed statements, sign inversion of both β jd(k)
j

and β̂ jd(k)
j

are applied before

calculating the RMSE and bias.

In the first scenario, the RMSEs for all parameters are acceptably small in all conditions,

even when D = K = 2. Note that under this condition, the TIRT and TDIRT models encounter

the problem of rotation indeterminacy (A. Brown & Maydeu-Olivares, 2011). This is because

the loadings of these models become equivalent to the case of exploratory factor analysis model.

To see why the parameters of the proposed model can be estimated under this condition, let us

take a look at the factor loading matrix β in the TIRT model. When D = K = 2, the matrix is

given as

β =



β1d(1)
1

β1d(2)
1

β2d(1)
2

β2d(2)
2

...
...

βKd(1)
K

βKd(2)
K


. (5.10)

This matrix suffers from the rotational indeterminacy, because the matrix does not contain zeros

in its elements. To resolve the rotational indeterminacy, A. Brown and Maydeu-Olivares (2011,

2012) arbitrarily recommends fixing the values of the first item
(
β1d(1)

1
and β1d(2)

1

)
to their true

values. Though the approach may be used in the simulation study, it is not applicable in real

data analysis. This is because researchers do not know the true parameter values, and the resul-

tant estimates depend on the item for which the parameters are fixed (Fontanella, Fontanella,

Valentini, & Trendafilov, 2019; Lopes & West, 2004).

On the other hand, the drift rate of the proposed D-LBA IRT approach is mathematically

equivalent to the choice probability in the MNRM model. Therefore, the factor loading matrix
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Table 5.3: Mean RMSEs of each parameter for the simulated conditions.

I D J K ξ log(γ) µ β θ ψ log(σ) ρ

500 2 8 2 0.016 0.231 0.144 0.393 0.609 0.394 0.575 0.171
16 0.012 0.185 0.095 0.276 0.481 0.353 0.410 0.125
24 0.012 0.160 0.089 0.236 0.422 0.360 0.351 0.095

3 8 3 0.016 0.260 0.176 0.289 0.613 0.424 0.552 0.072
16 0.017 0.205 0.141 0.217 0.490 0.385 0.402 0.041
24 0.014 0.183 0.123 0.176 0.436 0.378 0.338 0.035

4 8 4 0.019 0.273 0.229 0.287 0.631 0.468 0.554 0.064
16 0.016 0.215 0.189 0.211 0.521 0.409 0.393 0.044
24 0.018 0.195 0.175 0.201 0.470 0.339 0.334 0.035

100 5 15 4 0.036 0.245 0.323 0.817 0.576 0.956 0.451 0.104
20 3 0.033 0.216 0.266 0.853 0.550 0.910 0.409 0.090
30 2 0.035 0.189 0.186 0.869 0.506 0.841 0.345 0.080

300 15 4 0.023 0.237 0.237 0.317 0.563 0.524 0.429 0.062
20 3 0.021 0.190 0.163 0.263 0.516 0.506 0.393 0.054
30 2 0.019 0.158 0.124 0.286 0.482 0.470 0.333 0.044

500 15 4 0.020 0.237 0.187 0.228 0.564 0.372 0.412 0.046
20 3 0.018 0.199 0.138 0.207 0.519 0.377 0.382 0.040
30 2 0.016 0.162 0.093 0.225 0.485 0.328 0.328 0.034

Table 5.4: Mean biases of each parameter for the simulated conditions.

I D J K ξ log(γ) µ β θ ψ log(σ) ρ

500 2 8 2 -0.006 0.008 – 0.053 0.001 0.094 0.159 -0.010
16 0.001 0.012 – 0.008 -0.009 0.101 0.081 -0.037
24 0.002 0.015 – 0.004 0.004 0.097 0.060 -0.026

3 8 3 0.003 0.042 – 0.029 0.006 0.071 0.137 0.004
16 0.004 0.024 – 0.003 0.001 0.119 0.080 0.000
24 0.003 0.016 – -0.004 0.003 0.102 0.053 -0.005

4 8 4 0.001 0.041 – 0.017 0.005 0.195 0.164 -0.001
16 0.001 0.024 – 0.006 -0.003 0.087 0.078 0.003
24 0.002 0.019 – 0.008 0.006 0.059 0.053 0.003

100 5 15 4 0.005 0.040 – 0.131 -0.007 0.237 0.108 -0.005
20 3 0.005 0.025 – 0.108 0.001 0.214 0.073 -0.003
30 2 0.006 0.024 – 0.144 -0.001 0.190 0.046 -0.009

300 15 4 0.006 0.032 – 0.035 0.001 0.153 0.093 0.001
20 3 0.005 0.029 – 0.019 -0.007 0.214 0.101 -0.002
30 2 0.004 0.017 – 0.042 0.000 0.132 0.060 0.004

500 15 4 0.005 0.034 – 0.012 -0.005 0.004 0.065 -0.005
20 3 0.008 0.037 – 0.016 0.005 0.095 0.067 0.000
30 2 0.002 0.009 – 0.018 -0.003 0.053 0.044 -0.002

Note: biases for µ cannot be calculated due to the sum-to-zero constraint (Equiation.
5.5).
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β can also be written in the same form as the MNRM model:

β =



β1d(1)
1 0

0 β1d(2)
1

β2d(1)
2 0

0 β2d(2)
2

...
...

βKd(1)
K 0

0 βKd(2)
K



. (5.11)

As noted in section 5.2.1, the MNRM requires at least D elements in the matrix β to be fixed

such that the model is sufficiently identified. Thus, the proposed model extension is always

identified even when the number of latent traits D and statements in item K is the same, as long

as the simple structure is assumed. This is the reason why the proposed D-LBA IRT approach

can recover parameters properly even when D = K = 2 while the TIRT and TDIRT models

cannot unless some extra constraints are imposed. Still, the simulation results shown in Table

5.3 indicate that when D = 2, the RMSEs for β and ρ are larger than when D > 2. On the other

hand, other parameters tend to have larger RMSEs as D increases. Either way, the RMSEs

for all parameters but ξ j become smaller as J increases. Concerning ξ j, this can be estimated

sufficiently with a small number of items. These would be preferable results.

From the results of the second scenario, it is evident that all parameters but θid obtain smaller

RMSEs as the number of respondents I increases. The reason why the precision of θid does not

improve is attributed to the “Neyman–Scott paradox” (Neyman & Scott, 1948). This indicates

that in general IRT models, the estimates of respondent parameter do not satisfy the consistency

when respondent parameters and item parameters are simultaneously estimated.

The results of the second scenario also show that when the number of statements in an item

(K) increases, the RMSEs become larger. Evidently, this result is because we can obtain just

the same number of response data as the number of items (J). However, the 4AFC format is

expected to shorten the total RT than the two-alternative forced-choice (2AFC) format (Vancleef
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et al., 2018). This result therefore suggests that the 4AFC format would be useful when the

researcher wants to obtain estimates as accurately as possible, whereas the 4AFC format is

good for reducing total time at the expense of a little accuracy.

The biases for all parameters are acceptably small when the number of respondents (I) and

the number of items (J) are not too small. However, both ψ j and σi tend to be slightly overes-

timated. This is inconsistent with the simulation result of study 2 that showed small negative

biases for corresponding parameters. Nevertheless, as long as biases for these parameters are in

the same direction, these biases would not affect other parameters because they are given in the

quotient form. In this study we chose standard log-normal distribution as the prior of σi. While

there might be a different class of prior that further reduces the biases of ψ j and σi, the current

prior choice would be practical and acceptable in terms of its simulation performance.

Again, the results demonstrated that the biases for all parameters are small when there exist

enough J and I. This evidences that the proposed model can recover parameters properly with

adequate numbers of items and respondents.

5.4 Real Data Application

In this section, we report two applications of the proposed model to actual 4AFC and 2AFC

questionnaire data with RT information.

5.4.1 Example 1: Application to 4AFC data

In the first application, we apply the proposed method to the 4AFC (K = 4) personality ques-

tionnaire data. The stan code of the proposed D-LBA IRT, TIRT, and MNRM models used in

this application example can be found in Appendix E, A, and F, respectively.

Item construction Eighteen 4AFC questionnaire items were constructed using the statements

from the Mini-IPIP scale (Donnellan, Oswald, Baird, & Lucas, 2006) and the Japanese version

of the Balanced Inventory of Desired Responding (BIDR-J; Tani, 2008). The Mini-IPIP scale
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was developed to measure Big-Five personality traits. It consists of four statements for each

latent trait. The Mini-IPIP scale therefore contains 20 statements. Though the Japanese ver-

sion of the Mini-IPIP scale has not been developed, this scale is a part of the Big-Five factor

questionnaire (Goldberg, 1992, 1999), of which the Japanese translation has been developed

by Apple and Neff (2012). Thus, we used its corresponding translations. The BIDR-J, which

is designed to measure social desirability, originally consists of 24 statements. For this study,

four of 24 statements were selected based on the reported factor loadings, considering that both

positively and negatively keyed statements are included.

Using the 20+4 = 24 statements in total, 18 4AFC items were carefully constructed so that

all patterns of trait pairs appear almost the same number of times and both same- and opposite-

direction comparisons are included in each pattern, as noted in Section 5.3. Note that each

statement appears thrice in the item set for the purpose of the studies other than the current

one. The resulting item set used in this example is summarized in Tables 5.5–5.6. Table 5.5

summarizes the block of statements in all items, and Table 5.6 gives the 24 statements used in

this example. For instance, item 1 consists of the following four statements: “Am the life of

the party (Ext-P1),” “Am not interested in other people’s problems (Agr-N1),” “Get upset easily

(Emo-N1),” and “Have excellent ideas (Int-P1).”

Data Four hundred and eighty-four Japanese participants were recruited via an online crowd-

sourcing platform. The sample consists of 184 male and 296 female participants. Four of the

484 participants did not report a specific gender. The distribution of participants’ ages is as

following (three did not answer): 20’s=94; 30’s=168; 40’s=150; 50’s=59; 60’s=8; and 70’s=2.

The total number of item responses was 8,674.

During the survey, an item that consists of four statements appeared on the screen at a

time. Participants were instructed to choose the most appropriate one that described themselves

by pressing the corresponding number on the keyboard. Moreover, participants were asked

to press the button as soon as they made the decision. The time limit to answer each item

was 30 seconds. When 30 seconds passed before giving an answer, the item response was
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recorded as unanswered. The orders of items and statements in each item were randomized

across participants.

Procedure Before analysis, one out of 8,674 item response recorded shorter RT than 300

milliseconds. The data was therefore listwise deleted as an ineligible response. Note that the

eligibility check was conducted at the item-level. This means that the respondent answered

faster than 300 ms in only one of 18 items, the item response to that item was removed, while

the remaining 17 item responses were used in the following analysis procedure. The dataset

was analyzed using the three models: the proposed D-LBA IRT model, the TIRT model, and

the MNRM model.

In this study, the priors of the TIRT model were set as

µ(k)
j ∼ N(0,λ2

µ), β jd(k)
j
∼Cauchy[0,∞)(0,λβ),

θi ∼ MVN(0,Σ), Σ ∼ LKJCorr(1),

Ψ
(k)
j ∼Cauchy[0,∞)(0,λΨ), λµ,λβ,λΨ ∼Cauchy[0,∞)(0,5).

(5.12)

Note that the TIRT model requires some parameter constraints for model identification. We

therefore set the following constraints:
∑K

k=1µ
(k)
j = 0 ∀ j, Ψ(K)

j = 1 ∀ j.

For the MNRM model, the probability that respondent i chooses statement k from an MAFC

item j is

P(xi j = k) =
exp

(
µ(k)

j +β jd(k)
j
θid(k)

j

)
K∑

c=1

exp
(
µ(c)

j +β jd(c)
j
θid(c)

j

), (5.13)

which is the same as the drift rate parameter (v(k)
i j ). The priors for the MNRM were

µ(k)
j ∼ N(0,λ2

µ), β jd(k)
j
∼Cauchy[0,∞)(0,λβ),

θi ∼ MVN(0,Σ), Σ ∼ LKJCorr(1),

λµ,λβ, ∼Cauchy[0,∞)(0,5).

(5.14)
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Though the TIRT model is based on Thurstone’s random utility approach, the MNRM model

is based on Luce’s choice axiom. This can be regarded as a special case of Thurstone’s ran-

dom utility approach when the variances of the unique factor (Ψ2
j
(k)) are independent, normally

distributed, and equivalent among all choice alternatives (A. Brown, 2016; Luce, 1977).

Note that we applied the hierarchical Bayesian approach to item parameters of the TIRT and

MNRM models because otherwise the parameter estimates are affected by the prior distribution

selection.

As mentioned in “Data” paragraph, each statement appears thrice in the 4AFC questionnaire

used in this study. Nevertheless, we assumed that the statement has different parameters when it

appeared in different items. For instance, µ(1)
1 , µ(1)

2 , and µ(1)
5 are treated as different parameters,

although statement (1) in items 1, 2, and 5 are the same (Ext-P1: Am the life of the party).

Results To begin with, we checked the histogram of the RT of the obtained data (Figure 5.2).

The mean RT was 5.431 seconds (min=0.528 sec, max=28.823 sec). Obviously, this distribu-

tion is similar to the frequently used distributions for the RT, such as log-normal, Gamma, or

ex-Gaussian (De Boeck & Jeon, 2019). We considered this as an evidence that the RT was

collected properly and proceeded to the following analysis.

Table 5.7 summarizes the estimated item parameters by the proposed D-LBA IRT model for

the MAFC personality measurement data.

The parameters ξ j and γi are the item and respondent elements of the boundary, respectively.

When the boundary is expected to be larger, the RT is expected to be longer. In other words,

the expected RT becomes longer when ξ j is small or γ j is large. To check if these parameter

estimates are related to the RT, we checked the correlation with the mean RT. Figure 5.3 shows

two scatter plots between the mean RTs and the parameter estimates. The left panel shows

the scatter plot between itemwise mean RT and ξ j. As we anticipated, there existed a negative

correlation (r = −.740) between them. Regarding item 17, mean RT is relatively shorter for its

value of ξ j. This is possibly because the estimates of β17 are extremely larger than that for other

items. We are uncertain about why this happened, thus these parameters should be interpreted
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Table 5.5: Structure of 4AFC items used in Section 5.4.1. Names of statements correspond to
the “ID” column in Table 5.6.

Item Statement (1) Statement (2) Statement (3) Statement (4)

1 Ext-P1 Agr-N1 Emo-N1 Int-P1
2 Ext-P1 Agr-P1 Emo-N2 Soc-P1
3 Ext-N1 Agr-N2 Emo-N2 Int-P1
4 Agr-N1 Con-N1 Emo-P1 Int-N1
5 Ext-P1 Agr-N2 Con-P1 Int-N2
6 Ext-P2 Agr-P2 Int-N2 Soc-P2
7 Ext-P2 Emo-P1 Int-P2 Soc-P1
8 Ext-P2 Con-N1 Emo-N2 Soc-N1
9 Ext-N1 Con-N2 Int-P2 Soc-N2

10 Agr-N1 Emo-P2 Int-P2 Soc-P2
11 Agr-P2 Con-N2 Int-P1 Soc-N1
12 Agr-P1 Con-P1 Emo-P1 Soc-N2
13 Ext-N1 Agr-P2 Con-P2 Emo-N1
14 Con-P1 Emo-N1 Int-N1 Soc-P1
15 Ext-N2 Con-N2 Emo-P2 Int-N1
16 Ext-N2 Con-N1 Int-N2 Soc-N2
17 Ext-N2 Agr-N2 Con-P2 Soc-P2
18 Agr-P1 Con-P2 Emo-P2 Soc-N1

0.00

0.05

0.10

0.15

0.20

0 10 20 30
Response Time

de
ns

ity

Figure 5.2: Histogram of the RT
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Table 5.6: List of statements used in Section 5.4.1.

Trait Direction ID Statement

Extraversion positive Ext-P1 Am the life of the party.
Ext-P2 Talk to a lot of different people at parties.

negative Ext-N1 Don’t talk a lot.
Ext-N2 Keep in the background.

Agreeableness positive Agr-P1 Feel others’ emotions.
Agr-P2 Sympathize with others’ feelings.

negative Agr-N1 Am not interested in other people’s problems.
Agr-N2 Am not really interested in others.

Conscientiousness positive Con-P1 Get chores done right away.
Con-P2 Like order.

negative Con-N1 Often forget to put things back in their proper place.
Con-N2 Make a mess of things.

Emotional Stability positive Emo-P1 Am relaxed most of the time.
Emo-P2 Seldom feel blue.

negative Emo-N1 Get upset easily.
Emo-N2 Have frequent mood swings.

Intellect-Imagination positive Int-P1 Have excellent ideas.
Int-P2 Have a vivid imagination.

negative Int-N1 Am not interested in abstract ideas.
Int-N2 Do not have a good imagination.

Social Desirability positive Soc-P1 Never swear.
Soc-P2 Never regret my decisions.

negative Soc-N1 Sometimes lose out on things because I can’t make up my mind soon enough.
Soc-N2 Sometimes tell lies if I have to.

Note: “ID” column corresponds to Table (a). English versions of the statements for Social De-
sirability are retrieved from Paulhus (1988). Japanese versions of the statements are available at
https://ipip.ori.org/JapaneseBig-FiveFactorMarkers.htm. and Tani (2008)
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Table 5.7: Item Parameter Estimates obtained by the proposed D-LBA IRT model.

Item MRT ξ j ψ j µ(1)
j µ(2)

j µ(3)
j µ(4)

j β(1)
j β(2)

j β(3)
j β(4)

j

1 5.155 0.261 4.185 0.386 -0.050 -0.621 0.285 1.075 0.811 0.714 1.613
2 5.182 0.284 4.641 0.920 -0.558 -0.187 -0.176 1.549 0.753 0.729 0.126
3 5.307 0.247 4.006 -0.647 0.566 -0.248 0.329 0.757 1.256 1.356 1.585
4 6.134 0.226 3.737 0.384 -0.004 -0.429 0.049 1.365 0.858 0.804 0.088
5 5.430 0.247 3.816 0.371 0.185 -0.809 0.252 1.277 0.949 0.821 0.782
6 5.450 0.260 4.191 1.218 -0.817 0.134 -0.534 1.692 0.630 0.580 0.690
7 5.295 0.268 4.054 0.706 -0.149 -0.557 0.001 1.411 0.830 0.996 0.436
8 5.985 0.233 3.963 0.586 0.130 -0.078 -0.638 1.316 0.818 1.069 0.537
9 4.963 0.322 5.239 -0.197 0.600 -0.335 -0.068 0.487 0.102 0.747 0.273

10 5.732 0.235 4.171 0.292 0.835 -0.661 -0.466 1.054 0.912 1.120 0.764
11 5.444 0.259 4.213 -0.619 0.455 0.589 -0.426 0.915 0.233 1.747 0.478
12 5.275 0.302 4.664 -0.019 -0.199 0.171 0.047 0.830 0.582 0.763 0.295
13 4.655 0.352 5.358 -0.177 -0.177 0.359 -0.005 0.335 0.530 1.043 0.640
14 5.296 0.272 3.677 -0.432 -0.291 0.369 0.354 0.687 0.693 0.086 0.442
15 5.539 0.255 4.438 -0.445 0.086 0.399 -0.040 1.442 0.195 0.913 0.119
16 5.646 0.236 3.688 -0.636 0.362 0.543 -0.269 1.192 1.341 0.463 0.166
17 5.424 0.189 3.134 0.042 0.784 0.294 -1.120 8.291 2.272 4.812 1.955
18 5.855 0.258 5.532 -0.270 0.182 0.353 -0.265 0.903 1.210 0.488 0.548

λξ λψ λµ λβ
0.282 4.350 0.520 0.768

Note: MRT = mean RT for each item.
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Figure 5.3: Left panel: scatter plot between the itemwise MRT and ξ j; Right panel: scatter plot
between the personwise MRT and γi.

carefully. The right panel is the scatter plot between the personwise mean RT and γi. There also

exist strong correlations between them (r = .901).

Now that we ensured that the value of ξ j has a strong relationship with the itemwise mean

RT, the parameter ξ j is considered to reflect some factors of the statements that affect the mean

RT, such as the sentence length and the readability. To check the correlation between the read-

ability and the estimates of ξ j, we calculated the readability score of each sentence by jRead-

ability (Hasebe & Lee, 2015). The readability score is obtained by the length of the sentence

and the percentage of some components (e.g., verbs, particles). The correlation between the

mean of readability score per item and ξ j was .392. This result suggests that the more difficult

the sentences in the item, the longer is the expected RT.

As shown in Equation 5.3, the parameter µ(k)
j is the mean of the latent utility of each state-

ment. Therefore, it is expected that the choice proportion of the statement increases as µ(k)
j

increases. Table 5.4 shows the scatter plot between the estimates of µ(k)
j and the choice propor-

tion of each statement. Note that both values are centered per item. The correlation was .835,

implying the strong relationship between them, as expected.

Next, we compared the estimated latent trait scores θi among the D-LBA IRT, TIRT, and

MNRM models. For item parameter estimates, The values obtained by the TIRT and MNRM

models are therefore shown in the Appendix Table 5.8 although we did not go into the details

in this study. The correlation matrix of the estimated latent trait scores θi is summarized in
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Figure 5.4: Scatter plot between the choice proportion of each sentence in the item and µ(k)
j .

Table 5.9. For simplicity, this table, along with Table 5.11 in example 2, only shows the corre-

lations among trait scores within each model, and the correlations between the same trait scores

obtained by different models.
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Among the three models, the correlations between the TIRT and MNRM models were the

highest. Comparatively, the correlations between the proposed D-LBA IRT model and each of

the TIRT and MNRM models were slightly lower. This result may indicate that the D-LBA IRT

model estimates slightly different aspect of the latent traits, because only the model uses the RT

information in estimation. Nevertheless, the D-LBA IRT model estimates correlate higher with

the MNRM model ones than with the TIRT model ones. This would be partly because both the

proposed model and the MNRM model adopt the softmax function in the model formulation

(Equations 5.4 and 5.13). In a more detailed review, the proposed D-LBA IRT model tended

to obtain higher between-trait correlations than the other two models. Especially, correlations

with social desirability (θi6) were much higher than the TIRT model. The same tendency can be

found in the MNRM model. This is possibly related to the result that correlations of θi6 between

the TIRT model and each of the D-LBA IRT and MNRM models are smaller than those of other

latent traits (.739 and .737, respectively).
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Figure 5.5: Scatter plot between the mean signed standardized RT and the difference of the
estimates (Proposed model minus the MNRM model).

The above-mentioned result suggests that the proposed D-LBA IRT approach estimates

slightly different latent traits due to its use of RT information. In order to examine how much

the RT affected the parameter estimation, we examined the relationship between the difference

in estimates and the mean signed standardized RT (MSSRT). The MSSRT indicates whether

the respondent takes less time to choose positively-keyed statement and avoid negatively-keyed

statement regarding each latent trait. Thus, the MSSRT is expected to correlate negatively with

the difference in estimates between the proposed model, which uses RT information, and the

MNRM model, which does not use it. For more detailed procedure of calculating the MSSRT,

refer to Section 3.4.

Figure 5.5 is the scatter plot between the MSSRT and the difference in estimated trait scores.

The sample correlation was −.32 when all traits are intermingled. On each trait, the sample

correlation ranged from −.41 to −.27. This result indicates that the proposed D-LBA IRT model

did use the RT information in a systematic manner in estimating θi.
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5.4.2 Example 2: Application to 2AFC data

Next, we applied the proposed model to the 2AFC (K = 2) personality questionnaire in order to

compare the model performance with the TDIRT model. The data used in this application were

collected in Study 1. The data consist of 499 Japanese participants collected through an online

crowdsourcing service platform. Participants were instructed to answer 25 2AFC personality

questionnaire items which were designed to measure Big-Five traits. Each item consists of

a pair of statements from the Japanese version of the Big-Five factor marker questionnaire

Apple and Neff (2012). For more details of the data collection procedure, see Section 3.4. The

data and sample R code can be obtained from the author’s Open Science Framework website

(https://osf.io/jswqg/).

Procedure Before analysis, some responses with RTs shorter than 300 ms were deleted list-

wise as ineligible ones. We applied the proposed model and the TDIRT model to the dataset.

The proposed model was estimated with the priors in Equation 5.9. For the TDIRT model, the

priors used in this study were

ξ j ∼Cauchy[0,∞)(0,λξ), γi ∼ LN(0,1),

µ(1−2)
j ∼ N(0,λ2

µ), β(k)
j ∼Cauchy[0,∞)(0,λβ),

θi ∼ MVN(0,Σ), Σ ∼ LKJCorr(1),

τ j ∼ U(0,min(RT) j), λξ,λµ,λβ, ∼Cauchy[0,∞)(0,5),

(5.15)

where ξ j is the item component of the boundary parameter in the diffusion process, which is

denoted by γi/ξ j. The intercept parameter µ(1−2)
j is the same as that of µ(1)

j −µ
(2)
j in the TIRT

and proposed D-LBA IRT models, which can be interpreted as the extent to which the mean

utility of the first statement is larger than that of the second.

Note that in this example, as well as the example 1, we applied the hierarchical Bayesian

approach to item parameters of the TDIRT model, whereas half-t distributions were adopted to

ξ j and β jd(k)
j

in Study 1.
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Results Table 5.10 summarizes the parameter estimates obtained from the proposed D-LBA

IRT and TDIRT models. The correlations between corresponding parameter estimates were

.796 for boundary parameters (ξ), .974 for intercept parameters (µ), and .816 for factor loading

parameters (β), respectively. Regarding the respondents’ latent trait scores shown in Table 5.11,

the correlations between estimates obtained by both models are .949, the smallest for all five

traits. These results indicate that both models estimate similar parameters. Meanwhile, com-

pared to the result of the TDIRT model, the proposed model tended to show higher correlations

among the Big-five traits. Furthermore, the sample standard deviations were smaller in the D-

LBA IRT model than the TDIRT model, though the prior distribution of population standard

deviation was set to be one in both models.

Next, we compared the model performance using the two information criteria, the WAIC

and WBIC. Both were calculated using the full MCMC sample. The WAIC were 2.00 and 2.24

for the D-LBA IRT model and the TDIRT model, respectively. The difference evidently indi-

cates that the proposed model performs better than the TDIRT model. The same applies to the

WBIC, as the values were 23607.02 for the D-LBA IRT model and 26648.41 for the TDIRT

model. These results appear to show that the parameters of the D-LBA IRT corresponds to

those of the TDIRT model to a certain extent. Hence, these models are somewhat compatible

in terms of mere parameter estimation. Nevertheless, it would be important to choose the ap-

propriate model based on the underlying cognitive processes. Still, researchers are usually not

sure about the cognitive processes in many real-world situations. Thus, using the D-LBA IRT

model rather than the TDIRT could be recommended because the D-LBA IRT model shows

better performance in terms of information criteria and is expected to be more robust against

model misspecification.

5.5 Discussion

In this study, we proposed a new cognitive process model for MAFC data by extending the

unidimensional binary D-LBA IRT model. The proposed model is based on the LBA model

109



Table 5.10: Item parameters obtained by the D-LBA IRT model and the TDIRT model. Item
numbers correspond with Table 3.4.

Boundary Intercept Loadings

D-LBA IRT TDIRT D-LBA IRT TDIRT LBA IRT TDIRT
Item ξ j ξ j µ(1)

j µ(1−2)
j β jd(1)

j
β jd(2)

j
β(1)

j β(2)
j

1 0.454 0.296 -0.137 -0.213 0.688 0.483 0.722 0.473
2 0.314 0.248 0.383 0.363 0.609 0.607 0.287 0.333
3 0.442 0.284 0.207 0.406 0.236 0.385 0.258 0.383
4 0.422 0.294 -0.336 -0.536 0.396 0.536 0.256 0.441
5 0.384 0.276 -0.159 -0.258 0.423 0.564 0.366 0.411
6 0.481 0.301 -0.349 -0.653 0.176 0.649 0.252 0.560
7 0.323 0.233 0.174 0.226 0.235 0.145 0.161 0.088
8 0.362 0.239 -0.298 -0.451 0.450 0.072 0.332 0.075
9 0.466 0.294 0.052 0.109 0.716 0.100 0.710 0.115

10 0.408 0.265 0.088 0.137 0.737 0.076 0.502 0.161
11 0.401 0.267 -0.034 -0.055 0.347 0.422 0.329 0.410
12 0.370 0.256 0.168 0.137 1.143 1.724 0.460 0.730
13 0.323 0.247 -0.085 -0.102 0.460 0.440 0.380 0.246
14 0.416 0.250 0.328 0.558 0.274 0.309 0.204 0.251
15 0.414 0.291 0.034 0.026 0.096 0.058 0.095 0.044
16 0.299 0.221 0.230 0.214 1.003 1.129 0.401 0.460
17 0.340 0.236 0.201 0.319 0.437 0.171 0.343 0.142
18 0.354 0.243 -0.093 -0.160 0.270 0.482 0.221 0.433
19 0.424 0.236 0.354 0.673 0.345 0.225 0.316 0.241
20 0.306 0.236 0.026 0.022 0.519 0.627 0.312 0.355
21 0.421 0.279 -0.302 -0.412 0.622 0.518 0.441 0.372
22 0.357 0.275 -0.063 -0.084 0.119 0.136 0.086 0.113
23 0.317 0.234 -0.059 -0.048 0.513 0.242 0.250 0.186
24 0.479 0.276 -0.324 -0.395 0.906 0.113 0.576 0.070
25 0.333 0.259 0.100 0.165 0.205 0.494 0.175 0.366

Note: µ(2)
j in the D-LBA IRT model always becomes −µ(1)

j due to the sum-
to-zero constraint and is therefore not shown in the table. Regarding to
β jd(k)

j
, the absolute values are shown.
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and the random utility theory (Thurstone, 1927), both of which have firm scientific and math-

ematical foundations. The proposed model makes it possible for the first time to estimate the

multidimensional psychological traits jointly based on the MAFC item response and its RT. The

results of the simulation study revealed that the proposed model can recover parameters prop-

erly. In addition, it was demonstrated that the proposed D-LBA IRT model can be applied when

the number of latent traits and statements per item are both two (D = K = 2), which is the case

when the existing TIRT and TDIRT models cannot be applied.

We have shown two real data applications. The first one was for a 4AFC questionnaire

dataset. Each parameter of the proposed model was considered to reflect specific psychometric

properties. Correlations between some parameters and corresponding summary statistics were

found, which supports the assumed meanings of the parameters. From the comparison of the

estimates of the latent trait scores θi, we found that the proposed model obtains parameter

estimates that are slightly different from the TIRT and MNRM models. As the correlation

between the difference in estimates and the MSSRT suggests, this difference is due to the use

of RT information in the proposed model. In the second application, we comparatively applied

the proposed D-LBA IRT model and the TDIRT model to a 2AFC questionnaire dataset. The

result indicated these two models obtain similar parameter estimates. Nevertheless, information

criteria found the proposed model to be better than the TDIRT model. As indicated by the results

in study 2, the D-LBA IRT model tends to be more robust than the TDIRT model when the true

data-generation model is unknown.

The proposed model is expected to take over the advantages of both the forced-choice format

and cognitive process models. As a future direction, it would be fruitful to empirically investi-

gate whether and how much applications of the proposed model benefit from these advantages.

We elaborate on both of these points.

First, as discussed in Section 1, the proposed approach is expected to remove systematic

response biases such as acquiescence, extreme, and socially desirable responding. Due to the

use of forced-choice measurement format, it is reasonable to believe that the acquiescence and

extreme responding biases can be prevented. On the other hand, concerning socially desirable
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responding, careful item construction would be a key to preventing this bias (e.g., Heggestad,

Morrison, Reeve, & McCloy, 2006). However, from the simulation results by A. Brown and

Maydeu-Olivares (2011) and Bürkner et al. (2019), it is anticipated that the estimation becomes

unstable if statements with similar social desirability are combined. Further detailed investiga-

tion would therefore be needed on the prevention of social desirable responding.

Second, the proposed model is a class of cognitive process models. The parameters in the

proposed model are thus considered to have psychological meanings. One main advantage of

the accumulator models is that they take both the boundary and the amount of information

accumulation into account. As a result, researchers can investigate psychological phenomena

in detail (e.g., Neville, Raaijmakers, & Maanen, 2019; Palada et al., 2016; Ratcliff et al., 2007).

For instance, Ballard, Sewell, Cosgrove, and Neal (2019) investigated the influence of reward

and punishment on decision making. From the viewpoint of the simple RT, the mean RT was

longer under punishment than neutral condition, while the correct response rate was lower.

Based on the LBA parameter estimates, they found that respondents set higher boundary to

respond when reward is provided, and lowers the boundary when punishment is provided. In

addition, the sum of drift rates was smaller under punishment condition. These results indicate

that people tend to be less cautious while the rate of information accumulation also decreases

when they are threatened with punishment. In this way, the breakdown of observed RT into

several psychologically meaningful parameters makes it possible to provide insights into the

cognitive processes involved in the task.

In addition, the proposed D-LBA IRT model decomposes LBA parameters into both item

and respondent components. The proposed model can therefore be used for more in-depth

analyses. For example, researchers can investigate which (item or respondent) factor is the main

cause of the longer RT by observing the estimates of boundary parameters (ξ j and γi). In our

real data application, we have confirmed the correlation between the item boundary parameter ξ j

and the empirical readability score. The result suggests that the required amount of information

accumulation increases as the statements in an item are more difficult to process. More such

external validation of the model parameters would be hoped through empirical applications.
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Table 5.11: The correlation matrix among the latent trait scores obtained by the D-LBA IRT
model and the TDIRT model.

D-LBA IRT TDIRT

θi1 θi2 θi3 θi4 θi5 θi1 θi2 θi3 θi4 θi5 Mean SD

θi1 - -0.016 0.820
θi2 0.652 - -0.011 0.865
θi3 0.327 0.627 - 0.004 0.766
θi4 0.421 0.208 0.359 - 0.009 0.798
θi5 0.474 0.684 0.288 0.181 - -0.003 0.766

θi1 0.950 - -0.020 0.859
θi2 0.966 0.588 - -0.013 0.887
θi3 0.949 0.215 0.513 - 0.007 0.784
θi4 0.961 0.267 0.122 0.365 - 0.008 0.838
θi5 0.967 0.352 0.605 0.224 0.168 - -0.003 0.800
Note: θi1 = emotional stability; θi2 = extraversion; θi3 = agreeableness; θi4 = conscientiousness;
θi5 = intellect/imagination
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Chapter 6

General Discussion

6.1 Summary of the Series of Studies

The major objective of the series of studies was to propose new cognitive process IRT models

for forced-choice personality measurement using RT information.

Three studies were conducted in this thesis. In Study 1, the combination of the Thurstonian

IRT model and the D-diffusion IRT model was proposed. The Thurstonian IRT model has been

successfully used to analyze forced-choice personality data by means of Thurstone’s Law of

Comparative Judgment. In contrast, the D-diffusion IRT model is a novel cognitive process

model that can naturally use RT information, and estimate concurrently item and respondent

parameters. As a result, a combination of the models, namely the Thurstonian D-diffusion

IRT model, can analyze two-alternative forced-choice personality measurement data with RT

information. In addition, the success of this model would indicate that the diffusion model is

applicable to personality measurement data, even though the original model did not focus on

these types of data.

Study 2 investigated a combination of the IRT model and the linear ballistic accumulator

(LBA) model. The LBA model is considered simpler than the diffusion model, yet the param-

eters in the LBA model can be interpreted as the corresponding parameters in the diffusion

model. We therefore proposed parameter decomposition of the LBA model, similar to that of
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the D-diffusion IRT model. The proposed model was therefore named the (unidimensional bi-

nary) D-LBA IRT model. Several simulation results revealed that the proposed D-LBA model

can estimate parameters more quickly and efficiently than the D-diffusion IRT model. More-

over, simulation and empirical data revealed that the D-LBA IRT model is expected to be more

robust than the D-diffusion IRT model, when the true model is unknown.

Study 3 examined an extension of the D-LBA IRT model, namely the multidimensional

MAFC D-LBA IRT model. To date, there exist no models that can be used to analyze MAFC

personality measurement data with RT information. Empirical data showed that the proposed

model can generate slightly different trait scores in comparison with other models that do not

use RT information. In addition, the proposed model appears more robust than the Thurstonian

D-diffusion IRT model, even when applied to two-alternative forced-choice data.

We proposed three new cognitive process IRT models. Each model applies to different

situations: dichotomous or polytomous, unidimensional or multidimensional. Nevertheless, the

success of these three models suggests that cognitive process models, such as the diffusion and

LBA models, can be used in the field of psychometrics, particularly in personality measurement.

6.2 Future Orientations

There exist numerous directions for future studies. In this thesis, two different types of D-LBA

IRT models were proposed. However, these models are not suitable for polytomous unidi-

mensional measurement data, i.e., Likert scale data. Several psychometric models have been

proposed that are applicable to Likert-type measurements with RT data (Ferrando & Lorenzo-

Seva, 2007b; Ranger, 2013; Ranger & Ortner, 2011). Nevertheless, consideration of cognitive

process models would be beneficial for investigating psychologically meaningful parameters,

as noted in Section 1.3. A D-LBA IRT model for Likert-type data would therefore represent a

promising direction for future study.

This thesis only considered personality measurement data. In terms of the use of RT data,
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there is a fundamental difference between ability and personality measurement. In ability mea-

surement, more able respondents generally find correct answers faster (van der Linden, 2016).

This is obviously different from the inverted-U relationship. Therefore, the proposed models

in the series of studies are not suitable for ability measurements as the drift rate is expressed

as the difference between the respondent and item parameters. These model the respondent

as answering more quickly when he or she has an extremely low ability; this is unlikely in

ability measurement unless the respondent is simply guessing. Therefore, another interesting

direction for future research would be to develop a Q-version of the LBA IRT model for ability

measurements.

Throughout the series of studies, new models based on cognitive process models were pro-

posed. These models include parameters such as the boundary or the drift rate. The likelihood

function of the diffusion and the LBA models were derived so that the models can explain

several empirical phenomena, e.g., the inverted-U relationship. The parameter values based

on these models should therefore correlate with the corresponding summary statistics, as the

results of the studies have shown. However, these results actually do not demonstrate the con-

struct validity of the parameters. Therefore one promising direction for future research would

be investigating the construct validity, or empirical meanings, of the parameters.

Even though the cognitive process models are expected to have advantages over psychome-

tric models, there also exist two disadvantages. First, as mentioned in the discussion of study 2,

these models take time to obtain parameter estimates. One major reason for the long estimation

time is that these models need to be estimated through the MCMC approach. To reduce the cal-

culation time, one solution would be to derive the posterior distributions analytically. However,

the likelihood functions of the diffusion and the LBA models are quite complex. In addition,

the number of parameters becomes large as the number of items and respondent increases.

These issues render it impossible to derive the posterior distributions analytically. Second, the

likelihood functions of these models are considered to non-differentiable. One of the major

advantages of IRT is the item information. In IRT, the standard error of the estimate of trait

score can be calculated using the item information function. In addition, the item information is
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frequently used for adaptive testing. However, the item information function is equivalent to the

Fisher information, which is the second derivative of the likelihood function with respect to the

respondent parameter (θi). The proposed model contains two or three respondent parameters.

For adaptive testing, the Fisher information matrix must be derived from the likelihood func-

tion of the proposed models. However, as mentioned above, the likelihood functions are quite

complex and therefore not differentiable. These disadvantages appear to support the utility of

psychometric models for e.g., fast estimation or adaptive testing. For instance, the log-normal

model (van der Linden, 2006) is one well-known psychometric model that uses RT information.

van der Linden (2008) demonstrated how to use RT information to improve item selection in

adaptive testing. If researchers are interested in adaptive testing, this type of approach would be

more beneficial than a cognitive process model approach.

Although there still exist difficulties with the use of cognitive process models, we believe

these models provide information that is beneficial to several research fields, and the models

proposed in this thesis lay a new path for RT modeling in psychometrics.
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Appendix A: stan code for the Thurstonian

IRT model

1 data{
2 int <lower=1> I;
3 int <lower=1> J;
4 int <lower=1> K;
5 int <lower=2> D; //number of factors
6 int <lower=1,upper=D> D1[J]; //trait of choice 1
7 int <lower=1,upper=D> D2[J]; //trait of choice 2
8 int <lower=1,upper=I> II[K];
9 int <lower=1,upper=J> JJ[K];

10 int <lower=0,upper=1> X[K];

11 int <lower=-1,upper=1> R1[J　];// indicator whether the statement 1 is reversed
12 int <lower=-1,upper=1> R2[J]; // indicator whether the statement 2 is reversed
13 }
14

15 parameters {
16 matrix[D,I] z_trait;
17 real mu[J]; //threshold
18 real <lower=0>beta1[J]; // discriminaton1
19 real <lower=0>beta2[J]; // discriminaton2
20 cholesky_factor_corr[D] Sigma_lower; //correlation
21 }
22

23 transformed parameters{
24 matrix[I,D] theta;
25 theta = (Sigma_lower * z_trait)’;
26 }
27

28

29 model {
30 mu ˜ normal(0,2.5);
31 beta1 ˜ student_t(4,0,2.5);
32 beta2 ˜ student_t(4,0,2.5);
33 Sigma_lower ˜ lkj_corr_cholesky(1);
34 to_vector(z_trait) ˜ normal(0,1);
35

36 for(k in 1:K){
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37 X[k] ˜ bernoulli_logit(((R1[JJ[k]]*beta1[JJ[k]]*theta[II[k]][D1[JJ[
k]]]-R2[JJ[k]]*beta2[JJ[k]]*theta[II[k]][D2[JJ[k]]])-mu[JJ[k
]]));

38 }
39 }
40

41 generated quantities{
42 corr_matrix[D] Sigma;
43 Sigma = multiply_lower_tri_self_transpose(Sigma_lower);
44 }
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Appendix B: stan code for the Thurstonian

D-diffusion IRT model

1 data{
2 int <lower=1> I;
3 int <lower=1> J;
4 int <lower=1> K;
5 int <lower=2> D; //number of factors
6 int <lower=1,upper=D> M1[J]; //trait of choice 1
7 int <lower=1,upper=D> M2[J]; //trait of choice 2
8 int <lower=1,upper=I> II[K];
9 int <lower=1,upper=J> JJ[K];

10 int <lower=1,upper=2> X[K];
11 real<lower=0> T[K];
12 int <lower=-1,upper=1> R1[J];
13 int <lower=-1,upper=1> R2[J];
14 vector<lower=0>[J] minRT;
15 }
16

17 parameters {
18 matrix[D,I] z_trait;
19 real mu[J];
20 real <lower=0>beta1[J];
21 real <lower=0>beta2[J];
22 real <lower=0>xi[J];
23 real <lower=0>gamma[I];
24 // real <lower=0> s;

25 vector<lower=0,upper=1>[J] tau_raw;
26 cholesky_factor_corr[D] Sigma_lower;
27 }
28

29 transformed parameters{
30 matrix[I,D] theta;
31 vector[J] tau;
32 real <lower=0> alpha[K];
33 real v[K];
34 real taus[K];
35 theta = (Sigma_lower * z_trait)’;
36 tau = minRT .* tau_raw;
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37

38 for (k in 1:K){
39 alpha[k] = (gamma[II[k]]/xi[JJ[k]]);
40 taus[k] = tau[JJ[k]];
41 if(X[k]==1){
42 v[k] = ((R1[JJ[k]]*beta1[JJ[k]]*theta[II[k]][D1[JJ[k]]]-R2[JJ[k

]]*beta2[JJ[k]]*theta[II[k]][D2[JJ[k]]])-mu[JJ[k]]);
43 } else {
44 v[k] = -((R1[JJ[k]]*beta1[JJ[k]]*theta[II[k]][D1[JJ[k]]]-R2[JJ[k

]]*beta2[JJ[k]]*theta[II[k]][D2[JJ[k]]])-mu[JJ[k]]);
45 }
46 }
47 }
48 model {
49 xi ˜ student_t(4,0,2.5);
50 gamma ˜ lognormal(0,1);
51 mu ˜ normal(0,2.5);
52 beta1 ˜ student_t(4,0,2.5);
53 beta2 ˜ student_t(4,0,2.5);
54 to_vector(z_trait) ˜ normal(0,1);
55 tau_raw ˜ beta(1,1);
56 Sigma_lower ˜ lkj_corr_cholesky(1);
57

58 T ˜ wiener(alpha,taus,0.5,v);
59 }
60

61 generated quantities{
62 corr_matrix[D] Sigma;
63 Sigma = multiply_lower_tri_self_transpose(Sigma_lower);
64 }
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Appendix C: stan code for the

unidimensional binary D-LBA IRT model

1 functions{
2

3 real lba_pdf(real t, real B, real A, real v, real s){
4 // PDF of the LBA model

5

6 real B_A_tv_ts;
7 real B_tv_ts;
8 real term_1;
9 real term_2;

10 real term_3;
11 real term_4;
12 real pdf;
13

14 B_A_tv_ts = (B - A - t*v)/(t*s);
15 B_tv_ts = (B - t*v)/(t*s);
16 term_1 = v*Phi_approx(B_A_tv_ts);
17 term_2 = s*exp(normal_lpdf(B_A_tv_ts|0,1));
18 term_3 = v*Phi_approx(B_tv_ts);
19 term_4 = s*exp(normal_lpdf(B_tv_ts|0,1));
20 pdf = (1/A)*(-term_1 + term_2 + term_3 - term_4);
21

22 return pdf;
23 }
24

25 real lba_cdf(real t, real B, real A, real v, real s){
26 // CDF of the LBA model

27

28 real B_A_tv;
29 real B_tv;
30 real ts;
31 real term_1;
32 real term_2;
33 real term_3;
34 real term_4;
35 real cdf;
36
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37 B_A_tv = B - A - t*v;
38 B_tv = B - t*v;
39 ts = t*s;
40 term_1 = B_A_tv/A * Phi_approx(B_A_tv/ts);
41 term_2 = B_tv/A * Phi_approx(B_tv/ts);
42 term_3 = ts/A * exp(normal_lpdf(B_A_tv/ts|0,1));
43 term_4 = ts/A * exp(normal_lpdf(B_tv/ts|0,1));
44 cdf = 1 + term_1 - term_2 + term_3 - term_4;
45

46 return cdf;
47

48 }
49

50 real lba_lpmf(int response, real RT, real B, real A, row_vector v,
real s,real tau){

51

52 real t;
53 real cdf;
54 real pdf;
55 real prob;
56 real out;
57 real prob_neg;
58

59 t = RT - tau;
60 if(t > 0){
61 cdf = 1;
62

63 for(j in 1:num_elements(v)){
64 if(response == j){
65 pdf = lba_pdf(t, B, A, v[j], s);
66 }else{
67 cdf = (1-lba_cdf(t, B, A, v[j], s)) * cdf;
68 }
69 }
70 prob_neg = 1;
71 for(j in 1:num_elements(v)){
72 prob_neg = Phi(-v[j]/s) * prob_neg;
73 }
74 prob = pdf*cdf;
75 prob = prob/(1-prob_neg);
76 if(prob < 1e-10){
77 prob = 1e-10;
78 }
79

80 }else{
81 prob = 1e-10;
82 }
83 return log(prob);
84 }
85

86 }
87
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88 data{
89 int <lower=1> I;
90 int <lower=1> J;
91 int <lower=1> K;
92 int <lower=1,upper=I> II[K];
93 int <lower=1,upper=J> JJ[K];
94 int<lower=0,upper=2> X[K];
95 real<lower=0> T[K];
96 }
97

98 parameters {
99 real<lower=0> xi [J];

100 real<lower=0> gamma [I];
101 real theta [I];
102 real b [J];
103 real<lower=0> sigma[I];
104 real<lower=0> psi[J];
105 real<lower=0> tau [J];
106 }
107

108 transformed parameters {
109 matrix <lower=0,upper=1>[K,2] v ;
110 for (k in 1:K){
111 v[k,1] = inv_logit(theta[II[k]]-b[JJ[k]]);
112 v[k,2] = inv_logit(-theta[II[k]]+b[JJ[k]]);
113 }
114 }
115

116 model {
117 xi ˜ cauchy(0,5);
118 gamma ˜ lognormal(0,1);
119 b ˜ normal(0,2.5);
120 theta ˜ normal(0,1);
121 psi ˜ cauchy(0,5);
122 sigma ˜ lognormal(0,1);
123 tau ˜ cauchy(0,5);
124

125 for (k in 1:K){
126 target += (lba_lpmf(X[k]|T[k],gamma[II[k]]/xi[JJ[k]],0.5*gamma

[II[k]]/xi[JJ[k]],v[k,],sigma[II[k]]/psi[JJ[k]],tau[JJ[k
]]));

127 }
128 }
129

130 generated quantities{
131 vector[K] log_lik;
132 for(k in 1:K){
133 log_lik[k] = lba_lpmf(X[k]|T[k],gamma[NN[k]]/xi[JJ[k]],0.5*gamma[

II[k]]/xi[JJ[k]],v[k,],sigma[II[k]]/psi[JJ[k]],tau[JJ[k]]);
134 }
135 }
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Appendix D: stan code for the D-diffusion

IRT model

1 data{
2 int <lower=1> I;
3 int <lower=1> J;
4 int <lower=1> K;
5 int <lower=1,upper=I> II[K];
6 int <lower=1,upper=J> JJ[K];
7 int <lower=0,upper=2> X[K];
8 real<lower=0> T[K];
9 }

10

11 parameters {
12 real theta[I];
13 real b[J];
14 real <lower=0>xi[J];
15 real <lower=0>gamma[I];
16 real <lower=0.0000000001>tau[J];
17 // An error occurs if tau == 0 in wiener;

18 }
19

20 transformed parameters{
21 real <lower=0> alpha[K];
22 real v[K];
23 real taus[K];
24 for (k in 1:K){
25 alpha[k] = (gamma[II[k]]/xi[JJ[k]]);
26 taus[k] = tau[JJ[k]];
27 if(X[k]==1){
28 v[k] = (theta[II[k]]-b[JJ[k]]);
29 } else {
30 v[k] = (-theta[II[k]]+b[JJ[k]]);
31 }
32 }
33 }
34 model {
35 xi ˜ cauchy(0,5);
36 gamma ˜ lognormal(0,1);
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37 b ˜ normal(0,2.5);
38 theta ˜ normal(0,1);
39 tau ˜ cauchy(0,5);
40

41 T ˜ wiener(alpha,taus,0.5,v);
42 }
43

44 generated quantities{
45 vector[K] log_lik;
46 for(k in 1:K){
47 log_lik[k] = (
48 wiener_lpdf(T[k]|(gamma[II[k]]/xi[JJ[k]]),tau[JJ[k]],0.5,( theta

[II[k]]-b[JJ[k]]))*(2-X[k])+
49 wiener_lpdf(T[k]|(gamma[II[k]]/xi[JJ[k]]),tau[JJ[k]],0.5,(-theta

[II[k]]+b[JJ[k]]))*(X[k]-1)
50 );
51 }
52 }
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Appendix E: stan code for the

multidimensional MAFC LBA IRT model

1 functions{
2

3 real lba_pdf(real t, real B, real A, real v, real s){
4 // PDF of the LBA model

5

6 real B_A_tv_ts;
7 real B_tv_ts;
8 real term_1;
9 real term_2;

10 real term_3;
11 real term_4;
12 real pdf;
13

14 B_A_tv_ts = (B - A - t*v)/(t*s);
15 B_tv_ts = (B - t*v)/(t*s);
16 term_1 = v*Phi_approx(B_A_tv_ts);
17 term_2 = s*exp(normal_lpdf(B_A_tv_ts|0,1));
18 term_3 = v*Phi_approx(B_tv_ts);
19 term_4 = s*exp(normal_lpdf(B_tv_ts|0,1));
20 pdf = (1/A)*(-term_1 + term_2 + term_3 - term_4);
21

22 return pdf;
23 }
24

25 real lba_cdf(real t, real B, real A, real v, real s){
26 // CDF of the LBA model

27

28 real B_A_tv;
29 real B_tv;
30 real ts;
31 real term_1;
32 real term_2;
33 real term_3;
34 real term_4;
35 real cdf;
36
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37 B_A_tv = B - A - t*v;
38 B_tv = B - t*v;
39 ts = t*s;
40 term_1 = B_A_tv/A * Phi_approx(B_A_tv/ts);
41 term_2 = B_tv/A * Phi_approx(B_tv/ts);
42 term_3 = ts/A * exp(normal_lpdf(B_A_tv/ts|0,1));
43 term_4 = ts/A * exp(normal_lpdf(B_tv/ts|0,1));
44 cdf = 1 + term_1 - term_2 + term_3 - term_4;
45

46 return cdf;
47

48 }
49

50 real lba_lpmf(int response, real RT, real B, real A, row_vector v,
real s){

51

52 real t;
53 real cdf;
54 real pdf;
55 real prob;
56 real out;
57 real prob_neg;
58

59 t = RT;
60 cdf = 1;
61

62 for(j in 1:num_elements(v)){
63 if(response == j){
64 pdf = lba_pdf(t, B, A, v[j], s);
65 }else{
66 cdf = (1-lba_cdf(t, B, A, v[j], s)) * cdf;
67 }
68 }
69 prob_neg = 1;
70 for(j in 1:num_elements(v)){
71 prob_neg = Phi(-v[j]/s) * prob_neg;
72 }
73 prob = pdf*cdf;
74 prob = prob/(1-prob_neg);
75 if(prob < 1e-10){
76 prob = 1e-10;
77 }
78

79 return log(prob);
80 }
81 }
82

83 data{
84 int <lower=1> I;
85 int <lower=1> J;
86 int <lower=1> K;
87 int <lower=2> D; //number of factors
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88 int <lower=2> S; //number of statements in each item
89 int <lower=1,upper=D> D_each[J*S]; //trait of each statement
90 int <lower=1,upper=I> II[K];
91 int <lower=1,upper=J> JJ[K];
92 int <lower=0> X[K];
93 real<lower=0> T[K];
94 vector<lower=-1,upper=1>[J*S] R; // indicator whether each statement is

reversed

95

96 // indicator of each statement

97 // when all statement have different parameters:

98 // R syntax > ITEM <- matrix(1:(J*S), nrow=J, ncol=S, byrow=T)
99 int <lower=1,upper=J*S> ITEM[J,S];

100 }
101

102 parameters {
103 matrix[D,I] z_trait;
104 matrix[S-1,J] mu; //threshold
105 vector<lower=0>[J*S] beta; //factor loadings
106 real <lower=0>xi[J];
107 real <lower=0>gamma[I];
108 cholesky_factor_corr[D] rho;
109 real<lower=0> sigma[I];
110 real<lower=0> psi[J];
111 real<lower=0> lambda_xi;
112 real<lower=0> lambda_beta;
113 real<lower=0> lambda_mu;
114 real<lower=0> lambda_psi;
115 }
116

117 transformed parameters {
118 matrix[S,J] mu_center; // centered mu
119 matrix[D,I] theta;
120 matrix[J*S,I] pref;
121

122 theta = (rho * z_trait);
123 for(j in 1:J) mu_center[,j] = append_row(mu[,j],-sum(mu[,j]));
124

125 pref = rep_matrix(R .* beta,I) .* theta[D_each,] - rep_matrix(
to_vector(mu_center),I);

126 }
127

128 model {
129 xi ˜ cauchy(0,lambda_xi);
130 gamma ˜ lognormal(0,1);
131 to_vector(mu) ˜ normal(0,lambda_b);
132 to_vector(z_trait) ˜ normal(0,1);
133 rho ˜ lkj_corr_cholesky(1);
134 beta ˜ cauchy(0,lambda_beta);
135 psi ˜ cauchy(0,lambda_psi);
136 sigma ˜ lognormal(0,1);
137
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138 lambda_xi ˜ cauchy(0,5);
139 lambda_mu ˜ cauchy(0,5);
140 lambda_beta ˜ cauchy(0,5);
141 lambda_psi ˜cauchy(0,5);
142

143 for (k in 1:K){
144 target += lba_lpmf(X[k]|T[k],gamma[II[k]]/xi[JJ[k]],0.5*gamma[

II[k]]/xi[JJ[k]],
145 softmax(pref[ITEM[JJ[k]],II[k]]),sigma[II[k]]/psi[JJ[k]]);
146 }
147 }
148

149 generated quantities{
150 vector[K] log_lik;
151 corr_matrix[D] Cor_theta;
152 Cor_theta = multiply_lower_tri_self_transpose(rho);
153 for(k in 1:K){
154 log_lik[k] = lba_lpmf(X[k]|T[k],gamma[II[k]]/xi[JJ[k]],0.5*gamma[

II[k]]/xi[JJ[k]],
155 softmax(pref[ITEM[JJ[k]],II[k]]),sigma[II[k]]/psi[JJ[k]]);
156 }
157 }
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Appendix F: stan code for the

multidimensional nominal response model

1 data{
2 int <lower=1> I;
3 int <lower=1> J;
4 int <lower=1> K;
5 int <lower=2> D; //number of factors
6 int <lower=2> S; //number of statements in each item
7 int <lower=1,upper=D> D_each[J*S]; //trait of each statement
8 int <lower=1,upper=I> II[K];
9 int <lower=1,upper=J> JJ[K];

10 int <lower=0> X[K];
11 vector<lower=-1,upper=1>[J*S] R; // indicator whether each statement is

reversed

12

13 // indicator of each statement

14 // when all statement have different parameters:

15 // R syntax > ITEM <- matrix(1:(J*S), nrow=J, ncol=S, byrow=T)
16 int <lower=1,upper=J*S> ITEM[J,S];
17 }
18

19 parameters {
20 matrix[D,I] z_trait;
21 matrix[S-1,J] mu; //threshold
22 vector<lower=0>[J*S] beta; //factor loadings
23 cholesky_factor_corr[D] rho;
24 real<lower=0> beta_scale;
25 real<lower=0> b_scale;
26 }
27

28 transformed parameters {
29 matrix[S,J] mu_center; // centered b
30 matrix[D,I] theta;
31 matrix[J*S,I] pref;
32

33 theta = (rho * z_trait);
34 for(j in 1:J) mu_center[,j] = append_row(mu[,j],-sum(mu[,j]));
35
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36 pref = rep_matrix(R .* beta,I) .* theta[D_each,] - rep_matrix(
to_vector(mu_center),I);

37 }
38

39 model {
40 to_vector(b) ˜ normal(0,b_scale);
41 to_vector(z_trait) ˜ normal(0,1);
42 rho ˜ lkj_corr_cholesky(1);
43 beta ˜ cauchy(0,beta_scale);
44

45 b_scale ˜ cauchy(0,5);
46 beta_scale ˜ cauchy(0,5);
47

48 for(k in 1:K){
49 X[k] ˜ categorical_logit(pref[ITEM[JJ[k]],II[k]]);
50 }
51 }
52

53 generated quantities{
54 corr_matrix[D] Sigma = multiply_lower_tri_self_transpose(rho);
55 }
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